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Abstract

A brain-computer interface (BCI) provides an alternative communication channel for

the human brain to directly interact with computers or machines. This technology

has enabled patients with locked-in-syndrome to communicate with the outside world

that otherwise would be impossible. It also promises recovery to stroke patients by

supplying a platform to practice motor imagery of their impaired motor functions and

receive feedback. The latter application is called motor imagery based BCI (MI-BCI)

and has already provided promising results for stroke rehabilitation. However, its

widespread application necessitates optimization.

This thesis investigates enhancement of MI-BCIs for stroke rehabilitation through feed-

back optimization, exploring the feedback modality (proprioceptive and visual) effect

on BCI performance. It suggests that proprioceptive feedback is the superior choice

for therapeutic BCIs. Next, it compares the effect of a short and a long propriocep-

tive feedback update interval (FUI) on BCI performance. It concludes that people with

short reaction time benefit more from a short FUI whereas their slower counterparts

show improved performance with motor imagery practice using a long FUI. In another

study, which was run as a proof-of-principle study, we find a significant improvement

in one stroke patient hand movement, after attending MI-BCI training sessions opti-

mised through our findings on FUI length and proprioceptive feedback.

Overall, the research outcomes in this thesis highlight the effects of feedback modality

and feedback update interval on MI-BCI performance. Furthermore, the single case

study on a stroke patient provides primary evidence and motif for larger studies on

the efficacy of the proposed strategies to enhance MI-BCI performance in stroke reha-

bilitation.
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Chapter 1

Introduction

T
HIS chapter provides an introductory background to the brain-

computer interface (BCI) and its application for stroke rehabilita-

tion. It also explains the objectives and motivations behind the

presented research. Furthermore, the original contributions in this thesis

are highlighted followed by an outline of the structural organisation of the

thesis.
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1.1 Introduction

1.1 Introduction

1.1.1 The origin of brain-computer interfaces

Science fiction writers Larry and Andy Wachowsky, who wrote the Matrix, presented

the story of cybernetically enslaved humans whose brains were connected to machines.

While the readers of the novel or watchers of the Matrix film might consider these

as complete science fiction, there is nevertheless a real basis that may make it plau-

sible to some extent in the future. German psychiatrist Hans Berger published his

seminal work (Berger 1929) on application of electroencephalogram (EEG) for moni-

toring the brain activity and turned what used to be purely fantasy into a scientific

phenomenon. That phenomenon, which is now referred to as the brain-computer inter-

face (BCI), measures brain activity and translates it into a format readable by computers

or machines (Vidal 1973). However, the emergence of BCIs occurred few decades after

the emergence of EEG, when the technology became advanced enough to provide real

time recording and processing of multichannel EEG signals. During the last 30 years,

BCI has attracted much attention from many research laboratories all around the globe.

Since then, different types of brain signals and a myriad of BCI paradigms have been

exploited to enable patients with locked-in-syndrome to communicate directly with

the outside world through their brain signals (Donchin et al. 2000). In addition, there

has been a growing interest in BCI applications for healthy populations such as gam-

ing (Finke et al. 2009) and monitoring car drivers’ vigilance (Lin et al. 2008).

1.1.2 BCI for motor rehabilitation after stroke

According to World Health Organization, 15 million people suffer stroke each year,

where almost one third thereof do not adequately recover after stroke (Mackay et al.

2004). One of the major stroke aftermaths is hemiparesis of the upper limbs and impair-

ment of the arm motor functions. Rehabilitation of the hand motor functions following

stroke is a key element to properly performing daily life activities (Kaiser et al. 2011).

However, traditional stroke rehabilitation techniques such as physiotherapy do not

provide sufficient improvement to at least 30% of stroke victims who are not able to

move their affected arms (Kwakkel et al. 1999). To address this gap, application of mo-

tor imagery (MI) has been proposed (Sharma et al. 2006, De Vries and Mulder 2007).

Motor imagery activates the brain in a similar manner to actual movement. These
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similar phenomena are associated with a decrease in the spectral power of sensorimo-

tor rhythms that occur within 8–30 Hz frequency band (Pfurtscheller et al. 1997). This

decrement in spectral power of EEG signals recorded over the motor cortex is referred

as event related desynchronization (ERD) and is followed by a spectral power rebound

effect referred to as event related synchronization (ERS) (Pfurtscheller et al. 1997). Fur-

ther discussion on movement related potentials will appear in Chapters 2 and 3. These

phenomena mainly occur within the hemisphere contralateral to the performed or

imagined hand movement. Thus it appears that motor imagery offers a unique op-

portunity to activate the perilesional brain areas of the damaged hemisphere for those

30% of stroke patients with no residual hand movement. This brain activation if prop-

erly coupled with real time sensory feedback closes the sensorimotor loop (Gomez-

Rodriguez et al. 2011), and thus may promote Hebbian-like neuroplasticity following

stroke (Murphy and Corbett 2009). Therefore, brain-computer interfaces have been

employed to enhance stroke rehabilitation through harnessing the power of neuroplas-

ticity by i) monitoring MI occurrence through screening movement related potentials

and, ii) providing sensory feedback to close the sensorimotor loop. For simplicity we

will use phrases “BCI application for stroke rehabilitation” and “restorative BCI” in-

terchangeably throughout this thesis.

1.1.3 Research motivations and thesis objectives

Previous applications of BCI for stroke rehabilitation offer promising re-

sults (Pichiorri et al. 2015, Ang and Guan 2013, Buch et al. 2008, Gomez-

Rodriguez et al. 2011, Shindo et al. 2011, Prasad et al. 2010, Ramos-

Murguialday et al. 2013). However, widespread application and dissemination

of BCI for stroke rehabilitation necessitates its optimization to provide clinically

significant outcomes in a timely fashion. This lack of efficacy in application of

BCI to restore impaired motor functions after stroke may at least partly caused by

sub-optimal feedback provision.

In light of the above background, this thesis investigates whether feedback optimiza-

tion impacts the efficacy of BCI application for stroke rehabilitation. This potential

performance enhancement has been pursued through investigating a pivotal hypoth-

esis stating that efficacious stroke rehabilitation requires optimal feedback at the right

time. More specifically, it necessitates the feedback provision in restorative BCIs to be
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1.2 Summary of original contributions

optimal both modality-wise and temporally. To study these two key aspects of feed-

back, three phases of experimental studies were carried out: In phase one, the effect

of feedback modality was investigated where the impact of visual and proprioceptive

feedback on brain activation patterns were compared. In the second phase, the inter-

play between feedback update rate and ERD modulation was examined. In the third

phase the findings of the last two phases were tested on a stroke patient as a proof-of-

principle study.

In addition to the studies on feedback provision, some studies on machine learning and

signal processing aspects of restorative BCIs were also performed. These studies on

signal processing methods were performed using offline analysis of publicly available

EEG databases to fine-tune BCI parameters for restorative applications.

1.2 Summary of original contributions

This thesis provides a number of contributions in the area of BCI optimization. These

contributions can be categorized into two main topics: The first part of the thesis en-

compasses studies on signal processing for BCIs. The second part, however, is focused

mainly on the neurophysiological side of BCI through a series of studies on feedback

optimization.

1.2.1 Signal processing

This section outlines the contributions in the first part of this thesis that investigates a

practical trade off between feedback update rate, time window length, and accuracy.

1.2.2 Feedback optimization

This part, which can be considered as the major contribution of this thesis, explores

how feedback modality and update rate impacts the performance within a restorative

BCI framework. The outcomes of the initial studies on the effect of feedback modality

and feedback update rate on BCI performance of healthy participants, were then veri-

fied in a proof-of-principle study on one stroke patient. The study employed a number

of clinical and neurophysiological measures to study the effect of feedback optimiza-

tion on stroke recovery where the results corroborate with our initial observations with

healthy population. The key outcomes are:
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• The effect of feedback modality on performance of restorative BCIs has been in-

vestigated by comparing proprioceptive and visual feedback. To compare their

effect, modulation of sensorimotor oscillations and BCI accuracy in BCI setups

that were only different in their feedback modality were studied. It was observed

that proprioceptive feedback outperforms visual feedback in both accuracy and

the strength of ERD modulation. The outcome of this research is currently under

review with the Frontiers in Neuroscience.

• In the next step, the impact of feedback update rate on sensorimotor rhythm

desynchronization and BCI accuracy was studied. It was found that modification

of feedback update rate significantly affects BCI performance where the direction

of the impact depends on the user’s BCI aptitude. The outcome of this research

is under final pre-submission preparation.

• The outcomes of the two studies on the effect of feedback modality and feed-

back update rate on BCI performance, were verified in a proof-of-principle study

design on one stroke patient. The study employed a number of clinical and neu-

rophysiological measures to study the effect of feedback optimization on stroke

recovery where the results corroborate with the findings of the initial phases.

This study is under preparation for submission as a journal paper.

1.3 Overview of the thesis

As illustrated in Fig. 1.1, this thesis encompasses four parts including the background,

two main parts containing original contributions, and the conclusion. The detailed

explanations for each part of the thesis are presented as follows:

Background section that includes Chapter 1, 2, and 3 comprises the current introduc-

tory chapter and Chapters 2&3 that provide neurophysiological background and

explain required concepts and provides background information for the rest of

the thesis chapters.

Signal processing section (Chapter 4) simulates the interplay of a number of com-

binations for time window length, accuracy and feedback update rate to find

a practical trade off among them that fulfils real time constraints of restorative

BCIs.
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Neurophysiological Background

Figure 1.1. Thesis outline and original contributions. This dissertation is composed of eight

chapters in total, divided in four main parts and five appendices. The original con-

tributions are distributed in two parts: signal processing and feedback optimization.

Feedback optimization part (Chapters 5, 6, and 7) elaborates on our studies regarding

the effect of feedback modality and update rate on both healthy BCI users and
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stroke patients. Chapter 5 focuses on comparison between visual and proprio-

ceptive feedback with eight healthy participants. Chapter 6 presents our work

on the impact of feedback update rate modification on BCI performance where

ten healthy participants were tested. Chapter 7 investigates whether findings of

the previous studies on healthy subjects were applicable to stroke patients in a

single-case proof-of-principle study.

Conclusion (Chapter 8) summarizes the findings and contributions of the aforemen-

tioned studies and highlights their significance towards further developments

and future research on optimizing restorative BCIs.

Appendix section that includes four appendices that have been published as confer-

ence papers related to either signal processing (Appendix A) or feedback opti-

mization for BCIs (Appendices B, C, and D). The appendix section ends with Ap-

pendix E that describes the details of the fabricated orthoses for the implemented

studies.
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Chapter 2

Neurophysiological
Background

S
INCE the ultimate goal of the studies reported in this thesis in-

volves motor rehabilitation following stroke, this chapter pro-

vides a brief overview on the structure of the sensorimotor sys-

tem in humans followed by the effects of stroke on the sensorimotor system.

Next, different types of movements including overt and covert movements

are briefly explained. Then, different signatures of movement observable in

electroencephalography (EEG) signals and the effect of stroke on them are

discussed. Finally, different learning paradigms for neurofeedback training

and their hypothesized synergy for stroke rehabilitation are discussed.
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2.1 Sensorimotor sytem

2.1 Sensorimotor sytem

Stroke impairs volitional motor control. This thesis involves feedback optimization

for restorative BCIs aimed at stroke rehabilitation. Therefore, to provide the neces-

sary neurophysiological background the following sections describe the sensorimotor

pathways involved with control of voluntary movement.

2.1.1 Motor cortex

The motor cortex is comprised of a number of cortical regions including the primary

motor cortex (M1), and premotor areas that encompass premotor cortex (PMC), sup-

plementary motor area (SMA), and cingulate motor area (CMA).

The M1 is topographically organized, i.e. each segment of the body has a specific rep-

resentation in the M1, where the medial parts represent foot and leg and the lateral

parts represent face and head. Within the M1, each neuron maps its outputs to a spe-

cific movement pattern rather than a specific muscle and neuronal cells are organized

in six layers (layers I-IV). The most direct pathway for motor execution is originated

from large pyramidal neurons that belong to layers III, V, and VI. Pyramidal cells long

axons travel through the corticospinal tract and synapse with alpha motor neurons in

the spinal cord. Also, dendrites of pyramidal cells synapse with all cortical layers and

provide the basis for plasticity of the brain. Instead, the stellate cells, which contain

20–25% of M1 cells, produce axonal and dendritic projections excluded to the cortex.

Stellate cells are responsible for interneuronal excitatory and inhibitory connections

and are important for maintaining normal cortical representations.

The premotor areas (PMC, SMA, and CMA) are extensively projected to M1 and also

project directly to the spinal cord. In addition, the premotor areas demonstrate a high

degree of topographic organization with distinct projections to proximal and distal

muscle groups within arms and legs. The PMC is activated during movement prepa-

ration and is also involved with delayed movement cued by sensory stimuli. However,

the SMA is active during movement preparation only when movement is self-paced.

The CMA has a critical role in motivational and cognitive aspects of volitional move-

ment. Altogether, the topographic organization of premotor areas, their connections

to the periphery and their projections to M1 suggest that premotor areas influences

preparation and execution of volitional motor functions both indirectly (through M1)

and directly.
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2.1.2 Corticospinal tract

The corticospinal tracts receive axons from M1, premotor, parietal and somotosensory

areas where almost 60% of them originate in layer V of the M1. The efferent routes

within the corticospinal tract travel via the internal capsule and then 75% of them de-

cussate in the lower medulla. Next, the crossed pathways move through the spinal

cord as the lateral corticospinal tract. However, the ventral corticospinal tract is formed

by a small portion of the uncrossed pathways. Finally, the reminder of uncrossed fibres

continue to project ipsilaterally and join the fibres in the lateral corticospinal tract.

At the spinal cord, the cortical motor (CM) system is shaped where corticospinal tracts

make mono-synaptic excitatory connection with spinal motor neurons and each spinal

motor neuron receives several CM inputs . The CM control plays an important role for

implementation of precise motor skills such as precise gripping and also for acquisition

of new motor skills. In addition, corticospinal tracts project to spinal interneurons

in the ventral intermediate layers of the spinal cord that create indirect pathways to

coordinate large and proximal muscles involved in reaching and lifting.

2.1.3 Somatosensory cortex

The primary motor cortex, premotor areas and corticospinal tracts are key components

of the motor output system for volitional motor functions. However, in addition to

these motor outputs, sensory feedback is also required to perform dexterous motor

functions.

The sensory information to the motor system is provided via the somatosensory cor-

tex and the afferent spinothalamic pathways. The somatosensory cortex receives cuta-

neous and proprioceptive sensory information and similar to the M1 is somatotopically

organized, i.e. it contains a representation for each segment of the human body. Sen-

sory information from the skin, muscles and joints travel upward to the dorsal horn

of the spinal cord and then axons either synapse locally (for spinal reflex circuits) or

ascend to reach the medulla.

Modulation of the sensory information for motor control starts at the spinal cord.

Many motor inputs are projected to the dorsal horn of the spine that receives also

somatosensory information. Therefore, these motor projections are considered impor-

tant for control, selection and/or interruption of the afferent sensory information. The
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2.2 Stroke: its types and motor aftermaths

afferent pathways that carry sensory information from the body and posterior head

decussate in the medulla and then terminate in the ventral posterior lateral nucleus of

the thalamus. However, those that carry cutaneous information from the face enter the

ventral posterior medial nucleus of the thalamus after decussating in the medulla.

The projected cutaneous and proprioceptive information to nuclei of the thalamus are

mainly transferred to the layer IV of the somatosensory cortex. However, some afferent

pathways carrying sensory information are directly projected to pyramidal cells of the

M1 area. Therefore, motor outputs are modulated by sensory information both via tha-

lamocortical projections to M1 and through axonal connections to the somatosensory

cortex.

For further details on neurophysiology of sensorimotr systems refer to Miller and Hat-

sopoulos (2012).

2.2 Stroke: its types and motor aftermaths

Stroke is an abrupt loss in brain function caused by lack of or severe decrease in blood

supply (ischemic stroke) or leakage of blood in the brain (hemorrhagic stroke). Stroke

covers a diverse range of vascular diseases that are related to the blood vessels that

supply blood for the brain.

Depending on the type of stroke and particular blood vessels, stroke can affect the

brain differently and in turn results in different symptoms. In the most common type

of stroke, called ischemia, which consists of about 85% of stroke cases, a blockage in

blood vessel(s) occurs within the brain. The other 15% of stroke cases, in a condition

called hemorrhage, are caused by a rupture in these blood vessels. In the case of a

hemorrhage, a large quantity of blood gathers in the brain leading to higher pressure

in the brain tissues. If this pressure does not discharge promptly, it causes permanent

damage to the brain. Ischemia occurs in three categories: (i) thrombosis, which occurs

when a local blockage appears in a blood vessel due to diseases that narrow the artery,

(ii) embolism, when a blockage occurs due to loose clots that may originate from a

distant area such as the aorta, and (iii) hypoperfusion, when ischemia occurs due to

insufficient pumping of blood by the heart or low volume of blood in the body.

Depending on the part of the brain that suffers from the lack of blood supply, and

for the amount of time that the blockage occurs in the blood vessel, the symptoms and
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damage to the brain can be very different. There are three main arteries that supply the

blood for the brain: anterior cerebral artery (ACA), medial cerebral artery (MCA), and

posterior cerebral artery (PCA). For instance, if the blockage occurs in the MCA that

supplies the sensorimotor cortices, the sensory and/or motor abilities of the subject in

the ipsilateral part of the subject’s body will be impaired. Other motor impairments

following such a stroke may include difficulty with swallowing, problems with keep-

ing balance, fatigue, spasticity, and foot drop.

2.3 Underpinng mechanisms for stroke rehabilitation

There is evidence that recovery after stroke involves neuroplasticity (Murphy and

Corbett 2009). Several forms of plasticity are thought to be involved in the recovery

after stroke including homeostatic (Turrigiano and Nelson 2004) and Hebbian (Hebb

2005) plasticity (Murphy and Corbett 2009).

Homeostatic plasticity: According to homeostatic plasticity, reduced activity in neu-

ronal populations affected by the stroke leads to compensatory changes including

greater transmitter release in the pre-synaptic neurons and also larger responses

to the neurotransmitters in post-synaptic neurons. These adjustments are viewed

as an attempt within the CNS to restore activity at a set point (Turrigiano and

Nelson 2004) responding to lower level of activity in the brain following stroke.

In addition to up-regulation of existing synaptic connections, homeostatic plas-

ticity also causes formation of new synaptic connections manifested as axonal

sprouting (Carmichael 2003), and increase of dendritic spine production follow-

ing stroke (Brown et al. 2009).

Hebbian plasticity: This plasticity rule that is discussed further in the context of its

role in BCI training in Sections 2.9 and, 2.10, enhances the synaptic efficacy when

pre- and post-synaptic neurons are coincidentally activated. In this thesis we

investigate the occurrence of Hebbian plasticity during neurofeedback training.
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2.4 New modalities for stroke rehabilitation

The gold-standard for motor stroke rehabilitation still involves application of of task-

specific training and aerobic exercise (Dimyan and Cohen 2011). However, even af-

ter intensive task-specific training, almost one third of stroke survivors remain dis-

abled (Lloyd-Jones et al. 2009). Therefore, novel methods that promote neuroplasticity

following stroke are sought to allow rehabilitation of those portion of stroke survivors

who do not recover with traditional therapies.

One novel technique known as constraint induced movement therapy

(CIMT) (Taub et al. 1993) relies on constricting the movement of the intact side

of the body to force the use of the stroke affected side to drive recovery following

stroke. In another intervention, even though very experimental at this stage, stem

cell therapy (Lichtenwalner and Parent 2006) has been shown to provide some level

of recovery for stroke survivors. Also, electrophysiological approaches including

excitation of the damaged hemisphere or inhibition of the intact hemisphere through

application of repetitive transcranial magnetic stimulation (rTMS) have been pro-

posed to promote neuroplasticity after stroke (Ridding and Rothwell 2007). In

addition paired associative stimulation (PAS) (Stefan et al. 2000) in which cortical

activation is temporally conditioned with a peripheral stimulation (such as median

nerve stimulation) have been suggested for motor recovery following stroke (Castel-

Lacanal et al. 2009, Jayaram and Stinear 2008, Rizzo et al. 2009). Another novel

approach for enhancement of plasticity after stroke is covert movement. Covert or

simulated movement encompasses motor imagery, motor observation and motor

attempt (De Vries and Mulder 2007, Szameitat et al. 2012). The following section

describes the attributes of each movement category.

2.5 Overt and covert movements

In humans, overt movements is associated with activation of several areas of the sen-

sorimotor system and causes observable movements in the intended body limbs/mus-

cles. Covert activities such as motor imagery are associated with similar activations of

the motor cortex as seen during overt movement (Jeannerod 2001, Hiremath et al. 2015).

This thesis report studies that involve motor imagery that is categorized as a specific

type of covert movements. Thus, in the following sections a brief overview on different

types of movements and their correlations and distinctions is provided.
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2.5.1 Movement execution

Motor execution or overt movement is associated with activations in various parts of

the sensorimotor system. However, the problem with application of overt movement

for motor stroke recovery is that it is not applicable for those who have no residual

motor functions in their limbs following stroke.

2.5.2 Motor observation

There is evidence that observing another person’s movements activates the brain of

observers correlated with the brain activation patterns during motor execution of the

same action (Gallese and Goldman 1998). It is believed that the underpinning mech-

anism that activates the brain during motor observation is a specific type of neurons

referred as mirror neurons (Gallese and Goldman 1998).

Not only watching other humans’ action triggers mirror neurons in the observer, some

researchers maintain that even observing robotic manipulators’ movement activates

mirror neurons (Gazzola et al. 2007). However, others reject this argument and main-

tain that activation of motor neurons in humans is excluded to observing biological

movements (Tai et al. 2004). However, even Gazzola et al. (2007) who maintain that

observing movements of the robotic objects activates the mirror neurons, have shown

that observing repetitive robotic actions results in habituation and thereby fails to acti-

vate the mirror neurons.

2.5.3 Motor imagery

According to the literature (Decety et al. 1989, Frak et al. 2001, Szameitat et al. 2012),

motor imagery and motor execution of a specific task are temporally correlated, acti-

vate the sensorimotor system similarly, and are under same constraints such as Fitts

law (Sirigu et al. 1995). Therefore, motor imagery has been one of the first types of

covert movements that was proposed to have correlated neural mechanisms with those

of overt movements (Jeannerod 1997, Jeannerod 1994).

Not surprisingly, it has been shown that practicing motor imagery may ben-

efit those stroke survivors who have no residual motor functions following
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stroke (Zimmermann-Schlatter et al. 2008). However, motor imagery performance can-

not be naturally monitored, and therefore BCIs have been used to support correct per-

formance of motor imagery by provision of feedback.

2.5.4 Motor intention

Severe damage to the nervous system such as spinal cord injury may lead to de-

afferentiation and therefore may limit such patients’s abilities for motor imagery per-

formance (Lopez-Larraz et al. 2012). Therefore, motor intention (motor attempt) has

been tested with such patients and found to provide a better substrate for neurofeed-

back training with spinal cord injury patients (Lopez-Larraz et al. 2012). However,

motor intention is only applicable to those stroke survivors who have no residual

motor functions, whereas motor imagery is applicable for both healthy populations

and most stroke survivors. Moreover, several studies (Ang et al. 2011, De Vries and

Mulder 2007, Dijkerman et al. 2004) have demonstrated that the quality of motor im-

agery in such populations is sufficient for neurofeedback training. Therefore, motor

imagery has been chosen as the covert type of movement for the studies reported in

this thesis.

While the brain activation patterns during the reviewed movement types have close

similarities, each movement type have their own specific signatures that make them

distinct from others types. For a detailed review see (Jeannerod 2001, Hiremath et al.

2015).

2.6 Signature of motor functions in EEG signals

2.6.1 Movement-related cortical potentials

Movement-related cortical potentials (MRCP) are extracted by averaging EEG sig-

nals recorded over the sensorimotor cortex before and after a voluntary move-

ment (Hallett 1993). The MRCP begin with a slowly increasing negativity, referred to

as readiness potential or Bereitschaftspotential (BP). Next, they continue with a larger

negativity starting about 400 ms prior to the start of movement or motor imagery,

named as negativity slope (NS). The initial slope of the motor potential occurs just

before the onset of electromyographic (EMG) activity and is topographically focal over
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the primary motor cortex (M1) that may reflex the activation of M1. The mentioned

focal negativity lasts for 30–50 ms following the onset of EMG activity. Next, the peak

negativity moves toward the anterior contralateral area, where it reaches its largest

negativity , known as the frontal peak of motor potential (Hallett 1993). There is evi-

dence that motor imagery evokes similar MRCPs to those of motor actions (Mrachacz-

Kersting et al. 2012, Niazi et al. 2012, Sano and Bakardjian 2009, Xu et al. 2014). However,

evoked potentials in imagery exhibits lower and delayed peaks compared to MRCP

with actual movement. Nonetheless, MRCP related responses in the primary and sup-

plementary motor areas are similar for motor imagery and motor actions (Sano and

Bakardjian 2009).

2.6.2 Event related oscillatory activity within the sensorimotor cor-

tex

Prior to, during, and after motor actions and motor imagery the oscillatory patterns of

the EEG signals recorded over the sensorimotor cortex change. These alterations in the

oscillatory activity of the sensorimotor cortex are divided into two main subcategories:

Event related desynchronization

Processing motor and cognitive tasks prior to and during motor actions and motor

imagery poses a high demand on these cortical areas. Also, receiving sensory infor-

mation during motor execution is an additional processing task for the sensorimo-

tor cortex. As a result different neuronal ensembles within the sensorimotor cortex

attend to different tasks and consequently, a desynchronization occurs among them

that is manifested as lower amplitude in the oscillatory activity of this region. This

phenomenon is known as event related desynchronization (ERD) (Pfurtscheller and

Aranibar 1979, Pfurtscheller and Lopes da Silva 1999). Therefore, ERD is considered as

a signature of the cortical activation for motor action and motor imagery (Pfurtscheller

and Lopes da Silva 1999).

Event related synchronization

After the offset of motor action or imagery, activated neuronal networks have no more

processing task and thereby return to their baseline (idling) status. Subsequently, a syn-

chronization occurs that is known as event related synchronization (ERS) (Pfurtscheller
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and Aranibar 1979, Pfurtscheller and Lopes da Silva 1999). The ERS is used as a signa-

ture of baseline activity (idling status) for the EEG signals recorded over the sensori-

motor cortex.

The ERD/ERS phenomena are thought to occur as a result of thalamo-cortical and

cortico-cortical feedback loops (Pfurtscheller and Lopes da Silva 1999). They are time

locked but not phase-locked, i.e. they have different manifestations for different fre-

quencies. The frequency band of interest that is usually used for ERD/ERS analysis of

EEG signals lies within 0–50 Hz in which few specific frequency bands exist: i) Delta

band (0–4 Hz); ii) Theta band (4–8 Hz); iii) Alpha band (8–13 Hz); iv) Beta band (16–

30 Hz); v) lower Gamma band (30–50 Hz). Among the mentioned frequency bands,

Alpha and Beta bands are more explored within the MI-BCI studies and are also the

selected frequency bands in the studies reported in this thesis.

This thesis explores a potential synergy between Hebbian and operant learning (see

below for further details on Hebbian and operant learning), and therefore MRCP can-

not be chosen as it only occurs prior to motor imagery/execution. Accordingly, ERD

has been chosen as the signal of interest because it occurs both prior to and during

motor imagery performance.

2.7 How stroke affects ERD modulation

A number of studies have demonstrated that the occurrence of stroke in different cor-

tical and subcortical areas of the brain may disrupt movement preparation and motor

imagery (Battaglia et al. 2006) and weaken the ERD to different extents (Leocani and

Comi 2006, Platz et al. 2000, Stepien et al. 2011). However, even these weaker ERDs

of stroke survivors have been shown to be sufficient for taking part in neurofeedback

training session (Ang et al. 2011). Also some other techniques such as transcranial

direct current stimulation (tDCS) have been shown to enhance the ability of stroke sur-

vivors to elicit stronger ERDs (Kasashima et al. 2012, Tohyama et al. 2011). Nonetheless,

novel approaches to elicit stronger ERDs for stroke patients are highly desirable.

2.8 Operant conditioning and neurofeedback training

In operant (instrumental) conditioning, implementing a specific behaviour of an an-

imal is rewarded (reinforced) through provision of food or drinks. Here, there is no
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verbal instructions and the animals are expected to find by themselves what strategy

to do to receive rewards or avoid punishments. However, operant learning with hu-

mans is usually associated with clear verbal/visual instructions and they are explicitly

instructed to follow specific strategies to be rewarded (Dayan and Abbott 2001).

Fetz (1969) employed conditional learning with monkeys and had them elicit a spe-

cific brain activation pattern so as to be rewarded with food or drinks and then it

was successfully repeated in their following studies (Engelhard et al. 2013, Ganguly

and Carmena 2009, Hiremath et al. 2015). Also in humans, operant conditioning

has been used in neurofeedback paradigms to achieve a specific oscillatory pattern

and receive feedback (Pfurtscheller and Aranibar 1979, Pfurtscheller and Lopes da

Silva 1999, Boe et al. 2014, Florin et al. 2013, Kaiser et al. 2014).

The most common paradigm for BCI training is the cue-based paradigm in which par-

ticipants receive clear instructions and even specific strategies to establish the required

oscillatory patterns. However, a number of studies have shown that the occurrence of

operant leaning within a neurofeedback setting does not necessitate concious control

and can be achieved implicitly (Birbaumer et al. 2013, Kaplan et al. 2005, Kober et al.

2013). It has also been found that participants who were instructed to follow a specific

strategy and elicit desired activation patterns, presented poorer results compared with

those who did it implicitly (Kober et al. 2013). Therefore, it appears that, it might be

beneficial to allow participants ‘go on their own journey’ (Gruzelier 2014) instead of

providing explicit strategies.

It is also worth mentioning that in a recent review on the learning strategies adopted

for neurofeedback training (Strehl 2014), while operant learning was highlighted as

a key player for BCI training, it was mentioned that there are other major factors in-

volved. These factors have to be derived from classical conditioning, two-process-

theory and in particular from skill learning and research into motivational aspects of

BCI training (Strehl 2014).

Considering the adaptation medium that is selected for the occurrence of learning dur-

ing neurofeedback training, it appears that there are three main regimes that choose

man, machine, or both for learning: i) operant conditioning regime such as the ap-

proach of Gert Pfutrschller and colleagues at the University of Graz, Austria, who

allow the training to occur in the user along a number of training sessions; ii) machine

learning approach such as the method of Benjamin Blankertz and his colleagues from

Berlin BCI (BBCI) group that invest on machine learning techniques so as the user can
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control the BCI within a single session; iii) the combined regime such as the approach

taken by Jon Wolpow and colleagues in Wadsworth, Albany where they consider BCI

training as a co-adaptive procedure to occur mutually between man (such as operant

learning) and machine (machine learning).

2.9 Hebbian learning and BCI research

In 1949, Donald Hebb (Hebb 2005) postulated if input from neuron A, contributes to

activation of neuron B, the synaptic connection from neuron A to neuron B will be

strengthened. This form of synaptic plasticity that is based on the correlation be-

tween neurons’ activity is referred as activity-dependent Hebbian plasticity (Dayan

and Abbott 2001). Using this learning rule, both enhancement and weakening of the

synaptic connections between neurons can be explained. More specifically, if the ac-

tivity of two neurons (or group of neurons) are correlated , then long term potentia-

tion (LTP) occurs and manifest itself by strengthening the synaptic efficacy between

co-activated neurons. However, if activity between two neurons (or ensemble of neu-

rons) is dissociated, then long term depression (LTD) occurs that weakens the synaptic

connection between dissociated neurons (Dayan and Abbott 2001).

In the realm of BCI application for motor rehabilitation following stroke, the activ-

ity dependent plasticity has been exploited by a number of laboratories including a

research group from the Alborg University, Denmark that have run a series of stud-

ies (Jochumsen 2015, Mrachacz-Kersting et al. 2012, Niazi et al. 2012, Xu et al. 2014).

They investigated the effect of this learning rule through accurately coupling MRCP

elicited from imagination of a simple dorsiflexion movement with afferent feedback

using peripheral electrical stimulation to the common peroneal nerve. They reported

that significant plasticity was induced only when the afferent volley was timed to ar-

rive during the peak negativity of the MRCP generated during the imagined task. In

this paradigm, appropriately timed afferent input activates corticocortical projections

from sensory cortex to M1 (Lemon 1979) at a time that M1 is active (through imagery),

results in strengthening of the sensorimotor pathways. This may explain why they

recorded stronger motor evoked potentials, that reflect the corticospinal excitability,

following the neurofeedback training sessions, compared to the control values.

Also recently, another group at the University of Tuebingen, Germany (Naros et al.

2016) have shown that learning sensorimotor desynchronization leads to behavioural

Page 20



Chapter 2 Neurophysiological Background

gains after neurofeedback training using a brain-robot interface. They reported that

the acquired skill for sustained Beta-ERD was correlated significantly with subsequent

motor improvement. In another study of the same group (Kraus et al. 2016), they re-

ported that the robotic feedback to motor-imagery related sensorimotor Beta-ERD in-

duced robust and muscle-specific changes of corticospinal excitability.

Therefore, it appears that a growing body of evidence suggesting a potential role for

activity-dependent Hebbian plasticity within therapeutic BCI paradigms.

2.10 Synergistic neurofeedback training for motor re-

habilitation following stroke

There are two main paradigms that are used for the occurrence of BCI training in the

user’s brain for motor rehabilitation following stroke:

2.10.1 Operant conditioning

A myriad of techniques have been employed to capitalize on operant learning for pro-

moting stroke recovery following stroke: i) in the most common method a cursor po-

sition update on a monitor is used as visual feedback to reward down-regulation of

sensorimotor rhythms (Buch et al. 2008); ii) in another method that largely capitalizes

on activation of the mirror neurons system (MNS), movement of a virtual arm is given

to reward ERD modulation (Pichiorri et al. 2011, Pichiorri et al. 2015); iii) propriocep-

tive feedback provision via an orthosis, a robot, or by FES has also been used to re-

ward self-regulation of the brain oscillatory patterns for stroke rehabilitation (Gomez-

Rodriguez et al. 2011, Ramos-Murguialday et al. 2013, Daly et al. 2009). Note that using

robots, FES and orthosis in tandem with BCI, can also provide a direct visual feedback

(in contrast to the indirect visual feedback such as cursor update on a monitor). If this

visual feedback exploited besides the proprioceptive feedback, may provide a more

similar feedback to what is perceived during motor skill learning.

However, operant learning of sensorimotor rhythms regulation is usually a long and

time consuming procedure even with healthy populations. Thus, this length of train-

ing time may be an important barrier for administering neurofeedback training with

stroke patients who may lose motivation if they do not gain the sense of autonomy in a
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timely manner. Moreover even when stroke patients learned ERD modulation through

operant learning, no beahvioural gain was reported.

2.10.2 Activity dependent Hebbian plasticity

As it was discussed in Section 2.9, this method has been adopted by some re-

searchers (Mrachacz-Kersting et al. 2012, Niazi et al. 2012, Sano and Bakardjian 2009,

Xu et al. 2014), to co-activate the periphery and the motor cortical areas so as to capital-

ize on Hebbian learning for promoting synaptic plasticity and thereby achieving motor

rehabilitation. Also in a recent study by Reynolds et al. (2015), they examined the op-

timal timing between the onset of motor imagery and functional electrical stimulation

(FES) and found that performing motor imagery during FES application resulted in

stronger ERDs compared with other scenarios in which motor imagery preceded or

succeeded FES application. This finding may be interpreted by activity dependent

Hebbian plasticity that emphasize the correlated activation of cortical and peripheral

systems.

2.10.3 Synergistic learning for therapeutic BCIs

While the mentioned paradigms for application of BCI for motor rehabilitation follow-

ing stroke have shown to be efficient to some extent, it appears that some aspects of

neurofeedback training such as the efficacy of training and the long training time may

require optimization. Therefore, within the studies reported in this thesis I have exam-

ined whether it is possible to make a BCI setup that benefits from a potential synergy

between Hebbain learning and operant conditioning.

Since the specific BCI design that was used in this thesis capitalizes on some of neuro-

physiological mechanisms underpinning PAS that was introduced in Section 2.4 as a

novel method for stroke recovery, prior to explaining the rationale for our hypoth-

esized BCI design, this method is further described as follows: Stefan et al. (2000)

demonstrated that electrical stimulation of the median nerve if follows by a TMS ap-

plication over the hand representation of the contralateral primary motor cortex, re-

sults in larger motor evoked potentials (MEPs). The larger MEPs that reflect higher

cortical excitability only occurs when the TMS application is applied 25 ms after

the median nerve stimulation. The transfer time for a median nerve stimulation to

reach the primary sensory cortex is almost 20 ms (Samii et al. 1998). Also, there
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is evidence that afferent stimulation disinhibits the motor cortex for few millisec-

onds (Hess et al. 1999, Ridding and Rothwell 1999). Therefore, they concluded that

the recorded larger and longer lasting increase in MEP amplitude (i.e. plastic effect)

was caused by the occurrence of LTP-like plasticity in the motor cortex as a result of

co-activation of the primary motor and sensory cortices. Likewise, this thesis will ex-

plore co-activation of the primary motor and sensory cortices via a specific BCI design

that follows.

To design such a BCI system this thesis considers the following facts and their rational

consequences:

• Takemi et al. (2013a) reported that ERD is a biomarker for cortico-spinal excitabil-

ity and M1 activation. Also, Kilavik et al. (2013) showed that ERD magnitude

in the sensorimotor cortex represents cortico-muscular communication during

motor imagery performance. Furthermore, Rossiter et al. (2014) demonstrated

that ERD magnitude is negatively correlated with functional impairmrnt follow-

ing stroke. Therefore, enhancement of ERD modulation was adopted as the key

measure for the studies reported within this thesis.

• Motor imagery performance of stroke survivors can activate the peri-lesional

area within the damaged motor cortex, however, it elicits weaker ERDs with low

signal-to-noise ratio compared to healthy populations (Leocani and Comi 2006,

Platz et al. 2000, Stepien et al. 2011).

• There is evidence (Brouwer and Schryburt-Brown 2006) that subthreshold and

high frequency (50 Hz) cortical stimulation delivered concurrently with inten-

sive rehabilitation therapy resulted in behavioural gains for patients with chronic

hemiparetic stroke. Also PAS administration causes LTP-like neuroplasticity in

the motor cortex (Stefan et al. 2000).

• Sensory afferent signals caused by finger flexion/extension via an orthosis are

transferred through thalamo-cortical tracts to the sensory cortex and then in al-

most 10 ms are diffused to some neurons in the motor cortex (Dell’Acqua et al.

2010) and disinhibits M1 neurons for few milliseconds (Lemon 1979, Hess et al.

1999, Ridding and Rothwell 1999). Therefore, it appears that provision of re-

current sensory feedback during motor imagery performance leads to recurrent

afferent sensory signals that activate sensory and thereby motor cortices.
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• An afferent volley from stimulation of the hand arrives in the sensorimotor cor-

tex after about 20 ms. This can be recorded as an evoked potential (N20), later

processing events can also be recorded in the form of later components e.g. the

P300 (Allison et al. 2012).

• If afferent input is precisely planned to arrive in the motor cortex at a time that

its activity is increased via motor imagery, it can lead to strengthening in senso-

rimotor synapses and thereby may translate into improved motor function after

stroke. Specifically, according to Hebbian plasticity, it may cause LTP-like plas-

ticity and enhance connectivity in the motor cortex that may elicit stronger ERDs

during motor imagery, which would ease neurofeedback training for stroke pa-

tients. Enhancement of the connectivity may also contribute to reorganization

of the damaged neuronal ensembles within the peri-lesional area of the motor

cortex and therefore may cause behavioural gains for stroke patients.

• In addition, perception of the late phases of the sensory feedback (or the visual

feedback through observation of the hand movement) as reward to ERD modu-

lation may provide the basis for the occurrence of operant learning.

To summarize, we hypothesized that using a specific BCI design that provides appro-

priately timed and recurrent sensory feedback provides the basis for the occurrence of

i) Hebbian plasticity that not only increases ERD, which eases BCI training, may also

results in behavioural gains for stroke survivors; ii) operant learning through percep-

tion of late responses to the sensory stimuli. The hypothesized synergy between the

Hebbian plasticity and operant conditioning may not only shorten the training time

for ERD modulation, also may enhance the efficacy of restorative BCIs.

This thesis will study how and to what extent further activation of the motor cortex

during motor imagery through provision of rapid and recurrent sensory feedback en-

hances ERD modulation (for healthy populations) and behavioural gains (for stroke

survivors).

Note that visual feedback does not close the sensorimotor loop during neurofeedback

training. Thus, it is unlikely that Hebbian learning occurs during neurofeedback train-

ing with pure visual feedback. Accordingly, in this thesis the occurrence of Hebbian

learning has been investigated only for the BRI setup (with proprioceptive feedback)

and not the BCI setup (with visual feedback).
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Next Chapter provides a brief overview on the fundamental elements of a BCI system

followed by a literature review on the BCI application for motor stroke rehabilitation.

Page 25



Page 26



Chapter 3

Brain-Computer Interfaces
Components and

Applications

T
HIS chapter is designed to briefly overview the main aspects of

a BCI system including, signal acquisition, signal processing, and

BCI applications and feedback. Numerous references have been

provided for readers to delve deeper into each specific sub-discipline. Next,

BCI application for stroke rehabilitation is further explained and motivated.

Finally, a literature review on restorative BCIs and their state of the art is

presented highlighting the current challenges and open questions.
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3.1 Introduction

According to John Wolpow brain-computer interfaces (BCIs) are determined as fol-

lows: ‘A BCI is a system that measures central nervous system (CNS) activity and converts

it into artificial output that replaces, restores, enhances, supplements or improves natural CNS

output thereby changes the ongoing interactions between CNS and its external or internal en-

vironment’ (Wolpow and Wolpow 2012a). The activity of CNS can be measured via

sensors mounted on the scalp, on the brain’s surface or within the brain. Note that a

BCI measures the signals arising from CNS activity, extracts their related features, and

then translates them into commands readable by computers/machines.

This chapter is aimed at providing a brief overview of the main aspects of any BCI

system, including signal acquisition, signal processing (mainly excluded to the applied

techniques within the thesis), and major BCI applications followed by the state of the

art in therapeutic BCIs for motor recovery after stroke. Note that the different aspects

and paradigms are briefly reviewed to motivate the area and understand the chosen

study in this context. For further exploration, numerous reference papers are provided

for all sections.

3.2 BCI signal acquisition

Signals from a BCI reflect either electrical/magnetic activity of the brain or the brain

metabolism. This section describes different electromagnetic or brain metabolism sig-

nals that are used for BCIs.

3.2.1 Signals that reflect electrical activity of the brain

Local field potentials: Local field potentials (LFP) that are recorded within the brain’s

cortex, mainly represent the cortical activity within 0.1–1 mm of the recording

electrode(s). This signal provides high quality and signal-to-noise ratio, however

it requires surgery to mount the electrodes within the brain.

Electrocorticogram: Electrocorticogram (ECoG) signals are recorded from the surface

of the brain cortical tissues and are known to reflect the cortical activity within

2–5 mm around the recording electrodes. Here, ECoG electrodes are mounted on

the surface of the brain through small holes made in the skull and thus are less
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invasive than LFPs. The ECoG also provides a reasonable quality and signal-to-

noise ratio signal.

Electroencephalogram: Electroencephalogram (EEG) signals are obtained from the

scalp where each electrode represents the neural activity of 10–40 cm2 of the

cortical sheet centred around the electrode. The biggest drawback of EEG is

its low signal-to-noise ratio that renders it prone to environmental and biolog-

ical artefacts. However, as the only non-invasive signal that measures the brain

electrical activity, it is the most commonly used signal in the realm of BCI re-

search (Srinivasan 2012).

3.2.2 Signals that reflect magnetic activity of the brain

The magnetoencephalogram (MEG) records the brain’s very small magnetic fields.

This technology that was introduced in 1980s, is more sensitive than EEG to cortical

activities oriented parallel to MEG sensors (Srinivasan 2012). Another advantage of

MEG over EEG originates from transparency of the skull and other tissues circumscrib-

ing the brain to the magnetic field. However, in practice, EEG electrodes are placed

much closer to the neural sources than MEG sensors. Note that MEG equipment is sig-

nificantly more costly than EEG hardware, requiring a magnetically shielded chamber,

and its sensors need to be cooled using liquid helium. Therefore, MEG has been used

as a supportive, rather than a primary method for BCI development (Srinivasan 2012).

3.2.3 Signals that reflect the brain metabolism

Measuring the brain activity through its electromagnetic activity has a number of in-

herent limitations such as reflecting the activity only in the immediate vicinity of the

sensors. The brain’s metabolic processes, however, provide an overall picture of the

whole brain via its energy consumption that is correlated with neuronal firing rate.

Increased brain metabolism is reflected by greater consumption of required resources

such as sugar and oxygen that necessitate increased blood flow in the brain. The blood

flow in the brain is locally controlled and thus can be employed as a biomarker for neu-

ral activity. Four main technologies to monitor the brain metabolism are summarized

as follows.
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Functional transcranial Doppler: Functional transcranial Doppler (fTCD) is another

method that measures the brain metabolism via monitoring changes in blood

flow through the brain’s main arteries (Stroobant and Vingerhoets 2000). Its ad-

vantages comprise affordability and mobility of the equipment. However, it only

measures differences between the right and left hemispheres activity that renders

it suboptimal for BCI studies.

Positron emission tomography: Positron emission tomography (PET) tracks the

blood flow through tracing injected radioactive compounds (Fox et al. 1984). Sim-

ilar to fTCD, PET is not an attractive option for BCI research as it is relatively slow

and radioactive compound injection is an invasive technique.

Functional near infrared spectroscopy: Functional near infrared spectroscopy

(fNIRS) monitors the blood flow in the brain through screening modification in

different types of the haemoglobin cells (Villringer et al. 1993, Boas et al. 2004).

These changes in haemoglobin types are referred to as blood oxygen level

dependent (BOLD) response (Ogawa et al. 1990). It measures the response of

haemoglobin cells exposed to a near infrared radiation to calculate the blood

flow accordingly. Its spatial resolution is on the order of centimetres and has a

temporal resolution on the order of several seconds. It is easy and convenient to

apply and thus an appealing method for BCI research (Ramsey 2012).

Functional magnetic resonance imaging: (fMRI) is another technique that like fNIRS

also monitors the BOLD response to measure the brain metabolism (Ogawa et al.

1990). It screens the response of different haemoglobin cells to a magnetic field

to determine oxygen consumption and blood flow. It is very high-cost, but is

presently the most sensitive technique for monitoring the brain metabolism with

high resolution and thus it is commonly used for BCI research (Ramsey 2012).

3.3 EEG signal processing

All reported studies in the thesis were performed by recording EEG signals. Conse-

quently, in the following review of signal processing techniques only methods relevant

to EEG signals, which are most relevant to the techniques used in this thesis, will be

described.
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3.3.1 Pre-processing

This step involves artefact removal and enhancement of spatial, temporal and/or spec-

tral characteristics of the EEG signals using a priori knowledge. The following section

describes the typical steps performed during pre-processing:

Pre-filtering: Frequency range pre-filtering removes unwanted frequencies while re-

taining desired frequencies. For instance, in motor imagery based BCIs (MI-BCI)

sensorimotor rhythms (8–30 Hz) are explored to extract spectral features and

therefore, frequency range pre-filtering for MI-BCI involves band-pass filtering

of EEG signals to eliminate spectral features outside 8–30 Hz frequency band.

Down sampling: To enhance computational efficiency, the data are down sampled fol-

lowing the primary filtering by a suitable factor. The adjusted sampling rate must

remain at least two times greater than the largest frequency of interest in the sig-

nal. This approach guarantees preservation of all relevant information in the

signal through keeping the sampling frequency greater than Nyquist frequency

and thereby prevent signal distortion.

Spatial filtering: EEG signals reflect the activity of a fairly large area of the brain. Fur-

thermore, the recorded signals of the channels close to each other are largely

correlated. To enhance the spatial resolution of EEG electrodes and to render

them more representative of independent cortical activities a myriad of spatial

filtering techniques have been proposed. Data dependent spatial filtering en-

compasses principal component analysis (PCA), independent component analy-

sis (ICA), and common spatial patterns (CSP). It increases the spatial resolution

while considering the covariance between all available channels. However, data

independent spatial filtering such as with the Laplacian filter and common av-

erage reference (CAR) do not deal with the relationship among different elec-

trodes (Krusienski et al. 2012).

Artefact removal-environmental noise: Environmental artefact removal involves re-

moving electrical and magnetic interference originated from the environment out

of EEG signals. For instance, the power-line noise (50 Hz in Europe, Asia and

Australia or 60 Hz in America) interfere with EEG signals. Power-line noise is

produced when the electromagnetic fields of the equipment working at 50/60 Hz

affect the human body that produces strong noise in their respected frequencies.

To remove this artefact a band-stop (notch filter) is applied to EEG signals.
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Artefact removal-biological noise: Biological noise that affects EEG signals mainly

manifests as muscular contraction potentials, i.e. electromyogram (EMG), and

eye movement potentials, i.e. electrooculogram (EOG) and eye blinks. Since these

signals affect the neighbour electrodes similarly, spatial filtering techniques such

as Laplacian filtering remove a large portion of them.

3.3.2 Feature extraction

Following pre-processing that suppresses the noise and enhances desired aspects of

the signals, the next step is to extract relevant features using a priori knowledge of

the recorded signal. Notably, for motor imagery-based BCIs, the desired features are

amplitude modulation of EEG signals within 8–30 Hz frequency band. To extract these

features mainly one of the following methods is adopted:

Fast Fourier transform: The fast Fourier transform (FFT) is a computationally efficient

method used to calculate the spectral power of a signal within an individual fre-

quency or a frequency band. The FFT takes an N sample signal and produces N

frequency samples uniformly spaced over − f /2 to + f /2 range where f repre-

sents the sampling frequency. Note that FFT values are complex values that have

magnitude and phase. To calculate the spectral power, we square the magnitude

of FFT values. To reduce artefacts introduced by abruptly changing edges that

occur through segmentation of the EEG signals, tapering windows such as Ham-

ming and Hanning window functions are multiplied by the finite-length signals

prior to FFT calculation. This approach mitigates the occurrence of unwanted

ripples in the frequency response.

Autoregressive modelling: The autoregressive (AR) modelling technique is an alter-

native to the Fourier transform in calculating spectral attributes of EEG signals.

It models EEG as output of a filter that receives white noise as its input. Since

white noise encompasses all frequencies, the filter adjusts its parameters to re-

flect EEG spectral characteristics. A critical factor in AR modelling is optimal

order determination. Note that EEG signals are considered to encompass up to

five spectral peaks comprising δ (0–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (16–30 Hz),

and lower γ (30–50 Hz) (Pfurtscheller and McFarland 2012). Therefore, the or-

der of the AR model must be more than 10 for proper modelling of EEG sig-

nals (Krusienski et al. 2012). However, the order must be increased when large
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sampling rates are used (Pfurtscheller and McFarland 2012). The Burg algo-

rithm (Hayes 2009) is a preferred method for calculating AR model parameters as

it guarantees model stability. The power spectrum is obtained using the formula

3.1:

PAR(ω) =
Ep

|1 + ∑
p
k=1 ap(k)e−jkw|2

(3.1)

where Ep is the prediction error, ap(k) is the kth filter weight, p is the order of the

AR model, and PAR(ω) is the spectral power at the angular frequency of ω.

Wavelet transform: To overcome the drawbacks of FFT and AR modelling that lose

temporal information when transforming a signal to the frequency domain,

wavelet transform has been proposed. Wavelet analysis convolves the EEG sig-

nal with both stretched and compressed versions of specifically shaped wavelets.

Whenever it finds a large correlation, it creates larger wavelet coefficients and

vice versa. Therefore, not only do wavelets reveal spectral attributes of the EEG

signal, but they also disclose how the spectral behaviour of the signal changes

over time. Another aspect of a wavelet transformation is that it adjusts the signal

window length in order to maximize its frequency resolution. Notably, by apply-

ing longer wavelets for low frequencies and shorter wavelets for high frequen-

cies, it extracts frequency domain features with optimal resolution. The wavelet

transform has two versions: (i) a more computationally efficient version is dis-

crete wavelet transform (DWT) that minimizes redundancy, and (ii) the continu-

ous wavelet transform (CWT), which is more robust in extracting subtle features

(Bostanov and Kotchoubey 2006).

3.3.3 Post-processing

Prior to transferring the extracted features to classifiers, further processing of features

is required to optimize feature distribution and mitigate redundancy among features.

Post-processing of features is typically carried out through the following procedures

to enhance the performance, accuracy, and speed of the classifier.

Normalization: The extracted feature sets may have different means and dynamic

ranges, non-related to the BCI task conditions. In such cases, a normalization
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procedure is applied. It involves subtracting the average value from all features,

followed by dividing the resultants by the standard deviation. This technique

renders zero mean and unit variance features that enhance classification out-

comes.

Log-Normal transformation: The FFT amplitude lower range is bounded by zero

whereas the higher range is limited by the sampling frequency. In addition,

EEG power is inversely proportional to frequency. Thus, it is very likely to pro-

duce a non-Gaussian distribution of spectral power features with EEG signals.

Most classifiers provide optimum results when receiving normally distributed

features. A logarithmic transformation in most cases normalizes the non-normal

EEG spectral features, and makes them optimal for classification.

Dimension reduction: To provide real time feedback in a BCI framework, it is nec-

essary to keep the computational cost as low as possible. To decrease computa-

tional cost of the classification, it is required to extract the lowest possible num-

ber of features that represent EEG signals. In addition, representing the EEG

signals with larger than optimal number of features causes the curse of dimen-

sionality (Bellman 1957) and degrades the classification accuracy with novel ob-

servations. Principal component analysis (PCA) and independent component

analysis (ICA) are among the most commonly applied methods that remove cor-

related and redundant features from the feature space and define the optimal

features (Krusienski et al. 2012).

3.3.4 Feature translation

Despite the ideal cases in which the extracted features of BCI signals directly reflect a

subject’s intent, a feature translator is necessary to transform the features into signals

amenable to external devices.

A feature translator, that is also referred to as classifier, is a mathematical model that

includes a number of parameters. The parameters of the model become adjusted using

observations in which the subject’s intent is clear. Then the adjusted (trained) model is

used to predict the subject’s intention from new observation data (generalization).

To determine a high-performance classifier for a specific BCI system, its model

type, input features, and parameters need to be selected optimally (McFarland and

Krusienski 2012). The following describes these aspects of BCI classifiers.
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Model selection

The primary function of a classification model is to determine whether the user’s inten-

tion is reflected in the extracted features. The goodness-of-fit of a selected model will

be subsequently determined through the accuracy, and speed of classification. Model

selection depends mostly on two critical factors: BCI application, and the amount of

available training data.

Classifiers that produce continuous outputs have a regression model whereas those

with discrete outputs have a discriminant model. While models are typically used in a

specific manner to provide either discrete or continuous outputs, they are usually able

to produce both types of outputs. A number of most commonly used classifier models

for BCIs are listed as follows:

Linear least-squares discriminant classifier: This model is one the simplest and

meanwhile most powerful models used for BCI classification (McFarland and

Krusienski 2012, Theodoridis and Koutroumbas 2006b). Its general form is:

Y = b1X1 + b2X2 + ... + bnXn + a (3.2)

where Y is the predicted value (classifier output), b1, b2, b3, ..., bn and a are the

model weights that need to be determined, and X1, X2, X3, ..., Xn are features. The

bi parameters are defined using the following formula:

b = (X′X)−1X′Y. (3.3)

Bayesian classifier: This classifier uses the maximum likelihood concept to extract in-

formation from a priori knowledge to classify novel data as posterior probabil-

ities. More specifically, it calculates the possibility of belonging to each class of

outputs given a set of features. The class with the highest possibility is most likely

the class that the novel observation belongs to. The general form of a Bayesian

classifier is as follows:

P(Y|X1 , X2, ...Xn) =
P(Y)P(X1 |Y)P(X2 |Y)...P(Xn |Y)

P(X1)P(X2)...P(Xn)
(3.4)

where Y is the predicted value (classifier output), X1, X2, X3, ..., Xn are features,

and P(Xi |Y) is the probability of Xi given Y.
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Bayesian classifier is simple and robust even when a small number of obser-

vations for classifier training is available. However, for a large set of training

data, a linear least-squares discriminant model that takes into account the re-

lationship among features may provide a better performance (Theodoridis and

Koutroumbas 2006a).

Support vector machines: The aforementioned classifiers originate from statistical

methods. However for another family of classifiers such as support vector ma-

chines, machine learning approaches are employed to iteratively improve the

classifier performance. Notably, support vector machines find the support vec-

tors across the boundaries between classes that: i) minimize the Euclidean dis-

tance between the support vectors (hyper planes) and incorrectly classified data;

ii) maximize the Euclidean distance between support vectors (Duda et al. 2012).

This model is believed to be robust against outliers and generalizes well, even

with limited number of observations for adjusting the parameters (Parra et al.

2005).

Non-linear methods: Advanced machine learning approaches transform non-linear

problems into linear ones through application of kernel methods. Commonly

used kernels include Gaussian and radial basis function (RBF) kernels. Gaus-

sian kernels allow producing fairly distinctive hyperplanes from features that in

their original form would have created very irregular shapes (McFarland and

Krusienski 2012).

Another method to deal with feature non-linearity is to exploit the robustness

of artificial neural networks that are able to estimate (theoretically) any function,

where a sufficient number of artificial neurons have been used (Müller et al. 2003).

However, complex functions necessitate employing a large number of artificial

neurons that require large numbers of observations to fine tune the model pa-

rameters for artificial neural networks (McFarland and Krusienski 2012).

For a through review on BCI classification techniques refer to Lotte et al. (2007),

and Makeig et al. (2012).

Feature selection

Regardless of feature types used for BCI classification, be it event-related potentials or

spectral power, the brain usually produces correlated (redundant) features.

Page 36



Chapter 3 Brain-Computer Interfaces Components and Applications

In addition, the number of features used in any model is proportional to its classifica-

tion accuracy of the training data. However, the model generalizability degrades when

very large number of features are used for parameter adjustment as it causes overfit-

ting to the training data. Therefore, a trade-off must be made between minimizing

the error of the classifier with training data, and its generalizability through selecting

optimal number of features. Heuristic methods, iteratively select the optimum fea-

tures that fulfil the mentioned trade-off. Step-wise heuristic methods such as forward

and backward stepwise heuristic techniques, instead of examining all possible combi-

nation of features, start with the best features and add or subtract other features and

check whether they make the classifier more accurate in each step. The search for opti-

mal features continues until a stopping criterion such as reaching a minimum r2 value,

that defines the percentage of correct outputs that can be predicted given the selected

features, is fulfilled.

Parameter estimation

Parameters of a model can be estimated using direct methods such as the LDA Equa-

tion 3.2 or using an iterative optimization algorithm (Press 2007). The latter approach

has the advantage of being able to estimate even non-linear systems, while the for-

mer method is fast and computationally efficient. A common technique in parameter

estimation is the least-mean squares (LMS) algorithm (Haykin 1996) in which using

Equation 3.5, the parameters are adjusted and iteratively decrease the estimation error.

Here, b(t + 1) is the updated parameter at time t + 1, l is the learning-rate parameter,

e(t) is the prediction error , and X(t) is the current feature vector

b(t + 1) = b(t) + l·e(t)·X(t). (3.5)

The LMS algorithm belongs to a family of parameter estimators referred to as adap-

tive parameterization methods. They perform well when the relationship between the

error, features, and class labels are simple. If the relationship is complex, LMS may

not provide an optimal solution. In such cases evolutionary algorithm such as Genetic

Algorithms, and Particle Swarm Optimization may perform better than LMS as they

are robust against falling into local minima and sub-optimal final points (Krusienski

and Jenkins 2005).
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Classifier evaluation methods

Accuracy, sensitivity, selectivity, and specificity: In a typical BCI application, de-

pending on the subject’s intention and the BCI output command, four scenar-

ios might occur. To describe these conditions we use a typical BCI system that

translates neural activity to commands for an exoskeleton that opens the sub-

ject’s fingers:

Scenario 1: The user aims to open his fingers and the BCI opens his fingers; this

is referred to as true positive (TP)

Scenario 2: The user does not aim to open his fingers and the BCI does not open

them; this is referred to as true negative (TN)

Scenario 3: The user does not aim to open his fingers but the BCI opens them;

this is referred to as false positive (FP)

Scenario 4: The user aims to open his fingers but the BCI does not open his fin-

gers; this is referred to as false negative (FN).

The most commonly used BCI measure is accuracy that in terms of the aforemen-

tioned indices is:

accuracy =
TP + TN

TP + TN + FP + FN
.

Other BCI measures including sensitivity, selectivity (positive predictive value),

and specificity (negative predictive value) are defined as follows:

sensitivity =
TP

TP + FN

selectivity =
TP

TP + FP

specificity =
TN

TN + FN
.

There is no specific measure that is suitable for all BCI applications and it is the

attributes of the BCI system that makes one or a specific collection of the men-

tioned metrics more suitable than others.

Measures for continuous BCIs: For BCIs with continuous outputs such as cursor po-

sition updates on monitors, the mentioned measures may not be suitable and

other specific measures are required. One such possibility is the Chi-squared (χ2)

measure that sums the squared errors. This measure reflects the output variance
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that is caused by the BCI error (1 − r2). Then, r2 indicates the model’s goodness-

of-fit that can be calculated.

Bit-rate measure: Information transfer rate is a measure that accounts for the speed

and accuracy of a BCI system, simultaneously (Wolpaw et al. 2000). This mea-

sure calculates the amount of information units transferred per unit time and is

calculated using the following formula:

B = log2 N + P log2 P + (1 − P) log2

1 − P

N − 1

where B is the bit-rate, N represent the number of classes, and P is the accuracy

of the classifier.

3.4 Different BCI paradigms

In the following sections, different paradigms are highlighted to motivate the area and

understand the chosen paradigm of the study in this context.

3.4.1 P300-based BCIs

An oddball paradigm (Donchin and Coles 1988) is a process in which (i) a user receives

a collection of stimuli that fall into two categories; (ii) exposure to members of one class

is less frequent than those of the other class; (iii) the user is asked to classify the stim-

uli to one of two classes. It has been shown that being exposed to the less frequent

class members (oddball event) produces a positive shift in the EEG amplitude occur-

ring about 250–750 ms post-stimuli referred to as P300. Thus, recording EEG signals

that are time locked to stimuli presentation enable the detection of P300 phenomenon

following the occurrence of the oddball event.

3.4.2 Steady-state evoked potential-based BCIs

Exposure to visual stimuli creates two types of responses in the brain: i) exogenous

responses that occur earlier and reflect the brain’s unconscious reaction to the stimuli;

ii) endogenous responses that occur with longer latencies (such as P300) and indicate
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conscious responses of the brain to the stimuli. While the latter creates the founda-

tion for P300-based BCIs, the former responses are considered steady-state visual evoked

potentials (SSVEP) and are the selected signal for another BCI paradigm referred to as

SSVEP-based BCI. In the standard SSVEP-based BCI a user is exposed to a number

of objects shown on a monitor that blink repetitively with distinct frequencies. When

the user fixates on a specific object, the EEG frequency spectrum indicates distinctive

peaks at the frequency that the target object is blinking (Allison et al. 2012).

3.4.3 Slow cortical potential-based BCIs

Prior to motor execution or motor imagery of a motor skill, a change occurs in the

EEG signal that is referred to as the slow cortical potential (SCP). The SCP occurs

in one of these manifestations in the time domain: i) contingent negative variation

(CNV) that is a negative shift starting 200–500 ms after a primary stimulus that pre-

pares the user for a following command that cues the user to perform the motor or

cognitive task; ii) Bereitschaftspotential (readiness potential) is another form of SCP

that begins 500–1000 ms prior to self-decided movement or motor imagery tasks.

Slow cortical potentials are also referred to as movement related cortical potentials

(MRCP) (Jochumsen 2015, Shibasaki and Hallett 2006).

3.4.4 Motor imagery-based BCIs

Motor planning prior to motor execution and motor imagery of the same task, simi-

larly decrease the spectral power in the α (8–13 Hz) and β (16–30 Hz) frequency bands

(Pfurtscheller and Aranibar 1979, Neuper and Pfurtscheller 2001). Thus, having a sub-

ject to imagine their limb movement produces specific spectral features that provides

the basis for motor imagery based BCIs (MI-BCI) that is the selected BCI paradigm in

this thesis.

Even though in this thesis we have chosen ERD as the feature of interest that reflects

down-regulation of cortical oscilatory activity, other measures such as readiness poten-

tials (MRCP) or motor evoked potentials (MEP) may also be used to study the effect of

feedback optimization on the efficacy of our approach to optimize feedback of restora-

tive BCIs for stroke rehabilitation. Whilst beyond the scope of the present study, these

may form the basis of a comparative study on suitability of the mentioned measures in
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the context of restorative BCIs. More details on neurophysiological aspects of restora-

tive BCIs have been discussed in Chapters 4–7.

3.5 BCI applications

When a classifier translates features to a command, it affects the outside world via a

myriad of methods that are generally referred to as BCI applications.

A BCI output can replace a body function that has been lost due to an injury or a dis-

ease. For instance, BCI commands that control exoskeletons for people with amputees

replace their replace their lost motor functions.

Some tasks, e.g. driving a car, require continuous attention of the user and losing at-

tention may lead to fatal consequences. Here, BCI can be employed to enhance neural

outputs through continuously monitoring attention and providing alarms when atten-

tion has lapsed.

Note that BCIs may be used to supplement natural motor outputs such as sending neu-

ral commands directly to a robotic arm to complement their natural motor skills.

A BCI may also be designed to improve or restore lost or impaired motor functions af-

ter a stroke. This BCI application is the key focus of this thesis and for simplicity it will

be referred to as restorative BCI and will be used interchangeably with the term BCI ap-

plication for stroke rehabilitation throughout this thesis. Fig. 3.1 illustrates the mentioned

applications of BCIs.

This section described only key BCI applications. .Further details on real world

and clinical BCI applications have been thoroughly discussed in Moore (2003),

and (Mak and Wolpaw 2009), respectively. A more recent review on BCI ap-

plications can be found in Wolpow and Wolpow (2012a). One may also visit

http://bnci-horizon-2020.eu/ that is a European project to determine future direc-

tions for BCIs.

3.6 Feedback optimization for restorative BCIs

One of the key elements in restorative BCIs and neurofeedback training is feedback

provision. In the course of this thesis we examine two main aspects of feedback: feed-

back update rate (FUI) and feedback modality.
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Figure 3.1. BCI main components and its application. A BCI can replace a body func-

tion, enhance a driver’s attention, supplement a motor function, and improve or re-

store impaired or lost motor functions following a stroke. After Wolpow and Wolpow

(2012a).

Feedback update rate Operant conditioning is thought to play a critical role in MI-BCI

training in the behavioural level (Fetz 2007). It has been suggested that Hebbian

learning may also play a role in the context of BCI training (Kraus et al. 2016,

Naros et al. 2016). As discussed in Chapter 2, in this thesis we examine whether

harnessing the early effects from the arrival of the afferent volley in the sensori-

motor cortex plays a role in boosting Hebbian learning within a BCI framework.

Specifically, in this thesis we have explored different FUIs for restorative MI-BCIs.
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Feedback modality Feedback provision for restorative BCIs is mainly imple-

mented through either visual (Shindo et al. 2011) or proprioceptive (Ramos-

Murguialday et al. 2013) feedback. Functional electrical stimulation (FES)

(Rushton 1997) is also used to provide visual and proprioceptive feedback for

motor rehabilitation following stroke (Daly et al. 2009, Young et al. 2015). Among

them, FES provides the most similar feedback to feedback provision during mo-

tor learning. However, in this study we only study visual and proprioceptive

feedback as FES has a long transition time after each stimulation and therefore,

is not suitable to study high frequency feedback provision for restorative BCIs,

which is another aspect of feedback that is explored in this thesis (see above).

In this thesis we compare the effect of visual and proprioceptive feedback pro-

vision for neurofeedback training. Visual feedback was provided through ei-

ther a cursor position update on a monitor or observing flexion/extension of

an free-running (with no hand involvement) orthosis. Instead, proprioceptive

feedback was delivered using flexion/extension of an orthosis involved with the

BCI users’ target hand during motor imagery of four finger flexion/extension.

For further details on these, refer to Chapters 5–7. Note that flexion/extension

of the fingers of the target hand by the orthosis provided both proprioceptive

and visual feedback, since the participants were instructed to observe their target

hand movement during motor imagery. Therefore in total, three forms of visual

feedback was provided in the studies reported in this thesis: i) visual feedback

by a cursor position update on a monitor; ii) visual feedback via observing a

free-running orthosis movement during relaxation trials; iii) visual feedback (in

addition to proprioveptive feedback) where the participant observed their target

hand’s movement during motor imagery.

The following section provides a literature review for application of MI-BCIs for

motor recovery after stroke.

3.7 The state of the art in restorative BCIs

Restorative BCIs aim to restore or improve lost or impaired motor functions follow-

ing a stroke. A number of studies have investigated different BCI paradigms to har-

ness BCI potentials for stroke rehabilitation. In the current thesis, the adopted BCI

paradigm is motor imagery-based BCI. Therefore the following section, that reviews
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major contributions in the realm of restorative BCIs, only considers studies with the

motor imagery-based BCI paradigm.

The first application of BCI for stroke rehabilitation was reported by Mohapp et al.

(2006) as a methodology study on ten stroke patients who performed motor imagery

and actual movement of their affected hands. Then Bai et al. (2008) conducted a study

in which modulation of β-ERD was rewarded by visual feedback with one stroke pa-

tient. The first clinical study that applied MI-BCI with clear performance metrics for

stroke rehabilitation was carried out by Buch et al. (2008). They used MEG as their neu-

ral signal with cursor position update on a monitor as feedback. Using the mentioned

design they investigated the effect of neurofeedback training on stroke patients’ Medi-

cal Research Council (MRC) scale and reported no significant change. Ang et al. (2009)

compared the effect of MI-BCI coupled with robotic training to robotic rehabilitation

without BCI and found the studied paradigm outcomes to be equivalent.

Shindo et al. (2011) tested MI-BCI for eight stroke patients where motor imagery of the

instructed task was rewarded by real time visual and delayed proprioceptive feedback.

While their study revealed significant recovery for stroke patients with some residual

hand motor functions, it did not provide clinically significant outcomes for the ones

who totally lost their hand motor functions following stroke. Prasad et al. (2010) also

used MI-BCI to investigate the effect of neurofeedback training paired with physio-

therapy on five stroke patients . They adopted the Action Research Arm Test (ARAT)

and grip strength as their behavioural measures to study the effect of BCI training and

reported that all participants improved according to at least one of the applied mea-

sures.

Gomez-Rodriguez et al. (2011) also examined the effect of coupling ERD modulation

with real time proprioceptive and visual feedback . Their specific design enhanced

the BCI accuracy and ERD modulation for both healthy and stroke patient popula-

tions only with proprioceptive feedback. Ramos-Murguialday et al. (2013) studied the

effect of pairing proprioceptive feedback with ERD modulation using specifically de-

signed orthoses that extended stroke patients’ fingers when they modulated α-ERD.

This study involved neurofeedback training followed by physiotherapy with 32 stroke

patients divided equally into target and control groups. It was reported that signif-

icant improvement of Fugl-Meyer assessment of motor recovery after stroke (FMA)

scores were found only in the target group. Thus, it suggests that MI-BCI training
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may be used to prime lost motor functions in chronic stroke patients with no resid-

ual finger movements. Also a recent study on restorative BCIs has been performed

by Pichiorri et al. (2015), in which they recruited 28 stroke patients who were divided

equally into target and control groups. For target groups, participants performed mo-

tor imagery that was rewarded by visual feedback, whereas the control group per-

formed motor imagery without BCI support. They reported significant improvement

in both FMA scores and modulation of stronger ERDs only in their target group. This

finding further consolidates the feasibility of MI-BCIs for stroke rehabilitation.

Note that BCI-FES has also been used in several studies for stroke rehabilitation. It

mainly rewards ERD modulation or MRCP elicited via performance of motor imagery

or motor attempt by electrical stimulation of the target muscles and thereby delivers

both visual and proprioceptive feedback. Daly et al. (2009) examined the feasibility

of BCI-FES for stroke motor recovery with one stroke survivor who attended nine

training sessions over three weeks. They found the technique feasible as the partici-

pant controlled the system accurately and achieved recovery in volitional index finger

movement. Also, Young et al. (2015), trained one stroke patients with BCI-FES for six

weeks and found that his ARAT score improved by 10 points. In another study by Mc-

Crimmon et al. (2014) they worked with three chronic stroke survivors with foot drop

and trained them with three 1-hour sessions over a week using BCI-FES. All partici-

pants were able to use BCI-FES with high accuracy and their dorsiflexion active range

improved by 3–8 degrees. in another proof-of-principle study with two patients with

tetraplegia, Vuckovic et al. (2015) tested applicabilty of BCI-FES where they trained the

fist and second participants with four and ten training sessions in addition to conven-

tional therapy. They both showed a high level control over the BCI-FES sytem and one

of them showed modearte improvement in their muscle strength.The BCI-FES has also

been proposed as one the key paradigms for motor stroke rehabilitation in a European

project known as ‘BNCI Horizon 2020’ that determines future directions for BCI re-

search http://lamp.tugraz.at/~karl/verlagspdf/Roadmap_BNCI_Horizon_2020.pdf.

Regardless of the adopted measures, and different paradigms cited above, it can be

concluded that: i) BCI training is a feasible intervention for stroke rehabilitation with

results that are relatively promising; ii) despite the primary promising results that sug-

gest MI-BCI as a novel intervention for stroke rehabilitation, it needs optimization to

provide clinically significant outcomes with both mild and severe post-stroke impair-

ments.
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3.8 Chapter summary

This chapter has presented the basic components of brain-computer interfaces, their

applications and feedback. Different signal acquisition and processing techniques ap-

plied for BCI systems have been discussed. Major BCI paradigms in which a variety of

the brain responses are exploited have also been explained. Motivations and aspects

of feedback that are explored in this thesis have been highlighted. Since the focus of

this dissertation is on optimization of restorative BCIs, only this specific application of

BCI was considered for the literature review.

After presenting the required background information on BCI components, feedback

and applications in the current chapter, we will investigate an optimal trade-off among

the parameters of a restorative BCI in the next chapter that produces real time feedback

with the largest possible accuracy.
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Chapter 4

Optimizing Parameters for
Restorative

Brain-Computer Interfaces

R
ECENTLY, the application of restorative brain-computer inter-

faces (BCIs) has received significant interest in many BCI labs.

However, there are a number of challenges, that need to be tack-

led to achieve efficient performance of such systems. For instance, a restora-

tive BCI needs an optimum trade-off between its time window length, clas-

sification accuracy and classifier update rate. Such a trade-off ensures that

real time feedback is provided with the highest possible accuracy. In this

study, we have investigated a feasible trade-off for these parameters by us-

ing a dataset provided by the University of Graz, Austria. We have used

a continuous wavelet transform and the Student t-test for feature extrac-

tion and an SVM for classification. We observed that real time feedback for

restorative BCIs may be achieved by using a 750 ms time window with an

average classification accuracy of 67% that updates every 32 ms.
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4.1 Introduction

Based on the findings that imagination of motor functions can facilitate stroke rehabil-

itation (Boe et al. 2014, Halsband and Lange 2006) BCIs have been used by many BCI

groups as a tool to assist stroke patients with mental practice to enhance their recovery

after stroke (Buch et al. 2008, Shindo et al. 2011, Ramos-Murguialday et al. 2013, Pi-

chiorri et al. 2015). Restorative BCIs have been proposed to monitor the motor im-

agery performance and reward it with sensory feedback and reorganize the impaired

neural networks for stroke patients (Soekadar et al. 2011). Restorative BCIs may be

invasive that involve implanting electrodes on the surface or within the brain, or non-

invasive. For non-invasive restorative BCIs, the signal of interest may be EEG, MEG,

fMRI, or NIRS. However, EEG-based BCI is the most commonly used paradigm for

stroke rehabilitation as a low-cost and portable approach and thus was selected for

this study. Mechanisms of recovery (largely neuroplastic, (Murphy and Corbett 2009))

are not fully understood. However, Hebbian-based learning and metaplastic effects

are thought to be important (Murphy and Corbett 2009). Hence, presuming the im-

portance of coincidence between motor imagery performance and receiving sensory

feedback, providing real-time feedback during neurofeedback training is expected to

have a constructive effect on restorative BCIs.

In a recent study by Gomez-Rodriguez et al. (2011) a motor imagery based BCI was

used to actuate a robotic system for upper limb rehabilitation of stroke patients. In that

study, the BCI classifier output controlled the robot movement according to the spec-

tral power within 8–30 Hz frequency band calculated from the most recent 500 ms time

window. Then the BCI command was updated every 300 ms. Furthermore, Buch et al.

(2008) and Shindo et al. (2011) in very similar designs, used motor imagery based BCIs

rewarded by visual feedback for neurofeedback training aimed at recovery of finger

movements. Complementary proprioceptive feedback was also provided after suc-

cessful performance of the instructed motor imagery at the end of the trial. Besides a

number of similarities between the studies of Buch et al. and Shindo et al., they also

had two main differences. One difference was in the signal acquisition, where Buch et

al. used MEG while Shindo et al. used EEG. The other difference in their study designs

was the classifier update rate, which was 300 ms for the former and 30 ms for the lat-

ter. Even though in a previous study (Grosse-Wentrup et al. 2011) the optimal delay

between motor imagery performance and feedback provision, i.e. the classifier update

rate, was proposed to be in the 200–300 ms range, which implicitly assumes that only
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consciously perceived responses to sensory stimuli are valid. However, according to

findings of Hiremath et al. (2015) that reported the occurrence of implicit learning dur-

ing BCI training, potentially early sensory responses to stimuli may also play a role in

BCI training.

Within a BCI framework, there is a reciprocal relation between the time window length,

the classifier update rate, and the classification accuracy. Notably, a long time window

typically results in more representative features and thereby, a high classification accu-

racy. On the other hand, lengthening the time window necessitates a longer processing

time and consequently a longer classifier update rate. Therefore, in the current study,

we chose a relatively short classifier update rate, i.e. 30 ms, to explore the interplay

between the time window length and the classification accuracy.

Also, application of restorative BCIs typically starts with a calibration session to ex-

tract the optimum channels and frequency bands for feature classification followed by

training the patients based on the results of the calibration session. However, as re-

ported in Shindo et al. (2011), stroke patients experience various difficulties, including

spasticity and excessive tones in their muscles and lack of proper sleep. Thus, min-

imizing the number of sessions may improve stroke patients’ adherence to therapy

through restorative BCIs. Therefore, in this study, we also examined whether it is vi-

able to improve classification accuracy of a restorative BCI for a typical healthy subject

by adding further healthy subjects’ training data. This approach that we refer to it as

subject-independent classifier is compared with another method i.e. subject-dependent clas-

sifier, that uses only the training data of the same subject for testing the classification

accuracy with novel observations.

Most of the contents of this chapter have been published in the Proceedings of 35th

Annual International Conference of the IEEE Engineering in Medicine and Biology Society,

2013 (Darvishi et al. 2013a).

4.2 Analysis setup

4.2.1 Dataset

Since this study was run prior to running the experiments reported in Chapters 5–7,

it was run using publicly available data. We utilized a widely used dataset (Dataset

2b of BCI 2008 competition) from the University of Graz, which is accessible via
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Table 4.1. Dataset specifications. This table shows the specification of the used datset.

Dataset BCI Number of Channels Number of Training Test

Name Competition Classes Subjects Trials Trials

2b 2008 2 (left/right hand) 2(C3,C4) 9 1182 2239

http://www.bbci.de/competition/iv/. This dataset comprises EEG data from nine

healthy right-handed subjects, who were asked to perform motor imagery instructed

by visual cues. For each subject there is 120 calibration trials with no feedback, 80 train-

ing trials with feedback and 320 test trials with feedback for motor imagery of each

hand. For every subject, some trials (around 20%) were contaminated with EOG arte-

facts that were rejected and analysis was conducted on artefact-free data. Data were

recorded with three electrodes (C3, Cz and C4). The recordings had a dynamic range

of 100 V for the screening and 50 V for the feedback sessions. They were bandpass-

filtered between 0.5 Hz and 100 Hz, and a notch filter at 50 Hz was enabled. The

placement of three bipolar recordings (large or small distances, more anterior or pos-

terior) were slightly different for each subject (for more details see (Leeb et al. 2007)).

The electrode position Fz served as EEG ground. Note that only C3 and C4 channels

were employed to decrease the computational overhead. During training and test ses-

sions, continuous visual feedback started 2 s after the presentation of the visual cue

and lasted for 4 s. Table 4.1 summarizes the specifications of the purified dataset used

for the current study.

4.2.2 Feature extraction

Pfurtscheller and Lopes da Silva (1999) have demonstrated that event related desyn-

chronization (ERD) is followed by synchronization (ERS) in both the α (8–13 Hz) and β

(16–26 Hz) frequency bands during motor imagery. Furthermore, such ERD and ERS

phenomena only occur in short and non-stationary periods. Thus, we decided to use a

continuous wavelet transform for feature extraction, as it has been shown to be more

potent than its discrete version in the extraction of subtle EEG features (Bostanov and

Kotchoubey 2006). Moreover, it has been demonstrated by Pfurtscheller and Lopes da

Silva (1999) that 500 ms after the cue onset a β-ERD occurs in the contralateral hemi-

sphere, coincidently with a β-ERS in the ipsilateral hemisphere. Thus, to be able to ex-

tract such distinctive features, which in turn leads to higher classification accuracy, we

based our feature reduction methodology on finding the most discriminating features
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using the Student t-test. Further details on feature extraction procedures are illustrated

in Fig. 4.1. Since the exploited dataset contained 3421 trials, to make its classification

more computationally efficient, we decided only to extract six features per channel for

each α and β frequency bands that in total provided 24 features for each time window.

Figure 4.1. Feature extraction steps. This diagram illustrates the steps taken to extract fea-

tures for each time window of the trials.
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4.2.3 Classification

For classification, we used an SVM classifier with a linear kernel, which was demon-

strated to be one of the most powerful techniques for EEG classification (Darvishi et al.

2012). To compare the accuracy of the classification for different window lengths, we

defined the window length of the training and test data to be 250, 500, 750, or 1000 ms

and then shifted the time windows in steps of 32 ms. We chose the classifier update

rate to be 32 ms, which was the closest value to the 30 ms classifier update rate of

the Shindo et al. (2011) study.

Regarding the comparison between different classifier training methods, for the

subject-dependent method, we used only each subject’s training data (around 120 tri-

als) for classifier training and tested its accuracy with the same subject’s test data.

However, for the subject-independent method, we used the entire subjects’ training

data (1182 trials) and then checked its accuracy for each subject’s test data.

4.3 Trade-off results

Based on the described methodology, we achieved the results summarized in Fig. 4.2.

The accuracy level for time windows 250 and 500 ms started with classification accu-

racies very close to chance, however, for wider time windows (750, 1000 ms), the clas-

sifiers begin with accuracies higher than 60%. Moreover, with all time windows, after

almost one second the classification reaches its maximum and that maximum level has

a direct relationship with the length of the time window. Fig. 4.3 and Table 4.2 present

a comparison of the average values and standard deviations of the classification ac-

curacies for different time windows. They demonstrate the direct correlation between

time window lengths and the average accuracy values and an inverse correlation be-

tween time window lengths and accuracy values’ standard deviations. Considering

the highest observed accuracy of almost 75%, the mean accuracy achievable by 750 ms

and 1000 ms time windows seems to provide maximal accuracies.

Regarding the feasibility of subject-independent classifier, we tested both subject-

dependent and subject-independent methods. The results of the experiments are

shown in Fig. 4.4 where it depicts that training the classifier with the entire subjects
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A- 250 ms time window B- 500 ms time window C- 750 ms time window

D- 1000 ms time window E- all time windows

Figure 4.2. Classification accuracy results for different time window lengths. This fig-

ure compares the trend of the average classification accuracy with the subject-

independent classifier along 4-second-long trials with time window lengths of 250

(panel A), 500 (panel B), 750 (Panel C), and 1000 ms (panel D). Panel E compares

the classification trends for all adopted time windows.

Figure 4.3. Mean and standard deviation of accuracies for different time windows . This

figure compares the average and standard deviation for time window lenghths of

250, 500, 750, and 1000 ms with the subject-independent classifier.

training data (subject-independent method) improved the average accuracy of the clas-

sifier for six subjects by 6.06% while, decreasing it by 2.34% for the other three. On av-

erage, training the classifier obtained with the subject-independent method improved

the classifier accuracy by 3.26%.
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Table 4.2. Classification statistics for different window lengths. This table compares the

mean, standard deviation, rise time (the time that it takes to reach to the maximum

accuracy), maximum, and last accuracies of different time windows with 250, 500,

750, and 1000 ms length for the subject-independent classifier.

Window First Rise Max. Last Mean Std.

Length Accuracy(%) Time(ms) Accuracy(%) Accuracy(%) Accuracy(%)

250 49 1000 67 60 61.09 3.8

500 54 900 71 62 64.06 3.3

750 61 1000 72.3 62 66.45 2.7

1000 65 750 72.9 64 68.16 2.5

Figure 4.4. Comparison of accuracies for subject-dependent and subject-independent

training methods. This figure demonstrates the performance of subject-

dependent (blue line) and subject-independent (red line) classifiers in classification

of subjects’ test data. For most subjects the subject-independent classifier slightly

outperforms its rival.

It is also worth mentioning that we examined the classifier performance when the

entire subjects’ training, as well as calibration (screening) data, were used. We hy-

pothesized that the larger the training dataset, the better the training of the classifier

and consequently, the higher its classification accuracy would be. Thus, we only used

the first four-second part of each 4.5-second-long trial, because we wanted to make

them similar to the calibration data trials, which were only 4 seconds long. However,

when we trained the classifier based on the mentioned methodology, it turned out

that its average accuracy with 10-fold cross validation was very close to chance (53%).

Therefore, it is likely that the absence of feedback provision in the screening session
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potentially made the recorded data of the screening session different to training ses-

sion data. Thus, we decided to use only training data for classifier training based on

the sub-optimal performance of the classifier where both training and calibration data

were used.

4.4 A feasible trade-off

The main finding of our study is that whenever a part or whole of the time windows

lies within the first 500 ms period of trials, accuracy is lower compared to the rest

of the times as demonstrated in Fig. 4.2. This finding is in conformity with the lit-

erature (Grosse-Wentrup et al. 2009, Pfurtscheller et al. 2000, Pfurtscheller et al. 1999)

showing that the EEG data recorded during the first 250–500 ms of motor imagery tri-

als do not include discriminant information. This delay between modulation of the

spectral power in the α and β bands and motor imagery onset may reflect the few hun-

dred milliseconds of time that subjects need to recognize the visual stimulus and then

perform the motor imagery.

The trends of the classification accuracy with all time windows show that after reach-

ing a maximum value, which varies between 750 to 1000 ms after the trials onset for

different time windows, the classification accuracy degrades towards the end of the

trial. This behaviour might reflect the decrease in subject attention to the task as the

trial continues. Also, it may be concluded that based on the accuracies provided by the

250 ms time window, the most particular time window is the 750–1750 ms period after

the cue onset as this segment of the trials provides the highest classification accuracies.

Considering the optimum choice for time window length while taking into account the

trade-off between its length and transient as well as stable accuracy levels, it seems that

the 750 ms long time window is the optimum choice. It starts with 61% accuracy and

ends with 62% while its mean value is 66.45% that is only 1.71% less than the average

accuracy level of the 1000 ms window. Besides, the 750 ms time window allows the

exploitation of the aforementioned particular period, i.e. 750–1750 ms period, in which

the most distinctive features can be extracted.

Comparing the rehabilitation outcomes of stroke patients in the studies by Buch et al.

and Shindo et al., it appears that patients in the Buch et al. study had a more severe

impairment in their affected hand’s finger movement (no residual finger movement)

compared to most patients in the Shindo et al. study, who had some residual motor
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function. Note that recovery in mild to moderate stroke patients is more likely than in

more severely paralysed stroke patients (Oujamaa et al. 2009). Nonetheless, the role of

providing ten times faster feedback in the Shindo et al. study, compared to the Buch et

al. study cannot be ruled out and it may have affected the higher recovery level in the

Shindo et al. study.

The classifier update rate for any BCI must be greater than the sum of data transfer

time, signal processing time and the application delay (Wilson et al. 2012). Otherwise,

the provided feedback is not real time that consequently degrades the performance of

the BCI. Also, it has been explicitly indicated elsewhere (Oujamaa et al. 2009) that a

30 ms classifier update rate, is sufficient as the total required time for data transfer,

signal processing and the application delay when recording data with four channels.

This time (30 ms) is very close to the 32 ms that we used in this study as the clas-

sifier update interval. Wilson et al. (2012)used a typical home PC for data recording

and signal processing, a 16 channel gUSB amp EEG amplifier, and the open source

BCI2000 (Schalk et al. 2004) as their software platform. Thus, considering the acces-

sibility of the hardware and software to any BCI laboratory, our suggested classifier

update rate seems to be feasible and practical.

In the quest for the reason of the poor classification results when it was trained using

both training and calibration data, we noticed that calibration data, due to lack of feed-

back provision, can be dissimilar to training data in which subjects received real-time

visual feedback. In other words, while increasing the training dataset size may lead to

improving classification accuracy, it only occurs when we provide consistent data for

classifier training.

As for the possibility of increasing the classification accuracy, which plays a significant

role in neuroplasticity (Grosse-Wentrup et al. 2011), it has been demonstrated in this

study, that it is possible to increase the average accuracy level by using other healthy

subjects training data. Thus, It might be feasible to use a similar approach to remove

the calibration session for stroke patients and minimize the number of required ses-

sions.

Last but not least, recent novel approaches such as transfer learning (Wang et al. 2015,

Jayaram et al. 2016) for training subject-independent classifiers for BCI applications

have been proposed. Transfer learning involves improvement of learning for novel

users through investment on already learned tasks by previous users appears to have
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the potential for further development of the reported results regarding the subject-

independent classifier in this study. Moreover, a study to compare the classification

trends with different time windows between healthy and stroke patient populations is

out of scope of the present study, but may provide a topic for future investigation. An-

other topic for further investigation of the reported results may be a comparative study

on performance of AR modelling and common spatial patterns to extract features for

a subject-independent classifier.

4.5 Conclusion

This chapter has presented that a 750 ms long time window with a classification ac-

curacy rate of 32 ms and an average classification accuracy of 67% may be adopted

as a feasible model for therapeutic BCI applications. This model potentially provides

patients with fast feedback that is likely to be critical for Hebbian learning and leads to

greater functional recovery of stroke patients (Murphy and Corbett 2009).

Following the current study on signal processing aspects of restorative BCIs, in the

next chapter, we investigate the effect of feedback modality on the performance of

therapeutic BCIs.
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Chapter 5

Feedback Modality Impact
on Restorative

Brain-Computer Interfaces

N
EUROFEEDBACK training of sensorimotor oscillations

related to motor imagery (MI) is used for motor restoration

after stroke. However, knowledge concerning the impact of

feedback modality on task-related cortical activity during operant learning

is still scarce. Right-handed healthy subjects performed two tasks, i.e. MI

and relaxation. Their sensorimotor desynchronization during MI or syn-

chronization during relaxation was rewarded with contingent feedback.

Feedback onset was delayed to study the cortical activity in the absence

of feedback as well. The reward modality was alternated every fifteen trials

between proprioceptive and visual feedback. It was found that proprio-

ceptive input was superior to visual input to increase the range of task-

related spectral perturbations in the α- and β-band, and was necessary to

consistently achieve MI-related sensorimotor desynchronization (ERD) be-

low the baseline. These effects occurred in task periods without feedback as

well. The increased accuracy and duration of learned brain self-regulation

achieved in the proprioceptive condition was specific to the β-band. Over-

all, it suggests that rewarding motor imagery with proprioceptive feedback

facilitates fast operant learning of modulation of cortical oscillatory activity.
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5.1 Introduction

When motor learning via physical practice (Doyon and Benali 2005, Halsband and

Lange 2006) is compromised due to motor deficits following stroke, motor imagery

(MI) may provide an alternative training modality (Boe et al. 2014, Halsband and

Lange 2006). Motor imagery activates the sensorimotor system independent of ac-

tual movements (Gao et al. 2011, Szameitat et al. 2012) and might be facilitated by

neurofeedback contingent on the event related changes in the oscillatory activities

i.e. ERD/ERS (Bauer and Gharabaghi 2015, Vukelić and Gharabaghi 2015a). First

studies applying neurofeedback in stroke rehabilitation to prime subsequent phys-

iotherapy are promising with the largest clinical gains in the subacute patient pop-

ulation (Pichiorri et al. 2015). Oscillations in the β-band (15–30 Hz) over the senso-

rimotor cortex have particular relevance for this approach (Gharabaghi et al. 2014a,

Gharabaghi et al. 2014c, Naros and Gharabaghi 2015) since they mediate the cortico-

muscular communication during motor tasks (Boulay et al. 2011, Davis et al. 2012,

Kilavik et al. 2013, Riddle and Baker 2005, Witham et al. 2011) and are linked to the

extent of functional impairment after stroke (Rossiter et al. 2014).

Feedback may be provided via visual or proprioceptive input using brain-computer

interfaces (BCI) or brain-robot interfaces (BRI), respectively (Bai et al. 2014, Bauer et al.

2015, Boe et al. 2014, Vukelić and Gharabaghi 2015a, Vukelic et al. 2014, Kraus et al.

2016). Functional electrical stimulation (FES) (Rushton 1997) is also implemented to

provide feedback for motor rehabilitation following stroke (Daly et al. 2009). How-

ever, in this study we only study visual and proprioceptive feedback as FES has a long

transition time after each stimulation and therefore, it is not possible to employ FES

with rapid feedback update rates as required for our study. Feedback provision with a

BCI setup for healthy subjects increased both laterality (Boe et al. 2014) and movement-

associated desynchronization of the targeted β frequency band (Bai et al. 2014). Feed-

back provision with a BRI setup induced a distributed increase of corticospinal connec-

tivity (Kraus et al. 2016), involved an extended cortical network including precentral,

postcentral and parietal areas (Vukelic et al. 2014), and bridged the gap between indi-

viduals’ abilities and cortical activation patterns for motor imagery and motor execu-

tion (Bauer et al. 2015). Moreover, a direct comparison between BCI and BRI feedback

revealed that proprioceptive feedback was superior to visual feedback in activating a

distinct cortical network resembling its activation during overt movement (Vukelić and
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Gharabaghi 2015a). Furthermore, pairing MI-related cortical activity and afferent in-

put increased the corticospinal excitability that is further evidence for the critical role of

afferent input to improvement in task performance (Gharabaghi et al. 2014a, Mrachacz-

Kersting et al. 2012, Niazi et al. 2012, Xu et al. 2014).

Physiological knowledge concerning the impact of feedback modality on operant

learning of the MI task, i.e. brain self-regulation is, however, still scarce. A detailed

exploration would necessitate a refined study design for disentangling the contribu-

tion of the task condition and the feedback modality, separately. Previous studies com-

pared the cortical activity during the MI task with concurrent feedback (MI with feed-

back condition) to cortical activity during the relaxation task where no feedback was

provided (relaxation without feedback condition). The observed differences might,

therefore, be related to either the task or the feedback. A proper comparison would ne-

cessitate studying a relaxation condition with feedback and a MI task condition with-

out feedback as well.

Moreover, particularly proprioceptive input, e.g. by passive movement, is known to

modulate the ongoing cortical activity in itself in a similar way to MI, but indepen-

dently of any volitional brain modulation (Muller-Putz et al. 2007, Pfurtscheller et al.

2002, Reynolds et al. 2015, Salenius et al. 1997). However, previous studies explored

BCI/BRI related brain oscillations during the feedback period, which potentially

clouds the MI-related cortical activity by the additional input of the feedback modality.

Thus, knowledge on task-related cortical activity independent of the feedback period,

i.e. during MI without feedback, is necessary. Additionally, feedback-independent

modulation of MI-related cortical activity potentially indicates fast operant learning

of modulation of intrinsic sensorimotor oscillations.

We, therefore, compared visual and proprioceptive feedback during either sensorimo-

tor MI-related desynchronization or relaxation-related synchronization. Furthermore,

we applied a delayed feedback onset paradigm to study the cortical activity over the

sensorimotor cortex without feedback provision.

5.2 Experimental design
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5.2.1 Ethics

The study conformed to principles outlined in the Declaration of Helsinki and was ap-

proved by the local human ethics committee of the University of Adelaide. All partici-

pants gave their written informed consent to participate in the study, and all recorded

data were de-identified.

5.2.2 Participants

In this study, 10 participants (four females, six males) aged 24–40 years were recruited.

Participants were asked to remain alert, immobile, and to concentrate during the trials.

The different types of MI, i.e. visual and kinaesthetic MI, were explained to the partic-

ipants, and it was explicitly stated that they were expected to perform kinaesthetic MI

only. Participants were asked to minimize head and facial movements, swallowing,

and blinking during the signal recording. They were given break periods to relax or

move between consecutive runs when necessary.

5.2.3 Brain-interface system

For data acquisition, a 72-channel Refa TMSi EXG amplifier, containing 64 unipo-

lar and eight bipolar channels, and a 64-channel Waveguard EEG cap were used.

The EEG data were recorded from 8 channels (F3, F4, T7, C3, Cz, C4, T8, Pz) posi-

tioned according to the international 10-20 system of electrode placement. The AFz

channel was used as the ground channel based on the recommendation of the man-

ufacturer. The impedance between electrodes and the scalp was kept below 50 kΩ

and this is sufficient due to the amplifier input impedance in the order of tera-

Ohms (Volosyak et al. 2010). The amplifier does not require a reference channel as it

uses built-in common average referencing of the recorded channels. It also disregards

any electrodes with very high impedance (more than 256 kΩ) and excludes them from

the common average reference. The signals were digitized at 1024 Hz and were then

passed through a 50 Hz notch filter (3rd order Chebyshev) followed by a band pass

filter (1st order Butterworth) with corner frequencies set to 0.1 and 49 Hz.

The BCI software was a customized version of the BCI2000 Cursor Task (Schalk et al.

2004). The source code was modified to provide auditory commands. The application

module of the software was also modified to operate the orthoses.
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Two orthoses (one for each hand) were designed and installed on a laptop board to flex

four fingers passively and recurrently following the MI of the target (right/left) hand.

Each orthosis comprised a mechanical structure made of PVC and a Blue Bird BMS-

630 servomotor. The control commands for servomotors were generated through the

customized BCI2000 software and then translated to the servomotors of each orthosis

using a Micro Maestro servo controller module. The Micro Maestro servo controller re-

ceived an updated command simultaneously with every cursor update on the monitor.

Fig. 5.1 depicts the elements of the fabricated orthoses.

Left Orthosis Right Orthosis

Micro Maestro Servo Controller

Power Supply
&

Commands from BCI2000

Commands to servomotors

Figure 5.1. Orthoses. The othoses comprise two mechanical parts that felx/extend left and

right hand fingers and operate by two servomotors, independently. Servomotors

are controlled by a Micro Maesstro servo controller. The servo controller receives

commands and returs the angles of the orthoses through an RS-232 connection

with the application mocdule of BCI2000 software.

5.2.4 Study design

Every participant attended two sessions: one screening session and one neurofeedback

training session. During the screening sessions, the optimum features of the EEG that

resulted in the highest discrimination between MI and relaxation trials of each partic-

ipant were defined. Then the established optimum features of each participant’s MI

were used in the subsequent neurofeedback session. Eight out of ten participants (four

females, four males) who had EEG signals with distinctive features during hand MI

passed the screening test and attended the neurofeedback training session. Note that,

each participant performed 60 trials, which is more than the required number of trials
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that is usually used to calculate r2 value for screening session (Guger et al. 2003, Pi-

chiorri et al. 2011). However, for two participants r2 values were very small (less than

¡ 0.05), indicating that they were unable to properly discriminate left/right hand im-

agery with relaxation trials in their first BCI session. Also, note that during the screen-

ing session only motor imagery without feedback was performed and no classification

tasks were carried out. However, the data recorded during the feedback sessions were

processed in real time to provide control signals that were used to drive either visual

or proprioceptive feedback.

Note that MI periods are paralleled by feedback while relaxation periods are usually

not. The impact of the concurrent feedback may potentially cause cortical activities un-

correlated with MI. To overcome this limitation, we chose a design that disentangles

the MI and relaxation phases into two different tasks. Moreover, each of these tasks is

performed with and without feedback. The former condition (with feedback) allows

studying the effect of feedback modality on different tasks1. The latter condition en-

ables investigating the impact of the feedback pattern on operant learning of the brain

self-regulation.

5.2.5 Screening session

Every participant attended a screening session in which three runs of right/left hand

motor imagery were recorded. Each run included 20 randomized trials of motor im-

agery, ten of the left and ten of the right hand. Each trial started with an auditory

command of “left” or “right” in parallel with a matching visual stimulus provided as

an arrow pointing to the left or right. This arrow appeared in the centre of a monitor

that was placed 1 metre away from the participant. The sound levels of the auditory

commands were kept constant throughout the study. The arrow was shown for three

seconds during which the participants were instructed to imagine finger flexion of the

indicated hand. Then the arrow disappeared for three seconds; during this time the

1It is believed that movement observation can also activate the brain similar to movement execution

and motor imagery (Kilner and Lemon 2013). However, note that in Gazzola et al. (2007) it is explicitly

mentioned that: “The mirror system was activated strongly by the sight of both human and robotic ac-

tions, with no significant differences between these two agents. Finally we observed that seeing a robot

perform a single action repeatedly within a block failed to activate the mirror system. This latter finding

suggests that previous studies may have failed to find mirror activations to robotic actions because of

the repetitiveness of the presented actions.” Likewise, observing repetitive flexion of the free-running

orthosis during the relaxation trials with a BRI condition is unlikely to activate the mirror neurons.
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participants had to stop MI and concentrate on their breathing. The instruction to con-

centrate on breathing was given to ensure that (i) participants switch between MI and

relaxation at the right time, and (ii) to provide participants with a tangible example of

mental relaxation.

Previous studies (Pfurtscheller et al. 1997) demonstrated that performance of hand MI

leads to a decrease in the spectral power of sensorimotor rhythms, i.e. event related

desynchronization (ERD), followed by an increase in their spectral power, i.e. event

related synchronization (ERS)2. In most participants these phenomena occur in the

contralateral sensorimotor area within the α (8–13 Hz) and β (18–26 Hz) frequency

bands. Thus, MI of the right or left hand is expected to lead to ERD followed by ERS in

channels C3 or C4, respectively. However, some participants exhibited concurrent ERD

over both contralateral and ipsilateral hemispheres during MI (Pfurtscheller et al. 1997).

With this in mind, we analysed the recorded data from the screening session of each

participant. The spectral power of all 2-Hz-wide frequency bins within the α and β

frequency bands was considered for analysis. The spectral power of the imagery and

relaxation trials were compared to determine the combination of tasks that delivered

the highest value of the coefficient of determination (r2, which determines how distinct

the members of different classes are). Right vs. left hand MI often leads to the highest

discrepancy in sensorimotor rhythms. However, we only selected right vs. relaxation

and left vs. relaxation in this study to minimize the cognitive load and exhaustion level.

Using r2 as the measure, the optimum channels (considering C3 and C4) and the centre

of the optimum frequency bins were selected for the neurofeedback sessions.

5.2.6 Participants’ optimum features

After analyzing the screening session data, six participants (P1–P4, P7, P8) exhibited

contralateral ERD, while two participants (P5, P6) revealed simultaneous ERD over

both C3 and C4 channels (Table 5.1). For these two participants, spectral power was

averaged across C3 and C4 channels during the training session.

2The occurrence of post imagery ERS was not explored here as (1) it is a well-established concept in

the field, and (2) it was not in line with the goal of this study.
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Table 5.1. Screening session results. Results of the screening session indicating the op-

timum side of imagined hand movement, channels and frequency bands for each

participant, and number of runs performed in the following training session.

Participants Side of imagined hand movement Channels Frequencies Number of runs

P1 Left vs. Relax C4 18 Hz 4

P2 Right vs. Relax C3 13 Hz 4

P3 Right vs. Relax C3 15 Hz 4

P4 Right vs. Relax C3 17 Hz 8

P5 Right vs. Relax C3, C4 15 Hz, 15 Hz 8

P6 Right vs. Relax C3, C4 12 Hz, 18 Hz 4

P7 Left vs. Relax C4 15 Hz 8

P8 Right vs. Relax C3 15 Hz 8

5.2.7 Neurofeedback training session

The eight participants with discriminable EEG features were invited to return for an

online feedback session within two weeks of their screening session. During the train-

ing session, four runs of MI of right/left hand four-finger flexion were performed.

Those participants who were not exhausted participated in additional four runs (Ta-

ble 5.1). Feedback modality (proprioceptive or visual) was interleaved over consecu-

tive runs, and there was a 2-minute break between runs. Each run included 15 trials

with eight or seven MI and seven or eight relaxation trials, respectively, which were

sequenced randomly. Each trial started with an auditory command of “right” (“left”

for P1 and P7) or “relaxation”. Participants were expected to perform MI or relaxation

upon hearing the auditory command. No feedback was provided for the initial 2 s after

the onset of the auditory stimulus. After this 2 s delay period, feedback was provided

and updated every 24 ms for the following 2.5 s, followed by an audible “beep” signal,

indicating the end of the trial. After a break of 4 s the next trial started. The chosen

value for feedback update rate (every 24 ms) was adopted as the closest possible value

to 20 ms as our proposed optimal value (Darvishi et al. 2013b). Fig. 5.2 illustrates the

neurofeedback training time course.
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Figure 5.2. Time course of the neurofeedback training sessions. Each session comprised

at least four runs (eight runs for P4, P5, P7, P8) with a 2 min break between runs.

Each run included 15 trials with relaxation and imagery trial performed in a random-

ized order. The feedback modality was interleaved between visual and propriocep-

tive across consecutive runs. Each trial started with a 2 s interval of imagery/relax-

ation without feedback followed by a 2.5 s section during which real time visual or

proprioceptive feedback was provided. Following a 4 s inter-trial interval the next

trial started.

5.2.8 Signal processing

A large Laplacian (LLP) spatial filter was used to derive surrogate channels C3-LLP

and C4-LLP. The maximum entropy method (MEM) (Marple 1987) was used to define

the autoregressive (AR) model of the EEG data. Using a 20th order AR model, the

spectral power of the most recent 500 ms was estimated at the subject-specific frequen-

cies and electrode positions determined from the screening session. To minimize the

occurrence of false positives in the classifier, the following normalization procedure

was adopted: (i) the spectral power of the most recent 18 s period of imagery and re-

laxation trials (equally represented) were buffered and continuously updated. Equally

representation of motor imagery and relaxation trials in the buffer means that 9s of
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motor imagery and 9s of relaxation trials were buffered; (ii) the average and standard

deviation of the buffer contents were calculated; (iii) every calculated spectral power

component using the AR model was normalized by subtraction of the buffer’s average

followed by division of the buffer’s standard deviation; (iv) if the normalized spectral

power was negative, it was classified as ERD, whereas positive values were considered

as relaxation. Normalized classifier outputs were used to update either the vertical ve-

locity of the cursor on the monitor (visual feedback) or the flexion angle of the orthosis

(proprioceptive feedback) every 24 ms.

5.2.9 MI+BCI

In runs with visual feedback, a red rectangle was displayed at the start of each trial as a

target at either the upper or lower half of the right side of the monitor, simultaneously

with auditory commands indicating “relaxation” or “right” (“left” for P1 and P7), re-

spectively. After 2 s, a cursor was shown on the middle of the left side of the monitor to

indicate the start of the feedback period. The cursor was then moved horizontally from

left to right with a constant speed within the next 2.5 s. Every 24 ms (105 times in 2.5 s),

the vertical position of the cursor was updated depending on the classification result.

The cursor went up and down during ERS and ERD, respectively. After reaching the

right side of the screen, either with a hit or miss of the target, the next trial started after

a 4 s inter-trial interval.

5.2.10 MI+BRI

Participants sat in an armchair with their target hand placed on the orthosis (e.g., right

hand on right orthosis) and their non-target hand placed on the armrest. For imagery

trials (“right” or “left”), participants received proprioceptive feedback through con-

gruent passive flexion of their target hand by the orthosis. For “relaxation” trials, par-

ticipants received feedback by observing the flexion of the non-target orthosis with no

hand engagement. This feedback design was intentionally chosen to overcome inher-

ent limitations of providing real proprioceptive feedback for relaxation (see Section 5.4

for further details). In short, the BRI setup studied here was intended for stroke reha-

bilitation and thus had to avoid feedback that might lead to maladaptive conditioning.

For simplicity, this condition will, however, be referred to as the BRI/proprioceptive
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condition as well in contrast to the BCI/visual condition where feedback for “relax-

ation” was provided by the position of a cursor. The auditory command, (i.e. “relax-

ation” or “right”/“left”), initiated the trial. After 2 s, the feedback period commenced

by instantly returning the orthosis to the fully extended start position. Every 24 ms,

the orthosis flexed, if ERD was detected (see Section 5.2.8), with up to 105 incremen-

tal flexions per 2.5 s feedback period. At the end of each feedback period, a “beep”

signaled an inter-trial break and the next trial started after 4 s.

It is also worth mentioning that flexion/extension of the fingers of the target hand by

the orthosis provided both proprioceptive and visual feedback, since the participants

were instructed to observe their target hand movement during motor imagery. How-

ever, it was assumed that the proprioceptive feedback was the major modality in this

paradigm and therefore was considered as ‘proprioceptive feedback’ throughout this

chapter.

5.2.11 Offline spectral analysis

Offline spectral analysis of the EEG signals was performed with EEGLAB (Delorme

and Makeig 2004) and custom-made Matlab scripts. Here, EEG signals were spatially

filtered to derive C3-LLP and C4-LLP surrogate channels as in the online processing.

For the two participants with the left hand as the target hand, C3-LLP and C4-LLP were

swapped resulting in group-wide ‘contralateral’ and ‘ipsilateral’ channels. Channel

data were bandpass filtered between 3 and 47 Hz using the pop eegfiltnew() function

of EEGLAB that employs a Hamming windowed sinc finite impluse response (FIR)

filter. Next, they were resampled at 128 Hz. Channel data were then segmented into

epochs from -2 to 4 s after the auditory command and each trial had its average baseline

value subtracted. Outlier trials were automatically rejected using EEGLAB based on

signal amplitude, variance, probability, and spectral power. In total, 4.1% of trials

were rejected. For each retained trial, the spectral band power was integrated over two

frequency bands: α (8–13 Hz) and β (16–26 Hz).

The spectral power for MI without feedback was calculated for 1 s during the delay

period, i.e. in the interval from +1 to +2 s after the auditory command. Accordingly,

the spectral power of MI with feedback was estimated for 1 s as well, i.e. from +3 to

+4 s after the auditory command.
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5.2.12 Performance measures

We employed the following indices to compare the effect of visual and proprioceptive

feedback on MI performance with and without feedback: (i) accuracy, i.e. the percent-

age of trials in which the feedback conformed to the MI task, i.e. equivalent to the

classical target hit rate in the cursor position update paradigm, (ii) ERD duration in

imagery trials, i.e. the average percentage of times in each trial that the classifier output

conformed to the MI task and moved either the orthosis (with BRI) or the cursor in the

expected direction (with BCI). These measures were computed for the subject specific

frequencies (Table 5.2) and were then re-calculated for α and β bands (Figs. 5.3–5.5).

To re-calculate accuracy, a 10-fold cross-validated linear discriminant analysis was

used to classify trials as “relaxation” or “imagery”. Predictors included spectral power

in contralateral, central and ipsilateral channels. The classification was performed sep-

arately for α and β power, and for visual and proprioceptive feedback. Time windows

for the “without” and “with” feedback conditions were defined as 1–2 and 3–4 s, re-

spectively.

To re-calculate ERD duration in α and β bands with and without feedback, the same

time windows as for the accuracy (see above) were used. To simulate the real time

situation, the spectral power of a 500 ms target window (shifting 24 ms at each step

across the one-second time window) was calculated until the whole time window was

swept. This methodology provided a collection of 42 (1000/24) spectral power data

for each condition (relaxation/imagery). Then, using the z-scored values of all spectral

data (both relaxation and imagery trials), the spectral data were normalized, and only

negative values (indicating ERD) were counted. The resultants were divided by 42 and

multiplied by 100 to determine offline ERD duration percentage for motor imagery

trials.

5.2.13 Statistical analysis

GraphPad Prism version 6.05 was used for statistical analysis. For the accuracy and

ERD duration with and without feedback, an unpaired Wilcoxon rank-sum test was

applied for statistical analysis. Due to the application of multiple comparisons, Bon-

ferroni correction was adopted.

Page 70



Chapter 5 Feedback Modality Impact on Restorative Brain-Computer Interfaces

Before statistical analysis, the spectral power in the α and β bands were normalized

via calculation of their z-scores, resulting in intra-individual zero mean and unit vari-

ance spectral data. The normalized spectral data were subjected to repeated-measures

2-way ANOVA with factors Task (levels “relaxation” and “imagery”) and Feedback

Modality (levels “proprioceptive” and “visual”) and two-sided t-tests (Holm-Sidak’s

multiple comparison tests) for post-hoc comparisons. The statistical analysis of spectral

data was performed separately for with and without feedback conditions.

5.3 Comparing visual and proprioceptive feedback ef-

fects

5.3.1 Spectral analysis of MI with feedback

Fig. 5.3 illustrates the spectral power of the 3–4 s post-stimulus period in which ei-

ther relaxation or motor imagery was performed with proprioceptive (BRI) or visual

feedback (BCI). There were task-related changes in spectral power in the α and β

bands (Fig. 5.3-A). Analysis of the α band revealed a significant main effect for task

(F(1, 7) = 97.37, p < 0.0001) and a significant interaction between task and feedback

modality (F(1, 7) = 6.128, p = 0.0426). The post-hoc test showed that during both pro-

prioceptive and visual feedback there were significant differences between relaxation

and imagery trials (t(7) = 6.09, p = 0.0010, and t(7) = 2.59, p = 0.0358, respectively).

Moreover, feedback modality was indifferent for relaxation trials (t(7) = 0.44, p =

0.6710), whereas imagery trials produced significantly stronger ERDs with proprio-

ceptive feedback than with visual feedback (t(7) = 3.06, p = 0.0365). Similarly, the β

band showed a significant main effect for task (F(1, 7) = 62.76, p < 0.0001) and a sig-

nificant interaction between task and feedback modality (F(1, 7) = 10.23, p = 0.0151).

The post-hoc test between imagery and relaxation trials revealed a significant difference

with proprioceptive feedback (t(7) = 6.326, p = 0.0003) but not for visual feedback

(t(7) = 1.803, p = 0.1145). Investigation of the impact of feedback modality on the

β power indicated that imagery with proprioceptive (BRI) and visual (BCI) feedback

were significantly different (t(7) = 2.94, p = 0.0429), whereas relaxation trials showed

no significant difference between feedback conditions (t(7) = 1.582, p = 0.1576). In

summary, α ERD was facilitated by both feedback modalities with stronger impact of

proprioceptive feedback; whereas β ERD was facilitated by proprioceptive feedback
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Figure 5.3. Spectral analysis of imagery and relaxation with feedback. Panel A illustrates

the spectral power of imagery and relaxation trials during visual or proprioceptive

feedback. The solid lines represent mean spectral power for each task and their

circumscribing shaded area indicate the standard deviation. Panel B depicts task

effect on the relative spectral power (z-scored) of imagery and relaxation trials with

visual or proprioceptive feedback in α and β bands. Panel C shows feedback effect

on the relative spectral power (z-scored) of imagery and relaxation trials in α and β

bands with visual or proprioceptive feedback (*: p < 0.05; ***: p < 0.001).

only. In addition, proprioceptive feedback was essential to achieve ERD consistently

below baseline across both α and β frequency bands (t(7) = 9.017, p < 0.0001 for

proprioceptive feedback and t(7) = 2.225, p = 0.1192 for visual feedback).
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Figure 5.4. Spectral analysis of imagery and relaxation without feedback. Panel A illus-

trates the spectral power of imagery/relaxation trials without visual or propriocep-

tive feedback. The solid lines represent mean spectral power for each task and

their circumscribing shaded area indicate the standard deviation. Panel B depicts

task effect on the relative spectral power (z-scored) on imagery and relaxation trials

without visual or proprioceptive feedback in the α and β bands. Panel C shows the

persisting visual and proprioceptive feedback effects on the relative spectral power

(z-scored) of imagery and relaxation trials in the α and β bands in the absence of

visual or proprioceptive feedback (*: p < 0.05; **: p < 0.01).
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Table 5.2. Accuracy and ERD duration comparison. Comparison of subject-specific accu-

racy and ERD duration with and without visual/proprioceptive feedback.

Studied Conditions Accuracy ERD Duration

Visual Proprioceptive p-value Visual Proprioceptive p-value

with feedback 75% 83% 0.0011 65% 75% < 0.0001

without feedback 60% 75% 0.0027 63% 76% 0.0028

5.3.2 Spectral analysis of MI without feedback

Fig. 5.4 shows the spectral power from the 1–2 s period of the BRI and BCI conditions

during which participants performed the task without feedback. Fig. 5.4-A depicts the

spectral power in the α and β bands for each feedback modality. Analysis of the α band

showed significant main effects only for task (F(1, 7) = 840.8, p < 0.0001), but neither

for feedback (F(1, 7) = 1.116, p = 0.3258) nor interaction (F(1, 7) = 0.7129, p = 0.4264).

The post-hoc test showed that relaxation and imagery trials were significantly different

for both BRI (t(7) = 4.961, p = 0.0033) and BCI (t(7) = 3.767, p = 0.0140) conditions.

However, analysis of the β band power showed a significant main effect for both task

(F(1, 7) = 79.68, p < 0.0001) and feedback modality (F(1, 7) = 11.30, p = 0.0121) but

revealed no interaction between two factors (F(1, 7) = 4.869, p = 0.0631). The post-

hoc test between imagery and relaxation showed a significant difference for both the

BRI (t(7) = 5.994, p = 0.0011) and the BCI condition (t(7) = 2.87, p = 0.0478). Com-

paring the effect of feedback modality on the β power revealed significant differences

between conditions for motor imagery (t(7) = 3.54, p = 0.0189), but not for relaxation

(t(7) = 0.42, p = 0.69). The findings indicate that in both BRI and BCI conditions

sufficient α and β ERD was achieved, even prior to feedback onset. However, the BRI

condition was superior to the BCI condition with regard to β band modulation. Similar

to the situation “with feedback”, the BRI condition was essential to keep ERD consis-

tently below baseline across both α and β bands (t(7) = 12.00, p < 0.0001 for the BRI

condition and t(7) = 2.831, p = 0.0501 the BCI condition).

5.3.3 Accuracy and ERD duration for individual frequencies

Motor imagery performance with and without feedback was quantified using average

accuracy, and the average percentage of ERD length in each trial. These measures were

obtained through calculation of spectral power in each subjects’ optimum frequency
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according to their screening session. Results are summarized in Table 5.2 where medi-

ans of all studied measures and their corresponding p-values are reported. For motor

imagery with feedback, accuracy was 8% higher for the proprioceptive compared to

the visual feedback condition (p = 0.0011). The ERD duration was also longer with

proprioceptive than with visual feedback by 10% (p < 0.0001). Considering motor im-

agery without feedback, the BRI condition was superior to the BCI condition for both

the accuracy and ERD duration by 15% (p = 0.0027), and 13% (p = 0.0028), respec-

tively.

Figure 5.5. Accuracy and ERD duration with and without feedback. (A): Classification ac-

curacy with visual or proprioceptive feedback in the α and β band. (B): Event-related

desynchronization (ERD) duration with visual or proprioceptive feedback in the α

and β band. (C): Classification accuracy without visual or proprioceptive feedback

in the α and β band. (D): ERD duration without visual or proprioceptive feedback in

the α and β band (*: p < 0.05; **: p < 0.01).

5.3.4 Accuracy and ERD duration for the α and β bands

Fig. 5.5 depicts the accuracy and duration of ERD with (4A–4B) and without feed-

back (4C–4D) in α and β bands. Trial task (“Imagery” vs. “Relaxation”) was classified

by linear discriminant analysis using band-power in three channels (ipsilateral, Cz,
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and contralateral), separately for the α and β bands, and separately for proprioceptive

and visual feedback. According to the paired Wilcoxon rank-sum tests, BRI accuracy

was superior to BCI accuracy for the β band with (p = 0.0078) and without feedback

(p = 0.0234). Similarly, ERD duration was longer for the BRI as compared to the BCI

condition for the β band with (p = 0.0313) and without feedback (p = 0.0156). In

summary, there was a significantly different behavioural impact for BRI and BCI with

regard to accuracy and duration of ERD specific to the β band.

5.4 Feedback modality impact on modulation level and

operant learning

This study demonstrated that MI and BRI training, i.e. providing proprioceptive feed-

back, were superior to MI and BCI training, i.e. providing visual feedback, to increase

the spectral modulation range in the α- and β-band. Moreover, proprioceptive feed-

back was necessary to achieve consistently MI-related ERD significantly below the

baseline. These effects on both the modulation level and MI-related ERD persisted,

even in the absence of feedback, thereby indicating fast operant learning of oscillatory

self-regulation. The increased accuracy and duration of learned brain self-regulation

achieved in the proprioceptive feedback condition was mediated in the β band.

5.4.1 Feedback modality and oscillatory modulation level

The modulation level of the power in the α and β bands was influenced by the feedback

modality. The power in the α band, which typically reflects sensorimotor activation

and visual information processing (Pfurtscheller 2001), was modulated by both visual

and proprioceptive feedback, with stronger effects of the latter (Fig. 5.3-B left). By con-

trast, the power in the β band, which is thought to be associated with cortico-muscular

communication (Miller et al. 2010, Schulz et al. 2014, Takemi et al. 2013a, Takemi et al.

2013b) during MI (Kilavik et al. 2013) and actual movement (McFarland et al. 2000),

required proprioceptive input for modulation (Fig. 5.3-B right). This significant feed-

back effect on the modulation range of both the α and β bands was caused by the

proprioceptive input on the MI task and not on the relaxation task (Fig. 5.4-C). Task-

dependency of the feedback effect on cortical activity may be interpreted as follows: (i)

The feedback during the relaxation task was visual in both conditions, i.e. observing

Page 76



Chapter 5 Feedback Modality Impact on Restorative Brain-Computer Interfaces

cursor movement vs. orthosis movement (with no hand involvement). Providing real

proprioceptive feedback during the relaxation trials, instead of a modified version of

visual feedback (observing orthosis movement), might have resulted in power changes

in comparison to the visual feedback condition (observing cursor movement). (ii) The

relaxation task might, in general, be insensitive to the feedback modalities applied in

this study. (iii) The proprioceptive input might reveal its effects on cortical physiology

during specific brain states only, which is especially receptive to afferent input, e.g.

sensorimotor desynchronization. Note that providing proprioceptive feedback during

relaxation, i.e. sensorimotor synchronization, might lead to maladaptive changes and

may thus be contraindicated from a motor restoration perspective. Notably, propri-

oceptive feedback was essential to achieve consistently MI-related sensorimotor ERD

significantly below baseline in both α and β bands. Thus, it suggests that coupling

proprioceptive feedback with MI provides a better substrate for closing the sensori-

motor loop than visual feedback only. This finding is particularly relevant for future

rehabilitation applications as ERD has been suggested as a biomarker for corticospinal

excitability which is mediated via down-regulation of intracortical inhibition in the

human primary motor cortex (Takemi et al. 2013a, Takemi et al. 2013b). Furthermore,

the amount of β ERD during a BRI task has been shown to correlate with robust in-

creases in corticospinal excitability following the intervention (Kraus et al. 2016). In

this context, the present study revealed that rewarding motor imagery with contin-

gent proprioceptive feedback will result in stronger (Fig. 5.3-C) and longer lasting β

ERD (Fig. 5.5-B), compared to visual feedback only, and might, therefore, be especially

relevant for restorative approaches.

5.4.2 Feedback modality and operant learning

The participants of this study regulated their brain oscillations in both the α and β

bands even in those task periods in which they did not receive any feedback. This

finding might be interpreted in different ways: At first glance, this result might sug-

gest that (i) no feedback at all was necessary to achieve brain self-regulation. However,

such a notion would be challenged by several other observations of this study. (ii) The

oscillatory modulation range was relatively larger in the BRI than in the BCI condition

(Fig. 5.4-B). Since the BRI and BCI conditions of this study were alternating from run

to run, i.e. every fifteen trials, such a finding would most likely be related to the feed-

back modality within one run. (iii) Moreover, the ERD remained consistently below
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baseline only in the BRI condition. (iv) There was a significant difference between the

β ERD levels of the BRI and the BCI condition with stronger desynchronization in the

former (Fig. 5.4-C). We interpret these converging findings, therefore, as evidence for

fast operant learning of oscillatory self-regulation with a stronger impact of the BRI

condition.

Operant conditioning of neural activity was initially demonstrated in animal mod-

els (Engelhard et al. 2013, Fetz 2007, Fetz 1969, Ganguly and Carmena 2009, Hire-

math et al. 2015). In humans, the reinforcement learning of self-regulated changes

in cortical activity is usually acquired after several training sessions (Boe et al. 2014,

Florin et al. 2013, Kaiser et al. 2014). The fast learning in the present study might be

due to different reasons: The delayed feedback onset design may have facilitated brain

self-regulation by (i) providing the participants with a preparation period for ramping

volitional oscillatory modulation (Donoghue et al. 1998, Fetz 2013), and/or (ii) increas-

ing their reward expectation (Leon and Shadlen 1999, Savage and Ramos 2009) during

the 2 s lag. Moreover, the interleaved feedback design, switching every 15 trials be-

tween proprioceptive and visual feedback, might have caused (iii) sustained attention

levels (Lorenz et al. 2014) and/or provided (iv) sufficient novelty to keep up motiva-

tion; a moderate level of novelty during learning has been shown to correlate with the

highest level of motivation (Heckhausen and Heckhausen 2008). Finally, applying a

particular relaxation task that is (v) rewarded by feedback as well appears to be more

able to enhance the modulation of the oscillatory range than a relaxation condition

without feedback.

However, even within such an optimized environment for operant learning, the feed-

back modality seems to play a relevant role, suggesting that the BRI condition may

provide a better mean for self-regulation of sensorimotor rhythms than the BCI condi-

tion.

5.4.3 β band and the sensorimotor loop

Optimum frequencies for which participants received feedback, lay within 12–18 Hz

frequency band (Table 5.1). However, subjects modulated their brain oscillations in

both the α and β bands. This might be unexpected at first glance, because success-

ful neurofeedback is known to be frequency-specific (Florin et al. 2013, Naros and
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Gharabaghi 2015, Zoefel et al. 2011, Reynolds et al. 2015). However, it has to be con-

sidered that this previous frequency-specificity was achieved in the course of several

sessions while the current intervention lasted for one session only. Moreover, the feed-

back modality was alternated in the present examination, while it remained unchanged

in previous studies. Furthermore, recent findings suggest that neurofeedback may not

only reinforce the feedback frequency band itself but may be related to different cortical

oscillations as well, thus, suggesting cross-frequency interactions. More specifically, a

distributed α network has been shown to regulate the local sensorimotor β activity in a

performance dependent way, i.e. with good and poor performers of β band brain-self-

regulation revealing different extents of α network lateralization (Vukelic et al. 2014).

Along the same lines, a single neurofeedback session that rewarded spatially selective

and spectrally distinct cortical activities with proprioceptive feedback modulated the

connectivity of distributed resting state networks of the sensorimotor cortex in differ-

ent frequency bands (Vukelic and Gharabaghi 2015b). The reported finding of Vukelic

and Gharabaghi (2015b) is particularly relevant for new rehabilitation strategies, since

resting state functional connectivity of the motor cortex seems to be of interest for mo-

tor learning (Mottaz et al. 2015) and for prediction of functional improvement after

stroke (Nicolo et al. 2015).

In the present study, the feedback modality had a behaviourally relevant impact,

as well, by improving the online classification accuracy and duration of brain self-

regulation in the proprioceptive as compared to the visual condition (Table 5.2). Im-

portantly, the BRI condition allowed the subjects to achieve accuracies more than 70%

even when no feedback was provided, a level which is regarded as the threshold

for gaining a sense of self-efficacy during operant learning in brain-interface proce-

dures (Kubler et al. 2001). Analysing the α and β bands separately (Fig. 5.5) revealed

the relevance of the latter for mediating these performance gains. These findings are in

line with the current literature indicating that β band oscillations mediate the cortico-

muscular communication (Boulay et al. 2011, Davis et al. 2012, Kilavik et al. 2013, Rid-

dle and Baker 2005, Witham et al. 2011), sensorimotor control (Boulay et al. 2011, Brit-

tain et al. 2014) and motor learning (Herrojo Ruiz et al. 2014, Pollok et al. 2014). Accord-

ingly, recent proof of concept data indicated that operant conditioning of β band ERD

will lead to task-specific motor improvement after stroke (Naros and Gharabaghi 2015)

and also suggests the suitability of this biomarker for state-dependent stimula-

tion (Gharabaghi et al. 2014a) and restorative neuroprosthetics (Gharabaghi et al. 2014b,

Gharabaghi et al. 2014c) in the context of motor rehabilitation after stroke.
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Also, note that all reported results have been made based on the specific visual and pro-

prioceptive feedback that were adopted in this study. Therefore, care must be taken in

generalizing the findings of this study results when other forms of visual feedback such

as virtual reality, real-time fMRI, and, real-time EEG topographic map are involved.

5.5 Limitations of the study

• In this study participants were discarded from the study based on an add-hock

measure, i.e. if they could not produce r2 values greater than 0.05 after 60 MI trials,

which reflected that they were not able to discriminate between imagery and relaxation

trials, they were excluded.

• Instead of exclusively working with the right hand, in this study the hand that its motor

imagery elicited the stronger ERD was chosen. However, stroke patients mostly have a

unilateral brain injury and therefore this strategy would not be applicable to them.

• In this study being right-handed was self-declared and no specific test such as Edinburgh

handedness inventory was adopted to double check whether or not participants were right

handed.

5.6 Conclusion

This chapter has presented empirical evidence that proprioceptive feedback facilitates

fast operant learning of brain self-regulation. Reinforcing β-band ERD in a BRI en-

vironment may provide a suitable approach for enhancing the sensorimotor loop for

rehabilitation.

Following the investigation of feedback modality effect on the performance of restora-

tive BCIs in the current chapter, we will proceed with exploring the impact of feedback

update interval on the performance of therapeutic BCIs in the next chapter.
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Chapter 6

Feedback Update Interval
Impact on Brain-Computer

Interfaces

F
EEDBACK optimization is believed to enhance the perfor-

mance of motor imagery based brain-computer interfaces (MI-

BCI). Many studies have investigated the effect of feedback modal-

ity on MI-BCIs. However, the impact of feedback update interval (FUI)

modification on MI-BCI performance remains unexplored. We hypothe-

sized that: (i) information processing speed and BCI aptitude are corre-

lated; and, (ii) the FUI modification affects BCI performance depending

on subjects’ information processing speed. Thus, in this chapter we in-

vestigate the effect of FUI change on ten healthy participants who were

dichotomized as good and poor imagers according to their online BCI ac-

curacy. They attended two BCI training sessions with 16 ms and 96 ms

FUIs. Simple reaction time (SRT) measure that was recorded as an index of

information processing speed was found to be a surrogate for BCI aptitude

with 70% accuracy. Also, it was illustrated that for good imagers 16 ms

FUI provided higher BCI accuracies whereas poor imagers showed better

performance with 96 ms FUI. Overall, this preliminary study suggests that

FUI customization may improve the performance of MI-BCIs and may also

have implications towards addressing BCI-illiteracy challenge.
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6.1 Introduction

Motor imagery based brain-computer interfaces (MI-BCIs) translate movement imag-

ination to commands readable by a machine or robot. Thus, MI-BCIs can pro-

vide artificial communication channels for locked-in-syndrome patients who are not

able to communicate naturally (Birbaumer et al. 2008). Note that MI-BCIs are also

used for therapeutic applications such as rehabilitation of motor functions after a

stroke (Prasad et al. 2010). While preliminary results of MI-BCI applications in these

areas are promising, their dissemination necessitates enhancement of their reliability

and accuracy (Wolpow and Wolpow 2012b).

To improve the accuracy of MI-BCI two main areas for optimization are currently

explored: In the machine learning area, the research focus is on the enhancement

of feature extraction and classification algorithms (Bashashati et al. 2015, Muller-

Putz et al. 2007, Pradeep et al. 2006). User-centred learning strategies, which enable

human agents to provide their best possible signals, shape the other area of inter-

est (Lotte et al. 2013, Perdikis et al. 2014). One main direction in user-centred BCI en-

hancement is feedback optimization (Huggins et al. 2014, Jeunet et al. 2014, Lotte and

Jeunet 2015). Motor imagery and motor execution of a specific task activate the brain

similarly (De Vries and Mulder 2007). Following movement onset in motor execu-

tion, sensory and visual feedbacks are provided recurrently to close the sensorimotor

loop and complete the proposed function successfully (Magill 2014). Similarly, in MI-

BCI setups artificial feedback is delivered recurrently to supply updated knowledge of

performance and enhance motor imagery quality. Visual feedback is the most common

feedback modality in MI-BCI designs that is provided through cursor position updates

on a monitor (Bai et al. 2008, Prasad et al. 2010). Alternative modalities include proprio-

ceptive feedback via a robot/orthosis (Ramos-Murguialday et al. 2012). To investigate

the effect of feedback modality on MI-BCI performance a number of previous studied

have been conducted (Darvishi et al. 2015a, Jeunet et al. 2015, Ramos-Murguialday et al.

2012, Vukelić and Gharabaghi 2015a). Several studies have suggested that proprio-

ceptive feedback enhances MI-BCI performance compared to visual feedback realiza-

tion (Darvishi et al. 2015a, Jeunet et al. 2015, Vukelić and Gharabaghi 2015a).

A further parameter within the user-centred learning strategies that may potentially

improve the performance of BCIs, which has been largely unexplored, is the feed-

back update interval (FUI). As discussed in Chapter 2, there is a growing body of evi-

dence (Kraus et al. 2016, Naros et al. 2016) suggesting that Hebbian plasticity may play a
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role in BCI training. Therefore in this study we aim to explore whether FUI customiza-

tion affects Hebbian learning and thereby create a synergy with operant condition-

ing during BCI training. While during motor execution FUI is adjusted continuously

through transmission of the efferent motor and afferent sensory information along the

sensorimotor loop, there is no established guideline for this parameter in MI-BCIs. Op-

erating MI-BCIs is largely a cognitive task that involves sequential motor planning and

feedback realization in a closed loop fashion. Reaction time tests, however, measure

how a person interacts with the performance environment while preparing to produce

a required action (Magill 2014). Thus, we hypothesized that: (i) reaction time, as a

surrogate for information processing speed, is correlated with each individuals BCI

performance, and (ii) the FUI customization according to each person’s reaction time

improves their BCI performance. Notably, for people with short reaction times MI-BCI

performance is improved with a short FUI while a longer FUI is more suitable for their

slower counterparts.

To investigate these hypotheses, we recruited 10 participants and measured their sim-

ple reaction time (SRT) as an index of their speed of information processing. Then,

we studied their online BCI performance and brain activation patterns where they at-

tended two BCI training sessions with proprioceptive feedback that had different FUIs

in a crossover design.

6.2 Experimental setup

6.2.1 Participants

Ten healthy participants (six males) aged 18–26 years were recruited in this study. The

study was approved by the local human ethics committee of the University of Ade-

laide, and all participants gave their written informed consent to participate in the

study.

6.2.2 BCI system

A 72 Channel Refa TMSi EXG amplifier, with 64 unipolar and eight bipolar channels

and a 64 channel Waveguard EEG cap were used. The EEG data were recorded only

from small Laplacian combination of the channels centred on either C3 or C4 channel.
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The ground channel was connected to the participants target hand using a wristband.

The impedance between electrodes and the scalp was kept below 20 kΩ. The EMG data

of the finger flexor muscles of the target hand was recorded using a bipolar channel of

the EXG amplifier. The amplifier uses a built-in common average reference (CAR) of

the recorded channels and thus does not require a reference channel. The amplifier

excludes any unipolar channels with impedances more than 256 kΩ from the common

average reference calculation. It also does not consider the bipolar channel used for

EMG recording in common average referencing of EEG signals. All EEG and EMG sig-

nals were digitized at 1000 Hz and then were passed through a 50 Hz notch filter (3rd

order Chebyshev) followed by a high pass filter (1st order Butterworth) with corner

frequency set to 0.1 Hz.

To provide the proprioceptive feedback two orthoses were mounted on a platform to

serve either the right or the left hand. They passively flexed fingers of the involved

hand according to the motor imagery of the target hand. Each orthosis was driven by

a Blue Bird BMS-630 servomotor. The commands to operate the orthoses originated

from a customized software and then using a Micro Maestro servo controller module

were translated to the servomotors.

A customized version of the BCI2000 (Schalk et al., 2004) Cursor Task was used to

record the data and run the online experiments. The source code was customized to

provide auditory commands and to update the position of the servo motors.

6.2.3 Study design

The data used in the current study are part of a larger study we conducted to in-

vestigate the effect of user-centred strategies on BCI performance. In the mentioned

crossover study, each of 10 participants attended one screening session followed by

six online BCI sessions under different conditions. The six adopted conditions were

1) proprioceptive feedback with FUI of 16 ms, 2) proprioceptive feedback with FUI of

24 ms, 3) proprioceptive feedback with FUI of 48 ms, 4) proprioceptive feedback with

FUI of 96 ms, 5) visual feedback, and, 6) No imagery (control condition). The order

of different conditions were randomized to compensate for training and fatigue effect

over the consecutive sessions of BCI training. The data for the current study have been

derived from two of those six conditions in which participants performed MI-BCI and
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received proprioceptive feedback that updated every 16 ms and every 96 ms, respec-

tively. We assumed that any potential effect of FUI alteration becomes clear when in

one condition feedback is updated six times faster than the other. In the rest of the

manuscript, for simplicity, FUIs of 96 and 16 ms will be regarded as “long FUI” and

“short FUI”, respectively.

6.2.4 Screening session

In the screening session, the subjects were asked to perform three runs of left and right

hand motor imagery according to the visual and auditory instructions. Each run in-

cluded 20 trials of right/left hand imagery in a randomized order where each trial

lasted for 3 s and was followed by 3 s of relaxation. Thus for each subject 60 trails

was peformed during the screening session3. For each subject, the frequency within

8–30 Hz frequency band that maximized the spectral power discrepancy between the

motor imagery of right or left hand and relaxation trials were defined. To minimize

cognitive load due to the planned therapeutic application of the BCI design, only right

vs. relaxation and left vs. relaxation combinations were considered. Thus, the screen-

ing session provided the optimum frequency and the optimum combination of tasks

(either right vs. relax or left vs. relax) for each subject. Also according to the selected

imagery task (right or left hand movement), the contralateral channel over the hand

representation of the sensorimotor area was chosen (C3 or C4 channels). For all par-

ticipants except participant P3, right vs. relax found to provide larger differences com-

pared to left vs. relaxation. For all participants except P3, channel C3 and its closest

neighbours (FC3, CP3, C5, and C1) were recorded to provide small Laplacian combina-

tions. For P3 with left vs. relax as their selected tasks, EEG signals were recorded from

C4 and its small Laplacian combination (FC4, CP4, C6, and C2). Table 6.1 summarizes

participants selected features.

3As it was discussed in Chapter5, our adopted number of trials for the screening session is larger than

similar studies (Guger et al. 2003, Pichiorri et al. 2011). Therefore, while we cannot reject the possibility

of changing EEG patterns with larger number of trials, it appears that sufficient number of trials have

been performed during the screening session.
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Table 6.1. Screening session results. Results of screening session to define the optimum

tasks, channels and frequency bands for each individual.

Participants Imagery type Channels Frequencies

P1 Right vs. Relax C3 20 Hz

P2 Right vs. Relax C3 25 Hz

P3 Left vs. Relax C4 23 Hz

P4 Right vs. Relax C3 15 Hz

P5 Right vs. Relax C3 21 Hz

P6 Right vs. Relax C3 11 Hz

P7 Right vs. Relax C3 17Hz

P8 Right vs. Relax C3 11Hz

P9 Right vs. Relax C3 15Hz

P10 Right vs. Relax C3 15Hz

6.2.5 Online training session

Each online session comprised eight runs of MI of right/left hand finger flexion. Each

run included 20 trials with ten motor imagery and ten relaxation trials presented with

a randomized order. Each run took almost four minutes, and consecutive runs had

a 2-minute break in between where each recording took less than an hour. Sessions

were scheduled using BCI2000 Operator scripts that determined runs operation and

the breaks between consecutive runs.

Every trial started with a “start” auditory command that prepared the participant for

the following instruction. After 3 s, another auditory command instructed the par-

ticipant to either relax or perform motor imagery of right hand finger flexion. After

another 3 s, the participant was able to receive contingent feedback according to their

motor imagery or relaxation as follows. For “right” auditory command the right ortho-

sis briskly initialized the right hand’s fingers to fully extended position. Then within

the next 2.5 s, the orthosis was able to flex the right hand’s fingers incrementally if

motor imagery classification result was smaller than a threshold value. However, if

the command was “relax”, the free running left orthosis was immediately initialized

to fully extended position. Then it could be flexed incrementally within the next 2.5

seconds if the classification result was larger than a threshold value. Note that the

threshold value is defined according to the pooled average spectral power of motor

imagery and relaxation trials within the most recent 18 seconds. Next, an auditory
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‘stop’ command cued the end of each trial and after a subsequent 4 s inter-trial inter-

val, the next trial started. Note that each participant’s left hand was on the arm rest

and not placed on the left orthosis. As a result, participants received proprioceptive

feedback for right hand imagery and visual feedback through observation of the left

orthosis flexion on relaxation. For participant P3, however, his left hand was involved

with the left orthosis while his right hand was resting on the armrest. Thus, participant

P3 was supplied with proprioceptive feedback for left hand imagery and visual feed-

back of relaxation through the right orthosis. Fig. 6.1 illustrates the training sessions

time course.

6.2.6 Online signal processing

To enhance the spatial resolution of EEG signals a small Laplacian (SLP) transform4

was used to filter C3 channel (C4 for participant P3). Then a 20th order autoregres-

sive model of the EEG signal was created using Burg method (Marple 1987). Next,

according to each participant’s selected frequency and electrode (C3-SLP or C4-SLP),

the spectral power of the autoregressive model in the most recent 500 ms was calcu-

lated. A linear transform, which was created based on the screening sessions results for

each participant, was applied to the estimated spectral power to provide classification

outputs. The outputs were normalized using an adaptive normalization procedure

to compensate for the effect of EEG non-stationariness. For normalization, data were

transformed to become zero mean and unit variance using contents of a buffer that was

continuously filled with the most recent 18 seconds of imagery and relax trials (equally

represented). Equation 6.1 illustrates the normalization procedure. Here, ‘Out’ refers

to the raw classifier output, ‘NorOut’ is the normalized output, while ‘Aver’, and ‘STD’

are the average and standard deviation of the classifier outputs within the most recent

18 seconds, respectively

NorOut =
Out − Aver

STD
. (6.1)

Normalized outputs were used to flex the target orthosis for 0.4 and 2.4 degrees with

the short and long FUIs, respectively. Note that the flexion angle for 96 ms condition

4Even though a large Laplacian slightly outperforms a small Laplacian, they are both commonly used

strategies for deblurring EEG signals. Since channel C5 of our EEG cap became disconnected, the small

Laplacian was chosen over the large Laplacian in this study.
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Figure 6.1. Time course of neurofeedback training sessions. This figure illustrates the time

course of each neurofeedback training session. Each session encompasses eight

runs, where each run includes 20 trials. Each trial starts with a preparation cue at t

= 0 s, followed by another command at t = 3 s that guides the participant to perform

relaxation or finger flexion motor imagery. After 3 s of motor imagery/relaxation

performance, feedback provision starts and becomes updated recurrently every 16

or 96 ms according to the session’s condition. At t = 8.5 s the trial finishes and after

a 4 s inter-trial interval the next trial starts.

was six times larger than 16 ms condition. This adjustment was made to provide equal

total flexion angle of 62.4 degrees received in 156 (= 2500
16 ) and 26 (= 2500

96 ) steps in

each trial for the former and the latter conditions, respectively. Provision of equal total

flexion for both FUIs renders the FUI effect unbiased by the amount of movement.
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6.2.7 BCI performance measures

We employed one trial-based index and one run-based index to compare the partici-

pants’ online BCI performance with different FUIs. The indices are as follows: (i) A

trial based information transfer rate (ITR) was employed to take into account both the

accuracy and the speed of data transfer (Wolpaw et al. 2000). The ITR calculation was

performed according to Wolpow’s definition (Wolpaw et al. 2000) using Equation 6.2

in which it is expressed in bits per minute (bits/min)

ITR = log2N + Plog2P + (1 − P)log2(
1 − P

N − 1
)(

60

8.5
) (6.2)

where P stands for the accuracy of each trial, N represents the number of classes (two

classes: relaxation and motor imagery), and 8.5 is the total length of each trial in sec-

onds. The ITR has been multiplied by 60, to express it in bits/min. Note that the trial-

based accuracy (P) was calculated as the percentage of times in the feedback section of

each trial that classification outputs conformed to the task and flexed the orthosis. (ii)

A run based classification accuracy that indicates the percentage of trials in each run

in which the average classifier output is larger or smaller than the threshold value for

the motor imagery and relaxation trials, respectively. While the former measure (ITR)

considers both the average accuracy and speed of information transfer across all trials,

the latter is equivalent to the traditional measure of BCI performance; the target hit

rate in each run with visual feedback. The analysis was performed using custom built

Matlab scripts.

It has been shown that the threshold for BCI accuracy to consider one is controlling a

BCI is 70% (Halder et al. 2013). Therefore, in this study participants were dichotomized

to good imagers if their average accuracy with the short FUI were more than 70%, and

poor imagers if their average accuracy with the short FUI were between 50% and 70%.

6.2.8 SRT measurement

A simple reaction time (SRT) test (Klemmer 1956) was carried out, using the CANTAB

battery test of Cambridge Cognition, to measure the reaction time of participants. Par-

ticipants sat in a chair and were asked to concentrate on a tablet computer placed on

a desk in front of them and to press the button on a press pad as soon as they saw

a square on the screen. Each participant performed the task 30 times to obtain the

average latency (reaction time), which was used as their SRT index.
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Note that our reported values for SRT are measured using CANTAB battery test of

Cambridge Cognition with subjects aged 18–26 years and using different hardware,

software, or participants with different age range may provide different results.

6.2.9 Offline analysis

For offline analysis of the EEG and EMG signals, EEGLAB (Delorme and Makeig 2004)

and custom-built Matlab scripts were used. The EEG signals were spatially trans-

formed using a small Laplacian filter to produce single channel EEG data with en-

hanced spatial resolution(C4-SLP for P3 and C3-SLP for other participants). Next, the

data were band-pass filtered (3–47 Hz) and divided into epochs from -2 to 8.5 s centred

around the “start” auditory command. Then all relaxation trials were rejected and af-

ter removing the average baseline, data purification was performed as follows: (i) to

tag the outlier trials, EEG amplitude, spectral power, skewness, kurtosis and variance

were checked; (ii) the trial was labelled as irregular if any of the mentioned indices

were beyond the regular values of artefact free EEG signals using the guideline pro-

vided elsewhere (Daly et al. 2012). The EMG signals of the Flexor Carpi Radialis (FCR)

of the target hand, which monitored the reflection of actual movement of fingers in

the forearm muscle activity, were also band-pass filtered (3–400 Hz). Next, the average

baselines of motor imagery trials were removed and then they were epoched using the

same time windows as EEG signals. EMG signals recorded during the motor imagery

performance were screened, and trials with peak-to-peak values larger than 50 mV

were tagged. All tagged trials due to irregular EEG or significant EMG signals were

discarded (9.2%).

The spectral power of the feedback section of motor imagery trials (6–8 s) and their

preceding inter-trial interval (-2 to 0 s) were extracted in three frequency bands: α

(8–13 Hz) and lower β (16–22 Hz) and higher β (22–30 Hz). Only the last 2 s of the

4-second-long inter-trial interval were considered as baseline period. This adjustment

ensured that the post imagery ERS had elapsed and had not affected the baseline spec-

tral power estimation. Only the first 2 s of motor imagery with feedback section (6–8 s)

was considered, to equalize the length of imagery and baseline time windows. Welch

method (Welch 1967) with frequency resolution of 0.25 Hz was used to estimate the
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power spectral density (PSD) in decibel (dB). The PSD in the inter-trial interval preced-

ing the imagery trials was also calculated to determine baseline spectral power. The ab-

solute difference between the spectral power during motor imagery and inter-trial in-

terval were calculated as a measure of absolute ERD for each frequency band. The ERD

percentage indices were then calculated according to Equation 6.3 (Pfurtscheller 2001)

ERD(%) =
A − R

R
× 100 (6.3)

where A and R stand for the spectral power during motor imagery and the baseline

period, respectively. Note that ERD percentage measures in each frequency bands were

calculated and compared between different FUIs in each group of imagers (good and

poor imagers).

6.2.10 Statistical analysis

To investigate the relationship among the online accuracy measures and SRT, a Pear-

son correlation analysis between SRT and the accuracy was carried out for each FUI.

To ensure that the small number of samples did not bias the correlation coefficients,

100,000 bootstrapped data samples were used. Using the bootstrapped samples the

mean values (r’, estimated correlation coefficient), standard deviations and 95% con-

fidence intervals (2.5th and 97.5th centiles of the 100,000 correlation coefficients) were

calculated. If the 95% confidence interval did not include zero, the correlation coeffi-

cient would be considered as significant.

The accuracy and ITR indices of the eight runs of each session with either short or long

FUI for each participant were used, to calculate the online BCI performance measures.

Since each group (good and poor imagers) had five members, each condition (FUI)

comprised 40 (five participants × eight runs) measures for comparison. We decided to

consider all eight runs of each session for each participant’s accuracy and ITR measures

(instead of their average values) to increase the statistical power. A two-way ANOVA

with factors BCI aptitude (levels “good” and “poor”) and FUI (levels “16 ms” and

“96 ms”) was used to explore the interplay between the aforementioned factors and

the accuracy and ITR, separately.

In the offline analysis, α, lower β and higher β ERDs were compared. The calculations

were performed for each of eight runs of each session with either short or long FUI for

all participants. Selecting all runs for the analysis, resulted in 40 (five participants ×
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eight runs) ERD measures with each FUI in each frequency band for each group. In

total, it provided 240 ERD measures (40 runs x two FUIs × three frequency bands) that

were analyzed using a two-way ANOVA with factors frequency band (levels α, lower

β, and higher β) and FUI (levels “16 ms” and “96 ms”) for good and poor imagers,

separately.

For post-hoc tests in the applied ANOVA for online measures, since two correlated mea-

sures (accuracy and ITR) were used, only planned comparisons between FUI values (16

and 96 ms) were carried out. Therefore, Holm-Sidak’s two-sided t-test was adopted

for post-hoc analysis to adjust for multiple comparisons. However, in the two-way

ANOVA on ERD measures, since spectral analysis in α and β bands are independent,

no adjustment for multiple comparisons were made and thus, uncorrected Fisher’s

LSD two-sided t-test was adopted for post-hoc analysis.

6.3 Feedback customization effect

Table 6.2 summarizes the online accuracies and ITR values of all participants at short

and long FUIs and their SRT results. Our reported results for SRT test corroborate with

findings of another study by Philip et al. (1999) who found the SRT values for subjects

less than 30 years old as 236±32 ms5. Subjects with accuracies > 70% at an FUI of

16 ms (P2, P3, P6, P9, P10) were grouped as good imagers. The remaining participants

(P1, P4, P5, P7, and P8) who achieved accuracies between 50% and 70% at the same FUI

were grouped as poor imagers. We observed a linear relation between the accuracy and

SRT (Fig. 6.2). The Pearson correlation coefficient between SRT and accuracy at an FUI

of 16 ms was r = -0.671 (p = 0.033) while its value between SRT and accuracy at an FUI

of 96 ms was r = -0.725 (p = 0.018). Bootstrapping the samples for FUI of 16 ms resulted

in r′ = -0.671 ± 0.140 with 95% confidence interval of (-0.371 – -0.889) between SRT and

the accuracy. For FUI of 96 ms bootstrapping resulted in r′ = -0.7165 ± 0.1654 with

95% confidence interval of (-0.346 – -0.957) between SRT and accuracy. Since none of

the calculated 95% confidence intervals contained zero, bootstrapping further demon-

strated the significance of the observed correlations. It suggests that SRT is a surrogate

for BCI aptitude with both long and short FUIs. The green horizontal lines in Fig. 6.2

represent the accuracy threshold of 70% that has been used to classify participants as

5Note that the adopted measure in this study is simple reaction time (SRT) and not choice reaction

time (CRT) that is always longer than SRT
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Table 6.2. Summarizing SRT, ITR and accuracy results. Accuracy, information transfer rates

with feedback update intervals of 16 and 96 ms and the results of reaction time test

Participants Accuracy (16) Accuracy (96) ITR (16) ITR (96) SRT

(%)) (%) (bits/min) (bits/min) (ms)

P1 53 59 3.15 3.45 244

P2 86 80 4.68 4.80 206

P3 84 76 4.60 4.28 214

P4 59 69 3.33 4.05 230

P5 67 61 3.44 4.40 245

P6 97 86 6.95 4.65 214

P7 56 57 3.20 3.15 221

P8 64 81 4.17 4.98 219

P9 89 90 6.13 5.26 221

P10 83 91 4.12 4.45 208

good and poor imagers. As illustrated, the boundary margin for classification is wider

at 16 ms FUI compared to that of 96 ms FUI. Therefore, the accuracy with the short FUI

was employed to dichotomize subjects as good and poor imagers.
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Figure 6.2. Illustration of the relationship between SRT and BCI accuracy. Scatter plot of

the simple reaction time measure and BCI accuracy with feedback update intervals

of 16 ms (panel A) and 96 ms (panel B) of 10 participants. The red and blue lines

show linear regression lines for 16 and 96 ms conditions, respectively. The green

horizontal lines at 70% accuracy were used to segment subjects as good and poor

imagers. Since the boundary margin (the green shadowed area around the green

line) in panel A was wider than that of panel B, the online accuracy with 16 ms FUI

was adopted to label participants as good and poor imagers.
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6.3 Feedback customization effect

To analyze the online BCI performance, the run-based accuracy and trial based ITR

were used to compare the effect of long and short FUIs on good and poor imagers,

separately. According to Fig. 6.3, the direction of accuracy and ITR change following

FUI modification was dependent on the BCI aptitude. Two-way ANOVA of the accu-

racy showed significant main effects for BCI aptitude (F(1, 78) = 172.2, p < 0.0001) but

not for FUI (F(1, 78) = 0.6704, p = 0.4154), with a significant interaction (F(1, 78) =

8.212, p = 0.0053). The post-hoc analysis showed that for poor imagers the short FUI im-

proved the accuracy significantly compared to the long FUI (t(78) = 2.605, p = 0.0219).

However, changing FUI provided no significant difference between accuracies for

good imagers (t(78) = 1.447, p = 0.1518). The two-way ANOVA for the ITR showed a

significant interaction between two factors (F(1, 78) = 17.80, p < 0.0001) and a signif-

icant main effect for BCI aptitude (F(1, 78) = 38.16, p < 0.0001). However, FUI factor

did not have a significant main effect (F(1, 78) = 0.4037, p = 0.5270). The post-hoc anal-

ysis showed a significant outperformance of the short over long FUI for good imagers

(t(78) = 3.432, p = 0.0019). In contrast, for poor Imagers ITR was larger with long

FUI than those of short FUI (t(78) = 2.534, p = 0.0264). Overall, poor imagers appear

to produce larger accuracies and ITRs with long FUI, whereas good imagers revealed

larger ITRs with short FUI. Furthermore, there was a highly significant main effect of

BCI aptitude with both the accuracy and ITR across good and poor imagers.

Power spectral density of feedback section of motor imagery trials and the baseline

period preceding imagery trials were calculated for all participants and averaged in

both groups in the 3–45 Hz frequency band (Fig. 6.4-A, Fig. 6.4-B). For each FUI in

each group the difference between the spectral power of motor imagery and base-

line periods were calculated and plotted in Fig. 6.4-C and Fig. 6.4-D. Also, ERD per-

centage measures for both groups and both condition in α, lower β and higher β

frequency bands were calculated according to Equation 6.3 and are demonstrated in

Fig. 6.4-E, and Fig. 6.4-F. The statistical analysis was performed on the ERD percent-

ages as the neural signature of increased cortical activity during motor imagery perfor-

mance (Pfurtscheller 2001). The ERD indices were analyzed using two-way ANOVA

with factors frequency bands (levels α, lower β, and higher β) and FUI (levels “16 ms”

and “96 ms”) across good and poor imagers, separately. Two-way ANOVA of good im-

agers revealed significant main effects for both frequency band (F(2, 234) = 6.178, p =

0.0024) and FUI (F(2, 234) = 32.06, p < 0.0001). The post-hoc analysis with Holm-

Sidak’s two-sided t-test showed a significant outperformance for 16 ms FUI over 96 ms

in the α (t(234) = 4.155, p < 0.0001), lower β ( t(234) = 2.896, p = 0.0041), and higher
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Figure 6.3. Accuracy and ITR comparison. This figure compares the accuracy and informa-

tion transfer rate (ITR) for good and poor imagers with different feedback update

intervals. Panel A illustrates accuracies with 16 and 96 ms feedback update inter-

vals for poor and good imagers. Panel B depicts ITRs with 16 and 96 ms feedback

update intervals for poor and good imagers, respectively (*: p < 0.05, **: p < 0.01).

β (t(234) = 2.757, p = 0.0063) bands. However, for poor imagers, there was not any

significant main effects neither for frequency band (F(2, 234) = 2.563, p = 0.0792) nor

for FUI (F(2, 234) = 1.647, p = 0.2007). However, there was a significant interaction

between fastors (F(2, 234) = 3.343, p = 0.0370). The post-hoc analysis for poor imagers

showed that lower β band supplied significantly larger ERDs with the long compared

to those of the short FUI (t(234) = 2.036, p = 0.0428) . Overall, good imagers showed

significantly stronger ERDs across all frequency bands with the short FUI while poor

imagers showed significantly larger ERDs at lower β band with the long FUI.

6.4 Reaction time and feedback update rate

The main findings of this study are as follows: (i) the SRT and BCI aptitude mea-

sures are inversely correlated, i.e. a short SRT is a surrogate for possessing a high-

level BCI aptitude and vice versa6; (ii) the FUI customization affects the BCI accuracy,

ITR, and down-regulation of sensorimotor rhythms when operating MI-BCIs with pro-

prioceptive feedback depending on the participants’ level of BCI aptitude. Notably,

6Note that SRT may not be as helpful in acute phases of stroke where patients take large amount of

medications that negatively affect their cognitive functions.
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Figure 6.4. Power spectral density in 3–45 Hz with different feedback update intervals.

Fig.4-A and Fig.4-B show the averaged PSDs for poor and good imagers, respec-

tively. The difference between spectral power of motor imagery and baseline pe-

riods are plotted in Fig.4-C for poor imagers and Fig.4-D for good imagers. ERD

percentage measures for both groups and both condition in α, lower β and higher β

frequency bands are plotted in Fig.4-E, and Fig.4-F (FUI: feedback update interval,

ERD: event related desynchronization, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

participants with poor BCI aptitude produce higher accuracies and larger ERDs with

feedback updated every 96 ms, while good imagers provide a higher ITRs and elicit

stronger ERDs with feedback updated every 16 ms.

We hypothesized that FUI affects BCI performance differently depending on subjects’

reaction time. SRT was found to be inversely correlated with BCI accuracy at both

short and long FUIs. Moreover, the slope of the regression line fitted between SRT and

the accuracy for 96 ms FUI showed to shift slightly lower for good imagers and more
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clearly higher for poor imagers. If increasing FUI had a symmetric effect on good and

poor imagers, we should have observed a symmetric shift in the slope of the regression

line of the 96 ms FUI. Thus, it appears that increasing FUI from 16 to 96 ms improved

BCI performance for poor imagers, but degraded the performance of good imagers to

a lesser extent. Accordingly, it may suggest that people who possess a high level of BCI

aptitude benefit more from shorter FUIs. However, longer FUIs do not degrade their

BCI performance significantly. In contrast, poor imagers with a lower BCI aptitude

appear to respond positively to FUI prolongation.

In this study, participants were dichotomized according to their online performance

with the 16 ms FUI. Besides the provision of a wider boundary margin for classifica-

tion, another reason for choosing 16 ms over 96 ms FUI was hypothesizing that using

shorter FUIs would make the distinction between good and poor imagers more pro-

nounced due to their different speed of information processing. Our results indeed

illustrate that changing FUI from 16 to 96 ms improves the BCI performance for poor

imagers while decreases those of good imagers. Thus, it appears that people with

shorter reaction time can perform motor planning and feedback realization quickly

and thus gain more with a short FUI. In contrast, a short FUI may be even distracting

for people with longer SRTs as the updates occur faster than their processing speed

and therefore, may degrade their BCI performance. Overall, both online and offline

measures suggest that dichotomizing participants according to their BCI performance

accuracy with a 16 ms FUI was effective according to the distinct responses of good

and poor imagers.

To investigate neural substrates underlying FUI effect on BCI online metrics, the spec-

tral power of the EEG signals over the contralateral hand representation of the pri-

mary motor cortex (M1) in α and β bands were analysed. Good imagers showed

more pronounced ERDs in both frequency bands than their poor counterparts. Be-

sides, good imagers showed larger α and β ERDs with the shorter FUI. Poor imagers,

however, showed significantly larger ERDs with longer FUIs only in the lower β band.

Since poor imagers showed weaker ERDs compared to good imagers, it might ex-

plain why they failed to show distinctive ERDs with different FUIs in α and Higher

β bands. Overall, offline analysis results corroborate the findings from the online anal-

ysis. While increasing FUI elicited significantly larger ERDs in the α band for good

imagers, poor imagers appeared to be indifferent. However, in the β band, changing

FUI affected ERDs in the lower or both lower and higher β bands for poor and good
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imagers, respectively. This responsiveness of β ERDs to FUI change is congruent with

prior studies that highlight the role of β oscillation in motor control (Feurra et al. 2011),

and cortical and muscular coherence (Halliday et al. 1998, Mima et al. 2001a, Mima et al.

2001b, Witham et al. 2011). Distinctive β oscillations are also supported by the findings

of Vukelić and Gharabaghi (2015a) that highlight the relationship between proprio-

ceptive feedback and modulation of β ERD during motor imagery.

The opposite effect of FUI change on poor and good imagers may be explained by the

findings of Witham et al. (2011), who studied how descending and ascending pathways

affect corticomuscular coherence. They demonstrated that both cortical to muscular ac-

tivity time lag and its reafferent feedback (muscular to cortical) time delay vary across

subjects, implying individual variations in sensorimotor loop duration. Therefore, it is

plausible that customized FUI optimizes sensorimotor information processing through

consideration of intra-subject bidirectional corticomuscular delays.

For good imagers changing FUI did not alter online accuracies substantially, as they

provided average accuracies more than 80% with both conditions. For poor imagers

the slower FUI elicited stronger ERDs in lower β band and thus improved their aver-

age accuracy by almost 6%. However, their average accuracy was still sub-threshold

compared with the baseline 70% accuracy of good BCI performance (Halder et al. 2013).

Nonetheless, testing only two values for FUI customization has elevated poor imagers

accuracy form 59% to 65% which halves their distance from the 70% threshold. Thus,

further studies on the effect of a range of FUIs on BCI performance of poor and good

imagers may explain the phenomenon of BCI illiteracy.

BCIs for communication and rehabilitation require different key performance indices.

Notably in BCIs for communication, accuracy is a critical measure (Wolpow and

Wolpow 2012b) whereas, in therapeutic BCIs, both online accuracy and brain facilita-

tion are equally important (Grosse-Wentrup et al. 2011). Thus, in BCI for communica-

tion, poor imagers are more likely to provide higher accuracies with FUI customization

while good imagers’ accuracy may change to a lower extent with FUI change. How-

ever, in BCI for rehabilitation, it is expected that all imagers receive benefit from FUI

customization through enhanced brain facilitation.
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6.5 Limitations of the study

• Instead of exclusively working with the right hand, in this study the hand that its

motor imagery elicited the stronger ERD was chosen. However, stroke patients

mostly have a unilateral brain injury and therefore this strategy would not be

applicable to them.

• This study was done in healthy participants and whether the findings translate

directly to a stroke population is not clear.

• In this study no motor imagery questionnaire such as KVIQ questionnaire was

used. If such a measure was administered, it could be used as a validator of SRT

for BCI aptitude.

• Even though the statistical analysis of the data showed significant differences

between SRT and ERD patterns of two groups, considering the small number

of group members, it is recommended to verify the reported results with larger

groups.

6.6 Conclusion

As presented in this chapter, participants can be categorized as poor and good imagers

according to their online BCI accuracy with FUI of 16 ms. However, underlying neural

substrates of motor imagery performance are not fully understood yet, and subjects

take a variety of different approaches to perform motor imagery. Therefore, we pro-

pose adding one more factor to the screening sessions to find the optimum FUI for each

subject through testing their performance with short, medium, and long FUIs. Alter-

natively, SRT index can predict whether a long or short FUI suits each individual with

almost 70% accuracy. Also, it would be interesting to see in the future a similar study

repeated on larger number of participants.

In the next chapter, we will investigate whether and to what extent, customizing a

restorative BCI through our findings reported in the current and the last chapters may

affect the motor performance of a stroke patient.
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Chapter 7

Feedback Optimization
May Promote Restorative

BCIs

T
HIS chapter is aimed at exploring how shorter than usual feed-

back update intervals affect behavioural and neurophysiologic

measures following BCI training for stroke patients using a single-

case and proof-of-principle study design.

The ARAT score that was used as the primary and behavioural mea-

sure showed an unprecedented (more than 30%) increase over the course

of training, while neurophysiologic measures including MEP and MVC

showed distinctive changes in early and late phases of BCI training.

Thus, this preliminary study may pave the way for running larger studies

to further investigate the role of confounding factors such as early and late

phases of motor training along the course of BCI training.

Page 101



7.1 Introduction

7.1 Introduction

In Chapter 5, we investigated the effect of feedback modality on restorative BCIs.

We found that proprioceptive feedback outperforms visual feedback in both eliciting

stronger β-ERDs and the occurrence of conditional learning. Then, in Chapter 6, we

studied the effect of feedback update interval (FUI) on restorative BCIs and established

that FUI customization enhances the BCI performance. As discussed in 2, in addition

to operant conditioning, Hebbian learning is also suggested to be important in neuro-

feedback training. Shortening the FUI within a restorative BCI framework reduces the

latency between activation of the motor (via motor imagery) and sensory cortices (by

sensory feedback). Thus, it seems that neurofeedback training with shorter FUIs may

promote the occurrence of Hebbian neuroplasticity and thereby reorganization of the

impaired neural connections following stroke. Therefore, to investigate the potential

synergy between findings of the studies reported in Chapter 5, and Chapter 6, in this

study we employed proprioceptive feedback and investigated whether shortening FUI

in neurofeedback training sessions affects motor performance in a participant who had

suffered a stroke 3.5 years ago.

To study the effect of neurofeedback training with shorter than usual FUIs on mo-

tor function change after stroke, we adopted a proof-of-principle study design and

recruited one stroke patient. The FUI values were chosen randomly among 16,

24, 48, or 96 ms that were at least two time shorter than earlier studies (Gomez-

Rodriguez et al. 2011, Ramos-Murguialday et al. 2013). The action research arm test

(ARAT) was used as our primary clinical test. We also used rest and active motor

evoked potentials (MEP) as well as maximum voluntary contraction (MVC) as our sec-

ondary neurophysiological tests.

7.2 Methods

7.2.1 Ethics, subjects, and inclusion criteria

Since in this phase of our studies, we planned to shift from healthy participants to

stroke patients, we applied for an amendment to our current ethics approval that

was approved by the Ethics Committee of the University of Adelaide. As a proof-of-

principle study, it was planned to recruit one stroke patient. The prospective partici-

pant had to fulfil the following inclusion criteria: (1) being in the chronic stable phase of
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Table 7.1. Screening session results. Results of the screening session presenting the scores

achived by the participant that were all above the defined thresholds (ARAT: action

research arm test, MMSE: mini-mental state examination).

Time ARAT MMSE Mobility TMS contra- Modified BCI Proprioception

after score score indicator Ashworth accuracy

stroke score

3.5 34 30 Fully Nil 2 75% 95%

years mobile

stroke—at least six months post-stroke; (2) having impaired motor capabilities in their

arms—by screening them using action research arm test (ARAT) scores (Lyle 1981) to

be less than 54 out of 57; 3) having intact cognitive functions—by screening them us-

ing mini-mental state examination (MMSE) score (Folstein et al. 1975) to be more than

26 out of 30; (4) being independently mobile—with or without a walking aid; (5) not

having any transcranial magnetic stimulation (TMS) contraindications—by screening

them using TMS adult safety screen (TASS) questionnaire (Rossi et al. 2009); (6) not

having excessive tone in their arm and hand muscles—by screening them using mod-

ified Ashworth test score (Bohannon and Smith 1987) to be less than three out of four;

(7) having the ability to perform vivid motor imagery—by screening their accuracy in

running a motor imagery based BCI system to be more than 70%; (8) having an in-

tact sense of proprioception—by screening their blind judgement of comparing size of

seven polystyrene balls (Kattenstroth et al. 2013) with more than 90% accuracy.

We screened three stroke patients and only the last one met all the requirements. For

the first candidate while he passed all the requirements, after attending the BCI screen-

ing session he reported having muscle cramps in his leg and arm on the affected side

of his body and withdrew from the study. The second patient had had two strokes:

one in the left and another in the right hemisphere of her brain. However, her motor

functions had recovered almost perfectly and except for her speech that was slightly

unclear, her motor functions were too good to be considered for the study. Finally, the

last candidate who was a 65-year old man and had a stroke in his right hemisphere

3.5 years prior to the screening, passed all the tests with the results summarized in

Table 7.1.
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7.2.2 Study design

In this study we planned to investigate: (i) whether and how neurofeedback training

with FUIs selected from 16-96 ms range (16, 24, 48, or 96 ms) affects the motor per-

formance, and (ii) in case of observing any potential effect of these shorter than usual

FUI values on behavioural and/or neurophysiological measures, how long the impacts

last. Therefore, we made a specific setup that not only recoded the performance mea-

surements during neurofeedback training sessions; it also measured the indices up to

5 weeks after BCI training interventions.

To fulfil the aforementioned goals, the study was designed as a proof-of-principle

study with a ABABCC setup (Nock 2007). The selected participant took part in a num-

ber of index measurements (IM) in no intervention weeks (A), intervention weeks (B),

and follow-up weeks (C). In the no intervention weeks (A), only the IM were done on

Monday, Wednesday and Friday. However, in intervention weeks (B), besides the mea-

surement of indices similar to week (A), on every weekday a BCI training session was

also performed. Then, in the follow-up weeks (C) performance indices were measured

once per week, to investigate how long potential changes last, one and five weeks after

the last neurofeedback training session (weeks 5, and 9). The design schedule is shown

in Table 7.2.

7.2.3 Neurofeedback training setup

According to the results of the participant’s screening session that is described in detail

in Section 5.2.4., an optimum frequency of 15 Hz with a large Laplacian configuration

of EEG channels centred on CP4 channel produced the highest coefficient of determina-

tion (r2) for the left hand motor imagery versus relaxation trials. These features were

used to provide feedback during the training sessions. Every session comprised of

eight runs of 20 trials (ten left hand finger extension motor imagery, and ten relaxation

trials). The setup for neurofeedback training sessions was quite similar to the design

that was adopted for studying the effect of FUI on BCI performance and was described

in Section 6.2.5. Following a stroke, the fingers often assume a flexed position and to

obtain useful function in the hand, strengthening control of the finger extensors is de-

sirable. Therefore, unlike the last phases of our studies with healthy populations, here

we rewarded the motor imagery of the stroke patient by extending his fingers. Fig. 7.1
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Table 7.2. Time course of the study design. The study was of nine weeks duration and was

set as ABABCC. In A weeks (weeks 1 and 3), only performance measures were

recorded three times per week. In B weeks (weeks 2 and 4), in addition to record-

ing performance measures three times per week, five neurofeedback sessions were

carried out where the FUI value for each session are shownin braces. In C weeks

(weeks 5 and 9), only one recording of performance measures was performed. Dur-

ing weeks 6–8, no recording sessions were performed. In weeks 2 and 4, all mea-

sures were recorded after BCI training (IM: index measurement, BCI: neurofeedback

training session).

Monday Tuesday Wednesday Thursday Friday

Week 1 (A) IM —– IM —– IM

Week 2 (B) BCI(96) + IM BCI(48) BCI(48) + IM BCI(16) BCI(24) + IM

Week 3 (A) IM —– IM —– IM

Week 4 (B) BCI(16) + IM BCI(24) BCI(48) + IM BCI(96) BCI(48) + IM

Week 5 (C) —– —– —– —– IM

Week 9 (C) —– —– —– —– IM

illustrates the setup for BCI training session, and Fig. 7.2 demonstrates the time course

of neurofeedback training sessions

7.2.4 Performance measures

All adopted measures in B weeks (weeks 2 and 4) that included BCI training, were

recorded after BCI training.

Action research arm test (ARAT)

The ARAT (Lyle 1981) was employed as the primary and clinical measure to investi-

gate the effect of neurofeedback training on the recovery of the affected arm following

stroke.

Maximum voluntary contraction (MVC)

To investigate how BCI training sessions affect the participant’s volitional contraction

of finger extensor muscles, we adopted the MVC measure (Meldrum et al. 2007). The

participant sat in an armchair while his left arm was placed on the armrest. An audi-

tory command of “GET READY” signalled the participant to be prepared for recording.
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Figure 7.1. Illustration of the setup of the neurofeedback training session. This figure il-

lustrates the setup of the neurofeedback training sessions. (A) the EEG cap records

EEG signals. (B) the Refa EXG amplifier that receives and amplifies the EEG and

EMG signals and then sends them to a PC for processing and screening. (C) the

PC monitor that screens the EEG and EMG signals for the study instructor. (D) the

left orthosis which is hidden under the participant’s left hand and provides proprio-

ceptive feedback during motor imagery. (D1) and (D2) present side views of the left

orthosis at the start and the end of each motor imagery trial. (E) the free running

orthosis that provides visual feedback during relaxation.

Then, a “START” auditory command, instructed him to extend his left hand fingers

with maximum power while an experienced physiotherapist was holding his hand.

After 2.5 second of recording, a “STOP” auditory command cued the end of the trial.

Each MVC recording session encompassed three trials with 10-second inter-trial in-

tervals. The root mean square of the EMG activity recorded from the finger extensor
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Figure 7.2. Time course of the neurofeedback training sessions. This figure illustrates the

time course of each neurofeedback training sessions. Each session encompasses

eight runs, where each run includes 20 trials. Each trial starts with a preparation

cue at t = 0 s, followed by another command at t = 3 s that guides the participant to

perform relaxation or motor imagery of left hand finger extension. After 3 s of motor

imagery/relaxation performance, feedback provision starts and becomes updated

recurrently every 16/24/48/96 ms according to the randomized and predetermined

FUI value for each session. At t = 8.5 s the trial finishes and after a 4 s inter-

trial interval the next trial starts. Note that the adopted measures for FUI were the

values that belonged to a shorter than usual range (less than 100 ms). Here the aim

was to show whether application of such shorter feedback delays within 16–96 ms

range can potentially affect BCI training and therefore the order was randomized to

exclude any potential effect of a specific FUI value.

muscles (surface recording electrodes) for each of the three trials was calculated and

then averaged, to determine the MVC measure for each session.
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Motor Evoked Potentials (MEP)

Additionally, motor evoked potentials (MEP) were recorded from the finger extensor

muscles in both rest and active conditions through application of transcranial magnetic

stimulation (TMS)7. We used a Magstim 200 (The Magstim Co., Dyfed, UK) machine

with a figure-of-eight D702 coil. This made it possible to record rest MEPs for stroke

patients that perhaps would not show MEPs with peak-to-peaks more than 50 mV with

regular coils. The coil was positioned at almost 45 degrees to the medial line where its

handle pointing towards the back of the head. The induced current in the brain with

this orientation of the coil flew in a posterior to anterior direction which is optimal to

activate the hand representation area in the motor cortex (Ridding and Taylor 2001).

Recording Rest MEPs

To record rest MEPs we used a Refa TMSi 72 channel EXG amplifier and used one of its

bipolar channels to record EMG of the finger flexor muscles of the participants affected,

i.e. left, forearm. We used disposable electromyogram (EMG) snap electrodes with a

belly-tendon setup to record MEPs. To make a communication between Magstim 200

machine and the EMG amplifier, we used a custom built Matlab program that almost

every 8 seconds (7.2–8.8 s), sent a trigger pulse through an RS-232 communication

channel to both the Magstim 200 machine and the digital input of the EMG amplifier.

The recording of both digital input pulse as well as the EMG signal were performed us-

ing a customized version of Polybench software provided by TMSi. To find the hotspot,

first the best point over the right motor cortex that evoked the largest MEP in the finger

extensor muscles was found and marked using maker pens. Next, the intensity was

increased in a number of steps and the rest motor threshold was defined as the min-

imal intensity with which at least five out of ten consecutive MEPs had peak to peak

amplitudes of larger than 50 µV. The rest MEPs were then recorded at 120% of the rest

motor threshold and the average peak to peak amplitude of 15 consecutive MEPs was

defined as the rest MEP at each recording session.

Recording Active MEPs

To record active MEPs, we designed and fabricated an application specific hardware

that measured finger extension force and sent it to the PC for further processing. As

7In Weeks 2 and 4 that included neurofeedback training, TMS applications were applied after BCI

training sessions to remove a potential effect of TMS application on BCI training
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soon as the applied force fell in the range of 150–160 grams, a trigger command was

sent to the Magstim 200 machine that stimulated the brain. To define the active motor

threshold, the intensity of the stimulation was increased step-wise and MEPs were

recorded. The minimal intensity that elicited at least 5 out of 10 MEPs larger than

200 µV was defined as the active motor threshold. Then the active MEP was defined

by averaging 15 consecutive MEPs, while participant left hand fingers were applying

150–160 grams of force, at the intensity of 120% of the active motor threshold.

7.3 Results

7.3.1 ARAT scores

In the first week of BCI training (week 2) the average ARAT score was 40.75 that com-

pared to its baseline value in week 1 (36), showed a 13% increase. The ARAT scores

reached 42.5 in week 3 (no BCI training) and showed an 18% increase compared to

the reference ARAT score of 36. The average ARAT score in week 4, in which another

round of BCI training took place, was 48 and revealed a 34% increase compared to the

baseline value. In week 5, the ARAT score revealed a subtle increase of less than 2%

and reached to 49. The increasing trend of the ARAT scores changed after week 5, and

in week 9 its value plateaued at 49. Overall, the ARAT scores revealed a 36% increase

over weeks 1–5 and then plateaued at week 9 where the highest increments occurred

in weeks with BCI training (week 2 and week 4). Fig. 7.3-A demonstrates the weekly

averages and standard deviations of the ARAT scores.

7.3.2 Maximum voluntary contraction

Maximum voluntary contraction (MVC), that was measured by calculating the root

mean squares of the EMG signals, was found to be 80 mV in the week 1 (considered as

reference value). In week 2, however, The MVC decreased by 16% and was measured

at 68 mV. In week 3 the decreasing trend of the MVC changed and with a 34% increase

compared to its reference value reached to 108 mV. In week 4, even though it dropped

to 91 mV and its value became smaller than that of week 3, it still remained 14% higher

than the baseline. In week 5 and week 9, it went again below baseline and reached

to 72 mV and 67 mV, respectively. Altogether, the MVC scores were only above the

baseline value in weeks 3–4. Fig. 7.3-B summarizes the MVC values across weeks 1-9.
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Figure 7.3. The trend of performance measures across the study. figure demonstrates

whether application of shorter feedback delays within 16–96 ms range could affect

BCI training with randomized FUI values to exclude any potential effect of a spe-

cific FUI value. Note that the selected FUI was kept constant along each training

session and TMS application occurred after BCI training in weeks 2 and 4. Panel

A illustrates the average and standard deviation of ARAT scores along weeks 1–9

where it increase through weeks 2–5 and then plateaus. Panel B shows the trend

of MVC scores where it decreses in week 2 and then increases in week 3 and fianlly

shows a deceremantal trend along weeks 4–9. Panel C depicts the trend of rest

MEP peak to peak amplitudes where it shows increment along weeks 2–3, followed

by decrement along weeks 4–5 and finally increase in week 9. Panel D presents the

trend of active MEP peak to peak amplitudes that shows an increasing trend over

weeks 2–3 and then is decreased along weeks 4–9 (ARAT: arm research action

test, MVC: maximum voluntary contraction, MEP: motor evoked potential).
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7.3.3 Rest MEP

Measuring the rest MEP in week 1, it showed to be 43 µV. In week 2 it almost doubled

(increased by 96%) and reached to 84 µV. Then, in week 3 it revealed the highest rise

with 271% increase and became 203 µV. In week 4, even though it was still 164% larger

than its reference value in week 1, it dropped to 113 µV. The decremental trend con-

tinued in week 5 where the rest MEP was measured at 47 µV and was just 9% larger

than its baseline value. However, in week 9 its value raised to 137 µV and showed to

be 219% larger than its reference value. Overall, the rest MEP had a rising trend over

weeks 2–3 followed by a decrement along weeks 4–5, and finally ended up with an

increase in week 9. Fig. 7.3-C depicts the rest MEP values measured along the study.

7.3.4 Active MEP

In week 1 the baseline peak to peak value of the active MEP, where the participant was

applying 150 grams of force, was 340 µV. In week 2, the active MEP showed a 67%

increase and reached to 570 µV. In week 3 the active MEP value raised for the second

time and reached to 809 µV and showed a 138% increase compared with its baseline

value. In week 4, the active MEP dropped to 580 µV, but it was still 70% larger than the

reference. The decrement continued in week 5 and week 9 where the active MEPs were

measured at 484 and 408 µV, though they were still above the baseline level by 42 and

20%, respectively. To sum up, active MEPs, had an increasing trend along weeks 2–3,

followed by a decreasing trend across weeks 4–9. Fig. 7.3-D shows the active MEPs

trend over the study course.

7.4 Discussion

The main finding of this single case study is that neurofeedback training with FUIs cho-

sen within 16–96 ms range may potentially have a constructive impact on the motor be-

haviour following stroke. The mentioned possibility is supported by the reported 36%

increase in the ARAT scores that was achieved after 10 sessions of neurofeedback train-

ing. Other studies on application of restorative BCIs for stroke rehab with real time

proprioceptive feedback adopted larger values for the FUI. Gomez-Rodriguez et al.

(2011) provided real time proprioceptive feedback every 300 ms, whereas in Ramos-

Murguialday et al. (2013) design, it was provided every 200 ms. However, FUI values in
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the current study (16, 24, 48 , or 96 ms were at least two times faster than previous stud-

ies. Presuming a critical role for Hebbian learning (Hebb 2005) and STDP (Florian 2007)

in stroke rehabilitation (Murphy and Corbett 2009), the adopted shorter FUIs may have

enhanced neuroplasticity that was manifested in the observed increment in the ARAT

scores.

The second implication of the current study is that short- and long-term impacts of BCI

training are reflected distinctively through behavioural measures such as ARAT, and

physiological measures such as rest/active MEPs, and MVC. All measures showed

an increasing trend (despite some small deviations), both during (week 2) and after

earlier sessions of BCI training (week 3). However, the ARAT scores increased, whereas

rest/active MEP amplitudes and MVC values decreased both during (week 4), and

after (week 5) later sessions of neurofeedback training. Karabanov et al. (2012) have

explored connectivity between posterior parietal cortex (PPC), which is thought to play

a critical role in sensory information processing, and primary motor cortex (M1) in

early and late phases of motor learning. They reported that while connectivity between

M1 and PPC increases in early phases of motor learning, it degrades during late phases

of motor learning. If we presume that acquiring motor imagery skills takes longer than

learning motor skills, we can find congruency between the findings of Karabanov et al

study and the observations of the current study. During week 2 of the current study,

that can be considered as early phases of motor imagery training, the connectivity

between M1–PPC may have increased and thereby increased rest and active MEPs.

However in week 4 that can be regarded as a late phase of motor imagery training,

it had potentially become automatized (Wolpaw and McFarland 2004). Therefore, the

connectivity between M1-PPC in week 4 had potentially become weaker and thereby

resulted in decreased rest/active MEPs.

In a study ran by Pascual-Leone et al. (1994), they found that during implicit motor

learning, participant reaction time decreased and the cortical map related to the task

extended. However, when explicit knowledge of the motor learning task was achieved,

the reaction time stopped decreasing and the cortical representation of the related area

shrank. The observation we had in the current study was at least to some extent similar

to Pascual-Leone results. In their study the reaction time was a behavioural measure

that resembles our adopted ARAT score. They also used the paired-pulse TMS as their

neurophysiological index that is similar to active MEP measure of the current study.
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BCI training in week 2 (first week of BCI training) can also be considered as the im-

plicit phase of the training of the motor imagery task. The implicit phase of training

in week 2 was manifested in increasing ARAT scores, and active MEP values, simi-

lar to reduction of reaction time and increase of MEP values in Pascal-Leone study.

Furthermore, during week 3, where no training took place, we observed that all mea-

sures rose that may reflect the consolidation of implicit motor learning during week

3. However after week 4, where the second round of BCI training occurred, the motor

learning may had switched to its automatized (explicit) phase similar to a well-learned

motor skill (Wolpaw and McFarland 2004). Thus, congruent with Pascal-Leone et al

findings, our clinical measure (ARAT score) plateaued in week 5, whereas all other

physiological indices such as MVC and MEPs reduced. Thus, these observations may

reflect the shrinkage of the cortical representation of the related area to the trained mo-

tor imagery task. Altogether, our observation suggest that (i) similar to learning a new

skill, in early phases of motor imagery training the cortical representation of the related

area extends, and (ii) after consolidation of motor imagery task, the extended cortical

representation of the task shrinks while the motor imagery skill remains intact.

7.5 Limitation of the study

In this study we examined the effect of neurofeedback training with shorter than usual

FUIs within 16–96 ms range on behavioural and neurophysiological attributes of stroke

patients. To exclude a potential effect of any specific values within this range we ran-

domized the four adopted FUIs (16,24, 48, and 96 ms) in the training sessions. As a

result of randomization, in six training sessions followed by measurement, the FUI

was 48 ms whereas other FUIs (16, 24, and 96 ms) were used in only one session. If we

had designed the study to control the fUI values in a way that equal number of FUIs

were used in training sessions followed by TMS application, we could have reported

the individual values for each FUI that potentially could add valuable information to

the reported results. Thus, it is recommended to consider this point in design of larger

studies on the effect of FUI value on neurofeedback training with stroke patients.

7.6 Conclusion

In this single case proof-of-principle study we used a restorative BCI to investigate (i)

whether adopting FUIs within the 16–96 ms range with proprioceptive feedback affects

Page 113



7.6 Conclusion

behavioural and clinical measures of stroke rehabilitation; (ii) the duration of any po-

tential training-induced changes in behavioural or neurophysiological measures. We

observed that the adopted shorter than usual FUI values for restorative BCIs may po-

tentially enhance the motor performance following stroke; ii) following earlier phases

of BCI training all behavioural and physiologic measures increased (week 3). How-

ever, after the later phases of neurofeedback training the behavioural index (ARAT)

plateaued while the physiologic measures decreased (week 5). The observed trend

may reflect the impact of early (or implicit) and late (or explicit) phases of motor im-

agery training. Further studies that investigate the mentioned factors (early and late

phases of motor imagery training, and and each individual FUI) separately with larger

sample sizes are required to determine whether and to what extent each factor affects

the motor performance following neurofeedback training.

In the next chapter we highlight the key contributions of the thesis and suggest future

directions for further development of the reported findings.
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Conclusion and Future
Work

T
HIS chapter outlines a summary of the conclusions of this disser-

tation and suggests further directions for future research on the

investigated topics within the thesis.
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8.1 Introduction

Primary applications of restorative BCIs has resulted in promising outcomes for en-

hancement of motor performance following stroke. However, its widespread clini-

cal application and dissemination necessitates its optimization (Wolpow and Wolpow

2012b). To optimize restorative BCIs, two lines of research are being followed: (i) the

signal processing approach investigates how to improve feature extraction and feature

translation methods for BCIs using machine learning techniques; (ii) the user-centred

approach, however, aims at eliciting more representative features through techniques

such as feedback optimization. This thesis reports the studies conducted on both ap-

proaches for optimization of restorative BCIs. This chapter summarizes the key find-

ings described in the thesis and discusses potential future works to further investigate

suitability of the proposed techniques for optimization of restorative BCIs.

8.2 Thesis summary

Chapter 1 describes the origins of BCIs and their applications for stroke rehabilitation.

Then, it outlines the thesis structure and contents. Chapter 3 provides the reader with

required backgrounds on BCI components and applications to understand the follow-

ing chapters of the thesis. BCI components have been divided into the following dis-

ciplines: signal acquisition, feature extraction, feature translation (classification), and

BCI applications. Then, it provides a literature review on BCI application for stroke re-

habilitation (restorative BCIs). Chapter 3 is concluded by listing the current challenges

of restorative BCIs.

Chapter 4, that is the contribution of thesis on signal processing techniques, investi-

gates a practical trade-off between parameters of a restorative BCI. It focuses on finding

a feasible trade-off among the key parameters that while delivers real time feedback,

does not degrade the accuracy substantially.

Chapter 5 describes the first study on feedback optimization and compares visual and

proprioceptive feedback modalities. It concludes that the latter modality outperforms

the former in eliciting stronger β-ERDs and the occurrence of conditional learning.

Chapter 6 explores the second study on feedback optimization and investigates the

effect of FUI alteration on the performance of restorative BCIs. It concludes that FUI

customization affects the BCI performance where its manifestation depends on the sub-

jects’ BCI aptitude.
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Chapter 7 reports the last phase of studies on feedback optimization and explores

the synergy between the findings reported in Chapters 5&6. It employs a proof-of-

principle study design to explore the impact of neurofeedback training on motor per-

formance of a stroke patient with FUIs within 16–96 ms range where the feedback

modality is proprioceptive. It is concluded that neurofeedback training with propri-

oceptive feedback and FUIs within 16–96 ms range may enhance motor performance

for stroke patients.

A number of study outcomes that have been published as conference papers have been

added to this thesis in the Appendix section. Appendix A describes another study on

signal processing that explores the suitability of particle swarm optimization (PSO) in

training adaptive neuro-fuzzy inference system (ANFIS) classifiers. Appendix B pro-

poses a novel feedback provision paradigm for restorative BCIs. Appendix C compares

visual and proprioceptive feedback effect on BCI performance but using different mea-

sures than Chapter 5. It uses the classification accuracy and information transfer rate

(ITR) and demonstrates that according to both metrics visual feedback is inferior to

proprioceptive feedback. Appendix D explains a study that was conducted to investi-

gate a novel and accurate predictor for BCI aptitude. It concludes that simple reaction

time (SRT) test may be used as a predictor for subjects’ BCI aptitude with almost 70%

accuracy. Appendix E describes the charecteristics of the designed and fabricated or-

thosis that was employed in the studies for provision of proprioceptive feedback.

8.3 Summary of author’s original contributions

• Investigation of a feasible trade-off between the classifier update rate, time

window length, and the accuracy of the classifier: Through offline analysis of

a publicly available dataset, we concluded that adopting a time window length

of 750 ms with FUI of 32 ms, provides accuracies of almost 70% while providing

real time feedback (Darvishi et al. 2013a).

• Studying the effect of feedback modality on the performance of restorative

BCIs: Through a study on healthy subjects we observed the superiority of pro-

prioceptive over visual feedback in eliciting stronger β-ERDs and the occurrence

of conditional learning (submitted to Frontiers in Neuroscience).
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• Exploring the effect of FUI on restorative BCIs: We observed that FUI alteration

affects the BCI performance and the direction of impact depends on the subjects’

BCI aptitude (under final preparation for submission to a journal).

• Studying how shortening the FUI affects the motor performance following

neurofeedback training: We observed that shortening the FUI may enhance

motor performance following BCI training with proprioceptive feedback (under

preparation for submission to a journal).

• Investigation of the suitability of PSO for training an ANFIS classifier: We

found that application of PSO instead of backpropagation for training the AN-

FIS classifier produces comparable results with traditional ANFIS, SVM, and

LDA (Darvishi et al. 2012).

• Exploring the effect of feedback modality on the classification accuracy and

ITR: We observed that proprioceptive feedback outperforms visual feedback

with both metrics (Darvishi et al. 2015b).

• Proposing a novel and objective predictor for BCI aptitude: We demonstrated

that the SRT test predicts the BCI aptitude with almost 70% (Darvishi et al. 2015a).

8.4 Potential future directions

Here, we discuss in brief some of the directions that future studies may pursue.

• Running studies with larger sample sizes to further investigate the effect of feed-

back modality on BCI performance.

• Conducting larger studies on the effect of FUI value on BCI performance. The

FUIs may be taken with at least four different values within 16–96 ms range to

further study the effect of this factor.

• Conducting larger studies on stroke patients to further explore the manifestations

of early and late phases of neurofeedback training.

• Investigating the effect of FUIs on stroke patient populations. The FUI alteration

effect may be explored through choosing at least four different values within 16–

1000 ms range. Here each FUI should be investigated individually so as to extract

conclusive information as a result of FUI customization.
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• Studying a potential synergy between TMS application and neurofeedback train-

ing for stroke rehabilitation.

8.5 In closing

In this chapter we summarized the observations and conclusions made of this thesis

followed by listing the potential directions for future work. The thesis has made a

number of contributions towards feedback optimization for restorative BCIs. The work

herein, is unique and original, providing the basis for further research on enhancement

of restorative BCIs.
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Appendix A

Classification of Motor
Imagery EEG Signals

using Adaptive
Neuro-Fuzzy Inference

System Trained by Particle
Swarm Optimization

A
S discussed in Chapter 3, whenever the relationship between

the features and classes is not simple, traditional methods for

estimation of the model parameters may fall into sub-optimal

points (local minima). Evolutionary algorithms such as particle swarm op-

timization (PSO) has been shown to be robust against this drawback. There-

fore, in this study, we compare the performance of an adaptive neuro-fuzzy

inference system (ANFIS) classifier that its parameters have been estimated

using PSO, with a traditional ANFIS that uses backpropagation for its pa-

rameter estimation. The results depict that tuning ANFIS with PSO pro-

vides classification accuracies comparable with traditional ANFIS and other

robust classifiers such as support vector machines and linear discriminant

analysis.
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A.1 Introduction

Brain-computer interfaces (BCI) applications have experienced increasing attention

during the last decade (Vaughan and Wolpaw 2006). Among the primary procedures of

EEG-based BCI systems, including preprocessing, feature extraction and classification,

the last step (classification) is one of the most challenging, due to the highly stochastic

nature of the EEG signal. Several linear classifiers such as linear discriminant analysis

(LDA), linear support vector machine (SVM) and non-linear classifiers such as neural

networks and adaptive neuro-fuzzy inference system (ANFIS) have been proposed to

classify EEG signals and each of them has shown to be efficient for different types of

EEG features such as P300, steady-state visual evoked potentials (SSVEP) and sensori-

motor rhythms (motor imagery signals). Note that ANFIS due to its robustness, orig-

inating from both neural network and fuzzy inference systems, appears to have the

potential to be used as a suitable classifier for motor imagery EEG signals (Darvishi

and Al-Ani 2007). Neural network based methods such as backpropagation and least-

mean-squares (LMS) estimation are employed to adjust the parameters of ANFIS fuzzy

rules. Particle swarm optimization (PSO), which is an evolutionary optimization tech-

nique, has shown to be an efficient method for optimization (Ghomsheh et al. 2007).

Therefore, in this study, we investigated training an ANFIS classifier using PSO in-

stead of the application of backpropagation for ANFIS training.

The study in this appendix has been published in the Proceedings of the IEEE EMB/-

CAS/SMC Workshop on Brain-Machine-Body Interfaces (Darvishi et al. 2012).

A.2 Feature extraction and classification

We used dataset III of the BCI competition 2003 that comprises 140 test and 140 training

trials. The EEG signals are recorded using three channels (C3, Cz, C4), and each trial

lasts nine seconds. We applied a continuous wavelet transform (CWT) and Student’s t-

test to extract eight features from each trial i.e. four features from α (8–13 Hz) and four

features from β (18–26 Hz) frequency bands. Fig. A.1 illustrates the feature extraction

procedure and for a full description of the method refer to Darvishi and Al-Ani (2007).

To train the ANFIS classifier by PSO, we created a fuzzy inference system (FIS) by sub-

tractive clustering. Then, we created a swarm of 10 particles; each held a collection of

125 parameters to be used for fine tuning of fuzzy membership functions of the created
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Figure A.1. Feature extraction procedure. This figure illustrates the steps taken for feature

extraction.

FIS. Afterwards, all swarm members were evolved for 100 epochs and finally the par-

ticle with the best fit function was selected as the winner and the ANFIS parameters

were replaced by the members of the winner particle. Fig. A.2 summarizes the adopted

steps to train ANFIS using PSO. Using the selected dataset, we compared the results of

ANFIS-PSO classifier with the traditional ANFIS that was trained by backpropagation,

as well as LDA and SVM as benchmark classifiers which were fed by the same features

of the training and test data.
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Figure A.2. Procedure for training ANFIS with PSO. This figure illustrates the training proce-

dure of an adaptive neurofuzzy inference system (ANFIS) classifier using particle

swarm optimization (PSO).

A.3 Results and discussion

As depicted in Fig. A.3, ANFIS-PSO and SVM classifiers achieved the highest accuracy

in classifying training data (85.7%), which outperformed the traditional ANFIS trained

by backpropagation. However, when classifying the test data, the traditional ANFIS

performed slightly better than ANFIS-PSO, with LDA achieving the highest accuracy.

In summary, it has been demonstrated that PSO is suitable for ANFIS training as to

classify motor imagery EEG signals, with an accuracy comparable to those of other

more common classifiers such as LDA, SVM, and conventional ANFIS.
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Figure A.3. Comparing the accuracy of classifiers for training and testing data. This figure

compares the accuracy of four classifiers, i.e. linear discriminant analysis (LDA),

support vector machines (SVM), traditional ANFIS, and ANFIS-PSO, with training

and test datasets. Note that ANFIS-PSO provides results that are comparable with

those of traditional ANFIS and other robust classifiers such as LDA and SVM.
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Appendix B

Novel Feedback Provision
for Restorative

Brain-Computer Interfaces

R
ESTORATIVEbrain-computer interfaces (BCIs) have been ex-

ploited by a number of BCI labs for stroke rehabilitation. The

results that are achieved with commonly used methods are

rather promising, but inconsistent. Here, we propose a novel paradigm

for restorative BCI designs that is based on motor learning theory and the

Hebbian learning rules that may promote neuroplasticity following stroke.
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B.1 Introduction

Stroke is a major cause of paralysis. In the traditional rehabilitation of stroke, repetitive

rehearsal of motor functions is exploited in hope that based on activity-dependent plas-

ticity concept; impaired neural paths become reorganized the same way that they were

established during early development of motor functions (Koganemaru et al. 2010).

Considering the similarity between activity in sensorimotor area of the human brain

during motor imagery and the actual movement, motor imagery has been suggested

as an alternative modality to enhance motor performance after stroke (De Vries and

Mulder 2007). There is evidence that application of motor imagery in healthy subjects

increases the cortical activity and thereby elevates the amplitude of motor evoked po-

tentials (MEP) in response to transcranial magnetic stimulation (Kasai et al. 1997). The

finding of Kasai et al. (1997) suggests that motor imagery can modulate corticospinal

excitability in a way similar to motor learning.

In contrast to the actual movement, motor imagery does not produce any muscular

activities and thereby, no sensory feedback is received during motor imagery perfor-

mance. However, sensory feedback is critical for motor learning. Thus, in this study

we propose a novel method to provide sensory feedback during motor imagery BCI. In

particular, we describe an approach to provide sensory feedback at a timing that will

be optimal for practice dependent learning based upon Hebbian learning rules. We

anticipate that this approach would offer significantly improved therapeutic options

for stroke patients.

The study in this appendix has been published in the Proceedings of the 5th International

BCI meeting (Darvishi et al. 2013b).

B.2 Methods

A combination of proprioceptive and visual feedback is thought to be the optimum

sensory feedback for motor functions (Ramos-Murguialday et al. 2012). Even though

there have been some trials to provide such feedback for motor imagery based restora-

tive BCI designs, there is no clear rationale provided for the latency used between

motor imagery performance and feedback reception (Ramos-Murguialday et al. 2012,

Shindo et al. 2011). There is evidence that the latency for efferent route from the pri-

mary motor cortex (M1) to the median nerve is approximately 20 ms (Samii et al. 1998).
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In addition, studies show that the required time for sensory feedback to travel from the

median nerve to the M1 is approximately 25 ms (Stefan et al. 2000). Thus the total time

for a motor learning loop (from cortex to the median nerve) is approximately 45 ms.

Presuming a critical role for the Hebbian learning rules in practice dependent motor

learning (Murphy and Corbett 2009) it seems crucial to provide sensory feedback dur-

ing motor imagery based BCI training at an interval, i.e. 45 ms, similar to that of actual

motor training. Fig. B.1 illustrates the timing of the proposed paradigm.

Figure B.1. Illustration of the novel feedback provision paradigm. Demonstration of timing

between motor imagery, data transfer (D.T.), signal processing (S.P.), application

delay (A.D.), and their consequent feedback arrival time to M1. As depicted, 45 ms

after each 20 ms portion of motor imagery, its correspondent feedback reaches M1.

Presuming continuous performance of motor imagery by the subject, this paradigm

is expected to promote the occurence of desired neuroplasticity in neurofeedback

training following stroke.

B.2.1 The proposed design specification

• Classifier update rate: As the first 250–500 ms of motor imagery does not contain

features related to motor imagery (Pfurtscheller et al. 1999), the classification of

EEG features is proposed to be done using windows of 750 ms length, which slide

20 ms at each classification update. Thus, the classifier update rate is defined to be

20 ms (in conformity with efferent latency from the M1 area to the median nerve).

In case of detection of the correct imagery by the classifier, a stimulatory feedback

must be provided. Therefore, a fast and real-time BCI system that its total transfer

time, i.e. the total time required for signal processing and the application delay,

is as low as 20 ms, is required.

• Brain signal: We propose 3 channels of electroencephalogram (EEG) recordings

to be used in this design to make classification update result available in the pro-

posed short time frame.
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• Feedback modality: we propose visual and proprioceptive feedback through an

orthosis such as the M-28 servomotor to flex 4 fingers of the subject for 1 de-

gree every time that classifier detects the requested motor imagery based on the

classification result, while having the subjects to look at their hand. A similar

paradigm is described in (Ramos-Murguialday et al. 2012).

• Trial duration: We propose to use 2 seconds of rest, followed by 1 second of

preparation using showing a “+” sign on the monitor to the subject. Then by

showing them an arrow pointing towards their target hand, we instruct them to

perform the motor imagery task for 2 seconds.

• Software platform: We propose BCI2000 (Schalk et al. 2004) to be used as our

software platform for its fast and real time processing algorithms.

• Imagery pattern: For the occurrence of Hebbian based plasticity it is crucial that

patients keep imagining 4-finger flexion for a period of 2 seconds, continuously.

• Sampling frequency: Regarding the fast proposed update rate (20 ms) sampling

frequency is defined to be 500 Hz so as to provide enough sampling data for

signal processing.

B.3 Discussion

We propose a novel design for a restorative BCI system for stroke rehabilitation with

a timing similar to that of motor learning. Subjects are instructed to perform motor

imagery and then every 20 ms receive concurrent proprioceptive and visual feedback.

The provided feedback is expected to reach the M1 area after 25 ms and if sensory

feedback diffusion to the M1 area coincides with M1 activation through motor imagery,

it is expected to strengthen the connection between the primary sensory cortex and the

M1. This may provide the basis for reorganization of the damaged neural networks

involved with the motor tasks and leading to improvements in the impaired motor

functions following stroke.
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brain-computer interfaces

B
RAIN computer interfaces (BCIs) are used for communication

and rehabilitation. One of the main categories of BCIs is motor

imagery based BCI (MI-BCI). A large number of studies have

focused on machine learning approaches to optimize MI-BCI performance.

However, enhancement of MI-BCI through the provision of optimized feed-

back modalities has not received equal attention. Motor imagery and mo-

tor execution activate almost the same area of the brain. During motor

skills performance, a combination of proprioceptive and direct visual feed-

back (PDVF) is provided. Thus, we hypothesized that MI-BCI that receives

PDVF outperforms the traditional MI-BCI, which only uses indirect visual

feedback (IVF). We studied eight healthy subjects performing MI through

(i) IVF and (ii) PDVF. We used eight channel electroencephalogram (EEG)

signals and extracted features using an autoregressive model and classified

MIs using linear regression. On average, PDVF increased the accuracy of

MI performance by 11%, and improved information transfer rate (ITR ) by

more than two times. In conclusion, using PDVF appears to improve MI-

BCI performance according to the studied metrics, making this approach

potentially more reliable.
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C.1 Introduction

Brain-computer interface (BCI) technology has established the foundation for the hu-

man brain to communicate with machines directly. Motor imagery (MI) based BCI (MI-

BCI) that relies on the rhythm changes occur within the sensorimotor area of the brain

during MI (Pfurtscheller and Aranibar 1979), is one of the main BCI paradigms. In non-

invasive MI-BCI, the brain activity during MI is recorded using EEG (Birbaumer et al.

1999), functional magnetic resonance imaging (fMRI) (Weiskopf et al. 2004), or near in-

frared spectroscopy (NIRS) (Coyle et al. 2007). Among the aforementioned techniques,

EEG is the most practical and affordable technique and thereby, the most commonly

used modality in non-invasive MI-BCI applications.

One of the challenges of MI-BCI is its rather low accuracy and information trans-

fer rate (ITR) (Wolpow and Wolpow 2012b). This drawback limits the dissemination

of MI-BCIs for widespread application. Provision of optimum feedback is believed

to improve MI-BCI performance metrics (Huggins et al. 2014). Proprioceptive feed-

back, visual feedback, or different combinations thereof are among the most com-

mon feedback modalities in MI-BCIs (Ang and Guan 2013). While visual feedback

is mostly supplied via cursor position update on a monitor (Prasad et al. 2010), pro-

prioceptive feedback has been provided using either orthoses (Caria et al. 2011) or

robots (Ang et al. 2009). Nijboer et al. (2008), investigated the suitability of auditory

feedback for MI-BCI, and found its performance comparable with indirect visual feed-

back (IVF). Ramos-Murguialday et al. (2012), applied concurrent proprioceptive and

direct visual feedback (PDVF) as a feedback modality in MI-BCI restorative applica-

tions. The PDVF increased the accuracy of MI performance compared to either no

feedback or sham feedback. However, they did not compare PDVF with other feed-

back modalities.

Motor execution and motor imagery of a particular task, activate almost the same area

of the brain (De Vries and Mulder 2007). Thus, in search for optimization of feed-

back modality for MI-BCI, we surveyed different feedback types in motor learning.

Enough repetition of a movement, followed by feedback, results in motor learning

in healthy subjects. Intrinsic feedback is realized through proprioceptive and/or vi-

sual sensory inputs as a result of the performed motor task. Extrinsic (augmented)

feedback, however, is provided artificially by an external agent to enhance the motor

learning outcomes; an example of this are athletes who learn new moves via audi-

tory feedback from the coach (van Vliet and Wulf 2006). When augmented feedback
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is added to intrinsic feedback, it improves the retention and motor learning outcomes

by the provision of knowledge of performance and/or knowledge of result (Thorpe

and Valvano 2002). In contrast to motor learning, there is no muscle activation during

motor imagery and, therefore, no source of feedback. As a consequence, an external

actuator is required to supply extrinsic feedback in MI-BCI setups. Provision of IVF

through updating the cursor position on a monitor is currently the most ubiquitous

feedback modality in BCI applications (Ramos-Murguialday et al. 2012). This type of

feedback arrangement might be quite sufficient for some BCI applications, such as in

the P300-based Speller (Donchin et al. 2000). However, considering the outcomes of

motor learning studies on feedback modalities (Magill 2014), IVF may not be as ef-

fective in MI-BCI because it lacks intrinsic (direct) feedback to close the sensorimotor

loop. By contrast, PDVF, in addition to the augmented feedback of IVF, provides in-

trinsic visual and proprioceptive feedback.

While PDVF provides feedback that is closest to motor learning, supplying IVF via

updating cursor position on a monitor remains the most prevalent feedback modal-

ity in MI-BCI setups. Recently, Jeunet et al. (2014), suggested that current BCI train-

ing approaches that use IVF were suboptimal and need to be improved. Thus, we

compared two similar BCI designs that used either IVF or PDVF with eight BCI-naive

subjects, to investigate alternative feedback modalities for MI-BCIs. According to our

results, PDVF seems to be superior to the traditional IVF that promotes the application

of PDVF to make MI-BCIs more efficient and accurate.

The study in this appendix has been published in the Proceedings of the 7th International

IEEE/EMBS Conference on Neural Engineering (Darvishi et al. 2015b).

C.2 Methods

C.2.1 Subjects

The study was approved by the human ethics committee of the University of Adelaide

and conformed to principles outlined in the Declaration of Helsinki. All subjects pro-

vided their written informed consent to take part in the study, and all recorded data

were de-identified. Ten subjects (six males) aged 24–40 years were recruited for this

study. All subjects were asked to attend an induction session prior to the BCI sessions.
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During the induction session, they were trained to remain alert, immobile, and con-

centrate during the experiments. Also, visual and kinaesthetic MI were explained to

them, and then they practised these techniques.

Only eight out of ten subjects (four females, four males) whose right vs. left hand MI

performance were distinctive, passed the screening test and were allowed to partici-

pate in the study (training sessions).

C.2.2 BCI Setup

A 72 Channel Refa TMSi EXG amplifier, containing 64 unipolar and eight bipolar chan-

nels and a 64 channel Waveguard EEG cap, were used for data acquisition. Only eight

out of 64 channels (F3, F4, T7, C3, Cz, C4, T8, Pz) were used to record EEG data. The

AFz channel was used as the ground channel, to follow the recommendation of the

manufacturer. Due to the very high input impedance (in the order of tera-ohms) of the

instrumentation amplifier (Volosyak et al. 2010), the impedance between the scalp and

recording electrodes were kept below 50 kΩ. As the amplifier uses a built-in common

average referencing procedure, there is no need to use an external reference channel

to be attached to nose or ears. Any electrode with impedance more than 256 kΩ is

considered as disconnected by the amplifier firmware and is excluded from common

average reference calculation. The sampling frequency was 1024 Hz and every sample

block contained 24 samples. The EEG signals were passed through a 50 Hz notch filter

to remove the power line noise. To remove DC offset and nonrelated high frequency

elements, a band pass filter with corner frequencies set to 0.1 and 40 Hz was also ap-

plied. After amplification and filtering by the amplifier, EEG signals were transferred

through a 10-metre-long fiber optic cable to a FUSBi fibre to USB converter. Then they

were conveyed to a PC using a USB cable. The PC contained an Intel Core-2 Duo 3.166

GHz processor, 3 GB of RAM, and used the Windows XP service pack 3 operating sys-

tem. It was also mobilized with a 23” LCD monitor with a display update rate of 60 Hz

to provide the IVF feedback.

Note that BCI2000 (Schalk et al. 2004) was adopted as the software platform for the

study because of its real time characteristic. We customized the source code of the

software to supply auditory commands. We also altered the application module of

the software to progressively update servomotors position throughout the feedback

section of each trial.
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To provide PDVF, we fabricated a platform with two orthoses (one for each hand) to

passively flex four fingers incrementally, according to the attributes of the MI of the

target hand. Each orthosis included a servomotor (Blue Bird BMS-630) and mechanical

structure made of PVC. The BCI2000 supplied the control commands for servomotors

operation that were transformed via a Micro Maestro servo controller module to a

format readable by the servomotors.

C.2.3 Study design

Each participant took part in one screening session followed by an online training ses-

sion. The goal of the screening session was to identify the extent to which subjects

could produce distinctive EEG signals with right/left hand MI. The most discriminat-

ing features of each subject’s EEG signals were extracted and used to calibrate their

following training sessions. The extracted features of EEG signals, produced during

online sessions, were classified in real time to generate control signals that were used

to provide either PDVF or IVF.

C.2.4 Screening session setup

During the screening session, each participant went through three runs of MI of

right/left hand. In each run subjects were instructed to perform ten right and ten

left hand MI in a randomized order. At the onset of each trial, an auditory command

of “left” or “right” was supplied concurrently with an equivalent visual stimulus. To

present the visual cue, a monitor was placed one metre away from the subject at which

an arrow pointing to either the left or right was shown. The sound levels of the audi-

tory commands were kept constant throughout the study. The subjects were instructed

to perform MI of their target hands involving four finger flexion within the 3-second-

long period in which the arrow was shown. The subjects were cued to stop the MI and

concentrate on their breathing (relaxation) when the arrow disappeared. After three

seconds of relaxation, they were given new stimuli to perform MI for the next trial. To

appreciate the specificity of MI attributes of each subject, the combination (left vs. relax

or right vs. relax) that resulted in the highest value of the coefficient of determination

(r2) was selected for each individual, where r2 represents the proportion of the single-

trial variance that is due to the task. While for the majority of subjects right vs. left hand

MI generated the highest discrimination in sensorimotor rhythms; only right vs. rest
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and left vs. rest were considered in the current study to minimize the cognition load

and fatigue level.

C.2.5 Subjects’ optimum features

According to the findings by Pfurtscheller et al. (1997), MI of hand movement results in

a decrement followed by an increment in the spectral power of sensorimotor rhythms.

The former is known as event related desynchronization (ERD) whereas the latter is

called event related synchronization (ERS). According to the results of the same study,

for the majority of cases these phenomena occur in the contralateral sensorimotor area

within the α (8–13 Hz) and β (16–26 Hz) frequency bands. However, in some occasions,

ERD and ERS may occur bilaterally. To extract the relevant features of MI as early as

possible during the online sessions, only ERDs were considered. Among the eight

subjects that proceeded to the online session, six subjects generated only contralateral

ERDs, whereas the other two exhibited bilateral ERDs.

C.2.6 Feedback provision

Every 24 ms either the position of the cursor on the monitor (IVF feedback) or the an-

gle of the orthosis (PDVF feedback) was updated according to the classifier outputs.

Feedback modality of the first run was randomly selected and then was alternated for

the subsequent runs. To ensure availability of a sufficient amount of data for compar-

ison, the minimum number of runs set to be four. If subjects were not exhausted, the

number of runs could rise to eight.

C.2.7 Online training session

All participants took part in an online training session no later than two weeks af-

ter their screening sessions. The online session included 4-8 runs of MI of right/left

hand four-finger flexion. Each run comprised 15 randomly presented trials with 8/7

left or right hand MIs and 7/8 relaxations. Trials started with auditory commands of

“left/right” or “relax” that cued participants to start MI or relaxation according to the

command. Then, feedback provision section started after two seconds of trial onset

and became updated every 24 ms for 2.5 seconds. Finally, an auditory “beep” signal,
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cued the end of the trial. The following trial was initiated after a four-second-long

break.

C.2.8 Power spectrum estimation

EEG signals become blurred because of the heterogeneity of the tissues of the cortex

and the scalp. A large Laplacian filter, which is an effective method for reduction of

data blurring (Hjorth 1991), was applied, to enhance the spatial resolution of the EEG

signals. The maximum entropy method (MEM) (Marple 1987) was adopted, to define

an autoregressive (AR) model of the EEG data. It was chosen over fast Fourier trans-

form (FFT) due to its capability of robust power spectrum estimation for short time

series (Marple 1987). The spectral power of the most recent 500 ms was progressively

estimated every 24 ms at the predefined frequencies and electrode positions.

C.2.9 Classification

A linear regression algorithm was used to classify the extracted feature of the EEG data

every 24 ms (the duration of each sample block) due to its simple procedure and fast

processing time. The classification results showed whether the subject’s performance

during the most recent 500 ms conforms to the requested task (either left/right hand

MI or relaxation). Finally, the classification result was transferred to the application

module to provide either IVF or PDVF.

C.2.10 Performance measures

Two measures were used, to compare the effects of different feedback modalities on the

BCI performance. First, the conventional measure of the percentage of the trials that

ended with a hit in each run as an index of accuracy was applied. As a second metric,

the information transfer rate (ITR) that simultaneously appreciates the accuracy and

speed of data transfer (McFarland and Krusienski 2012) was used. To calculate the ITR

in bits per minute, Equation C.1 was adopted (McFarland and Krusienski 2012)

ITR = log2N + Plog2P + (1 − P)log2(
1 − P

N − 1
)(

60

8.5
) (C.1)
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where N is the number of classes, which is two in this study, P is the classification

accuracy of each run, and 8.5 is the duration of each trial in seconds.

C.2.11 Statistical analysis

Since the resultant values of the aforementioned metrics did not have a normal dis-

tribution, the two-sided unpaired Wilcoxon rank-sum test (Wilcoxon 1945) was used.

Due to the application of two comparison measures, Bonferroni correction for multiple

comparisons was applied.

C.3 Results and discussion

Task performance was quantified using accuracy (hit rate percentage) and the ITR.

Fig. C.1-A compares the hit rate percentage distribution between PDVF and IVF. It

shows that PDVF with an average accuracy of 83% outperforms that of IVF by 11%

(p = 0.0015). Fig. C.1-B indicates the comparison between the ITR distribution out of

PDVF and IVF setups. The figure depicts that using PDVF results in the average ITR of

2.81 bits/min which is greater than two times of the average ITR of IVF (1.32 bits/min)

(p = 0.001).

The main finding of our study is that the adoption of PDVF in MI-BCI systems signif-

icantly improves the accuracy and ITR of the BCI setup. While PDVF only improves

the average accuracy by almost 10%, it resulted in enhancing the ITR by more than

two times due to the logarithmic relationship between the ITR and accuracy. In other

words, application of PDVF enables subjects to communicate more than two times

faster than IVF.

Our results are in agreement with the findings of Gomez-Rodriguez et al. (2011), who

showed that supplying proprioceptive feedback in parallel with IVF enhances the ac-

curacy of MI performance compared to that with only IVF. However, they only studied

the effect of adding proprioceptive feedback to the IVF. Thus, prior to our study, it re-

mained unclear whether and to what extent PDVF (the regular feedback for motor

learning) outperforms IVF (the most used feedback with MI-BCIs).

According to the Kahneman’s attention theory (Magill 2014), attention resources of

the human brain are limited. In other words, it is difficult for human agents to focus
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on many different tasks concurrently. Thus, it makes it cumbersome to fully concen-

trate on both MI task and realizing IVF, simultaneously. In contrast, when PDVF is

received during MI performance, the intrinsic visual and proprioceptive sensory feed-

back mechanisms are perceived quite similar to feedback perception in motor learning.

Therefore, it may be concluded that receiving PDVF improves the MI performance

whereas, receiving IVF may even distract subjects from MI performance.

Figure C.1. Accuracy and information transfer rate (ITR) comparison for visual and pro-

prioceptive feedback. Comparing the accuracy and ITR between two equal MI-

BCI setups where either PDVF or IVF feedback provided. The edges of the boxes

are the 25th and 75th percentiles, the horizontal line in each box is the median, and

the whiskers extend to the minima and maxima (**: p < 0.01).

C.4 Conclusion

In the current study, the feature extraction and classification procedure used for both

PDVF and IVF feedback were entirely equivalent. Thus, the improvement of the

adopted metrics is expected to be due to more discriminant features elicited from

PDVF. Specifically, receiving PDVF enables subjects to produce MIs that are easier to

differentiate from relaxation compared to those with IVF. These high quality MIs in

turn, lead to improved control over the BCI task and results in higher accuracy and

faster communication. Thus, provision of PDVF feedback in MI-BCI may be used to

render MI-BCI communication faster and more accurate.
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Reaction Time Test
Predicts Brain-Computer

Interface Performance

B
RAIN computer interfaces (BCIs) enable human brains to in-

teract directly with machines. Motor imagery based BCI (MI-

BCI) encodes the motor intentions of human agents and pro-

vides feedback accordingly. However, 15–30% of people are not able to per-

form vivid motor imagery. To save time and monetary resources, a number

of predictors have been proposed to screen for users with low BCI aptitude.

While the proposed predictors provide some level of correlation with MI-

BCI performance, simple, objective and accurate predictors are currently

not available. Thus, in this study we have examined the utility of a simple

reaction time (SRT) test for predicting MI-BCI performance. We enrolled ten

subjects and measured their motor imagery performance with either visual

or proprioceptive feedback. Their reaction time was also measured using

an SRT test. The results show a significant negative correlation (r ≈ −0.67)

between the SRT and MI-BCI performance. Therefore the SRT may be used

as a simple and reliable predictor of MI-BCI performance.
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D.1 Introduction

Brain-computer interfaces (BCI) provide a modality for the human brain to directly

control robots and machines. A motor imagery based BCI (MI-BCI) is a particular type

of BCI that encodes motor imagination of a specific part of the body. It may use func-

tional magnetic resonance imaging (fMRI), near infrared spectroscopy (NIRS), mag-

netoencephalography (MEG) or electroencephalography (EEG) to record motor inten-

tions. In this study EEG was used to record motor imagery signals. The EEG based MI-

BCI decodes spectral power changes within sensorimotor rhythms (Pfurtscheller et al.

1997) originating from motor imagery performance. According to the decoded motor

intention, feedback is supplied to the user, providing knowledge of performance.

It is believed that 15–30% of people are BCI-illiterate (Blankertz et al. 2010), i.e., they are

not able to produce vivid motor imagery. Prediction of MI-BCI performance not only

eliminates user’s frustration after a long training time with no success, but it also saves

time and monetary resources of research projects. In addition, it may help revealing

the underlying reasons of BCI illiteracy. To this end, some neurophysiological and

psychological predictors have been proposed.

Blankertz et al. (2010) proposed a neurophysiological predictor that is calculated from

a 2-minute EEG recording, where subjects are relaxed with eyes open. The proposed

measure showed a correlation of r = 0.53 with MI-BCI performance in a study involv-

ing 80 subjects. Halder et al. (2013) used structural integrity and myelination quality

of deep white matter structures of the brain with a correlation of up to r = 0.63 in a

study of 20 subjects. Ahn et al. (2013) also showed that high θ and low α band pow-

ers were noticeable only among users with low MI-BCI aptitude. The suggested index

showed to be correlated with BCI performance with r = 0.59 in a study of 62 subjects.

Bamdadian et al. (2014) revealed that modulation of high frontal theta and lower pos-

terior α prior to motor imagery performance is correlated with high BCI accuracy with

r = 0.53 in a study involving 17 subjects. Fazli et al. (2012) also showed that near-

infrared spectroscopy (NIRS) activity prior to MI performance is correlated with BCI

performance fluctuations in nine out of their 14 studied subjects. Grosse-Wentrup et al.

(2011) demonstrated that modulation of the sensorimotor rhythms, induced by motor

imagery, is positively correlated with the power of frontal and occipital γ oscillations.

They also showed that it is negatively correlated with the power of centro-parietal γ

oscillations.
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Regarding psychological predictors, Vuckovic and Osuagwu (2013) used kinaesthetic

and visual imagery questionnaires. They suggested that the kinaesthetic imagery ques-

tionnaire can be a useful predictor of MI-BCI performance. Hammer et al. (2012) used

the Two-Hand Coordination Test and Attitude Towards Work Test on 83 subjects and

observed a moderate correlation with MI-BCI performance.

All measures reviewed above show some level of correlation with the MI performance

quality. However, the neurophysiological measures require EEG, MEG, fMRI, or NIRS

to be recorded with specific equipment. The psychological measures appear to suffer

from inaccuracy, subjectivity and low resolution (e.g. questionnaires). Thus, the need

for novel MI predictors that are simple, objective and accurate with no need for specific

equipment remains desirable.

Online visual or proprioceptive feedback has been shown to improve MI-BCI perfor-

mance (Gomez-Rodriguez et al. 2011, Neuper et al. 1999). Such real time feedback pro-

vides knowledge of performance and enables their recipients to adjust their motor im-

agery accordingly. Thus, we hypothesized that participants, who are quicker in feed-

back realization and subsequent motor imagery adjustment can benefit more from on-

line sensory feedback than their slower counterparts and perform MI more accurately.

To test this hypothesis, we compared the accuracy of BCI performance of ten partici-

pants with their simple reaction time (SRT) test (Meyer et al. 1988). To appreciate the

effect of feedback modality on the BCI performance (Vukelić and Gharabaghi 2015a),

motor imagery performance with either visual or proprioceptive feedback was mea-

sured separately.

The study in this appendix has been published in the Proceedings of 37th Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology Society (Darvishi et al.

2015a).

D.2 Methods

D.2.1 Subjects

Ten able-bodied participants (six males), 20.8 ± 2.2 years old, were recruited among

the undergraduate students of the University of Adelaide. The study was approved

by the local Ethics Committee, and all participants provided their written consent to

take part in the study.
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D.2.2 Hardware and software

We used a 64 channel Waveguard EEG cap with a 72 channel Refa TMSi EXG amplifier

to record EEG signals. The recorded data were sent to a PC after amplification through

a 10-metre-long fiber optic cable. The BCI2000 (Schalk et al. 2004) was used as the

software platform. We customized the source module of the BCI2000 to record data in

real time and also modified its application modules to communicate with orthoses that

provided proprioceptive feedback.

D.2.3 Screening session

The proposed imagery task for the online session was designed to be either right hand

motor imagery versus rest or left hand motor imagery versus rest. As a common prac-

tice, a screening session was held prior to the online training session, in which EEG

data were recorded from the bilateral hand representation (FC3, FC4, CP3, CP4, C3,

C4). During the screening session, three runs of right/left hand motor imagery were

recorded. Each run contained ten right and ten left hand motor imagery trials that were

performed in a random order. Subsequently, the screening session data were analysed

for each subject and the EEG channel and frequency within 8–30 Hz that maximized

the coefficient of determination (r2) were selected. The optimal task combination (left

hand motor imagery vs. rest or right hand motor imagery vs. rest) was also chosen

for each participant according to their (r2). Fig. D.1 illustrates the time course of the

screening session.

Figure D.1. Screening session time course. Fig. D.1 Illustrates the timing procedure of the

screening session.

D.2.4 Online training session

Every participant attended two online training sessions with proprioceptive and visual

feedback, respectively. The sessions were held in different, days and the feedback
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update rate in both sessions was set to be 16 ms as the fastest technically possible

feedback update rate. Each training session included eight runs of 20 trials each (10

hand motor imageries, ten rest), where consecutive runs had two minutes of break in

between.

• Data recording and pre-processing: During the online session data were recorded

from five channels: the selected channel (according to the screening session) and

its four closest medial, central, anterior, and posterior channels. The sampling

frequency was set to 1000 Hz, and signals passed through a 50 Hz notch filter

(3rd order Chebyshev) followed by a band pass filter (1st order Butterworth) with

corner frequencies set to 0.1 and 40 Hz. Finally, the central channel was subjected

to spatial filtering (small Laplacian).

• Feature extraction and classification: In this study feedback was updated every

16 ms. Thus, the features were extracted with a method that made the least

possible group delay (Marple 1987). Maximum entropy method (MEM), which

is based on autoregressive modelling provides higher temporal resolutions and

therefore lowers the group delay compared to Fourier transform (Marple 1987).

Accordingly, a 20th order autoregressive (AR) model was built, to extract spectral

features. The coefficients of the AR model were employed to estimate the spectral

power of the most recent 500 ms time window of motor imagery. Considering the

real time constraints of the adopted BCI design, the extracted features were clas-

sified using logistic regression. The classification result was updated every 16 ms

according to the spectral power of most recent 500 ms time window.

• Feedback provision: In this study two different feedback modalities were pro-

vided within two separate training sessions. While a proprioceptive feedback

was given through an orthosis during the first session, visual feedback through

cursor position update on a monitor was provided during the second session.

In the runs with visual feedback, at the start of each trial, a “start” auditory com-

mand initiated the preparation phase. After 2 s either a “relax” or “right/left”

auditory command was provided. Simultaneously, a rectangular target was pre-

sented at either the lower or upper right side of a monitor. After another 2 s

the feedback period started by presenting a circle in the middle left side of the
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screen. Then for 2.5 s, while the circle was moving from left to right with a con-

stant speed, its vertical position was updated every 16 ms according to the clas-

sifier result that decoded participant’s intention. When the circle finally reached

the right edge of the screen if it hit the target, the circle and target’s colour turned

to yellow and then disappeared after 1 s. The next trial was initiated, after a 3 s

inter-trial interval.

In the runs with proprioceptive feedback, the timing of trials matched to tri-

als with visual feedback. In these trials, proprioceptive feedback was provided

through flexion of the target hand’s four fingers by an orthosis. At the start of

each trial, a “start” auditory command cued the trial onset. Two seconds later

either a “right/left” or a “relax” auditory command instructed the participant to

perform either motor imagery of the target hand’s four finger flexion or relax-

ation. After another 2 s, if the participant’s intention (refelected in the classifier

output) was congruent with the instructed command, the orthosis flexed the tar-

get hand for 0.4 degree and this procedure was repeated every 16 ms for 2.5 s

(156 times). In case of the “relax” command, the redundant orthosis with no

hand involvement was flexed similarly to provide knowledge of performance.

D.2.5 SRT Measurement

To measure the reaction time of participants, a simple reaction time (SRT) test was

carried out, using the CANTAB battery test of Cambridge Cognition. To perform the

SRT test, participants sat on a chair and were asked to concentrate on a tablet computer

placed on a desk in front of them and to press the button on a press pad as soon as they

saw a square on the screen. Each participant performed the task 30 times to obtain the

average latency (reaction time), which was used as their SRT index.

D.2.6 Performance measures

To calculate the accuracy of motor imagery performance, the traditional measure of

hit/miss percentage was used. Note that, while with proprioceptive feedback it was

not clear for the participant if the trial ended with hit or miss, the final result was

available to the instructor. For each participant only the average value of each ses-

sion accuracy was considered. Thus each participant’s performance was assessed with
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Table D.1. BCI accuracies and reaction time results. MI-BCI performance of 10 participants

with either visual or proprioceptive feedback and their simple reaction time test result.

Participants BCI accuracy (visual) BCI accuracy (proprioceptive) SRT

(visual) (proprioceptive) (ms)

P1 65% 53% 244

P2 89% 86% 206

P3 75% 84% 214

P4 58% 59% 230

P5 62% 67% 245

P6 98% 97% 214

P7 56% 56% 221

P8 76% 64% 219

P9 89% 89% 221

P10 86% 83% 208

three indices: BCI accuracy with visual feedback, BCI accuracy with proprioceptive

feedback, and the SRT index (Table D.1).

D.3 Results

To investigate the relationship among the aforementioned measures, a correlation anal-

ysis between the SRT and both BCI accuracy indices was run. The Pearson correlation

coefficient between the SRT and BCI accuracy with visual feedback was r = −0.6712

(p = 0.0336) while its value between the SRT and BCI accuracy with proprioceptive

feedback was r = 0.6684 (p = 0.0346). However, due to the small sample size of 10, the

calculated Pearson correlation coefficients may be biased. Thus, we calculated Pear-

son correlation coefficients of 100,000 bootstrapped data samples and then calculated

their mean value (r′, estimated correlation coefficient), its standard deviation and 95%

confidence intervals (2.5th and 97.5th centiles of the 100,000 correlation coefficients).

It resulted in r′ = -0.6835 ± 0.1295 (-0.4024 – -0.8988) between the SRT and accuracy

with visual feedback and r′ = -0.6714 ± 0.1403 (-0.3702 – -0.8891) between the SRT and

accuracy with proprioceptive feedback. Therefore, it reassures the reported significant

correlation between the SRT and BCI accuracy with both visual and proprioceptive

feedback at a 95% confidence interval.
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Figure D.2. Relationship between classification accuracies with visual and propriocep-

tive feedback and the SRT. Scatter plot of correlation between simple reaction

time (SRT) and MI-BCI performance accuracy with visual and proprioceptive feed-

back (Prop: proprioceptive).

According to Fig. D.2, most participants with higher BCI accuracies have shorter re-

action times, vice versa. However, there are three exceptions (P7–P9), which stay in

the rectangular boundary area. Thus defining a threshold value of 220 ± 2 ms, allow

the other seven participants to form two entirely distinctive clusters (elliptical shapes)

with good margins from the boundary area. To sum up, it categorized correctly seven

out of ten participants with a high level of certainty.

D.4 Discussion

The main finding of this study is a significant negative correlation (r ≈ −0.67) between

one’s reaction time and their accuracy of motor imagery performance. The novel pro-

posed measure shows a comparable (or slightly better) level of correlation compared

with existing MI-BCI performance predictors. In the meantime, it is simple, fast, ob-

jective, and does not require specific equipment. Note that, while we measured the

SRT using dedicated Cambridge Cognition equipment for higher reliability, any PC or

tablet is able to compare users’ reaction time through open source software.

Performing motor imagery within an MI-BCI setup involves motor planning, followed

by feedback realization and re-adjustment of motor imagery. However, the provided
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continuous feedback can be beneficial only if the users are able to realize it in real time

and potentially adjust their subsequent motor imagery. One application of the reac-

tion time test is to show how a person interacts with the performance environment

while preparing to produce a required action (Magill 2014) . Thus, it seems reason-

able to assume that people with shorter reaction times are better able to adjust their

motor imagery performance while receiving rapidly updated sensory feedback. This

assumption may explain the reported negative correlation between the SRT and MI-

BCI performance to some extent. Similarly, users with longer reaction time may not

be able to realize fast sensory feedback in real time and therefore not benefit as much

as their quicker counterparts from rapidly updated feedback. On the contrary, provi-

sion of quickly updated feedback may even deteriorate MI-BCI performance of those

users. However, we did not study the MI-BCI performance of participants with longer

reaction times in conjunction with receiving feedback at slower update rates.

To provide users with a fast feedback update rate, it was updated every 16 ms (≈

62 Hz). Note that this parameter was set as 16 ms while realizing that frequencies

of interest for MI-BCI occur within α and β frequency bands (8-30 Hz). Moreover, it is

worth mentioning that the age range of the participants in this study was fairly narrow

(19–26 years). Also we only tested the MI-BCI performance where feedback updated

very quickly (every 16 ms) and thus required a high level of cognitive and processing

resources. Thus, care must be taken when generalizing the reported relationship be-

tween the SRT and MI-BCI performance to the other age groups and slower feedback

update rates.

D.5 Conclusion and further development

In this study we proposed the SRT as a novel index for prediction of MI-BCI perfor-

mance. Our results show that it can be used as a simple, objective and moderately

accurate measure for MI-BCI performance prediction. Future work will benefit from

studying the effect of slower feedback update rate on BCI performance of subjects a

with wider age range.
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Appendix E

Specification of the
Fabricated Orthosis

I
N this appendix the specification of the custom-made orthosis that

was designed, fabricated and program by the PhD candidate is pro-

vided.
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E.1 Introduction

Since all studies reported in this thesis involve application of proprioceptive feedback,

an application specific orthosis that can flex/extend four fingers in real-time was de-

signed, fabricated, and programmed by the PhD candidate (Fig. E.1). In this appendix

specification of the orthosis including its mechanical parts, controller, servomotors and

the software is provided.

Figure E.1. Application specific orthosis. This figure illustrates the application specific or-

thosis that was designed, fabricated and programmed by the PhD candidate

E.2 Mechanical design

As it can be seen in Fig. E.1, two orthoses are mounted on a wooden board that is

30 cm wide and 50 cm long. Each orthis comprises a mechanical body made of PVC

that supports participants’ hands in all assumed situations (from fully flexed fingers to

fully extended fingers). The orthoses are attached to the wooden board using modular

bases that allow adjustment of the orthoses angles (tilt and pan) in all directions.
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E.3 Electrical design - servomotors and controllers

To flex/extend four fingers of each hand using the orthoses, two Blue Bird BMS-630

servomotors (one for each orthosis) were used to receive commands from a controller

and adjust the angles of the orthoses, incrementally.

A Micro Maestro servo controller module that can control up to 6 servomotors was

used to receive commands form BCI2000 software (Schalk et al. 2004) and translate

them to a readble format for servomotors. The controller can read the current position

of each servomotor and instruct it to a new position. For further details on the specifi-

cations of the controller see https://www.pololu.com/product/1350. Fig. E.2 depicts

the used servomotors and controllers for the orthoses fabrication.

A- Servomotor B- Servo controller

Figure E.2. Servomotors and the Micro Maestro controller. Panel A Shows the servomoto

and Panel B shows the controller.

E.4 How the orthoses work

To update the flexion angle of the orthosis with proprioceptive feedback, for every

feedback update the control signal of the BCI2000 software, that is a normalized value

that represents current status of the oscillatory cortical signals, was used to determine

whether ERD or ERS has occurred. The control signal was used as a binary value as

a go/no go signal to change or not change the orthosis angle. With motor imagery
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trials, for instance, having a negative control signal (that represented ERD) flexed/ex-

tended the orthosis for a constant angle (go signal), while a positive control signal, that

represented ERS, would lead to no movement (no go signal).

With visual feedback condition, the control signal has been used throughout this thesis

as an analogue signal to update the vertical position of the cursor on a monitor. More

specifically, with every feedback update the vertical position of the cursor was updated

by addition of the previous vertical position and the control signal followed by a nor-

malization procedure to not exceed the height of the monitor. Then, this procedure

was repeated for 105 times (for an FUI of 24 ms) within the 2.5 s feedback period.

Note that if the control signal for proprioceptive feedback was used similar to visual

feedback, the orthosis may have flexed to its maximum value just after few repeti-

tions, instead of reacting along the whole feedback section. In that case, the participant

would not have received continuous proprioceptive feedback of their motor imagery

along the whole 2.5 s feedback period while with visual feedback they could have re-

ceived feedback for the whole feedback section.

The intrinsic differences regarding the different feedback modalities necessitated the

explained adjustment, however, the approach chosen here reflects the current state of

the art in the field (Vukelić and Gharabaghi 2015a, Brauchle et al. 2015).

E.5 Software

The following script released by Pololu (https://www.pololu.com) was used to modify

CursorTask class of BCI2000 software so as to make a RS-232 communication channel

between BCI2000 application module and the controller and thereby control the angles

of the orthoses:

// Uses POSIX functions to send and receive data from a Maestr o.

// NOTE: The Maestro's serial mode must be set to "USB Dual Por t".

// NOTE: You must change the 'const char * device' line below.

#include <fcntl.h >

#include <stdio.h >

#include <unistd.h >

#ifdef WIN32
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#define O NOCTTY 0

#else

#include <termios.h >

#endif

// Gets the position of a Maestro channel.

// See the "Serial Servo Commands" section of the user's guid e.

int maestroGetPosition(int fd, unsigned char channel)

{

unsigned char command[] = {0x90, channel };

if (write(fd, command, sizeof(command)) == −1)

{

perror("error writing");

return −1;

}

unsigned char response[2];

if (read(fd,response,2) != 2)

{

perror("error reading");

return −1;

}

return response[0] + 256 * response[1];

}

// Sets the target of a Maestro channel.

// See the "Serial Servo Commands" section of the user's guid e.

// The units of 'target' are quarter −microseconds.

int maestroSetTarget(int fd, unsigned char channel, unsig ned short target)

{

unsigned char command[] = {0x84, channel, target & 0x7F, target >> ...

7 & 0x7F };

if (write(fd, command, sizeof(command)) == −1)

{

perror("error writing");

return −1;

}

return 0;

}

int main()
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{

// Open the Maestro's virtual COM port.

const char * device = " \\\\. \\USBSER000"; // Windows, ...

" \\\\. \\COM6" also works

//const char * device = "/dev/ttyACM0"; // Linux

//const char * device = "/dev/cu.usbmodem00034567"; // Mac OS X

int fd = open(device, O RDWR| O NOCTTY);

if (fd == −1)

{

perror(device);

return 1;

}

#ifdef WIN32

setmode(fd, O BINARY);

#else

struct termios options;

tcgetattr(fd, &options);

options.c iflag &= ˜(INLCR | IGNCR | ICRNL | IXON | IXOFF);

options.c oflag &= ˜(ONLCR | OCRNL);

options.c lflag &= ˜(ECHO | ECHONL | ICANON | ISIG | IEXTEN);

tcsetattr(fd, TCSANOW, &options);

#endif

int position = maestroGetPosition(fd, 0);

printf("Current position is %d.\n", position);

int target = (position < 6000) ? 7000 : 5000;

printf("Setting target to %d (%d us). \n", target, target/4);

maestroSetTarget(fd, 0, target);

close(fd);

return 0;

}
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