

Hydrologic and Isotopic Lake Modelling for Palaeoclimate Research

Martin James Ankor

Department of Earth Sciences School of Physical Sciences The University of Adelaide

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

January 2020

ii

Table of Contents

Abstract	viii
Declaration	х
List of publications arising from this thesis	xi
Acknowledgements	xii
Chapter One: Introduction, thesis aims and objectives, background	13
1. Introduction	14
2. Thesis aims and objectives	15
3. Background	16
3.1. Lake modelling concepts and terminology	16
3.2. Model design: considerations for palaeoclimate research	17
3.3. Model design: matching the model to the proxy	18
3.4. Model design: physical processes	18
3.5. Lake modelling: a review	19
3.6. Data requirements for modelling of lakes	23
3.7. Site selection and regional background	24
4. Thesis outline	25
4.1. Chapter Two	25
4.2. Chapter Three	25
4.3. Chapter Four	26
4.4. Chapter Five	27
4.5. Chapter Six	27
5. References	28

Chap	ter Two: Lake water ionic and isotopic signatures in	
relati	ion to lake morphology and hydrogeology: a case study	
oftw	elve lakes in south-eastern Australia	35
Ak	ostract	37
1.	Introduction	38
2.	Background	38
	2.1. Oxygen and hydrogen isotopes in lake water	38
	2.2. Cl ⁻ /Br and HCO ₃ ⁻ /Cl ⁻ : determination of lake source water	41
	2.3. Deuterium excess: determination of lake-groundwater regime	42
	2.4. Site selection	42
	2.5. Regional setting	43
	2.6. Regional climate	45
3.	Methods	45
	3.1. Lake water levels	45
	3.2. Lake sheltering index	45
	3.3. Water sampling	46
	3.4. Major/minor ions, δ^{18} O, and δ^{2} H	46
	3.5. Isotopic modelling to account for salinity effects	47
	3.6. Isotopic modelling for sensitivity analysis	47
4.	Results	48
	4.1. Lake levels	48
	4.2. General lake water chemistry	48
	4.3. Between site differences in δ^{18} O and δ^{2} H	51
	4.4. Isotopic modelling for sensitivity analysis	53
	4.5. Cl/Br source water investigation	54
	4.6. HCO_3^{-}/Cl^{-} and d-excess lake assessment	55
5.	Discussion	56
	5.1. General lake chemistry and lake water levels	56
	5.2. Morphological influence on δ^{18} O and δ^{2} H lake water enrichment	58
	5.3. Cl/Br source water investigation	60
	5.4. HCO_3^{-}/Cl^{-} and d-excess lake assessment	60
6.	Conclusion	63

7.	References	64
8.	Supporting information: details of lakes studied	72
Chan	ter Three: Development of an autonomous, monthly	
-	aily, rainfall sampler for isotope research	81
unau	any, rainfair sampler for isotope research	01
Ab	stract	83
1.	Introduction	83
	1.1. Previous designs	84
	1.2. Fabrication methods and materials	86
	1.3. Methods of preventing evaporation	87
	1.4. Objectives	87
2.	Design principles	88
	2.1. Design	89
3.	Design and material tests: experimental methods	94
	3.1. Quantification of water loss from surface wetting	94
	3.2. Quantification of water loss through bottle caps	94
	3.3. Isotopic modelling	96
4.	Results	98
	4.1. Meteorology	98
	4.2. Quantification of water loss from surface wetting	98
	4.3. Volumetric variation in samples	99
	4.4. Isotopic variation in samples	101
	4.5. Isotope modelling	101
5.	Discussion	101
	5.1. General usage notes	101
	5.2. Evaporation and isotope fractionation	102
	5.3. Potential of mass balance closure modelling	104
6.	Conclusion	106
7.	References	107

Chap	ter Four: Development of a spreadsheet-based model	
for tr	ansient groundwater modelling	113
Ab	ostract	115
1.	Introduction	115
2.	Background	117
3.	Theoretical Basis	119
4.	Methodology	124
	4.1. Model Structure	124
	4.2. K2005M	125
	4.3. Experiments	125
5.	Results	128
6.	Discussion	134
7.	Conclusion	137
8.	References	138
Chap	ter Five: A holistic lake model for palaeoclimate research	141
Ab	ostract	143
1.	Introduction	143
2.	Model structure	147
3.	Regional setting	150
4.	Methods and calibration	155
	4.1. Input datasets	155
	4.2. Calibration methods	159
5.	Results	163
	5.1. Hydrology	163
	5.2. Energy balance calibration	167
	5.3. Lake water chemistry	168
	5.4. Isotopes	169
	5.5. Comparison with a non-groundwater enabled lake model	171

6.	Discussion	172
	6.1. Calibration and simulation assessment	172
	6.2. Implications for lake-based palaeoclimatology/palaeohydrology	175
	6.3. Implications for calibrating CHIMBLE for other lake systems	176
	6.4. Future model development	177
7.	Conclusion	178
8.	References	180
Chap	oter Six: Discussion and future directions	189
Su	immary	190
1.	Objectives	190
	1.1. Objective 1: lake monitoring program	190
	1.2. Objective 2: lake–landscape interaction	191
	1.3. Objective 3: rainfall sampling	193
	1.4. Objective 4: development of a holistic lake model	193
2.	Proposed future research	196
3.	References	199
Арре	endices	201
1.	Appendix 1:	201
	1.1. Appendix 1: Lake geochemistry analyses	201
	1.2. Appendix 1: Lake sampling details	220
2.	Appendix 2: Bathymetry and historical lake levels	403
3.	Appendix 3: Published version of Chapter Three	413
4.	Appendix 4: Published version of Chapter Four	425

Abstract

Numerical lake hydrological and geochemical models are valuable tools for interpreting and quantifying palaeoclimate reconstructions derived from lake sediment archives, and the sensitivity of lakes under future climate scenarios. This study details the development and calibration of a holistic lake model, alongside related projects focussed on the development of tools and datasets associated with lake modelling.

Lake monitoring was conducted over three years at twelve sites in the Newer Volcanic Province, south-eastern Australia on a bi-monthly basis, collecting water levels, and water samples for analysis of oxygen and hydrogen isotopes and major/minor ions. A correlation was identified between the lake morphology and the ¹⁸O and ²H isotopic enrichment of lake water, visible as variations in the regression slopes of δ^{18} O and δ^{2} H (local evaporation lines). Cl⁻/Br⁻ and HCO₃⁻/Cl⁻ ratios were used to partition the source of water for each lake between groundwater and direct precipitation. Lakes high in the landscape, above the regional aquifers, were found to have lower Cl⁻/Br⁻ ratios, suggesting they are predominantly rainfall fed, whereas the other lakes have Cl⁻/Br⁻ ratios similar to groundwater. HCO₃⁻/Cl⁻ ratios were ambiguous, likely due to the variability of HCO₃⁻/Cl⁻ in groundwater. Deuterium excess (d-excess) data were used to assess the degree to which lakes exhibited through-flow or terminal hydrology. The d-excess results showed strong seasonal variability as a function of lake depth, suggesting that a more conservative solute may be better suited to determine the groundwater regime for these lakes.

One challenge encountered throughout this research was the need to monitor the isotopic composition of daily precipitation feeding into lake systems. To address this challenge in future research, an autonomous rainfall sampler was developed. A computational method using hydrologic-isotopic modelling to estimate the original isotopic composition and volume of evaporated samples was also described.

An important yet poorly constrained component of lake hydrological models is the interaction between lakes and their surrounding groundwater. A single layer, finite difference groundwater model was developed to simulate and investigate this interaction. The model was designed to operate using spreadsheet software, and is able to model transient groundwater flows, confined and unconfined aquifers incorporating recharge, abstraction and injection, no-flow, fixed-head and head-dependent boundary conditions. The model was validated using nine groundwater scenarios and applied to demonstrate that the use of a specified saturated thickness for unconfined aquifers beneath lakes may give more realistic results.

A holistic lake hydrological and geochemical model was developed, coupling mass and energy balances, hydrology, groundwater, catchment processes, geochemistry and water isotopes. The model was applied to Lake Bullen Merri and Lake Gnotuk, neighbouring maar crater lakes in Victoria, Australia. The model was able to simulate lake hydrology from 1889–2018, water temperatures and chemistry from ~1965–2018, and water isotopes from 2015–2018. The simulations suggest that both lakes experienced through-flow hydrology at high water levels, transitioning to terminal lakes at lower water levels. The potential for the isotopic composition of the lake water to become disconnected from the hydrological balance of the lake was also identified. The newly developed model offers significant potential to constrain past climates and to forecast the trajectory of lake hydrological and geochemical change under future climate scenarios.

Thesis Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holders of those works.

I give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship.

Martin Ankor

Date 03/01/2019

Publications arising from this thesis

Journal articles

- Ankor, M.J., Tyler, J.J., Hughes, C.E., 2019. Development of an autonomous, monthly and daily, rainfall sampler for isotope research. Journal of Hydrology, 575: 31-41.
- Ankor, M.J., Tyler, J.J., 2019. Development of a spreadsheet-based model for transient groundwater modelling. Hydrogeology Journal: 1-14.

Acknowledgements

I would like to acknowledge and thank AINSE limited for their financial support, provided through a Post Graduate Research Award, giving me the opportunity to spend time at ANSTO collaborating with many knowledgeable people, and running analyses for lake samples. I would also like to thank the Environmental Institute of the University of Adelaide, and INQUA, for grants assisting the funding of trips to the INQUA 2019 and AQUA 2018 conferences, and the INQUA 2016 ECR workshop.

Many sincere thanks go to my supervisors and co-authors, Jonathan Tyler, Cath Hughes, Juraj Farkas and Derrick Hasterok, for their advice and guidance, and for supporting me with their confidence in my work – especially when I was not feeling so optimistic. Working with them has broadened my perspective and helped me understand how my research fits into the broader jigsaw of climate research. I would also like to thank some colleagues whose names do not appear in this thesis as co-authors or supervisors, but have provided much valued advice – Dioni Cendon, Mark Peterson and Bernd Zolitschka.

My time spent in the lab was greatly assisted by the expertise and assistance of David Bruce, Tony Hall, and the staff at Flinders Analytical and ANSTO. I greatly appreciate the time they spent training me, and the skills I have picked up from working with them. I'd also like to acknowledge Fab Lab Adelaide, for providing a space and equipment that allowed me to transform some of my ideas from imagination to the real world.

Thanks to John Tibby for graciously providing data and background for many of the lakes investigated during this thesis. Many thanks also to Jessica Reeves, Peter Dahlhaus, Matthew Currell and Darrell Kaufman for their assistance in collecting samples and field data, as well as many useful discussions drawing on their extensive knowledges of the lakes studied. I would like to express my gratitude to Leon and Judy Sjolund for providing access to the Basin lakes.

I would like to thank my PhD colleagues for their friendship, support and advice. While we may have all been working on different projects, it was an absolute pleasure working with you.

Most importantly, I would like to thank my partner, Karen, for her boundless support and assistance, and my family for their interest, support and humorous commentary on my PhD progress.

Chapter 1

Introduction, thesis aims and background

1 Introduction

To predict future climate change requires a conceptual understanding of the mechanisms that influence climate, and the capability to numerically model them (Skinner, 2008). Direct meteorological observations only cover a few decades to centuries of a period of relatively stable climate. To comprehend and assess the potential range of climatic conditions beyond the observational record requires data over longer timeframes. Studies of palaeoclimate conditions are therefore essential to inform our understanding of the climate system, as well as provide data to validate climate models (Skinner, 2008). Lakes are sensitive to climate variability and their sediments are a key source of terrestrial palaeoclimate archives, with many providing continuous high resolution records spanning tens, to hundreds of thousands of years (Cohen, 2003). In addition, lakes are rare, but important features in the Australian landscape supporting aquatic ecosystems, drinking water, cultural significance, recreation, and tourism (Brookes and Hamilton, 2009). Given projected climate changes, there is a need to understand how lakes respond to external climatic changes, both to predict the behaviour of lakes under future climatic conditions, and to improve our interpretation of palaeoclimate lake sediment records.

Lake water balance varies in response to changes in climate, driving changes in lake chemistry and the isotopic composition of lake waters (Battarbee, 2000; Cohen, 2003; Leng and Marshall, 2004). Such changes in the lake system have a direct impact upon the ecological functioning and taxonomic composition of the lake (e.g., Barr et al., 2014; Fritz et al., 1991; Rudd et al., 2016), and the isotopic and chemical composition of inorganic minerals, organic matter, and microfossils, such as carbonates, cellulose, and biogenic silica (e.g., Leng and Marshall, 2004; Ricketts and Johnson, 1996; Sachse et al., 2004; Steinman et al., 2012; Tibby and Tiller, 2007; Tyler et al., 2008; Wolfe et al., 2002).

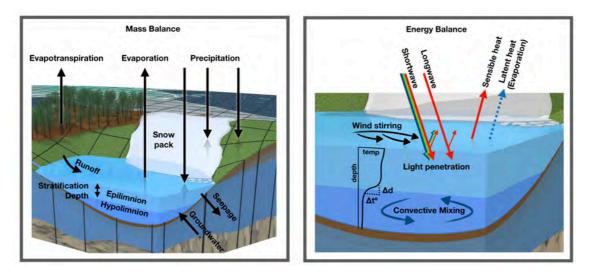
An important challenge for palaeoclimatology is to obtain quantitative estimates of past climate conditions, such as temperature, precipitation and wind speed/direction. Whilst some lake-based proxies are nominally quantitative, e.g. the inference of lake water balance via salinity reconstructions (e.g., Barr et al., 2014; Chivas et al., 1985; Fritz et al., 1991; Gasse et al., 1997; Tibby and Tiller, 2007) or δ^{18} O (e.g., Leng and Marshall, 2004; Steinman et al., 2012), translation of lake geochemical and stable isotopic signatures to quantifiable palaeoclimate values remains problematic. Lakes are complex and dynamic systems and often respond to climatic forcing in a non-linear manner (Battarbee, 2000; Wigdahl et al., 2014). Individual lakes respond to climatic forcing differently due to differences in morphology, groundwater interaction, catchment processes, and past and current lake conditions. Consequently, lakes will rarely exhibit the same

response to changes in climate, or produce identical palaeoclimate records to other lakes in close geographic proximity (Tierney et al., 2013; Tyler et al., 2015). This variability undermines confidence in lake based palaeoclimate records and efforts to combine those records with other archives to form regional composites (Emile-Geay et al., 2017).

In parallel to the need to both conceptualise and model climate systems, and recognising the complexities of lake systems, numerical modelling can be applied to model lake responses to climate projections, as well as resolve some of the uncertainties encountered in lake based palaeoclimate studies. Specifically, by quantifying the hydrological, isotopic and geochemical balances and fluxes within a lake system, numerical modelling may enable or improve quantitative inferences from numerous proxies. Several numerical lake models have been developed – a full review is included in section 1.5. However, most lake models are developed for specific lakes, and often lack modelling routines required for different lakes. There is a need for a general lake model, able to simulate lake water balance, water chemistry, δ^{18} O, and δ^{2} H for all hypothesised palaeoclimate conditions and future climate projections.

2 Thesis aims and objectives

The primary aim of this project is to develop a holistic lake model focussed on meeting the needs for palaeoclimate research, and to collect sufficient data to test and validate the model. In parallel to model development this thesis aims to contribute to related fields that develop techniques and input data that may be relevant or required for the development of lake models.


Specifically, the objectives of the research underpinning this thesis are:

- Establish a lake monitoring program to collect input and calibration data that can be applied to the lake model.
- Investigate numerous geochemical and isotopic indicators of lakes in the Newer Volcanic Province, Victoria, Australia to better identify how they interact with the surrounding landscape, and what physical processes are potentially under-represented in conceptual and numerical lake models.
- Develop new techniques for the sampling of rainfall from remote regions, specifically for δ^{18} O and δ^{2} H analysis.
- To develop a holistic lake model that is versatile enough to be applied to almost any lake, coupling mass and energy balances, groundwater, isotopes, chemistry, and catchment processes.

3 Background

3.1 Lake modelling concepts and terminology

Most numerical lake models can be separated into two categories – mass balance or energy balance models (Fig. 1.1). Many lake models incorporate additional modelling processes, but the mass balance or energy balance routine typically represents the core model upon which other modelling routines are constructed. Mass balance models are based on the conservation of mass – by quantifying and balancing all known fluxes and reservoirs, unknown quantities can be derived. Energy balance models apply a similar concept – a balance of fluxes and reservoirs – except that the quantities are based on energy, not mass (Henderson-Sellers, 1986).

Figure 1.1: Schematic showing example mass and energy balance models for lakes. Fluxes and reservoirs will vary depending on model designs. Only a portion of possible fluxes and reservoirs are shown.

A mass balance is therefore useful for modelling the hydrological change in a lake system, while an energy balance model is well suited for modelling the energy change of a lake, identifiable as variations in evaporation rate, stratification depth and water temperature. Many lake energy balance models incorporate some mass balance functionality, whereas few mass balance models include a complete energy balance functionality. The basic functionality of a mass balance or energy balance model can be extended via additional modelling of physical processes. For example, a mass balance lake model may include equations to estimate evaporation, or functions to estimate hydrological fluxes in the lake catchment by modelling canopy interception and soil infiltration (e.g., Steinman et al., 2010; Van Boxel et al., 2013). Lake mass balance models can be further enhanced by coupling the hydrological mass balance routines to equations describing isotopic and geochemical fractionation and mixing. The isotopic and geochemical equations are then calculated in parallel with the water mass balance to determine the isotopic and chemical composition for each hydrological flux and reservoir.

3.2 Model design: considerations for palaeoclimate research

Lake based palaeoclimate research imposes several requirements on model design. While lake models that are designed to investigate short term, current, or steady state phenomena can often rely on input data and parameterisations derived from observations, such as evaporation rates, lake stratification depth, and water temperatures, such data is unlikely to be valid for all past lake and climate conditions. Most meteorological and lake observations only extend across a few decades to centuries, whereas lake based palaeoclimate reconstructions may span over tens, to hundreds of thousands of years. Additionally, many lake derived palaeoclimate reconstructions infer climatic and hydrological conditions that extend well outside the range of observations (Fig. 1.2). The problem of data scarcity and the associated difficulty of defining valid model parameters presents a major challenge for palaeoclimate model-based research.

One potential solution is to incorporate additional modelling routines to estimate the missing data. For example, an energy balance model may be applied to estimate stratification depth, water temperature and evaporative flux of the lake (Henderson-Sellers, 1986), using only the model state and meteorological input data. Likewise, lake-groundwater fluxes vary based on the lake water level and surrounding aquifer hydraulic head heights. Defining these fluxes via direct observation is challenging even for current lake conditions. Coupling a groundwater and soil percolation model to the lake model can provide estimates of groundwater flux, while only requiring meteorological data and hydrogeological parameters. In contrast to the lake-groundwater fluxes, hydrogeological parameters represent the material properties of the surrounding geology (Anderson et al., 2015), and are unlikely to vary significantly over the timeframe of most lake model simulations.

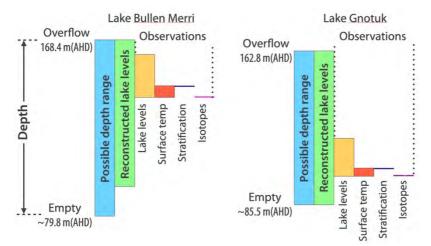


Figure 1.2: An example of the mismatch between hypothesised lake level reconstructions (green) and observational data (between the dotted lines, in orange, red, *dark blue, magenta) for two* lakes. The observational data for surface water temperature, stratification and isotopes is *displayed as the range of lake* levels for which observations have been recorded (Jones, 1995; Tibby and Tiller, 2007; Timms, 1976). Heights shown are relative to the Australian Height Datum (AHD).

3.3 Model design: matching the model to the proxy

Proxies commonly used for palaeoclimate studies also impose requirements on model development. Some proxies are linked directly to the lake water level and can be used to infer past hydroclimate conditions. E.g. inference of lake water level based on sediment texture (Wilkins et al., 2013). However, most proxies are used to infer lake salinity or isotopic composition, providing an indirect route to reconstructions of a lake's hydrological balance and hydroclimate. Changes in salinity may be reflected both ecologically, through changes in populations of diatoms (e.g., Barr et al., 2014; Fritz et al., 1991; Rudd et al., 2016), or through geochemical indicators, such as the Sr/Ca and Mg/Ca ratios found within ostracod valves (e.g., Chivas et al., 1985; De Deckker et al., 1999). Variations in the isotopes of water – δ^{18} O and δ^{2} H – may also be identified in proxies derived from carbonates, organic components of lacustrine sediment, and biogenic silica (e.g., Leng and Marshall, 2004; Ricketts and Johnson, 1996; Sachse et al., 2004; Steinman et al., 2012; Tyler et al., 2008; Wolfe et al., 2002). To facilitate comparisons between model results and proxy derived values, palaeoclimate lake models should incorporate equations describing water chemistry and isotopic mixing and fractionation, to provide quantitative values of lake water chemistry, δ^{18} O, and δ^{2} H. Such models can be further extended through the development of transfer functions that estimate the transport and incorporation of isotopes and chemistry from the lake water into the proxy material, sometimes described as a proxy system model (Dee et al., 2018).

3.4 Model design: physical processes

A lake model designed for palaeoclimate research may require numerous modelling routines to account for data scarcity, and to facilitate model-proxy comparisons. While it is tempting (and would greatly simplify model development) to think of a lake model as a hierarchy, with a main program – perhaps a mass balance model – used to determine hydrological behaviour, which is then used as the basis of calculations by coupled model routines, this is rarely the case. Whilst in a few cases, model routines may exist in comparative isolation from the rest of the model, many modelling routines describe physical processes that interact with many other aspects of the lake system. For example, changes to lake hydrology may alter the concentrations of lake water chemistry, resulting in a feedback process as lake chemistry, in turn, modulates evaporation rates (Harbeck Jr, 1955). Water chemistry and lake surface temperature influence the evaporative fractionation of δ^{18} O and δ^{2} H (Gat, 2010). Likewise lake water depth can affect the lake temperature profile, which in turn influences evaporation (Henderson-Sellers, 1986; Stepanenko et al., 2013). Wind speed has an effect on evaporation, which can drive changes in

the hydrological balance, potentially changing the degree of sheltering and influencing the wind speed at the lake surface (McNaughton, 1988; Penman, 1948).

One interaction that may be of significant concern for palaeoclimate lake studies is the lakegroundwater interaction and the potential flow-on effects to lake geochemistry. A through-flow lake, where groundwater flows into a lake, while the lake simultaneously loses water as outseepage, may prevent salts from accumulating in the lake waters, as they are removed by the outgoing seepage. A recharge lake has negligible groundwater influx, but may have substantial out-seepage to groundwater (Winter, 1999). In contrast, a terminal (or discharge) lake has negligible out-seepage, resulting in high salinity as salts can accumulate. Terminal lakes are ideal for palaeoclimate research as they are often considered as palaeo-rain gauges, and water chemistry is assumed to be closely correlated with lake water level (Gell et al., 1994). Unfortunately, some lakes can transition from through-flow at high lake levels to terminal lakes at lower lake levels (Winter, 1976). This means that the chemical mass balance of a lake may change during periods of high lake levels, and care must be taken in comparing geochemistry derived proxy results separated by periods of inferred high lake levels.

These examples represent only a few of the potential interactions within and around a lake . The relationship between the various modelling routines can be better described as a network, with the calculated values from each modelling routine shared amongst other routines, to use as required. Therefore, in addition to the inclusion of modelling routines designed to circumvent the issues of data scarcity and problematic parameters, or designed to facilitate model-proxy comparisons, model development must also account for interactions between the numerous physical processes within a lake and surrounding environment.

3.5 Lake modelling: a review

Several researchers have developed lake models (Table 1.1) capable of modelling various aspects of lake systems ranging from relatively simple spreadsheet mass balance models (Becht and Harper, 2002; Ohlendorf et al., 2013; Yihdego and Webb, 2012) to more complex models featuring some combination of energy balance modelling, coupled isotope modelling, coupled chemistry or groundwater modelling (Crowe, 1993; Jones et al., 2001; Kirono et al., 2009; Kirono et al., 2012; Van Boxel et al., 2013; Vassiljev et al., 1995). Examples of hydrological mass balance models include the model developed by Jones et al. (2001) and used by Kirono et al. (2009), incorporating lake salinity and its influence on evaporation, and a soil component that modelled evapotranspiration and the percolation of water through the soil to the lake. Becht and Harper (2002) incorporated a hypothetical unconfined aquifer in their mass balance model, modelling the interaction between the lake and groundwater and the buffering of lake level change in response to changes in hydroclimate. This method may be suitable for short term projections, but is untested over longer model runs, and over significant changes in hydrological conditions. The model introduced by Van Boxel et al. (2013) is of interest as it incorporates a 2D grid design allowing for varying ratios of vegetation surfaces in the catchment as the lake rises and falls.

Combining the hydrological flux calculations with calculations for mixing and fractionation of isotopes results in a coupled hydrologic-isotopic model (Gibson et al., 2002; Hostetler and Benson, 1994; Jones et al., 2005; Ricketts and Johnson, 1996; Shapley et al., 2008; Steinman et al., 2012; Steinman et al., 2010; Stets et al., 2010). A common inclusion to these models is the modelling of the stratification of the lake, as the isotopic composition of lake waters varies vertically due to seasonal and diurnal stratification (Kumar et al., 2001; Sánchez-España et al., 2014; Steinman et al., 2010). Most of these models model δ^{18} O and δ^{2} H, though there are examples that incorporate tritium isotopes (Kumar et al., 2001; Michel and Kraemer, 1995).

The incorporation of stratification into a mass balance model also requires a method of determining the level of stratification. Some mass balance models use empirical data from lake surveys (Steinman et al., 2010). However, as palaeoclimate conditions often differ from current conditions, with a corresponding change in lake surface area, depth and wind protection, these empirical values are not necessarily valid (Imberger, 2001). Inclusion of a lake energy balance model can resolve this problem. The need for an understanding of water quality in reservoirs has produced many models able to model the stratification behavior of a lake. These models are typically one dimensional, with multiple layers able to vary in thickness and properties depending on the thermal profile of the lake (Henderson-Sellers, 1984; Hipsey et al., 2013; Hondzo, 1993; Hostetler and Bartlein, 1990; Imberger et al., 1978; Riley and Stefan, 1988). The model of Hostetler and Bartlein (1990) has been applied recently to form the basis of a proxy system model, coupling mass and energy balances, isotopes and salinity (Dee et al., 2018).

Not all lake models have been considered in the summary table. In particular, models that focus on just a single aspect of a lake have not been not been included – e.g. models that only model the energy balance (Henderson-Sellers, 1984), or the fractionation of the stable isotopes of water (Craig and Gordon, 1965).

Benson and Paillet (2002)	Gibson, et al. (2002)	Becht and Harper (2002)	Kirono, et al. (2009) Jones, et al. (2001)	Vassiljev, et al. (1995)	Michel and Kraemer (1995), Kumar et al. (2001).	Hostetler and Benson (1994)	Crowe (1993)	Hostetler and Bartlein (1990)	Riley and Stefan (1988)	Imberger, et al. (1978)	Model
Climate	Throughflow, residence time and catchment runoff.	Safe yield/ abstraction	Climate	Climate	Residence time, Groundwater flux estimation	Climate	Groundwater flux estimation	Climate	Water quality	. Water quality, temperature profiles	Purpose
Fortran	Unknown	Spread- sheet	Fortran	Unknown	Unknown	Fortran	Unknown	Fortran	Unknown	Fortran 95	Language
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Mass balance
No	No	No	No	Yes	No	Yes	No	Yes	Yes	Yes	Energy balance
Yes	Yes	No	No	No	Yes	Yes	No	No	No	No	lsotope enabled
No	No	No	Salinity	No	No	No	Salinity	No	Bio- chemical	No	Chemistry enabled
Parameterised flows	Model result	Parameterised flows	Percolation through soil to subsurface drainage (baseflow)	Runoff and percolation to subsurface drainage	Parameterised flows	Parameterised flows	Runoff and percolation to subsurface drainage	Parameterised flows	Parameterised flows	Parameterised flows	Catchment & surface inflow
No	No	8	Single layer. CRAE (Morton 1983)	Two layer,	Parameterised flows	No	Single layer	R	No	Parameterised flows	Soils & evapo- transpiration
Parameterised flows	No	Hypothetical aquifer used as lake buffer (Darcy 1856)	Baseflow derived from soil percolation	Parameterised flows	Parameterised flows	No	Mass balance	No	Parameterised flows	Parameterised flows	Groundwater
No	Yes	No	No	Partial	No	Yes	Yes	Yes	Yes	Yes	Ice and Snow
Meteorological records	Meteorological records	Meteorological records	CRLE (Morton 1983)	Meteorological records	Meteorological No records	Energy balance	Meteorological No records	Energy balance	Energy balance	Energy balance	Evaporation
Parameterised	No	No	No	No	No	Energy balance	No	Energy balance	Energy balance	Energy balance	Lake stratification
No	No	No	Zo	No	No	Energy balance	No	Energy balance	Energy balance	Energy balance	Lake temperatures
Applied to Pyramid lake, Nevada	Uses ¹⁸ O and ² H observations to estimate difficult to measure water fluxes.	Lake Naivasha, Kenya.	Applied to maar lakes in Victoria, Australia	Applied to Lake Viljandi, Estonia	Applied to Finger Lakes in NY, USA, and Lake Naini , India	Extention of Hostetler and Bartlein (1990)	Applied to Wabamun Lake, Alberta, Canada	Applied to Pyramid & Harney-Malheur lakes, USA. Assessed by Yao, et al. (2014)	Assessed by Yao, et al. (2014)		Other Notes

Table 1.1: Lake models that have been applied, or may potentially be applied, to palaeoclimate research. Cells marked in green denote features that may enable the use of the model in data-sparse scenarios, such as outside the range of meteorological records. Cells marked in yellow indicate partial support for features, e.g. models that

<u>د</u>

Model	Purpose	Language	Mass balance	Energy balance	lsotope enabled	Chemistry enabled	Catchment & surface inflow	Soils & evapo- transpiration	Groundwater	Ice and Snow	Evaporation	Lake stratification	Lake temperatures	Other Notes
Jones, et al. (2005)	Climate	Spread- sheet	Yes	No	Yes	No	Runoff coefficient	No	Parameterised flows	No	Penman, 1948. (Simplified, Linacre 1992)	No	No	Applied to Nar Golu, Turkey
Shapley, et al. (2008)	Climate	Visual Basic	Yes	No	Yes	No	Parameterised flows	No	Percentage of lake volume outflow	Partial	Regional Penman equations	Parameterised	No	Applied to Evans Lake and Jones Lake, Montana, USA.
Jones and Imbers (2010)	Climate	Spread- sheet	Yes	No	Yes	No	Unknown	No	Parameterised flows	No	Penman, 1948. (Simplified, Linacre 1992)	No	No	Based on Jones 2005
Steinman, et al. (2010)	Climate	Stella	Yes	No	Yes	No	Runoff and percolation to subsurface drainage	2 layers. Penman, (1948) / Valiantzas, 2006).	Percentage of lake volume outflow	Partial	Penman (1948) / Valiantzas (2006)	Parameterised	Observed	Applied to Castor and Scanlon Lakes, Washington State.
Yihdego and Webb (2012) Yihdego, et al. (2015) Yihdego and Webb (2015)	Hydrological and salinity budgeting	Spread- sheet	Yes	No	8	Salinity	Tanh method (Grayson et al, 1996)	No	Darcy (1856)	No	Meteorological records	No	No	Applied to lakes in Victoria, Australia.
Van Boxel, et al. (2013)	Climate	Unknown	Yes	No	S	No	Runoff & delayed percolation to subsurface drainage	Single layer. Penman (1948) + crop coefficient + linear relation to soil moisture	No	No	Penman (1948)	No	No	Gridded lake model. Applied to Lake La Cocha, Colombia.
Ohlendorf, et al. (2013)	Climate	Unknown	Yes	No	No	No	Runoff	Penman (1948) / Brutsaert (1982)	Parameterised flows	No	Penman (1948) / Brutsaert (1982)	No	No	Applied to Laguna Potrok Aike (Argentina)
Hipsey, et al. (2013)	General lake model	C / Fortran	Yes	Yes	No	Salinity	Parameterised flows	Parameterised flows	Parameterised flows	Yes	Energy balance	Energy balance	Energy balance	Assessed by Yao, et al. (2014)
Dee, et al. (2018)	Climate	Fortran / Python	Yes	Yes	Yes	Salinity	Parameterised flows	No	No	Yes	Energy balance	Energy balance	Energy balance	Based on Hostetler and Bartlein, 1990. Includes transfer functions for full proxy system modelling.
CHIMBLE (Chemistry, Hydrology, Isotope, Mass Balance for Lake Environs)	Climate	R / C++	Yes	Yes	Yes	Yes	Runoff and percolation to groundwater or subsurface drainage	Yes	Finite difference model (MODFLOW subset)	Partial	Energy balance	Energy balance	Energy balance	Model developed for this thesis

Introduction, thesis aims and objectives, background

There are no lake models identified that can be described as holistic lake models, capable of modelling all the major physical, hydrological, isotopic and geochemical processes within a lake system. Typically, lake models are developed for specific lakes, and lack the capacity to model processes associated with different lakes. There is a need for a holistic lake model, coupling lake hydrology, catchment processes, groundwater, energy balance, isotopes, water chemistry, and other relevant physical processes. Chapter Five of this thesis describes the development and calibration of a holistic lake model called CHIMBLE (Chemistry, Hydrology, Isotopes, Mass-Balance for Lake Environs).

3.6 Data requirements for modelling of lakes

A key requirement of numerical lake models developed for palaeoclimate research is that model input data should be available for the entire time period studied. The input data required for lake modelling varies depending on model complexity. Meteorological data is almost always a necessary input, and may be derived from climate model simulations or synthesised by applying suitable shifts and transformations to existing time series of meteorological observations, e.g. Yihdego et al. (2015). Lake hypsographic data (relating lake surface depth to surface area and volume) may be compiled from topographic and bathymetric sources, or estimated using mathematical models, e.g. Jones et al. (2005). In many cases, additional modelling routines may be applied as a substitute for input data.

However, some input data cannot be estimated with a modelling approach. A particular challenge relates to isotope enabled models as they require the isotopic composition of all source waters, specifically, the isotopic composition of precipitation. Isotope enabled climate models, or models describing the spatial and temporal distribution of isotopes in precipitation, may be a source for such data, e.g. Bowen and Revenaugh (2003); Brady et al. (2019); Hollins et al. (2018). The isotopic data used to develop and validate these models is typically based on the Global Network of Isotopes in Precipitation (GNIP) database, a spatially diverse, but sparse, dataset of monthly δ^{18} O and δ^2 H in precipitation collected since 1961 (Rozanski et al., 1993). Unfortunately, the temporal resolution and spatial distribution of GNIP stations – there are only 15 in Australia (Hollins et al., 2018) – present a degree of uncertainty regarding the isotopic composition of rainfall remote from the stations. This introduces a level of uncertainty in isotope enabled lake models, and also limits the potential to correlate the isotopic composition of rainfall to synoptic weather patterns and topographic factors.

The need for additional modelling, and the uncertainties regarding some input data, demonstrate that modelling requirements may therefore extend well beyond the shoreline of the lake or the catchment boundary. Development of a general lake model for palaeoclimate research requires the inclusion of research and understanding from many related fields, such as meteorology, groundwater, and lake dynamics, as well as long term monitoring to provide observational data that may be used as input data and to validate lake models.

3.7 Site selection and regional background.

Development and calibration of a useful holistic lake model requires study sites with long term lake observations that cover a large range of lake conditions – water levels, water chemistry, δ^{18} O and δ^{2} H values, water temperatures, stratification depth, and groundwater head heights. Lake Bullen Merri and Lake Gnotuk in the Newer Volcanic Province – a region of monogenetic basalt plains in the south east of Australia – were chosen for model development. Lake Bullen Merri and Lake Gnotuk are maar crater lakes in neighbouring craters. Lake Bullen Merri and Lake Gnotuk are ideal candidates for model development as they share the same climate, yet have significant hydrological and chemical differences. They also have long records documenting a wide range of lake conditions. Lake Bullen Merri is brackish, and ~60 m deep, whereas Lake Gnotuk is 15 m deep and hypersaline. The water level of lake Gnotuk is 40m lower than that of Lake Bullen Merri, and water levels for both lakes have dropped ~30 m since 1841 (Jones et al., 2001). Both lakes are positioned within an unconfined aquifer of sandstones and overlying basalt, and separated from deeper groundwater aquifers by the Gellibrand Marl (SKM, 2009; Victorian Department of Sustainability and Environment, 2012).

Several other lakes in the Newer Volcanic Province were also considered as candidates for model development. There are over 400 volcanic eruption points in the region (Boyce, 2013), resulting in many permanent lakes. The frequency and variety of these lakes, combined with their location in between the Pacific, Indian and Southern Oceans and associated climate systems, make many of them important palaeoclimate study sites (Gouramanis et al., 2013; Neukom and Gergis, 2012). Therefore, in addition to the model development, and in recognition of the need for a broad understanding of the interactions between lakes and the surrounding landscape, an additional ten lakes were monitored over the course of this PhD.

4 Thesis outline

4.1 Chapter Two: Lake water ionic and isotopic signatures in relation to lake morphology and hydrogeology: a case study of twelve lakes in south-eastern Australia

This chapter describes monitoring data on twelve lakes of the Newer Volcanic Province in Western Victoria. Lake water levels, and water samples for major and minor ions, δ^{18} O, and δ^{2} H analysis were collected every two months for ~three years. A full description of each lake is included in this chapter. These data were used to investigate several aspects of lake behaviour. δ^{18} O and δ^{2} H data were applied to investigate differences in evaporation and isotopic fractionation between lakes. Oxygen and hydrogen isotopes fractionate during evaporation, enriching the lake water in ¹⁸O and ²H along a trend line known as a local evaporation line. A 'Lake Sheltering Index', describing the degree of wind sheltering for each lake was correlated to the slopes of the isotopic enrichment of lake water, relating the isotopic behaviour of a lake to basin morphology and lake water level. Cl⁻/Br⁻ and HCO₃⁻/Cl⁻ geochemical indicators were applied to investigate the source of waters that contribute to the lakes, and d-excess (an isotopic metric that indicates the degree of evaporation) was applied to investigate the groundwater regime for each lake following Barton et al. (2013). Based on Cl⁻/Br⁻ results, nine of the twelve lakes studied interact with the shallow groundwater aquifer across the region, but three lakes are situated above the aquifer, and have Cl⁻/Br⁻ ratios that may reflect rainfall ratios. HCO₃⁻/Cl⁻ and d-excess values for each lake showed significant seasonal variation. It is proposed that increased spatial resolution of groundwater sampling may be required to refine the results from the HCO_3 ⁻/Cl indicator, and the use of a conservative ion such as Cl⁻ is likely to be more effective than d-excess to determine the groundwater regime as d-excess is related to the residence time of water, whereas a conservative ion is related to the solute residence time within a lake.

4.2 Chapter Three: Development of an autonomous, monthly and daily, rainfall sampler for isotope research

This chapter describes the development of an autonomous rainfall sampler, designed to collect daily and integrated monthly rainfall samples to facilitate isotopic rainfall sampling in remote locations. δ^{18} O and δ^{2} H of precipitation is a necessary input dataset for isotope enabled lake models. Sampling of rainfall for isotopes is problematic as evaporation must be minimised to avoid isotopic enrichment of samples. This chapter describes the design of the rainfall sampler, and two methods of preventing evaporation – paraffin oil and inlet tubes (where the sample bottle is sealed, and water enters via a small tube. Once water enters the sample bottle, the tube

is sealed, and evaporation is limited to the tiny water surface area in the tube). The inlet tube method requires bespoke bottle caps, which were fabricated using a 3D printer. The effectiveness of four different types of plastics at preventing water and isotopic transfer through the bottle caps was also assessed. Of the four plastics tested – PLA, ABS, PETG and ABS treated with acetone – acetone treated ABS was most effective at minimising evaporation, closely followed by PETG. A coupled hydrologic-isotopic model was applied to the results, successfully modelling the fractionation process for all methods and closure types. A closure modelling technique that takes advantage of the different evaporation rates between monthly and daily samples was then developed to back-calculate the initial sample volume and isotopic composition.

This chapter is published as:

ANKOR M. J., TYLER J. J. & HUGHES C. E. 2019. Development of an autonomous, monthly and daily, rainfall sampler for isotope research. *Journal of Hydrology*. 575, 31-41.

4.3 Chapter Four: Development of a spreadsheet-based model for transient groundwater modelling

Groundwater is rarely implemented in lake models developed for palaeoclimate research, yet is often a key component in a lake's hydrological balance (Winter, 1999). More importantly, the lake-groundwater interaction varies depending on hydroclimate and lake water level. A spreadsheet groundwater model (A2016) designed for transient groundwater modelling was developed, based on the mathematics of MODFLOW (McDonald and Harbaugh, 1988), with support for confined and unconfined aquifers, recharge, evapotranspiration, injection and abstraction pumping, heterogeneous hydraulic conductivity and storativity, fixed head, no flow and head dependent boundary conditions. A2016 was developed as a prototype to the finite difference groundwater module incorporated in the lake model developed for this thesis (Chapter Five). A2016 is also relevant for pedagogical purposes, as it runs in the Excel spreadsheet program and this chapter includes a full theoretical background. A2016 is compared with MODFLOW and the spreadsheet model of Karahan and Ayvaz (2005) for nine different scenarios. In all scenarios, A2016 and MODFLOW gave identical results, demonstrating that the mathematical basis of A2016 is correct. The spreadsheet model was also applied to demonstrate that using a specified saturated thickness approximation for the groundwater region beneath a lake may result in more realistic representation of lakegroundwater interaction.

This chapter is published as:

ANKOR M. J. & TYLER J. J. 2019. Development of a spreadsheet-based model for transient groundwater modelling. *Hydrogeology Journal*. 1-14.

4.4 Chapter Five: A holistic lake model for palaeoclimate research

This chapter describes the design, calibration, and model simulations of a holistic lake model called CHIMBLE (Chemistry, Hydrology, Isotopes, Mass Balance for Lake Environs). CHIMBLE couples a hydrological mass balance to a lake energy balance, a finite difference groundwater model, a dual layer soil catchment model, water chemistry, and an δ^{18} O and δ^{2} H isotope model. CHIMBLE was calibrated for Lake Bullen Merri and Lake Gnotuk. Since 1849 the water levels have dropped by almost 30m at a similar rate for both lakes. This substantial lake level change is beneficial from a model development and calibration perspective as it provides a way to test the lake-groundwater-catchment interaction across a large range. Though numerous aspects of the lake and groundwater system are under-determined, CHIMBLE was able to simulate lake level change and salinity change in both lakes to a high degree of accuracy over the entire historical range. More importantly, the parameters established by calibration were within likely estimates and parsimonious with the condition of both lakes. The modelling was able to demonstrate that both lakes are through-flow lakes at high lake levels, becoming terminal lakes as lake levels fall. In more recent decades, the seasonal cycle of salinity and δ^{18} O and δ^2 H was well represented but only when lake stratification depths were decreased relative to the initial simulation. The parameters for the energy balance model were initially based on data from 1969–1972 (Timms, 1976). This need to alter the parameters for the stratification model suggests a recent increase in water turbidity - and hence light absorbance - which is consistent with the trajectory towards eutrophication in these lakes (Timms, 2005). The simulations of Lake Bullen Merri and Lake Gnotuk suggest that complex lake models like CHIMBLE can give excellent results, even in poorly defined and under-determined lake systems.

4.5 Chapter Six: Discussion and future directions

This chapter reviews and summarise the combined findings of chapters two to five. The results are discussed with respect to the overall field of palaeoclimate research, as well as potential implications to other areas of research. The need for ongoing development in both lake model design, and in associated research fields such as microclimate, wind sheltering, isotopic sampling and modelling and lake monitoring is also discussed with a focus on future research requirements.

5 References

- Anderson, M.P., Woessner, W.W., Hunt, R.J., 2015. Applied groundwater modeling: simulation of flow and advective transport. Academic press.
- Barr, C., Tibby, J., Gell, P., Tyler, J., Zawadzki, A., Jacobsen, G.E., 2014. Climate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes. Quaternary Science Reviews, 95: 115-131. DOI:<u>https://doi.org/10.1016/j.quascirev.2014.05.001</u>
- Barton, A., Herczeg, A., Dahlhaus, P., Cox, J., 2013. A geochemical approach to determining the hydrological regime of wetlands in a volcanic plain, south-eastern Australia (Chapter 7)
 In: Ribeiro L, Stigter TY, Chambel A et al.(eds) Groundwater and Ecosystems. IAH Selected Papers on Hydrogeology Series 18. CRC Press (Taylor and Francis). p.
- Battarbee, R.W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews, 19(1–5): 107-124. DOI:<u>http://dx.doi.org/10.1016/S0277-3791(99)00057-8</u>
- Becht, R., Harper, D., 2002. Towards an understanding of human impact upon the hydrology of Lake Naivasha, Kenya. The International Journal of Aquatic Sciences, 488(1): 1-11.
- Benson, L., Paillet, F., 2002. HIBAL: a hydrologic-isotopic-balance model for application to paleolake systems. Quaternary Science Reviews(12): 1521-1539.
- Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39(10): 1-13. DOI:10.1029/2003WR002086
- Boyce, J., 2013. The Newer Volcanics Province of southeastern Australia: a new classification scheme and distribution map for eruption centres. Australian Journal of Earth Sciences, 60(4): 449-462.
- Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B.L.,
 Tabor, C., Tomas, R., Wong, T., Zhang, J., Zhu, J., 2019. The Connected Isotopic Water
 Cycle in the Community Earth System Model Version 1. Journal of Advances in
 Modeling Earth Systems, 11(8): 2547-2566. DOI:10.1029/2019ms001663
- Brookes, J.D., Hamilton, D.P., 2009. Lakes and Reservoirs of Australia and New Zealand. In: Likens, G.E. (Ed.), Encyclopedia of Inland Waters. Academic Press, Oxford, pp. 513-523. DOI:<u>https://doi.org/10.1016/B978-012370626-3.00037-5</u>
- Chivas, A.R., De Deckker, P., Shelley, J.M.G., 1985. Strontium content of ostracods indicates lacustrine palaeosalinity. Nature, 316(6025): 251-253. DOI:10.1038/316251a0
- Cohen, A.S., 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, USA.
- Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Schink, D.R., Corless, J.T. (Eds.), Marine Geochemistry. University, Rhode Island, University, Rhode Island, pp. 277-374.

- Crowe, a.S., 1993. The application of a coupled water-balance-salinity model to evaluate the sensitivity of a lake dominated by groundwater to climatic variability. Journal of Hydrology, 141(1-4): 33-73. DOI:10.1016/0022-1694(93)90044-A
- De Deckker, P., Chivas, A.R., Shelley, J.M.G., 1999. Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments. Palaeogeography, Palaeoclimatology, Palaeoecology, 148(1): 105-116. DOI:<u>https://doi.org/10.1016/S0031-0182(98)00178-3</u>
- Dee, S.G., Russell, J.M., Morrill, C., Chen, Z., Neary, A., 2018. PRYSM v2.0: A Proxy System Model for Lacustrine Archives. Paleoceanography and Paleoclimatology, 33(11): 1250-1269. DOI:10.1029/2018PA003413
- Emile-Geay, J., McKay, N.P., Kaufman, D.S., von Gunten, L., Wang, J., Anchukaitis, K.J., Abram, N.J., Addison, J.A., Curran, M.A.J., Evans, M.N., Henley, B.J., Hao, Z., Martrat, B., McGregor, H.V., Neukom, R., Pederson, G.T., Stenni, B., Thirumalai, K., Werner, J.P., Xu, C., Divine, D.V., Dixon, B.C., Gergis, J., Mundo, I.A., Nakatsuka, T., Phipps, S.J., Routson, C.C., Steig, E.J., Tierney, J.E., Tyler, J.J., Allen, K.J., Bertler, N.A.N., Björklund, J., Chase, B.M., Chen, M.-T., Cook, E., de Jong, R., DeLong, K.L., Dixon, D.A., Ekaykin, A.A., Ersek, V., Filipsson, H.L., Francus, P., Freund, M.B., Frezzotti, M., Gaire, N.P., Gajewski, K., Ge, Q., Goosse, H., Gornostaeva, A., Grosjean, M., Horiuchi, K., Hormes, A., Husum, K., Isaksson, E., Kandasamy, S., Kawamura, K., Kilbourne, K.H., Koç, N., Leduc, G., Linderholm, H.W., Lorrey, A.M., Mikhalenko, V., Mortyn, P.G., Motoyama, H., Moy, A.D., Mulvaney, R., Munz, P.M., Nash, D.J., Oerter, H., Opel, T., Orsi, A.J., Ovchinnikov, D.V., Porter, T.J., Roop, H.A., Saenger, C., Sano, M., Sauchyn, D., Saunders, K.M., Seidenkrantz, M.-S., Severi, M., Shao, X., Sicre, M.-A., Sigl, M., Sinclair, K., St. George, S., St. Jacques, J.-M., Thamban, M., Kuwar Thapa, U., Thomas, E.R., Turney, C., Uemura, R., Viau, A.E., Vladimirova, D.O., Wahl, E.R., White, J.W.C., Yu, Z., Zinke, J., Consortium, P.A.k., 2017. A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4(1): 170088. DOI:10.1038/sdata.2017.88
- Fritz, S.C., Juggins, S., Battarbee, R.W., Engstrom, D.R., 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature, 352(6337): 706.
- Gasse, F., Barker, P., Gell, P.A., Fritz, S.C., Chalie, F., 1997. Diatom-inferred salinity in palaeolakes: an indirect tracer of climate change. Quaternary Science Reviews, 16(6): 547-563.
- Gat, J., 2010. Isotope hydrology a study of the water cycle. London: Imperial College Press, London.
- Gell, P.A., Barker, P.A., De Deckker, P., Last, W.M., Jelicic, L., 1994. The Holocene history of West Basin Lake, Victoria, Australia; chemical changes based on fossil biota and sediment mineralogy. Journal of Paleolimnology, 12(3): 235-258.
- Gibson, J.J., Prepas, E.E., McEachern, P., 2002. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of Boreal lakes. Journal of Hydrology, 262(1): 128-144.

Gouramanis, C., De Deckker, P., Switzer, A.D., Wilkins, D., 2013. Cross-continent comparison of high-resolution Holocene climate records from southern Australia—Deciphering the impacts of far-field teleconnections. Earth-Science Reviews, 121: 55-72.

Harbeck Jr, G.E., 1955. The effect of salinity on evaporation. 272A.

- Henderson-Sellers, B., 1984. Development and application of "U.S.E.D.": A hydroclimate lake stratification model. Ecological Modelling, 21(4): 233-246. DOI:10.1016/0304-3800(84)90061-9
- Henderson-Sellers, B., 1986. Calculating the surface energy balance for lake and reservoir modeling: A review. Reviews of Geophysics, 24(3): 625-649. DOI:10.1029/RG024i003p00625
- Hipsey, M., Bruce, L., Hamilton, D., 2013. GLM General Lake Model. Model overview and user information. The University of Western Australia Technical Manual, Perth, Australia.
- Hollins, S.E., Hughes, C.E., Crawford, J., Cendón, D.I., Meredith, K.M., 2018. Rainfall isotope variations over the Australian continent–Implications for hydrology and isoscape applications. Science of the Total Environment, 645: 630-645.
- Hondzo, M., 1993. Lake water temperature simulation model. Journal of Hydraulic Engineering, 119(11): 1251-1251.
- Hostetler, S.W., Bartlein, P.J., 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resources Research, 26(10): 2603-2612.
- Hostetler, S.W., Benson, L.V., 1994. Stable isotopes of oxygen and hydrogen in the Truckee River–Pyramid Lake surface-water system. 2. A predictive model of δ 18O and 182H in Pyramid Lake. Limnology and Oceanography, 39(2): 356-364. DOI:10.4319/lo.1994.39.2.0356
- Imberger, J., 2001. Characterizing the dynamical regimes of a lake. Physical processes in natural waters. Univ. de Girona, Spain: Servei de Publicacions: 77-92.
- Imberger, J., Loh, I., Hebbert, B., Patterson, J., 1978. Dynamics of reservoir of medium size. Journal of the Hydraulics Division, 104(5): 725-743.
- Jones, M.D., Imbers, J., 2010. Modeling Mediterranean lake isotope variability. Global and Planetary Change, 71(3): 193-200. DOI:<u>https://doi.org/10.1016/j.gloplacha.2009.10.001</u>
- Jones, M.D., Leng, M.J., Roberts, C.N., Türkeş, M., Moyeed, R., 2005. A Coupled Calibration and Modelling Approach to the Understanding of Dry-Land Lake Oxygen Isotope Records. Journal of Paleolimnology, 34(3): 391-411. DOI:10.1007/s10933-005-6743-0
- Jones, R.N., 1995. Modelling hydrologic and climatic controls of closed lakes, western Victoria. Ph. D. Thesis, University of Melbourne.
- Jones, R.N., McMahon, T.A., Bowler, J.M., 2001. Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990). Journal of Hydrology, 246(1): 159-180.

- Karahan, H., Ayvaz, M.T., 2005. Time-dependent groundwater modeling using spreadsheet. Computer applications in engineering education, 13(3): 192-199.
- Kirono, D.G., Jones, R.N., Kent, D.M., 2009. Modelling future lake levels and salinity at three lakes, Western Victoria. National Research Flagships, Climate Adaptation CSIRO—A report prepared for the Environment Protection Authority (EPA) Victoria.
- Kirono, D.G.C., Kent, D.M., Jones, R.N., Leahy, P.J., 2012. Assessing Climate Change Impacts and Risks on Three Salt Lakes in Western Victoria, Australia. Human and Ecological Risk Assessment: An International Journal, 18(1): 152-167. DOI:10.1080/10807039.2012.632291
- Kumar, U.S., Jacob, N., Navada, S.V., Rao, S.M., Nachiappan, R.P., Kumar, B., Murthy, J.S.R., 2001. Environmental isotope study on hydrodynamics of Lake Naini, Uttar Pradesh, India. Hydrological Processes, 15(3): 425-439. DOI:10.1002/hyp.158
- Leng, M.J., Marshall, J.D., 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23(7): 811-831.
- McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference ground-water flow model.
- McNaughton, K., 1988. 1. Effects of windbreaks on turbulent transport and microclimate. Agriculture, Ecosystems & Environment, 22: 17-39.
- Michel, R.L., Kraemer, T.F., 1995. Use of isotopic data to estimate water residence times of the Finger Lakes, New York. Journal of Hydrology, 164(1): 1-18. DOI:<u>https://doi.org/10.1016/0022-1694(94)02586-Z</u>
- Neukom, R., Gergis, J., 2012. Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years. The Holocene, 22(5): 501-524. DOI:10.1177/0959683611427335
- Ohlendorf, C., Fey, M., Gebhardt, C., Haberzettl, T., Lücke, A., Mayr, C., Schäbitz, F., Wille, M., Zolitschka, B., 2013. Mechanisms of lake-level change at Laguna Potrok Aike (Argentina) - insights from hydrological balance calculations. Quaternary Science Reviews, 71: 27-45. DOI:10.1016/j.quascirev.2012.10.040
- Penman, H.L., 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032): 120-145.
- Ricketts, R.D., Johnson, T.C., 1996. Climate change in the Turkana basin as deduced from a 4000 year long δ O 18 record. Earth and Planetary Science Letters, 142(1): 7-17.
- Riley, M.J., Stefan, H.G., 1988. Minlake: A dynamic lake water quality simulation model. Ecological Modelling, 43(3-4): 155-182. DOI:10.1016/0304-3800(88)90002-6
- Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. Climate change in continental isotopic records: 1-36.
- Rudd, R.C., Tyler, J.J., Tibby, J., Yokoyama, Y., Tavernier, I., Verleyen, E., Fukui, M., Takano, Y., 2016. A diatom-inferred record of lake variability during the last 900 years in

Lützow–Holm Bay, East Antarctica. Journal of Quaternary Science, 31(2): 114-125. DOI:10.1002/jqs.2845

- Sachse, D., Radke, J., Gleixner, G., 2004. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta, 68(23): 4877-4889.
- Sánchez-España, J., Diez Ercilla, M., Pérez Cerdán, F., Yusta, I., Boyce, A.J., 2014. Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring. Journal of Hydrology, 511: 494-508. DOI:10.1016/j.jhydrol.2014.02.003
- Shapley, M.D., Ito, E., Donovan, J.J., 2008. Isotopic evolution and climate paleorecords: modeling boundary effects in groundwater-dominated lakes. Journal of Paleolimnology, 39(1): 17-33.
- Skinner, L., 2008. Facing future climate change: is the past relevant? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1885): 4627-4645. DOI:doi:10.1098/rsta.2008.0228
- SKM, 2009. The Victorian Aquifer Framework Summary report submitted to DSE, Melbourne.
- Steinman, B.A., Abbott, M.B., Mann, M.E., Stansell, N.D., Finney, B.P., 2012. 1,500 year quantitative reconstruction of winter precipitation in the Pacific Northwest.
 Proceedings of the National Academy of Sciences, 109(29): 11619-11623.
 DOI:10.1073/pnas.1201083109
- Steinman, B.A., Rosenmeier, M.F., Abbott, M.B., Bain, D.J., 2010. The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models:
 Application to paleoclimate studies in the upper Columbia River basin. Limnology and Oceanography, 55(6): 2231–2245.
- Stepanenko, V.M., Martynov, A., Jöhnk, K.D., Subin, Z.M., Perroud, M., Fang, X., Beyrich, F., Mironov, D., Goyette, S., 2013. A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake. Geoscientific Model Development, 6(4): 1337-1352. DOI:10.5194/gmd-6-1337-2013
- Stets, E.G., Winter, T.C., Rosenberry, D.O., Striegl, R.G., 2010. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resources Research, 46(3). DOI:10.1029/2009WR007793
- Tibby, J., Tiller, D., 2007. Climate–water quality relationships in three Western Victorian (Australia) lakes 1984–2000. Hydrobiologia, 591(1): 219-234. DOI:10.1007/s10750-007-0804-5
- Tierney, J.E., Smerdon, J.E., Anchukaitis, K.J., Seager, R., 2013. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature, 493(7432): 389.

- Timms, B.V., 1976. A Comparative study of the limnology of three maar lakes in western Victoria. I. Physiography and physicochemical features. Marine and Freshwater Research, 27(1): 35-60.
- Timms, B.V., 2005. Salt Lakes in Australia: Present Problems and Prognosis for the Future. Hydrobiologia, 552(1): 1-15. DOI:10.1007/s10750-005-1501-x
- Tyler, J., Leng, M., Sloane, H., Sachse, D., Gleixner, G., 2008. Oxygen isotope ratios of sedimentary biogenic silica reflect the European transcontinental climate gradient. Journal of Quaternary Science, 23(4): 341-350.
- Tyler, J.J., Mills, K., Barr, C., Sniderman, J.M.K., Gell, P.A., Karoly, D.J., 2015. Identifying coherent patterns of environmental change between multiple, multivariate records: an application to four 1000-year diatom records from Victoria, Australia. Quaternary Science Reviews, 119(October): 94-105. DOI:10.1016/j.quascirev.2015.04.010
- Van Boxel, J.H., González-Carranza, Z., Hooghiemstra, H., Bierkens, M., Vélez, M.I., 2013. Reconstructing past precipitation from lake levels and inverse modelling for Andean Lake La Cocha. Journal of Paleolimnology, 51(1): 63-77. DOI:10.1007/s10933-013-9755-1
- Vassiljev, J., Harrison, S.P., Haxeltine, A., 1995. Recent Lake-Level and Outflow Variations at Lake Viljandi, Estonia - Validation of a Coupled Lake Catchment Modeling Scheme for Climate-Change Studies. Journal of Hydrology, 170(1-4): 63-77. DOI:Doi 10.1016/0022-1694(95)02691-H
- Victorian Department of Sustainability and Environment, 2012. Victorian Aquifer Framework: updates for seamless mapping of aquifer surfaces. Produced by GHD for the Victorian Department of Sustainability and Environment.
- Wigdahl, C.R., Saros, J.E., Fritz, S.C., Stone, J.R., Engstrom, D.R., 2014. The influence of basin morphometry on the regional coherence of patterns of diatom-inferred salinity in lakes of the northern Great Plains (USA). The Holocene, 24(5): 603-613. DOI:10.1177/0959683614523154
- Wilkins, D., Gouramanis, C., De Deckker, P., Fifield, L.K., Olley, J., 2013. Holocene lake-level fluctuations in Lakes Keilambete and Gnotuk, southwestern Victoria, Australia. The Holocene, 23(6): 784-795. DOI:10.1177/0959683612471983
- Winter, T.C., 1976. Numerical simulation analysis of the interaction of lakes and ground water. USGS Professional Paper 1001.
- Winter, T.C., 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal, 7(1): 28-45. DOI:10.1007/s100400050178
- Wolfe, B.B., Edwards, T.W., Elgood, R.J., Beuning, K.R., 2002. Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications, Tracking environmental change using lake sediments. Springer, pp. 373-400.
- Yihdego, Y., Webb, J., 2012. Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia. Journal of environmental management, 112: 149-159.

- Yihdego, Y., Webb, J., 2015. Use of a conceptual hydrogeological model and a time variant water budget analysis to determine controls on salinity in Lake Burrumbeet in southeast Australia. Environmental Earth Sciences, 73(4): 1587-1600. DOI:10.1007/s12665-014-3509-x
- Yihdego, Y., Webb, J.A., Leahy, P., 2015. Modelling of lake level under climate change conditions: Lake Purrumbete in southeastern Australia. Environmental Earth Sciences, 73(7): 3855-3872. DOI:10.1007/s12665-014-3669-8

Chapter 2

Lake water ionic and isotopic signatures in relation to lake morphology and hydrogeology: a case study of twelve lakes in south-eastern Australia

Notes: This chapter has been formatted to match the rest of this thesis. Figure and table numbers have been prefixed with the chapter number (e.g. Fig. 1 has been changed to Fig. 2.1).

Statement of Authorship

Title of Paper		Lake water ionic and isotopic signatures in relation to lake morphology and hydrogeology: a case study of twelve lakes in south-eastern Australia				
Publication Status	Published Submitted for Publication	C Accepted for Publication				
Publication Details						

Principal Author

Name of Principal Author (Candidate)	Martin Ankor
Contribution to the Paper	Corresponding Author. Devised initial concept, model design, experimental design. Analysis or results. Wrote manuscript.
Overall percentage (%)	90%
Certification:	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper.
Signature	Date 19 Dec 2019

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. the candidate's stated contribution to the publication is accurate (as detailed above);
- ii. permission is granted for the candidate in include the publication in the thesis; and
- iii. the sum of all co-author contributions is equal to 100% less the candidate's stated contribution.

Name of Co-Author	Jonathan T. Tyler		
Contribution to the Paper	Evaluated and edited manuscript.		
Signature		Date	19 Dec 2019

Please cut and paste additional co-author panels here as required.

Abstract

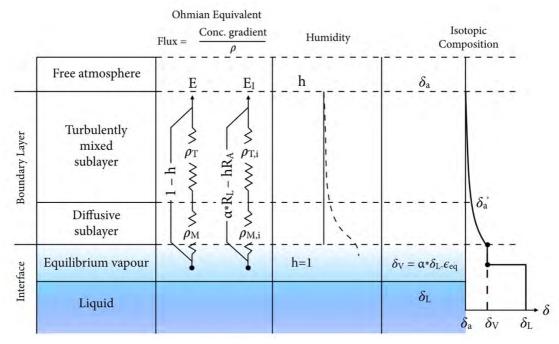
Understanding how lakes interact with their surrounding landscape is a crucial aspect for many lake-based studies, particularly lake modelling projects. The influence of a lake's position in the landscape on the evaporative isotopic fractionation of oxygen and hydrogen, sources of lake water, and groundwater interaction was investigated via ionic and isotopic indicators collected during three years of bi-monthly monitoring at 12 lakes in the Newer Volcanic Field, southeastern Australia. δ^{18} O and δ^{2} H values correlated in all lakes, with regression slopes typical of water evaporation, albeit subject to differences in slope between lakes. For some lakes, hypersaline waters are known to be an important driver of surface water isotopic fractionation, and the effect of this process was modelled using a hydrologic-isotopic mass balance model. Combining data from all sites - including the salinity corrected evaporation slopes for hypersaline lakes - indicated that the slopes of those regression lines (known as local evaporation lines, or LELs) correlate (r^2 =0.89) with the degree to which each lake was sheltered. Cl^{-}/Br^{-} and HCO_{3}^{-}/Cl^{-} geochemical ratios were used to identify likely source water for each lake. Cl[/]/Br⁻ ratios for nine of the lakes are similar to the local groundwater. However, three of the lakes had Cl⁻/Br⁻ ratios well below the ratio of seawater and groundwater. As these lakes are also situated high in the topography above the regional aquifers these observations are interpreted as indicating that the lakes are predominantly fed by rain water. HCO₃⁻/Cl⁻ ratios were used to infer whether the source water to each lake was surface fed (high HCO_3^{-}/Cl^{-}) or from deeper aquifers. The HCO₃-/Cl⁻ results were less clear, with several lakes that are likely groundwater fed being classified as surface fed. It is proposed that an increased spatial density of groundwater sampling is required, especially in regions of younger volcanic ejecta (stony rises) where a high HCO₃⁻/Cl⁻ ratio is commonplace due to rapid water infiltration and associated mineral weathering. Lake water deuterium excess (d-excess) has been proposed as a tracer of lakegroundwater interaction in this region, however the data presented here indicates that seasonal variability obscures any trace of a groundwater signature. It is suggested that a conservative ion may be more likely to indicate the lake-groundwater regime (through-flow or terminal), as dexcess reflects the water residence time, rather than the solute residence time. Overall, the studied lakes in the Newer Volcanic Province are marked by a preponderance of groundwater dependency, in addition to significant evaporative enrichment of major ions and isotopes. These observations lay the foundation, both for palaeoclimatic research using lake sediment geochemistry in the region, as well as for better understanding the response of these lakes to future climate change.

1 Introduction

Lakes are important landscape features, often with high social, cultural and ecological value (Ramsar Convention Secretariat, 2013). Lake sediments also provide insight into past climates, using a variety of geochemical and palaeoecological tracers (Cohen, 2003). However, lakes are also complex, non-linear systems, and a single climatic trend may result in very different hydrological, isotopic and geochemical responses in lakes across a region. (Battarbee, 2000; Rueda et al., 2005; Wigdahl et al., 2014). There is therefore a need for detailed information on the behaviour of lakes across a range of hydroclimate conditions, both to predict how lakes will behave under future climate scenarios, and for improved quantification of past climatic estimates derived from lake sedimentary archives.

A lake's hydrological, isotopic and geochemical balance is primarily determined by incoming and outgoing fluxes (Benson and Paillet, 2002; Crowe, 1993). Defining how lakes interact with the surrounding landscape is a crucial step in the development of conceptual and numerical lake models. Here, we describe a ~3 year dataset of lake water major/minor ionic composition, δ^{18} O, and δ^{2} H for twelve lakes in south-eastern Australia. These data are used to investigate how differing lake and catchment morphologies are represented in the δ^{18} O and δ^{2} H composition of lake waters. In addition, the ratio of Cl⁻/Br⁻ is used to investigate the source of lake water, namely groundwater vs precipitation. Previous research has suggested that HCO₃⁻/Cl⁻ is also indicative of the source water, while d-excess is a tracer of groundwater influence in the region, specifically whether a lake is a through-flow lake with short residence time, or a terminal lake with long residence time (Barton et al., 2013). HCO₃⁻/Cl⁻ and d-excess indicators are assessed to determine their effectiveness over a full seasonal range of lake conditions.

2 Background


2.1 Oxygen and hydrogen isotopes in lake water

The stable isotopes of water – δ^{18} O and δ^2 H – are important tracers of fluxes through the hydrological cycle, commonly used in groundwater studies, ecological and forensic source identification, palaeoclimate research, climate and meteorological studies and water resource management (Bowen and Revenaugh, 2003; Gibson and Reid, 2014; Mattey et al., 2008; Treble et al., 2005; Tyler et al., 2007; Tyler et al., 2015). An important trait of the stable isotopes of water is the preferential evaporation of lighter isotopes (¹⁶O, ¹H) resulting in an enrichment of heavier isotopes (¹⁸O, ²H) in surface waters (Gat, 2010). The isotopic composition of a water

body is a convolution of the fluxes that have contributed to its hydrologic budget and its evaporative history. Isotopic values are commonly reported in delta notation as per mil (‰) deviations from Vienna Standard Mean Ocean Water (VSMOW2), which is related to the isotopic ratio by:

$$\delta_x = 1000 \left(\frac{R_x}{R_{VSMOW2}} - 1 \right) \tag{1}$$

Where R is ¹⁸O/¹⁶O, or ²H/¹H and x is the hydrological component in question. Fractionation of water isotopes during evaporation is described by the model of Craig and Gordon (1965). This model describes a two stage fractionation process, with equilibrium fractionation occurring at the phase change at the water surface, and then a second transport fractionation (sometimes called kinetic fractionation) process from the water surface, through a diffusion layer into the turbulent atmosphere (Fig. 2.1, Eq. 2).

Figure 2.1: The Craig–Gordon model of fractionation of water isotopes during evaporation from a free water surface, adapted from (Gat, 2010).

$$\delta_E = \frac{\alpha^* \delta_w - h_n \delta_A - \varepsilon_{eq} - \varepsilon_{kin}}{1 - h_n + 0.001 \varepsilon_{kin}} \tag{2}$$

Where α^* is the reciprocal of the equilibrium fractionation factor, calculated using the equations of Horita and Wesolowski (1994). δ_W and δ_A represent the isotopic composition of the water and atmosphere, and h_n refers to the relative humidity normalised to the water temperature. The equilibrium separation is calculated by:

$$\varepsilon_{eq} = 1000(1 - \alpha^*) \tag{3}$$

While the transport isotopic separation is calculated by:

$$\varepsilon_{kin} = (1 - h_n)\theta nC_k \tag{4}$$

 C_k is an experimentally derived constant determined by Merlivat (1978) as 28.5‰ for δ^{18} O, and 25.1‰ for δ^2 H. θ is a parameter describing the transport resistance of the diffusion layer, while n is a turbulence factor that relates isotopic separation to wind conditions. The θ and n terms both have a range of 0 to 1 and define the behaviour of the transport separation. Many authors use alternative values of C_k for lake studies – 14.2‰ for δ^{18} O, and 12.5‰ for δ^2 H – assuming an n value of 0.5 (Gibson et al., 2015; Horita et al., 2008). θ is often assumed to be 1 for lakes (Gibson et al., 2015; Gibson et al., 2002; Jones et al., 2005; Shapley et al., 2008; Steinman et al., 2010), however, lower values of θ (e.g. $\theta = 0.5$) have been used to match observations for some lakes (Kebede et al., 2009). While not commonly used for lake research, an alternative formulation for transport fractionation (Merlivat and Jouzel, 1979) is widely used in global climate models (Gibson et al., 2015).

Evaporative fractionation of a body of water follows a generally linear trend in the relationship between δ^{18} O and δ^{2} H, known as a local evaporation line (LEL). The slope of LELs is dependent upon the degree of equilibrium and transport fractionation. Soil water samples that evaporate through a non-turbulent, fully formed diffusion layer typically have a value of 1 for both θ and *n* terms, defining an LEL with a slope of ~2.5 (Gat, 2010). Conversely, a value of 0 for θn will completely remove the transport separation and yield a local evaporation line of ~8. This is similar to the slope of δ^{18} O vs. δ^{2} H in global precipitation, known as the global meteoric water line (GMWL). Craig and Gordon (1965) defined the slope of the GMWL as $\delta^2 H = 8\delta^{18}O + 10$. Differences in the slopes of LELs have often been assumed to be primarily influenced by near surface humidity (Holland and Turekian, 2010; Mackay et al., 2003; Mook and Rozanski, 2000; Shapley et al., 2008). However, Gat (2010) demonstrated that in scenarios where δ_A is in equilibrium with the isotopic composition of precipitation (δ_P) the slope is not affected by humidity. δ_A is often assumed to be in equilibrium with local δ_P , however recent studies have suggested that this assumption may only be valid around the time that the rainfall is sampled (Crawford et al., 2019). One aspect that is rarely considered in assessing lake LELs is the lake morphology. It is commonly accepted that the *n* turbulence parameter is set to 1 for soil

evaporation, and 0.5 for lakes. However turbulence varies along this continuum as a function of the interaction between wind speed and the degree of sheltering afforded by the topography and vegetation. There has been limited work exploring how *n* varies between these two end-members.

2.2 Cl⁻/Br and HCO₃⁻/Cl⁻: determination of lake source water

Determination of the sources of lake water is a key criterion for understanding and modelling lake hydrological variability. The ratio between chloride and bromide ions (Cl⁻/Br⁻) may be applied as a tracer to identify the sources that contribute to a body of water (Alcalá and Custodio, 2008; Cartwright et al., 2013; Cartwright et al., 2006; Davis et al., 1998). While Cl⁻ and Br⁻ are both conservative halogen ions with broadly similar geochemical characteristics (Behne, 1953), there are differences in both natural variation, as well as solubility, with bromine compounds being more soluble than chlorine, leading to Br⁻ being concentrated in brines while halite precipitates out (Davis et al., 1998). The Cl⁻/Br⁻ mass ratio of seawater is 288-292 (650-660 molar ratio) and Cl⁻/Br⁻ ratios in precipitation generally decrease with distance from the coastline (Cartwright et al., 2006; Davis et al., 1998). Davis et al. (1998) speculated that the Cl⁻ /Br⁻ of precipitation ranged from 130 to 180 (293–406 molar ratio) near the coast, decreasing to 50 (112 molar ratio) several hundred kilometers inland, based on a compilation of seven studies, with data from Alaska, Hawaii, Antarctica, Massachusetts, Ontario, Nevada, California, and Arizona. The studied lakes in south-eastern Australia extend from 25 to 76 km from the coastline and may potentially display a gradient in Cl⁻/Br⁻ ratios. In contrast, Cl⁻/Br⁻ ratios of groundwater within the study area are similar to those of seawater (Barton et al., 2013; Cartwright et al., 2013), likely due to halite precipitation and redissolution (eg: evapotranspiration, salt lakes), or windblown halite from the interior of the continent (Cartwright et al., 2006).

An alternative indicator of lake source water is the HCO_3^-/Cl^- ratio (Barton et al., 2013). The HCO_3^-/Cl^- ratio may be applied to determine whether the lake is predominantly fed by surface waters or groundwater. High HCO_3^- and low Cl^- is attributed to mineral weathering by surface water and interflow that produces HCO_3^- as a by-product, whereas groundwater is assumed to be higher salinity and lower HCO_3^- due to carbonate precipitation and evapotranspiration in the soil zone (Barton et al., 2013). Previous research in western Victoria used HCO_3^-/Cl^- ratios to infer the dominant source of water at 24 sites, including rivers, estuaries and lakes (Barton et al., 2013). However, that study was conducted over a limited temporal range, with only one or

two samples per site over a three month period. There are therefore uncertainties regarding the degree to which HCO_3^{-}/Cl^{-} ratios reflect lake-groundwater interaction over the seasonal cycle.

2.3 Deuterium excess: determination of lake-groundwater regime

An important aspect of lake hydrology is the interaction between surface waters and surrounding groundwater (Winter, 1999). A method for determining the groundwater regime of lake systems – applied specifically to lakes in the Newer Volcanic Province, south-eastern Australia, is to use the deuterium excess (a measure of deviation from the GMWL: d-excess = $\delta^2 H - 8\delta^{18}O$) of a lake to define the flow regime (Barton et al., 2013). Low d-excess values are considered indicative of a terminal lake (also described as discharge lake), with long residence times and negligible flux from the lake to groundwater, reflecting a high contribution of evaporation to outgoing hydrological fluxes. Conversely, high d-excess has been interpreted to reflect a through-flow lake–groundwater system with short residence times, where evaporation contributes only a relatively small fraction of the outgoing fluxes (Barton et al., 2013).

2.4 Site selection

The Newer Volcanic Province in western Victoria and south-eastern South Australia is a unique region in Australia, with a multitude of lakes featuring different origins, morphologies, and hydrological and chemical behaviour, all sharing a similar climate (Figure 2.2).



Figure 2.2: Regional setting, showing lakes of the Newer Volcanic Province monitored during this study.

The lakes sampled for this study (Table 2.1) were chosen mostly for their relevance to palaeoclimate research, combined with their potential for lake modelling. Desirable attributes were that the lake had to be permanent in nature – as it can be problematic to model through a dry lake scenario – with the potential to develop datasets required for model calibration, such as: lake and catchment bathymetry and topography; lake water level records; water temperature and/or stratification; and the isotopic and geochemical composition of lake waters. In addition, lakes with simple morphology and catchments were preferred to avoid obfuscation of lake responses with signals from well outside the lake. An extended background for each lake is included in the supplementary data, detailing lake conditions, morphology, and the lake's position in relation to the surrounding geological formations and aquifers.

	(Sep 2018)		Aug 2016 – Sep 2018						
	Depth (m)	Water level (mAHD)	Average surface water temp °C	Average pH	Average TDS (mg/L)	Average δ ¹⁸ Ο	Average δ²H	Local evaporation line slope	Lake sheltering index
Lake Leake	2	90.4	17.6 ± 5.3	8.7 ± 0.4	3790 ± 910	1.9 ± 2.9	10.3 ± 13.7	4.6	14
Lake Edward	6	104.1	16.8 ± 4.9	6.3 ± 0.9	4280 ± 340	2.6 ± 0.8	13.8 ± 3.5	4.6	17
Lake Surprise	11.5	78.5	17.1 ± 5.6	8.9 ± 0.5	452 ± 27	2.5 ± 0.6	9.7 ± 2.2	4.2	5
Lake Keilambete	~9 *	103.02 (Aug 2016)	18 ± 6.9	8.8 ± 0.1	101600 ± 4100	2.7 ± 0.5	12.0 ± 2.7	4.6	27
Lake Mumblin	~8	90.4	17.2 ± 6.3	7.8 ± 0.7	788 ± 69	2.8 ± 1.9	11.3 ± 7.8	4.2	7
Lake Elingamite	3.2 *	125.8	17.2 ± 6.8	8.0 ± 0.5	3600 ± 800	1.1 ± 2.7	7.4 ± 13.8	5.0	67
Lake Bullen Merri	60	139.5	16.1 ± 4.8	9.3 ± 0.1	9260 ± 190	3.1 ± 0.2	16.0 ± 1.4	5.5	19
Lake Gnotuk	15	100.2	17.8 ± 5.6	8.6 ± 0.1	69700 ± 2200	3.4 ± 0.3	15.7 ± 2.5	4.7	12
Lake Purrumbete	45	135.0	15.6 ± 4.5	8.7 ± 0.3	525 ± 27	2.0 ± 0.5	12.6 ± 3.0	5.5	100
Lake Tooliorook	~2 *	-	16.4 ± 5.6	8.0 ± 0.5	3930 ± 850	1.0 ± 1.7	6.5 ± 8.7	5.4	100
West Basin	12.5 *	111.5	16.5 ± 5.3	8.8 ± 0.1	107000 ± 9400	3.4 ± 0.9	12.2 ± 4.3	4.1	14
East Basin	12.1 *	113.6	16.5 ± 5.2	9.0 ± 0.1	82500 ± 4700	2.3 ± 0.8	14.9 ± 4.1	4.4	18

Table 2.1: Summary table of lakes studied. Average values shown are from Aug 2016 to Sep 2018 and are shown to one standard deviation. Lake sheltering index is defined as the ratio of horizontal to vertical distance from the highest windbreak (typically crater rim) to lake centre.

* Lake level data is from earlier studies. See the supporting information for specific lake details.

2.5 Regional setting

The Newer Volcanic Province is a region of Pliocene to Holocene monogenetic basalt plains extending from Melbourne, Victoria to Millicent, South Australia. There are over 416 eruption centres within the province, including numerous maars and scoria cones (Boyce, 2013). The Newer Volcanic Province is divided into 3 sub-provinces: The Central Highlands, the Western Plains, and the Mt Gambier sub-province (Cas et al., 1993; Nicholls and Joyce, 1989). The Central Highlands lie in the north east of the province with the basalt flows directly overlying the Palaeozoic basement (Lesti et al., 2008). The Western Plains sub-province contains all the Victorian lakes studied, and overlies the Cretaceous–Tertiary sediments of the Otway Basin. The Mt Gambier sub-province is a small region of volcanic plains overlying the limestones of the Gambier Embayment of the Otway Basin and includes the youngest eruption centre of Mt Gambier with an age of ~5 ka (van Otterloo and Cas, 2013) as well as Lakes Leake and Edward. Almost all the maar or maar-cone complexes are in the south of the Newer Volcanic Province (Fig. 2.2) where the basalts overlie the sediments and associated aquifers of the Otway Basin (Boyce, 2013). This provides somewhat of a constraint on lake locations. Of the twelve lakes that fitted the selection criteria, specifically that they form permanent water bodies, only three, Lake Surprise, Lake Mumblin and Lake Tooliorook, are not maar or maar-cone lakes, likely due to the tendency for maar eruptions to form deep craters below the natural topography.

Underlying the Western Plains sub-province are several sedimentary formations of the Otway Basin, the configuration of which varies across the province. In the north-eastern part of the basin lies the Sandringham Sands formation (previously defined as the Moorabool Viaduct formation), consisting of shallow marine and fluvial sands and sandstones, lying unconformably above sediments from a marine transgression and late Miocene regression. The underlying units are either the Gellibrand Marl or the Port Campbell limestone. The Port Campbell Limestone extends inland tapering out ~50 km from the current coastline. Below the limestone lies the Gellibrand Marl, an aquitard of clay and marl, which extends beneath all the lakes. The Gellibrand Marl near the lakes is typically several hundred metres thick and separates the aquifers contained within the overlying limestone, sands and basalt from deeper underlying aquifers and formations (Victorian Department of Sustainability and Environment, 2014).

Hydrogeologically, the basalt and sands have similar hydraulic properties, with hydraulic conductivities of 10⁻² to 10¹ and 10⁻³ to 10² m/day respectively. They are hydraulically connected and are often treated as a single unconfined aquifer (Dahlhaus et al., 2002b; Yihdego et al., 2014). The Port Campbell Limestone has a variable hydraulic conductivity typically <1 m/day, increasing in the upper parts due to karst formation (Nicolaides, 1997). The Gellibrand Marl has a likely hydraulic conductivity of 10⁻⁶ to 10⁻² m/day (Dahlhaus et al., 2002a).

The Mt Gambier sub-province overlies the limestones of the Mt Gambier Embayment. The craters of Lake Leake and Edward extrude through the late Pleistocene calcarenite of the Bridgewater Formation and overlying aeolian sands. On the plains surrounding the craters, the volcanic ejecta is covered by the Bridgewater formation, and overlies the Oligo-Miocene Gambier Limestone (Boult and Hibburt, 2002; Forestry SA, 2010). The Gambier Limestone is an important unconfined aquifer in the region, with very high hydraulic transmissivities, from 20 to above 25000 m²/day in karstic regions (Mustafa and Lawson, 2002), and numerous karst features such as cenotes, dolines, and caves.

2.6 Regional climate

The Newer Volcanic province lies within a temperate climate. Average daily temperatures are around 13 °C with an average daily temperature of 18.9 °C in summer to 8.4 °C in winter. Average humidity is ~75 %. Yearly average rainfall varies across the province from ~1100mm in the most southern regions by the coast, to ~600 mm along the northern edges. Most of the lakes lie within the middle of the province, from 25 to 50km from the ocean, with a rainfall of around 700 to 800 mm/year. Rainfall is brought to the region predominantly by mid-latitude storms and fronts during winter, and via tropical-extratropical driven cloud bands from the north-west during autumn and early winter (Murphy and Timbal, 2008). Yearly rainfall amounts are fairly homogeneous across the lakes, but there is variation in seasonality. The long term (1961-1990) monthly average rainfall from Bureau of Meteorology (BOM) stations near each lake shows that the westernmost lakes – Leake and Edward in South Australia – receive a higher portion of winter rainfall (~41 % of yearly total) than the Victorian lakes, which receive ~33 % of their yearly total rainfall during the winter months. The Victorian lakes, however, receive more rainfall in spring and summer (43 % of yearly total) than Leake and Edward (34 % of yearly total).

3 Methods

3.1 Lake water levels

Lake water levels and benchmarks were initially established using a CORS network (Leica Smartnet) enabled 1200GG GPS in April 2016. Existing benchmarks based on survey marks near lakes (Purrumbete, Gnotuk, Bullen Merri, Leake) were checked against current survey mark values. On subsequent sampling trips, a Leica 1200 TCRP R300 total station was used to locate the current lake water levels relative to the benchmarks. Levels were recorded for all lakes except Tooliorook and Keilambete. All heights are measured to the Australian Height Datum (AHD) and GPS derived heights have had geoid corrections applied.

3.2 Lake sheltering index

A metric of lake morphology was determined by assessing the most common wind direction (south-westerly) for the lakes during the months of greatest evaporation (from October to May). For each catchment, the most significant windbreak on the upwind side of the lake was determined (typically the crater rim), with a lake sheltering index (*LSI*) determined as distance from the windbreak to the lake centre, divided by the height of the windbreak from the lake

surface. This is similar to the windbreak assessment methods used in agriculture and microclimate studies (McNaughton, 1988).

3.3 Water sampling

Lakes were sampled near the shorelines. Samples for stable isotopes were collected in 15–30 ml HDPE bottles. Samples for chemistry were collected in acid washed 500 ml sample bottles. All bottles were rinsed 3 times in lake water with the samples collected from undisturbed water slightly away from the rinsing location. All samples were refrigerated when possible during each trip and immediately upon return. Conductivity, pH and water temperature were recorded with a Hanna 98194 water quality meter, calibrated in the lab prior to each field trip with a single point conductivity calibration using 5000 µs/cm standard, and a two point pH calibration using 9.18 and 4.01 pH standards. Weather conditions for each day were documented, recording air temperature, humidity, cloud conditions, water clarity, water surface conditions (small waves, calm), and wind speed and direction. Air temperature and humidity data were collected from the nearest BOM weather station, whereas the remainder were on site observations. Photos and GPS coordinates of each sampling site were recorded. Due to time constraints for each field trip, alkalinity determinations were done in the laboratory shortly after each trip using a Hach digital titrator to pH 4.5. Each 500 ml sample was split in the laboratory with ~100 ml used for alkalinity testing, two sets of 0.45 µm filtered 50 ml samples in acid washed centrifuge tubes for cations and anions analysis, with the remainder kept as an archive sample in an acid washed bottle. The cation sample was treated with two drops of analytical grade HNO₃ to drop the pH of the sample to <2 and prevent cation adsorption and precipitation.

3.4 *Major/minor ions*, δ^{18} O, and δ^{2} H

Samples were analysed at the Australian Nuclear Science and Technology Organisation (ANSTO) for major and minor ions and trace elements. Anions were analysed using ion chromatography (Dionex ICS-2100 Ion Chromatograph) with samples diluted 10–100x with high purity (18 M Ω) water if necessary. Each sample was analysed using external calibration from 0.01 to 100 ppm, combined with a check for instrument drift against a standard every 20 samples. Cations were determined using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES; Thermo Fisher iCAP 7600). Electroneutrality charge balance checks for most samples were within 10 %, with 90 % of samples within 5 %. Three freshwater samples (TDS <1000 mg/L) had a charge balance difference just outside 10 % up to 13.5 %. δ^{18} O and δ^{2} H were analysed at ANSTO and Flinders Analytical using a Picarro Cavity Ring-Down

Spectrometer (Picarro, Inc., Santa Clara, CA, USA), or by continuous flow isotope ratio mass spectrometry (IRMS) (Delta V Advantage) at ANSTO for some high salinity samples. CO₂ equilibrium was used for δ^{18} O IRMS analysis, and platinum reduction for δ^{2} H. IRMS results were converted from activity to concentration scale using the technique of Gat (2010). Samples run at ANSTO were calibrated against 2 in-house standards (AILS-006 and AILS 008), with a QC check against 4 additional in-house standards (AILS-005, AILS-007, AILS-009, AILS-012). Picarro calibration at Flinders was performed using 2 in-house standards (DESAL and EVIAN), with a QC check against a third in-house standard (RAIN). Samples processed at ANSTO on the Picarro were injected 7 times, with the first two samples not included in the analysis to minimise memory effects. Results are reported as accurate to \pm 0.15 ‰ for δ^{18} O, and \pm 1 ‰ for δ^2 H. Flinders Analytical samples were injected 7 times with the first 3 injections discarded. A precision (1 σ) was reported against an in-house QC standard (RAIN) of ±0.1 ‰ for δ^{18} O, and ± 0.5 ‰ for δ^2 H. ANSTO in-house standards were run alongside the samples processed at Flinders Analytical to ensure consistent results between both labs. All isotopic results are reported using the delta notation as per mil (‰) deviations from Vienna Standard Mean Ocean Water (VSMOW2). The results from these analyses are included in Appendix One of this thesis.

3.5 Isotopic modelling to account for salinity effects

In order to tease out the effects of salinity upon isotopic fractionation during evaporation for the four hypersaline lakes (Lakes Keilambete, Gnotuk, East Basin and West Basin), a numerical model (described in detail in Chapter 5 this thesis) was used to simulate δ^{18} O and δ^{2} H evolution, both with observed salinity and assuming salinity of zero. This provided an estimated slope for each local evaporation line with and without the influence of salinity.

3.6 Isotopic modelling for sensitivity analysis

A model was applied to examine how evaporative fractionation of δ^{18} O and δ^{2} H is influenced by humidity, evaporative feedback (where some portion of the air at the lake surface is derived from evaporated flux from the lake), and scenarios where δ_A is not in equilibrium with δ_P . A simple numeric model of a desiccating pond was applied, using eq. 2, and the C_k values of Merlivat (1978) as 28.5 ‰ for δ^{18} O, and 25.1 ‰ for δ^{2} H, with θ and *n* both set to 0.5. Three scenarios were simulated. One, with atmospheric feedback of 10 %, and two with δ_A shifted from δ_P by ±10 %. Each of these scenarios was run with humidity set to 65 %, 75 % and 85 % for a total of 9 simulations. 85 % was used as an upper limit due to the increase in error propagation in the Craig and Gordon model at high humidity values (Kumar and Nachiappan, 1999).

4 Results

4.1 Lake levels

At the start of the monitoring in 2016, most lakes had quite low water levels, with no access to the water at Lake Leake and Lake Elingamite, and areas of lake bed mud exposed at Lake Mumblin. Lakes Leake and Edward generally had similar level responses, with a large seasonal cycle and a rapid recovery from the low lake levels (Fig. 2.4). Likewise, Lakes Surprise and Purrumbete had a very rapid recovery with lake levels rising ~1 m by late 2016. Lake Mumblin also had a rapid recovery, increasing nearly as much as Surprise and Purrumbete by 2018, with Elingamite slightly lower. Unfortunately, both Lakes Mumblin and Elingamite were unable to be surveyed in April 2016. East and West Basin had very sluggish or minimal recovery, with lake levels only rising slightly during the course of the monitoring. Lakes Bullen Merri and Gnotuk continued their long term decline with lake levels slightly lower in 2018 compared to 2016.

4.2 General lake water chemistry

Most of the studied lakes are Na/Cl type, with an increased dominance of Na/Cl ions at higher salinities (Fig. 2.3). The typically acidic Lake Edward has a higher ratio of sulphate ions compared to the other lakes of similar salinity. The freshwater Lake Purrumbete and Lake Surprise showed increased dominance of bicarbonate ions (Fig. 2.3). Average pH for all lakes except Lake Edward was 8.7 ±0.6, whereas Lake Edward had an average pH of 6.5 ±1.1 (Fig. 2.4). pH generally does not correlate with lake water level, with the exception of Lake Edward, which showed a clear negative correlation. Most of the lakes showed a negative correlation between water level and TDS values, though a few lakes – Bullen Merri, Purrumbete, Surprise – showed occasional deviations where TDS values varied separately to water level (Fig. 2.4). Generally, TDS and δ^{18} O and δ^{2} H composition of the lakes tracked together through the seasonal cycle.

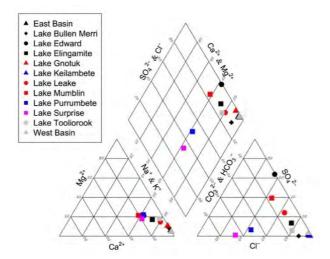


Figure 2.3: Piper diagram showing average chemical composition for each lake. Triangles represent hypersaline lakes. Diamonds represent brackish lakes (Lake Bullen Merri). Squares represent the fresher lakes with a TDS < 4000 mg/L. Circles represent the two South Australian lakes, Lake Leake and Lake Edward.

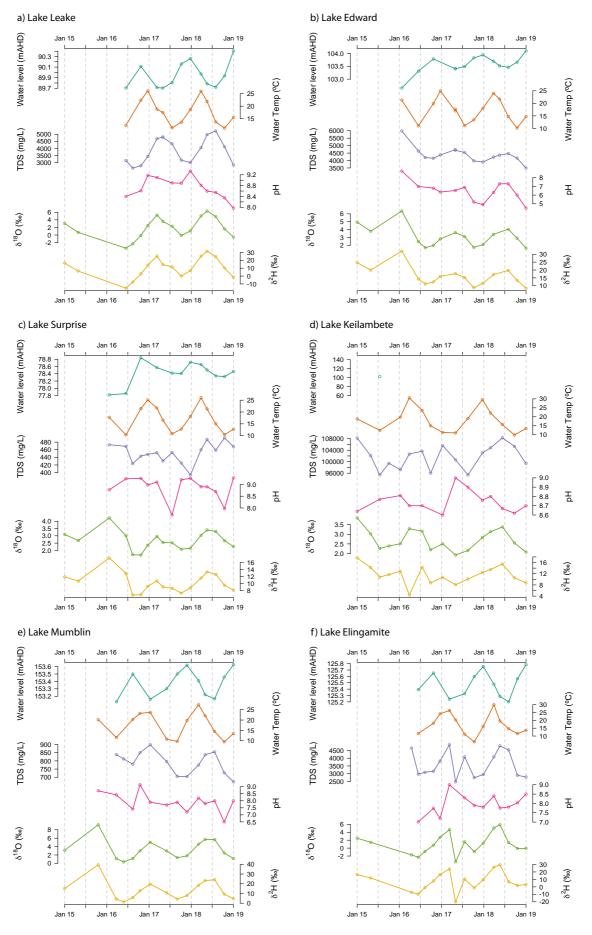


Figure 2.4: Monitoring results. Time series of lake levels, water temperature, TDS, pH, δ^{18} O and δ^{2} H for the 12 lakes.

Jan 19

Water Temp (°C)

Ч

δ²Η (‰)

Water Temp (°C) 25 20 15 10

Нd

δ²Η (‰)

Water Temp (°C) 25 20 15

Чd

δ²Η (‰)

10

9.0

8.5

8.0

20 15

10

Jan 19

9.5 9.0 8.5 8.0 7.5 7.0

- 30 - 20 - 10 - 0 - 10

Jan 19

Jan 19

9.8 9.8 9.4 9.0 8.6

8.6

= 18 = 16 = 14 = 12

Jan 19

Jan 19

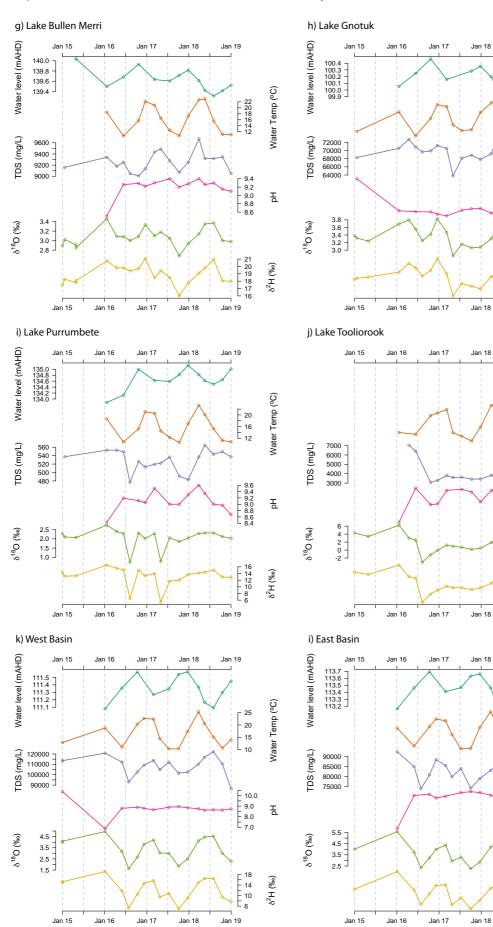


Figure 2.4: Continued

4.3 Between site differences in δ^{18} O and δ^{2} H

As salinity can affect δ^{18} O and δ^{2} H evaporative fractionation (Gat, 2010), the lakes were divided into two categories based on whether they were hypersaline or fresh/brackish. The eight lakes with lower salinity exhibited three distinct local evaporation lines (Fig. 2.5a). Of these, the South Australian lakes, Leake and Edward, at the extreme western margin of the studied region, formed a well-defined evaporation line with a slope of 4.6 ($r^{2} = 0.99$, n = 32) (Fig. 2.5a). The intersect between the South Australian lakes and the global meteoric water line (GMWL, slope of δ^{2} H = $8\delta^{18}$ O + 10) (Craig, 1961), lies slightly higher than the Victorian lakes, intersecting at -2.5 ‰ for δ^{18} O and -10 ‰ for δ^{2} H. The lake sheltering index value for these lakes is 14 for Leake, and 17 for Edward.

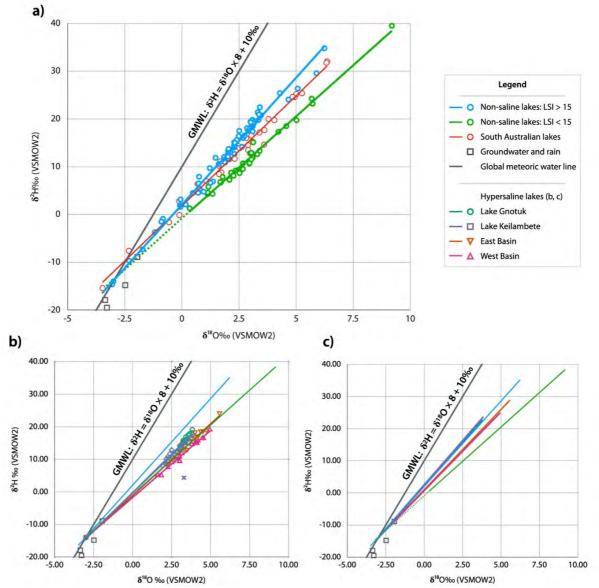


Figure 2.5: *a*) Average local evaporation lines for fresh–brackish lakes. *b*) Local evaporation lines for hypersaline lakes. *c*) Modelled local evaporation lines for hypersaline lakes, corrected for salinity effects. Also shown in (c) and (b) are the fresh-brackish local evaporation lines (light blue, green) for Victorian lakes from (a) for comparison. The outlier from Lake Keilambete, marked with an x symbol in (b) was not used in the determination of the Lake Keilambete LEL slope.

The Victorian fresh–brackish lakes formed two distinct local evaporation lines. The isotopic data for Lakes Bullen Merri, Elingamite, Purrumbete and Tooliorook exhibited steeper evaporation lines, with an average slope of 5.3 ($r^2 = 0.98$, n = 76). The two remaining lakes - Surprise and Mumblin, defined LELs with an average slope of 4.3 ($r^2 = 0.98$, n = 33). The differences in slope of the LELs appears to correspond with the degree of sheltering between different lakes, with *LSI* values of 100 for Toliorook and Purrumbete, 67 for Elingamite, and 19 for Bullen Merri. Lake Surprise and Lake Mumblin, being the smallest lakes lying within steep craters, are well sheltered, with *LSI* values of 5 and 7 respectively. Both LELs defined by sheltered lakes intersect with the GMWL at -3 ‰, -14 ‰ for δ^{18} O and δ^{2} H.

The hyper-saline lakes defined 4 evaporation lines, with slopes of 4.6 for Keilambete, 4.7 for Gnotuk, 4.1 for West Basin and 4.4 for East Basin (Fig. 2.5b, Table 1). One outlier was noted for the Lake Keilambete data as it had very low δ^2 H values relative to δ^{18} O, approximately 10 ‰ lower than suggested by the evaporation line. The reason for this outlier was uncertain, however as the δ^{18} O and δ^2 H values for that datapoint are not compatible with hydrological mixing and evaporative isotopic fractionation processes, that datapoint was not used in the determination of the LEL slope. The isotopic values for the hyper-saline lakes did not extend close to the GMWL, remaining relatively enriched during the entire monitoring timeframe. These slopes are therefore derived assuming an intersection point of -3.0 ‰ for δ^{18} O, and -14 ‰ for δ^{2} H at the GMWL, as per the other lakes in the study. Model derived local evaporation line slopes, assuming a freshwater system for each lake, resulted in slopes of 5.4 for Gnotuk, 5.5 for Keilambete, and 5.0 and 4.9 for East and West Basin respectively (Fig. 2.5c). Lake Gnotuk has an LSI value of 12, Lake Keilambete is 27, and East and West Basin are 18 and 14 respectively. A θn value of 0.2 was required for the modelling of Keilambete, 0.21 for Gnotuk, 0.25 for East Basin and 0.27 for West Basin. To achieve an LEL of 4.2 as observed at Lake Surprise and Lake Mumblin, required a θn of ~0.43.

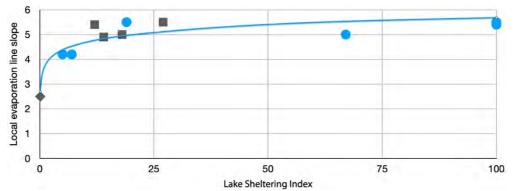


Figure 2.6: Log-regression for slope of the local evaporation line against the lake sheltering index for the Victorian lakes. $R^2 = 0.83$. Fresh-brackish lakes shown in blue, while hypersaline lakes are shown in grey. Soil water, representing the condition of maximum isotopic transport fractionation through a fully formed diffusion layer, is shown as a grey diamond. Regression equation is: LEL slope = $0.4327 \ln(LSI) + 3.6896$.

The slope of local evaporation lines for all ten Victorian lakes appears to correspond to the lake sheltering index. To test for correlation, a log-regression model was applied to the lake data, combined with the local evaporation line typically defined by soil water, with a slope of 2.5 and an LSI of 0, representing one end of the turbulence continuum, with a fully formed diffusion layer and minimal turbulence (Fig. 2.6). The regression model between log transformed LSI values and LEL slopes yielded an r^2 of 0.83, with a *p* value of < 0.001 (Fig. 2.6).

Isotopic modelling for sensitivity analysis 4.4

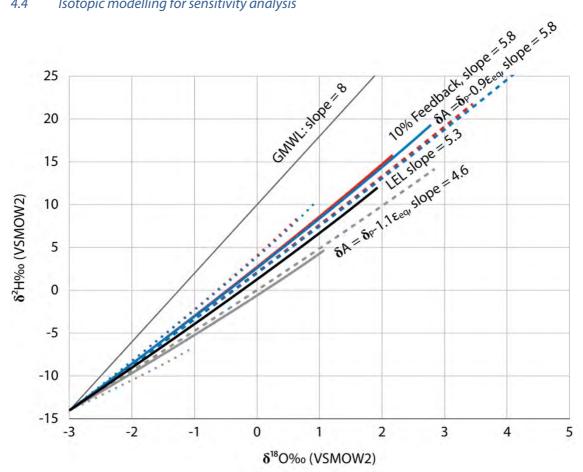


Figure 2.7: Modelled isotopic enrichment of a desiccating pond for 4 scenarios. 75 % humidity values shown as solid line. 65 % humidity values shown as a dashed line. 85 % humidity scenarios shown with a dotted line. Default scenario shown in black. 10 % evaporative feedback scenario shown in red. $\delta_A = \delta_P - 0.9\varepsilon_{eq}$ scenario shown in blue. $\delta_A = \delta_P - 0.9\varepsilon_{eq}$ $1.1\varepsilon_{eq}$ shown in grey.

A numerical model of a desiccating pond with δ_A in equilibrium with δ_P , and θ and *n* both set to 0.5, produced an enrichment of lake water δ^{18} O and δ^{2} H along a local evaporation line with a slope of 5.3 (Fig. 2.7). Increasing humidity did not change the slope, but did decrease the extent of lake water δ^{18} O and δ^{2} H evolution (Fig. 2.7). An increase of 10 % humidity lowered the maximum enrichment of lake water from 1.9 ‰ to 0.1 ‰ for δ^{18} O and from 12.0 ‰ to 1.7 ‰ for δ^2 H. Introducing 10 % of evaporative feedback – where some of the evaporated flux is mixed back into the atmosphere – increased the slope of the local evaporation line defined by the δ^{18} O

and δ^2 H evolution of lake waters to 5.8 (Fig. 2.7). Under these conditions, humidity had an effect, with an increase in humidity steepening the slope of the local evaporation line, while lowering the extent of isotopic enrichment of the lake waters, with the opposite effect for a decrease in humidity. Shifting δ_A from equilibrium with δ_P ($\delta_A = \delta_P - 0.9\epsilon_{eq}$) had a similar effect on the local evaporation line slope, increasing it to 5.8, but also increased the extent of δ^{18} O and δ^2 H enrichment of lake water. Defining δ_A as $\delta_P - 1.1\epsilon_{eq}$ decreased the slope and extent of enrichment. Under this scenario, the effect of humidity on the slope of the local evaporation line slope in humidity decreased the modelled local evaporation line slope to 4.6.

4.5 Cl⁻/Br⁻ source water investigation

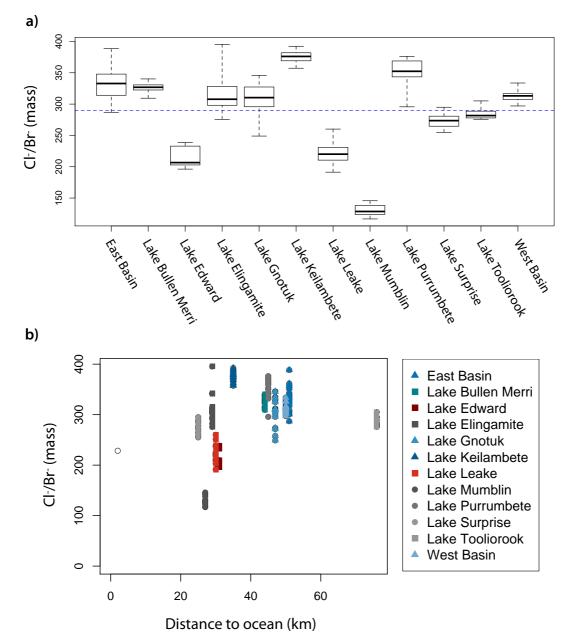
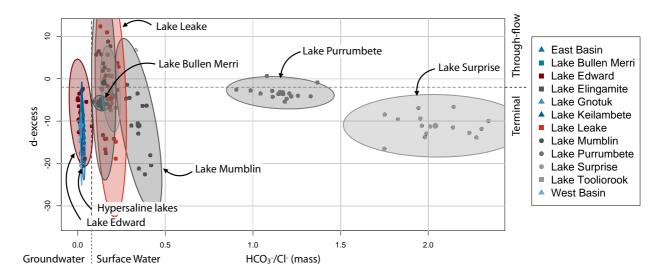



Figure 2.8: a) Box plot showing the Cl/Br ratios for each lake. b) Scatterplot of Cl/Br vs distance from the ocean.

Most of the lakes have Cl⁻/Br⁻ ratios close to or above seawater (290 Cl⁻/Br⁻ mass ratio). However, Lakes Mumblin, Edward and Leake all have Cl⁻/Br⁻ ratios substantially lower, with ~130 for Mumblin to ~220 for Leake and Edward. Cl/Br ratios for the monitored lakes show no statistically significant relationship with distance from coast. Furthermore, the weak trend that they do suggest is counter to that proposed by Davis et al. (1998), with increased Cl⁻/Br⁻ ratio for lakes further inland.

4.6 HCO_3^{-}/Cl^{-} and d-excess lake assessment

Figure 2.9: HCO₃⁻/Cl⁻ and d-excess plot for all 12 lakes. Ellipses show observed range for some lakes. Dotted lines represent the proposed category boundaries of Barton et al. (2013).

 HCO_3^{-}/Cl^{-} can potentially define whether a lake is groundwater fed or surface water fed, with surface water fed lakes having a higher HCO_3^{-}/Cl^{-} (Barton et al., 2013). Applying the methodology proposed by Barton et al. (2013) placed all the hyper-saline lakes in the "groundwater dominated" category, with HCO_3^{-}/Cl^{-} ratios from 0.018 to 0.03, below the category boundary of ~0.08 proposed by Barton et al. (2013) (Fig 2.9). Lake Edward also fell within that category, likely due to the acidic nature of the lake preventing any concentration of HCO_3^{-} . Lakes Leake, Elingamite, Bullen Merri, Tooliorook and Mumblin fell within the "surface water dominated" category with HCO_3^{-}/Cl^{-} ratios from ~0.13 to ~0.35. Lake Surprise and Lake Purrumbete also fell within the "surface water dominated" category with very high HCO_3^{-}/Cl^{-} ratios of ~1.2 and ~2 respectively. Deuterium excess was applied to determine the residence time of the lake. According to Barton et al. (2013) low d-excess is interpreted to infer that a lake has a long residence time and is a terminal lake, whereas high d-excess suggests that a lake is predominantly through-flow, with a short residence time. Using the average d-excess for each lake, and the proposed boundary between long residence, terminal lakes and short residence time, through-flow lakes of -2 ‰ (Barton et al., 2013), defined all of the lakes except Lake Elingamite and Lake Toolirook as terminal lakes, with an average d-excess of -9.1 ‰, ranging from -3.3 ‰ for Lake Purrumbete to -14.5 ‰ for West Basin. Many of the lakes had a significant seasonal variation in d-excess, ranging from 2.4 ‰ for Lake Bullen Merri to 32.6 ‰ for Lake Mumblin, with an average range of 16.5 ‰ for all lakes over the three years of monitoring.

5 Discussion

5.1 General lake chemistry and lake water levels

All lakes share a similar climate, so it could be expected that lake levels would behave similarly across all lakes, however, this was not the case. The monitoring program began at the end of a dry spell, with several of the lakes inaccessible during early visits due to exposed mud. The lakes responded in four different ways. The South Australian lakes recovered very quickly. Lake Edward and Lake Leake rose very quickly during 2016, with average yearly levels continuing to rise over the following 2 years. This rapid recovery can be attributed to high rainfall, with yearly rainfall amounts of 1097 mm, 886 mm and 863 mm (BOM station at Lake Leake) for 2016-2018. Over that timeframe the Victorian lakes only received ~841 mm, ~813 mm and ~641 mm (Average of BOM stations at Macarthur, Terang and Camperdown). Besides explaining the rapid recovery of Lake Leake and Lake Edward, this observation further emphasises that the South Australian lakes are exposed to a different seasonal rainfall pattern than the Victorian lakes. The Victorian lakes responded in 3 different ways. The hypersaline East and West Basin rose very slightly over 2016–2018, essentially being near steady state. Lake Bullen Merri and Lake Gnotuk continued the pattern of long-term decline as manifest since the 1850s (Currey, 1970; Jones et al., 2001), while less saline lakes all increased lake levels significantly over the monitoring timeframe. It appears that, with the exception of Lake Bullen Merri and Lake Gnotuk, the lakes' response to hydroclimate is correlated to their salinity, which is likely related to the groundwater regime - through-flow, terminal or intermediate. The freshest lakes -Purrumbete and Surprise, followed by Lake Mumblin - responded rapidly and achieved the highest September 2018 levels relative to Aug 2016. The intermediate Lake Elingamite increased its water levels, expressing an intermediate magnitude of change between that of the fresh lakes and that of East and West Basin.

Differences in the groundwater regime, in combination with the differing response times of lakes and groundwater to changes in hydroclimate may influence lake water level behaviour.

Chapter 2

Whilst a lake will respond rapidly to changes in hydroclimate, groundwater systems may have a delayed response (Urbano et al., 2004). As lake levels drop in response to a period of dry hydroclimate, groundwater gradients towards a through-flow lake may increase, while the downward gradient will decrease, or possibly even reverse, resulting in an increased flux into the lake (Tweed et al., 2009; Webster et al., 2006). Following the return of wetter conditions, the lake may recover water levels quickly, before slowing as the groundwater system catches up . A similar lagged response to lake-groundwater interaction was observed from 1997–2006 at the nearby through-flow Lake Colac, where the water level increased during a drought, due to increased groundwater input, before dropping rapidly from 2006 as the groundwater system eventually responded to the drought (Tweed et al., 2009). In contrast the groundwater gradients for a terminal lake all fall towards the lake. As such a terminal lake may see an increase in flow due to steepening groundwater gradients but will not simultaneously undergo a decrease in outgoing flows, likely leading to a more subdued response than through-flow lakes. This hypothesis may explain why the through-flow lakes responded very quickly in 2016, but then did not undergo much change in 2017–2018. Unfortunately, this does not explain the behaviour of Lake Bullen Merri and Lake Gnotuk. Further modelling is required to test these hypotheses.

Some of the lakes had a very clear inverse relationship between lake level and TDS, δ^{18} O, and δ^{2} H, in particular, Lake Leake and Lake Edward in South Australia. Deeper lakes such as Lake Bullen Merri, Lake Purrumbete, Lake Gnotuk, did not show such a clear relationship, with the seasonal maxima and minima for TDS, δ^{18} O, and δ^{2} H often slightly out of sync with the maximum and minimum lake levels. This behaviour is suspected to be due to the onset and breakdown of seasonal stratification. E.g., as thermocline depth increases, the volume of water transferred from the hypolimnion to the epilimnion may be greater than the evaporative flux.

All of the lakes in the study are alkaline, with the exception of Lake Edward. The acidity of Lake Edward has been observed since 1966 (Bayly and Williams, 1966), with high sulphate levels noted since 1918 (Ward (1918), in Bayly and Williams (1964)). The acidity has been attributed to the plantations of conifers in the Lake Edward catchment (Bayly and Williams, 1966), with the mechanism suspected to be increased capture of atmospheric pollutants, such as sulphur, by canopy interception (Bayly and Williams, 1966; Drinan et al., 2013; Nisbet, 2001; Parfitt and Ross, 2011). However the high sulphate ions observed by Ward (1918) (in Bayly and Williams (1964)) also suggest an alternative source of sulphur may be present as Forestry SA only began purchasing land for forestry in 1929 (Forestry SA, 2010). Further work is needed to assess whether the high sulphate levels, and corresponding low pH in Lake Edward, are solely due to the catchment land use, or whether there is a secondary sulphur source.

5.2 Morphological influence on δ^{18} O and δ^{2} H lake water enrichment

Understanding how isotopic fractionation is influenced by lake morphology and water level is an essential aspect for lake modelling based palaeoclimate research. There is an apparent correlation ($r^2 = 0.85$, p < 0.001) between the log of the lake sheltering index and the slope of the local evaporation lines. However, the two lakes that are most sheltered are also the smallest lakes, meaning there is also a potential correlation with lake size. As the fetch of a lake increases, there is increased opportunity for atmospheric feedback to occur - as air moves across the water surface it is mixed with evaporative flux, modifying the atmospheric isotopic composition and the humidity for a portion of the lake's surface. Humidity alone should also be considered as a factor. Several authors have attributed humidity as a primary influence on the slope of local evaporation lines (Holland and Turekian, 2010; Mackay et al., 2003; Mook and Rozanski, 2000; Shapley et al., 2008). In addition δ_A is not necessarily in equilibrium with δ_P (Crawford et al., 2019). Therefore, the effect of varying δ_A on the slope of local evaporation lines must also be quantified. Applying a numerical model of a desiccating pond to test the sensitivity of isotopic enrichment of surface waters demonstrated that these factors - humidity, atmospheric feedback, and δ_A – were unlikely to be the main cause of variation in the observed slopes of the local evaporation lines. The model results (Fig. 2.7) demonstrate that modifications to humidity alone, with δ_A in equilibrium with δ_P , do not influence the slope of the local evaporation line, in agreement with Gat (2010). Instead, humidity primarily influences the range of isotopic enrichment, with lower humidity resulting in increased enrichment (and vice versa). Shifting δ_A below equilibrium with δ_P (e.g. $\delta_A = \delta_P - 1.1\epsilon_{eq}$) will both decrease the slope of the LEL, and the extent of fractionation (and vice versa). If δ_A is not in equilibrium with δ_P then humidity is able to influence the slope of the LEL to a small degree. Atmospheric feedback typically increases the slope of the local evaporation line and extent of isotopic fractionation (Fig. 2.7). If we assume the null hypothesis – that windspeed has little effect on isotopic fractionation – then either δ_A must not be in equilibrium with δ_{P} , or atmospheric feedback must influence the isotopic enrichment of each lake. Under both these scenarios, humidity can influence the slope of the local evaporation lines. However, the sensitivity modelling demonstrates that even significant changes in humidity have only a limited influence on the slope of local evaporation lines, while having a major effect on the extent of enrichment along the local evaporation lines. Therefore, while variations in δ_A and atmospheric feedback may have some minor effects on isotopic enrichment of lakes, and the resultant local evaporation line slopes, these factors are insufficient to explain the observed data.

Lake sheltering provides a straightforward mechanism to explain the observed LEL slopes. A decrease in wind at the lake surface, results in less wave formation and surface roughness, leading to an increased opportunity for a diffusion layer to form between the water surface and the turbulent atmosphere, leading to an increase in transport fractionation of δ^{18} O and δ^{2} H. If this proposition is correct, then we would expect that LEL slopes would increase from ~2.5 in perfectly sheltered conditions (soil, rainfall samplers (e.g: Chapter Three, this thesis)), up to around ~5.5 or so at an LSI of around 15, beyond which sheltering is far less effective and the LEL slope is determined predominantly by other processes such as atmospheric feedback. This is based on the same mechanism, and is broadly analogous to, windspeed behaviour downwind from a windbreak described by McNaughton (1988), consisting of a 'quiet zone' up to around 8 h (h = horizontal/vertical ratio) and a 'wake zone' beyond that distance. As there are significant morphological differences between a lake catchment and a windbreak - wind has to go up and over a windbreak – then it is not expected that *h* and *LSI* will be directly comparable between windbreaks and lake catchments. The lake monitoring results suggest that θ and *n* values, when combined into a single term (θn) range along a continuum from 1 for soils, through ~0.5 for very well sheltered lakes, up to ~0.2 for large lakes with fully turbulent conditions with an LSI greater than ~15. E.g. Lake Surprise and Lake Mumblin have a θn of ~0.43, while Lake Keilambete and Lake Gnotuk required a θn of 0.20 and 0.21 respectively. Larger lakes, such as Lake Bullen Merri (*LSI* = 12, slope = 5.5), Lake Keilambete (*LSI* = 27, slope = 5.5) and particularly Lake Gnotuk (LSI = 12, slope = 5.4) tend to have steeper LELs than the regression line would suggest. This is likely due to atmospheric feedback due to the larger lake surface area. The effect of atmospheric feedback was not modelled for each lake in this study, but as noted in the sensitivity test, an increase in atmospheric feedback will result in steeper LELs. This study only has a small data set, but the sheltering effect can also be identified in other studies. Gat (1970) observed the isotopic change in evaporative flux during pan experiments as a response to wind at Lake Tiberius, Israel. Sveinbjörnsdóttir and Johnsen (1992) documented LELs for many surface water bodies, ranging from 3.4 to 5.5, that appear to correspond to the degree of lake sheltering across the Thingvallavatn region in Iceland. A similar conclusion was also reached by Gonfiantini et al. (2018). Probably the most exciting prospect of this study is the potential to define a function that links surface windspeed to degree of sheltering to isotopic fractionation and evaporation. Without isotopes, defining how windspeed changes due to sheltering is a problematic exercise requiring extensive windspeed measurements. By isotopic sampling of waters across a morphologically diverse region it may be possible to define a robust empirical function relevant to many fields such as lake modelling, microclimate studies and agriculture.

5.3 Cl⁻/Br⁻ source water investigation

While differences in evaporative conditions between lakes may be reflected in the slope of local evaporation lines and the extent of lake water isotopic enrichment, different sources of lake water may be reflected by a lake's geochemical composition, specifically Cl⁻/Br⁻ and HCO₃⁻/Cl⁻ ratios. Cl⁻/Br⁻ ratios for most of the lakes lie within a range of 270 to 375, with an average of 320, approximately similar to seawater (~290 Cl⁻/Br). However, Lake Mumblin, Lake Leake and Lake Edward have much lower Cl⁻/Br⁻ ratios of 130–220. For most lakes, Cl⁻/Br⁻ ratios do not seem to be related to the surrounding geology, specifically, whether the lakes are predominantly surrounded by the Port Campbell Limestone or the Sandringham Sands. However, the three lakes that lie entirely within the basalt - Mumblin, Leake and Edward - do show clear differences to the rest of the lakes, with ratios much closer to those proposed for precipitation (Davis et al., 1998). An important characteristic of these three lakes is that they sit above the regional aquifers and can potentially flush any additional Cl⁻ or Br⁻ sources downwards, whereas the other lakes all sit at similar, or lower, levels than the regional aquifers. A preliminary interpretation is that lakes that sit above the regional aquifers reflect the lower Cl⁻/Br⁻ ratio of rainfall as suggested by Davis et al. (1998), whereas lakes lower in the landscape interact with the larger unconfined aquifer of the Newer Volcanic Province or the Port Campbell aquifer and have an Cl⁻/Br⁻ ratio more reflective of the groundwater. A similar interpretation has been applied to studies in north-western Victoria (Cartwright et al., 2006). These results suggest that it may be possible to distinguish between lakes that interact with water derived predominantly from rainfall, and those that interact with the regional aquifers. However, it seems unlikely that the Cl⁻/Br⁻ ratios can be used to differentiate between limestone and sandstone based lithologies. While there may be a trend of decreasing Cl⁻/Br⁻ ratios in rainfall as a function of distance from the coast as suggested by (Davis et al., 1998), our dataset is unable to show it, likely due to the presence of large regional aquifers with a Cl-/Br- ratio similar to that of seawater. One surprising feature of the dataset is that the lakes sit within a wide range of land use types: farming, forestry, and one - East Basin - was used as a dairy waste dump for 60 years, yet there is no indication of any significant additional Cl⁻ or Br⁻.

5.4 HCO_3^{-}/Cl^{-} and d-excess lake assessment

 HCO_3^-/Cl^- ratio and d-excess indicators provide an alternative method to determine source water, and may differentiate between lake-groundwater interactions for each lake (Barton et al., 2013). The dataset presented here provides a unique opportunity to assess the effectiveness of the HCO_3^-/Cl^- ratio and d-excess indicators proposed by (Barton et al., 2013), as it presents several full seasonal cycles of a wide range of lakes. To assess the effectiveness of the HCO_3 /Cl and d-excess indicators as a tool to define lake regimes in the region, we must first categorise the lakes. Most of the studied lakes are permanent water bodies, that sit in relatively simple basins, with no surficial inflow or outflow. Tooliorook is the exception with a large catchment and surface drainage to and from the lake. The groundwater across the region has a low range of salinity, with a TDS ranging from <500 mg/L to 3500 mg/L (FedUni, 2015). This simplicity makes it feasible to define the lake-groundwater regime for each lake. A lakes solute load is a result of the relative proportion of evaporation against other outgoing fluxes. Evaporation removes water from the lake, without significantly modifying the volume of solutes in the lake, whereas hydrological fluxes that flow to groundwater or outlet streams remove both solutes and water from the lake. Terminal lakes sit at the end-point of water flow paths, with evaporation dominating the water loss from the lake, leading to a build-up of salinity, whereas through-flow lakes both gain and lose water from and to the groundwater system. If flux to the groundwater makes up a significant proportion relative to evaporation, then salts cannot build-up in the lake. Of the lakes studied, Keilambete, East and West Basin and Lake Gnotuk, being hyper-saline, are clearly terminal lakes. Lakes Surprise and Lake Mumblin are likely through-flow lakes, as they are very fresh, and salts are clearly unable to accumulate. Lake Purrumbete has undergone hydrologic modelling demonstrating that it is a through-flow lake system(Yihdego et al., 2015). The remaining lakes likely have an intermediate flow regime, building up a small amount of salts, but also flushing many away. These lakes are difficult to categorise as lake levels have been falling through most of the last 150 years, and as such the lakes represent transient systems. Lakes can be both through-flow lakes at higher water levels, and terminal lakes at lower water levels (Winter, 1976), therefore these intermediate lakes require significant work to determine their current flow regime. With the exception of Tooliorook the lakes in our study could at first glance be classified as groundwater fed lakes, as they have negligible surficial run-off and inflow. Toolirook has a large surface catchment to the north. However, consideration must be made that some lakes, while groundwater fed, may be fed from shallow groundwater and interflow that has not had sufficient interaction with the underlying geology to precipitate carbonates and decrease the HCO₃⁻/Cl⁻ ratio. The differentiation within the Cl⁻/Br⁻ results may be applicable, suggesting that lakes Mumblin, Leake and Edward may qualify as surface water fed, in keeping with their position sited above the regional aquifers.

The hyper-saline terminal lakes of our study appear to be well described by the HCO_3^{-}/Cl^{-} and d-excess method, with all four lakes falling in the "Groundwater dominated, long residence time" quadrant (Fig. 2.9). Lake Edward also falls within this category as a result of its low pH,

and hence low HCO_3^{-} . This qualifies as an external factor, likely due to the pine plantations surrounding the lake, and should not be considered as part of any assessment of the HCO₃⁻/Cl⁻ method. Most of the intermediate lakes fall within the surface water category, close to the delineation between surface and groundwater dominated (Fig. 2.9). Unfortunately, the range of HCO₃⁻/Cl⁻ ratios covered by Lakes Bullen Merri and Elingamite (both likely groundwater fed lakes), and Leake and Tooliorook (both surface fed lakes), overlap, making it difficult to differentiate between them. Lake Surprise and Purrumbete present a unique challenge, with high HCO₃⁻/Cl⁻ ratios representing the extreme extent of surface water dominated lakes, however, these two lakes are most likely examples of groundwater fed through-flow lakes. One possible reason for such high ratios are the presence of "stony rises" - regions of recent, blocky and stony basalt rises - at both Lake Surprise (the Mt Eccles lava flow) and Purrumbete. Groundwater recharge is variable across the Newer Volcanic Province, with high recharge noted in areas of stony rises (Nolan et al., 1990). High recharge combined with recently formed basalt makes it likely that those regions are undergoing greater weathering – with an increased formation of HCO₃⁻ as a byproduct (Dessert et al., 2003) – resulting in higher levels of HCO₃⁻ in the local groundwater. Future work may focus on improving the spatial resolution of groundwater sampling and identifying regions that differ from the average HCO₃⁻/Cl⁻ ratios.

Deuterium excess is applied to determine whether a lake is through-flow or terminal in nature (Barton et al., 2013). Unfortunately, the range of d-excess for many of the lakes fluctuates from terminal to through-flow throughout the year, mostly as a function of lake depth. Deeper lakes with longer residence times typically had less variation (Bullen Merri, Purrumbete, Surprise, and the four hyper-saline lakes). However, lakes shallower than ~10 m regularly varied across the category delineation between "through-flow" and "long residence time". The tendency for more sheltered lakes to have more shallow evaporation lines, as noted in this study, can also skew results derived from d-excess values. A problematic aspect with using d-excess to determine groundwater regime is that it assumes residence time for lake water is comparable to the lake-groundwater flow-regime. For studies based on the isotopic composition of water, residence time for a lake should be defined as volume/total output rate (including evaporation), approximating the time a molecule of water spends in the lake. As evaporation is ~1000 mm/year for most lakes in the region, residence time can be very loosely approximated as the lake depth in metres. However, the lake-groundwater flow regime is better represented by the average time a solute spends in the lake. In the case of conservative ions, the ion residence time can be approximated as volume/outflow rate (without including evaporation) (Brezonik, 2018). For other ions such as Ca²⁺, the ion residence time may be further modified by precipitation of

minerals in saturated lakes. The hyper-saline lakes represent the best examples of this difference, with a maximum water residence time of \sim 10-20 years, but with ion residence times on the order of centuries. This would suggest that using a conservative ion, such as Cl⁻ may be a more effective way to rapidly determine whether a lake is through-flow, terminal or intermediate.

6 Conclusion

This study aimed to explore the isotopic and geochemical signatures related to evaporation, groundwater interaction and the source lake water for twelve lakes across the Newer Volcanic Province in south east Australia (Fig. 2.1). It was found that:

1 Lake water levels responded to a change in hydroclimate (dry prior to 2016, then wetter over 2016–2018) in order of their salinity values, with the exception of Bullen Merri and Gnotuk. The freshest lakes increased water levels the most, with a rapid water level increase, while the hyper-saline lakes responded poorly. This is attributed to the suspected groundwater regime for the lakes, with through-flow lakes responding strongly to changes in hydroclimate, while terminal lakes had a more subdued response.

2 Lake local evaporation lines showed a link to lake morphology. A metric – the Lake Sheltering Index – has been defined. Lakes with a low Lake Sheltering Index, indicating a higher degree of sheltering, have local evaporation lines with lower slopes, likely as the reduced windspeed and surface roughness allows a more robust diffusion layer to form, and increased transport fractionation.

3 Cl⁻/Br⁻ ratios for the studied lakes that sit high in the topography, above the main aquifers of the region, had lower Cl⁻/Br⁻ ratios, and may record the Cl⁻/Br⁻ ratio of rainfall. The Cl⁻/Br⁻ of the main aquifers in the region, and the lakes that are sited at or below the regional water table surface had Cl⁻/Br⁻ ratios close to seawater.

4 HCO_3^{-}/Cl^{-} and d-excess are only partially effective at categorising lakes based on hydrological regime. HCO_3^{-}/Cl^{-} ratios overlap for several lakes, and the groundwater HCO_3^{-}/Cl^{-} values across the region may require a higher spatial resolution, particularly in the region of stony rises, which may have elevated HCO_3^{-}/Cl^{-} ratios and likely provide the source of water to Lake Surprise and Lake Purrumbete. D-excess is likely not a useful indicator of lake groundwater regime (through-flow, terminal or intermediate) as the residence time of the lake water is not necessarily related to the residence time for ions in the lake.

7 References

- Alcalá, F.J., Custodio, E., 2008. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Journal of Hydrology, 359(1): 189-207. DOI:<u>https://doi.org/10.1016/j.jhydrol.2008.06.028</u>
- Barr, C., Tibby, J., Gell, P., Tyler, J., Zawadzki, A., Jacobsen, G.E., 2014. Climate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes. Quaternary Science Reviews, 95: 115-131. DOI:<u>https://doi.org/10.1016/j.quascirev.2014.05.001</u>
- Barton, A., Herczeg, A., Dahlhaus, P., Cox, J., 2013. A geochemical approach to determining the hydrological regime of wetlands in a volcanic plain, south-eastern Australia (Chapter 7) In: Ribeiro L, Stigter TY, Chambel A et al.(eds) Groundwater and Ecosystems. IAH Selected Papers on Hydrogeology Series 18. CRC Press (Taylor and Francis). p.
- Barton, C.E., Barbetti, M., 1982. Geomagnetic secular variation from recent lake sediments, ancient fireplaces and historical measurements in southeastern Australia. Earth and Planetary Science Letters, 59(2): 375-387. DOI:<u>https://doi.org/10.1016/0012-821X(82)90139-X</u>
- Barton, C.E., McElhinny, M.W., 1981. A 10 000 yr geomagnetic secular variation record from three Australian maars. Geophysical Journal of the Royal Astronomical Society, 67(2): 465-485. DOI:10.1111/j.1365-246X.1981.tb02761.x
- Barton, C.E., Polach, H.A., 1980. 14 C ages and magnetic stratigraphy in three Australian maars. Radiocarbon, 22(3): 728-739.
- Battarbee, R.W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews, 19(1–5): 107-124. DOI:<u>http://dx.doi.org/10.1016/S0277-3791(99)00057-8</u>
- Bayly, I., Williams, W., 1964. Chemical and biological observations on some volcanic lakes in the south-east of South Australia. Marine and Freshwater Research, 15(2): 123-132.
- Bayly, I.A.E., Williams, W.D., 1966. Further chemical observations on some volcanic lakes of south-east Australia of South Australia. Marine and Freshwater Research, 17(2): 229-238.
- Behne, W., 1953. Untersuchungen zur Geochemie des Chlor und Brom. Geochimica et Cosmochimica Acta, 3(4): 186-215.
- Benson, L., Paillet, F., 2002. HIBAL: a hydrologic-isotopic-balance model for application to paleolake systems. Quaternary Science Reviews(12): 1521-1539.
- Boult, P., Hibburt, J., 2002. The Petroleum Geology of South Australia. Vol. 1, The Otway Basin. South Australia, Department of Primary Industries and Resources, Petroleum
- Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39(10): 1-13. DOI:10.1029/2003WR002086

- Bowler, J.M., 1970. Late quaternary environments : a study of lakes and associated sediments in south-eastern Australia. DOI:10.25911/5d6c3cba91a43
- Boyce, J., 2013. The Newer Volcanics Province of southeastern Australia: a new classification scheme and distribution map for eruption centres. Australian Journal of Earth Sciences, 60(4): 449-462.
- Brezonik, P., 2018. Chemical kinetics and process dynamics in aquatic systems. Routledge.
- Builth, H., Kershaw, A.P., White, C., Roach, A., Hartney, L., McKenzie, M., Lewis, T., Jacobsen, G., 2008. Environmental and cultural change on the Mt Eccles lava-flow landscapes of southwest Victoria, Australia. The Holocene, 18(3): 413-424.
 DOI:10.1177/0959683607087931
- Camperdown Chronicle, 1896. THE OUTLET AT LAKE ELINGAMITE, Camperdown Chronicle (Vic. : 1877 - 1954), Vic., pp. 2.
- Cartwright, I., Gilfedder, B., Hofmann, H., 2013. Transient hydrological conditions implied by chloride mass balance in southeast Australian rivers. Chemical Geology, 357: 29-40. DOI:<u>http://dx.doi.org/10.1016/j.chemgeo.2013.08.028</u>
- Cartwright, I., Weaver, T.R., Fifield, L.K., 2006. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chemical geology, 231(1): 38-56.
- Cas, R., Satō, H., Simpson, C.J., 1993. Newer Volcanics Province-Processes and Products of Phreatomagmatic Activity: IAVCEI, Canberra 1993: Excursion Guide. Australian Geological Survey Organisation.
- Chivas, A.R., De Deckker, P., Cali, J.A., Chapman, A., Kiss, E., Shelley, G., Michael, J., 1993. Coupled Stable-Isotope and Trace-Element Measurements of Lacustrine Carbonates as Paleoclimatic Indicators. Climate change in continental isotopic records: 113-121.
- Chivas, A.R., De Deckker, P., Shelley, J.M.G., 1985. Strontium content of ostracods indicates lacustrine palaeosalinity. Nature, 316(6025): 251-253. DOI:10.1038/316251a0
- Cohen, A.S., 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, USA.
- Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703.
- Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Schink, D.R., Corless, J.T. (Eds.), Marine Geochemistry. University, Rhode Island, University, Rhode Island, pp. 277-374.
- Crawford, J., Azcurra, C.S., Hughes, C.E., Gibson, J.J., Parkes, S.D., 2019. Comparison of atmospheric water vapour δ18O and δ2H estimated using evaporation pan, rainfall equilibrium and continuous measurements. Journal of Hydrology, 576: 551-560. DOI:<u>https://doi.org/10.1016/j.jhydrol.2019.06.056</u>

- Crowe, a.S., 1993. The application of a coupled water-balance-salinity model to evaluate the sensitivity of a lake dominated by groundwater to climatic variability. Journal of Hydrology, 141(1-4): 33-73. DOI:10.1016/0022-1694(93)90044-A
- Currey, D.T., 1970. Lake systems, Western Victoria. Australian Society for Limnology Bulletin, 3: 1-13.
- Dahlhaus, P., Heislers, D., Dyson, P., 2002a. Corangamite Catchment Management Authority Groundwater Flow Systems. Report No. CCMA, 2(02).
- Dahlhaus, P., Heislers, D., Dyson, P., 2002b. Glenelg Hopkins Catchment Management Authority, Groundwater Flow Systems. Consultancy report no. GHCMA, 2(02).
- Davis, S.N., Whittemore, D.O., Fabryka-Martin, J., 1998. Uses of Chloride/Bromide Ratios in Studies of Potable Water. Groundwater, 36(2): 338-350. DOI:10.1111/j.1745-6584.1998.tb01099.x
- De Deckker, P., 1982. Holocene ostracods, other invertebrates and fish remains from cores of four maar lakes in southeastern Australia. Proceedings of the Royal Society of Victoria, 94(4): 183-220.
- Dessert, C., Dupré, B., Gaillardet, J., François, L.M., Allègre, C.J., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202(3): 257-273. DOI:<u>https://doi.org/10.1016/j.chemgeo.2002.10.001</u>
- Dodson, J., 1974a. Vegetation and climatic history near Lake Keilambete, western Victoria. Australian Journal of Botany, 22(4): 709-717.
- Dodson, J., 1975. Vegetation History and Water Fluctuations at Lake Leake, South-Eastern South Australia. II. 50 000 B.P. To 10 000 B.P. Australian Journal of Botany, 23(5): 815-831. DOI:<u>https://doi.org/10.1071/BT9750815</u>
- Dodson, J.R., 1974b. Vegetation history and water fluctuations at Lake Leake, south-eastern South Australia. 1. 10,000 B.P. to present. Australian Journal of Botany, 22(4): 719-741.
- Dodson, J.R., 1979. Late Pleistocene vegetation and environments near Lake Bullenmerri, Western Victoria. Australian Journal of Ecology, 4(4): 419-427. DOI:10.1111/j.1442-9993.1979.tb01570.x
- Drinan, T., Graham, C., O'Halloran, J., Harrison, S., 2013. The impact of catchment conifer plantation forestry on the hydrochemistry of peatland lakes. Science of the Total Environment, 443: 608-620.
- Falster, G., Tyler, J., Grant, K., Tibby, J., Turney, C., Löhr, S., Jacobsen, G., Kershaw, A.P., 2018. Millennial-scale variability in south-east Australian hydroclimate between 30,000 and 10,000 years ago. Quaternary Science Reviews, 192: 106-122.
- FedUni, 2015. Visualising Victoria's Groundwater. Centre for eResearch and Digital Innovation, Federation University Australia, Mt Helen, Ballarat, Victoria, FedUni.

- Forestry SA, 2010. The Mount Lyon Native Forest Reserves Resource Document. ForestrySA, Mount Gambier.
- García, A., 1999. Charophyte flora of south-eastern South Australia and south-western Victoria, Australia: systematics, distribution and ecology. Australian Journal of Botany, 47(3): 407-426.
- Gat, J., 1970. Environmental isotope balance of Lake Tiberias. Isotope hydrology, 109.
- Gat, J., 2010. Isotope hydrology a study of the water cycle. London: Imperial College Press, London.
- Gell, P.A., Barker, P.A., De Deckker, P., Last, W.M., Jelicic, L., 1994. The Holocene history of West Basin Lake, Victoria, Australia; chemical changes based on fossil biota and sediment mineralogy. Journal of Paleolimnology, 12(3): 235-258.
- Gibson, J., Reid, R., 2014. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. Journal of Hydrology, 519: 2148-2164.
- Gibson, J.J., Birks, S.J., Yi, Y., 2015. Stable isotope mass balance of lakes: a contemporary perspective. Quaternary Science Reviews, 131: 316-328.
- Gibson, J.J., Prepas, E.E., McEachern, P., 2002. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of Boreal lakes. Journal of Hydrology, 262(1): 128-144.
- Gonfiantini, R., Wassenaar, L.I., Araguas-Araguas, L., Aggarwal, P.K., 2018. A unified Craig-Gordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation. Geochimica et Cosmochimica Acta, 235: 224-236. DOI:<u>https://doi.org/10.1016/j.gca.2018.05.020</u>
- Green, J., 1981. Associations of rotifers in Australian crater lakes. Journal of Zoology, 193(4): 469-486.
- Holland, H.D., Turekian, K.K., 2010. Isotope Geochemistry: A derivative of the Treatise on Geochemistry. Academic Press.
- Horita, J., Rozanski, K., Cohen, S., 2008. Isotope effects in the evaporation of water: a status report of the Craig–Gordon model. Isotopes in Environmental and Health Studies, 44(1): 23-49.
- Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, 58(16): 3425-3437.
- Jones, M.D., Leng, M.J., Roberts, C.N., Türkeş, M., Moyeed, R., 2005. A Coupled Calibration and Modelling Approach to the Understanding of Dry-Land Lake Oxygen Isotope Records. Journal of Paleolimnology, 34(3): 391-411. DOI:10.1007/s10933-005-6743-0
- Jones, R., Bowler, J., McMahon, T., 1998. A high resolution Holocene record of P/E ratio from closed lakes in Western Victoria. Palaeoclimates, 3(1-3): 51-82.

- Jones, R.N., 1995. Modelling hydrologic and climatic controls of closed lakes, western Victoria. Ph. D. Thesis, University of Melbourne.
- Jones, R.N., McMahon, T.A., Bowler, J.M., 2001. Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990). Journal of Hydrology, 246(1): 159-180.
- Kebede, S., Travi, Y., Rozanski, K., 2009. The δ18O and δ2H enrichment of Ethiopian lakes. Journal of Hydrology, 365(3): 173-182. DOI:<u>https://doi.org/10.1016/j.jhydrol.2008.11.027</u>
- Khan, T.A., 2003. Limnology of four saline lakes in western Victoria, Australia: I. Physicochemical parameters. Limnologica, 33(4): 316-326. DOI:<u>https://doi.org/10.1016/S0075-9511(03)80026-9</u>
- Kumar, B., Nachiappan, R.P., 1999. On the sensitivity of Craig and Gordon Model for the estimation of the isotopic composition of lake evaporates. Water Resources Research, 35(5): 1689-1691. DOI:10.1029/1999wr900011
- Last, W.M., 1992. Petrology of modern carbonate hardgrounds from East Basin lake, a saline maar lake, southern Australia. Sedimentary Geology, 81(3): 215-229. DOI:<u>https://doi.org/10.1016/0037-0738(92)90071-X</u>
- Last, W.M., Deckker, P., 1990. Modern and Holocene carbonate sedimentology of two saline volcanic maar lakes, southern Australia. Sedimentology, 37(6): 967-981.
- Lennard, R.P., 1983. The Hydrological Setting and Limnology of Lakes Edward and Leake, South Australia, Flinders University of South Australia, School of Earth Sciences.
- Lesti, C., Giordano, G., Salvini, F., Cas, R., 2008. Volcano tectonic setting of the intraplate, Pliocene-Holocene, Newer Volcanic Province (southeast Australia): Role of crustal fracture zones. Journal of Geophysical Research: Solid Earth, 113(B7). DOI:10.1029/2007jb005110
- Mackay, A., Battarbee, R., Birks, J., Oldfield, F., 2003. Global change in the Holocene. Arnold, Hodder Headline Group.
- Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., Frisia, S., 2008. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth and Planetary Science Letters, 269(1): 80-95. DOI:10.1016/j.epsl.2008.01.051
- McGimsey, R.G., Maharrey, J.Z., Neal, C.A., 2014. 2011 Volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2014-5159. DOI:<u>http://dx.doi.org/10.3133/sir20145159</u>.
- McNaughton, K., 1988. 1. Effects of windbreaks on turbulent transport and microclimate. Agriculture, Ecosystems & Environment, 22: 17-39.
- Merlivat, L., Jouzel, J., 1979. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research: Oceans, 84(C8): 5029-5033. DOI:10.1029/JC084iC08p05029

- Mook, W., Rozanski, K., 2000. Environmental isotopes in the hydrological cycle. IAEA Publish, 39.
- Mooney, S., 1997. A fine-resolution palaeoclimatic reconstruction of the last 2000 years, from Lake Keilambete, southeastern Australia. The Holocene, 7(2): 139-149.
- Murphy, B.F., Timbal, B., 2008. A review of recent climate variability and climate change in southeastern Australia. International journal of Climatology, 28(7): 859-879.
- Mustafa, S., Lawson, J.S., 2002. Review of Tertiary Gambier Limestone aquifer properties, lower south-east, South Australia. Department of Water, Land and Biodiversity Conservation Naracoorte, SA
- Nicholls, I., Joyce, E., 1989. Newer volcanics. Cambridge University Press, pp. 137-143.
- Nicolaides, S., 1997. Marine-derived dolomite in the shallowly buried temperate Port Campbell Limestone (Miocene), Otway Basin, Australia. Sedimentology, 44(1): 143-157. DOI:10.1111/j.1365-3091.1997.tb00429.x
- Nisbet, T., 2001. The role of forest management in controlling diffuse pollution in UK forestry. Forest Ecology and Management, 143(1-3): 215-226.
- Nolan, J., Stanley, D., Wijesekera, N., Mann, B., 1990. Basalt plains hydrogeological investigation progress report No. 1. Rural Water Commission, Victoria, Investigation Branch Report, 1.
- Ollier, C.D., 1967. Maars their characteristics, varieties and definition. Bulletin Volcanologique, 31(1): 45-73. DOI:10.1007/BF02597005
- Parfitt, R.L., Ross, D.J., 2011. Long-term effects of afforestation with <i>Pinus radiata</i> on soil carbon, nitrogen, and pH: a case study. Soil Research, 49(6): 494-503. DOI:<u>https://doi.org/10.1071/SR11106</u>
- Ramsar Convention Secretariat, 2013. The Ramsar Convention Manual: a Guide to the Convention on Wetlands (Ramsar, Iran, 1971). 6th edn, Ramsar Convention Secretariat: Gland, Switzerland.
- Rueda, F.J., Schladow, S.G., Monismith, S.G., Stacey, M.T., 2005. On the effects of topography on wind and the generation of currents in a large multi-basin lake. Hydrobiologia, 532: 139-151. DOI:10.1007/s10750-004-9522-4
- SA, F., 2010. The Mount Lyon Native Forest Reserves Resource Document. ForestrySA, Mount Gambier.
- Shapley, M.D., Ito, E., Donovan, J.J., 2008. Isotopic evolution and climate paleorecords: modeling boundary effects in groundwater-dominated lakes. Journal of Paleolimnology, 39(1): 17-33.
- Smith, R.E., Tyler, J.J., Reeves, J., Blockley, S., Jacobsen, G.E., 2017. First Holocene cryptotephras in mainland Australia reported from sediments at Lake Keilambete,

Victoria, Australia. Quaternary Geochronology, 40: 82-91. DOI:<u>https://doi.org/10.1016/j.quageo.2016.08.007</u>

- Steinman, B.A., Rosenmeier, M.F., Abbott, M.B., Bain, D.J., 2010. The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models:
 Application to paleoclimate studies in the upper Columbia River basin. Limnology and Oceanography, 55(6): 2231–2245.
- Sveinbjörnsdóttir, Á.E., Johnsen, S.J., 1992. Stable isotope study of the Thingvallavatn area. Groundwater origin, age and evaporation models. Oikos: 136-150.
- Tibby, J., Kershaw, A.P., Builth, H., Philibert, A., White, C., 2006. Environmental change and variability in southwestern Victoria: changing constraints and opportunities for occupation and land use. The social archaeology of Australian indigenous societies: 254-269.
- Tibby, J., Penny, D., Leahy, P., Kershaw, A.P., 2012. Vegetation and water quality responses to Holocene climate variability in Lake Purrumbete, western Victoria. Peopled Landscapes: Archaelogical and Bogeographic Approaches to Landscapes (Eds SG Haberle & B. David): 359-373.
- Timms, B., 1974. Morphology and benthos of three volcanic lakes in the Mt. Gambier district, South Australia. Marine and Freshwater Research, 25(3): 287-297. DOI:<u>http://dx.doi.org/10.1071/MF9740287</u>
- Timms, B., 1975. Basic limnology of two crater lakes in western Victoria, Proc. R. Soc. Victoria, pp. 159-165.
- Timms, B., 1977. Morphometry of Lake Elingamite, western Victoria. Victorian Naturalist, 94: 242-243.
- Timms, B., Brand, G., 1973. A limnological survey of the Basin Lakes, Nalangil, western Victoria, Australia. Aust. Soc. Limnol. Bull, 5: 32-40.
- Timms, B.V., 1976. A Comparative study of the limnology of three maar lakes in western Victoria. I. Physiography and physicochemical features. Marine and Freshwater Research, 27(1): 35-60.
- Treble, P.C., Chappell, J., Gagan, M.K., McKeegan, K.D., Harrison, T.M., 2005. In situ measurement of seasonal δ18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth and Planetary Science Letters, 233(1): 17-32. DOI:10.1016/j.epsl.2005.02.013
- Tweed, S., Leblanc, M., Cartwright, I., 2009. Groundwater–surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia. Journal of Hydrology, 379(1–2): 41-53. DOI:<u>http://dx.doi.org/10.1016/j.jhydrol.2009.09.043</u>
- Tyler, J.J., Leng, M.J., Arrowsmith, C., 2007. Seasonality and the isotope hydrology of Lochnagar, a Scottish mountain lake: implications for palaeoclimate research. The Holocene, 17(6): 717-727. DOI:10.1177/0959683607080513

- Tyler, J.J., Mills, K., Barr, C., Sniderman, J.M.K., Gell, P.A., Karoly, D.J., 2015. Identifying coherent patterns of environmental change between multiple, multivariate records: an application to four 1000-year diatom records from Victoria, Australia. Quaternary Science Reviews, 119(October): 94-105. DOI:10.1016/j.quascirev.2015.04.010
- Urbano, L.D., Person, M., Kelts, K., Hanor, J.S., 2004. Transient groundwater impacts on the development of paleoclimatic lake records in semi-arid environments. Geofluids, 4(3): 187-196. DOI:10.1111/j.1468-8123.2004.00081.x
- van den Hove, J.C., Ailleres, L., Betts, P.G., Cas, R.A.F., 2015. Subsurface structure of a large basaltic maar volcano examined using geologically constrained potential field modelling, Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia. Journal of Volcanology and Geothermal Research, 304: 142-159. DOI:<u>https://doi.org/10.1016/j.jvolgeores.2015.08.020</u>
- van Otterloo, J., Cas, R.A., 2013. Reconstructing the eruption magnitude and energy budgets for the pre-historic eruption of the monogenetic~ 5 ka Mt. Gambier Volcanic Complex, south-eastern Australia. Bulletin of volcanology, 75(12): 769.
- Victorian Department of Sustainability and Environment, 2014. Victorian Aquifer Framework -Grids, Bioregional Assessment Source Dataset. Victorian Department of Sustainability and Environment.
- Webster, K.E., Bowser, C., Anderson, M., Lenters, J., 2006. Understanding the lake-groundwater system: just follow the water. Long-term dynamics of lakes in the landscape: Long-term ecological research on north temperate lakes: 19-48.
- Wigdahl, C.R., Saros, J.E., Fritz, S.C., Stone, J.R., Engstrom, D.R., 2014. The influence of basin morphometry on the regional coherence of patterns of diatom-inferred salinity in lakes of the northern Great Plains (USA). The Holocene, 24(5): 603-613.
 DOI:10.1177/0959683614523154
- Wilkins, D., De Deckker, P., Fifield, L.K., Gouramanis, C., Olley, J., 2012. Comparative optical and radiocarbon dating of laminated Holocene sediments in two maar lakes: Lake Keilambete and Lake Gnotuk, south-western Victoria, Australia. Quaternary Geochronology, 9: 3-15. DOI:<u>https://doi.org/10.1016/j.quageo.2012.01.008</u>
- Wilkins, D., Gouramanis, C., De Deckker, P., Fifield, L.K., Olley, J., 2013. Holocene lake-level fluctuations in Lakes Keilambete and Gnotuk, southwestern Victoria, Australia. The Holocene, 23(6): 784-795. DOI:10.1177/0959683612471983
- Winter, T.C., 1976. Numerical simulation analysis of the interaction of lakes and ground water. USGS Professional Paper 1001.
- Winter, T.C., 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal, 7(1): 28-45. DOI:10.1007/s100400050178
- Yezdani, G.H., 1970. A study of the Quaternary vegetation in the volcanic lakes region of western Victoria [Ph. D. thesis]. [Melbourne (Victoria)]: Monash University.

- Yihdego, Y., Webb, J.A., Leahy, P., 2014. Modelling of lake level under climate change conditions: Lake Purrumbete in southeastern Australia. Environmental Earth Sciences, 73(7): 3855-3872. DOI:10.1007/s12665-014-3669-8
- Yihdego, Y., Webb, J.A., Leahy, P., 2015. Modelling of lake level under climate change conditions: Lake Purrumbete in southeastern Australia. Environmental Earth Sciences, 73(7): 3855-3872. DOI:10.1007/s12665-014-3669-8

Supporting information: details of lakes studied

Lake Leake and Lake Edward

Lake Leake and Lake Edward are adjacent maar crater lakes at the western end of the Newer Volcanic Province about 40km north west of Mt Gambier. Lake Leake is around 2 km north west of Lake Edward. Lake Leake is a shallow crater lake with a current maximum depth of ~2 m, and a nearly circular shape ~800 m diameter and surface area of 60 ha (Appendix 2 of this thesis). The lake water level has dropped over the last few decades as Dodson (1974b) noted a depth of 6 m, while Timms (1974) measured a depth of 4.5. Lake Edward is smaller with a current maximum depth of around ~6 m (compared to 7 m (Timms, 1974)), a diameter of ~500m and a surface area of 25 ha. In September 2018, the surface level of Lake Leake was 90.4 mAHD (Australian Height Datum), while Lake Edward had a water level of 104.1 mAHD. Lake Edward lies within a poorly defined and shallow maar with a diameter of ~2000 m. A dry lagoon with a diameter of ~500 m is connected to the north west side of Lake Leake with a sill level of ~92.7 mAHD. The craters for Leake and the adjacent lagoon are much more defined with distinct, often steep crater walls with a rim diameter of ~ 1500 m for the main Lake Leake crater. Between 2016–2018, Lake Leake had an average TDS of ~3800 mg/L, while Lake Edward had an average TDS of ~4400 mg/L. An interesting peculiarity is that while all the other lakes in the study are alkaline, with a pH around 7.5–9, Lake Edward has consistently returned a pH of < 7 (García, 1999; Lennard, 1983; Timms, 1974). This may be related to the large pine plantations (Drinan et al., 2013; Parfitt and Ross, 2011) that now cover 60 % of the catchment up from 38 % in the 1960's (Bayly and Williams, 1966).

Unlike many permanent lakes in the Newer Volcanic Province, Lake Leake and Lake Edward sit quite high within their catchments with a lake level above the Gambier Limestone. The crater rims sit above the surrounding plains, but the volcanic ash on the plains below the craters is covered by the Bridgewater calcarenite and aeolian sands, giving hint to the significant age of the eruptions (Boult and Hibburt, 2002; SA, 2010). Lake Edward is surrounded by peat, drying recently to form cracks and potholes near the lake shore. Likewise, the lagoon to the northwest

of Lake Leake is filled with peat and clay layers. A core taken from centre of the lagoon has a basal age of ~ 50 ka (Dodson, 1975).

There have been numerous studies of lake morphology, chemistry and benthos (Bayly and Williams, 1964; Bayly and Williams, 1966; Timms, 1974). In terms of palaeoclimate research, (Dodson, 1975; Dodson, 1974b) studied the vegetation history covering the last 50 ka.

Lake Surprise

Lake Surprise is part of the Budj Bim cultural landscape. A UNESCO world heritage site encompassing the Budj Bim (Mt Eccles) lava flow and Tae Rak (Lake Condah) wetland ecosystem. Lake Surprise is a deep sheltered lake approximately midway between the South Australian lakes and the main cluster of Victorian lakes. Lake Surprise sits within a deep elongated crater with a crater rim ~50m above the lake water level. The crater appears to form part of a fissure system, with a large eruption site in the centre and a smaller eruption site at each end, resulting in an elongate lake with small 'lagoons' at each end and a total length of ~600 m long, a width of ~200 m and an area of ~6.3 ha (Appendix 2 of this thesis). To the south, in line with the long axis of the lake, lie several smaller eruption features. In September 2019, the depth of Lake Surprise was ~11.5m with a lake level of 77.9 mAHD. The crater walls are very steep with a regular "stepped" appearance caused by alternating layers of ash and lava. The catchment area is very small, with an area of ~23 ha and no inflow or outflow streams. Based on the Victorian Aquifer Framework data, the base of the lake sits ~15 m lower than the top surface of the Port Campbell Limestone, and ~60 m above the Gellibrand Marl. The lake is freshwater, and between 2016–2018 had an average TDS of ~450 mg/L.

Lake Surprise has been the focus of numerous palaeoclimate studies: pollen and charcoal to determine palaeo-ecology (Builth et al., 2008; Tibby et al., 2006); XRF and carbon isotopes to investigate the hydrological cycle (Falster et al., 2018); and palaeo-conductivity reconstructions based on diatoms (Barr et al., 2014). Timms (1975) recorded bathymetry, limnological characteristics and morphology for the lake. Cores from Lake Surprise have a basal age of ~30 ka, with a sedimentation rate of ~1 mm/year (Builth et al., 2008).

Lake Keilambete

Lake Keilambete is a large, hypersaline maar lake near Terang. It has a near circular catchment area of ~410 ha, with a lake surface area of ~250 ha. The catchment is mostly pasture farmland, along with several quarries extracting limestone and tuff from the eastern crater wall and rim. In

August 2016, the lake water level was ~103 mAHD, ~37m below the crater rim. Lake depth was ~11 m in 1968 (Bowler, 1970), dropping to ~9 in 1990 (Jones et al., 2001). Current lake depth is uncertain. There are numerous ridges, likely representing palaeo-shorelines, visible on the crater walls, primarily along the northern half of the crater, including a significant 2-3m high cliff interpreted by Jones et al. (2001) as wave-cut and marking a long term lake level. Lake Keilambete is hypersaline with TDS values of ~102000 mg/L. There is little shoreline vegetation, with the northern near shore environment transitioning from grass to muds to thin carbonate layers at the water's edge forming a hardened surface or, more commonly broken up into many plates 5-30 cm across.

Lake Keilambete sits within all four of the upper Western Plains geological formations, with the Newer Volcanic Basalt overlying the Sandringham Sands, the Port Campbell Limestone and Gellibrand Marl in sequence. The Victorian Aquifer Framework dataset suggests that the lake level is near the marl/limestone transition at around 104m AHD, with the Port Campbell limestone forming a 10–20 m thick layer beneath a thin layer of sands from the Sandringham Sands and a 5 to 20 m thick deposit of basalt and tuffs. This is similar to boreholes described in Jones (1995). According to Jones et al. (2001) the Port Campbell Limestone is confined beyond the crater rim, separated from an overlying, perched, unconfined aquifer within the tuff by a layer of calcareous clay. Hydraulic heads for the Port Campbell aquifer under the eastern crater rim were ~19 m above the 1990 water level, and 14 m above under the western rim, with the water table in the tuffs from 1 to 7 m higher still. Near the lake both aquifers merge together to form springs that flow from the crater walls (Jones et al., 2001). Springs are often visible on the northern side of the crater, especially in the north east at the base of the wave cut slope.

Lake Keilambete is an important site for palaeoclimate research, with studies applying tephrochronology, sedimentology, ostracod valve chemistry, secular magnetic variations, hydrological modelling, palynology and microfossil analysis (Barton and Barbetti, 1982; Barton and McElhinny, 1981; Barton and Polach, 1980; Chivas et al., 1993; Chivas et al., 1985; De Deckker, 1982; Dodson, 1974a; Jones et al., 1998; Mooney, 1997; Smith et al., 2017; Wilkins et al., 2012; Wilkins et al., 2013). Lake Keilambete cores gave basal dates of ~9.5 ka at a depth of 4 m, usually terminating in a dense clay formed during a dry lake period (Barton and Polach, 1980; Wilkins et al., 2013). Sedimentation rates in the past (between 500 to 2000 yr B.P.) were around 0.31 mm/year (Barton and Barbetti, 1982).

Lake Mumblin

Chapter 2

Lake Mumblin has unusual morphology, sitting within a small, sheltered, spatter rim crater at the top of Staughton Hill, one of several volcanic features forming the Staughton Hill complex, alongside, but separate from a maar, a scoria cone and a small lava pit (Ollier, 1967). Lake Mumblin has a small, circular catchment approximately 11 ha in size. In September 2018, the lake had a surface area of \sim 2 ha, with a lake water level of \sim 153.6 mAHD, approximately 30 m below the crater rim. Timms (1975) described the lake as 12m deep with a surface area of 3.8 ha. A surface area of such an extent would place the shoreline back into the existing tree-line surrounding the lake, and the retreat of the shoreline to its current position would suggest the current lake depth is ~8 m. Peat surrounds the lake (Timms, 1975), forming a quaking bog near the waters edges, then sloping gently upward to the steeper banks of the crater. Some abstraction from the lake has occurred, as evidenced by the presence of a pump shed and piping. However, the volume of abstraction is uncertain. The lake and catchment is surrounded by farmland, but the catchment itself is well vegetated with trees and dense scrub. Lake Mumblin is situated entirely within the Newer Volcanic basalts, with current water level ~20 m above the Sandringham Sands and Port Campbell Limestone (Victorian Department of Sustainability and Environment, 2014). As of September 2018, the lake was freshwater, with a TDS value of ~800 mg/L.

There has been limited research at Lake Mumblin. Timms (1975) described the limnological and morphological characteristics of the lake. Green (1981) examined rotifer associations of several lakes, including Mumblin and Surprise.

Lake Elingamite

Lake Elingamite lies within a sub-circular maar crater of low relief with an average diameter of \sim 2200 m and an area of \sim 390 ha. The crater is asymmetric, deeper on the eastern side than the west, with the deepest point around 700m from the eastern crater rim. A similar asymmetry is seen in the Cobrico Swamp maar, \sim 5 km to the north. The current lake surface area is \sim 215 ha, surrounded by peat and reed beds. The lake water level has been falling over the years from a 9.2 m lake depth recorded by Timms (1977), to 3.2 m depth in 2003 (Barr et al., 2014). In September 2018, the lake water level was 125.8 mAHD. The lake is limited in height by the crater walls with an overflow level of \sim 135 mAHD. A small outlet runs from the north west rim through the pastures to the north west, though it should not be assumed that the current outlet level represents the past conditions as there was a debate about the outlet being blocked in 1896 (Camperdown Chronicle, 1896).

75

The Lake Elingamite crater sits within the Port Campbell Limestone aquifer, with the top of the Port Campbell Limestone intersecting the crater at ~120 mAHD. Above the Port Campbell Limestone lies a 5–15m layer of Sandringham Sands, overlain by the surface basalt and tuffs. The Port Campbell Limestone achieves a significant thickness in the region of ~130 m, before the underlying Gellibrand Marl is encountered near 0 mAHD.

The Lake Elingamite catchment was part of the region burnt during the Cobden-Camperdown fires of March 2018. The entire catchment, with the exception of a few small areas such as the picnic shelter, burnt during the blaze, with peat fires burning underground for ~50 days following the surface fire event.

In spite of the size, permanence and ease of access, there has been limited palaeoclimate research at Lake Elingamite. Barr et al. (2014) retrieved a 178 cm core from Lake Elingamite, with a basal age of AD 480. The core was used to develop a diatom-transfer function based on diatom populations to reconstruct lake conductivity.

Lake Bullen Merri and Lake Gnotuk

Lake Bullen Merri and Lake Gnotuk are described in further detail in Chapter 5 of this thesis. The two lakes are adjacent maars, yet feature very different salinity and hydrological behaviour in spite of their close proximity. Lake Gnotuk is a hypersaline lake, with a TDS value of ~70,000 mg/L. In September 2018 the lake depth was ~15 m, with a water level of 100.2 mAHD, a surface area of ~208 ha and a catchment area of ~617 ha. Lake Bullen Merri is brackish, with a TDS value of ~9300 mg/L. In September 2018, Bullen Merri was ~60 m deep, with a water level of 139.5 mAHD, and a lake surface area of ~435 ha. The catchment area is ~886 ha. The crater of Lake Bullen Merri is cloverleaf in shape, suggesting three eruption points, but the lake itself is conical in shape, deepest in the centre (Timms, 1976). Lake Bullen Merri overflows into Lake Gnotuk at a saddle between the two craters, with a height of ~168.4 mAHD. At very high levels, Lake Gnotuk overflows at ~163.8 m AHD. An overflow event from Lake Bullen Merri to Lake Gnotuk occurred in 1849 (Sutcliffe in Currey (1970)) with lake levels then falling at a similar rate in both lakes to their current levels. However, it seems unlikely that much overflow has occurred from either lake, as there is little sign of scouring or channel formation. The soils, tuffs and sands encountered around each lake seem unlikely to prevent channel cutting and any significant overflow, particularly over the steep gradient from Lake Bullen Merri to Lake Gnotuk would result in major scouring, similar to that seen at a smaller maar in Alaska (McGimsey, 2014). There are visible past shorelines on the crater walls of both lakes. Springs are seen occasionally on the southern side of Lake Gnotuk. There is a small basin between the two lakes, forming a small swamp.

Lake Bullen Merri and Lake Gnotuk have similar heights (~80–85.5 mAHD) for the bottom of each lake (Timms, 1976), however, the geological formations surrounding each lake differ. The lakes lie at the approximate extent of the Port Campbell Limestone (Victorian Department of Sustainability and Environment, 2014). The base of Lake Gnotuk lies near the top of the Gellibrand Marl, with possibly some minor traces of Port Campbell Limestone, overlain by a ~60–80 m thick layer of Sandringham Sands, and then the basalt and tuff thinning towards the north. The marl slopes away towards the south west, and the base of Lake Bullen Merri sits just above the level of the marl and possibly a thin layer of Port Campbell Limestone thinning to the north east. Above the marl and limestone is a ~100m thickness of Sandringham Sands, overlain by the basalt and tuff.

There is considerable overlap in research between Lake Keilambete and Lake Gnotuk. Many of the studies referenced in the Lake Keilambete section also studied Lake Gnotuk. Lake Bullen Merri has not undergone as much research as Lake Gnotuk, possibly due to its unique water chemistry, being the only brackish lake in the series, and its significant depth. Jones et al. (1998) applied a hydrological mass balance modelling approach to both lakes to estimate P/E ratios through the Holocene. Dodson (1979) applied palynology to reconstruct the surrounding vegetation from ~8–16 ka. Secular magnetic variation was studied by Barton and Barbetti (1982). An age of ~10 ka was obtained at a gap corrected depth of 7 m from an 11.73 m core from Bullen Merri (Barton and Polach, 1980). A ~4 m Core from Lake Gnotuk gave a basal age of 11.5 \pm 0.3 ka (Wilkins et al., 2013) terminating in a dense grey clay.

Lake Purrumbete

Lake Purrumbete is the largest lake in the group, approximately circular, with an average diameter of 2500 m and a surface area of 520 ha. The lake lies in an maar crater of low relief, and unlike most of the lakes in the study, where the crater rim usually approximates the topographic catchment, the lake's catchment is substantially larger than the maar crater alone, with a catchment area of ~30 km² (Yihdego et al., 2015). Lake Purrumbete's depth was reported as ~45 m (Timms, 1976), and had a September 2018 water level of 135 mAHD. There are two bays in the lake: a small one on the north side, and a larger one with a boat ramp and caravan park on the southern side. The southern bay at least does not appear to be volcanic in origin as it is shallow and flat bottomed. Lake Purrumbete has a man-made outlet that drains to the

Curdies River at high lake levels. The outlet has been lowered over the years from 134.99 mAHD prior to 1981, to 134.79 in 1981, to 134.6 mAHD in 1992 (Yihdego et al., 2015). The discrepancy between the outlet height and the current lake level may mean that there has been some sediment buildup in the outlet over the last few decades. Lake Purrumbete is a freshwater lake, with a TDS of ~530 mg/L. The catchment has been modified over the years, with several minor drainage schemes added to drain swampy farmland to the south of the lake.

The base of the lake sits slightly higher than the Gellibrand marl, which has a top surface ~70-90 mAHD around the lake. The Port Campbell Limestone tapers out a few kilometres to the west, leaving a ~50 m thickness of the Sandringham Sands, and the overlying basalt. Yihdego et al. (2015) estimated hydraulic conductivities of 3.6 m/day, and a specific yield of 0.13. Lake Purrumbete is one of the few lakes in this study which has undergone research into the diatreme structure beneath the lake. Van den Hove et al. (2015) applied magnetic and gravimetric potential field modelling to establish possible diatreme structures > 250 m deep.

Cores have been taken from Lake Purrumbete by Yezdani (1970), investigating lake pollen and algae, and De Deckker (1982), to infer lake levels and salinity based on ostracods and fossil remains. Tibby et al. (2012) retrieved cores for palynology and diatom based proxy reconstructions of vegetation and water quality, with a basal core age of ~8000 BP.

Lake Tooliorook

Lake Tooliorook is a permanent, shallow lake likely formed by lava from Mount Elephant blocking a creek to the south of the lake. Tooliorook has a large catchment with the lake filling mostly from two inlets, a minor one flowing from Lake Koonangurt, in the northwest of the lake, and a major stream collecting water from a large region to the north of the lake. At high levels the lake overflows through a channel to the south east. It had a depth of ~2 m and a surface area of 322 ha (Khan, 2003). As of this study, Lake Tooliorook had a TDS of ~4200 mg/L. The lake sits within a ~10 m thickness of the Sandringham Sands, overlying the palaeozoic basement, and with a small thickness of basalt over the top. There has been no palaeoclimate research at Tooliorook, but there has been significant sampling over the years as part of an investigation into salinity across the region (Barton et al., 2013).

Nalangil Basins

The Basin Lakes at Nalangil are the easternmost lakes in the study. These hypersaline lakes lie within adjacent maar craters surrounded by pasture farmland. As of September 2018, East Basin

is elongate in shape trending northwest–southeast, with a catchment area of 69 ha and a water surface area of 20 ha. West Basin is sub-circular, with a catchment area of 47 ha, and a water surface area of 13.6 ha. The water levels were 111.4 mAHD for West Basin, and 113.6 for East Basin, placing the water levels around ~20–25m below the crater rims. Max water depths were 12.5 m for West Basin and 12.1 m for East Basin in 1986 (Gell et al., 1994; Last, 1992). Both lakes are surrounded by thick layers of dolomite carbonate hard-grounds (Last, 1992; Last and Deckker, 1990). Liquid waste from the nearby dairy was deposited in East Basin between 1900 and 1960 resulting in high recent organic productivity and an additional flux to the hydrological budget of the lake (Timms and Brand, 1973).

The Basins surrounding geology is fairly similar to that found at Purrumbete. The base of the lakes lies just below the top surface of the Gellibrand Marl, which has a height of ~105 mAHD. Uncomformably overlying the marl is ~20m thickness of the Sandringham Sands, followed by the overlying basalts.

Some palaeoclimate work has been undertaken at the Basins, including a multiproxy study at West Basin (Gell et al., 1994), and a study of the carbonate composition of Holocene sediment cores from both lakes, which date to ~10 ka at West Basin and ~6 ka at East Basin (Last and Deckker, 1990).

Chapter 3

Development of an autonomous, monthly and daily,

rainfall sampler for isotope research

This chapter is published as:

Ankor, M. J., Tyler, J. J., & Hughes, C. E. (2019). Development of an autonomous, monthly and daily, rainfall sampler for isotope research. *Journal of Hydrology*, 575, 31-41.

Notes: This chapter has been reformatted to match the rest of this thesis. Figure and table numbers have been prefixed with the chapter number (e.g. Fig. 1 has been changed to Fig. 3.1). The published version of this paper has been included in Appendix 3.

Statement of Authorship

Title of Paper	Development of an autonomous, r	Development of an autonomous, monthly and daily, rainfall sampler for isotope research						
Publication Status	IX Published	C Accepted for Publication						
	Submitted for Publication	Unpublished and Unsubmitted work written in manuscript style						
Publication Details		IGHES C. E. 2019. Development of an autonomous, monthly ppe research. <i>Journal of Hydrology</i> . 575, 31-41.						

Principal Author

Name of Principal Author (Candidate)	Martin Ankor						
Contribution to the Paper	Corresponding Author. Devised initial concept, s of results. Wrote manuscript.	ampler de	sign, experimental design. Analysis				
Overall percentage (%)	90%						
Certification:	This paper reports on original research I conducted during the period of my Higher Degr Research candidature and is not subject to any obligations or contractual agreements third party that would constrain its inclusion in this thesis. I am the primary author of this pa						
Signature		Date	19 Dec 2019				

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. the candidate's stated contribution to the publication is accurate (as detailed above);
- ii. permission is granted for the candidate in include the publication in the thesis; and
- iii. the sum of all co-author contributions is equal to 100% less the candidate's stated contribution.

Name of Co-Author	Jonathan T. Tyler							
Contribution to the Paper	Evaluated and edited manuscript. Provided guidance for aspects of experimental design and sampler design.							
Signature	Date 19 Dec 2019							

Contribution to the Paper	Evaluated and edited manuscript. Provided guidance for aspects of experimental design a sampler design.						
Signature	Date 20 / 12/ 19						

Abstract

An autonomous, low cost (< US\$750), and open source rainfall sampler has been developed for hydrogen and oxygen isotope research, able to sample daily and monthly for up to 60 days of rainfall, over a three month period. The sampler is designed to use modern fabrication methods such as 3D printing and laser cutting to minimise the need for machined and injection molded components. The sampler can use either paraffin oil or a submerged inlet tube (also known as tube-dip-in samplers) to prevent evaporation, with the use of the inlet tube method facilitated by 3D printed bottle caps. An experiment was performed to identify the most suitable plastic for these caps, with acetone treated ABS (Acrylonitrile Butadiene Styrene) being most suitable, followed by PETG (Polyethylene Terephthalate Glycol), untreated ABS, and PLA (Polylactic acid). In addition, the effectiveness of both paraffin oil and the inlet tube method for preventing evaporation was quantified, with paraffin identified as being the most effective at present. During a 90 day outdoor experiment, the ¹⁸O/¹⁶O vs. ²H/¹H ratios of some water samples evolved along a local evaporation line, with increased isotopic enrichment of samples correlating to water loss. A coupled hydrologic-isotopic model was applied to these data, and successfully predicted the change in isotope ratios based on the amount of water lost from each sample. This modelling approach, combined with daily and monthly sample collection and quantification of evaporation rates within the sheltered environment of the sampler allows for back calculation of the original volume and isotopic composition of daily and monthly rainfall samples. The rainfall sampler thus facilitates cost -and time- effective remote monitoring of the isotopic composition of precipitation to support an array of Earth system research.

1 Introduction

The natural variation of the oxygen and hydrogen isotopes of water in the hydrological cycle is tied to numerous climatic and meteorological variables (Craig, 1961; Craig and Gordon, 1965; Dansgaard, 1954; Gat, 2010; Gibson et al., 2016; Gibson et al., 2008). This variation forms a key dataset for many branches of research, including climate and meteorological research, water resource management, forensic and ecological source identification and spatial and temporal mapping of changes and fluxes in meteoric water (Bowen and Revenaugh, 2003; Bowen et al., 2005; Gibson and Reid, 2014; Mattey et al., 2008; Steinman et al., 2010; Treble et al., 2005; Tyler et al., 2007).

Chapter 3

At the centre of the water cycle is precipitation. The Global Network of Isotopes in Precipitation (GNIP) has underpinned knowledge on monthly and annual scale variability in the isotopic composition of precipitation since 1961 (Rozanski et al., 1993), however, several applications demand rainfall sampling at higher spatial and temporal resolution, often from remote locations, placing significant demand upon time and financial resources. In addition, the isotopes of water $-{}^{3}H/{}^{2}H/{}^{1}H$ and ${}^{18}O/{}^{17}O/{}^{16}O$ – fractionate as water molecules undergo phase change and diffusion. In response to evaporation, residual liquid water becomes relatively enriched in the heavy isotopes as a function of both the climate and the evaporative history of the water. Evaporation of collected samples presents a challenge to sampling rainfall, requiring dedicated systems that minimise evaporation and accompanying isotopic alteration. Therefore, there is a need for an adaptable precipitation sampler which preserves the integrity of oxygen and hydrogen isotope ratios (${}^{3}H/{}^{1}H, {}^{2}H/{}^{1}H, {}^{18}O/{}^{16}O$ and ${}^{17}O/{}^{16}O$).

1.1 Previous designs

There has been no shortage of rainfall sampler designs over the last few decades, with many designs developed for acid rain research in the 1970s (Raynor and McNeil, 1978). Laquer (1990) identified over 70 reports of sequential rainfall samplers, focused on recording variations of rainfall over the course of a rainfall event, using a variety of techniques. While some aspects of a sequential rainfall sampler may form a useful design basis for a daily/monthly sampler, many rely on mains power, require manual preparation, are not suited to long term on/off operation, and often segment rainfall by volume rather than time. Few of these older samplers feature designs that are well suited to modern, low cost fabrication techniques. There are, however, some novel innovations as well as commonalities amongst many of these samplers. One of the most robust and simplest sequential sampler designs is the sampler of Kennedy et al. (1979) consisting of a series of interlinked bottles. As each bottle is filled, the overflow is diverted to the next sample bottle. Mixing of samples is prevented by the use of a narrow inlet tube to the base of each sample bottle. Ronneau et al. (1978) developed an entirely mechanical sampler for remote areas driven solely by gravity and using tipping, latching sample containers on a circular platter. A resistance based rainfall detector was used by Asman (1980), whereas Gray et al. (1974) used a loud speaker, which, when struck by a raindrop, would generate an electronic pulse that would trigger the sampler's mechanism. Gatz et al. (1971) developed a sampler able to collect up to 70 samples (500-1000 ml) from 70 mm of rainfall. At 1 x 1 x 2 m and 91 kg, this probably represents the heavyweight class of sequential samplers, closely challenged by the Raynor and McNeil (1978) sampler at 1.5 x 1.5 x 0.64 m, both of which were designed as permanent installations. A more recent sequential sampler design is the 96 vial sampler of

Coplen (2010); (2015), that incorporates a novel teflon coated cover to prevent evaporation from inactive sample vials. In terms of commonality between existing sampler designs, many make use of a tipping bucket system to quantify the rainfall amount. As many of these samplers segment rainfall by volume, a tipping bucket sensor provides an effective way to prevent overflows. Circular, rotating platters are also very common, taking advantage of mechanical and electronic simplicity and robustness.

Two more recent designs break with these common design elements. Akkoyunlu et al. (2013) developed a sampler that quantifies rainfall using MATLAB controlled solenoids, located beneath the collector funnel, separated by a tube with a volume of 5 ml. Rainfall was then gravimetrically segmented to 21 individual sample bottles. However, unlike some older systems that rely on sample bottles filling to enable the next bottle in the sequence, the sample bottles were instead capped with solenoids. As each solenoid closed, water was diverted down the inlet tube to the next bottle until all bottles were filled. Hartmann et al. (2018) developed an Arduino based, battery powered field auto-sampler that uses a Cartesian based control system to fill a grid of gas-tight sample vials. Like the design of Akkoyunlu et al. (2013), an inlet tube with a known volume (12 ml) holds the sample prior to storage. A peristaltic pump then transfers the sample via piston flow to the sample vials. A pair of cannulas pierce the vial cap for sample injection and pressure equalisation, and the sealing nature of the rubber vial cap prevents exchange with the atmosphere. This device has been used for sampling of cave waters. The evaporation prevention mechanism is of significant interest to rainfall sampling, however, it is unclear at this stage how this system could be adapted to rainfall collection, as the thin diameters of the auto-sampler cannula will likely face problems with the detritus usually collected in rainfall sampler funnels. In addition to the above, the 3700C Compact and 6712 Fullsize samplers (Teledyne ISCO, USA) represent commercial sampler designs that have been adapted for sequential rainfall sampling (Rücker et al., 2019). These samplers utilise the common design element of a circular array with up to 24 sample bottles, combined with a peristaltic pump for filling samples. There is also ongoing development focused on in-field analysis where mobile labs are established at the site of interest, with analyses of samples undertaken in near real time (Berman et al., 2009; von Freyberg et al., 2017). These systems are typically expensive, require on-site power and regular attendance, making them unsuitable at this stage for use in remote locations with limited infrastructure.

While there are many examples of sequential rainfall samplers in the literature, there are relatively few that are designed for discrete daily/monthly sampling, possibly due to the added complexity required. Unlike sequential samplers, daily/monthly samplers have to prevent

Chapter 3

evaporation of samples for long time periods, require accurate timekeeping, must be sufficiently robust, and must store sufficient samples to operate for months in the field. Samplers designed for remote sites also need to be small enough to be transported and installed, as well as having the means to maintain power supply for the period of deployment. Of the samplers mentioned above, only the auto-sampler of Hartmann et al. (2018) and the sequential sampler of Coplen (2010) have most of the components required for daily/monthly sampling of rainfall in remote sites. However, in the case of Hartmann et al. (2018), there would be significant modifications required to adapt it for rainfall sampling including attachment of a catchment funnel, rainfall sensor, a water reservoir that the auto-sampler can sample and that can be emptied when rainfall has occurred, and a filter system to deal with the detritus collected in rainfall catchment funnels. The design of Coplen (2010) would require less modification, with the main changes being to the control software, and the inclusion of an evaporation prevention system for the main reservoir, where water is stored prior to being transferred to the sample vials. The design of Akkoyunlu et al. (2013) has potential as a monthly sampling system, as control of ~14 solenoids is manageable with low power electronics such as the open source Arduino platform.

1.2 Fabrication methods and materials

Design and construction of bespoke equipment such as precipitation samplers can be challenging due to the absence of off-the-shelf components that can be easily incorporated. Even parts as simple as a UV stabilised funnel of a suitable size can prove difficult, for example Asman (1980) made use of a square funnel, due to the difficulty of fabricating a large cylindrical funnel. Injection moulding, complex machining and custom electronics are not feasible manufacturing techniques for low volume production as they typically have high initial costs. Fortunately, in the last decade, several developments in manufacturing have emerged that enable low volume, complex designs to be manufactured at low cost (Berman, 2012; Rayna and Striukova, 2016). Two in particular are heavily used in our sampler. 3D Printing, or fused filament fabrication, enables the fabrication of complicated plastic components, though typically of fairly small size. When combined with computer numerical control (CNC) laser cutting, larger designs of considerable complexity can be manufactured. More importantly, once a design is complete, it can easily be fabricated by anyone else with a 3D printer, laser cutting or CNC milling capability. Low cost, extensible, microprocessor based electronics such as the Arduino system provide accurate timing, motor control, data logging and support for multiple sensors, e.g., Hund et al. (2016). In the same way that the manufacturing designs can be published and fabricated, the program that controls the Arduino can be shared.

1.3 Methods of preventing evaporation

With respect to evaporation prevention, two methods have demonstrated effectiveness: paraffin oil, or the submerged inlet tube system of Gröning et al. (2012) (Michelsen et al., 2018; Terzer et al., 2016). The oil method prevents evaporation by the addition of a ~5 mm layer of paraffin oil to the sample, which forms a barrier between the sample and the air. The inlet tube system uses a narrow (typically ~4 mm diameter) inlet tube that passes to the bottom of the sample container. Once the first portion of rainfall enters the sample container, the base of the inlet tube is submerged, and evaporation can only occur through the small surface area exposed in the inlet tube. Pressure is equalised through a second tube that vents the container, but is sufficiently long and thin to minimise diffusion with the exterior atmosphere. The sample container and vent tube are then protected from sunlight to minimise heating and corresponding pressure changes within the sample container. Given the simplicity and effectiveness of the paraffin oil technique, it might be expected to be the preferred collection method. However, as analysis of the samples is often complicated by the presence of oil in the sample (IAEA, 2014), in many situations the inlet tube method is preferred.

The choice of sampling bottle must also be considered as isotopes may exchange or permeate through the sample bottle material. Spangenberg (2012) investigated multiple plastics for their suitability for storing waters for stable isotope analysis, namely: High and low density polyethylene (HDPE, LDPE), polypropylene, polycarbonate, polyethylene terephthalate (PET), perfluoroalkoxy-Teflon and glass over a timeframe of 659 days. Significant variations of +5 ‰ for δ^2 H and +2 ‰ for δ^{18} O were observed for polycarbonate and PET. The recommended materials for use in sample bottles used for stable isotope investigations are glass, HDPE or teflon, with a preference for thicker walled containers. Unfortunately, there is little overlap between the common laboratory plastics tested by (Spangenberg, 2012) and the plastics commonly used in 3D printing: acrylonitrile butadiene styrene (ABS), polylactic acid (PLA) and polyethylene terephthalate-glycol modified (PETG).

1.4 Objectives

There is a clear need for an autonomous rainfall isotope sampler that can be deployed for long time periods in remote locations. Given that no design has thus far been able to prevent losses and fractionation due to evaporation, there is also need to be able to evaluate, and potentially correct for the effects of evaporation on samples. This paper presents the development of a low cost (< US\$750), autonomous, battery powered sampler using novel construction methods and

Chapter 3

open source electronics. Design files are available from https://github.com/Mjankor/MARS-Rainfall-Sampler. Aspects of the design of the sampler are considered, with tests quantifying the amount of water lost due to surface wetting along the flow-path, and the ability of the sampler to divide the flow accurately between daily and monthly samples. In addition to discussing the design of the rainfall sampler, we also present results investigating the effectiveness of 3D printing bottle caps using ABS (Acrylonitrile Butadiene Styrene), PETG (Polyethylene Terephthalate Glycol), PLA (Polylactic acid), and acetone treated ABS, for preserving the integrity of stable isotope ratios in water samples. A coupled hydrologic-isotopic model was applied to the bottle caps experiment data, to predict the change in the isotopic composition of the water based on the water lost from each sample. Based on the results from the isotopic modelling, we describe how a hydrologic-isotopic model, taking advantage of the differing rates of evaporation from daily and monthly samples, can be used to back calculate the original volume and isotopic composition of rainfall samples.

2 Design principles

The many varied designs of rainfall sampler from the last few decades show a few commonalities, but no de facto design standard. Therefore, rather than rework an existing design, we established several design principles that were used as the basis for development.

Usage: The sampler should be easily deployed in remote environments. As major cities often have GNIP stations, and generally have personnel available for event or daily sampling, there is little benefit in designing a sampler that is reliant upon significant infrastructure.

Cost: Samplers will be deployed in remote or uncontrolled environments where there is potential for vandalism, weather damage, and other mishaps. Minimising costs means that the loss of a sampler is less of a burden on research budgets, or that more samplers can be deployed for better spatial resolution and redundancy.

Outer casing: Needs to be weatherproof and robust over the timeframe of years. It should also prevent wildlife from occupying the sampler, and should protect the electronics and interior components from sunlight and excessive heat. In addition, the sampler should be entirely self-contained without any external components such as batteries or cables which can be easily damaged.

Battery powered: The sampler must operate without an external power source for a long period of time. When combined with solar panels, a sampler should be able to operate indefinitely.

Easy to construct: As the intent is to provide a design for others to replicate, it is beneficial that the construction of the sampler is straightforward. This is also an important feature for a field sampler, where repairs and maintenance may need to be carried out at remote locations with minimal equipment.

Sampling capabilities: Capturing both daily and monthly precipitation provides some redundancy in case of failure of some components, and allows for quality control by comparing the mass balance of daily and monthly samples.

Flexibility: The sampler must be suitable for differing rainfall conditions. This is rarely a challenging problem with rainfall samplers as the collection funnel can be changed to increase or reduce the amount of rainfall collected. However, funnels with specific diameters are sometimes difficult to purchase. Therefore the design process included the development of multiple funnel options. In addition, regions with very variable rainfall should be considered, requiring a method to prevent overflow from large events

The ability to quantify rainfall: Quantifying the amount of rain is important, partly, as an explanatory variable for the isotopic composition of rainfall, and more importantly, to prevent overflows during heavy events and to avoid changing sample bottles on days of no rain.

Preservation of isotope ratios: The rainfall sampler is designed to accommodate both the paraffin oil and inlet tube methods to prevent evaporation, though it is noted that the inlet tube method has analytical and operational benefits. Oil is an option regardless of the sampler design, however the inlet tube method requires significant space to store the vent tubes, and attaching both the inlet tube and vent tube to sample bottles can be complicated or expensive.

2.1 Design

Based on the above criteria, a low cost, automated rainfall sampler was designed for remote field deployment, which for simplicity is named MARS. The choice of outer casing was an early priority in the design process. The sampler needed to be large enough to contain multiple sample bottles, as well as the sampling mechanism, electronics, battery, and a rainfall collection funnel. Fortunately, a cheap, common, off the shelf solution was identified; 200 litre plastic drums, typically used for transporting food and chemicals are extremely common, and recycled ones can be purchased for very low cost. These drums are typically blue HDPE plastic around 4 mm thick and are UV resistant. They have a diameter of ~58 cm and a height of ~93 cm, and are typically completely sealed with just two inlet ports for filling and emptying. The entire

drum is not used for the sampler. The top half of the drum is used as a lid that can be easily removed to provide access to the daily sample bottle area. The lower third of the drum is used to provide a protected enclosure below the main sampler where monthly sample bottles are placed. It should be noted that the lower shell is not designed to be water proof and it is expected that some water will make its way into that space as the seal between upper and lower shells is not watertight. There is a drain in the lower shell to prevent water building up in that space. The outer shell has had its height reduced as much as possible to minimise the wind effect on rainfall sampling (Bureau of Meteorology, 2007), to reduce the chance of it being blown over, and to make it easy to transport.

At the centre of the MARS sampler, forming the top of the lower shell, is a 12 mm plywood baseplate. This baseplate holds the electronics, battery and provides a firm fixing point for the mechanical system (Fig. 3.1). Positioned about 6 cm above the main baseplate is a rotating platter of 12 mm plywood, sitting on a 30 cm turntable bearing. This platter has a support frame on it designed to hold 60 x 225 ml HDPE bottles (48.4 mm diameter x 161 mm) in two rings of 33 and 27 bottles. A central plastic tower sits at the centre of the baseplate, and holds the tipping bucket mechanism, and a 'water switch' that can divert water from the tipping bucket outflows to either the inner or outer ring of daily sample bottles, and between first, second or third of the monthly samples. One benefit to using a rotating platter is that there is a 'dead spot' in the centre, which provides an ideal location to place the vent tubes used for the inlet tube evaporation prevention method. The platter's rotation is controlled by a ring gear driven by a stepper motor.

Three 8 mm silicone tubes run from the water switch, down the central tower and through the baseplate to 3 monthly sampling bottles (2 L, HDPE). These bottles also use the inlet tube method, with the vent tubes stored inside the lower compartment.

On the baseplate are a cabinet for the electronics, the motor for rotating the main platter, a small 12 V, 2.1 Ah sealed lead acid battery and the support for the platter bearing. In addition are two drains in case of overflow of the daily bottles, and guides with encapsulated nuts around the outer rim, used to guide and secure both top and bottom shells in place. The drains are a holdover from an earlier design and should rarely be needed in the current design.

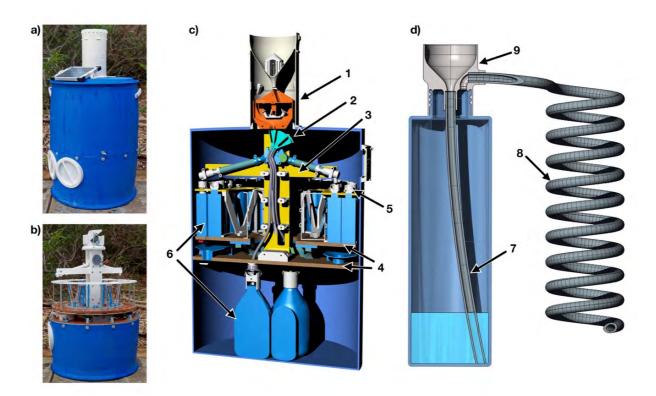
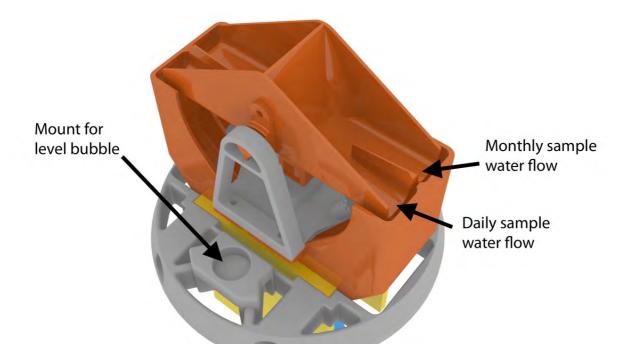



Figure 3.1: (a) Photo of sampler, with lid in place. (b) Photo of the sampler with the lid removed. (c) Cutaway view of the MARS rainfall sampler showing tipping bucket (1, orange), water switch (2, cyan), laser cut platter and tower components (3, yellow), baseplate and platter (4, wood texture), bottlecaps (5, grey) and bottles (6, blue). (d) Cutaway view of the inlet tube method, showing inlet tube (7), vent tube (8) and 3D printed bottle cap (9). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The electronics are controlled by an Arduino Nano 3.x (Duinotech Nano V3.0) on a breakout board. The breakout board keeps the need for soldering to a minimum, with jumper cables used to connect most of the components. Two stepping motors are used, one driving the platter, and the other controlling the water switch on the tower. A reed sensor determines when the tipping bucket is activated and a microswitch on the tower is used to reset the water switch. The position of the main platter is not reset electronically as it is much quicker to disengage the motor and rotate the platter by hand to the starting position. A real time clock and an SD Card reader keep time and a log for each sample changeover date. The Arduino platform also means that MARS can be easily reprogrammed for different roles, such as time or volume based sequential sampling of rainfall events.

Attached to the outer shell is a 3D printed funnel positioned ~30 cm above the top of the sampler. While it could be positioned closer to the outer shell, 30 cm was chosen to prevent splashes from the casing bouncing into the funnel. The top half of this funnel is designed to be easily replaced so that different sized funnels can be used. There are vents situated around the exterior of the funnel. When combined with the drains in the lower shell, these vent warm air

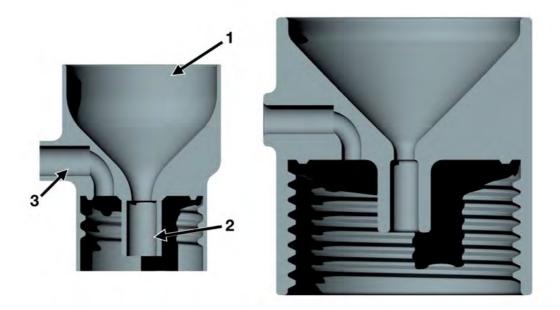

from the sampler, replenished with cooler air from near ground level, thus preventing greenhouse style warming in the sampler. All vents and drains are designed so that mesh can be applied to exclude insects.

Figure 3.2: The tipping bucket, showing the flow splitting divider. A level bubble is incorporated into the design to ensure that the tipping bucket is vertically aligned

The tipping bucket design is unique due to the way that it separates the flow-path for monthly and daily sample collection (Fig 3.2). Tipping buckets have been used before to divide rainfall into multiple samples, with alternating tips of the bucket passing water through different flowpaths e.g. Gatz et al. (1971). While such a design is ideal for volumetric based segmentation in a rainfall event, it introduces potential systematic uncertainties. Any difference in tipping volume between the buckets would result in a bias towards either daily or monthly samples. In addition, most tipping buckets are designed to tip for each 0.2 mm of rainfall. If a series of small rainfall events occurs, then on a day with rainfall of 0.2 mm all of the rain may go into the daily sample, and none into the monthly. On a day of 1.4 mm of rainfall, 0.8 mm may go to daily, and 0.6 mm into the monthly. To avoid this issue, and taking advantage of the ability to fabricate complex structures with 3D printing, our tipping bucket splits the flow for each bucket, with half the water from each bucket tip going to daily, and half going to monthly samples. The tipping bucket is designed to tip with a volume of 4 ml, resulting in a tip every 0.2 mm of rainfall with a 159.6 mm diameter funnel. The success of this mechanism to divide water equally is dependent on the rainfall sampler being vertically aligned, thus a level bubble is built into the design of the tipping bucket.

Fabrication is achieved predominantly using 3D printed components, while some of the bottle support structure, ring gear and central tower uses laser cut 6 mm acrylic plastic. To build the design requires a few basic tools (jigsaw, drill, screwdriver, soldering iron) as well as a 3D printer able to print ABS with a build volume of 200 x 200 x 180. All 3D printed parts were printed using a Wanhao i3 Plus 3D printer. Components that form the water flowpath were printed with 0.2 mm layer thickness, and sanded with 1500 grit sandpaper to smooth the layered structure of the printed surface.

Figure 3.3: Cutaway view of the 3D printed bottle caps, with funnel (1), offset formed vent tube holder (2) and central inlet tube holder (3) (Left, cap for 225 ml bottles, right, cap for 2 L bottle).

3 Design and material tests: experimental methods

3.1 Quantification of water loss from surface wetting

In order to quantify the amount of water lost through wetting of surfaces along the flow-path, various quantities (12, 20, 40, 60, 100 ml) of water were dripped into the sampler at a rate of ~ 1 ml/s wetting the entire funnel and top surface of the filter, representing rainfall events from 0.6 to 5 mm of rainfall. The amount of water collected in the bottles were subsequently weighed. This experiment was repeated 3 times.

3.2 Quantification of water loss through bottle caps

The use of 3D printed plastics along the water flow-path was not considered problematic with regard to preservation of water isotope ratio integrity, as water would only be in contact with those plastics briefly. However, the use of 3D printed plastics for bottle closures was a concern. To test which plastics were most effective at preserving the initial water isotope ratio, bottle caps were fabricated using three different types of plastic. The plastics used were blue PLA, grey ABS and white PETG from 3DFillies (https://3dfillies.com/). In addition, grey ABS modified with acetone treatment was also tested, where acetone is used to partially dissolve and smooth the ABS plastic surface, potentially improving the sealing between printed layers (Garg et al., 2016; Singh et al., 2017). Acetone treated parts were placed in a 4 L tin lined with acetone soaked paper towels for 30 minutes at 20 °C, then allowed to dry overnight.

In order to test the effectiveness of different plastic caps, and to validate the use of the inlet tube system, an experiment was conducted using 33 x 225 ml HDPE bottles, each with ~40 ml of recent rainfall (equivalent to 4 mm of rain, using a 159.6 mm diameter funnel divided between monthly and daily samples). For each plastic, sealed bottle caps were fabricated using the same design as used in the sampler, but with the inlet and outlet holes sealed. Unsealed bottle caps of the same design were also fabricated in all 4 plastics and combined with the inlet tube and vent tube to replicate the system used in the sampler. The inlet and vent tube consisted of ~4 mm Ø (internal) LDPE tubing with a ~ 1 mm wall thickness. Triplicates of each design were fabricated for each plastic giving a total of 24 bottle-caps (Table 3.1). Triplicate bottles using the oil method of evaporation prevention were also prepared, with 5 mm of paraffin oil sealing each ~40 ml water sample. As a control, 6 bottles were prepared, sealed with wadded polypropylene caps.

Sample Description		Mass Change					Obset	Modelled $\boldsymbol{\delta}$				
Sample ID/Plastic type	Seal type	Lid weight (or paraffin oil weight) (g)	Initial water weight (g)	Final water weight (g)	Water loss (g)	Water loss (%)	δ ¹⁸ O (‰)	δ²H (‰)	δ ¹⁸ Ο σ (‰)	δ ² Η σ (‰)	δ ¹⁸ O (‰)	δ²H (‰)
HPDE01	Wadded PP cap	2.16	39.32	39.32	0	0	-4.6	-18.1	0.02	0.32	-4.57	-18
HPDE02	Wadded PP cap	2.15	39.5	39.5	0	0	-4.55	-17.7	0.01	0.11	-4.57	-18
HPDE03	Wadded PP cap	2.15	38.2	38.2	0	0	-4.56	-17.6	0.02	0.15	-4.57	-18
HPDE04	Wadded PP cap	2.14	39.42	39.3	0.11	0.3	-4.56	-18.1	0.05	0.23	-4.46	-17.7
HPDE05	Wadded PP cap	2.16	39.53	39.44	0.09	0.2	-4.52	-18	0.03	0.29	-4.5	-17.8
HPDE06	Wadded PP cap	2.15	39.36	39.25	0.1	0.3	-4.62	-19.1	0.01	0.11	-4.46	-17.7
PLA01	Inlet Tube	9.23	38.37	35.05	3.33	8.7	-1.45	-10.2	0.06	0.33	-1.43	-10.3
PLA02	Inlet Tube	9.27	39.02	36.22	2.8	7.2	-2.14	-12	0.09	0.25	-1.98	-11.7
PLA03	Inlet Tube	9.28	39.49	36.83	2.67	6.7	-2.23	-12.2	0.04	0.21	-2.16	-12.1
PLA04	Sealed inlet/outlet ports	9.88	39.32	38.66	0.66	1.7	-4.03	-16.7	0.04	0.21	-3.96	-16.5
PLA05	Sealed inlet/outlet ports	9.9	39.89	38.01	1.88	4.7	-2.92	-14.1	0.06	0.41	-2.89	-13.9
PLA06	Sealed inlet/outlet ports	9.87	39.99	38.06	1.94	4.8	-2.76	-13.6	0.06	0.25	-2.85	-13.8
PETG01	Inlet Tube	9.47	39.05	37.72	1.33	3.4	-3.43	-15.3	0.01	0.21	-3.35	-15
PETG02	Inlet Tube	9.49	39.51	38.03	1.48	3.7	-3.29	-14.9	0.03	0.31	-3.25	-14.8
PETG03	Inlet Tube	9.36	40.1	38.72	1.38	3.5	-3.37	-15.1	0.04	0.21	-3.32	-15
PETG04	Sealed inlet/outlet ports	10.01	39.24	38.52	0.72	1.8	-4.02	-17.5	0.08	0.36	-3.93	-16.4
PETG05	Sealed inlet/outlet ports	10.01	39.63	39.01	0.62	1.6	-4.19	-17.3	0.16	0.44	-4	-16.6
PETG06	Sealed inlet/outlet ports	10.03	39.59	39.08	0.51	1.3	-4.12	-16.7	0.06	0.44	-4.11	-16.9
ABS01	Inlet Tube	7.84	39.65	38.05	1.6	4	-3.27	-14.8	0.11	0.59	-3.14	-14.5
ABS02	Inlet Tube	7.84	39.26	37.78	1.49	3.8	-3.29	-14.7	0.06	0.39	-3.21	-14.7
ABS03	Inlet Tube	7.83	39.28	37.69	1.59	4.1	-3.24	-14.8	0.01	0.32	-3.1	-14.4
ABS04	Sealed inlet/outlet ports	8.29	39.59	38.4	1.19	3	-3.5	-15.3	0.03	0.17	-3.5	-15.4
ABS05	Sealed inlet/outlet ports	8.28	38.86	37.65	1.22	3.1	-3.4	-15.1	0.03	0.41	-3.46	-15.3
ABS06	Sealed inlet/outlet ports	8.29	39.27	37.51	1.76	4.5	-3.05	-14.1	0.04	0.48	-2.96	-14.1
ACET01	Inlet Tube	7.95	39.18	37.89	1.29	3.3	-3.49	-15.4	0.04	0.19	-3.39	-15.1
ACET02	Inlet Tube	7.97	38.29	37.25	1.04	2.7	-3.67	-16.6	0.05	0.4	-3.61	-15.7
ACET03	Inlet Tube	7.96	39.76	38.43	1.34	3.4	-3.46	-15.7	0.03	0.14	-3.35	-15
ACET04	Sealed inlet/outlet ports	8.41	40.08	39.7	0.38	1	-4.26	-17.4	0.02	0.11	-4.21	-17.1
ACET05	Sealed inlet/outlet ports	8.41	39.46	39.02	0.45	1.1	-4.22	-17.2	0.05	0.31	-4.18	-17
ACET06	Sealed inlet/outlet ports	8.36	39.18	38.76	0.42	1.1	-4.23	-17.4	0.04	0.37	-4.18	-17
PARA01	Light paraffin oil	12.15	39.26	38.9	0.37	0.9	-4.4	-17.4	0.03	0.18	-4.25	-17.2
PARA02	Light paraffin oil	11.8	39.56	39.2	0.36	0.9	-4.43	-17.6	0.04	0.24	-4.25	-17.2
PARA03	Light paraffin oil	13.56	38.97	38.66	0.31	0.8	-4.46	-17.5	0.04	0.22	-4.29	-17.3

Table 3.1: Data for each bottle cap showing plastic and evaporation prevention method, water loss and observed and modelled isotopic results. PLA, PETG, ABS in sample names refer to plastic type. ACET refers to acetone treated ABS. PARA refers to paraffin oil samples, and HDPE (highlighted in grey) are the control samples with wadded caps. Columns δ^{18} O σ and δ^{2} H σ are the reported instrumental precision.

Each bottle was weighed when empty, then again once the ~40 ml of sample was added, using an Ohaus Adventurer AR3130, three decimal point balance. Each lid was also weighed to assess whether any water had been absorbed or condensed onto the lid over the course of the experiment. For the oil bottles each empty bottle was weighed, then weighed again with oil, and then again once the sample was added. Each bottle and lid was then weighed again at the end of the 3 months to determine any loss of water. Each water sample was filtered through a 0.2 μ m polyethersulfone syinge filter directly into 2 ml vials for analysis. Paraffin oil samples were left undisturbed for several hours, then a syringe needle was pushed through the side of the bottle well below the paraffin/water interface to extract the sample. Oxygen and hydrogen isotope analyses were conducted with an L2130-i Picarro Cavity Ring-Down Spectrometer (Picarro, Inc., Santa Clara, CA, USA) with a precision against an in-house QA standard of ±0.05 ‰ for δ^{18} O, and ±0.4 ‰ for δ^{2} H. Each batch of 10 samples was preceded by calibration with 2 in-house standards, and a quality check against a 3^{rd} in-house standard, with a final quality check at the end of the sample run. Each sample and standard were injected 7 times, with the first 3 injections discarded to prevent memory effects, and the remaining 4 injection results assessed for any residual trend. Chemcorrect (Picarro Inc.) was used to validate that samples had not been contaminated. Isotopic results are reported using the delta notation as per mil (‰) deviations from Vienna Standard Mean Ocean Water (VSMOW2) where:

$$\delta_x = 1000 \left(\frac{R_x}{R_{VSMOW2}} - 1 \right)$$

R is ${}^{18}O/{}^{16}O$, or ${}^{2}H/{}^{1}H$ and x is the sample in question.

Water from 3 of the control bottles (HDPE01, HDPE02 & HDPE 03) were analysed for ¹⁸O/¹⁶O and ²H/¹H at the start of the experiment, with average values of -4.57 ‰ δ^{18} O (σ of 0.03 ‰), and δ -17.8 ‰ δ^{2} H (σ of 0.2 ‰). The remaining 30 bottles – 12 sealed plastics, 12 inlet tube plastics, 3 paraffin oil, and 3 sealed control bottles – were stored in a box outside, under shelter, for ~ 3 months (from 31/10/17 to 28/1/18), approximating conditions found in the sampler. Humidity and temperature were monitored with an Arduino data logger, measured every 15 minutes with an Aosong DHT22 sensor (factory calibrated, accuracy RH ±2 %, Temperature ±0.5 °C). Sporadic problems with the SD card of the logger resulted in some gaps in the data. However, sufficient data (38 complete days) was collected to correlate local conditions with temperature and humidity data from two nearby weather stations (Australian Bureau of Meteorology site 023090 - Kent Town, Adelaide and site 023000 - West Terrace, Adelaide), using 'Patched Point' data from the SILO database (Jeffrey et al., 2001).

3.3 Isotopic Modelling

Each sample can be modelled as a slowly desiccating pond, with a slow loss of water from the initial sample volume. A numerical simulation using the Craig & Gordon (1965) model of isotope fractionation (Eq. 1) during evaporation was applied to the data to investigate whether a

modelling approach could predict the change in δ^{18} O and δ^{2} H for a particular amount of evaporative water loss.

$$\delta_E = \frac{\alpha^* \delta_w - h_n \delta_A - \varepsilon_{eq} - \varepsilon_{kin}}{1 - h_n + 0.001 \varepsilon_{kin}} \tag{1}$$

Where α^* is the reciprocal of the equilibrium fractionation factor, calculated using the equations derived by Horita and Wesolowski (1994). δ_W and δ_A are the isotopic composition of the water and atmosphere respectively. h_n refers to the relative humidity (RH). In studies of natural waters, this value is usually normalized to the temperature of the water. However, in our modelling, due to the small sample size it was assumed that air and sample water had a similar temperature, and the atmospheric RH was used. The per mil equilibrium isotopic separation (ε_{eq}) is calculated by:

$$\varepsilon_{eq} = 1000(1 - \alpha^*) \tag{2}$$

and the kinetic isotopic separation (ε_{kin}) by:

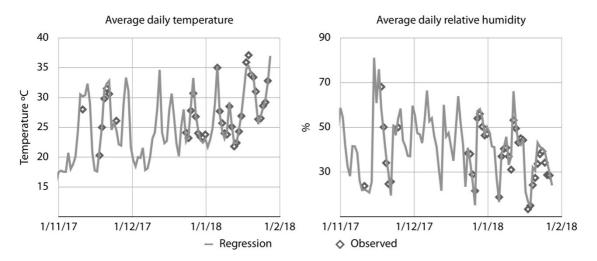
$$\varepsilon_{kin} = (1 - h_n)\theta nC_k \tag{3}$$

 C_k is an experimentally derived constant determined by Merlivat (1978) as 28.5 ‰ for δ^{18} O, and 25.1 ‰ for δ^{2} H. θ is a parameter describing the transport resistance of the diffusion layer, typically assumed to be 1 for small water bodies, and *n* is a value relating isotopic separation to wind conditions, ranging from 0.5 for fully turbulent condition, to 1 for stagnant conditions (Gat, 2010). Alternative values of ~14.2 ‰ for δ^{18} O and ~12.5 ‰ for δ^{2} H are often used for studies of natural waters, combined with a similar equation to eq. 3 without the *n* term (e.g., Araguás-Araguás et al., 2000; Gibson et al., 2015; Skrzypek et al., 2015; Steinman et al., 2010). δ_E is the isotopic composition of evaporated flux, and is combined with a simple numerical model to predict the isotopic composition of the remaining sample water (Eq. 4 & 5).

$$V^t = V^{t-1} - E^{t-1} \tag{4}$$

$$\delta_W^t = \frac{\delta_W^{t-1} V^{t-1} - \delta_E^{t-1} E^{t-1}}{V^t} \tag{5}$$

Where *t* is the timestep (daily). *V* is the volume of the sample, *E* is the volume of evaporative flux, and the subscript denotes sample water (*W*) or evaporative flux (*E*). Average meteorological conditions and a θ value of 1 (for a fully developed diffusion layer) were applied as model parameters. δ_A was initially assumed to be in equilibrium with precipitation (δ_P) and


the original sample. The model was then calibrated to the observed local evaporation line using the technique of Bennett et al. (2008) by shifting δ_A by 14 % from equilibrium with (δ_P) (Eq. 6).

$$\delta_A = \alpha^* \delta_P - 1.14 \varepsilon_{eq} \tag{6}$$

4 Results

4.1 Meteorology

Local meteorological conditions correlated well with the observations from both Kent Town and West Terrace weather stations. To fill in the missing data, a linear regression was derived for average daily temperature (N = 38, R2 = 0.94) and relative humidity (N = 37, R2 = 0.88) based on the correlation with Kent Town (being nearest) (Fig. 3.4). One outlier was removed from the correlation (Ave RH, 21/11/2017) as it seemed to be a local effect at the Kent Town station, and was not representative of local conditions or those at the West Terrace station. The daily average temperature over the course of the experiment was 25.3 °C, with a range from 16.0 °C to 37 °C. Relative humidity ranged from 15 % to 81 % with an average of 41.7 %. Interpolated pan evaporation estimates for both weather stations were an average of 7.7 mm/day for a total of 695 mm over the timeframe of the experiment (Fig. 3.4).

Figure 3.4: Predicted vs observed daily average temperature (N = 38, $R^2 = 0.94$) and relative humidity (N = 37, $R^2 = 0.88$) based on linear regressions.

4.2. Quantification of water loss from surface wetting

The average loss of water due to surface wetting was 1.9 ml $\pm 0.53 \sigma$, split fairly evenly between the 159.6 mm diameter funnel (~0.6 ml), tipping bucket and chute (~0.6 ml), and the water switch and pipework (~0.7 ml). This means that for a single event, assuming no re-evaporation of raindrops from the sampler surfaces during the event, ~90 % of rainfall for a 1 mm event is

collected, rising to ~98 % for a 5 mm event. There is also the potential for up to ~4 ml of rainfall (0.2 mm of rainfall with a 159.6 mm diameter funnel) to sit within the tipping bucket if insufficient rain falls to tip the bucket. The ratio for daily vs monthly rainfall captured was evenly split (336.3 ml for daily, 338.1 ml for monthly), demonstrating that the tipping bucket is able to divide the flow accurately with < 1 % variation.

4.3 Volumetric variation in samples

Significant differences in water loss were observed between the different techniques and plastics (Fig. 3.5, Table 3.1). The HDPE control bottles with wadded caps only lost 0.3 % (0.1 ml) of their water over the three months, followed by the paraffin oil bottles with a loss of 0.9 % (0.35 ml). With the exception of the sealed ABS and PLA capped bottles, both sealed and unsealed bottles demonstrated consistent differences between plastic types, with the inlet tube bottles typically losing $\sim 2 \%$ (0.8 ml) of mass relative to the sealed plastics. Sealed PETG and acetone treated ABS lost 1.6 % (0.6 ml) and 1.1 % (0.4 ml) respectively, while their corresponding inlet tube variants lost 3.5 % (1.4 ml) and 3.1 % (1.2 ml). The sealed ABS exhibited an average water loss of 3.5 % while the ABS inlet tube bottles lost 4 % (1.6 ml) of water. The PLA sealed bottles lost 3.7 % (1.5 ml) via the sealed lids, and 7.5 % (2.9 ml) for the inlet tube lids. Compared to most of the alternative plastics, the paraffin oil and the control, all of which had a standard deviation of < 0.35 %, the sealed ABS lids exhibited a standard deviation of 0.8 % and PLA had standard deviations of 1.8 % for the sealed and 1 % for the inlet tube lids. These results suggest that either the fabrication method did not produce PLA or ABS caps of consistent quality, or the caps did not seal the bottles adequately. As the inlet tube method is identical for all samples, then it would be expected to contribute a similar amount to the water loss for each sample. For both triplicates of PLA, two samples were similar, with the third varying by a significant amount. Assessing just the two similar samples for each set gives a 7 % (2.73 ml) loss for the inlet tube method and 4.8 % (1.9 ml) loss for the sealed cap, approximately matching the 2 % difference between inlet tube and sealed caps observed in the other plastics. Likewise, the sealed ABS appears to be indicative of variation in bottle cap fabrication, or the sealing between the caps and the bottles.

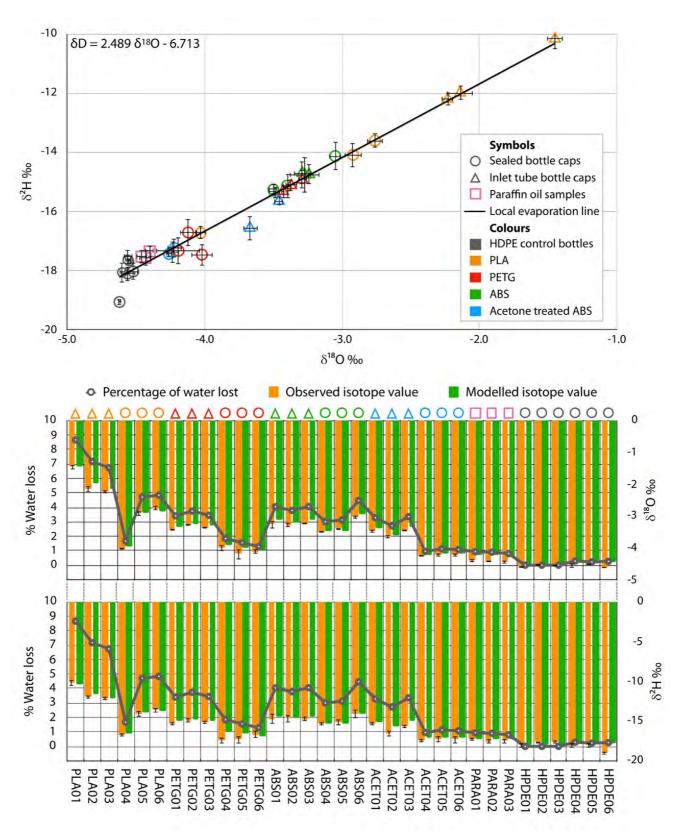


Figure 3.5: (a) Graph showing the sample evaporation line derived from the isotopic values for each sample after ~3 months storage. (b) Observed and modelled δ^{18} O results (right axis) and percentage of water loss (left axis) for each sample. (c) As per b, but for δ^2 H. Error bars show the reported instrumental precision.

4.4 Isotopic variation in samples

Changes in the δ^{18} O and δ^2 H of the water samples correlated strongly with the water loss for each sample and a linear regression between δ^{18} O vs δ^2 H exhibited a local evaporation line with a slope of 2.5 (Fig. 3.5). Three potential outliers were noted (PETG04, ACET02 and HDPE06) with δ^2 H values falling approximately -0.75 ‰ below the evaporation line. These outliers are suspected to have occurred due to an analytical error and are excluded from subsequent modelling and analysis. Unfortunately, these samples were not able to be re-analysed. Excluding these outliers, enrichment relative to the average original water composition ranged from an average of 0.14 ‰ δ^{18} O, and 0.3 ‰ δ^2 H for the paraffin oil samples, up to 2.63 ‰ δ^{18} O, and 6.3 ‰ δ^2 H for the PLA inlet tube bottles. Of the three remaining plastics, the inlet tube samples were enriched by an average of 1.21 ‰ δ^{18} O and 2.7 ‰ δ^2 H for PETG, 1.30 ‰ δ^{18} O and 3.1 ‰ δ^2 H for ABS, and 1.10 ‰ δ^{18} O and 2.3 ‰ δ^2 H for acetone treated ABS. Sealed caps underwent less enrichment, ranging from an average of 0.33 ‰ δ^{18} O and 0.44 ‰ δ^2 H for the acetone treated lids to 0.41 ‰ δ^{18} O and 0.8 ‰ δ^2 H for PETG. The sealed, untreated ABS lids suffered greater enrichment in line with their large and variable water loss.

4.5 Isotope modelling

Calibration of the modelled to observed isotope values was achieved through adjustment of the δ_A value as described in section 3.3. The modelled evaporation line was aligned to the observed evaporation line by applying a 14 % increase in equilibrium isotopic separation (ε_{eq}) between δ_A and δ_P . Differences between modelled and observed δ^{18} O for all samples except the three potential outliers ranged from 0.19 to -0.09 ‰ δ^{18} O with an average of 0.06 and a σ of 0.07 ‰ δ^{18} O. Differences between modelled and observed δ^{2} H ranged from 0.7 to -0.5 ‰ δ^{2} H with an average of 0.12 and a σ of 0.27 ‰ δ^{2} H. For the 3 outliers the differences in δ^{18} O ranged from 0.06 to 0.16 ‰ δ^{18} O, and 0.9 to 1.3 ‰ δ^{2} H (Fig. 3.5).

5 Discussion

5.1 General usage notes

Experiments designed to test the validity of the MARS rainfall sampler indicate that the device has the potential to perform remote, automated sampling of rainfall with retention of the primary isotope signature of daily and monthly rainfall. As is the case for manually operated rainfall samplers, the MARS sampler has limits with respect to the minimum amount of rainfall that can be reliably collected, both due to water loss due to wetting of surfaces along the flowpath and due to evaporative loss through the bottle lids. As a result, we recommend that the sampler is suitable for daily rainfall collections greater than 10 ml (equivalent to 1 mm of rainfall with a 159.6 mm funnel diameter, or 0.25 mm of rainfall with a 319.2 mm wide funnel).

5.2 Evaporation and isotope fractionation

The oxygen and hydrogen isotope enrichment along a well-defined local evaporation line (Fig. 3.5) suggests that the primary method of water loss is evaporation, with a small amount occurring through the paraffin oil, a larger amount through the plastic lids (dependent upon plastic type, degree of sealing, and fabrication consistency), and an additional ~2 % through the tubing (most likely through the inlet tube, with its ~14 cm distance from water surface to atmosphere, instead of the 150 cm long vent tube). A very small amount of water is also lost either across the plastic walls, or through the wadded caps in the control bottles. An important result is that there appears to be no fractionation effect that is unique to only one of the isotopologues. With the use of untested plastics, there was a concern that one of the plastics could preferentially exchange with either deuterium or oxygen (e.g. Spangenberg (2012)) however our results suggest that this is not the case. Modelling of the isotopic fractionation of the samples based on the amount of water loss can simulate this evaporative isotopic enrichment in δ^{18} O and δ^{2} H to a precision of 0.07 ‰ δ^{18} O and 0.27 ‰ δ^{2} H (σ^{1}).

Both the inlet tube and paraffin oil method of preventing evaporation were able to significantly decrease evaporation. For the 40 ml samples used in the experiment, average evaporation occurred at approximately 0.02 % of the pan evaporation rate. However, both methods still result in some water loss and isotopic enrichment of samples. This is especially true for small sample volumes. All plastics were substantially less effective than the paraffin oil method at preventing water loss. The inlet tube method, subtracting estimated losses through the plastics, typically resulted in ~0.8 ml loss over the 3 months, compared to 0.35 ml for the paraffin oil samples. This is in contrast to the results from Gröning et al. (2012) who observed that their sampler outperformed a paraffin oil based sampler over the course of a year. The differences between our observations and those of Gröning et al. (2012) likely arise predominantly as a result of differences in the size and shape of the sampling bottles used. The effectiveness of paraffin oil to prevent evaporation depends on the ratio of surface area to volume of the sample and quantification of the rate of water loss through paraffin oil requires consideration of the bottle shape. In contrast, the primary water loss from the inlet tube method is determined by the diameter and length of the inlet and vent tubes. Therefore, under conditions where the paraffin oil surface area is small, then paraffin may outperform the inlet tube method. However, if the bottle diameter was doubled, the surface area of the paraffin oil would be increased fourfold and paraffin may then be outperformed by the inlet tube method. As noted in section 1.3, the method of sample analysis must be considered before deployment as paraffin oil contamination can compromise laser spectroscopy based stable isotope analysis (IAEA, 2014).

Acetone treated ABS was the most effective plastic at preventing evaporation, followed closely by PETG. Three of the plastics used (inlet tube and sealed PLA and sealed ABS) had greater variation of water loss than the other plastics, raising concerns about the degree of sealing and the fabrication consistency. All the lids had very consistent weights, with a typical range of < 0.05 g. A visual inspection also revealed no significant defects, such as delaminated layers or holes, in any of the lids. However, the nature of 3D printed components - many layers of plastic fused together – means that there is potential for tortuous pathways through the plastic layers, resulting in incomplete sealing (McCullough and Yadavalli, 2013). Leakage through 3D printed components can be prevented through configuration of printer settings, or through post processing of prints. Applying a slight over-extrusion during printing can fill any minor voids and pathways, while decreasing dimensional accuracy. Post processing with acetone treatment to the prints can dissolve filament across and between the layers and improve sealing (McCullough and Yadavalli, 2013). Another potential source of leakage is the seal of the lid against the bottle. The lids do not include a rubber washer or similar seal, instead relying on compression and deformation of the rim of the bottle against the plastic cap to seal. One option is to include a sealing washer or wadding in each cap. Washer seals were not tested here as the sampler requires perfectly fitted washers to be effective. Placing delicate seals may be an option for a single experiment, but is not practical when changing out 60 sample bottles in the field. A potentially better solution, that will be tested in the future, is the printing of seals using TPU (thermoplastic polyurethane) or a similar flexible filament. Using this technique means that the seals can be designed specifically for the caps, with suitable cutouts for the inlet tube and vent tube. With the ongoing development of multi-material 3D printers, the entire cap could be printed in a single process. In the short term, our results indicate that acetone treated ABS is the most appropriate material for bottle lids. More importantly, as there is a lot of variability in 3D printers and the software used to prepare prints, we recommend that each lid be tested to ensure consistent evaporation. A variation of the methodology employed in this paper - mass loss over time - can be used to ensure lid fabrication consistency.

5.3 Potential of mass balance closure modelling

A distinct advantage of the MARS sampler is that both daily and monthly rainfall are captured at the same time. This potentially allows for the calculation of the original isotopic composition using a modelling approach based on the difference in evaporation rates of monthly and daily rainfall. Assuming the volume of rainfall collected by the sampler is split evenly between daily and monthly samples (Eq. 7).

$$V_i^{Monthly} = \sum_{n=1}^m V_{i,n}^{Daily} \tag{7}$$

Where *V* is the volume of the sample. The superscript represents the sample type – either a daily or monthly sample, *m* is the total number of daily samples collected. The subscript describes initial (*i*) or final (*f*) volume, and sample number (*n*). Each sample may then undergo some minor evaporation while awaiting collection from the sampler. The initial sample volume for a daily sample (*S*) is therefore related to the final volume by Eq. 8.

$$V_{i,n}^{Daily} = V_{f,n}^{Daily} + \sum_{d=1}^{t} E_{d,n}^{Daily}$$

$$\tag{8}$$

E is the daily volumetric loss from evaporation for each sample type, d is the day, and t is the total number of days a sample is exposed to evaporation. The combined volume of all daily samples (n) is therefore:

$$\sum_{n=1}^{m} V_{i,n}^{Daily} = \sum_{n=1}^{m} \left(V_{f,n}^{Daily} + \sum_{d=1}^{t} E_{d,n}^{Daily} \right) = \sum_{n=1}^{m} V_{f,n}^{Daily} + \sum_{n=1}^{m} \sum_{d=1}^{t} E_{d,n}^{Daily}$$
(9)

And the integrated monthly sample is related to the initial monthly sample by Eq. 10.

$$V_i^{Monthly} = V_f^{Monthly} + \sum_{d=1}^t E_d^{Monthly}$$
(10)

From Eq. 7 to 10, it can be seen that:

$$V_{f}^{Monthly} + \sum_{d=1}^{t} E_{d}^{Monthly} = \sum_{n=1}^{m} V_{f,n}^{Daily} + \sum_{n=1}^{m} \sum_{d=1}^{t} E_{d,n}^{Daily}$$
(11)

We relate daily evaporation rates outside the sampler to evaporation rates within the sampler using a coefficient (similar to relating PET to class-A pan evaporation) such that:

$$E_{d,n}^{Daily} = E_{d,n}^{external} k^{daily}$$
(12)

$$E_{d}^{Monthly} = E_{d}^{external} k^{monthly}$$
(13)

Where $E^{external}$ is an evaporative measure (either from meteorological records or calculated using the Penman equation (Penman, 1948) or similar) and k is a coefficient defining a proportional evaporation rate for each sample type. There should be two values of k, one representing the evaporation rate of the daily bottles (k^{daily}), and a second for the monthly bottles ($k^{monthly}$). These coefficients are expected to be similar, but not necessarily identical due to the differences between monthly and daily sample bottles. Rearranging Eq. 11 and substituting Eq. 12 and 13 gives Eq. 14.

$$V_f^{Monthly} - \sum_{n=1}^m V_{f,n}^{Daily} = \sum_{n=1}^m \sum_{d=1}^t E_{d,n}^{external} k^{daily} - \sum_{d=1}^t E_d^{external} k^{monthly}$$
(14)

For each of Eq. 7 to 14, a parallel series of equations can be written for the isotopic mass balance, resulting in Eq. 15.

$$\delta_{f}^{Monthly} V_{f}^{Monthly} - \sum_{n=1}^{m} \delta_{f,n}^{Daily} V_{f,n}^{Daily} = \sum_{n=1}^{m} \sum_{d=1}^{t} \delta_{e,d,n}^{Daily} E_{d,n}^{external} k^{daily} - \sum_{d=1}^{t} \delta_{e,d}^{Monthly} E_{d}^{external} k^{monthly}$$
(15)

Where δ describes the isotopic composition of the sample or evaporative flux. The isotopic composition of evaporative fluxes are defined by the 'e' subscript and are calculated using the model of Craig and Gordon (1965). From Equations 14 and 15, k^{daily} and $k^{monthly}$ can be solved. As the isotopic fractionation of evaporation is partly determined by the isotopic composition of the sample, a numerical solution should be used with isotopic fractionation calculated at daily (or shorter) timesteps. The original volume and isotopic composition for the integrated monthly sample can then be derived from the initial volume and isotopic composition of the daily samples.

One benefit of applying this modelling technique is that it lowers the ideal sampling requirement from "elimination of evaporation from the sample bottle", to "minimisation and quantification of evaporation from the sample bottle". This latter objective is substantially easier to achieve, with both paraffin oil and inlet tube methods fulfilling that requirement. Even under relatively intense evaporation conditions during an Australian summer, with water losses of up to 9 %, modelling of the isotopic change due to evaporation was able to achieve a precision of 0.07 ‰ δ^{18} O and 0.27 ‰ δ^{2} H (σ^{1}).

6 Conclusion

We have developed an autonomous, daily and monthly rainfall sampler (MARS), able to be deployed and left unattended for up to 3 months between visits, capable of collecting and storing up to 60 daily rainfall samples as well as integrated monthly samples. The sampler can also be reprogrammed for sequential sampling of rainfall events, either on a time or amount basis. This sampler makes significant use of modern fabrication techniques and open source technology to minimise costs and complexity. We have quantified the effectiveness of various plastics commonly used in 3D printing (PETG, PLA, ABS and acetone treated ABS) at preventing evaporation, with acetone treated ABS being most suitable, and PLA being least suitable. The inlet tube method of preventing evaporation from the sample bottles was compared with the use of paraffin oil, and it was noted that the type of sampling bottle, the amount of water and environmental conditions are significant factors in the relative effectiveness of these methods. In our experiments, paraffin oil outperformed the inlet tube method, in contrast to previous research (Gröning et al., 2012). As neither technique can fully prevent evaporation, a modeling approach was developed which takes advantage of the combined monthly and daily sample collection. Our automated rainfall sampler, augmented by a mass balance modeling approach to quantify minor evaporation effects, provides a low cost (< US\$750) and effective means of sampling precipitation for isotope analysis with potential applications that span a range of Earth system sciences.

7 References

- Akkoyunlu, B.O., Dogruel, M., Tayanc, M., Oruc, I., 2013. Design and Construction of a Computer Controlled Automatic Sequential Rain Sampler. Biotechnology & Biotechnological Equipment, 27(3): 3890-3895.
- Araguás-Araguás, L., Froehlich, K., Rozanski, K., 2000. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological processes, 14(8): 1341-1355.
- Asman, W.A.H., 1980. Draft, construction and operation of a sequential rain sampler. Water, Air, and Soil Pollution, 13(2): 235-245. DOI:10.1007/bf02279550
- Bennett, K., Gibson, J., McEachern, P., 2008. Water-yield estimates for critical loadings assessment: comparisons of gauging methods versus an isotopic approach. Canadian Journal of Fisheries and Aquatic Sciences, 65(1): 83-99.
- Berman, B., 2012. 3-D printing: The new industrial revolution. Business Horizons, 55(2): 155-162. DOI:10.1016/j.bushor.2011.11.003
- Berman, E.S., Gupta, M., Gabrielli, C., Garland, T., McDonnell, J.J., 2009. High-frequency fielddeployable isotope analyzer for hydrological applications. Water Resources Research, 45(10).
- Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39(10): 1-13. DOI:10.1029/2003WR002086
- Bowen, G.J., Wassenaar, L.I., Hobson, K.A., 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia, 143(3): 337-348. DOI:10.1007/s00442-004-1813-y
- Bureau of Meteorology, A.G., 2007. Observation of rainfall. Commonwealth of Australia, Bureau of Meteorology.
- Coplen, T.B., 2010. Sequential, time-integrated collector of precipitation, ground water, and surface water for analysis of isotopes: US Patent No. 7,687,028.

- Coplen, T.B., Neiman, P.J., White, A.B., Ralph, F.M., 2015. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector. Tellus B: Chemical and Physical Meteorology, 67(1): 28574. DOI:10.3402/tellusb.v67.28574
- Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703.
- Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Schink, D.R., Corless, J.T. (Eds.), Marine Geochemistry. University, Rhode Island, University, Rhode Island, pp. 277-374.
- Dansgaard, W., 1954. The O18-abundance in fresh water. Geochimica et Cosmochimica Acta, 6(5-6): 241-260.
- Garg, A., Bhattacharya, A., Batish, A., 2016. On Surface Finish and Dimensional Accuracy of FDM Parts after Cold Vapor Treatment. Materials and Manufacturing Processes, 31(4): 522-529. DOI:10.1080/10426914.2015.1070425
- Gat, J., 2010. Isotope hydrology a study of the water cycle. London: Imperial College Press, London.
- Gatz, D.F., Selman, R.F., Langs, R.K., Holtzman, R.B., 1971. An automatic sequential rain sampler. Journal of Applied Meteorology, 10(2): 341-344.
- Gibson, J., Birks, S., Yi, Y., 2016. Stable isotope mass balance of lakes: a contemporary perspective. Quaternary Science Reviews, 131: 316-328.
- Gibson, J., Reid, R., 2014. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. Journal of hydrology, 519: 2148-2164.
- Gibson, J.J., Birks, S.J., Edwards, T.W.D., 2008. Global prediction of δA and $\delta 2H$ $\delta 18O$ evaporation slopes for lakes and soil water accounting for seasonality. Global Biogeochemical Cycles, 22(2): 1-12. DOI:10.1029/2007GB002997
- Gray, J., Hage, K.D., Mary, H.W., 1974. An automatic sequential rainfall sampler. Review of Scientific Instruments, 45(12): 1517-1519. DOI:10.1063/1.1686550

Gröning, M., Lutz, H., Roller-Lutz, Z., Kralik, M., Gourcy, L., Pöltenstein, L., 2012. A simple rain collector preventing water re-evaporation dedicated for δ 18 O and δ 2 H analysis of cumulative precipitation samples. Journal of hydrology, 448: 195-200. DOI:10.1016/j.jhydrol.2012.04.041

Chapter 3

- Hartmann, A., Luetscher, M., Wachter, R., Holz, P., Eiche, E., Neumann, T., 2018. Technical note: GUARD An automated fluid sampler preventing sample alteration by contamination, evaporation and gas exchange, suitable for remote areas and harsh conditions. Hydrol. Earth Syst. Sci. Discuss., 2018: 1-19. DOI:10.5194/hess-2017-697
- Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, 58(16): 3425-3437.
- Hund, S.V., Johnson, M.S., Keddie, T., 2016. Developing a hydrologic monitoring network in data-scarce regions using open-source arduino dataloggers. Agricultural & Environmental Letters, 1(1).

IAEA, 2014. IAEA/GNIP precipitation sampling guide. International Atomic Energy Agency.

- Jeffrey, S.J., Carter, J.O., Moodie, K.B., Beswick, A.R., 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software, 16(4): 309-330.
- Kennedy, V.C., Zellweger, G.W., Avanzino, R.J., 1979. Variation of rain chemistry during storms at two sites in northern California. Water Resources Research, 15(3): 687-702.
- Laquer, F.C., 1990. Sequential precipitation samplers: a literature review. Atmospheric Environment. Part A. General Topics, 24(9): 2289-2297.
- Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., Frisia, S., 2008. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem:
 Reconstructed drip water and relationship to local precipitation. Earth and Planetary Science Letters, 269(1): 80-95. DOI:10.1016/j.epsl.2008.01.051
- McCullough, E.J., Yadavalli, V.K., 2013. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Materials Processing Technology, 213(6): 947-954. DOI:10.1016/j.jmatprotec.2012.12.015

- Merlivat, L., 1978. Molecular diffusivities of H 2 16 O, HD 16 O, and H 2 18 O in gases. The Journal of Chemical Physics, 69(6): 2864-2871.
- Michelsen, N., van Geldern, R., Roßmann, Y., Bauer, I., Schulz, S., Barth, J.A.C., Schüth, C., 2018. Comparison of precipitation collectors used in isotope hydrology. Chemical Geology, 488: 171-179. DOI:10.1016/j.chemgeo.2018.04.032
- Penman, H.L., 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032): 120-145.
- Rayna, T., Striukova, L., 2016. From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technological Forecasting and Social Change, 102: 214-224. DOI:10.1016/j.techfore.2015.07.023
- Raynor, G.S., McNeil, J.P., 1978. Brookhaven Automatic Sequential Precipitation Sampler. BNL-50818 United States 10.2172/7090407 Dep. NTIS, PC A03/MF A01. BNL English, ; Brookhaven National Lab., Upton, NY (USA).
- Ronneau, C., Cara, J., Navarre, J., Priest, P., 1978. An automatic sequential rain sampler. Water, Air, & Soil Pollution, 9(2): 171-176.
- Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. Climate change in continental isotopic records: 1-36.
- Rücker, A., Zappa, M., Boss, S., von Freyberg, J., 2019. An optimized snowmelt lysimeter system for monitoring melt rates and collecting samples for stable water isotope analysis. Journal of Hydrology and Hydromechanics, 67(1): 20-31.
- Singh, J., Singh, R., Singh, H., 2017. Investigations for improving the surface finish of FDM based ABS replicas by chemical vapor smoothing process: a case study. Assembly Automation, 37(1): 13-21.
- Spangenberg, J.E., 2012. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis. Rapid Communications in Mass Spectrometry, 26(22): 2627-2636.

Steinman, B.A., Rosenmeier, M.F., Abbott, M.B., Bain, D.J., 2010. The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models:
Application to paleoclimate studies in the upper Columbia River basin. Limnology and Oceanography, 55(6): 2231–2245.

Chapter 3

- Terzer, S., Wassenaar, L.I., Douence, C., Araguas-Araguas, L., 2016. An assessment of the isotopic (2H/18O) integrity of water samples collected and stored by unattended precipitation totalizers, EGU General Assembly Conference Abstracts, pp. 15992.
- Treble, P.C., Chappell, J., Gagan, M.K., McKeegan, K.D., Harrison, T.M., 2005. In situ measurement of seasonal δ18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth and Planetary Science Letters, 233(1): 17-32. DOI:10.1016/j.epsl.2005.02.013
- Tyler, J.J., Jones, M., Arrowsmith, C., Allott, T., Leng, M.J., 2015. Spatial patterns in the oxygen isotope composition of daily rainfall in the British Isles. Climate Dynamics(January 2016). DOI:10.1007/s00382-015-2945-y
- Tyler, J.J., Leng, M.J., Arrowsmith, C., 2007. Seasonality and the isotope hydrology of Lochnagar, a Scottish mountain lake: implications for palaeoclimate research. The Holocene, 17(6): 717-727. DOI:10.1177/0959683607080513
- von Freyberg, J., Studer, B., Kirchner, J.W., 2017. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation. Hydrology and Earth System Sciences, 21: 1721-1739.

Development of a spreadsheet-based model for

transient groundwater modelling

This chapter is published as:

Ankor, M. J., & Tyler, J. J. (2019). Development of a spreadsheet-based model for transient groundwater modelling. *Hydrogeology Journal*, 1-14.

Notes: The models developed for this project run in either Microsoft Excel (v15.27), or MODFLOW 2005 (https://water.usgs.gov/ogw/MODFLOW/index.html). MODFLOW models were developed and run using Modelmuse,

(https://water.usgs.gov/nrp/gwsoftware/ModelMuse/ModelMuse.html). All Excel model files are available from http://dx.doi.org/10.17632/r6hcbkp53n.5

This chapter has been reformatted to match the rest of this thesis. Figure and table numbers have been prefixed with the chapter number (e.g. Fig. 1 has been changed to Fig. 4.1). The published version of this paper has been included in Appendix 4.

Statement of Authorship

Title of Paper	Development of a spreadsheet-ba	sed model for transient groundwater modelling
Publication Status	I PublishedI Submitted for Publication	 Accepted for Publication Unpublished and Unsubmitted work written in manuscript style
Publication Details	ANKOR M. J. & TYLER J. J. 20 groundwater modelling. <i>Hydrogec</i>	

Principal Author

Name of Principal Author (Candidate)	Martin Ankor
Contribution to the Paper	Corresponding Author. Devised initial concept, model design, experimental design. Analysis of results. Wrote manuscript.
Overall percentage (%)	90%
Certification:	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper.
Signature	Date 19 Dec 2019

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. the candidate's stated contribution to the publication is accurate (as detailed above);
- ii. permission is granted for the candidate in include the publication in the thesis; and
- iii. the sum of all co-author contributions is equal to 100% less the candidate's stated contribution.

Name of Co-Author	Jonathan T. Tyler		
Contribution to the Paper	Evaluated and edited manuscrip	pt.	
Signature		Date	19 Dec 2019

Abstract

Understanding and modelling the passage of groundwater is important to a wide range of environmental and earth scientific disciplines. The science of groundwater modelling is mature, and advanced modelling algorithms are routinely implemented, for example via the widely used MODFLOW software. However, for the non-specialist scientist or student, the fundamentals of such software can be difficult to comprehend, whilst the algorithms are arguably too complex to be easily applied for many applications which require integration of a groundwater model with climate, surface-water, soil or ecological data. In this context, a spreadsheet-based groundwater model (A2016), capable of solving transient groundwater behaviour in multiple spatial dimensions, was developed. Inter-comparison tests investigating nine transient groundwater scenarios were performed between MODFLOW, A2016 and the Time-dependent Groundwater Modeling using Spreadsheet Simulation (TGMSS) model. Results demonstrated that A2016 is directly comparable to MODFLOW with identical hydraulic heads in all model experiments. TGMSS was not able to accurately simulate hydraulic heads for any of the model experiments. A groundwater-lake interaction scenario was identified for which MODFLOW will produce unrealistic results, due to the way conductance beneath lakes is determined. Applying a specified saturated thickness approximation for the region beneath the lake resulted in improved lake-groundwater interactions. A2016 is potentially useful for educational purposes, and as a tool for groundwater experiments by non-specialists, as it is modular in nature and incorporates MODFLOW terminology and techniques.

1 Introduction

Ongoing development of groundwater modelling software relies upon an understanding of the underlying theory and mathematics describing groundwater behaviour. Of the many groundwater modelling codes available, MODFLOW is considered the de facto standard (Neville and Tonkin 2001, McDonald and Harbaugh 2003, Elemer et al. 2010). Spreadsheet programs provide an excellent introduction to the finite difference technique used in MODFLOW and similar groundwater modelling programs (Olsthoorn 1985, Ousey 1986, Mahmud 1996, Anderson and Bair 2001, Akhter et al. 2006, Anderson et al. 2015). Spreadsheets are commonly used to demonstrate steady-state, two-dimensional, finite difference techniques and the accompanying groundwater flow behaviour described by the Laplace and Poisson equations (Anderson and Bair 2001, Bair and Lahm 2006, Anderson et al. 2015). However, there

are few examples in the literature of more complex spreadsheet models, able to model multidimensional, transient behaviour (Olsthoorn 1985, Karahan and Ayvaz 2005a). The most recent published spreadsheet model identified that meets these criteria is the TGMSS model of Karahan and Ayvaz (2005a), Karahan and Ayvaz (2005b). This gap between simple spreadsheet models and more complex groundwater modelling software is understandable given the maturity and capabilities of software such as MODFLOW. The existence of capable groundwater software could imply that the development of spreadsheet solutions is no longer relevant. However, ongoing development serves two purposes. From a pedagogical perspective, a spreadsheet model capable of demonstrating the transient and three-dimensional behaviour of groundwater and explaining the theoretical basis of MODFLOW may be a valuable educational tool. In addition, increased reliance on modelling in other scientific fields means there is still a need for new groundwater modelling code, e.g. coupling optimised groundwater models to spatial data systems (Almeida et al. 2014), to isotopic, limnological and palaeoclimate models (Jones et al. 2001, Smerdon et al. 2007, Stets et al. 2010, Ohlendorf et al. 2013), or to resolve engineering problems, such as encountered in tunnel construction (Huang et al. 2013). Developing such models in spreadsheets is an effective way to prototype and to test the model's structure prior to developing dedicated software.

This paper introduces a new spreadsheet based technique (A2016) able to solve twodimensional (i.e. 1-layer) transient groundwater problems for both confined and unconfined aquifers. A2016 was developed as a precursor to coupling a groundwater model to a hydrologicisotopic lake model for palaeoclimate applications. A2016 is then compared with MODFLOW and the equivalent spreadsheet model (TGMSS) developed by Karahan and Ayvaz (2005a). Model experiments incorporating external sources and sinks, Cauchy (head dependent), Dirichlet (fixed head) and Neumann (no flow) boundary conditions, and heterogeneous hydraulic conductivity and storage were performed for both unconfined and confined aquifers. All models are available in the electronic supplementary material (ESM) datasets.

As A2016 is based on the governing groundwater equation and block-centred flow structure used by MODFLOW, it is also ideal for pedagogical purposes. The groundwater equation is simplified into components and uses the same terminology as MODFLOW, thus linking the underlying mathematics to MODFLOW's structure and to groundwater behaviour.

2 Background

Derived from the principles of conservation of mass and Darcy's law, the general governing equation for groundwater flow through a representative elementary volume of heterogeneous and anisotropic material is:

$$\frac{\partial}{\partial x}\left(K_x\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K_y\frac{\partial h}{\partial y}\right) + \frac{\partial}{\partial z}\left(K_z\frac{\partial h}{\partial z}\right) = S_s\frac{\partial h}{\partial t} - W^*$$
(1)

This represents flow in a confined aquifer, where h is the potentiometric hydraulic head and K defines hydraulic conductivity, with the subscripts allowing for anisotropic conditions in the x, y and z directions. S_s refers to the specific storage of the aquifer, and W^* represents sources or sinks, such as wells, recharge and seepage. For a full derivation of this equation, see Anderson et al. (2015).

Numerical models are widely used in groundwater modelling research. By using an approximate form of the groundwater equation, calculated at numerous locations across the region of interest, a numerical model can resolve groundwater flow behaviour in multiple spatial dimensions and time. Numerical models are ideal for solving scenarios with anisotropic and heterogeneous hydraulic properties, and complex initial and boundary conditions (Anderson et al. 2015).

The majority of numerical groundwater models use either the grid based finite difference technique or the more complex finite element technique, which can solve irregularly shaped, triangular networks (Holzbecher and Sorek 2005, Anderson et al. 2015). The finite difference technique is most well-known, due to its simplicity and ease of implementation. Finite difference models are further divided into two categories, mesh-centred and block-centred models, based on where the flux boundaries are located. In a mesh-centred model, the flux boundaries are located at each node, whereas in a block-centred model they are located at the edge of each block (Anderson et al. 2015). This means the two model types treat boundaries differently but nevertheless share many similarities in model structure. Block-centred models are slightly easier to implement and are more commonplace. MODFLOW uses the block-centred, finite difference technique.

Anderson and Bair (2001) note that the lack of a common programming language taught in science courses today presents a challenge to teaching students numerical modelling methods. In the past, Fortran was used to demonstrate such techniques. Spreadsheet software has been

used to fill this gap and provides an ideal environment for demonstrating the finite difference technique, as the gridded nature of the finite difference model is easily recreated in the grid of spreadsheet cells. Unfortunately, without macros or scripts – aspects not regularly taught in classes – spreadsheets lack the looping function found in general programming languages. Loops are essential for modelling multi-dimensional, transient, groundwater behaviour, where the solution for the current time-step is used as the starting point for the next calculation. The result is that while students are introduced to two dimensional, steady state models, or one dimensional, transient models, they rarely get to experiment with the full two or three dimensional, transient, finite difference technique that is used in MODFLOW. A spreadsheet model that is able to model multi-dimensional, transient conditions would be a useful educational tool, able to provide insight into how programs such as MODFLOW are structured.

There have been several efforts to develop spreadsheet models able to perform multidimensional transient modelling. For example, Olsthoorn (1985) developed a robust set of examples, demonstrating methods to solve the Laplace equation, sinks and sources (Poisson equation), heterogeneous aquifers, linked aquifers, unconfined aquifers, three dimensional flow, transient flow, and refinement of the gridded network. Also included was a discussion on the use of over-relaxation as a method to speed up the iteration process. While terminology in the paper reflects earlier practices the techniques are still applicable today. The lack of macro and scripting capabilities in spreadsheet software of the time posed difficulties for transient modelling, resolved through manual copying and pasting of the model cells from the current to previous time-steps. This requirement for manual data manipulation limits the use of this spreadsheet model for more complex scenarios.

With respect to the requirement for macros in transient modelling, advances were made by the TGMSS models of Karahan and Ayvaz (2005a, 2005b). These two papers present very similar models, with the main difference being the use of the arithmetic mean for determining hydraulic conductivity (*K*) between cells in Karahan and Ayvaz (2005b) and the harmonic mean in Karahan and Ayvaz (2005a). These papers introduced a single-stage solution algorithm that links the time-stepping process to the iteration process for solving transient problems. However, these models exhibit inconsistencies with MODFLOW, which, as will be described below, is due to the way they handle iteration and the characterization of the aquifer.

Anderson and Bair (2001) demonstrated spreadsheet models to solve the Laplace and Poisson equations, with examples of both mesh and block-centred models, implicit and explicit one dimensional transient models and two dimensional, steady state models. In addition, mass

balance techniques were introduced along with some of the terminology used in MODFLOW, e.g. conductance. Anderson and Bair (2001) also suggested that the block-centred flow structure of MODFLOW could be replicated through linked spreadsheets.

Of the models reviewed here, those described in Olsthoorn (1985) are the most complete from a mathematical perspective, but lack the programming required for automated transient modelling. Karahan and Ayvaz (2005A and 2005B) describe a novel technique for transient modelling, however results from these models are inconsistent with MODFLOW. There is a need for an up to date spreadsheet-based groundwater model, based on current terminology, and capable of transient modelling in multiple spatial dimensions.

3 Theoretical Basis

The governing equation for groundwater (Eq. 1) is applicable to a representative elementary volume (REV), a cube of material representing a portion of the aquifer. By integrating over the thickness (*b*) of the aquifer, transmissivity (*T*) and storativity (*S*) are defined and the source term, W^* is converted to a flux (*R*) representing flow from external sources.

$$T = Kb \tag{2}$$

$$S = S_s b \tag{3}$$

$$R = W^* b \tag{4}$$

When further simplified to 2D horizontal flow as per the Dupuit-Forchheimer approximation, Eq. 1 becomes:

$$\frac{\partial}{\partial x} \left(T_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(T_y \frac{\partial h}{\partial y} \right) = S \frac{\partial h}{\partial t} - R \tag{5}$$

The simplification to 2D is applicable to 3D groundwater modelling, as the determination of vertical conductance between layers requires a slightly different method than that used for horizontal transmissivity (Harbaugh 2005). MODFLOW can be considered a series of 2D layers, linked via vertical flow terms. The 2D structure is also easily represented in a spreadsheet.

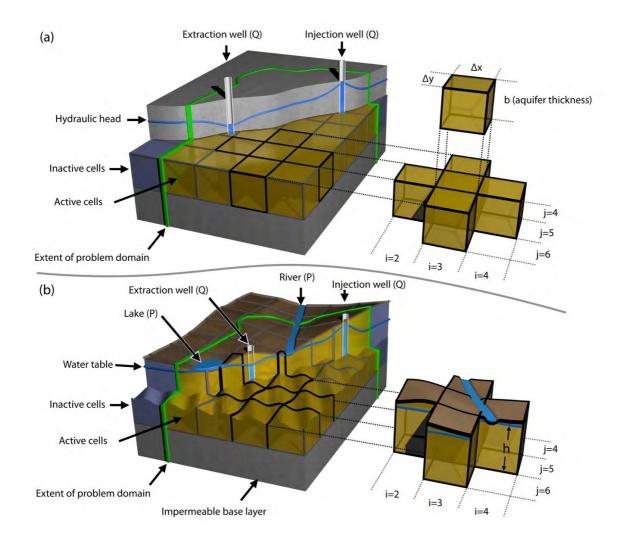


Figure 4.1: Cutaway view of a single-layer (2D) finite-difference model for (a) a confined aquifer and (b) an unconfined aquifer. Shown are the various external sources, both head dependent flows (P) which vary depending upon groundwater condition (Cauchy boundary condition), and flows that are independent of the groundwater condition (Q). Inactive cells lie outside the problem domain and play no part in the finite difference model. Active cells along the edge of the problem domain are typically defined with a no-flow (Neumann) boundary condition.

Equation 5 determines the behaviour of a singular point location in the aquifer. To adapt this equation to a finite difference model requires an approximation by converting derivatives to differences, defined by the x and y dimensions of each cell (Fig. 4.1). Therefore, for a model with regular cell dimensions, the equation for a cell with coordinates i, j in the grid becomes:

$$T_{i,j-\frac{1}{2}}\left(\frac{h_{i,j-1}-h_{i,j}}{\Delta x^2}\right) + T_{i,j+\frac{1}{2}}\left(\frac{h_{i,j+1}-h_{i,j}}{\Delta x^2}\right) + T_{i-\frac{1}{2},j}\left(\frac{h_{i-1,j}-h_{i,j}}{\Delta y^2}\right) + T_{i+\frac{1}{2},j}\left(\frac{h_{i+1,j}-h_{i,j}}{\Delta y^2}\right) + R_{i,j} = S_{i,j}\frac{dh}{dt}$$
(6)

In the models described in this paper, transmissivity is the harmonic mean (MODFLOW default) between cells (defined by subscripts), taken at the block face between each node.

Integrating from the approximated point equation to the full cell dimensions through multiplying both sides of the equation by the *x* and *y* dimensions of each cell results in:

$$T_{i,j-\frac{1}{2}}\Delta y \left(\frac{h_{i,j-1} - h_{i,j}}{\Delta x}\right) + T_{i,j+\frac{1}{2}}\Delta y \left(\frac{h_{i,j+1} - h_{i,j}}{\Delta x}\right) + T_{i-\frac{1}{2},j,}\Delta x \left(\frac{h_{i-1,j} - h_{i,j}}{\Delta y}\right) + T_{i+\frac{1}{2},j,}\Delta x \left(\frac{h_{i+1,j} - h_{i,j}}{\Delta y}\right) + Q_{\mathbf{S},i,j} = S_{i,j}\Delta x \Delta y \frac{dh}{dt}$$
(7)

 $Q_{\rm S}$ is now the volumetric flow into or out of the cell from external sources, and each portion of the left-hand side of the equation represents the volumetric flow from the neighbouring cells, recognisable as Darcy's Law. This is the basis of the governing equation behind MODFLOW, where the change in hydraulic head of a cell is a result of the specific storage and cell volume and the sum of all flows into and out of the cell over a period of time. Flow rate to the cell consists of flows to and from the four surrounding cells and external flows ($Q_{\rm S}$) such as recharge or wells.

External flows (Q_s) can be further divided into two categories: Fluxes that occur independently of the groundwater condition, such as wells and recharge, and head dependent fluxes that vary depending on the groundwater head, such as evapotranspiration and river/lake seepage. Both types of flows can be represented by the expression:

$$Q_{S,i,j} = P_{i,j}h_{i,j} + Q_{i,j}$$
(8)

Where Q_s is the total external flow to the cell, *P* represents head-dependent flows, and *Q* represents fluxes that are independent of the groundwater head (Fig. 4.1). For a full derivation of the external flows term, please see Harbaugh (2005).

MODFLOW simplifies equation 7 through the introduction of a conductance term (C), that combines transmissivity and the cell dimensions into a single value.

$$T_{i,j+\frac{1}{2}}\Delta y \frac{1}{\Delta x} = C_{i,j+\frac{1}{2}}$$
(9)

$$T_{i,j-\frac{1}{2}}\Delta y \frac{1}{\Delta x} = C_{i,j-\frac{1}{2}}$$
(10)

$$T_{i+\frac{1}{2},j}\Delta x \frac{1}{\Delta y} = C_{i+\frac{1}{2},j}$$
(11)

$$T_{i-\frac{1}{2}j}\Delta x \frac{1}{\Delta y} = C_{i-\frac{1}{2}j}$$
(12)

121

This results in the simplified form of equation 7:

$$C_{i,j+\frac{1}{2}}(h_{i,j+1} - h_{i,j}) + C_{i,j-\frac{1}{2}}(h_{i,j-1} - h_{i,j}) + C_{i+\frac{1}{2},j}(h_{i+1,j} - h_{i,j}) + C_{i-\frac{1}{2},j}(h_{i-1,j} - h_{i,j}) + P_{i,j}h_{i,j} + Q_{i,j} = S_{i,j}\Delta x \Delta y \frac{dh}{dt}$$
(13)

To account for transient behaviour, the time differential is also approximated with a backward difference from current time (t^m) to the previous time (t^{m-1}), using the hydraulic head for the current time-step (h^m), for which the spatial differences are being determined, and the previous time-step (h^{m-1}), thereby giving a fully implicit numerical solution.

$$C_{i,j+\frac{1}{2}}\left(h_{i,j+1}^{m}-h_{h_{i,j}}^{m}\right)+C_{i,j-\frac{1}{2}}\left(h_{i,j-1}^{m}-h_{h_{i,j}}^{m}\right)+C_{i+\frac{1}{2},j}\left(h_{i+1,j}^{m}-h_{h_{i,j}}^{m}\right)$$
$$+C_{i-\frac{1}{2},j}\left(h_{i-1,j}^{m}-h_{h_{i,j}}^{m}\right)+P_{i,j}^{m}h_{i,j}^{m}+Q_{i,j}^{m}=S_{i,j}\Delta x\Delta y\frac{h_{h_{i,j}}^{m}-h_{h_{i,j}}^{m-1}}{t^{m}-t^{m-1}}$$
(14)

Expanding and rearranging equation 13 forms a 2D finite difference equation (Eq. 14), similar to that of MODFLOW, and suitable to be rewritten in matrix form for use with matrix solution methods.

$$C_{i,j+\frac{1}{2}}h_{i,j+1}^{m} + C_{i,j-\frac{1}{2}}h_{i,j-1}^{m} + C_{i+\frac{1}{2},j}h_{i+1,j}^{m} + C_{i-\frac{1}{2},j}h_{i-1,j}^{m}$$
$$+h^{m}\left(-C_{i,j+\frac{1}{2}} - C_{i,j-\frac{1}{2}} - C_{i+\frac{1}{2},j} - C_{i-\frac{1}{2},j} + \text{HCOF}_{i,j}\right) = \text{RHS}_{i,j}$$
(15)

Where HCOF represents all the coefficients of h^m that do not include conductance or storage, and RHS represents the remaining right hand side components.:

$$HCOF_{i,j} = P_{i,j}^{m} - S_{i,j} \Delta x \Delta y \frac{1}{t^{m} - t^{m-1}}$$
(16)

$$RHS_{i,j} = -S_{i,j}\Delta x \Delta y \frac{h^{m-1}}{t^{m-1} - Q_{i,j}^m}$$
(17)

Equation 15 has one major difference compared to the complete MODFLOW equation as the vertical flow terms are not included (Harbaugh 2005). These are straightforward to add if required, but were not considered necessary for the purpose of this project.

/

A spreadsheet often cannot use matrix solvers, instead relying on Gauss-Seidel iteration at each point of the grid until a convergence value has been achieved (Wang and Anderson 1982, Ousey 1986). Rewriting equation 15 gives the equation (Eq. 18) for use where point by point iteration is required.

$$h_{i,j} = \frac{RHS_{i,j} - \left(C_{i,j+\frac{1}{2}}h_{i,j+1}^m + C_{i,j-\frac{1}{2}}h_{i,j-1}^m + C_{i+\frac{1}{2},j}h_{i+1,j}^m + C_{i-\frac{1}{2},j}h_{i-1,j}^m\right)}{\left(-C_{i,j+\frac{1}{2}} - C_{i,j-\frac{1}{2}} - C_{i+\frac{1}{2},j} - C_{i-\frac{1}{2},j} + HCOF_{i,j}\right)}$$
(18)

The above equations define groundwater behaviour for a confined aquifer. For an unconfined aquifer modifications are required. Storativity must be changed from S_Sb (specific storage integrated over the aquifer thickness) to S_Y (specific yield), as the water released from storage is no longer predominantly determined by rearrangement of the solid matrix, and, to a lesser degree, the expansion of water, but instead by the drainable porosity of the cell (Anderson et al. 2015). The RHS and HCOF terms then become:

$$RHS_{i,j} = -S_{Y_{i,j}} \Delta x \Delta y \frac{h^{m-1}}{t^{m-1}} - Q_{i,j}^{m}$$
(19)

$$HCOF_{i,j} = P_{i,j}^m - S_{Y_{i,j}} \Delta x \Delta y \frac{1}{t^{m-t^{m-1}}}$$
(20)

In addition, references in the equations (2, 3, 4) to aquifer thickness (b) must be modified to incorporate the hydraulic head (h), as the thickness of the aquifer is now defined by the modelled water table (Fig. 4.1). The equation for an unconfined aquifer spreadsheet is therefore:

$$h_{i,j} = \frac{RHS_{i,j} - \left(h_{i,j+\frac{1}{2}}^{m} K_{i,j+\frac{1}{2}}^{m} \Delta y_{\frac{1}{\Delta x}}^{1} h_{i,j+1}^{m} + h_{i,j-\frac{1}{2}}^{m} K_{i,j-\frac{1}{2}}^{m} \Delta y_{\frac{1}{\Delta x}}^{1} h_{i,j-1}^{m} + h_{i+\frac{1}{2},j}^{m} K_{i+\frac{1}{2},j}^{m} \Delta x_{\frac{1}{\Delta y}}^{1} h_{i+1,j}^{m} + h_{i-\frac{1}{2},j}^{m} K_{i-\frac{1}{2},j}^{m} \Delta x_{\frac{1}{\Delta y}}^{1} h_{i-1,j}^{m}\right)}{\left(-h_{i,j+\frac{1}{2}}^{m} K_{i,j+\frac{1}{2}}^{m} \Delta y_{\frac{1}{\Delta x}}^{1} - h_{i,j-\frac{1}{2}}^{m} \Delta y_{\frac{1}{\Delta x}}^{1} - h_{i+\frac{1}{2},j}^{m} K_{i+\frac{1}{2},j}^{m} \Delta x_{\frac{1}{\Delta y}}^{1} - h_{i-\frac{1}{2},j}^{m} K_{\frac{1}{\Delta y}}^{m} \Delta x_{\frac{1}{\Delta y}}^{1} + HCOF_{i,j}\right)}\right)}$$

$$(21)$$

While Eq. 21 appears longwinded, the structure and simplified conductance terms applied in the confined aquifer equation can still be used within an unconfined aquifer spreadsheet model by linking the aquifer thickness value to the current hydraulic head for each cell.

4 Methodology

4.1 Model Structure

The spreadsheet model (A2016) separates equations 18 and 21 into components, with RHS, HCOF, conductance, and the $C_{i,j+\frac{1}{2}}h_{i,j+1}^m + C_{i,j-\frac{1}{2}}h_{i,j-1}^m + C_{i+\frac{1}{2}j}h_{i+1,j}^m + C_{i-\frac{1}{2}j}h_{i-1,j}^m$ section computed in separate sheets. This reduces the likelihood of errors in the spreadsheet formulas, and makes it straightforward to update and replace components, for example, replacing the averaging method used to determine inter-cell conductance. Additional sheets were used to define hydrogeological parameters such as specific storage, conductivity, wells, recharge, and aquifer thickness, as well as the head values (h^{m-1}) for the previous time-step.

Transient modelling requires the head values from the end of the previous time-step as initial values for the current time-step. A macro was developed that manages the time-step loop, and transfers the calculated head values to the previous values sheet at the beginning of each iteration cycle. Additional macros were developed to allow the user to step through individual time-steps or reset the model.

Conductance was determined in separate sheets for each cardinal direction. Instead of starting the model in the first row and column of the spreadsheet, a border of blank cells was left, surrounding the grid representing the model region. This border then forms part of the conductance calculations and means that conductance along the edge of each model boundary is 0, thereby representing the commonly used no-flow boundary condition. It should be noted that this technique is only suitable for the spreadsheet model. Developing a similar model in other software or programming language would typically require the use of edge and corner nodes that do not rely on data from outside the FDM grid. A useful benefit to structuring the spreadsheet in this fashion is that it removes the need for different equations at the edge of the model. The same formula is used throughout the spreadsheet without the need to mirror or remove nodes outside the model boundary, thus simplifying the rebuilding of the model for different shaped regions.

A mass balance was run in parallel with the model, quantifying flows to each cell for each timestep, as well as cumulative flows for the simulation run. These values were then compared to the combined inflow and outflow to the model from external sources.

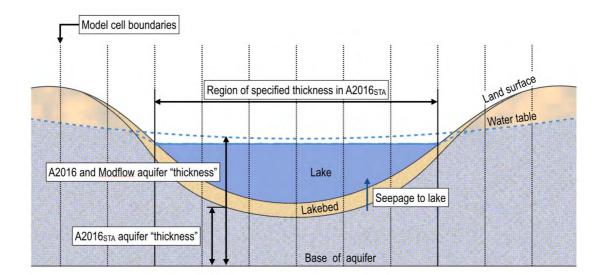
4.2 K2005M

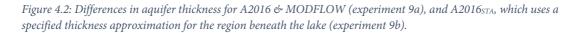
K2005M is a modified version of Karahan and Ayvaz's (2005a) TGMSS model. K2005M was developed to investigate the cause of the discrepancies observed between MODFLOW and TGMSS. In K2005M an aquifer thickness variable has been included and used in place of hydraulic heads in the source term (W) and an initial head value has been defined for the storage term ($CC(H_{i,j})$) (Karahan and Ayvaz 2005a).

4.3 Experiments

Nine model experiments were run (Table 4.1), loosely based on the first example of Karahan and Ayvaz (2005a). Four experiments (#1-4) compared MODFLOW 2005 and the spreadsheet models of A2016, TGMSS and the modified version of TGMSS (K2005M). The model runs simulated the transient behaviour of groundwater in a confined aquifer, consisting of homogenous or heterogeneous hydraulic conductivity and storage conditions, with one central pumping well, two nearby injection wells and areal recharge over the modelled region. Aquifer thickness was set to 20 m.

Four further experiments (#5-8) compared MODFLOW with the unconfined aquifer variant of A2016, simulating the transient behaviour of groundwater in an unconfined aquifer under conditions similar to the confined aquifer experiments.


Experiment 9a compared the unconfined aquifer variant of A2016 with MODFLOW in a simulation incorporating topography, two head dependent boundary conditions, no-flow and fixed head perimeter boundaries and recharge. The two head dependent boundaries consisted of evapotranspiration of 0.002 mm/day over the whole model, with a 0.1 m extinction depth, linked to the topographic surface, and a lake covering the central 49 cells of the model. Parameters for the lake are similar to those required for the RES (reservoir) package in MODFLOW, with a specified lake stage (20 m), bottom sediment thickness (0.5 – 2.0 m), and sediment hydraulic conductivity (0.01 m/day). Recharge was set at 0.001 mm/day. For complete parameters and topography please see the electronic supplementary material (ESM).


A spreadsheet based model for transient groundwater modelling

Exp. #	Model name	Hydraulic conductivity	Specific storage	Simulation time (days)	Boundaries	Grid dimensions
Confine	ed aquifer: wells					
1	TGMSS	Homogeneous	Homogeneous	1, 30, 360,	Specified	23x23 rows
	K2005M			3600	head, specified	and columns. 100-m grid
	A2016 Confined	•			flow.	spacing.
	MODFLOW					
Confine	ed aquifer: wells + recharge					
2	TGMSS	Homogeneous	Homogenous	1, 30, 360,	Specified	23x23 rows
	K2005M			3600	head, specified	and columns. 100-m grid
	A2016 Confined				flow.	spacing.
	MODFLOW Confined					
3	TGMSS	Heterogeneous	Homogeneous			
	K2005M					
	A2016 Confined					
	MODFLOW Confined					
4	TGMSS	Homogeneous	Heterogeneous			
	K2005M					
	A2016 Confined					
	MODFLOW Confined					
Unconf	ined aquifer: wells					
5	A2016 Unconfined	Homogeneous	Homogeneous	1, 30, 360,	Specified	23x23 rows
	MODFLOW Unconfined			3600	head, specified	and columns. 100-m grid
Unconf	ined aquifer: wells + recharg	e			Specified	100 m gnu
6	A2016 Unconfined	Homogeneous	Homogeneous	1, 30, 360,	Specified	23x23 rows
	MODFLOW Unconfined			3600	head, specified	and columns. 100-m grid
7	A2016 Unconfined	Heterogeneous	Homogeneous		flow.	spacing.
	MODFLOW Unconfined					
8	A2016 Unconfined	Homogeneous	Heterogeneous			
	MODFLOW Unconfined					
Lake, re	echarge, evapotranspiration	& head dependent	boundaries.			
9a	A2016 Unconfined	Homogeneous	Homogeneous	1, 30, 360,	Specified	23x23 rows
	MODFLOW Unconfined			3600	head, specified	and columns. 100-m grid
9b	A2016 / MODFLOW			3600	flow, no flow,	spacing.
.~	A2016 _{STA}				head dependent.	
	AZUTOSTA				dopondont.	

Table 4.1: Table defining hydrogeological conditions and model parameters for each set of model experiments.

Experiment 9b expanded upon 9a by testing an alternative method of calculating conductance for the cells beneath the lake, using the specified saturated thickness approximation (Sheets et al. 2015). In Experiment 9a, A2016 featured cell to cell conductance for the full model region, determined by the aquifer thickness from base of aquifer to the water table as per an unconfined aquifer (Fig. 4.2). This represents the standard MODFLOW + RES package and is similar to the scenario demonstrated in the RES package documentation (Fenske et al. 1996) where a reservoir is situated within, and interacting with an unconfined aquifer. Experiment 9b used a variant of A2016 (A2016_{STA}), where cell to cell conductance beneath the lake was derived from the specified saturated aquifer thickness between the base of the aquifer and the base of the lake sediments (Fig. 4.2). Two lake depths were modelled to identify how the different transmissivities might affect the interaction between the lake and groundwater. Parameters were chosen to approximate the water table configuration from Winter (1976; Fig. 12), with a flow through lake and a steady state hydraulic head just above lake level, leading to seepage into the lake across the lake floor. As a groundwater model using the Dupuit-Forchheimer cannot simulate three-dimensional flow, a fixed flux across the model was included to approximate seepage from the layer to deeper flowpaths.

It should be noted that parameters for these model experiments were not intended to represent real world conditions. Instead parameters that result in significant variation in modelled hydraulic heads were selected to emphasise differences between the models.

5 Results

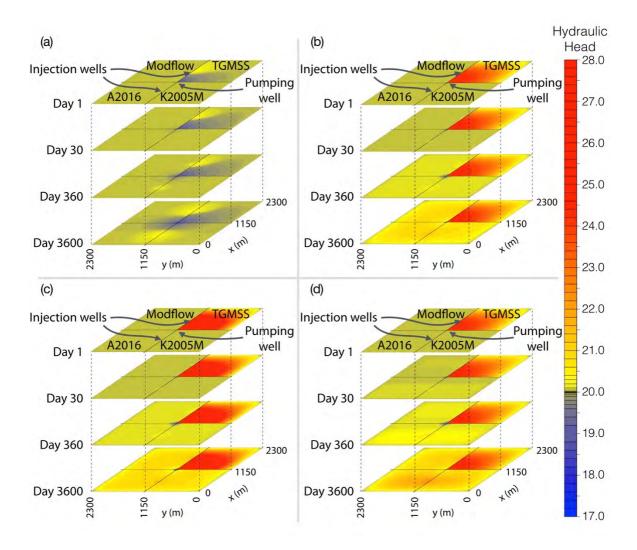
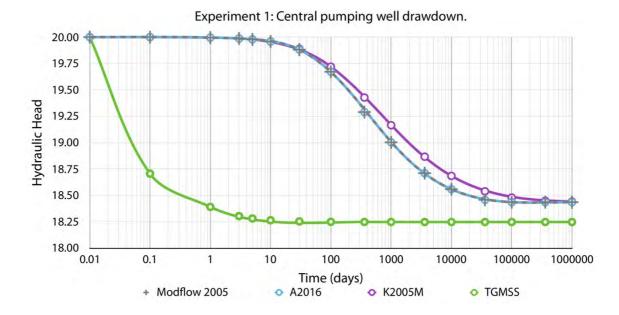
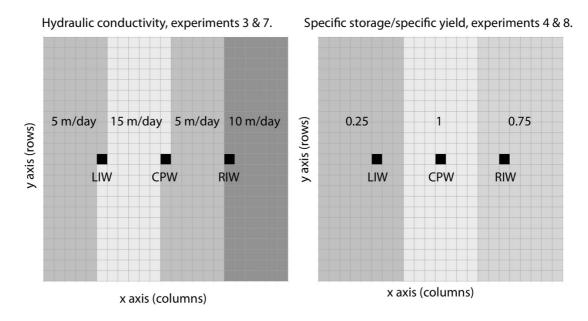




Figure 4.3: Hydraulic head (m) maps showing modelled transient groundwater behaviour for model experiments 1-4, for days 1, 30, 360 and 3600. Each quadrant shows results for one of the models examined (MODFLOW, A2016, TGMSS, K2005M). Model experiments shown are: (a) Confined aquifer with pumping and injection wells. (b) Confined aquifer with wells and recharge. (c) Confined aquifer with wells, recharge and heterogeneous conductivity. (d) Confined aquifer with wells, recharge and heterogeneous storage.

MODFLOW, A2016 and K2005M showed good agreement in all confined aquifer experiments. In experiment 1, for a confined aquifer with injection and pumping wells, MODFLOW and A2016 showed identical results (Fig. 4.3a). Differences for calculated hydraulic heads between the two models were less than 1 mm in all grid cells for all time-steps. In contrast, hydraulic head values of Model K2005M differed from MODFLOW and A2016 as the timeframe for the model simulation increased. At the central pumping well, K2005M and MODFLOW had identical hydraulic heads for day 1. By day 30, K2005M was 0.008 m higher than MODFLOW, 0.14 m higher at day 360 and 0.16 m higher at day 3600 (Table 4.2). TGMSS displayed very different results to the other models. For day 1 and day 30 at the central well, TGMSS's surface was ~1.6 m lower than the other models, 1.05 m lower at day 360, and 0.16 m lower at day 3600 (Table 4.2, Fig. 4.4). MODFLOW, A2016 and K2005M did not achieve steady state within 3600 days. Additional model runs suggest that steady state groundwater flow for the first simulation would be achieved after ~100,000 days. TGMSS achieved steady state after ~10 days (Fig. 4.4).

Figure 4.4: Modelled hydraulic heads (m) at the central pumping well for each model for model experiment 1, with injection and pumping wells, and homogenous conductivity and storage.

Figure 4.5: Map showing left and right injection wells (LIW & RIW) and the central pumping well (CPW). Greyscale is indicative of regions with different hydraulic conductivities and specific storage or specific yield within the model space.

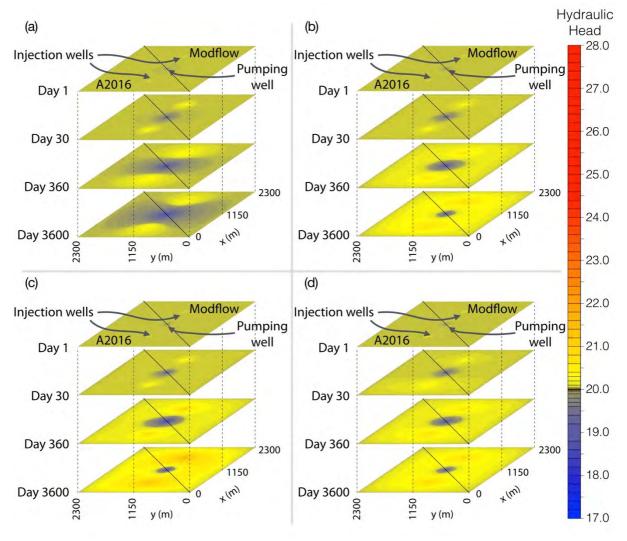
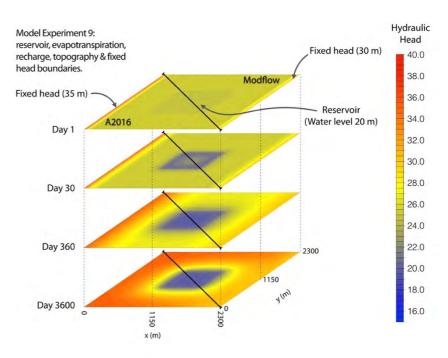
MODFLOW, A2016 and K2005M also produced similar results for experiments 2-4, incorporating recharge and heterogeneous conductivities and specific storage (Fig. 4.3b, c and d, Fig. 4.5). At all time-steps, MODFLOW and A2016 gave identical results with hydraulic head differences of less than 1 mm. K2005M diverged from MODFLOW and A2016 as simulation time increased, with a maximum difference observed in the heterogeneous storage experiment, where one of the injection wells had a surface 0.36 m lower than the MODFLOW hydraulic head on day 3600 (Fig. 4.3d, Table 4.2). This well was in a region of low specific storage. TGMSS showed significant differences from the other models, at all time-steps. The maximum difference was on day 30 in the heterogeneous conductivity experiment (experiment 3) where TGMSS simulated a hydraulic head ~7.4 m above the MODFLOW value for one of the injection wells (Table 4.2).

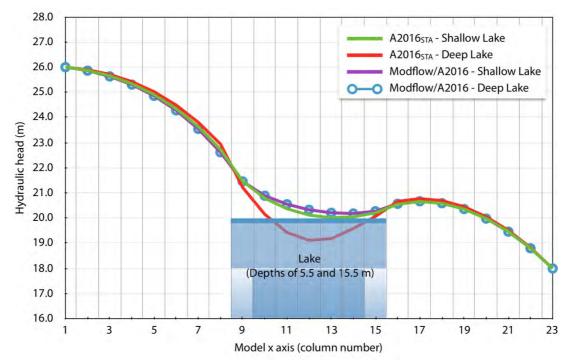
Exp.#	Timestep	MODF	LOW		A2016			K20051	М		TGMS	S	
		LIW	CPW	RIW									
	1	20.002	19.996	20.002	20.002	19.996	20.002	20.002	19.996	20.002	20.621	18.391	20.621
1	30	20.059	19.882	20.059	20.059	19.882	20.059	20.055	19.890	20.055	20.549	18.254	20.549
-	360	20.355	19.290	20.355	20.355	19.290	20.355	20.286	19.428	20.286	20.546	18.248	20.546
	3600	20.635	18.711	20.635	20.635	18.711	20.635	20.552	18.867	20.552	20.546	18.248	20.546
	1	20.002	19.996	20.002	20.002	19.996	20.002	20.002	19.996	20.002	24.126	23.560	24.126
2	30	20.067	19.889	20.067	20.067	19.889	20.067	20.063	19.897	20.063	24.210	23.700	24.211
-	360	20.445	19.380	20.445	20.445	19.380	20.445	20.376	19.518	20.376	24.213	23.704	24.213
	3600	21.493	19.610	21.493	21.493	19.610	21.493	21.335	19.736	21.335	24.213	23.705	24.213
	1	20.002	19.996	20.002	20.002	19.996	20.002	20.002	19.996	20.002	27.275	25.943	26.184
3	30	20.068	19.886	20.069	20.068	19.886	20.069	20.065	19.893	20.066	27.454	26.180	26.298
0	360	20.506	19.259	20.545	20.505	19.259	20.545	20.427	19.417	20.460	27.460	26.187	26.302
	3600	21.735	19.188	21.882	21.735	19.188	21.882	21.588	19.403	21.689	27.460	26.188	26.302
	1	20.009	19.996	20.003	20.009	19.996	20.003	20.009	19.996	20.003	24.162	23.585	24.142
4	30	20.217	19.889	20.087	20.217	19.889	20.087	20.188	19.897	20.080	24.212	23.701	24.211
-	360	20.887	19.380	20.518	20.887	19.380	20.518	20.780	19.519	20.442	24.213	23.704	24.213
	3600	22.522	19.743	21.723	22.522	19.743	21.723	22.158	19.864	21.523	24.213	23.705	24.213

Table 4.2: Hydraulic heads for each cell containing an injection or pumping well. Central pumping well highlighted in blue. Offset injection wells shown unshaded. Locations of wells are shown in figure 4.5.

A2016 was also compared against MODFLOW in a series of unconfined aquifer experiments (Fig. 4.6). TGMSS and K2005M were not included in this comparison, as they are not designed to model unconfined aquifers. Identical results were achieved in all simulations, for all time-steps, with a maximum difference in hydraulic head of less than 1 mm.

Performance in A2016 is slower than MODFLOW with a time of around 10-15 minutes for 3600 time-steps. In comparison, MODFLOW takes around 1 to 3 minutes using the preconditioned conjugate gradient solver. These values are from model runs on different systems (A2016 was run on the Mac version of Excel 2015, whereas MODFLOW was run with the Model Muse GUI on a Windows 7 virtual machine, both on a Macbook Pro 2.8 Ghz i7).


Figure 4.6: Hydraulic head (m) maps showing modelled transient groundwater behavior for experiments 5-8, for days 1, 30, 360 and 3600. Each half shows results for one of the models examined (MODFLOW and A2016). Model experiments shown are: (a) Unconfined aquifer with pumping and injection wells. (b) Unconfined aquifer with wells and recharge. (c) Unconfined aquifer with wells, recharge and heterogeneous conductivity. (d) Unconfined aquifer with wells, recharge and heterogeneous conductivity.

Model experiment 9a incorporates specified head, specified flux, no flow and head dependent boundaries. In the initial experiment, cell to cell conductance for all cells was determined by the aquifer "thickness" between the base of the aquifer and the water table. MODFLOW and A2016 produced identical results (Fig. 7), for all cells and time-steps. Initial seepage to the lake occurred as inflow across the entire lake floor, with the majority of seepage, combined with rapid drawdown of the groundwater head, occurring near the thinner sediments along the lake shore (average 910 m³/day per cell). At day 30, inflow to the lake occurred at a consistent rate (average 120 m^3 /day per cell) across the whole lake floor, with the increased flow through the thicker central sediments occurring due to a high remnant water table hydraulic head in the centre of the lake. By day 360, the water table mound in the centre of the lake had become a depression with a hydraulic head of ~19.8 m and lake seepage occurred as inflow along the lake edges (average 48 m³/day per cell) and outflow in the lake centre (average 8 m³/day per cell). By day 3600, the overall pattern was similar, with an increase in inflow along the lake edges (average 78 m^3 /day per cell). Away from the lake, the water table height increased due to recharge until near day 3600 when the water table height intersected the evapotranspiration boundary in areas of lower topography. Once this occurs, the water table followed the topography as seen in the region around x: 2100, y: 20 (Fig. 7).

Figure 4.7: Hydraulic head (m) map showing modelled transient groundwater behaviour for model experiment 9, for days 1, 30, 360 and 3600. Each half shows results for one of the models examined (MODFLOW and A2016). Model experiment conditions consist of a central reservoir with head dependent boundaries *determining seepage through the lake* floor, recharge and evapotranspiration over the model, and no-flow and fixed head perimeter boundaries. Initial hydraulic heads were 25 m and the reservoir hydraulic head was set at 20 *m.* Evapotranspiration is linked to the topographic surface with an extinction *depth of 0.1m. The water table in the region centred around x=2100, y =* 200 is constrained by the evapotranspiration boundary.

In the second series of simulations (9b), conductance in $A2016_{STA}$ was calculated differently for cells that lay beneath the lake. The thickness of the aquifer in this region was specified as the distance between the base of the aquifer and the base of the lake sediments (Fig. 4.2), using the specified thickness approximation (Sheets et al. 2015). Initial comparisons between MODFLOW/A2016 and A2016_{STA} using a shallow lake (5.5 m depth) showed small differences (Fig. 4.8). Hydraulic heads for $A2016_{STA}$ were slightly higher (~25 mm) than MODFLOW/A2016 for the water table mounds, and slightly lower (~ 70 mm) across the lake, resulting in slightly less seepage into the lake. Seepage into the lake occurred across the entire lake floor in both models, with the largest seepage occurring on the "downstream" side of the lake (Columns 13 & 14; Fig. 4.8).

*Figure 4.8: Hydraulic heads for day 3600 along the middle row of the model, for MODFLOW/A2016 and A2016*_{STA}. *A2016*_{STA} calculates conductance for the region beneath the lake using a specified thickness as described in figure 4.1.

In contrast, simulations with the deep lake showed no change in the MODFLOW/A2016 simulations, but significant change in the $A2016_{STA}$ simulation (Fig. 4.8). Hydraulic heads away from the lake were an average of ~170 mm higher, and lake cells were ~440 mm lower, than the MODFLOW/A2016 simulations. In addition, the lake changed from gaining water, to losing water across ~1/3 of the lake floor (Fig. 4.8).

6 Discussion

MODFLOW is the *de facto* standard for groundwater modelling software. The primary objective of this paper was to investigate the development of a comparable spreadsheet model, for simple experiments, prototyping and teaching purposes. From the model inter-comparison, it is clear that A2016 is a simple and suitable alternative to MODFLOW for the scenarios investigated in this paper (Table 4.1). A2016 gave identical results to MODFLOW in all simulations. However, there are two caveats that must be considered: MODFLOW and A2016 differ in the method of iteration, and A2016 does not include the full and extensive range of features of MODFLOW. The difference in iteration method, with A2016 using Gauss-Seidel point based iteration, compared to MODFLOW's matrix solver, is unlikely to lead to significant disparities, though it may occasionally result in situations where the contours do not align perfectly between models; while the difference in hydraulic heads between models may be submillimetre, even minuscule variations between models may define a contour. Of the numerous MODFLOW features not included in A2016, two notable omissions include the 3D layer structure, and anisotropy of hydraulic conductivity. The relative simplicity of A2016 compared to MODFLOW should not pose significant problems as long as usage is appropriate, and the limitations of the single-layer, Dupuit-Forchheimer approximation are considered. The structured nature of A2016, with separate, clearly named sheets for the hydrogeological features and model layers, should minimise the use of inappropriate data.

The tendency of K2005M to deviate from MODFLOW and A2016 as simulation time increases, before returning to a similar steady flow condition (Fig. 4.4) is understandable once the model structure for K2005M is examined. The model structure of K2005M is that of a single layer groundwater model (as per A2016), able to do a single time-step. The initial head value is parametrized, and there is no mechanism to update it for incrementing timesteps. Therefore, a simulation over 3600 days using K2005M is identical to a simulation in MODFLOW or A2016 over 3600 days, using a single timestep of 3600 days. There are no stability concerns in using long timestep lengths in these models as they all use implicit calculation techniques. However, longer timesteps can result in a decrease of accuracy (Table 4.2, Fig. 4.4).

TGMSS was able to approximate the MODFLOW steady state solution in only one experiment (Fig. 4.3a), and was unable to model the transient behaviour of groundwater in any of the simulations. This is primarily due to linking the hydraulic head in the storage term to the iteration process (Eq. 22), instead of using the hydraulic head from the previous time-step (Eq. 23). In TGMSS the hydraulic head value is calculated during each iteration. With each iteration

a new "initial" hydraulic head is introduced to the FDM, which is not likely to be correct (as the iteration cycle is not complete) and which has little relationship to the actual initial head value from the start of the time-step. In essence, this makes the model "chase its own tail" during each iteration cycle and gives spurious results.

$$\frac{S_{i,j}(h^m - h^{\text{iteration}})}{t_m - t_{m-1}}$$
(22)

$$\frac{S_{i,j}(h^m - h^{m-1})}{t_m - t_{m-1}} \tag{23}$$

A further difference between the models that must be considered during usage, is that the spreadsheet equations used for TGMSS and K2005M do not define the volumetric flows to and from each cell. Instead these are based on the equation for a representative elementary volume (REV). Therefore, care must be taken to ensure that appropriate integration is carried out to determine actual flow rates. This is not a concern with A2016 as the integration to account for cell size is incorporated into the spreadsheet equations (Eq. 7).

While MODFLOW and the unmodified version of A2016 had identical results in all experiments, the results from experiment 9a and 9b suggest that care must be taken with MODFLOW when used with the RES (reservoir) package. In MODFLOW, by default, conductance between cells beneath the reservoir is calculated without taking into account any confinement of the aquifer, or change in aquifer thickness caused by the placement of the reservoir (Fig. 4.2). As the reservoir takes up a greater proportion of the layer thickness, the discrepancy between MODFLOW's calculated conductance, and the actual conductance of groundwater beneath the reservoir increases. In these situations, MODFLOW will calculate greater horizontal flow through the cells beneath the reservoir, potentially resulting in lower hydraulic heads and less groundwater mounding. This is particularly relevant in situations where a lake provides a natural barrier to groundwater flow. Winter (1976; Figures 12 & 18) demonstrated that for many groundwater systems, such as those approximated in experiment 9b, shallow lakes may gain water from surrounding local groundwater systems, whereas deeper lakes in the same setting are likely to lose water. This behaviour is observed in $A2016_{STA}$, where the combination of seepage through the base of the layer, recharge, and cell to cell conductance combine to form a water table and lake behaviour, that is qualitatively similar to the simulations of Winter (1976). In contrast, MODFLOW and A2016 were unaffected by changes in the lake depth, and penetration of the aquifer.

The approach taken in $A2016_{STA}$ is based on the specified saturated thickness approximation (Sheets et al. 2015). The specified thickness approximation is commonly used to simplify and linearize the determination of transmissivity through an unconfined aquifer. Specifying the aquifer thickness disconnects the non-linear derivation of transmissivity from saturated thickness. The commonly cited benefit of this approximation is that model run times may be much faster, and stability improved (Sheets et al. 2015). In addition, the specified thickness approximation is also an ideal method to limit the transmissivity of an aquifer that is limited in thickness by an overlying lake.

The RES package and its precursor, the RIV (river) package (Fenske et al. 1996), share similar designs, and both may see some benefit from the application of the specified thickness approximation to define conductance beneath reservoirs, lakes and rivers. However, the approximation is most relevant to the RES package as reservoirs and lakes are more likely to take up a significant proportion of a layer's thickness, resulting in a much greater difference between the default MODFLOW calculation for conductance and the lower conductance derived from the specified thickness approximation.

Applying the specific thickness approximation to just the region beneath lakes presents a difficulty, as MODFLOW does not allow for specification of the thickness of an unconfined layer. For many groundwater scenarios, the specified thickness approximation is commonly implemented using a confined layer (Sheets et al. 2015). This method is not suitable for limiting conductance beneath lakes unless the specified thickness approximation is applied across the whole model. The use of a convertible layer, with a top surface mirroring the land surface may be applicable, assuming that the water table never rises above the land surface. The modular nature of MODFLOW allows packages to append the HCOF and RHS matrices, but does not include a way for packages to modify layer thickness or type. To make use of the specified thickness approximation on an ad-hoc basis, over small regions of cells, implementation could be achieved by adding a "layer surface" matrix alongside the HCOF and RHS matrices. Components of the groundwater model would be able to append the HCOF and RHS matrix, as occurs currently in MODFLOW, as well as modify the "layer surface" matrix, to account for regions where the user may want to specify the saturated thickness. In the lake scenario, the layer surface matrix would simply mirror the water table (for unconfined) or top of aquifer (for confined) matrices. In regions where a lake penetrates the aquifer, then the layer surface values for cells beneath the lake would be defined by the bottom of the lake sediments, rather than the water table/top of layer.

7 Conclusion

Groundwater modelling is a complex science, for which comprehensive models such as MODFLOW are required. However, despite the existence of such advanced modelling software, development of simple spreadsheet-based groundwater models is important for both teaching purposes and prototyping new modelling code. A prototype model – A2016 – was developed in preparation for linking a groundwater model to a coupled hydrologic-isotopic mass balance lake model. Nine experimental simulations were carried out to test numerous hydrogeological conditions, such as sources and sinks, heterogeneous storage and hydraulic conductivity, and specified head, specified flux, head dependent and no-flow boundary conditions.

In all simulations A2016 produced identical results to MODFLOW 2005 for both transient and steady state groundwater conditions, in both confined and unconfined aquifers. In addition, the model inter-comparison from this study demonstrates that modelling transient behaviour of groundwater still requires the use of macros or similar programmatic constructs to control the time-stepping. Previous efforts to develop a spreadsheet that is not reliant on macros (TGMSS; Karahan and Ayvaz 2005b, Karahan and Ayvaz 2005a) have been shown to be unable to simulate transient groundwater behaviour. In this respect, A2016 provides a clear advance on existing spreadsheet based models.

Spreadsheet models also provide the means to examine functions within more complex groundwater models. Experiment 9b highlighted a scenario in which MODFLOW may derive incorrect conductance values for cells beneath a lake in an unconfined aquifer when using the RES package. This is attributed to the use of an aquifer thickness calculated from the water table to the base of the aquifer. A modified version of A2016 was developed that uses the specified thickness approximation (Sheets et al. 2015) and calculates aquifer thickness from the base of the lake sediments, to the base of the aquifer.

A2016 provides an excellent framework for teaching by linking the underlying mathematics, MODFLOW concepts and modelled groundwater behaviour in a structured environment, using spreadsheet software that all students are familiar with. While only features deemed necessary to the ongoing project were included and tested in A2016, adding features, such as anisotropy or 3D flow modelling should be straightforward and may provide an excellent educational opportunity. Most additions to the model can be achieved through standard spreadsheet manipulation thereby providing a simple and flexible tool of value to both research and teaching.

8 References

- Akhter, M.G., Ahmad, Z., Khan, K.A., 2006. Excel based finite difference modeling of ground water flow. Journal of Himalayan Earth Sciences, 39: 49-53.
- Almeida, C.N., Roehrig, J., Wendland, E., 2014. Development and Integration of a Groundwater Simulation Model to an Open Geographic Information System. JAWRA Journal of the American Water Resources Association, 50(1): 101-110. DOI:10.1111/jawr.12119
- Anderson, M., Bair, E., 2001. The power of spreadsheet models, Proceedings, MODFLOW 2001 and Other Modeling Odysseys Conference, pp. 815-822.
- Anderson, M.P., Woessner, W.W., Hunt, R.J., 2015. Applied groundwater modeling: simulation of flow and advective transport. Academic press.
- Ankor, M.J., 2018. Transient groundwater modelling using spreadsheets for education and model prototyping. https://doi.org/10.17632/ r6hcbkp53n.4; https://data.mendeley.com/datasets/r6hcbkp53n/4. Accessed 8 Aug 2018
- Bair, E.S., Lahm, T.D., 2006. Practical problems in groundwater hydrology, 1. Prentice Hall.
- Elemer, B., Sz, P., Aniko, T., Attila, K., 2010. Complex Scientific Analysis in Geothermal Exploration in the Pannonian Basin. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-29 April 2010.
- Fenske, J.P., Leake, S., Prudic, D.E., 1996. Documentation of a computer program (RES1) to simulate leakage from reservoirs using the modular finite-difference ground-water flow model (MODFLOW). 2331-1258, US Geological Survey; Branch of Information Services [distributor].
- Harbaugh, A.W., 2005. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior, US Geological Survey Reston, VA, USA.
- Holzbecher, E., Sorek, S., 2005. Numerical models of groundwater flow and transport. Encyclopedia of Hydrological Sciences.

- Huang, Y., Yu, Z., Zhou, Z., 2013. Simulating Groundwater Inflow in the Underground Tunnel with a Coupled Fracture-Matrix Model. Journal of Hydrologic Engineering, 18(11): 1557-1561. DOI:10.1061/(ASCE)HE.1943-5584.0000455
- Jones, R.N., McMahon, T.A., Bowler, J.M., 2001. Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990). Journal of Hydrology, 246(1): 159-180.
- Karahan, H., Ayvaz, M.T., 2005a. Time-dependent groundwater modeling using spreadsheet. Computer applications in engineering education, 13(3): 192-199.
- Karahan, H., Ayvaz, M.T., 2005b. Transient groundwater modeling using spreadsheets. Advances in Engineering Software, 36(6): 374-384.
- Mahmud, M., 1996. Spreadsheet Solutions To Laplace's Equation: Seepage And Flow Net. Jurnal Teknologi, 25: 53-67.
- McDonald, M.G., Harbaugh, A.W., 2003. The history of MODFLOW. Groundwater, 41(2): 280-283.
- Neville, C.J., Tonkin, M.J., 2001. Representation of multiaquifer wells in MODFLOW, Proceedings of Modflow 2001 Conference at the International Ground Water Modeling Center, Golden, Colorado, pp. 51-59.
- Ohlendorf, C., Fey, M., Gebhardt, C., Haberzettl, T., Lücke, A., Mayr, C., Schäbitz, F., Wille, M., Zolitschka, B., 2013. Mechanisms of lake-level change at Laguna Potrok Aike (Argentina) - insights from hydrological balance calculations. Quaternary Science Reviews, 71: 27-45. DOI:10.1016/j.quascirev.2012.10.040
- Olsthoorn, T.N., 1985. The power of the electronic worksheet: modeling without special programs. Groundwater, 23(3): 381-390.
- Ousey, J.R., 1986. Modeling Steady-State Groundwater Flow Using Microcomputer Spreadsheets. Journal of Geological Education, 35(5): 305-11.
- Sheets, R.A., Hill, M.C., Haitjema, H.M., Provost, A.M., Masterson, J.P., 2015. Simulation of Water-Table Aquifers Using Specified Saturated Thickness. Groundwater, 53(1): 151-157.

- Smerdon, B.D., Mendoza, C.A., Devito, K.J., 2007. Simulations of fully coupled lakegroundwater exchange in a subhumid climate with an integrated hydrologic model. Water Resources Research, 43(1): 1-13. DOI:10.1029/2006WR005137
- Stets, E.G., Winter, T.C., Rosenberry, D.O., Striegl, R.G., 2010. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resources Research, 46(3).
 DOI:10.1029/2009WR007793
- Wang, H.F., Anderson, M.P., 1982. Introduction to groundwater modeling : finite difference and finite element methods. Academic Press, San Francisco.
- Winston, R.B., 2009. ModelMuse: a graphical user interface for MODFLOW-2005 and PHAST. US Geological Survey Reston, VA.
- Winter, T.C., 1976. Numerical simulation analysis of the interaction of lakes and ground water. USGS Professional Paper 1001.

A holistic lake model for palaeoclimate research

Notes: The code for CHIMBLE is available from: https://github.com/Mjankor/CHIMBLE

This chapter has been formatted to match the rest of this thesis. Figure and table numbers have been prefixed with the chapter number (e.g. Fig. 1 has been changed to Fig. 5.1).

Statement of Authorship

Title of Paper	A holistic lake model for palaec	oclimate research
Publication Status	Published Submitted for Publication	 Accepted for Publication Unpublished and Unsubmitted work written in manuscript style
Publication Details		

Principal Author

Name of Principal Author (Candidate)	Martin Ankor
Contribution to the Paper	Corresponding Author. Devised initial concept, model design, experimental design. Analysis of results. Wrote manuscript.
Overall percentage (%)	90%
Certification:	This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper.
Signature	Date 19 Dec 2019

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

- i. the candidate's stated contribution to the publication is accurate (as detailed above);
- ii. permission is granted for the candidate in include the publication in the thesis; and
- iii. the sum of all co-author contributions is equal to 100% less the candidate's stated contribution.

Name of Co-Author	Jonathan T. Tyler	
Contribution to the Paper	Evaluated and edited manuscript.	

Please cut and paste additional co-author panels here as required.

Abstract

Lake hydrological, physical and geochemical models are valuable tools for interpreting past climate variability recorded within lake sediments, and the sensitivity of lakes under future climate conditions. A holistic lake model was developed and applied to two maar crater lakes – Lake Bullen Merri and Lake Gnotuk - in the Newer Volcanic Province, Victoria, Australia. The lake model incorporates mass and energy balances, a finite difference groundwater model, a dual layer soil model, water chemistry, and mass balance mixing and fractionation of oxygen and hydrogen stable isotopes. Parameters derived from the calibration process were parsimonious for both lakes. Estimated groundwater hydraulic conductivities and storativity were comparable to other studies in the region, and the same groundwater parameters were applicable to both lakes. The model was able to simulate lake behaviour for both lakes for the entire observational record - historical lake level change from 1889 to 2019, lake chemistry and lake surface temperature from ~1960 to 2019, and surface water oxygen and hydrogen isotopes between 2015-2019, albeit subject to some uncertainties. Differences between modelled and observed seasonal isotopic and chemical variability are best explained by changes in lake stratification depth, suggesting that in recent decades the depth to thermocline at Lake Bullen Merri has declined. Model simulations were also validated against a previously published model by Steinman et al. (2010) [Limnology and Oceanography, 55(6), 2231–2245]. The model experiments indicate that both Lake Bullen Merri and Lake Gnotuk are through-flow lakes at higher lake levels, and transition to terminal lakes at lower lake levels. These observations have significance for interpreting past hydrological change using lake sediments and stable isotopes.

1 Introduction

Lake sediments are important archives of past climate, able to provide continuous, high resolution records across a broad geographical and temporal range (Cohen, 2003). Variations in the characteristics of lake sediments offer direct insights into past hydroclimate, both within the catchment and on a regional scale, by recording changes in lake water volume, chemistry, biology, aeolian influx, and catchment erosion (e.g., Barr et al., 2014; Battarbee, 2000; Cadd et al., 2018; Donders et al., 2007; Jones et al., 2005; Jones et al., 1998; Jones et al., 2001; Leng and Marshall, 2004; Steinman et al., 2012; Talbot, 1990; Van Boxel et al., 2013; Wilkins et al., 2013). Hydroclimate variability is often inferred from estimates of lake water salinity, as inferred from microfossil assemblages (e.g., Barr et al., 2014; Fritz et al., 1991; Rudd et al., 2016) the elemental

composition of microfossils (e.g., Chivas et al., 1985), or from lake water isotope ratios (¹⁸O/¹⁶O, ²H/¹H), reflected in the isotopic composition of carbonate, biogenic silica and organic components of lacustrine sediment (e.g., Leng and Marshall, 2004; Ricketts and Johnson, 1996; Sachse et al., 2004; Steinman et al., 2012; Tyler et al., 2008; Wolfe et al., 2002). However, quantitative inferences of past hydrological balance, and thus climate, are hindered by the non-linear response of lake hydrology, chemistry, and isotope ratios to climatic forcing as well as differences between the responses of sites to a common forcing (Battarbee, 2000; Wigdahl et al., 2014). Consequently, lakes within close geographic proximity, perhaps even sharing the same climate, will rarely produce identical palaeoclimate records, undermining both the confidence in those records and efforts to produce regional palaeoclimate syntheses (e.g., Tierney et al., 2013; Tyler et al., 2015). Understanding and quantifying lake hydrological, chemical and isotopic responses to climate is therefore a crucial step towards developing accurate records of past climate change.

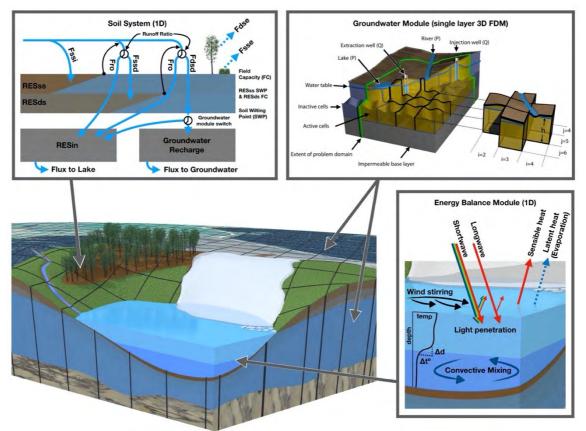
Numerical modelling of lakes, their catchments and surroundings can be applied to investigate how lakes respond to climate change. Numerous lake models have been developed, both specifically for, or adaptable to, palaeoclimate research (Table 1.1). Lake models for palaeoclimate research are commonly based on either mass balance or energy balance equations. Hydrological mass balance modelling aims to quantify the various hydrologic fluxes through a system, a common technique used in fields ranging from lake studies (e.g., Jones et al., 2001; Yihdego et al., 2015), catchments (e.g., Boughton, 2005), agriculture (e.g., Panigrahi and Panda, 2003) and global climate simulations (e.g., Neilson, 1995). Lake energy balance models balance incoming and outgoing energy, and temperature mixing through the lake to estimate evaporation, thermal stratification, and water heat storage (e.g., Dee et al., 2015; Hipsey et al., 2013; Hostetler and Bartlein, 1990; Hostetler et al., 1993). Few mass balance models incorporate energy balance equations, while most energy balance models used for lake research include some mass balance functionality.

As many lake-based climate reconstructions rely on interpretation of isotopic signatures, these models can be extended further by coupling of the hydrological mass balance equations to equations describing oxygen and hydrogen isotopic mixing and fractionation within water (e.g., Dinçer, 1968; Gat, 2010; Gibson et al., 2015; Gonfiantini, 1986). Coupled hydrologic-isotopic mass balance models provide a method to resolve some of the uncertainties related to a lake's hydrological and isotopic responses to climate by quantifying the various hydrologic fluxes through the lake and catchment as well as their isotopic composition. As the hydrological mass

balance is a result of the sum of the inflows and outflows of a system, so too must the isotopic values balance (Jones et al., 2005).

Modelling of lakes for palaeoclimate research presents several challenges related to defining model parameters. Fundamentally, the purpose of palaeoclimate research is to understand and quantify climatic conditions outside the range of instrumental records. Most instrumental meteorological and lake hydrological records only cover a relatively short time period (typically 0 - 200 years), whereas lake based palaeoclimate records often span timescales ranging from centuries through to millions of years. As a consequence, palaeoclimate records often demonstrate a far greater range of lake and climatic conditions than found in the instrumental records (e.g: glacial/interglacial cycles). Fossil lake shorelines demonstrate this clearly, with numerous examples of fossil shorelines either well above or below documented lake levels, particularly in the currently semi-arid climates of Australia (Jones et al., 2001; Last and Deckker, 1990; Wilkins et al., 2013). From a modelling perspective, this variation in lake and climate conditions presents several significant problems. Changes in lake depth alters both the degree of sheltering and the length of fetch across a lake, both of which influence evaporation, heat storage, and degree of stratification (Imberger, 2001). Degree of stratification in particular is an important consideration for interpretation of lake records, affecting both the chemistry and isotopic composition of the productive surface waters, and the likelihood of anoxic deeper waters (Hambright et al., 1994). Likewise, changes in climate and lake level can affect the groundwater-lake dynamics. Lakes may shift between through-flow groundwater behaviour, where groundwater seeps both in and out of the lake, terminal behaviour with groundwater only seeping into the lake, or outseepage lakes, where the lakes are perched above a regional water table and water is lost to the underlying systems (Tweed et al., 2009; Winter, 1978; Winter et al., 2003). This groundwater-lake interaction may vary according to climatic state, with some lakes switching between through-flow, terminal and outseepage behaviour depending on lake level (Ankor and Tyler, 2019; Winter, 1976). Both groundwater-lake interactions and lake stratification are complex, non-linear systems that are difficult to parameterise, particularly for the long timescales commonly encountered in palaeoclimate research. A further challenge encountered when studying lake records spanning thousands of years is incorporating known or hypothesised changes in the lake's physical environment. For example, land use changes, such as the clearing of land following European settlement of Australia (e.g., Jones, 1999), the filling of lakes with sediment (e.g., Cadd et al., 2018), or more dramatic changes, such as volcanic and tectonic activity which can divide or constrict lake basins (e.g., Obrochta et al., 2018).

Chapter 5


One potential solution to these problems is to extend existing lake models by modelling all interconnected physical processes and hydrological systems that influence lake behaviour, such as groundwater modelling and energy balance modelling. The goal behind developing a 'holistic' lake model of this nature is to minimise the reliance upon parameterisations that are only valid for a small range of lake conditions, instead incorporating modelling methods that rely on parameterisations that can be assumed not to change significantly over the duration of the lake record. Modelling groundwater using methodologies such as finite difference or finite element modelling (FDM/FEM) requires determination of hydrogeological parameters such as the hydraulic conductivity and storativity (Anderson et al., 2015). The assumption that hydrogeological parameters are consistent for the duration of the lake sediment record is not unreasonable, whereas it is difficult to justify the assumption that groundwater fluxes estimated from observations covering only a small range of lake conditions are applicable outside those conditions. Likewise, estimation of the degree of stratification for a lake under past climates cannot necessarily rely on a small set of observations recorded under current climate conditions. Instead, energy balance modelling can be applied to estimate evaporation, water heat storage and lake stratification directly from the hypothesised climatic and lake conditions by estimating and balancing the incoming and outgoing energy sources and the mixing of temperature through the lake (Henderson-Sellers, 1986; Hostetler and Bartlein, 1990).

Based on the above, an ideal lake model for palaeoclimate research should be capable of modelling the lake and all interconnected systems. The model should avoid parameterisations that are only valid over a small range of lake conditions. A lake model for palaeoclimate research should have a method to include changes in the lake system, such as lake sediment filling and land use changes. An ideal lake model should also include lake water elemental and isotope geochemistry, partly to account for the effect of water chemistry on evaporation and stratification, and because geochemical tracers are often central to the interpretation of past climates from lake sediments.

Numerous researchers have developed hydrologic-isotopic mass balance models for palaeoclimate studies, e.g. (e.g., Jones and Imbers, 2010; Jones et al., 2005; Steinman et al., 2012) or for determining source water contributions and tracing fluxes through a lake system (e.g., Gibson and Reid, 2014; Gibson et al., 2002; Shapley et al., 2008; Stets et al., 2010). However, none of these models include the full suite of components required for a general palaeoclimate lake model. Generally speaking, lake models are developed for specific lakes, and often lack coupled components necessary for other lakes. This specificity contrasts with the ever expanding suite of lake derived palaeoclimate reconstructions and associated efforts to use lake models as components of 'proxy system models' – combination models that simulate the processes by which climate signals are transferred and encapsulated within proxy materials (Dee et al., 2015). There is therefore a need for a general model adaptable to different lakes and able to utilise datasets of varying completeness, without extensive recoding and with an open, extensible framework that can be expanded upon in future studies. In this paper we introduce a new model which aims to address this demand – the Chemical, Hydrological, Isotopic Mass Balance for Lake Environments (CHIMBLE), which we apply to two crater lakes, Lake Bullen Merri and Lake Gnotuk, in Victoria, Australia.

2 Model structure

CHIMBLE (https://github.com/Mjankor/CHIMBLE) is an adaptable lake model, designed to model many different lake scenarios using various levels of input data (Fig. 5.1). CHIMBLE's interface is written in R (Ihaka and Gentleman, 1996), with the main program loop written in C++ using the Rcpp library (Eddelbuettel, 2013; Eddelbuettel and Francois, 2011).

Figure 5.1: A schematic of CHIMBLE showing how the one dimensional mass balance model encompassing the lake and catchment, couples to the lake energy balance module and single layer groundwater finite difference model.

At its simplest level CHIMBLE is a mass balance model coupling hydrology, isotopes and chemistry. CHIMBLE is loosely based on the model developed by Steinman et al. (2010) (hereafter referred to as S2010), using the principle that any change in the hydrologic and

isotopic mass balance of a lake is the sum of the input and output fluxes, as described in equations 1 and 2 (Dinçer, 1968; Gat, 2010; Gibson et al., 2015; Gonfiantini, 1986).

$$\frac{\Delta V_L}{\Delta t} = \sum I - \sum O$$

$$\frac{\Delta V_L \delta_L}{\Delta t} = \sum I \delta_I - \sum O \delta_O$$
(1)

(2)

 ΔV_L represents a change in lake volume, and ΣI and ΣO are the total inflow and outflow of the lake over a period of time. δ is the hydrogen or oxygen isotopic composition of a hydrological component as denoted by subscripts (eg: δ_L is isotopic composition of the lake). Isotopic results are reported using the delta notation as per mil (‰) deviations from Vienna Standard Mean Ocean Water (VSMOW2) where:

$$\delta_x = 1000 \left(\frac{R_x}{R_{VSMOW2}} - 1 \right) \tag{3}$$

R represents ${}^{18}\text{O}/{}^{16}\text{O}$, or ${}^{2}\text{H}/{}^{1}\text{H}$ and *x* is the reservoir in question.

The mass balance consists of six reservoirs representing the lake, divided into an epilimnion and hypolimnion (depending on the degree of stratification), a two layer soil model, snow pack, and an 'inflow' reservoir. These reservoirs are comparable to the reservoirs in S2010 as described by Steinman et al. (2010), and generally have similar parameters. E.g. the soil layers don't model soil thickness, but instead model the available water capacity (*AWC*) of each soil layer. In addition, a groundwater reservoir is active if the groundwater module is enabled. The inflow reservoir can act as either a delay mechanism for catchment runoff, or as base-flow mechanism for subsurface drainage if the groundwater module is disabled. Evaporation and evapotranspiration are estimated using a simplified Penman equation (Valiantzas, 2006).

Coupled to the mass balance are groundwater and energy balance modules. If enabled, the groundwater module replaces all parameterised subsurface flows of the mass balance with a single layer finite difference model based on MODFLOW (McDonald and Harbaugh, 1988) and A2016 (Ankor and Tyler, 2019). The groundwater module uses a specified aquifer thickness for the cells beneath the lake, as described in Ankor and Tyler (2019), and an unconfined aquifer for the surrounding region. The groundwater model can model recharge (drainage through the catchment soil layers), evapotranspiration, injection and abstraction, and other defined Cauchy,

Neumann and Dirichlet boundary conditions. The groundwater model can model up to nine lakes at once, with additional lake levels defined in relation to the primary lake being modelled. Nine hydrogeological regions can be modelled with differing values for hydraulic conductivity and storativity.

The energy balance module is based on the model of Hostetler and Bartlein (1990), recently updated by Dee et al. (2018) as a component of the PRYSM 2 model. The energy balance module replaces parameterised stratification depth and lake surface temperature time-series with values derived from the meteorological conditions and lake temperature state. Evaporation from the lake is calculated via the energy balance model, rather than the simplified Penman equation (Valiantzas, 2006) used by the mass balance. In the current version of CHIMBLE a stratification depth is extracted from the energy balance derived lake temperature profile, based on the change in temperature over depth – a necessary conceit to couple the multiple layers of the energy balance to the two reservoirs of the lake mass balance.

Chemistry is incorporated into the mass balance model. The chemical composition through all fluxes and reservoirs is treated conservatively, with no gain or loss of chemical components due to precipitation of salts, outgassing or other processes, though CHIMBLE is designed so that functions that model such processes may be easily added. The mass balance chemistry can model TDS (total dissolved solids), salinity, and/or any number of ions. The chemistry of lake water is applied to both lake evaporation and associated isotopic fractionation. The activity of the lake water is estimated based on its chemical composition using either salinity or major ions. In the case of major ions, the salt content for five common salts (NaCl, MgCl₂, CaCl₂, KCl, and NaBr) is estimated based on stoichiometric matchups of ions. An approximate density and salinity of the water is calculated assuming full disassociation. The approximate salinity is then compared and corrected against a known salinity-density curve (typically seawater). Once the density and salinity values correspond, salt molalities are determined, and the activity of the water is calculated using the additive method of Robinson and Bower (1965). The major ions are used directly in the isotopic fractionation equation to account for the influence of salinity, using the equations described in Gat (2010).

Isotopic fractionation of evaporative flux is calculated using the Craig and Gordon (1965) equation as described in (Steinman et al., 2010). However, the fractionation equations have been developed further in CHIMBLE to account for water chemistry, atmospheric feedback (a buildup of humidity over lake water due to evaporative flux), and the situation where atmospheric isotopic composition is not in equilibrium with rainfall (equilibrium between

atmospheric and rainfall isotopic composition is a common assumption in isotopic modelling) (Bennett et al., 2008; Gat, 2010; Gibson et al., 2015).

Some features are common across all levels of modelling, regardless of whether the groundwater and energy balance modules are enabled. Hypsographic curves, linking a lake's surface area, volume and depth can be defined using either LOESS smoothing (Cleveland, 1981) or linear interpolation. CHIMBLE can sample isotopic and chemical values from any specific depth, taking into account the thermocline depth of the lake at the time. Daily and monthly input data are supported, along with fractional time-steps. CHIMBLE also models catchment processes such as evapotranspiration, runoff ratio (amount of runoff vs percolation into the deeper soil) and whether rainfall infiltration and percolation through the soil occurs via a piston flow mechanism, or with mixing of isotopes and chemistry.

A requirement for model based palaeoclimate research is the need to update and modify datasets and variables used by the model during the simulation. This may be for exploratory research (e.g. testing how sensitive the lake system is under various climate regimes) but more essential is the need to account for changes over the timeframe of a palaeoclimate record (e.g. change in sediment depth over time). CHIMBLE uses an "Event Manager" to manage changes to datasets and variables during a simulation, and "Scenario" files to store any changes specific to a simulation. Event and scenario data are stored in separate files to the main model data so that individual simulations can be run or archived, while the default model parameters are unmodified.

3 Regional setting

Australian lake sediment records have global significance due to their location between the Pacific, Indian and Southern Oceans and accompanying climate systems (Gouramanis et al., 2013; Neukom and Gergis, 2012). South-eastern Australian palaeoclimate records also hold regional significance, due to the need to quantify climate and anthropogenic impacts on water resources in a largely evaporation dominated landscape which supports intensive agriculture (Ho et al., 2015; Kiem et al., 2017). Several studies have attempted to reconstruct past changes in lake water balance in the region, using oxygen isotope analyses of lake carbonates (specifically ostracods), plus sedimentological and palaeoecological data (Barr et al., 2014; Chivas et al., 1993; Chivas et al., 1985; Gouramanis et al., 2010; Wilkins et al., 2013).

Chapter 5

For some of these records, hydrological balance models have been used to estimate palaeoclimate variables (Jones et al., 1998) or to forecast future lake volume change (Yihdego et al., 2015), however, there are few examples of coupled hydrologic isotopic models applied to Australian lakes.

The Newer Volcanic Province is a region of Pliocene to Holocene basaltic plains, unconformably overlying older igneous, metamorphic and sedimentary formations in the south east of South Australia and western Victoria (Dahlhaus et al. 2003). The basalt forms a 10-130 m thick unconfined aquifer, dotted with over 416 eruption centres, consisting of lava shields, scoria cones, tuff rings and maars (Boyce, 2013). Some of these eruptive centres have since formed significant lakes (Fig. 5.2).

Figure 5.2: Regional setting, showing some key lakes of the Newer Volcanic Province. The two lakes chosen for model development – Lake Bullen Merri and Lake Gnotuk – are shown in bold.

The crater lakes of the Newer Volcanic Province in western Victoria and South Australia (Fig. 5.2) are ideal for model development due to the frequency and variety of lakes, many of which have relatively simple basin morphologies and water chemistries which fall along a hydrology-driven salinity mixing line between hypersaline and fresh (Chang et al., 2014; Maddocks, 1967; Williams, 1981). Of 32 lakes in the Newer Volcanic Province considered for their potential to develop a hydrologic-isotopic model, Lake Bullen Merri and Lake Gnotuk, hereafter referred to as Bullen Merri and Gnotuk respectively, were selected as the focus of this research (Fig. 5.3).

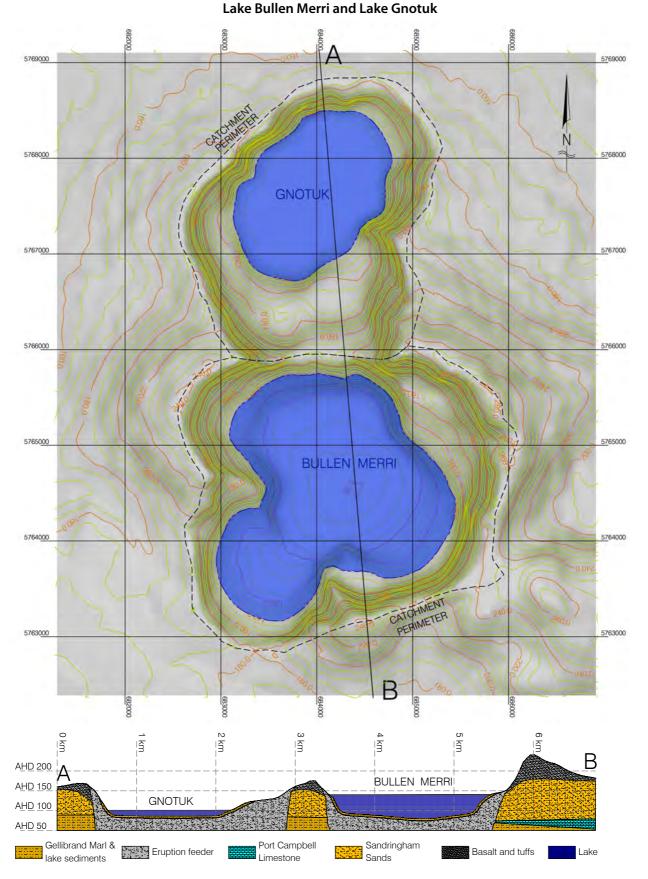


Figure 5.3: Map of Lake Bullen Merri and Lake Gnotuk, showing catchment area, topography and current water levels. Geological formations are derived from the Victorian Aquifer Framework (Victorian Department of Sustainability and Environment, 2012). Coordinates are in MGA94 (Map grid of Australia), zone 54, Heights are shown in AHD (Australian Height Datum).

Long instrumental records of lake water depth are available for both lakes, and neither are thought to have dried out completely within the last ~10 ka. The lakes also have differing but relatively simple catchment morphology (Fig. 5.3) and, being located in neighbouring craters, the two lakes provide an excellent testing ground for examining the differing hydrological and isotopic response of lakes driven by a common climate forcing.

Both Lake Bullen Merri and Lake Gnotuk have been previously modelled. A hydrological mass balance lake model was developed that couples the evaporation model of Morton (1983), to a lake water balance and a catchment soil model (Jones et al., 2001). The catchment soil model accounts for evapotranspiration, with percolation through the soil layer draining to the subsurface to form a baseflow to the lakes. A percolation coefficient, *KQ*, defined through model calibration, determines the rate of percolation. Model calibrations starting from an earlier date (1881) required a lower KQ value than equivalent calibrations using only the more recent data (1964), suggesting an increase in percolation as the lake levels dropped. Several hypotheses were suggested to explain this phenomenon – that percolation rate is increasing over time, a bias in early evaporation or precipitation observations, or a fall in lake levels creates a positive feedback in groundwater input (Jones et al., 2001). This model has also been used to develop projections for lake level and salinity up to the year 2100 (Kirono et al., 2009).

Gnotuk is a flat bottomed, hypersaline (~ 70 g/L) lake, currently around 15 m deep (100.2 m AHD (Australian Height Datum), September 2018), with a surface area of approx. 208 ha, and a catchment area of approx. 617 ha (Fig. 5.3). In contrast, Bullen Merri is a conical, brackish (~ 9 g/L), lake, with a current depth of around 60 m (139.5 m AHD, September 2018), a surface area of approx. 435 ha, and a catchment of approx. 886 ha. At both lakes water levels have dropped by approx. 20 m since 1881 CE (Jones et al. 2001). The maars are of uncertain age, but Timms (1976) suggested an age of between 30000 to 7000 years old. More recent cores from Gnotuk give a minimum age of at least 11.5 ± 0.3 ka (Wilkins et al., 2013), and an 11.73 m core from Bullen Merri had an age of ~10 ka at a depth of 7 m (Barton and Polach, 1980).

Inflow to the lakes is predominantly derived from subsurface flows, with the exception of overflow from Bullen Merri to Gnotuk that occurs when Bullen Merri reaches a height of ~168.4 mAHD, last observed in 1841 CE (Currey, 1970). Surface runoff is uncommon, with even extreme rainfall events (e.g 125 mm in 24 h in Feb 1992 producing no observable runoff (Jones et al., 2001)).

Both lakes lie within maar craters surrounded by, in sequence: the younger tuffs and basalt volcanic sequence at the surface; the Sandringham Sands Formation (also known as the Moorabool Viaduct Formation) of fluvial and marine deposits; and the Gellibrand Marl (Fig. 5.3). Several authors also suggest that the Port Campbell Limestone lies between the Gellibrand Marl and Sandringham Sands Formation beneath both lakes (e.g., Jones et al., 2001; Leahy et al., 2010; Yihdego et al., 2015). However, the Victorian Aquifer Framework (SKM, 2009; Victorian Department of Sustainability and Environment, 2012), suggests that the Port Campbell Limestone lies to the south west, and tapers out beneath Lake Bullen Merri. This is also supported by an assessment of drill logs from 37 wells in the ~80 km² region surrounding the lakes. Hydrogeologically the upper stratigraphic units - tuffs/basalt and the Sandringham Sands Formation – are often treated as a single unit. They share similar hydraulic conductivity (10^{-2} to) 10^1 and 10^{-3} to 10^2 m/day respectively) and are hydraulically connected (Dahlhaus et al., 2002; Yihdego et al., 2015). The Port Campbell Limestone is a regional aquifer, thought to have limited influence on the lakes, due to its low yield and slope away from the lakes (Jones et al., 1998; Jones et al., 2001; Yihdego et al., 2015). The bases of Gnotuk and Bullen Merri lie at the same depth as the Gellibrand Marl, an aquiclude preventing interaction with deeper groundwater systems (Leahy et al., 2010; Tweed et al., 2009). Some seepage is expected through the volcanic necks to lower aquifers beneath the marl (Raiber et al., 2008).

Bullen Merri and Gnotuk are in a temperate climate, with a mean annual temperature of around 13 °C, ranging from an average daily temperature of 18.0 °C in summer to 8.2 °C in winter. Annual rainfall is around 775 mm/year, predominantly from May to November, and yearly class A pan evaporation is around 1250 mm/year based on interpolated daily data from SILO database from 1970 to 2017 (Jeffrey et al., 2001).

4 Methods and calibration

4.1 Input datasets

CHIMBLE requires numerous input datasets, depending on what model options are set. If CHIMBLE is used for a simple hydrological mass balance then only hypsographic, meteorological, morphological, lake temperature, and lake level datasets may be required. However, for a full isotope and chemistry enabled model, using groundwater and energy balance modules, then CHIMBLE also requires chemistry, isotope and stratification data for calibration, and multiple grids defining hydrogeological parameters for the groundwater module.

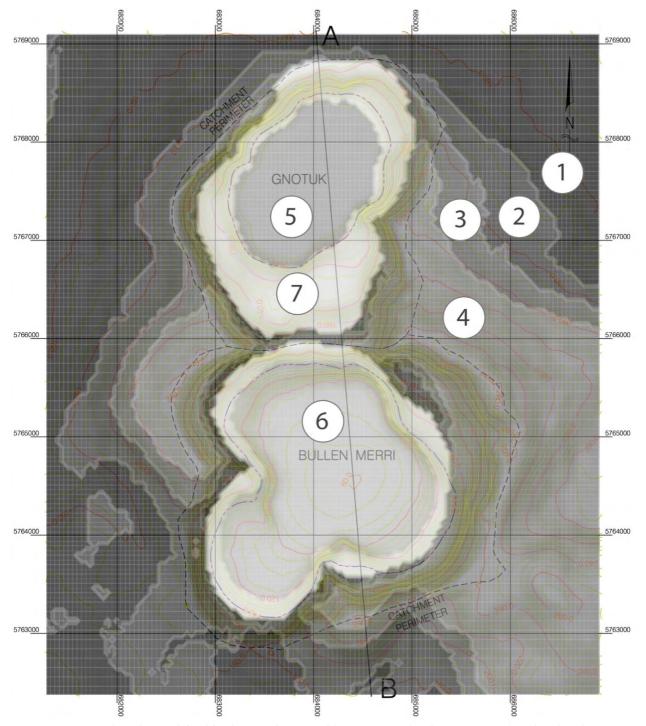
CHIMBLE requires meteorological time series for precipitation, average temperature, relative humidity, solar radiation, windspeed (at 2 m above surface), and mean sea level pressure. External flows (e.g. pumping to or from the lake, rivers, etc.) are defined within the meteorological input file, as are δ^{18} O and δ^2 H values for precipitation and external flows if the stable isotopes of water are being modelled. Both daily and monthly data are supported by CHIMBLE. SILO data-drill time-series (Jeffrey et al., 2001) were used for the Bullen Merri and Gnotuk simulations, providing daily data from 1889 to present. Daily average temperature was calculated as the mean of the maximum and minimum daily temperature. The average relative humidity was derived by determining the daily dewpoint temperature using the August-Roche-Magnus Approximation (Alduchov and Eskridge, 1996; Magnus, 1844) from the daily minimum and maximum humidity, then calculating the average humidity based on the average daily temperature. Wind data were extracted from 2 m wind run grids developed by McVicar et al. (2008) covering the time period from 1975 to current. For data prior to 1975, average windspeeds for each month were estimated from the ~40 year dataset. Monthly average meteorological data were derived from the daily timeseries for model input.

There is very limited information about the stratification behaviour of the studied lakes, with only 3 years of stratification data collected by Timms (1976). Water surface temperatures were collated from Timms (1976) for the years 1969–1972, from Tibby and Tiller (2007) (Bullen Merri only, 1984 to 2000), and the Victorian Department of Environment, Land, Water and Planning (Bullen Merri and Gnotuk, 2005 to 2019) and from the monitoring collected as part of this research (2015-2018). Lake level data for both lakes extends from 1965 to 2006, and from 2015 to 2018, with some historical levels for 1881 and 1949 documented by Jones et al. (2001).

Major ion compositions, conductivity, and δ^{18} O and δ^{2} H values for the lakes were collected from 2015 to 2018 (Chapter 2, this thesis). Additional TDS data came from Timms (1976) who documented TDS values for Bullen Merri from 1953-1968 and Gnotuk from 1964-1968 from a range of sources (Bayly and Williams, 1966; Currey, 1970; Hussainy, 1969; Williams, 1966). Conductivity values for Bullen Merri from 1984 to 2019 and for Gnotuk from 1993 to 2019 came from the Department of Environment and Tibby and Tiller (2007) and were converted to TDS values (EC@25 x 0.565). Major ion concentrations were used for the model simulations, with TDS values maintained in parallel for comparison with observations. Major ion values for groundwater used in the modelling were the average of the major ion concentrations of 15 groundwater wells with records within the region, with an average TDS of 2042 mg/L, ranging from 550 to 4000 mg/L. δ^{18} O and δ^{2} H groundwater values used in the model were the average value of samples collected from springs on the shores of Lake Gnotuk, Lake Keilambete and West Basin during the 2015 to 2018 sampling program. Seven spring samples were collected, but only five were used for the average as two appeared to have undergone evaporation. The isotopic composition of precipitation was based on the monthly averaged GNIP (Global Network of isotopes in Precipitation (Schotterer et al. 1996)) data for Melbourne. The monthly averages were flux-weighted and integrated into a yearly average. The difference between the yearly average and the intersection of the observed local evaporation line and the meteoric water line was then applied to the monthly isotope estimates to provide a seasonal isotopic signal aligned to local conditions (Gibson et al., 1993).

Groundwater grids were established to cover the lakes, catchments and surrounding region with an extent from 680500, 5770700 in the north west, to 687700, 5761500 in the south east (Map Grid of Australia 94) with a grid cell size of 50x50 m, for a total areal coverage of 66.24 km². Catchment topography was digitised from 1:30K Vicmap (2014) topographic maps inside the catchments, and SRTM DEM-H DEMs (Gallant et al. 2011) outside the catchment perimeter. Bathymetry was digitised from surveys by Timms (1976), then scaled and aligned to best fit the topography. Bathymetry and topography were combined using 12D Model (12D Solutions) to form a topographic surface. Volumes, surface areas and heights defining the hypsographic curves were then calculated from lake floor to the overflow height at 0.2 m intervals. Catchment areas were defined by the direction of surficial flow, typically the crater rim.

Hydrogeological information was extracted from the Victorian Aquifer Framework dataset (Victorian Department of Sustainability and Environment, 2014). The top surface of the Gellibrand Marl aquitard (Aquifer ID 108), was used to define the base surface grid. Within the crater the base of the diatreme was estimated based on models and observations of diatreme


Chapter 5

structure (Blaikie et al., 2014; Lorenz, 2003), defining a bowl shaped depression of varying depth. Two different base surface grids were investigated during the modelling process, with differing diatreme depths. The shallow aquifer base was set only ~20 m below the deepest part of each lake, to test the assumption that the fine, post-eruptive sedimentary layers common to the upper levels of diatremes (White and Ross, 2011) would isolate the upper aquifer from water lower in the diatreme. The deeper aquifer base formed a bowl structure ~200 m below the lake in Gnotuk and ~600 m below Bullen Merri. To define the hydrogeology for the region surrounding the lake catchments the surfaces for both the basalt and Sandringham Sands formation were assessed. Each cell was assigned to one of four hydrogeological zones by binning, based on the relative contribution of each type of geology, to investigate any major differences in conductivity between the two formations (Fig. 5.4). As the Port Campbell Limestone likely tapers out beneath the lakes and has a similar hydrological conductivity to the Sandringham Sands formation (Nicolaides, 1997), it was included within the Sandringham Sands formation. Within the catchments there is little geological information about the diatreme and crater sediments, so two hydrogeological zones were defined, one from the base of the crater to a few metres above the current lake depth, and a second zone extending further up the crater walls. These two zones were used to investigate the possibility of changing hydrogeological conditions towards the centre of the diatreme, similar to the hypothesis of Jones et al. (2001).

The lake sediment grid defines lake sediment thickness for each lake, with lake seepage treated as a head dependent boundary condition. As there is little information on lake sediment thickness depth, sediment depths were estimated with a depth of 0 at the estimated maximum lake height, increasing to a maximum thickness of 10 m for Gnotuk and 15.5 m for Bullen Merri, based on age-depth models of lake cores for both lakes (Barton and Polach, 1980; Wilkins et al., 2013) and an assumed eruption date ~ 25 ka. An exponential function was used, combined with a weighting function based on the topographic slope to bias sediment thickness towards the deeper and flatter parts of the basin.

Initial water table heights were not able to be determined from observation. While 74 groundwater wells were identified within the model extents, none had a record of water table values. More importantly, as the lakes were around 20m higher in 1889, at the start of the meteorological record, any current values for the water table are unlikely to be valid. The initial water table values were established by spinning up the model for 200 to 400 years before the model run.

The targets for the spin up cycle were to achieve a near steady state condition for the lake based on the average climate, followed by modification to the precipitation/evaporation (P/E) ratio to raise Bullen Merri to overflow in 1841, before falling to the observed level in 1881, with continuation until 1889 to provide an initial water table surface and lake level for the observation driven model runs.

Figure 5.4: Geological zones defined for the groundwater model. Zones external to the craters (1 to 4) are based on the contribution of sandstones and tuffs/basalt within each cell. Zones 5,6 and 7 represent the diatreme zones used to investigate hydrogeologic properties within the craters.

While conditions prior to 1841 are unknown, it is very unlikely that the lake spent any length of time at overflow height, as there is no evidence of significant scouring or channels on the slopes of Gnotuk below the overflow point. A long term meteorological dataset, required for the spin up cycle, was established by randomising the existing 130 year dataset on a year by year basis. Randomising the data in this nature averages out any long term trends in the data, while preserving month by month variation in meteorology. As recharge rate to the groundwater is determined by the amount and frequency of rainfall, some variation of rainfall through the meteorological record is necessary. If a long term monthly average was used instead, then the recharge rate during model spin-up would be significantly lower.

The P/E ratio was modified using two methods. The first method applied a modifier to increase precipitation from ~1790 until 1849, trending back to the unmodified precipitation values to lower the lake level by ~6 m by 1881. This method increased recharge significantly over the period of increased precipitation. The concern with this approach is that the increased recharge may lead to increased groundwater mounding which may not be compatible with the rapid fall of the lakes. Based on this concern, this method was used only for preliminary investigations. The second method was to decrease evaporation so that the groundwater recharge rate was less affected, with the majority of the lake level rise being driven by a shift in the P/E ratio, rather than a massive increase in rainfall. This was achieved by increasing relative humidity by 20 %, increasing precipitation by 20 %, and decreasing windspeed by 10 % over the 1790 to 1849 time period. Hydraulic head heights for the aquifers beneath the Gellibrand Marl were interpolated at the lakes location and compared to the lake levels. These deeper aquifers (Victorian Aquifer Framework: Aquifer ID 111 and 113) had hydraulic heads well below the existing lake levels and are unlikely to contribute to the lake water balance. The groundwater model was constrained with fixed head boundaries on the northern edges, and at a topographic low point in the centre of the southern extents of the grid. The fixed head for these boundaries was set 5m below the topographic surface - a typical depth to groundwater for those areas (FedUni, 2015).

4.2 Calibration methods

Lakes Bullen Merri and Gnotuk were chosen for model development because they represent a challenging and unusual hydrological scenario. Like many sites valued for palaeoclimate research they are underdetermined systems. The goal during model calibration was to identify a parsimonious set of parameters that were able to match observed lake levels, stratification, surface temps, isotopes and chemistry for both lakes, while simultaneously being within the likely and reasonable range of values for variables like hydraulic conductivity and storativity.

The calibration process was broken up into several steps, based on which aspect of the model was likely to have the greatest effect on the simulation. As a first step, the groundwater module was disabled and inflow to the lake directly specified to achieve the observed lake level change. Initial chemistry was estimated as a percentage of the 2016–2018 average values, based on the mass balance change. The stratification module was enabled, and the neutral drag coefficient (primarily controlling surface temperature) and short wave extinction coefficient (primarily controlling stratification depth) were adjusted to match the observed lake temperatures and stratification as described in Dee et al. (2018). Following the preliminary estimation of chemistry and energy balance variables, thus providing a close approximation of lake evaporation, calibration of the groundwater module was performed. Calibration may not be the best description as the process was more an exploration of a multi-variable space with a transient, non-linear, hydrological response. Over 1560 groundwater module experiments were performed to investigate what parameter values were required to match the lake level change of both lakes, and to establish which parameters were most useful for future lake modelling at different sites. Each experiment varied hydraulic conductivity, storativity (specific yield), recharge (through modifying the available water capacity parameter for each soil layer), lake sediment thickness and geologic boundaries. Hydraulic conductivity was varied across a range of $20 - 1 \ge 10^{-5}$ m/d and specific yield from 2 to 25 %. These values extend outside the expected ranges for conductivity and specific yield, with the more extreme values typically used to examine hydrological behaviour, or limit the influence of a particular hydrological component (e.g., a value of 1×10^{-5} m/day may be applied to lake sediments to limit seepage to and from the lake so as to examine the surrounding groundwater behavior). A further complication is that while Bullen Merri forms only a slight depression in the water table, based on both modelling results, and from the Visualising Victoria Groundwater dataset (FedUni, 2015), the water level of Gnotuk is ~40 m lower, forming a very significant depression in the water table. Considering Gnotuk has a surface area less than half that of Bullen Merri, and is hypersaline (further decreasing evaporative flux), this suggests that there may be a significant sink of groundwater within the Gnotuk crater. An obvious candidate is seepage through the volcanic neck to lower aquifers, e.g. Raiber et al. (2008). To examine this behaviour, the pumping grid (responsible for injection and abstraction processes) was used to define drainage to lower aquifers for numerous scenarios.

Once parameters for the groundwater module were defined, then the initial chemistry and parameters for the stratification module were reassessed, followed by isotopic calibration. The isotope fractionation equations used by CHIMBLE are based on the Craig and Gordon (1965) model (eq. 4), describing a two part fractionation process with both equilibrium fractionation associated with the phase change, and an additional transport fractionation process through a diffusive layer between the water and the turbulent atmosphere.

$$\delta_E = \frac{\alpha^* \delta_w - h_n \delta_A - \varepsilon_{eq} - \varepsilon_{kin}}{1 - h_n + 0.001 \varepsilon_{kin}}$$
(4)

Where α^* is the reciprocal of the equilibrium fractionation factor, calculated using the equations of (Horita and Wesolowski, 1994). Equilibrium and transport separation factors are defined by ε_{eq} and ε_{kin} . h_n refers to the relative humidity normalised to the water temperature. δ_W and δ_A represent the isotopic composition of the water and atmosphere respectively. The equilibrium separation (ε_{eq}) is calculated by:

$$\varepsilon_{eq} = 1000(1 - \alpha^*) \tag{5}$$

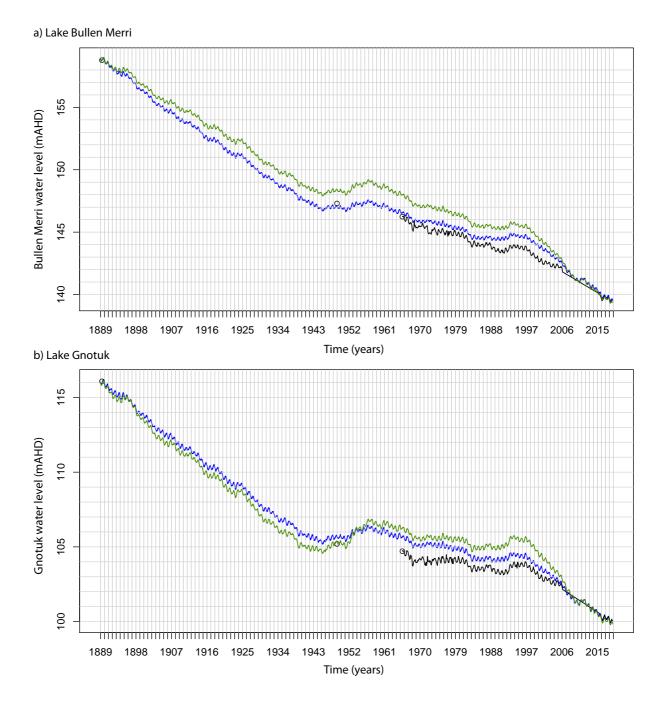
While the transport isotopic separation (ε_{kin}) is calculated by:

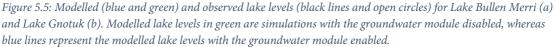
$$\varepsilon_{kin} = (1 - h_n)\theta nC_k \tag{6}$$

 C_k is an experimentally derived constant of 28.5 ‰ for δ^{18} O, and 25.1 ‰ for δ^{2} H (Merlivat 1978). θ describes the transport resistance of the diffusion layer, while n relates isotopic separation to wind conditions. θ and n range from 0 to 1. A combined value for θn of 0 defines a local evaporation line (LEL) with a slope of ~8. A combined value of 1 typically results in a LEL slope of around 2.5, and describes evaporation through a fully formed diffusive layer such as soil (Ankor et al., 2019; Gat, 2010).

 δ_A is often assumed to be in isotopic equilibrium with rainfall, but recent research suggests this may only be valid when estimated in close temporal proximity to rainfall events (Crawford et al., 2019). The technique of Bennett et al. (2008) was used to calibrate the local evaporation line, achieved by shifting δ_A from equilibrium with δ_P by 14 % (Eq. 7).

$$\delta_A = \alpha^* \delta_P - 1.14 \varepsilon_{eq} \tag{7}$$


Atmospheric feedback has also been included in the isotope equations, and further modifies the atmospheric isotopic composition through mixing of evaporated flux into the air above the lake. This is done as a two stage process, with an initial estimation of the unaltered isotopic fractionation using equations 5 to 7. Using this estimate, a new δ_A and h_n is calculated based on the proportion of feedback, followed by a second fractionation calculation using the mixed values. The feedback parameter is also applied in the calculations of evaporative flux through the humidity variable.


To calibrate the isotopes, θn , feedback and the atmospheric shift were adjusted. Numerical experiments demonstrated that changes to the atmospheric isotopic composition influenced both the slope of the local evaporation line, and the extent of fractionation (Chapter 2, this thesis). Changes to θn predominantly affected the LEL slope, and the degree of atmospheric feedback predominantly influenced the extent of fractionation. Feedback, θn and the atmospheric shift were adjusted until a similar atmospheric shift was required for both lakes, and with θn and feedback values commensurate with their lake conditions. As atmospheric feedback affects evaporation, this process: groundwater \rightarrow stratification \rightarrow chemistry \rightarrow isotopes; was repeated until a parsimonious result was achieved.

The observational record of lake water δ^{18} O and δ^{2} H spans only ~three years. When combined with the lack of stratification data over that time period, this data scarcity presented a challenge for calibration of the isotopic component of CHIMBLE. Variations in stratification depth alter the volume of water in the epilimnion, which can significantly affect the range of surface water δ^{18} O and δ^{2} H values through the year. To further validate the isotopic component of CHIMBLE, a model comparison was run between CHIMBLE and S2010 using input data for Castor Lake (Steinman et al., 2010) until both models achieved a steady seasonal cycle for lake levels and δ^{18} O. There are significant differences in the modelling of catchment hydrology between CHIMBLE and S2010. For example, CHIMBLE partitions all infiltration into the soil layers during the timestep in which the infiltration occurs, whereas \$2010 partitions infiltration across multiple timesteps. In addition, S2010 limits the ability for soil layers to dry out when the soil layers contain less water than the monthly potential evapotranspiration. CHIMBLE includes the option to apply crop coefficients (*Kc*) to account for differing levels of evapotranspiration due to differing soil and vegetation types (Allen et al., 1998). To account for the differences in soil modelling between CHIMBLE and S2010, the crop coefficients in CHIMBLE were adjusted in a stepwise fashion until the average lake levels of CHIMBLE matched the results of \$2010.

5 Results

5.1 Hydrology

Modelled lake levels matched observed lake levels with an RMSE (root mean squared error) of 0.75 m for Lake Gnotuk, and 0.74 m for Bullen Merri (Fig. 5.5). The modelled results were generally higher than observed levels throughout the model run, with a maximum difference of

Chapter 5

1.48 m in 1972 for Lake Gnotuk, and a maximum difference of 1.18 m in 2000 for Bullen Merri. To achieve these results, the available water capacity (AWC) parameters for the two soil layers were set to 0.1 m. A value of 0 allows all rainfall to drain to the groundwater system. A value of around 0.2 m prevents almost all recharge to groundwater, except during occasional months featuring extremely high rainfall amounts. With a value of 0.1 m, recharge is around 0.07 m per year. In comparison, (Raiber et al., 2008) estimated a value of 0.05 m for third phase basalts near Mt Fyans, around 50 km to the north. Storativity was set to 0.13 and hydraulic conductivity for the surrounding basalts and Sandringham Sands Formation (and Port Campbell Limestone) was estimated at 1.2 m/day, with a hydraulic conductivity of 0.02 m/day for the sediments within the lake crater (Fig. 5.4). The lower conductivity sediments within the crater did not extend to the top of the crater wall, with an upper limit derived from the model experiments of ~170 mAHD in the Bullen Merri crater, and ~165 mAHD in the Gnotuk crater. Lake sediment conductivity was set to 0.001 m/day, similar to the 9 x 10^{-4} of Yihdego et al. (2015), with lake sediment thickness decreasing with height up the crater walls until tapering out at 130 mAHD in the Gnotuk crater and 168 mAHD in the Bullen Merri crater. Experiments were carried out with both a shallow and deep aquifer base. There was very little difference between the two base grids, with the shallow aquifer requiring a slight increase in recharge (AWC = 0.09) to give an RMSE for Bullen Merri of 0.8 m. This is likely because hydraulic head gradients in the centre of the crater are typically low, reducing any effect of increased transmissivity due to a deeper diatreme.

In the early stages of the simulation when the lake was at quite high level, the net flux to and from Lake Bullen Merri to the groundwater system had to be around zero, rising over time to around 27,000 m³ per month. This is quite straightforward to achieve for Bullen Merri as Gnotuk can act as a groundwater sink. However, Gnotuk also requires a net groundwater flux of around zero at the start of the simulation, rising to around 5600 m³ per month. Calculated evaporation was much lower at Gnotuk since the lake is hypersaline, more sheltered, and has less than half the surface area of Bullen Merri.

Even at the start of the simulation, Gnotuk sits within a groundwater depression, and as Bullen Merri is ~40 m higher than Gnotuk, there is a significant groundwater gradient towards Gnotuk from Bullen Merri of around 7 %. Several scenarios to explain this phenomenon were tested during the groundwater experiments. One scenario tested for decreased flows into Gnotuk was the presence of zones of low hydraulic conductivity within and around the crater. However, unlike a groundwater well, where flows to the cell typically increase as the hydraulic head in the cell is lowered, as the lake level dropped, flows to the lake typically decreased. This is counter intuitive but can be observed in a simple groundwater model. A large abstraction of groundwater spread over a large area (evaporation of a full lake) may only lower hydraulic heads slightly, whereas a small amount of localised abstraction (evaporation of a lake at low level) can result in a much deeper cone of depression combined with much lower flows. While the cone of depression may be much deeper in the latter example, the radius of influence is also much smaller, so water is drawn in from a smaller region, and flows are lower. It follows that simply surrounding Gnotuk with a zone of low hydraulic conductivity may decrease flows to the lake but will also lead to flows decreasing as the lake level falls – the opposite of what is observed. The second scenario investigated was the presence of seepage across the entire crater floor to deeper aquifers. This method provided a sink allowing Gnotuk to achieve negative flows at the start of the run. However, as the seepage was always present beneath the lake, and flows to the lake decreased over the model run, then the issue of decreasing flows over the model run remained. In addition, the lake remained in a permanent through-flow state, with groundwater entering the lake along the shoreline, then seeping out through the lake floor, preventing the high salinity buildup that is observed in Gnotuk today. The third scenario investigated was the presence of seepage, predominantly between the shoreline of Gnotuk, and the crater wall, representing either a perched lake system, or seepage down ring-faults that commonly occur along the edge of diatremes (Fig. 5.6).

The presence of seepage, some distance from the lake shoreline, enabled Gnotuk to mirror the behaviour of Bullen Merri. In both cases, the lakes had significant water flux to groundwater when the lakes were at high level, compensating for flux to the lakes (eg: flux from Bullen Merri to Gnotuk). As lake levels fell, the distance to the seepage zone from the Gnotuk shoreline, or from Bullen Merri to Gnotuk increased, decreasing the hydraulic gradient and outgoing flows. While flows to the lakes did not increase significantly as lake levels fell, seepage out of the lakes did decrease resulting in a net flux increase to the lakes over the course of the simulation.

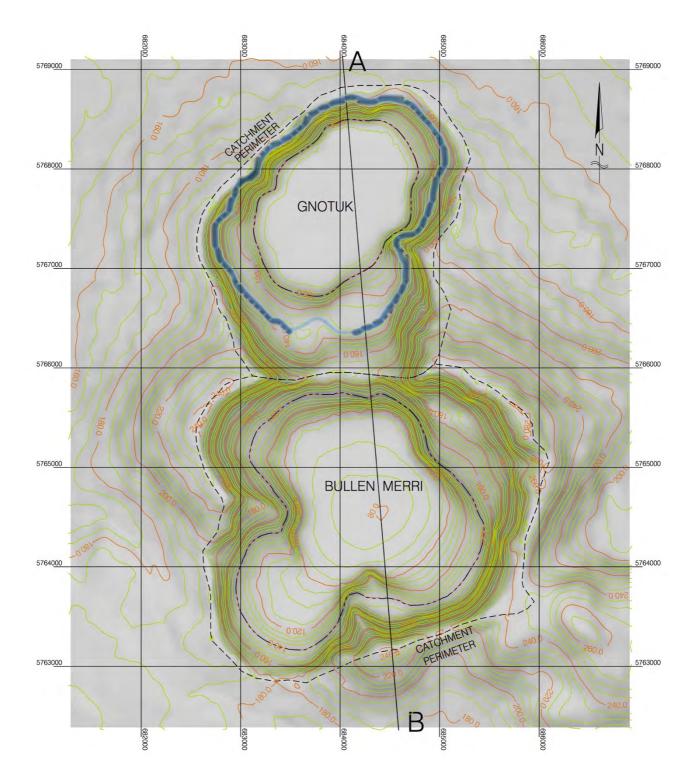
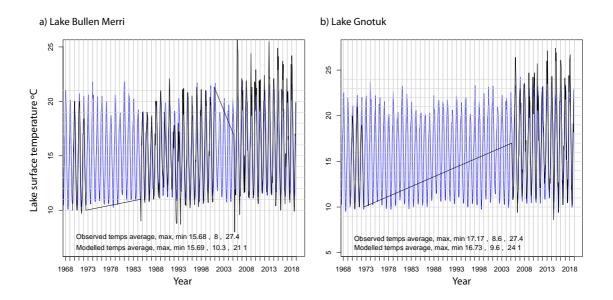



Figure 5.6: Hypothesized seepage zone (shown in blue) around lake Gnotuk

Figure 5.7: Modelled lake surface temperatures shown in blue, and observations in black for Bullen Merri (a) and Gnotuk (b).

5.2 Energy balance calibration

To calibrate the energy balance module, the initial determinations of the neutral drag coefficient were 0.003 and 0.0025, while the short wave extinction coefficients were 0.07 and 0.2 for Bullen Merri and Gnotuk respectively. CHIMBLE successfully modelled the stratification observed by Timms (1976) between 1969 and 1972, with a thermocline developing ~20 m deep in Bullen Merri in October/November, deepening over summer to ~40 m before the onset of mixing in May/June. In Gnotuk, the modelled and observed stratification began in September/October with a thermocline depth of ~6 m, increasing to ~13 m before mixing in March/April. A good average match was achieved between observed and modelled surface temperatures; however it was noted that the model temperatures were less than observed temperatures towards the end of the model run. This was expected, as modelled surface temperatures are related to the friction of the water surface, which is correlated to wind speed through wave formation. It is expected that as the water levels fall the lakes become more sheltered within their craters, with a corresponding decrease in wind speed and surface roughness. The neutral drag coefficient was estimated to be 0.0035, decreasing with lake levels to 0.0029 for Bullen Merri and 0.003, decreasing to 0.0021 for Gnotuk. Modelled lake surface temperatures then matched observed temperatures from 1970 to 2019 well, with an RMSE of 1.7 °C for Bullen Merri and 1.8 °C for Gnotuk (Fig. 5.7).

5.3 Lake water chemistry

There is little calibration required for the modelling of lake water chemistry, requiring just an initial concentration specified for each chemical component. A single factor was used for TDS and all modelled ions. Bullen Merri required an initial ion and TDS concentration of 67 % of the 2018 values resulting in an initial TDS value of 6064 mg/L, whereas Gnotuk required 44 % giving an initial TDS value of 31280 mg/L. Comparisons between modelled TDS values and observed values between years 2005 and 2019 had an RMSE of 1954 mg/L for Gnotuk, and 149 mg/L for Bullen Merri (Fig. 5.8). While there are observed TDS values from 1953 to 2000 for Bullen Merri and from 1964 to 1996 for Gnotuk (Fig. 5.8), these observations were not used in the error assessment as the degree of variation within the observations, which by far exceeded the range of those measured between 2001-2018, raised concerns about the quality of the older data and/or their representativeness of the entire lake water column. Modelled TDS values for Gnotuk were slightly lower than the observations documented by Timms (1976), with an average TDS of 49400 mg/L, compared to ~56000 mg/L between the years of 1964 and 1968. Bullen Merri's modelled TDS values are a very close match to the observations from 1953 to 1969, with an average TDS of 7800 mg/L, compared to an observational average of ~7900 mg/L.

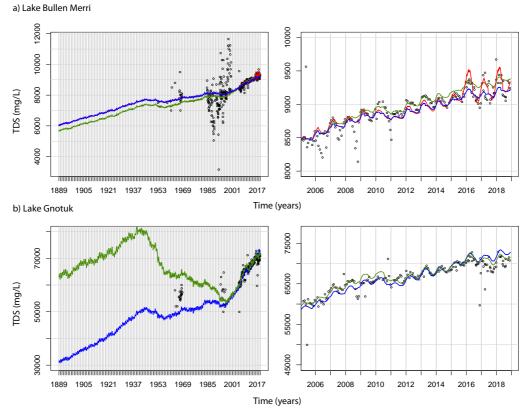


Figure 5.8: Modelled and observed TDS values for Bullen Merri (a) and Gnotuk (b). Default model run shown in blue. Groundwater disabled model run shown in green. Modelled results using a shallow stratification depth for Lake Bullen Merri are shown in red. Historical TDS values shown as black circles.

The long term modelled lake water TDS values for Bullen Merri from 1988 to 2015 matched observations well, however for many years the seasonal cycle is not well represented. To assess whether a change in lake stratification was the cause of the increased variation, the short wave extinction coefficient was modified, changing from the default value of 0.07, based on Timms (1976) observations, to 0.1 in 2005, and then to 0.3 in 2015. This decreased the initial stratification depth to ~10 m increasing throughout summer to 30 m, and then from ~5 m increasing to 15 m. With these values, the RMSE decreased to 146 mg/L and the simulated seasonal TDS cycle was much closer to observations.

5.4 Isotopes

There is only a short observational record for δ^{18} O and δ^{2} H, from 2015 to 2018 (Chapter Two, this thesis). Isotopic calibration required modification of the atmospheric isotopic composition from equilibrium with precipitation (predominantly influences LEL slope and degree of fractionation), θn (predominantly affects LEL slope) and atmospheric feedback (predominantly affects the degree of fractionation). The goal was to identify values for these three parameters that were parsimonious with both lakes. It was expected that any shifts in the isotopic composition of the atmosphere would be identical for both lakes, whereas θn and atmospheric feedback would likely be greater at Bullen Merri than Gnotuk for any given LEL slope due to the increased fetch and lesser degree of sheltering. Shifting the isotopic composition of the atmosphere by 14 %, combined with a θn value of 0.25 for Bullen Merri and Gnotuk, and an atmospheric feedback percentage of 7.5 % for Bullen Merri resulted in LEL slopes of 4.7 for Gnotuk, and 5.5 for Bullen Merri, compared with observed LELs of around 4.8 and 5.5. In the initial simulation, seasonal variation in the isotope observations was significantly greater than simulations predicted, particularly for Lake Bullen Merri (Fig. 5.9). Between 2015 to 2018, modelled δ^{18} O values for Gnotuk ranged from 3.13 ‰ to 3.62 ‰, compared to an observed ranged of 2.85 ‰ to 3.8 ‰. Modelled δ^{18} O values for Bullen Merri ranged from 3.07 ‰ to 3.22 ‰, in contrast to the observations of 2.68 ‰ to 3.46 ‰ (Fig. 5.9).

The initial isotopic composition of the lake had little influence on the simulated isotopic composition of the lake waters in 2015–2018. Specifying a starting isotopic composition equal to average precipitation resulted in Bullen Merri rapidly reaching near the enrichment limit around 1940, with a δ^{18} O of around 2.3 ‰ and δ^{2} H value of 14 ‰. Gnotuk neared the enrichment limit faster, reaching similar values in 1920 (Fig. 5.9c & d). Beginning the model runs with initial isotope values near the enrichment limits had no effect on the simulated isotopic values from 2015 to 2018 (Fig. 5.9a).

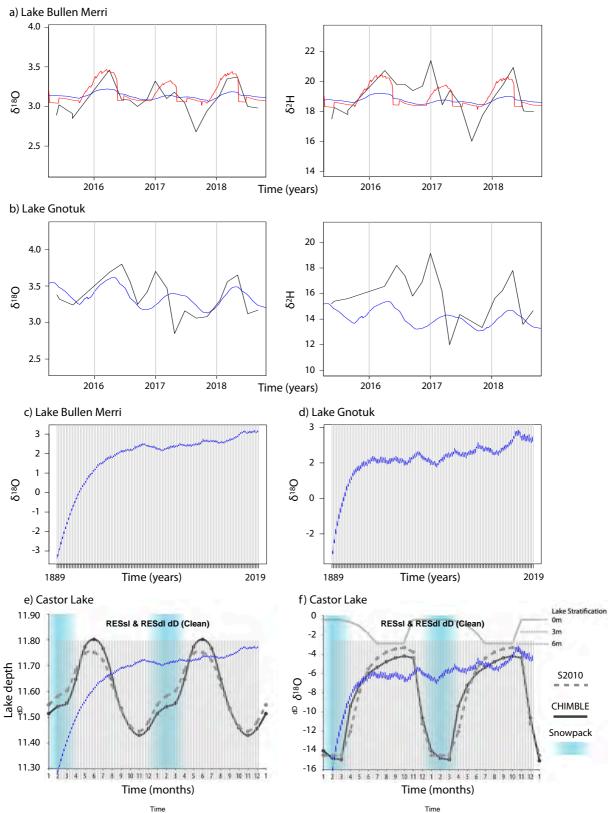


Figure 5.9: Isotopic responsement Europe Bullen Merri (a) and Lake Gnotuk (b). Default model Real results are in blue, with observations shown in black. Modelled results using a shallow stratification depth for Lake Bullen Merri are shown in red. (c) δ^{18} O evolution for Lake Bullen Merri. (d) δ^{18} O evolution for Lake Gnotuk. Years on the x-axis reflect the beginning of each year.(e) Lake levels for Castor Lake for both CHIMBLE (dark grey) and S2010 (grey dashed). (f) Modelled δ^{18} O for Castor lake for CHIMBLE (dark grey) and S2010 (grey dashed).

As was the case for simulated TDS values, the altered lake stratification depth for Lake Bullen Merri resulted in a better approximation of lake water δ^{18} O and δ^{2} H, and the spread of modelled seasonal δ^{18} O values for Bullen Merri increased to 3.0–3.45 ‰ (Fig 5.9). The sporadic sawtooth pattern in the modelled data is an artifact of the modelling process, caused by the use of averaged monthly data, resulting in a stepped, rather than smooth input time-series, in combination with sub-monthly timesteps.

Both CHIMBLE and S2010 were able to achieve a broadly similar seasonal cycle around an equilibrium lake level for Castor Lake (Fig. 5.9e & f). A *Kc* value of 0.365 for both soil layers in CHIMBLE was used to account for the differences in the soil layer modelling, resulting in similar average lake levels for both S2010 and CHIMBLE. The amplitude of the seasonal lake cycle was greater in the CHIMBLE simulation with a maximum lake level 0.05 m higher in June, and a low lake level 0.02 m lower in November, than the S2010 modelled lake levels. δ^{18} O values for CHIMBLE were typically around 1 ‰ lower than the S2010 modelled δ^{18} O values. However, under conditions where CHIMBLE simulated a lower lake level than S2010 (e.g. April and May),the δ^{18} O values simulated by CHIMBLE and S2010 exhibited very different behavior, with those modelled by CHIMBLE drying out substantially to around 20% of saturated capacity during the warmer months, while the upper soil layer in S2010 rarely dropped below 60 % of saturated capacity.

5.5 Comparison with a non-groundwater enabled lake model

To test the significance of coupling the groundwater model to the lakes, both Bullen Merri and Gnotuk simulations were run without the groundwater module enabled. Instead, catchment runoff was directed to the lakes, and seepage from the lakes used to calibrate lake levels similar to Steinman et al. (2010). After an iterative selection process, an available water capacity value for each soil layer of 0.09 m was found to best achieve sufficient inflow. A seepage rate (seepage leaving the lakes as a proportion of lake volume) of 0 was applied at Bullen Merri, and 0.00055 at Gnotuk. Under these conditions, simulated lake levels were a poorer fit than groundwater enabled simulations with RMSE of 1.45 m for Gnotuk and 1.61 m for Bullen Merri (Fig. 5.5). δ^{18} O, δ^{2} H and surface temperature values were not significantly different. Modelled TDS values for Bullen Merri were similar to the groundwater enabled model, requiring just a slightly lower starting value of 63 % of the 2018 values and yielding an RMSE of 193 mg/L. However, Gnotuk required initial chemistry values of 89 % of the 2018 values with an initial TDS of 63272 mg/L.

The TDS of Gnotuk then rose above 80000 mg/L in 1939, then fell to 53300 mg/L in 1996, before rising to the 2018 values of \sim 71000 mg/L.

6 Discussion

6.1 Calibration and simulation assessment

The primary purpose of this research was to develop and validate a holistic lake model – CHIMBLE - suitable to be applied to palaeoclimate research problems. Such applications require an efficient model able to simulate thousands of years at daily to monthly timesteps,, yet which includes sufficient functionality to resolve processes such as lake-groundwater interaction, lake water stratification, and geochemical feedbacks that are difficult to parameterize beyond the short observational timescale. CHIMBLE successfully meets these criteria. Applying CHIMBLE to Lake Bullen Merri and Lake Gnotuk demonstrated that even in poorly defined and under-determined systems, the model can give excellent results across a broad range of hydrologic change. Bullen Merri and Gnotuk have been a challenge to model in the past. Jones et al. (2001) applied a mass-balance technique but noted that the model underestimated the lake level fall, and modelled results were 3 and 2 m higher than the 1949 observations for Bullen Merri and Gnotuk respectively. In comparison, the lake depths modelled using CHIMBLE were 0.23 m below the 1949 level for Bullen Merri, and 0.5 m above for Gnotuk, with the groundwater module enabled. More importantly, there is a high level of parsimony in the model parameters as well as the results for hydrology, chemistry and δ^{18} O and δ^2 H, across two very different lakes sharing the same climate system. Modelled hydrology and lake water chemistry in particular match observations for both craters, using the same underlying groundwater model and catchment parameters, with meteorological and energy balance parameters that correspond to each lake's morphological state and degree of sheltering. The energy balance module provides a partial test for the quality of the groundwater calibration. If the stratification module required parameters that were not compatible with observed lake surface temperatures to achieve the required amount of evaporation, then that would indicate that flows to or from the lakes were not correct.

Modelling of lake water chemistry provides an additional test of the hydrological modelling. A terminal lake, with negligible outflow will accumulate salts over time, whereas a lake with significant through-flow will flush salts with the outgoing flows, limiting the maximum salt content of the lake as a function of the solute residence time. The hydrological modelling of Bullen Merri and Gnotuk suggests that both lakes feature through-flow behaviour at high lake

levels, with Bullen Merri losing water down to Gnotuk, and Gnotuk losing water to the hypothesised seepage, then switching towards more terminal type lake behaviour at lower lake levels. The degree of groundwater through-flow and associated changes in lake water chemistry for Bullen Merri seem to be well represented, with a good match between modelled and observed salinity over several decades.

Simulated TDS values at Gnotuk were lower than the observations between 1964–1968, recorded by Timms (1976), but given the relatively small volume of Lake Gnotuk, this is most likely due to the simulated lake levels being slightly higher than observed over that timeframe. Recalculating salinity balance based on the observed lake level gives a TDS value of 53000 mg/L, within 5–10 % of the average data documented by Timms (1976). The amount of variation seen in TDS observations from 1953–2000 is a concern. In particular in Bullen Merri, a TDS range from 3000–12000 suggests that a portion of the lake water was either evaporated to 25 %, or diluted to 4x, its original volume. This may be possible under some circumstances where a very shallow stratification layer forms. Based on the annual precipitation and evaporation fluxes, the stratification depth would likely have to be somewhere less than 1 m. As Bullen Merri has a fetch of over 2 km, the chance of such a shallow stratification depth remaining stable is considered very unlikely (Imberger, 1985). While the data has been kept in the historical comparison to provide context, it has not been used for error assessment of the model runs.

The modelled isotope and lake water chemistry often shows less variability than observations, especially for Bullen Merri, when using parameters derived from the 1969-1972 observations of stratification. There are several possible explanations for this behaviour, but the most likely cause is that a smaller portion of the lake water is affected by evaporation and rainfall input, than the fully mixed lake or the deep thermocline with a large volume epilimnion estimated by CHIMBLE's energy balance module. Lake Gnotuk has a much smaller volume than Bullen Merri, even when fully mixed, and shows an isotopic and chemical response more representative of observations. In addition, the Castor Lake comparison between CHIMBLE and S2010 demonstrated that CHIMBLE can effectively model quite large seasonal isotopic variations. The minor differences in modelled lake levels and δ^{18} O values between CHIMBLE and S2010 are predominantly due to the differences in soil layer modelling. Specifically, S2010 captures more of the snowmelt in the soil layers by spreading the partitioning of infiltration through each soil layer across multiple timesteps, while at the same time maintaining a higher level of soil moisture in the upper soil throughout the year. This model design leads to a decrease of flow to the lake during very wet periods, such as during snowmelt and increased run-off to the lake during dryer months, rather than infiltration and evapotranspiration of the

upper soil layer, thus explaining the lower amplitude seasonal cycle in S2010 relative to CHIMBLE. In addition, as the δ^{18} O composition of rainfall for Castor Lake increases from March through to June, (-15.2 ‰ to -10.2 ‰), the higher amount of run-off inflow to the lake results in an increase in the modelled δ^{18} O composition of the lake waters. In contrast, inflow to lake in CHIMBLE simulations is dominated by snowmelt with a much lower δ^{18} O value (-15.2 ‰). This is the cause of the lower δ^{18} O values in the CHIMBLE simulation, compared to the S2010 simulation. Given the observations from Gnotuk and Castor Lake, it seems likely that the differences between modelled and observed δ^{18} O and δ^{2} H values at Bullen Merri are more likely due to data scarcity, particularly with regard to the stratification of the lake, rather than the capabilities of the isotopic modelling component of CHIMBLE.

If uncertainty in the depth of lake stratification is the primary cause of the difference between modelled and observed δ^{18} O and δ^{2} H variability, then that would suggest two possibilities. The first is that the stratification regime for Bullen Merri may be quite variable, with the seasonal thermocline depth changing significantly over the years. The second possibility is that the thermocline formation may be more complex than allowed for with the two reservoir system of CHIMBLE. For example, Imberger (1985) describes the seasonal thermocline as an accumulation of past diurnal stratification and mixing. The first of these possibilities was assessed during the modelling process. Stratification depth in CHIMBLE is primarily defined by the shortwave extinction coefficient. In clear water conditions shortwave radiation can penetrate to greater depth, resulting in formation of a deep thermocline. However, if water turbidity is high, for example due to algal blooms, then a shallow thermocline may form, which can isolate the deeper lake and effectively limit the volume of lake water subjected to changes in influx and evaporation. This scenario was tested by modifying the shortwave extinction coefficient over the course of the model run, with a decrease in stratification depth from ~20 m, to ~15 m from 2005 to ~5 m in 2015 sufficient to match most of the observed seasonal variability for lake water TDS and isotopes (Fig. 5.8). This suggests a decrease in visibility through the water column, and an associated rise in the depth of thermocline formation for Lake Bullen Merri, possibly indicating increased eutrophication, as has been observed at other lakes in the region (Timms, 2005). It also raises the prospect that modelling combined with near shore grab samples may be a useful method to assess stratification processes in water bodies where taking depth profiles is not feasible. There is a possibility that CHIMBLE may be able to model more complex stratification processes such as diurnal stratification as described in Imberger (1985) using daily data, and future research should explore modifying the simple twin lake reservoir model to incorporate multiple layers, as used in the energy balance module. A

third possible explanation for the data-model mismatch is that samples taken at the lake edge may not be representative of the entire epilimnion, with the shallow water along the shoreline being influenced to a greater extent by evaporation and inflow than the central lake waters. This third possibility requires significant further research to determine feasibility, assessing shoreline morphology and the meteorological conditions leading up to sample collection. Complex stratification processes, and the representativeness of near shore grab samples are of concern, especially if applying CHIMBLE to investigate phenomena occurring at a high temporal frequency (e.g. stratification formation on a daily scale). However, as CHIMBLE is predominantly focussed on research over long time scales, using monthly averaged timeseries, then the need for simulating all observational variability is reduced, and focus should be on acquiring sufficient monitoring data for calibration so that an average seasonal cycle can be determined.

6.2 Implications for lake-based palaeoclimatology/palaeohydrology

A common interpretation in lake based palaeoclimate studies is that higher δ^{18} O and δ^{2} H values reflect a dryer hydroclimate and accompanying changes in the P/E ratio and lake water balance (Leng and Marshall, 2004). The simulations of Lake Bullen Merri and Lake Gnotuk demonstrate a scenario where δ^{18} O and δ^2 H become disconnected from lake water level, with very little isotopic change for the last 7-8 decades (Fig. 5.9c & d), despite a lake level fall of 6-10 m. The modelled δ^{18} O and δ^{2} H late in the model run are not very sensitive to initial isotopic values. As the lake levels fall the δ^{18} O and δ^{2} H values initially increase. However, as the lake water becomes more enriched in δ^{18} O and δ^{2} H, the vapour at the lake surface also becomes more enriched until the isotopic composition of the evaporating flux is similar to the lake water, and the enrichment process of the lake ceases. This is well recognised in the literature, as the limit of isotopic enrichment (e.g., Gat, 2010; Gibson et al., 2015). Once a lake nears its isotopic enrichment limit, then the change in δ^{18} O and δ^{2} H of the lake no longer reflects the change in lake level, but instead typically oscillates around a seasonal cycle, with wet season rainfall driving the lake to more negative δ^{18} O and δ^2 H, before returning to near the limit of isotopic enrichment during periods of evaporation. This behaviour presents a challenge for interpretation of palaeoclimate proxies based on δ^{18} O and δ^{2} H. Testing hypothesized past climates using a modelling technique may inform researchers about scenarios in which lake water isotopes are likely to become disconnected from lake water level (and therefore no longer represent changes in P/E ratio), and may also resolve disparities with other proxies such as those based on salinity. Perhaps more importantly, modelling may be able to identify periods within proxy archives that show isotopic shifts when δ^{18} O and δ^2 H are likely to be disconnected from lake level change. If the δ^{18} O and

 δ^2 H of the lake can be separated from the lake water balance, then δ^{18} O and δ^2 H within lake sediments reflecting those time periods are predominantly controlled by water temperature and the isotopic composition of source water, typically precipitation (Leng and Marshall, 2004).

6.3 Implications for calibrating CHIMBLE for other lake systems

Calibration of CHIMBLE to a lake system is subject to a complex array of parameters, such as the initial volume and geochemical composition of reservoirs, and isotope fractionation and energy balance parameters. However, the most challenging parameters to resolve for the Lake Bullen Merri and Lake Gnotuk simulations were related to the lake-groundwater interaction. While many parameters had a relatively direct affect upon model behaviour, the lakegroundwater interaction was very non-linear in nature, presenting challenges to relating parameters to model behaviour. In spite of this, some tentative relationships were identified. The conductivity of the surrounding geology and the extent of low conductivity zones within the crater had an apparent effect on the modelled hydrological behavior of both lakes. Both lakes require groundwater low flows at high lake levels, with groundwater flows increasing as lake levels fall. A larger zone of low hydraulic conductivity within the crater decreased the sensitivity of the lake level to precipitation change at high levels, making Bullen Merri less likely to undergo a sufficiently rapid fall from 1889 to 1940. A larger low conductive zone also made the lake more sensitive at lower levels as the distance from the lake shoreline to the more highly conductive surrounding geology was greater, resulting in lower groundwater gradients and lower flows to the lake. The hydraulic conductivity of the zone outside the craters is very strongly linked to the rate of lake level fall from 1889 to 1940. High rates of hydraulic conductivity result in a very rapid lake level drop, as groundwater is able to rapidly flow to Gnotuk or to the fixed head boundaries on the extent of the groundwater model. The hypothesised seepage through the diatreme and eruption feeder within the Gnotuk crater to lower aquifers is very uncertain. It is apparent that Gnotuk requires a significant secondary sink nearby, to account for the low lake levels and low inflow (that increases with lake level fall). Raiber et al. (2008) determined that eruption sites are often zones of preferential recharge to lower aquifers. We have not attempted to quantify the amount of water lost via seepage. If the seepage occurs at the ring faults commonly found around the perimeter of diatreme structures (White and Ross, 2011), and abutting the highly permeable surrounding geology, that would suggest a seepage loss to lower aquifers of around 600000 m³ per month, which seems highly unlikely. However, if the seepage zone were within the low conductivity sediments within the upper diatreme, essentially representing a perched lake, then seepage could be quite low. Although the spatial relationship between Lake Gnotuk and the seepage zone is well defined,

with variations to that relationship heavily influencing the lake water level and through-flow behaviour, the relationship between the proposed seepage and surrounding geology is very uncertain. Further work incorporating information from the deeper aquifers and their potential recharge rates may help define the groundwater system beneath the lakes.

The challenge of modelling the groundwater around Gnotuk does emphasise a very important advantage CHIMBLE has compared with lake models that are not groundwater enabled. The groundwater in the region is not well defined and the modelling in this research had to rely on an exploration of multiple parameters, with the goal of achieving a modelling "best fit" between observations while maintaining parameter values within their likely range. While it would always be preferable to have a full suite of information available to calibrate models, such data is not commonly available for many palaeoclimate sites. However, if future groundwater studies in the region provide information on seepage, hydraulic conductivity, and water table levels then that data can be incorporated directly within CHIMBLE as the groundwater component uses common groundwater modelling techniques. CHIMBLE in this way enables and emphasises the value of cross-disciplinary research.

6.4 Future model development

The CHIMBLE model presented here includes novel functionality for modelling lake-climate interactions over decades to centennial timescales, including modelling of groundwater, energy balance, and lake water geochemistry. However, there are still many aspects to be considered for future development. The snow/ice aspect of CHIMBLE is currently quite rudimentary, with limited support for freezing of the lake surface water. Future developments will focus on incorporating ice formation on the lake, and snowfall on the catchment and lake ice, and the accompanying effect on isotopic fractionation and lake energy balance. While such functionality is not exactly a high priority for lakes in Australia it is relevant to studies in other regions. The groundwater is currently treated as a single reservoir, with single δ^{18} O, δ^{2} H and major anion/cation values shared across all cells. Future CHIMBLE development aims to support per-cell values for isotopes and chemistry, to account for situations such as lakes that seep out to groundwater at high levels, before reversing flows as lake levels fall. In such scenarios, the groundwater in the seepage zone will partially consist of lake outseepage, with a δ^{18} O, δ^{2} H and salinity composition that likely differs from the regional groundwater. Upon flow reversal this water may return to the lake representing an input to the lake that differs (temporarily) from the regional groundwater.

The energy balance module matches observations for Bullen Merri and Gnotuk, but some lakes used for palaeoclimate research are quite shallow (< 20 m), or become shallow over their lifespans. The energy balance module does not yet model sediment warming, which may be necessary for modelling of shallow water bodies. An important future goal in model development is to couple an ecology module, partly for the value of linking ecology to lake conditions and proxies, and more importantly, to provide an estimate for the short wave extinction coefficient, based on lake conditions, removing the requirement for an observation based parameter. Finally, there is a need to link lake morphology and water level to atmospheric feedback, lake water surface roughness, isotopic fractionation and windspeed to account for changes in sheltering.

Ongoing data collection is also necessary. Lake Bullen Merri and Lake Gnotuk have some of the longest records in the Newer Volcanic Province for historical lake water levels, water chemistry and water temperature, recording significant changes in lake conditions over decadal timeframes. Such long timeseries of lake hydrology provide a degree of confidence in the parameters determined for the model simulations. However, there are still issues of data scarcity, presenting a challenge to define and validate parameters for lake conditions outside of the observational record. For example, there is only a short isotopic record which does not match up temporally with records of lake stratification, thereby removing the opportunity to validate the hypothesized parameters for stratification derived from the isotopic calibration against observations. An important consideration is that the calibration of a lake model does not necessarily benefit most from observations over long time frames, but instead from observations that document significant changes in lake conditions.

7 Conclusion

Lake process modelling is an important tool for lake palaeoclimate research, with potential to improve interpretations of lake sediments, quantify the relationships between climate and lake behaviour, and identify common climate trends from lakes exhibiting different hydroclimate responses. In this paper we present a new model – CHIMBLE – coupling groundwater, catchment processes, lake energy balance, water chemistry and water stable isotopes. CHIMBLE was applied to the neighbouring maar lakes Bullen Merri and Gnotuk in Victoria, Australia. Simulations for both lakes, using the same underlying groundwater system and parameters parsimonious with the lakes' morphological and hydrological states produced results that aligned well with each lake's hydrological behaviour over 130 years, including a 20 m change in lake water level. Modelled surface temperatures matched observations within 1.8 °C RMSE,

whereas lake water chemistry and stable isotope ratios exhibited inter- and intra-annual patterns which captured many of the features of the observed patterns, with differences accredited to the possibility of a poorly mixed epilimnion, particularly at Lake Bullen Merri. The isotopic calibration of δ^{18} O and δ^{2} H demonstrated a situation where isotopes become disconnected from lake level, with both lakes reaching an isotopic enrichment limit after a lake level fall of ~10 m, with a further lake level fall of ~8 m resulting in very little isotopic change. This tendency for isotopes of water to become disconnected from lake water balance emphasises the need for holistic models such as CHIMBLE, where model simulations may explain disparate results from different proxies.

8 References

- Alduchov, O.A., Eskridge, R.E., 1996. Improved Magnus Form Approximation of Saturation Vapor Pressure. Journal of Applied Meteorology, 35(4): 601-609. DOI:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
- Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9): D05109.
- Anderson, M.P., Woessner, W.W., Hunt, R.J., 2015. Applied groundwater modeling: simulation of flow and advective transport. Academic press.
- Ankor, M.J., Tyler, J.J., 2019. Development of a spreadsheet-based model for transient groundwater modelling. Hydrogeology Journal: 1-14.
- Ankor, M.J., Tyler, J.J., Hughes, C.E., 2019. Development of an autonomous, monthly and daily, rainfall sampler for isotope research. Journal of Hydrology, 575: 31-41. DOI:<u>https://doi.org/10.1016/j.jhydrol.2019.04.074</u>
- Barr, C., Tibby, J., Gell, P., Tyler, J., Zawadzki, A., Jacobsen, G.E., 2014. Climate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes. Quaternary Science Reviews, 95: 115-131. DOI:<u>https://doi.org/10.1016/j.quascirev.2014.05.001</u>
- Barton, C.E., Polach, H.A., 1980. 14 C ages and magnetic stratigraphy in three Australian maars. Radiocarbon, 22(3): 728-739.
- Battarbee, R.W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews, 19(1–5): 107-124. DOI:<u>http://dx.doi.org/10.1016/S0277-3791(99)00057-8</u>
- Bayly, I.A.E., Williams, W.D., 1966. Further chemical observations on some volcanic lakes of south-east Australia of South Australia. Marine and Freshwater Research, 17(2): 229-238.
- Bennett, K., Gibson, J., McEachern, P., 2008. Water-yield estimates for critical loadings assessment: comparisons of gauging methods versus an isotopic approach. Canadian Journal of Fisheries and Aquatic Sciences, 65(1): 83-99.
- Blaikie, T.N., Ailleres, L., Betts, P.G., Cas, R.A.F., 2014. A geophysical comparison of the diatremes of simple and complex maar volcanoes, Newer Volcanics Province, south-eastern Australia. Journal of Volcanology and Geothermal Research, 276: 64-81.
- Boughton, W., 2005. Catchment water balance modelling in Australia 1960–2004. Agricultural Water Management, 71(2): 91-116.
- Boyce, J., 2013. The Newer Volcanics Province of southeastern Australia: a new classification scheme and distribution map for eruption centres. Australian Journal of Earth Sciences, 60(4): 449-462.

- Cadd, H.R., Tibby, J., Barr, C., Tyler, J., Unger, L., Leng, M.J., Marshall, J.C., McGregor, G., Lewis, R., Arnold, L.J., Lewis, T., Baldock, J., 2018. Development of a southern hemisphere subtropical wetland (Welsby Lagoon, south-east Queensland, Australia) through the last glacial cycle. Quaternary Science Reviews, 202: 53-65. DOI:<u>https://doi.org/10.1016/j.quascirev.2018.09.010</u>
- Chang, J.C., Woodward, C., Shulmeister, J., 2014. A snapshot of the limnology of eastern Australian water bodies spanning the tropics to Tasmania: the land-use, climate, limnology nexus. Marine and Freshwater Research, 65(10): 872-883.
- Chivas, A.R., De Deckker, P., Cali, J.A., Chapman, A., Kiss, E., Shelley, G., Michael, J., 1993. Coupled Stable-Isotope and Trace-Element Measurements of Lacustrine Carbonates as Paleoclimatic Indicators. Climate change in continental isotopic records: 113-121.
- Chivas, A.R., De Deckker, P., Shelley, J.M.G., 1985. Strontium content of ostracods indicates lacustrine palaeosalinity. Nature, 316(6025): 251-253. DOI:10.1038/316251a0
- Cleveland, W.S., 1981. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. American Statistician: 54-54.
- Cohen, A.S., 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, USA.
- Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Schink, D.R., Corless, J.T. (Eds.), Marine Geochemistry. University, Rhode Island, University, Rhode Island, pp. 277-374.
- Crawford, J., Azcurra, C.S., Hughes, C.E., Gibson, J.J., Parkes, S.D., 2019. Comparison of atmospheric water vapour δ18O and δ2H estimated using evaporation pan, rainfall equilibrium and continuous measurements. Journal of Hydrology, 576: 551-560. DOI:<u>https://doi.org/10.1016/j.jhydrol.2019.06.056</u>
- Currey, D.T., 1970. Lake systems, Western Victoria. Australian Society for Limnology Bulletin, 3: 1-13.
- Dahlhaus, P., Heislers, D., Dyson, P., 2002. Corangamite Catchment Management Authority Groundwater Flow Systems. Report No. CCMA, 2(02).
- Dee, S., Emile-Geay, J., Evans, M., Allam, A., Steig, E., Thompson, D., 2015. PRYSM: An opensource framework for PRoxY System Modeling, with applications to oxygen-isotope systems. Journal of Advances in Modeling Earth Systems, 7(3): 1220-1247.
- Dee, S.G., Russell, J.M., Morrill, C., Chen, Z., Neary, A., 2018. PRYSM v2.0: A Proxy System Model for Lacustrine Archives. Paleoceanography and Paleoclimatology, 33(11): 1250-1269. DOI:10.1029/2018PA003413
- Department of Environment Land Water and Planning Victoria Australia, Victorian Water Measurement Information System. Department of Environment, Land, Water and Planning, Victoria, Australia.
- Dinçer, T., 1968. The Use of Oxygen 18 and Deuterium Concentrations in the Water Balance of Lakes. Water Resources Research, 4(6): 1289-1306.

Donders, T.H., Haberle, S.G., Hope, G., Wagner, F., Visscher, H., 2007. Pollen evidence for the transition of the Eastern Australian climate system from the post-glacial to the present-day ENSO mode. Quaternary Science Reviews, 26(11): 1621-1637.

Eddelbuettel, D., 2013. Seamless R and C++ integration with Rcpp. Springer.

- Eddelbuettel, D., Francois, R., 2011. Rcpp: Seamless R and C++ Integration. 2011, 40(8): 18. DOI:10.18637/jss.v040.i08
- FedUni, 2015. Visualising Victoria's Groundwater. Centre for eResearch and Digital Innovation, Federation University Australia, Mt Helen, Ballarat, Victoria, FedUni.
- Fritz, S.C., Juggins, S., Battarbee, R.W., Engstrom, D.R., 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature, 352(6337): 706.
- Gat, J., 2010. Isotope hydrology a study of the water cycle. London: Imperial College Press, London.
- Gibson, J., Edwards, T., Bursey, G., Prowse, T., 1993. Estimating evaporation using stable isotopes: quantitative results and sensitivity analysis for. Nordic Hydrology, 24: 79-94.
- Gibson, J., Reid, R., 2014. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. Journal of Hydrology, 519: 2148-2164.
- Gibson, J.J., Birks, S.J., Yi, Y., 2015. Stable isotope mass balance of lakes: a contemporary perspective. Quaternary Science Reviews, 131: 316-328.
- Gibson, J.J., Prepas, E.E., McEachern, P., 2002. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of Boreal lakes. Journal of Hydrology, 262(1): 128-144.
- Gonfiantini, R., 1986. Environmental isotopes in lake studies. Handbook of environmental isotope geochemistry, 2: 113-168.
- Gouramanis, C., De Deckker, P., Switzer, A.D., Wilkins, D., 2013. Cross-continent comparison of high-resolution Holocene climate records from southern Australia—Deciphering the impacts of far-field teleconnections. Earth-Science Reviews, 121: 55-72.
- Gouramanis, C., Wilkins, D., De Deckker, P., 2010. 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(1): 223-237.
- Hambright, K.D., Gophen, M., Serruya, S., 1994. Influence of long-term climatic changes on the stratification of a subtropical, warm monomictic lake. Limnology and Oceanography, 39(5): 1233-1242. DOI:10.4319/lo.1994.39.5.1233
- Henderson-Sellers, B., 1986. Calculating the surface energy balance for lake and reservoir modeling: A review. Reviews of Geophysics, 24(3): 625-649. DOI:10.1029/RG024i003p00625

- Hipsey, M., Bruce, L., Hamilton, D., 2013. GLM General Lake Model. Model overview and user information. The University of Western Australia Technical Manual, Perth, Australia.
- Ho, M., Kiem, A.S., Verdon-Kidd, D.C., 2015. A paleoclimate rainfall reconstruction in the Murray-Darling Basin (MDB), Australia: 1. Evaluation of different paleoclimate archives, rainfall networks, and reconstruction techniques. Water Resources Research, 51(10): 8362-8379.
- Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, 58(16): 3425-3437.
- Hostetler, S.W., Bartlein, P.J., 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resources Research, 26(10): 2603-2612.
- Hostetler, S.W., Bates, G.T., Giorgi, F., 1993. Interactive coupling of a lake thermal model with a regional climate model. Journal of Geophysical Research: Atmospheres, 98(D3): 5045-5057.
- Hussainy, S.U., 1969. Ecological studies on some microbiota of lakes in western Victoria. Department of Zoology, Monash University.
- Ihaka, R., Gentleman, R., 1996. R: a language for data analysis and graphics. Journal of computational and graphical statistics, 5(3): 299-314.
- Imberger, J., 1985. The diurnal mixed layer. Limnology and Oceanography, 30(4): 737-770. DOI:10.4319/lo.1985.30.4.0737
- Imberger, J., 2001. Characterizing the dynamical regimes of a lake. Physical processes in natural waters. Univ. de Girona, Spain: Servei de Publicacions: 77-92.
- Jeffrey, S.J., Carter, J.O., Moodie, K.B., Beswick, A.R., 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software, 16(4): 309-330.
- Jones, M.D., Imbers, J., 2010. Modeling Mediterranean lake isotope variability. Global and Planetary Change, 71(3): 193-200. DOI:<u>https://doi.org/10.1016/j.gloplacha.2009.10.001</u>
- Jones, M.D., Leng, M.J., Roberts, C.N., Türkeş, M., Moyeed, R., 2005. A Coupled Calibration and Modelling Approach to the Understanding of Dry-Land Lake Oxygen Isotope Records. Journal of Paleolimnology, 34(3): 391-411. DOI:10.1007/s10933-005-6743-0
- Jones, R., Bowler, J., McMahon, T., 1998. A high resolution Holocene record of P/E ratio from closed lakes in Western Victoria. Palaeoclimates, 3(1-3): 51-82.
- Jones, R.N., 1999. Natural and human influences on the distribution and extent of Victorian lowland grasslands. Adv Nat Conserv, 2: 19-39.

- Jones, R.N., McMahon, T.A., Bowler, J.M., 2001. Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990). Journal of Hydrology, 246(1): 159-180.
- Kiem, A., Vance, T., Tozer, C., Roberts, J., 2017. Incorporating palaeoclimate data into water security planning and decision making-a case study from southeast Queensland, Australia, EGU General Assembly Conference Abstracts, pp. 2021.
- Kirono, D.G., Jones, R.N., Kent, D.M., 2009. Modelling future lake levels and salinity at three lakes, Western Victoria. National Research Flagships, Climate Adaptation CSIRO—A report prepared for the Environment Protection Authority (EPA) Victoria.
- Last, W.M., Deckker, P., 1990. Modern and Holocene carbonate sedimentology of two saline volcanic maar lakes, southern Australia. Sedimentology, 37(6): 967-981.
- Leahy, P., Robinson, D., Patten, R., Kramer, A., 2010. Lakes in the Western District of Victoria and climate change. EPA Victoria.
- Leng, M.J., Marshall, J.D., 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23(7): 811-831.
- Lorenz, V., 2003. Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines, 15: 72-83.
- Maddocks, G.E., 1967. The geochemistry of surface waters of the Western District of Victoria. Marine and Freshwater Research, 18(1): 35-52.
- Magnus, G., 1844. Versuche über die Spannkräfte des Wasserdampfs. Annalen der Physik, 137(2): 225-247. DOI:10.1002/andp.18441370202
- McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference ground-water flow model.
- McVicar, T.R., Van Niel, T.G., Li, L.T., Roderick, M.L., Rayner, D.P., Ricciardulli, L., Donohue, R.J.C.L., 2008. Wind speed climatology and trends for Australia, 1975,Äì2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. 35(20).
- Morton, F.I., 1983. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66(1–4): 1-76. DOI:<u>http://dx.doi.org/10.1016/0022-1694(83)90177-4</u>
- Neilson, R.P., 1995. A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications, 5(2): 362-385.
- Neukom, R., Gergis, J., 2012. Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years. The Holocene, 22(5): 501-524. DOI:10.1177/0959683611427335
- Nicolaides, S., 1997. Marine-derived dolomite in the shallowly buried temperate Port Campbell Limestone (Miocene), Otway Basin, Australia. Sedimentology, 44(1): 143-157. DOI:10.1111/j.1365-3091.1997.tb00429.x

- Obrochta, S., Yokoyama, Y., Yoshimoto, M., Yamamoto, S., Miyairi, Y., Nagano, G., Nakamura, A., Tsunematsu, K., Lamair, L., Hubert-Ferrari, A., 2018. Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating. Quaternary Science Reviews, 200: 395-405.
- Panigrahi, B., Panda, S.N., 2003. Field test of a soil water balance simulation model. Agricultural Water Management, 58(3): 223-240.
- Raiber, M., Webb, J.A., Jacobsen, G.E., Chisari, R., Williams, A.A., 2008. Geological Controls on the Spatial Variability of Groundwater Recharge and Salinity in a Regional-scale Basalt Aquifer in Western Victoria. Modbury, SA: Engineers Australia
- Causal Productions, pp. 1279-1283.
- Ricketts, R.D., Johnson, T.C., 1996. Climate change in the Turkana basin as deduced from a 4000 year long δ O 18 record. Earth and Planetary Science Letters, 142(1): 7-17.
- Robinson, R., Bower, V., 1965. An additivity rule for the vapor pressure lowering of aqueous solutions. J. Res. Nat. Bur. Stand. A, 69: 365-367.
- Rudd, R.C., Tyler, J.J., Tibby, J., Yokoyama, Y., Tavernier, I., Verleyen, E., Fukui, M., Takano, Y., 2016. A diatom-inferred record of lake variability during the last 900 years in Lützow–Holm Bay, East Antarctica. Journal of Quaternary Science, 31(2): 114-125. DOI:10.1002/jqs.2845
- Sachse, D., Radke, J., Gleixner, G., 2004. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta, 68(23): 4877-4889.
- Shapley, M.D., Ito, E., Donovan, J.J., 2008. Isotopic evolution and climate paleorecords: modeling boundary effects in groundwater-dominated lakes. Journal of Paleolimnology, 39(1): 17-33.
- SKM, 2009. The Victorian Aquifer Framework Summary report submitted to DSE, Melbourne.
- Steinman, B.A., Abbott, M.B., Mann, M.E., Stansell, N.D., Finney, B.P., 2012. 1,500 year quantitative reconstruction of winter precipitation in the Pacific Northwest. Proceedings of the National Academy of Sciences, 109(29): 11619-11623. DOI:10.1073/pnas.1201083109
- Steinman, B.A., Rosenmeier, M.F., Abbott, M.B., Bain, D.J., 2010. The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models:
 Application to paleoclimate studies in the upper Columbia River basin. Limnology and Oceanography, 55(6): 2231–2245.
- Stets, E.G., Winter, T.C., Rosenberry, D.O., Striegl, R.G., 2010. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resources Research, 46(3). DOI:10.1029/2009WR007793

- Talbot, M.R., 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience section, 80(4): 261-279. DOI:<u>https://doi.org/10.1016/0168-9622(90)90009-2</u>
- Tibby, J., Tiller, D., 2007. Climate–water quality relationships in three Western Victorian (Australia) lakes 1984–2000. Hydrobiologia, 591(1): 219-234. DOI:10.1007/s10750-007-0804-5
- Tierney, J.E., Smerdon, J.E., Anchukaitis, K.J., Seager, R., 2013. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature, 493(7432): 389.
- Timms, B.V., 1976. A Comparative study of the limnology of three maar lakes in western Victoria. I. Physiography and physicochemical features. Marine and Freshwater Research, 27(1): 35-60.
- Timms, B.V., 2005. Salt Lakes in Australia: Present Problems and Prognosis for the Future. Hydrobiologia, 552(1): 1-15. DOI:10.1007/s10750-005-1501-x
- Tweed, S., Leblanc, M., Cartwright, I., 2009. Groundwater–surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia. Journal of Hydrology, 379(1–2): 41-53. DOI:<u>http://dx.doi.org/10.1016/j.jhydrol.2009.09.043</u>
- Tyler, J., Leng, M., Sloane, H., Sachse, D., Gleixner, G., 2008. Oxygen isotope ratios of sedimentary biogenic silica reflect the European transcontinental climate gradient. Journal of Quaternary Science, 23(4): 341-350.
- Tyler, J.J., Jones, M., Arrowsmith, C., Allott, T., Leng, M.J., 2015. Spatial patterns in the oxygen isotope composition of daily rainfall in the British Isles. Climate Dynamics(January 2016). DOI:10.1007/s00382-015-2945-y
- Valiantzas, J.D., 2006. Simplified versions for the Penman evaporation equation using routine weather data. Journal of Hydrology, 331(3): 690-702.
- Van Boxel, J.H., González-Carranza, Z., Hooghiemstra, H., Bierkens, M., Vélez, M.I., 2013. Reconstructing past precipitation from lake levels and inverse modelling for Andean Lake La Cocha. Journal of Paleolimnology, 51(1): 63-77. DOI:10.1007/s10933-013-9755-1
- Victorian Department of Sustainability and Environment, 2012. Victorian Aquifer Framework: updates for seamless mapping of aquifer surfaces. Produced by GHD for the Victorian Department of Sustainability and Environment.
- Victorian Department of Sustainability and Environment, 2014. Victorian Aquifer Framework -Grids, Bioregional Assessment Source Dataset. Victorian Department of Sustainability and Environment.
- White, J.D.L., Ross, P.S., 2011. Maar-diatreme volcanoes: A review. Journal of Volcanology and Geothermal Research, 201(1): 1-29.
- Wigdahl, C.R., Saros, J.E., Fritz, S.C., Stone, J.R., Engstrom, D.R., 2014. The influence of basin morphometry on the regional coherence of patterns of diatom-inferred salinity in lakes

of the northern Great Plains (USA). The Holocene, 24(5): 603-613. DOI:10.1177/0959683614523154

- Wilkins, D., Gouramanis, C., De Deckker, P., Fifield, L.K., Olley, J., 2013. Holocene lake-level fluctuations in Lakes Keilambete and Gnotuk, southwestern Victoria, Australia. The Holocene, 23(6): 784-795. DOI:10.1177/0959683612471983
- Williams, W., 1966. Conductivity and the concentration of total dissolved soilds in Australian lakes. Marine and Freshwater Research, 17(2): 169-176.
- Williams, W.D., 1981. 19. The limnology of saline lakes in Western Victoria. Hydrobiologia, 81-82(1): 233-259. DOI:10.1007/BF00048719
- Winter, T.C., 1976. Numerical simulation analysis of the interaction of lakes and ground water. USGS Professional Paper 1001.
- Winter, T.C., 1978. Numerical simulation of steady state three-dimensional groundwater flow near lakes. Water Resources Research, 14(2): 245-254. DOI:10.1029/WR014i002p00245
- Winter, T.C., Rosenberry, D.O., LaBaugh, J.W., 2003. Where does the ground water in small catchment come from? Groundwater, 41(7): 989-1000. DOI:10.1111/j.1745-6584.2003.tb02440.x
- Wolfe, B.B., Edwards, T.W., Elgood, R.J., Beuning, K.R., 2002. Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications, Tracking environmental change using lake sediments. Springer, pp. 373-400.
- Yihdego, Y., Webb, J.A., Leahy, P., 2015. Modelling of lake level under climate change conditions: Lake Purrumbete in southeastern Australia. Environmental Earth Sciences, 73(7): 3855-3872. DOI:10.1007/s12665-014-3669-8

Discussion and future directions

Summary

The primary aim of this thesis was to develop a lake model for palaeoclimate research, expanding upon previous models to improve the state of the art. This was achieved with the development of CHIMBLE, a holistic lake model incorporating many key features from previous models, and addressing key uncertainties with previous models through inclusion of complex groundwater modelling and full water chemistry. However, when reflecting back over the model development, the calibration process, and other related lake physical processes, such as the link between basin morphology and evaporation and isotopic fractionation, it may be possible to chart out a course for future lake modelling developments. This chapter summarises the outcomes of this thesis against the original objectives, and how the models, methods and collected data may be applied within the greater field of palaeoclimate research. In conclusion, some suggestions are made regarding directions for future model developments and research projects focussed on lake physical processes.

1 Objectives

1.1 Objective 1: Establish a lake monitoring program to collect input and calibration data that can be applied to the model.

Chapter Two describes the results from a lake monitoring program, with data from twelve lakes, collected bi-monthly over ~3 years. Samples for major and minor ion, δ^{18} O, and δ^{2} H analysis, as well as water temperature, pH, and conductivity were collected for all lakes, and water levels for most lakes. The hydrogeology surrounding each lake was identified and described. In addition to the data described in Chapter Two, Lake Leake, Lake Edward and Lake Surprise were also surveyed for bathymetry, and aerial photos were used to reconstruct historical lake water levels for Lake Leake and Lake Edward (Appendix 2). Lake levels were not recorded for Lake Tooliorook and Lake Keilambete, but both lakes are ideally suited to aerial imagery based lake level reconstructions. These data, combined with the data described in Chapter Two, are intended as an initial data set to enable CHIMBLE to model lakes across the region. There is ongoing palaeoclimate research at many of the lakes monitored (Barr et al., 2014; Falster et al., 2018; Wilkins et al., 2013), and it is anticipated that CHIMBLE model simulations and the data collected will be a valuable resource for interpretation of palaeoclimate archives, and to refine conceptual models for how each lake behaves under different hydroclimate conditions.

1.2 Objective 2: Investigate numerous geochemical and isotopic indicators of lakes to better identify how lakes interact with the surrounding landscape, and what physical processes are under-represented in conceptual and numerical lake models.

A key process in lake modelling is the conceptualisation of how a lake interacts with the surrounding landscape. The surrounding topography and hydrogeology of a lake influence the isotopic and geochemical signatures of lake water. In Chapter Two, several isotopic and geochemical indicators were applied to investigate these interactions. One aspect that is rarely considered during lake isotope studies, but is potentially an important factor in lake isotopic modelling is how the degree of wind sheltering affects isotopic fractionation. Water enrichment of δ^{18} O and δ^{2} H due to evaporation varies along a linear trend due to differences in the relative degree of transport fractionation, with the data plotting along local evaporation lines in δ^{18} O and δ^{2} H space. Water evaporating from soil, through a complete diffusion layer, forms local evaporation lines with a slope of 2.5, whereas open water evaporation from lakes has a much steeper local evaporation slope, typically from 4 to 6. δ^{18} O and δ^{2} H data for the monitored lakes suggests that the transition from fully sheltered to unsheltered is identifiable within the local evaporation lines slopes for each lake. The slopes of the local evaporation lines were correlated to the degree of sheltering of each lake, with the well sheltered lakes having a lower slope of around 4.3, while the unsheltered lakes have slopes of around 5.3.

Cl⁻/Br⁻ and HCO₃⁻/Cl⁻ ratios were used to investigate source water contributions to each lake. Cl⁻/Br⁻ ratios recorded in groundwater across the region have a mass ratio of ~290, similar to sea water (Barton et al., 2013; Cartwright et al., 2006), while observations of Cl⁻/Br⁻ in rainfall suggest a ratio ranging from 130–180 near the coast, decreasing further inland (Davis et al., 1998). An expected trend relating Cl⁻/Br⁻ ratio to distance from the coast was not observed in the monitoring data, but the Cl⁻/Br⁻ ratios were able to identify which lakes are likely to interact with the regional aquifers, and which lakes are likely to be rainfall fed. Lake Leake, Lake Edward and Lake Mumblin all sit high in the basalt above the regional aquifers, and have low Cl⁻/Br⁻ ratios. These results are interpreted to reflect that these lakes are predominantly fed with rainfall, with any influxes of halite or other sources that may influence the Cl⁻/Br⁻ ratio being flushed downward to the regional aquifer.

HCO₃⁻/Cl⁻ is suggested as an indicator to identify whether source water is predominantly derived from surface and interflow sources or groundwater (Barton et al., 2013). High HCO₃⁻

/Cl⁻ ratios are interpreted as surface water sources as HCO_3^- is thought to concentrate in the upper soil due to evapotranspiration and carbonate precipitation (Barton et al., 2013). A possible complexity in the application of HCO_3^-/Cl^- ratios to determine source water was noticed, with the freshwater Lakes Purrumbete and Surprise reporting extremely high HCO_3^-/Cl^- ratios, while likely being predominantly groundwater fed through-flow lakes. Lake Purrumbete has been successfully modelled as a through-flow lake (Yihdego et al., 2015). It is suspected that this mismatch is due to the presence of fresh volcanic ejecta near the lakes (often referred to as stony rises). These are regions of high recharge and may result in groundwater in those regions having high HCO_3^-/Cl^- ratios. It is suggested that a higher spatial resolution of sampling, and assessing each lake against the surrounding groundwater may improve the results from the indicator.

The lake-groundwater interaction of each lake was assessed using d-excess, following Barton et al. (2013). This indicator is based on the concept that lakes with high residence times are likely to be terminal lakes, and undergo a greater degree of evaporation, whereas through-flow lakes are likely to have shorter residence times (Barton et al., 2013). Unfortunately, the seasonal variation of d-excess was significant for many lakes, especially for lakes that are shallow. Two issues were identified with the use of d-excess to differentiate lake-groundwater interactions. The first is that d-excess is determined partly by the degree of evaporation, but also by the local evaporation line slope. More sheltered lakes are likely to report higher values of d-excess, compared to unsheltered lakes with similar lake-groundwater regimes. The second is that d-excess is a measure of the residence time of lake water – which, as most of the lakes in the region have ~1000 mm of evaporation per year, can be loosely approximated as the lake depth in metres. It is proposed that a more appropriate indicator of the type of groundwater regime is the solute residence time, which is a measure of how long a solute, such as Cl- remains in the lake (Brezonik, 2018).

From a model development perspective, refining the influence of lake morphology on isotopic fractionation is the most important outcome from Chapter Two. The isotopic fractionation equations within CHIMBLE (also used in many other lake-isotope models) have a parameter to account for turbulence effects (*n*). Likewise, most equations that are used to estimate evaporation include a wind parameter, e.g., the neutral drag coefficient in the case of the energy balance model in CHIMBLE. Currently the two parameters are uncoupled, but both describe a very similar process. A potential future research project is to either couple the isotopic fractionation equations directly to the evaporation equations, or, at the very least, to identify a method to allow both sets of equations to share a single wind/turbulence parameter. Coupling

these parameters would exemplify the ongoing goal to simplify and refine model parameters and would be beneficial to both CHIMBLE and other isotope enabled model development.

1.3 Objective 3: Develop new techniques for the sampling of rainfall, specifically for δ^{18} O and δ^{2} H analysis.

Chapter Three describes the development of an autonomous rainfall sampler. The development of a rainfall sampler may not seem directly related to lake model development. It is, however, intended to resolve a problem related to lake modelling that cannot easily be solved through lake model development alone. The δ^{18} O and δ^{2} H composition of rainfall is an important input dataset for many lake models. Currently the δ^{18} O and δ^2 H composition of rainfall can be estimated through interpolation of existing datasets, e.g., the GNIP dataset (Bowen and Revenaugh, 2003; Rozanski et al., 1993), or through isotope enabled climate models (e.g., Brady et al., 2019). However, the GNIP dataset has a limited spatial and temporal resolution, with only 15 stations across Australia. The rainfall sampler described in Chapter Three is a low cost, autonomous daily and monthly sampler. Many lakes used for palaeoclimate research are in remote areas with minimal infrastructure. The sampler is intended to be deployed in such environments to provide direct observations of the δ^{18} O and δ^{2} H of rainfall near study sites, allowing researchers to confirm the validity of modelled or interpolated δ^{18} O and δ^{2} H values. Collecting daily, in addition to monthly, rainfall may facilitate further investigation of the synoptic climatology behind daily variability in rainfall δ^{18} O and δ^{2} H, for example, via synoptic back tracing (Tyler et al., 2015).

1.4 Objective 4: To develop a holistic lake model that is versatile enough to be applied to almost any lake, coupling mass and energy balances, groundwater, isotopes, chemistry, and catchment processes.

Chapters Four and Five detail model development. Chapter Four describes a spreadsheet-based finite difference groundwater model (A2016), based on the mathematics of MODFLOW. Chapter Five describes the development of a lake model that includes many features desirable for model-based palaeoclimate research, including the groundwater functionality of A2016.

The functionality and theoretical background of A2016 is fully described within this thesis, but one aspect that has not been discussed, beyond noting that it is potentially useful for prototyping and pedagogy, is how it may be useful in practice. As A2016 is a spreadsheet model, running in Excel, it is a very quick and efficient way to test hypotheses about the behaviour of groundwater. A specific example is found in the investigation of the observation that as a lake level falls, the influx from groundwater may decrease. This is surprising and unintuitive behaviour; however, testing through A2016 demonstrated that it is compatible with existing groundwater theory. This behaviour is explained by a phenomenon whereby the lake's shoreline moves horizontally away from the groundwater source as the lake level falls, potentially resulting in a decrease of the groundwater gradient. It is hoped that A2016 is useful to other researchers, both to explore lake-groundwater interactions, and to provide a template for others to include groundwater modelling within their own lake models.

CHIMBLE, described in Chapter Five, is designed to facilitate lake-modelling based palaeoclimate research. To accommodate common proxies used in palaleoclimate research, CHIMBLE includes a full chemical mass balance, with support for individual ions, TDS, and salinity, as well as a complete δ^{18} O and δ^{2} H mixing and fractionation model. The chemical mass balance is also applied to model the effect of salinity on evaporation, which may be significant in hypersaline lakes, with potential to lower evaporation rates by several percent (~5 % in Lake Gnotuk currently), and influence the relative fractionation of δ^{18} O and δ^{2} H (Gat, 2010). Groundwater is incorporated into CHIMBLE through a single layer finite difference model based on A2016 (documented in Chapter Four). An energy balance model based on the model of Hostetler and Bartlein (1990), and updated by Dee et al. (2018) is used to estimate evaporation, lake water temperatures and thermal stratification.

Simulations for Lake Bullen Merri and Lake Gnotuk in the Newer Volcanic Province, Victoria, Australia, were undertaken, with modelled hydrological behaviour matching observations closely over a 130 year timeframe. Salinity and water temperature simulations likewise aligned closely with observations over a ~50 year timeframe. Modelled salinity since 2005, and δ^{18} O and δ^{2} H from 2015–2019 (the timeframe for which observations exist), required a decrease in stratification depth (facilitated through adjustment to the shortwave extinction coefficient in the energy balance module), to accurately match the observed seasonal cycle of Bullen Merri, suggesting an increase in water turbidity over recent years resulting from eutrophication. The isotopic modelling results may be important to palaeoclimate interpretations due to the tendency for δ^{18} O and δ^{2} H to become disconnected from lake water levels once the δ^{18} O and δ^{2} H composition of lake waters approaches the isotopic enrichment limit (Gat, 2010). This is a potential concern for any studies that interpret proxy estimates of lake water δ^{18} O and δ^{2} H as a precipitation/evaporation indicator.

To achieve a degree of confidence in the modelling results, it was required that the groundwater model parameters be identical for both lakes, as the hydrogeology for the surrounding aquifers is not influenced by the lake condition. Multiple lake-groundwater scenarios were tested, with the final simulations suggesting that there is a significant flux through the volcanic neck and diatreme of Lake Gnotuk to lower aquifers. At high lake levels, the thickness of lake sediment near the shoreline is assumed to be fairly thin, permitting a greater degree of outseepage with a through-flow style lake-groundwater regime. As the lake level falls, the relative thickness of lake sediment increases, outseepage decreases, and Lake Gnotuk transitions to a terminal lake system. A similar result is observed for Lake Bullen Merri, though with most of the outseepage from Lake Bullen Merri contributing to Lake Gnotuk's water balance, rather than seeping to lower aquifers. Further research is required to verify and quantify this lake-groundwater behaviour. The energy balance module required lake specific parameters, as the lakes have different degrees of sheltering and fetch. The effects of sheltering and fetch were identifiable in the calibrated energy balance parameters as a decrease in the neutral drag coefficients (representing wind influence) as lake levels fell, which resulted in improved simulations of water surface temperatures for both lakes.

The simulation results and calibrated parameters are important results, but a particularly important observation from the modelling process was how each component included in CHIMBLE was able to complement and interact with other modelling routines. It was uncertain at the beginning of the model development process whether the increased complexity of CHIMBLE relative to many other models would also increase the difficulty and potential ambiguity of the calibration process. However, this was not the case, and once the groundwater module was calibrated, the rest of the calibrations were rapidly resolved. The model development of CHIMBLE was focussed on avoiding arbitrary and difficult to define parameters and input data, instead opting to use additional modelling routines, and associated parameters, that describe physical processes. Therefore, the majority of parameters used within CHIMBLE arise from real world conditions such as wind sheltering, water clarity, aquifer hydraulic conductivity, and porosity, and it is little surprise that the calibrated parameters are consistent with conditions for both lakes, and that results for each aspect of the model are consistent with results from other model components. In contrast, simulations with CHIMBLE for Lake Gnotuk with the groundwater module disabled demonstrated how an approximation that is not particularly representative of real world processes – outseepage as a function of lake volume - could result in a clear disparity between the results from the water chemistry and hydrological modelling components (Chapter Five, this thesis, Fig. 5.8). By maintaining a full

chemical mass balance in parallel with the hydrological balance, it was clear that while lake level simulation was possible (though with less accuracy than with the groundwater module enabled), the fluxes entering and exiting the lake were quite unrealistic, with very high salinity at a time of high lake levels. Such a scenario is quite unlikely as groundwater salinity around Lake Gnotuk showed no indication of hypersaline outseepage (FedUni, 2015). Likewise, Jones et al. (2001) noted the need for very different percolation constants (defining baseflow from the catchment), both for each lake, and for different simulation time frames for their model-based study of Lake Bullen Merri and Lake Gnotuk. While the percolation constant may approximate a real world process of percolation through soil layers, the assumption that all percolation flowed to the lake as baseflow, as a function of catchment area, is not likely to be correct. The combination of modelling components within CHIMBLE provides a degree of confidence in the modelling results as each component may support results from other components, and many model parameters are constrained by real world conditions and observations. Such a capability is not necessarily available for less complex lake models, and suggests that great care must be taken to ensure that the conceptual model of a lake, upon which numerical models are based, is accurate.

CHIMBLE was designed for palaeoclimate research, but it is also an ideal tool to test and develop the conceptual understanding of in-lake physical processes and interactions between lakes and the surrounding landscape. The ability to assess multiple aspects of lake behaviour with each simulation, combined with the capacity to model complex effects such as lake-groundwater interaction make CHIMBLE well suited to such investigations. In particular, the potential for there to be a degree of consilience across the multiple physical processes modelled within CHIMBLE may be an important indicator as to whether the conceptual model of a lake is valid.

2 Proposed future research

The CHIMBLE model described in this thesis includes novel functionality which is largely absent from previously published models. However, there is still potential for future improvements to CHIMBLE. Considering the process of model development, future work may focus on:

• The groundwater module currently treats the groundwater system as a single reservoir, with singular values for δ^{18} O and δ^{2} H, and for the ions, TDS and salinity values in the chemical mass balance. Future versions of the groundwater module should incorporate cell

by cell values, so that localised effects such as outseepage into a small region of the groundwater model are simulated.

• A primary focus of model development was the modelling of physical processes to mitigate the need for parameters that are dependent upon the lake condition. Several parameters are still defined manually, in particular, the neutral drag coefficient that relates wind to evaporation (and *n*, the similar turbulence parameter from the isotopic fractionation equations), and the short wave extinction coefficient, that represents water turbidity. One option to avoid the requirement to manually specify these parameters is to implement further modelling. Water quality modelling is a common process in reservoir studies, due to the need to predict algal blooms and other events that may impact water supply (Davis and Koop, 2006; Hamilton and Schladow, 1997). CHIMBLE already has a full chemical mass balance and full water column temperature profile modelling. It is anticipated that these capabilities facilitate inclusion of a water quality module to avoid the need to manually specify the short wave extinction coefficient. The effect of wind sheltering is potentially easier to incorporate, as CHIMBLE already includes programming hooks in anticipation of such functions, as well as a full topographical grid, for estimating lake fetch and the degree of sheltering, as part of the groundwater module.

• While lakes used for palaeoclimate research are often quite deep, the hypothesised past lake conditions often infer time periods where those lakes are shallow. In shallow lakes, solar radiation can pass through the shallow water and directly warm the lake sediments, or the sediments may be warmed from the lake water (Hondzo, 1993). Such processes are not yet modelled in the CHIMBLE energy balance, but may be necessary for accurate modelling of such conditions.

• Similarly, the support for the freezing of lake water and snow formation in CHIMBLE is currently rudimentary. While not much of a concern for current lake conditions in Australia, CHIMBLE is intended to be applied to all lakes across all time periods, including during periods of glaciation. The inclusion of full support for snow and ice is a necessary future development.

Most projects considered for future development are focused on improving model features and capabilities. However, there is also need for ongoing work investigating the interaction between lakes and the surrounding landscape. The correlation between lake morphometry and isotopic fractionation is well defined by the lakes studied, and has also been observed in other studies

(e.g., Sveinbjörnsdóttir and Johnsen, 1992). However, the results are not sufficient to build a rigorous model linking the degree of wind sheltering to isotopic fractionation. There is a need for future studies to further define and clarify this relationship.

In parallel with the need for ongoing research into lake physical processes, there is need for ongoing lake monitoring. Lake models applied for palaeoclimate research are typically required to simulate lake conditions outside the range of observational data. Therefore, monitoring of lakes should aim to capture as large a range of lake conditions as possible to provide confidence in the validity of parameters derived for use within lake models.

The next step is to apply CHIMBLE to investigate and interpret hypothesized past climate signals within lake sedimentary archives. The main focus of this thesis was on model development, and establishing the many interlinked components necessary for a robust lake model for palaeoclimate lake research. While there is much scope for future model development, CHIMBLE is now sufficiently advanced to be applied to data beyond the observational record.

3 References

- Barr, C., Tibby, J., Gell, P., Tyler, J., Zawadzki, A., Jacobsen, G.E., 2014. Climate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes. Quaternary Science Reviews, 95: 115-131. DOI:<u>https://doi.org/10.1016/j.quascirev.2014.05.001</u>
- Barton, A., Herczeg, A., Dahlhaus, P., Cox, J., 2013. A geochemical approach to determining the hydrological regime of wetlands in a volcanic plain, south-eastern Australia (Chapter 7)
 In: Ribeiro L, Stigter TY, Chambel A et al.(eds) Groundwater and Ecosystems. IAH Selected Papers on Hydrogeology Series 18. CRC Press (Taylor and Francis). p.
- Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39(10): 1-13. DOI:10.1029/2003WR002086
- Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B.L.,
 Tabor, C., Tomas, R., Wong, T., Zhang, J., Zhu, J., 2019. The Connected Isotopic Water
 Cycle in the Community Earth System Model Version 1. Journal of Advances in
 Modeling Earth Systems, 11(8): 2547-2566. DOI:10.1029/2019ms001663
- Brezonik, P., 2018. Chemical kinetics and process dynamics in aquatic systems. Routledge.
- Cartwright, I., Weaver, T.R., Fifield, L.K., 2006. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chemical geology, 231(1): 38-56.
- Davis, J.R., Koop, K., 2006. Eutrophication in Australian Rivers, Reservoirs and Estuaries A Southern Hemisphere Perspective on the Science and its Implications. Hydrobiologia, 559(1): 23-76. DOI:10.1007/s10750-005-4429-2
- Davis, S.N., Whittemore, D.O., Fabryka-Martin, J., 1998. Uses of Chloride/Bromide Ratios in Studies of Potable Water. Groundwater, 36(2): 338-350. DOI:10.1111/j.1745-6584.1998.tb01099.x
- Dee, S.G., Russell, J.M., Morrill, C., Chen, Z., Neary, A., 2018. PRYSM v2.0: A Proxy System Model for Lacustrine Archives. Paleoceanography and Paleoclimatology, 33(11): 1250-1269. DOI:10.1029/2018PA003413
- Falster, G., Tyler, J., Grant, K., Tibby, J., Turney, C., Löhr, S., Jacobsen, G., Kershaw, A.P., 2018. Millennial-scale variability in south-east Australian hydroclimate between 30,000 and 10,000 years ago. Quaternary Science Reviews, 192: 106-122.
- FedUni, 2015. Visualising Victoria's Groundwater. Centre for eResearch and Digital Innovation, Federation University Australia, Mt Helen, Ballarat, Victoria, FedUni.
- Gat, J., 2010. Isotope hydrology a study of the water cycle. London: Imperial College Press, London.
- Hamilton, D.P., Schladow, S.G., 1997. Prediction of water quality in lakes and reservoirs. Part I
 Model description. Ecological Modelling, 96(1-3): 91-110. DOI:10.1016/S0304-3800(96)00062-2

- Hondzo, M., 1993. Lake water temperature simulation model. Journal of Hydraulic Engineering, 119(11): 1251-1251.
- Hostetler, S.W., Bartlein, P.J., 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resources Research, 26(10): 2603-2612.
- Jones, R.N., McMahon, T.A., Bowler, J.M., 2001. Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990). Journal of Hydrology, 246(1): 159-180.
- Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. Climate change in continental isotopic records: 1-36.
- Sveinbjörnsdóttir, Á.E., Johnsen, S.J., 1992. Stable isotope study of the Thingvallavatn area. Groundwater origin, age and evaporation models. Oikos: 136-150.
- Tyler, J.J., Jones, M., Arrowsmith, C., Allott, T., Leng, M.J., 2015. Spatial patterns in the oxygen isotope composition of daily rainfall in the British Isles. Climate Dynamics(January 2016). DOI:10.1007/s00382-015-2945-y
- Wilkins, D., Gouramanis, C., De Deckker, P., Fifield, L.K., Olley, J., 2013. Holocene lake-level fluctuations in Lakes Keilambete and Gnotuk, southwestern Victoria, Australia. The Holocene, 23(6): 784-795. DOI:10.1177/0959683612471983
- Yihdego, Y., Webb, J.A., Leahy, P., 2015. Modelling of lake level under climate change conditions: Lake Purrumbete in southeastern Australia. Environmental Earth Sciences, 73(7): 3855-3872. DOI:10.1007/s12665-014-3669-8

Appendix 1

This appendix contains a table of the data resulting from the lake monitoring and sampling program, described in Chapter 2, as well as field reports from most of the lake sampling trips.

28/08/2015	23/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	29/08/2015	10/06/2015	24/05/2015	10/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	10/06/2015		Date
MA0025	MA0005	MA0375	MA0369	MA0352	MA0327	MA0314	MA0302	MA0282	MA0268	JR0256	MA0233	JT0201	MA0180	MA0148	MA0106	MA0135	MA0062	MA0032	MA0031	MA0023	MA0012	MA0379	MA0365	MA0342	MA0320	MA0307	MA0296	MA0289	MA0264	JR0260	MA0224	JT0193	MA0173	MA0152	MA0111	MA0054	MA0021		Sample#
Lake Edward	Lake Edward	Lake Bullen Merri	East Basin	East Basin	East Basin	East Basin	East Basin	East Basin		Lake name																													
		139.521	139.413	139.310	139.419	139.613	139.817	139.716	139.603		139.632		139.932		139.681		139.495	140.037	140.037			113.574	113.430	113.204	113.249	113.463	113.662	113.631	113.466		113.408		113.693		113.461	113.162		m(AHD)	Lake Water Level
3.79	4.94	2.98	3.00	3.37	3.35	3.14	2.94	2.68	3.05	3.18	3.10	3.33	3.09	3.00	3.08	3.09	3.46	2.85	2.91	3.02	2.89	2.73	3.49	4.76	4.52	4.18	2.86	2.26	3.30	2.94	4.38	4.00	3.22	2.34	3.73	5.58	4.01		0 ^{8 I}
20.00	24.60	17.98	18.04	20.95	19.79	19.10	17.76	16.02	18.49	19.41	18.46	21.05	19.7	19.4	19.8	19.8	20.74	18.07	17.80	18.27	17.50	9.65	12.79	18.66	18.52	16.92	11.99	8.44	12.99	10.08	18.45	18.19	14.7	10.2	16.3	24.03	16.60		<i>8</i> ₂H
		11.0	11.1	15.6	23.0	22.7	17.3	10.7	12.4	16.5	20.9	22.1	15.7		10.6		18.5					13.7	10.5	14.4	20.6	25.3	18.9	10.3	10.1	15.9	21.6	22.3	19.2		11.2	18.5		ĉ	Temp
		9.1	9.2	9.3	9.3	9.4	9.3	9.2	9.4		9.3	9.2	9.3		9.3		8.5					8.9	8.9	9.0	8.9	9.0	9.1	9.1	9.1		9.0	8.9	9.0		9.0	7.7			рH
		16110	15400	15670	16800	14520	15190	15190	14090		14230	16320	13930		16270		16660					115300	113800	119200	125600	105200	104800	103200	102500		104800	117300	97360		120600	128500			EC (us/cm)
		0.12	<0.1	0.31	0.18	0.70	0.81	0.76	0.71	0.73	0.73	<0.01	0.37	0.38	<0.01	<0.01	<0.01			0.36		<u>^</u>	<u></u>	<u>^</u>	<u>^</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		mg/L	ú
		5060	5120	5190	5260	5350	5290	5230	5300	5310	5390	5210	5087	5128	5239	5205	5268			5200		48700	48300	52300	50600	47500	46200	42700	49000	45800	48600	55155	49275	44837	51105	55968	50	mg/L	Ģ
		<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01			<0.01		ŝ	ŝ	<u>ک</u>	<u>ح</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		mg/L	NO ₂ -
		1.82	1.79	1.66	1.52	1.77	1.74	2.21	2.48	2.68	2.05	1.82	1.9	2.11	1.94	1.99	1.71			1.93		602	594	663	644	621	606	559	636	595	629	662	578	528	592	651		mg/L	SO42-
		16.2	16.2	16.5	17.0	16.4	16.4	16.0	16.1	16.1	16.3	15.6	15.5	15.7	15.5	15.3	16.3			15.4		143	147	173	152	158	161	134	151	136	157	142	138	124	145	163		mg/L	Br
		7	<u>^</u>	<u>^</u>	<u>^</u>	<u>ځ</u>	ک	ŝ	ک	<u>ئ</u>	<u>ځ</u>	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			1.51		<10	<10	<10	<10	^5	^5	^5	<u>ۍ</u>	<u>م</u>	<u>م</u>	ک	<u>م</u>	ک	ر ،	<u>م</u>		mg/L	NO3-
						1	1	ı	ı	1	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05						1	1	1		•	•	<0.5	<0.5	<0.5	<0.5	<0.5			-
		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<u>ج</u>	<u>ራ</u>	ŝ	<u>ራ</u>	ራ	ŝ			ራ		<100	<100	<100	<100	<10	<10	<10	<10	<10	<10	<50	<50	<50	<50	<50		mg/L	PO ₄ 3-
		760	825	735	770	730	620	455	630	700	655	675	715	715	700	710	735			690.5		1655	1695	1800	1685	1545	1375	785	1445	1200	1565	1400	1560	1335	1600	1625		mg/L	Alk

-

02/08/2016	15/06/2016	05/04/2016	30/08/2015	10/06/2015	24/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	25/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	15/06/2016	29/08/2015	24/05/2015	11/09/2018	09/07/2018	07/05/2018	06/03/2018	22/01/2018	07/11/2017	03/09/2017	29/06/2017	24/04/2017	23/04/2017	07/01/2017	18/11/2016	21/09/2016	03/08/2016	06/04/2016		Date
MA0103	MA0130	MA0066	MA0033	MA0016	MA0013	MA0373	MA0367	MA0344	MA0322	MA0312	MA0298	MA0286	MA0269	JR0253	MA0235	JT0203	MA0182	MA0145	MA0117	MA0131	MA0030	MA0010	MA0381	MA0358	MA0339	MA0317	MA0304	MA0292	MA0277	MA0274	JR0251	MA0246	JT0214	MA0191	MA0143	MA0126	MA0087		Sample#
Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Elingamite	Lake Edward	Lake Edward		Lake name																													
100.248		100.053				125.784	125.562	1 25.201	125.287	125.477	125.755	125.597	125.328		125.243		125.653		125.392				104.101	103.661	103.462	103.517	103.697	103.943	103.827	103.492	103.405	103.405		103.788		103.315	102.653	m(AHD)	Lake Water Level
3.56	3.80	3.69	3.24	3.32	3.38	-0.06	-0.09	1.36	5.89	5.07	1.22	-0.90	1.61	-3.49	4.67	2.73	0.75	-0.83	-2.31	-1.72	1.47	2.49	1.63	2.90	4.05		3.39	2.08	1.73	3.10	3.61		2.81	1.99	1.68	2.47	6.36		0 ^{8 I}
17.4	18.2	16.56	15.60	15.40	15.20	3.15	1.93	6.89	29.56	26.35	9.70	-1.49	10.54	-20.22	24.06	16.5	7.9	-0.9	-9.7	-7.3	11.86	16.40	8.45	13.47	19.75		17.14	11.60	8.78	15.25	17.67		16	12.4	11.1	14.3	32.04		<i>8</i> ²H
10.3		20.9		12.3		13.7	11.5	14.6	19.6	30.0	16.1	6.3	11.2	20.3	26.3	24.2	18.2		11.7				14.7	10.1	14.7	21.7	24.0	18.1	13.4	11.1	17.7	17.0	25.0	19.9		11.0	21.3	°	Temp
8.7		8.7		9.8		8.5	8.0	7.8	7.8	8.4	7.8	7.9	8.3		9.0	7.2	7.7		7.0				4.5	6.0	7.3	7.3	6.3	4.9	5.2	6.9	6.5		6.4	6.8		7.0	8.8		pН
103900		105700		104800		4790	4683	7081	8154	6210	4739	4592	6000		7059	6649	4724		4660				4495	5000	5248	5585	4626	4582	4686	4898	5842		5479	4477		5900	7445		EC (us/cm)
<0.1	<0.1	<0.1		<0.1		0.17	0.19	0.14	0.17	0.20	0.13	0.1	0.14	0.05	0.18	0.09	0.08	0.09	0.09	0.05			0.22	0.21	0.22	0.21	0.21	0.17	0.15	0.16	0.17	0.17	0.12	0.11	0.11	0.13	0.16	mg/L	ά
44189	45954	43530		41658		1320	1340	2130	2390	1990	1380	1270	1970	1160	2410	1897	1539	1479	896	1222			737	876	947	924	881	802	824	950	963	986	961	606	806	1023	1395	mg/L	Ģ
<0.1	<0.1	<0.1		<0.1		<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	< 0.01	<0.1	< 0.01	< 0.01	< 0.01	< 0.01	0.26			<0.5	<0.5	<0.5	<0.5	< 0.01	< 0.01	< 0.01	< 0.01	0.14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	mg/L	NO ₂ -
96.8	100	94.4		89.3		255	284	367	316	273	250	291	348	155	333	329	284	308	658	1543			1370	1590	1700	1650	1620	1500	1530	1740	1770	1810	1740	1652	1630	1777	2241	mg/L	SO42-
135	133	134		134		4.68	4.86	7.30	8.12	6.59	4.51	4.08	6.32	3.68	7.83	5.55	4.5	4.33	3.18	3.09			3.54	4.24	4.59	4.40	4.49	3.93	4.16	4.61	4.84	4.89	4.06	3.81	3.9	4.39	5.87	mg/L	Br
ۍ ۲	^5	ک		^5		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ۍ ۲	ک	^5	7.63	9.11	^5	<0.5	<0.5	3.92	86.66	44.41			7	7	7	7	<0.5	1.25	2.02	1.54	0.87	0.80	0.73	_	1.28	1.64	<0.5	mg/L	NO ₃ -
<0.5	<0.5	<0.5		<0.5							ı	•	ı	•		<0.05	<0.05	<0.05	<0.05	<0.05							•		•		,	•	<0.05	<0.05	<0.05	<0.05	<0.05		-
<50	<50	<50		<50		<10	<10	<10	<10	<10	<10	<10	<10	<u>^</u>	<10	<u>م</u>	^5	<u>ራ</u>	^ Ծ	<u>ۍ</u>			<10	<10	<10	<10	~	~	~	<u>^</u>	<u>^</u>	<u>^</u>	ŝ	ŝ	ĉ,	ک	<u>ۍ</u>	mg/L	PO43-
775	795	820		840		192	206	432	384	310	210	134	270	216	348	228	220	200	168	146			0.7	3.6	6.1	11	7.3	0	2.8	8	78	9.2	6	8	26	50	55.6	mg/L	Alk

24/04/2017	23/04/2017	13/03/2017	07/01/2017	18/11/2016	21/09/2016	03/08/2016	28/08/2015	23/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	15/06/2016	05/04/2016	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016		Date
JR0250	MA0248	MA0243	JT0216	MA0193	MA0142	MA0128	MA0024	MA0004	MA0371	MA0361	MA0347	MA0324	MA0310	MA0300	MA0284	MA0271	JR0258	MA0239	JT0207	MA0186	MA0147	MA0121	MA0132	MA0074	MA0374	MA0368	MA0351	MA0326	MA0313	MA0301	MA0280	MA0266	JR0257	MA0231	JT0199	MA0177	MA0149		Sample#
Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Keilambete	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk		Lake name															
	89.704	89.713		90.114		89.705																103.018			100.170	100.023	99.911	100.018	100.198	100.354	100.282			100.158		100.464		m(AHD)	Lake Water Level
3.60		5.26	2.52	-0.12	-2.32	-3.47	0.69	3.04	2.07	2.55	3.38	3.13	2.83	2.16	1.92	2.51	2.19	3.16	3.29	2.51	2.39	2.26	3.02	3.85	3.17	3.12	3.65	3.56	3.30	3.08	3.06	3.16	2.85	3.47	3.83	3.42	3.25		0 ⁸¹ 80
14.63		25.39	13.90	2.80	-7.60	-15.40	6.39	16.50	8.75	10.51	15.47	13.50	12.46	10.10	8.05	10.73	8.74	14.35	4.37	12.89	11.7	10.8	14.2	17.64	14.66	13.59	17.80	16.24	15.64	13.34	13.84	14.36	12.00	16.22	19.14	16.9	15.8		<i>8</i> ²H
17.5		18.8	26.1	22.4		12.3			13.5	9.9	15.7	22.1	29.6	19.1	11.0	11.3	15.0	23.6	30.6	19.8		12.5		18.8	13.0	12.4	17.6	26.7	24.9	20.7	13.0	12.7	15.2	23.3	24.1	18.1		°Ĉ	Temp
		9.1	9.2	8.6		8.4			8.7	8.6	8.7	8.8	8.8	8.9	9.0	8.6		8.7	8.7	8.8		8.8		8.6	8.5	8.5	8.6	8.6	8.6	8.8	8.8	8.7		8.5	8.6	8.6			pН
		6323	5565	3908		5132			139500	137770	140400	147000	125300	130000	129100	123800		124500	141000	119100		134100		148300	102900	98580	99930	106500	91500	96280	95680	87980		89700	101600	88140			EC (us/cm)
0.14	0.35	0.36	0.11	0.08	0.17	0.07			<u>^</u>	<u>.</u>	<u>^</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<u>^</u>	4	<u>^</u>	4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/L	ú							
1900	1910	1870	1362	1023	686	1285			60400	64000	66100	63500	60600	54100	60500	62800	55700	60900	63561	59271	61023	57878	61751	66338	44000	43600	44000	45000	40800	39900	41700	40500	36600	42100	44634	43182	43409	mg/L	Ċ
<0.01	1.27	<0.1	<0.01	0.28	0.7	0.8			ŝ	ŝ	^5	<u>ح</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	7	<u>^</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<u>ځ</u>	ک	<u>ک</u>	<u>م</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/L	NO ₂ -
731	720	723	513	484	453	498			133	137	142	137	140	126	141	146	137	141	140	131	134	137	135	144	94.2	95.7	92.5	94.5	96.2	94.6	102	98.1	89.8	99.2	98.6	95.6	98.1	mg/L	SO ₄ 2-
9.93	8.57	8.30	5.7	4.32	3.94	4.94			168	176	185	172	160	144	162	165	149	165	162	156	157	151	164	172	141	141	142	145	149	147	141	157	147	139	129	129	130	mg/L	Br
2.75	~5	ک	<0.5	1.23	9.73	18.69			<10	<10	<10	<10	<50	<50	<50	<50	<50	<50	<u>ح</u>	ک	^5	<u>ح</u>	ک	ک	<10	<10	<10	<10	<u>ح</u>	^5	ک	~5	ر ج	<u>ح</u>	ک	ک	ک	mg/L	NO3-
1	1	1	<0.05	<0.05	<0.05	<0.05							ı	1	1	1	ı	ı	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					1	1	ı	1	1	1	<0.5	<0.5	<0.5		-
7	<10	<10	<u>ک</u>	ۍ ۲	<u>5</u>	^5			<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<50	<50	<50	<50	<50	<50	<100	<100	<100	<100	<10	<10	<10	<10	<10	<10	<50	<50	<50	mg/L	PO ₄ 3-
310	320	294	254	232	166	166			1510	1535	1600	1515	1490	1235	1215	1550	1065	1455	1350	1355	1420	1470	1520	1600	840	910	895	845	815	740	555	775	600	785	780	790	795	mg/L	Alk

23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	18/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	10/06/2015	24/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	29/08/2015	11/09/2018	09/07/2018	07/05/2018	06/03/2018	22/01/2018	07/11/2017	03/09/2017	29/06/2017		Date
MA0308	MA0297	MA0290	MA0265	JR0255	MA0226	JT0197	MA0175	MA0153	MA0113	MA0133	MA0058	MA0035	MA0022	MA0011	MA0372	MA0360	MA0346	MA0323	MA0311	MA0299	MA0285	MA0270	MA0237	JT0205	MA0184	MA0150	MA0119	MA0070	MA0029	MA0382	MA0357	MA0329	MA0316	MA0303	MA0291	MA0276	MA0275		Sample#
Lake Purrumbete	Lake Mumblin	Lake Mumblin	Lake Mumblin	Lake Mumblin	Lake Mumblin	Lake Leake		Lake name																															
134.815	135.131	134.817	134.590		134.626		134.996		134.128		133.884				153.626	153.458	153.164	153.220	153.410	153.618	153.500	153.301	153.160		153.500		153.125			90.406	89.934	89.721	89.785	89.970	90.261	90.158	89.805	m(AHD)	Lake Water Level
2.29	2.04	1.85	2.05	0.78	2.28	2.02	2.31	0.73	2.29	2.40	2.74	2.07	2.10	2.28	1.14	2.48	5.68	5.72	4.57	1.78	1.34	2.95	5.02	2.98	1.16	0.34	1.12	9.19	3.12	-0.56	1.61	4.85	6.33	5.01	1.08	-0.11	2.31		0 ⁸¹ 80
14.14	13.74	12.03	11.67	5.37	13.98	13.30	15.00	6.50	15.10	15.60	16.52	13.29	13.20	14.30	4.59	9.33	24.25	23.20	18.49	7.89	4.31	10.66	19.74	12.8	5.80	1.30	4.30	39.50	15.10	-1.63	10.22	24.63	31.77	25.21	6.94	-0.12	11.67		<i>8</i> ² H
23.3	17.1	10.6	12.3	14.5	20.6	21.1	15.2		10.7		18.7				13.5	9.5	14.5	22.1	27.4	19.8	9.7	10.8	23.7	23.2	20.3		11.6	20.2		15.5	11.2	13.7	21.9	26.0	18.7	13.6	11.3	°	Temp
9.6	9.3	9.0	9.0		9.5	9.1	9.1		9.2		8.4				8.0	6.5	8.0	7.8	8.2	7.2	7.9	7.7	7.9	9.1	7.4		8.4	8.7		8.0	8.4	8.6	8.6	8.8	9.3	8.9	8.9		рН
732	776	767	723		720	815	706		848		849				1000	1016	1200	1268	1024	979	974	1014	1146	1184	957		1206	1603.00		4473	6087	7832	7774	5612	4478	4753	5865		EC (us/cm)
0.22	0.20	0.20	0.20	0.20	0.21	0.21	0.23	0.22	0.22	0.23	0.22		0.22		0.07	0.06	0.1	0.07	0.02	0.01	0.01	0.02	0.02	0.02	0.01	0.02	0.02			0.26	0.34	<0.01	0.47	0.33	0.27	0.25	0.31	mg/L	ú
151	148	148	151	136	151	155	163	139	164	166	161		158		196	212	259	250	214	180	189	220	241	235	199	220	246			1080	1640	2130	1990	1600	1160	1240	1720	mg/L	Ū,
<0.01	<0.01	0.03	<0.01	1.26	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.06		<0.05	0.06	<0.05	<0.05	0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.22	0.1			0.55	<0.5	<0.05	<0.5	<0.1	0.1	0.32	0.22	mg/L	NO ₂ -
23.7	23.6	23.5	23.4	20.0	24.2	20.8	23.8	30.5	22.7	23	22.2		21.9		157	165	182	178	169	177	171	188	210	235	222	227	214			417	564	723	687	582	463	489	632	mg/L	SO42-
0.43	0.43	0.42	0.43	0.46	0.42	0.43	0.44	0.37	0.45	0.45	0.43		0.42		1.57	1.71	2.22	2.12	1.74	1.40	1.44	1.71	1.89	1.7	1.39	1.51	1.72			5.32	7.84	10.2	9.39	7.27	5.33	5.66	7.75	mg/L	Br
<0.5	<0.5	<0.5	<0.5	0.90	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5		<0.1	0.74	0.32	<0.1	<0.5	2.31	0.70	<0.5	<0.5	<0.5	<0.5	12.07	8.27			5.32	1.48	<0.1	<u>^</u>	<u>ک</u>	<u>م</u>	6.54	<5	mg/L	NO ₃ -
•	ı	•	ı	•	•	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05						•	•	ı	•	•	<0.05	<0.05	<0.05	<0.05							•		•	•		-
<u>^</u>	<u>^</u>	<u>^</u>	<u>~</u>	<u>^</u>	<u>^</u>	^5	ŝ	ŝ	\$	ŝ	ŝ		~5		<u>^</u>	~	ک	ر ح	~5	ς.			<10	<10	<u>^</u>	<10	<10	<10	<10	<10	mg/L	PO ₄ 3-							
184	134	146	180	186	168	172	170	150	192	190	190.2		185		58	72.6	90.5	96	88.6	70.8	70	76	101	72	68	62	68			252	372	440	432	348	198	197	314	mg/L	Alk

10/07/2018	08/05/2018	07/03/2018	24/01/2018	08/11/2017	05/09/2017	27/06/2017	26/04/2017	12/03/2017	06/01/2017	17/11/2016	18/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	24/05/2015	11/09/2018	09/07/2018	07/05/2018	06/03/2018	22/01/2018	07/11/2017	03/09/2017	29/06/2017	25/04/2017	12/03/2017	06/01/2017	18/11/2016	20/09/2016	03/08/2016	06/04/2016	29/08/2015	23/05/2015	10/09/2018	10/07/2018	08/05/2018	07/03/2018		Date
MA0363	MA0349	MA0325	MA0315	MA0294	MA0287	MA0262	JR0254	MA0228	JT0209	MA0169	MA0167	MA0115	MA0134	MA0044	MA0036	MA0014	MA0380	MA0359	MA0340	MA0318	MA0305	MA0293	MA0278	MA0273	JR0252	MA0241	JT0212	MA0189	MA0144	MA0124	MA0081	MA0026	MA0006	MA0377	MA0366	MA0343	MA0321		Sample#
Lake Tooliorook	Lake Surprise	Lake Purrumbete	Lake Purrumbete	Lake Purrumbete	Lake Purrumbete		Lake name																																
																	78.466	78.322	78.343	78.505	78.656	78.718	78.409	78.420		78.571		78.843		77.854	77.816			135.010	134.644	134.498	134.615	m(AHD)	Lake Water Level
2.30	3.10	2.63	1.89	0.48	0.17	0.71	0.95	1.25	-0.06	-1.18	-3.05	2.51	3.01	6.24	3.41	4.29	2.26	2.67	3.30	3.40	3.04	2.15	2.08	2.52	2.54	2.96	2.35	1.68	1.70	3.0	4.23	2.67	3.10	2.03	2.12	2.32	2.32		0 ⁸¹ 80
12.67	17.37	14.17	10.89	4.51	2.10	4.54	4.77	6.63	1.60	-3.70	-14.60	17.50	19.30	34.80	22.45	25.40	8.11	9.52	12.61	13.33	11.56	8.75	7.26	8.67	9.03	10.76	9.20	6.80	6.70	12.9	17.32	10.70	11.90	12.76	12.95	15.01	14.42		<i>8</i> ² H
9.0	16.1	24.2	24.6	15.4	9.6	11.6	13.0	22.8	21.4	20.3		12.4		13.2			12.7	10.4	15.0	21.3	26.0	18.1	12.8	10.8	16.5	21.7	25.1	21.5		10.3	17.8			10.8	11.2	15.3	20.1	ĉ	Temp
9.4	9.4	9.4	9.0	8.2	8.9	9.1		9.0	8.0	8.0		9.2		6.7			9.3	8.0	8.7	8.9	8.9	9.3	9.2	7.7		9.1	9.0	9.3		9.2	8.8			8.7	9.0	9.0	9.3		рH
6701	6870	7000	5775	5660	5682	5406		5691	5990	4762		11580		12890			661	639	647	686	588	584	604	597		587	676	553		666	680			816	784	811	844		EC (us/cm)
0.46	0.43	<0.01	0.41	0.41	0.39	0.39	0.39	0.40	0.15	0.11		0.22	0.25				0.35	0.39	0.29	0.31	0.30	0.27	0.27	0.29	0.28	0.28	0.31	0.28	0.29	0.3	0.32			0.21	0.20	0.21	0.20	mg/L	Ψ
2110	2150	2030	1890	1730	1740	1820	1800	1920	1701	1620		3351	3742				95.6	102	103	102	94.9	90.2	92.1	95.3	93.5	98.5	104	94.2	96.7	109	118			154	156	157	158	mg/L	Ģ
<0.5	<0.5	<0.05	<0.1	0.14	<0.1	<0.1	0.16	<0.1	<0.01	0.1		<0.01	<0.01				< 0.05	<0.05	<0.05	<0.05	<0.01	<0.01	0.01	0.01	<0.01	<0.01	<0.01	0.09	0.06	<0.01	<0.01			< 0.05	<0.05	<0.05	<0.05	mg/L	NO ₂ -
144	146	119	147	138	133	134	131	141	134	133		253	212				2.41	2.26	2.25	2.55	2.66	2.82	2.24	2.31	3.25	4.10	4.64	4.77	3.64	1.6	1.24			24.0	23.6	23.9	23.9	mg/L	SO42-
7.65	7.74	7.17	6.70	6.16	6.16	6.47	6.42	6.65	5.76	5.31		12.1	12.7				0.35	0.40	0.39	0.37	0.36	0.34	0.34	0.37	0.34	0.36	0.36	0.34	0.34	0.38	0.4			0.46	0.47	0.46	0.46	mg/L	Br
7	~	0.16	<u>ہ</u>	<u>م</u>	<u>م</u>	~5	ŝ	ŝ	<0.5	<0.5		<0.5	<0.5				0.29	0.37	0.17	<0.1	<0.5	<0.5	0.66	0.52	<0.5	<0.5	<0.5	0.99	2.32	<0.5	<0.5			<0.1	0.71	0.23	<0.1	mg/L	NO ₃ -
				•				1	<0.05	<0.05		<0.05	<0.05											1			<0.05	<0.05	<0.05	<0.05	<0.05								-
<10	<10	~	<10	<10	<10	<10	<10	<10	ŝ	ራ		<u>^</u> 5					<u>~</u>	<u>^</u>	~	~	7	~	7	<u>^</u>	<u>^</u>	7	<u>ہ</u>	<u>ک</u>	ራ	^5	<u>ራ</u>			~	~	~	<u>^</u>	mg/L	PO ₄ 3-
408	405	442	406	336	310	380	342	366	300	278		465	640				224	235	204	232	212	158	180	204	188	196	190	202	188	214	206.4			186	196	184	210	mg/L	Alk

σı

10/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	10/06/2015	10/06/2015	06/01/2017	20/09/2016	29/08/2015	23/05/2015	09/09/2018		Date
MA0378	MA0364	MA0341	MA0319	MA0306	MA0295	MA0288	MA0263	JR0259	MA0222	JT0195	MA0171	MA0151	MA0109	MA0050	MA0019	MA0018	JT0211	MA0158	MA0027	MA0008	MA0370		Sample#
West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	Tower Hill	Tower Hill	Tower Hill	Tower Hill	Lake Tooliorook		Lake name										
111.449	111.297	111.092	111.165	111.369	111.575	111.539	111.345		111.268		111.572		111.359	111.079								m(AHD)	Lake Water Level
2.27	3.00	4.54	4.46	4.12	2.51	1.85	3.00	3.03	4.20	3.80	2.66	1.62	3.16	4.95	4.09	4.00	5.69	-1.42	-0.25	0.74	2.01		0 ⁸¹⁸
7.61	9.44	16.50	16.44	14.97	9.08	5.04	10.79	9.45	15.68	14.59	10.5	5.3	11.8	19.12	15.25	15.00	25.90	-4.60	2.29	6.10	12.12		<i>δ</i> ² Η
14.0	10.6	15.1	20.6	25.4	17.4	10.3	10.3	14.4	22.4	22.7	20.3		11.0	18.8	12.9						12.8	°C	Temp
8.7	8.6	8.7	8.6	8.8	8.9	9.0	8.9		8.7	8.8	8.9		8.8	6.9	10.4						8.9		рН
142300	142100	148600	157200	132500	129900	129800	128000		131500	145600	119800		150300	159100	163400						6851		EC (us/cm)
<u>^</u>	4	<u>^</u>	4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		0.19			0.59	mg/L	Ψ						
50200	66100	71600	69700	61500	59700	59200	65200	58800	64200	65320	61234	54975	67113	72346	66738	66897		2125			2090	mg/L	Ċ
ŝ	<u>م</u>	<u>م</u>	^5	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		0.14			<0.5	mg/L	NO ₂ -
1570	2160	2310	2250	2040	1970	1930	2140	1940	2100	2038	1902	1701	2075	2243	2047	2055		319			142	mg/L	SO42-
169	218	234	231	200	192	187	209	187	205	207	193	168	206	229	200	215		9.3			7.52	mg/L	Br
<10	<10	<10	<10	<50	<50	<50	<50	<50	<50	ک	^5	<u>م</u>	^5	<u>ح</u>	<u>م</u>	^5		<0.5			^	mg/L	NO3-
					1					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.05			_		-
<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<50	<50	<50	<50	<50	<50	<50		\$			<10	mg/L	PO ₄ 3-
1070	1370	1545	1500	1420	1145	965	1195	1025	1365	1405	1320	1280	1530	1540	1425	1580		706			404	mg/L	Alk

28/08/2015	23/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	29/08/2015	10/06/2015	24/05/2015	10/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	10/06/2015		Date
MA0025	MA0005	MA0375	MA0369	MA0352	MA0327	MA0314	MA0302	MA0282	MA0268	JR0256	MA0233	JT0201	MA0180	MA0148	MA0106	MA0135	MA0062	MA0032	MA0031	MA0023	MA0012	MA0379	MA0365	MA0342	MA0320	MA0307	MA0296	MA0289	MA0264	JR0260	MA0224	JT0193	MA0173	MA0152	MA0111	MA0054	MA0021		Sample#
Lake Edward	Lake Edward	Lake Bullen Merri	East Basin		Lake name																																		
		<0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01		<0.1	<0.1	<0.1	<0.1	<0.1	0.11	<0.1	<0.1	<0.1	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01		mg/L	≥
		0.054	0.054	0.052	0.048	0.047	0.052	0.054	0.052	0.054	0.054	0.055	0.053	0.051	0.054	0.05	0.047			0.051		0.230	0.233	0.252	0.250	0.204	0.189	0.187	0.204	0.204	0.217	0.235	0.223	0.208	0.239	0.26		mg/L	Ва
		<0.01	<0.01	<0.01	<0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05		<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05		mg/L	Bi
		15.9	16.1	15.1	15.3	16.5	17.1	17.1	17.0	17.8	17.0	16.573	16.158	16.335	16.375	15.791	14.834			16.593		19.2	20.0	21.8	22.4	22.4	21.3	21.0	23.9	24.8	26.1	25.671	25.344	24.16	27.838	30.978		mg/L	Ca
		<0.005	< 0.005	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001			< 0.001		<0.05	<0.05	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.001	< 0.001	< 0.001	<0.001	< 0.001		mg/L	Co
		<0.001	<0.001	<0.001	<0.001	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005		<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005		mg/L	Ç
		<0.005	0.012	0.015	0.016	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	0.02	0.006	<0.005	<0.005	<0.005			<0.005		<0.05	0.271	0.105	0.075	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.016	0.036	0.011	0.005	<0.005		mg/L	Cu
		<0.005	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	0.006	0.007	0.019	0.008		mg/L	Fe
		108	109	110	111	112	105	107	104	110	107	107.641	107.321	108.159	109.82	110.126	112.499			107.842		1050	1100	1170	1150	1180	1080	1020	1140	1120	1170	1068.078	996.182	948.369	1114.031	1207.732		mg/L	≍
		0.002	0.002	0.002	0.002	0.012	0.012	0.012	0.011	0.011	0.012	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005			<0.005		0.432	0.441	0.470	0.469	0.445	0.413	0.400	0.429	0.417	0.447	0.25	0.239	0.233	0.257	0.28		mg/L	⊑.
		<0.001	<0.001	<0.001	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			<0.001		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001		mg/L	Ŀ
		279	279	276	283	282	280	281	278	299	285	288.344	279.604	285.837	286.96	283.789	292.425			281.293		1790	1890	2040	1980	1830	1700	1650	1790	1780	1870	1886.525	1790.476	1659.752	1964.291	2129.683		mg/L	Mg
		0.009	0.012	< 0.001	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.001	0.002	0.004	0.013	< 0.001	<0.001			<0.001		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		mg/L	Μn
		<0.005	0.007	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	0.005	0.005	<0.005	<0.005	<0.005			<0.005		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	0.005	<0.005	<0.005	<0.005	<0.005		mg/L	Mo
		2810	2980	2970	2860	3160	2920	2960	2930	3030	2960	2817.235	2783.459	2774.896	2883.501	2836.513	2899.193			2843.724		27700	28200	30400	29100	29900	27600	27000	29500	28900	31100	27836.406	26239.823	24250.1	28134.862	30344.733		mg/L	Na
		<0.005	<0.005	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.003	0.003	0.002	0.002	0.003	0.002			0.004		<0.05	<0.05	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.004	0.003	0.003	0.005	0.003		mg/L	<u>Z</u> .
		0.05	0.07	0.03	0.03	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.013	0.015	0.025	0.042	0.018	0.011			0.038		1.2	1.6	1.4	1.3	1.08	1.08	1.12	1.03	0.98	1.01	0.718	0.659	0.611	0.715	0.541		mg/L	P
		1.70	1.80	1.60	1.50	1.30	1.30	1.50	1.40	1.70	1.30	1.091	1.374	1.202	1.093	1.129	1.103			1.211		313	326	357	346	294	272	263	286	291	311	212.587	201.222	187.725	212.825	230.518		mg/L	S
		0.001	0.001	0.001	<0.001	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005		0.01	0.01	0.012	0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005		mg/L	Sc

24/04/2017	23/04/2017	13/03/2017	07/01/2017	18/11/2016	21/09/2016	03/08/2016	28/08/2015	23/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	15/06/2016	05/04/2016	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016		Date
JR0250	MA0248	MA0243	JT0216	MA0193	MA0142	MA0128	MA0024	MA0004	MA0371	MA0361	MA0347	MA0324	MA0310	MA0300	MA0284	MA0271	JR0258	MA0239	JT0207	MA0186	MA0147	MA0121	MA0132	MA0074	MA0374	MA0368	MA0351	MA0326	MA0313	MA0301	MA0280	MA0266	JR0257	MA0231	JT0199	MA0177	MA0149		Sample#
Lake Leake	Lake Keilambete	Lake Gnotuk		Lake name																																			
0.01	<0.1	<0.1	0.02	0.03	0.13	0.14			<0.1	<0.1	<0.1	<0.1	7	<u>^</u>	7	7	<u>^</u>	7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.01	<0.01	<0.01	mg/L	Þ
0.109	0.106	0.099	0.108	0.094	0.071	0.069			0.462	0.474	0.494	0.479	0.438	0.415	0.406	0.433	0.401	0.439	0.495	0.479	0.48	0.472	0.499	0.537	0.671	0.687	0.695	0.681	0.605	0.583	0.592	0.590	0.598	0.607	0.701	0.687	0.683	mg/L	Ва
<0.05	<0.5	<0.5	<0.05	<0.05	<0.05	<0.05			<0.1	<0.1	<0.1	<0.1	<u>ہ</u>	^ Ծ	<u>ہ</u>	<u>ہ</u>	^ 5	<u>ک</u>	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.05	mg/L	<u>B</u> :
68.0	65.3	62.6	66.099	54.598	46.689	43.962			27.4	29.0	29.6	28.1	29.6	29.2	28.2	29.2	28.3	29.3	29.07	29.039	28.143	28.719	29.502	30.841	115	115	123	120	124	123	117	122	119	127	127.371	119.121	121.836	mg/L	Ca
<0.001	<0.01	<0.01	< 0.001	0.002	0.002	0.002			<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.05	<0.05	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.001	0.001	<0.001	mg/L	6
<0.005	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005			<0.01	<0.01	< 0.01	< 0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.01	<0.01	< 0.01	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.005	<0.005	<0.005	mg/L	ç
0.008	<0.05	<0.05	0.023	0.026	0.007	0.008			0.072	0.089	0.060	0.056	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.009	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	0.163	0.090	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.005	0.007	0.007	mg/L	6
0.019	<0.05	<0.05	0.011	0.121	0.136	0.096			<0.05	<0.05	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.005	0.018	0.011	0.024	0.013	0.008	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.014	0.013	0.016	mg/L	Fe
51.5	50.0	48.4	38.508	30.157	29.072	34.423			946	1030	1080	666	1010	976	943	1000	957	1010	998.23	941.024	957.753	933.347	1007.431	1069.108	823	821	866	855	068	876	828	859	829	885	837.099	824.845	815.218	mg/L	⊼
0.023	0.035	0.034	0.021	0.019	0.017	0.018			0.023	0.023	0.026	0.025	0.115	0.116	0.114	0.115	0.115	0.116	0.015	0.014	0.014	0.014	0.015	0.016	0.082	0.087	0.084	0.083	0.089	0.088	0.086	0.088	0.085	0.088	0.05	0.05	0.049	mg/L	⊑.
<0.001	<0.01	<0.01	<0.001	<0.001	<0.001	<0.001			<0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.001	<0.001	<0.001	mg/L	Ŀ
208	222	217	177.226	136.107	127.664	148.24			1790	1870	1970	1880	1850	1800	1780	1850	1720	1900	1830.646	1772.653	1793.142	1740.748	1843.868	1991.374	2770	2890	2870	2760	2770	2690	2660	2660	2640	2640	2848.357	2800.28	2824.024	mg/L	Mg
<0.001	<0.01	<0.01	0.005	0.033	0.008	0.012			<0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.001	0.007	< 0.001	0.002	< 0.001	< 0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.002	0.002	0.003	mg/L	Mn
<0.005	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005			<0.05	<0.05	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.006	0.006	0.006	0.007	0.006	0.006	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.005	0.005	0.006	mg/L	Mo
1240	1230	1190	822.237	648.718	627.505	764.076			34300	36500	37100	36500	37700	36900	35800	38000	36200	38000	34526.358	33470.616	33884.69	33010.868	35553.36	36842.376	22300	22000	22600	23000	23500	23200	22700	22900	22700	23700	21742.326	21937.565	21406.59	mg/L	Na
0.006	<0.01	<0.01	0.008	0.011	0.015	0.016			<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.003	0.003	0.002	0.003	0.003	0.003	<0.05	<0.05	<0.05	< 0.05	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.004	0.002	0.004	mg/L	<u>Z</u>
0.03	<0.1	<0.1	0.035	0.028	0.03	0.024			0.6	0.5	0.6	0.5	~	<u>^</u>	7	~	<u>^</u>	<u>^</u>	0.324	0.292	0.283	0.354	0.302	0.275	0.9	0.9	_	0.9	0.79	0.84	0.84	0.82	0.85	0.85	0.626	0.589	0.619	mg/L	P
276	269	269	186.911	154.48	149.371	175.623			75.0	78.1	81.2	80.4	63.3	61.2	59.7	64.0	63.6	65.5	47.428	45.309	46.556	48.474	47.726	50.176	51.5	54.7	52.5	50.8	45.3	45.2	46.2	46.2	46.3	46.4	34.319	34.315	34.29	mg/L	S
<0.005	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005			0.011	0.013	0.012	0.012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	0.013	0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005	<0.005	mg/L	Sc

23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	18/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	10/06/2015	24/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	29/08/2015	11/09/2018	09/07/2018	07/05/2018	06/03/2018	22/01/2018	07/11/2017	03/09/2017	29/06/2017		Date
MA0308	MA0297	MA0290	MA0265	JR0255	MA0226	JT0197	MA0175	MA0153	MA0113	MA0133	MA0058	MA0035	MA0022	MA0011	MA0372	MA0360	MA0346	MA0323	MA0311	MA0299	MA0285	MA0270	MA0237	JT0205	MA0184	MA0150	MA0119	MA0070	MA0029	MA0382	MA0357	MA0329	MA0316	MA0303	MA0291	MA0276	MA0275		Sample#
Lake Purrumbete	Lake Mumblin	Lake Leake		Lake name																																			
0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01		<0.01		0.05	<0.01	<0.01	<0.01	0.01	0.03	0.02	<0.01	<0.01	<0.01	0.01	0.01	<0.01			0.05	0.01	<0.01	0.01	<0.1	<0.1	<0.1	<0.1	mg/L	≥
0.013	0.012	0.015	0.015	0.017	0.013	0.018	0.014	0.015	0.016	0.015	0.015		0.014		0.015	0.045	0.053	0.058	0.059	0.037	0.043	0.048	0.036	0.036	0.022	0.051	0.05			0.089	0.114	0.154	0.153	0.116	0.076	0.072	0.097	mg/L	Ва
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05		<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.01	<0.01	<0.01	<0.01	<0.5	<0.5	<0.5	<0.5	mg/L	Bi
25.9	26.2	25.5	26.3	29.4	25.7	24.027	24.816	23.064	25.194	25.361	26.502		25.192		38.1	40.0	44.9	48.2	48.0	43.2	40.9	46.4	54.3	49.47	46.778	45.829	46.434			48.6	60.6	74.8	73.7	64.7	52.9	51.6	59.9	mg/L	Ca
<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		< 0.001		<0.005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001			<0.005	<0.005	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	mg/L	C0
<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			0.001	<0.001	<0.001	<0.001	<0.05	<0.05	<0.05	<0.05	mg/L	ĉ
0.017	0.005	<0.005	<0.005	0.009	<0.005	0.01	0.011	0.007	<0.005	<0.005	<0.005		<0.005		0.01	0.044	0.017	0.009	<0.005	0.018	0.013	0.026	0.015	0.016	0.019	0.008	0.006			0.013	0.051	0.023	0.019	<0.05	<0.05	<0.05	<0.05	mg/L	5
0.01	<0.005	<0.005	<0.005	0.098	0.009	0.007	<0.005	0.081	<0.005	<0.005	<0.005		<0.005		0.172	0.018	0.014	0.016	0.096	0.288	0.055	0.012	0.038	0.025	0.12	0.019	0.014			0.126	0.009	0.011	0.005	<0.05	<0.05	<0.05	<0.05	mg/L	Fe
6.49	6.50	6.27	6.46	9.13	6.34	6.095	6.174	6.052	6.156	6.396	6.427		6.252		6.65	7.52	9.17	8.99	8.46	6.47	6.44	7.32	8.27	7.277	6.739	6.856	7.027			29.8	44.7	56.8	52.8	48.0	34.2	36.9	51.1	mg/L	~
0.003	0.003	0.003	0.003	0.003	0.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		0.004	0.004	0.005	0.005	0.005	0.005	0.004	0.004	0.005	0.006	0.006	0.005	<0.005			0.018	0.021	0.026	0.027	0.032	0.026	0.026	0.031	mg/L	⊑.
0.001	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001	0.001	<0.001	<0.001	<0.001	0.002	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001	<0.01	<0.01	<0.01	<0.01	mg/L	Ŀ
36.2	35.8	35.7	36.3	35.6	36.0	35.549	35.598	32.77	35.098	36.706	36.761		35.522		41.4	45.0	52.9	51.1	47.9	44.6	44.2	50.1	55.1	51.645	47.99	48.912	49			136	195	248	237	186	139	150	198	mg/L	Mg
0.002	< 0.001	0.002	< 0.001	0.002	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001		< 0.001		< 0.001	0.004	< 0.001	0.005	0.748	0.383	0.184	0.016	0.378	0.002	0.279	< 0.001	0.003			0.003	< 0.001	< 0.001	< 0.001	<0.01	<0.01	<0.01	<0.01	mg/L	Mn
<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005	< 0.05	< 0.05	< 0.05	<0.05	mg/L	Mo
98.5	98.3	95.8	102	91.3	97.4	90.311	92.461	80.175	93.952	95.432	100.009		95.526		111	118	141	132	126	107	114	130	141	120.405	111.37	114.399	126.61			680	1010	1270	1220	1000	768	812	1100	mg/L	Na
0.006	<0.001	<0.001	<0.001	0.002	<0.001	0.002	0.002	0.001	<0.001	0.002	<0.001		0.002		<0.005	<0.005	<0.005	<0.005	0.003	0.002	<0.001	<0.001	0.002	0.001	0.001	0.002	0.002			0.009	0.006	<0.005	<0.005	<0.01	<0.01	<0.01	0.01	mg/L	<u>Z</u>
0.14	0.16	0.16	0.18	0.53	0.14	0.141	0.147	0.159	0.179	0.242	0.108		0.175		0.04	0.08	0.1	0.4	0.44	0.22	0.13	0.02	0.31	0.165	0.047	0.04	0.034			0.03	0.03	0.03	0.04	<0.1	<0.1	<0.1	<0.1	mg/L	Ρ
9.40	9.30	9.20	9.20	8.20	9.40	7.828	8.561	11.341	8.316	8.398	8.501		8.233		60.9	63.8	71.5	68.8	67.2	68.7	65.5	73.9	83.7	74.123	74.471	71.593	69.676			161	216	277	268	213	170	178	239	mg/L	S
<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.001	<0.001	<0.001	<0.001	<0.05	<0.05	<0.05	<0.05	mg/L	Sc

10/07/2018	08/05/2018	07/03/2018	24/01/2018	08/11/2017	05/09/2017	27/06/2017	26/04/2017	12/03/2017	06/01/2017	17/11/2016	18/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	24/05/2015	11/09/2018	09/07/2018	07/05/2018	06/03/2018	22/01/2018	07/11/2017	03/09/2017	29/06/2017	25/04/2017	12/03/2017	06/01/2017	18/11/2016	20/09/2016	03/08/2016	06/04/2016	29/08/2015	23/05/2015	10/09/2018	10/07/2018	08/05/2018	07/03/2018		Date
MA0363	MA0349	MA0325	MA0315	MA0294	MA0287	MA0262	JR0254	MA0228	JT0209	MA0169	MA0167	MA0115	MA0134	MA0044	MA0036	MA0014	MA0380	MA0359	MA0340	MA0318	MA0305	MA0293	MA0278	MA0273	JR0252	MA0241	JT0212	MA0189	MA0144	MA0124	MA0081	MA0026	MA0006	MA0377	MA0366	MA0343	MA0321		Sample#
Lake Tooliorook	Lake Surprise	Lake Purrumbete	Lake Purrumbete	Lake Purrumbete	Lake Purrumbete		Lake name																																
0.08	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.01	<0.01		<0.01	<0.01				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01	mg/L	≥
0.063	0.068	0.083	0.077	0.074	0.063	0.064	0.069	0.072	0.068	0.058		0.099	0.117				0.006	0.006	0.006	0.006	0.005	0.006	0.005	0.005	0.006	0.007	0.008	0.008	0.004	0.005	0.004			0.016	0.016	0.015	0.015	mg/L	Ва
<0.01	<0.01	<0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05		<0.05	<0.05				<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.01	<0.01	<0.01	<0.01	mg/L	Bi
47.7	55.7	65.9	70.6	62.9	59.7	59.5	59.3	58.7	48.299	40.311		40.023	55.27				29.7	29.9	27.0	26.6	27.4	25.5	31.1	30.8	26.4	26.6	28.972	27.589	22.495	26.521	19.214			25.2	25.3	26.2	25.0	mg/L	Ca
<0.005	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.001	<0.001		< 0.001	< 0.001				<0.005	<0.005	<0.005	<0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			<0.005	<0.005	<0.005	<0.005	mg/L	C0
<0.001	<0.001	<0.001	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005		<0.005	<0.005				<0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.001	<0.001	<0.001	0.001	mg/L	Ç
0.059	0.028	0.013	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.011	0.02		0.006	0.007				0.012	0.037	0.014	0.01	0.008	0.011	0.011	0.005	0.005	<0.005	0.007	0.016	0.008	<0.005	<0.005			<0.005	0.014	0.007	0.009	mg/L	5
0.075	<0.005	<0.005	<0.05	<0.05	1.50	<0.05	<0.05	<0.05	0.074	0.051		0.014	0.072				<0.005	<0.005	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	<0.005	0.012	0.006	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005	mg/L	Fe
28.3	29.3	28.2	32.8	29.9	29.1	30.5	31.9	32.2	23.353	20.631		39.432	45.418				8.41	9.16	9.42	9.43	9.55	8.64	9.09	9.01	9.20	9.59	8.779	8.387	8.312	8.983	9.7			6.22	6.27	6.46	6.31	mg/L	*
0.007	0.008	0.008	0.017	0.017	0.016	0.017	0.017	0.018	0.009	0.009		0.012	0.013				0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.004	0.004	0.004	<0.005	<0.005	<0.005	<0.005	<0.005			0.002	0.002	0.002	0.002	mg/L	⊑.
<0.001	<0.001	<0.001	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.001	<0.001		<0.001	<0.001				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001			<0.001	< 0.001	<0.001	0.002	mg/L	Ľu
251	250	243	231	205	210	215	223	236	203.916	183.059		410.258	430.707				24.6	25.7	26.3	26.4	24.8	24.3	24.5	25.3	24.8	26.3	25.051	24.394	23.936	25.333	27.093			36.6	35.7	36.6	36.6	mg/L	Mg
0.002	< 0.001	< 0.001	<0.01	0.017	<0.01	<0.01	0.049	<0.01	0.023	0.012		0.009	0.055				< 0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001			<0.001	<0.001	<0.001	< 0.001	mg/L	Mn
<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005		<0.005	<0.005				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005	<0.001 <0.005	<0.005	mg/L	Mo
988	1070	971	988	883	883	929	950	987	840.357	754.626		1741.014	1812.535				76.1	80.2	80.3	81.8	82.3	76.6	79.4	79.2	78.7	83.2	77.889	72.813	72.763	80.355	88.504			93.7	94.1	97.7	93.7	mg/L	Na
<0.005	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.005	0.006		0.004	0.004				<0.005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.001			<0.005	<0.005	<0.005	<0.005	mg/L	<u>Z</u>
0.09	0.2	0.2	0.34	0.22	<0.1	0.14	0.65	0.47	0.418	0.286		0.105	0.352				0.01	0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.013	0.012	<0.01			0.2	0.2	0.2	0.1	mg/L	P
63.1	64.3	63.4	55.5	51.0	48.4	50.0	49.7	51.6	45.542	44.243		87.855	76.043				1.30	1.30	1.20	1.40	1.40	1.40	1.20	1.20	1.60	1.90	1.991	2.134	1.579	0.837	0.75			9.70	9.50	9.60	9.60	mg/L	S
<0.001	<0.001	<0.001	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.005	<0.005		<0.005	<0.005				<0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.001	<0.001	<0.001	<0.001	mg/L	Sc

10/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	10/06/2015	10/06/2015	06/01/2017	20/09/2016	29/08/2015	23/05/2015	09/09/2018		Date
MA0378	MA0364	MA0341	MA0319	MA0306	MA0295	MA0288	MA0263	JR0259	MA0222	JT0195	MA0171	MA0151	MA0109	MA0050	MA0019	MA0018	JT0211	MA0158	MA0027	MA0008	MA0370		Sample#
West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	Tower Hill	Tower Hill	Tower Hill	Tower Hill	Lake Tooliorook		Lake name					
<0.1	<0.1	<0.1	<0.1	<u>^</u>	<u>^</u>	<u>^</u>	<u>~</u>	<u>^</u>	<u>^</u>	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.03			<0.01	mg/L	A
0.171	0.213	0.232	0.225	0.221	0.191	0.182	0.201	0.199	0.216	0.249	0.232	0.215	0.258	0.291	0.267	0.263		0.01			0.068	mg/L	Ва
<0.1	<0.1	<0.1	<0.1	ۍ ۲	5	ŝ	ر 2	<u>ح</u>	ۍ ۲	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05			< 0.01	mg/L	Bi
18.8	23.4	26.3	24.4	25.5	23.0	22.7	24.6	23.7	25.6	24.273	23.83	21.413	24.525	26.914	25.242	24.709		28.414			53.4	mg/L	Ca
<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	0.001		< 0.001			<0.005	mg/L	C0
< 0.01	< 0.01	< 0.01	<0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.008	0.006	<0.005	<0.005	0.005	<0.005	<0.005		<0.005			<0.001	mg/L	Ç
0.056	0.064	0.069	0.072	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.022	0.021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		0.053			0.021	mg/L	5
<0.05	<0.05	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.014	0.019	0.008	0.018	0.011	0.024	0.027		0.065			0.007	mg/L	Fe
900	1090	1270	1190	1190	1030	1030	1160	1130	1240	1135.335	1073.319	973.372	1169.335	1284.654	1182.743	1169.739		138.556			28.3	mg/L	~
0.314	0.373	0.407	0.401	0.629	0.568	0.559	0.605	0.600	0.629	0.224	0.213	0.199	0.229	0.255	0.235	0.231		0.017			0.007	mg/L	⊑.
< 0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001			<0.001	mg/L	Ŀ
1540	1940	2210	2190	2100	1920	1870	2050	1980	2150	2036.895	1895.869	1773.94	2108.069	2325.847	2140.752	2145.283		139.892			242	mg/L	Mg
<0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.003	0.003	<0.001	0.002	0.002	0.003	0.004		0.006			< 0.001	mg/L	Mn
<0.05	< 0.05	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		0.007			<0.005	mg/L	Mo
30200	36600	42000	38800	40800	35700	35500	39300	38900	41500	36317.161	34283.88	31481.997	37193.296	40026.251	39034.207	38373.843		1409.848			1040	mg/L	Na
<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.003	0.004	0.002	0.002	0.003	0.002	3 <0.001		0.003			<0.005	mg/L	<u>Z</u> :
0.3	0.3	0.4	0.3	<u>^</u>	4	<u>^</u>	7	4	<u>^</u>	0.205	0.196	0.196	0.241	0.238	0.244	0.275		0.368			0.1	mg/L	P
769	868	686	970	931	822	805	884	874	955	711.606	675.987 <0.005	617.007 <0.005	730.679 <0.005	791.376 <0.005	737.25	736.599		115.032			61.9	mg/L	S
< 0.01	0.012	0.012	0.013	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005			<0.001	mg/L	Sc

28/08/2015	23/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	29/08/2015	10/06/2015	24/05/2015	10/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	10/06/2015		Date
MA0025	MA0005	MA0375	MA0369	MA0352	MA0327	MA0314	MA0302	MA0282	MA0268	JR0256	MA0233	JT0201	MA0180	MA0148	MA0106	MA0135	MA0062	MA0032	MA0031	MA0023	MA0012	MA0379	MA0365	MA0342	MA0320	MA0307	MA0296	MA0289	MA0264	JR0260	MA0224	JT0193	MA0173	MA0152	MA0111	MA0054	MA0021		Sample#
Lake Edward	Lake Edward	Lake Bullen Merri	East Basin	East Basin	East Basin	East Basin	East Basin	East Basin		Lake name																													
		<0.1	<0.1	<0.1	<0.1	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1		1.7	1.7	1.7	1.7	1.4	1.6	1.6	1.5	1.4	1.6	1.611	1.624	1.65	1.51	1.548		mg/L	Si
		0.255	0.264	0.242	0.225	0.229	0.253	0.259	0.254	0.261	0.253	0.258	0.251	0.25	0.25	0.238	0.222			0.255		3.36	3.51	3.86	3.85	3.37	3.14	3.12	3.42	3.40	3.67	4.29	4.116	3.781	4.485	5.006		mg/L	Sr
		<0.005	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005		mg/L	∃
		<0.001	<0.001	<0.001	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005		mg/L	×
		<0.005	<0.005	< 0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.006	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.006	0.014	0.011	0.011	<0.005		mg/L	Zn
		7	<u>^</u>	<u>^</u>	<u>~</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7		_	<u>^</u>	<u>^</u>	7			<u>^</u>		<u>ک</u>	<u>ہ</u>	ŝ	ŝ	<u>^</u>	~	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		µg/L	Ве
		7	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7			<u>^</u>		7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		µg/L	Cd
		7	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>ک</u>	10	ŝ	ŝ	ĉ	<u>ک</u>			ĉ		7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>	_	2	2	<u>~</u>	<u>ہ</u>	ŝ	ŝ	ŝ		µg/L	Cs
		<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>ئ</u>	ŝ	ŝ	ۍ ۲	ŝ	<u>ۍ</u>			ŝ		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	7	<u>^</u>	7	<u>م</u>	<u>ۍ</u>	Ŷ	ŝ	ŝ		µg/L	La
		<u>^</u>	<u>^</u>	<u>^</u>	ω	4	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ک	Ŷ	ŝ	ۍ ۲	Ŷ	ک			Ŷ		4	2	2	2	2	7	2	7	<u>^</u>	2	ک	ۍ ۲	ŝ	ۍ ۲	ŝ		µg/L	Рb
		22	22	22	23	24	22	23	24	21	22	32	35	32	32	33	36			32		508	561	588	544	565	519	502	537	538	568	754	705	714	805	916		µg/L	Rb
		7	<u>^</u>	<u>^</u>	ŝ	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ک	<u>ۍ</u>	ŝ	ۍ د	ŝ	<u>ځ</u>			ŝ		<u>ځ</u>	<u>ۍ</u>	ŝ	ۍ د	2	2	_	2	2	2	<u>۲</u>	<u>۲</u>	ĉ	ۍ د	ĉ		µg/L	dS
		7	<u>^</u>	<u>^</u>	ŝ	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ک	<u>ۍ</u>	ŝ	ۍ د	ŝ	<u>ځ</u>			ŝ		<u>ځ</u>	<u>ۍ</u>	ŝ	ۍ د	<u>^</u>	<u>^</u>	<u>^</u>	7	2	2	<u>۲</u>	<u>ۍ</u>	ĉ	ۍ د	ĉ		µg/L	Sn
		<u>^</u>	<u>^</u>	<u>^</u>	<10	2	<u>^</u>	2	2	<u>^</u>	<u>^</u>	<10	<10	<10	<10	<10	<10			<10		<10	<10	<10	<10	4	4	4	4	4	ы	<10	<10	<10	<10	<10		1	Te
		8	8	8	13	<50	<50	<50	<50	2	<50	6	6	6	6	თ	7			თ		12	12	16	12	<50	<50	<50	<50	<50	<50	<u>ح</u>	<u>ۍ</u>	ŝ	ۍ ۲	თ		1	Zr
		6	188	138	32	73	29	360	83	40	77	ۍ ۲	ŝ	ŝ	ۍ ۲	ŝ	ۍ 5			7		<10	610	426	25	41	159	223	96	266	2	<u>ح</u>	<u>ۍ</u>	ŝ	ۍ ۲	ŝ		µg/L	۲
						<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ĉ	<u></u>	<10	<10	<10	<10	<10	<10			<10						<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<10	<10	<10	<10	<10		µg/L	Hg
		7	<u>^</u>	<u>^</u>	<u>^</u>	-	<u>^</u>	4	ω	<u>^</u>	<u></u>	ç	ĉ	ŝ	ŝ	ĉ	ŝ			ራ		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	2		<u>^</u>	<u>^</u>	2	<u>с</u>	ŝ	ŝ	ŝ	ŝ		µg/L	Ц
		7	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	7	<u>^</u>	7			<u>^</u>		7	7	<u>^</u>	7	<u>^</u>	7	7	7	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	7	<u>^</u>		µg/L	Τh
		7	_	7	_	_	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	21	2	7	7	7			4		9	11	11	10	10	10	9	10	10	10	16	24	15	16	18		µg/L	С

02/08/2016	15/06/2016	05/04/2016	30/08/2015	10/06/2015	24/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	25/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	15/06/2016	29/08/2015	24/05/2015	11/09/2018	09/07/2018	07/05/2018	06/03/2018	22/01/2018	07/11/2017	03/09/2017	29/06/2017	24/04/2017	23/04/2017	07/01/2017	18/11/2016	21/09/2016	03/08/2016	06/04/2016		Date
MA0103	MA0130	MA0066	MA0033	MA0016	MA0013	MA0373	MA0367	MA0344	MA0322	MA0312	MA0298	MA0286	MA0269	JR0253	MA0235	JT0203	MA0182	MA0145	MA0117	MA0131	MA0030	MA0010	MA0381	MA0358	MA0339	MA0317	MA0304	MA0292	MA0277	MA0274	JR0251	MA0246	JT0214	MA0191	MA0143	MA0126	MA0087		Sample#
Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Elingamite	Lake Edward	Lake Edward	Lake Edward	Lake Edward	Lake Edward	Lake Edward	Lake Edward		Lake name																								
2.357	2.385	2.4		2.12		<0.1	0.9	3.5	2.5	<u>^</u>	<u>^</u>	<u>^</u>	1.1	1.4	1.1	0.171	0.142	1.265	8.962	8.856			1.8	0.2	0.1	3.1	3.5	2.9	2.3	1.3	1.9	2.0	4.398	4.709	4.349	3.125	0.269	mg/L	Si
9.441	9.647	9.669		9.356		0.983	1.06	1.77	1.70	1.40	1.06	1.01	1.40	0.927	1.48	1.319	1.13	1.071	1.44	2.526			1.93	2.40	2.60	2.54	2.43	2.21	2.16	2.45	2.61	2.66	2.409	2.238	2.283	2.482	3.219	mg/L	Sr
<0.005	<0.005	0.006		<0.005		<0.005	< 0.005	0.005	<0.005	<0.05	<0.05	<0.05	<0.05	0.007	<0.05	<0.005	<0.005	< 0.005	<0.005	< 0.005			< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	mg/L	∃
<0.005	<0.005	<0.005		<0.005		<0.001	<0.001	<0.001	<0.001	<0.01	<0.01	<0.01	<0.01	<0.001	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005			<0.001	<0.001	<0.001	<0.001	0.018	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.005	< 0.005	<0.005	< 0.005	<0.005	mg/L	×
<0.005	<0.005	<0.005		0.009		<0.005	0.005	0.006	0.006	<0.05	<0.05	<0.05	<0.05	0.01	<0.05	0.014	<0.005	0.009	0.172	0.171			0.024	0.031	0.015	0.007	0.016	0.025	0.025	0.012	0.009	0.014	0.029	0.024	0.019	0.011	0.012	mg/L	Zn
<u>^</u>	~	<u>^</u>		<u>^</u>		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	7	<u>^</u>			<u>^</u>	<u>^</u>	~	^5	<u>^</u>	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>	<u>^</u>	~	<1	µg/L	Ве						
<u>^</u>	~	<u>^</u>		<u>^</u>		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	7	<u>^</u>			<u>^</u>	<u>^</u>	7	<u>^</u>	~	~	~	<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>	<u>^</u>	~	~1	µg/L	Cd						
ۍ ۲	^5	ک		ک		7	<u>^</u>	7	4	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	7	7	7	7	7	7	7	<u>^</u>	<u>^</u>	7	9	<u>^</u>	7	~	µg/L	Cs								
ŝ	~5	ۍ ۲		ک		4	<u>^</u>	4	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			_	<u>^</u>	<u>^</u>	4	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	~	µg/L	La								
<u>ۍ</u>	<u>ح</u>	<u>ۍ</u>		<u>م</u>		7	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	7	7	7	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	7	7	2	<u>^</u>	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	_	<u>^</u>	~	~	µg/L	РЬ
418	415	445		397		7	7	10	12	=	∞	7	9	7	12	15	11	=	=	13			70	80	87	92	69	72	70	81	85	81	112	108	112	125	159	µg/L	Rb
<u>ۍ</u>	^ 5	<u>ۍ</u>		^ 5		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	^5	^ 5	<u>ۍ</u>	ۍ ۲	<u>ۍ</u>			<u>^</u>	<u>^</u>	7	^5	~	~	<u>^</u>	<u>^</u>		<u>^</u>	^ 5	^ თ	<u>ۍ</u>	^ 5	^ 5	µg/L	dS
<u>ۍ</u>	^ 5	<u>ۍ</u>		^ 5		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	^5	^ 5	<u>ۍ</u>	ŝ	<u>ۍ</u>			<u>^</u>	<u>^</u>	7	^5	~	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	^ 5	^ თ	<u>ۍ</u>	^ 5	^ 5	µg/L	Sn
<10	<10	<10		<10		<u>^</u>	<u>^</u>	7	7	7	7	7	7	<u>^</u>	7	^5	^5	<u>ۍ</u>	ۍ ۲	<u>ۍ</u>			<u>^</u>	7	7	<10	<u>^</u>	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>م</u>	հ Մ	<u>ۍ</u>	ۍ ۲	~5	µg/L	Te
<u>ۍ</u>	^ 5	<u>ۍ</u>		^ 5		_	<u>^</u>	2	_	7	<u>^</u>	<u>^</u>	7	<u>^</u>			_	<u>^</u>	7	<10	~	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	~	<1	µg/L	Zr						
<u>ۍ</u>	<u>ح</u>	6		14		29	1060	44	19	36	237	61	83	233	<u>ځ</u>	7	7	<u>^</u>	<u>^</u>	ო			2	226	46	104	96	117	25	38	26	575	7	<u>^</u>	<u>^</u>	~	~	µg/L	٤
<10	<10	<10		<10						ĉ,	м	<u>ۍ</u>	<u>ۍ</u>	<u>^</u>	<u>ۍ</u>	<10	<10	<10	<10	<10							ŝ	<u>ک</u>	ŝ	ŝ	ŝ	ω	<10	<10	<10	<10	<10	µg/L	Hg
<u>ۍ</u>	<u>ح</u>	ŝ		<u>ج</u>		7	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	7	7	<u>^</u>	<u>^</u>	7	<u>^</u>			<u>^</u>	7	7	_	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	~	µg/L	Ξ
<u>^</u>	7	4		4		4	<u>^</u>	4	<u>^</u>	<u>^</u>	4			<u>^</u>	4	7	<u>^</u>	7	7	4	<u>^</u>	<u>^</u>	<u>^</u>	7	4	4	7	4	µg/L	Τh									
<u>^</u>	7	<u>^</u>		<u>^</u>		<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	_	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ო	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	<u> </u>	_	<u>^</u>	15	7	<u>^</u>	<u>^</u>	$\underline{\wedge}$	<u>^</u>	4	11	<u>^</u>	<u>~</u>	4	µg/L	C

4

24/04/2017	23/04/2017	13/03/2017	07/01/2017	18/11/2016	21/09/2016	03/08/2016	28/08/2015	23/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	15/06/2016	05/04/2016	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	04/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016		Date
JR0250	MA0248	MA0243	JT0216	MA0193	MA0142	MA0128	MA0024	MA0004	MA0371	MA0361	MA0347	MA0324	MA0310	MA0300	MA0284	MA0271	JR0258	MA0239	JT0207	MA0186	MA0147	MA0121	MA0132	MA0074	MA0374	MA0368	MA0351	MA0326	MA0313	MA0301	MA0280	MA0266	JR0257	MA0231	JT0199	MA0177	MA0149		Sample#
Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Keilambete	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk	Lake Gnotuk		Lake name															
0.6	<u>^</u>	<u>^</u>	0.519	0.926	1.349	2.75			1.6	1.5	1.8	1.9	<10	<10	<10	<10	<10	<10	1.828	1.944	1.757	1.939	2.13	1.764	1.3	1.7	1.8	1.7	1.7	1.9	1.9	1.9	2.0	2.0	2.078	2.126	2.23	mg/L	Si
1.22	1.13	1.13	1.031	0.841	0.699	0.725			5.71	6.01	6.22	6.09	5.92	5.68	5.58	5.93	5.63	5.97	6.63	6.391	6.479	6.338	6.673	7.263	9.59	9.60	10.0	9.85	9.37	9.10	9.14	9.07	9.12	9.81	9.674	9.403	9.379	mg/L	Sr
<0.005	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005			< 0.05	< 0.05	<0.05	< 0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.009	0.009	0.01	0.029	0.009	0.011	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.005	0.005	<0.005	mg/L	∃
<0.001	<0.01	<0.01	<0.005	<0.005	<0.005	< 0.005			<0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.005	<0.005	< 0.005	mg/L	×
<0.005	<0.05	<0.05	0.007	<0.005	0.009	< 0.005			<0.05	<0.05	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.011	<0.005	0.007	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.007	<0.005	0.007	mg/L	Zn
7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			ŝ	ŝ	\$	ک	<u>^</u>	_	<u>^</u>	_	ک	<u>ح</u>	<u>م</u>	ک	<u>^</u>	<u>^</u>	~	µg/L	Be														
7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	µg/L	Cd															
7	7	7	7	6	4	<u>^</u>			<u>^</u>	7	<u>^</u>	7	_	<u>^</u>	7		2	<u>^</u>	ۍ ۲	<u>ځ</u>	^5	ŝ	^5	<u>م</u>	7	<u>^</u>	<u>^</u>	~	7	7	<u>^</u>	2	_	_	<u>ۍ</u>	^5	<5	µg/L	Cs
<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	ŝ	ŝ	<u>ح</u>	ŝ	ۍ ۲	ۍ ۲	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ŝ	<u>۲</u>	<5	µg/L	La									
7	7	7	<u>^</u>	<u>^</u>	_	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	_	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ۍ د	ۍ ۲	<u>ئ</u>	ۍ د	ۍ ۲	ک	7	2	_	7	7	<u>^</u>	7	<u>^</u>	21	<u>^</u>	ۍ ۲	ک	<5	µg/L	Pb
36	36	36	43	37	34	37			247	249	272	254	274	253	244	266	236	260	391	371	379	350	421	408	305	307	305	303	327	312	315	294	289	303	435	400	429	µg/L	Rb
<u>^</u>	<u>^</u>	7	ک	ۍ ۲	ک	ۍ			ŝ	ŝ	ŝ	ک	_	_	_		_		ŝ	ŝ	ک	ŝ	ۍ ۲	ۍ ۲	ک	ک	ۍ ۲	ک	<u>^</u>	<u>^</u>	4	<u>^</u>	<u>^</u>	<u>^</u>	ŝ	ک	<5	µg/L	dS
<u>^</u>	<u>^</u>	7	ۍ ۲	ۍ ۲	<u>م</u>	ŝ			ۍ د	ŝ	ۍ د	^5	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	2		ۍ د	ŝ	ۍ ۲	ۍ د	ŝ	ۍ ۲	<u>م</u>	ۍ ۲	<u>م</u>	ک	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ω	<u>^</u>	ŝ	ۍ ۲	<5	µg/L	Sn
7	<u>^</u>	7	<u>ک</u>	ŝ	^ 5	ۍ د			<10	<10	<10	<10	4	თ	ω	4	2	2	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	4	4	4	4	_	4	<10	<10	<10	µg/L	Te
7	<u>^</u>	~	<u>^</u>	<u>^</u>	~	<u>^</u>			23	23	23	19	<50	<50	<50	<50	<50	<50	12	11	12	14	10	15	11	10	11	<10	<50	<50	<50	<50	<50	<50	<u>م</u>	<u>م</u>	<5	µg/L	Zr
2	^5	^ 5	7	<u>^</u>	~	<u>^</u>			15	159	85	134	123	33	376	82	681	6	<u>ۍ</u>	12	^5	<u>ۍ</u>	29	^ 5	<10	1540	976	<10	40	ო	350	152	39	154	<u>م</u>	7	<5	µg/L	٤
<u>^</u>	ک	<u>ۍ</u>	<10	<10	<10	<10							<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	_	<u>^</u>	<10	<10	<10	<10	<10	<10					<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<10	<10	<10	µg/L	Hg
<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	_	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ŝ	ک	ک	ŝ	ک	<u>ح</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	2	_	<u>^</u>	<u>^</u>	2	ک	ک	<5	µg/L	⊐
<u>^</u>	~	7	<u>^</u>	<u>^</u>	7	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	7	7	<u>^</u>	~	7	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	~	µg/L	Ţ							
<u>\</u>	<u>^</u>	4	<u>^</u>	12	4	<u>^</u>			_	2	2	2	ω	2	2	2	ω	2	ω	4	ω	ω	ω	ω	7		<u> </u>	7		4	<u> </u>	<u>^</u>	<u> </u>	<u>^</u>	<u>^</u>	2	_	µg/L	C

15

23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	18/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	10/06/2015	24/05/2015	09/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	29/08/2015	11/09/2018	09/07/2018	07/05/2018	06/03/2018	22/01/2018	07/11/2017	03/09/2017	29/06/2017		Date
MA0308	MA0297	MA0290	MA0265	JR0255	MA0226	JT0197	MA0175	MA0153	MA0113	MA0133	MA0058	MA0035	MA0022	MA0011	MA0372	MA0360	MA0346	MA0323	MA0311	MA0299	MA0285	MA0270	MA0237	JT0205	MA0184	MA0150	MA0119	MA0070	MA0029	MA0382	MA0357	MA0329	MA0316	MA0303	MA0291	MA0276	MA0275		Sample#
Lake Purrumbete	Lake Mumblin	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake	Lake Leake		Lake name																												
0.2	0.4	0.2	0.7	2.8	0.3	0.459	0.332	1.674	0.575	0.279	0.207		0.63		0.2	<0.1	0.8	0.9	1.8	1.4	1.3	1.8	1.3	2.359	1.304	0.918	0.844			1.2	0.3	0.2	0.2	<u>^</u>	7	7	~	mg/L	Si
0.311	0.304	0.307	0.306	0.314	0.308	0.302	0.306	0.277	0.315	0.32	0.321		0.308		0.400	0.442	0.520	0.560	0.501	0.448	0.421	0.487	0.586	0.54	0.498	0.489	0.497			0.815	1.10	1.40	1.35	1.08	0.803	0.791	1.05	mg/L	Sr
<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005	<0.05	<0.05	< 0.05	<0.05	mg/L	Ħ
0.162	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0.001	0.002	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005			<0.001	<0.001	<0.001	<0.001	0.012	<0.01	<0.01	<0.01	mg/L	×
0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.025	<0.005	<0.005	<0.005	<0.005	<0.005		0.006		0.012	<0.005	<0.005	0.01	<0.005	0.019	0.009	0.011	0.020	0.006	0.006	0.009	<0.005			<0.005	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	<0.05	mg/L	Zn
<u>^</u>	7	7	~	7	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>		7	7	<u>^</u>	<u>^</u>	7	7	7	7	7	<u>^</u>	<u>^</u>	7	7			7	~	7	^5	7	7	~	~	µg/L	Be
<u>^</u>	<u>^</u>	7	7	7	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>		7	7	7	7	7	7	7	7	7	<u>^</u>	<u>^</u>	7	7			7	7	7	7	7	7	7	~	µg/L	Cd
	<u>^</u>	<u>^</u>	~	<u>^</u>	<u>^</u>	7	ω	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>		~	4	<u>^</u>	<u>^</u>	<u>^</u>	~	4	<u>^</u>	<u>^</u>	<u>^</u>	_	7	7			~	~	<u>^</u>	~	<u>^</u>	~	~	~	μg/L	S
	7	7	<u>~</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>		<u>^</u>		7	<u>^</u>	<u>^</u>	<u>^</u>	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	~	<u>^</u>			7	~	<u>^</u>	~	7	7	~	~	µg/L	La
_	<u>^</u>	7	<u>^</u>		<u>^</u>		7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	7			7	7	7	ω	<u>^</u>	7	7	~	µg/L	РЬ								
<u>^</u>	8	9	10	12	9	11	10	11	11	11	12		9		6	8	11	10	7	7	7	6	9	10	7	10	10			24	33	41	41	28	23	24	31	µg/L	Rb
<u>^</u>	7	7	7	4	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>		7	7	<u>^</u>	<u>^</u>	4	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	7			7	7	<u>^</u>	~5	4	7	7	~	µg/L	Sp
	7	<u>^</u>	~	<u>^</u>		<u>^</u>		<u>^</u>	~	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	ک	<u>^</u>	<u>^</u>	<u>^</u>	~	µg/L	Sn																	
Δ	<u>^</u>	7	7	7	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>		7	7	<u>^</u>	7	7	7	7	<u>^</u>	7	<u>^</u>	<u>^</u>	7	7			7	~	<u>^</u>	<10	4	7	~	~	µg/L	Te
	7	<u>^</u>	~	<u>^</u>		<u>^</u>		2	<u>^</u>	<u>^</u>	_	<u>^</u>	~	<u>^</u>			ω	2	ω	<10	<u>^</u>	<u>^</u>	<u>^</u>	~	µg/L	Zr													
709	319	1890	112	11	2	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>		ω	1320	51	37	38	1380	986	399	9	<u>^</u>	<u>^</u>	~	<u>^</u>			2	72	66	61	86	64	182	9	µg/L	٤
ო	2	20	2	7	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>						7	10	8	2	<u>^</u>	<u>^</u>	<u>^</u>	7	7							ŝ	<u>ۍ</u>	^ 5	հ Տ	µg/L	Hg
<u>^</u>	7	7	7	7	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>		7	7	7	<u>^</u>	7	7	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>~</u>	<u>^</u>			7	<u>^</u>	<u>^</u>	_	7	7	<u>^</u>	~	µg/L	⊐
<u>^</u>	<u>^</u>	7	7	4	<u>^</u>	4	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>		7	4	<u>^</u>	<u>^</u>	4	7	4	<u>^</u>	7	<u>^</u>	<u>^</u>	7	7			7	7	<u>^</u>	4	4	7	7	~	µg/L	Τh
21	7	4	7	4	4	7	ω	4	4	4	4		4		4	4	4	7	2	4	7	4	7	<u> </u>	4	7	4			4	4	<u>^</u>	4	ω	4	4	4	µg/L	C

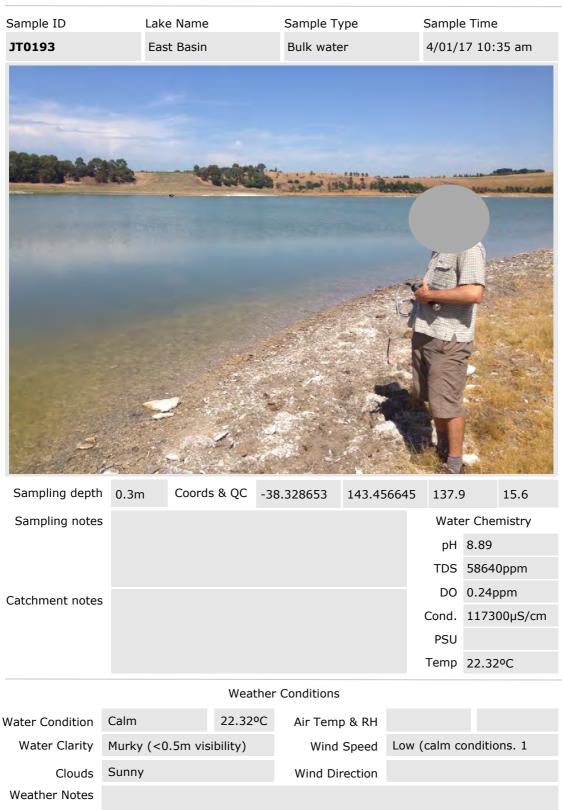
10/07/2018	08/05/2018	07/03/2018	24/01/2018	08/11/2017	05/09/2017	27/06/2017	26/04/2017	12/03/2017	06/01/2017	17/11/2016	18/09/2016	02/08/2016	15/06/2016	05/04/2016	30/08/2015	24/05/2015	11/09/2018	09/07/2018	07/05/2018	06/03/2018	22/01/2018	07/11/2017	03/09/2017	29/06/2017	25/04/2017	12/03/2017	06/01/2017	18/11/2016	20/09/2016	03/08/2016	06/04/2016	29/08/2015	23/05/2015	10/09/2018	10/07/2018	08/05/2018	07/03/2018		Date
MA0363	MA0349	MA0325	MA0315	MA0294	MA0287	MA0262	JR0254	MA0228	JT0209	MA0169	MA0167	MA0115	MA0134	MA0044	MA0036	MA0014	MA0380	MA0359	MA0340	MA0318	MA0305	MA0293	MA0278	MA0273	JR0252	MA0241	JT0212	MA0189	MA0144	MA0124	MA0081	MA0026	MA0006	MA0377	MA0366	MA0343	MA0321		Sample#
Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Tooliorook	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Surprise	Lake Purrumbete	Lake Purrumbete	Lake Purrumbete	Lake Purrumbete		Lake name						
0.5	0.4	1.9	3.6	3.6	7	2.5	2.0	<u>^</u>	1.372	5.136		1.313	3.122				4.4	4.3	4.0	4.0	4.3	5.4	3.9	4.0	4.0	5.0	5.65	5.08	2.752	1.494	1.229			0.7	0.7	0.3	0.3	mg/L	Si
1.14	1.18	1.22	1.15	1.05	1.01	1.03	1.05	1.05	0.954	0.831		1.495	1.694				0.181	0.184	0.180	0.182	0.170	0.162	0.170	0.178	0.170	0.173	0.181	0.173	0.155	0.173	0.165			0.318	0.315	0.325	0.324	mg/L	Sr
0.006	<0.005	<0.005	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.005	<0.005		<0.005	<0.005				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005	mg/L	∃
<0.001	<0.001	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005		<0.005	< 0.005				<0.001	< 0.001	<0.001	<0.001	0.024	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	< 0.005			<0.001	<0.001	< 0.001	<0.001	mg/L	×
<0.005	<0.005	< 0.005	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	0.014	<0.005		<0.005	<0.005				<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.008	<0.005	< 0.005	<0.005	<0.005	<0.005			<0.005	< 0.005	<0.005	<0.005	mg/L	Zn
<u> </u>	<u>^</u>	<u>^</u>	~	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>	<u>^</u>				<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	<1	µg/L	Ве
<u>^</u>	~	<u>^</u>	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>	<u>^</u>				<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	4	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	~	µg/L	Cd
7	7	<u>^</u>	7	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	2	თ		7	<u>^</u>				7	<u>^</u>	7	7	7	<u>^</u>	<u>^</u>	7	7	7	<u>^</u>	_	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	7	<u>^</u>	~	µg/L	Cs
<u></u>	~	7	7	7	7	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>	<u>^</u>				7	7	7	<u>^</u>	4	7	<u>^</u>	<u>^</u>	7	7	7	<u>^</u>	<u>^</u>	7	<u>^</u>			7	7	7	~	µg/L	La
<u>^</u>	~	<u>^</u>	~	<u>^</u>	~	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>	<u>^</u>				<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>	$\underline{\sim}$	<u>^</u>	<u>^</u>	<u>^</u>			~	<u>^</u>	<u>^</u>	<1	µg/L	Рb
4	4	4	4	4	ω	4	4	4	<u>~</u> 5	<u>~</u> 5		^5	8				9	9	9	10	10	9	7	9	8	9	12	11	11	13	12			9	8	9	9	µg/L	Rb
<u></u>	~	<u>^</u>	~	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	\$	\$		^5	^5				~	<u>^</u>	~	<u>^</u>	<u>^</u>	~	<u>^</u>	7	~	~	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>			~	<u>^</u>	<u>^</u>	~	µg/L	dS
<u></u>	~	<u>^</u>	~	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>~</u> 5	<u>~</u> 5		^5	^5				<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	~	<u>^</u>		<u>^</u>	<u>^</u>	<u>^</u>			~	<u>^</u>	<u>^</u>	<1	µg/L	Sn
<u> </u>	~	7	~	7	7	7	<u>^</u>	<u>^</u>	ۍ د	ۍ ۲		^5	ک				7	7	7	7	7	7	7	7	7	7	7	<u>^</u>	<u>^</u>	7	<u>^</u>			7	7	7	~	µg/L	Te
_	~	_	7	<u>^</u>	7	7	<u>^</u>	_	<u>^</u>	<u>^</u>		<u>^</u>	<u>^</u>				7	7	7	<u>^</u>	4	7	<u>^</u>	<u>^</u>	7	7	7	<u>^</u>	<u>^</u>	7	<u>^</u>			~	7	7	~	µg/L	Zr
305	34	9	13	62	135	13	180	7	<u>^</u>	<u>^</u>		<u>^</u>	<u>^</u>				2	968	37	48	132	30	406	17	თ	977	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			8	127	65	246	µg/L	۶
			ک	ر ،	<u>ۍ</u>	ک	ŝ	ۍ ۲	<10	<10		<10	<10								2	_	2	<u>^</u>	<u>^</u>	ω	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>							µg/L	Hg
<u>^</u>	<u>~</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>	<u>^</u>				<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	~	µg/L	⊐
<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>	<u>^</u>				<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>			<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	µg/L	Τh						
<u>^</u>	_	_	_	_	_	$\overline{\nabla}$	_	$\overline{}$	2	14		_	2				7	$\overline{\nabla}$	7	$\overline{\nabla}$	4	7	7	7	<u>~</u>	<u>~</u>	<u>^</u>	2	2	$\overline{}$	$\overline{}$			<u>~</u>	$\overline{\nabla}$	$\overline{\nabla}$	<u>~</u>	µg/L	C

10/09/2018	10/07/2018	08/05/2018	07/03/2018	23/01/2018	08/11/2017	05/09/2017	28/06/2017	26/04/2017	12/03/2017	04/01/2017	18/11/2016	19/09/2016	02/08/2016	05/04/2016	10/06/2015	10/06/2015	06/01/2017	20/09/2016	29/08/2015	23/05/2015	09/09/2018		Date
MA0378	MA0364	MA0341	MA0319	MA0306	MA0295	MA0288	MA0263	JR0259	MA0222	JT0195	MA0171	MA0151	MA0109	MA0050	MA0019	MA0018	JT0211	MA0158	MA0027	MA0008	MA0370		Sample#
West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	West Basin	Tower Hill	Tower Hill	Tower Hill	Tower Hill	Lake Tooliorook		Lake name										
1.7	2.2	2.0	2.0	<10	<10	<10	<10	<10	<10	1.883	1.799	1.673	1.746	1.882	2.087	2.102		7.283			0.9	mg/L	Si
3.27	4.18	4.62	4.50	4.34	3.90	3.82	4.11	4.02	4.40	4.712	4.523	3.971	4.859	5.435	5.002	4.875		0.759			1.16	mg/L	Sr
<0.05	<0.05	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005		0.009			< 0.005	mg/L	Ξ
<0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005			<0.001	mg/L	×
<0.05	<0.05	<0.05	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.021	0.009	<0.005	0.005	0.007	<0.005	0.009		0.03			<0.005	mg/L	Zn
^5	^5	^5	\$	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>		<u>^</u>			<]	µg/L	Be
<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>		<u>^</u>			<1	µg/L	Cd
<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	_	_	_	4	2	<u>ۍ</u>	<u>ۍ</u>	<u>ۍ</u>	<u>ۍ</u>	<u>ۍ</u>	^5	^5		76			<_	µg/L	Cs
<u>^</u>	ŝ	ۍ ۲	ŝ	ۍ د	ۍ ۲	<u>ۍ</u>	<u>ئ</u>		<u>^</u>			<u>^</u>	µg/L	La									
<u>^</u>	<u>^</u>	2	ω	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	ŝ	ۍ ۲	ۍ ۲	ۍ د	ۍ ۲	<u>ۍ</u>	<u>ئ</u>		ω			<u>^</u>	µg/L	РЬ
231	279	310	311	302	274	256	280	277	302	417	385	380	461	415	430	377		157			4	µg/L	Rb
<u>ک</u>	<u>م</u>	<u>ک</u>	ŝ	ω	ω	2	ω	2	ω	ы	ŝ	ŝ	6	ر 5	ო	<u>م</u>		ۍ د			~	µg/L	Sb
<u>ک</u>	<u>م</u>	<u>ک</u>	ŝ	<u>^</u>	<u>^</u>	<u>^</u>	_	ω	2	ر	ŝ	ŝ	ŝ	ر 5	<u>5</u>	<u>م</u>		ۍ د			~	µg/L	Sn
<10	<10	<10	<10	ω	ო	4	4	ო	ო	<10	<10	<10	<10	<10	<10	<10		ۍ د			~	µg/L	Te
<10	11	12		<50	<50	<50	<50	<50	<50	\$	ŝ	ŝ	ŝ	<u>ۍ</u>	<u>5</u>	<u>م</u>		<u>^</u>			_	µg/L	Zr
<10	173	70	31	68	62	1730	70	3510	12	ç	ŝ	ŝ	ŝ	ŝ	۸ 5	^ Ծ		ω			15	µg/L	٤
				<u>^</u>	<u>^</u>	თ	<u>^</u>	28	<u>^</u>	<10	<10	<10	<10	<10	<10	<10		<10				µg/L	Hg
7	7	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	7	7	ŝ	ĉ	ŝ	ራ	ĉ	ŝ	ۍ ح		<u>^</u>			~	µg/L	Ξ
7	<u>^</u>	7	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u>	7	<u>^</u>		<u>^</u>			~	µg/L	Th
23	31	33	35	34	29	28	30	36	33	54	52	52	60	54	56	48		218			<u>~</u>	µg/L	C

Sample ID	Lak	e Name	Sample T	уре	Sample Tim	e
MA0021	Eas	st Basin	Water		10/06/15 2	:36 pm
Sampling depth	0.1m	Coords & QC	-38.326213	143.453522	133.2	16.8
Sampling notes					Water Che	emistry

Sampling notes				Wate	r Chemis	stry
				pH		
				TDS		
Catchment notes				DO		
				Cond.		
				PSU		
				Temp		
		Weathou	- Conditions			
		weather	Conditions			
	<u> </u>		· · · _	 1000	~	

Water Condition	Calm	Air Temp & RH	12ºC	Overcast
Water Clarity	Cloudy (0.5-2m visibilit	ty) Wind Speed	Medium (bran	ches moving.
Clouds		Wind Direction	SSW to NNE	
Weather Notes				


Sample ID	Lak	e Name	Sample T	уре	Sample Time	е
MA0054	Ea	st Basin	Water-sta	able	5/04/16 10	:33 am
		-	at the state of the state	A Cartestan Cart	-	-
	And in case of	MARCH ROOM			10.00	1
						-
and the second						
San Star						
			Jas and Marca			A. A.
				and the second s		
and the	Sa		-her			253
and the second second	1	and the		mar and	Martin C	The state
and and a state	- We give					ALC: NO
		and the second second		" ALANA ALAN		
Sampling depth	0.2m	Coords & QC	-38.326423	143.453489	110.4	7.8
Sampling notes					Water Che	emistry
					pH 7.68	

Sampling notes				Wate	er Chemistry
				pH	7.68
				TDS	64250ppm
Catchment notes				DO	
				Cond.	128500µS/cm
				PSU	
				Temp	18.54°C
		Weather	Conditions		
Water Condition	Choppy	18.54°C	Air Temp & RH	23ºC	25
Water Clarity	Murky (<0.5m visi	bility)	Wind Speed	Medium (bra	anches moving.
Clouds			Wind Direction	N to S	
Weather Notes					

Sample ID	Lake	e Name	Sample T	уре		Sample	e Time
MA0111	Eas	t Basin	Water - g	general		2/08/1	6 10:50 am
Sampling depth	0.2m	Coords & QC	-38.326129	143.45	3129	97.8	13.0
Sampling notes						Wate	er Chemistry
						рН	8.99
						TDS	6320ppm
Catchment notes						DO	2.72ppm
						Cond.	120600µS/cm
						PSU	-
						Temp	11.2°C
		Wea	ther Conditions			Temp	
Water Condition	Choppy	Wea 11.2°			9.4°		
Water Condition Water Clarity			C Air Tem			C	11.2°C
		11.2%	C Air Tem	p & RH Speed		C um (bra	11.2°C 81

Sample ID	Lak	e Name		Sample Ty	vpe		Sample	Time	
MA0173	Eas	st Basin		Water - b	ulk		18/11/	16 8:	39 am
Sampling depth	0.2m	Coords &	QC -3	8.326309	143.453	3478	115.9	A	15.6
Sampling notes				0.020007					mistry
Sumpling notes								9.04	nisti y
								4865	Oppm
Catchment notes							DO	2.9pp	m
							Cond.	9736	DµS/cm
								-	
							Temp	19.2 ^c	С
			Weathe	r Conditions					
Water Condition	Calm	1	9.2°C	Air Temp	0 & RH	12.3	°C	97	
Water Clarity	Murky (<0).5m visibil	lity)	Wind	Speed	Low	(calm co	onditio	ins.
Clouds Weather Notes	Overcast			Wind Dir	ection	SSW	to NNE		

Samples taken by: Jonathan Tyler

Sample ID	L	ake Name	9		Sample Ty	/pe		Sample	e Time	2
MA0224	E	ast Basin			Water - b	ulk		12/03/	/17 9:	39 am
15.0	22						Total La	**		
			Leave	LOKC	.ama				4	222
					7-0					
							A state a state of			
Sampling depth	0.2m	Coord	ls & QC	-38	3.326051	143.45	3364	121.3	3	15.6
Sampling notes								Wate	er Che	mistry
								pН	8.96	
								TDS	5240	0ppm
Catchment notes								DO	0.24p	opm
								Cond.	1048	00µS/cm
								PSU	-	
								Temp	21.69	РС
			Weat	ther	Conditions					
Water Condition	Calm		21.6%	С	Air Tem	0 & RH	16%	С	99)
Water Clarity	Murky (<0.5m vis	sibility)			Speed	Med	ium (bra	inches	s moving.
Clouds	Partly C				Wind Dir			to WNW		
Weather Notes	, -									

Sample ID	Lak	e Name		Sample Ty	ре		Sample	e Time	
MA0264	Eas	t Basin		Water - st			28/06,	/17 8:45 am	
					nd				
Sampling depth	0.2m	Coords &	QC -38	3.326107	143.453	188	170.1	. 33.5	
Sampling notes							Wate	er Chemistry	
							pН	9.1	
							TDS	51280ppm	
Catchment notes							DO	1.57ppm	
								102500µS/cn	n
							PSU Temp	- 10.1ºC	
							remp	10.1-C	
				Conditions					
Water Condition	Calm		0.1°C	Air Temp		7ºC		97	
Water Clarity).5m visibil	ity)	Wind	Speed	Low	(calm co	onditions. 1	
Clouds	Partly Clou	ıdy		Wind Dir	ection	NNW	to SSE		
Weather Notes									

Sample ID	Lak	e Name		Sample Ty			Sample	e Time	
MA0289	Eas	st Basin		Water - s			5/09/1	.7 3:02	2 pm
					and				
Sampling depth	0.3m	Coords & QC	-38	8.326106	143.45	5334() 115.2	<u>2</u>	13.0
Sampling notes							Wate	er Cher	nistry
								9.14	
							TDS	51600	Oppm
Catchment notes							DO	1.25p	pm
							Cond.	10320)0µS/cm
								-	
							Temp	10.30	С
		Wea	ther	Conditions					
Water Condition	Choppy	10.30	С	Air Tem	o & RH	7.3	٥C	10	0
Water Clarity	Murky (<0).5m visibility)		Wind	Speed	Hig	h (Windy	. 10+	m/s)
Clouds	Partly Clou	ıdy		Wind Dir	rection	WN	W to ESE		
Weather Notes									

Sample ID Lake Name Sample Type Sample Time MA0296 East Basin Water - stable isotones and Sample Time Sample Type Sample Time Sample Time Sample Time Sample Type Sample Time Sample Time Sample Time Sample Time Sample Type Sample Type Sample Time Sample Time Sample Time Sample Type Sample Time Sample Time Sample Time Sample Time Sample Time Sample Type Sample Time Sample Time Sample Time Sample Time Sample Time Sample Type Sample Time Sample Time Sample Time Sample Time Sample Time Sample Type Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time Sample Time <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>									
Interve Lose Dosini Isotonees and O 10 / J / J / 21 / 21 / 21 / 21 / 21 / 21 /	Sample ID	Lak	e Name	Sample T	уре		Sample	e Time	
Sampling notes	MA0296	Eas	st Basin				8/11/1	7 12:4	47 pm
Sampling notes									
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Sampling depth	0.3m	Coords & QC	-38.326070	143.45	3195	131.8	3	13.0
Catchment notesImage: The second	Sampling notes						Wate	er Cher	nistry
Catchment notesImage: constraint of the second							pН	9.1	
Catchment notes PSU PSU TempCond. 							TDS	52500)ppm
PSU Temp PSU Temp 18.9°C Water Condition Calm 18.9°C Water Clarity Murky (<0.5m visibility)	Catchment notes						DO	2.13p	pm
Temp18.9°CWeather ConditionsWater ConditionCalm18.9°CAir Temp & RH14°C71Water ClarityMurky (<0.5m visibility)								10480	00µS/cm
Weather ConditionsWater ConditionCalm18.9°CAir Temp & RH14°C71Water ClarityMurky (<0.5m visibility)									
Water ConditionCalm18.9°CAir Temp & RH14°C71Water ClarityMurky (<0.5m visibility)							Temp	18.90	С
Water ClarityMurky (<0.5m visibility)Wind SpeedLow (calm conditions. 1CloudsPartly CloudyWind DirectionESE to WNW			Weat	ther Conditions					
Clouds Partly Cloudy Wind Direction ESE to WNW	Water Condition	Calm	18.9%	C Air Tem	p & RH	14ºC		71	
	Water Clarity	Murky (<0).5m visibility)	Wind	Speed	Low	(calm co	onditio	ns. 1
Weather Notes	Clouds	Partly Clo	udy	Wind Di	rection	ESE	to WNW	1	
	Weather Notes								

Sample ID	Lal	ke Name	Sample T		Sample Time	e
MA0307	Ea	ist Basin	Water - s isotones	stable and	23/01/18 1	0:08 am
-						
State of Concession, Name						
-						
and the second	-		an links and the same A	a Mark	MAR TO	
	R.L. Martin	in sinter i and	MERAL di	band The		10
*			THE REAL OF		· · · · · · · · · · · · · · · · · · ·	
11					-	12.07
			- Aller	and the second second		and the second
	2.4					Carlo -
and the First	ALL P			and the second	A Company of the	-
21						A Carlos
				and states of		
	1 1 3	e sint and	in the second	1.421-1-		Carles 6
		and the Martin	R 8 20	State Play		and the set
Sampling depth	0.3m	Coords & QC	-38.326123	143.453176	114.4	26.0

Sampling depth	0.3m	Coords & QC	-38.326123	143.45317	76 114.4	1	26.0
Sampling notes					Wate	er Che	mistry
					pН	9	
					TDS	5257	Oppm
Catchment notes					DO	0.2pp	m
					Cond.	1052	00µS/cm
					PSU	-	
					Temp	25.30	С
		Weat	ther Conditions				
Water Condition	Calm	25.3%	C Air Tem	p&RH 18	°С	62	
Water Clarity	Murkv (<0	5m visibility)	Wind	Speed Me	dium (bra	anches	movina.

			/ in remp a fai		
Water Clarity	Murky (<0.5m vis	ibility)	Wind Speed	Medium (bran	ches moving.
Clouds	Sunny		Wind Direction	ESE to WNW	
Weather Notes					

Sample ID	Lake	e Name		Sample T	уре		Sample	e Time
MA0320	Eas	t Basin		Water - s			7/03/1	l8 9:11 am
		1. 15		Esto			P. Carlos	Carles Stor
Sampling depth	0.3m	Coords & QC	-38	.326231	143.45	2955	109.8	3 15.6
Sampling notes							Wate	er Chemistry
							pН	8.91
							TDS	62800ppm
Catchment notes							DO	8ppm
							Cond.	125600µS/cm
							PSU	
							Temp	20.6°C
		We	ather	Conditions	;			
Water Condition	Calm	20.6	9°C	Air Tem	p & RH	16ºC		96
Water Clarity	Murky (<0	.5m visibility))	Wind	Speed	Low	(calm co	onditions. 1

ESE to WNW

Wind Direction

Sunny

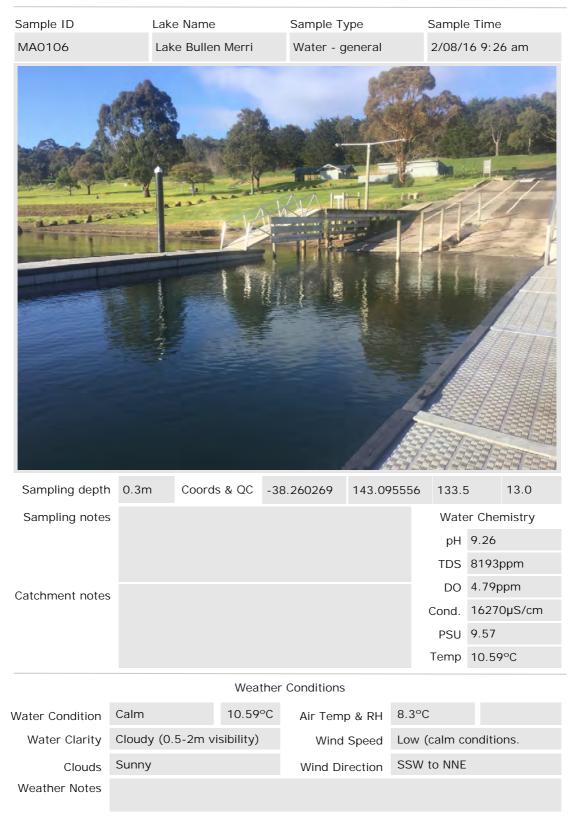
Clouds

Weather Notes

Sample ID		Lake Name	9		Sample Ty	pe		Sample	e Time	9
MA0342		East Basin			Water - st			8/05/1	8 9:0	8 am
Sampling depth	0.3m	Coord	ls & QC	-38	3.326201	143.45	3342	2 117.5	5	7.8
Sampling notes								Wate	er Che	mistry
								pН	8.96	
									59650	
Catchment notes									6.3pp	
									11920)0µS/cm
								PSU Temp	14.4°(0
			Wea	ther	Conditions					
Water Condition	Calm		14.4°C		Air Temp	0 & RH	97°C		82	
Water Clarity		(<0.5m vi				Speed		(calm co		
Clouds	Sunny				Wind Dir			to NW		
Weather Notes										

Sample ID	Lal	ke Name	Sample Ty	/pe	Sample	e Time
MA0365	Ea	st Basin	Water - s		10/07,	/18 12:17 pm
Sampling depth		Coords & QC	-38.326110	143.4532		
Sampling notes						er Chemistry 8.91 56960ppm
Catchment notes	PSU off c	hart			Cond. PSU	6.75ppm 113800µS/cm
					Temp	10.5°C
		Wea	ther Conditions			
Water Condition	Calm	10.5°	C Air Tem	0 & RH 8	.4ºC	
Water Clarity	Murky (<	0.5m visibility)	Wind	Speed Lo	ow (calm c	onditions. 1
Clouds	Overcast		Wind Dir	rection N	W to SE	
Weather Notes						

Sample ID	Lake	e Name	Sample T			Sample	e Time	
MA0379	Eas	st Basin	Water - s			10/09,	/18 11:17	am
Sampling depth	0.2m	Coords & QC	-38.326227	143.45	3252	99.0	26.	.0
Sampling notes						Wate	er Chemist	ry
						pН	8.92	
						TDS	57670ppr	m
Catchment notes						DO	5.85ppm	C / ama
							115300µ9 -	S/cm
							13.7ºC	
		W/oo	ther Conditions			•		
	Calm				14.20			
Water Condition	Calm	13.7°			14.20		nchos	vine
Water Clarity).5m visibility)		Speed			anches mo	ving.
			Wind Di	raction	NW to	o SE		
Clouds Weather Notes	Partly Clou	Jay	Wind Di	rection				


Sample ID	Lake	e Name	S	ample Ty	уре	:	Sample Tir	me
MA0012	Lak	e Bullen Merri		Water			24/05/15	
			I					
Sampling depth	0.4	Coords & QC	-38.2	60232	143.09	5611	138.1	15.6
Sampling notes	End of bo Sample o	bat ramp pontoo apped at depth	on. by ha	nd.				
Catchment notes								
		Wea	ther Co	onditions				
Water Condition	Calm			Air Tem	p & RH	10		
Water Clarity	Clear (>2r	n visibility)		Wind	Speed	Low (calm cond	itions. 1
Clouds Weather Notes	Partly Clou	ıdy		Wind Di	rection	NNE t	o SSW	

Sample ID	Lak	e Name	Sample	е Туре		Sample	Time
MA0023	Lak	e Bullen Merri	Water			10/06/	15 5:40 pm
Sampling depth	0.2m	Coords & QC					0.0
Sampling notes	Calcium is	otope sample				Wate	r Chemistry
						pН	
						TDS	
Catchment notes						DO	
						Cond.	
						PSU	
						Temp	
		Wea	ther Condition	ons			
Water Condition	Calm		Air Te	emp & RH			Overcast
Water Clarity	Clear (>2r	n visibility)	W	nd Speed	Low (calm co	nditions. 1
Clouds			Wind	Direction			
Weather Notes							

Sample ID	Lake	Name		Sample Ty	vpe		Sample	Time
MA0031	Lake	e Bullen Merri		Water			29/08/	15 4:22 pm
Sampling depth	0.2m	Coords & QC	-38.	260567	143.09	5482	166.5	13.0
Sampling notes	Lake level	5.413 below the	m sr7	7m9.			Water	Chemistry
							рН	
							TDS	
Catchment notes							DO	
							Cond.	
							PSU Temp	
		11/22	ther	Conditions			- 911P	
	.	vvea	ther			0.50		
	Calm			Air Temp		9.5°C		- I
,	Clear (>2m	i visidility)			Speed			nches moving.
Clouds Weather Notes	Overcast			Wind Dir	ection	32VV	to NNE	

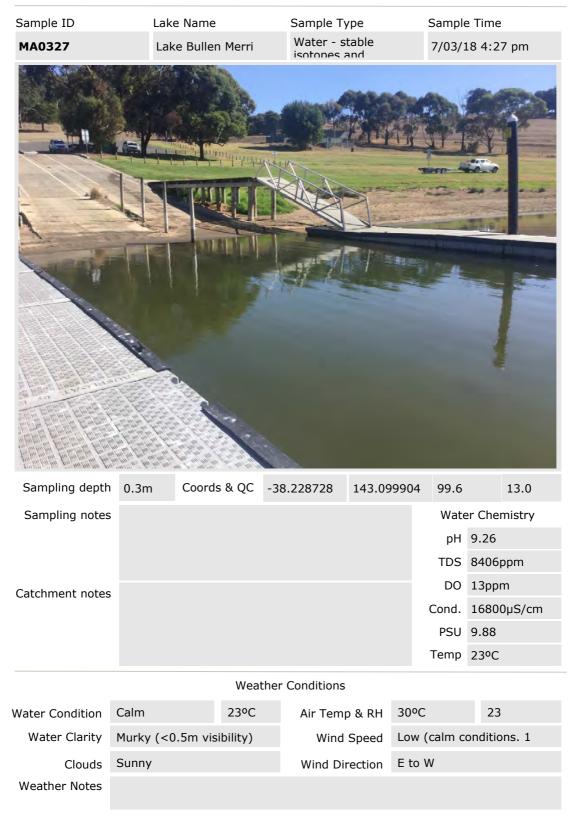
Sample ID	Lak	e Name	Sample Ty	ре		Sample	Time
MA0032	Lak	e Bullen Merri	Water			30/08/	15 9:57 am
Sampling depth	0.1m	Coords & QC	-38.242986	143.113	3311	153.5	15.6
Sampling notes						Wate	r Chemistry
						рН	
						TDS	
Catchment notes						DO	
						Cond.	
						PSU Temp	
		Moot	ther Conditions			remp	
	0.1	wea			000		
Water Condition	Calm	n vicibility)	Air Temp		9°C	100 (km	pobco
Water Clarity		n visibility)					nches movi
Clouds Weather Notes	Overcast		Wind Dir	ection	S to I	N	

Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time	9
MA0062	Lak	ke Bullen Merri		Water-sta	ble		5/04/1	6 1:3	2 pm
Sampling depth	0.2m	Coords & QC	-38	.260651	143.09	544	5 134.1	L	13.0
Sampling notes							Wate	er Che	mistry
								8.51	
								8343	
Catchment notes								0.77	
							Cond. PSU	9.83	0µS/cm
							Temp	18.52	2°C
		Wea	ther	Conditions					
Water Condition	Choppy	18.52	٥C	Air Temp	0 & RH	279	РС	24	Ļ
Water Clarity		m visibility)			Speed	Me	dium (bra		s moving.
Clouds	Partly Clo	udy		Wind Dir	ection	N t	o S		
Weather Notes									

Sample ID	Lak	e Name			Sample Ty			Sample	e Time	2
MA0180	Lak	e Bullen	Merri		Water - s	table		18/11/	/16 10):59 am
The same										
-		Stations - Los	-			and an an				-
	÷				U					4
	A State of S			1	the second				-	
	and the	/				Contraction of the second				A LANDARA CA
						1				
				14- T- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-				and a second	and the second s	
المعر المراجع		ante france .					9			R. Ca
E								A STATE		Sold Co
								A		
Sampling depth	0.3m	Coords	& QC	-38.2	260245	143.09	5565	153.4	Ļ	13.0
Sampling notes								Wate	er Che	mistry
								pН	9.29	
								TDS	6968	ppm
Catchment notes								DO	4.7pp	om
										0µS/cm
									8.11	
								Temp	15.73	3°C
			Weath	her C	Conditions					
Water Condition	Calm		15.73%	C	Air Tem	o & RH	1300	2	84	Ļ
Water Clarity	Cloudy (0.	5-2m vis	ibility)		Wind	Speed	Low	(calm co	onditio	ons. 1
Clouds	Overcast				Wind Di	rection	SW	to NE		
Weather Notes										

Samples taken by: Jonathan Tyler

Sample ID	Lak	ke Name	Sample	Туре		Sample	e Time	
JT0201	Lal	ke Bullen Merri	Bulk wa	ter		4/01/1	7 2:2	9 pm
							Art eat	
Sampling depth	0.4m	Coords & QC	-38.260307	143.09	95667	158.9)	18.9
Sampling notes	4/1/2017					Wate	er Che	mistry
						pН	9.22	
						TDS	8165	ppm
Catchment notes						DO	2ppm	ı
						Cond.	1632	0µS/cm
							9.58	
						Temp	22.10	PC .
		Wea	ther Conditior	IS				
Water Condition	Calm	22.10	C Air Ter	np & RH				
Water Clarity	Cloudy (0	.5-2m visibility)	Win	d Speed	Low (calm co	onditio	ons. 1
Clouds	Sunny		Wind [Direction				
Weather Notes								


Sample ID		Lake Name	9	Sample Ty	pe		Sample	e Time	
MA0233		Lake Bulle	n Merri	Water - b	ulk		12/03/	/17 12:48	8 pm
	1.1								1
Sampling depth	0.3m	n Coord	ls & QC -	38.260201	143.095	5639	142.0) 7.8	8
Sampling notes	:						Wate	er Chemis	try
							pН	9.3	
							TDS	7113ppm	า
Catchment notes	;						DO	0.69ppm	
								14230µS	i/cm
								8.27	
							Temp	20.9ºC	
			Weath	er Conditions					
Water Condition	Calm		20.9ºC	Air Temp	8 RH	20.5	°C	71	
Water Clarity	Murky	r (<0.5m vis	sibility)	Wind	Speed	Low	(calm co	onditions.	1
Clouds	Partly	Cloudy		Wind Dir	ection	W to	E		
Weather Notes									

Sample ID	Lak	e Name		Sample Ty			Sample	e Time	9
MA0268	Lak	e Bullen Merri		Water - st			28/06/	/17 12	2:07 pm
Sampling depth	0.3m	Coords & QC	-38.	261045	143.09	9524	7 150.9)	13.0
Sampling notes							Wate	er Che	mistry
							pН	9.4	
							TDS	7048	ppm
Catchment notes							DO	2.49	
									0µS/cm
								8.21	
							Temp	12.49	
		Wea	ther (Conditions					
Water Condition	Choppy	12.40	С	Air Temp	0 & RH	13.	2ºC	77	7
Water Clarity	Cloudy (0.	5-2m visibility))	Wind	Speed	Me	dium (bra	inches	s moving.
Clouds	Partly Clou	udy		Wind Dir	ection	NN	W to SSE		
Weather Notes									

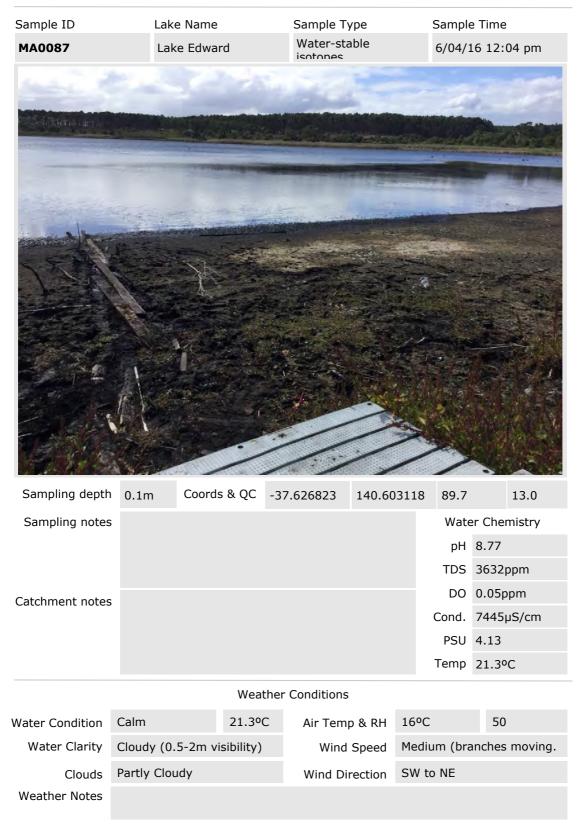
Sample ID	Lak	e Name		Sample Ty	/pe		S	ample	e Time	2
MA0282	Lal	ke Bullen Merri		Water - st			2	4/09/1	.7 3:3	9 pm
Sampling depth	0.3m	Coords & QC	-38	3.260849	143.09	519	1	159.1		16.8
Sampling notes								Wate	er Che	mistry
								pН	9.2	
								TDS	7599	ppm
Catchment notes								DO	1.9pj	om
							C	Cond.	1519	0µS/cm
								PSU		
							Т	emp	10.79	С
		Wea	ather	Conditions						
Water Condition	Choppy	10.79	ъС	Air Temp	0 & RH	7.5	5∘C		86	5
Water Clarity	Cloudy (0	.5-2m visibility)	Wind	Speed	Hig	gh (۱	Windy	. 10+	m/s)
Clouds	Partly Clo	udy		Wind Dir	ection	W	to E			
Weather Notes										

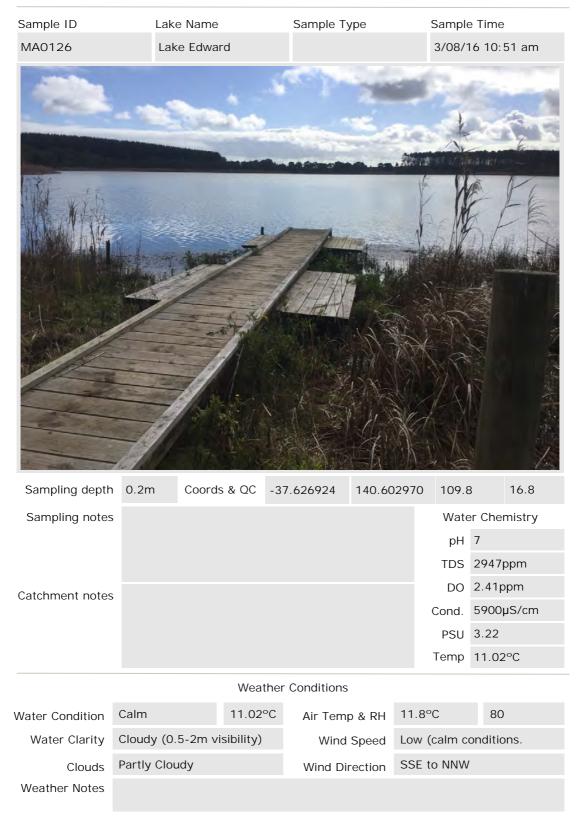
Sample ID	L	ake Name			Sample Ty	pe		Sam	ple	Time		
MA0302		.ake Bullen	Merri		Water - st	able		8/11/17 6:13 pm				
Sampling depth	0.3m	Coords	& QC	-38	.260200	143.09	567	1 14	8.0		6.4	
Sampling notes								W	ater	- Che	mistry	
								F	н	9.28		
								TD	S	7601	opm	
Catchment notes								C	0	3.15p	pm	
								Con			0µS/cm	
										8.88		
								Ten	пр	17.33	юС	
			Weat	her	Conditions							
Water Condition	Calm		17.339	С	Air Temp	& RH	19	С		57		
Water Clarity	Cloudy	(0.5-2m vi	sibility)		Wind	Speed	Lov	w (caln	n co	nditic	ons. 1	
Clouds	Sunny				Wind Dir	ection	ES	E to W	NW			
Weather Notes												

Sample ID	L	ake Name	9	Sample Type Sa				Sample Time		
MA0314	1	Lake Bulle	n Merri	Water - s			23/01/	/18 5:4	1 pm	
Sampling depth	0.3m	Coord	s & QC	-38.228704	143.09	9942	111.5	5	9.4	
Sampling notes								er Chem		
							pН	9.4	·	
							TDS	7260p	pm	
Catchment notes							DO	0.48pp	m	
								14520	µS/cm	
							PSU _			
							Temp	22.7°C		
			Weatl	her Conditions						
Water Condition	Calm		22.7°C	Air Tem	p & RH	23.3	٥C	44		
Water Clarity	Cloudy	(0.5-2m v	isibility)	Wind	Speed	Low	(calm co	onditior	is. 1	
Clouds	Sunny			Wind Di	rection	S to	Ν			
Weather Notes										

Sample ID		Lake N	ame			Sample Ty	/pe		Sam	ple Ti	me	
MA0352		Lake B	Bullen	Merri		Water - st			8/0	5/18 !	5:46 pm	
Sampling depth	0.3m	n Co	oords	& QC	-38	.260322	143.09	541	5 14	3.8	10.8	3
Sampling notes									W	ater C	Chemistr	у
									F	H 9.	3	
									TC	S 78	21ppm	
Catchment notes									D	0 10	.5ppm	
									Con	d. 15	670µS/	cm
									PS			
									Terr	np 15	6°C	
				Wea	ather	Conditions						
Water Condition	Calm			15.69	С	Air Temp	0 & RH	130	РС		60	
Water Clarity	Clear	(>2m v	isibilit	ty)		Wind	Speed	Lov	v (calm	n conc	litions. 1	L
Clouds	Sunny	,				Wind Dir	ection	W t	юE			
Weather Notes												

Sample ID	Lake	e Name	Sample T	уре		Sample	e Time	9
MA0369	Lak	e Bullen Merri	Water - s			10/07/	/18 2:	59 pm
		Sec. 2		Real	1	2		100
		1.0	and the	erech	-			
		No.	-	100				
	100	and the second	100					
							A.m	
	Contraction in contract							an a
				11			1	10-3
					uTu's	-		This
		-						
Sampling depth	0.2m	Coords & QC	-38.260820	143.09	5199	192.0)	26.0
Sampling notes						Wate	er Che	mistry
						pН	9.15	
						TDS	7701	
Catchment notes							11.18	
							1540 9.02	0µS/cm
						Temp	9.02	300
		Weat	ther Conditions					
later Condition	Choppy	11.13			10.39	PC	72)
		5-2m visibility)		Speed				- s moving
Water Clarity						•		
Water Clarity Clouds	Overcast		Wind Di	rection	WNW	to ESE		_

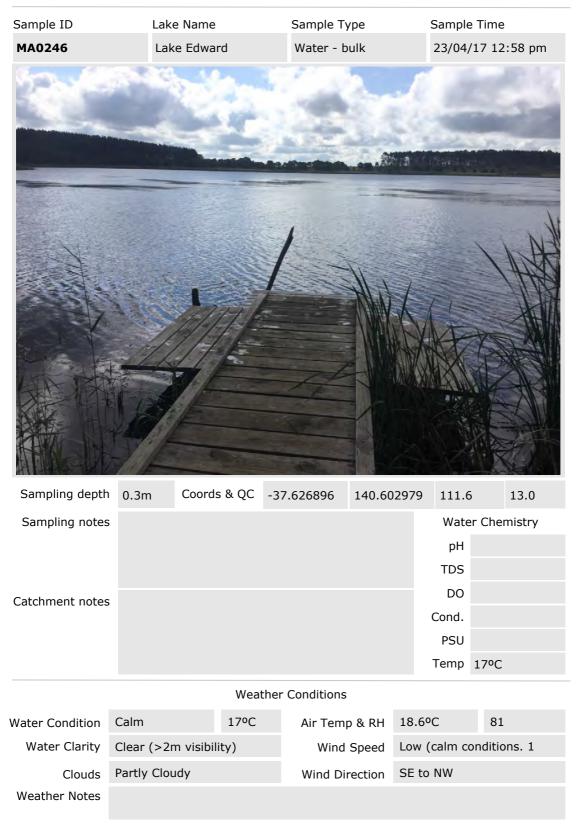

Sample ID MA0375		e Name e Bullen Merri		Sample Ty Water - si			Sample 9/09/1		
Sampling depth		Coords & QC	-38.	260817	143.09	5146			18.9
Sampling notes									mistry
								9.1	
								8065	
Catchment notes								7.17	0µS/cm
							PSU		υμογείτι
							Temp		
		W/oo	ther (Conditions			•		
	Colar				0 5	1		7.	
Water Condition	Calm	11°C		Air Temp		15.1 Mod		70	
Water Clarity		5-2m visibility)			Speed			inches	s moving.
Clouds	Overcast			Wind Dir	ection	W to	ΣE		
Weather Notes									

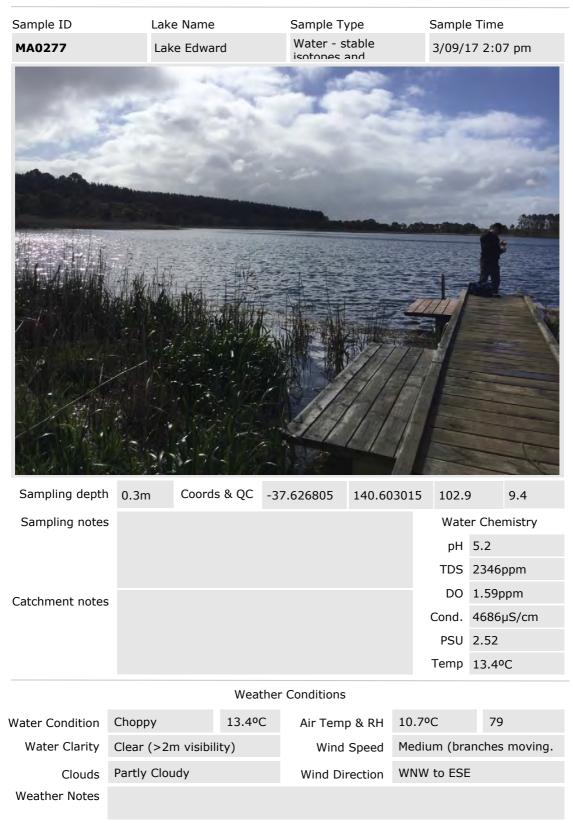

Sample ID	Lake	e Name	Sample T	уре	Sample Tim	ne
MA0005	Lak	e Edward	Water		23/05/15	l2:13 pm
Sampling depth	0.2	Coords & QC	-37.626787	140.602945	127.4	26.0
Sampling notes	to water,	ng. Water level by jetty. aken with 6ft p				t, closest
Catchment notes	across) ju	nt soil subsiden ust back from la ad ferns and wil	ake edge (10-3	ormation (to 60 0m from water)cm deep by r edge).	30cm

Weather Conditions

Water Condition	Calm	Air Temp & RH	12
Water Clarity	Clear (>2m visibility)	Wind Speed	Low (calm conditions. 1
Clouds	Partly Cloudy	Wind Direction	NE to SW
Weather Notes			

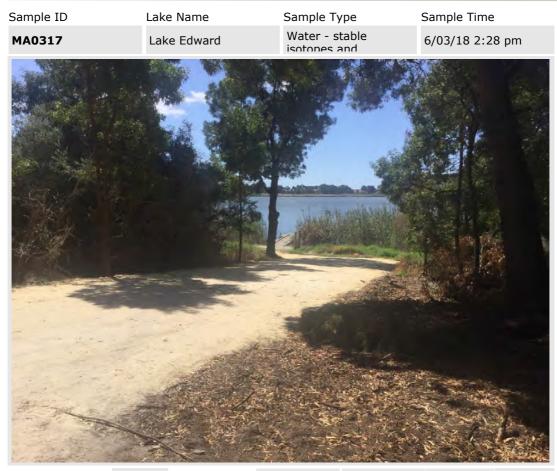
Sample ID	Lake	e Name	Sample Ty	/pe		Sample	Time
MA0025	Lak	e Edward	Water			28/08/	15 3:53 pm
						100	
		12 L	. 41				
				-			12
							talà (dass
				an free of			TRACK ST
			and the second s		5	LINK	
		TUDTTAT	La Black A				
				No.			
			Sin A		11.	S.	
		A PAR	JAN /	(T)	J.	Nos-m	
				ANT CIPLE		a - all	MARS AND
	TAX NAME					A	
Sampling depth	0.2m	Coords & QC	-37.627048	140.60	3008	98.1	12.8
Sampling depth Sampling notes	Level 1.94		-37.627048 rd post closest to		03008		12.8 Chemistry
					03008		
	Level 1.94				03008	Water	
Sampling notes	Level 1.94					Water pH TDS DO	
Sampling notes	Level 1.94					Water pH TDS DO Cond.	
Sampling notes	Level 1.94					Water pH TDS DO	
	Level 1.94	below top of thi				Water pH TDS DO Cond. PSU	
Sampling notes	Level 1.94	below top of thi	rd post closest to	o water.		Water pH TDS DO Cond. PSU	
Sampling notes	Level 1.94 TPS.	below top of thi	rd post closest to ther Conditions Air Temp	o water.	14°C	Water pH TDS DO Cond. PSU Temp	Chemistry
Sampling notes Catchment notes Vater Condition Water Clarity	Level 1.94 TPS.	l below top of thi Wea m visibility)	rd post closest to ther Conditions Air Temp	o & RH Speed	14°C	Water pH TDS DO Cond. PSU Temp	Chemistry 83




Sample ID	Lak	e Name	Sam	ple Type		Sample	e Time
MA0191	Lak	ke Edward	Wat	er - stable		18/11,	/16 5:41 pm
Sampling depth	0.2m	Coords & QC	-37.6270	000 140.60)2967	94.3	7.8
Sampling notes							er Chemistry
						-	6.8
						TDS	2237ppm
Catchment notes							4.13ppm
							4477µS/cm
							2.4
						Temp	19.9°C
		Wea	ther Cond	itions			
Water Condition	Calm	19.90	C Air	Temp & RH	16.40	C	64
Water Clarity	Cloudy (0.	.5-2m visibility)		Wind Speed	Low (calm co	onditions. 1
Clouds	Sunny		Wi	nd Direction	SSW	to NNE	
Weather Notes							

Samples taken by: Jonathan Tyler

Sample ID	Lake Nan	ne	Sample Ty	pe		Sample	e Time	
JT0214	Lake Edv	ward	Bulk wate	r		7/01/1	7 9:4	5 am
Sampling depth	0.3m Coo	rds & QC	-37.627394	140.60	2905	132.2	2	26.0
Sampling notes	7/1/20179:45:2	24 am						mistry
							6.35	
						TDS	2739	
Catchment notes						DO Cond.	1.46p	
						PSU	2.95	40, em
							24.95	ioC
		Weatl	her Conditions					
Water Condition	Calm	24.95º	C Air Temp	0 & RH				
Water Clarity	Cloudy (0.5-2m	visibility)		Speed	Mediu	ım (bra	inches	moving.
Clouds F	Partly Cloudy		Wind Dir	ection	N to S	5		
Weather Notes								



Sample ID MA0274		e Name e Edwarc	1	Sample Ty Water - st isotones a	able	P	Sample 29/06/	e Time /17 10:	49 am
Sampling depth	0.3m	Coords	8 QC -:	37.626840	140.60	3081	119.3		9.4
Sampling notes							pH TDS	er Chen 6.9 2450p 2.28pj	pm
Catchment notes							Cond. PSU		S/cm
			Weathe	er Conditions					
Water Condition	Calm		11.1ºC	Air Temp	8 RH	13ºC	:	73	
Water Clarity	Clear (>2r	n visibilit	y)	Wind	Speed	Low	(calm co	onditio	ns. 1
Clouds Weather Notes	Overcast			Wind Dir	ection	WNW	/ to ESE	:	

Sample ID	Lake	e Name	Sample T	уре		Sample	e Time	
MA0292	Lak	e Edward	Water - s			7/11/1	7 1:1	7 pm
Sampling depth	0.3m	Coords & QC	-37.627108	140.603	3025	108.2	2	7.8
Sampling notes	Lots of gro	oundwater seepa	ge around catch	ment		Wate	r Che	mistry
						pН	4.9	
						TDS	2291	opm
Catchment notes						DO	5.23p	pm
						Cond.	4582	JS/cm
						PSU	2.46	
						Temp	18.05	юС
		Weat	ther Conditions					
Water Condition	Calm	18.05	°C Air Tem	p & RH	16ºC		53	
Water Clarity	Cloudy (0.	5-2m visibility)	Wind	Speed	Mediu	ım (bra	inches	moving.
Clouds	Partly Clou	ldy	Wind Di	rection	SSE t	o NNW		
Weather Notes								

Sample ID MA0304		e Name e Edward		Sample Ty Water - s	table		Sample 22/01/	e Time /18 2:26 pm
Sampling depth	0.3m	Coords & QC	-37	.626873	140.60	3068	100.0) 16.8
Sampling notes								er Chemistry
								6.3
							TDS DO	2305ppm 0.13ppm
Catchment notes								4626µS/cm
								2.47
							Temp	24ºC
		Wea	ther (Conditions				
Water Condition	Calm	24°C		Air Tem	0 & RH	23ºC		48
Water Clarity	Murky (<0).5m visibility)		Wind	Speed	Medi	um (bra	inches moving.
Clouds	Sunny			Wind Dir	rection	S to	N	
Weather Notes								

Sampling depth	0.3m	Coords	& QC	-37	.627161	140.60	2958	147.3	3	26.0
Sampling notes								Wate	er Che	mistry
								pН	7.3	
								TDS	2794	ppm
Catchment notes								DO	8.09p	pm
								Cond.	5585	µS/cm
								PSU	3.03	
								Temp	21.79	PC 29
			Weat	ther	Conditions					
Water Condition	Calm		21.7%	С	Air Tem	p & RH	24ºC		47	
Water Clarity	Cloudy (0.	5-2m vis	ibility)		Wind	Speed	Mediu	ım (bra	anches	moving.
Clouds	Sunny				Wind Di	rection	SSE t	o NNW		

Weather Notes

Sample ID Lake Name Sample Type Sample Tyme Sample Tyme MA0339 Lake Edward Water - stable Leonane and 7/05/18 11:51 am MA0339 Lake Edward Water - stable Leonane and 7/05/18 11:51 am Sampling depth 0.3m Coords & QC -37.627338 140.60171 16.6 16.8 Sampling notes 0.3m Coords & QC -37.627338 140.60171 16.6 16.8 Sampling notes 0.3m Coords & QC -37.627338 140.60171 16.7 16.8 Sampling notes 0.3m Coords & QC -37.627338 140.60171 16.7 16.8 Sampling notes 0.3m Coords & QC -37.627338 140.60171 16.7 16.8 Sampling notes V V -37.627338 140.60171 16.7 16.8 Sampling notes V V -37.627338 140.60171 16.7 16.8 Sampling notes V V -37.62738 140.60171 16.7 16.8 Sampling notes V V 16.7 16.8 16.8											
Sampling depth 0.3m Coords & QC -37.627338 140.603171 116.6 16.8 Sampling depth 0.3m Coords & QC -37.627338 140.603171 116.6 16.8 Sampling notes	Sample ID	L	ake Name	9		Sample Ty	'pe		Sample	e Time	1
Sampling notes Water Clarity Water Clarity Water Clarity Water Clarity Water Clarity Murky (<0.5m villet)	MA0339	L	_ake Edwa	ard					7/05/1	.8 11:	51 am
Sampling notes Water Clarity Water Clarity Water Clarity Water Clarity Water Clarity Murky (<0.5m villet) Air Temp & RH Villet											
Air Temp & RH Image: Figure 1 Air Temp & RH Image: Figure 1 Water Condition Choppy Image: 1 Image: 1 Murky (<0.5m m): 1	Sampling depth	0.3m	Coord	ls & QC	-37	.627338	140.60	3171	116.6	5	16.8
Catchment notes TDS 223ppm Catchment notes FULL 0 23ppm Cond. 248µS/cm PSU 2.85 Temp 14.73°C Temp 14.73°C Water Condition Choppy 14.73°C Air Temp & RH Image: Condition Image: Condition Water Clarity Murky (<0.5m visitity)	Sampling notes								Wate	er Che	mistry
Catchment notes Image: Catchment notes DO Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes Image: Catchment notes									pН	7.3	
Catchment notesGond.5248µS/cmPSU2.85Temp14.73°CWater ConditionChoppy14.73°CWater ClarityMurky (<0.5m visitity)									TDS	2623	ppm
PSU 2.85 Temp 14.73°C Water Condition Choppy 14.73°C Water Clarity Murky (<0.5m visitity)	Catchment notes										
Temp 14.73°C Water Condition Choppy 14.73°C Water Clarity Murky (<0.5m visibility)											µS/cm
Water Condition Choppy 14.73°C Air Temp & RH Image: Choppy Image: Chopy Image: Chopy <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Water ConditionChoppy14.73°CAir Temp & RHMedium (branches movin)Water ClarityMurky (<0.5m visibility)									Temp	14.73	3°C
Water ClarityMurky (<0.5m visibility)Wind SpeedMedium (branches movin DirectionCloudsOvercastWind DirectionNNW to SSE				Weat	ther	Conditions					
Clouds Overcast Wind Direction NNW to SSE	Water Condition	Choppy		14.73	°C	Air Temp	0 & RH				
	Water Clarity	Murky (<0.5m vi	sibility)		Wind	Speed	Medi	ium (bra	inches	moving.
Weather Notes	Clouds	Overcas	st			Wind Dir	ection	NNW	/ to SSE		
	Weather Notes										

Sample ID	Lake Na	ame	Sample Ty		S	ample	Time	
MA0358	Lake E	dward	Water - st		9	0/07/1	8 12:05 p	om
Sampling depth	0.2m Co	ords & QC -3	37.626997	140.6029	61	107.3	7.8	3
Sampling notes						Wate	r Chemist	ry
						pН		
							2499ppm	
Catchment notes						DO	10.14ppr	n
Catchment notes					с	DO ond.	10.14ppr 5000µS/d	n
Catchment notes					С	DO ond. PSU	10.14ppr 5000µS/o 2.7	n
Catchment notes					С	DO ond. PSU	10.14ppr 5000µS/d	n
Catchment notes		Weathe	r Conditions		С	DO ond. PSU	10.14ppr 5000µS/o 2.7	n
	Calm	Weathe 10.13°C	r Conditions Air Temp	0 & RH 13	С	DO ond. PSU	10.14ppr 5000µS/o 2.7	n
	Calm Clear (>2m vi	10.13°C	Air Temp		С Т 3°С	DO ond. PSU remp	10.14ppr 5000µS/0 2.7 10.13°C	n
Catchment notes Vater Condition Water Clarity Clouds		10.13°C	Air Temp	Speed Lo	С Т 3°С	DO ond. PSU emp	10.14ppr 5000µS/d 2.7 10.13°C 92	n

Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time	
MA0381	Lal	ke Edward		Water - st			11/09/	/18 2:19 pn	n
Sampling depth	0.2m	Coords & QC	-3	7.626963	140.60	2952	95.3	26.0	
Sampling notes							Wate	er Chemistry	/
							pН	4.5	
							TDS	2248ppm	
Catchment notes							DO	6.58ppm	
							Cond.	4495µS/cn	n
							PSU	2.42	
							Temp	14.7ºC	
		Wea	ather	Conditions					
Water Condition	Choppy	14.79	РС	Air Temp	0 & RH	21.6	5°C	27	
Water Clarity).5m visibility)			Speed	Higl	n (Windy	. 10+ m/s)	
Clouds	Overcast			Wind Dir	-		V to SSE		
Weather Notes									

Sample ID	Lake Na	ime	Sample Ty	ре	Samp	le Time
MA0010	Lake El	ingamite	Water		24/05	5/15 9:51 am
Sampling depth	0.1 Co	ords & QC	-38.350112	143.01418	39 134.	.7 7.8
Sampling notes Catchment notes	Caution. Woo Sample taker	den boat rar	cess at boat rai np section is st le, then capped	upidly slip	pery. ce at shor	e.
		Weath	ner Conditions			
Water Condition	Calm		Air Temp	& RH 8		
Water Clarity	Murky (<0.5m	visibility)	Wind	Speed Lo	w (calm	conditions. 1
Clouds	Partly Cloudy		Wind Dir	ection N	E to SW	
Weather Notes						

Sample ID	Lake	e Name	Sample T	уре	Sample	Time
MA0030	Lak	e Elingamite	Water		29/08/	15 3:47 pm
Sampling depth	0.2m	Coords & QC	-38.349968	143.0143	341 122.4	9.4
Sampling depth Sampling notes	Raining. S	ample taken by ł				9.4 Chemistry
		ample taken by ł				
	Raining. S	ample taken by ł			Water	
Sampling notes	Raining. S	ample taken by ł			Water pH	
Sampling notes	Raining. S	ample taken by ł			Water pH TDS	
Sampling notes	Raining. S	ample taken by ł			Water pH TDS DO	
	Raining. S	ample taken by ł			Water pH TDS DO Cond.	
Sampling notes	Raining. S	ample taken by f g!!!		f pontoon.	Water pH TDS DO Cond. PSU	
Sampling notes	Raining. S	ample taken by f g!!!	nand from end o	f pontoon.	Water pH TDS DO Cond. PSU	
Sampling notes	Raining. S It's floatin	ample taken by f g!!! Weat	hand from end o ther Conditions Air Tem	f pontoon.	Water pH TDS DO Cond. PSU Temp	
Sampling notes	Raining. S It's floatin	ample taken by f g!!! Weat	hand from end o ther Conditions Air Tem	f pontoon. p & RH Speed M	Water pH TDS DO Cond. PSU Temp	r Chemistry

Sample ID	Lake	e Name	Sample T	уре	Sample	e Time
MA0117	Lak	e Elingamite	Water - g	jeneral	2/08/1	l6 2:26 pm
					N. 15	
Sampling depth	0.2m	Coords & QC	-38.349952	143.014338	128.9	9 13.0
Sampling notes	Frog choru	JS			Wate	er Chemistry
					рН	7.01
					TDS	2330ppm
Catchment notes					DO	2.3ppm
					Cond.	4660µS/cm
					PSU	2.5

Weather Conditions

Temp 11.65°C

Water Condition	Сһорру	11.65°C	Air Temp & RH	12.3°C	83
Water Clarity	Clear (>2m visibil	ity)	Wind Speed	Medium (brand	ches moving.
Clouds	Partly Cloudy		Wind Direction	SSW to NNE	
Weather Notes					

Sample ID	Lak	e Name	Sa	ample Ty	pe		Sample	e Time
MA0182	Lal	ke Elingamite		/ater - bi				/16 11:48 am
						M		
Sampling depth	0.3m	Coords & QC	-38.34	19951	143.014	4194		
Sampling notes								er Chemistry
							рH	7.74
							TDS	2361ppm
Catchment notes							DO	2.06ppm
								4724µS/cm
								2.54
							Temp	18.18°C
		Wea	ther Co	nditions				
Water Condition	Calm	18.18	٥C	Air Temp	& RH	13.9	9°C	84
Water Clarity	Clear (>2	m visibility)		Wind	Speed	Low	(calm co	onditions. 1
Clouds	Overcast			Wind Dir	ection	SSW	/ to NNE	
Weather Notes								

Samples taken by: Jonathan Tyler

Sample ID	Lak	e Name		Sample Ty	pe		Sample	e Time	
JT0203	Lak	e Elimgamite		Bulk wate	r		4/01/1	.7 3:0) pm
	et ^{et} et	18		1 14		-		94 172	
Sampling depth	0.3m	Coords & QC	-38	3.350125	143.01	4003	126.6	5	26.0
Sampling notes	4/1/2017							er Chei	mistry
								7.2	
							TDS	3323j	
Catchment notes							DO Cond.	1.02p	
							PSU	3.63	us, em
								24.18	٥C
		Wea	ther	Conditions					
Water Condition	Calm	24.18	٥C	Air Temp) & RH				
Water Clarity		n visibility)			Speed	Low	(calm co	onditio	ns. 1
Clouds	Sunny			Wind Dir	ection				
Weather Notes									

Sample ID	L	ake Name		Sample Ty	pe		Sample	e Time	
MA0235	1	Lake Elingamite		Water - b	ulk		12/03,	/17 1:35 pn	n
Sampling depth	0.1m	Coords & QC	-3	8.350176	143.01	.4009	9 125.7	7.8	
Sampling notes								er Chemistry	/
							рН		
							TDS DO	3526ppm 0.86ppm	
Catchment notes							Cond.	7059µS/cn	า
							PSU	3.87	
							Temp	26.3ºC	
		We	ather	- Conditions					
Water Condition	Calm	26.3	٥C	Air Temp	0 & RH	229	РС	63	
Water Clarity	Murky (<0.5m visibility)		Wind	Speed	Me	dium (bra	nches movi	ing.
Clouds	Partly C	Cloudy		Wind Dir	ection	W t	o E		
Weather Notes									

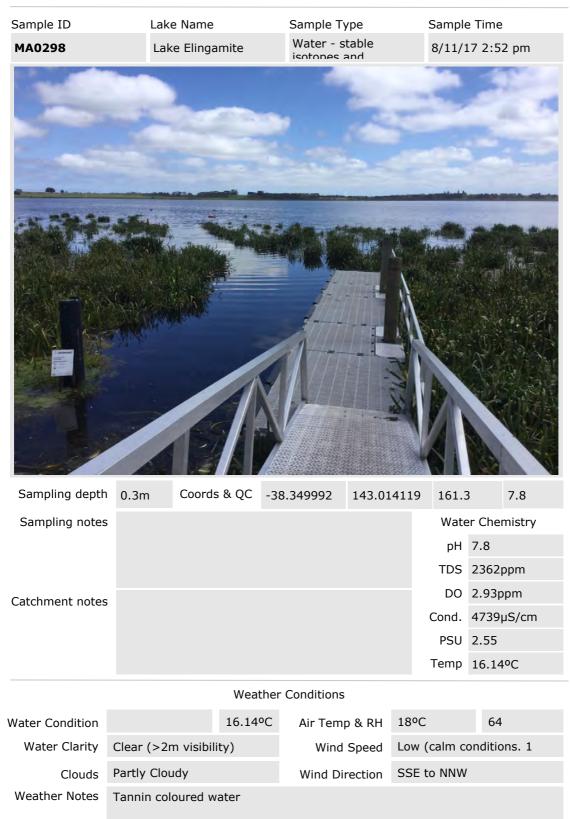
Sample ID		Lake Name	2		Sample Ty	ре		Sample	e Time	
MA0269		Lake Eling	amite		Water - st			28/06,	/17 12:	36 pm
		1. K.			all -		ALC: NO	-		-
	2					-	-			
Sampling depth		n Coord	ls & QC	-38.	350106	143.01	4129	130.2		15.6
Sampling notes								pH TDS	er Chen 8.3 2997p	pm
Catchment notes								DO Cond. PSU	2.58pp 6000µ 3.27	
								Temp	11.20	2
			Weat	her C	Conditions					
Water Condition	Calm		11.200	2	Air Temp	& RH	13.69	РС	74	
Water Clarity	Cloudy	(0.5-2m v	visibility)		Wind	Speed	Low	(calm co	onditio	ns. 1
Clouds	Partly	Cloudy			Wind Dir	ection	N to	S		
Weather Notes										

Sample ID	Lak	e Name	Sample T	уре		Sample	e Time	
MA0286	Lak	ke Elingamite	Water - s			5/09/1	17 10:23 an	n
		and state of the second second	ators a service	and the second second				
		- 1 ⁰⁰	a and a state	an anna an	Constitute of		and and a state of	
and the second s	and Property	The set	ANA					
			STUDE WAR A SHITTER ASSAULT	CONTRACTOR OF THE REAL				
	-	NAN TAN			$f_{i}(\chi,\chi)$			
		A AVAN		Ding An				
		N TVIN						
		N N N		0				
Sampling depth	0.3m	Coords & QC	-38.350035	143.014	4125	140.8	3 7.8	
Sampling depth Sampling notes		Coords & QC	-38.350035	143.014	4125		3 7.8 er Chemistr	y
		Coords & QC	-38.350035	143.014	4125	Wate pH	er Chemistr 7.9	y
		Coords & QC	-38.350035	143.014	4125	Wate pH	er Chemistr	y
		Coords & QC	-38.350035	143.014	4125	Wate pH TDS DO	er Chemistr 7.9 2298ppm 2.19ppm	
Sampling notes		Coords & QC	-38.350035	143.014	4125	Wate pH TDS DO Cond.	er Chemistr 7.9 2298ppm 2.19ppm 4592µS/cr	
Sampling notes		Coords & QC	-38.350035	143.014	4125	Wate pH TDS DO Cond. PSU	er Chemistr 7.9 2298ppm 2.19ppm 4592µS/cr 2.44	
Sampling notes		Coords & QC	-38.350035	143.01	4125	Wate pH TDS DO Cond.	er Chemistr 7.9 2298ppm 2.19ppm 4592µS/cr 2.44	
Sampling notes			-38.350035		4125	Wate pH TDS DO Cond. PSU	er Chemistr 7.9 2298ppm 2.19ppm 4592µS/cr 2.44	

Weather Notes

Clouds

Water Clarity Clear (>2m visibility)


Partly Cloudy

High (Windy. 10+ m/s)

WNW to ESE

Wind Speed

Wind Direction

Sample ID	Lak	e Name	9	Sample Ty	pe		Sample	e Time
MA0312	Lal	ke Elingamite		Water - s			23/01/	/18 3:43 pm
Sampling depth	0.3m	Coords & QC	-38.3	350124	143.01	4137	135.0) 7.8
Sampling notes							Wate	er Chemistry
							рН	8.4
							TDS	3111ppm
Catchment notes							DO	0.37ppm
								6210µS/cm
								3.35
							Temp	30ºC
		Wea	ther C	Conditions				
Water Condition	Choppy	30°C		Air Tem	p & RH	24.6	оС	43
Water Clarity	Murky (<0	0.5m visibility)		Wind	Speed	Med	ium (bra	anches moving.
Clouds	Sunny			Wind Di	rection	SSW	to NNE	
Weather Notes								

Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time	2
MA0322	Lak	e Elingamite		Water - st isotones a			7/03/1	.8 11:	28 am
Sampling depth	0.2m	Coords & QC	-38	8.350114	143.01	4231	131.9)	9.4
Sampling notes							Wate	er Che	mistry
							pН	7.75	
							TDS	4030	ppm
Catchment notes							DO	0.72p	opm
							Cond.		µS/cm
							PSU		
							Temp	19.60	РС
		Wea	ther	Conditions					
Water Condition	Calm	19.6º	C	Air Temp	0 & RH	22.6	РС	49)
Water Clarity	Murky (<0	.5m visibility)		Wind	Speed	Low	(calm co	onditio	ons. 1
Clouds				Wind Dir	ection	N to	S		
Weather Notes									

-	-					
Sample ID	Lak	e Name	Sample Type		Sample	e Time
MA0344	Lak	ke Elingamite	Water - stable		8/05/1	.8 11:12 am
Sampling depth	0.3m	Coords & QC				
Sampling notes		ar boat ramp in very water and sediment	shallow water with	dark	Wate	r Chemistry
	coloureu				pН	7.81
					TDS	3537ppm
Catchment notes	Catchmer	nt Burnt. Lake level lo	ow, sample may not	be	DO	3.87ppm
	represent lake	ative as boat ramp w	as cut off from rest	of	Cond.	7081µS/cm
					PSU	3.93
					Temp	14.6°C
		Weathe	r Conditions			
Vater Condition	Calm	14.6°C	Air Temp & RH	13.	9°C	57
Water Clarity	Murky (<0).5m visibility)	Wind Speed	Low	ı (calm co	onditions. 1
Clouds	Sunny		Wind Direction	WN	W to ESE	
Clouds Weather Notes	Sunny		Wind Direction	n WN	W to ESE	

Sample ID	Lak	e Name	Sample T	уре		Sample	e Time
MA0367	Lak	ke Elingamite	Water - s			10/07,	/18 1:58 pm
Sampling depth	0.2m	Coords & QC	-38.349938	143.01	4439	107.4	4 18.9
		Coords & QC	-38.349938	143.014	4439		
Sampling depth Sampling notes		Coords & QC	-38.349938	143.014	4439	Wate	t 18.9 ar Chemistry 8.03
		Coords & QC	-38.349938	143.014	4439	Wate pH	er Chemistry
Sampling notes		Coords & QC	-38.349938	143.014	4439	Wate pH TDS	er Chemistry 8.03
		Coords & QC	-38.349938	143.014	4439	Wate pH TDS DO	er Chemistry 8.03 2342ppm
Sampling notes		Coords & QC	-38.349938	143.01	4439	Wate pH TDS DO Cond.	er Chemistry 8.03 2342ppm 12.29ppm
Sampling notes		Coords & QC	-38.349938	143.01	4439	Wate pH TDS DO Cond.	er Chemistry 8.03 2342ppm 12.29ppm 4683µS/cm
Sampling notes			-38.349938 ther Conditions		4439	Wate pH TDS DO Cond. PSU	er Chemistry 8.03 2342ppm 12.29ppm 4683µS/cm 2.52
Sampling notes			ther Conditions	5	10.34	Wate pH TDS DO Cond. PSU Temp	er Chemistry 8.03 2342ppm 12.29ppm 4683µS/cm 2.52
Sampling notes	Choppy	Weat	ther Conditions	5	10.39	Wate pH TDS DO Cond. PSU Temp	er Chemistry 8.03 2342ppm 12.29ppm 4683µS/cm 2.52 11.5°C

Weather Notes

Sample ID MA0373		e Name e Elingamite	Sample 1 Water -	stable		Sample 9/09/1	e Time .8 3:40 pm
Sampling depth	0.2m	Coords & QC	-38.350207	143.01	3932	142.5	9.4
Sampling notes						pН	er Chemistry 8.5 2395ppm
Catchment notes						Cond.	6.83ppm 4790µS/cm 2.59 13.7°C
		Weat	ther Condition	S			
Water Condition	Choppy	13.7%	C Air Tem	np & RH	14.90	С	73
Water Clarity	Murky (<0	.5m visibility)	Wind	d Speed	Mediu	ım (bra	nches moving.
Clouds (Weather Notes	Overcast		Wind D	irection	W to	E	

Sample ID	Lake Nar	ne	Sample T	уре	Samp	le Time
MA0013	Lake Gn	otuk	Water		24/0	5/15 11:53 am
Sampling depth	0.2 Coo	rds & QC -	38.227653	143.10	2393 111	.2 18.9
Sampling notes	Access at rock park car park. Walk to the la Sample taken	ke from the	flag at hole 1	0, Camp	erdown Golf	Course.
Catchment notes	Springs along Bullen Merri.	lake edge or	n southern sid	de, proba	ably feeding	from Lake
		Weath	er Conditions			
Vater Condition	Calm		Air Tem	p & RH	12	
	Clear (>2m vis			Crossed	low (calm	conditions. 1
Water Clarity		bility)	Wind	Speed		
	Partly Cloudy	bility)	Wind Wind Di		NNE to SSV	

Samples taken by: Jon Tyler

Sample ID	Lak	e Name	Sample T	/pe	S	Sample	Time
MA0016	Lak	e Gnotuk	Water		10/06/2	15 8:26 am	
Sampling depth	0.2m	Coords & QC	-38.227793	143.10	2237	111.4	15.6
Sampling notes	pH taken pH 9.82 DO 1.56p	ity 104800 ms/cr	pprox 0.2m dep	th.		Water pH TDS DO	Chemistry
Catchment notes							
		Weat	ther Conditions				
Water Condition	Calm		Air Tem	0 & RH	5ºC		Overcast
Water Clarity	Clear (>2	n visibility)	Wind	Speed	Mediu	m (brar	nches moving.
Clouds			Wind Di	rection	WSW	to ENE	
Weather Notes							

<image/> MA0033Lake GnotukWater30/08/15 10:09	am
the second se	
Sampling depth 0.2m Coords & QC -38.227733 143.102438 107.5 49.	0
Sampling notes Lake level 5.839 below tbm sr77m10. Water Chemistr	гy
рН	
TDS	
Catchment notes DO	
Cond.	
PSU	
Temp	
Weather Conditions	

Water Condition	Calm	Air Temp & RH	9°C
Water Clarity	Clear (>2m visibility)	Wind Speed	Medium (branches moving.
Clouds	Overcast	Wind Direction	S to N
Weather Notes			

Sample ID	Lake	e Name	Sample T			Sample	e Time
MA0066	Lak	e Gnotuk	Water-st	able		5/04/1	.6 2:20 pm
Sampling depth	0.2m	Coords & QC	-38.227488	143.1()2725	90.7	33.5
Sampling notes						Wate	er Chemistry
							8.68
						TDS	52870ppm
Catchment notes						DO	0.29ppm
							105700µS/cm
						PSU -	-
						Temp	20.9ºC
		Wea	ther Conditions	5			
Water Condition	Choppy	20.90	C Air Tem	p & RH	27%	С	24
Water Clarity		5-2m visibility)	Wind	Speed	Med	lium (bra	inches moving.
Clouds	Partly Clou	ıdy	Wind Di	rection	NW	to SE	
Weather Notes							

Sample ID	Lake	Name		Sample Ty	vpe		Sample	e Time	
MA0103	Lake	e Gnotuk		Water - g	eneral		2/08/1	6 8:0	2 am
Sampling depth	0.2m	Coords &	QC -38	3.227433	143.10	2343	185.9)	49.0
Sampling notes							Wate	er Che	mistry
							рН	8.65	
							TDS		0ppm
Catchment notes							DO	3.36p	
							Cond.	1039	00µS/cm
							PSU	-	
							Temp	10.29	/°С
		`	Weather	Conditions					
Nater Condition	Calm	1(D.29°C	Air Temp	0 & RH	5.2°	С	86	
Water Clarity	Clear (>2m	n visibility)		Wind	Speed	Low	(calm co	onditio	ons.
Clouds	Partly Cloue	dy		Wind Dir	rection	SSW	to NNE		
Weather Notes	Rainbow								

Sample ID	Lake Name		Sample Ty	'pe		Sample	e Time
MA0177	Lake Gnot	Jk	Water - b	ulk		18/11/	/16 10:23 am
Sampling depth	0.1m Coord	s & QC - 3	38.228764	143.099	9815	106.0) 13.0
Sampling notes	Spring hardly flow		v due to rise in	lake leve	el	Wate	er Chemistry
	Many critters in la	ke.				pН	8.64
						TDS	44050ppm
Catchment notes							3.5ppm
							88140µS/cm
							62.6 18.1°C
						Temp	18.1%
			er Conditions				
	Calm	18.1ºC	Air Temp		13.49		94
Water Clarity	Clear (>2m visibil	lity)	Wind	Speed	Low ((calm co	onditions. 1
	Overcast		Wind Dir	ection	SSW	to NNE	
Weather Notes							

Samples taken by: Jonathan Tyler

Sample ID	Lake	e Name		Sample Ty	/pe		Sample	e Time	2
JT0199	Lak	e Gnotuk		Bulk wate	er		4/01/1	.7 1:5	1 pm
Sampling depth	0.2m	Coords & QC	-38	3.228678	143.09	9814	104.1		26.0
Sampling notes								er Che	mistry
Capgccc	., _, _ 0 _ 7							8.56	
							TDS		0ppm
Catchment notes							DO	1.28p	
Catchinent notes							Cond.	1016	00µS/cm
							PSU		
							Temp	24.14	toC
		Wea	ther	Conditions					
Water Condition	Calm	24.14	.ºC	Air Tem	0 & RH				
Water Clarity	Clear (>2r	n visibility)		Wind	Speed	Low	(calm c	onditio	ons. 1
Clouds	Sunny			Wind Di	rection				
Weather Notes									

Sample ID	Lake	e Name		Sample Ty	pe		Sample	e Time
MA0231	Lak	e Gnotuk		Water - b	ulk		'17 12:21 pm	
Sampling depth	0.2m	Coords & C	2C -3	8.228694	143.09	9890	97.7	9.4
Sampling notes							Wate	er Chemistry
							pН	8.5
							TDS	44880ppm
Catchment notes							DO	0.44ppm
							Cond. PSU	89700µS/cm 64.08
							Temp	23.3°C
		V	Voatha	r Conditions			- F	
	Colm				0.011	21 5	00	C0
Water Condition	Calm		.3ºC	Air Temp		21.5		69
Water Clarity		n visibility)			Speed		-	onditions. 1
Clouds Weather Notes	Partly Clou	lay		Wind Dir	ection	WNV	V to ESE	

Sample ID	Lak	e Name	Sample Ty	/pe	Sample Time	e
MA0266	Lak	ke Gnotuk	Water - s		28/06/17 1	1:16 am
		~		1		-
-		-				TR
Sampling depth	0.2m	Coords & QC	-38.228782	143.099898	104.9	26.0
Sampling notes					Water Che	mistry

Sampling depth	0.2m	Coords	a QC	-36	3.228/82	143.09	9898	104.9)	26.0
Sampling notes								Wate	er Che	mistry
								pН	8.7	
								TDS	4404	0ppm
Catchment notes								DO	2.17p	pm
								Cond.	8798	0µS/cm
								PSU	62.12	2
								Temp	12.79	C
			Wea	ther	Condition	S				
Water Condition	Calm		12.7%	С	Air Ten	np & RH	12.70	С	80	1
Water Clarity	Clear (>2r	n visibili	ty)		Wind	d Speed	Low (calm co	onditio	ons. 1
Clouds	Sunny				Wind D	irection	NW to	SE		

Weather Notes

Sample ID	Lak	e Name	Sample T			Sample	e Time	
MA0280	Lak	e Gnotuk	Water - s			4/09/1	17 2:10 pn	n
			S.D.					
Sampling depth	0.3m	Coords & QC	-38.228819	143.099	9830	103.9	9 16.	.8
Sampling depth Sampling notes		Coords & QC	-38.228819	143.099	9830		9 16. er Chemist	
		Coords & QC	-38.228819	143.099	9830	Wate		
		Coords & QC	-38.228819	143.099	9830	Wate	er Chemist	ry
		Coords & QC	-38.228819	143.099	9830	Wate pH TDS	er Chemist 8.75	ry
Sampling notes		Coords & QC	-38.228819	143.099		Wate pH TDS DO Cond.	er Chemist 8.75 4782ppm 1.21ppm 95680µS/	ry I
Sampling notes		Coords & QC	-38.228819	143.099		Wate pH TDS DO Cond. PSU	er Chemist 8.75 4782ppm 1.21ppm 95680µS/ 68.66	ry I
Sampling notes		Coords & QC	-38.228819	143.099		Wate pH TDS DO Cond. PSU	er Chemist 8.75 4782ppm 1.21ppm 95680µS/	ry I
Sampling notes			-38.228819			Wate pH TDS DO Cond. PSU	er Chemist 8.75 4782ppm 1.21ppm 95680µS/ 68.66	ry I
Sampling notes						Wate pH TDS DO Cond. PSU Temp	er Chemist 8.75 4782ppm 1.21ppm 95680µS/ 68.66	ry I
Sampling notes	Choppy	Weat	ther Conditions Air Tem		8.2°0	Wate pH TDS DO Cond. PSU Temp	er Chemist 8.75 4782ppm 1.21ppm 95680µS/ 68.66 13°C	ry ı /cm
Sampling notes Catchment notes Vater Condition	Choppy	Weat 13ºC	ther Conditions Air Tem	p & RH Speed	8.2°C Mediu	Wate pH TDS DO Cond. PSU Temp	er Chemist 8.75 4782ppm 1.21ppm 95680µS/ 68.66 13°C 74 74	ry ı /cm

Sample ID	Lake	e Name		Sample Ty			Sample	e Time	
MA0301	Lak	e Gnotuk		Water - s			8/11/1	L7 5:27	' pm
Sampling depth	0.3m	Coords & QC	-38	3.228731	143.09	9882	91.0		16.8
Sampling notes							Wate	er Cher	nistry
							pН	8.76	
							TDS	48140	ppm
Catchment notes							DO	2.26p	pm
							Cond.		
								69.52	
							Temp	20.66	°C
		Wea	ather	Conditions					
Water Condition	Calm	20.6	6°C	Air Temp	0 & RH	19°0	2	59	
Water Clarity	Clear (>2r	n visibility)		Wind	Speed	Low	(calm c	onditio	ns. 1
Clouds	Sunny			Wind Dir	rection	SSE	to NNW		
Weather Notes									

Sample ID	Lak	e Name			Sample Ty	pe		Sample	e Time	2
MA0313	Lak	ke Gnotu	k		Water - s			23/01/	/18 4:	42 pm
Sampling depth		Coords	& QC	-38	.228704	143.09	9942			9.4
Sampling notes										mistry
									8.6	
								TDS		0ppm
Catchment notes								DO	0.32p	
										0µS/cm
								PSU Temp	65.4 24.9 ⁰	
			M (2.24		Conditions			remp	24.9	
					Conditions					
Water Condition	Calm		24.9%		Air Tem		23.7		44	
Water Clarity	Clear (>2	m visibili	ty)		Wind	Speed		(calm co	onditio	ons. 1
Clouds	Sunny				Wind Di	rection	S to	N		
Weather Notes										

Sampling depth	0.3m	Coords & QC	-38.228728	143.09990	99.6		13.0
Sampling notes					Wate	er Che	mistry
					pН	8.59	
					TDS	5306	Oppm
Catchment notes					DO	7.48p	pm
					Cond.	1065	00µS/cm
					PSU		
					Temp	26.70	C
		Weat	ther Conditions				
Water Condition	Calm	26.7%	C Air Tem	p & RH 30	0°C	25	
Water Clarity	Clear (>2r	n visibility)	Wind	Speed Lo	w (calm c	onditic	ons. 1

Water Clarity	Clear (>2m visibility)	Wind Speed	Low (calm conditions. 1
Clouds	Sunny	Wind Direction	N to S
Weather Notes			

Sample ID	Lak	e Name		Sample Ty	'pe		Sample	e Time	9
MA0351	Lal	ke Gnotuk		Water - s			8/05/1	18 4:5	6 pm
Sampling depth	0.2m	Coords & Q	C -3	8.229009	143.09	9886	91.5		49.0
Sampling depth Sampling notes		Coords & Q	С-3	8.229009	143.09	9886		er Che	49.0 mistry
		Coords & Q	C -3	8.229009	143.09	9886	Wate	er Che 8.6	
		Coords & Q	C -3	8.229009	143.09	9886	Wate pH		mistry
Sampling notes		Coords & Q	C -3	8.229009	143.09	9886	Wate pH TDS	8.6	mistry Oppm
		Coords & Q	C -3	8.229009	143.09	9886	Wate pH TDS DO	8.6 4995 6.04p	mistry Oppm
Sampling notes		Coords & Q	C -3	8.229009	143.09	9886	Wate pH TDS DO	8.6 4995 6.04p	mistry Oppm opm
Sampling notes		Coords & Q	C -3	8.229009	143.09	9886	Wate pH TDS DO Cond. PSU	8.6 4995 6.04p	mistry Oppm opm 0µS/cm
Sampling notes				8.229009 r Conditions	143.09	9886	Wate pH TDS DO Cond. PSU	8.6 4995 6.04p 9993	mistry Oppm opm 0µS/cm
Sampling notes		W				9886	Wate pH TDS DO Cond. PSU Temp	8.6 4995 6.04p 9993	mistry 0ppm 0µS/cm PC
Sampling notes	Calm	W	eather	r Conditions Air Temp		14.90	Wate pH TDS DO Cond. PSU Temp	8.6 4995 6.04 9993 17.6 53	mistry Oppm OµS/cm PC
Sampling notes Catchment notes	Calm	W 17.	eather	r Conditions Air Temp	o & RH Speed	14.9º Low	Wate pH TDS DO Cond. PSU Temp	8.6 4995 6.04p 9993 17.60 53 onditio	mistry Oppm OµS/cm PC

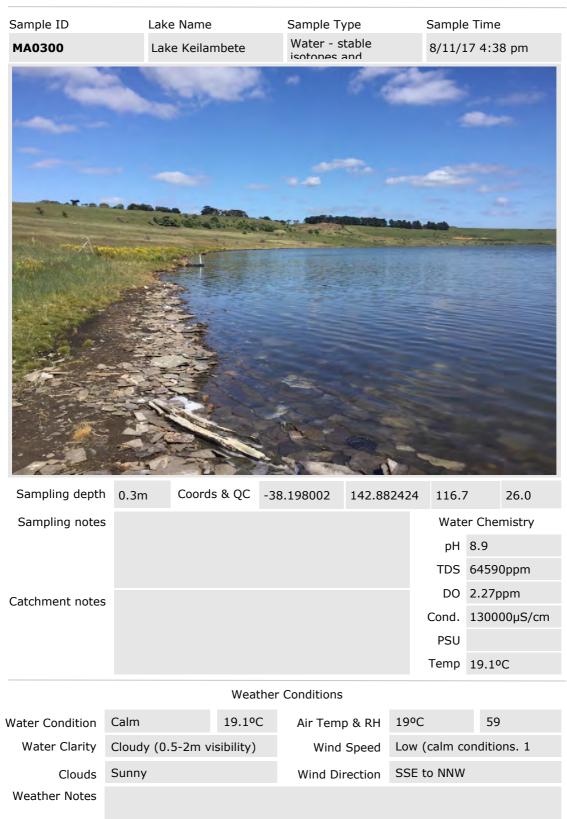
Sample ID		e Name	Sample			Sample	
MA0368	Lak	e Gnotuk	Water -			10/07/	'18 2:33 pm
Sampling depth	0.2m	Coords & QC	-38.228725	143.09	9896	5 113.5	7.8
Sampling notes						Wate	r Chemistry
						pН	8.5
						TDS	49280ppm
Catchment notes	PSU off sc	ale				DO	8.41ppm
						Cond.	98580µS/cm
						PSU	
						Temp	12.4ºC
		Wo	ather Conditio	ns			
		Wea					
Water Condition	Calm	12.49		mp & RH	10.3	3°C	69
Water Condition Water Clarity	Calm Clear (>2r	12.49	PC Air Te	mp & RH nd Speed			69 Inches moving.
		12.49	PC Air Te Wir	-	Med		

Sample ID	Lake	e Name	Sample T	уре		Sample	e Time
MA0374	Lak	e Gnotuk	Water - s			9/09/1	L8 4:19 pm
Sampling depth	0.2m	Coords & QC	-38.229040	143.09	9777	121.7	7 18.9
Sampling depth Sampling notes	0.2m	Coords & QC	-38.229040	143.09		Wate pH TDS DO Cond. PSU	 x x
Sampling notes	0.2m		-38.229040			Wate pH TDS DO Cond. PSU	er Chemistry 8.5 51460ppm 5.35ppm 102900µS/c -
Sampling notes	0.2m Choppy					Wate pH TDS DO Cond. PSU Temp	er Chemistry 8.5 51460ppm 5.35ppm 102900µS/c -
Sampling notes Catchment notes /ater Condition	Сһорру	Weat	ther Conditions Air Tem		15.10	Wate pH TDS DO Cond. PSU Temp	er Chemistry 8.5 51460ppm 5.35ppm 102900µS/c - 13°C
Sampling notes Catchment notes Vater Condition Water Clarity	Сһорру	Weat 13ºC	ther Conditions Air Tem	p & RH Speed	15.1º Mediu	Wate pH TDS DO Cond. PSU Temp	er Chemistry 8.5 51460ppm 5.35ppm 102900µS/c - 13°C 73 anches movin

·	•								
Sample ID		Lake Name		Sample Ty			Sample	e Time	9
MA0074		Lake Keilar	nbete	Water-sta	ble		5/04/1	L6 4:4	2 pm
	44								
						and the second se			
Sampling depth		Coords	s & QC -3	38.198161	142.882	992	99.0		7.8
Sampling notes									mistry
							-	8.64	0ppm
								0.29	
Catchment notes							Cond.		00µS/cm
							PSU		
							Temp	18.89	РС
			Weathe	er Conditions					
Water Condition	Choppy	/	18.8°C	Air Temp	8 RH	22ºC		60)
Water Clarity	Cloudy	(0.5-2m vi	isibility)	Wind	Speed	Mediu	ım (bra	anches	s moving.
	Overca	ct							
Clouds	Overca	31		Wind Dir	ection	SW to	JINE		

Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time
MA0121	Lak	ke Keilambete		Water - g	eneral		2/08/1	l6 4:06 pm
Sampling depth	0.2m	Coords & QC	-38	3.198027	142.88	304	6 105.8	6.4
Sampling notes							Wate	er Chemistry
							рН	8.77
							TDS	67180ppm
Catchment notes								1.39ppm
							Cond.	134100µS/cm
							PSU	-
							Temp	12.45°C
		Weat	ther	Conditions				
Water Condition	Choppy	12.45	°C	Air Tem	2 & RH	11.	9°C	
Water Clarity	Murky (<0).5m visibility)		Wind	Speed	Ме	dium (bra	inches moving.
Clouds	Overcast			Wind Dir	rection	SW	to NE	
Weather Notes								

Water Condition	Calm	19.84ºC	Air Temp & RH	16.1ºC	66
Water Clarity	Murky (<0.5m vis	ibility)	Wind Speed	Medium (bran	ches moving.
Clouds	Partly Cloudy		Wind Direction	SW to NE	
Weather Notes					


Samples taken by: Jonathan Tyler

Sample ID	Lake	e Name	Sample Type		Sample	e Time
JT0207	Lak	e Keilambete	Bulk water		4/01/1	L7 4:57 pm
	T					
Sampling depth	0.3m	Coords & QC -	38.198016 142	.882523	109.0	26.0
Sampling depth Sampling notes		Coords & QC -:	38.198016 142	.882523		26.0 er Chemistry
		Coords & QC -:	38.198016 142	.882523	Wate pH	er Chemistry 8.7
		Coords & QC -:	38.198016 142	.882523	Wate pH TDS	er Chemistry 8.7 70560ppm
	4/1/2017	Coords & QC -:	38.198016 142	.882523	Wate pH TDS DO	er Chemistry 8.7 70560ppm 0.82ppm
Sampling notes	4/1/2017	Coords & QC -	38.198016 142	.882523	Wate pH TDS DO Cond.	er Chemistry 8.7 70560ppm
Sampling notes	4/1/2017	Coords & QC -	38.198016 142	.882523	Wate pH TDS DO Cond. PSU	er Chemistry 8.7 70560ppm 0.82ppm
Sampling notes	4/1/2017		88.198016 142	.882523	Wate pH TDS DO Cond. PSU	er Chemistry 8.7 70560ppm 0.82ppm 141000µS/cm
Sampling notes	4/1/2017		er Conditions		Wate pH TDS DO Cond. PSU	er Chemistry 8.7 70560ppm 0.82ppm 141000µS/cm
Sampling notes	4/1/2017	Weathe	er Conditions	H	Wate pH TDS DO Cond. PSU Temp	er Chemistry 8.7 70560ppm 0.82ppm 141000µS/cm
Sampling notes Catchment notes Water Condition	4/1/2017	Weather 30.59°C	er Conditions Air Temp & R	H d Med	Wate pH TDS DO Cond. PSU Temp	er Chemistry 8.7 70560ppm 0.82ppm 141000µS/cm 30.59°C

Sample ID	Lake	e Name		Sample Ty	/pe		Sample	e Time	
MA0239	Lak	e Keilambete		Water - b	ulk		12/03/	17 3:	01 pm
Constante Constante									
Sampling depth	0.3m	Coords & QC	-38	.198203	142.88	3033	118.7	,	9.4
Sampling notes							Wate	er Chei	mistry
							pН	8.7	
							TDS	6230	Oppm
Catchment notes							DO	0.45p	pm
							Cond.	1245	00µS/cm
							PSU	-	
							Temp	23.60	С
		Wea	ther	Conditions					
Water Condition	Choppy	23.60	C	Air Tem	0 & RH	22ºC		61	
Water Clarity	Murky (<0	.5m visibility)		Wind	Speed	Medi	um (bra	inches	moving.
Clouds	Partly Clou	ıdy		Wind Dir	ection	WSW	to ENE		
Weather Notes									

Sample ID	Lake	e Name	Sample Ty	/pe	Sample	e Time
MA0271	Lak	e keilambete	Water		28/06,	/17 2:14 pm
Sampling depth	0.3m	Coords & QC	-38.198102	142.8830		
Sampling notes					pH	er Chemistry 8.6 61860ppm
Catchment notes	Spring flov	wing substantial			Cond. PSU	-
Catchment notes	Spring flov		her Conditions		Cond.	123800µS/cm
		Weat	her Conditions	о е. р.ц. — 11	Cond. PSU Temp	123800µS/cm - 11.3ºC
Water Condition	Calm	Weat 11.3°0	C Air Tem		Cond. PSU Temp 3°C	123800µS/cm - 11.3°C 73
Water Condition Water Clarity	Calm	Weat	C Air Temp	Speed M	Cond. PSU Temp 3°C	123800µS/cm - 11.3°C 73 anches moving

Sample ID	Lake	e Name	Sample T	уре	:	Sample	e Time
MA0284	Lak	e Keilambete	Water - s			4/09/1	.7 5:10 pm
Sampling depth	0.3m	Coords & QC	-38.198194	142.882	802	117.3	8 18.9
Sampling notes						pН	er Chemistry 9 64600ppm
Catchment notes						Cond. PSU	1.28ppm 129100µS/cm - 11°C
		Weat	ther Conditions				
Nater Condition	Choppy	11ºC	Air Tem	p & RH	3.5ºC		93
Water Clarity	Murky (<0	.5m visibility)	Wind	Speed	High ((Windy	. 10+ m/s)
					W/ Ha	_	
Clouds	Partly Clou	ıdy	Wind Di	rection	W to I		

Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time	
MA0310	Lak	ke Keilambet	е	Water - st			23/01/	18 2:15	pm
Sampling depth	0.3m	Coords & C	2C -3	8.198066	142.88	2943	104.5	5 13	.0
Sampling notes							pH TDS	er Chemis 8.76 62650pp	
Catchment notes							Cond. PSU	0.2ppm 125300µ - 29.6°C	IS/cm
		W	/eather	r Conditions					
Water Condition	Choppy	29	.6ºC	Air Temp	0 & RH	23ºC		42	
Water Clarity	Murky (<0).5m visibility	y)	Wind	Speed	Medi	um (bra	inches mo	oving.
Clouds	Sunny			Wind Dir	ection	SSW	to NNE		
Weather Notes									

Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time
MA0324	Lak	e Keilambete		Water - st isotones a			7/03/1	.8 1:16 pm
- address		1.00						
Sampling depth	0.3m	Coords & QC	-38	.198128	142.88	2960	102.0	9.4
Sampling notes							pH TDS	er Chemistry 8.8 73560ppm 5.88ppm
Catchment notes							Cond. PSU	147000µS/cm 22.1°C
		Weat	ther	Conditions				
Water Condition	Calm	22.1%	С	Air Temp	0 & RH	29°0	2	31
Water Clarity).5m visibility)			Speed			onditions. 1
Clouds	Sunny			Wind Dir			/ to SSE	
Weather Notes								

Sample ID		Lake Name	9		Sample Ty	'pe		Sample	e Time	
MA0347		Lake Keila	mbete		Water - st			8/05/1	8 1:1	0 pm
Sampling depth	0.3m	n Coord	ls & QC	-38.	198137	142.88	3024	99.8		6.4
Sampling notes								Wate	er Che	mistry
								pН	8.67	
								TDS	7300	ppm
Catchment notes								DO	4.48p	pm
								Cond.	1404	00µS/cm
								PSU		
								Temp	15.79	PC 29
			Weat	ther C	Conditions					
Water Condition	Calm		15.700	2	Air Temp	0 & RH	14.9	€°C	49	
Water Clarity	Clear	(>2m visibi	ility)		Wind	Speed	Low	(calm c	onditio	ons. 1
Clouds	Sunny	/			Wind Dir	ection	NN	V to SSE		
Weather Notes										

· · · · · · · · · · · · · · · · · · ·	·								
Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time	9
MA0361	Lak	e Keilambete		Water - st			10/07,	/18 9:	14 am
Sampling depth	0.2m	Coords & QC	-38.	197883	142.87	· 983	6 103.4	4	7.8
Sampling notes									mistry
								8.62	·
							TDS	6888	0ppm
Catchment notes	PSU off sc	ale						6.86p	
							Cond. PSU	1377	70µS/cm
								9.889	РС
		Wea	ther C	Conditions					
Water Condition	Calm	9.880	С	Air Temp	0 & RH	8.4	٥C	10	0
Water Clarity	Cloudy (0.	5-2m visibility)	1		Speed	Lov	v (calm c	onditio	ons. 1
Clouds	Overcast			Wind Dir	ection	NW	to SE		
Weather Notes									

Sample ID	Lake Name	Sample Type	Sample Time
MA0371	Lake Keilambete	Water - stable isotones and	9/09/18 2:17 pm
1000			
and the second second			
and the second second			
and the second second			
and the second division of the second divisio			
and the second division of the second divisio			
-	diamont atuff		
		THE REAL	
and the	to the second		
The second second			
4-10			
			C - Har -
a company			
Sampling depth 0.	2m Coords & QC	-38.197791 142.88	30317 105.6 15.6

Sampling depth	0.2m	Coords & QC	-38.197791	142.8803	17 105.6	5	15.6
Sampling notes					Wate	er Che	mistry
					pН	8.7	
					TDS	6977	Oppm
Catchment notes					DO	3.54p	pm
					Cond.	1395	00µS/cm
					PSU	-	
					Temp	13.50	С
		Weat	ther Conditions				
Water Condition	Choppy	13.5%	C Air Tem	p & RH 14	4.5°C	77	
Water Clarity	Cloudy (0.	5-2m visibility)	Wind	Speed H	igh (Windy	. 10+	m/s)
Clouds	Overcast		Wind Di	rection W	SW to ENE		

Weather Notes

Sample ID	Lake Na	ame	Sample Ty	/pe	Sar	nple Time	!
MA0004	Lake L	eake	Water		23,	/05/15 11	:12 am
Sampling depth	0.1 Co	oords & QC	-37.611729	140.592	2388 10	04.3	26.0
Sampling notes	Water level -	-6.36 +- 0.2	ably ~2m drop from top of wa le, then capped	II out fro	ont of toile	ets. Iore.	
Catchment notes	landscape. L southern side	ake bottom v e of catchme	r approx 10-20 very fine dark g ent. Quarry and nd with some r	grey clay seconda	-silt. Pine ary overfl	e plantatio ow crater	ns on to north
		Weat	her Conditions				
Water Condition	Calm		Air Temp	0 & RH	12		
Water Clarity	Clear (>2m vi	isibility)	Wind	Speed	Low (call	m conditio	ons. 1
Clouds	Partly Cloudy		Wind Dir	rection	NE to SW	1	
Weather Notes							

Sample ID	Lake	e Name	Sample Ty	ype	Sample	Time
MA0024	Lak	e Leake	Water		28/08/	15 3:04 pm
Sampling depth	0.1m	Coords & QC	-37.611960	140.592754	98.9	26.0
Sampling notes	Lake subs	tantially higher th	nan last visit.	ant of	Wate	r Chemistry
	toilets. TP	5 below top of re S.	taining wall in th	ont of	рН	
					TDS	
Catchment notes					DO	
					Cond.	
					PSU	
					Temp	

Weather Conditions

Water Condition	Calm	Air Temp & RH	14°C	83	
Water Clarity	Clear (>2m visibility)	Wind Speed	Medium (branches moving.		
Clouds	Partly Cloudy	Wind Direction	SW to NE		
Weather Notes	Cold				

Sample ID	Lake	e Name	Sample Ty	уре	Sample	e Time
MA0128	Lak	e Leake	Water - g	eneral	3/08/1	6 11:29 am
Sampling depth	0.2m	Coords & QC	-37.611929	140.592430	98.3	13.0
Sampling notes	Water is t	annin coloured				er Chemistry
					рН	
					TDS	2565ppm

Catchment notes Suspected ground water seepage from banks along perimeter road.

Weather Conditions

Water Condition	Choppy 12.29°C		Air Temp & RH	10.8°C	83
Water Clarity	Clear (>2m visibil	ity)	Wind Speed	Medium (brand	ches moving.
Clouds	Partly Cloudy		Wind Direction	SSE to NNW	
Weather Notes					

DO 2.36ppm

Cond. 5132µS/cm

PSU 2.78 Temp 12.29°C

Sample ID	L	ake Name.		Sample Ty	ре		Sample	e Time
MA0193	I	Lake Leake		Water - b	ulk		18/11/	/16 6:16 pm
Sampling depth	0.3m	Coords	8 OC	-37.611921	140 50	2750	95.2	9.4
				-37.611921	140.592	2759		
Sampling notes	Possibl	e blue greer	n algae					er Chemistry 8.61
							TDS	1955ppm
-								4.97ppm
Catchment notes								3908µS/cm
							PSU	2.07
							Temp	22.4ºC
			Weat	her Conditions				
Water Condition	Calm		22.400	Air Temp	8 RH	15.89	С	64
Water Clarity	Clear (>	>2m visibili	ty)	Wind	Speed	Medi	um (bra	inches moving.
Clouds	Sunny			Wind Dir	ection	SSW	to NNE	
Weather Notes								

Samples taken by: Jonathan Tyler

Sample ID	Lak	ke Name		Sample Ty	/pe		Sample	e Time	
JT0216	La	ke Leake		Bulk wate	er		7/01/1	.7 10:	13 am
Sampling depth	0.3m	Coords & QC	-37	.611802	140.59	92548	75.8		26.0
Sampling notes	7/1/2017	'10:13:51 am					Wate	er Che	mistry
							pН	9.18	
							TDS	2781	ppm
Catchment notes							DO	1.75p	pm
							Cond.	5565	µS/cm
							PSU	3	
							Temp	26.11	.ºC
		Wea	ther	Conditions					
Water Condition	Calm	26.11	٥C	Air Tem	0 & RH				
Water Clarity	Murky (<	0.5m visibility)		Wind	Speed	Med	lium (bra	inches	moving.
Clouds	Partly Clo	udy		Wind Di	rection	N to	S		
Weather Notes									

Sample ID	Lak	e Name	Sample T	уре		Sample	e Time	
MA0243	Lak	ke Leake	Water - b	oulk		13/03,	/17 9::	19 am
	A setting the	him and						
							-	
Setting and and								
		and the second	-		ir and appl	Milling 1	-	Villatio
				and the second second	2.4	- Version II		
		hand in the	There has answer a				-	
	and the second		-		All and	1	-	
	-	and and and and	-	all and		R		
	The second secon	and a second			A State	N		
Sampling depth	0.3m	Coords & QC	-37.611935	140.592	2957	97.0		13.0
Sampling depth Sampling notes		Coords & QC		140.592	2957		er Cher	
				140.592	2957	Wate	er Cher 9.1	
				140.592	2957	Wate pH		nistry
Sampling notes	M wants t			140.592	2957	Wate pH TDS	9.1	nistry opm
	M wants t			140.592	2957	Wate pH TDS	9.1 3160p 0.83p	nistry opm pm
Sampling notes	M wants t			140.592	2957	Wate pH TDS DO Cond.	9.1 3160p 0.83p	nistry opm pm
Sampling notes	M wants t			140.592	2957	Wate pH TDS DO Cond. PSU	9.1 3160p 0.83p 6323p	nistry opm pm JS/cm
Sampling notes	M wants t	o go kayaking or			2957	Wate pH TDS DO Cond. PSU	9.1 3160p 0.83p 6323p 3.47	nistry opm pm JS/cm
Sampling notes	M wants t	o go kayaking or	lake ther Conditions		2957 17°C	Wate pH TDS DO Cond. PSU Temp	9.1 3160p 0.83p 6323p 3.47	nistry opm pm JS/cm C
Sampling notes	M wants t	o go kayaking or	ther Conditions		17°C	Wate pH TDS DO Cond. PSU Temp	9.1 3160µ 0.83p 6323µ 3.47 18.8°	nistry opm pm JS/cm C
Sampling notes Catchment notes	M wants t	o go kayaking or Wea 18.8º	ther Conditions	p & RH Speed	17ºC Medin	Wate pH TDS DO Cond. PSU Temp	9.1 3160p 0.83p 6323p 3.47 18.80 89 anches	nistry opm pm uS/cm C

Sample ID	Lake	e Name	Sample T	уре		Sample	e Time
MA0248	Lak	e Leake	Water -	stable		23/04/	'17 1:15 pm
Sampling depth	0.3m	Coords & QC	-37,611957	140.59	2476	86.2	7.8
Sampling notes						Wate	r Chemistry
						pН	,
						TDS	
Catchment notes						DO	
						Cond.	
						PSU	
						Temp	17ºC
		Weat	ther Condition	5			
Water Condition	Calm	17ºC	Air Tem	ip & RH	19.30	PC	79
Water Clarity	Clear (>2r	n visibility)	Wind	l Speed	Low (calm co	onditions. 1
Clouds	Partly Clou	ıdy	Wind D	irection	SE to	NW	
Weather Notes							

Sample ID	Lake	e Name		Sample Ty			Sample	e Time	2
MA0275	Lak	e Leake		Water - s			29/06/	/17 11	:13 am
Sampling depth	0.3m	Coords & Qt		7.611892	140.59	2716	117.1		13.0
			3	7.611892	140.59	2716			
Sampling notes									mistry
								8.9 2933	nnm
							DO	2.6pp	
Catchment notes							Cond.		
								3.2	•
							Temp	11.39	РС
		We	eathei	r Conditions					
Vater Condition	Choppy	11.3	3°C	Air Tem	0 & RH	1100	2	95	i
Water Clarity		n visibility)			Speed			inches	moving.
Clouds	Overcast			Wind Di		NW	to SE		
Weather Notes									

Sample ID	Lake	e Name	Sample T			Sample	e Time
MA0276	Lak	e Leake	Water - s			3/09/1	.7 1:37 pm
Sampling depth	0.3m	Coords & QC	-37.611876	140.59	2738	88.9	13.0
Sampling notes						Wate	er Chemistry
						pН	8.89
						TDS	2378ppm
Catchment notes						DO	1.31ppm
							4753µS/cm
						PSU	2.57
						Temp	13.6°C
		Weat	ther Conditions				
Nater Condition	Choppy	13.6%	C Air Tem	p & RH	12.99	РС	77
Water Clarity	Cloudy (0.	5-2m visibility)	Wind	Speed	High	(Windy	. 10+ m/s)
	Partly Clou	ıdv	Wind Di	rection	NW t	o SE	
Clouds		id y	Willa Di	lection			

Sample ID	Lak	e Name		Sample Ty	ре		Sample	e Time	
MA0291	Lak	ke Leake		Water - st			7/11/1	L7 12:4	42 pm
	-	-	10				-01	4	-
				tenso.	*****			A.2	
1.1.1					X				
122 4	and the second	e distant	- 2° •		and the same	Ne -			
Sampling depth	0.3m	Coords & Q	C -3	7.611938	140.592	2785	99.8		9.4
Sampling depth Sampling notes		Coords & Q	.C -3;	7.611938	140.592	2785		er Cher	
		Coords & Q	.C -3	7.611938	140.592	2785	Wate	er Cher 9.34	
		Coords & Q	.C -3	7.611938	140.592	2785	Wate	9.34 2239j	mistry opm
Sampling notes		Coords & Q	.C -3:	7.611938	140.592	2785	Wate pH TDS DO	9.34 2239p 5.66p	mistry opm opm
		Coords & Q	C -3:	7.611938	140.592	2785	Wate pH TDS DO Cond.	9.34 2239 5.66p 4478	mistry opm opm
Sampling notes		Coords & Q	C -3:	7.611938	140.592	2785	Wate pH TDS DO Cond. PSU	9.34 2239 5.66p 4478 2.4	mistry opm opm uS/cm
Sampling notes		Coords & Q	C -3:	7.611938	140.592	2785	Wate pH TDS DO Cond.	9.34 2239 5.66p 4478	mistry opm opm uS/cm
Sampling notes				7.611938 Conditions	140.592	2785	Wate pH TDS DO Cond. PSU	9.34 2239 5.66p 4478 2.4	mistry opm opm uS/cm
Sampling notes		W				2785 16°C	Wate pH TDS DO Cond. PSU Temp	9.34 2239 5.66p 4478 2.4	nistry opm opm uS/cm oC
Sampling notes	Calm	W	eather	[•] Conditions Air Temp		16°C	Wate pH TDS DO Cond. PSU Temp	9.34 2∠391 5.66p 4√781 2.4 18.66	nistry opm opm uS/cm oC
Sampling notes Catchment notes Nater Condition	Calm	W 18.	eather	[•] Conditions Air Temp	0 & RH Speed	16°C Mediu	Wate pH TDS DO Cond. PSU Temp	9.34 2239µ 5.66p 4478µ 2.4 18.66 57 anches	nistry opm upm uS/cm

Sample ID		Lake N	ame		Sample Ty	'pe		Sample Time		
MA0303		Lake L	eake		Water - st			22/01/	/18 1:	59 pm
Sampling depth	0.3m	ı Co	oords & Q	C -37	7.611880	140.59	2654	100.2	2	13.0
Sampling notes								Wate	r Che	mistry
								рН	8.81	
								TDS	2806	ppm
Catchment notes								DO	0.02p	
								Cond.		µS/cm
								PSU -	3.03	
								Temp	26ºC	
			We	eather	Conditions					
Water Condition	Chopp	y	26º	С	Air Temp	0 & RH	22.3	°C	47	
Water Clarity	Cloudy	(0.5-2	2m visibilit	y)	Wind	Speed	Medi	um (bra	inches	moving.
Clouds	Sunny	,			Wind Dir	ection	S to	N		
Weather Notes										

Sample ID	Lak	e Name	Sample Ty	/pe		Sample	e Time
MA0316	Lak	e Leake	Water - s			6/03/1	l8 1:42 pm
Sampling depth	0.3m	Coords & QC	-37.611910	140.59	2710	96.4	7.8
Sampling notes		-					er Chemistry
							8.6
						TDS	3887ppm
Catchment notes						DO	11.3ppm
						Cond.	7774µS/cm
						PSU	4.3
						Temp	21.9ºC
		Weatl	her Conditions				
Water Condition	Calm	21.9ºC	Air Tem	5 & RH	24ºC		44
Water Clarity	Cloudy (0.	5-2m visibility)	Wind	Speed	High	(Windy	. 10+ m/s)
Clouds	Sunny		Wind Di	rection	SSE t	o NNW	
Weather Notes							

Sample ID		Lake Nam	e		Sample Ty	/pe		Sample	e Time	2
MA0329		Lake Leak	ke					7/05/1	.8 11:	51 am
Sampling depth	0.3m	n Coor	ds & QC	-37	.611870	140.59	2787	82.3		13.0
Sampling notes								Wate	er Che	mistry
									8.55	
									3913	
Catchment notes	;								7.48p	
										µS/cm
									4.37 13.79	°C
			Wee	thor	Conditions			₽	2017	-
Michael Constitution	Chara									
Water Condition Water Clarity	Chopp		13.7º		Air Temp		Mod	um (hra	nchas	s moving.
		y (0.5-2m	visibility)		Speed		um (bra V to ESE		moving.
Clouds Weather Notes	Overc	ası			Wind Dir	ection	VVINV	V 10 ESE		

Sample ID		Lake Name			Sample Type			Sample Time			
MA0357	Lake Leake			Water - stable			9/07/18 11:24 am				
					isotones a	and					
The second	1	BAN						**			
Sampling depth	0.2m	Coord	s & QC	-37.	611904	140.59	274	6 103.4	Ļ	6.4	
Sampling notes								Wate	er Che	mistry	
								pН	8.35		
								TDS	3043	ppm	
Catchment notes								DO	8.6pp	om	
								Cond.	6087	µS/cm	
								PSU	3.3		
								Temp	11.23	3°C	
			Wea	ther (Conditions						
Water Condition	Calm	Calm 11.23°C		8°C	Air Temp & RH 13		139	3°C			
Water Clarity	Clear (:	lear (>2m visibility)			Wind Speed Lo		Lov	w (calm conditions. 1			
Clouds	Overca	st			Wind Direction SW			to NE	to NE		
Weather Notes											

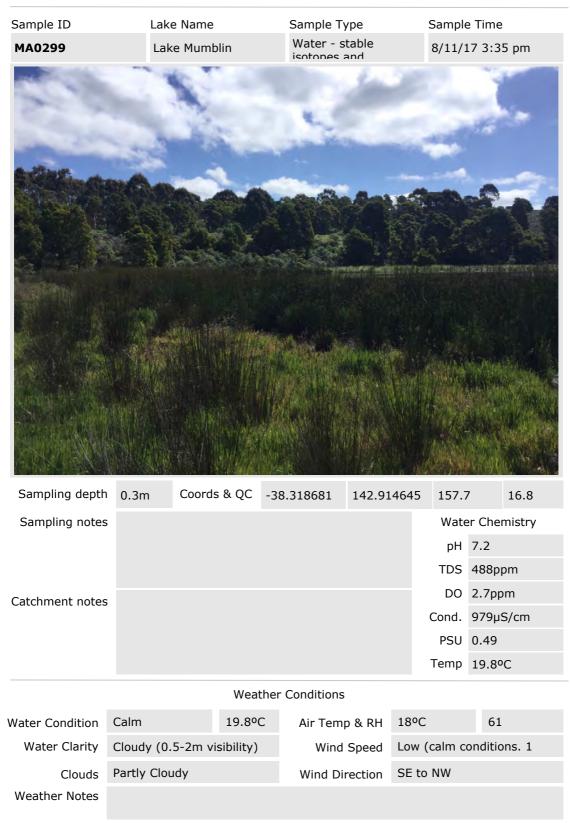
Sample ID	Lake Name			Sample Type			Sample Time			
MA0382	Lake Leake			Water - stable			11/09/18 2:44 pm			
					n					
Sampling depth	0.2m	Coords & QC	-37.61	.1877 1	40.592	543	87.4	7.8		
Sampling notes						W		ter Chemistry		
							pН	7.97		
								2236ppm		
Catchment notes								7.86ppm		
								4473µS/cm		
								2.4 15.5°C		
							remp	15.5*C		
			ther Co							
Water Condition	Choppy	15.50				21°C				
Water Clarity		5-2m visibility)				-	n (Windy. 10+ m/s)			
Clouds	Overcast		N N	Wind Direction NNW			to SSE			
Weather Notes										

Sample ID	Lake N	Sample ⁻	Sample Type			Sample Time			
MA0029	Lake N	Mumblin	Water			29/08/1	5 3:16 pm		
Sampling depth	0.2m C	oords & QC	-38.318999	142.01	2975	130.9	13.0		
Sampling notes	lake. Wear st	It. Down track urdy shoes.			Chemistry				
	fracturing sir	ittle crater. So nilar to lake Eo	mp	рН					
	shed. Watch	for holes. Soil	near lake fairly	robust ai	nd	TDS DO			
Catchment notes						Cond.			
				PSU					
						Temp			
		Woa	ther Condition	S					
		vvea	unci oonantion						
Vater Condition	Calm	vvea		א מר RH	8.5°C				
			Air Ten	np & RH d Speed			ditions.		
Water Clarity	Calm Clear (>2m \ Overcast		Air Ten Wind	np & RH d Speed Direction	Low (calm con o NNW	ditions.		

Sample ID	Lak	e Name	Sample Ty	/pe	Sample	e Time
MA0070	Lak	ke Mumblin	Water-sta	able	5/04/1	.6 4:00 pm
Sampling depth	0.1m	Coords & QC	-38.318949	142.9140	146.7	18.9
Sampling notes					Wate	er Chemistry
Sampling notes					pН	8.71
Sampling notes					pH TDS	8.71 804ppm
Sampling notes Catchment notes					рН TDS DO	8.71 804ppm 0.52ppm
Catalanantan					рН TDS DO Cond.	8.71 804ppm 0.52ppm 1603µS/cm
Catalanantaataa					pH TDS DO Cond. PSU	8.71 804ppm 0.52ppm
Catalanantan		Weat	ther Conditions		pH TDS DO Cond. PSU	8.71 804ppm 0.52ppm 1603µS/cm 0.81
Catchment notes		Weat 20.2%		5 & RH 2	pH TDS DO Cond. PSU	8.71 804ppm 0.52ppm 1603µS/cm 0.81
Catchment notes	Calm		C Air Tem		pH TDS DO Cond. PSU Temp	8.71 804ppm 0.52ppm 1603µS/cm 0.81 20.2°C
Catchment notes	Calm	20.2%	C Air Tem	Speed M	pH TDS DO Cond. PSU Temp	8.71 804ppm 0.52ppm 1603µS/cm 0.81 20.2°C

Sample ID	Lake	e Name	Sample T	уре		Sample	e Time
MA0119	Lak	e Mumblin	Water - g	jeneral		2/08/1	16 3:13 pm
Sampling depth	0.2m	Coords & QC	-38.318790	142.91	4436	165.5	5 16.8
Sampling notes						Wate pH TDS DO	er Chemistry 8.42 603ppm 2.81ppm 1206µS/cm 0.61 11.6°C
		Wea	ther Conditions				
Water Condition	Calm	11.6°	C Air Tem	p & RH	12°0	2	82
Water Clarity	Murky (<0).5m visibility)		Speed	Medi	ium (bra	anches moving.
Clouds Weather Notes	Partly Clou	ıdy	Wind Di	rection	SW	to NE	

Sample ID	Lake Name	Sample Type		Sample ⁻	Time
MA0184	Lake Mumblin	Water - bulk		18/11/1	.6 12:30 pm
Sampling depth	Coords & QC	38.318796 142.9	14561	153.6	9.4
Sampling notes				Water pH TDS	Chemistry
Catchment notes				DO Cond. PSU Temp	
	Weath	er Conditions			
Water Condition	Calm	Air Temp & RH	14.90	С	76
Water Clarity		Wind Speed	Low (calm cor	nditions. 1
Clouds	Partly Cloudy	Wind Direction	SSW	to NNE	
Weather Notes					


Samples taken by: Jonathan Tyler

Sample ID		e Name		Sample Ty			Sample	
JT0205	Lake	e Mumblin		Bulk wate	r		4/01/1	.7 3:47 pm
Sampling depth	0.3m	Coords & QC	-38	8.318780	142.91	4288	154.3	49.0
Sampling notes	4/1/20173	:47:27 pm					Wate	er Chemistry
							pН	9.14
							TDS	590ppm
Catchment notes							DO	3.62ppm
								1184µS/cm
							PSU	.059
							Temp	23.23ºC
		Wea	ther	Conditions				
Water Condition	Calm	23.23	°C	Air Temp	0 & RH			
Water Clarity	Murky (<0	.5m visibility)		Wind	Speed	Low	(calm co	onditions. 1
Clouds	Sunny			Wind Dir	ection			
Weather Notes								

Sample ID	Lake	e Name	Sample T	уре	Sam	ple Time
MA0237	Lak	e Mumblin	Water - t	oulk	12/	03/17 2:11 pm
Sampling depth	0.3m	Coords & QC	-38.318711	142.914	479 15	2.0 6.4
Sampling notes						ater Chemistry
					t	oH 7.9
						DS 573ppm
Catchment notes						00 0.73ppm
						d. 1146µS/cm
						SU 0.57
					Ten	1p 23.7°C
		Weat	ther Conditions			
Water Condition		23.7%	C Air Tem	p & RH		
Water Clarity				Speed		
Clouds			Wind Di	rection		
Clouds Weather Notes			Wind Di	rection		

	Lak	e Name	Sample T	уре		Sample	e Time
MA0270	Lak	e Mumblin	Water - s			28/06/	/17 1:11 pm
							T
Sampling depth		Coords & QC	-38.318828	142.91	4380	129.9	
Sampling depth Sampling notes		Coords & QC	-38.318828	142.91	4380	Wate	er Chemistry
		Coords & QC	-38.318828	142.91	4380	Wate pH	er Chemistry 7.7
		Coords & QC	-38.318828	142.91	4380	Wate pH TDS	er Chemistry 7.7 507ppm
Sampling notes		Coords & QC	-38.318828	142.91		Wate pH TDS DO	er Chemistry 7.7 507ppm 2.62ppm
Sampling notes		Coords & QC	-38.318828	142.91		Wate pH TDS DO Cond.	er Chemistry 7.7 507ppm
Sampling notes		Coords & QC	-38.318828	142.91		Wate pH TDS DO Cond. PSU	r Chemistry 7.7 507ppm 2.62ppm 1014µS/cm
Sampling notes			-38.318828			Wate pH TDS DO Cond. PSU	er Chemistry 7.7 507ppm 2.62ppm 1014µS/cm 0.51
Sampling notes			ther Conditions	;		Wate pH TDS DO Cond. PSU Temp	er Chemistry 7.7 507ppm 2.62ppm 1014µS/cm 0.51
Sampling notes	Calm	Weat	ther Conditions	;	12.89	Wate pH TDS DO Cond. PSU Temp	er Chemistry 7.7 507ppm 2.62ppm 1014µS/cm 0.51 10.8°C
Sampling notes Catchment notes Vater Condition	Calm	Wea 10.8%	ther Conditions	s p & RH Speed	12.89	Wate pH TDS DO Cond. PSU Temp	r Chemistry 7.7 507ppm 2.62ppm 1014µS/cm 0.51 10.8°C

Sample ID MA0285		e Name ke Mumblin	Sample T Water - s	table		Sample 5/09/1	e Time .7 9:47	am
Sampling depth	0.3m	Coords & QC	-38.318760	142.914	421	148.6		13.0
Sampling notes	0.011	, i i i i i i i i i i i i i i i i i i i	501510700	1 12191			er Chem	
						pН	7.9	
						TDS	485pp	
Catchment notes							1.69pp	
							974µS, 0.48	/ CITI
						Temp	9.7ºC	
		Wea	ther Conditions					
Water Condition	Choppy	9.7°C	Air Tem	p & RH	7.5°0	2	85	
Water Clarity	Cloudy (0	.5-2m visibility)	Wind	Speed	Mediu	um (bra	inches i	moving.
Clouds	Partly Clo	udy	Wind Di	rection	WNW	to ESE		
Weather Notes								

Sample ID	Lake	e Name	Sample T	уре		Sample	e Time
MA0311	Lak	e Mumblin	Water - s			23/01/	′18 3:11 pm
Sampling depth	0.3m	Coords & QC	-38.318662	142.914	4545	160.7	6.4
Sampling notes	Wedge tai	led eagle spotted	l				er Chemistry
						pН	
						TDS	510ppm
Catchment notes							0.33ppm
						Cond. PSU	
							27.4°C
							2,11 0
			ther Conditions				10
Water Condition	Calm	27.4%			25°C		40
Water Clarity		5-2m visibility)		Speed			inches moving
Clouds	Sunny		Wind Di	rection	SSW	to NNE	
Weather Notes							

Sample ID		Lake Name	2		Sample Ty	/pe		Sampl	e Time	9
MA0323		Lake Mum	blin		Water - s			7/03/	18 12:	27 pm
Sampling depth	0.3m	Coord	ls & QC	-38	.318835	142.91	.4622	2 153.	7	9.4
Sampling notes								Wate	er Che	mistry
								рH	7.8	
								TDS	634p	
Catchment notes								DO	8.1pj	
								Cond.		µS/cm
								PSU	0.63	
								Temp	22.19	
			Wea	ther	Conditions					
Water Condition	Calm		22.10	С	Air Temp	0 & RH	260	С	38	3
Water Clarity	Murky	(<0.5m vis	sibility)		Wind	Speed	Low	ı (calm c	conditio	ons. 1
Clouds	Sunny				Wind Dir	rection	N to	o S		
Weather Notes										

Sample ID		Lake Nam	e		Sample Ty	pe		Sample	e Time	
MA0346		Lake Mum	nblin		Water - st			8/05/1	.8 12:	13 pm
Sampling depth	0.3m	n Coord	ds & QC	-38.	318741	142.91	4274	161.1		15.6
Sampling notes	;							Wate	er Che	mistry
								pН		
									602p	
Catchment notes	;								10.8p	
								Cond. PSU	1200 0.6	µS/cm
								Temp	0.6 14.5°	
			M (+	I					1.1.5	C
	c 1				Conditions					
Water Condition	Calm		14.5°C		Air Temp		14.3		55	
Water Clarity		y (0.5-2m	visibility)			Speed		(calm co	onditio	ons. 1
Clouds	Sunny	/			Wind Dir	ection	W to	E		
Weather Notes										

Sample ID	Lak	e Name	Sample T	уре	Sample	e Time
MA0360	Lal	ke Mumblin	Water - s		10/07,	/18 8:20 am
Sampling depth	0.2m	Coords & QC	-38.318784	142.914725	140.9	a 33.5
	0.2111		55.510/04	1 (2,) 17/23		
Sampling notes						er Chemistry
						6.5
					TDS	505ppm
Catchment notes						9.73ppm
					iond	IIII hills/cm

 Veather Conditions
 S0Sppm

 9.73ppm

 Cond.
 1016μS/cm

 PSU
 0.5

 Temp
 9.5°C

 9.5°C
 Air Temp & RH
 8°C
 100

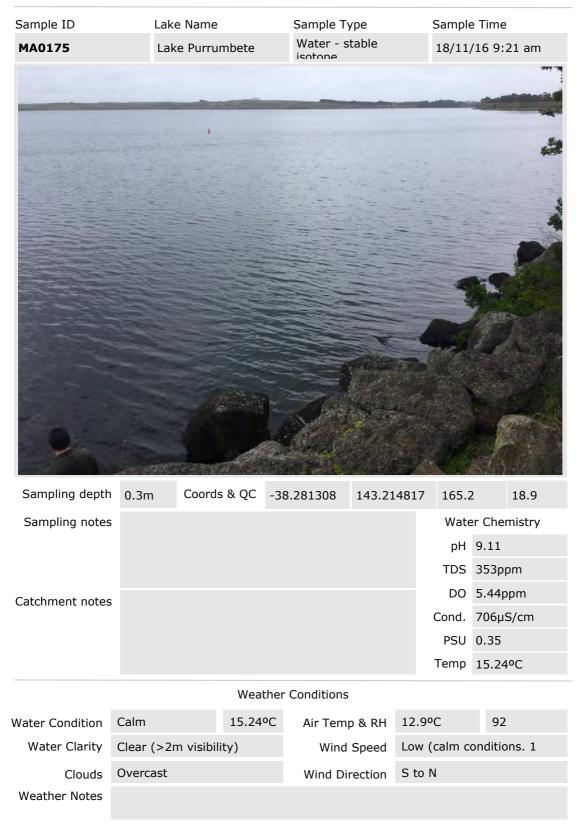
Water Condition	Calm	9.5°C	Air Temp & RH	8°C	100
Water Clarity	Murky (<0.5m vis	ibility)	Wind Speed	Medium (brand	ches moving.
Clouds	Overcast		Wind Direction	W to E	
Weather Notes					

Sample ID	Lak	e Name	Sample Ty	pe	Sample	e Time
MA0372	Lak	e Mumblin	Water - st		9/09/1	.8 3:02 pm
		1997 A				
Sampling depth	0.2m	Coords & QC	-38.318833	142.9146	18 167.4	13.0
Sampling notes					Wate pH TDS	er Chemistry 8 500ppm
Catchment notes					DO Cond.	6.2ppm 1000µS/cm
					PSU Temp	
		Weat	her Conditions			0.5
Water Condition	Calm	Weat 13.5%		0 & RH 1		0.5
Water Condition Water Clarity			C Air Temp		Temp 5°C	0.5 13.5°C
		13.5%	C Air Temp	Speed M	Temp 5°C	0.5 13.5°C 78

Sample ID	Lake	e Name	Sample Ty	ре	Sample Tim	ne
MA0011	Lak	e Purrumbete	Water		24/05/15 1	0:45 am
Sampling depth	0.5	Coords & QC	-38.281240	143.214682	2 154.1	9.4
Sampling notes	Sample to	aken at Hoses ı aken with 6ft p	rocks, good acce ole, then capped	ess. 1 subsurface	e at shore.	
Catchment notes						
		Wea	ther Conditions			
Water Condition	Calm		Air Temp	& RH 10		
Water Clarity	Clear (>2r	n visibility)	Wind	Speed Lov	v (calm condit	ions. 1
Clouds	Partly Clou	ıdy	Wind Dir	ection NN	E to SSW	
Weather Notes						

Clouds

Weather Notes

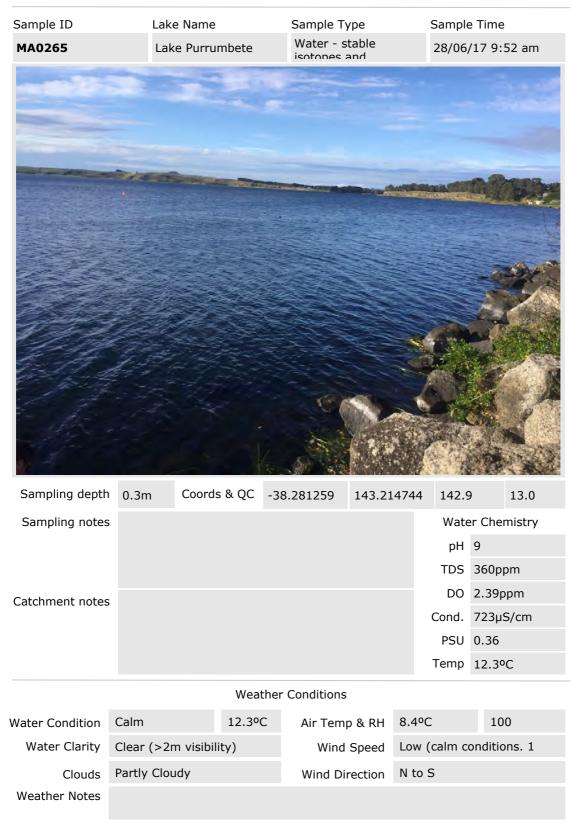

Sample ID	Lake	e Name	Sample T	уре		Sample	Time	e
MA0022	Lak	e Purrumbete	Water			10/06/	15 5:	:17 pm
-								
the second second second		the second se	ET MODEL VIVLET PLUT AND					
Campling donth		Caardo & OC						
Sampling depth	0.2m	Coords & QC	-38.281306	143.21	4711	149.8		7.8
Sampling depth Sampling notes		Coords & QC sotope sample	-38.281306	143.21	4711	Wate pH TDS		7.8 emistry
			-38.281306	143.21		Wate pH TDS DO		
Sampling notes			-38.281306	143.21		Wate pH TDS		
Sampling notes			-38.281306	143.21		Wate pH TDS DO Cond.		
Sampling notes		sotope sample	-38.281306			Wate pH TDS DO Cond. PSU		
Sampling notes		sotope sample				Wate pH TDS DO Cond. PSU Temp	r Che	

Wind Direction

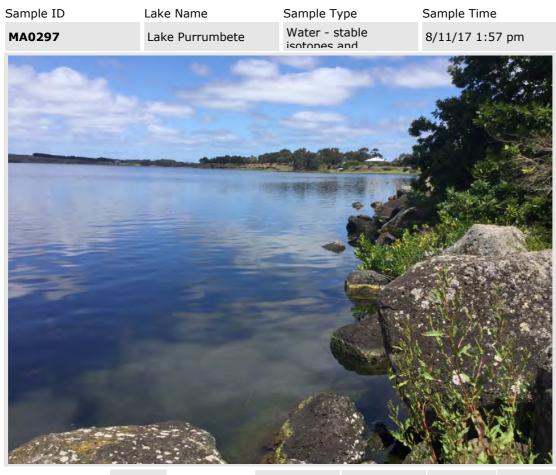
Sample ID	Lake	e Name	Sample T	уре		Sample	Time
MA0035		e Purrumbete	Water	51			15 1:03 pm
Sampling depth	0.2m	Coords & QC	-38.293011	143.22	21279	139.1	7.8
Sampling notes	Jetty near	boat ramp				Wate	r Chemistry
						рН	
						TDS	
Catchment notes						DO	
						Cond. PSU	
						Temp	
		Wea	ther Conditions	;			
Water Condition	Calm		Air Tem		11°C		
Water Clarity		5-2m visibility)		Speed		m (brai	nches moving.
Clouds	Overcast		Wind Di			to NNE	
Weather Notes	2.10.0001		wind Di	CUUI	2311		

Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time	
MA0058	Lak	ke Purrum	bete	Water-sta	ble		5/04/1	.6 11:	51 am
Sampling depth	0.2m	Coords 8	& QC -:	38.281340	143.21	.4548	134.9)	11.7
Sampling notes	See other	db for obs	;						mistry
							-	8.43	
								424pj	
Catchment notes								8.5pp	
							Cond. PSU	849μ: 0.42	5/cm
								18.67	°C
			Weath	er Conditions			•		
	Channe				0 5	250	-	22	
	Choppy		18.67ºC			25°(- ı (Windy	22	
	Clear (>2		()						11/5)
Clouds Weather Notes	Partly Clou	лау		Wind Dir	rection	NINV	V to SSE		

Sample ID	l akı	e Name		Sample Ty	/ne		Sample	Time	
MA0113		e Purrum	nbete	Water - g				6 12:11	l pm
Sampling depth		Coords	& QC -	38.281230	143.21	4577	137.0) 5	5.8
Sampling notes							Wate	er Chem	istry
							рН	9.19	
							TDS	423ppr	n
Catchment notes							DO	3.15pp	m
							Cond.	848µS/	'cm
							PSU	0.42	
							Temp	10.74°	С
			Weath	er Conditions					
Water Condition	Calm		10.74°C	Air Tem	0 & RH	9.7°	°C	83	
Water Clarity	Clear (>2r	n visibilit	y)		Speed	Low	(calm c	ondition	S.
Clouds	Overcast			Wind Dir		S to	N		
Weather Notes									



Samples taken by: Jonathan Tyler

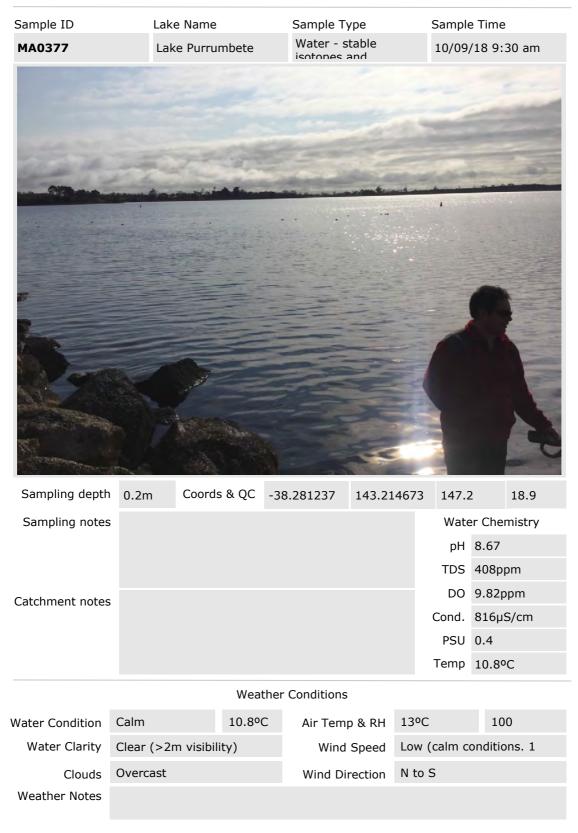

Sample ID	Lak	e Name		Sample Ty	pe		Sample	e Time	
JT0197	Lak	ke Purrumbet	e	Bulk wate			4/01/1		
Sampling depth	0.3m	Coords & Q	C -38	.292429	143.220	454	138.5	;	18.9
Sampling notes	4/1/2017						Wate	r Che	mistry
							pН	9.05	
							TDS		
Catchment notes	;						DO	1.8pp	m
							Cond.	815µ	S/cm
							PSU	.4	
							Temp	21.10	С
		W	eather	Conditions					
Water Condition	Calm	21.	1ºC	Air Temp	0 & RH				
Water Clarity	Murky (<0).5m visibility)			Low (calm co	onditio	ons. 1
Clouds	Partly Clou	Jdy		Wind Dir	ection				
Weather Notes									

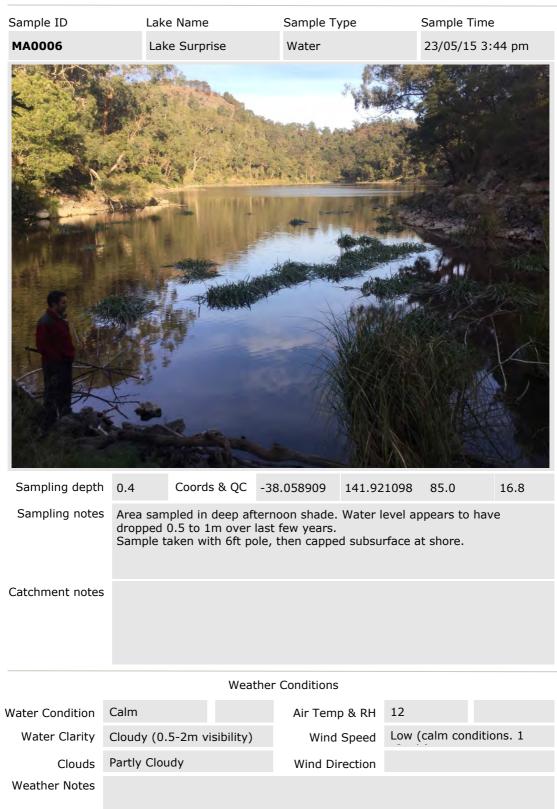
Sample ID		Lake Name		Sample Ty	me		Sample	Timo	
MA0226		Lake Purrumbe		Water - b				/17 10:34 an	า
Sampling depth	0.3m	Coords & C)C -38.	281241	143.21	4616	137.4	13.0	
Sampling notes	;						Wate	er Chemistry	
							pН	9.5	
							TDS	360ppm	
Catchment notes	;						DO	0.48ppm	
							Cond.	720µS/cm	
							PSU	0.35	
							Temp	20.6ºC	
		W	/eather (Conditions					
		-		Jonutions					
Water Condition	Chopp		.6ºC		0 & RH	20ºC		72	
Water Condition Water Clarity				Air Temp	0 & RH Speed			72 anches movir	ıg.

Weather Notes

Sample ID	Lak	e Name		Sample Ty	pe		Sample	e Time
MA0290	Lak	e Purrumbete		Water - st	table		5/09/1	.7 4:11 pm
Sampling depth	0.3m	Coords & QC	-38	.281239	143.21	.472	5 135.6	5 13.0
Sampling notes							Wate	er Chemistry
							рH	
								384ppm
Catchment notes								2.15ppm
								767µS/cm
							PSU Temp	0.38 10.6°C
				o #::			icinp	10.0.0
				Conditions				
Water Condition	Choppy	10.6º		Air Temp		8.2		91
Water Clarity		5-2m visibility)		Wind	Speed	_		. 10+ m/s)
Clouds	Overcast			Wind Dir	rection	WN	IW to ESE	
Weather Notes								

Sampling depth	0.3m	Coords & QC	-38.281239	143.21469	92 145.4	2 145.4	
Sampling notes					Wate	er Che	mistry
					pН	9.3	
					TDS	388p	pm
Catchment notes					DO	3.45p	pm
					Cond.	776µ	S/cm
					PSU	0.38	
					Temp	17.10	с
		Wea	ther Conditions	5			
Water Condition	Calm	17.10	C Air Tem	np & RH 16	٥C	65	
Water Clarity	Clear (>2r	n visibility)	Wind	Speed Lo	w (calm c	onditic	ons. 1
Clouds	Partly Clou	ıdy	Wind D	irection SE	to NW		


Weather Notes


Sample ID	Lak	e Name		Sample Ty	pe		Sample	e Time	
MA0308	Lak	e Purrumbete		Water - st isotones a			23/01,	/18 11:0	4 am
-			-				-	_	
Sampling depth	0.3m	Coords & QC	-38	.281407	143.21	.4703	157.8	3 1	3.0
Sampling notes							pH TDS	er Chemi 9.6 365ppn	1
Catchment notes								0.36ppr 732µS/ 0.36 23.3°C	
		Wea	ther	Conditions					
Water Condition	Calm	23.30	С	Air Temp	8 RH	2000	2	52	
Water Clarity	Clear (>2r	n visibility)		Wind	Speed	Low	(calm c	onditions	5. 1
Clouds Weather Notes	Sunny			Wind Dir	ection	SSW	to NNE		

Sample ID		Lake Name	!		Sample Ty	уре		Sample Time		
MA0321		Lake Purru	Imbete		Water - s			7/03/1	.8 10:	12 am
Sampling depth		Coord	s & QC	-38	.281278	143.21	4746	159.7		26.0
Sampling notes										nistry
								pН	9.34	
								TDS	422pj	
Catchment notes								DO	11.7p	
								Cond.		S/cm
								PSU	0.42	
								Temp	20.10	С
			Wea	ther	Conditions					
Water Condition	Calm		20.10	С	Air Tem	0 & RH	19°0	2	67	
Water Clarity	Clear (>2m visibi	lity)		Wind	Speed	Low	(calm co	onditio	ns. 1
Clouds	Sunny				Wind Di	rection	E to	W		
Weather Notes										

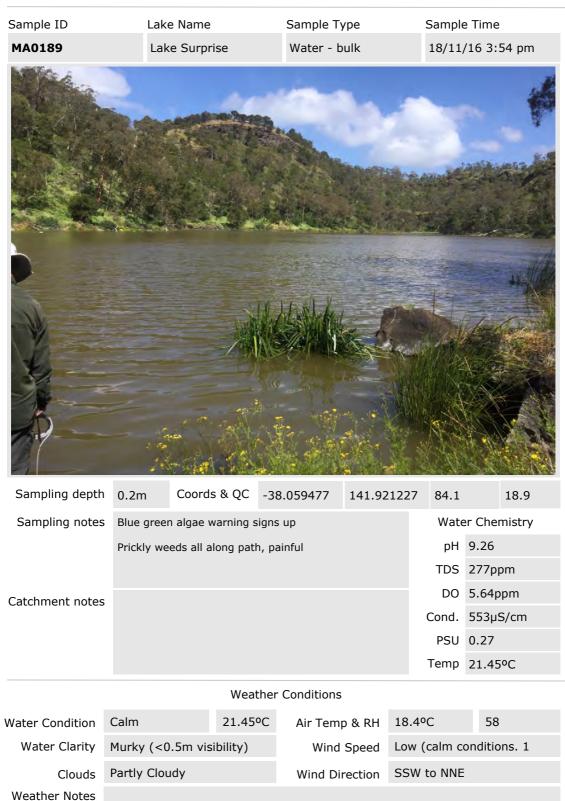
Sample ID Lake Name Sample Type Sample Tyme											
Sampling depth 0.3m Coords & QC -38.281234 143.214307 143.9 33.5 Sampling notes Vater Chemistry Vater Chemistry Vater Chemistry PH 9 Catchment notes Vater Condition Calm 15.3°C Air Temp & RH 13.4°C 68 Water Clarity Clarity Clarity Sinny Air Temp & RH 13.4°C 68 Water Clarity Clear (>2m visibility) Wind Speed Low (calm contitions.1 140.4°C 68	Sample ID		Lake Name	9		Sample Ty	'pe		Sample	e Time	9
Sampling notes Water Condition Image: condition of the conditis of the condition of the condition of the condition	MA0343		Lake Purru	umbete					8/05/1	L8 10	06 am
Sampling notes Water Clarity Water Clarity Mail Mail <th></th>											
Sampling notes Water Condition Calm 15.3°C Air Temp & RH 13.4°C 68 Water Clarity Clear (>2m visibility) 15.3°C Wind Speed Low (calm c-1)tions.1 Clouds Sunny Wind Direction W to E Verter condition											
Sampling notes Water Condition Calm 15.3°C Air Temp & RH 13.4°C 68 Water Clarity Clear (>2m visibility) 15.3°C Wind Speed Low (calm c-1)tions.1 Clouds Sunny Wind Direction W to E Verter condition					-		-				
Sampling notes Water Condition Calm 15.3°C Air Temp & RH 13.4°C 68 Water Clarity Clear (>2m visibility) 15.3°C Wind Speed Low (calm c-trins).1 Clouds Sunny Vind Direction W to E Vind Direction W to E						. 0			A A		
$\begin{tabular}{ c c c c } & & & & & & & & & & & & & & & & & & &$	Sampling depth	0.3m	n Coord	ls & QC	-38	.281234	143.21	4307	' 143. <u>9</u>	9	33.5
Catchment notes $hereihereihereihereihereihereihereihereher$	Sampling notes	;							Wate	er Che	mistry
Catchment notesDO $1 \cdot 37 \text{ppm}$ Catchment notes $1 \cdot 1 \cdot 37 \text{ppm}$ Cond. $1 \cdot 1 \cdot 37 \text{ppm}$ Cond. $1 \cdot 1 \cdot 37 \text{ppm}$ PSU $0 \cdot 1 \cdot 37 \text{ppm}$ PSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSU $1 \cdot 37 \text{ppm}$ PSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSU $1 \cdot 37 \text{ppm}$ PSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSU $1 \cdot 37 \text{ppm}$ PSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSU $1 \cdot 37 \text{ppm}$ PSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSUPSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSUPSUPSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSUPSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSUPSUPSUPSUPSU $1 \cdot 1 \cdot 37 \text{ppm}$ PSUPS									pН	9	
$\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									TDS	409p	pm
PSU 0.4 Temp 15.3°C Water Condition Calm 15.3°C Water Clarity Clear (>2m visibility) Clouds Sunny	Catchment notes	;							DO	11.3	7ppm
Temp 15.3°C Weather Conditions Veather Conditions Water Condition Calm 15.3°C Water Clarity Clear (>2m visibility) Clouds Sunny											S/cm
Weather ConditionsWater ConditionCalm15.3°CAir Temp & RH13.4°C68Water ClarityClear (>2m visibility)Wind SpeedLow (calm conditions. 1CloudsSunnyWind DirectionW to E											
Water ConditionCalm15.3°CAir Temp & RH13.4°C68Water ClarityClear (>2m visibility)Wind SpeedLow (calm conditions. 1)CloudsSunnyWind DirectionW to E									Temp	15.3	PC
Water ClarityClear (>2m visibility)Wind SpeedLow (calm conditions. 1CloudsSunnyWind DirectionW to E				Wea	ther	Conditions					
Clouds Sunny Wind Direction W to E	Water Condition	Calm		15.30	C	Air Temp	0 & RH	13.4	1ºC	68	3
	Water Clarity	Clear	(>2m visibi	lity)		Wind	Speed	Low	(calm c	onditi	ons. 1
Weather Notes	Clouds	Sunny	/			Wind Dir	ection	W to	ъЕ		
	Weather Notes										

Sample ID	Lak	e Name			Sample Ty			Sample	e Time	e
MA0366	Lak	e Purrun	nbete		Water - s			10/07/	18 1	:09 pm
							-			
Sampling depth	0.2m	Coords	& QC	-38	.281237	143.21	4569	144.4	ļ	16.8
Sampling notes								Wate	r Che	emistry
								pН	8.97	
								TDS	392p	pm
Catchment notes								DO	13.3	5ppm
								Cond.	784µ	ıS/cm
								PSU	0.39	
								Temp	11.2	3°C
			Weat	ther	Conditions					
Water Condition	Calm		11.23	°C	Air Tem	5 & RH	8.40	РС	72	2
Water Clarity	Clear (>2r	n visibili	ty)			Speed	Low	(calm co	onditi	ons. 1
Clouds	Overcast				Wind Dir		NW	to SE		
Weather Notes						-				

Sample ID	Lake Name	Sample Type	Sample Time
MA0026	Lake Surprise	Water	29/08/15 10:48 am

Sampling depth	0.3m	Coords & QC	-38.058909	141.92	21098	85.0		
Sampling notes						Water	Chei	mistry
						рН		
						TDS		
Catchment notes						DO		
						Cond.		
						PSU		
						Temp		
		Wear	ther Conditions					
Water Condition	Calm		Air Tem	ካ & RH	10°C			

Water Condition	Calm		Air Temp & RH	10°C	
Water Clarity	Murky (<0.5m visi	ibility)	Wind Speed	Medium (bran	ches moving.
Clouds	Partly Cloudy		Wind Direction	SE to NW	
Weather Notes					

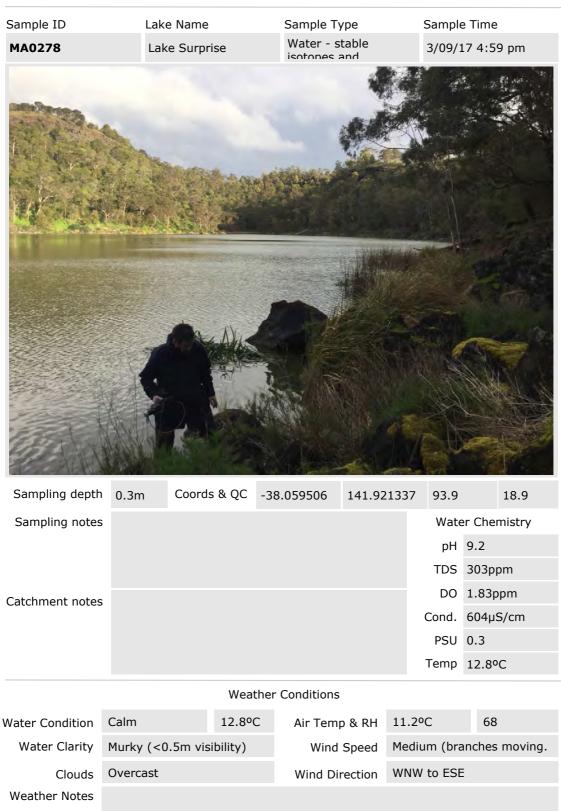

Sample ID	Lak	ke Name	Sample T	уре	Sample Time	9
MA0081	La	ke Surprise	Water-sta	able	6/04/16 9:2	0 am
1.0						
Sampling depth	0.2m	Coords & QC	-38.059985	141.921366	77.6	26.0

Sampling depth	0.2m	Coords & QC	-38.	059985	141.92	1366	77.6		26.0				
Sampling notes	TBM used	on first post on	left of	lookout			Water Chemistry						
							pН	8.77					
							TDS	340p	om				
Catchment notes							DO	0.75p	pm				
							Cond.	680µ	S/cm				
							PSU	0.33					
							Temp	17.75	ioC				
		Wea	ther C	Conditions									
Water Condition	Calm	17.75	2°C	Air Tem	p & RH	13ºC		90					

Water Condition	Calm	17.75°C	Air Temp & RH	13ºC	90
Water Clarity	Clear (>2m visibili	ity)	Wind Speed	Low (calm con	ditions. 1
Clouds	Overcast		Wind Direction	W to E	
Weather Notes					

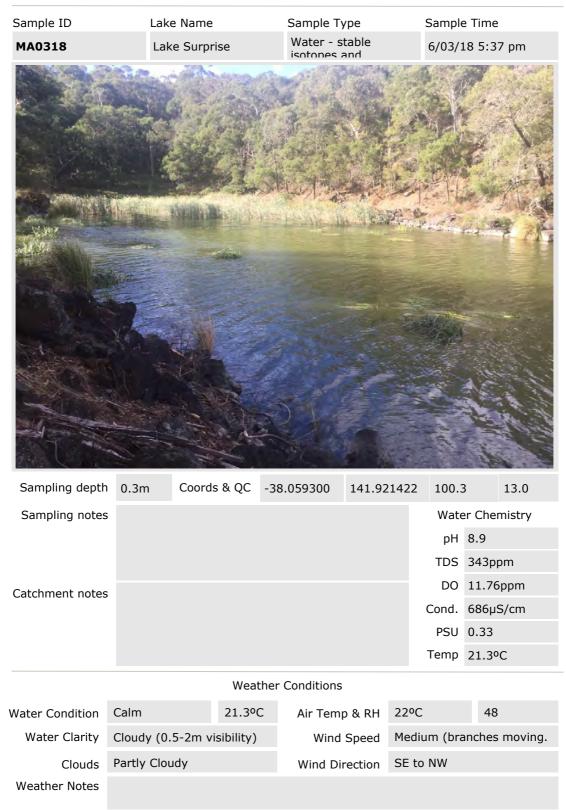
Sample ID	Lake	e Name	Sample T	уре	ç	Sample T	ime
MA0124	Lak	e Surprise	Water - g	general		3/08/16	8:41 am
Sampling depth	0.2m	Coords & QC	-38.059655	141.921	271	116.4	49.0
Sampling notes						Water	Chemistry
						рН	
						TDS	
Catchment notes						DO	
					(Cond.	
						PSU	
						Temp	
		Wea	ther Conditions				
Water Condition	Calm		Air Tom		6 4°C		98

Water Condition	Calm		Air Temp & RH	6.4°C	98
Water Clarity	Murky (<0.5m visi	bility)	Wind Speed	Low (calm con	ditions.
Clouds	Partly Cloudy		Wind Direction	SSW to NNE	
Weather Notes					

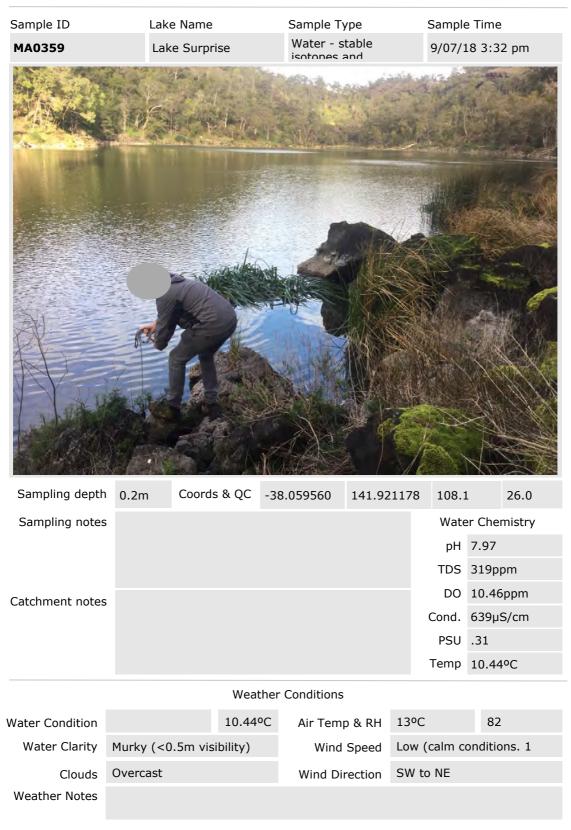


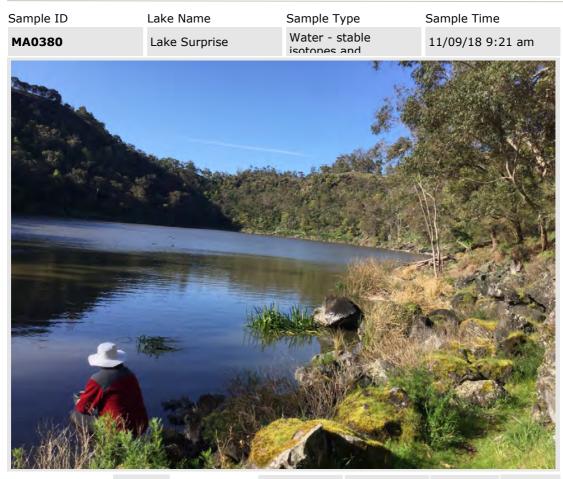
Samples taken by: Jonathan Tyler

Sample ID	Lake	e Name	Sample ⁻	Гуре		Sample	e Time	
JT0212	Lak	e Surprise	Bulk wa	ter		6/01/1	7 2:5	0 pm
Sampling depth	0.3m	Coords & QC	-38.059659	141.92	2081	71.9		18.9
Sampling notes	6/1/2017					Wate	er Chei	mistry
						pН	8.98	
						TDS	337pj	om
Catchment notes						DO	1.63p	pm
						Cond.	676µ	S/cm
						PSU	.33	
						Temp	25.09	0°C
		Weat	ther Condition	S				
Water Condition	Calm	25.09	°C Air Ten	np & RH				
Water Clarity	Murky (<0).5m visibility)	Win	d Speed	Low	(calm co	onditic	ons. 1
Clouds	Partly Clou	ıdy	Wind D	irection	S to	N		
Weather Notes								


Sample ID	Lake	e Name	Sa	mple Typ	e		Sample	e Time	
MA0241	Lak	e Surprise	Wa	ater - bu	lk		12/03/	/17 4:44	pm
		Ĩ	TE	metal					TO
				Sec.					-
1		Nor							
Sampling depth	0.3m	Coords & QC	-38.05	9454 :	141.921	525	89.3	1	8.9
Sampling notes								er Chemi	stry
								9.1	
								294ppm	
Catchment notes							DO Cond.	0.92ppr 587µS/0	
							PSU		
							Temp	21.7ºC	
		Weat	ther Con	ditions					
Water Condition	Calm	21.7%	C A	ir Temp	& RH	20°C		62	
Water Clarity	Cloudy (0.	5-2m visibility)		Wind S	peed	Low (calm co	onditions	5. 1
Clouds	Overcast		V	Vind Dire	ction	wsw	to ENE		
Weather Notes									

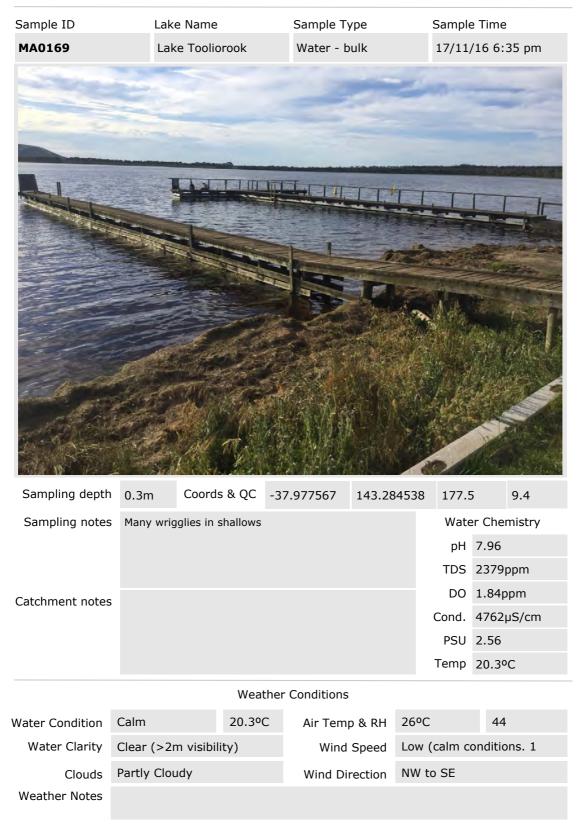
Sample ID		Lake Na	me		Sample Ty	/pe		Sample	e Time	9
MA0273		Lake Su	rprise		Water			29/06,	/17 8:	36 am
Sampling depth	0.3m	n Coo	ords & QC	-38	.059216	141.92	1472	2 63.1		64.8
Sampling notes								Wate	er Che	mistry
								pН	7.7	
								TDS	298p	
Catchment notes								DO	1.57p	
								Cond.		S/cm
								PSU Temp	0.29 10.80	
								Temp	10.8	
			Wea	ther	Conditions					
Vater Condition	Calm		10.8º	С	Air Temp	0 & RH	7.2	°C	99)
Water Clarity	Cloud	y (0.5-2n	n visibility)		Wind	Speed	Low	ı (calm c	onditio	ons. 1
Clouds	Partly	Cloudy			Wind Dir	rection	WS	W to ENE	=	
Weather Notes										




Sample ID	Lak	e Name	Sample T	уре		Sample	e Time
MA0293	Lak	e Surprise	Water - s			7/11/1	.7 4:31 pm
Sampling depth	0.3m	Coords & QC	-38.059507	141.92	1285	79.1	33.5
Sampling notes						Wate	er Chemistry
						pН	9.26
						TDS	292ppm
Catchment notes						DO	7.59ppm
							584µS/cm
							0.28
						Temp	18.12°C
		Weat	ther Conditions				
Water Condition	Calm	18.12	°C Air Tem	p & RH	15ºC		50
Water Clarity	Murky (<0).5m visibility)	Wind	Speed	Low (calm co	onditions. 1
Clouds	Overcast		Wind Di	rection	S to I	N	
Weather Notes							

Sample ID	Lake	Name	Sample 7	Гуре		Sample	e Time	
MA0305	Lak	e Surprise	Water - isotones			22/01/	′18 5:28	pm
			-					
		ANUAL AL						
	~							
Sampling depth	0.3m	Coords & QC	-38.059453	141.92	21661	123.1	. 26	5.0
Sampling notes							r Chemis	stry
						pН		
						TDS	294ppm	
Catchment notes						DO	0.28ppm	
						Cond.		m
							0.28 26°C	
		Wea	ther Condition	s			20 0	
Vater Condition	Choppy	26°C		- 1p & RH	26ºC		40	
Water Clarity		5-2m visibility)		d Speed		ım (bra	inches m	ovina
	Sunny	- Lin visionicy)			S to I			- ingi
Clouds Weather Notes	Sunny		wind L	irection	5 10 1	•		

Sample ID	Lak	e Name	Sample T	уре		Sample	e Time	
MA0340	Lak	e Surprise	Water - s			7/05/1	.8 2:20) pm
Sampling depth	0.3m	Coords & QC	-37.627338	140.603	8171	116.6	5	16.8
Sampling notes						Wate	r Cher	nistry
						pН	8.7	
						TDS	324pp	om
Catchment notes						DO	10.8p	pm
						Cond.		5/cm
						PSU		
						Temp	15°C	
		Weat	ther Conditions					
Water Condition	Calm	15°C	Air Tem	p & RH	16.90	С	46	
Water Clarity	Cloudy (0.	5-2m visibility)	Wind	Speed	Mediu	ım (bra	nches	moving.
Clouds	Overcast		Wind Di	rection	NNW	to SSE		
Weather Notes								


Sampling depth	0.2m	Coords & QC	-38.059389	141.92125	26.0		
Sampling notes					Wate	er Che	mistry
					pН	9.28	
					TDS	330p	pm
Catchment notes					DO	9.66p	pm
					Cond.	661µ	S/cm
					PSU	0.32	
					Temp	12.70	C
		Wea	ther Conditions	;			
Water Condition	Calm	12.70	C Air Tem	p & RH 14	.9ºC	65	
Water Clarity	Murky (<0	.5m visibility)	Wind	Speed Me	Medium (bra		moving.
Clouds	Sunny		Wind Di	rection NN	IE to SSW		
Weather Notes							

Sample ID	Lake	Name	Sample Ty	уре		Sample Ti	me
MA0014	Lake	e Tooliorook	Water			24/05/15	2:01 pm
Sampling depth	0.4	Coords & QC	-37.977324	143.28	3890	155.8	7.8
Sampling notes	Lake wate around ar	es at boat ramp er clear, sandy nd aquatic vege apped at depth	bottom. Many a tation. Really r	aquatic i nice lake	nverte . :D	brates sw	imming
Catchment notes							
		Weat	her Conditions				
Water Condition	Calm		Air Tem	p & RH	14		
Water Clarity	Clear (>2m	n visibility)	Wind	Speed	Mediu	ım (branc	hes moving.
Clouds	Partly Clou	dy	Wind Di	rection	NNW	to SSE	
Weather Notes							

Sample ID	Lake	e Name	Sample T	уре		Sample Tir	ne
MA0036	Lak	e Toliorook	Water			31/08/15	8:59 am
Sampling depth	0.1m	Coords & QC	-37.977498	143.28	4477	183.2	26.0
Sampling notes			51.77475	110.20		Water Ch pH TDS	
Catchment notes						DO Cond. PSU Temp	
		Wea	ther Conditions	5			
Vater Condition	Calm		Air Tem	p & RH	7°C		
Water Clarity	Clear (>2r	n visibility)		Speed	Low (calm condi	tions.
Clouds	Overcast		Wind Di		N to S		
Weather Notes				-			

Sample ID MA0044	Lake Name		Sample T Water-sta			Sample 5/04/1		5 am
			icotonec					
Sampling depth	0.2m Coord	ds & QC	-37.977626	143.28	4488	164.1		7.8
Sampling notes	Weedy littoral zoi	ne.				pН	r Cher 6.66 6442p	
Catchment notes							12890 7.44 13.15	
		Weat	her Conditions					
Water Condition	Choppy	13.150	C Air Tem	p & RH	23ºC	:	25	
Water Clarity	Clear (>2m visib	ility)		Speed	Medi	um (bra	nches	moving.
Clouds Weather Notes	Partly Cloudy		Wind Di	rection	N to	S		

	rpe eneral				pm
neral					pm
	1 4 2 2 2 2			7 7	
43.2837	143.283	3745	155.7		.8
			Wate	er Chemi	stry
			рН	9.18	
			TDS	5798pp	m
				2.58ppr	
		C	Cond.	11580µ	S/cm
				6.64	
		1	Temp	12.4°C	
& RH 1	0 & RH	11.7°C	С	85	
		Mediur	m (bra	inches m	
		C C) M			noving.
peed N	ection	55W to	O NNE		noving.
8		beed	RH 11.7% beed Mediu	PSU Temp	PSU 6.64 Temp 12.4°C

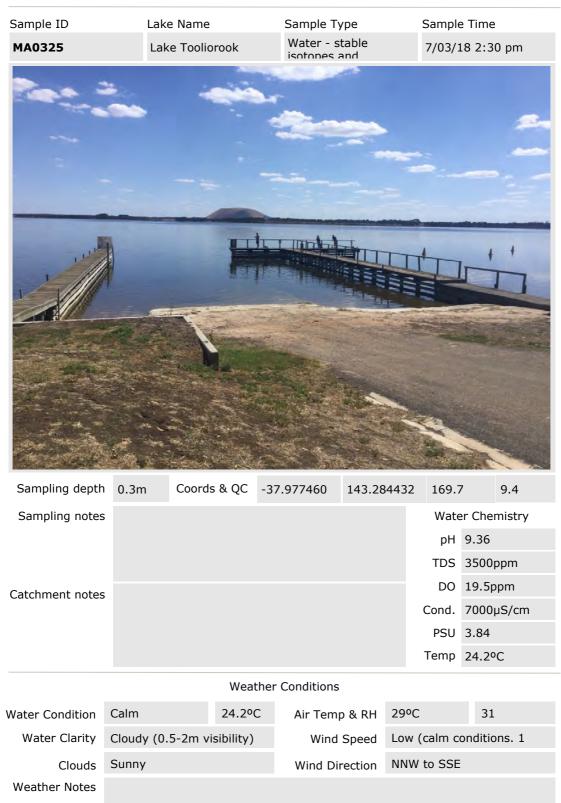
Samples taken by: Jonathan Tyler

		•						
Sample ID	Lake	e Name	Sample Ty	/pe		Sample	e Time	
JT0209	Lak	e Tooliorook	Bulk wate	er		6/01/1	7 11:	06 am
Sampling depth	0.3m	Coords & QC	-37.977285	143.28	3751	158.6	5	16.8
Sampling notes		dings from jetty bu	ut sample from	ramp du	e	Wate	er Chei	mistry
	to access					pН	8.02	
						TDS	2995	opm
Catchment notes						DO	1.19p	pm
						Cond.	5990	uS/cm
						PSU	3.26	
						Temp	21.39	оС
		Weath	ner Conditions					
Water Condition	Calm	21.39%	C Air Tem	o & RH				
Water Clarity	Cloudy (0.	5-2m visibility)	Wind	Speed	Low (calm co	onditic	ons. 1
Clouds	Sunny		Wind Di					
Weather Notes				-				

Sample ID	Lake Name	Sample Typ	e	Sample Time	
MA0228	Lake Tooliorook	Water - bul	lk	12/03/17 11	:20 am
Sampling depth 0.3	3m Coords & QC	-37.977560	143.284293	149.6	9.4
Sampling notes				Water Che	mistry
				pH 9.02	

 Sampling notes
 water Condition
 Calm
 22.8°C
 Air Temp & RH
 21.3°C
 63

 Water Condition
 Calm
 22.8°C
 Air Temp & RH
 21.3°C
 63


	Culli	22.0 0	All Temp & Ki	21.5 C	05
Water Clarity	Cloudy (0.5-2m vi	isibility)	Wind Speed	Medium (bran	ches moving.
Clouds	Partly Cloudy		Wind Direction	WNW to ESE	
Weather Notes					

Sample ID Lake Name Sample Type Sample Time MA0252 Lake Toollorook Water - stable 27/06/17 3:30 pm Final Constraints Sample Type 27/06/17 3:30 pm Sampling depth 0.2m Coords & QC -37.977488 143.284562 187.4 6.4 Sampling notes Conductivity calibration non successful, reading quick Vater Chemistry pH 9.1 TDS 2/20pm Catchment notes Conductivity calibration rollous/cm Sampling Netes Codeus/cm Sampling Netes 5406µs/cm Water Condition Chopp 11.6°C Air Temp & RH 11.7°C 61 Water Condition Murky (<0.5m visibility) Wind Direction N to S 5405µs/cm Water Notes Overcast Wind Direction N to S 5405µs/cm									
Interview Environment									
Sampling notes Conductivity calibration non successful, reading quick cal solution 7100 us/cm PH 9.1 TDS 2700ppm DO 2.12ppm Cond. 2.12ppm Cond	MA0262	Lake	Tooliorook				27/06/	17 3:	30 pm
Sampling notes Conductivity calibration non successful, reading quick cal solution 7100 us/cm PH 9.1 TDS 2700ppm D0 2.12ppm Cond. 2.12ppm Cond									
$\begin{tabular}{ c c c } & \begin{tabular}{ c c c } & \begin{tabular}{ c c } & \begin{tabular}$	Sampling depth	0.2m	Coords & QC	-37.977488	143.28	4562	187.4	ļ	6.4
Catchment notes PH 9.1 TDS $2.12ppm$ Code $CodeCodePSU2.4TempRH1.6^{\circ}CWater ConditionChoppy11.6^{\circ}CWater ClarityMurky (<0.5m visitity)$	Sampling notes	Conductivity cal solution	v calibration nor 7100 us/cm	successful, rea	ding quic	k	Wate	r Che	mistry
Catchment notesEII <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>			,				-		
Catchment notes PSUS406µS/cm PSUPSU2.94 TempTemp11.6°CWater ConditionChoppyMurky (<0.5m vis)lity)									
PSU 2.94 Temp 11.6°C Water Condition Choppy 11.6°C Water Clarity Murky (<0.5m visibility)	Catchment notes								
Temp 11.6°C Weather Conditions 11.6°C Water Condition Choppy 11.6°C Murky (<0.5m visibility)									µS/cm
Water ConditionChoppy11.6°CAir Temp & RH11.7°C61Water ClarityMurky (<0.5m visibility)									РС
Water ClarityMurky (<0.5m visibility)Wind SpeedMedium (branches movinCloudsOvercastWind DirectionN to S			Weat	her Conditions					
Water ClarityMurky (<0.5m visibility)Wind SpeedMedium (branches movinCloudsOvercastWind DirectionN to S	Water Condition	Choppy	11.6°C	C Air Temi	0 & RH	11.70	С	61	
Clouds Overcast Wind Direction N to S									
	Clouds								

Sample ID	Lake	e Name		Sample Ty			Sample	e Time	
MA0287	Lak	e Tooliorook		Water - st			5/09/1	11:2	8 am
Sampling depth	0.3m	Coords & QC	-37	7.977250	143.28	84135	5 160.7	7	7.8
Sampling notes								er Chem	istry
							-	8.9	
							TDS	2842pj	
Catchment notes								2.01pp 5682µ	
								3.1	5/ CITI
							Temp		
		Wea	ther	Conditions					
Water Condition	Choppy	9.6°C		Air Temp	<u>, 8, р</u> ц	8°C		83	
		5-2m visibility)			Speed		h (Windy		1/s)
	Overcast	s zin visionity)	,	Wind Dir			W to ESE		., 0)
Weather Notes	o veredot				ection				

Sample ID	La	ake Name			Sample Ty			Sample	e Time	9
MA0294	L	ake Toolio	rook		Water - st			8/11/1	L7 7:5	3 am
				-			-	-	-	
							#		<u> </u>	
	-						1			
					Sur	California	1.7-2			
	-									
			designed a					Sar Net to a side		
		att in		9-312						
			and the					San Arra		
Sampling depth	0.3m	Coords	s & QC	-37.	977529	143.28	4474	165.2	2	13.0
Sampling notes	5							Wate	er Che	mistry
								рН	8.17	
								TDS	2830	
Catchment notes	5								7.33p	
								Cond. PSU	3.09	µS/cm
								Temp	15.41	۱۰C
			Weat	her (Conditions					
Water Condition	Calm		15.410		Air Temp	0 & PH	110	r	79	1
Water Clarity		0.5-2m vi				Speed		c (calm c		
Clouds	Overcas		-//		Wind Dir		E to			
Weather Notes										

Sample ID	Lake	e Name			Sample Ty	'pe		Sample	e Time	
MA0315	Lak	e Toolior	ook		Water - st			24/01/	18 7:	34 am
Sampling depth	0.3m	Coords	& QC	-37.	977206	143.28	3889	151.1		9.4
Sampling notes	Serious al Caution w	gal bloom. ith these r	esults. S	Samp	ole collected	l with				mistry
	bucket.							рН		
									2890	
Catchment notes								Cond.	0.64p	
									3.13	
									24.60	С
			Weath	ner (Conditions					
Water Condition	Calm		24.6ºC		Air Temp	0 & RH	9.9%	C	96	
Water Clarity	Murky (<0	.5m visib	oility)			Speed	Low	(calm co	onditic	ns. 1
Clouds	Partly Clou	ıdy			Wind Dir	ection	SSW	to NNE		
Weather Notes										

Sample ID	Lak	e Name	Sam	ple Type		Sample	e Time
MA0349	Lal	ke Tooliorook		er - stable		8/05/1	.8 2:15 pm
	A						
Sampling depth	0.3m	Coords & QC	-37.977	546 143.2	84523	173.8	3 13.0
Sampling notes	Blue gree	n algae				Wate	er Chemistry
						pН	9.4
						TDS	3430ppm
Catchment notes							13.8ppm
						Cona. PSU	6870µS/cm 3.8
						Temp	16.1ºC
		Wea	ther Cond	litions		-	
Water Condition	Calm	16.1º		Temp & RH	16°C		49
Water Clarity).5m visibility)	- 711	Wind Speed			onditions. 1
Clouds	Sunny	· ·····, / /	Wi	nd Direction		V to ESE	
Weather Notes	,						

Sample ID	Lake	e Name	Sample			Sample	e Time	
MA0363	Lak	e Tooliorook	Water -			10/07,	/18 10	:20 am
Sampling depth	0.2m	Coords & QC	-37.977374	143.28	34247	165.4	ł	13.0
Sampling notes						Wate	er Che	mistry
						pН	9.35	
						TDS	3355	ppm
						DO	13.7p	
Catchment notes						DO	10.7	pm
Catchment notes						Cond.		
Catchment notes								
Catchment notes						Cond. PSU	6701	
Catchment notes		Wea	ther Conditior	15		Cond. PSU	6701 3.69	
	Calm	Wea 9ºC		ns mp & RH	9°C	Cond. PSU	6701 3.69	µS/cm
	Calm		Air Ter			Cond. PSU Temp	6701 3.69 9°⊂ 92	µS/cm
Water Condition	Calm	9ºC	Air Ter Win	np & RH	Medi	Cond. PSU Temp	6701 3.69 9°C 92 92	µS/cm

Sample ID	Lak	e Name		Sample Ty	/pe		Sample	e Time	2
MA0370	Lak	e Tooliorook		Water - st			9/09/1	8 12:	18 pm
Sampling depth	0.2m	Coords & QC	-37	.977277	143.28	4407	136.2	2	9.4
Sampling notes	Sample E	not filtered					Wate	er Che	mistry
								8.9	
								3424	
Catchment notes							DO		
							Cond.		µS/cm
							PSU Temp	3.8 12.8 ⁰	
							remp	12.0	
				Conditions					
Water Condition	Choppy	12.80	C	Air Temp		14.2		78	
Water Clarity).5m visibility)			Speed		(Windy		m/s)
Clouds Weather Notes	Overcast Horrible			Wind Dir	ection	WNV	V to ESE		

Sample ID	Lake	e Name	Sample Ty	ре	Sample Time	
MA0008	Точ	ver hill	Water		23/05/15 5:3	39 pm
Sampling depth	0.1	Coords & QC	-38.322950	142.370437	29.4	13.0
Sampling notes	Decent a	ccess to lake us	ing fallen trees. ble, then capped	l subsurface	at shore.	
Catchment notes						
		Wea	ther Conditions			
Water Condition	Calm		Air Temp	& RH 11		
Water Clarity	Cloudy (0.	5-2m visibility)	Wind	Speed Low	(calm conditio	ns. 1
Clouds	Partly Clou	ıdy	Wind Dir	ection SSE	to NNW	
Weather Notes	After suns	et.				

Sample ID	Lake	e Name	Sample T	уре	:	Sample	Time	
MA0027	Tow	ver Hill	Water			29/08/	15 1:1	1 pm
		A second		C SA	TAK			1370
Sampling depth	0.2m	Coords & QC	-38.322783	142.37	70452	-23.4		18.9
Sampling depth Sampling notes					70452			
		Coords & QC oured water. Wa			20452	-23.4 Water pH		
					70452	Water		
Sampling notes					70452	Water pH		
Sampling notes						Water pH TDS		
Sampling notes						Water pH TDS DO		
Sampling notes						Water pH TDS DO Cond.		
		oured water. Wa		[,] plant.		Water pH TDS DO Cond. PSU		
Sampling notes		oured water. Wa	Itch out for spiky	, plant.		Water pH TDS DO Cond. PSU		
Sampling notes	Tannin col	oured water. Wa	ther Conditions	, plant.	13°C	Water pH TDS DO Cond. PSU	Chem	histry
Sampling notes Catchment notes Vater Condition	Tannin col	oured water. Wa Wea 5-2m visibility)	ther Conditions	plant. p & RH Speed	13°C Mediu	Water pH TDS DO Cond. PSU Temp	Chem	histry

Samples taken by: Jonathan Tyler

Sample ID		Lake Name	e		Sample Ty	pe		Sample	e Time	9
JT0211		Tower Hill			Isotope w	ater		6/01/1	l7 1:3	0 pm
Sampling depth	0.3m	Coord	ds & QC	-38	8.321284	142.36	9742	11.3		33.5
Sampling notes								Wate	er Che	mistry
								pН	9.25	
								TDS	3393	ppm
Catchment notes								DO	1.01p	pm
								Cond.	6828	µS/cm
								PSU	3.71	
								Temp	28.18	3°C
			Wea	ther	Conditions					
Water Condition	Calm		28.18	٥C	Air Temp	0 & RH				
Water Clarity	Murky	(<0.5m vi	sibility)		Wind	Speed	Low ((calm c	onditio	ons. 1
Clouds	Sunny				Wind Dir	ection				
Weather Notes										

Samples taken by: Georgie falster

Sample ID	Lake Name	Sample T	уре	Sample T	ime
MA0018	West Basin			10/06/15	12:49 pm
Sampling depth	Coords & QC	-38.321978	143.450497	117.6	18.9
Sampling notes				Water 0	Chemistry
				pН	
				TDS	
Catchment notes				DO	
				Cond.	
				PSU	
				Temp	
	Weat	ther Conditions			
Water Condition		Air Tem	p & RH		
Water Clarity		Wind	Speed		
Clouds		Wind Di	rection		
Weather Notes					

Samples taken by: Georgie falster

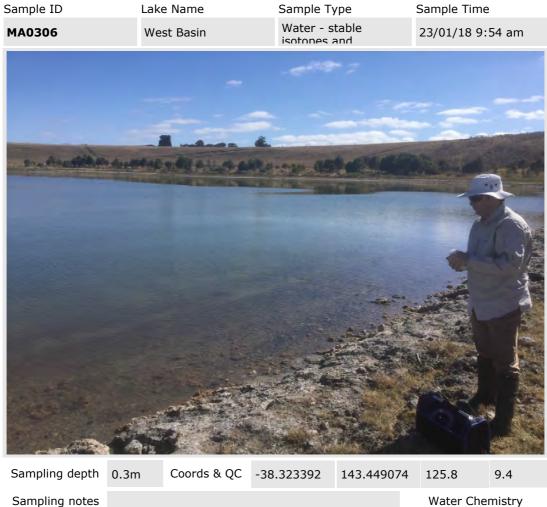
Sample ID	Lake	e Name		Sample Ty	/pe		Sample	e Time	
MA0019	Wes	st Basin		Water			10/06/	/15 1:0	00 pm
Sampling depth	0.2m	Coords & QC	-38	3.324576	143.44	8410) 125.2	2	18.9
Sampling notes	tds 81720 pH 10.37	ty 163400uS/cm	n				pH TDS	er Chei	mistry
Catchment notes							DO Cond. PSU		
							Temp	12.86	οC
		Wea	ther	Conditions					
Water Condition	Calm	12.86	٥C	Air Temp	0 & RH			Ov	ercast
Water Clarity	Cloudy (0.	5-2m visibility)		Wind	Speed		(calm co	onditio	ons. 1
Clouds Weather Notes				Wind Dir	rection	SW	to NE		

Sample ID	Lak	e Name		Sample Ty	'pe		Sample	e Time	
MA0050	We	st Basin		Water-sta	ble		5/04/1	6 9:3	4 am
						and the second se			
Sampling depth	0.2m	Coords & QC	-38	3.323491	143.44	1866	7 92.4		24.5
Sampling notes							Wate	er Che	mistry
							pН	6.87	
							TDS	7959	0ppm
Catchment notes	No spring	s observed on so	uth v	vest side			DO		
								1591	00µS/cm
							PSU Temp	18.77	70C
							icinp	10.77	
				Conditions					
Water Condition	Choppy	18.77		Air Temp		23		25	
Water Clarity	Cloudy (0.	.5-2m visibility)		Wind	Speed	Me	dium (bra	inches	moving.
Clouds	Partly Clou	udy		Wind Dir	ection	N t	o S		
Weather Notes									

Sample ID	Lak	e Name	Sample T	уре		Sample	e Time	
MA0109	We	est Basin	Water - s	table		2/08/1	.6 10:2	25 am
Sampling depth	0.2m	Coords & QC	-38.323590	143.44	8754	119.6		26.0
Sampling notes							er Cher	nistry
							8.8	
						TDS	75250	
Catchment notes							2.65p	
)0µS/cm
						Temp	- 110C	
						. ep	11 0	
			ther Conditions					
Water Condition	Choppy	11ºC	Air Tem		8.300		80	
Water Clarity		0.5m visibility)	Wind	Speed			inches	moving.
Clouds	Partly Clo	udy	Wind Di	rection	SW t	o NE		
Weather Notes								

Sample ID	Lak	e Name		Sample Ty	/ne		Sample	Time	2
MA0171		st Basin		Water - b					18 am
Sampling depth	0.3m	Coords &	QC -3	8.323394	143.44	9097	104.4	ł	9.4
Sampling notes	Photo opp	direction to	o first					8.9	mistry 0ppm
Catchment notes Cor						PSU	ud. 119800µS/cm SU -		
			Weather	· Conditions					
Water Condition	Calm	2	0.3ºC	Air Tem	5 & RH	11.8	٥C	10	00
Water Clarity	Murky (<0	.5m visibil	ity)	Wind	Speed	Low	(calm co	onditio	ons. 1
Clouds	Overcast			Wind Dir	rection	SSW	to NNE		
Weather Notes	Raining ge	ently							

Samples taken by: Jonathan Tyler


Sample ID	Lak	e Name	Sampl	е Туре		Sample	e Time	2
JT0195	We	est Basin	Bulk v	vater		4/01/1	7 11:	20 am
Sampling depth	0.3m	Coords & QC	-38.32345	2 143.44	48656	131.7	7	18.9
Sampling notes								mistry
							8.8	
						TDS		0ppm
Catchment notes							0.51p	
							1456	00µS/cm
						PSU	22.67	200
						Temp	22.67	,~ <u> </u>
		Wea	ther Conditi	ons				
Water Condition	Calm	22.67	°C Air T	emp & RH				
Water Clarity	Murky (<0).5m visibility)	W	ind Speed	Low	(calm c	onditio	ons. 1
Clouds	Partly Clou	udy	Wind	l Direction				
Weather Notes								

Sample ID	La	ake Name			Sample Ty	/pe		Sample	e Time	
MA0222	v	/est Basir	ı		Water - b	ulk		12/03/	/17 9:	22 am
Sampling depth	0.3m	Coord	s & QC	-38	.323264	143.44	9326	108.5	5	15.6
Sampling notes								Wate	er Che	mistry
								pН	8.65	
								TDS	6575	0ppm
Catchment notes								DO	0.17p	pm
								Cond.	1315	00µS/cm
								PSU	-	
								Temp	22.40	PC .
			Wea	ther	Conditions					
Water Condition	Calm		22.40	С	Air Tem	5 & RH	16°C		99	
Water Clarity	Clear (>	2m visibi	lity)		Wind	Speed	Medi	um (bra	anches	moving.
Clouds	Partly Cl	oudy			Wind Di	rection	ESE	to WNW	1	
Weather Notes										

Sample ID		ke Name		Sample Ty			Sample				
MA0263	W	Vest Basin Water - stable isotopes and					28/06,	/17 8:	41 am		
					and						
- and -											
Sampling depth	0.3m	Coords	& QC	-38.323391	143.44	9151	108.5	5	15.6		
Sampling notes							Wate	er Che	mistry		
							pН	8.9			
							TDS	6403	0ppm		
Catchment notes							DO	1.44p	•		
								1280	00µS/cm		
							PSU	-			
							Temp	10.30	РС		
			Weat	her Conditions							
Water Condition	Calm		10.300	2 Air Tem	0 & RH	6.600	2	97	,		
Water Clarity	Cloudy (0).5-2m vis	sibility)	Wind				w (calm conditions. 1			
Clouds	Partly Clo	oudy		Wind Di	rection	NNW	to SSE				
Weather Notes											

Sample ID	Lake Na	ame		Sample Ty	ре		Sample	e Time		
MA0288	West B	Basin		Water - st			5/09/1	7 2:4	8 pm	
Sampling depth	0.3m Co	oords & QC	-38.	323362	143.44	9087	107.8	}	13.0	
Sampling notes							Wate	r Chei	mistry	
							pН	8.95		
								6490		
Catchment notes								1.1pp		
									00µS/cm	
							PSU	-	<u> </u>	
							Temp	10.30	C	
		Weat	ther C	Conditions						
Water Condition	Choppy	10.3%	C	Air Temp	8 RH	7.30	РС	10	0	
Water Clarity	Murky (<0.5n	n visibility)		Wind	Speed	High	gh (Windy. 10+ m/s)			
Clouds	Overcast			Wind Direction WI			IW to ESE			
Weather Notes										

Sample ID	Li	ake Name		Sample Ty	'pe		Sample	e Time	
MA0295	v	Vest Basin		Water - st			8/11/1	17 12:1	L7 pm
Sampling depth	0.3m	Coords & QC	-38	.323379	143.44	897	8 128.2	2	7.8
Sampling notes								er Cher	nistry
								8.85	
								65000	
Catchment notes								2.11p	
							Cona. PSU	12990)0µS/cm
								17.40	с
		Wea	ther	Conditions					
Water Condition	Calm	17.40	С	Air Temp	0 & RH	139	С	75	
Water Clarity	Cloudy	(0.5-2m visibility)		Wind	Speed	Lov	v (calm co	onditio	ns. 1
Clouds	Overcas	t		Wind Dir	ection	SE	to NW		
Weather Notes									

Sampling depth	0.511	Coorus	aqu	-38	.323392	145.44	9074	125.0	5	9.4
Sampling notes								Wate	er Che	mistry
								pН	8.75	
								TDS	6626	0ppm
Catchment notes								DO	0.16p	pm
								Cond.	1325	00µS/cm
								PSU	-	
								Temp	25.49	PC
			Wea	ther (Conditions					
Water Condition	Calm		25.4%	С	Air Tem	p & RH	17ºC		66	
Water Clarity	Cloudy (0.	5-2m vi	sibility))	Wind	Speed	Low (calm c	onditio	ons. 1
Clouds	Sunny				Wind Di	rection	NNE t	o SSW		
Weather Notes										

Sample ID	L	ake Name		Sampl	е Туре		Sample	Time
MA0319	۱	West Basin			- stable		7/03/1	8 8:52 am
Sampling depth	0.3m	Coords		-38.32339			93.2	12.8
				50152555	1 10111			
Sampling notes								r Chemistry
								8.62 78650ppm
								1.92ppm
Catchment notes								157200µS/cm
							PSU	
								20.6ºC
			Weat	her Conditi	ons			
Water Condition	Calm		20.6°C	C Air T	emp & RH	16°C		96

 Water Condition
 Calm
 20.6°C
 Air Temp & RH
 16°C
 96

 Water Clarity
 Cloudy (0.5-2m visibility)
 Wind Speed
 Low (calm conditions. 1

 Clouds
 Sunny
 Wind Direction
 ESE to WNW

 Weather Notes
 ESE to WNW
 ESE to WNW

Sample ID	La	ake Name	9		Sample Ty	'pe		Sampl	e Time	9	
MA0341	v	Vest Basir	า		Water - st			8/05/	18 8:4	2 am	
				Jan Bar							
Sampling depth	0.3m	Coord	ls & QC	-38	.323460	143.44	9179	9 110.	9	9.4	
Sampling notes								Wat	er Che	mistry	
								pН	8.65		
								TDS	74360		
Catchment notes									6.75p		
								Cond.	14860)0µS/cm	
								PSU Temp	15 10	~	
								Temp	15.1	5	
					Conditions						
Water Condition	Calm		15.1°C	2	Air Temp		9.7°		87		
Water Clarity		<0.5m vi	sibility)		Wind Speed Low			w (calm conditions. 1			
Clouds	Sunny				Wind Dir	ection	SE	to NW			
Weather Notes											

Sample ID	Lake	e Name		Sample Ty	pe		Sample	e Time		
MA0364	We	st Basin		Water - st isotones a			10/07/	/18 11:50 am		
Sampling depth	0.2m	Coords & QC	-38	3.323401	143.44	924	5 98.1	12.8		
Sampling notes								er Chemistry 8.63 71080ppm		
Catchment notes					PSU	7.15ppm 142100µS/cm 10.6°C				
		Wea	ther	Conditions						
Water Condition	Calm	10.6º		Air Temp	0 & RH	8.4	٥C			
Water Clarity		.5m visibility)			Speed		w (calm conditions. 1			
Clouds	Overcast			Wind Direction NW to SE						
Weather Notes										

Sample ID	Lake	e Name	Samp	le Туре		Sample	e Time		
MA0378	We	st Basin		r - stable		10/09,	/18 10:49 am		
Sampling depth	0.2m	Coords & QC	-38.32334	143.44	9135	124.8	3 7.8		
Sampling notes						pH TDS DO	 8.74 71120ppm 5.3ppm 142300µS/cm 14°C 		
		Wea	ther Condit	ions					
Water Condition	Calm	14ºC	Air	Гетр & RH	13.1	٥C			
Water Clarity	Murky (<0).5m visibility)	۷				v (calm conditions. 1		
Clouds	Partly Clou	ıdy	Win	d Direction	NW t	o SE			
Weather Notes	Humidity ι	unavailable							

This appendix comprises some additional information collected for some of the lakes, comprising bathymetric maps for Lake Leake, Lake Edward and Lake Surprise as well as historical lake level reconstructions for Lake Leake and Lake Edward.

Bathymetry surveying of Lake Surprise, Lake Edward and Lake Leake, and historical lake level reconstructions for Lake Edward and Lake Leake

Bathymetric surveys

Lake Surprise 30/09/2019

Lake Surprise sits in a volcanic crater and consists of a main central lagoon around 500 x 200 m, with a smaller, connected lagoon at both the northern and southern ends, joined to the main lagoon by a slightly narrower neck. These smaller lagoons hold the majority of reed beds, as the main lagoon increases in depth rapidly near the shoreline. The northern lagoon was separated from the main lagoon by a reed bed around 5-10 m in thickness. The lake was a reddish brown at the time of survey, with a lake water level of ~78.09 mAHD.

Surveying was performed with a bathymetry kayak (The Bathy-yak). A Native Watercraft Mariner 12.5 kayak, with a pedal driven propeller was used, combined with a Lowrance HDS-5 echo sounder and Leica 1200GG RTK GPS, linked to the Smartnet CORS network. The echo sounder and GPS antenna were mounted in the middle of the kayak, on the port side, with alignment guides to ensure the echo sounder was not tilted. The transducer for the depth sounder was located 0.2 m below the water surface, with the GPS antenna mounted 1.1 m directly above it. Manual sounding was performed with a 30 m tape attached to a 450 gm lead weight.

GPS QA was set to 1 m (combined vertical + height error). Only a few autologged points were discarded during the survey, but it was noted that the full QA tolerance was used on occasion. This was to be expected due to the poor sky visibility in the crater. Individual GPS heights were not used to define the bathymetry. Instead the average height across all 940 autologged points was used. The horizontal quality for ~75% of autologged points is better than 0.1 m, with the remaining 25% of points within 0.5 m.

The bathymetry kayak was unloaded into the northern lagoon and then paddled through the reedbed to the main lake. In the northern lagoon, no cellphone signal was received for the GPS corrections and locations were defined with handheld gps accuracy. This lagoon was very shallow and reedy, and only a few manual sounding depths were taken.

Once through the reeds into the main lagoon, the GPS cellphone connection was established. The initial sounding run along the western shoreline gave poor sounder results. Resetting the sounder to 'freshwater' resolved this issue, with results matching the lead depthing tape to typically within 0.1–0.2 m. Loops were then run around the lake at approximately 20 m spacing. 940 sounding locations were recorded along with 17 manual depth measurements. The sounding line nearest the shoreline was typically in around 1 m of depth, and around 10 m from the shoreline. The presence of fallen trees, boulders and other navigational hazards prevented surveying closer to the shore. The shoreline was unable to be surveyed from land due to the steep rocky bank, and will need to be defined from aerial photography or other means.

The shallower regions of the lakebed seemed to be quite firm, with a well defined "stop" when using the manual sounding line. In the deeper zones near the centre of the lake, the surface sediment seemed to be softer with some sinkage of the sounding weight. There did not appear to be much lake vegetation, with the exception of the reedbeds in the north and south ends of the lagoon, and no vegetation was caught in the propeller or sounder. A large boulder is situated in the centre of the neck to the southern lagoon, with around 2-5 cm exposed above water.

Many ducklings were seen (maybe chestnut teals), as well as some cormorants (black and little pied), sulphur crested cockatoos, chestnut teals, coots, and a peregrine falcon. A tiger snake was observed coiled near the path, and some skinks near the core platform launching area.

Lake Edward 01/10/2019

Lake Edward is a circular maar crater with a lake around 500 m diameter. The shorelines of the lake are generally dense reed beds. Lake Edward is unusually acidic compared to all the other lakes in the monitoring program, with a pH of around 4-5, compared to around 8 for the other lakes.

The bathymetry survey was performed using the same setup as at Lake Surprise. However, unlike at Lake Surprise, connectivity and satellite visibility was always good, and all autologged points have a positional quality better than 0.05 m. 2400 sounder points were recorded. Sounding runs were run around the lake, beginning from ~10 m from the reed beds and working in to the lake centre, with a concentration of soundings taken across regions of unusual bathymetry. Eight manual sounded points were also taken.

Lake Edward has unusual bathymetry with a typical bowl shaped lake bottom with a maximum depth of around 4.5 m in the lake centre, for most of the lake. However there is a depression in the north-east quadrant, with a maximum depth of around 6 m. The depression has well defined edges, with a depth change of 1–1.5 m over only a 10-15 m in position. The floor of the depression also seems to be disturbed in contrast to the smooth bottom of the lake floor away from the depression. A similar degree of disturbance was seen near the jetty on the southern side, though perceived disturbance in this area could also be due to lake vegetation as it is in a shallow, low gradient part of the lake. Such well defined edges suggest that this is not the surface expression of the deeper crater, but instead a more recent subsidence event, possibly due to the presence of acidic water and limestone country rock.

Wildlife spotted during the survey included musk ducks, a pair of swamp harriers, wedgetailed eagle, grey fantails, coots, and a tiger snake swimming across the lake.

Lake Leake 02/10/2019 - 03/10/2019

Lake Leake was surveyed using the same techniques as Edward and Surprise with the exception of the grid method used. Wind speeds over the two days of survey were very high, with gusts up to 25 knots on the first day. To minimise tracking diagonally across the waves, sounding runs were typically run around the sheltered side of the lake, before transects were run across the lake in the direction of the wind.

Water visibility in Lake Leake was excellent. The lake bottom consisted mostly of dense lake vegetation, with occasional regions of sandy bottom. Some floating mats of lake weeds were also observed. The densely vegetated lake bottom presented problems with the sounding, with many sounder readings clearly representing the top of the lake vegetation. In addition, a few areas of lake floor gave persistent double bounce signals (transducer -> bottom -> boat hull-> bottom -> transducer). These zones were associated with particular locations in the lake, typically sandy bottom at a depth of around 1.3-1.5 m.

Connectivity and satellite availability was always good, and all except 12 autologged points have a positional quality better than 0.05 m. ~2800 sounder points were recorded, as well as 19 manual sounding points.

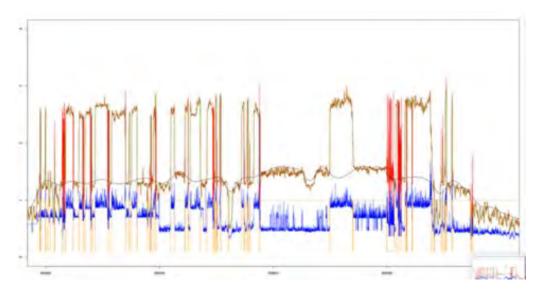
To minimise the effect of the lake vegetation and double bounced echoes a smoothing process was applied to the sounder data as described in the processing section. Lake Leake is a straightforward basin, deepest in the middle, with a maximum depth of around 2m.

Processing

Sounder logs were converted to text files using SonarViewer (Lowrance). For Lake Edward and Lake Surprise, the sounder logged approximately 10 times per second. To minimise random spikes and noise, the average of the 5 preceding readings is used to define the depth used in the bathymetry model. Each depth is linked to the GPS data by time synchronisation.

For Lake Leake additional processing was used to minimise the effects of lake vegetation and double bounced sonar echoes.

In R:


Double bounced returns were halved (if > 2 m) (\sim 15% of sonar data), and 0.15 added (to account for the hull depth).

Invalid surface points were identified and assigned a depth from "Surface Valid", and a weight of 0.1.

A 150 sample rolling average (~15 m at maximum boat speed) was run through the data to remove any spikes. Any points that were greater than 0.3 m from the average were assigned a weight of 0.1 and the average depth.

A 100 sample rolling "lowest points" filter was run through the data to minimise the presence of vegetation. For each sample the lowest point and lowest weight in the surrounding 150 samples was adopted as the depth and weight.

A smoothing spline was run through the lowest points, using the weights and a spar value of 0.15.

Figure 1: Red is "TopOfBottomValid" (probably deepest echo). Green is logged depth. Blue is "SurfaceValid" (probably shallowest echo). Orange is sample weight. Black is the smoothed, processed depth value. Data shown is from 45000 to 65000 in the log from 02/10/19, representing around 25 minutes of logging.

Bathymetry and Historical lake level reconstructions

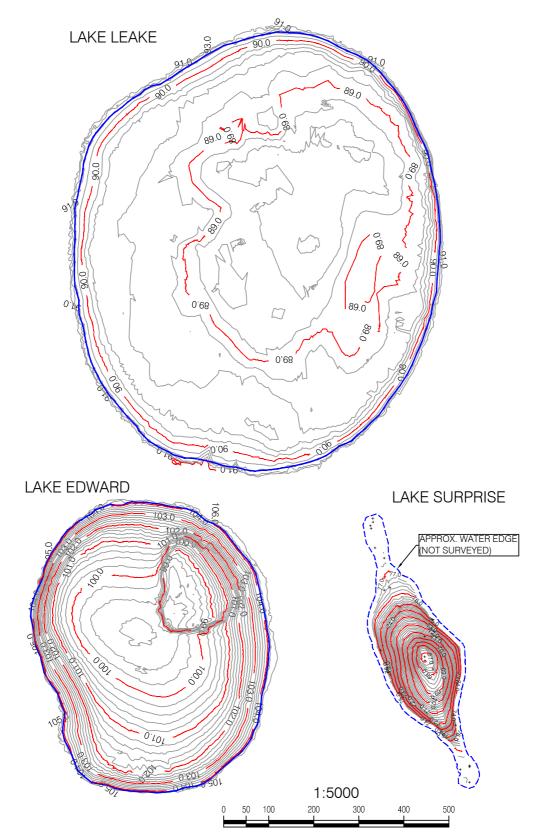
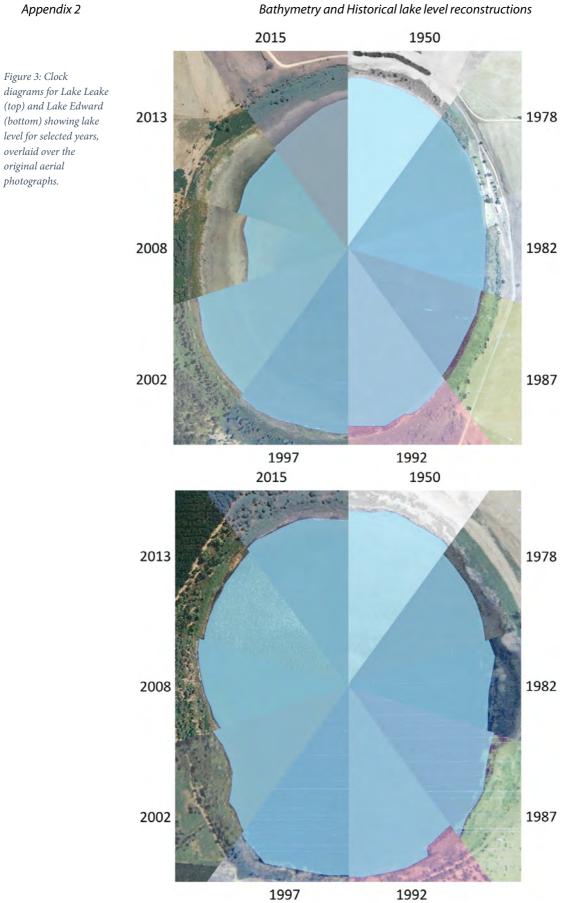


Figure 2: Bathymetry for Lake Leake, Lake Edward, and Lake Surprise. Heights shown are relative to the Australian Height Datum.

Historical lake level reconstructions from aerial photos.

The aerial photographs commonly available for this type of work are single frames from aerial photographic surveys. They are usually not corrected and contain several sources of errors. Only in recent years has orthocorrected imagery become available, typically available as a crop from a mosaic photo product.

The photos used for this project primarily come from the South Australian state government aerial photography archives.


There are three primary errors that need to be accounted for to align aerial photos. The tilt of the camera, topographic effects, and lens distortion. Lens distortion is not something easily accounted for and is not specifically accounted for in this study. It is, however, likely minimal due to the small area being assessed within each photograph. Topographic errors are a complex source of error, affected by the position of the topography within the frame. Topography directly in the centre of the photo frame will be unaffected, but away from the centre of the frame, high points shift away from the centre of the frame, while topographic lows shift towards the centre of the frame. In comparison, tilt is relatively easy to correct for using standard image transformations. The effect of tilt is that the photograph is skewed, and is a relatively simple distortion to correct.

To correct for camera tilt, each aerial photograph is aligned with previous photos using common, identifiable ground reference points. To avoid topographic errors, only ground control points around the lake edge, or at similar elevations to the lake water level were chosen. QGIS was used for georeferencing each image, using the linear-affine transformation.

The most recent photos were already orthorectified, and were used as the base map that older photos were transformed to fit. Working backwards through time, each photo was rectified to the most current set of photos with identifiable ground features common to both the photo being rectified, and previously rectified images. As land use changes have occurred around both lakes, identifiable ground features have also changed over time. Therefore, the 1950 photos may have been rectified using the 1987 image, which was previously rectified using the 2008 mosaic image.

Once all photos were rectified water outlines were traced around each shoreline. These shorelines were then draped onto 2 m LIDAR data (State Government, SA). For each shoreline, an average and standard deviation of the elevations of all the points that defined that shoreline was calculated.

This method provides a useful way to establish historical lake levels for lakes that are poorly documented. Most states have many decades of historical aerial photography, potentially allowing the reconstruction of decades of lake water level change.

Lake Leake	Elevation	Std Deviation	Lake Edward	Elevation	Std Deviation	
17 December 1950	90.73	0.31	17 December 1950	104.58	0.5	
1 January 1951	90.49	0.52	1 January 1951	104.56	0.5	
8 January 1970			8 January 1970	104.28	0.3	
19 February 1978	90.88	0.63	19 February 1978	104.33	0.3	
3 March 1982	91.55	0.50	3 March 1982	104.54	0.4	
18 February 1987	90.60	0.48	18 February 1987	104.71	0.4	
18 February 1988	91.27	0.46	18 February 1988	105.03	0.2	
30 January 1992	90.82	0.74	30 January 1992	104.59	0.3	
3 January 1997	90.83	0.31	3 January 1997	104.73	0.2	
5 February 1997	90.75	0.30	5 February 1997	104.65	0.3	
27 January 1998	90.32	0.32	27 January 1998	104.84	0.2	
30 November 1999	90.12	0.31	30 November 1999	104.58	0.2	
18 January 2002	90.43	0.19	18 January 2002	104.55	0.3	
13 February 2002	90.33	0.14	13 February 2002	104.56	0.3	
23 January 2003	90.13	0.28	23 January 2003	104.18	0.2	
23 January 2003	90.19	0.29	23 January 2003	104.34	0.2	
13 October 2003	90.36	0.13	13 October 2003	104.36	0.3	
1 November 2005	90.37	0.17	1 November 2005	104.05	0.2	
23 January 2008	88.18	1.06	23 January 2008	103.27	0.4	
6 February 2010	88.34	0.95	6 February 2010	103.04	0.5	
10 December 2012	90.00	0.16	10 December 2012	103.07	0.5	
2 March 2013	88.29	0.90	2 March 2013	102.51	0.6	
10 January 2014	90.21	0.12	10 January 2014	103.22	0.5	
30 January 2014	89.73	0.35	30 January 2014	102.76	0.6	
23 May 2015	89.35	0.05	23 May 2015	103.097	0.0	
28 August 2015	89.66	0.05	28 Aug 2015	103.307	0.0	
7 November 2015	89.20	0.71	7 November 2015	103.02	0.5	
3 December 2015	88.41	1.00	3 December 2015	102.89	0.6	
6 April 2016	88.91	0.05	6 Apr 2016	102.653	0.0	
3 August 2016	89.70	0.05	3 Aug 2016	103.315	0.0	

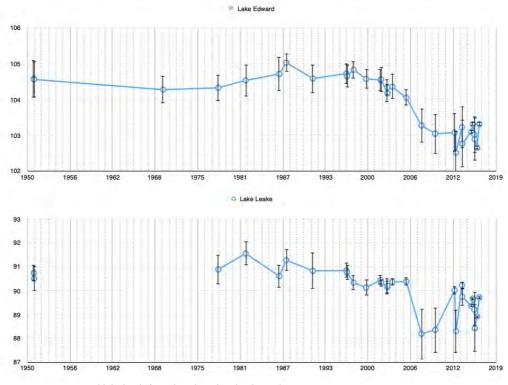


Figure 4: Reconstructed lake levels for Lake Edward and Lake Leake

This appendix comprises a published journal article, arising from work undertaken for this thesis. The article is identical to Chapter Three, with the exception of some minor formatting changes to match the rest of this thesis.

Journal of Hydrology 575 (2019) 31-41

Contents lists available at ScienceDirect

Research papers

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

HYDROLOGY

Development of an autonomous, monthly and daily, rainfall sampler for isotope research

Martin J. Ankor^{a,*}, Jonathan J. Tyler^a, Catherine E. Hughes^b

^a Department of Earth Sciences and Sprigg Geobiology Centre, University of Adelaide, North Terrace Campus, Adelaide 5005, South Australia, Australia ^b Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC 2232, New South Wales, Australia

ARTICLE INFO

This manuscript was handled by Marco Borga, Editor-in-Chief, with the assistance of Daniele Penna, Associate Editor *Keywords:* Precipitation Oxygen isotopes

Oxygen isotopes Hydrogen isotopes 3D printing Rainfall sampler Isotopic modelling

ABSTRACT

An autonomous, low cost (< US\$750), and open source rainfall sampler has been developed for hydrogen and oxygen isotope research, able to sample daily and monthly for up to 60 days of rainfall, over a three month period. The sampler is designed to use modern fabrication methods such as 3D printing and laser cutting to minimise the need for machined and injection molded components. The sampler can use either paraffin oil or a submerged inlet tube (also known as tube-dip-in samplers) to prevent evaporation, with the use of the inlet tube method facilitated by 3D printed bottle caps. An experiment was performed to identify the most suitable plastic for these caps, with acetone treated ABS (Acrylonitrile Butadiene Styrene) being most suitable, followed by PETG (Polyethylene Terephthalate Glycol), untreated ABS, and PLA (Polylactic acid). In addition, the effectiveness of both paraffin oil and the inlet tube method for preventing evaporation was quantified, with paraffin identified as being the most effective at present. During a 90 day outdoor experiment, the ${}^{18}O/{}^{16}O$ vs. ${}^{2}H/{}^{1}H$ ratios of some water samples evolved along a local evaporation line, with increased isotopic enrichment of samples correlating to water loss. A coupled hydrologic-isotopic model was applied to these data, and successfully predicted the change in isotope ratios based on the amount of water lost from each sample. This modelling approach, combined with daily and monthly sample collection and quantification of evaporation rates within the sheltered environment of the sampler allows for back calculation of the original volume and isotopic composition of daily and monthly rainfall samples. The rainfall sampler thus facilitates cost -and time- effective remote monitoring of the isotopic composition of precipitation to support an array of Earth system research.

1. Introduction

The natural variation of the oxygen and hydrogen isotopes of water in the hydrological cycle is tied to numerous climatic and meteorological variables (Craig, 1961; Craig and Gordon, 1965; Dansgaard, 1954; Gat, 2010; Gibson et al., 2016; Gibson et al., 2008). This variation forms a key dataset for many branches of research, including climate and meteorological research, water resource management, forensic and ecological source identification and spatial and temporal mapping of changes and fluxes in meteoric water (Bowen and Revenaugh, 2003; Bowen et al., 2005; Gibson and Reid, 2014; Mattey et al., 2008; Steinman et al., 2010; Treble et al., 2005; Tyler et al., 2015; Tyler et al., 2007).

At the centre of the water cycle is precipitation. The Global Network of Isotopes in Precipitation (GNIP) has underpinned knowledge on monthly and annual scale variability in the isotopic composition of precipitation since 1961 (Rozanski et al., 1993), however, several applications demand rainfall sampling at higher spatial and temporal resolution, often from remote locations, placing significant demand upon time and financial resources. In addition, the isotopes of water – ${}^{3}H/{}^{2}H/{}^{1}H$ and ${}^{18}O/{}^{17}O/{}^{16}O$ – fractionate as water molecules undergo phase change and diffusion. In response to evaporation, residual liquid water becomes relatively enriched in the heavy isotopes as a function of both the climate and the evaporative history of the water. Evaporation of collected samples presents a challenge to sampling rainfall, requiring dedicated systems that minimise evaporation and accompanying isotopic alteration. Therefore, there is a need for an adaptable precipitation sampler which preserves the integrity of oxygen and hydrogen isotope ratios (${}^{3}H/{}^{1}H$, ${}^{2}H/{}^{1}H$, ${}^{18}O/{}^{16}O$ and ${}^{17}O/{}^{16}O$).

1.1. Previous designs

There has been no shortage of rainfall sampler designs over the last few decades, with many designs developed for acid rain research in the

* Corresponding author.

https://doi.org/10.1016/j.jhydrol.2019.04.074

Available online 25 April 2019

E-mail address: martin.ankor@adelaide.edu.au (M.J. Ankor).

Received 25 October 2018; Received in revised form 9 April 2019; Accepted 24 April 2019

^{0022-1694/ © 2019} Elsevier B.V. All rights reserved.

1970s (Raynor and McNeil, 1978). Laguer (1990) identified over 70 reports of sequential rainfall samplers, focused on recording variations of rainfall over the course of a rainfall event, using a variety of techniques. While some aspects of a sequential rainfall sampler may form a useful design basis for a daily/monthly sampler, many rely on mains power, require manual preparation, are not suited to long term on/off operation, and often segment rainfall by volume rather than time. Few of these older samplers feature designs that are well suited to modern, low cost fabrication techniques. There are, however, some novel innovations as well as commonalities amongst many of these samplers. One of the most robust and simplest sequential sampler designs is the sampler of Kennedy et al. (1979) consisting of a series of interlinked bottles. As each bottle is filled, the overflow is diverted to the next sample bottle. Mixing of samples is prevented by the use of a narrow inlet tube to the base of each sample bottle. Ronneau et al. (1978) developed an entirely mechanical sampler for remote areas driven solely by gravity and using tipping, latching sample containers on a circular platter. A resistance based rainfall detector was used by Asman (1980), whereas Gray et al. (1974) used a loud speaker, which, when struck by a raindrop, would generate an electronic pulse that would trigger the sampler's mechanism. Gatz et al. (1971) developed a sampler able to collect up to 70 samples (500-1000 ml) from 70 mm of rainfall. At $1 \times 1 \times 2m$ and 91 kg, this probably represents the heavyweight class of sequential samplers, closely challenged by the Raynor and McNeil (1978) sampler at $1.5 \times 1.5 \times 0.64$ m, both of which were designed as permanent installations. A more recent sequential sampler design is the 96 vial sampler of Coplen (2010, 2015), that incorporates a novel teflon coated cover to prevent evaporation from inactive sample vials. In terms of commonality between existing sampler designs, many make use of a tipping bucket system to quantify the rainfall amount. As many of these samplers segment rainfall by volume, a tipping bucket sensor provides an effective way to prevent overflows. Circular, rotating platters are also very common, taking advantage of mechanical and electronic simplicity and robustness.

Two more recent designs break with these common design elements. Akkoyunlu et al. (2013) developed a sampler that quantifies rainfall using MATLAB controlled solenoids, located beneath the collector funnel, separated by a tube with a volume of 5 ml. Rainfall was then gravimetrically segmented to 21 individual sample bottles. However, unlike some older systems that rely on sample bottles filling to enable the next bottle in the sequence, the sample bottles were instead capped with solenoids. As each solenoid closed, water was diverted down the inlet tube to the next bottle until all bottles were filled. Hartmann et al. (2018) developed an Arduino based, battery powered field auto-sampler that uses a Cartesian based control system to fill a grid of gas-tight sample vials. Like the design of Akkoyunlu et al. (2013), an inlet tube with a known volume (12 ml) holds the sample prior to storage. A peristaltic pump then transfers the sample via piston flow to the sample vials. A pair of cannulas pierce the vial cap for sample injection and pressure equalisation, and the sealing nature of the rubber vial cap prevents exchange with the atmosphere. This device has been used for sampling of cave waters. The evaporation prevention mechanism is of significant interest to rainfall sampling, however, it is unclear at this stage how this system could be adapted to rainfall collection, as the thin diameters of the auto-sampler cannula will likely face problems with the detritus usually collected in rainfall sampler funnels. In addition to the above, the 3700C Compact and 6712 Fullsize samplers (Teledyne ISCO, USA) represent commercial sampler designs that have been adapted for sequential rainfall sampling (Rücker et al., 2019). These samplers utilise the common design element of a circular array with up to 24 sample bottles, combined with a peristaltic pump for filling samples. There is also ongoing development focused on in-field analysis where mobile labs are established at the site of interest, with analyses of samples undertaken in near real time (Berman et al., 2009; von Freyberg et al., 2017). These systems are typically expensive, require on-site power and regular attendance, making them unsuitable at this Journal of Hydrology 575 (2019) 31-41

stage for use in remote locations with limited infrastructure.

While there are many examples of sequential rainfall samplers in the literature, there are relatively few that are designed for discrete daily/ monthly sampling, possibly due to the added complexity required. Unlike sequential samplers, daily/monthly samplers have to prevent evaporation of samples for long time periods, require accurate timekeeping, must be sufficiently robust, and must store sufficient samples to operate for months in the field. Samplers designed for remote sites also need to be small enough to be transported and installed, as well as having the means to maintain power supply for the period of deployment. Of the samplers mentioned above, only the auto-sampler of Hartmann et al. (2018) and the sequential sampler of Coplen (2010) have most of the components required for daily/monthly sampling of rainfall in remote sites. However, in the case of Hartmann et al. (2018), there would be significant modifications required to adapt it for rainfall sampling including attachment of a catchment funnel, rainfall sensor, a water reservoir that the auto-sampler can sample and that can be emptied when rainfall has occurred, and a filter system to deal with the detritus collected in rainfall catchment funnels. The design of Coplen (2010) would require less modification, with the main changes being to the control software, and the inclusion of an evaporation prevention system for the main reservoir, where water is stored prior to being transferred to the sample vials. The design of Akkoyunlu et al. (2013) has potential as a monthly sampling system, as control of ~ 14 solenoids is manageable with low power electronics such as the open source Arduino platform.

1.2. Fabrication methods and materials

Design and construction of bespoke equipment such as precipitation samplers can be challenging due to the absence of off-the-shelf components that can be easily incorporated. Even parts as simple as a UV stabilised funnel of a suitable size can prove difficult, for example Asman (1980) made use of a square funnel, due to the difficulty of fabricating a large cylindrical funnel. Injection moulding, complex machining and custom electronics are not feasible manufacturing techniques for low volume production as they typically have high initial costs. Fortunately, in the last decade, several developments in manufacturing have emerged that enable low volume, complex designs to be manufactured at low cost (Berman, 2012; Rayna and Striukova, 2016). Two in particular are heavily used in our sampler. 3D Printing, or fused filament fabrication, enables the fabrication of complicated plastic components, though typically of fairly small size. When combined with computer numerical control (CNC) laser cutting, larger designs of considerable complexity can be manufactured. More importantly, once a design is complete, it can easily be fabricated by anyone else with a 3D printer, laser cutting or CNC milling capability. Low cost, extensible, microprocessor based electronics such as the Arduino system provide accurate timing, motor control, data logging and support for multiple sensors, e.g., Hund et al. (2016). In the same way that the manufacturing designs can be published and fabricated, the program that controls the Arduino can be shared.

1.3. Methods of preventing evaporation

With respect to evaporation prevention, two methods have demonstrated effectiveness: paraffin oil, or the submerged inlet tube system of Gröning et al. (2012) (Michelsen et al., 2018; Terzer et al., 2016). The oil method prevents evaporation by the addition of a ~ 5 mm layer of paraffin oil to the sample, which forms a barrier between the sample and the air. The inlet tube system uses a narrow (typically ~ 4 mm diameter) inlet tube that passes to the bottom of the sample container. Once the first portion of rainfall enters the sample container, the base of the inlet tube is submerged, and evaporation can only occur through the small surface area exposed in the inlet tube. Pressure is equalised through a second tube that vents the container,

but is sufficiently long and thin to minimise diffusion with the exterior atmosphere. The sample container and vent tube are then protected from sunlight to minimise heating and corresponding pressure changes within the sample container. Given the simplicity and effectiveness of the paraffin oil technique, it might be expected to be the preferred collection method. However, as analysis of the samples is often complicated by the presence of oil in the sample (IAEA, 2014), in many situations the inlet tube method is preferred.

The choice of sampling bottle must also be considered as isotopes may exchange or permeate through the sample bottle material. Spangenberg (2012) investigated multiple plastics for their suitability for storing waters for stable isotope analysis, namely: High and low density polyethylene (HDPE, LDPE), polypropylene, polycarbonate, polyethylene terephthalate (PET), perfluoroalkoxy-Teflon and glass over a timeframe of 659 days. Significant variations of +5% for δ^{2} H and +2% for δ^{18} O were observed for polycarbonate and PET. The recommended materials for use in sample bottles used for stable isotope investigations are glass, HDPE or teflon, with a preference for thicker walled containers. Unfortunately, there is little overlap between the common laboratory plastics tested by (Spangenberg, 2012) and the plastics commonly used in 3D printing: acrylonitrile butadiene styrene (ABS), polylactic acid (PLA) and polyethylene terephthalate-glycol modified (PETG).

1.4. Objectives

There is a clear need for an autonomous rainfall isotope sampler that can be deployed for long time periods in remote locations. Given that no design has thus far been able to prevent losses and fractionation due to evaporation, there is also need to be able to evaluate, and potentially correct for the effects of evaporation on samples. This paper presents the development of a low cost (< US\$750), autonomous, battery powered sampler using novel construction methods and open source electronics. Design files are available from https://github.com/ Mjankor/MARS-Rainfall-Sampler. Aspects of the design of the sampler are considered, with tests quantifying the amount of water lost due to surface wetting along the flow-path, and the ability of the sampler to divide the flow accurately between daily and monthly samples. In addition to discussing the design of the rainfall sampler, we also present results investigating the effectiveness of 3D printing bottle caps using ABS (Acrylonitrile Butadiene Styrene), PETG (Polyethylene Terephthalate Glycol), PLA (Polylactic acid), and acetone treated ABS, for preserving the integrity of stable isotope ratios in water samples. A coupled hydrologic-isotopic model was applied to the bottle caps experiment data, to predict the change in the isotopic composition of the water based on the water lost from each sample. Based on the results from the isotopic modelling, we describe how a hydrologic-isotopic model, taking advantage of the differing rates of evaporation from daily and monthly samples, can be used to back calculate the original volume and isotopic composition of rainfall samples.

2. Design principles

The many varied designs of rainfall sampler from the last few decades show a few commonalities, but no de facto design standard. Therefore, rather than rework an existing design, we established several design principles that were used as the basis for development.

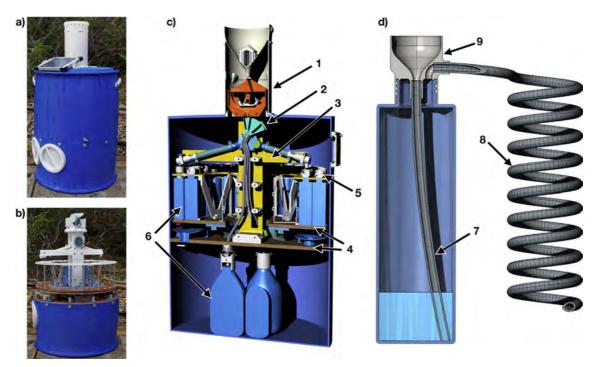
Usage: The sampler should be easily deployed in remote environments. As major cities often have GNIP stations, and generally have personnel available for event or daily sampling, there is little benefit in designing a sampler that is reliant upon significant infrastructure. *Cost:* Samplers will be deployed in remote or uncontrolled environments where there is potential for vandalism, weather damage, and other mishaps. Minimising costs means that the loss of a sampler is less of a burden on research budgets, or that more samplers can be deployed for better spatial resolution and redundancy.

Outer casing: Needs to be weatherproof and robust over the timeframe of years. It should also prevent wildlife from occupying the sampler, and should protect the electronics and interior components from sunlight and excessive heat. In addition, the sampler should be entirely self-contained without any external components such as batteries or cables which can be easily damaged.

Battery powered: The sampler must operate without an external power source for a long period of time. When combined with solar panels, a sampler should be able to operate indefinitely.

Easy to construct: As the intent is to provide a design for others to replicate, it is beneficial that the construction of the sampler is straightforward. This is also an important feature for a field sampler, where repairs and maintenance may need to be carried out at remote locations with minimal equipment.

Sampling capabilities: Capturing both daily and monthly precipitation provides some redundancy in case of failure of some components, and allows for quality control by comparing the mass balance of daily and monthly samples.


Flexibility: The sampler must be suitable for differing rainfall conditions. This is rarely a challenging problem with rainfall samplers as the collection funnel can be changed to increase or reduce the amount of rainfall collected. However, funnels with specific diameters are sometimes difficult to purchase. Therefore the design process included the development of multiple funnel options. In addition, regions with very variable rainfall should be considered, requiring a method to prevent overflow from large events.

The ability to quantify rainfall: Quantifying the amount of rain is important, partly, as an explanatory variable for the isotopic composition of rainfall, and more importantly, to prevent overflows during heavy events and to avoid changing sample bottles on days of no rain.

Preservation of isotope ratios: The rainfall sampler is designed to accommodate both the paraffin oil and inlet tube methods to prevent evaporation, though it is noted that the inlet tube method has analytical and operational benefits. Oil is an option regardless of the sampler design, however the inlet tube method requires significant space to store the vent tubes, and attaching both the inlet tube and vent tube to sample bottles can be complicated or expensive.

2.1. Design

Based on the above criteria, a low cost, automated rainfall sampler was designed for remote field deployment, which for simplicity is named MARS. The choice of outer casing was an early priority in the design process. The sampler needed to be large enough to contain multiple sample bottles, as well as the sampling mechanism, electronics, battery, and a rainfall collection funnel. Fortunately, a cheap, common, off the shelf solution was identified; 200 L plastic drums, typically used for transporting food and chemicals are extremely common, and recycled ones can be purchased for very low cost. These drums are typically blue HDPE plastic around 4 mm thick and are UV resistant. They have a diameter of ~58 cm and a height of ~93 cm, and are typically completely sealed with just two inlet ports for filling and emptying. The entire drum is not used for the sampler. The top half of the drum is used as a lid that can be easily removed to provide access to the daily sample bottle area. The lower third of the drum is used to provide a protected enclosure below the main sampler where monthly sample bottles are placed. It should be noted that the lower shell is not designed to be water proof and it is expected that some water will make its way into that space as the seal between upper and lower shells is not watertight. There is a drain in the lower shell to prevent water building up in that space. The outer shell has had its height reduced as much as possible to minimise the wind effect on rainfall sampling (Bureau of Meteorology, 2007), to reduce the chance of it being blown over, and to make it easy to transport.

Fig. 1. (a) Photo of sampler, with lid in place. (b) Photo of the sampler with the lid removed. (c) Cutaway view of the MARS rainfall sampler showing tipping bucket (1, orange), water switch (2, cyan), laser cut platter and tower components (3, yellow), baseplate and platter (4, wood texture), bottlecaps (5, grey) and bottles (6, blue). (d) Cutaway view of the inlet tube method, showing inlet tube (7), vent tube (8) and 3D printed bottle cap (9). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

At the centre of the MARS sampler, forming the top of the lower shell, is a 12 mm plywood baseplate. This baseplate holds the electronics, battery, and provides a firm fixing point for the mechanical system (Fig. 1). Positioned about 6 cm above the main baseplate is a rotating platter of 12 mm plywood, sitting on a 30 cm turntable bearing. This platter has a support frame on it designed to hold 60×225 ml HDPE bottles (48.4 mm diameter \times 161 mm) in two rings of 33 and 27 bottles. A central plastic tower sits at the centre of the baseplate, and holds the tipping bucket mechanism, and a 'water switch' that can divert water from the tipping bucket outflows to either the inner or outer ring of daily sample bottles, and between first, second or third of the monthly samples. One benefit to using a rotating platter is that there is a 'dead spot' in the centre, which provides an ideal location to place the vent tubes used for the inlet tube evaporation prevention method. The platter's rotation is controlled by a ring gear driven by a stepper motor.

Three 8 mm silicone tubes run from the water switch, down the central tower and through the baseplate to 3 monthly sampling bottles (2 L, HDPE). These bottles also use the inlet tube method, with the vent tubes stored inside the lower compartment.

On the baseplate are a cabinet for the electronics, the motor for rotating the main platter, a small 12 V, 2.1 Ah sealed lead acid battery and the support for the platter bearing. In addition are two drains in case of overflow of the daily bottles, and guides with encapsulated nuts around the outer rim, used to guide and secure both top and bottom shells in place. The drains are a holdover from an earlier design and should rarely be needed in the current design.

The electronics are controlled by an Arduino Nano 3.x (Duinotech Nano V3.0) on a breakout board. The breakout board keeps the need for soldering to a minimum, with jumper cables used to connect most of the components. Two stepping motors are used, one driving the platter, and the other controlling the water switch on the tower. A reed sensor determines when the tipping bucket is activated and a microswitch on the tower is used to reset the water switch. The position of the main platter is not reset electronically as it is much quicker to disengage the motor

and rotate the platter by hand to the starting position. A real time clock and an SD Card reader keep time and a log for each sample changeover date. The Arduino platform also means that MARS can be easily reprogrammed for different roles, such as time or volume based sequential sampling of rainfall events.

Attached to the outer shell is a 3D printed funnel positioned \sim 30 cm above the top of the sampler. While it could be positioned closer to the outer shell, 30 cm was chosen to prevent splashes from the casing bouncing into the funnel. The top half of this funnel is designed to be easily replaced so that different sized funnels can be used. There are vents situated around the exterior of the funnel. When combined with the drains in the lower shell, these vent warm air from the sampler, replenished with cooler air from near ground level, thus preventing greenhouse style warming in the sampler. All vents and drains are designed so that mesh can be applied to exclude insects.

The tipping bucket design is unique due to the way that it separates the flow-path for monthly and daily sample collection (Fig. 2). Tipping buckets have been used before to divide rainfall into multiple samples, with alternating tips of the bucket passing water through different flowpaths e.g. Gatz et al. (1971). While such a design is ideal for volumetric based segmentation in a rainfall event, it introduces potential systematic uncertainties. Any difference in tipping volume between the buckets would result in a bias towards either daily or monthly samples. In addition, most tipping buckets are designed to tip for each 0.2 mm of rainfall. If a series of small rainfall events occurs, then on a day with rainfall of 0.2 mm all of the rain may go into the daily sample, and none into the monthly. On a day of 1.4 mm of rainfall, 0.8 mm may go to daily, and 0.6 mm into the monthly. To avoid this issue, and taking advantage of the ability to fabricate complex structures with 3D printing, our tipping bucket splits the flow for each bucket, with half the water from each bucket tip going to daily, and half going to monthly samples. The tipping bucket is designed to tip with a volume of 4 ml, resulting in a tip every 0.2 mm of rainfall with a 159.6 mm diameter funnel. The success of this mechanism to divide water equally is

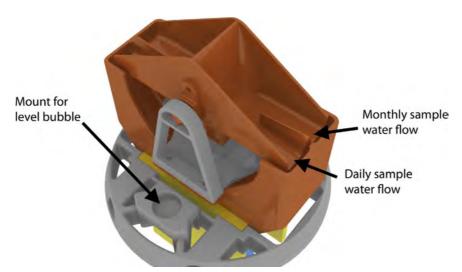
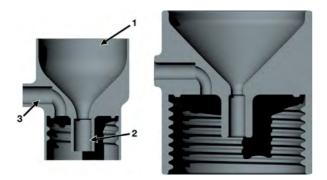



Fig. 2. The tipping bucket, showing the flow splitting divider. A level bubble is incorporated into the design to ensure that the tipping bucket is vertically aligned.

dependent on the rainfall sampler being vertically aligned, thus a level bubble is built into the design of the tipping bucket.

Fabrication is achieved predominantly using 3D printed components, while some of the bottle support structure, ring gear and central tower uses laser cut 6 mm acrylic plastic. To build the design requires a few basic tools (jigsaw, drill, screwdriver, soldering iron) as well as a 3D printer able to print ABS with a build volume of $200 \times 200 \times 180$. All 3D printed parts were printed using a Wanhao i3 Plus 3D printer. Components that form the water flowpath were printed with 0.2 mm layer thickness, and sanded with 1500 grit sandpaper to smooth the layered structure of the printed surface.

3D printing was able to resolve a significant problem in the design of the bottle caps. Modifying existing bottle caps to include an inlet tube and a vent tube is complicated, and space on and above a platter of daily sample bottles is limited. Using 3D printing we were able to fabricate lids featuring a small funnel to capture incoming water, an inlet tube holder that clamped the outside of the inlet tube and a curved vent pipe attachment so that vent tube could be routed horizontally towards the centre of the platter (Fig. 3). By clamping the outside of the inlet tube, the smallest diameter along the water flow-path was the 4 mm diameter of the inlet tube thereby minimising the chance of blockages.

Fig. 3. Cutaway view of the 3D printed bottle caps, with funnel (1), offset formed vent tube holder (2) and central inlet tube holder (3) (Left, cap for 225 ml bottles, right cap for 2 L bottle).

3. Design and material tests: experimental methods

3.1. Quantification of water loss from surface wetting

In order to quantify the amount of water lost through wetting of surfaces along the flow-path, various quantities (12, 20, 40, 60, 100 ml) of water were dripped into the sampler at a rate of ~ 1 ml/s wetting the entire funnel and top surface of the filter, representing rainfall events from 0.6 to 5 mm of rainfall. The amount of water collected in the bottles were subsequently weighed. This experiment was repeated 3 times.

3.2. Quantification of water loss through bottle caps

The use of 3D printed plastics along the water flow-path was not considered problematic with regard to preservation of water isotope ratio integrity, as water would only be in contact with those plastics briefly. However, the use of 3D printed plastics for bottle closures was a concern. To test which plastics were most effective at preserving the initial water isotope ratio, bottle caps were fabricated using three different types of plastic. The plastics used were blue PLA, grey ABS and white PETG from 3DFillies (https://3dfillies.com/). In addition, grey ABS modified with acetone treatment was also tested, where acetone is used to partially dissolve and smooth the ABS plastic surface, potentially improving the sealing between printed layers (Garg et al., 2016; Singh et al., 2017). Acetone treated parts were placed in a 4 L tin lined with acetone soaked paper towels for 30 min at 20 °C, then allowed to dry overnight.

In order to test the effectiveness of different plastic caps, and to validate the use of the inlet tube system, an experiment was conducted using 33×225 ml HDPE bottles, each with ~40 ml of recent rainfall (equivalent to 4 mm of rain, using a 159.6 mm diameter funnel divided between monthly and daily samples). For each plastic, sealed bottle caps were fabricated using the same design as used in the sampler, but with the inlet and outlet holes sealed. Unsealed bottle caps of the same design were also fabricated in all 4 plastics and combined with the inlet tube and vent tube to replicate the system used in the sampler. The inlet and vent tube consisted of $\sim 4 \text{ mm} \text{ } \emptyset$ (internal) LDPE tubing with a \sim 1 mm wall thickness. Triplicates of each design were fabricated for each plastic giving a total of 24 bottle-caps (Table 1). Triplicate bottles using the oil method of evaporation prevention were also prepared, with $5\,mm$ of paraffin oil sealing each $\,\sim\!40\,ml$ water sample. As a control, 6 bottles were prepared, sealed with wadded polypropylene caps.

Table 1

Data for each bottle cap showing plastic and evaporation prevention method, water loss and observed and modelled isotopic results. PLA, PETG, ABS in sample names refer to plastic type. ACET refers to acetone treated ABS. PARA refers to paraffin oil samples, and HDPE (highlighted in grey) are the control samples with wadded caps. Columns $\delta^{18}O \sigma$ and $\delta^{2}H \sigma$ are the reported instrumental precision.

San	nple Description		Mass	Change				Obse	rved δ		Modelled $\boldsymbol{\delta}$	
Sample ID/Plastic type	Seal type	Lid weight (or paraffin oil weight) (g)	Initial water weight (g)	Final water weight (g)	Water loss (g)	Water loss (%)	δ ¹⁸ O (‰)	δ²Η (‰)	δ ¹⁸ Ο σ (‰)	δ ² Η σ (‰)	δ ¹⁸ O (‰)	δ ² Η (‰)
HPDE01	Wadded PP cap	2.16	39.32	39.32	0	0	- 4.6	-18.1	0.02	0.32	-4.57	-18
HPDE02	Wadded PP cap	2.15	39.5	39.5	0	0	-4.55	-17.7	0.01	0.11	-4.57	-18
HPDE03	Wadded PP cap	2.15	38.2	38.2	0	0	-4.56	-17.6	0.02	0.15	-4.57	-18
HPDE04	Wadded PP cap	2.14	39.42	39.3	0.11	0.3	-4.56	-18.1	0.05	0.23	-4.46	-17.7
HPDE05	Wadded PP cap	2.16	39.53	39.44	0.09	0.2	-4.52	-18	0.03	0.29	-4.5	-17.8
HPDE06	Wadded PP cap	2.15	39.36	39.25	0.1	0.3	-4.62	-19.1	0.01	0.11	-4.46	-17.7
PLA01	Inlet Tube	9.23	38.37	35.05	3.33	8.7	-1.45	-10.2	0.06	0.33	-1.43	-10.3
PLA02	Inlet Tube	9.27	39.02	36.22	2.8	7.2	-2.14	-12	0.09	0.25	-1.98	-11.7
PLA03	Inlet Tube	9.28	39.49	36.83	2.67	6.7	-2.23	-12.2	0.04	0.21	-2.16	-12.1
PLA04	Sealed inlet/outlet ports	9.88	39.32	38.66	0.66	1.7	-4.03	-16.7	0.04	0.21	-3.96	-16.5
PLA05	Sealed inlet/outlet ports	9.9	39.89	38.01	1.88	4.7	-2.92	-14.1	0.06	0.41	-2.89	-13.9
PLA06	Sealed inlet/outlet ports	9.87	39.99	38.06	1.94	4.8	-2.76	-13.6	0.06	0.25	-2.85	-13.8
PETG01	Inlet Tube	9.47	39.05	37.72	1.33	3.4	-3.43	-15.3	0.01	0.21	-3.35	-15
PETG02	Inlet Tube	9.49	39.51	38.03	1.48	3.7	-3.29	-14.9	0.03	0.31	-3.25	-14.8
PETG03	Inlet Tube	9.36	40.1	38.72	1.38	3.5	-3.37	-15.1	0.04	0.21	-3.32	-15
PETG04	Sealed inlet/outlet ports	10.01	39.24	38.52	0.72	1.8	-4.02	-17.5	0.08	0.36	-3.93	-16.4
PETG05	Sealed inlet/outlet ports	10.01	39.63	39.01	0.62	1.6	-4.19	-17.3	0.16	0.44	-4	-16.6
PETG06	Sealed inlet/outlet ports	10.03	39.59	39.08	0.51	1.3	-4.12	-16.7	0.06	0.44	-4.11	-16.9
ABS01	Inlet Tube	7.84	39.65	38.05	1.6	4	-3.27	-14.8	0.11	0.59	-3.14	-14.5
ABS02	Inlet Tube	7.84	39.26	37.78	1.49	3.8	-3.29	-14.7	0.06	0.39	-3.21	-14.7
ABS03	Inlet Tube	7.83	39.28	37.69	1.59	4.1	-3.24	-14.8	0.01	0.32	-3.1	-14.4
ABS04	Sealed inlet/outlet ports	8.29	39.59	38.4	1.19	3	-3.5	-15.3	0.03	0.17	-3.5	-15.4
ABS05	Sealed inlet/outlet ports	8.28	38.86	37.65	1.22	3.1	-3.4	-15.1	0.03	0.41	-3.46	-15.3
ABS06	Sealed inlet/outlet ports	8.29	39.27	37.51	1.76	4.5	-3.05	-14.1	0.04	0.48	-2.96	-14.1
ACET01	Inlet Tube	7.95	39.18	37.89	1.29	3.3	-3.49	-15.4	0.04	0.19	-3.39	-15.1
ACET02	Inlet Tube	7.97	38.29	37.25	1.04	2.7	-3.67	-16.6	0.05	0.4	-3.61	-15.7
ACET03	Inlet Tube	7.96	39.76	38.43	1.34	3.4	-3.46	-15.7	0.03	0.14	-3.35	-15
ACET04	Sealed inlet/outlet ports	8.41	40.08	39.7	0.38	1	-4.26	-17.4	0.02	0.11	-4.21	-17.1
ACET05	Sealed inlet/outlet ports	8.41	39.46	39.02	0.45	1.1	-4.22	-17.2	0.05	0.31	-4.18	-17
ACET06	Sealed inlet/outlet ports	8.36	39.18	38.76	0.42	1.1	-4.23	-17.4	0.04	0.37	-4.18	-17
PARA01	Light paraffin oil	12.15	39.26	38.9	0.37	0.9	-4.4	-17.4	0.03	0.18	-4.25	-17.2
PARA02	Light paraffin oil	11.8	39.56	39.2	0.36	0.9	-4.43	-17.6	0.04	0.24	-4.25	-17.2
PARA03	Light paraffin oil	13.56	38.97	38.66	0.31	0.8	-4.46	-17.5	0.04	0.22	-4.29	-17.3

Each bottle was weighed when empty, then again once the \sim 40 ml of sample was added, using an Ohaus Adventurer AR3130, three decimal point balance. Each lid was also weighed to assess whether any water had been absorbed or condensed onto the lid over the course of the experiment. For the oil bottles each empty bottle was weighed, then weighed again with oil, and then again once the sample was added. Each bottle and lid was then weighed again at the end of the 3 months to determine any loss of water.

Each water sample was filtered through a $0.2\,\mu m$ polyethersulfone syinge filter directly into 2 ml vials for analysis. Paraffin oil samples were left undisturbed for several hours, then a syringe needle was pushed through the side of the bottle well below the paraffin/water interface to extract the sample. Oxygen and hydrogen isotope analyses were conducted with an L2130-i Picarro Cavity Ring-Down Spectrometer (Picarro, Inc., Santa Clara, CA, USA) with a precision against an in-house QA standard of \pm 0.05% for $\delta^{18}\text{O},$ and \pm 0.4% for δ^2 H. Each batch of 10 samples was preceded by calibration with 2 in-house standards, and a quality check against a 3rd in-house standard, with a final quality check at the end of the sample run. Each sample and standard were injected 7 times, with the first 3 injections discarded to prevent memory effects, and the remaining 4 injection results assessed for any residual trend. Chemcorrect (Picarro Inc.) was used to validate that samples had not been contaminated. Isotopic results are reported using the delta notation as per mil (‰) deviations from Vienna Standard Mean Ocean Water (VSMOW2) where:

$$\delta_x = 1000 \left(\frac{R_x}{R_{VSMOW2}} - 1 \right)$$

R is ${}^{18}\text{O}/{}^{16}\text{O}$, or ${}^{2}\text{H}/{}^{1}\text{H}$ and *x* is the sample in question.

Water from 3 of the control bottles (HDPE01, HDPE02 & HDPE 03) were analysed for ¹⁸O/¹⁶O and ²H/¹H at the start of the experiment, with average values of $-4.57\%~\delta^{18}O$ (σ of 0.03‰), and δ -17.8% δ^2 H (σ of 0.2‰). The remaining 30 bottles – 12 sealed plastics, 12 inlet tube plastics, 3 paraffin oil, and 3 sealed control bottles - were stored in a box outside, under shelter, for \sim 3 months (from 31/10/17 to 28/1/ 18), approximating conditions found in the sampler. Humidity and temperature were monitored with an Arduino data logger, measured every 15 min with an Aosong DHT22 sensor (factory calibrated, accuracy RH \pm 2%, Temperature \pm 0.5 °C). Sporadic problems with the SD card of the logger resulted in some gaps in the data. However, sufficient data (38 complete days) was collected to correlate local conditions with temperature and humidity data from two nearby weather stations (Australian Bureau of Meteorology site 023,090 - Kent Town, Adelaide and site 023,000 - West Terrace, Adelaide), using 'Patched Point' data from the SILO database (Jeffrey et al., 2001).

3.3. Isotopic modelling

Each sample can be modelled as a slowly desiccating pond, with a slow loss of water from the initial sample volume. A numerical simulation using the Craig & Gordon (1965) model of isotope fractionation (Eq. (1)) during evaporation was applied to the data to investigate

whether a modelling approach could predict the change in δ^{18} O and δ^{2} H for a particular amount of evaporative water loss.

$$\delta_E = \frac{\alpha^* \delta_w - h_n \delta_A - \varepsilon_{eq} - \varepsilon_{kin}}{1 - h_n + 0.001 \varepsilon_{kin}} \tag{1}$$

where α^* is the reciprocal of the equilibrium fractionation factor, calculated using the equations derived by Horita and Wesolowski (1994). δ_W and δ_A are the isotopic composition of the water and atmosphere respectively. h_n refers to the relative humidity (RH). In studies of natural waters, this value is usually normalized to the temperature of the water. However, in our modelling, due to the small sample size it was assumed that air and sample water had a similar temperature, and the atmospheric RH was used. The per mil equilibrium isotopic separation (ε_{eq}) is calculated by:

$$\varepsilon_{eq} = 1000(1 - \alpha^*) \tag{2}$$

and the kinetic isotopic separation (ε_{kin}) by:

$$\varepsilon_{kin} = (1 - h_n) \theta n C_k \tag{3}$$

 C_k is an experimentally derived constant determined by Merlivat (1978) as 28.5‰ for δ^{18} O, and 25.1‰ for δ^{2} H. θ is a parameter describing the transport resistance of the diffusion layer, typically assumed to be 1 for small water bodies, and *n* is a value relating isotopic separation to wind conditions, ranging from 0.5 for fully turbulent condition, to 1 for stagnant conditions (Gat, 2010). Alternative values of ~14.2‰ for δ^{18} O and ~12.5‰ for δ^{2} H are often used for studies of natural waters, combined with a similar equation to eq. (3) without the *n* term (e.g., Araguás-Araguás et al., 2000; Gibson et al., 2016; Skrzypek et al., 2015; Steinman et al., 2010).

 δ_E is the isotopic composition of evaporated flux, and is combined with a simple numerical model to predict the isotopic composition of the remaining sample water (Eq. (4) & (5)).

$$V^{t} = V^{t-1} - E^{t-1} \tag{4}$$

$$\delta_W^t = \frac{\delta_W^{t-1} V^{t-1} - \delta_E^{t-1} E^{t-1}}{V^t}$$
(5)

where *t* is the timestep (daily). *V* is the volume of the sample, *E* is the volume of evaporative flux, and the subscript denotes sample water (*W*) or evaporative flux (*E*). Average meteorological conditions and a θ value of 1 (for a fully developed diffusion layer) were applied as model parameters. δ_A was initially assumed to be in equilibrium with precipitation (δ_P) and the original sample. The model was then calibrated to the observed local evaporation line using the technique of Bennett et al. (2008) by shifting δ_A by 14% from equilibrium with (δ_P) (Eq. (6)).

$$\delta_A = \alpha^* \delta_P - 1.14 \varepsilon_{eq} \tag{6}$$

4. Results

4.1. Meteorology

Local meteorological conditions correlated well with the observations from both Kent Town and West Terrace weather stations. To fill in the missing data, a linear regression was derived for average daily temperature (N = 38, R² = 0.94) and relative humidity (N = 37, R² = 0.88) based on the correlation with Kent Town (being nearest) (Fig. 4). One outlier was removed from the correlation (Ave RH, 21/11/ 2017) as it seemed to be a local effect at the Kent Town station, and was not representative of local conditions or those at the West Terrace station. The daily average temperature over the course of the experiment was 25.3 °C, with a range from 16.0 °C to 37 °C. Relative humidity ranged from 15% to 81% with an average of 41.7%. Interpolated pan evaporation estimates for both weather stations were an average of 7.7 mm/day for a total of 695 mm over the timeframe of the experiment (Fig. 4).

4.2. Quantification of water loss from surface wetting

The average loss of water due to surface wetting was 1.9 ml \pm 0.53 σ , split fairly evenly between the 159.6 mm diameter funnel (~0.6 ml), tipping bucket and chute (~0.6 ml), and the water switch and pipework (~0.7 ml). This means that for a single event, assuming no reevaporation of raindrops from the sampler surfaces during the event, ~90% of rainfall for a 1 mm event is collected, rising to ~98% for a 5 mm event. There is also the potential for up to ~4 ml of rainfall (0.2 mm of rainfall with a 159.6 mm diameter funnel) to sit within the tipping bucket if insufficient rain falls to tip the bucket. The ratio for daily vs monthly rainfall captured was evenly split (336.3 ml for daily, 338.1 ml for monthly), demonstrating that the tipping bucket is able to divide the flow accurately with < 1% variation.

4.3. Volumetric variation in samples

Significant differences in water loss were observed between the different techniques and plastics (Fig. 5, Table 1). The HDPE control bottles with wadded caps only lost 0.3% (0.1 ml) of their water over the three months, followed by the paraffin oil bottles with a loss of 0.9% (0.35 ml). With the exception of the sealed ABS and PLA capped bottles, both sealed and unsealed bottles demonstrated consistent differences between plastic types, with the inlet tube bottles typically losing $\,{\sim}\,2\%$ (0.8 ml) of mass relative to the sealed plastics. Sealed PETG and acetone treated ABS lost 1.6% (0.6 ml) and 1.1% (0.4 ml) respectively, while their corresponding inlet tube variants lost 3.5% (1.4 ml) and 3.1% (1.2 ml). The sealed ABS exhibited an average water loss of 3.5% while the ABS inlet tube bottles lost 4% (1.6 ml) of water. The PLA sealed bottles lost 3.7% (1.5 ml) via the sealed lids, and 7.5% (2.9 ml) for the inlet tube lids. Compared to most of the alternative plastics, the paraffin oil and the control, all of which had a standard deviation of < 0.35%, the sealed ABS lids exhibited a standard deviation of 0.8% and PLA had standard deviations of 1.8% for the sealed and 1% for the inlet tube lids. These results suggest that either the fabrication method did not produce PLA or ABS caps of consistent quality, or the caps did not seal the bottles adequately. As the inlet tube method is identical for all samples, then it would be expected to contribute a similar amount to the water loss for each sample. For both triplicates of PLA, two samples were similar, with the third varying by a significant amount. Assessing just the two similar samples for each set gives a 7% (2.73 ml) loss for the inlet tube method and 4.8% (1.9 ml) loss for the sealed cap, approximately matching the 2% difference between inlet tube and sealed caps observed in the other plastics. Likewise, the sealed ABS appears to be indicative of variation in bottle cap fabrication, or the sealing between the caps and the bottles.

4.4. Isotopic variation in samples

Changes in the $\delta^{18}O$ and δ^2H of the water samples correlated strongly with the water loss for each sample and a linear regression between $\delta^{18} O$ vs $\delta^2 H$ exhibited a local evaporation line with a slope of 2.5 (Fig. 5). Three potential outliers were noted (PETG04, ACET02 and HDPE06) with δ^2 H values falling approximately -0.75‰ below the evaporation line. These outliers are suspected to have occurred due to an analytical error and are excluded from subsequent modelling and analysis. Unfortunately, these samples were not able to be re-analysed. Excluding these outliers, enrichment relative to the average original water composition ranged from an average of 0.14‰ δ^{18} O, and 0.3‰ $\delta^2 H$ for the paraffin oil samples, up to 2.63‰ $\delta^{18} O,$ and 6.3‰ $\delta^2 H$ for the PLA inlet tube bottles. Of the three remaining plastics, the inlet tube samples were enriched by an average of 1.21‰ $\delta^{18}O$ and 2.7‰ $\delta^{2}H$ for PETG, 1.30‰ δ^{18} O and 3.1‰ δ^{2} H for ABS, and 1.10‰ δ^{18} O and 2.3‰ δ^2 H for acetone treated ABS. Sealed caps underwent less enrichment, ranging from an average of 0.33‰ δ^{18} O and 0.44‰ δ^{2} H for the acetone treated lids to 0.41‰ $\delta^{18}O$ and 0.8‰ δ^2H for PETG. The sealed,

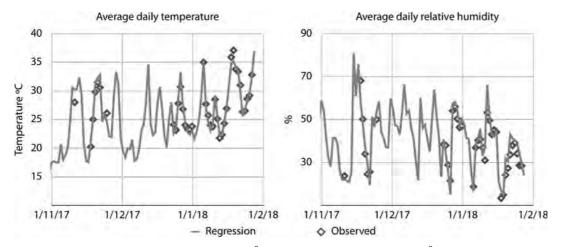


Fig. 4. Predicted vs observed daily average temperature (N = 38, R^2 = 0.94) and relative humidity (N = 37, R^2 = 0.88) based on linear regressions.

untreated ABS lids suffered greater enrichment in line with their large and variable water loss.

4.5. Isotope modelling

Calibration of the modelled to observed isotope values was achieved through adjustment of the δ_A value as described in section 3.3. The modelled evaporation line was aligned to the observed evaporation line by applying a 14% increase in equilibrium isotopic separation (ε_{eq}) between δ_A and δ_P . Differences between modelled and observed δ^{18} O for all samples except the three potential outliers ranged from 0.19 to -0.09% δ^{18} O with an average of 0.06 and a σ of 0.07% δ^{18} O. Differences between modelled and observed δ^2 H ranged from 0.7 to -0.5% δ^2 H with an average of 0.12 and a σ of 0.27% δ^2 H. For the 3 outliers the differences in δ^{18} O ranged from 0.06 to 0.16% δ^{18} O, and 0.9 to 1.3% δ^2 H (Fig. 5).

5. Discussion

5.1. General usage notes

Experiments designed to test the validity of the MARS rainfall sampler indicate that the device has the potential to perform remote, automated sampling of rainfall with retention of the primary isotope signature of daily and monthly rainfall. As is the case for manually operated rainfall samplers, the MARS sampler has limits with respect to the minimum amount of rainfall that can be reliably collected, both due to water loss due to wetting of surfaces along the flow-path and due to evaporative loss through the bottle lids. As a result, we recommend that the sampler is suitable for daily rainfall collections greater than 10 ml (equivalent to 1 mm of rainfall with a 159.6 mm funnel diameter, or 0.25 mm of rainfall with a 319.2 mm wide funnel).

5.2. Evaporation and isotope fractionation

The oxygen and hydrogen isotope enrichment along a well-defined local evaporation line (Fig. 5) suggests that the primary method of water loss is evaporation, with a small amount occurring through the paraffin oil, a larger amount through the plastic lids (dependent upon plastic type, degree of sealing, and fabrication consistency), and an additional $\sim 2\%$ through the tubing (most likely through the inlet tube, with its ~ 14 cm distance from water surface to atmosphere, instead of the 150 cm long vent tube). A very small amount of water is also lost either across the plastic walls, or through the wadded caps in the control bottles. An important result is that there appears to be no

fractionation effect that is unique to only one of the isotopologues. With the use of untested plastics, there was a concern that one of the plastics could preferentially exchange with either deuterium or oxygen (e.g. Spangenberg (2012)) however our results suggest that this is not the case. Modelling of the isotopic fractionation of the samples based on the amount of water loss can simulate this evaporative isotopic enrichment in $\delta^{18}O$ and δ^2H to a precision of 0.07‰ $\delta^{18}O$ and 0.27‰ δ^2H (σ^1).

Both the inlet tube and paraffin oil method of preventing evaporation were able to significantly decrease evaporation. For the 40 ml samples used in the experiment, average evaporation occurred at approximately 0.02% of the pan evaporation rate. However, both methods still result in some water loss and isotopic enrichment of samples. This is especially true for small sample volumes. All plastics were substantially less effective than the paraffin oil method at preventing water loss. The inlet tube method, subtracting estimated losses through the plastics, typically resulted in ~ 0.8 ml loss over the 3 months, compared to 0.35 ml for the paraffin oil samples. This is in contrast to the results from Gröning et al. (2012) who observed that their sampler outperformed a paraffin oil based sampler over the course of a year. The differences between our observations and those of Gröning et al. (2012) likely arise predominantly as a result of differences in the size and shape of the sampling bottles used. The effectiveness of paraffin oil to prevent evaporation depends on the ratio of surface area to volume of the sample and quantification of the rate of water loss through paraffin oil requires consideration of the bottle shape. In contrast, the primary water loss from the inlet tube method is determined by the diameter and length of the inlet and vent tubes. Therefore, under conditions where the paraffin oil surface area is small, then paraffin may outperform the inlet tube method. However, if the bottle diameter was doubled, the surface area of the paraffin oil would be increased fourfold and paraffin may then be outperformed by the inlet tube method. As noted in Section 1.3, the method of sample analysis must be considered before deployment as paraffin oil contamination can compromise laser spectroscopy based stable isotope analysis (IAEA, 2014).

Acetone treated ABS was the most effective plastic at preventing evaporation, followed closely by PETG. Three of the plastics used (inlet tube and sealed PLA and sealed ABS) had greater variation of water loss than the other plastics, raising concerns about the degree of sealing and the fabrication consistency. All the lids had very consistent weights, with a typical range of < 0.05 g. A visual inspection also revealed no significant defects, such as delaminated layers or holes, in any of the lids. However, the nature of 3D printed components – many layers of plastic fused together – means that there is potential for tortuous pathways through the plastic layers, resulting in incomplete sealing (McCullough and Yadavalli, 2013). Leakage through 3D printed

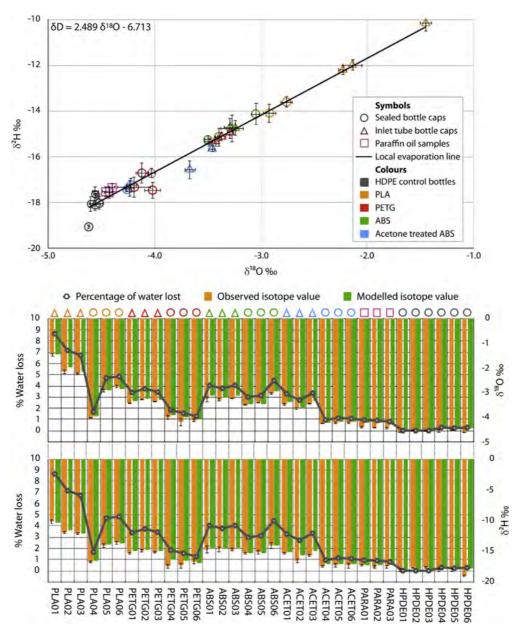


Fig. 5. (a) Graph showing the sample evaporation line derived from the isotopic values for each sample after \sim 3 months storage. (b) Observed and modelled δ^{18} O results (right axis) and percentage of water loss (left axis) for each sample. (c) As per b, but for δ^{2} H. Error bars show the reported instrumental precision.

components can be prevented through configuration of printer settings, or through post processing of prints. Applying a slight over-extrusion during printing can fill any minor voids and pathways, while decreasing dimensional accuracy. Post processing with acetone treatment to the prints can dissolve filament across and between the layers and improve sealing (McCullough and Yadavalli, 2013). Another potential source of leakage is the seal of the lid against the bottle. The lids do not include a rubber washer or similar seal, instead relying on compression and deformation of the rim of the bottle against the plastic cap to seal. One option is to include a sealing washer or wadding in each cap. Washer seals were not tested here as the sampler requires perfectly fitted washers to be effective. Placing delicate seals may be an option for a single experiment, but is not practical when changing out 60 sample bottles in the field. A potentially better solution, that will be tested in the future, is the printing of seals using TPU (thermoplastic polyurethane) or a similar flexible filament. Using this technique means that the seals can be designed specifically for the caps, with suitable cutouts for the inlet tube and vent tube. With the ongoing development of multi-material 3D printers, the entire cap could be printed in a single process. In the short term, our results indicate that acetone treated ABS is the most appropriate material for bottle lids. More importantly, as there is a lot of variability in 3D printers and the software used to prepare prints, we recommend that each lid be tested to ensure consistent evaporation. A variation of the methodology employed in this paper – mass loss over time – can be used to ensure lid fabrication consistency.

5.3. Potential of mass balance closure modelling

A distinct advantage of the MARS sampler is that both daily and

monthly rainfall are captured at the same time. This potentially allows for the calculation of the original isotopic composition using a modelling approach based on the difference in evaporation rates of monthly and daily rainfall. Assuming the volume of rainfall collected by the sampler is split evenly between daily and monthly samples (Eq. (7)).

$$V_i^{Monihly} = \sum_{n=1}^m V_{i,n}^{Daily}$$
⁽⁷⁾

where *V* is the volume of the sample. The superscript represents the sample type – either a daily or monthly sample, *m* is the total number of daily samples collected. The subscript describes initial (*i*) or final (*f*) volume, and sample number (*n*). Each sample may then undergo some minor evaporation while awaiting collection from the sampler. The initial sample volume for a daily sample (*S*) is therefore related to the final volume by Eq. (8).

$$V_{i,n}^{Daily} = V_{f,n}^{Daily} + \sum_{d=1}^{t} E_{d,n}^{Daily}$$
(8)

E is the daily volumetric loss from evaporation for each sample type, d is the day, and t is the total number of days a sample is exposed to evaporation. The combined volume of all daily samples (n) is therefore:

$$\sum_{n=1}^{m} V_{l,n}^{Daily} = \sum_{n=1}^{m} \left(V_{f,n}^{Daily} + \sum_{d=1}^{t} E_{d,n}^{Daily} \right) = \sum_{n=1}^{m} V_{f,n}^{Daily} + \sum_{n=1}^{m} \sum_{d=1}^{t} E_{d,n}^{Daily}$$
(9)

and the integrated monthly sample is related to the initial monthly sample by Eq. (10).

$$V_i^{Monthly} = V_f^{Monthly} + \sum_{d=1}^{t} E_d^{Monthly}$$
(10)

From Eq. (7) to (10), it can be seen that:

$$V_{f}^{Monthly} + \sum_{d=1}^{t} E_{d}^{Monthly} = \sum_{n=1}^{m} V_{f,n}^{Daily} + \sum_{n=1}^{m} \sum_{d=1}^{t} E_{d,n}^{Daily}$$
(11)

We relate daily evaporation rates outside the sampler to evaporation rates within the sampler using a coefficient (similar to relating PET to class-A pan evaporation) such that:

$$E_{d,n}^{Daily} = E_{d,n}^{external} k^{daily}$$
(12)

$$E_d^{Monthly} = E_d^{external} k^{monthly}$$
(13)

where $E^{external}$ is an evaporative measure (either from meteorological records or calculated using the Penman equation (Penman, 1948) or similar) and *k* is a coefficient defining a proportional evaporation rate for each sample type. There should be two values of *k*, one representing the evaporation rate of the daily bottles (k^{daily}), and a second for the monthly bottles ($k^{monthly}$). These coefficients are expected to be similar, but not necessarily identical due to the differences between monthly and daily sample bottles. Rearranging Eq. (11) and substituting Eq. (12) and (13) gives Eq. (14).

$$V_{f}^{Monthly} - \sum_{n=1}^{m} V_{f,n}^{Daily} = \sum_{n=1}^{m} \sum_{d=1}^{t} E_{d,n}^{external} k^{daily} - \sum_{d=1}^{t} E_{d}^{external} k^{monthly}$$
(14)

For each of Eq. (7)–(14), a parallel series of equations can be written for the isotopic mass balance, resulting in Eq. (15).

$$\delta_{f}^{Monthly} V_{f}^{Monthly} - \sum_{n=1}^{m} \delta_{f,n}^{Daily} V_{f,n}^{Daily} = \sum_{n=1}^{m} \sum_{d=1}^{i} \delta_{e,d,n}^{Daily} E_{d,n}^{external} k^{daily} - \sum_{d=1}^{l} \delta_{e,d}^{Monthly} E_{d}^{external} k^{monthly}$$
(15)

where δ describes the isotopic composition of the sample or evaporative flux. The isotopic composition of evaporative fluxes are defined by the 'e' subscript and are calculated using the model of Craig and Gordon (1965). From Eqs. (14) and (15), k^{daily} and $k^{monthly}$ can be solved. As the

isotopic fractionation of evaporation is partly determined by the isotopic composition of the sample, a numerical solution should be used with isotopic fractionation calculated at daily (or shorter) timesteps. The original volume and isotopic composition for the integrated monthly sample can then be derived from the initial volume and isotopic composition of the daily samples.

One benefit of applying this modelling technique is that it lowers the ideal sampling requirement from "elimination of evaporation from the sample bottle", to "minimisation and quantification of evaporation from the sample bottle". This latter objective is substantially easier to achieve, with both paraffin oil and inlet tube methods fulfilling that requirement. Even under relatively intense evaporation conditions during an Australian summer, with water losses of up to 9%, modelling of the isotopic change due to evaporation was able to achieve a precision of 0.07‰ δ^{18} O and 0.27‰ δ^{2} H (σ^{1}).

6. Conclusion

We have developed an autonomous, daily and monthly rainfall sampler (MARS), able to be deployed and left unattended for up to 3 months between visits, capable of collecting and storing up to 60 daily rainfall samples as well as integrated monthly samples. The sampler can also be reprogrammed for sequential sampling of rainfall events, either on a time or amount basis. This sampler makes significant use of modern fabrication techniques and open source technology to minimise costs and complexity. We have quantified the effectiveness of various plastics commonly used in 3D printing (PETG, PLA, ABS and acetone treated ABS) at preventing evaporation, with acetone treated ABS being most suitable, and PLA being least suitable. The inlet tube method of preventing evaporation from the sample bottles was compared with the use of paraffin oil, and it was noted that the type of sampling bottle, the amount of water and environmental conditions are significant factors in the relative effectiveness of these methods. In our experiments, paraffin oil outperformed the inlet tube method, in contrast to previous research (Gröning et al., 2012). As neither technique can fully prevent evaporation, a modelling approach was developed which takes advantage of the combined monthly and daily sample collection. Our automated rainfall sampler, augmented by a mass balance modelling approach to quantify minor evaporation effects, provides a low cost (< US\$750) and effective means of sampling precipitation for isotope analysis with potential applications that span a range of Earth system sciences.

Declaration of interest

None.

Acknowledgements

Martin Ankor received financial support via an Australian Government Research Training Program (RTP) scholarship, and an Australian Institute of Nuclear Science and Engineering (AINSE) postgraduate scholarship (PGRA). We would also like to thank Flinders Analytical for their help in analysing samples, and Fab Lab Adelaide for their workspace and equipment. Discussions with Mark Peterson and Alan Griffiths of ANSTO were invaluable in considering the relative importance of diffusion pathways.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2019.04.074.

References

Akkoyunlu, B.O., Dogruel, M., Tayanc, M., Oruc, I., 2013. Design and Construction of a computer controlled automatic sequential rain sampler. Biotechnol. Biotechnol.

Journal of Hydrology 575 (2019) 31-41

Equip. 27 (3), 3890-3895.

- Araguás, Araguás, L., Froehlich, K., Rozanski, K., 2000. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 14 (8), 1341–1355.
- Asman, W.A.H., 1980. Draft, construction and operation of a sequential rain sampler. Water Air Soil Pollut. 13 (2), 235–245. https://doi.org/10.1007/bf02279550. Bennett, K., Gibson, J., McEachern, P., 2008. Water-yield estimates for critical loadings
- Bennett, K., Gibson, J., McEachern, P., 2008. Water-yield estimates for critical loadings assessment: comparisons of gauging methods versus an isotopic approach. Can. J. Fish. Aquat. Sci. 65 (1), 83–99.
- Berman, B., 2012. 3-D printing: the new industrial revolution. Bus. Horiz. 55 (2), 155–162. https://doi.org/10.1016/j.bushor.2011.11.003.
- Berman, E.S., Gupta, M., Gabrielli, C., Garland, T., McDonnell, J.J., 2009. High-frequency field-deployable isotope analyzer for hydrological applications. Water Resour. Res. 45 (10).
- Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 39 (10), 1–13. https://doi.org/10.1029/ 2003WR002086.
- Bowen, G.J., Wassenaar, L.I., Hobson, K.A., 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143 (3), 337–348. https://doi. org/10.1007/s00442-004-1813-y.
- Bureau of Meteorology, A.G., 2007. Observation of rainfall. Commonwealth of Australia, Bureau of Meteorology.
 Coplen, T.B., Neiman, P.J., White, A.B., Ralph, F.M., 2015. Categorisation of northern
- Coplen, T.B., Neiman, P.J., White, A.B., Ralph, F.M., 2015. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector. Tellus B: Chem. Phys. Meteorol. 67 (1), 28574. https://doi.org/10.3402/tellusb.v67.28574.
- Coplen, T.B., 2010. Sequential, time-integrated collector of precipitation, ground water, and surface water for analysis of isotopes: US Patent No. 7,687,028.
- Craig, H., 1961. Isotopic variations in meteoric waters. Science 133 (3465), 1702–1703. Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations in the ocean and the
- marine atmosphere. In: Schink, D.R., Corless, J.T. (Eds.), Marine Geochemistry. University, Rhode Island, University, Rhode Island, pp. 277–374. Dansgaard, W., 1954. The O18-abundance in fresh water. Geochim. Cosmochim. Acta 6
- (5-6), 241–260.
 Garg, A., Bhattacharya, A., Batish, A., 2016. On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Mater. Manuf. Processes 31 (4), 522–529. https://doi.org/10.1080/10426914.2015.1070425.
- Gat, J., 2010. Isotope Hydrology a Study of the Water Cycle. Imperial College Press, London, London,
- Gatz, D.F., Selman, R.F., Langs, R.K., Holtzman, R.B., 1971. An automatic sequential rain sampler. J. Appl. Meteorol. 10 (2), 341–344.
- Gibson, J.J., Birks, S.J., Edwards, T.W.D., 2008. Global prediction of δA and δ2H- δ180 evaporation slopes for lakes and soil water accounting for seasonality. Global Biogeochem. Cycles 22 (2), 1–12. https://doi.org/10.1029/2007GB002997.
- Gibson, J., Reid, R., 2014. Water balance along a chain of tundra lakes: a 20-year isotopic perspective. J. Hydrol. 519, 2148–2164.
- Gibson, J., Birks, S., Yi, Y., 2016. Stable isotope mass balance of lakes: a contemporary perspective. Quat. Sci. Rev. 131, 316–328.
 Gray, J., Hage, K.D., Mary, H.W., 1974. An automatic sequential rainfall sampler. Rev.
- Gray, J., Hage, K.D., Mary, H.W., 1974. An automatic sequential rainfall sampler. Rev. Sci. Instrum. 45 (12), 1517–1519. https://doi.org/10.1063/1.1686550.
- Gröning, M., et al., 2012. A simple rain collector preventing water re-evaporation dedicated for δ 180 and δ 2H analysis of cumulative precipitation samples. J. Hydrol. 448–449, 195–200. https://doi.org/10.1016/j.jhydrol.2012.04.041.
- Hartmann, A., et al., 2018. Technical note: GUARD a automated fluid sampler preventing sample alteration by contamination, evaporation and gas exchange, suitable for remote areas and harsh conditions. Hydrol. Earth Syst. Sci. Discuss. 2018, 1–19. https://doi.org/10.5194/hess-2017-697.
- Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 58 (16), 3425–3437.
- Hund, S.V., Johnson, M.S., Keddie, T., 2016. Developing a hydrologic monitoring network in data-scarce regions using open-source arduino dataloggers. Agric. Environ. Lett. 1 (1).
- IAEA, 2014. IAEA/GNIP Precipitation Sampling Guide. International Atomic Energy

Agency.

- Jeffrey, S.J., Carter, J.O., Moodie, K.B., Beswick, A.R., 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Software 16 (4), 309–330.
- Kennedy, V.C., Zellweger, G.W., Avanzino, R.J., 1979. Variation of rain chemistry during storms at two sites in northern California. Water Resour. Res. 15 (3), 687–702. Laguer, F.C., 1990. Sequential precipitation samplers: a literature review. Atmos.
- Environ. Part A 24 (9), 2289–2297. Mattey, D., et al., 2008. A 53 year seasonally resolved oxygen and carbon isotope record
- from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth Planet. Sci. Lett. 269 (1), 80–95. https://doi.org/10.1016/j.epsl.2008.01.051.
- McCullough, E.J., Yadavalli, V.K., 2013. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. J. Mater. Process. Technol. 213 (6), 947–954. https://doi.org/10.1016/j.jmatprotec.2012.12.015. Merlivat, L., 1978. Molecular diffusivities of H 2 16 O, HD 16 O, and H 2 18 O in gases. J.
- Merlivat, L., 1978. Molecular diffusivities of H 2 16 O, HD 16 O, and H 2 18 O in gases. J. Chem. Phys. 69 (6), 2864–2871.
- Michelsen, N., et al., 2018. Comparison of precipitation collectors used in isotope hydrology. Chem. Geol. 488, 171–179. https://doi.org/10.1016/j.chemgeo.2018.04. 032.

Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London. Ser. A, Math. Phys. Sci. 193 (1032), 120–145.

- Rayna, T., Striukova, L., 2016. From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol. Forecast. Soc. Change. 102, 214–224. https://doi.org/10.1016/j.techfore.2015.07.023.
 Raynor, G.S., McNeil, J.P., 1978. Brookhaven Automatic Sequential Precipitation
- Raynor, G.S., McNeil, J.P., 1978. Brookhaven Automatic Sequential Precipitation Sampler. BNL-50818 United States 10.2172/7090407 Dep. NTIS, PC A03/MF A01. BNL English; Brookhaven National Lab., Upton, NY (USA).
- Ronneau, C., Cara, J., Navarre, J., Priest, P., 1978. An automatic sequential rain sampler. Water Air Soil Pollut. 9 (2), 171–176.
- Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. In: Climate Change in Continental Isotopic Records, pp. 1–36.
- Rücker, A., Zappa, M., Boss, S., von Freyberg, J., 2019. An optimized snowmelt lysimeter system for monitoring melt rates and collecting samples for stable water isotope analysis. J. Hydrol. Hydromech. 67 (1), 20–31.
- Singh, J., Singh, R., Singh, H., 2017. Investigations for improving the surface finish of FDM based ABS replicas by chemical vapor smoothing process: a case study. Assembly Autom. 37 (1), 13–21.
- Skrzypek, G., et al., 2015. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. J. Hydrol. 523, 781–789.
- Spangenberg, J.E., 2012. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis. Rapid Commun. Mass Spectrom. 26 (22), 2627–2636.
- Steinman, B.A., Rosenmeier, M.F., Abbott, M.B., Bain, D.J., 2010. The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models: application to paleoclimate studies in the upper Columbia River basin. Limnol. Oceanogr. 55 (6), 2231–2245.
- Terzer, S., Wassenaar, L.I., Douence, C., Araguas-Araguas, L., 2016. An assessment of the isotopic (2H/180) integrity of water samples collected and stored by unattended precipitation totalizers. In: EGU General Assembly Conference Abstracts, pp. 15992.
- Treble, P.C., Chappell, J., Gagan, M.K., McKeegan, K.D., Harrison, T.M., 2005. In situ measurement of seasonal 8180 variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth Planet. Sci. Lett. 233 (1), 17–32. https://doi.org/10.1016/j.epsl.2005.02.013.
 Tyler, J.J., Leng, M.J., Arrowsmith, C., 2007. Seasonality and the isotope hydrology of
- Tyler, J.J., Leng, M.J., Arrowsmith, C., 2007. Seasonality and the isotope hydrology of Lochnagar, a Scottish mountain lake: implications for palaeoclimate research. Holocene 17 (6), 717–727. https://doi.org/10.1177/0959683607080513.
 Tyler, J.J., Jones, M., Arrowsmith, C., Allott, T., Leng, M.J., 2015. Spatial patterns in the
- Tyler, J.J., Jones, M., Arrowsmith, C., Allott, T., Leng, M.J., 2015. Spatial patterns in the oxygen isotope composition of daily rainfall in the British Isles. Clim. Dyn. (January 2016). https://doi.org/10.1007/s00382-015-2945-y. von Freyberg, J., Studer, B., Kirchner, J.W., 2017. A lab in the field: high-frequency
- von Freyberg, J., Studer, B., Kirchner, J.W., 2017. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation. Hydrol. Earth Syst. Sci. 21, 1721–1739.

This appendix comprises a published journal article, arising from work undertaken for this thesis. The article is identical to Chapter Four, with the exception of some minor formatting changes to match the rest of this thesis.

TECHNICAL NOTE

Development of a spreadsheet-based model for transient groundwater modelling

Martin J. Ankor¹ (Jonathan J. Tyler¹

Received: 8 August 2018 / Accepted: 1 June 2019 / Published online: 24 June 2019 \odot Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Understanding and modelling the passage of groundwater is important for a wide range of environmental and earth science disciplines. The science of groundwater modelling is mature, and advanced modelling algorithms are routinely implemented, for example via the widely used MODFLOW software. However, for the non-specialist scientist or student, the fundamentals of such software can be difficult to comprehend, whilst the algorithms are arguably too complex to be easily applied for many applications which require integration of a groundwater model with climate, surface-water, soil or ecological data. In this context, a spreadsheet-based groundwater model (A2016), capable of solving transient groundwater behaviour in multiple spatial dimensions, was developed. Inter-comparison tests investigating nine transient groundwater scenarios were performed between MODFLOW, A2016 and the Time-dependent Groundwater Modeling using Spreadsheet Simulation (TGMSS) model. Results demonstrated that A2016 is directly comparable to MODFLOW, with identical hydraulic heads in all model experiments. TGMSS was not able to accurately simulate hydraulic heads for any of the model experiments. A groundwater–lake interaction scenario was identified for which MODFLOW will produce unrealistic results, due to the way conductance beneath lakes is determined. Applying a specified saturated thickness approximation for the region beneath the lake resulted in improved lake–groundwater interactions. A2016 is potentially useful for educational purposes and as a tool for groundwater experiments by non-specialists, as it is modular in nature and incorporates MODFLOW terminology and techniques.

Keywords Spreadsheets · General hydrogeology · Transient · Numerical modelling · Education

Introduction

Ongoing development of groundwater modelling software relies upon an understanding of the underlying theory and mathematics describing groundwater behaviour. Of the many groundwater modelling codes available, MODFLOW is considered the de facto standard (Neville and Tonkin 2001; McDonald and Harbaugh 2003; Elemer et al. 2010). Spreadsheet programs provide an excellent introduction to the finite difference technique used in MODFLOW and similar groundwater modelling

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10040-019-01996-z) contains supplementary material, which is available to authorized users.

Martin J. Ankor martin.ankor@adelaide.edu.au

¹ School of Earth & Environmental Sciences and Sprigg Geobiology Centre, The University of Adelaide, Adelaide 5005, Australia programs (Olsthoorn 1985; Ousey 1986; Mahmud 1996; Anderson and Bair 2001; Akhter et al. 2006; Anderson et al. 2015). Spreadsheets are commonly used to demonstrate steadystate, two-dimensional finite difference techniques and the accompanying groundwater flow behaviour described by the Laplace and Poisson equations (Anderson and Bair 2001; Bair and Lahm 2006; Anderson et al. 2015). However, there are few examples in the literature of more complex spreadsheet models able to model multidimensional transient behaviour (Olsthoorn 1985; Karahan and Ayvaz 2005a). The most recent published spreadsheet model identified that meets these criteria is the TGMSS model of Karahan and Ayvaz (2005a, b). This gap between simple spreadsheet models and more complex groundwater modelling software is understandable given the maturity and capabilities of software such as MODFLOW. The existence of sophisticated groundwater software could imply that the development of spreadsheet solutions is no longer relevant. However, ongoing development serves two purposes. From a pedagogical perspective, a spreadsheet model capable of demonstrating the transient and three-dimensional behaviour of groundwater and explaining the theoretical basis of MODFLOW may be a valuable educational tool. In addition, increased reliance on modelling in other scientific fields means there is still a need for new groundwater modelling code, e.g. coupling optimised groundwater models to spatial data systems (Almeida et al. 2014), to isotopic, limnological and palaeoclimate models (Jones et al. 2001; Smerdon et al. 2007; Stets et al. 2010; Ohlendorf et al. 2013), or to resolve engineering problems such as those encountered in tunnel construction (Huang et al. 2013). Developing such models in spreadsheets is an effective way to prototype and to test the model's structure prior to developing dedicated software.

This paper introduces a new spreadsheet-based technique (A2016) able to solve two-dimensional (i.e. one-layer) transient groundwater problems for both confined and unconfined aquifers. A2016 was developed as a precursor to coupling a groundwater model to a hydrological-isotopic lake model for palaeoclimate applications. A2016 is then compared with MODFLOW and the equivalent spreadsheet model (TGMSS) developed by Karahan and Ayvaz (2005a). Model experiments incorporating external sources and sinks, Cauchy (head-dependent), Dirichlet (fixed head) and Neumann (no-flow) boundary conditions, and heterogeneous hydraulic conductivity and storage were performed for both unconfined and confined aquifers. All models are available in the Electronic Supplementary Material (ESM) data sets.

As A2016 is based on the governing groundwater equation and block-centred flow structure used by MODFLOW, it is also ideal for pedagogical purposes. The groundwater equation is simplified into components and uses the same terminology as MODFLOW, thus linking the underlying mathematics to MODFLOW's structure and to groundwater behaviour.

Software and data availability

The models developed for this project run in either Microsoft Excel (v15.27) or MODFLOW 2005 (Harbaugh 2005). MODFLOW models were developed and run using ModelMuse (Winston 2009). All Excel model files are available from the corresponding author's data repository (Ankor 2018), and ModelMuse/MODFLOW files are available from the corresponding author upon request. All models and software will run on recent versions of Microsoft Windows.

Background

Derived from the principles of conservation of mass and Darcy's law, the general governing equation for groundwater flow through a representative elementary volume of heterogeneous and anisotropic material is:

Deringer

$$\frac{\partial}{\partial x} \left(K_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial h}{\partial z} \right)$$
$$= S_s \frac{\partial h}{\partial t} - W^*$$
(1)

This represents flow in a confined aquifer, where *h* is the potentiometric hydraulic head and *K* defines hydraulic conductivity, with the subscripts allowing for anisotropic conditions in the *x*, *y* and *z* directions. S_s refers to the specific storage of the aquifer, and W^* represents sources or sinks, such as wells, recharge and seepage. For a full derivation of this equation, see Anderson et al. (2015).

Numerical models are widely used in groundwater modelling research. By using an approximate form of the groundwater equation, calculated at numerous locations across the region of interest, a numerical model can resolve groundwater flow behaviour in multiple spatial dimensions and time. Numerical models are ideal for solving scenarios with anisotropic and heterogeneous hydraulic properties, and complex initial and boundary conditions (Anderson et al. 2015).

The majority of numerical groundwater models use either the grid-based finite difference technique or the more complex finite element technique, which can solve irregularly shaped triangular networks (Holzbecher and Sorek 2005; Anderson et al. 2015). The finite difference technique is the most well known due to its simplicity and ease of implementation. Finite difference models are further divided into two categories, mesh-centred and block-centred models, based on where the flux boundaries are located. In a mesh-centred model, the flux boundaries are located at each node, whereas in a blockcentred model they are located at the edge of each block (Anderson et al. 2015). This means that the two model types treat boundaries differently but nevertheless share many similarities in model structure. Block-centred models are slightly easier to implement and are more commonplace. MODFLOW uses the block-centred finite difference technique.

Anderson and Bair (2001) note that the lack of a common programming language taught in science courses today presents a challenge to teaching students numerical modelling methods. In the past, Fortran was used to demonstrate such techniques. Spreadsheet software has been used to fill this gap and provides an ideal environment for demonstrating the finite difference technique, as the gridded nature of the finite difference model is easily re-created in the grid of spreadsheet cells. Unfortunately, without macros or scripts - aspects not regularly taught in classes - spreadsheets lack the looping function found in general programming languages. Loops are essential for modelling multidimensional transient groundwater behaviour, where the solution for the current time step is used as the starting point for the next calculation. The result is that, although students are introduced to two-dimensional steadystate models or one-dimensional transient models, they rarely have the opportunity to experiment with the full two- or threedimensional, transient, finite difference technique that is used in MODFLOW. A spreadsheet model that is capable of modelling multidimensional transient conditions would be a useful educational tool that could provide insight into how programs such as MODFLOW are structured.

There have been several efforts to develop spreadsheet models able to perform multidimensional transient modelling. For example, Olsthoorn (1985) developed a robust set of examples demonstrating methods to solve the Laplace equation, sinks and sources (Poisson equation), heterogeneous aquifers, linked aquifers, unconfined aquifers, three-dimensional flow, transient flow and refinement of the gridded network. Also included was a discussion on the use of over-relaxation as a method to speed up the iteration process. While terminology in the paper reflects earlier practices, the techniques are still applicable today. The lack of macro and scripting capabilities in the spreadsheet software of the time posed difficulties for transient modelling, resolved through manual copying and pasting of the model cells from the current to previous time steps. This requirement for manual data manipulation limits the use of this spreadsheet model for more complex scenarios.

With respect to the requirement for macros in transient modelling, advances were made with the TGMSS models by Karahan and Ayvaz (2005a, b). These two papers present very similar models, with the main difference being the use of the arithmetic mean for determining hydraulic conductivity (K) between cells in Karahan and Ayvaz (2005b) and the harmonic mean in Karahan and Ayvaz (2005a). These papers introduced a single-stage solution algorithm that links the timestepping process to the iteration process for solving transient problems. However, these models exhibit inconsistencies with MODFLOW, which, as will be described below, is due to the way they handle iteration and the characterisation of the aquifer.

Anderson and Bair (2001) demonstrated spreadsheet models to solve the Laplace and Poisson equations, with examples of both mesh- and block-centred models, implicit and explicit onedimensional transient models and two-dimensional steady-state models. In addition, mass balance techniques were introduced along with some of the terminology used in MODFLOW, e.g. conductance. Anderson and Bair (2001) also suggested that the block-centred flow structure of MODFLOW could be replicated through linked spreadsheets.

Of the models reviewed here, those described in Olsthoorn (1985) are the most complete from a mathematical perspective, but lack the programming required for automated transient modelling. Karahan and Ayvaz (2005a, b) describe a novel technique for transient modelling; however, results from these models are inconsistent with MODFLOW. There is a need for an up-to-date spreadsheet-based groundwater model, based on current terminology, and capable of transient modelling in multiple spatial dimensions.

Theoretical basis

The governing equation for groundwater (Eq. 1) is applicable to a representative elementary volume (REV), a cube of material representing a portion of the aquifer. By integrating over the thickness (*b*) of the aquifer, transmissivity (*T*) and storativity (*S*) are defined, and the source term W^* is converted to a flux (*R*) representing flow from external sources.

$$T = Kb \tag{2}$$

$$S = S_{\rm s}b \tag{3}$$

$$R = W^* b \tag{4}$$

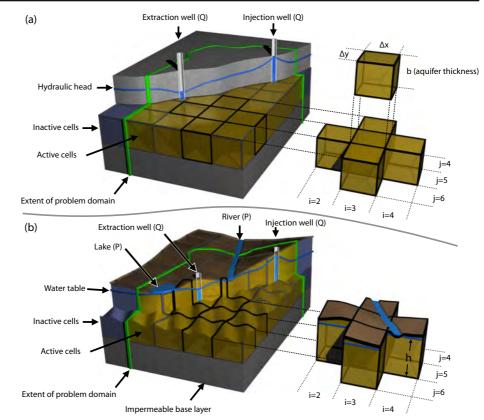
When further simplified to 2D horizontal flow as per the Dupuit-Forchheimer approximation, Eq. 1 becomes:

$$\frac{\partial}{\partial x}\left(T_x\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(T_y\frac{\partial h}{\partial y}\right) = S\frac{\partial h}{\partial t} - R \tag{5}$$

The simplification to 2D is applicable to 3D groundwater modelling, as the determination of vertical conductance between layers requires a slightly different method from that used for horizontal transmissivity (Harbaugh 2005). MODFLOW can be considered a series of 2D layers, linked via vertical flow terms. The 2D structure is also easily represented in a spreadsheet.

Equation 5 determines the behaviour of a singular point location in the aquifer. Adapting this equation to a finite difference model requires an approximation by converting derivatives to differences, defined by the *x* and *y* dimensions of each cell (Fig. 1). Therefore, for a model with regular cell dimensions, the equation for a cell with coordinates i,j in the grid becomes:

$$\begin{split} T_{i,j-\frac{1}{2}} & \left(\frac{h_{i,j-1} - h_{i,j}}{\Delta x^2} \right) + T_{i,j+\frac{1}{2}} \left(\frac{h_{i,j+1} - h_{i,j}}{\Delta x^2} \right) + T_{i-\frac{1}{2},j} \left(\frac{h_{i-1,j} - h_{i,j}}{\Delta y^2} \right) \\ & + T_{i+\frac{1}{2},j} \left(\frac{h_{i+1,j} - h_{i,j}}{\Delta y^2} \right) + R_{i,j} = S_{i,j} \frac{dh}{dt} \end{split}$$
(6)


In the models described in this paper, transmissivity is the harmonic mean (MODFLOW default) between cells (defined by subscripts), taken at the block face between each node. Integrating from the approximated point equation to the full cell dimensions by multiplying both sides of the equation by the *x* and *y* dimensions of each cell results in:

$$T_{i,j-\frac{1}{2}}\Delta y \left(\frac{h_{i,j-1}-h_{i,j}}{\Delta x}\right) + T_{i,j+\frac{1}{2}}\Delta y \left(\frac{h_{i,j+1}-h_{i,j}}{\Delta x}\right)$$
$$+ T_{i-\frac{1}{2},j,}\Delta x \left(\frac{h_{i-1,j}-h_{i,j}}{\Delta y}\right) + T_{i+\frac{1}{2},j,}\Delta x \left(\frac{h_{i+1,j}-h_{i,j}}{\Delta y}\right) (7)$$
$$+ Q_{\mathrm{S},i,j} = S_{i,j}\Delta x \Delta y \frac{dh}{dt}$$

Deringer

1867

Fig. 1 Cutaway view of a singlelayer (2D) finite difference model for (a) a confined aquifer and (b) an unconfined aquifer. Shown are the various external sources, both head-dependent flows (P) which vary depending upon groundwater condition (Cauchy boundary condition), and flows that are independent of the groundwater condition (Q). Inactive cells lie outside the problem domain and play no part in the finite difference model. Active cells along the edge of the problem domain are typically defined with a no-flow (Neumann) boundary condition

 $Q_{\rm S}$ is now the volumetric flow into or out of the cell from external sources, and each portion of the left-hand side of the equation represents the volumetric flow from the neighbouring cells, recognisable as Darcy's Law. This is the basis of the governing equation behind MODFLOW, where the change in hydraulic head of a cell is a result of the specific storage and cell volume and the sum of all flows into and out of the cell over a period of time. Flow rate to the cell consists of flows to and from the four surrounding cells and external flows ($Q_{\rm S}$) such as recharge or wells.

External flows (Q_S) can be further divided into two categories: fluxes that occur independently of the groundwater condition, such as wells and recharge, and head-dependent fluxes that vary depending on the groundwater head, such as evapotranspiration and river/lake seepage. Both types of flows can be represented by the expression:

$$Q_{S,i,j} = P_{i,j}h_{i,j} + Q_{i,j}$$
(8)

where Q_S is the total external flow to the cell, *P* represents head-dependent flows and *Q* represents fluxes that are independent of the groundwater head (Fig. 1). For a full derivation of the external flow term, please see Harbaugh (2005).

MODFLOW simplifies Eq. 7 through the introduction of a conductance term (C) that combines transmissivity and the cell dimensions into a single value.

🖄 Springer

$$T_{i,j+\frac{1}{2}}\Delta y \frac{1}{\Delta x} = C_{i,j+\frac{1}{2}}$$

$$\tag{9}$$

$$\Gamma_{i,j-\frac{1}{2}}\Delta y \frac{1}{\Delta x} = C_{i,j-\frac{1}{2}}$$
 (10)

$$T_{i+\frac{1}{2},j}\Delta x \frac{1}{\Delta y} = C_{i+\frac{1}{2},j}$$
(11)

$$T_{i-\frac{1}{2},j}\Delta x \frac{1}{\Delta y} = C_{i-\frac{1}{2},j}$$
(12)

This results in the simplified form of Eq. 7:

$$C_{i,j+\frac{1}{2}}(h_{i,j+1}-h_{i,j}) + C_{i,j-\frac{1}{2}}(h_{i,j-1}-h_{i,j}) + C_{i+\frac{1}{2},j}(h_{i+1,j}-h_{i,j}) + C_{i-\frac{1}{2},j}(h_{i-1,j}-h_{i,j}) + P_{i,j}h_{i,j} + Q_{i,j} = S_{i,j}\Delta x \Delta y \frac{dh}{dt}$$
(13)

To account for transient behaviour, the time differential is also approximated with a backward difference from the current time (t^m) to the previous time (t^{m-1}) , using the hydraulic head for the current time step (h^m) , for which the spatial differences are being determined, and the previous time step (h^{m-1}) , thereby giving a fully implicit numerical solution.

$$C_{i,j+\frac{1}{2}} \left(h_{i,j+1}^{m} - h_{h_{i,j}}^{m} \right) + C_{i,j-\frac{1}{2}} \left(h_{i,j-1}^{m} - h_{h_{i,j}}^{m} \right) + C_{i+\frac{1}{2},j} \left(h_{i+1,j}^{m} - h_{h_{i,j}}^{m-1} \right) + C_{i-\frac{1}{2},j} \left(h_{i-1,j}^{m} - h_{h_{i,j}}^{m-1} \right) + P_{i,j}^{m} h_{i,j}^{m} + Q_{i,j}^{m} = S_{i,j} \Delta x \Delta y \frac{h_{h_{i,j}}^{m} - h_{h_{i,j}}^{m-1}}{t^{m-1} - 1}$$

$$(14)$$

Expanding and rearranging Eq. 13 forms a 2D finite difference equation (Eq. 14), similar to that of MODFLOW, and suitable to be rewritten in matrix form for use with matrix solution methods.

$$C_{i,j+\frac{1}{2}}h_{i,j+1}^{m} + C_{i,j-\frac{1}{2}}h_{i,j-1}^{m} + C_{i+\frac{1}{2},j}h_{i+1,j}^{m} + C_{i-\frac{1}{2},j}h_{i-1,j}^{m} + h^{m}\left(-C_{i,j+\frac{1}{2}}-C_{i,j-\frac{1}{2}}-C_{i+\frac{1}{2},j}-C_{i-\frac{1}{2},j} + \text{HCOF}_{i,j}\right) = \text{RHS}_{i,j}$$
(15)

where HCOF represents all the coefficients of h^{m} that do not include conductance or storage, and RHS represents the remaining right-hand-side components.:

$$\mathrm{HCOF}_{i,j} = P^{m}_{i,j} - S_{i,j} \Delta x \Delta y \frac{1}{t^{m-t^{m-1}}}$$
(16)

$$RHS_{i,j} = -S_{i,j} \Delta x \Delta y \frac{h^{m-1}}{t^m - t^{m-1}} - Q_{i,j}^m$$
(17)

Equation 15 has one major difference compared to the complete MODFLOW equation, as the vertical flow terms are not included (Harbaugh 2005). These are straightforward to add if required, but were not considered necessary for the purpose of this project.

A spreadsheet often cannot use matrix solvers, instead relying on Gauss-Seidel iteration at each point of the grid until a convergence value has been achieved (Wang and Anderson 1982; Ousey 1986). Rewriting Eq. 15 gives the equation (Eq. 18) for use where point-by-point iteration is required.

$$h_{i,j} = \frac{\operatorname{RHS}_{i,j} - \left(C_{i,j+\frac{1}{2}}h_{i,j+1}^{m} + C_{i,j-\frac{1}{2}}h_{i,j-1}^{m} + C_{i+\frac{1}{2},j}h_{i+1,j}^{m} + C_{i-\frac{1}{2},j}h_{i-1,j}^{m}\right)}{\left(-C_{i,j+\frac{1}{2}} - C_{i,j-\frac{1}{2}} - C_{i+\frac{1}{2},j} - C_{i-\frac{1}{2},j} + \operatorname{HCOF}_{i,j}\right)}$$
(18)

The above equations define groundwater behaviour for a confined aquifer. For an unconfined aquifer, modifications are required. Storativity must be changed from $S_{\rm S}b$ (specific storage integrated over the aquifer thickness) to $S_{\rm Y}$ (specific yield), as the water released from storage is no longer determined primarily by rearrangement of the solid matrix and, to a lesser degree, the expansion of water, but instead by the drainable porosity of the cell (Anderson et al. 2015). The RHS and HCOF terms then become:

$$RHS_{i,j} = -S_{Y_{i,j}} \Delta x \Delta y \frac{h^{m-1}}{t^m - t^{m-1}} - Q_{i,j}^m$$
(19)

$$\mathrm{HCOF}_{i,j} = P^{m}_{i,j} - S_{Y_{i,j}} \Delta x \Delta y \frac{1}{t^{m-t^{m-1}}}$$
(20)

In addition, references in the equations (2, 3, 4) to aquifer thickness (b) must be modified to incorporate the hydraulic head (h), as the thickness of the aquifer is now defined by the modelled water table (Fig. 1). The equation for an unconfined aquifer spreadsheet is therefore:

$$h_{i,j} = \frac{\text{RHS}_{i,j} - \left(h_{i,j+\frac{1}{2}}^m K_{i,j+\frac{1}{2}}^m \Delta y \frac{1}{\Delta x} h_{i,j+1}^m + h_{i,j-\frac{1}{2}}^m K_{i,j-\frac{1}{2}}^m \Delta y \frac{1}{\Delta x} h_{i,j-1}^m + h_{i+\frac{1}{2},j}^m K_{i+\frac{1}{2},j}^m \Delta x \frac{1}{\Delta y} h_{i+1,j}^m + h_{i-\frac{1}{2},j}^m K_{i-\frac{1}{2},j}^m \Delta x \frac{1}{\Delta y} h_{i-1,j}^m\right)}{\left(-h_{i,j+\frac{1}{2}}^m K_{i,j+\frac{1}{2}}^m \Delta y \frac{1}{\Delta x} - h_{i,j-\frac{1}{2}}^m K_{i,j-\frac{1}{2}}^m \Delta y \frac{1}{\Delta x} - h_{i+\frac{1}{2},j}^m K_{i+\frac{1}{2},j}^m \Delta x \frac{1}{\Delta y} - h_{i-\frac{1}{2},j}^m K_{i-\frac{1}{2},j}^m \Delta x \frac{1}{\Delta y} + \text{HCOF}_{i,j}\right)}.$$
(21)

While Eq. 21 appears long-winded, the structure and simplified conductance terms applied in the confined aquifer equation can still be used within an unconfined aquifer spreadsheet model by linking the aquifer thickness value to the current hydraulic head for each cell.

Methodology

Model structure

The spreadsheet model (A2016) separates Eqs. 18 and 21 into components, with RHS, HCOF, conductance and the $C_{i,j+\frac{1}{2}}$

 $h_{i,j+1}^m + C_{i,j-1}h_{i,j-1}^m + C_{i+\frac{1}{2},j}h_{i+1,j}^m + C_{i-\frac{1}{2},j}h_{i-1,j}^m$ section computed in separate sheets. This reduces the likelihood of errors in the spreadsheet formulas and makes it straightforward to update and replace components, for example, replacing the averaging method used to determine inter-cell conductance. Additional sheets were used to define hydrogeological parameters such as specific storage, conductivity, wells, recharge and aquifer thickness, as well as the head values (h^{m-1}) for the previous time step.

Transient modelling requires the head values from the end of the previous time step as initial values for the current time step. A macro was developed that manages the time-step loop and transfers the calculated head values to the previous values sheet at the beginning of each iteration cycle. Additional macros were developed to allow the user to step through individual time steps or reset the model.

Conductance was determined in separate sheets for each cardinal direction. Instead of starting the model in the first row and column of the spreadsheet, a border of blank cells was left, surrounding the grid representing the model region. This border then forms part of the conductance calculations and means that conductance along the edge of each model boundary is 0, thereby representing the commonly used noflow boundary condition. It should be noted that this technique is only suitable for the spreadsheet model. Developing a similar model in other software or programming language would typically require the use of edge and corner nodes that do not rely on data from outside the FDM grid. A useful benefit of structuring the spreadsheet in this fashion is that it removes the need for different equations at the edge of the model. The same formula is used throughout the spreadsheet without the need to mirror or remove nodes outside the model boundary, thus simplifying the rebuilding of the model for different shaped regions.

A mass balance was run in parallel with the model, quantifying flows to each cell for each time step, as well as cumulative flows for the simulation run. These values were then compared to the combined inflow and outflow to the model from external sources.

K2005M

K2005M is a modified version of Karahan and Ayvaz's (2005a) TGMSS model. K2005M was developed to investigate the cause of the discrepancies observed between MODFLOW and TGMSS. In K2005M, an aquifer thickness variable has been included and used in place of hydraulic heads in the source term (W), and an initial head value has been defined for the storage term ($CC(H_{i,j})$) (Karahan and Ayvaz 2005a).

Experiments

Nine model experiments were run (Table 1), loosely based on the first example of Karahan and Ayvaz (2005a). Four experiments (#1–4) compared MODFLOW 2005 and the spreadsheet models of A2016, TGMSS and the modified version of TGMSS (K2005M). The model runs simulated the transient behaviour of groundwater in a confined aquifer, consisting of homogenous or heterogeneous hydraulic conductivity and storage conditions, with one central pumping well, two nearby injection wells and areal recharge over the modelled region. Aquifer thickness was set to 20 m.

Four further experiments (#5–8) compared MODFLOW with the unconfined aquifer variant of A2016, simulating the

transient behaviour of groundwater in an unconfined aquifer under conditions similar to the confined aquifer experiments.

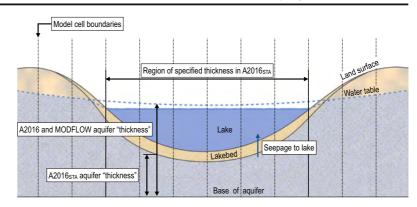
Experiment 9a compared the unconfined aquifer variant of A2016 with MODFLOW in a simulation incorporating topography, two head-dependent boundary conditions, no-flow and fixed head perimeter boundaries and recharge. The two head-dependent boundaries consisted of evapotranspiration of 0.002 mm/day over the whole model, with a 0.1-m extinction depth, linked to the topographic surface, and a lake covering the central 49 cells of the model. Parameters for the lake are similar to those required for the RES (reservoir) package in MODFLOW, with a specified lake stage (20 m), bottom sediment thickness (0.5–2.0 m) and sediment hydraulic conductivity (0.01 m/day). Recharge was set at 0.001 mm/day. For complete parameters and topography, please see the Electronic Supplementary Material (ESM).

Experiment 9b expanded upon 9a by testing an alternative method of calculating conductance for the cells beneath the lake, using the specified saturated thickness approximation (Sheets et al. 2015). In Experiment 9a, A2016 featured cellto-cell conductance for the full model region, determined by the aquifer thickness from base of aquifer to the water table as per an unconfined aquifer (Fig. 2). This represents the standard MODFLOW + RES package and is similar to the scenario demonstrated in the RES package documentation (Fenske et al. 1996) where a reservoir is situated within, and interacting with, an unconfined aquifer. Experiment 9b used a variant of A2016 (A2016_{STA}), where cell-to-cell conductance beneath the lake was derived from the specified saturated aquifer thickness between the base of the aquifer and the base of the lake sediments (Fig. 2). Two lake depths were modelled to identify how the different transmissivities might affect the interaction between the lake and groundwater. Parameters were chosen to approximate the water table configuration from Winter (1976; Fig. 12), with a flow-through lake and a steady-state hydraulic head just above lake level, leading to seepage into the lake across the lake floor. As a groundwater model using the Dupuit-Forchheimer cannot simulate threedimensional flow, a fixed flux across the model was included to approximate seepage from the layer to deeper flow paths.

It should be noted that parameters for these model experiments were not intended to represent real-world conditions. Instead, parameters that result in significant variation in modelled hydraulic heads were selected to emphasise differences between the models.

Results

MODFLOW, A2016 and K2005M showed good agreement in all confined aquifer experiments. In experiment 1, for a confined aquifer with injection and pumping wells, MODFLOW and A2016 showed identical results (Fig. 3a).


Hydrogeol J (2019) 27:1865-1878

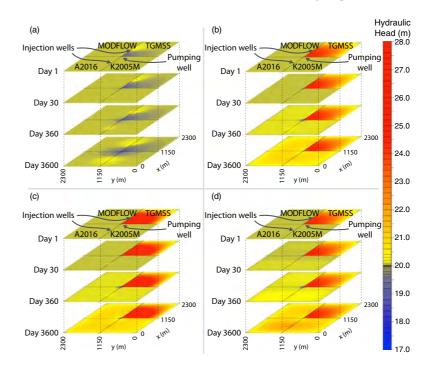
Exp. #	Model name	Hydraulic conductivity	Specific storage	Simulation time (days)	Boundaries	Grid dimensions
Confi	ned aquifer: wells					
1	TGMSS K2005M A2016 Confined MODFLOW	Homogeneous	Homogeneous	1, 30, 360, 3600	Specified head, specified flow	23×23 rows and columns. 100-m grid spacing
Confi	ned aquifer: wells +	⊦ recharge				
2	TGMSS K2005M	Homogeneous	Homogenous	1, 30, 360, 3600	Specified head, specified flow	23 × 23 rows and columns. 100-m grid spacing
	A2016 Confined MODFLOW Confined					
3	TGMSS K2005M	Heterogeneous	Homogeneous			
	A2016 Confined MODFLOW Confined					
4	TGMSS K2005M	Homogeneous	Heterogeneous			
	A2016 Confined					
	MODFLOW Confined					
Unco	nfined aquifer: well	S				
5	A2016 Unconfined MODFLOW Unconfined	Homogeneous	Homogeneous	1, 30, 360, 3600	Specified head, specified flux	23 × 23 rows and columns. 100-m grid spacing
Uncon	nfined aquifer: well	s + recharge				
6	A2016 Unconfined MODFLOW Unconfined	Homogeneous	Homogeneous	1, 30, 360, 3600	Specified head, specified flow	23 × 23 rows and columns. 100-m grid spacing
7	A2016 Unconfined MODFLOW Unconfined	Heterogeneous	Homogeneous			
8	A2016 Unconfined MODFLOW Unconfined	Homogeneous	Heterogeneous			
Lake,	recharge, evapotrat	nspiration and hea	ad-dependent bou	ndaries		
9a	A2016 Unconfined MODFLOW Unconfined	Homogeneous	Homogeneous	1, 30, 360, 3600	Specified head, specified flow, no flow, head-dependent	23×23 rows and columns. 100-m grid spacing
9b	A2016 / MODFLOW A2016 _{STA}			3600		

 Table 1
 Table defining hydrogeological conditions and model parameters for each set of model experiments

Differences for calculated hydraulic heads between the two models were less than 1 mm in all grid cells for all time steps. In contrast, hydraulic head values of Model K2005M differed from MODFLOW and A2016 as the time frame for the model simulation increased. At the central pumping well, K2005M and MODFLOW had identical hydraulic heads for day 1. By day 30, K2005M was 0.008 m higher than MODFLOW, 0.14 m higher at day 360 and 0.16 m higher at day 3600

Fig. 2 Differences in aquifer thickness for A2016 and MODFLOW (experiment 9a), and A2016STA, which uses a specified thickness approximation for the region beneath the lake (experiment 9b)

(Table 2). TGMSS displayed very different results to the other models. For day 1 and day 30 at the central well, TGMSS's surface was ~1.6 m lower than the other models, 1.05 m lower at day 360, and 0.16 m lower at day 3600 (Table 2, Fig. 4). MODFLOW, A2016 and K2005M did not achieve steady state within 3600 days. Additional model runs suggest that steady-state groundwater flow for the first simulation would be achieved after ~100,000 days. TGMSS achieved steady state after ~10 days (Fig. 4).


MODFLOW, A2016 and K2005M also produced similar results for experiments 2–4, incorporating recharge and heterogeneous conductivities and specific storage (Figs. 3b–d and 5). At all time steps, MODFLOW and A2016 gave identical results, with hydraulic head differences of less than 1 mm. K2005M diverged from MODFLOW and A2016 as simulation time increased, with a maximum difference observed in the heterogeneous storage experiment, where one

of the injection wells had a surface 0.36 m lower than the MODFLOW hydraulic head on day 3600 (Fig. 3d, Table 2). This well was in a region of low specific storage. TGMSS showed significant differences from the other models at all time steps. The maximum difference was on day 30 in the heterogeneous conductivity experiment (experiment 3), where TGMSS simulated a hydraulic head ~7.4 m above the MODFLOW value for one of the injection wells (Table 2).

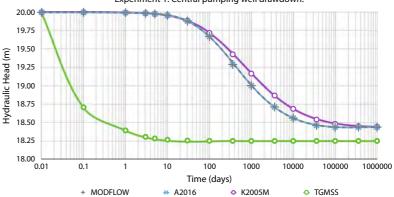
A2016 was also compared against MODFLOW in a series of unconfined aquifer experiments (Fig. 6). TGMSS and K2005M were not included in this comparison, as they are not designed to model unconfined aquifers. Identical results were achieved in all simulations, for all time steps, with a maximum difference in hydraulic head of less than 1 mm.

Performance in A2016 is slower than MODFLOW, with a time of around 10–15 min for 3600 time steps. In comparison, MODFLOW takes around 1 to 3 min using the preconditioned

Fig. 3 Hydraulic head (m) maps showing modelled transient groundwater behaviour for model experiments 1-4, for days 1, 30, 360 and 3600. Each quadrant shows results for one of the models examined (MODFLOW, A2016, TGMSS, K2005M). Model experiments shown are: (a) Confined aquifer with pumping and injection wells. (b) Confined aquifer with wells and recharge. (c) Confined aquifer with wells, recharge and heterogeneous conductivity. (d) Confined aquifer with wells, recharge and heterogeneous storage

Exp.#	Time step (days)	MODFLOW			A2016			K2005M			TGMSS			
		LIW	CPW	RIW	LIW	CPW	RIW	LIW	CPW	RIW	LIW	CPW	RIW	
1	1	20.002	19.996	20.002	20.002	19.996	20.002	20.002	19.996	20.002	20.621	18.391	20.621	
	30	20.059	19.882	20.059	20.059	19.882	20.059	20.055	19.890	20.055	20.549	18.254	20.549	
	360	20.355	19.290	20.355	20.355	19.290	20.355	20.286	19.428	20.286	20.546	18.248	20.546	
	3600	20.635	18.711	20.635	20.635	18.711	20.635	20.552	18.867	20.552	20.546	18.248	20.546	
2	1	20.002	19.996	20.002	20.002	19.996	20.002	20.002	19.996	20.002	24.126	23.560	24.126	
	30	20.067	19.889	20.067	20.067	19.889	20.067	20.063	19.897	20.063	24.210	23.700	24.211	
	360	20.445	19.380	20.445	20.445	19.380	20.445	20.376	19.518	20.376	24.213	23.704	24.213	
	3600	21.493	19.610	21.493	21.493	19.610	21.493	21.335	19.736	21.335	24.213	23.705	24.213	
3	1	20.002	19.996	20.002	20.002	19.996	20.002	20.002	19.996	20.002	27.275	25.943	26.184	
	30	20.068	19.886	20.069	20.068	19.886	20.069	20.065	19.893	20.066	27.454	26.180	26.298	
	360	20.506	19.259	20.545	20.505	19.259	20.545	20.427	19.417	20.460	27.460	26.187	26.302	
	3600	21.735	19.188	21.882	21.735	19.188	21.882	21.588	19.403	21.689	27.460	26.188	26.302	
4	1	20.009	19.996	20.003	20.009	19.996	20.003	20.009	19.996	20.003	24.162	23.585	24.142	
	30	20.217	19.889	20.087	20.217	19.889	20.087	20.188	19.897	20.080	24.212	23.701	24.211	
	360	20.887	19.380	20.518	20.887	19.380	20.518	20.780	19.519	20.442	24.213	23.704	24.213	
	3600	22.522	19.743	21.723	22.522	19.743	21.723	22.158	19.864	21.523	24.213	23.705	24.213	

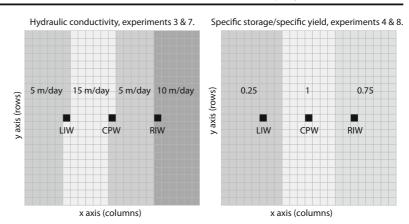
Locations of wells are shown in Fig. 5


CPW central pumping well, LIW left injection well, RIW right injection well

conjugate gradient solver. These values are from model runs on different systems (A2016 was run on the Mac version of Excel 2015, whereas MODFLOW was run with the ModelMuse graphical user interface (GUI) on a Windows 7 virtual machine, both on a MacBook Pro 2.8 Ghz i7).

Model experiment 9a incorporates specified head, specified flux, no-flow and head-dependent boundaries. In the initial experiment, cell-to-cell conductance for all cells was determined by the aquifer "thickness" between the base of the aquifer and the water table. MODFLOW and A2016 produced identical results (Fig. 7) for all cells and time steps. Initial seepage to the lake occurred as inflow across the entire lake floor, with the majority of seepage, combined with rapid drawdown of the groundwater head, occurring near the thinner sediments along the lake shore

Fig. 4 Modelled hydraulic heads (m) at the central pumping well for each model for model experiment 1, with injection and pumping wells, and homogenous conductivity and storage


(average 910 m³/day per cell). At day 30, inflow to the lake occurred at a consistent rate (average 120 m³/day per cell) across the whole lake floor, with the increased flow through the thicker central sediments occurring due to a high remnant water table hydraulic head in the centre of the lake. By day 360, the water table mound in the centre of the lake had become a depression with a hydraulic head of ~19.8 m, and lake seepage occurred as inflow along the lake edges (average 48 m³/day per cell) and outflow in the lake centre (average 8 m³/day per cell). By day 3600, the overall pattern was similar, with an increase in inflow along the lake edges (average 78 m³/day per cell). Away from the lake, the water table height increased due to recharge until near day 3600, when the water table height intersected the evapotranspiration boundary in areas of lower topography. Once this

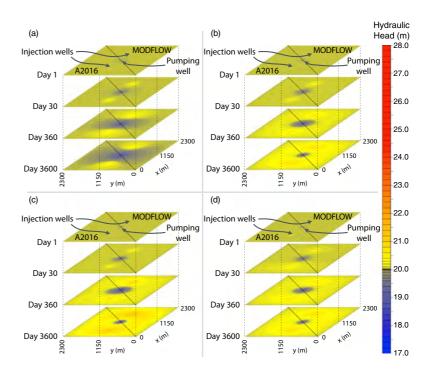
Experiment 1: Central pumping well drawdown.

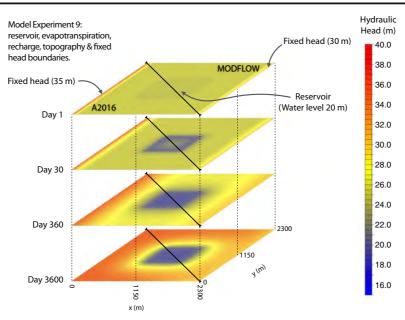
Deringer

Fig. 5 Map showing left and right injection wells (*LIW* and *RIW*) and the central pumping well (*CPW*). Greyscale is indicative of regions with different hydraulic conductivities and specific storage or specific yield within the model space

occurred, the water table followed the topography as seen in the region around x: 2100, y: 20 (Fig. 7).

In the second series of simulations (9b), conductance in $A2016_{STA}$ was calculated differently for cells that lay beneath the lake. The thickness of the aquifer in this region was specified as the distance between the base of the aquifer and the base of the lake sediments (Fig. 2), using the specified thickness approximation (Sheets et al. 2015). Initial comparisons between MODFLOW/A2016 and A2016_{STA} using a shallow lake (5.5 m depth) showed small differences (Fig. 8). Hydraulic heads for A2016_{STA} were slightly higher (~25 mm) than MODFLOW/A2016 for the water table mounds, and slightly lower (~70 mm) across the lake, resulting in slightly less seepage into the lake. Seepage into the lake occurred across the entire lake floor in both models,

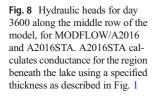

with the largest seepage occurring on the "downstream" side of the lake (columns 13 and 14; Fig. 8).

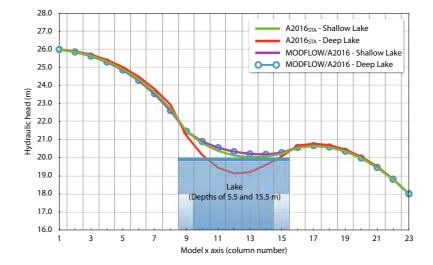

In contrast, simulations with the deep lake showed no change in the MODFLOW/A2016 simulations, but significant change in the A2016_{STA} simulation (Fig. 8). Hydraulic heads away from the lake were an average of ~170 mm higher, and lake cells were ~440 mm lower, than the MODFLOW/A2016 simulations. In addition, the lake changed from gaining water, to losing water across ~1/3 of the lake floor (Fig. 8).

Discussion

MODFLOW is the de facto standard for groundwater modelling software. The primary objective of this paper was to

Fig. 6 Hydraulic head (m) maps showing modelled transient groundwater behaviour for experiments 5-8, for days 1, 30, 360 and 3600. Each half shows results for one of the models examined (MODFLOW and A2016). Model experiments shown are: (a) Unconfined aquifer with pumping and injection wells. (b) Unconfined aquifer with wells and recharge. (c) Unconfined aquifer with wells, recharge and heterogeneous conductivity. (d) Unconfined aquifer with wells, recharge and heterogeneous storage




Fig. 7 Hydraulic head (m) map showing modelled transient groundwater behaviour for model experiment 9, for days 1, 30, 360 and 3600. Each half shows results for one of the models examined (MODFLOW and A2016). Model experiment conditions consist of a central reservoir with head-dependent boundaries determining seepage through the lake floor, recharge and evapotranspiration over the model, and no-flow and fixed

investigate the development of a comparable spreadsheet model for simple experiments, prototyping and teaching purposes. From the model inter-comparison, it is clear that A2016 is a simple and suitable alternative to MODFLOW for the scenarios investigated in this paper (Table 1). A2016 gave identical results to MODFLOW in all simulations. However, there are two caveats that must be considered: MODFLOW and A2016 differ in the method of iteration, and A2016 does not include the full and extensive range of features of MODFLOW. The difference in iteration method, with

head perimeter boundaries. Initial hydraulic heads were 25 m, and the reservoir hydraulic head was set at 20 m. Evapotranspiration is linked to the topographic surface with an extinction depth of 0.1 m. The water table in the region centred around x = 2100, y = 200 is constrained by the evapotranspiration boundary

A2016 using Gauss-Seidel point-based iteration compared to MODFLOW's matrix solver, is unlikely to lead to significant disparities, though it may occasionally result in situations where the contours do not align perfectly between models; while the difference in hydraulic heads between models may be sub-millimetre, even minuscule variations between models may define a contour. Of the numerous MODFLOW features not included in A2016, two notable omissions include the 3D layer structure and anisotropy of hydraulic conductivity. The relative simplicity of A2016 compared to MODFLOW should

Deringer

not pose significant problems as long as usage is appropriate and the limitations of the single-layer Dupuit-Forchheimer approximation are considered. The structured nature of A2016, with separate, clearly named sheets for the hydrogeological features and model layers, should minimise the use of inappropriate data.

The tendency of K2005M to deviate from MODFLOW and A2016 as simulation time increases before returning to a similar steady flow condition (Fig. 4) is understandable once the model structure for K2005M is examined. The model structure of K2005M is that of a single-layer groundwater model (as per A2016), able to do a single time step. The initial head value is parameterised, and there is no mechanism to update it for incrementing time steps. Therefore, a simulation over 3600 days using K2005M is identical to a simulation in MODFLOW or A2016 over 3600 days, using a single time step of 3600 days. There are no stability concerns in using long time-step lengths in these models, as they all use implicit calculation techniques. However, longer time steps can result in decreased accuracy (Table 2, Fig. 4).

TGMSS was able to approximate the MODFLOW steadystate solution in only one experiment (Fig. 3a), and was unable to model the transient behaviour of groundwater in any of the simulations. This is primarily the result of linking the hydraulic head in the storage term to the iteration process (Eq. 22) instead of using the hydraulic head from the previous time step (Eq. 23). In TGMSS, the hydraulic head value is calculated during each iteration. With each iteration, a new "initial" hydraulic head is introduced to the FDM, which is not likely to be correct (as the iteration cycle is not complete) and which has little relation to the actual initial head value from the start of the time step. In essence, this makes the model "chase its own tail" during each iteration cycle, yielding spurious results.

$$\frac{S_{i,j}(h^m - h^{\text{iteration}})}{t_m - t_{m-1}} \tag{22}$$

$$\frac{S_{i,j}(h^m - h^{m-1})}{t_m - t_{m-1}}$$
(23)

A further difference between the models that must be considered during use is that the spreadsheet equations used for TGMSS and K2005M do not define the volumetric flows to and from each cell. Instead, these are based on the equation for a representative elementary volume (REV). Therefore, care must be taken to ensure that appropriate integration is carried out to determine actual flow rates. This is not a concern with A2016, as the integration to account for cell size is incorporated into the spreadsheet equations (Eq. 7).

Deringer

While MODFLOW and the unmodified version of A2016 had identical results in all experiments, the results from experiment 9a and 9b suggest that care must be taken with MODFLOW when used with the RES (reservoir) package. In MODFLOW, by default, conductance between cells beneath the reservoir is calculated without taking into account any confinement of the aquifer or change in aquifer thickness caused by the placement of the reservoir (Fig. 2). As the reservoir takes up a greater proportion of the layer thickness, the discrepancy between MODFLOW's calculated conductance and the actual conductance of groundwater beneath the reservoir increases. In these situations, MODFLOW will calculate greater horizontal flow through the cells beneath the reservoir, potentially resulting in lower hydraulic heads and less groundwater mounding. This is particularly relevant in situations where a lake provides a natural barrier to groundwater flow. Winter (1976; Figures 12 and 18) demonstrated that for many groundwater systems, such as those approximated in experiment 9b, shallow lakes may gain water from surrounding local groundwater systems, whereas deeper lakes in the same setting are likely to lose water. This behaviour is observed in $A2016_{STA}$, where the seepage through the base of the layer, recharge and cell-to-cell conductance combine to form a water table and lake behaviour that is qualitatively similar to the simulations of Winter (1976). In contrast, MODFLOW and A2016 were unaffected by changes in the lake depth and penetration of the aquifer.

The approach taken in A2016_{STA} is based on the specified saturated thickness approximation (Sheets et al. 2015). The specified thickness approximation is commonly used to simplify and linearise the determination of transmissivity through an unconfined aquifer. Specifying the aquifer thickness disconnects the non-linear derivation of transmissivity from saturated thickness. The commonly cited benefit of this approximation is that model run times may be much faster, and stability improved (Sheets et al. 2015). In addition, the specified thickness approximation is an ideal method for limiting the transmissivity of an aquifer that is limited in thickness by an overlying lake.

The RES package and its precursor, the RIV (river) package (Fenske et al. 1996), share similar designs, and both may see some benefit from the application of the specified thickness approximation to define conductance beneath reservoirs, lakes and rivers. However, the approximation is most relevant to the RES package, as reservoirs and lakes are more likely to take up a significant proportion of a layer's thickness, resulting in a much greater difference between the default MODFLOW calculation for conductance and the lower conductance derived from the specified thickness approximation.

Applying the specific thickness approximation only to the region beneath lakes presents a difficulty, as MODFLOW does not allow for specification of the thickness of an unconfined layer. For many groundwater scenarios, the specified thickness approximation is commonly implemented using a confined layer (Sheets et al. 2015). This method is not suitable for limiting conductance beneath lakes unless the specified thickness approximation is applied across the whole model. The use of a convertible layer with a top surface mirroring the land surface may be applicable, assuming that the water table never rises above the land surface. The modular nature of MODFLOW allows packages to append the HCOF and RHS matrices, but does not include a way for packages to modify layer thickness or type. To make use of the specified thickness approximation on an ad hoc basis over small regions of cells, implementation could be achieved by adding a "layer surface" matrix alongside the HCOF and RHS matrices. Components of the groundwater model would be able to append the HCOF and RHS matrix, as occurs currently in MODFLOW, and modify the "layer surface" matrix as well, to account for regions where the user may want to specify the saturated thickness. In the lake scenario, the layer surface matrix would simply mirror the water table (for unconfined) or top of aquifer (for confined) matrices. In regions where a lake penetrates the aquifer, then the layer surface values for cells beneath the lake would be defined by the bottom lake sediments, rather than the water table/top of the layer.

Conclusion

Groundwater modelling is a complex science, for which comprehensive models such as MODFLOW are required. However, despite the existence of such advanced modelling software, development of simple spreadsheet-based groundwater models is important for both teaching purposes and prototyping new modelling code. A prototype model – A2016 – was developed in preparation for linking a groundwater model to a coupled hydrological-isotopic mass balance lake model. Nine experimental simulations were carried out to test numerous hydrogeological conditions, including sources and sinks, heterogeneous storage and hydraulic conductivity, and specified head, specified flux, head-dependent and noflow boundary conditions.

In all simulations, A2016 produced identical results to MODFLOW 2005 for both transient and steady-state groundwater conditions, in both confined and unconfined aquifers. In addition, the model inter-comparison from this study demonstrates that modelling transient behaviour of groundwater still requires the use of macros or similar programmatic constructs to control the time-stepping. Previous efforts to develop a spreadsheet that is not reliant on macros (TGMSS; Karahan and Ayvaz 2005a, b) have been shown to be unable to simulate transient groundwater behaviour. In this respect, A2016 provides a clear advancement over existing spreadsheet-based models. Spreadsheet models also provide the means to examine functions within more complex groundwater models. Experiment 9b highlighted a scenario in which MODFLOW may derive incorrect conductance values for cells beneath a lake in an unconfined aquifer when using the RES package. This is attributed to the use of an aquifer thickness calculated from the water table to the base of the aquifer. A modified version of A2016 was developed that uses the specified thickness approximation (Sheets et al. 2015) and calculates aquifer thickness from the base of the lake sediments to the base of the aquifer.

A2016 provides an excellent framework for teaching by linking the underlying mathematics, MODFLOW concepts and modelled groundwater behaviour in a structured environment, using spreadsheet software that all students are familiar with. While only features deemed necessary to the ongoing project were included and tested in A2016, adding features such as anisotropy or 3D flow modelling should be straightforward and may provide an excellent educational opportunity. Most additions to the model can be achieved through standard spreadsheet manipulation, thereby providing a simple and flexible tool of value for both research and teaching.

Acknowledgements The authors would like to thank Deborah Haynes and Karen Anderson for their comments on an earlier version of this manuscript. Martin Ankor received financial support via an Australian Government Research Training Program (RTP) scholarship and an Australian Institute of Nuclear Science and Engineering (AINSE) postgraduate scholarship (Award – PGRA). All data and model files generated for this project are available as supplementary information.

References

- Akhter MG, Ahmad Z, Khan KA (2006) Excel based finite difference modeling of ground water flow. J Himal Earth Sci 39:49–53
- Almeida CN, Roehrig J, Wendland E (2014) Development and integration of a groundwater simulation model to an open geographic information system. J Am Water Resour Assoc 50:101–110. https:// doi.org/10.1111/jawr.12119
- Anderson M, Bair E (2001) The power of spreadsheet models. Proceedings, MODFLOW 2001 and Other Modeling Odysseys Conference, pp 815–822
- Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modeling: simulation of flow and advective transport. Academic Press, San Diego
- Ankor MJ (2018) Transient groundwater modelling using spreadsheets for education and model prototyping. https://doi.org/10.17632/ r6hcbkp53n.4; https://data.mendeley.com/datasets/r6hcbkp53n/4. Accessed 8 Aug 2018
- Bair ES, Lahm TD (2006) Practical problems in groundwater hydrology. Prentice Hall, Upper Saddle River
- Elemer B, Sz P, Aniko T, Attila K (2010) Complex scientific analysis in geothermal exploration in the Pannonian Basin. Proceedings of the

World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010

- Fenske JP, Leake S, Prudic DE (1996) Documentation of a computer program (RES1) to simulate leakage from reservoirs using the modular finite-difference ground-water flow model (MODFLOW), US Geological Survey Open-File Report 96-36
- Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process: US Department of the Interior, US Geological Survey Reston, VA, USA
- Holzbecher E, Sorek S (2006) Numerical models of groundwater flow and transport. In: Anderson MG, McDonnell JJ (ed) Encyclopedia of Hydrological Sciences. Wiley. https://doi.org/10.1002/ 0470848944.hsa157
- Huang Y, Yu Z, Zhou Z (2013) Simulating groundwater inflow in the underground tunnel with a coupled fracture-matrix model. J Hydrol Eng 18:1557–1561. https://doi.org/10.1061/(ASCE)HE.1943-5584. 0000455
- Jones RN, McMahon TA, Bowler JM (2001) Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990). J Hydrol 246:159–180
- Karahan H, Ayvaz MT (2005a) Time-dependent groundwater modeling using spreadsheet. Comput Appl Eng Educ 13:192–199
- Karahan H, Ayvaz MT (2005b) Transient groundwater modeling using spreadsheets. Adv Eng Softw 36:374–384
- Mahmud M (1996) Spreadsheet solutions to Laplace's equation: seepage and flow net. J Teknol 25:53–67
- McDonald MG, Harbaugh AW (2003) The history of MODFLOW. Groundwater 41:280–283
- Neville CJ, Tonkin MJ (2001) Representation of multiaquifer wells in MODFLOW. Proceedings of Modflow 2001 Conference at the

International Ground Water Modeling Center, Golden, Colorado, pp 51–59

- Ohlendorf C, Fey M, Gebhardt C, Haberzettl T, Lücke A, Mayr C, Schäbitz F, Wille M, Zolitschka B (2013) Mechanisms of lakelevel change at Laguna Potrok Aike (Argentina)—insights from hydrological balance calculations. Quat Sci Rev 71:27–45. https:// doi.org/10.1016/j.quascirev.2012.10.040
- Olsthoorn TN (1985) The power of the electronic worksheet: modeling without special programs. Groundwater 23:381–390
- Ousey JR (1986) Modeling steady-state groundwater flow using microcomputer spreadsheets. J Geol Educ 35:305–311
- Sheets RA, Hill MC, Haitjema HM, Provost AM, Masterson JP (2015) Simulation of water-table aquifers using specified saturated thickness. Groundwater 53:151–157
- Smerdon BD, Mendoza CA, Devito KJ (2007) Simulations of fully coupled lake-groundwater exchange in a subhumid climate with an integrated hydrologic model. Water Resour Res 43:1–13. https://doi.org/10.1029/2006WR005137
- Stets EG, Winter TC, Rosenberry DO, Striegl RG (2010) Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resour Res 46:W03515. https://doi.org/10. 1029/2009WR007793
- Wang HF, Anderson MP (1982) Introduction to groundwater modeling : finite difference and finite element methods. Academic Press, San Francisco
- Winston RB (2009) ModelMuse: a graphical user interface for MODFLOW-2005 and PHAST. US Geological Survey, Reston
- Winter TC (1976) Numerical simulation analysis of the interaction of lakes and ground water. USGS Professional Paper 1001