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Abstract

This thesis focuses on one of the fundamental problems in computer vision, six-
degree-of-freedom (6dof) pose estimation, whose task is to predict the geometric
transformation from the camera to a target of interest, from only RGB inputs.
Solutions to this problem have been proposed using the technique of image retrieval
or sparse 2D-3D correspondence matching with geometric verification. Thanks
to the development of deep learning, the direct regression-based (compute pose
directly from image-to-pose regression) and indirect reconstruction-based (solve
pose via dense matching between image and 3D reconstruction) approaches using
neural network recently draw growing attention in community. Although models
have been proposed for both camera relocalisation and object pose estimation using
a deep network base, there are still open questions. In this thesis, we investigate
several problems in pose estimation regarding end-to-end object pose inference,
uncertainty of pose estimation in regression-based method and self-supervision for
reconstruction-based learning both for scenes and objects.

We focus on the end-to-end 6dof pose regression for objects in the first part of
this thesis. Traditional methods that predict the 6dof pose for objects usually rely
on the 3D CAD model and require a multi-step scheme to compute the pose. We
alternatively use the idea of direct pose regression for objects based on a region
proposed network Mask R-CNN, which is well-known for object detection and
instance segmentation. Our newly proposed network head regresses a 4D vector
from the RoI feature map of each object. A 3D vector from Lie algebra is used as
the representation for rotation. Another one scalar for the z-axis of translation is
predicted to recover the full 3D translation along with the position of bounding
boxes. This simplification avoids the spatial ambiguity for object in the scope of 2D
image caused by RoIPooling. Our method performs accurately at inference time,
and faster than methods that require 3D models and refinement in their pipeline.

We estimate the uncertainty for the pose regressed by a deep model in the
second part. A CNN is combined with Gaussian Process Regression (GPR) to build
a framework that directly obtains a predictive distribution over camera pose. The
combination is achieved by exploiting the CNN to extract discriminative features
and using the GPR to perform probabilistic inference. In order to prevent the
complexity of uncertainty estimation from growing with the number of training



images in the datasets, we use pseudo inducing CNN feature points to represent the
whole dataset and learn their representations using Stochastic Variational Inference
(SVI). This makes GPR a parametric model, which can be learnt together with
the CNN backbone at the same time. We test the proposed hybrid framework
on the problem of camera relocalisation.

The third and fourth parts of our thesis have similar objectives: seeking self-
supervision for the learning of dense reconstruction for pose estimation from images
without using the ground truth 3D model of scenes (in part 3) and objects (in part 4).
We explore an alternative supervisory signal from multi-view geometry. Photometric
and/or featuremetric consistency in image pairs from di�erent viewpoints is proposed
to constrain the learning of the world-centric coordinates (part 3) and object-centric
coordinates (part 4). The dense reconstruction model is subsequently used as
2D-3D correspondences establisher at inference time to compute the 6dof pose using
PnP plus RANSAC. Our 3D model free methods for pose estimation eliminate the
dependency on 3D models used in state-of-the-art approaches.
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This chapter addresses the focused tasks of thesis and the motivation behind it.

We also detail the objectives, methods and the main contributions of our work.

1.1 Introduction

The perception of a physical world is a time-honored topic in robotics. As part

of the autonomous system, it purveys important information for the subsequent

control and/or navigation modules, making smart agents – such as robots and

unmanned vehicles (we use robots as the representative for the rest of this thesis)

– operate freely in the surrounding environment.

The system for spatial awareness is expected to deliver two major outcomes:

interpretation of what things are in the environment and robot’s relationship to them.

1
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Thanks to the growing interest in camera sensors and deep learning, computer vision

community has recently gained massive understanding of the composition of the

environment from images by the means of classification (Deng et al. 2009; Krizhevsky

et al. 2012; He et al. 2015; He et al. 2016), detection (Girshick 2015; Ren et al.

2015; Redmon et al. 2016; Liu et al. 2016; He et al. 2017) and semantic or instance

segmentation (Long et al. 2015; Ronneberger et al. 2015; He et al. 2017). What is

however interesting is that in the early years of computer vision, researchers actually

paid more attention to geometric perception, e.g. 3D reconstruction (Van Heel

1987; Whitaker 1998; Cline et al. 1987), shape registration (Besl et al. 1992; Bajura

et al. 1995; Blais et al. 1995), motion tracking (Faugeras et al. 1988; Dorfmüller

1999) and pose estimation (Haralick et al. 1989; Lu et al. 1997; Dementhon et al.

1995), with applications in Virtual Reality (VR), Augment Reality (AR) and

autonomous driving.

One of the goals of geometric perception is to build a relationship between a

robot and the world. Such relationship is commonly represented by a six-degree-

of-freedom (6dof) pose, i.e., position and orientation. It quantitatively provides

spatial information for robots to physically interact with the world. For instance,

a robot should know its position with respect to a map in order to plan its next

move, and be aware of the orientations of nearby objects for manipulation.

Having 3D sensors such as a depth camera (Covell et al. 2006; Ye et al. 2011)

or LIDAR (Hess et al. 2016; Wolcott et al. 2014) makes it easy to infer geometry,

but the high cost and relatively poor large scale measurement prevent them from

being universal solutions. Thanks to the compactness, low cost and the nature of

passive sensing, pose estimation from optical camera has always been an active

topic in computer vision.

Recovering the pose from scratch by using RGB images only is, however,

challenging. The 6dof pose is strictly defined as the transformation between

two coordinate frames, but an image is not even close to an explicit and direct
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representation of such transformation. Therefore, this problem is commonly

formulated following the concept of retrieval1. One version of such retrieval is

dataset-based, in which a database – serves as the prior of the interested scene/target

– that contains images and their well-calibrated poses is created before pose inference

takes place. The goal of pose estimation is to compute a novel pose for a previously

unseen image, exploiting information in the database. Another version is model-

based, which assumes the existence of a 3D model (e.g. CAD model) and the task

then is to match features to retrieve for pose.

From a geometric perspective, a pose mathematically describes the 6dof transfor-

mation of the capturing camera with respect to a reference system. The definition

of pose estimation varies depending on the characteristics of reference. We consider

two such references in this thesis: a static world and certain interest objects. More

specifically, we perform two tasks in our thesis: i) relocalising a moving camera

in a previously-known scene, and ii) estimating the poses of known objects that

move (relatively) with respect to the camera.

1.2 Background

The classical solutions adopted by researchers to geometry estimation can be

commonly categorized into two groups: retrieval-based and correspondences-based.

Namely, retrieval-based methods find the best matched image (or images) in the

training set against the query image, and determine the new pose based on that

of the matching (or matchings). In correspondence-based methods, features such

as points or lines are matched between image and the object or the scene to solve

the pose using a subsequent geometric verification. These methods provide a gold
1 There is another line of pose estimation that incrementally computes the pose of camera (or
target) from sequential images by frame-to-frame tracking, e.g. a visual odometer. Although with
similar objective, the method of pose tracker di�ers from the interests of this thesis, therefore we
choose not to mention them extensively.
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standard for pose estimation and their e�ectiveness has been demonstrated both

in indoor and outdoor environments.

Nonetheless, methods in both families usually require to detect sparse image

features to conduct further pose determination. In retrieval-based methods, they are

combined altogether to characterize the image globally, whereas in correspondence-

based methods, the establishment of correspondences is commonly formulated as a

descriptor matching problem that is solved using nearest neighbor search between

features in 2D and 3D (Sattler 2013). Therefore, the community has particularly

investigated the representation of the sparse feature. Descriptors such as SIFT (Lowe

1999), SURF (Bay et al. 2006) and ORB (Rublee et al. 2011) summarize the

surrounding appearance of certain key-points from a corner detector based on the

information on the RGB images. They perform very well in terms of points matching

and are used extensively in almost every geometric computer vision task.

However, due to the limitations of the sparse feature, such as sparsity, lack

of global information and sensitiveness to dynamics, they can be deployed only

in some constrained environments. The generalization and robustness of these

methods to real world applications – where the images su�er from motion blur,

regions without textures and change of light and/or weather condition – has always

been under the eyes of researchers.

What has been achieved in those content recognition tasks suggests that, using

Convolutional Neural Networks (CNNs) (Krizhevsky et al. 2012) overcomes the

short-comings of the previous solutions for recognition that rely on local and

discriminative image information. These nested convolutional layers extract dense

feature maps in di�erent scales for per-pixel tasks such as segmentation. The feature

map also can be flattened to a feature vector to describe the high-level, global and

task-driven knowledge of the image for tasks like classification and place recognition.

Due to the powerful modeling ability from large amounts of data, the advantages of
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CNNs include but are not limited to: multi-scale feature fusion, generalization to

category, end-to-end inference, per-pixel dense prediction (if needed) etc.

As a matter of fact, tasks that benefit materially from CNNs commonly focus on

finding out what are in the image, despite the individual peculiarity such as di�erent

instances, arrangements and viewpoints. In other words, one property the CNNs can

o�er is the generalization. Consequently, most of the models are therefore designed

and trained to be invariant to changes in relationship. For example, the class of an

object should be consistent no matter from which viewpoint the object is captured.

The behavior of CNNs in classification-like tasks may advise that they are prone

to generalizing by ignoring relationship. They potentially sacrifice the ability to

recover pose specific information while achieving viewpoint invariance. Therefore

two significant question marks have not been cleared yet that it is not clear whether

are CNNs good at modeling relationship or not, and if yes, it is not well understood

how to model this relative information from CNNs. With these two questions

remain open, several attempts have been made to use the structure of CNNs for

the problem of 6dof pose estimation.

Based on the type of output from CNNs, we group the existing learning-based

methods into two categories: regression-based method and reconstruction-based

method. Regression-based methods use neural networks to perform direct pose

regression from an input image, where the model is learned by mapping the

training images to their ground truth 6dof poses. Representatives of this family are

PoseNet (Kendall et al. 2015) and its variants (Kendall et al. 2016; Kendall et al.

2017). As for reconstruction-based methods(Shotton et al. 2013; Brachmann et al.

2014; Valentin et al. 2015; Brachmann et al. 2017; Brachmann et al. 2018), the key

idea is to learn a mapping from image pixels to their 3D coordinates in a reference

space (which is world-centric coordinate space for the task of camera relocalisation

and object-centric coordinate space for object pose estimation). The 6dof pose is

then solved based on the dense 2D-3D correspondence provided by the networks.
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Interestingly, although using di�erent tools to formulate the problem, the deep

learning based modern methods behave conceptually alike with the classical methods.

The reason regression-based methods are believed to be similar with the retrieval-

based method is that the pose regressors essentially determine a test pose by

interpolating from training poses. Meanwhile, at inference time of reconstruction-

based methods, the model is applied to a test image to conduct 2D-to-3D regression

densely and use these correspondences to compute the pose, acting just like the

correspondences-based methods. However, instead of building an explicit 3D

map to allow descriptor matching, the process of finding correspondences between

points and their 3D coordinates is carried by training CNNs to perform dense

3D reconstruction for each image.

1.3 Motivation and Objectives

Stemming from the success achieved by aforementioned modern methods, the

overall objective of our thesis is also to develop learning-based methods to solve the

traditional 6dof pose estimation tasks. Though this aim in itself is not novel, we

address several shortcomings of previous work in this thesis, which we believe are

the factors that can be solved to improve the completeness of the learning-based

method for pose estimation, and provide a fast, accurate and robust solution for

real world applications. These shortcomings are:

1. Lack of object-level consideration.

Unlike the absolute camera pose estimation, where useful information exists

throughout the entire image, objects are only visible in parts of the scene.

Clearly, it is the foreground that contributes to the 6dof pose, and irrelevant

background pixels should be excluded from the pipeline. This issue exists in

both regression-based and reconstruction-based methods. This requirement
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is more important when there are multiple interest object presented in the

image.

2. Lack of uncertainty estimation in the regression-based method.

The output from most of the pose estimation networks is deterministic rather

than probabilistic, which means it is only a point estimate instead of a

predictive distribution. In general, exploiting uncertainty in CNNs is an

eye-catching topic, because the probability distribution of the output from

CNNs can be used in a variety of ways. Most notably for our purposes, the

uncertainty of the predicted pose makes the result amenable for use within

the standard data fusion algorithms such as a Kalman Filter. For example in

SLAM, the uncertainty of the pose estimate can be naturally fused with a

state estimate to improve the accuracy of localisation over time.

3. Lack of indirect supervision in the learning process of the reconstruction-based

method.

For the reconstruction-based method, the supervisory signal for coordinates

learning is crucial because it governs the mapping from image pixels to 3D

points in the reference system. In some cases it maybe possible to use a

pre-build 3D model of the structure (such as a map of the scene in camera

relocalisation, or a 3D model of the object in object pose estimation) as

the supervision, if they were available. However the existence of the fine-

grained 3D model is not assured for every structure in the real world, which

necessitates the investigation on indirect supervision.

Motivated by these limitations, we are hence devoted to extend the existing

methods in following perspectives:

• For regression-based method, i) we aim to perform direct pose regression at

the object-level, providing a unified, end-to-end framework for object pose
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estimation. ii) we aim to measure the uncertainty of the pose prediction

from regression-based camera localisation.

• For reconstruction-based method, the objective we would like to accomplish

is iii) to explore indirect supervision for 3D coordinate learning, and iv)

make it generalize to both camera relocalisation and object pose estimation.

Note that we investigate methods for pose estimate in end-to-end fashion

(regression-based methods in chapter 3 and 4), as well as using multiple steps

(reconstruction-based methods in chapter 5 and 6). It is not a problem of right

or wrong when making a choice between them, because both of them have their

unique advantages. For example, method using multiple steps usually achieves

better accuracies because of the involved geometry, whereas end-to-end method

runs very fast at the inference time, and the learnt high-level feature is pose-related

which can be utilized in di�erent reasoning tasks, e.g. uncertainty estimation. We

will show if designed carefully and trained with su�cient data, the performance

of end-to-end method could catch up or even outperform classical method with

multiple steps. On top of that, when training and testing the learning-based pose

estimation networks with intermediate representation (such as coordinates), the

accuracy is further improved with subtle sacrifice in e�ciency while geometry

contributes to providing stronger constrain.

1.4 Approaches and Contribution

Throughout this thesis, we build methods for di�erent forms of pose estimation

on a learning basis, with specific solutions that address the limitations outlined

in the section above:

Contribution 1 We propose a model that directly predicts the 6dof poses for

objects in an image while detects and segments them from the background,
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without using any 3D information at both training and inference time. It

is done by isolating objects from the background and extract pose-related

features only from the appearances of the objects using a CNN. We augment a

novel object pose regressor to the backbone of Mask R-CNN. While detecting,

segmenting and classifying the objects from the background, this regressor

predicts translation and rotation parameters at the same time. The usage

of Lie algebra as the representation for rotation is less-constrained, low-

dimensional and less-ambiguous. For translation, an alternative 1d solution

apart from the direct 3d regression method is proposed. It combines the

position and size of the bounding box and the predicted z-component of the

translation vector to recover the full 3d vector. The proposed end-to-end deep

learning approach is able to jointly detect, segment, and directly estimate the

6dof pose of object instances from a single RGB image. The relevant work is

described in chapter 3.

Contribution 2 We develop a method that combines deep learning with Gaussian

Processes to produce not only a point estimate of a regressed quantity

but a distribution over the value. It is achieved by combining two main

machine learning frameworks, CNN and Gaussian Process Regression(GPR),

formulating an end-to-end probabilistic pose inferring system. Based on the

learned image feature from CNN, we use a GPR to generate the predictive

distribution for the pose result. Stochastic Variational Inference is applied in

our method to reduce the high complexity of GPR when dealing with large

scale data, which in our case is thousands of high dimensional images. The

advantage of our method is that it takes only one forward pass to estimate the

uncertainty for the pose, in contrast to Bayesian PoseNet that requires multiple

inferences for one test image using the dropout technique and summarizes the

distribution empirically. This work is described in chapter 4.
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Contribution 3 We devise a method for learning 3D scene coordinates using

self-supervised learning to solve the pose estimation indirectly. This yields a

method that produces state of the art camera pose estimates by combining

a "best of" approach fusing learning and geometry. Specifically, we use the

consistency of the 3D coordinates for the same scene point from multiple

frames as self-supervision. This is done by training the coordinate regression

network simultaneously with images from di�erent viewpoints. Based on multi-

view geometry, we design a loss function that contains two types of image

feature reconstruction errors, along with a structural smoothness penalty over

the featureless regions of the scene. Our method achieves better accuracy

compared to the single-view loss methods. In addition, we observe that our

method is robust to the setting of pseudo depths for di�erent scenes, which

are used to initialize the scene coordinate regression model when ground truth

coordinates are missing. We show this method in chapter 5.

Contribution 4 We contribute a method that learns to regress to 3D object coordi-

nates for object pixels without using direct supervision from 3D information of

object such as a CAD model. This model is subsequently used to estimate the

object pose at inference time and achieves on-par performance with the state-

of-the-art object pose estimation methods, without using any 3D structural

prior of the objects, which is essential to existing geometry-based methods.

This proposed method follows the idea of chapter 5, building the constraints

for the learning of object coordinate using multi-view geometry. To that

end, a new head – the object coordinate head – is contributed to the Mask

R-CNN backbone, whose output is the dense 3D coordinates of the object in

object-centric frame. A bounding box-dependent local projection model is

derived to align the pixel-to-pixel correspondence between RoI features and

the object coordinate map. We also use an unsupervised learning method to
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discover the equivariant features of an object, which explicitly provides the

2D-to-2D correspondences for 3D object points learning. Chapter 6 illustrates

this method in detail.
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This chapter provides a more detailed review on the publications in pose estima-

tion. We start by reviewing the work that is proposed before the era of deep learning,

which mostly rely on detecting sparse features from image. Then we address the

limitations of hand-crafted features. In the remaining part of this chapter, the

modern methods that use deep learning for pose estimation are reviewed. Though

two tasks are focused in this thesis, camera relocalisation and object pose estimation,

the main ideas behind the solutions to them share large similarities. Therefore we use

camera relocalisation as an example to introduce related work in this chapter, and

16
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review the publications specific to object pose estimation in corresponding chapters

2.1 Related Work Before Era of CNNs

The objective of relocalisation is to estimate the global 6dof pose of the camera/robot

in a known scene. The most famous problem that relates to global localisation is the

kidnapped robot problem proposed by Se et al. 2001, in which a robot is ‘kidnapped’

and moved to an unknown location. The robot is expected to recall the pose for

the unknown location using information from its memory, which is represented by a

database of image-pose pairs. Another typical application of camera relocalisation

is loop closure in visual Simultaneous Localisation and Mapping SLAM (Newman

et al. 2005; Davison et al. 2007; Clemente et al. 2007; Ho et al. 2007; Labbe

et al. 2013; Ho et al. 2006). Building on the idea of relocalisation, loop closure

detector of a full SLAM algorithm recognizes the occurrence of previously visited

location in the online-built map for robots and corrects the pose drift caused by

the frame-to-frame motion tracker (i.e. visual odometry).

As mentioned before, there are mainly two ways of solving camera relocali-

sation in previous work: (i) retrieval-based approach and (ii) correspondences-

based approach.

2.1.1 Retrieval-based Methods.

The general idea of retrieval-based methods is to extract correlated information

from the pre-built database for a query image by matching a closest training images

according to a measurement of sensory similarity. The pose for the query image is

further determined based on the pose of the closest match (or matches).

From a complexity perspective, an image itself is redundant and high-dimensional.

Using the raw image as the representation for image-matching apparently is a poor

choice in terms of speed. In order to improve e�ciency, Ulrich et al. 2000 represent

the appearance as a collection of image histograms, and Lamon et al. 2001 summarize
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the images using ordered lists of edges and intensity features. However, these

methods only find a topological pose for the query image, rather than estimating a

new pose that has 6dof, which apparently needs a further geometry verification.

Given a collection of image-pose pairs of a building created from a hand-

set, Robertson et al. 2004 assume a canonical view for the facade and rectify

the images to detect viewpoint-invariant features, resulting in an o�ine database.

Wide baseline matching is carried out for the query image by matching feature

to the database. Another work that performs wide baseline matching for global

localisation is done by W. Zhang et al. 2006. They alternatively use viewpoint-

invariant SIFT feature (Lowe 2004) to describe image keypoints. They then compute

the position relative to the two most similar training images and use known GPS

coordinates of these images to achieve the absolute position. These two methods

match the reference frame to the training images by conducting the matching

between individual features, instead of use the information of two images as a single

metric. The former is time-consuming when the size of the database is large.

Inspired by the idea of Google text search by Baeza-Yates et al. 1999, Sivic et al.

2003 propose to simulate the behavior of the text retrieval for images. They create

a vector of words for an image that counts the occurrence of SIFT feature in it.

These feature descriptors are vector quantized into clusters which will be the visual

vocabulary and referred as Bag-of-Words (BoWs). It enables the comparisons with

thousands of images happen in dozens of milliseconds (Nister et al. 2006).

Following this technique, Cummins et al. 2008 extract and vectorise SURF

features (Bay et al. 2006) from the training images as visual vocabulary. The

query image is also abstracted in the same way and matched with the database

probabilistically using a graph model based on the co-occurrences of certain

features. To further speed up the feature extraction, Galvez-Lopez et al. 2011

use FAST (Rosten et al. 2006) key-points and BRIEF (Calonder et al. 2010)

descriptors to build the BoWs for image matching and Gálvez-López et al. 2012



2. Literature Review 19

build a tree structure for vocabulary that discretizes a binary descriptor space

and use it to speed up image-retrieval.

2.1.2 Correspondences-based Methods.

The retrieval-based methods show advantages in terms of speed for global localisa-

tion, whereas correspondences-based methods naturally build stronger geometric

constraints for 6dof pose by matching 2D images points and 3D coordinates.

Unlike retrieval-based methods that use the a collection of raw images as the

representation for a scene, a 3D map is usually created for correspondences-based

methods to perform 2D-3D points matching. This 3D map, which contains visual

landmarks and their 3D coordinates in the world space, can be obtained online

or o�ine, depending on the availability of the scene prior. If robot visits an

unknown environment, the map of the scene can be built incrementally from the

acquired image sequence from camera using visual SLAM. On the other hand,

when the training images of a scene are given and the objective is to estimate a

new pose in the scene for a query that contains similar landmarks, the 3D map

or the model of the scene can be reconstructed from images by parallel tracking

and mapping (PTAM) (Klein et al. 2007; Castle et al. 2008; Klein et al. 2009) or

Structure-from-Motion(SfM) (Agarwal et al. 2011; Snavely et al. 2008; Wu 2013;

Schonberger et al. 2016; Snavely et al. 2006).

For the representation of landmarks in the map, work have used pre-defined

artificial landmarks such as barcode (Everett et al. 1995) or QR code (H. Zhang

et al. 2015) for fast and easy recognition. In a general environment, Sim et al. 1999

extract the features of landmarks from image based on visual attention. Interest

points are tracked in multiple views and parameterized with a set of attributes,

such as position in the image, intensity distribution, edge distribution, etc. In

order to improve the degree of viewpoint-independence, the famous SLAM system

by Davison 2003 and Williams et al. 2007a detects Shi-Tomasi corner (Shi et al.
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1994) in a relatively large image patch and discover landmarks within them. SIFT

feature (Lowe 1999) enhances this invariance and therefore is widely used in the

landmark characterization for correspondence-based methods, such as (Se et al.

2002; Karlsson et al. 2005; Irschara et al. 2009). Recently, ORB features by Rublee

et al. 2011 improves the e�ciency of SIFT which requires relatively more extensive

computing power in real time.

In the subsequent pose estimation stage, Se et al. 2001 matches a set of SIFT

features of the query image to the database, and applies Hough Transform (Hough

1962) on a discrete pose space to find the pose that produce the maximum feature-

landmark correspondences. Work in object pose recognition (Lepetit et al. 2006;

Özuysal et al. 2006) trains a forest of fast classifiers using the image patches in the

database o�ine. The trained forest then classifies the query features to establish

correspondences with the database. Leveraging from this idea, Williams et al. 2007b

deploy a similar randomised lists key-point recognition algorithm, training the

forest online with the features from mapping of SLAM. When a new frame comes,

its features firstly are classified by this tree, yielding correspondences which can

be used to relocalise the new image. Based on the pose verification, this method

prevents the system from failure of pose tracking.

For the o�ine 3D models created from SfM of a very large scene, Irschara et al.

2009 conduct a two-step scheme for correspondence establishment. They firstly

retrieve the similar image for the query image in the database, which contains

potential matches for the features. Then direct match is performed for the query

features and the retrieved segment of the whole model. In order to directly and

e�ciently match 2D feature to 3D points in the database, Sattler et al. 2011

associates 3D points with a visual vocabulary obtained from clustering SIFT

features. The linear search space for each query descriptor is prioritized based on the

number of descriptors assigned to its corresponding visual word. In work proposed

by Sattler et al. 2012, the authors consider to actively search correspondences
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in both 2D-to-3D and 3D-to-2D direction, making the registration possible for

a million 3D points in real time.

2.1.3 Limitation of Feature-based Methods

Although perform e�ciently in detection and matching, these human-designed

feature extractors unfortunately have several limitations:

• Sparsity. Only a small set of key-points are considered as candidates for

feature extraction. Large amount of visual information of the world is ignored

by sparsification, which reduces the number of potential correspondences and

subsequently jeopardizes the robustness of the pose calculation;

• Limited scales of receptive field. The feature only describes the characteristic

of a window around each key-point hence is bereft of global (or intermediate-

level) information;

• Despite the success of handcraft features like SIFT, the advent of CNNs show

these features were not achieving as good a compromise between distinctiveness

and invariance. The features extracted from a CNN have been shown to be

better descriptors that balance between distinctiveness and invariance.

• Poor scalability. The numbers of features increases while the scene scales up.

It is not considered as an issue in a small scale of scene or the case of object

pose estimation, however for a large outdoor scene, the space for storage and

complexity for matching grows rapidly, which is disadvantageous for real time

application.

In order to overcome these shortcoming, researchers propose to introduce deep

learning, most notably CNNs to the task of pose estimation.
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2.2 Neural Networks

2.2.1 Artificial Neural Networks

Inspired by biological neural networks, artificial neural networks have been inves-

tigated to simulate the behavior of how information transfers in the recognition

system of human being. From a high level, neural networks can be viewed as a

non-linear model that maps the input to an output space, but what makes them

di�erent from other learning models (such as Support Vector Machine and Random

Forest, etc.) is that the structure of a neural network consists of thousands of

neurons, which are grouped into di�erent layers to pass and process the information

from input end to output end. These layers are defined as hidden layers and fully

connected with their neighbor hidden layers. This pattern forms the structure of

network. Activation functions are applied to the hidden layer to produce the output.

When learning the network, a loss function compares the output and ground truth

data to build an objective to optimize. Since the nodes are fully connected between

hidden layers, the dimensionality of network scales exponentially with the size of

input, which yields demanding resource for training.

2.2.2 Convolutional Neural Networks

LeCun et al. 1998 propose to use convolutional layers to replace fully connected

hidden layer as the building block of a network to take high dimensional input such

as image. It also consists of pooling layers, activation function and loss function.

See figure 2.1 for the architecture of LeNet-5.

Convolution Layer: Convolution layers are commonly represented by kernels,

which consist of a set of weights that are shared across the input. The small spatial

size (such as 3 ◊ 3 or 5 ◊ 5 and known as receptive field) of such kernel reduces the

complexity of the network. During a forward pass, kernels are convolved across the

spatial dimensions of the input, computing the dot product between the weights
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Figure 2.1: The architecture of LeNet-5 (LeCun et al. 1998) for hand written
character recognition. Figure is from (LeCun et al. 1998)

and each connected block of the input. The kernels of convolution layers can be

viewed as feature detectors, which means that the network learns to activate when

they find specific pattern inside the local region. In this way, the individual element

of the output feature map or activation map is locally connected with its input.

With stacked convolution layers, the receptive field of feature at the output end

grows to recognize the global information of the input.

To further save computation, a larger stride can be applied to convolution layers

when sliding the kernel across the input, which makes it as a sub-sampler to reduce

the spatial dimensions of activation maps.

Pooling Layer. As an alternative way of decreasing feature size and increasing

receptive field, pooling layers perform sub-sampling using max or average operation

on feature maps. Max pooling selects the strongest activation from a local region of

the feature map and ignores the rest, whereas average pooling averages the responses

within the window. In this way, the invariance to local spatial particularity is

introduced to the network by pooling layers .

Activation Layer. In order to increase non-linearity of CNNs, activation func-

tions are applied to the output feature map of convolution layers. Sigmoid activation

layer was proposed to play the role of non-linear activation, but it may cause

vanishing gradient during training because of neuron saturation. Nair et al. 2010
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introduce Rectified Linear Units (ReLU) to overcome this problem. A ReLU

essentially preserves the input when it is positive and outputs zero otherwise.

Its function is ReLU(x) = max(0, x). ReLU has become the most commonly

used activation function because of e�ciency in training and generalization abil-

ity (Krizhevsky et al. 2012).

Fully Connected Layer. In order to reason from high-level information of the

input learnt by CNNs, the activation map from the last convolution layer is flattened

to a vector and forwarded to fully connected layer. It builds the ultimate connection

between input and output by performing dot multiplication. It is also able to

transfer information between modalities when placed before the final output layer.

Other Layers. Dropout layer (Srivastava et al. 2014) randomly set some neurons

of the activation map to zeros during training to prevent the complex CNN from

overfitting. In addition, Batch Normalization Layer proposed by Io�e et al. 2015

can also avoid overfitting and speed up the training by normalizing the input of

a layer within a training batch.

2.3 Deep Learning in Pose Estimation

CNNs have been applied to the problem of pose estimation recently to overcome

the limitation addressed in section 2.1.3. As mentioned in section 1.2, we categorise

them into two groups according to their relationship to the classical methods,

namely regression-based method and reconstruction-based method.

2.3.1 Regression-based Learning

Firstly, the query image is ‘retrieved’ against database in image-level using global,

high-level features from CNNs. Such image features are learnt by training a neural

network to map the input images to their poses. These CNNs commonly consist of



2. Literature Review 25

two parts: a feature extractor and a pose regressor. As investigated in (Kendall et al.

2015), the high-dimensional image feature vectors from the CNN extractor trained

with pose information are strongly related to the positions of landmarks such as

windows and spires, from which the camera pose of an image can be determined. A

pose regressor is also trained at the same time to transfer these features to the ground

truth poses of training images. At inference time, pose for query image is essentially

interpolated by the training poses using the inferred image feature as the input to

the regressor. This line of work (Kendall et al. 2015; Kendall et al. 2016; Kendall

et al. 2017; Brahmbhatt et al. 2018; Melekhov et al. 2017; Naseer et al. 2017; Walch

et al. 2017; Henriques et al. 2018) is also known as Absolute Pose Regression (APR),

More specifically, PoseNet introduced by Kendall et al. 2015 pioneers the idea of

applying a deep learning model to the problem of camera pose estimation. A CNN

is used to extract high-dimensional features directly from the RGB image, followed

by two fully connected layers to regress the translation vector and the rotation

quaternion. Although the model is robust to dynamic changes of the scene due to

its high-level generalization ability, the performance of PoseNet (Kendall et al. 2015)

and its variants (Kendall et al. 2016; Kendall et al. 2017; Walch et al. 2017) do not

perform su�ciently well for accurate localisation. Nevertheless, the most notable

improvement comes from the subsequent geometric loss based PoseNet (Kendall

et al. 2017). It leverages the physical model of the scene and supervises the

learning of the pose regression model by minimizing the reprojection error of the

3D points, eliminating the dependence on the choice of hyperparameters between

translational and rotational losses. Moreover, a homoscedastic task loss is also

used to learn the model, which relies on RGB information only and achieves on-par

performance to the RGB-D version. The need of the 3D model however means that

this method is inapplicable when only RGB images are at hand. Recently, Balntas

et al. 2018 proposed RelocNet that relies on evaluating the similarity between the

query image and images in the training database. The pose of the query image is
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then recovered based on the absolute pose of its nearest neighbor and the estimated

relative transformation between them. Despite the progress, there is much room

for improvement in accuracy for these methods.

2.3.2 Reconstruction-based Learning

In an alternative approach, the points of a new image are ‘matched’ against a 3D

structure, by performing coordinate regression using deep model at the pixel(or

point)-level. Matching is obtained by designing a CNN, which regresses to a set of

3 values for every pixel, where the 3 values are the 3D coordinates in an absolute

coordinate frame. For instance, this coordinate frame is world-centric if the task

is camera relocalisation, whereas it is object-centric for object pose estimation.

Representatives are (Shotton et al. 2013; Brachmann et al. 2014; Valentin et al.

2015; Brachmann et al. 2017; Brachmann et al. 2018). The learning of these

methods also can be considered as an implicit process of 3D reconstruction of the

target structure from all images in the database. At inference time, this CNN

acts as an establisher for correspondence between images pixels and 3D points in

the reference frame. Pose is then solved according to these correspondence using

classical geometric algorithm, i.e. Perspective-n-Point (PnP) solvers (Gao et al.

2003; Lepetit et al. 2009; Hesch et al. 2011; Wang et al. 2018). We name them

as reconstruction-based method in the following.

The idea of using scene coordinates to obtain dense 2D-3D correspondences

is initially proposed by Shotton et al. 2013. A Random Forest is trained to

infer the 3D scene (world) coordinate for image pixels from RGB-D data. The

RANSAC (Fischler et al. 1981) pipeline is then revisited to estimate the camera

pose accurately. Valentin et al. 2015 exploits the uncertainty in the estimate from

the Random Forest to benefit the pose optimization.

DSAC (Brachmann et al. 2017) and DSAC++ (Brachmann et al. 2018) deploy

two versions of an end-to-end scene coordinate regressor based on CNNs, and are
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devoted to make all the steps in the traditional RANSAC di�erentiable to enable

an end-to-end training pipeline. In DSAC (Brachmann et al. 2017), the CNN for

scene coordinate regression takes a small patch of the image as the input, and

its output is the 3D coordinate associated to the central pixel of the input patch.

As an ameliorator, DSAC++ (Brachmann et al. 2018) was upgraded to a fully

convolutional network (FCN) (Long et al. 2015) to improve the e�ciency of training

and to preserve the image-patch-to-coordinate property. To perform the three-step

RANSAC algorithm, they start by sampling a pool of pose hypotheses using the

PnP solver over the dense 2D-3D correspondences given by the scene coordinate

prediction. In the second stage of ranking the hypotheses, DSAC (Brachmann

et al. 2017) scores them with another CNN whose input is the reprojection error

map of the predicted scene coordinates given each pose hypothesis and the camera

intrinsics. On the other hand, to overcome the overfitting issue of the scoring

CNN in DSAC (Brachmann et al. 2017), DSAC++ (Brachmann et al. 2018) simply

uses a soft inliers counting scheme to evaluate the merits of the hypotheses. The

di�erence also exists in the last refinement step. To make this iterative procedure

di�erentiable, DSAC (Brachmann et al. 2017) approximates the gradient via finite

di�erences, and DSAC++ (Brachmann et al. 2018) uses the iterative Gauss-Newton

algorithm to linearise the model. Combining these techniques, they achieve the

state-of-the-art result for camera relocalisation in both indoor and outdoor scenes,

even without the 3D model of scene.

Bui et al. 2018 also estimate the confidence/uncertainty of the scene coordinates

as an auxiliary prediction from the network, and then run RANSAC using those

inferred coordinates that have high confidence, which improves the robustness

of the system.
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2.4 Summary

In this chapter, we have reviewed the literatures proposed for the task of pose

estimation, covering methods developed before and after the era of deep learning.

The classical methods are of two main categories: retrieval-based methods and

correspondences-based methods. Regardless of di�erences between them, sparse

artificial features computed for image keypoints are used in their formulation and

therefore limit their applications in real world environment. Learning is introduced

into modern solutions to address these limitations. Promising accuracy has been

achieved, while robustness to environment dynamics being guaranteed to some

extent. In the family of regression-based learning and reconstruction-based learning

approaches, the 3D CAD models are deeply involved in their solutions, providing the

structural prior of the scenes or objects, which help algorithms to utilize the geometry

to conduct accurate pose estimation. With the next chapter being a starter, we

introduce our proposed learning-based methods for 6dof pose estimation, which do

not rely on the 3D CAD models and sacrifice no performance in terms of accuracy.
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We introduce our direct regression-based object pose estimation method in this

chapter. Our proposed method detects and segments object instances in the image

35
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using Mask R-CNN, and contains a novel additional pose head for 6D pose estimation.

This head estimates the rotation matrix of an object by regressing a Lie algebra

based rotation representation, and estimates the translation vector by predicting the

distance of the object to the camera center. This work has been published to British

Machine Vision Conference 2018. As the third author1 in the list, my contribution

involved the design of the the initial problem with the first author and my supervisor,

as well as the design and implementation of the pose regression branch. I also

worked on data preparation for training and test.

3.1 Introduction

In this chapter, we aim at finding a solution to the first limitation of learning-

based pose estimation that we mentioned in section 1.3, proposing a method that

performs direct 6dof pose estimation for known object instances in an end-to-end

fashion, from only a single RGB input.

Similar to the idea of correspondence-based camera relocalisation, traditional

object pose estimation methods such as (Gordon et al. 2006; Martinez et al.

2010; Wagner et al. 2008) are mainly based on matching hand-crafted local

features (Lowe 2004) in 2D image and 3D object model. However, local feature

matching approach is only suitable for objects with rich textures. Template-based

matching methods (Hinterstoisser et al. 2012; Rios-Cabrera et al. 2013) are used

for object with poor texture. Unfortunately, they are usually sensitive to light

changes and partial occlusions. Although state-of-the-art deep feature learning

approaches (Brachmann et al. 2014; Krull et al. 2015; Michel et al. 2017) can provide

more accurate pose than the template approaches, they are heavily dependent on

depth. This structural information is used for both generating and selecting pose
1 At the time of development and publication, there was no open source implementation of Mask
R-CNN, so the first author of the paper created one and that constituted a major development
e�ort (which was also a reason why he was first author on the paper).
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hypotheses steps. As an extra helper, the 3D models of the objects are also needed

in a subsequent pose refinement process.

Di�erent from these learning-based 6dof pose estimation methods which rely

on RGB-D inputs, in this chapter, we develop a deep neural network which can

recover the 6dof poses of object instances from pure RGB information. It is done

by utilizing the recently proposed advanced region-based CNNs (Girshick 2015;

Ren et al. 2015), based on which we directly regress the 6dof pose for each object

instance in a single forward pass, without using any knowledge of the depth or

the 3D models of the interest objects.

Object classification (Krizhevsky et al. 2012), detection (Girshick 2015; Ren

et al. 2015), and recent instance segmentation (He et al. 2017) have achieved huge

improvements using CNNs. However, the application of CNNs to 6dof object pose

estimation problem is still limited (at the time that this chapter was published).

There are a few regression-based work which use CNNs for direct 6dof camera

pose regression (Kendall et al. 2015; Kendall et al. 2017). However, compared to

camera pose estimation (which consider the whole world as an object), object pose

estimation requires to detect, segment, and recover the pose for every object

instance in the image.

The key for recent achievement in object detection and object instance segmen-

tation is the development of a region-based CNN, i.e. a Region Proposal Network

(RPN) by Girshick 2015. RPN is fundamentally a CNN which is trained to produce

multiple object bounding box proposals in an image at di�erent shapes and sizes.

Faster R-CNN by Ren et al. 2015 further refines bounding boxes produced by RPN

and simultaneously classifies bounding box labels in a single forward pass. The

recent work Mask R-CNN (He et al. 2017) goes beyond detection, performing binary

segmentation in each bounding box from RPN. Despite its simple design, Mask

R-CNN achieves state-of-the-art results for instance segmentation.
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Note that in both Faster R-CNN and Mask R-CNN, the training and testing

of the network are both in an end-to-end fashion. For example, Mask R-CNN

simultaneously localizes, classifies, and segments object instance, outputting these

three predictions in a single forward pass. Leveraging the impressive results of

Mask R-CNN for object detection and instance segmentation – which are two key

components in a 6dof pose estimation problem – we are motivated to find the answer

for the question that, can we exploit the merits of RPN to recover the 6dof poses

of object instances from a single RGB image in an end-to-end fashion?

To this end, we design a network which extends Mask R-CNN by adding a

new branch for regressing the pose of the objects inside bounding boxes produced

by RPN. The contributed pose branch is in parallel with the existing branches

for bounding box recognition and instance segmentation. It predicts poses by

estimating translation and rotation parameters separately. The translation of

an object is estimated by combining the position of the bounding box in the

image (given by the bounding box branch) and the distance of the object center

to the camera (given by the pose branch). Care must be taken when regressing

the rotation matrix as not all 3 ◊ 3 matrices are valid rotation matrices. We

choose to use Lie algebra as the representation for rotation. The Lie algebra of

the rotation matrix group parameterises a rotation with only three scalar values.

Such representation is unconstrained and not over-parameterised, thus well suited

for regression with deep learning.

As a result, our proposed model is simple and elegant, and it does not require

an expensive pose refinement post-process. It allows fast inference at about 100ms

per frame on a GPU. Evaluated on two standard pose benchmarking datasets,

our method surpasses all the state-of-the-art RGB pose estimation methods that

are used without post-refinements.
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3.2 Related Work

In this section, we firstly complete the literature review in chapter 2, focusing on

the recent 6dof object pose estimation work and the application of CNNs for 6dof

pose problems. We then briefly cover the main design of the recent methods which

are based on RPN for object detection and segmentation.

3.2.1 Object 6dof Pose Estimation

The topic of pose estimation has widely studied in the literature. For objects with

rich textures, sparse feature matching approaches have shown good performance in

terms of accuracy (Gordon et al. 2006; Lowe 2004). They are however not reliable and

robust to texture-less objects. For this non-trivial situation, PWP3D by Prisacariu

et al. 2012 relies on level-set methods to maximize the discrimination between the

statistics of foreground and background of object. It achieves both segmentation

and 6dof pose at the same time by making the level set energy function di�erentiable

with respect to the pose parameters. Hinterstoisser et al. 2012 and Tejani et al.

2014 propose to use object template to overcome the lack of texture. The most

notable work belonging to this category is LINEMOD (Hinterstoisser et al. 2012)

which uses stable gradient and normal features for template matching. However,

LINEMOD is designed to work with RGB-D images. Furthermore, template-based

approaches are sensitive to illuminations and occlusions.

Recent 6dof pose estimation researches have relied on feature learning to deal

with objects that have insu�cient texture (Brachmann et al. 2014; Krull et al. 2015;

Michel et al. 2017). In (Brachmann et al. 2014; Krull et al. 2015), the authors show

that the dense feature matching methods outperform traditional approaches. The

basis design of (Brachmann et al. 2014; Krull et al. 2015; Michel et al. 2017) is

a multi-stage scheme, i.e., a random forest is used for jointly learning the object

category for pixels in the image (known as object labels) and the coordinate of the
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pixels w.r.t. object coordinate systems (known as object coordinates). A set of

pose hypotheses are generated by using the outputs of the forest and the depth

channel of the input image. RANSAC is then performed to obtain a pose that

has maximum agreement between all matches.

However, the pipelines in (Brachmann et al. 2014; Krull et al. 2015) depend

heavily on the depth channel. The depth information is required in both pose

hypothesis generation and refinements. The work by Brachmann et al. 2016 also

follows a multi-stage approach as (Brachmann et al. 2014; Krull et al. 2015) but

is designed to work with RGB images. They use auto-context random forest to

improve the prediction of the object labels and the object coordinates. In order to

deal with the missing depth information, the distribution of object coordinates is

approximated as a mixture model and used when generating pose hypothesis.

One of drawbacks of feature learning approaches (Brachmann et al. 2014; Krull

et al. 2015; Brachmann et al. 2016) is that the generation of pose hypotheses

uses only local information, i.e., only three or four pixels are used to generate

a hypothesis. As result, this may generate bad hypotheses because it does not

consider a global context over the whole object. Furthermore, by requiring multiple

processing steps, the learning approaches in (Brachmann et al. 2014; Krull et al.

2015; Brachmann et al. 2016) are time-consuming, making them unsuitable for

real-time applications. In contrast to most aforementioned approaches, we recover

object pose from a single RGB image. In addition, instead of generating pose

hypotheses by using only local information and refine them as the previous works,

we rely on global information, i.e., whole object, to directly regress the pose.

Recently, CNN has been applied for 6dof pose problem, but it is mostly for

camera pose, e.g. (Kendall et al. 2015; Kendall et al. 2017). Camera pose estimation

and object pose estimation are pretty-much dual (or same) problems, except that

object pose is harder to compute than camera pose, due to the fact that objects

are always a subset of the image, which requires an additional step of detection.
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Figure 3.1: Architecture of Faster R-CNN. Recreated from (Ren et al. 2015).

Brachmann et al. 2016 apply a CNN into their object pose estimation system.

However, in that work, the CNN acts as a probabilistic model to learn to compare

the learned information (produced by a random forest) and the rendered image.

In contrast to (Brachmann et al. 2016), we use CNN as a regressor which directly

regresses object poses from a single RGB input.

Instead of directly regressing object poses, other recent methods (Rad et al. 2017;

Kehl et al. 2017; Tekin et al. 2018) train deep networks to predict 2D projections

of 3D bounding box vertices, which are then used to infer object poses using a

PnP algorithm. These methods often compose of a cascade of multiple stages

for object localisation, predicting of box vertices, and pose refinement, are thus

time-consuming for inference. What’s more, the training and inference of these

methods also require the 3D CAD models of the objects. (These work will be

further introduced in chapter 6 for the details of how they use the 3D CAD model

in their pipeline). In contrast, ours is end-to-end, model-free, and runs in real-time.

3.2.2 Region Proposal Networks

One of main components in the recent successful region-based object detection

methods Faster R-CNN (Ren et al. 2015) and in instance segmentation method

Mask R-CNN (He et al. 2017) is the Region Proposal Network (RPN). The core
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Figure 3.2: RoIAlign Operation. Original figure is from (He et al. 2017). RoIAlign
computes the value of pooled feature (solid lines) by bilinear interpolation from the nearby
grid points on the feature map (dashed lines).

idea of RPN is to densely and simultaneously score di�erent aspect ratio and

scale boxes at each location, keeping the best across the image as proposals (or

Region-of-Interest (RoI)).

For each RoI, a fixed-size small feature map (e.g., 7 ◊ 7) is pooled from the

image feature map using the RoIPooling layer (Girshick et al. 2014) or RoIAlign

layer (He et al. 2017). These layers work by dividing the RoI into a regular

grid and then max-pooling the feature map values in each grid cell. In Faster

R-CNN, the outputs of the RoIPooling layer are used to refine the RoI coordinates

and to classify the RoI label. The architecture of Faster R-CNN is shown in

figure 3.1. In Mask R-CNN, the outputs of the RoIAlign layer(See figure 3.2) are

used not only for refining and recognizing the RoI but also for segmenting the

object inside the RoI. Although the design of Mask R-CNN is quite simple and

straightforward development of Faster R-CNN, it achieves state-of-the-art results

on instance segmentation problem. This motivates us to rely on and extend Mask

R-CNN for 6dof object pose estimation problem.

3.3 Our Method

The goal of this chapter is to simultaneously detect the 2D positions (represented by

bounding boxes), classes, segmentation masks, and the 6dof pose of object instances
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in the input image. The first three tasks have been studied well in Mask R-CNN.

To achieve a complete system, we add a fourth branch which outputs the 6dof

pose. Our model is thus conceptually simple. But the additional 6D pose output

is distinct from the other three outputs. It requires a su�cient way to represent

the 6dof pose and a careful design of the loss function. In our work, the output of

the pose branch is represented by a 4-dimensional vector, in which the first three

elements represent the Lie algebra associated with the rotation matrix of the pose;

the last element represents the z component of the translation vector of the pose.

Given predicted z component and the position of the predicted bounding box, we

use projective property to recover the full translation vector.

3.3.1 Mask R-CNN

We start by recapping the Mask R-CNN detector and segmenter (He et al. 2017) in

brief. There are two stages in Mask R-CNN. The first is carried out by a Region

Proposal Network (RPN), which proposes candidate object bounding boxes (Regions

of Interest, RoIs). The second stage then extracts features using RoIAlign from

each RoI, and subsequently performs classification, bounding-box regression, and

instance segmentation. During training, the multi-task loss on each sampled RoI is

L = Lcls + Lbox + Lmask. (3.1)

Please refer to (He et al. 2017) for loss definitions. RoIAlign layer performs bilinear

interpolation over the feature from the RPN, and pools out a fixed-size RoI feature.

In analogy to the mask head, our proposed object coordinate head learns to transfer

from the RoI features to a coordinate map.

3.3.2 Rotation Representation

The choice of representation for the rotation of the pose is critical in our method.

The commonly used form are Euler angles, rotation matrix, quaternion etc. But

they are not suitable for rotation regression because of following reasons.
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Euler angles are intuitive due to the explicit meaning of parameters. However,

they wrap around at 2fi radians. Having multiple values representing the same

angle causes di�culty in learning a uni-modal scalar regression task. Furthermore,

they su�er from the well-studied issue of gimbal lock (Altmann 2005). Alternatively,

a 3 ◊ 3 orthonormal matrix is usually used to represent the rotation. But it is

over-parametrised, and creates the problem of enforcing the orthogonormality

constraint when learning through back-propagation. Another common repre-

sentation is an unit length 4-dimensional quaternion. One of the downsides of

quaternion representation is its norm should be unit. This constraint may harm

the optimization (Kendall et al. 2015).

In this work, we ultimately choose to use Lie algebra so(3) to represent the

rotation of a 6dof pose. Lie algebra so(3), whose element is represented as a vector

Ê œ R3, is the tangent space at the identity element of the Lie group SO(3). Lie

group SO(3) is essentially the space of 3D orthonormal matrix. An element of Lie

group SO(3) represents rotation using a matrix R œ R3◊3.

Using Lie algebra so(3) to represent the rotation means that the network only

needs to regress three scalars for rotation, without any constraints.

The map from Lie group SO(3) to Lie algebra so(3) is defined as Logarithm

map: {log : SO(3) ‘æ so(3)} (Altafini 2001), whose formulation is

Ê = [ln(R)]Ò (3.2)

ln(R) = ◊

2sin◊
(R ≠ RT) (3.3)

cos◊ = tr(R) ≠ 1
2 (3.4)

where angle ◊ = |Ê|, [ln(R)]Ò is the 3-vector generated by the skew symmetric

matrix ln(R), using
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Figure 3.3: Translation ambiguity caused by RPN. Two instances of object duck
are projected on image plane from a viewpoint with di�erent translations but share same
z-component. Their projected appearances would look alike to a large extent which yields
similar RPN features for pose regression. However, the dissimilarity in their translation
annotations causes ambiguity to the learning of pose regressor.

During training, we map the groundtruth of rotation matrices in SO(3) of

objects to their associated elements in so(3) using equation (3.2) to (3.4). These

derived groundtruth 3D vectors in so(3) are the supervision signal for the learning

of the 3 rotation parameters in the output of our model.

To recover the rotation matrix from prediction of the network, we use the map

from Lie algebra so(3) to Lie group SO(3), which is termed as Exponential map

{exp : so(3) ‘æ SO(3)}, and is formulated as:

R = eÊ �= e[Ê]◊ = I3 + sin◊

◊
[Ê]◊ + 1 ≠ cos◊

◊2 [Ê]2◊ (3.6)

where [Ê]◊ is a skew symmetric matrix generated by the 3-vector Ê using
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3.3.3 Translation Prediction

Compared to rotation, the representation for translation is straightforward. We

learn the translation in the 3D Euclidean space. However, instead of predicting

full translation vector with 3 elements, our network is trained to regress only

the z component.

The reason is that when (virtually) projecting a 3D model of an object into

a 2D image, two translation vectors with the same z and the di�erent x and y
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components may produce two objects which have very similar appearance and scale

in 2D image. The most notable di�erence between these two projections is the

position of the bounding boxes in the image, which will be however ignored by RPN.

This causes di�culty for the pose regressor to predict the x and y components

from only appearance information inside the bounding box produced by RPN. See

figure 3.3 for illustration. However, the object size and the scale of its textures

in the image provide strong cues about the z-coordinate.

In order to recover a full translation vector, we combine the 2D position of

bounding box predicted by the bounding box branch in Mask R-CNN and the z

component from our pose branch using projective rules. In addition, we assume

that the projection of the center of the 3D object model is at the center of the 2D

bounding box, since when defining the canonical coordinate systems for interest

objects, the origins of them are always placed in the center of their 3D bounding

boxes. This is a practically reasonable assumption for the dataset we used in this

chapter because no occlusion for objects is considered, neither in the training nor test

set, which means the objects are always fully observable from all views. Therefore,

the 2D bounding box has a very large IoU with the projections of the 3D bounding

box under each view. As a result, the detail formulation for translation estimation is:

x = (u0 ≠ cx)z
fx

(3.8)

y = (v0 ≠ cx)z
fy

(3.9)

where u0, v0 are the bounding box center in 2D image, and the fx, cx, fy, cy are

camera intrinsics.

In summary, the pose branch is trained to regress a 4-dimensional vector, in which

the first three elements represent rotation part and the last element represents

the translation part of the pose.
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3.3.4 Multi-task Loss Function

In order to train the network, we define a multi-task loss to jointly train the

bounding box class, the bounding box position, the segmentation, and the 6D pose

of the object inside the box. Formally, the loss function is defined as:

L = Lcls + –1Lbox + –2Lmask + –3Lpose, (3.10)

where Lcls is the classification loss, Lbox is the bounding box regression loss, and

Lmask is the pixel-wise segmentation loss. Lpose is used to train our proposed pose

branch. –i(i œ 1...3) is the loss weight for each loss term respectively.

The pose branch outputs 4 numbers for each RoI, which represents the Lie

algebra for the rotation and z component of the translation. To regress the pose,

we define pose loss Lpose as follows,

Lpose = ÎÊ ≠ Ê̂Î2 + — Îz ≠ ẑÎ2 (3.11)

where Ê and Ê̂ are two 3-dimensional vectors representing the regressed rotation

and groundtruth rotation, respectively; z and ẑ are two scalars representing the

regressed and groundtruth of translation in z-axis. – is a scale factor to control

the rotation and translation regression errors.

3.3.5 Network Architecture

Figure 3.4 shows the schematic overview of our model. Features over the whole image

are extracted by the backbone shared between all 4 head branches. For the backbone,

we follow Faster R-CNN (Ren et al. 2015) which builds on VGG (Simonyan et al.

2014) with a RPN attached on the last convolutional layer of VGG (conv5_3).

A fixed-size 7 ◊ 7 feature map is pooled for each output RoI of RPN from the

conv5_3 feature map using the RoIAlign layer. This pooled feature map is used

as input for head branches.
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The head branches aim to solve 4 di�erent tasks, i.e., bounding box prediction,

bounding box classification, instance segmentation, and 6dof pose estimation for

the object inside the box. The structures of first three heads are inherited from

Mask R-CNN (He et al. 2017). A small modification is made to segmentation head

to adapt our application. We use four convolutional layers with kernel size 3 with

Relu as the feature extractor. The feature map is then upsampled to 28 ◊ 28 by a

deconvolutional layer, whose output is the segmentation prediction.

In order to use shared features for our goal of pose estimation, we firstly flatten

the RoI feature into a vector and then regress the 4D vector from it. The proposed

pose head branch consists of a sequence of 4 fully connected layers followed by ReLU

(except for the last one). Their number of filters are 4096 æ 4096 æ 384 æ 4. This

design is simple but su�cient enough to achieve good accuracy for pose prediction.

3.3.6 Training and Inference

Training: Our model is implemented using Ca�e library (Jia et al. 2014). We

resize all the input RGB image to a fixed size 480 ◊ 640. We use 5 scales and 3

aspect ratios for the size of RoIs, resulting 15 anchors in the RPN. The 5 scales are

16 ◊ 16, 32 ◊ 32, 64 ◊ 64, 128 ◊ 128 and 256 ◊ 256 and the 3 aspect ratios are 2,

1 and 0,5). This design allows the network to detect small objects.

We train the network in an end-to-end manner using stochastic gradient descent

with 0.9 momentum and 0.0005 weight decay. The network is trained for 250k

iterations with batch size 1. The learning rate is set to 0.001 for the first 150k

iterations and then decreased by 10 for the remaining iterations. The top 2000 RoIs

from RPN (with a ratio of 1:3 of positive to negative) are subsequently used for

computing the multi-task loss. A RoI is considered positive if it has an intersection

over union (IoU) with a groundtruth box of at least 0.5 and negative otherwise.

The losses Lmask and Lpose are defined for only positive RoIs.
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For the hyperparamaters in our loss term, we set –1 to –4 in (3.10) are to 1,

1, 2, 2, respectively. — in (3.11) is empirically set to 1.5.

Inference: At the inference time, the top 1000 RoIs produced by the RPN are

selected and fed into the object detection and classification branches, followed by

non-maximum suppression (Girshick 2015). From the outputs of the detection

branch, we select the output boxes that have classification scores higher than a

certain threshold (in our case is 0.9) as the detection results. The segmentation and

the pose branches are then applied on the detected boxes, which output segmentation

masks and the 6dof poses for the objects inside the boxes.

3.4 Experiments

3.4.1 Datasets

We evaluate our method on two datasets. First, we evaluate our system on the single

object pose estimation benchmark: LINEMOD (Hinterstoisser et al. 2012) dataset.

The images in each of 13 object sequences contain multiple objects, however, only

one interest object is annotated with the groundtruth class label, bounding box,

and 6D pose. The camera intrinsic matrix is also provided with the dataset. Using

the given groundtruth 6D poses, the object CAD models, and the camera matrix,

we can also compute the groundtruth segmentation mask for the annotated objects.

One problem arises in the original LINEMOD dataset since our goal is to train

a unified pose regression model for all objects. Interest object A in sequence 1 is

considered as background in sequence 2, whose interest object is B. The inconsistent

labelling for object A in di�erent sequences cause confusion to the network when

the input data includes images from sequence 1 and 2 (and also in 3-13) and

therefore hinders the training of object detection. To deal with that, for each

object sequence, we use RefineNet by Lin et al. 2017, a state-of-the-art semantic

segmentation algorithm, to train a semantic segmentation model for each object.
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The trained model for object A using sequence 1 is applied on all the rest sequences.

The predicted masks for object A in other sequences are then filtered out from the

background, so that the presences of objects without annotated information does

not a�ect the training. 30% of the images from each sequence for are selected for

training and validation. We perform evaluation on the remaining images.

Then our method is then performed on the dataset with multiple object

instances provided by Tejani et al. 2014. It consists of six object sequences. Each

sequence contains images that have multiple instances of the same object in di�erent

viewpoints. The object is provided with the groundtruth class label, bounding box,

and 6D pose. Using the given groundtruth 6D poses, the object models, and the

known camera matrix, we are able to compute the groundtruth segmentation masks

for object instances. Although provided with depth, we only use RGB images in

our experiment. We randomly split 50% images in each sequence for training and

evaluation. The remaining images serve as the test set.

3.4.2 Evaluation Metrics

The metrics we use to assess the object pose estimation performance are 2D-

projection, ADD-10 and 5cm5deg. 2D-projection metric measures pose errors in

2D, in which we project the 3D object model into the image using the ground

truth pose and the estimated pose. The estimated pose is accepted if the average

reprojection error of all points is below 5px. ADD is the average 3D distance

of model points transformed by the predicted pose and ground truth pose. For

symmetric objects, ADD is relaxed to ADD-S, which is the distance between the

closest points in two transformed models. If the average (or closest) distance

derived by a test pose is less than 10% of the object diameter, the pose estimate is

considered correct. As the for 5cm5deg, an estimate is correct when the translation

and rotation error is below (5cm, 5¶).
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We also evaluate the detection and segmentation results. A detection / seg-

mentation is true-positive if its IoU with the groundtruth box / segmentation

mask is higher than a threshold.

3.4.3 Single Object Pose Estimation

We first evaluate our method on 2D recognition task, including detection and

segmentation. Table 3.1 presents the 2D detection and segmentation results at

di�erent IoU. At an IoU 0.5, both detection and segmentation achieve nearly perfect

scores for all object categories. Even at a more challenging IoU 0.9, although the

accuracies decrease, the detection and segmentation branches still perform quite

well with average detection score 90%.

Secondly we evaluate the performance 6dof pose estimation, which is the main

focus of this chapter. We compare our method against the state-of-the-art RGB

based 6D object pose estimation methods such as BB8 (Rad et al. 2017), SSD-

6D (Kehl et al. 2017), Brachmann et al. 2016, and Tekin (Tekin et al. 2018).

Table 3.2 reports the comparative pose estimation accuracies between ours and

the state-of-the-art work (Brachmann et al. 2016; Rad et al. 2017; Kehl et al. 2017;

Tekin et al. 2018). All the methods only use RGB images as inputs to predict

the poses. Note that except ours and Tekin et al. 2018, other methods comprise

of multiple-stages including a 2D object detection, an initial pose estimation,

and a pose refinement.

One can see that our method significantly outperforms all the considered

competitors when they are used without a post-refinement under all evaluation

metrics. The improvements are more significant when the errors are computed

using the estimated poses directly (i.e., ADD and 5cm 5¶), and less significant

when evaluated in 2D using IoU. Even when the competitor methods such as (Rad

et al. 2017) and (Kehl et al. 2017) further refine their estimated poses using a post-

refinement step, our method is still very competitive. Note that the post-refinement
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Figure 3.5: Qualitative results for single object pose on LINEMOD dataset.
From left to right: (i) original images, (ii) the predicted 2D detections, classes, and
segmentation (di�erent instances are shown with di�erent colours), (iii) 6D poses in which
the green boxes are groundtruth poses and the red boxes are predicted poses. Best view
in colour.

cost is often expensive, for instance the method in (Brachmann et al. 2016) takes

about 100ms per object. Figure 3.5 shows some qualitative results of our method

for single object pose estimation on LINEMOD dataset.

3.4.4 Multiple Object Instance Pose Estimation

The 2D detection and segmentation results on the dataset of Tejani et al. 2014

are shown in table 3.3. At an IoU 0.5, we achieve nearly perfect scores. Then at

IoU 0.9, the accuracy decreases slightly. We found that the Shampoo category

gives the most drop. It is caused by its flat shape, e.g., at some certain poses,

the projected 2D images only contain a small side edge of the object, resulting

the drop of scores at high IoU.
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Camera Co�ee Joystick Juice Milk Shampoo Avg.
IoU 0.5

2D-Detection 99.8 100 99.8 99.2 99.7 99.5 99.6
2D-Segmentation 99.8 99.7 99.6 99.0 99.3 99.5 99.4

IoU 0.9
2D-Detection 93.3 98.2 98.7 94.8 94.5 87.3 94.4

2D-Segmentation 88.3 97.0 98.1 91.2 91.6 82.0 91.3

Table 3.3: 2D detection and segmentation results on the dataset of Tejani
et al. 2014 for multiple object instances.

Camera Co�ee Joystick Juice Milk Shampoo Avg.
2D-projection

Ours 99.2 100 99.6 98.4 99.5 99.1 99.3
Kehl et al. 2017 97.3 99.8 100 99.4 97.0 99.3 98.8

5cm5¶ metric
Ours 76.5 18.7 60.2 85.6 73.5 72.4 64.5

ADD metric
Ours 80.4 35.4 27.5 81.2 71.6 75.8 62.0

Table 3.4: Pose estimation accuracy on the dataset of Tejani et al. 2014 for
multiple object instances.

The pose estimation accuracies are reported in table 3.4. We note that except

SSD-6D (Kehl et al. 2017), none of the previous RGB based pose object estimation

works report their results using this data. Also SSD-6D only reports their pose

accuracies using the 2D-projection metric. It can be seen from the table 3.4 that our

method performs better than SSD-6D even it uses a post-refinement. Furthermore,

under more tricky 5cm 5¶ and ADD metrics, our method still achieves impressive

results with mean accuracies 64.5% and 62.0%, respectively. Figure 3.6 shows the

qualitative results for the predicted bounding boxes, classes, segmentation, and

6D poses for multiple object instances.

The results in table 3.4 show that the Co�ee sequence has the lowest score. We

found that it is because the nearly rotational symmetry (in both shape and texture)

of that sequence. By the symmetric rotation, any rotation of 3D object in the Yaw

angle will produce the same object appearance in the 2D image. This causes the
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Figure 3.6: Qualitative results for pose estimation on the multiple object
instance dataset of Tejani et al. 2014. From left to right: (i) the original images,
(ii) the predicted 2D detections, classes, and segmentation (di�erent instances are shown
with di�erent colours), (iii) 6D poses in which the green boxes are groundtruth poses and
the red boxes are predicted poses. Best view in colour.

network to be confused when predicting rotation using only appearance information.

3.4.5 Timing

To perform the single object pose estimation, the end-to-end architecture of our

model allows the inference to run at 10fps on a Titan X GPU. It is worth noting

that, although our design is not optimized for speed, it runs several times faster than

BB8 (Rad et al. 2017) (3fps) and Brachmann et al. 2016 (2fps), and comparable

with SSD-6D (Kehl et al. 2017). However, these methods report their running

times using the LINEMOD dataset, which contains only one object instance in

each image. Due to the post-refinement, their computational cost will increase

rapidly when tested on images with multiple object instances such as the dataset



3. An End-to-End Learning-based Method for Direct Object Pose Estimation 58

of Tejani et al. 2014. In contrast, the running time of our method stays almost

the same regardless of the number of object instances.

3.5 Conclusion

In this chapter we have presented an end-to-end architecture for estimating 6dof

object poses from a single RGB image. By extending the recent Mask R-CNN

architecture with a new pose head, we train a multi-task network which can

simultaneously recognize, segment, and recover 6dof pose of the object. The novel

pose head branch uses Lie algebra based rotation representation, which is well

suited for deep regression. We recover the translation from the z component given

by pose head and the position of bounding box from detection head. Our method

outperforms the most of the RGB-based 6dof object pose estimation methods

when they are all used without post-refinements. Furthermore, our method also

allows a fast inference which is around 10 fps, which meets the requirement for

real time application.
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We introduce the method that estimates the predictive distribution for pose

estimated from a deep model in this chapter. The main idea is to use the embedded

62
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features of image from CNNs to enable probabilistic Gaussian Process Regression

(GPR) for uncertainty estimation. We first provide a brief explanation to GPR, as

well as Stochastic Variational Inference (SVI) for model simplification. The method

that combines CNNs and SVI GPR is detailed subsequently, which leverages the

deterministic features learnt by CNNs to formulate the GPR. In addition, we use a

kernel function for vector valued function to deal with the inner correlation between

the elements of translation and rotation, respectively. This work was presented at

the British Machine Vision Conference 2018.

4.1 Introduction

In the previous chapter, we proposed a method that directly regresses the 6dof

pose for all interest objects in an image. Fundamentally, it acts like the absolute

camera pose regression method PoseNet (Kendall et al. 2015), but instead of using

the whole image as input for pose regressor, our model extracts useful features

only inside object bounding boxes to decide pose. Despite this key di�erence, the

essence of both methods is to use the power of CNNs and all the training data

to build a map from image to pose space directly. In section 2.3.1 we defined

this kind of method as ‘regression-based’.

These regression-based approaches are the proof of concept of using deep neural

networks for the task of pose estimation. Although the results are appealing, a

significant factor has however missed that it is not straightforward – or even well

understood – how to model the uncertainty of CNN outputs.

Exploiting uncertainty in deep neural networks is an eye-catching topic in

learning community. The probability distribution of the prediction from a deep

perception system can be used in a variety of ways. Most notably for our purposes,

the distribution over a pose regression result can be interpreted as its uncertainty,

making the result amenable for use within the standard data fusion algorithms such
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as a Kalman Filter for state estimation in SLAM systems (Davison et al. 2007)

to improve the accuracy of localization over time.

In this chapter, we aim to model the uncertainty of the regression model that

directly predicts the camera pose from a single RGB image. Closely related work

has been done in Bayesian PoseNet (Kendall et al. 2016), the probabilistic version

of PoseNet (Kendall et al. 2015). The architecture and training process of Bayesian

PoseNet are exactly same with PoseNet. But during inference, the authors keep the

existence of dropout layers – i.e, di�erent stochastic connections between neurons –

in the trained model. Thanks to these dropout layers before the regressors, multiple

(and di�erent, because of randomness of the dropout) samples of camera pose

are obtained during inference with repetitive forwards using a same test image.

Then the distribution of the 6dof pose can be empirically summarized by these

pose samples. The mathematics behind this approximation has been well studied

in (Gal et al. 2016). However, this distribution-from-samples method is not very

resource-friendly, requiring a separate forward inference per sample.

Compare to CNNs, Gaussian Process Regression (GPR) (Williams et al. 2006)

is a probabilistic model that inherently provides a tractable predictive distribution

for the output. But when one applies GPR to real world applications that involve

large scale datasets, the low e�ciency prevents GPR from being plug-and-play.

This arises from four factors. First, GPR scales as a power of the size of the

training set n. The matrix inverse for computing precision matrices has complexity

O(n3), which is prohibitive because n is usually a large number in vision tasks.

Second, even with complexity reduction, the training of sparse GPR still involves

all training samples in each optimization step. Third, the high-dimensional image

data is not a straightforward input for GPR’s kernel function. Forth, GPR is less

commonly used for vector valued functions. In the learning-based pose regression,

rotation and translation are both represented as vectors which are non-trivial for

the design of kernel function.
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A solution to the first two factors is provided by Stochastic Variational Inference

(SVI) (Hensman et al. 2013), which treats the mean and covariance of a lower

dimensional variational posterior as the global parameters, turning the variational

GPs into a “parametric” model. To solve the third issue mentioned above, we use

the feature vectors learnt from a CNN to describe the input image. For vector valued

outputs like translation and rotation, the matrix valued kernel matrix (i.e., matrix of

matrices) is used to maintain the correlation between the elements of a vector valued

function. Specifically, di�erent from the scalar valued kernel matrix, whose elements

are scalars, an element of the kernel matrix for vector-valued function is a D ◊ D

positive semi-definite matrix, where D is the length of the output vector. This

matrix describes the covariance between the elements of the vector-valued function.

With these tools ready to use, our main contribution is to show how to combine

CNNs and GPR naturally, proposing a probabilistic framework to model the

uncertainty in the regression of 6DoF camera pose based on a RGB image, while

overcoming the complexity issues of naive GPR. We exploit the CNN to extract

discriminative features and use the GPR to perform probabilistic inference. We show

that the mean of our predictive pose distribution has the comparable accuracy to

the state-of-the-art pure RGB based method for camera localization, and meanwhile

the covariance is compatible with the uncertainty from Bayesian PoseNet, but

with significant computational resource saving.

To achieve this combination we build an objective function for the whole

framework that aims to minimize two Kullback-Leibler (KL) divergences between

distributions. In the original PoseNet, the importance between rotational and

translational penalization are balanced by grid-search over the network hyperparam-

eters. Later, to avoid hyperparameters tuning, Kendall et al. 2017 embedded the

translation and rotation into a single photometric loss via geometrical transformation

and a�ne projection. However this is not a universal solution for some other multi-

task CNNs that lack of underlying connections between tasks. Our use of the
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KL-divergences not only results in a loss function that permits network optimisation

in an end-to-end fashion, but furthermore, as shown in section 4.3.5, it leads to

greatly improved robustness to the choice of hyperparameters, obviating the need

for expensive grid search during training.

To the best of our knowledge, this is the first work that combines the CNN and

GPR to perform probabilistic inference for large scale computer vision task.

4.2 Background

4.2.1 Uncertainty in Camera Relocalisation

Since publications for camera relocalisation have been reviewed thoroughly in chap-

ter 2, we address the methods that investigate uncertainty learning in publications

that involve CNNs and GPRs.

In the paper of Gal et al. 2016, the authors prove that the widely-used dropout

technique can be mathematically viewed as an approximation to the posterior of the

deep Gaussian Process (Damianou et al. 2013). By running same test point through

the model multiple times with the existence of dropout (which is often deactivated

in most deterministic CNN models at inference time), the di�erent connections

between neurons lead to a set of Monte Carlo samples from the approximated

variational posterior over the output. The Bayesian PoseNet (Kendall et al. 2016)

is a well-demonstrated application of dropout bayesian approximation. Without

changing the training pipeline of PoseNet, it brings the camera relocalisation to

a probabilistic level. Whilst it improves the accuracy of the pose estimation, the

uncertainty can be also obtained empirically with grounded theoretical support

from publication by Gal et al. 2016.

Beyond the success of two versions of PoseNet, two problems can be further

discussed. The first one is the computational e�ciency of Bayesian PoseNet. To

generate accurate posteriors for camera pose, one often needs many prediction
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samples, which results in great computational cost. The second concerns the

network hyperparameters. Due to the di�erent units and scales of the two distinct

quantities of pose – translation and rotation, the choice of the hyperparameters

that balance the loss terms in the final learning objective is therefore challenging.

Experimentally we also found that they are heavily scene-dependent, and the optimal

setting takes much e�ort to find. To this end, we propose to use the combination

of CNN and GPR to improve the e�ciency and eliminate hyperparameter tuning.

A comprehensive explanation is given in section 4.3.5.

4.2.2 Gaussian Process Regression

Gaussian process regression is a fully Bayesian non-parametric model that elegantly

estimates the posterior distribution of the target function. The introduction of

GPR for 1-d functions is given in this section, bringing in the notation used in

this chapter. Let {xi, yi}n
i=1 denote the whole dataset. xi œ X is a sample from

all points X in the feature domain RF , and yi œ y is the observation of a function

f at point xi with independent Gaussian noise ‡2.

A Gaussian Process is a Gaussian distribution over functions (Williams et al.

2006). Mathematically, a Gaussian process is specified by a mean function and

covariance function

f (x) ≥ GP (m(x), k(x, xÕ)) (4.1)

where the mean and covariance are

m(x) = E[f(x)] (4.2)

k(x, xÕ) = E[(f(x) ≠ m(x))(f(xÕ) ≠ m(xÕ))T ] (4.3)

To simplify the notation, the mean function is usually set to zero. The covariance

of the prior is based on a kernel function k, which essentially describes the



4. GPoseNet: A Hybrid Probabilistic Model for Camera Relocalisation 68

similarity between input points. The most commonly used kernel function is

squared exponential (or Radial Basis Function, RBF), which has the form of

k(x, xÕ) = exp(≠ 1
2l2 (x ≠ xÕ)2), (4.4)

where l is length-scale.

In order to take the possible noise for training data about the function into

consideration, an independent Gaussian noise ‡2 is added to the distribution

y ≥ N (0, K(X, XÕ) + ‡2In) (4.5)

Given a test point xı, the inference also take place directly in the space of functions.

The function of xı, fı assumed to follow the same distribution as the training data,

meaning that the joint distribution of test data and training data is given by:
C

y
f ı

D

≥ N
A

0,

C
K(X, XÕ) + ‡2In K(X, xı)

K(xı, X) K(xı, xı)

DB

(4.6)

The conditional posterior of the test functions f ı can be inferred via multivariate

Gaussian theorem (Williams et al. 2006):

p (f ı|y) = N
1
f ı|Kın(Knn + ‡2I)≠1y, Kıı ≠ Kın(Knn + ‡2I)≠1Knı

2
. (4.7)

where Kın = K(xı, X), Knn = K(X, XÕ), Knı = K(X, xı) and Kıı = K(xı, xı)

However, the exact posterior requires O(n3) to compute, where n is the size

of training set. It hinders the e�ciency of GPR.

4.2.3 Sparse Gaussian Process Regression Approximation

A group of sparse GPs that aim to reduce the complexity of the full GPs are well-

researched, such as Deterministic Training Conditional Approximation(DTC) (Csató

et al. 2002), Fully Independent Training Conditional Approximation (FITC) (Snel-

son et al. 2006) and Partially Independent Training Conditional Approximation

(PTIC) (Quiñonero-Candela et al. 2005). These methods approximate the prior
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using a set of pseudo data points and perform the exact inference. They find the

optimal sparse point set by maximizing the likelihood according to the observations.

The computational complexity downscales to the to O(nm2), where m is the

number of the pseudo training points.

One disadvantage of prior approximation methods is that when new training

data comes, action has to be taken to renew the number or positions of the pseudo

points. In other words, they are unnatural from a generative modelling perspective.

4.2.4 Variational Free-Energy (VFE) Method

In contrast, VEF (Titsias 2009) achieves model simplification by approximating the

exact posterior p (u|y) with a variational distribution q (u), where u is defined as

the support or inducing variables, which represents the pseudo training points.

Denote by Z œ Rm◊F the inducing points with number of m, where F is the

dimension of the inputs. The optimal inducing points Ẑ can be found via maximizing

the variational lower bound (ELBO) of the log of marginal likelihood p (y).

The log of marginal likelihood and its exact lower bound is

logp (y) = log
⁄

p (y|u, f) p (u, f) dfdu (4.8)

Ø
⁄

p (u|f) logp (y|f) p (f |u) p(u)
p (u|f) dfdu. (4.9)

Since the exact posterior of inducing variables p (u|f) in 4.9 still needs to compute

(Knn + ‡2I)≠1, Titsias 2009 approximates it with a variational distribution q over

inducing variables u, and the variational lower bound becomes

logp (y) Ø L(q, Z) (4.10)

=
⁄

q (u) logp (y|f) p (f |u) p(u)
q (u) dfdu (4.11)

=
⁄

q (u)
I

E<p(f |u)> (logp (y|f)) + log p(u)
q (u)

J

du (4.12)
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where

E<p(f |u)> (logp (y|f)) = logN (y|KnmK≠1
mmu, ‡2I) ≠ 1

2‡≠2Tr(Knn ≠ KnmK≠1
mmKmn)

(4.13)

is the lower bound of log of conditional likelihood p (y|u).

After integrating variable u, Titsias 2009 proves the conclusion that the final

formulation of the ELBO to logp (y) is

L(Z) = logN
1
y|0, KnmK≠1

mmKmn + ‡2I
2

≠ 1
2‡2 Tr

1
Knn ≠ KnmK≠1

mmKmn

2
,

(4.14)

and the optimal variational posterior qú(u) is with mean and covariance:

µ = ‡≠2Kmm�≠1Kmny (4.15)

� = Kmm�≠1Kmm, (4.16)

where � = Kmm + ‡≠2KmnKnm. The complexity is now O(nm2).

4.2.5 Stochastic Variational Inference (SVI)

Note that when computing L(Z) and qú(u) during optimization, the existence of

Knm (or Kmn) and y makes the algorithm need to use all training samples. This

is disadvantageous for tasks with large datasets.

In SVI for GPs, Hensman et al. 2013 propose to use a parametric variational

Gaussian posterior for u, such that the mean and covariance of qg(u) = N (u|m, S)

act as the global variational parameters across all training samples. This enables

the joint training of m, S and Z via batch data to perform SGD. The lower bound

of the log marginal likelihood then changes from equation (4.12) to

Lsvi(m, S, Z) =
⁄

qg (u)
I

E<p(f Õ|u)> (logp (yÕ|f Õ)) + log p(u)
qg (u)

J

du

= E<qg(u)>
1
E<p(f Õ|u)> (logp (yÕ|f Õ)) + logp(u) ≠ logqg (u)

2

= logN (yÕ|KnÕmK≠1
mmm, ‡2I) ≠ 1

2‡2 Tr
1
KnÕnÕ ≠ KnÕmK≠1

mmKmnÕ

2

≠ 1
2Tr

1
S�Õ≠1

2
≠ KL(qg(u)||p(u))

(4.17)
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where KL(qg(u)||p(u)) is the KL divergence between the variational posterior and

the exact prior p(u) = N (u|0, Kmm). Note that in equation (4.17), (·)Õ means

that it is from/for the batch data. We use this lower bound as the objective

of our GP regressors.

4.3 Modelling Uncertainty for Camera Relocal-
isation

4.3.1 Problem Formulation

Given a RGB image Ii œ I, our goal is to build a probabilistic model to predict

the multivariate distribution of the translational vector t œ R3 and rotational

quaternion q œ R4.

Denote the CNN feature extractor as N(Ii, ◊N). It takes RGB image Ii as

input, and has learnable parameters ◊N . To model the uncertainty of prediction,

we assume two independent Gaussian priors for {ti}n
i=1 and {qi}n

i=1, and consider

the output from N(Ii, ◊N) as the shared input features for both of the SVI GP

regressors. Based on the Bayesian knowledge in the previous section, the predictive

distribution for translation component is

p(tú) =
⁄

p(tú|u)qg(u)du, (4.18)

with

p(tú|u) = N (tú|KúmK≠1
mmmt, Kúú ≠ KúmK≠1

mmKmú), (4.19)

and

qg(u) = N (u|m, S). (4.20)

The integral results in

p(tú) = N (tú|KúmK≠1
mmmt, Kúú ≠KúmK≠1

mmKmú +KúmK≠1
mmS≠1

t K≠1
mmKmú). (4.21)

Kúú = K (N(Iú, ◊N), N(Iú, ◊N)) is the kernel matrix built on the features

learnt from the CNN base. Since the priors and likelihoods are all Gaussian,
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the predictive distribution for translation and quaternion are two multi-variate

Gaussian. This distribution has learnable parameters Zt, mt, St and parameters

for the kernel function ◊k. Similar results for rotation can be obtained by replacing

the subscript t with q.

4.3.2 Coregionalization Kernel

Matrix K in the previous sections is the covariance of the function values in the

Gaussian prior. It is built from the kernel function k(xi, xj) that describes the

similarity between two points. For 1-d GPR, the output of krbf is a scalar and the

kernel matrix for the whole training points Knn = K(X, X) is a n ◊ n Positive

Semi-definite (PSD) matrix. However in our task, both of the translation and

quaternion are vector-valued functions, and have correlation between their entries.

The scalar does not satisfy the need of storing this interrelationship. Alvarez et al.

2012 review the cokriging from geostatistics, and formally introduce the kernel

for the vector-valued function GPs, the Coregionalization kernel. The key idea

of coregionalization is to have a PSD B œ RD◊D act as a learnable parameter to

represent the correlation between these functions, where D is the dimension of the

output. To ensure the PSD property, a coregionalization kernel is built by

B = WWT + diag(Ÿ), (4.22)

where W œ RD◊R and Ÿ œ RD. Both of them are learnable parameters during

training. Size R is the rank of B (specified by the user at algorithm design time).

As a result, the full kernel matrix for inducing points Z in SVI is given as

Kc
mm = Kc(Z, Z) = B ¢ Kmm, (4.23)

where ¢ is the Kronecker product of matrices. Now the size of full kernel matrix

Kc
mm is mD ◊ mD.
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Figure 4.1: The overview of the GPoseNet. It takes a monocular RGB image
as input. The high-level feature from fc2048 layer of the CNN base is fed to two SVI
GPs to perform probabilistic inference for translation and rotation. Our system outputs
a distribution for camera relocalisation. The red dot and pyramid indicate the point
estimate of the 6DoF pose.

4.3.3 Architecture

To make a fair comparison between linear regressors in (Kendall et al. 2016; Kendall

et al. 2015) and the SVI GP regressors in our framework, we use the same deep feature

encoder as PoseNet. We remove the last two fc layers of PoseNet and replace them

with two SVI GP regressors. They take the output from the previous fc2048 layer

as input, and perform Bayesian inference to obtain the distribution of translation

and rotation for camera pose. The “loss function” of this framework is the sum of

the objectives of two GPs, which will be further addressed in the next paragraph.

We use the coregionalization kernel in our system. Since the main goal of this

work is to compare the capability of this hybrid architecture and the pure CNN

structure, we did not tune the type of kernel function to seek for better performance.

We use RBF as the base kernel function for simplicity, and leave the selection of

kernel function to future work. Figure 4.1 illustrates the structure of our framework.

4.3.4 Objective Function

To train the whole structure in an end-to-end fashion, we design a multi-component

objective function that combines CNN loss and the ELBOs of two log marginal

likelihoods as follow:

L = —gtLsvi(mt, St, Zt) + —gqLsvi(mq, Sq, Zq) + —nt

...t̂ ≠ t
...

2
+ —nq Îq̂ ≠ qÎ2 , (4.24)
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where Lsvi(mt, St, Zt) is the ELBO of translation and Lsvi(mq, Sq, Zq) is the ELBO

of quaternion. We will discuss the choices of —gt and —gq for these two ELBOs

in the following section.

The last two components of equation (4.24) are used to learn the low-level

and middle-level pose-related feature maps from the RGB images. In the original

PoseNet, the final objective of the network consists of the pose losses produced by

three pose regressors, which are placed after di�erent levels (low-level, middle-level

and high-level) of CNN feature maps. Only the last pose regressor at the output

end is used at inference time to predict the pose. The first two regresses are added

to learn pose-related shallow feature maps at training time, which are beneficial to

the convergence of the network. In our system, we replace the final pose regressor

with the proposed probabilistic objective, and keep the first two regressors. We use

the same weights (—nt and —nq) for them as PoseNet (Kendall et al. 2015).

4.3.5 Hyperparameters

The main issue of the multi-task CNNs is that the norm-based losses for these

targets are not always at the same unit and scale, therefore they need di�erent

weights to penalize. In the proposed objective function (4.24), however, the first

two components are the objectives from the SVI GPs.

Maximizing the ELBO of logp(y) is mathematically equivalent to minimizing the

KL divergence between the exact posterior p(f |y) and the variational distribution

q(f) (Titsias 2009). We observed that this measure between two distributions can

reduce the dependence on the choice of hyperparameters.

For a clear understanding of this advantage, we use these two univariate

Gaussians over a same random variable – p1(x) = N (x|µ1, ‡2
1) and p2(x) =

N (x|µ2, ‡2
2) – as examples to simplify the proof. The KL divergence between
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these two distributions is

KL(p1(x)||p2(x)) = log‡2
1

‡2
2

+ ‡2
1 + (µ1 ≠ µ2)2

2‡2
2

≠ 1
2 . (4.25)

It is straightforward to see that (µ1 ≠ µ2)2 and ‡2
2 have the same scale, because

‡2
2 = 1

N

qN
i=1(xi ≠ µ2)2 and xi has the same scale with µ1, as well as µ2. The scale

is canceled out in this equation. It means that the unit of the KL divergence is

always 1, hence the choice of the hyperparameters —gt and —gq becomes easier. In

the following experiments, we always keep them equal.

4.4 Experiments

4.4.1 Datasets

To benchmark our model both on outdoor and indoor scenarios both in this chapter

and the following one, we use two datasets for training and evaluation, the Cambridge

Landmarks (Kendall et al. 2016) and the 7Scenes (Shotton et al. 2013) dataset.

The dataset of Cambridge Landmarks is an outdoor urban localization dataset

created by Kendall et al. 2016 using a hand-held camera in 5 di�erent scenes. 3D

models of these scenes are built from SfM (Wu 2013) algorithm. It was collected from

many di�erent points in time representing di�erent lighting and weather conditions,

as well as exhibits significant urban clutter such as pedestrians and vehicles.

7Scenes by Shotton et al. 2013 has 7 indoor scenes captured using a Kinect

camera, provided with RGB-D images and ground truth poses. We only use the

RGB images and ground truth poses to train our models. Note that the depth

images can be very helpful to supervise the learning of the model, however our

work focuses on the case that only relies on RGB input. Hence we omit the

ground truth depth in our experiments.
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4.4.2 Training Regime

We follow the same training/test split in PoseNet. All the experiments are done

on a NVIDIA GeForce GTX 1070 GPU. The batch size in training is 75. We

optimize all the models in an end-to-end fashion with ADAM (Kingma et al. 2014).

We also initialize the CNN base with pre-trained weights from ImageNet (Deng

et al. 2009), suggested by Kendall et al. 2015 and Kendall et al. 2016. The number

of inducing points for SVI GPs is 10% of the image number in each training

split. This number varies w.r.t di�erent scenes, from to 23 to 149 in Cambridge

Landmarks dataset. We initialize the inducing points Z with the results from

k-means clustering over the features from 500 images. These images are randomly

selected from training set. This initialization keeps the induced feature points and

the deep features of the training images in the same domain, preventing the large

– and meaningless – elements in the kernel matrix, which could raise if Z is with

random initialization around zero. Experiments show that this initialization also

ensures a stable convergence. The learning rate is 10≠4 for CNN base and 10≠2

for GPs’ parameters. We implement the CNN base with Tensorflow (Abadi et al.

2016) and the GPs part with GPflow (De G. Matthews et al. 2017).

We evaluate our method from two perspectives, localization accuracy and predic-

tive uncertainty. Overall, the results from the following experiments shows that our

method can achieve comparable accuracy with the state-of-the-art pure RGB based

method, Spatial LSTM PoseNet (Walch et al. 2017), and estimates the uncertainty

in a more e�cient way comparing to Bayesian PoseNet (Kendall et al. 2016).

4.4.3 Localization Accuracy

We use the mean of the translational and rotational predictive distributions as the

point estimation for the 6DoF camera pose. The rotational vector is normalized to

ensure that it is an unit vector. In table 4.1, we compare the median error of local-

ization in di�erent scenes with the state-of-the-art methods. We can see that with
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(a) King’s College (b) Old Hospital (c) Shop Facade

Figure 4.2: Position samples from the predictive distribution. We show 100
samples from three predictive pose distributions of our models from Cambridge Landmarks
dataset.

the same CNN encoder, our SVI GP regressors outperform PoseNet and Bayesian

PoseNet in every scene, and have similar results with Spatial LSTM PoseNet Walch

et al. 2017. In the scene Old Hospital and Stairs, the proposed method produces

similar accuracy with geometry-based method (Kendall et al. 2017).

This result shows that by replacing the L2-loss based pose regressors with

the SVI GPs, our system improves the performance of the original PoseNet and

Bayesian PoseNet. Since all of them use same CNN base, hence the advancement

is contributed by the regressors. The comparable accuracy with Spatial LSTM

PoseNet suggests that the e�ect of regressors replacement qualitatively equals the

enhancement of the output feature from CNN.

4.4.4 Uncertainty Evaluation

The “cherry on top” of this proposed framework is the ability to predict a distribution

over the 6DoF pose without losing the localization accuracy. Figure 4.2 shows the

samples from estimated position distribution for three test images in di�erent scenes.

First, we compare the distributions of our method and Bayesian PoseNet in terms

of e�ciency. The pose distribution of Bayesian PoseNet is summarized from the

Monte Carlo samples. The number of samples is also the number of inference times

for one image. The more poses sampled, the more time consumed. Parallelization
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Figure 4.3: Comparison of system e�ciency. For Bayesian PoseNet, the average
time consumption for probabilistic inference is correlated to the number of Monte Carlo
samples.

might help sampling method but this is still an issue when the computational

resource is limited such as using only CPU for inference. In figure 4.3, we plot

the average time for pose distribution estimation of one image against the number

of samples1. If the number of samples is 40, it takes 0.4 second to estimate the

pose distribution in average.

In contrast, the number of inference in our method for pose distribution is only

one. As shown in figure 4.3, it takes 0.015 second to perform the distribution

prediction, which is lower than the Bayesian PoseNet when the sample number is

10. Since the distribution is not from the sampling method, the time consumption

is not related to the number of samples. This significant improvement of e�ciency

makes our system ready for real time relocalisation with uncertainty.

To qualitatively evaluate the rotational and traditional uncertainty of our model,

we use the same measure in Bayesian PoseNet (Kendall et al. 2016), which is the

trace of covariance matrix for each predicted pose component. In the following

evaluation, the term uncertainty stands for this trace. In (Kendall et al. 2016), the

authors have found the trace to be an e�ective scalar measure of uncertainty. The
1 Due to the performance of our GPU, the time consumption of Bayesian PoseNet inference in
this chapter is more than Bayesian PoseNet (Kendall et al. 2016). However we perform all the
experiments using the same hardware to ensure a fair comparison.
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(a) GPoseNet

(b) Bayesian PoseNet

Figure 4.4: The correlation between uncertainty of translation and rotation.
This shows that the translation uncertainty is linearly correlated with rotation uncertainty,
and the linearity is more obvious in our distribution compared to Bayesian PoseNet.

trace is a sum of the eigenvalues, which is rotationally invariant and represents

the uncertainty that the Gaussian contains e�ectively. This form of uncertainty

measure is strongly correlated with metric error in translation and rotation, which

shows that we can use the uncertainty estimate to predict relocalisation error.

The translational uncertainty and rotational uncertainty from our model are

more strongly linear correlated than Bayesian PoseNet (Kendall et al. 2016). In

figure 4.4, we show these two uncertainties (traces of covariance matrices) from
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(a) GPoseNet

(b) Bayesian PoseNet

Figure 4.5: Confusion matrices of model uncertainty. The test images from each
dataset (row) are tested on the each model (column). We consider the model that the
lowest uncertainty belongs to as the classified scene. To be more specific, 78% (row 1
column 1 of figure (a)) means that 78% of the test images in King’s College set achieve
the lowest Z-score on the model trained from King’s College set, and they are correctly
classified as image in King’s College set, which are true positives. Whereas 20% (row 1
column 2 of figure (a)) means that 20% of the test images in King’s College set achieve the
lowest Z-score on the model trained from Old Hospital set (they are therefore classified as
images from Old Hospital, which are false negatives). 19% (row 2 column 1 of figure (a))
means that 19% of the test images in Old Hospital set achieve the lowest Z-score on the
model trained from King’s College set, which are false positives.

scenes in Cambridge Landmarks datasets. This linear correlation is in accordance

with the results from Bayesian PoseNet, but with a more consistent linearity.

We also explore various of applications of the estimated uncertainty in the

task of pose estimation. The uncertainty of camera pose can be interpreted as a

measure for scene classifier. Kendall et al. 2016 define a normalized metric, Z-score,

to compare the uncertainties of di�erent models. To compute the Z-score for a

model, they firstly test all images from the scene that the model was trained on are

inferred by the model, and a Gamma distribution is fit over the uncertainties of

the test results. Then, when a new image (from scene’s test images split or images

from other scene) is inferred by the model, its uncertainty is sit in the Gamma

distribution and compared to the population. The percentile of the new uncertainty
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in the Gamma distribution is defined as the Z-score for the image. We evaluate

the test split from one scene on all models. For example, one test image from

Cambridge Landmarks dataset has four Z-scores: on the trained model from scene

King’s College, Old Hospital, Shop Facade, St Mary’s Church, respectively. This

test image is classified to one scene if the Z-score inferred by that model is lowest.

Figure 4.5 compares the confusion matrices of our method and Kendall et al. 2016.

It shows that the smallest predictive uncertainty of a test image is majorly produced

by the model that is trained on the analogous training split.

Secondly, the uncertainty of our model also indicates the confidence of the pose

prediction. The confusion matrices in figure 4.5 is from a setting we call ‘same-

image-for-di�erent-models’. This means the comparison is done by applying di�erent

models on a same image, and then compare the it Z-scores. We alternatively run an

experiment on the ‘di�erent-images-for-same-model’ setting, which is an intuitive

evaluation scheme for each individual model. To to so, we evaluate the test splits

from all scenes on one of the models, and plot the probability density function

of the approximated Gamma distribution of uncertainties in figure 4.6. We can

see that if the images are from the test split of the dataset that this model is

trained on, the model tends to estimate a lower uncertainty. This observation

corroborates the conclusion of the vanilla GPR.

It means that the uncertainty from our model is a practicable indicator for

the confidence of the inferred result. We suggest that this confidence also can be

used in other tasks beyond pose regression, such as image classification or object

detection, for which the most of the deterministic CNNs trust the prediction

with absolute certainty.



4. GPoseNet: A Hybrid Probabilistic Model for Camera Relocalisation 83

0.8 0.9 1 1.1 1.2

Uncertainty

0

2

4

6

8

10

12

14

16

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

King's College
Old Hospital
Shop Facade
St Mary's Church

(a) St Mary’s Church

0 0.2 0.4 0.6 0.8 1

Uncertainty

0

10

20

30

40

50

60

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

chess
fire
heads
office
pumpkin
redkitchen
stairs

(b) Red Kitchen

Figure 4.6: The gamma distribution of uncertainties on chosen model. We
evaluate all the test images from four scenes on the model of scene St Mary’s Church
and Red Kitchen to obtain uncertainties. For each test set from all four scenes, we plot
the approximated Gamma distributions of the uncertainties. This shows that these two
models produce smaller uncertainties on the test images from the corresponding scenes,
which means the model from St Mary’s Church is more confident about the pose for a
test image from scene St Mary’s Church, and vice versa.

4.5 Conclusion

In this chapter, we show how to combine the deterministic CNN and probabilistic

GPR together to accomplish real time camera relocalisation with modelling the

uncertainty. This is done by replacing the traditional L2 norm loss based linear

regressor with KL divergence based SVI GPs regressor. It improves the system
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e�ciency of method based on bayesian approximate CNN without losing accuracy.

However, compare to the traditional methods which use geometric rules to derive

the 6dof pose, the performance of PoseNet and its variants (including the proposed

method in this chapter) is still far from being accurate for real world use. In next

chapter, we will address this problem for camera relocalisation by using the idea

of scene coordinates, and deeply integrate rules in geometry to the learning-based

pose estimation to explore space of improvement in accuracy.
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This chapter introduces a method that estimates the 6dof camera pose using

scene coordinate regression from RGB image. Existing methods require the ground

truth annotations for scene coordinate learning. We propose to use multi-view

87
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geometry to provide indirect supervision. The fundamental idea is to use an image-

based warp error between di�erent views of a scene point to improve the ability

of the network to regress to the correct absolute scene coordinates of the point. It

is further augmented with a featuremetric error. This work was published in the

workshop on Deep Learning for Visual SLAM of IEEE International Conference

on Computer Vision 2019.

5.1 Introduction

The common scenarios where the camera relocalisation module is applied, always

require high accuracy in the 6dof pose, because the results from relocalisation have to

be mathematically good enough to perform correction over the drift caused by a pose

tracker. Though direct pose regression using deep network is an interesting direction

to explore with advantages such as being robust to a variety of dynamic e�ects in

the images including lighting changes and motion blur, however in those demanding

applications, its performance is currently not su�ciently accurate. Sattler et al. 2019

have proved that pose regression is more closely related to pose approximation via

image retrieval than to accurate pose estimation via 3D structure. This means that

the generalization beyond the training data to novel poses is not guaranteed, and the

most promising solution to the improvement is to bring the 3D model into the system.

In order to integrate the 3D structure to the learning-based method for pose

estimation, Shotton et al. 2013 introduce the concept of scene coordinates. They

are basically defined as the 3D coordinates of the points in the scene-centric

(or world-centric) frame. Because of having no dependency on camera positions,

the representation of scene coordinates is globally consistent for a visual feature

no matter what the viewpoint is. Leveraging from this consistency, work such

as (Shotton et al. 2013; Brachmann et al. 2016; Brachmann et al. 2017; Brachmann

et al. 2018; Bui et al. 2018) aim to build learning models that map the visual
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appearances on an image (or combined with depth information) to scene coordinates.

In such a way, the 2D-3D correspondence can be built via learning algorithms, which

can then be used to determine the pose in the manner of classical solvers (Gao et al.

2003; Lepetit et al. 2009; Hesch et al. 2011; Wang et al. 2018).

CNNs have also been studied to serve as the base for the learning model. As

successful representatives, DSAC++ (Brachmann et al. 2018) and its predecessor

DSAC (Brachmann et al. 2017) apply a FCN (Long et al. 2015) over the image

to perform dense scene coordinate regression for every pixel. In that sense, these

models can also be interpreted as a network that performs 3D scene reconstruction

from a single image at inference time, and then estimate the pose as a post

process. Because of the robustness of the CNN coordinate regressor and the strong

geometric constraints of Perspective-n-Point (PnP) solver, this line of methods

achieves great accuracy for pose estimation, and even outperforms the traditional

approaches Sattler et al. 2016.

The key to these methods working well is the ability of the deep model to map

to the fixed 3D location of any given scene point from an image of that point. Since

the viewpoint can be anywhere, the appearance of the scene point may vary, but

the network should still regress to the same global 3D coordinates. It is not clear

if such a network is capturing the invariance of features to di�erent viewpoints

and therefore implicitly encoding multi-view geometric constraints (Hartley et al.

2003), or if it is acting as a huge look-up table that simply memorizes all possible

appearances and corresponding mappings. Regardless, in this chapter we aim to

make the multi-view constraints more explicit during training.

To that end, the main innovation of this chapter is to exploit constraints from

multi-view geometry to supervise the learning of a model for scene coordinate

regression. We aim to retain the advantages of the training for single view recon-

struction, but to incorporate the additional information available from viewpoint

invariant image features under motion parallax. Specifically, after predicting the
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scene coordinates from one image in the database during training, we project the

predictions to another image that shares an intersection of the camera frustum

with the query image, using the ground truth pose of the target image. We then

compare local image feature descriptors – any di�erence that we assume arises

from an error in the predicted scene coordinates – and use this error for back-

propagation. In this chapter we explore two types of local image features: (i)

simple RGB values (which are invariant to viewpoint under the common lambertian

reflection assumption); (ii) high dimensional features that are learned to be good

for matching (Weerasekera et al. 2017; Zhan et al. 2018).

The advantage of our method is that it produces more accurate scene coordinates

compared to the single-view training approaches. Therefore it yields better 2D-3D

correspondence for single view pose estimation using RANSAC during test. On

top of this accuracy improvement, our system also avoids the scale issue that the

methods with single view training may su�er. The reason for the first stage –

training with pseudo depth in the RGB-only case (See section 5.2 for details) – is

needed in DSAC++ (Brachmann et al. 2018) is that it assigns an initial scale to

the scene coordinates. A good guess of the scale helps the next learning stages and

vice versa. This makes it heavily reliant on the heuristic. In contrast, experiments

show that our method relaxes the requirement for this strong prior through the use

of multi-view geometry. One should bear in mind that our training pipeline also

requires the initialization stage, but only a rough guess for depth is needed to avoid

the case when all the photometric/feature construction losses are meaningless.

A similar technique has been applied to the topic of self-supervised depth

estimation (Garg et al. 2016; Zhan et al. 2018; Zhou et al. 2017). The di�erences

between these works and ours are twofold. First, the objectives are di�erent.

Depth estimation focuses on purely recovering the geometric structure of each

frame. However in our task, the scene coordinates inferred from the network are

intermediate values whose purpose is ultimately to enable camera pose estimation.
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Second, the label consistency of these two representations is di�erent, and this

has a significant e�ect on learning. In the case of depth estimation, the labels are

the depth values of each pixel. As the camera moves these depth values change

even for the same part of the scene because they are camera position dependent.

In contrast, for the scene coordinate estimation task, the scene coordinates are

described in a fixed world coordinate frame – the label for a scene point is its 3D

coordinates and this label is consistent across all viewing locations and appearances,

i.e., independent of camera location. We believe this makes the 3D scene coordinates

easier to regress than depth values in the known environments.

5.2 Training in DSAC and DSAC++

Please refer to chapter 2 and section 4.2.1 for the details of work related to camera

relocalisation. We mainly review the training of DSAC (Brachmann et al. 2017)

and DSAC++ (Brachmann et al. 2018) which is strongly related to our work and

will be referred frequently in this chapter.

A multi-step scheme is adopted in the training phase of DSAC++ (Brachmann

et al. 2018). The training of the scene coordinate regression CNN consists of three

stages and the performance of the model progressively increases with additional

training. Since they will be repetitively mentioned hereinafter, we give a brief

introduction to them. The scene coordinate regression model is initially trained

with either ground truth scene coordinates or a heuristic assuming a constant

distance of the scene, depending on the availability of depth images or the 3D scene

model. In the second stage, the model is enhanced by the supervision from the

distance between the 2D projection of predicted scene coordinates (given the ground

truth camera pose) and the ideal image pixel position, namely the reprojection error.

In the third step, DSAC++ (Brachmann et al. 2018) refines the model with an end-

to-end scheme that combines the inlier soft counting based hypotheses scoring and
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di�erentiable refinement that is mentioned above, resulting in superior performance.

5.3 Method

The overall objective of this chapter is to e�ciently train an FCN-based scene

coordinate regression model using multi-view geometric constraints, and then apply

this model to a single view RGB image to infer dense 2D-3D correspondences

for pose estimation in a RANSAC pipeline. We start by describing the network

architecture in section 5.3.1. In addition to the single view reprojection loss, we

introduce three more supervisions that come from the multi-view geometry induced

by camera motion. The photometric warp error based image reconstruction loss is

introduced in section 5.3.2. An additional deep feature reconstruction loss which

takes contextual information into consideration rather than per pixel colour alone is

introduced in section 5.3.3. We propose a smoothness prior in 3D space to regularize

training in section 5.3.4, in order to mitigate the e�ect of featureless, ambiguous-

to-match scene regions. Figure 5.1 shows our framework in the training phase.

The overall training loss and inference procedure are summarized in section 5.3.5

and section 5.3.6, respectively.

5.3.1 Scene Coordinate Regression

The FCN (Long et al. 2015) model of DSAC++ (Brachmann et al. 2018) is inherited

into our system for scene coordinate regression. We denote this model as w. The

output of this network is the scene coordinate map Y(w, I) of an input image I.

Every element of this map is a 3D vector yi,j œ R3, which represents the coordinates

in the world reference frame of the point that corresponds to an image pixel. This

FCN comprises 12 convolutional layers, 3 of which have stride size 2. Thus, Y(w, I)

is one-eighth the size of the input image I. This means that the 3D scene coordinates

predicted by the model represent that of the center of 8 ◊ 8 pixel tiles in I. Note

that however each output corresponds to an overall receptive field of 41 ◊ 41 pixels.
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Figure 5.2: The build of photometric loss. The scene coordinate network predicts
a 3D point P in world coordinate system for a pixel on the first image. The prediction is
projected second image with ground truth pose R2, t2. The RGB value of the projection
is computed using bilinear interpolation. The photometric loss is the distance between
value of the input pixel and interpolated value. The featuremetric loss is computed in a
similar way.

5.3.2 Photometric Reconstruction

The main supervision for learning the scene coordinate regression model in our

framework comes from the reconstruction of two types of features: (i) RGB colour;

(ii) deep features trained to be good for matching (Weerasekera et al. 2017) (used

as an “o�-the-shelf” tool). We begin by introducing the photometric (RGB)

constraint in this section.

Given an image pair {I1, I2} with known ground truth absolute poses T1 and T2,

firstly I1 is fed into the regressor w for predicting the map of the scene coordinates

Y1(w, I1). Then, they are projected onto the image plane of I2 with the ground

truth pose of second frame T2 and camera intrinsics K, for computing the projected

pixel positions p2Ω1(w, I1). Using the RGB values of I2 at p2Ω1(w, I1), a warped

image I1Ω2 is formed to synthesize image I1. See figure 5.2 The procedure can

be formulated as equation (5.1),

I1Ω2 = f(Y1(w, I1), I2, T2, K), (5.1)
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where the function f(·) is the reconstruction function based on image warping. This

operation is fully di�erentiable when using the bilinear interpolation reconstruction

method proposed in Spatial Transformer Networks (STN) (Jaderberg et al. 2015),

which guarantees di�erentiability in the whole system.

The loss based on photometric di�erence between the real image I1 and the

synthetic image I1Ω2 is defined as

Lrgb = 1
H ◊ W

H,Wÿ

m,n

...I1
m,n ≠ I1Ω2

m,n

...
1

, (5.2)

where H and W are the spatial dimensions of the output scene coordinate map

Y1(w, I1).

5.3.3 Dense Deep Feature Reconstruction

Since the RGB values of an image are sensitive to change in the lighting condition,

the consistency of the light/colour intensity of a 3D point across two images cannot

always be assured, especially in uncontrolled environments. There are also cases

in both indoor and outdoor scenes where a large patch of the image is filled with

same RGB value due to lack of texture on the objects and surfaces in the scene.

Photometric reconstruction loss is only useful in regions where intensity gradient

is large. Hence, a robust dense image feature, which contains more contextual

information, can be used for dealing with these issues. In this chapter, we exploit

the deep CNN features for dense matching proposed by Weerasekera et al. 2017.

While any dense visual descriptor such as dense SIFT may be suitable for the

dense matching task, the learned deep visual descriptor in Weerasekera et al. 2017

is light-weight allowing for e�cient training, and has been proven to be successful

for dense monocular reconstruction. To extract the deep features for each pixel

in the image, the whole image is passed into a fully convolutional neural network

which is pre-trained using the method in Weerasekera et al. 2017 on the raw NYU-D

v2 dataset Silberman et al. 2012. A 32-dimensional feature map F with the same
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spatial dimensions as the input image is regressed by the network which can be

subsequently used for dense image alignment. We then downsize it to one-eighth

of the image size to match the scene coordinate map. Given the feature map F 2

regressed for I2, we can warp it into I1’s frame of reference as follows,

F 1Ω2 = f(Y1(w, I1), F 2, T2, K). (5.3)

Similar to equation (5.2), the deep dense feature reconstruction loss is defined as

Lfeat = 1
H ◊ W

H,Wÿ

m,n

...F 1
m,n ≠ F 1Ω2

m,n

...
1

. (5.4)

5.3.4 3D Smoothness Prior

The predicted scene coordinates from a single view image can be considered as

the reconstruction of the scene. So far, the learning of our model for coordinate

prediction only considers the input(image)-output(3D points) relationship. The

correlation between the predicted 3D points is also important to recover the geometry

of the scene. In particular, we utilize the intensity consistency within the image

to constrain a smooth prediction in the coordinate map. A similar idea has been

applied in (Garg et al. 2016; Godard et al. 2017; Heise et al. 2013; Zhan et al. 2018)

in the depth estimation topic. We extend this mechanism to the 3D space.

The idea behind this smoothness prior is that a large 3D Euclidean distance

between predicted neighboring scene coordinates should be penalized if there is

no image evidence to support this (e.g. if the image is uniform). Specifically,

it is formulated as

Ls =
H,Wÿ

m,n

e≠|ˆxIm,n| ÎˆxYm,nÎ2 + e≠|ˆyIm,n| ÎˆyYm,nÎ2 , (5.5)

where Y is the predicted coordinate map, ˆx(·) and ˆy(·) are the horizontal and

vertical gradient operators.
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5.3.5 Training Loss

Apart from the three losses previously mentioned, we also use the single view

reprojection error of I1 as the base loss to train our model, since the ground truth

pose T1 is available. The reprojection error loss is defined as

Lrepro = 1
H ◊ W

H,Wÿ

m,n

...P (Y1, T1, K) ≠ p1
...

2
, (5.6)

where P (·) is the projection function that projects a 3D point and computes its

pixel position in the image plane. Note that this is the loss that DSAC++ used

in the training of the second stage of their system.

Hence, the total loss that we use to train our model is

L = wrLrepro + wpLrgb + wfLfeat + wsLs, (5.7)

where wr, wp, wf and wr are the loss weights hyper-parameters.

5.3.6 Single View Inference

Although our system is trained with image pairs, it only requires a single view image

to perform inference. Once the model for scene coordinate prediction is trained, we

can establish the dense correspondences between image pixel positions and the 3D

points and then use RANSAC+PnP to estimate the pose of the camera.

Similar to DSAC++ (Brachmann et al. 2018), we first sample N sets of four

2D-3D correspondences using the predicted coordinate map (i.e. each sample

contains four image points and corresponding 3D scene coordinates). After solving

the PnP problems independently, a pool of N pose hypotheses is built for the best

candidate selection. To rank the hypotheses, we compute the reprojection error

map for each hypothesis using all predicted 3D coordinates. The best hypothesis is

selected depending on the number of inliers, which is defined as the points whose

reprojection error is less than a threshold · . Finally, the best hypothesis is refined

with updated inliers iteratively to produce the final pose estimate.
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Figure 5.3: Localization accuracy of position and orientation as a cumulated
histogram of errors. The horizontal axis is the threshold for transnational error (left,
in cm) and rotational error (right, in degree). The vertical axis is the proportion of the
test images of which transnational or rotational error is smaller than the thresholds on
the horizontal axis.

5.4 Experiments

5.4.1 Data Preparation

Training images are selected following the o�cial split of datasets 7Scenes (Shotton et

al. 2013) and Cambridge Landmarks (Kendall et al. 2015) mentioned in section 4.4.1.

Since the images are taken from a monocular camera, it is important to select

proper target frames for each training image to enable multi-view geometry based

supervision. To that end, we randomly select 3 images from its nearest [-100,

+100] neighbours as the pair candidates (thanks to the fact that the images are

from a continuous sequence). Then we use an o�-the-self optical flow estimation

method (FlowNet2.0 (Ilg et al. 2017) and its implementation (Reda et al. 2017))

to compute the overlap between the current frame and its pair candidates. We

choose the candidate as the final pair image if the ratio of their overlap area to

the image spatial area is within the range of [0.4, 0.9]. On average, a training

image has ≥2 pairs to build multi-view constraints. We also use the overlap as

the mask to zero out the meaningless reconstruction loss caused by the pixels that

are projected out of frame on the target images.

5.4.2 Training and Test Regime

We use a two-stage scheme for our training pipeline. Firstly, we train the model

with the heuristic suggested in DSAC++ (Brachmann et al. 2018) since only RGB
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images are used for training, which means the actual scales of the scenes are

missing. This heuristic assumes a constant distance between the camera plane

and the scene surface for every image. The distance is set to 3m and 10m for

7Scenes and Cambridge Landmarks dataset respectively, which are the approximate

scales of the indoor and outdoor scenes.

We apply our proposed multi-view geometry based losses in the second stage of

training, which is initialized by the model from the previous heuristic. To conduct

a detailed ablation study, we train the model with five di�erent combinations of

losses for the 7Scenes respectively:

1. repro: the model is trained with only single view reprojection loss equa-

tion (5.6). This is our baseline model.

2. repro+rgb: the model is trained with photometric reconstruction loss equa-

tion (5.1) along with repro.

3. repro+feat: the model is trained with deep feature reconstruction loss

equation (5.4) along with repro.

4. repro+rgb+feat: the model is trained with photometric reconstruction loss

equation (5.1) and deep feature reconstruction loss equation (5.4) along with

repro.

5. w/ smooth: the smoothness prior equation (5.5) is added to repro+rgb+feat.

All five models are optimized in an end-to-end fashion with ADAM (Kingma et al.

2014) for 30k iterations in total. The initial learning rate is set to 1e-4 and decreased

to half at 10k step and the next every 5k step. The training samples for repro

model are also pairs of images to ensure an identical training environment. The

hyper-parameters in (5.7) are not highly tuned and are kept identical between scenes.

We use the PnP solver plus RANSAC to estimate the 6D pose for the test

images after predicting the scene coordinate from these 5 trained models. For

RANSAC, N = 256 pose hypotheses are generated as the pool, and the reprojection
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error threshold · is set to 10 pixels for inliers selection. The final pose refinement

step runs up to 100 iterations.

5.4.3 Results Analysis

Table 5.1 and figure 5.3 shows the pose estimation performance of the models trained

with di�erent combinations of the losses introduced in previous sections. The pose

for a test image is considered as correct if the pose error is below 5cm and 5¶.

5.4.3.1 Multi-view vs. Single-view

One can see from table 5.1 that the addition of photometric loss supervised by

multi-view constraint in training always improves the accuracy of the estimated

pose than purely training with single-view reprojection loss (Column repro and

repro+rgb). The deep feature reconstruction loss also helps the reprojection loss

and the e�ect is even more obvious generally (Column repro and repro+feat),

due to the more informative (both fine and course) features that are extracted

from a deep model, especially when the scene contains textureless regions. The

accuracy of the pose estimation is further slightly improved by using the photometric

and feature reconstruction loss together as the additional supervision for the

coordinate regression model.

The reason behind this gain of pose estimation performance is that the model

predicts more accurate scene coordinates if it is supervised with multi-view con-

straints during training. We show one set of 4 points used by hypothesis generation

in PnP algorithm for a test image in figure 5.4. The predicted 3D points for

the left image are projected to the right image using the ground truth pose to

show the quality of these points. The projections of points from the model with

reconstruction loss on the right image are closer to the pixels that share the similar

surrounding pattern on the left one, compared to the model trained with only single
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Figure 5.4: The projections of scene coordinates predicted by models trained
with (reprojection loss only) and (reprojection loss + reconstruction loss) on
a pair of test images. In the left image we show some sample points (coloured circles)
for which we predict the 3D coordinates using two models: one trained with single-view
reprojection loss and the other trained with the multi-view geometry-based reconstruction
loss as the additional supervision. In the right view, whose relative pose to the left is
known, we show the projections of the regressed coordinates from left image as squares
(reprojection loss) and as stars (geometry loss). Observe that the geometry loss (i.e. with
feature consistency constraints), produces a model that produces better coordinates, as
seen by the better match locations of the star points compared with the squares. Best
viewed in colour.

view reprojection loss. This behavior a�rms the usage of photometric/feature

reconstruction consistency in the training.

5.4.3.2 Smoothness prior

The best pose estimation performance of scene heads comes from the model trained

with all components of the final loss, which suggests the best 3D reconstruction.

See figure 5.5 for visualization. As can be seen, the point cloud reconstructed from

the models trained with the first three (a, b c) losses are not visually good enough

to recover the actual geometry of the scene (e). In this case, the smoothness prior

(d) helps to produce an improved model for the 3D reconstruction, especially by

reducing the noise in the bottom part of the point cloud. As for other scenes, we

found the usefulness of the smoothness prior is limited (Column repro+rgb+feat

and w/ smooth in table 5.1). When the pose estimate is accurate enough from the

model trained without the smoothness prior, for instance in scenes fire and office,
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Reconstructed point clouds of one sample image from the test set
of scene heads using di�erent models. We visualize the point cloud reconstruction
from our model trained with (a) repro, (b) repro+rgb, (c) repro+rgb+feat, (d) w/
smooth. The ground truth point cloud and the reconstruction from DSAC++ (Brachmann
et al. 2018) is showed in (e) and (f) respectively. All point clouds are visualized from the
same viewpoint.

the use of the smoothness penalty does not help, with the e�ect even being negative.

We presume the underlying reason for this behaviour is that there are relatively more

textures in other scenes than heads. The losses Lrgb and Lfeat benefit from these

textures a lot and therefore recover a good enough scene geometry, even without

using smoothness loss. When using penalty of smoothness, the loss might push

inlier 3D scene points towards the outliers that would otherwise have been ignored

by RANSAC, and subsequently decrease the performance of pose estimation.

5.4.4 Comparison with Single-view Based Work

To establish a fair comparison between our model and other work, we increase the

training iteration number of the model repro+rgb+feat to 300k (which is used
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DSAC++ Brachmann et al. 2018 ours
Scene w/ 3D w/o 3D
Chess 0.02m, 0.5¶ 0.02m, 0.7¶ 0.02m, 0.8¶

Fire 0.02m, 0.9¶ 0.03m, 1.1¶ 0.02m, 1.0¶

Heads 0.01m, 0.8¶ 0.12m, 6.7¶ 0.04m, 2.7¶

O�ce 0.03m, 0.7¶ 0.03m, 0.8¶ 0.03m, 0.8¶

Pumpkin 0.04m, 1.1¶ 0.05m, 1.1¶ 0.04m, 1.1¶

Kitchen 0.04m, 1.1¶ 0.05m, 1.3¶ 0.04m, 1.1¶

Stairs 0.09m, 2.6¶ 0.29m, 5.1¶ 0.18m, 3.9¶

Acc. 76.1% 60.4% 70.1%
K. Col. 0.18m, 0.3¶ 0.23m, 0.4¶ 0.20m, 0.3¶

Old Hos. 0.20m, 0.3¶ 0.24m, 0.5¶ 0.19m, 0.4¶

Shop Fac. 0.06m, 0.3¶ 0.09m, 0.4¶ 0.07m, 0.3¶

St M. Ch. 0.13m, 0.4¶ 0.20m, 0.7¶ 0.20m, 0.6¶

G. Court 0.40m, 0.2¶ 0.66m, 0.4¶ 0.62m, 0.4¶

Table 5.2: Comparison between our method and DSAC++ (Brachmann et al.
2018). The gap between model trained with and without is closed using our multi-view
geometry-based training method. Numbers are boldened only among the w/o 3D methods.

in Brachmann et al. 2018), likewise for the steps for learning rate decay. Table 5.2

shows the results of this model for 7Scenes and Cambridge Landmarks (Kendall

et al. 2015). Except for the relatively poor performance in the stairs scene due

to the self-similarity of the RGB images, our method achieves a consistently good

result for all of the indoor scenes. The percentage of the correct test frames of

all scenes in 7Scenes of our model is 70.1%, compared to 76.1% and 60.4% of

DSAC++ (Brachmann et al. 2018)’s model that is trained with and without ground

truth scene coordinate respectively. The gap of training without and with the

3D model of the scene is closed by our method.

The conclusions from previous ablation study in table 5.1 and table 5.2 together

are: 1) our losses help the coordinate regression model converge faster than the

single-view baseline (table 5.1). This superiority of convergency is indicated by

the better accuracy of the model trained with our proposed multi-view loss than

the single-view baseline, when both models are optimized for 30k iterations. 2)

when converged (300k iterations in table 5.2), it also performs better than the
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Figure 5.6: The distribution of depth value of 7Scenes. We randomly select 10
depth images from the training set of each scene, and show the distributions of all the
valid depth values of them. One can see that the depth distribution of scene heads has
the mean value around 0.7m, which does not follow the distributions of other scenes.

state-of-the-art single-view method (Brachmann et al. 2018) (table 5.2).

A noticeable point is that the median error of scene heads is relatively large for

DSAC++ (Brachmann et al. 2018) compared to other indoor scenes when trained

without 3D model, which is 12cm and 6.7¶. We observe that this is presumably due

to the misused heuristic for scene heads, which assumes a constant distance between

the image plane and the scene surface for every frame that is used to initialize

the model in the first stage of training. To support our hypothesis, we plot the

distributions of the ground truth depth samples from training images of each scene

in figure 5.6. The heuristic constant distance we (as well as DSAC++ (Brachmann

et al. 2018)) used for 7Scenes is 3m, which properly simulate the substantial depth of

most of the scenes, except for heads, whose true depth is around 0.7m. We therefore

train another model for heads with the heuristic set to 0.7m. The result of the new

model is increased to 0.02m and 1.3¶. This backs our speculation. Nonetheless, our

training scheme eliminates the negative e�ect of the inappropriate heuristic, and

achieves better reconstruction when the poor prior is applied to both our method

and Brachmann et al. 2018 (we still use 3m for 7Scenes as the approximate depth
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*For all test images in 7Scenes DSAC++Brachmann et al. 2018 Ours
Average No. of inliers per image 245 319

Table 5.3: We project the predicted scene coordinates from the models in
DSAC++Brachmann et al. 2018 and ours using ground truth poses. The reprojection
error threshold for inlier is set to 2 pixel.

for the first stage in our experiment). From this standpoint, our method based on

multi-view consistency reduces the dependence on the initialization of the model.

Since the performance of pose estimation heavily relies on the quality of

the scene coordinate prediction, we also show the quantitative comparison of

the scene coordinate regressed by our model trained with multi-view constrains

(repro+rgb+feat) and the single-view method (Brachmann et al. 2018) in table 5.3.

This shows that our model predicts more accurate scene coordinates for the

geometrical task.

5.5 Conclusion

We have proposed an e�cient learning method for scene coordinate regression to

carry out accurate 6DoF camera relocalisation in a known scene from a single RGB

image. Our learning method explicitly enforces multi-view geometric constraints

to learn the regression model in a self-supervised manner in the absence of the

ground truth 3D model. The constraints imposed by our proposed loss improve the

e�ciency of training. Additionally, the regression model learned via our method

allows for more reliable 2D-3D correspondences which in turn lead to consistent

and accurate camera relocalisation performance.

In next chapter, we aim to apply the proposed multi-view constraints to object

pose estimation task with specific modifications.
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In this chapter we return to the question of 6dof pose estimation for objects.

Although this problem is classically posed as a correspondence problem between a

known geometric model, such as a CAD model, and image locations, in this chapter

we consider the case that instead of a CAD model, we have access to some previously

110
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acquired images of the object. Instead of creating an intermediate 3D object model

by reconstructing from the previous views (as in (Wagner et al. 2008; Pan et al.

2010; Pan et al. 2009)), we propose a learning-based method whose input is the

collection of previous images of the target object, and whose output is the pose of the

object in a novel view. At inference time, our method maps from the RoI features of

the input image to a dense collection of object-centric 3D coordinates, one per pixel.

This dense 2D-3D mapping is then used to determine 6dof pose using standard

PnP plus RANSAC. In this sense the work in this chapter can be considered an

extension of the work of chapter 5 to the problem of chapter 3. It di�ers from

chapter 5 in that we also introduce a mechanism to automatically discover and

match image features that are consistent across the multiple prior views. We show

that this method eliminates the requirement for a 3D CAD model (needed by classical

geometry-based methods and state-of-the-art learning based methods alike) but still

achieves performance on a par with the prior art. This work was recently accepted

by the IEEE Conference on Computer Vision and Pattern Recognition 2020.

6.1 Introduction

In chapter 3, we proposed a method for the 6dof object pose estimation based on

direct regression. It performs fast, is reasonably accurate and does not require

any geometric information about the objects. However the classical feature-based

solutions (Dementhon et al. 1995; Zhang 1994; Marchand et al. 1999; Lepetit

et al. 2005; Pauwels et al. 2013) and recent learning-based publications (Xiang

et al. 2017; Li et al. 2018; Sundermeyer et al. 2018; Hu et al. 2019; Peng et al.

2019; Wang et al. 2019; Xiao et al. 2019; Bui et al. 2018; Park et al. 2019) in

this field suggests that if the 3D CAD models of objects are known, it would help

algorithms to achieve better accuracy.
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3D CAD model has been widely used for object pose estimation and played

di�erent roles. For instance, in the classic family, such a role might be the reference

for registration (Zhang 1994), base for templates generation (Hinterstoisser et

al. 2012) and provider of texture for feature extraction. As for the CNN-based

approaches, this model acts as the supervision for network learning (Brachmann

et al. 2014; Park et al. 2019; Brachmann et al. 2016; Kehl et al. 2017), a source for

synthetic image generation (Peng et al. 2019; Li et al. 2018; Kehl et al. 2017; Chang

et al. 2015) and/or an agent for post-process refinement (Li et al. 2018; Rad et al.

2017; Kehl et al. 2017) etc. However, fine-grained and well-textured 3D structure

does not exist for every object in the wild. This limits the generalization of these

approaches. In this chapter, we are therefore devoted to answer this question: Is it

possible to accomplish the object pose estimation task based on strong geometry

learning, but without using the 3D CAD model of the object?

Methods based on object reconstruction (Wagner et al. 2008; Pan et al. 2010; Pan

et al. 2009) have shown the feasibility of this proposal. They firstly reconstruct the

3D object from the multi-view RGB images to substitute missing CAD model, using

Structure from Motion (SfM) (Agarwal et al. 2011). Object pose is then solved using

the Perspective-n-Point (PnP) algorithm, based on the correspondence of the 2D

visual cues of a new image and those a�liated to the 3D reconstruction. Although

handcrafted feature descriptors perform e�ciently in detection and matching, they

cause the main limitations in the pipeline: (i) Their main purpose is to generally

detect the salient keypoints with rich texture, rather than to describe the structure

of the object; (ii) For largely texture-less objects, a paucity of interest points can

often lead to a poor or unreliable interpolated reconstruction.

Camera relocalisation, as we have discussed in previous chapters, is a very

closely related problem (because its objective is also to find a 6dof pose), and

this has been tackled using regression-based method like PoseNet (Kendall et al.

2015). More promising are the methods of Brachmann et al. 2017; Brachmann
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et al. 2018 and chapter 5 which use the power of CNNs to establish high quality

dense correspondences and are coupled with a subsequent geometric method for

improved accuracy. Nevertheless there are aspects of the camera relocalisation

problem that are not directly analogous to object pose estimation. The main

di�erence that prevents direct adoption of these methods for object pose is that

the object is only visible in part of the scene, necessitating a need to distinguish

the object from the rest of the scene.

Hence, the problem we seek to solve is: given as input a collection of images and

their poses, learn a system that can then detect, reconstruct and localize the object

in any subsequent view. Inspired by the success of the hybrid approach (Brachmann

et al. 2014; Brahmbhatt et al. 2018; Bui et al. 2018), we introduce: Reconstruct

Locally, Localise Globally (RLLG), a learning and reconstruction-based method

to object pose estimation.

Our solution di�ers from SfM in that there is no explicit 3D model of the target

created. We implicitly encode the process of reconstruction within the weights

of a neural network during training. At inference stage, this network serves as a

2D-3D correspondences establisher for the test image. Our method then estimates

the accurate 6dof pose of the object from the these correspondences using PnP

plus RANSAC (Fischler et al. 1981).

In order to identify, detect and isolate the objects from the background, and

concurrently perform reconstruction, we (again, like chapter 3) seamlessly build our

model upon Mask R-CNN (He et al. 2017). Along with three special-purpose heads:

bounding box head, classification head and segmentation head, we contribute a

new head – the object coordinate head – to the same backbone, whose output is

the dense 3D coordinates of the object in object-centric frame. In this sense, it is

the local analog of what we saw in chapter 5, every pixel within the foreground

is regressed to its 3D coordinate by the object coordinate head.
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But, a key issue here is how to provide supervision to learn this head. Since the

goal of RLLG is to disengage the ground truth 3D model from the pose estimation

pipeline, how to establish what those 3D coordinates actually are is our main interest.

Similar to the previous chapter, we continue to explore alternative supervisions from

multi-view geometry. In chapter 5, the geometric supervision of the 3D coordinates

came directly from a photometric (and featuremetric) warp loss. However, because

the objects are small and sometimes textureless, in this chapter, we will augment the

photometric loss with a warp loss based on the equivariant features, i.e. features that

are not a�ected by a change in viewpoint. To that end, we are going to introduce

an additional component to the learning framework, which explicitly transforms

each local image patch into an equivariant feature. We will learn it so that at

training time, for the object coordinate learning, dense 2D-2D correspondences

can be established which enable the formulation of multi-view geometry to provide

the training signal. The equivariant feature branch is not to be used at inference

time for a single-view image, since the network already knows how to regress to

3D object coordinates from pixels after training.

In summary, we design the object coordinate head as a two-branched FCN (Long

et al. 2015) during training. The equivariant feature branch learns dense viewpoint-

independent features for all pixels on the object, and those features are matched

between pairs of images in the training set to build 2D-2D correspondences. The

object coordinate branch regresses to the 3D coordinates in the object-centric frame

for every object pixel. This regression is learned using a loss based on the multi-view

geometry according to the matching results.

As mentioned before, one of the key issues we would like to solve in this chapter

is to learn object coordinates without using direct supervision. This issue also

applies to the equivariant feature branch. Since these feature descriptors are also

invariant to the change of the external factors (such as pose and illumination), the

learning therefore aligns them in pairs of images related by a warp and expects the
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detector to be equivariant with the image deformations. In (Thewlis et al. 2019),

the authors use in-plan transformations (e.g. in-plane rotation, scaling and crop)

for data augmentation as a way to learn equivariant features. We follow the same

idea and use these artificial deformations to build equivariant constraints.

A question that the reader may raise is why do we not artificially create an

image-pair with known deformation (same as what is used for equivariant feature

learning) to enforce multi-view geometry for object coordinate learning, but use a

‘redundant’ equivariant feature branch to find the 2D-2D correspondences explicitly

for images from actually di�erent viewpoints in the training set. The reason is that

from a geometric perspective, the pixel-wise correspondences between an image-pair

introduced by the in-plane operations do not constrain the location of the object

point in 3D space. Therefore, we propose to learn the object coordinate with image

pairs derived by out-of-plane movements, and used the equivariant feature branch

to assist the establishment of correspondences between images.

We have created a dataset to showcase our object coordinate regression network

and subsequent pose estimation pipeline. Our 3D model free pose estimation

method is also tested on the LINEMOD (Hinterstoisser et al. 2012) and Occlusion

LINEMOD (Hinterstoisser et al. 2012) dataset to prove its generalization and

robustness to real world scenarios. It achieves the on-par performance with the

state-of-the-art methods that require the 3D object in di�erent ways.

6.2 Related work

In conjunction with section 3.2 of chapter 3, we review the learning-based methods

that rely on the 3D CAD model of object to perform pose estimation in this section.

Like detection, segmentation and other recognition tasks, object pose estimation

also benefits from the recent development of deep learning. Most of the learning-

based methods integrate the 3D object model in the process of learning and/or
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inference. BB8 (Rad et al. 2017), Oberweger et al. 2018, Tekin et al. 2018 and Hu

et al. 2019 create a 3D bounding box around the object model, and define the 8 (or

9 with center point in (Tekin et al. 2018)) corners as the 3D key-points on the object.

They then annotate their 2D projections and train various networks to perform

keypoint detection on an image, establishing sparse 2D-3D correspondences for

pose estimation. PVNet (Peng et al. 2019) proposes a method that automatically

discovers a set of keypoints on the 3D object surface based on the physical structure,

to ensure that their 2D projection are all within the silhouette.

The CAD model is also very handy when generating new data for the train-

ing. Peng et al. 2019; Rad et al. 2018; Oberweger et al. 2018 use the textured object

model and random poses to generate a large amount of synthetic images to augment

(or replace) the limited training images, preventing the network from overfitting.

The 3D object model could also serve as the base for loss evaluation. Wang et al.

2019; Li et al. 2018; Xiang et al. 2017 compares the o�sets between the object

model transformed by the predicted pose and the ground truth pose. This error

is used for back-propagation to train the network, and successfully avoids the

imbalanced weighting between translation and rotation when a model builds the

losses using distances in the translational and rotational spaces separately (such

as Kendall et al. 2015 and Kendall et al. 2016).

Moreover, in (Xiao et al. 2019; Li et al. 2018; Rad et al. 2017; Kehl et al.

2017), the 3D model is used for post-refinement to improve the quality of the pose

estimates. Having the output pose from the network as the initialization, an iterative

optimization is designed to produce the optimal pose solution by minimizing an

objective related to the 3D model. Such objective can be the consistency between

the rendered colour image from the textured model and the input image (Rad

et al. 2017), or the distance between the transformed object points in camera frame

and those recovered from depth (Kehl et al. 2017).
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Similar to our work, Pix2Pose (Park et al. 2019) and Brachmann et al. 2014

also use object coordinates as an intermediate representation to find the object

pose. However, in these methods, a 3D model of the object provides the direct

supervision for the model (such as a random forest (Brachmann et al. 2014) or

a neural network (Park et al. 2019)) learning. In contrast, we aim to learn the

coordinates without the 3D model in a self-supervised way (by self-supervised,

we mean that the supervision that governs the learning of the object coordinate

does not come from the ground truth directly).

6.3 Method of Reconstruct locally, Localize glob-
ally

Denote by Ii, i œ {1...n} an image of object Ol, where l œ {1...L} is object label,

and by Pi,l the visible 3D object points in Ii. Their coordinates in object-centric

frame O and camera-centric frame C are PO
i,l and PC

i,l respectively. The pose of

this object Ti,l consists of two parts: rotation Ri,l œ R3◊3 and translation vector

ti,l œ R3. It is essentially the transformation between two Euclidean spaces:

PC
i,l = Ri,lPO

i,l + ti,l. (6.1)

Camera intrinsics K projects PC
i,l onto image and obtains the 2D coordinates of

the projections pi,l = [u, v] , where

s

S

WU
u
v
1

T

XV = KPC
i,l and K =

S

WU
fx 0 cx

0 fy cy

0 0 1

T

XV . (6.2)

s is a scale factor, fx and fy are the focal lengths and (cx, cy) is the camera center.

The correspondences between 2D points pi,l = [u, v] and 3D points PO
i,l preserve

the geometric transformation of the object to the camera, and therefore are used to

estimate the pose at inference time. We aim to design a network to densely build
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these correspondences, by mapping from the RGB image pixels to 3D coordinates

in the object space.

6.3.1 Object Coordinate Head

We build our object coordinate head upon Mask R-CNN (He et al. 2017). For

details of this framework in our thesis, please refer to section 3.3.1.

Figure 6.1 shows the training of the proposed object coordinate head. As

mentioned in section 6.1, this new head consists of two branches: object coordinate

branch and equivariant feature branch. The object coordinate branch is introduced

first since it is directly related to the subsequent pose estimation at the inference

time. We then discuss the equivariant feature brach and show how it is learned,

and used at training time to benefit the learning of the object coordinates without

a strong supervisory signal.

6.3.1.1 Object Coordinate Branch

The spatial map of the object coordinate relates to the 2D layout of the object in

the image. Therefore by nature we use convolutions to provide the pixel-to-pixel

correspondences between image and object coordinates. We apply a FCN �obj on

each RoI features. The output of �obj is a m◊m◊3 vector map PO
i,l,(h,w) = �obj(Ii),

h œ {1 . . . m}, w œ {1 . . . m}, where each pixel is a 3D vector that represents a

location on the imaginary 3D model of the target object.

The training of �obj is straightforward if the 3D object model is accessible,

which makes the learning fully supervised. Instead, we aim to present a model-free

method and therefore propose to explore alternative supervisions.

6.3.1.2 Single-view Reprojection Loss

Due to the graceful alignment provided by the FCN, the predicted object coordinate

map maintains the explicit per-pixel spatial correspondence with the RoIs, which

essentially means that for a specific pixel, the regressed 3D coordinate from the
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network should be re-projected to its exact location using the ground truth pose.

We first explore the supervision based on this reprojection error, within the proposal

boxes (RoIs) suggested by RPN of Mask R-CNN.

To perform projection inside the RoIs, we need to adapt the projection ma-

trix K to a proposal box. For each proposal, the RPN estimates a 4D vector

(xmin, ymin, xmax, ymax) that parameterizes a box around the target pixel. In term

of spatial dimension, with this box, the RoIAlign layer gathers and pools the

RoI features from the backbone and then up/down-samples to m ◊ m via the

FCN �obj. Two operations change the spatial dimension of our interested region

and consequently reform the projection model: crop (by the RoIAlign) and resize

(by up/down-sampling). We therefore assume the m ◊ m object point map fully

corresponds to a new m ◊ m image Ii,s&c, which is a resized crop of Ii. The

intrinsics hence scales to

Kc&s =

S

WU
swfx 0 sw(cx ≠ xmin)

0 shfy sh(cy ≠ ymin)
0 0 1

T

XV , (6.3)

where sw = m/(xmax ≠ xmin) and sh = m/(ymax ≠ ymin). As a result, the predicted

re-projection on Ii,s&c from ground truth object pose is

ppred
i,l,(h,w) = 1

s
Kc&s(Rgt

i,lPO
i,l,(h,w) + tgt

i,l). (6.4)

The expected projection of an object coordinate simply is the 2D pixel position

where it lies in the output map, which means pgt
i,l,(h,w) = [h, w], h œ {1 . . . m}, w œ

{1 . . . m}. The learning objective is to minimize the reprojection error triggered

by any di�erence that we assume arises from an error in the predicted object

coordinates. We therefore define the single-view reprojection loss as

Lrepro = 1
m ◊ m

ÿ

h,w

...ppred
i,l,(h,w) ≠ pgt

i,l,(h,w)

...
2

. (6.5)

Since loss (6.5) is evaluated for a single-view image, it potentially has limitations.

From a geometric perspective, the reprojection loss settles to be optimal for any
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point on the line that connects the camera origin and the real 3D object point.

Hence, theoretically, minimizing loss (6.5) dose not guarantee the network to regress

to the correct coordinates. The training however happens iteratively in practice,

which means that the network sees images of the object in di�erent viewpoints

from batch to batch. It is expected that the network learns to recognize the

same object point with various visual appearance (caused by viewpoint change)

in di�erent images and consistently regress to a same coordinate. Such behavior

would be an implicit multi-view constraint for the learning and contributes to

discover the true geometry of the object.

In order to experimentally validate this hypothesis, we create a synthetic dataset

(the details are given in section 6.4) and train the object coordinate head with

loss term (6.5). The trained model is tested with an object image and its rotated

variant (figure 6.2(a)). The predicted object points are shown in figure 6.2(b) in red

and blue respectively. The obvious incompatibility in two reconstructions, which is

indicated by the point-wise di�erences between points in the red and blue point

cloud, suggests that single-view loss-based training does not produce a consistent

3D coordinate for the same object point in di�erent views.

6.3.1.3 Mult-view Geometry-based Loss

To the limitation addressed in the previous section, we propose to make the

multi-view constraints explicit and provide strong geometric supervision for object

coordinates learning. Based on Hartley et al. 2003, images from multiple viewpoints

can be used to constrain the coordinate for a 3D point using triangulation. Such

geometry is built upon the 2D-2D correspondences between the objects in di�erent

images. To that end, we propose to include an additional equivariant feature

branch, which discovers equivariant feature for an image patch of the object. The

learned features for multiple images are then matched during the learning of object
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(a) (b) (c)

Figure 6.2: Comparison between the 3D object points for an image and its
variant. (a): an object image and its rotated version. (b): Reconstruction from single-
view reprojection loss. (c): Reconstruction from multi-view consistence loss.

coordinates, establishing a dense collection of 2D-2D correspondences. The multi-

view constraints are explicitly built accordingly.

Equivariant Feature Branch. Equivariant feature is defined as the feature

vector for a patch of the object image that can be recognized and correlated from

di�erent viewpoints. Its representation is a d dimensional feature vector learned

automatically by the network for uniqueness and rich descriptiveness. It is intrinsic

to the object, which means the change of viewpoint or deformation should not

cause any di�erence to the representation of a unique feature on the object. Such

behavior is defined as equivariance constraint (Thewlis et al. 2017). We therefore

exploit this property as the supervision for equivariant feature learning due to

the lack of manual annotation.

The equivariant feature branch is also a FCN because of the one-to-one mapping

from image pixels to equivariant features. It is learned in a Siamese configuration

with two images – Ii and r(Ii) – correlated by a known deformation r. Such

deformation transforms the point (h, w) of the source to (hr, wr) on the target. (See

figure 6.3 for an example of the feature for a single image point.)
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Figure 6.3: Equivariance constraint for object feature. As an example, P is one
of the points on the object surface. It is projected to two images. These two images are
corelated by a known deformation r. The equivariant features of these projections, L(h,w)
and Lr

(hr,wr
), must be compatible with this deformation. Please note that the usage of 3D

model in this figure only serves the purpose of illustrating the characteristic of equivariant
feature, we do not use it in our pose estimation pipeline.

Denote by �ef the equivariant feature branch. It takes Ii and r(Ii) as input at the

same time and outputs two m◊m◊d feature maps L = �ef (Ii) and Lr = �ef (r(Ii))

for each RoI. The equivariance constraint is defined as L(h,w) = Lr
(hr,wr) where

h, w œ 1 . . . m. In order to prevent this constraint from falling into a degenerated

case, when all the pixels are mapped to a singular object feature, we follow Thewlis

et al. 2019 to reformulate it to a distance-aware softmax loss.

The relative similarities between the equivariant features on two RoIs are

formulated by a softmax function on the cosine similarities. What is expected from

the learning is that the equivariant features on two images with short spatial distance

have large similarity, and vice versa. To be more specific, for example, the features of

pixels that are close to (hr, wr) on image r(Ii) should be similar to the feature L(h,w),

which is generated for pixel (h, w) on Ii, whereas the features of pixels that are far

away from (hr, wr) should be dissimilar to L(h,w). Therefore the relative similarities
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of features in two views are weighted by the spatial distances in the loss term

Lef = 1
m4

mÿ

hs,ws
ht,wt

dist(s, t) es((hs,ws),(ht,wt))

mq

hÕ
t,wÕ

t

es((hs,ws),(hÕ
t,wÕ

t))
, (6.6)

where dist(s, t) = Î(hs, ws) ≠ (ht, wt)Î2, and

s((hs, ws), (ht, wt)) =
L(hs,ws) · Lr

(ht,wt)...L(hs,ws)
...

2

...Lr
(ht,wt)

...
2

(6.7)

is the cosine similarity between the equivariant features.

There are various of choices for deformation r to benefit the learning of the equiv-

ariant features. Nonetheless we consider the in-plane rotation and scaling (to ensure

a same dimension with the original image), which preserve the rigidness of the object.

Thanks to the uniqueness of the learned equivariant feature descriptors, they

can be matched from two images that are related by an out-of-plane movement.

The following paragraphs show our method of incorporating the matched 2D-2D

correspondences into a multi-view loss term.

Multi-View Loss. With the motivation of introducing multi-view geometry into

learning, we upgrade the object coordinate branch to a Siamese configuration as

well. We use two images Is and target It – from di�erent viewpoints caused by an

out-of-plane movement in the training set – as the inputs for the Siamese network.

The proposed multi-view loss for the object coordinate branch consists of two

terms. First, we focus on the cross-projection between two viewpoints. Given

Is and It as the inputs for the object coordinate branch and equivariant feature

branch, four outputs are obtained: object coordinate maps �obj(Is), �obj(It) and

feature maps �ef(Is), �ef(It). Pixel-wise matching is performed on these feature

maps. Denote by pef
t,l,(h,w) = M(�ef (Is), �ef (It)) the matched position of Is’s pixel

on It, where the M is a matching operation. Given the ground truth pose of the
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target image Rgt
t , tgt

t and the scaled camera matrix Kt, the projection of predicted

source object points on the target RoI is

pproj
t,l,(h,w) = 1

s
Kt(RtPO

s,l,(h,w) + tt). (6.8)

pproj
t,l,(h,w) and pef

t,l,(h,w) are the position of a same 3D object point on the target RoI.

The di�erence between them is used for back-propagation to learn a 3D coordinate

whose projection agrees with the matched position. Thus the first loss term is

defined as the equivariant feature alignment loss:

Lef_align = 1
m ◊ m

ÿ

h,w

...pproj
t,l,(h,w) ≠ pef

t,l,(h,w)

...
2

. (6.9)

Please refer to Lef_align in figure 6.1 to see the illustration of feature alignment loss.

Second, we propose to encode the multi-view constraints as a photometric

loss. Specifically, the projections pproj
t,l,(h,w) warp a reconstructed image IsΩt from

It. Any di�erence that we assume arises from an error in the predicted object

coordinates leads to an error in the normalized RGB space. This behavior encodes

a photometric loss:

Lrgb = 1
m ◊ m

ÿ

h,w

ÎIsΩt ≠ IsÎ . (6.10)

Please refer to Lrgb in figure 6.1 to see the illustration of photometric loss.

Our multi-view geometry-based loss ultimately is

Lmulti = Lef_align + Lrgb. (6.11)

These strong geometric supervisions improve the consistence for the object

coordinate regression. Reconstructed results in figure 6.2(c) show the improvement,

in which two sets of object points are well aligned for images from di�erent views.
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Figure 6.4: The inference of our approach.

6.3.2 Inference

We show the process for pose inference in figure 6.4. Although our model is trained

with pairs of images, it requires only a single image to infer the object pose. For a

novel image, the detection head predicts a box and a mask for the object. Meanwhile

the object coordinate head outputs a 3D object point map for the box. The object

points on the background are removed according to the mask. The remaining

points are used for establishing the 2D-3D correspondences within the box. The

6dof pose is then solved via PnP plus RANSAC based on these correspondences

along with the scaled projection matrix derived from the box position. The pose

estimate is subsequently refined using the predicted object points. The equivariant

feature branch is turned o� at inference time.

6.3.3 Implementation Details

The backbone for RPN in our implementation is ResNet-50 with Feature Pyramid

Network (FPN) (Lin et al. 2017). See the details of the detection and segmentation

head in He et al. 2017. The architecture of our object coordinate branch is shown in

figure 6.5. We follow the structure of the SmallNet in Thewlis et al. 2017; Thewlis
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Figure 6.5: Object Coordinate Head Architecture. The feature extractor
comprises 4 convolutional layers (conv) with kernel size 3 ◊ 3 and stride 1. The
deconvolutional layer in object coordinate regressor is 2 ◊ 2 with stride 2. The last conv
is 3 ◊ 3 with stride 1. The final output for object coordinate is d ◊ (sigmoid(pobj) ≠ 0.5),
where d is the approximated diameter of the object and pobj is the output pre-logits from
the last conv.

et al. 2019 for the equivariant feature branch. We train all the heads in our model

simultaneously in and end-to-end fashion with loss

L = Lcls + Lbox + Lmask + Lrepro + Lmulti + Lef . (6.12)

The weights for these loss terms are not highly tuned, and are set equally. The

network is trained for 200k iterations. The schedule for learning rate decay follows He

et al. 2017. For RANSAC at the test time, the threshold for inliers is set to 1px,

and number of hypotheses is 256. The refinement runs up to 100 times.

6.4 Experiments

We first introduce the creation of the dataset we used in previous section. Second,

we conduct ablation studies to investigate the e�ect of each supervisory signal

for the object coordinate head. Third, we compare the reconstruction from our

object coordinate head and the classic reconstruction-based method. Finally, we

run our methods on the two real world datasets: LINEMOD (Hinterstoisser et al.

2012) and Occlusion LINEMOD (Hinterstoisser et al. 2012) and compare with the

state-of-the-art learning-based methods that require the 3D model in their pipeline.
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Figure 6.6: The generation of the demo synthetic dataset. Training and test
viewpoints are in red and blue, respectively.

6.4.1 Expo Dataset

The synthetic dataset contains a square rigid object expo. 200 and 2500+ viewpoints

are sampled from a sphere for training and test respectively. The locations of

the viewpoints are randomized to make sure the object spread over the whole

image frame, with various scales. We render the synthetic images using the

textured CAD model from these poses. The black background is then replaced

with real world images from NYU-Depth V2 Silberman et al. 2012 dataset. See

figure 6.6 for examples.

6.4.2 Metric

The metrics we use to assess the pose estimation performance are ADD and 5cm5deg,

same with chapter 3. ADD is the average 3D distance of model points transformed

by the predicted pose and ground truth pose. For symmetric objects, ADD is relaxed

to ADD-S, which is the distance between the closest points in two transformed

models. If the average (or closest) distance derived by a test pose is less than 10%

of the object diameter, the pose estimate is considered correct. As for 5cm5deg,

an estimate is correct when the translation and rotation error is below (5cm, 5¶).

The numbers we report in table 6.1, 6.2 and 6.3 are the proportion of frames with

correct pose estimates among all test images.
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depth repro repro+ef repro+ef+rgb
5cm5deg 61.3 14.3 39.3 53.1
ADD-10 57.1 23.6 52.5 58.5

Table 6.1: The pose estimation performance of di�erent combinations of the
loss terms on test set of expo.

(a) (b) (c) (d)

Figure 6.7: Visualization of the reconstruction from the object coordinate
head. (a) is a test image. (b) is the true reconstruction from this viewpoint. (c) is the
output from the head trained with reprojection loss. (d) is the output from the head
trained with multi-view loss in addition to reprojection loss.

6.4.3 Ablations

We train the network using three di�erent supervisions: (i) direct supervision from

depths (as a reference); (ii) single-view reprojection loss; (iii) single-view reprojection

loss along with multi-view geometry losses. The qualitative meshed visualization

of the predicted 3D points from models trained with di�erent losses is shown in

figure 6.7. The quantitative results for pose estimation are shown in table 6.1.

Figure 6.7(b) shows that the true shape of the object from the test viewpoint

comprises 3 perpendicular planes. With only the single-view reprojection loss as

supervision, the network failed to discover the geometry of the object and predicts

a set of points that lies on a plane (See figure 6.7(c)). What is interesting is that

these erroneous object coordinates surprisingly result in highly (5cm5deg: 99% and

ADD-10: 99.5%) accurate poses for the training set. It suggests that optimizing the

loss term (6.5) overfits the model to produce an arbitrary shape, as long as whose

projections from the ground truth pose match the silhouette of the object on the
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image. Hence the correspondences built by this shape and the 2D positions result

in fine pose estimates for training set (the performance on test set is reported later).

In contrast, the reconstruction from the model trained with additional multi-view

losses shows the corner and the 3-face structure of the object in figure 6.7(d).

Quantitatively, the median chamfer distances (two-way, in m, smaller is better)

between single-view reconstruction against the groundtruth shape are (0.152, 0.067),

and for multi-view reconstruction they are (0.094, 0.048).

The failure caused by using reprojection loss as the only supervision also presents

in the quantitative results for the test images. In table 6.1(repro), the 5cm5deg and

ADD-10 accuracy for the model trained with reprojection loss are only 14.3% and

23.6%. This is because that the trained model dose not encode the true geometry

and therefore generalizes poorly to the unseen images.

In column repro+ef, the model is trained with reprojection loss and equivariant

feature alignment loss. The accuracy increases to 39.3% (5cm5deg) and 52.5% (ADD-

10), which is approximately 2.5 times of repro. The best performance comes from

the column repro+ef+rgb. It is achieved by training the model with reprojection

loss and all multi-view losses (Lef_align + Lrgb). It shows that with additional

multi-view constraints provided by the photometric loss, the object coordinate

achieves a better pose estimates, which is even comparable with the model from

direct supervision, whose accuracy is 61.3% (5cm5deg) and 58.5% (ADD-10).

6.4.4 Equivariant Feature Matching

We show several examples of the dense matching based on the learned equivariant

features in two views from LINEMOD in figure 6.8. The positions of the matched

features in the source and target images are used to reconstruct the source image.

These middle warped images show that the learnt features successfully build 2D-2D

correspondences in two images which could be used to triangulate the coordinates

of the object points in 3D.
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Figure 6.8: The reconstruction (middle) of the source (left) by warping the
target (right) using matched feature positions.

Figure 6.9: Comparison between the reconstructions from SfM and our
method. Left: images from two example viewpoints; Middle: meshed reconstructions
from SfM; Right: meshed reconstructions from our model.

6.4.4.1 Comparison with SfM-based Method

We run SfM using colmap (Schönberger et al. 2016; Schonberger et al. 2016) from 200

training images in expo datasets to build an explicit reconstruction from the sparse

features. Figure 6.9 compares the reconstruction from SfM and our object coordinate

head. It shows that only five out of the six planes of the object are successfully built

by SfM. Apparently it is caused by the lack of textures on the missing plane, where

the sparse feature detector struggles to recognize any salient points. In contrast,

our model manages to build every surface despite its textureness. Our hypothetical

explanation is that the backbone explores both coarse and fine features from multiple

scales therefore it is more robust to the density of the visual features on the image.

6.4.5 Pose Results
6.4.5.1 On LINEMOD

We train our network strictly following the training/test split in Tekin et al. 2018.

No additional synthetic data is required, as well as the 3D CAD model in our



6. Reconstruct Locally, Localize Globally: A Model Free Method for Object Pose
Estimation 132

w
/

C
A

D
m

od
el

w
/o

C
A

D
m

od
el

m
et

ho
d

B
B

8a
B

B
8

w
/

r
SS

D
-6

D
b

w
/

r
Te

ki
nc

D
ee

pI
M

d

w
/

r
D

en
se

-
Fu

sio
ne

Pi
x2

-
Po

se
f

PV
N

et
g

w
/

r
SS

D
-6

D
ch

ap
te

r
3

O
ur

s

ap
e

27
.9

40
.4

65
21

.6
2

77
.0

92
58

.1
43

.6
2

0.
00

38
.8

52
.9

1
be

nc
hw

ise
62

.0
91

.8
80

81
.8

0
97

.5
93

91
.0

99
.9

0
0.

18
71

.2
96

.5
1

ca
m

40
.1

55
.7

78
36

.5
7

93
.5

94
60

.0
86

.8
6

0.
41

52
.5

87
.8

4
ca

n
48

.1
64

.1
86

68
.8

0
96

.5
93

84
.4

95
.4

7
1.

35
86

.1
86

.8
1

ca
t

45
.2

62
.6

70
41

.8
2

82
.1

97
65

.0
79

.3
4

0.
51

66
.2

67
.3

0
dr

ill
er

58
.6

74
.4

73
63

.5
1

95
.0

87
76

.3
96

.4
3

2.
58

82
.3

88
.7

0
du

ck
32

.8
44

.3
66

27
.2

3
77

.7
92

43
.8

52
.5

8
0.

00
32

.5
54

.7
4

eg
gb

ox
*

40
.0

57
.8

10
0

69
.5

8
97

.1
10

0
96

.8
99

.1
5

8.
90

79
.4

94
.7

4
gl

ue
*

27
.0

41
.2

10
0

80
.0

2
99

.4
10

0
79

.4
95

.6
6

0.
00

63
.7

91
.9

8
ho

le
pu

nc
he

r
42

.4
67

.2
49

42
.6

3
52

.8
92

74
.8

81
.9

2
0.

30
56

.4
75

.4
1

iro
n

67
.0

84
.7

78
74

.9
7

98
.3

97
83

.4
98

.8
8

8.
86

65
.1

94
.5

9
la

m
p

39
.9

76
.5

73
71

.1
1

97
.5

95
82

.0
99

.3
3

8.
20

89
.4

96
.6

4
ph

on
e

35
.2

54
.0

79
47

.7
4

87
.7

93
45

.0
92

.4
1

0.
18

65
.0

89
.2

4
av

er
ag

e
43

.6
62

.7
79

55
.9

5
88

.6
94

72
.4

86
.2

7
2.

42
65

.2
82

.8
8

T
ab

le
6.

2:
L

IN
E

M
O

D
:

P
er

ce
nt

ag
es

of
co

rr
ec

t
po

se
es

ti
m

at
es

in
A

D
D

-1
0.

W
e

hi
gh

lig
ht

th
e

m
et

ho
ds

w
ho

se
av

er
ag

e
ac

cu
ra

cy
is

ab
ov

e
80

%
.

*
de

no
te

s
th

at
th

e
ob

je
ct

is
sy

m
m

et
ric

an
d

is
ev

al
ua

te
d

in
A

D
D

-S
.w

/r
m

ea
ns

th
e

po
se

is
re

fin
ed

w
ith

3D
m

od
el

.

a
R

ad
et

al
.2

01
7.

b
K

eh
le

t
al

.2
01

7.
c

Te
ki

n
et

al
.2

01
8.

d
Li

et
al

.2
01

8.
e

W
an

g
et

al
.2

01
9.

f
Pa

rk
et

al
.2

01
9.

g
Pe

ng
et

al
.2

01
9.



6. Reconstruct Locally, Localize Globally: A Model Free Method for Object Pose
Estimation 133

Tekin Pose-CNN Oberweger PVNet Pix2Pose Ours
ape 2.48 9.6 17.6 15.8 22.0 7.1
can 17.48 45.2 59.3 63.3 44.7 40.6
cat 0.67 0.93 3.31 16.7 22.7 15.6

driller 7.66 41.4 62.4 25.2 44.7 43.9
duck 1.14 19.6 19.2 65.7 15.0 12.9

eggbox* - 22.0 25.9 50.1 25.2 46.4
glue* 10.08 38.5 39.6 49.6 32.4 51.7

holepuncher 5.54 22.1 21.3 39.7 49.5 24.5
average 6.42 24.9 30.4 40.8 32.0 30.3

Table 6.3: Results on Occlusion LINEMOD. Note that all the methods requires
the 3D model in the pipeline except ours. Tekin: Tekin et al. 2018, Pose-CNN: Xiang
et al. 2017, Oberweger: Oberweger et al. 2018, PVNet: Peng et al. 2019, Pix2Pose: Park
et al. 2019

method. We report the performance in table 6.2. Our method outperforms more

than half of the learning-based methods and achieves comparable result with the

state-of-the-art method, which use a large amount of synthetic training images

from new viewpoints (Peng et al. 2019) and/or 3D model for refinement (Wang

et al. 2019; Li et al. 2018).

6.4.5.2 On Occlusion LINEMOD

We also test our approach on a more challenging dataset: Occlusion LINEMOD,

a sequence with annotations for occluded objects. ADD-10 results are shown in

table 6.3 following the test scheme of Peng et al. 2019. It shows the robustness

of our method to occlusion.

6.4.5.3 On YCB-Video

We train our network using 20% images of each sequence, and visualize the results

on samples of the rest. These result images show that our method also works for

multi-object pose estimation. Thanks to the nature of Mask R-CNN, the extended

model is able to detect, segment and estimate the pose for multiple objects at the

same time, in a single forward. The visualization contains the results of detection(in

bounding boxes), segmentation(in contours), and pose estimation. We projection
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Figure 6.10: The results of our method on YCB-Video Dataset. The projected
ground truth 3D point clouds of interest objects using the predicted pose estimates are
consistent with the silhouettes of them, which verifies the accuracy of our 6dof pose
estimates.

the 3D points of the ground truth object model using the predicted poses. The

shape of the predicted projections match up with the silhouettes of the objects.

6.5 Conclusion

We have proposed a method that performs accurate 6dof object pose estimation

from a single RGB image. Our learning-based method implicitly encodes the object
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reconstruction into a network by regressing object pixel to 3D object coordinate.

It then carries out 2D-3D correspondences for geometric pose solving at inference

time. The learning of the network explicitly enforces the multi-view geometric

constraints for the object coordinates. The additional equivariant feature branch

provides consistence for objects across multiple views. We explore self-supervision

for learning from image deformation and eliminates the need of 3D model in

the system. Our 3D model free method reduced the performance gap between

approaches with and without 3D model.



6. Reconstruct Locally, Localize Globally: A Model Free Method for Object Pose
Estimation 136

Bibliography
Wagner, Daniel, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, and

Dieter Schmalstieg (2008). “Pose tracking from natural features on mobile
phones”. In: 2008 7th IEEE/ACM International Symposium on Mixed and
Augmented Reality. IEEE, pp. 125–134.

Pan, Qi, Gerhard Reitmayr, Edward Rosten, and Tom Drummond (2010). “Rapid
3D modelling from live video”. In: The 33rd International Convention MIPRO.
IEEE, pp. 252–257.

Pan, Qi, Gerhard Reitmayr, and Tom Drummond (2009). “ProFORMA: Probabilis-
tic Feature-based On-line Rapid Model Acquisition.” In: BMVC. Vol. 2. Citeseer,
p. 6.

Dementhon, Daniel F and Larry S Davis (1995). “Model-based object pose in 25
lines of code”. In: International journal of computer vision 15.1-2, pp. 123–141.

Zhang, Zhengyou (1994). “Iterative point matching for registration of free-form
curves and surfaces”. In: International journal of computer vision 13.2, pp. 119–
152.

Marchand, Eric, Patrick Bouthemy, François Chaumette, and Valérie Moreau (1999).
“Robust real-time visual tracking using a 2D-3D model-based approach”. In:
Proceedings of the seventh IEEE international conference on computer vision.
Vol. 1. IEEE, pp. 262–268.

Lepetit, Vincent, Pascal Fua, et al. (2005). “Monocular model-based 3d tracking of
rigid objects: A survey”. In: Foundations and Trends® in Computer Graphics
and Vision 1.1, pp. 1–89.

Pauwels, Karl, Leonardo Rubio, Javier Diaz, and Eduardo Ros (2013). “Real-time
model-based rigid object pose estimation and tracking combining dense and
sparse visual cues”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2347–2354.

Xiang, Yu, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox (2017).
“Posecnn: A convolutional neural network for 6d object pose estimation in
cluttered scenes”. In: arXiv preprint arXiv:1711.00199.

Li, Yi, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox (2018). “Deepim: Deep
iterative matching for 6d pose estimation”. In: Proceedings of the European
Conference on Computer Vision, pp. 683–698.

Sundermeyer, Martin, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker,
and Rudolph Triebel (2018). “Implicit 3d orientation learning for 6d object
detection from rgb images”. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp. 699–715.



6. Reconstruct Locally, Localize Globally: A Model Free Method for Object Pose
Estimation 137

Hu, Yinlin, Joachim Hugonot, Pascal Fua, and Mathieu Salzmann (2019). “Segmentation-
driven 6d object pose estimation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3385–3394.

Peng, Sida, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hujun Bao (2019). “Pvnet:
Pixel-wise voting network for 6dof pose estimation”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4561–4570.

Wang, Chen, Danfei Xu, Yuke Zhu, Roberto Martin-Martin, Cewu Lu, Li Fei-
Fei, and Silvio Savarese (2019). “DenseFusion: 6D Object Pose Estimation by
Iterative Dense Fusion”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Xiao, Yang, Xuchong Qiu, Pierre-Alain Langlois, Mathieu Aubry, and Renaud Marlet
(2019). “Pose from Shape: Deep Pose Estimation for Arbitrary 3D Objects”. In:
arXiv preprint arXiv:1906.05105.

Bui, Mai, Sergey Zakharov, Shadi Albarqouni, Slobodan Ilic, and Nassir Navab
(2018). “When regression meets manifold learning for object recognition and
pose estimation”. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 1–7.

Park, Kiru, Timothy Patten, and Markus Vincze (2019). “Pix2pose: Pixel-wise
coordinate regression of objects for 6d pose estimation”. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 7668–7677.

Hinterstoisser, Stefan, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski,
Kurt Konolige, and Nassir Navab (2012). “Model based training, detection and
pose estimation of texture-less 3d objects in heavily cluttered scenes”. In: Asian
conference on computer vision. Springer, pp. 548–562.

Brachmann, Eric, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton,
and Carsten Rother (2014). “Learning 6d object pose estimation using 3d object
coordinates”. In: European conference on computer vision. Springer, pp. 536–551.

Brachmann, Eric, Frank Michel, Alexander Krull, Michael Ying Yang, Stefan
Gumhold, and Carsten Rother (2016). “Uncertainty-driven 6d pose estimation
of objects and scenes from a single rgb image”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3364–3372.

Kehl, Wadim, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir Navab
(2017). “Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great
again”. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1521–1529.

Chang, Angel X, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al.
(2015). “Shapenet: An information-rich 3d model repository”. In: arXiv preprint
arXiv:1512.03012.



6. Reconstruct Locally, Localize Globally: A Model Free Method for Object Pose
Estimation 138

Rad, Mahdi and Vincent Lepetit (2017). “Bb8: A scalable, accurate, robust to
partial occlusion method for predicting the 3d poses of challenging objects
without using depth”. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 3828–3836.

Agarwal, Sameer, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,
Steven M Seitz, and Richard Szeliski (2011). “Building rome in a day”. In:
Communications of the ACM 54.10, pp. 105–112.

Kendall, Alex, Matthew Grimes, and Roberto Cipolla (2015). “Posenet: A convolu-
tional network for real-time 6-dof camera relocalization”. In: Proceedings of the
IEEE international conference on computer vision, pp. 2938–2946.

Brachmann, Eric, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank Michel,
Stefan Gumhold, and Carsten Rother (2017). “Dsac-di�erentiable ransac for
camera localization”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6684–6692.

Brachmann, Eric and Carsten Rother (2018). “Learning less is more-6d camera
localization via 3d surface regression”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4654–4662.

Brahmbhatt, Samarth, Jinwei Gu, Kihwan Kim, James Hays, and Jan Kautz (2018).
“Geometry-aware learning of maps for camera localization”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2616–2625.

Fischler, Martin A and Robert C Bolles (1981). “Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography”. In: Communications of the ACM 24.6, pp. 381–395.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick (2017). “Mask
r-cnn”. In: Proceedings of the IEEE international conference on computer vision,
pp. 2961–2969.

Long, Jonathan, Evan Shelhamer, and Trevor Darrell (2015). “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3431–3440.

Thewlis, James, Samuel Albanie, Hakan Bilen, and Andrea Vedaldi (2019). “Unsu-
pervised Learning of Landmarks by Descriptor Vector Exchange”. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 6361–6371.

Oberweger, Markus, Mahdi Rad, and Vincent Lepetit (2018). “Making deep
heatmaps robust to partial occlusions for 3d object pose estimation”. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp. 119–134.

Tekin, Bugra, Sudipta N Sinha, and Pascal Fua (2018). “Real-time seamless single
shot 6d object pose prediction”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 292–301.



6. Reconstruct Locally, Localize Globally: A Model Free Method for Object Pose
Estimation 139

Rad, Mahdi, Markus Oberweger, and Vincent Lepetit (2018). “Feature mapping for
learning fast and accurate 3d pose inference from synthetic images”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4663–4672.

Kendall, Alex and Roberto Cipolla (2016). “Modelling uncertainty in deep learning
for camera relocalization”. In: 2016 IEEE international conference on Robotics
and Automation (ICRA). IEEE, pp. 4762–4769.

Hartley, Richard and Andrew Zisserman (2003). Multiple view geometry in computer
vision. Cambridge university press.

Thewlis, James, Hakan Bilen, and Andrea Vedaldi (2017). “Unsupervised learning
of object landmarks by factorized spatial embeddings”. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 5916–5925.

Lin, Tsung-Yi, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie (2017). “Feature pyramid networks for object detection”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2117–2125.

Silberman, Nathan, Derek Hoiem, Pushmeet Kohli, and Rob Fergus (2012). “Indoor
segmentation and support inference from rgbd images”. In: European conference
on computer vision. Springer, pp. 746–760.

Schönberger, Johannes L, Enliang Zheng, Jan-Michael Frahm, and Marc Polle-
feys (2016). “Pixelwise view selection for unstructured multi-view stereo”. In:
European Conference on Computer Vision. Springer, pp. 501–518.

Schonberger, Johannes L and Jan-Michael Frahm (2016). “Structure-from-motion
revisited”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4104–4113.



7
Conclusion

Contents
7.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . 140
7.2 Some Insights . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 144
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

This chapter summaries the material covered in our thesis and discusses possible

future work in this area.

7.1 Summary of the Thesis

In this thesis, we have considered the problem of 6dof pose estimation for camera

and objects using deep learning from only RGB inputs. Assuming that the training

data of the scene or interest objects that contains images and their annotated

poses are given, the objective of this problem is to determine the full 6dof pose

of a query image that is from the same scene with a novel pose, or captures the

same object from a novel viewpoint.

Our thesis addresses some of the problems encountered in previous pose esti-

mation systems. We specifically addressed the issues of end-to-end object pose

140
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estimation, uncertainty in pose regression, geometry-driven self-supervision of

reconstruction for pose estimation (both for scenes and objects). They are all solved

on the CNN base and integrated deeply with geometry. We believe our proposed

methods on these issues contribute to existing approaches and made them the

more completed solution to real world applications.

In chapter 3 we presented an end-to-end architecture that simultaneously detects,

segments and regresses the 6dof poses of objects from a single RGB image. This is

achieved by extending the recent Mask R-CNN (He et al. 2017) architecture with a

new pose regression head, which directly maps the RoI features of object candidates

to their poses. The output target of our pose regression branch consists of a full

rotation vector and one component of translation. We used Lie algebra to represent

the rotation to overcome the inherent issues of Euler angle, rotation matrix and

quaternion. The full translation is derived from the z component given by our pose

head and the position of bounding box from detection head. We show that our

method outperforms most of the existing RGB-based methods when post-refinements

is dropped, which always requires the 3D CAD model of the objects. Our method also

conducts a very fast inference and meets the requirement for real time application.

In chapter 4, we presented a method that estimates the uncertainty of camera

pose estimate regressed from a deep neural network. It is done by combining

the deterministic CNNs and probabilistic Gaussian Process Regression into an

unified, end-to-end framework. It not only directly maps the input image to 6dof

pose space, but also produces the predictive distribution over the rotation and

translation. The uncertainty of the pose is predicted by using Coregionalization

kernel on translation and rotation vector. The input to the kernel function is the

parametric pseudo inducing feature vectors learned by the network and that of the

query image. We also replaced the traditional L2 norm loss based linear regressor

with the KL divergence between exact posterior and the variational distribution.

We show that our proposed hybrid framework improves the system e�ciency of
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method based on Bayesian approximate CNN, while without losing accuracy. The

uncertainty of our model indicates the confidence of the pose prediction also can be

interpreted as a measure of how certain the image comes from a specific scene.

In chapter 5, we proposed a reconstruction-based method for accurate camera

relocalisation. It solves the 6dof pose of the camera based on the learned scene

coordinates from RGB images. In order to learn the network that performs scene

coordinate regression without using the ground truth 3D model of scenes, we

explicitly enforce constraints for scene coordinates using multi-view geometry in a

self-supervised manner. We built this constraint based on photometric consistency

for the regressed scene coordinates on a pair of images from di�erent viewpoints. We

also explored the consistency in dense deep feature space, proposing a featuremetric

loss that help the photometric loss when it struggles in texture-less regions. These

constraints imposed by our proposed loss not only improve the e�ciency of training,

but also help the learnt model to produce more reliable 2D-3D correspondences

which improves the camera relocalisation accuracy subsequently.

In chapter 6, we extended the proposed reconstruction-based pose estimator in

chapter 5 to object-level. The process of object reconstruction is implicitly encoded

by our network which regresses object pixels to their 3D object-centric coordinates.

The network is achieved by building an object coordinate regression head on the

base of Mask R-CNN (He et al. 2017). We deployed two branches in the new head:

the object coordinate branch that predicts the geometric object coordinates from

RoI features, and the equivariant feature branch which finds consistency on the

surface of objects in their appearance. We matched the learnt equivariant features

of object in di�erent viewpoints to establish 2D-2D correspondences between image

pairs of an object, and built multi-view constraints for the object coordinate head

during learning. Using the idea of self-supervision which we introduced in chapter 5,

we removed the reliance on the 3D CAD object models that have been used in

methods extensively for pose estimation in training. At inference time, 2D-3D
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correspondences are established by the learnt object coordinate branch, and used

to solve the 6dof object pose. The competitive results of our methods shows

that our 3D model free method closed the performance gap between approaches

using and not using 3D model.

7.2 Some Insights

From the aforementioned approaches, one can see that two families of methods are

adopted in this thesis, which ar regression-based and reconstruction-based methods.

Notwithstanding that we manage to bring uncertainty into the regression-method,

the accuracy performance of pose estimation (especially camera relocalisation) is

much poorer than what is achieved in reconstruction-based method. Again, a

question raises up that: Are CNNs in nature good at modeling relationship (in

the case of this thesis is pose) directly?

Unfortunately experiment results empirically suggest that they are not, especially

when there is a strict constraints on the form of the representation of the relationship,

such as the rotation component in the 6dof pose.

We hypothetically give three speculations to the reason below:

• The spatial arrangement of the image details are omitted. In a

conventional CNNs architecture which performs image-level regression or

classification, pooling layers and/or fully connected layers are commonly used

to obtain features with invariance to spatial particularities of image patches.

However, the position and orientation of these details is fundamentally crucial

to the geometric relationship therefore should not be ignored during the

abstraction.

• The representation of the pose is strongly non-linear. It is well-known

that machine learning methods are in nature have a flair for interpretation
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and generalization in a linear output space. However, the geometric repre-

sentation of pose is in a non-linear space, such as the orthogonality in the

rotation matrix and the unity in the quaternion. In contrast, the output of

reconstruction-based methods are coordinates in a linear Euclidean space,

therefore the networks do not struggle from interpretation as was shown in

then reconstruction-based methods in chapter 5 and 6.

• Relationship involves two parties. The modelling of relationship requires

two identities. In widely applied CNNs, the tasks commonly only focus on

the being of one of them, such as the objects (what are they, where are they

in the image), and less attention is paid to the state of the other identity, for

instance the camera (such as where are the objects to the camera). Methods

using the pre-defined (or reconstructed) objects, which essentially provide

full information about one of the identities, are able to show e�ectiveness

on estimating the state of the camera, as shown in the reconstructed-based

methods for estimating object pose – which is essentially the relationship

between objects and camera.

With these bear in mind, we suggest that in a relationship prediction task,

instead of directly regressing to relationship using a deep model, the network

should be considered as a tool for building connections between identities based

on an intermediate representation. The relationship then can be solved according

to these connections, indirectly.

7.3 Future Work

Though the techniques presented in this thesis improve the capability of 6dof pose

estimation compared to earlier solutions, much work still remains to make these

systems suitable for requirements outside the lab. In this section, the improvements
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that could be made to our proposed techniques will be discussed, as well as more

general areas for future research.

First, for the uncertainty of a deep network prediction, especially from the

framework we proposed in chapter 4, we would like to explore their potential

applications in other established real world systems. It will be interesting to see

how does the uncertainty work in a robotics system, such as the probabilistic visual

SLAM. The uncertainty of the pose of the robots and the landmarks in the online

build map are crucial for state estimation. For instance, in the traditional filter-based

state estimator used in visual SLAM, a motion model of the robot is formulated to

predict the next state of robot based on current state, whereas a measurement model

provides the measurement from current state. They are recursively fused together

to find the best estimate of the state. The noise of the states and measurement

are always assumed as zero-mean Gaussian during the initialization of the whole

system. If our proposed method is integrated to a visual SLAM system, it not

only estimates an absolute pose to correct the incremental pose tracker, but also

provides a more realistic pose uncertainty, instead of using naive white noise.

Second, the reconstruction-based network for camera relocalisation that we

proposed in chapter 5 is scene-specific, which means we have to train specific models

to di�erent scenes. A valuable direction of research is to train a general model

that works for any scenes with similar statistics, arrangement or scale. One can of

course easily try to use all training images in the dataset from di�erent scenes to

train a single network. Most likely it will work on the test images from the original

datasets, but a more significant question we should ask is that dose it generalize to

new scenes. Intuitively, this seems not possible to be achieved since the nature of

the problem is re-localisaion. But we can adaptively use the idea of world-centric

reconstruction and pose estimation to the problem of camera-centric reconstruction,

which is basically the depth estimation problem (and the depth is fundamentally
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predicted mainly relying the image statistics). Therefore, we believe it is worth to

try to apply the philosophy of learning-based reconstruction to depth estimation.

As for object pose estimation, we also would like to pursue the ability of

generalization to object class. The task we completed in chapter 3 and chapter 6

treats each object as a class with an individual model that is very specific to the

object itself. It however limits the generalization of the method to di�erent objects

from the same class. It has been shown by Suwajanakorn et al. 2018; Thewlis et al.

2019 that 3D structure represented by 3D keypoints (Suwajanakorn et al. 2018),

and 2D landmarks (Thewlis et al. 2019) can be learned to generalize to the category

level of object. It means that practically it is feasible to learn the framework we

presented in chapter 6 to build a sparse reconstruction for the objects from the

same class, which subsequently can be used to perform 6dof pose estimation. The

prerequisite is to find an unified pose representation for all objects in the class to

enable the training of the network. Such representation has to be consistent to all

instances and able to conduct the projection of general 3D keypoints to the 2D

image plane (or implicitly find the connection between them).

Third, one limitation of our methods is that we treat camera pose estimation and

object pose estimate separately as two independent tasks. In other words, moving

objects are ignored in camera relocalisation. However in a real world application,

the movement of camera and object both are the interest of motion estimation.

An example is that when the car moves in an urban environment and localize

itself in the global map, other tra�c participants such as pedestrians and cars will

simultaneously move with respect to the host car. Therefore, it is worth trying to

combine the proposed methods into a unified system, building a motion segmentation

method that performs two tasks at the same time, using image from the same source.

At last, we also think it will be exciting to see more research will be conducted

that aim to solve the problem of 6dof pose estimation for object with non-trivial
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characteristics, such as geometric symmetry and non-rigidity, using the technique

of deep learning.
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