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Abstract

With the advent of high-throughput genotyping modern plant breeding has reached a new

frontier of high-volume, high-density, yet low-cost, genomic data. Previously the acqui-

sition of this data has been a logistical bottleneck within breeding programmes, yet with

genomic data now abundantly available to breeding programmes, it has been speculated

that the collection of phenotype data will become the next operational bottleneck. That be-

ing the inability to phenotype all material for all desired traits within a programme . The

journey to improve the collection of phenotypic data is well underway, with focus being

placed upon next generation phenotyping (NGP) technologies, such as high-throughput

field phenotyping systems, to aid in the pairing of genotype to phenotype. Numerous sen-

sors and methods of deployment have been investigated for application within small-plot

field trials and suggested as tools for wheat and other field-crop breeding programmes,

though few have explored how these can be deployed at scale or the suitability of col-

lected data for use by breeders. This thesis investigates the deployment of commercially

available digital cameras and LiDAR sensors within large-scale wheat breeding field trials,

assessing the suitability of collected data for its application within the analytical pipelines

of breeding programmes.

Digital cameras were deployed opportunistically within large-scale wheat breeding tri-

als, and through basic open-source image analysis methods, were capable of objectively

assessing colour-based traits traditionally scored with visual assessment, producing lev-

els of heritability similar to or greater than traditional methods. As part of this process a

tractor-based high-throughput phenotyping platform was developed for the deployment

of digital cameras, leveraging upon infrastructure present within the breeding programme

and enabling images to be captured at a speed of 7,400 plots per hour. Given the success of
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digital cameras to measure colour-based traits, digital cameras were also deployed man-

ually at a small scale to measure above ground biomass, plant height and harvest index,

using photogrammetric techniques. Though data capture and processing methods were

low-throughput, correlations between digital and manually collected measurements were

strong (up to r = 0.94), highlighting the potential of the three-dimensional point cloud data

type. To further this investigation LiDAR sensors were deployed on the high-throughput

phenotyping platform to collect point cloud data of wheat plots from multiple field sites

and collection dates. Processed point cloud data correlated strongly to traditional mea-

surements of above ground biomass and canopy height and was shown to be highly re-

peatable and suitable for integration in routine breeding analyses.

The findings of this work demonstrate that commercially available digital cameras and Li-

DAR sensors can be deployed within large-scale wheat breeding trials, in a high-throughput,

non-destructive and non-disruptive manner, for the accurate and repeatable measurement

of traits which are traditionally subjective, laborious and/or destructive. Investigation of

these measurements showed their suitability for inclusion within routine breeding anal-

yses, giving breeders confidence in the data collected by next generation phenotyping

technologies. The findings of this work are not only relevant to wheat breeders, but also

to breeders of other field-crops and scientists conducting field research at a large scale.
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Contextual Statement

This thesis has been prepared in publication format and is comprised of original research

articles, published in peer reviewed journals, as the main body of work. These articles are

preceded by a Literature Review and followed by a General Discussion of the contribution

this work makes to the field of plant breeding.

The review of literature in Chapter 1 covers articles published prior to the compilation of

the review in January 2016 and establishes the base of knowledge for the conception of

experiments, and resulting publications contained within the remainder of the thesis. As

a result, more recent publications are not included within the Literature Review but are

included and discussed within the subsequent publications and the General Discussion

of the thesis. The review covers the basics of breeding programme structure and the fit

of traditional phenotyping methods within these programmes. Furthermore, proposed

applications of new phenotyping technologies, including the sensors and platforms, of

which these technologies consist of, are outlined and discussed.

From the Literature Review it was identified that while many sensors show potential for

application within breeding programmes, they can often be prohibitively expensive, or

require highly specialised skills to process the collected data. Given their ready avail-

ability, low cost and ease of use, commercially available digital cameras were identified

as a sensor of great potential for deployment within breeding programmes. Recording

light from the red, green and blue spectra, digital cameras effectively capture the colour

spectra observable to the human eye and allow for the assessment of colour-based traits,

such as canopy cover and senescence, traditionally assessed through visual scoring. While

digital cameras have previously been investigated for the assessment of these and other

visually assessed traits within the literature, the suitability of these assessments for breed-

ing programmes, as well as truly high-throughput methods of data collection, had yet
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to be explored. Chapter 2 contains the original research article ’High-Throughput Field

Imaging and Basic Image Analysis in a Wheat Breeding Programme’, published in Fron-

tiers in Plant Science, April 2019, under the specialty section Technical Advances in Plant

Science, as part of the research topic High-Throughput Field Phenotyping to Advance

Precision Agriculture and Enhance Genetic Gain. The rationale behind this research was

to fill a knowledge gap, in which there had been no evaluation of phenotyping sensors,

the suitability of the data they produce for use by breeders, or their deployment through

high-throughput field phenotyping platforms, within a large commercial breeding pro-

gramme. Furthermore, the comparison of these technologies to measurements breeders

routinely record, such as visual scores, have been lacking, particularly in regard to digital

cameras. To address this, the article establishes easily reproduceable open-source methods

for the assessment of colour-based visual traits of interest using digital cameras, demon-

strating their use within a breeding programme in conjunction with a tractor-mounted

high-throughput image boom. Digital measures are rigorously investigated in compari-

son to visual scores, with statistics of key importance to breeding programmes, such as

trait heritability and genetic and residual correlations, being discussed.

Following the successful demonstration of digital cameras and basic image analysis to

assess colour-based traits within wheat field plots, the versatility of digital cameras as a

next generation phenotyping tool was further investigated for traits traditionally assessed

through physical measurement, rather than visual assessment. This continued investiga-

tion of digital imaging forms the basis for Chapter 3, which contains the original research

article ’Photogrammetry for the estimation of wheat biomass and harvest index’ which

was published in Field Crops Research, February 2018. The aim of this article was to in-

vestigate the use of commercially-available digital cameras to generate high-fidelity three-

dimensional point cloud data, for the non-destructive estimation of wheat above ground

biomass, harvest index and canopy height. At the time of publication few studies in the lit-

erature had investigated the use of point cloud data for measuring above ground biomass,

or associated traits, in wheat, with the potential of this data relatively unknown. This

article successfully demonstrates the use of relatively cheap commercial digital cameras

and software to capture and process ground-based images of wheat field plots into point
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clouds for the estimation of above ground biomass, harvest index and canopy height. Fur-

thermore, it discusses the suitability of these methods and generated data to wheat breed-

ing programmes, as well as opportunities to explore high throughput methods.

Chapter 4 builds upon the results of Chapters 2 and 3, continuing to focus on above ground

biomass and investigating how it can be effectively measured with high-throughput in

large-scale field trials, as well as how this information could be utilised by breeders. From

Chapter 3, point cloud data was established to be capable of estimating above ground

biomass and canopy height, however the set of methods utilised did not allow a suf-

ficiently high-throughput, in their current form, for direct application within breeding

programmes. An alternative sensor for the collection of point cloud data, identified in

Chapter 1, is LiDAR. To this end, the high-throughput imaging boom described in Chap-

ter 2, was fitted with LiDAR sensors for deployment within the large-scale field trials of a

wheat breeding programme. The subsequent research, lead to the publication of the orig-

inal research article ’Estimating Biomass and Canopy Height with LiDAR for Field Crop

Breeding’ in Frontiers in Plant Science, August 2019, under the specialty section Technical

Advances in Plant Science, as part of the research topic High-Throughput Field Pheno-

typing to Advance Precision Agriculture and Enhance Genetic Gain, which is presented

in Chapter 4. The aim of this research was to deploy a high-throughput LiDAR system

within field trials in different environments and determine the suitability of LiDAR to non-

destructively measure above ground biomass and canopy height, within the context of a

wheat breeding programme. This research addresses specific gaps in the literature, where

previously LiDAR estimations of above ground biomass and canopy height have been in-

vestigated only at single sites, as well as a lack of applied LiDAR use within large-scale

field trials, where repeatability and suitability of data integration to breeding programmes

have yet to be discussed.

Chapter 5 contains the General Discussion of the thesis, summarising the key findings of

the research articles within and their significance to the field of plant breeding. The cur-

rent, and continually improving, state of technology is discussed, along with the present

and future paths for research in this field. Finally, it explores how next generation pheno-

typing and other new technologies can be effectively adopted and deployed within breed-

ing programmes.
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Chapter 1

Literature Review

1.1 Introduction

Plant breeding is a rapidly evolving discipline that is willing to adopt new technologies

to improve the efficiency of selection and maximise genetic gain from available resources.

A testament to this is the quick uptake and integration of molecular technologies, such as

molecular markers and next generation sequencing, which are now common place among

many breeding programmes worldwide. Until recently acquiring genotypic information

has been viewed as a major operational bottleneck within plant breeding programmes,

however with the surge of new genotyping technologies and the decreasing costs asso-

ciated with them, it has been proposed that this bottleneck has now shifted to acquiring

phenotypic data (Cobb et al., 2013). Given that genetic data is now so freely available, col-

lecting phenotype data, for any trait of interest, could be considered a limiting step within

breeding programmes. To overcome this, new phenotyping technologies and strategies

will need to be developed, evaluated and deployed, requiring a multidisciplinary ap-

proach between computer scientists, engineers and plant scientists. Within this review

these technologies are referred to in terms of Next Generation Phenotyping (NGP) tech-

nologies, that is technologies beyond those which are currently deployed within breed-

ing programmes. The term NGP is favoured rather than High-throughput Phenotyping

(HTP), as HTP implies measurements are being collected more quickly than traditional

measurements (such as visual scoring), though it is possible for NGP technologies to be

low throughput but have substantial gains in accuracy and/or efficiency. This review
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looks at the role of phenotyping within a wheat breeding programme and investigates

current and emerging phenotyping technologies, as well as their applications and limita-

tions in meeting the needs of breeding programmes.

1.2 Phenotyping in Wheat Breeding

The term phenotype was originally proposed and described by (Johannsen, 1911) as the

ability to determine the ’type’ of all organisms based on measurements or description.

Phenotype is now commonly used throughout plant breeding and plant science to de-

scribe the expression of genes to physical traits. Historically phenotypic selection has

been the sole selection tool for plant breeders and, even before the advent of modern plant

breeding, phenotypic selection was used to achieve improvement in early domesticated

crops (Allard, 1964; Halloran, 1979).

In early Australian wheat (Triticum aestivum L.) breeding programmes, easily observable

traits, such as disease resistance, height and maturity, were primary drivers of selection

(Hollamby, 1983). These traits are often less genetically complex, with their selection lead-

ing to rapid genetic advancement (Halloran, 1979). As time and the understanding of

genetics progressed, linkages between the expression of phenotypes and individual genes

of desirable traits were discovered, providing phenotypic markers to aid selection. Prime

examples of these markers can be seen in the linkage of the physiologic condition pseudo-

black chaff with the major stem rust resistance gene Sr2 (Sheen et al., 1968; Juliana et al.,

2015) and leaf tip necrosis with the major leaf rust resistance gene Lr34 (Singh, 1992; Ju-

liana et al., 2015), with both of these phenotypic markers aiding breeders in the selection

of rust resistant material.

While phenotypic selection has allowed a great deal of progress to be made in wheat

breeding, it is not without limitations. A wide range of traits, such as those which are

quantitative, environmentally influenced, visually hard to detect or quality related, do

not lend themselves to quick and efficient phenotyping (Halloran, 1979; Hollamby, 1983;

Kuchel et al., 2005), making them troublesome breeding objectives within plant breeding

programmes and ultimately reducing the progress of genetic gain.
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This bottleneck was somewhat alleviated with the introduction of molecular markers and

marker assisted selection (MAS) to breeding programmes, enabling breeders to select for

a specific trait, or traits, and screen early generation material with greater confidence. The

merit of molecular markers compared to phenotyping as a selection tool for quantitative

traits was investigated in maize (Zea mays L.) by Yousef & Juvik (2001). They concluded

that MAS could offer simultaneous gains in multiple traits, as well as operate as a useful

selection tool in the case of difficult or expensive-to-phenotype traits. Implementing MAS

to a wheat breeding programme has been described by Kuchel et al. (2005) and Kuchel

et al. (2007), with multiple MAS strategies being investigated and the most viable of these

applied in a functioning breeding programme. In the practical application of MAS, Kuchel

et al. (2007) noted the importance of this strategy when phenotypic selection is difficult.

While MAS has proven to be a useful tool for the introgression and selection of qualitative

traits into breeding material, it is still limited in its ability to aid in selection of complex

quantitative traits, such as yield (Dekkers & Hospital, 2002). The use of molecular markers

within breeding programmes was originally limited by the low speed and high cost of

obtaining this genetic information, though this was soon overcome by the introduction

of high-throughput genotyping and next generation sequencing technologies (Cobb et al.,

2013; Araus & Cairns, 2014).

The next advance to wheat breeding will likely arise from the uptake and application of

genomic selection (GS), the process of using genome wide dense molecular marker maps

to predict potential breeding values and select based on predicted performance (Meuwis-

sen et al., 2001). While GS may yet revolutionise wheat breeding, as it has dairy cattle

breeding (Bouquet & Juga, 2013), the need for phenotyping is still present, and potentially

greater, with GS training populations requiring detailed phenotypic data to create accurate

prediction models (Cobb et al., 2013; Lei et al., 2014).

As new technologies, such as MAS and GS, have been introduced to breeding programmes

the opportunity to increase population sizes, screening larger number of lines and increas-

ing the rate of genetic gain, has arisen (Araus & Cairns, 2014; Cooper et al., 2014); at this

point, however, the operational bottleneck of phenotyping returns. Even with the use of

MAS and GS, breeders are limited by the number of early generation lines which can be

phenotyped, even for simple traits such as maturity and height. To manage this, the size
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of populations must be capped at a manageable number. Improving the ability to pheno-

type populations would enable this cap to be increased and greater genetic gain could be

achieved.

In recent years a push for high-throughput precision phenotyping has begun within plant

breeding and research communities (Walter et al., 2015), the goal of which being to abolish

current phenotyping bottlenecks.

1.3 Wheat Breeding Scenario

To understand how these phenotyping technologies may be integrated into a wheat breed-

ing programme, it is necessary to examine the structure of a breeding programme to iden-

tify where limitations occur and how they could be overcome. There are many variations

in breeding programme design, both broad concepts, such as mass selection, pedigree

and bulk selection, as well as variations and combinations thereof (Allard, 1964; Hallo-

ran, 1979; Hollamby, 1983). The individual structure of each programme will determine

the specifics of how new technologies may be applied, however, general themes can be

identified across many programmes.

For the purpose of this review an example of a selected bulk breeding programme (Allard,

1964; Halloran, 1979), with artificial early generation selection, will be used to illustrate

the potential of new technologies within a wheat breeding programme. Each stage of the

programme is outlined in Figure 1.1, with indications as to where different methods of

selection may be used.
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FIGURE 1.1: An example wheat breeding programme with production format, amount of material
and type of selection in each generation. Dashed lines indicate potential selection methods to be
used.

In breeding programmes larger numbers of populations and larger population sizes allow

for higher levels of genetic diversity and greater potential for genetic gain to be made

(Cooper et al., 2014). This can be achieved through greater selection intensity in early -

mid generations (Figure 1.1; F1 - F5, selecting only the most desired lines and dramatically

reducing the population size as it progresses to variety release. The scenario depicted

in Figure 1.1 represents a single cross, out of potentially hundreds, within the breeding

programme. For the purpose of this review a scenario with 100 crosses, resulting in 100

populations, will be used. The number of plants or plots requiring assessment in a single

cycle of the programme, assuming two replicate yield trials, is outlined in Table 1.1.

Even in this scenario with 100 crosses, a significant amount of genetic material is produced.

With current practices initial selection in early generations may be achieved with MAS,

however once this is completed, subsequent selection will be achieved by phenotyping

and yield trials, requiring a great deal of time and labour.
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TABLE 1.1: Number and type of units to be assessed from a 100 cross
breeding scenario depicted in Figure 1.1

Generation Units to be assessed Units

F1 100,000 Individual plants

F2 100,000 Individual plants

F3 100,000 Individual plants

F4 100,000 Individual plants

F5 20,000 Plant rows

F6 30,000 Yield plots

F7 32,000 Yield plots

F8 8,000 Yield plots

1.4 Potential of New Technologies

The introduction of new phenotyping technologies has the potential to increase the sen-

sitivity, precision and accuracy of current measurements while maintaining or increasing

the speed of current practices. Currently, to screen large numbers of lines accurately it is

common for breeders to allocate a 1-9 scale or a percentage score to the trait of interest

(Cobb et al., 2013). While this method allows for rapid scoring of breeding lines and offers

a simple way to compare promising and poor lines, it is not inherently accurate and can

be subjective depending on the scorer (Bock et al., 2010).

This visual phenotyping commonly occurs early in the breeding programme (Figure 1.1)

for simple traits such as maturity, height and disease resistance. This allows for quick and

easy selection, but due to the sheer number of lines may still be a rate limiting step in

the breeding programme. Implementing next generation phenotyping technologies and

subsequently high-throughput phenotyping at this stage of the programme could po-

tentially eliminate this bottleneck, allowing breeders to increase population sizes, score

greater numbers of lines and therefore increase genetic gain. At this early stage of the

programme material is often grown as short rows, spaced individual plants or hill plots,

due to low availability of seed and to accommodate large numbers of lines. This creates

a challenge when considering new phenotyping technologies, which have primarily been

used to monitor canopies of field plots and paddocks.
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As breeding lines progress through early selection and more in-depth phenotypic data is

required; fast, simple and flexible methods are still favoured. If objective and more accu-

rate phenotyping methods are used they are often slow or physically demanding (Deery

et al., 2014), making them a less efficient use of resources. The potential of new tech-

nologies for phenotyping lies in the ability to quickly capture objective phenotypic data

for large numbers of breeding lines in the field, through non-destructive and physically

undemanding measures, which can be repeated over the season at multiple sites.

Once wheat breeding lines reach the advanced stages of a programme, grain yield usu-

ally becomes the predominant selection criterion and the value proposition of NGP de-

creases, moving from a selection tool to an exploratory tool. At this point lines have gone

through multiple stages of visual phenotypic selection and any remaining lines are typ-

ically deemed agronomically suitable for release, with the final selection decisions being

made primarily on yield and to some extent, end-use quality. While further phenotyp-

ing may not provide data for direct selections, it can provide additional data points to

incorporate into statistical analyses, which may improve the heritability of grain yield and

ultimately aid selection. Multi-variate analyses have been shown to be an effective method

for analysing this type of data, increasing heritability of a desired trait and aiding selection

(Rameeh, 2014).

One of the most widely proposed uses for these new technologies is phenotyping training

populations for GS (Cabrera-Bosquet et al., 2012; Cobb et al., 2013; Lei et al., 2014). This

would provide quick and accurate phenotypic data for modelling purposes and would be

especially useful when large training sets of many thousands of lines are used. However,

at present GS is in its infancy and has not been demonstrated in large-scale breeding pro-

grammes. Nevertheless, as described above, there are other applications of NGP within

traditional breeding programmes.

There have been numerous studies of NGP in controlled environments, with specialised

facilities being established for this purpose (for example the Australian Plant Phenomics

Facility (2015) and the European Plant Phenotyping Network (2015) ). A number of com-

mercially available products have been produced (such as those available from LemnaTec

(2015) and WPS (2015), which have proven to be useful tools for plant physiologists, but
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are not easily, or obviously integrated into plant breeding programmes. As the technolo-

gies used in these controlled environment systems evolve, the challenge has been, and is,

to adapt them for use in field trials for large-scale field research programmes such as plant

breeding.

1.5 Sensors, Platforms and Applications

Next generation phenotyping technologies can be classified broadly into two categories;

sensors and platforms. Sensors being the data or image capturing equipment, and plat-

forms being the equipment used to deploy the sensor (Deery et al., 2014).

1.5.1 Sensors

In this emerging field of next generation phenotyping, a number of different sensors are

required to attain the different types of data desired. This includes sensors used to char-

acterise plants and their traits of interest, and geospatial sensors, to link data captured to

a geological location for repeated measurements and later referencing. For the purpose of

this review, sensors will be explored in the two categories of phenotyping and geospatial,

describing the functions and applications relevant to each.

1.5.2 Phenotyping Sensors

Sensors used for phenotyping fall into two broad categories, point sensors and imaging

sensors, the distinction between these categories and examples of these sensors are out-

lined in (Table 1.2). The predominant sensors used for phenotyping, along with common

applications and advantages and disadvantages, are listed in Table 1.3 and described in

greater detail in the subsequent sections.
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Red, Green and Blue (RGB) Sensors

Red, green and blue (RGB) imagers capture light from the visible spectrum and are found

most commonly in conventional digital cameras (Deery et al., 2014). RGB imagers are well

suited to capturing data on crop canopies and have been shown to be an effective means of

calculating field canopy cover (Adamsen et al., 1999; Lukina et al., 1999; Casadesús et al.,

2007; Li et al., 2010), and determining leaf area index (LAI) (Liu & Pattey, 2010). This

is achieved through an image segmentation process, where the crop canopy is separated

from the background image.

RGB images have been shown to correlate strongly with the normalised difference vege-

tation index (NDVI) (Adamsen et al., 1999; Lukina et al., 1999; Casadesús et al., 2007), a

commonly calculated index for measuring plant health, and through this have been used

to calculate senescence within a wheat crop (Adamsen et al., 1999).

While canopy cover and NDVI are rarely high priority selection criteria themselves (Table

1.5), they could be used to evaluate material for early vigour or senescence/stay green.

While this data might not be used for direct selection, it may further strengthen statistical

analyses of grain yield in advanced material.
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TABLE 1.2: The different categories of sensors and the way in which they capture data, with examples.

Sensor Type Data Capture Example Sensors

Point - Logs data from a single geospatial point at a single time point Infrared Thermometer, Spectroradiometer

Line Scanning Captures individual data points along a planar field at a single time
point and can produce 3D point clouds with platform movement

LiDAR

Image Frame Captures a spatial matrix of 2D pixels from a single time point RGB Camera, Thermal Camera, Multispectral Camera

Line Scanning Captures a single line of pixels or points at a single time point and
uses the movement of the platform to produce an image

Push-broom Hyperspectral Camera

TABLE 1.3: Common sensors used for phenotyping, their applications and advantages and disadvantages.

Sensor Data Applications Main Advantages Main Disadvantages

RGB 2D spatial
matrix

Canopy Cover, Senescence,
Object Detection, 3D
Modelling

Low entry cost Captures only visible light

Spectral 2D spatial
matrix or 3D
hypercube

Vegetation Indices, Disease
Detection

Captures light not visible to the
human eye with many derivable
outputs

Many sensors have limited spectral bands
(multispectral) and/or are expensive
(hyperspectral)

Thermal 2D spatial
matrix

Canopy Temperature, Drought
Resistance, Yield Potential

Captures light not visible to the
human eye and a ’snapshot’
of canopy temperature

Sensitive to environmental conditions

LiDAR 3D point cloud 3D Modelling, Plant Height,
Above ground Biomass

Reduces the need for physically
demanding phenotyping methods

Requires specialist skills to install and
configure

Fluorescence 2D spatial
matrix

Photosynthesis, Disease
Detection

The most capable imaging sensor for
detecting and measuring chlorophyll

Sensitive to light conditions
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Perhaps a more exciting use of RGB images is that of object detection and texture analysis.

To achieve this, algorithms are designed and written with the purpose of allowing com-

puters to ’see’ the image and detect specific traits (Dee & French, 2015). This is a growing

field of research, with few published studies, however such techniques have been used

to count the number of pepper fruits (Song et al., 2014) and wheat spikes (Li et al., 2014),

as well as estimate panicle detection in oats (Boyle et al., 2015), under controlled environ-

ments. These techniques could prove especially useful to wheat breeding, for the purposes

of detecting plant numbers, tiller numbers and spike numbers and perhaps even detect-

ing anther extrusion, providing reliable and accurate information on important agronomic

traits. However, adaption of these techniques to field data has yet to be demonstrated.

Another application of RGB imaging gaining popularity, due to the accessibility of cheap

unmanned aerial vehicles (UAVs), is that of three-dimensional (3D) modelling, where

large numbers of overlapping two-dimensional (2D) images are stitched together to create

a 3D point cloud and model. This technique has been demonstrated by Murakami et al.

(2012) for measuring height and lodging of buckwheat, with measurements being accu-

rate within a few centimetres. Three-dimensional modelling from aerial images has the

potential to be a useful tool during the early stages of a breeding programme (Figure 1.1;

F1 - F5) for determining variation in plant height, or in later generation material for the

determination of plant height, lodging and above ground biomass.

Spectral Sensors

Spectral sensors are receptive to wavelengths inside and outside of the visible spectrum

and are available in a number of different forms, commonly hyperspectral cameras, mul-

tispectral cameras and near-infrared cameras and sensors.

Hyperspectral cameras capture light from visible to near-infrared spectrums ( 400 – 1000

nm) in narrow bands, typically 1 – 10 nm wide (Haboudane et al., 2004; Mulla, 2013; De-

vadas et al., 2015; Mahesh et al., 2015) and at low resolutions. Hyperspectral cameras can

be of either push-broom (line-scanning) or snapshot (frame imaging) design. Multispectral

cameras, unlike hyperspectral, respond only to a few narrow wavelength bands (Mulla,
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2013), commonly in the red, green, blue and near-infrared spectrums, however they still

capture at low resolutions.

Possibly the most common spectral sensors used in agriculture today are near-infrared/red

sensors, popularised by the Greenseeker (Trimble, 2015) and similar products, which are

used to calculate the normalised difference vegetation index (NDVI):

NDVI =
NIR − VIS
NIR + VIS

(1.1)

where NIR is near-infrared and VIS is visible light. NDVI provides a ratio of near-infrared

light (reflected by chlorophyll) and red light (absorbed by chlorophyll), measured through

an active laser, and is commonly used to determine vegetation health.

This index has become popular within agricultural research and production, however

there are a myriad of confounding factors that can influence readings in field conditions

(Mulla, 2013), such as saturation of the index once canopy closure has occurred in healthy

plots (Mulla, 2013). For this reason, NDVI appears to lend itself more to research or com-

mercial production, rather than plant breeding, where genetic and environmental factors

are at play. A plethora of other indices exist (extensive lists compiled by Sankaran et al.

(2010) and Devadas et al. (2015)), though many of these indices become very specific, and

may be better suited to plant physiology research rather than breeding programmes.

While many of these indices may not be suitable for direct application within breeding

programmes, the creation of new indices or the use of individual wavelengths may be

a feasible approach for the detection and quantification of plant diseases within breed-

ing programmes. This would be highly beneficial within wheat breeding programme,

where resistance to disease is an important selection criterion, especially during early gen-

erations. Currently, accurate foliar disease detection has been demonstrated in wheat, for

both stripe rust (Moshou et al., 2006) and leaf rust (Devadas et al., 2015), with both of these

being detected independently from nitrogen deficiency. Further research into this area,

spanning a broad range of wheat foliar and soil borne diseases, may prove multi and/or

hyperspectral sensors an important tool for use within wheat breeding programmes.
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Thermal Sensors

Thermal cameras capture infrared wavelengths in the range of 3000 - 14000 nm, com-

monly 3000 - 5000 nm, providing a visual representation of temperature (Lei et al., 2014).

This has proven to be a useful research tool for physiologists, with data captured from

crop canopies showing high correlation to a number of traits such as transpiration rate,

stomatal conductance, plant water status, water use and grain yield (Jones, 2004; Pask &

Reynolds, 2012). It has also been suggested as a potential selection tool for breeders (Pask

& Reynolds, 2012), to aid in selecting greater yields and drought tolerance.

Despite its suggestion as a selection tool, thermal sensing is not without limitations, with

a wide range of variables that can alter temperature readings, including ambient temper-

ature, light intensity, wind speed and sensor angle (Jones, 2004; Leinonen & Jones, 2004;

Deery et al., 2014; Walter et al., 2015). Aerial thermal imaging may alleviate some of these

limitations, with a single image capturing many, or all, plots within a trial at a single

time point, minimising or eliminating any temporal changes, thus making this an obvious

choice for breeding programmes should they wish to collect thermal data.

LiDAR Sensors

LiDAR sensors create 3D point clouds, calculated from the time of flight between emission

and reflectance of an active scanning laser (Rosell Polo et al., 2009). This happens hundreds

to thousands of times a second, with laser emissions typically occurring in a wide arc to

give spatial data and therefore the ability to create a 3D model from the point cloud. Point

cloud data can also be transformed into a 2D image comprised of pixels (raster image),

more suited to standard image analysis procedures (Deery et al., 2014).

The novelty of LiDAR sensors to recreate crop canopies in 3D has resulted in numerous

studies investigating this sensor’s potential application in agricultural research. Calcu-

lating above ground biomass has been a particularly popular application and has been

successfully demonstrated in wheat (Ehlert et al., 2009; Eitel et al., 2014), maize (Li et al.,

2015) and arctic shrubs (Greaves et al., 2015). While more work is still required, especially

in making this a tool easily adopted by researchers, each of these studies conclude that
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LiDAR-estimated values are a suitable substitute for current destructive measurements.

This is of particular importance to breeding programmes where destructive measurements

cannot be conducted on early generation material (due to limited seed availability). Li-

DAR systems offer the opportunity to take repeated measurements throughout the season,

tracking the accumulation of above ground biomass or other desired traits.

Other applications for LiDAR systems that have shown promise are measuring canopy

height (Ehlert et al., 2009; Andujar et al., 2013; Deery et al., 2014; Li et al., 2015) and crop

density (Hosoi & Omasa, 2009; Saeys et al., 2009). Deery et al. (2014) have also suggested

the possibility of using LiDAR to identify individual plant organs and were able to sep-

arate wheat heads from the rest of the canopy, which was demonstrated by Saeys et al.

(2009).

Fluorescence Sensors

Fluorescence imaging uses rapid illumination from the ultra violet spectrum to cause flu-

orescence, primarily in chlorophyll, which is then captured using a digital camera with a

CCD sensor (Sankaran et al., 2010; Deery et al., 2014; Lei et al., 2014). Fluorescence imaging

requires close proximity to the target (>1m) and an even distribution of illumination for

accurate fluorescence levels to be captured (Deery et al., 2014).

As fluorescence primarily measures response of chlorophyll it is a useful tool for measur-

ing photosynthesis and plant health (Lichtenthaler & Babani, 2000). Examples of fluores-

cence imaging use can be seen for water stress (Lichtenthaler & Babani, 2000), citrus canker

infection and mechanical stress (Belasque et al., 2008). Despite its capabilities, fluorescence

imaging is unlikely to be adopted for large-scale field research, due to the equipment re-

quired and difficulties of sensor proximity and lighting (Deery et al., 2014).

1.5.3 Geospatial Sensors

Geospatial sensors are an important part of next generation phenotyping systems, allow-

ing data collected in the field to be georeferenced. These sensors are commonly found in

the form of Global Positioning System (GPS) receivers. GPS systems are already common
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throughout Australian agriculture, and are typically installed in tractors and harvesters to

guide movement and allow the implementation of precision agricultural practices; this is

common in both commercial scale field operations, as well as research trial work.

GPS receivers obtain a signal from four or more GPS satellites and triangulate a geo-

graphic position based from this information (Keskin et al., 2009). Real time kinematic

(RTK) GPS is the most accurate of these systems providing a GPS location within 2 cm

accuracy (James, 2009). This is achieved by using a base station, in addition to the GPS

satellites, which applies signal correction and increases accuracy (James, 2009). This high

resolution is a necessity for next generation phenotyping technologies, both for tracking

data collection and for mapping purposes (White et al., 2012), and has been repeatedly

demonstrated for georeferencing images and data (Comar et al., 2012; Busemeyer et al.,

2013; Andrade-Sanchez et al., 2014; Deery et al., 2014).

1.5.4 Platforms

Platforms themselves can be divided into aerial or ground-based (Table 1.4), with these

categories described in greater detail below.

TABLE 1.4: Common platforms used for phenotyping and their advantages and disadvantages.

Platform Advantages Disadvantages

Aerial Blimp Cheap
Easy to deploy

Uses a limited resource (helium)
Unstable in wind
Cumbersome to store

Unmanned
Aerial
Vehicle

Easily transportable and deployable
Automatic flight and data capture

Medium spatial resolution
Requires good weather
Small payload
Short flight time

Manned
Aircraft

Traverse large areas
High payload
Multi-sensor capture

Low spatial resolution
Requires good weather
Expensive

Mobile
Ground

Hand-held Easy to implement Labour intensive
Time consuming

Mobile Automatic data capture
High spatial resolution

Expensive
Specialist skills required to build
and configure the system
Typically slow moving
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Aerial Platforms

Aerial imaging has traditionally been conducted with manned aircraft, requiring skilled li-

cenced pilots and equipment operators, and is usually associated with a high cost. Manned

aircraft can traverse large areas quickly, carry heavy payloads and record from multiple

sensors simultaneously, however they are limited by weather conditions and have rela-

tively low spatial resolutions for field trial work due to their relatively high flight altitude.

Unmanned Aerial Vehicles (UAVs) offer a number of advantages over manned aircraft

as a sensory platform and can be classified as either fixed wing or multi-rotor systems.

Both fixed wing and multi-rotor systems can carry comparable payloads and have simi-

lar flight times, however fixed wing systems can generally cover a greater distance from

increased altitude and speed. UAV systems can be controlled autonomously through soft-

ware, allowing missions to be planned and executed with little human intervention (Araus

& Cairns, 2014). General advantages UAVs offer over manned aircraft are typically a

greater spatial resolution due to relatively low altitude flights, flexible flight times and

lower cost (Zhang & Kovacs, 2012). Even sensors which were once prohibitively large and

heavy, such as hyperspectral cameras and LiDAR, are being developed for UAVs and are

available commercially (PrecisionHawk, 2015; RIEGL, 2015), albeit at a high cost.

UAVs offer an attractive imaging solution to plant breeding programmes, as they can

quickly and efficiently collect data over large areas and can be deployed on an ad-hoc

basis. Despite this UAVs are yet to be proven as solid research tools; they are limited by

flight time and harsh environmental conditions, and sensors suitable for UAVs may not

currently have the spatial resolution to determine individual plants, rows or small plots

within wheat breeding trials. Furthermore, regulations surrounding UAV use vary from

country-to-country and are possibly the main impediment of UAV uptake and application

(Zhang & Kovacs, 2012). This is an especially pertinent issue in Australia, where all non-

recreational use of UAVs must be conducted by trained and licensed operators, as part of

a licenced company or organisation (Civil Aviation Safety Authority, 2015).

An alternative option to manned and unmanned aircraft, are blimps, which are priced

cheaply in comparison, and can carry multiple sensors at once (Murakami et al., 2012;
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Araus & Cairns, 2014; Lei et al., 2014). However, once inflated they are difficult to move

and unstable in even light wind, limiting their use to small trials, as well as taking up large

amounts of room when stored (Araus & Cairns, 2014; Lei et al., 2014).

Mobile Ground Platforms

Precision ground phenotyping has traditionally been conducted on foot with hand-held

equipment, such as digital infrared thermometers for measuring canopy temperature or

sensors for measuring NDVI. However, these methods are slow, which can result in large

temporal variation in measurements, and can be labour intensive (Deery et al., 2014).

Mobile ground platforms maintain the precision and accuracy captured with hand-held

measurements, carrying high quality sensors such as used for hand-held phenotyping.

Payload weight is unrestricted, allowing for multiple sensors to be mounted and is lim-

ited only by mounting space on the platform. Mobile ground platforms come in many

forms, such as purpose-built push frames (White & Conley, 2013), self-propelled frames

and buggies (Andrade-Sanchez et al., 2014; Deery et al., 2014), or modified vehicles such

as tractors (Rosell Polo et al., 2009; Comar et al., 2012).

The main advantage of these platforms is that only a single traversal of a field is required

per time point, capturing the data from multiple sensors simultaneously, while maintain-

ing a high spatial resolution. However, current mobile ground platforms are generally

not fast, with speeds being controlled by the walking pace of the operator for manual

platforms and typically around 1 – 4 km/h for automated platforms (Deery et al., 2014;

Pittman et al., 2015), leading to similar types of temporal variation as observed with hand

measurements.

1.6 Targets and Technologies for Wheat Breeding

With all of these technologies now available, the question of their purpose and fit within

a wheat breeding programme arises; when considering this, the structure (e.g. Figure 1.1)

and objectives of the breeding programme must be kept in mind.
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As seen in Figure 1.1 the majority of phenotypic selection occurs early in the programme,

however, current technologies (described above) may not lend themselves to capturing

data from individual plants or short rows and may require large rows, or plots for accurate

data capture. With this in mind Table 1.5 was produced, listing potential traits of interest

within a wheat breeding programme and speculating on the feasibility of different sensors

to capture the phenotype of that trait. Traits were given an overall priority based on their

potential use to the breeding programme (Kuchel and Edwards, Pers. Comm. 2015). The

suitability of individual sensors to capture phenotype data of specific traits was assessed

on the capabilities of each sensor, as described in the current literature. The overall fea-

sibility of successfully phenotyping and integrating data for each trait within a breeding

programme exists semi-independently from the suitability of individual sensors. In this

case algorithm and software development required to measure the trait, and the practical-

ity of using the required sensors within the programme, were also considered. Table 1.5

is an example produced for one breeding programme, with priorities (and the feasibility)

likely to differ from programme to programme.

In this scenario, relatively simple agronomic traits were given a high priority, partially

as they should be achievable within a reasonable timeframe, but also as they are time

or labour-intensive traits to measure. These traits provide a fairly complete picture of

crop growth, especially if captured frequently over time, and may lend themselves well to

phenotypic modelling and validation.

As these technologies develop and move from early adoption to common use, the feasibil-

ity of traits will change, allowing more difficult traits such as flowing time and individual

disease detection to be accurately measured and integrated into the programme.
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TABLE 1.5: An example of trait priority for a wheat breeding programme, with the feasibility1 of measuring each trait and the suitability2 of different sensors to be used for that
measurement. Feasibility, priority and suitability are scored on a 1-9 scale, with 1 being low priority/highly unlikely and 9 being high priority/highly likely.

Trait Priority Feasibility RGB (Singular) RGB (Stereo) NIR Hyperspectral Multispectral Fluorescence Thermal (IR) LiDAR

Plant No. 9 9 9 9 4 2 2 1 2 6
Spike No. 9 8 9 9 1 1 1 1 1 7
Above ground Biomass 8 9 2 6 1 1 4 1 1 9
Plant Height 8 9 1 6 1 1 1 1 1 9

N content 8 7 1 1 7 7 7 1 1 3
Green Leaf Area 4 9 9 9 9 5 7 1 1 8
Flag Leaf Chlorophyll 3 4 2 2 8 8 8 7 1 1
Head Colour 2 5 7 7 1 1 1 1 1 1
Glaucousness 2 2 2 2 1 3 3 1 1 1

Senescence (Rate of 5 7 8 8 5 5 5 1 1 1
Yellows 6 6 7 7 2 3 3 1 1 1
Leaf Tip Necrosis 5 4 5 5 2 3 3 1 1 1
Disease 6 3 6 6 2 8 8 7 4 1

Foliar 4 3 6 6 2 8 8 7 4 1
Crown Rot 8 6 7 7 2 6 6 4 6 1

Flowering Time 9 3 6 6 1 2 2 1 1 1
Head Shattering 3 2 5 5 1 2 2 1 1 1
Sprouting 3 1 5 5 3 3 3 1 1 1

(Flag) Leaf Width 3 3 8 8 1 1 1 1 1 5
Canopy Temperature 3 8 1 1 1 1 1 1 9 1
Growth Habit 2 2 2 2 1 1 1 1 1 3
Lodging 7 8 2 8 1 1 1 1 1 8

Plot Damage 9 7 5 5 3 5 5 1 2 6

1Feasibility is the likelihood of implementing sensors to a large-scale breeding programme (including the production of algorithms and software for image processing) and successfully measuring the desired trait within a 3 year timeframe

2Sensor suitability is scored as the likelihood of that sensor measuring the trait of interest
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With the current state of sensor technology, mobile ground platforms appear to be the

more appropriate option, as opposed to aerial platforms, for wheat breeding programmes

looking to implement these technologies. This is primarily due to increased spatial res-

olution by the proximity of sensors to the crop canopy; an advantage that will however,

eventually be lost as sensor technology improves and the spatial resolution achievable

from aerial platforms increases. Though the current speed achievable from mobile ground

platforms does not allow for truly high-throughput phenotyping, without the high spatial

resolution they achieve it is not possible to measure more detailed traits (such as plant and

spike number).

1.7 Current Limitations

It is clear that there are a wide range of technologies that will play a role in next generation

phenotyping systems, but with these technologies, there are a range of issues that are yet

to be addressed to facilitate their uptake for plant breeding programmes. These issues are

discussed in the sections below.

1.7.1 System Development

The task of building a field phenotyping system is a challenge in itself, especially in the

case of mobile ground systems, and in most circumstances will require the assistance of

mechanical and software engineers. These engineers are required for the design, produc-

tion and/or modification of the platform as well as the integration of imaging, geospatial

and data storage systems. Even in the case of simple ground based platforms, such as

described by White & Conley (2013), skills are required for frame construction and inte-

gration of sensors and associated systems. In general, phenotyping platforms will require

the sensors, mounting systems, power, connections to data loggers and where necessary

software for operation and control (White et al., 2012).

The exception to this may be small scale custom built or pre-built consumer ready UAVs

which can be built or set up with relative ease. In many ways UAVs are a much simpler
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solution than mobile ground platforms; consumer ready systems need only minimal lev-

els of assembly (attachment of wings/rotors/cameras etc.) and often come supplied with

software for flight control. Custom built UAVs will require some skill and understanding

of the components to assemble, with open-source and licensed software packages avail-

able for flight control. There are currently no consumer ready mobile ground platforms or

sensor integration software packages available for purchase, or available through open-

source, with both platforms and software typically being developed in-house.

1.7.2 Data Processing and Analysis

Data processing and analysis poses a significant challenge for the implementation of NGP

systems. The majority of data processing and analysis requires specialist skills, which in

most cases, are unique to each sensor. In the case of multiple sensors, simultaneously

logged data must first be integrated to form a complete data set, a potentially extensive

process, typically achieved with proprietary protocols developed in-house (White et al.,

2012). Aside from processing data to a state at which analyses can be conducted, it is often

necessary to adjust or calibrate measurements to account for changes in light intensity,

environmental and/or biological factors, to reduce variability in the data (Cobb et al.,

2013; Araus & Cairns, 2014).

There are currently no standards for the processing or analysis of data, with methods

being discerned on a case-by-case basis. A number of freely available software options

for image analysis are available (Lobet et al., 2013), however, the majority of this software

focuses analysis on specific traits which are not applicable for field-based phenotyping.

Despite the lack of standard procedures for processing and analysis there has been much

speculation as to how these broad procedures may be approached and improved in the

future (White et al., 2012; Cobb et al., 2013; Araus & Cairns, 2014). Automation and ease of

use are key themes within these speculations, reducing human input and therefore saving

resources, though this comes at a cost of reduced adaptability and the requirement of more

specialised software design (Cobb et al., 2013; Araus & Cairns, 2014). Even in the case

of fully automated systems, outputs must be checked and validated regularly to detect

unforeseen errors and prevent nonsensical analyses (Cobb et al., 2013). It is highly likely
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that advanced statistical tools, beyond the current standards, will be required to analyse

this data (White et al., 2012).

More complex analyses can be time consuming and require a great deal of computing

power, with this only escalating as the amount of data increases (White et al., 2012). Time

frames of data processing and analysis are not commonly reported, with implications of

these time ’sinks’ in plant breeding programmes being difficult to fully comprehend. Sim-

ple threshold analyses can be conducted for thousands of plots in under 15 minutes, with

little to no processing required, yet merely processing mosaic images of field trials for later

analysis may take more than a day of high-performance computer processing. In the case

of the breeding scenario in Figure 1.1, if advanced yield plots were to be assessed across

20 field sites using UAVs, merely processing the data from a single sensor would require

20 or more days of computing power.

1.7.3 Data Management and Storage

The management and storage of data acquired by these phenotyping systems is proving to

be yet another challenge to their integration within plant breeding programmes, with this

being a substantially more difficult task than acquiring the data itself (Cobb et al., 2013).

White et al. (2012) calculated that in the scenario of a breeding programme with 20,000

plots to be phenotyped, a single pass of these plots with a phenotyping system acquiring

four 10 mega-pixel images per plot (3 RGB and 1 thermal IR) would create 80 gigabytes

of data after being stored with a 1:10 compression. This considers only raw data, with

the amount of data increasing dramatically as processed data is stored, not to mention the

addition of multiple sampling times or sensors such as LiDAR and hyperspectral cameras,

or data that does not lend itself to efficient compression. Once accounting for these factors,

the proposition of managing and storing all this data becomes a significant challenge.

There are currently no standardised systems available for handling phenotype data, with

expertise required to establish in-house solutions (Cobb et al., 2013). It is entirely possible

that in the years ahead, storage of phenotype data will follow the same trend occurring

with genotype data; where the cost of data acquisition is cheaper than the cost of storing
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the data itself (Stein, 2010). In the case of genotype data, Stein (2010) has proposed that

cloud computing and storage could be an economic solution.

As phenotyping systems become integrated into breeding programmes, it is highly likely

that phenotypic data will be combined with genotypic data. This creates the unique chal-

lenge of altering already established databases, capable of holding genotype information,

to hold phenotype information, or to create new databases which are capable of both.

There are currently a number of public databases attempting this feat, such as PHENOP-

SIS DB (Fabre et al., 2011), the Rice Mutant Database (Zhang et al., 2006) and The Trit-

iceae Toolbox (Triticeae Coordinated Agricultural Project, 2015). These currently available

database tools may be more suited to researchers rather than plant breeders, however, they

demonstrate the capabilities of the technology.

1.7.4 Data Integration and Application

Throughout this review a variety of uses and applications for new phenotyping technolo-

gies have been identified, yet despite this, there has yet to be practical implementation of

these technologies in plant breeding, or more specifically wheat breeding programmes. To

achieve this, each programme will need to individually determine which traits and data

are important (e.g. Table 1.5) and implement technologies capable of recording this data

(i.e. appropriate sensors and platforms).

1.8 Summary

Phenotyping has been a long-standing selection method for wheat breeding programmes,

and is again receiving attention now that genotypic information can be attained so quickly

and cheaply. Wheat breeding programmes have now reached a point where population

sizes are prohibitively large to phenotype and finding a solution to overcome this is a

priority.

Numerous sensors and platforms have been investigated for next generation phenotyping

in general research, and these tools may be useful for passing the phenotyping limitation
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within plant breeding programmes. Sensors and platforms used by breeding programmes

will need to be tailored to each individual programme and their breeding objectives.

As yet these technologies have not been successfully demonstrated within a breeding pro-

gramme and there are currently many limitations preventing their uptake. Phenotyping

platforms can be difficult to build and operate, data processing can be complex and the im-

plications of managing and storing the amount of data which could be produced within

a breeding programme is yet to be realised. To overcome this, these technologies need to

be implemented into large-scale, functioning, breeding programmes, where their advan-

tages and disadvantages can be assessed. This will allow selection of the most effective

technologies, and the opportunity to alter breeding strategies where necessary, to increase

rates of genetic gain within the programme.
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Visual assessment of colour-based traits plays a key role within field-crop breeding
programmes, though the process is subjective and time-consuming. Digital image
analysis has previously been investigated as an objective alternative to visual
assessment for a limited number of traits, showing suitability and slight improvement
to throughput over visual assessment. However, easily adoptable, field-based high-
throughput methods are still lacking. The aim of the current study was to produce
a high-throughput digital imaging and analysis pipeline for the assessment of colour-
based traits within a wheat breeding programme. This was achieved through the
steps of (i) a proof-of-concept study demonstrating basic image analysis methods in a
greenhouse, (ii) application of these methods to field trials using hand-held imaging, and
(iii) developing a field-based high-throughput imaging infrastructure for data collection.
The proof of concept study showed a strong correlation (r = 0.95) between visual and
digital assessments of wheat physiological yellowing (PY) in a greenhouse environment,
with both scores having similar heritability (H2 = 0.85 and 0.76, respectively). Digital
assessment of hand-held field images showed strong correlations to visual scores for
PY (r = 0.61 and 0.78), senescence (r = 0.74 and 0.75) and Septoria tritici blotch (STB;
r = 0.76), with greater heritability of digital scores, excluding STB. Development of the
high-throughput imaging infrastructure allowed for images of field plots to be collected
at a rate of 7,400 plots per hour. Images of an advanced breeding trial collected with this
system were analysed for canopy cover at two time-points, with digital scores correlating
strongly to visual scores (r = 0.88 and 0.86) and having similar or greater heritability.
This study details how high-throughput digital phenotyping can be applied to colour-
based traits within field trials of a wheat breeding programme. It discusses the logistics
of implementing such systems with minimal disruption to the programme, provides a
detailed methodology for the basic image analysis methods utilized, and has potential
for application to other field-crop breeding or research programmes.

Keywords: phenotyping, physiological yellows, senescence, septoria tritici blotch, canopy cover
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INTRODUCTION

Visual assessment of traits within field trials is subjective
and laborious. However, it is an essential process for plant
breeders who wish to observe the phenotype of material within
their programme and determine genotype-by-environment
effects. In recent years numerous high-throughput digital
phenotyping methods have been proposed (Busemeyer et al.,
2013; White and Conley, 2013; Andrade-Sanchez et al., 2014;
Deery et al., 2014; Bai et al., 2016; Underwood et al., 2017;
Jimenez-Berni et al., 2018), all of which offer to alleviate the
current visual phenotyping bottleneck which exists within
modern plant breeding programmes (Cobb et al., 2013; Araus and
Cairns, 2014). Despite this, truly high-throughput systems which
are easily integrated within large-scale breeding programmes are
yet to be developed and used.

Typically, these phenotyping platforms are equipped with
an array of sensors, with popular choices including red, green
and blue (RGB) cameras, multi-spectral cameras, normalised
difference vegetation index (NDVI) sensors and LiDAR. RGB
cameras, in particular, have a long history with field phenotyping
and in a number of studies have been effective in estimating
canopy cover of field crops (Lukina et al., 1999; Casadesús et al.,
2007; Liu and Pattey, 2010; Mullan and Reynolds, 2010). The
popularity of these methods, from both a research and farmer
perspective, has culminated in the development of a simple
mobile application, which enables users to conduct simple in-situ
estimates of canopy cover from their mobile devices (Oklahoma
State University, 2015). The use of RGB cameras as a phenotyping
tool has focused on digital images to estimate canopy cover or
as an alternative to NDVI (Casadesús et al., 2007; Morgounov
et al., 2014). However, they have also been used to a lesser extent
to assess senescence (Adamsen et al., 1999; Hafsi et al., 2000),
crop nitrogen content (Li et al., 2010), early vigour (Kipp et al.,
2014) and soil water evaporation (Mullan and Reynolds, 2010).
Image analysis techniques used to asses this range of traits also
have the potential to be applied to other colour-based traits, such
as disease assessment, which may provide wheat breeders with
an objective system of assessment for specific traits within their
breeding programme.

In the current study, we collected data on four traits
[physiological yellowing (PY), senescence, Septoria tritici blotch
(STB), and canopy cover] from within a Southern Australian
bread wheat breeding programme, using high-throughput image
collection and basic, open-source, image analysis.

Physiological yellowing of bread wheat (Triticum aestivum L)
and durum wheat (T. durum) can have a number of possible
causes, however, there is little literature surrounding the trait,
with only a single study and two industry fact sheets exploring
the effect (Australian Grain Technologies, 2013, 2016; Schwenke
et al., 2015). Further to the reported yield impacts, farmer
perception often marks material expressing PY as undesirable,
due to its “disease-like” symptoms.

Senescence is yellowing of green leaves and the eventual
browning and drying of leaf material as a crop matures.
Senescence occurs naturally with time and can be used
as indicator of maturity or the impact of abiotic stress
(Distelfeld et al., 2014).

Septoria tritici blotch is a foliar disease of wheat due to
infection by the fungus Zymoseptoria tritici. Resistance for STB
is actively sought within breeding programmes (Brown et al.,
2015). Expression of STB is observed as yellow/brown lesions
on leaves, containing small black fruiting bodies (pycnidia).
Assessment of STB in breeding programmes typically occurs
in inoculated disease nurseries to ensure there is adequate
incidence of the disease.

Canopy cover is the proportion of soil covered by the crop
canopy, and is primarily used for the assessment of early vigour.
It is associated with the reduction of soil water evaporation
(Rebetzke et al., 2004; Mullan and Reynolds, 2010) and weed
competitiveness (Lemerle et al., 1996; Coleman et al., 2001). In
a more crude form it is also used to identify plant establishment
issues in field trials.

While each of the traits investigated in the current study
is physiologically different, they are linked through the colour-
based nature of their visual assessment. Visual assessment for
each of these traits is typically achieved through either a
percentage score, or through a 1–9 scale of severity. This type of
assessment lends itself to the application of image analysis, where
percentage area within images can be calculated.

The aim of the current study was to develop a high-throughput
digital imaging system capable of assessing colour-based traits
observed within a wheat breeding programme. This was achieved
in three stages:

(i) A proof of concept study in a greenhouse to develop
a method and examine how effectively freely available
image analysis software and consumer digital cameras can
estimate colour-based traits.

(ii) Applying these concepts of hand-held digital imaging and
basic image analysis to field trials to demonstrate their
application in breeding programmes.

(iii) Using the results of i and ii to develop a field-based
high-throughput imaging infrastructure, with a basic
image analysis pipeline.

The first two years of the current study involved the
development and testing of data capture and processing systems,
and the third year tested these systems within a wheat
breeding field trial.

MATERIALS AND METHODS

The three stages of the current study were conducted during
the seasons of 2015, 2016, and 2017 using a combination of
hand-held and high-throughput RGB imaging in greenhouse
and field trials (Table 1). Images were collected opportunistically
within a large-scale wheat breeding programme, across seven
experiments, for PY, senescence, STB and canopy cover. While
multiple traits were observed in the field, it is proposed that
the image analysis methods can be applied to any colour-based
trait of interest.

Greenhouse Imaging
Imaging of a potted experiment investigating the expression
of PY was conducted to establish the feasibility of assessing
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TABLE 1 | Summary of trials assessed in the current study.

Trial Environment Location Position Trait Measured Observations (n) Replicates

Greenhouse Controlled Roseworthy 34◦31’58.40"S, 138◦41’20.60"E Physiological Yellows 72 (plants) 3

A Field Roseworthy 34◦30’33.51"S, 138◦40’26.03"E Physiological Yellows 432 2

B Field Roseworthy 34◦30’33.51"S, 138◦40’26.03"E Physiological Yellows 432 2

C Field Roseworthy 34◦30’33.51"S, 138◦40’26.03"E Senescence 240 Partial (25%)

D Field Roseworthy 34◦30’33.51"S, 138◦40’26.03"E Senescence 648 Partial (25%)

E Field Turretfield 34◦32’13.81"S, 138◦50’36.55"E Septoria Tritici Blotch 202 2

F Field Winulta 34◦15’12.41"S, 137◦53’3.21"E Canopy Cover 288 3

a colour-based trait with basic open-source image analysis
methods. The experiment consisted of individually potted plants
arranged in a randomised block design of three replicates, with
treatments of genotype and presence/absence of chlorine (Cl−)
as described by Schwenke et al. (2015). Plants were grown
in a greenhouse on the University of Adelaide, Roseworthy
Campus. Further details of this experiment are described by
Australian Grain Technologies (2016).

The severity of symptoms was assessed shortly after anthesis
[Zadoks Growth Scale 69 (Z69) (Zadoks et al., 1974)], as the
percentage of leaf area affected by PY, i.e., a visual estimate of
the percentage of leaf material that was yellow. To obtain image
analysis scores, RGB images were captured for every plant using
a commercial digital camera (Canon 100D) at a resolution of
3456 × 5184 pixels (18 MP), with auto exposure. Plants were
placed in front of a white background, to allow for simplified
image processing and analysis. Images were captured from the
side of pots, allowing for large amount of leaf area to be visible,
with minimal occlusion.

Field Imaging
Following the testing of imaging in the potted greenhouse
experiment, imaging methods were adapted and deployed within
six wheat breeding field trials which examined a number of
different traits (Table 1). Field plot trials consisted of small
plots 1.32 m × 3.2 m (trials A–D, F) or 0.45 m × 1 m (trial
E) in size, with each trial containing a single treatment of
genotype, with varying levels of replication (Table 1), arranged
in a completely randomised design. Field plots were managed
by Australian Grain Technologies (AGT) within their wheat
breeding programme, with plots in trial E grown within an
inoculated STB nursery.

Visual and digital scores were recorded as percentage of
yellow leaf area, with visual scores collected in the field following
imaging. Exceptions to this were trial E, where visual STB severity
was assessed using a 1:9 scale at the time of imaging and trial F,
where visual scores were recorded as percentage canopy cover
obtained by a visual estimate of canopy cover in individual
images, and digital scores were calculated as the percentage of
image area that was green.

Images of plots in trials A–E were captured at a nadir angle
by using a hand-held camera (Canon 100D) over each plot,
approximately 1.5 m above ground level. Images were captured at
a resolution of 3456× 5184 pixels (18 MP), with exposure settings
adjusted ad-hoc. Nadir images were chosen because lateral images

reveal only the first few plants in each row, with the rest of the
plot being occluded. Images of plots in trial F were collected at
a nadir angle using the High-throughput Imaging Boom (HIB;
described in detail below). Plots were imaged early in the season
(approximately Z25) and following anthesis (approximately Z69)
to observe plot establishment and canopy cover. Images were
captured automatically using the HIB at both time-points, with
cameras set to 1/1000 and 1/2000 of a second shutter speed at the
first and second time-points, respectively, f 8.0 aperture and auto
ISO to allow for exposure compensation.

Image Analysis
All images were processed in the FiJI distribution
(Schindelin et al., 2012) of the open-source software ImageJ
(Schneider et al., 2012), using the Threshold Colour plugin
(Supplementary Data 1). Central regions of interest were
applied to greenhouse images and field images, where plant
material did not fill the frame.

A two-stage thresholding process was then used to separate
firstly, all plant material from background material (i.e., white
corflute in greenhouse and soil in field), and secondly yellow
plant material from green. Examples of this process are shown
for PY in Figure 1. Yellow thresholding was not required for
the estimation of canopy cover. Thresholding was conducted
using Hue, Saturation and Brightness (HSB) values, with these
being visually determined for each experiment to obtain the
most suitable thresholds. Once threshold images had been
created, the number of plant material pixels and yellow pixels
were counted, allowing the percent yellow leaf area score
(or percent image area green) to be calculated. Detailed
methods for thresholding and batch processing of images
are available in Supplementary Data 1. Examples of processed
images for senescence, STB and canopy cover are available in
Supplementary Data 2.

Images obtained from field trials were resized to 25% of
their longest edge (∼1 MP), to increase processing speed
and avoid RAM limitations, when batch processing large
numbers of images.

High-Throughput Imaging Boom
Development
The High-throughput Imaging Boom shown in Figure 2 was
designed for the express purpose of integration into a large-
scale wheat breeding programme. It features four commercially
available digital cameras (Canon 70D) mounted inside weather
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FIGURE 1 | Stages of the thresholding process for single plants grown in the greenhouse (top) and whole plots grown in the field (bottom). Depicted are the original
image (A), segmented plant material (B), binary plant material threshold (C), segmented yellow material (D), and binary yellow material threshold (E).

FIGURE 2 | The High-throughput Imaging Boom (HIB) developed and deployed as part of the current study, parked in a maintenance pathway of a wheat field trial.
Annotations outline major components of the system.

sealed boxes on the boom arms. This setup allows two images per
plot to be captured simultaneously, and the potential for future
work to investigate applications of stereo imaging.

Image capture is triggered by a single relay, which is controlled
by a laptop computer in the tractor cab. The laptop uses
proprietary software to monitor GPS output from a Trimble
FM1000 RTK GPS unit and trigger the relay from a set
of predefined GPS coordinates, camera trigger delay and the
distance between GPS receiver and the cameras. GPS coordinates
are computed based on three corner coordinates of the trial
site and the number of plot rows and columns present at the
site. The HIB is driven to each of these three corners and the
cameras positioned over the end plot. Once in position the GPS
coordinates are saved within the software. After collecting the

three GPS coordinates, individual triggering coordinates for each
plot are interpolated from the three corner positions. A text file
containing all trigger coordinates is saved and can be loaded into
the software for every imaging event, meaning this setup process
need only be completed once per field site.

The boom on which the cameras are mounted features arms
of adjustable height, which fold in for transport, mimicking
a standard spray boom used for plot maintenance within the
wheat breeding programme. To further strengthen the concept of
integrating the HIB within a field-crop breeding programme, the
tractor to which it is attached can use the GPS autosteer function
of the RTK GPS unit, adhering to the predefined maintenance
pathways within the trial. These pathways are typically used for
standard management practises such as fertiliser, herbicide and
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fungicide application. This reduces operator error while driving
the tractor, and allows repeated image capture throughout the
season with a spatial accuracy of 2 cm. To operate the HIB the
tractor is driven down maintenance pathways within each field
trial, with boom arms placing the cameras centrally over one plot
each side of the tractor.

As the tractor drives, image capture occurs automatically,
with images stored on SD cards within individual cameras.
The software running on the laptop computer monitors GPS
message output from the RTK GPS unit, with this information
being used to determine triggering of the relay in conjunction
with the pregenerated trigger coordinate text file. This process
accounts for tractor speed (calculated from GPS coordinates),
signal travel time between laptop and camera shutter trigger
(predefined within the software) and the distance between the
GPS receiver and cameras. The tractor continues to travel along
maintenance pathways in a serpentine manner, until all plots
have been imaged.

The HIB was driven at 5 km/h during image capture.
Cameras had manually set exposures, with a shutter speed of
1/1000 or 1/2000 of a second (for images at Z25 and Z69,
respectively), an aperture of f 8.0 and auto ISO to allow for
exposure compensation. Images were captured in JPEG format
for ease of post processing, and because of limitations in image
write speed and buffer capacity of the cameras for RAW images.

Statistical Analysis
All statistical analysis was conducted in the R software package
(R-Core Team, 2017). Mixed linear models were used to analyse
all data sets through univariate and bivariate analyses of visual
and digital measurements using ASReml (Butler et al., 2009).
Pearson’s correlations between raw data were calculated within
univariate analyses, while genetic and residual correlations were
calculated from bivariate analyses. Broad-sense trait heritability
(Eq. 1), which can be described as the proportion of observed trait
variation attributable to genetics (Visscher et al., 2008), was also
calculated within univariate analyses.

H2
=

σ2
G

σ2
G + σ2

E
(1)

where H2 is broad-sense heritability, σ2
G is the variance

attributable to genetic effects and σ2
E the environmental variance.

Linear regressions between visual and digital measurements
are presented from raw data, with regression equations calculated
using Model II Linear Regression (Ludbrook, 1997, 2012).

RESULTS

Proof of Concept
The image analysis methods proposed in Supplementary Data 1
were able to efficiently and consistently segment both plant
material from the background image, and yellow plant material
from total plant material (Figure 1 top). Digital scores correlated
strongly (r = 0.95) with visual scores assessed from individual
plants (Figure 3), with genetic and residual correlations being

FIGURE 3 | The relationship between Digital Yellow Leaf Area and Visual
Physiological Yellowing (PY) scores, for individually potted plants within a
Greenhouse. Dashed line represents the linear regression
between measurements.

similarly, strong (Table 2). Heritability for both measurements
showed similarly, high values, with visual scores being slightly
higher (Table 2).

RGB Imaging in Field Conditions
Following the success of applying the proposed image analysis
methods to individual plants in a greenhouse environment,
hand-held images of field plots were collected to further test
the application of the methods and investigate their robustness
under field conditions. As with greenhouse images, the image
analysis methods proposed in the current study were capable of
segmenting plant and background pixels, in this case from soil
rather than a plain background, as well as separating yellow plant
material from total plant material.

Significant correlations (p < 0.001) were observed between
digital and visual scores across all field trials (Figure 4). A slightly
weaker correlation between visual and digital scores was observed
in trial A (r = 0.61), with trials B, C, D, and E having
slightly stronger correlations (r = 0.74 – 0.78). For each trial,
genetic correlations were stronger than raw correlations between
visual and digital measurements, with residual correlations being
smaller than raw correlations. For all but trial E, the heritability
of the digital score was higher than that of the visual score
(Table 2). This was particularly the case for trials A and B where
the digital scores had heritability 0.28 and 0.27 units higher than
the respective visual scores.

Images were collected by hand at a rate of approximately one
image every four seconds across all field trials, or approximately
900 plots per hour. Image analysis took approximately 10 min per
trial, with the bulk of this time spent finessing threshold values.
Computer processing time was approximately 0.02 sec per image
(0.12 sec per image when including the process of importing
images to FiJI). Visual scores (Trials A–E) took over double that
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TABLE 2 | The correlation coefficients (r) for raw data, genetic and residual correlations between visual and digital scores, and the heritability (H2) of individual data sets
collected for the traits physiological yellowing (PY), senescence, Septoria tritici blotch (STB) and canopy cover.

Trait Trial Raw
Correlation

Genetic
Correlation

Residual
Correlation

H2 – Visual H2 – Digital

Physiological Yellows Greenhouse 0.95 0.98 0.92 0.85 0.76

A 0.61 0.86 0.32 0.46 0.74

B 0.78 0.86 0.66 0.46 0.73

Senescence C 0.74 0.83 0.43 0.76 0.81

D 0.75 0.92 0.44 0.67 0.74

Septoria tritici blotch E 0.76 0.86 0.47 0.73 0.59

Canopy Cover F – Time 1 (Z25) 0.88 0.82 0.82 0.11 0.08

F – Time 2 (Z69) 0.86 0.92 0.75 0.59 0.72

time, with one score recorded approximately every nine seconds
or 400 plots per hour.

Deploying Digital Phenotyping Methods
on a High-Throughput Infrastructure
The final step in the current study was to deploy the
digital phenotyping methods (Supplementary Data 1) on
high-throughput infrastructure designed to work effectively
within a field-crop breeding programme. Advanced yield plots
were imaged using the HIB to assess canopy cover.

Both early and late assessments of canopy cover
(approximately Z25 and Z69, respectively) showed strong
correlations between digital and visual scores (r = 0.88 and
0.86, respectively) (Figure 5). Early assessment of canopy cover
produced genetic and residual correlations of equal strength,
both of which were slightly weaker than the raw correlation,
though for assessment at Z69 genetic and residual correlations
were, respectively, stronger and weaker than the raw correlation
(Figure 5). Heritabilities were low for digital and visual scores at
Z25, though slightly higher for visual scores, but greatly increased
at Z69, with the digital score having a greater heritability than
the visual score (Table 2).

The HIB achieved a throughput of approximately 7,400
plots per hour, with the 9,600 plot trial site containing trial F
being imaged in 80 min; equating to approximately two unique
images per second. Analysis of plot images took approximately
10 min. Accurate in situ visual assessment of canopy cover is
challenging due to the oblique perspective of the scorer, however,
a throughput of approximately 400 plots per hour would be
expected, based on scoring rate of other traits in the current study.

DISCUSSION

Image analysis as a phenotyping tool is a common practise
within greenhouse and controlled environment experiments,
and a number of commercial platforms and facilities offer
streamlined approaches for data collection and analysis (for
example the LemnaTec Scanalyzer1, and the Australian Plant
Phenomics Facility2). These systems allow the collection of high

1https://www.lemnatec.com/products/high-throughput-phenotyping-solutions/
greenhouse-scanalyzer/
2https://www.plantphenomics.org.au/

temporal resolution data with ease, and are commonly used
for the assessment of green leaf area, and subsequently for the
assessment other traits such as of the rate of senescence (Atieno
et al., 2017). However, these systems are expensive to establish
and are limited to assessment of plants grown in controlled
environments within pots.

The image analysis methods proposed in the current study
offer a low-budget, open-source alternative to the controlled
environment systems described above, and are suitable for
the collection of digital scores comparable to visual scores
of colour-based traits. The example presented in the current
study shows the application of these methods to PY. However,
as shown by the results of Objectives 2 and 3, these
methods are robust across other colour-based traits. The strong
correlation between digital and visual assessments of PY in
the greenhouse experiment is unsurprising, as the imaging
of individual plants in front of a uniform white background
provides ideal conditions to implement this type of image
analysis. There is little occlusion present, and plant material
pixels can be easily segmented within the images due to the
vastly different hue values of plant and background material
pixels. Despite these ideal conditions, there are limitations to
the use of the proposed methods for assessing colour-based
traits which do not express uniformly across all plant organs,
as the proposed methods are basic and not capable of
isolating individual plant organs for analysis. In the case of
the current study, stems and ears of plants often remained
green while leaves expressed PY, resulting in images still
containing a many green pixels. This ultimately reduced the
percentage of the plant classed as yellow, leading to a slope
<1 for the linear regression between visual and digital scores
(Figure 3). Regardless of this limitation, the high heritability
of PY for both digital and visual scores in the greenhouse
experiment demonstrated the accuracy that is achievable under
ideal conditions.

Despite the high-quality data obtainable under controlled
conditions, field phenotyping is favoured within plant breeding
programmes, to gain an understanding of genotype performance
when subject to realistic and relevant environmental conditions
and to examine genotype-by-environment interactions
(Araus and Cairns, 2014). In contrast to controlled environment
imaging, field imaging occurs under conditions that are far
from ideal. The main contributing factors to this being the
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FIGURE 4 | The relationships between visual and digital scores for digital yellow leaf area and visual PY score in field trials (A,B) digital yellow leaf area and visual
senescence score for field trials (C,D) and digital yellow leaf area and visual Septoria tritici blotch (STB) severity score for field trial (E). Dashed lines represent the
linear regression between measurements.
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FIGURE 5 | The relationships between visual and digital scores for percent image area green and visual assessment of percentage canopy cover, for field trial F at
two time-points – Zadoks Growth Scale 25 (A) and 69 (B). Dashed lines represent the linear regression between measurements.

FIGURE 6 | Aerial image of an Australian large-scale wheat breeding site, annotated with dimensions of the site and the number of plot rows, plot ranges and travel
distances based on direction (A), and the serpentine path along site maintenance pathways, travelled by the HIB in the current study, allowing for two plots to be
imaged simultaneously (B). Image: Google, 2017, Digital Globe.

large amount of occlusion which occurs within the crop
canopy, preventing plant material in the lower canopy from
being fully visible (Casadesús et al., 2007), and the potential
for plant pixels and soil pixels to have similar hue values,
resulting in a more difficult segmentation process. Despite these
limitations, there are still strong similarities between image
analysis of greenhouse and field images, as can be seen in the
results of Objectives 1 and 2 in the current study. In the case
of PY, where images were obtained from both greenhouse
and field trials (A and B), direct comparisons can be made
around the quality of data collected. While the strongest
correlation between digital and visual data was observed
in the glasshouse experiment, the heritability of digital and
visual scores was similar. Weaker correlations were observed
between digital and visual scores within field trials, though the
heritability of digital scores was generally greater than for visual

scores, indicating that digital scores provide a more accurate
assessment of the trait.

The ability to apply the image analysis methods of the current
study to a range of traits across multiple field trials demonstrates
the robustness of these simple methods. For each field trial
(A–F) positive relationships were observed between digital and
visual scores, irrespective of the trait, with digital scores generally
resulting in a similar or improved heritability compared to
visual scores (Table 2). The high heritability of all traits assessed
digitally (excluding canopy cover at Z25) indicates the potential
to achieve genetic gain through selection for or against the
trait. Though heritability of canopy cover was low at Z25, this
does not necessarily mean that genetic gain cannot be made for
early canopy cover. The low heritability observed in the current
study can likely be explained by the variable germination and
establishment of plots within the trial, a result of variable soil
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and poor environmental conditions. These conditions resulted
in canopy cover scores being driven by equal levels of genetic
and residual variation, leading to a low heritability (Table 2). The
potential to achieve genetic gain through selection in these traits
is further supported by the relationship observed between raw,
genetic and residual correlations, where the raw correlation is
not driven purely by the residual, for any of the traits observed.
In each instance (excluding canopy cover at Z25) the genetic
correlation is greater than the raw and residual correlation,
with the residual correlation being weaker than the raw. In
trials where residual correlations were high, residuals could be
fitted as co-variates within breeding analyses to better model
non-genetic effects within the trial. Whether investigating the
genetics, or accounting for residual effects in trait performance,
the results of the current study show that digital methods can
be exchanged with visual methods, while producing greater or
maintaining similar heritability. The lower heritability of digital
scores, compared to visual scores, observed in trial E is likely
a result of (i) the amount of STB occluded from the camera
sensor – as the pathogen is spread from the bottom of the canopy
up, through rain-splash (Steinberg, 2015), and (ii) patches of
senesced grass weeds within the plots. The presence of weeds has
likely contributed to the lower heritability in the digital scores of
trial F at Z25, with small broadleaf weeds being present in images
and contributing to the amount of green pixels present. In both
trials E and F visual scores can easily account for occluded leaves
or the presence of weeds, which will result in a higher estimate
of heritability.

Few studies have compared digital image analysis scores with
visual scores of the same trait, opting instead for comparisons
to sensor produced visual indices or alternative traits (Adamsen
et al., 1999; Lukina et al., 1999; Casadesús et al., 2007; Li et al.,
2010; Liu and Pattey, 2010; Mullan and Reynolds, 2010; Kipp
et al., 2014). However, direct comparisons between digital and
visual scores have been made by Hafsi et al. (2000) and Stewart
and McDonald (2014), where individual leaves were isolated
on a plain background to obtain images and visual scores. In
each of these studies digital scores were found to be effective at
estimating the trait of interest (senescence and STB, respectively),
corresponding to the results of the current study.

It should be noted that the studies mentioned above used a
variety of image analysis methods, some similar to the current
study, using thresholds and/or segmentation (Lukina et al., 1999;
Li et al., 2010; Liu and Pattey, 2010; Mullan and Reynolds, 2010;
Kipp et al., 2014; Stewart and McDonald, 2014). Others have used
numerical approaches across the whole image, looking at pixel
colour values and ratios (Adamsen et al., 1999; Hafsi et al., 2000;
Casadesús et al., 2007).

Despite the variety in previously described methods, image
analysis within field experiments is currently far from common
practise, with relatively few examples within the literature.
Perhaps the most extensive example of using image analysis
within large field trials, as well as in the context of plant
breeding, is presented by Mullan and Reynolds (2010) where four
bread wheat populations were repeatedly imaged and analysed
to provide canopy cover values over time. A further example
presented by Kipp et al. (2014) showed image analysis to be a

superior method of early vigour assessment, compared to spectral
sensing. The subject of image collection and processing time was
raised in each of these studies, with Mullan and Reynolds (2010)
stating an imaging rate of approximately one image every five
seconds and an image processing rate of approximately three
images per second. Kipp et al. (2014), on the other hand, merely
state that their image collection and processing methods are too
time consuming for application to large-scale field trials. The
processes of image collection and analysis in the current study
were conducted in similar times to those reported by Mullan and
Reynolds (2010). The combination of image capture and analysis
showed a time advantage over visual scores from field trials A–E
in the current study, in which images were collected using a
hand-held camera, with image collection taking approximately
half the time of visual scoring and image processing taking
approximately 10 min per trial. This shows that even in the
absence of high-throughput methods, digital imaging can save
time when scoring breeding or research experiments.

To be adopted by plant breeding programmes, or by large-
scale research in general, image analysis methods should be
highly automated. This has previously been acknowledged by
Casadesús et al. (2007) when investigating digital image analysis
for the derivation of visual indices, and is often satisfied through
batch processing of images. This was the approach taken in the
methods of the current study, greatly reducing the user input
required. Further reducing user input could be achieved through
the scripting of certain processing steps, however, manual input is
still required to correctly apply thresholds to a new set of images.
To apply true automation to this process avenues of computer
vision and machine learning would need to be explored, such as
in the work of Guo et al. (2017), however, such work requires a
highly specialised skill set to undertake.

Further to the requirements of automated data processing,
high-throughput data collection methods are essential. Platforms
for the high-throughput collection of field phenotypic data
have been proposed in the literature (Busemeyer et al.,
2013; White and Conley, 2013; Andrade-Sanchez et al.,
2014; Deery et al., 2014; Bai et al., 2016; Underwood
et al., 2017; Jimenez-Berni et al., 2018), though there are
currently limited commercial options available. As it stands, a
platform that is affordable, truly high-throughput, and easily
integrated into large scale breeding and research operations, has
yet to be produced.

The HIB used in the current study shows great potential for
future deployment within large scale research and plant breeding
programmes, meeting the requirements of affordability, high
throughput and ease of integration into current trial operations.
Traditionally high-throughput phenotyping platforms described
in the literature have travelled directly over plots (Busemeyer
et al., 2013; White and Conley, 2013; Andrade-Sanchez et al.,
2014; Deery et al., 2014; Bai et al., 2016; Underwood et al.,
2017; Jimenez-Berni et al., 2018), following the direction
of seeding. This allows for thorough data collection over
the entire plot, whether multiple images of the canopy
or other sensor data, though it greatly increases driving
distance and is difficult to implement within standard breeding
trials. This is illustrated in Figure 6, where travel along
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individual plot rows is nearly eight times the distance
of travelling along field maintenance tracks, where two
plots are imaged simultaneously (one either side of the
pathway), when traversing a large-scale field trial in a wheat
breeding programme.

Travelling along maintenance pathways within the field
trial also offers the benefit of integrating with current field
maintenance practises and can take advantage of tractor RTK
GPS autosteer profiles that have previously been generated
for the maintenance of trial sites. In the current study,
GPS coordinates and output from the tractor’s RTK GPS
autosteer system were used to automatically trigger image
capture. This allowed a “hands-off” data collection approach,
as well as ensuring that repeated imaging occurred in the
same position for each plot, with a 2 cm tolerance for error.
Further to this, the use of autosteer reduces the chance of
operator error, assisting in the prevention of accidental damage
to field trials.

The small tolerance for error within the image capture system
will allow for the extension of this system to earlier stages of
the breeding programme, which is often grown in small plots or
individual plant rows (Halloran et al., 1979). As demonstrated
by the STB images in the current study, the image analysis
methods proposed are suitable for application to small plots
and are likely transferrable to single rows and potentially single
plants. This will be of great interest to plant breeders who wish
to conduct phenotypic selection within the early generations of
their breeding programme.

At the speed of 5 km/h driven in the current study
it was possible to image approximately 7,400 plots per
hour. While this is already exceptionally high throughput,
the system is capable of operating at higher speeds (with
10 km/h successfully tested). At higher speeds movement is
introduced into the boom arms when travelling on uneven
ground, and can result in plot images being off-centre.
However, these issues could be easily addressed through
modification to the boom or tractor, for example, auto-levelling
boom arms or lower tractor tyre pressure to reduce boom
arm and camera movement. The throughput of imaging
observed in the current study becomes even more impressive
when compared against the throughput of other systems.
Recent work by Khan et al. (2018) compared the throughput
of plot level RGB imaging from two systems; a low-cost
Mobile Ground Platform (MGP) and an Unmanned Aerial
Vehicle (UAV). In their study, throughputs of 120 plots
per hour and 1200 plots per hour were achieved for the
MGP and UAV, respectively. While these results show a
clear advantage in the throughput of UAVs compared to
ground platforms, the throughput achieved by the HIB in
the current study is over six times greater than that achieved
by Khan et al. (2018) with a UAV. This demonstrates that
truly high-throughput ground based, plot level, imaging is
achievable and, as described by Khan et al. (2018), can
deliver high-fidelity images of crop canopies not currently
achievable with UAVs.

Deployment of the HIB within a large-scale wheat breeding
programme during the 2017 growing season allowed for

images of individual plots to be captured with extremely high
throughput. While data from a single site is presented for the
assessment of canopy cover in the current study, the system was
deployed at eight trial sites across southern Australia and used
to collect 288,680 images from 74,880 unique field plots. Images
acquired with the HIB are suitable for the application of the image
analysis methods proposed in the current study, enabling wheat
breeders to efficiently and objectively assess colour-based traits.

Though the current study has focused on images collected
from RGB cameras mounted on the platform, it is possible
to expand the system for the collection of a greater variety
of data. Numerous sensors have been proposed as high-
throughput field phenotyping tools, such as LiDAR (Deery
et al., 2014; Bai et al., 2016; Underwood et al., 2017;
Jimenez-Berni et al., 2018), multispectral and hyperspectral
cameras (Busemeyer et al., 2013; Bai et al., 2016; Underwood
et al., 2017), thermal sensors/cameras (Crain et al., 2016;
Deery et al., 2016) and NDVI (Bai et al., 2016; Crain
et al., 2016; Underwood et al., 2017), all of which could be
integrated to the HIB.

CONCLUSION

The basic image analysis methods described in the current
study are effectively able to produce digital scores that correlate
well to visual scores for colour-based traits, with examples
being presented for PY, senescence, STB and canopy cover.
The methods described in the current study have a low barrier
to entry and utilise commercially available digital cameras
and open-source computer software. This, combined with
the strong correlations observed between digital and visual
data, the high heritability of assessments, and the associated
time savings, make for an attractive set of methods for the
assessment of colour-based traits within a wheat breeding
programme. Furthermore, they show potential for application
within other breeding programmes, particularly other cereals
and field crops.

To further encourage the adoption of image analysis
within plant breeding programmes, an effective system for
the high-throughput collection of images has been described,
including a clear pathway for integration into current field
maintenance practises. This system was deployed within a
wheat breeding programme and is capable of high-throughput
large-scale image collection, providing images suitable for the
analysis methods described in the current study. This ultimately
provides a rapid and objective data collection methodology,
enabling unprecedented levels of data collection from large-scale
plant breeding field trials.

There is further potential to increase the value of collected
images to breeding programmes, through the implementation
of more complex image analysis methods – focusing on other
applications such as seedling counting (Liu et al., 2016), ear
counting and flowering detection (Sadeghi-Tehran et al., 2017;
Virlet et al., 2017). High-throughput collection and processing of
such data, from large-scale field trials, will only further strengthen
the role of image analysis within plant breeding programmes.
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A B S T R A C T

Field-based next generation phenotyping has become of great interest to plant breeders and agricultural re-
searchers in recent years, particularly for circumventing destructive or impractical phenotyping methods com-
monly used for certain traits. The non-destructive estimation of one such trait, above ground biomass (AGB), has
been investigated repeatedly using 2D imagery, though little research has been conducted on 3D methods. The
aims of the current study were to (i) investigate the use of readily-available consumer level digital cameras and
software to estimate AGB, canopy height (CH) and harvest index (HI) of wheat plots, (ii) investigate the suit-
ability of this data as a replacement for destructive sampling methods within a wheat breeding programme, and
(iii) identify the point cloud density required for accurate estimation of AGB. To achieve this, a small plot trial of
a single wheat cultivar was conducted in an irrigated nursery, at Roseworthy, South Australia. At physiological
maturity plots were measured for CH and whole plots were harvested to attain AGB and threshed to measure
grain yield and calculate HI. Prior to harvesting each plot was imaged using a digital camera, with these images
being processed into 3D point clouds, which were subsequently used to estimate plot volume and CH. Strong
correlations were observed between actual measurements of AGB, CH and HI to those estimated from point
clouds. Images were processed in subset batches to determine an optimal number of images for processing.
Stronger correlations between AGB and plot volume were observed when more images were processed, though
as few as 48 images provided sufficiently accurate estimates of AGB. These methods were shown to be effective
at estimating AGB, CH and HI and could be adopted by small scale research programmes. This study shows that a
higher-throughput adaptation of this photogrammetry method could be used in phenotype intensive research
such as plant breeding programmes.

1. Introduction

Above ground biomass (AGB) is a particularly troublesome trait to
measure within breeding programmes due to the laborious and de-
structive methods needed to assess it. Despite this, AGB has been sug-
gested as a potential trait of interest, for the improvement of grain
yield, within cereal breeding programmes (Donald and Hamblin 1976;
Damisch and Wiberg 1991; Sharma 1993; Richards 2000; Richards
et al., 2002; Reynolds et al., 2012), particularly in relation to harvest
index (HI) and radiation use efficiency.

With the rise in popularity of field-based next generation pheno-
typing, a number of studies have investigated commonly-available
sensors, such as RGB cameras, multispectral cameras and LiDAR, to
measure AGB non-destructively in field trials (Ehlert et al., 2009; Hosoi
and Omasa 2009; Montes et al., 2011; Winterhalter et al., 2011; Bendig
et al., 2014; Eitel et al., 2014; Amaral et al., 2015; Bendig et al., 2015;
Li et al., 2015; Pittman et al., 2015; Schirrmann et al., 2016a;

Schirrmann et al., 2016b).These studies have used a number of methods
to estimate AGB, most commonly through canopy height or visual in-
dices (VIs). While these studies have often shown strong relationships
between AGB estimators and AGB, AGB is a complex trait and is three-
dimensional (3D) in nature. Without taking account of this 3D in-
formation, estimating AGB from canopy height or VIs may be limited. It
is also commonly agreed that the use of VIs can be limited due to sa-
turation of the index (Tucker, 1977), and is therefore impractical to use
at later crop growth stages or in very vigorously growing crops.

While many studies have focused on estimating AGB from two-di-
mensional spatial data, it is also possible to estimate AGB from 3D data.
Airborne laser scanning (ALS) is a common method used in forestry
research, where a LiDAR sensor is flown over the area of interest and
laser returns are collected in a 3D point cloud. The point cloud can then
be used for modelling and measuring, which has been successfully used
as a tool to estimate forest AGB (Zolkos et al., 2013). With the success of
LiDAR as a tool for measuring forest AGB, there is now keen interest in
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using LiDAR for phenotyping in agricultural research; however, the
implementation of LiDAR and other similar sensors is hampered by the
lack of simple data collection methods and the complexity of creating
data processing pipelines. The interest in LiDAR as a research tool is the
point cloud data it generates, however, this data can be collected
through multiple methods and is not exclusive to LiDAR. A limited
number of studies have investigated the use of point cloud data within
agricultural research. However, they have not focussed on the direct
estimation of AGB, instead investigating the potential to identify ears
(Saeys et al., 2009), or individual plant organ area (Hosoi and Omasa,
2009).

With the increased use of Unmanned Aerial Vehicles (UAVs) as a
data collection tool in many industries, including agriculture, there are
now a number of readily available software packages (e.g. Pix4Dmapper
Pro, DroneDeploy, Agisoft PhotoScan) that are capable of using red,
green and blue (RGB) images to create point clouds. This is an example
of photogrammetry, a method of obtaining measurements through
photographs. Photogrammetrically-derived point clouds have been
demonstrated to be an effective alternative to LiDAR to create a digital
surface model (DSM) for forestry research (Herrero-Huerta et al., 2016)
and to create DSMs for agricultural field trials (Bendig et al., 2014,
2015). While these models have been successful in estimating canopy
height and have been used as a predictor for AGB, images obtained
from UAVs typically have a low spatial resolution (in the context of
agricultural field plots) and may not sufficiently capture the fine details
of cereal crop canopies.

Photogrammetry can be utilised for the creation of point clouds, not
only from UAV obtained imagery, but also from ground based images.
Due to the small area of coverage, these point clouds are high fidelity
and could potentially be used to estimate AGB in research plots, based
on the volume of the canopy.

The objectives of this study were (i) to investigate the use of readily-
available consumer level digital cameras and photogrammetry software
to estimate wheat plot AGB, canopy height (CH) and HI, (ii) to in-
vestigate the suitability of this high fidelity point cloud data for re-
placing destructive manual measurements, within a wheat breeding
programme, (iii) and, as a prelude to scaling up this method, to identify
the point cloud density required for accurate estimation of AGB.

2. Methods

2.1. Site/Plant material

The study took place at the University of Adelaide, Roseworthy
Campus, Australia (34°31′52.8″S 138°41′9.8″E). Plots were grown in an
irrigated nursery, between November 2015 and May 2016. Plots (12) of
the Australian bread wheat (Triticum aestivum L.) cultivar Halberd were
sown in a factorial completely randomised block design, with a single
factor of four target plant densities (100, 200, 300 and 400 plants/m2).
Halberd was selected based on its phenotype, as it is a slow maturing,
strongly photoperiod sensitive and vernalisation insensitive, tall variety
with many tillers and large biomass.

Plots were sown as 5 rows with a 17 cm row spacing, at a length of
3m. To enhance the uniformity within each plot, plots were shortened
to 1.5 m in length and the northern most row was removed (due to poor
germination), which reduced the total plot area to 1.02m2.

2.2. Image capture

Plots were imaged 7 days prior to harvest, using a Canon EOS 100D
digital camera. Ninety-six RGB images were taken per plot, using a
three-ringed pattern of 32 images per ring, as shown in Fig. 1, with the
shutter being manually triggered while navigating the perimeter of the
plot. Images were taken at a focal length of 18 mm with an aperture of
F8.0, shutter speed was adjusted ad-hoc to counteract unavoidable
changes in lighting caused by variable cloud cover. Images were

captured in JPEG format at a resolution of 5184 × 3456 pixels. A
generic clay brick, measuring 230 × 110 × 75 mm, was included in
each set of plot images to provide a known scale. In circumstances
where the clay brick did not render properly point clouds were scaled
on the space between plant rows.

2.3. Image processing

Three-dimensional point clouds were created for each plot from the
set of 96 RGB images, using Pix4Dmapper Pro (Pix4D, 2016) photo-
grammetric software, running on a Windows 10 P, with 32 GB of RAM
and a quad-core 4.0GHZ processer. Images were imported to Pix4D and
then optimised and matched to create 3D point clouds, using ½ scale
images, optimal point density and a minimum of three required mat-
ches. Appropriate scales were applied to each cloud and results were re-
optimised and processed. Finally, a digital surface model (DSM) was
created for each point cloud, using Pix4D’s DSM processing tool, using
methods of inverse distance weighting with noise filtering and a ‘sharp’
surface smoothing filter.

In addition to the point clouds produced from the 96-image set, a
further five sets of point clouds were created for each plot, using subsets
of 80, 64, 48, 32 and 16 images from the full set. Image subsets of 32
and 64 comprised of a single, or two 32-image rings respectively, with
the subsets of 16, 48 and 80 comprised of half, one and a half, and two
and a half, 32-image rings respectively. To create the 16-image half
rings, images were removed from one side of the plot, leaving 16
images along one side. This method was selected as systematic removal
of every second image, resulted in poor processing results due to in-
sufficient image overlap (data not shown).

As a substitute for AGB the volume of plant material within in-
dividual plots was calculated with Pix4D’s inbuilt volume tool, here-
after referred to as point cloud volume (PCV). For this process, in-
dividual polygons were drawn approximately 5 cm above the base of
each plot (Fig. 2), with volume between this and the previously com-
puted DSM of the plot being calculated automatically. Polygons were
drawn at a height of 5 cm to ensure they were located above the furrow
ridges in each plot to eliminate potentially confounding objects, such as
rocks and clods of soil, during volume estimation.

Canopy height (CH) was measured from point clouds created with
the full 96-image set, using Pix4D’s inbuilt measurement tool. Height
was measured at four randomly selected points within the top layer of
canopy, with the average of these points representing overall canopy
height and being referred to as point cloud canopy height (PCH) for the
remainder of the study.

2.4. Manual measurements and sampling

Canopy height was measured with a ruler one day prior to image
capture. Four randomly selected representative plants were measured
within each plot. Measurements were taken from the base of each plant
to the uppermost spikelet, and averaged to best represent canopy
height.

Entire plots were harvested and AGB measured after physiological
maturity (Zadoks growth stage 92–93) (Zadoks et al., 1974), with plants
being removed at ground level. Plant material from each plot was in-
dividually weighed to attain a dry AGB weight. Plots were harvested on
a dry summer day, inducing low crop moisture levels and negating the
need for oven drying of material.

Above ground biomass samples from each plot were individually
threshed, with the grain being retained and weighed to determine grain
yield and calculate HI for each plot. Harvest index was calculated as
grain yield per plot (kg)/AGB per plot (kg). Predictions of HI were also
calculated from PCV measurements, by converting these to an AGB
estimate, using the equation of linear regression between the two, i.e.

HI = grain yield per plot (kg)/(M*AGB per plot (kg) + C) (1)
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Where M and C are the AGB and PCV regression slope and intercept.
Henceforth this will be referred to as point cloud volume predicted

harvest index (PCV-HI).

2.5. Statistical analyses

Summary statistics, variance, and ANOVA of traits were conducted
in the R statistical package (R-Core Team, 2015). Relationships between
manual measurements and point cloud derived values were evaluated
in R and RMA: Software for Reduced Major Axis Regression (Bohonak,
2004), using linear regression (Model II – Reduced Major Axis)
(Ludbrook, 1997, 2012). Comparisons between linear regressions were
conducted using the methods described in Zar (1984) for slope and
elevation comparison.

3. Results

3.1. Point cloud creation

Mean initial processing times and mean points per cloud produced
from each image set are shown in Table 1. Initial processing time in-
cludes image matching and processing, as well as point cloud densifi-
cation. This accounted for the bulk of the processing required, with
subsequent scaling of point clouds and generation of DSM’s taking

approximately a third of the original processing time. Mean points per
cloud increased with the number of images in each set, however, point
clouds produced from the 64-image set saw a spike in mean points per
cloud, being greater than both the number of points in the 48 and 80-
image sets, but still less than the 96-image sets.

While it was possible to produce point clouds using the sets of 16
and 32 images, the resulting point clouds contained a greatly reduced
number of individual points and, upon visual inspection, appear to
provide a poor representation of physical plots (Fig. 3). While the mean
number of points was reduced when fewer images were processed, the
distribution of these points within the plot was also reduced, with
points only appearing as small clusters in the crop canopy.

Fig. 1. Point cloud from a single plot of wheat
created with Pix4D, showing the images used for
construction.

Fig. 2. Point cloud of a single plot of wheat showing, A) the polygon drawn at the plot base for volume estimation within Pix4D, and B) the volume estimation tool within Pix4D, showing
the 3D volume measured.

Table 1
The mean processing time (to the nearest minute) and mean number of points within the
point cloud of each plot (nearest thousand), for each image set processed.

Image Set Mean Processing Time (min) Mean Points Within Plot (×103)

16 6 180
32 15 321
48 28 485
64 49 917
80 65 881
96 80 952
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Within point clouds created from the 96-image sets, points were
predominately located in the upper canopy. Plot edges were reasonably
defined, with the majority of stems and leaves being modelled. In
contrast, the inner canopy was poorly represented, with a distinct lack
of points in this area of the cloud. An example of point distribution is
displayed in Fig. 4, showing the upper canopy (A), plot edges (B), and
inner canopy (C) for a plot produced from the 96-image set.

To investigate the disparity in the quality of point clouds created
with fewer images, to those created with more images, correlation
coefficients of regressions between AGB and PCV were plotted against
the number of images used to produce each point cloud (Fig. 5). The
plot of these correlation coefficients shows an increase in correlation
strength, with an increase in the number of images contained in each
image set.

Comparison of regression equations used to create Fig. 5 showed
that a single slope could be applied to the majority of regressions, the
exceptions being clouds created with the 16-image set having a sig-
nificantly different slope to clouds created with the 96 and 80-image
sets (p > 0.05).

For the remainder of this study results are presented from point
clouds created using the 96-image set. From visual inspection of point
clouds, as well as the regression in Fig. 5, it is apparent this is the most
dense and best constructed set of point clouds, and will allow for the
most rigorous data exploration in the remainder of the study.

3.2. Biomass vs volume

Above ground biomass of plots ranged from 0.86–1.82 kg, with a

Fig. 3. Side (A, C) and top (B, D) views of plot point clouds (400 plants/m2) processed using 16 (A, B) and 96 (C, D) images.

Fig. 4. Point cloud from a single plot of wheat showing points
measured above the soil surface, for A) top of canopy B) side
stems and leaves C) inner stems and leaves.
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mean of 1.38 kg per plot and a coefficient of variation (CV) of 0.23.
Point cloud volume ranged from 0.04–0.57 m3 per plot, with a mean of
0.28 m3 per plot and a CV of 0.55.

Analysis of AGB and PCV with ANOVA showed no significant effect
of seeding rate or replicate, on either set of measurements (p > 0.05).

Point cloud volume and AGB were analysed with simple linear re-
gression. A strong positive relationship (r2 = 0.79) was observed be-
tween the two traits (Fig. 6). Within Fig. 6, Point 1.8, 0.33 is con-
siderably lower than point 1.82, 0.57 as a section of this plot had
lodged. Lodging did not occur in any other plot.

3.3. Canopy height

Canopy height of plots ranged from 55 cm to 77.5 cm, with a mean
of 68.33 cm and a CV of 11.50. Point cloud height ranged from 54 to

85.25 cm, with a mean of 69.23 cm and a CV of 15.10.
Point cloud height showed a strong positive relationship to CH

(Fig. 7).
To investigate the role of height in the derivation of biomass and

volume, manual height and PCH were compared against both AGB and
PCV through simple linear regression (Fig. 8). The relationship between
height measurements and AGB was strong, and similar regardless of
whether CH (r2 = 0.84) or PCH (r2 = 0.85) was used. This was also
observed in the regressions between height measurements and PCV,
where a relatively strong relationship was present regardless of CH
(r2 = 0.54) or PCH (r2 = 0.61) being used. Across these regressions,
PCH showed a slightly stronger relationship to AGB and PCV than CH.

Fig. 5. The correlation coefficients of the linear regression be-
tween above ground biomass (AGB) and point cloud volume
(PCV), for each image set.

Fig. 6. Linear regression of manually measured above ground
biomass and point cloud volume per plot (PCVP).
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3.4. Harvest index

To estimate HI using PCV, biomass per plot was predicted using the
linear regression model shown in Fig. 6. From this, the trait PCV-HI was
calculated and compared to HI. Predicted HI values had both a similar
range and mean compared to measured HI. Harvest index values ranged
from 0.17 to 0.44, with a mean of 0.30 and a CV of 26.69, and PCV-HI
values ranged from 0.16 to 0.45, with a mean of 0.31 and a CV of 31.57.

Simple linear regressions were used to compare HI to PCV-HI
(Fig. 9). Correlation between HI and PCV-HI was high (r = 0.94), with
the regression model showing a significant correlation (p =< 0.01).

4. Discussion

4.1. Point cloud construction

Pix4D is designed for aerial mapping and 3D model creation of
large-scale areas and objects, from Unmanned Aerial Vehicles (UAVs).
Despite being designed for the processing of aerial imagery, it was ea-
sily and effectively used to create point clouds of wheat research plots
from ground-based images in the current study.

One drawback of using a commercial digital camera for acquiring
images in the current study, was the lack of any on-board coordinate or
scaling system (such as GPS or IMU’s) commonly found in UAVs. This
resulted in all point clouds produced having an arbitrary scaling system,
requiring correction based on known distances before data extraction
could occur and thereby increasing the amount of processing time per
model.

This small-scale modelling is also greatly influenced by environ-
mental effects, particularly wind. Wind movement of plants within plots
results in slightly different positioning of plants within images. This
leads to poor co-localisation of points during point cloud processing,
and results in missing sections of plants in the final point cloud.

Poor co-localisation of points was especially apparent in point

clouds created with image sets containing fewer images. This is a fun-
damental limitation of using photogrammetry for the production of
point clouds, where images must overlap sufficiently to effectively
contribute to point cloud processing. The percentage of image overlap
required is often suggested in the range of 60% (Schirrmann et al.,
2016a) to 80% (Colomina and Molina, 2014), and is typically achieved
when capturing images from UAVs with pre-planned flight paths and
image capture points. The manual image capture methods of the cur-
rent study did not allow for such precise pre-planning to obtain con-
sistently large amounts of image overlap, though images were taken in
a regular pattern for each plot, with an attempt to maximise overlap
between images.

Processing point clouds using the 96-image set produced the best
mean correlation between AGB and PCV across all plots, though it
appears that reducing the number of images to 64, or perhaps as low as
48, may also be feasible for the estimation of plot AGB, as a common
line of best fit can be shared between the majority of AGB and PCV
regressions. However, this of course becomes a trade-off between the
accuracy of AGB estimates and the image collection/processing time,
and will be subjective to individual plant breeders and research scien-
tists.

While correlation coefficients of the 16 and 32-image sets were still
relatively high (0.76 and 0.80 respectively), it would be unreasonable
to rely on these point clouds for volume calculation, due to the poor
physical resemblance of these clouds to actual field plots.

It is also worth noting that while a trend in number of points in-
creasing with number of images processed was observed, distribution of
points within these clouds were vastly different. Point clouds processed
from fewer images tended to have clumps of points at the canopy level,
while point clouds processed from more images had a more homo-
genous spread of points across the canopy, with some points in the
lower canopy as well as around the outer stems.

As previously mentioned, the photogrammetry methods of the
current study are primarily designed for use with UAV obtained images.

Fig. 7. Linear regression of manually measured canopy height
(CH) and canopy height measured from point clouds (PCH).
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The use of UAVs allows efficient data collection from large areas, an
aspect desirable for field trials; however, the captured images and the
subsequently processed point cloud have a low spatial resolution (in
comparison to ground based imaging). While few studies have in-
vestigated the use of UAV collected images for volume based estimation
of AGB from wheat plot point clouds, a large number of studies have
investigated the use of such images for other agricultural research. In
such studies, spatial resolution of UAV captured RGB images commonly
ranges from ∼1–10 cm per pixel (Rasmussen et al., 2013; Bendig et al.,
2014; Geipel et al., 2014; López-Granados et al., 2016; Schirrmann
et al., 2016a). In comparison, images from the current study have a
spatial resolution of ∼0.5 mm per pixel. This greater spatial resolution
allows for a more accurate representation of field plots in the con-
structed point clouds and ultimately, may lead to a more accurate es-
timation of AGB from these point clouds.

While point clouds were generated through digital imaging and
photogrammetry in the current study, they are also commonly gener-
ated through laser scanning sensors, such as LiDAR. Though the method
of point cloud generation differs between these two sensors, the re-
sulting 3D data is essentially the same. Despite this, LiDAR appears to
offer the advantage of greater canopy penetration, to the extent that Li
et al. (2015) were able to use it for the calculation of Leaf Area Index. In

the current study there were few points within crop canopies (Fig. 4C),
with points clustering around the outer edges of the plot. This may be
due to slight movements in the canopy between pictures, resulting in
only larger structures processing correctly, or it may be an inherent
limitation of photogrammetry for this application, where the inner
canopy is occluded by the exterior canopy. However, despite any lim-
itation in canopy penetration, the methods employed by this study
demonstrate the ability to use RGB cameras and photogrammetry for
point cloud creation and the estimation of crop biomass.

4.2. Biomass estimation

Despite the limitations in point cloud construction, as described
above, the methods of the current study were able to produce a strong
positive relationship of r2 = 0.79 between PCV and AGB (Fig. 6), si-
milar to those reported by other research using point clouds for AGB
estimation (Hosoi and Omasa, 2009; Eitel et al., 2014; Greaves et al.,
2015). Point clouds have previously been used to estimate AGB in
wheat (Hosoi and Omasa (2009); Eitel et al., 2014) and barley (Bendig
et al., 2014), as well as leafy biomass of trees (Polo et al., 2009) and
arctic shrubs (Greaves et al., 2015), with each of these studies finding
strong correlations between dried AGB/leafy biomass and biomass

Fig. 8. Regressions for above ground biomass (AGB) and canopy height (CH) (A), point cloud volume (PCV) and CH (B), AGB and point cloud height (PCH) (C), and PCV and PCH (D).
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estimators (e.g. volume) derived from point clouds. Of these studies,
Greaves et al. (2015) used methods that were most similar to the cur-
rent study; where biomass of arctic shrubs was estimated by using vo-
lume derived from a point cloud and mesh (similar to that created by
the Pix4D volume tool). These methods resulted in strong relationships
(r2 = 0.92 and 0.91) between volume and dried biomass at two scan-
ning distances. Greaves et al. (2015) also compared manual biomass
samples to volume derived from point cloud voxelization (described by
Hosoi and Omasa (2006)), again seeing strong relationships at two
scanning distances (r2 = 0.94 and 0.82). Voxel based methods were
also used by Hosoi and Omasa (2009), during their investigation of
point cloud calculated plant area density, for the comparison of LiDAR
derived leaf and stem, and spike area, against manually measured dry
weights (r2 = 0.94 and 0.96 respectively). While the methods of Hosoi
and Omasa (2009) are dissimilar from the current study, they still de-
monstrated a strong relationship between point cloud derived and
manual measurements.

The methods of the current study are also similar to those used by
Eitel et al. (2014) who observed a strong correlation between estimated
volume and AGB. Eitel et al. (2014) used the difference between point
cloud derived ground surface models and canopy surfaces models to
estimate plot volume, whereas the volume measurement tool used in
the current study was used to compare a canopy surface model to a flat
surface slightly (∼10 cm) above the soil surface.

The relationship between AGB and PCV observed in the current
study showed a similar relationship to that observed by Eitel et al.
(2014) (r2 = 0.79) but slightly weaker than the study of Greaves et al.
(2015) (r2 = ∼0.9). This may be due purely to natural variation be-
tween the data sets, however, one likely factor that may have con-
tributed to this difference is the differing plant material measured. In
the current study a single cultivar of wheat was sampled (as was con-
ducted by Eitel et al., 2014), compared to a different plant species in
Greaves et al. (2015).

4.3. Biomass height relationship

While volumetric methods of biomass estimation have been dis-
cussed, another potential method is the use of canopy height as a bio-
mass predictor. This has been demonstrated by Ehlert et al. (2009)
(laser rangefinders), Long and McCallum (2013) (LiDAR), and Bendig
et al. (2014, 2015) (point cloud derived crop surface models), with
these studies observing a strong correlation between canopy height and
AGB. Point cloud derived canopy heights measured in the current study
show a strong correlation to manual height as has been demonstrated in
the literature (Long and McCallum, 2013; Bendig et al., 2014), in-
dicating that they may be suitable as an estimator for AGB.

The relationship between plot canopy height and AGB (for both
manual height and PCH) in the current study shows a strong correlation
between the two, aligning with the work of Ehlert et al. (2009); and
Bendig et al. (2014, 2015). This strong relationship is also echoed be-
tween PCV and canopy height, this being unsurprising as the volume
calculations used in this study are heavily influenced by height.

4.4. Height estimation

While PCH measurements showed a strong relationship to canopy
height, it is likely that this relationship could be improved with the
development of alternate calculation methods. The methods of mea-
suring canopy height from point clouds used in this study, are essen-
tially the same as those used to manually measure canopy height, albeit
at a computer rather than in the field. The estimation of canopy height
could likely be improved with the application of custom algorithms that
average the top layer of canopy points, or select a percentile of point
height, allowing a much greater amount of points to be included than
the four points used in the current study. However, to the Author’s best
knowledge it is not currently possible to implement such algorithms
within Pix4D, though it may be possible to apply them to exported
point clouds.

Fig. 9. The linear regression between harvest index and point
cloud volume predicted harvest index.
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4.5. Harvest index estimation

The strong correlation observed between PCV-HI and HI indicate
that PCV-HI would be a suitable substitute for HI where AGB was not
measured. Deriving PCV-HI from plot point clouds offers breeders the
opportunity to non-destructively calculate HI without manually col-
lecting AGB data.

4.6. Application to wheat breeding

The techniques of point cloud creation and data extraction de-
monstrated in the current study provide a potential method for plant
breeders to non-destructively estimate the AGB of breeding plots; al-
lowing grain to be mechanically harvested for grain yield estimation,
postharvest grain quality measurements and to provide seed for the
next generation. However, while strong relationships between AGB and
PCV, and HI and PCV-HI have been presented in this study, they were
tested on a single genotype. Further testing of these methods across a
wide array of genotypes is required, to observe a broad range of these
relationships, as well as to test the suitability of these measurements for
plant breeding. For this, the heritability (a common measure of genetic
repeatability within breeding programmes) of these point cloud mea-
surements will need to be assessed and compared to the heritability of
manual measurements.

Though further testing of point cloud derived measurements is re-
quired before being incorporated into a wheat breeding programme, it
is unlikely that the methods used in the current study are suitable for
such a use. Throughput of these methods is extremely low, taking
several minutes to image and in many instances over an hour (Table 1)
to process each plot to extract AGB/PCV estimates, making it more
efficient to physically harvest and measure AGB. This is especially true
when considering hundreds, or more likely thousands, of plots may
require sampling within a breeding programme. However, these
methods would be suitable for small scale research projects where AGB
estimates are desired and destructive sampling methods are not pos-
sible.

While the methods of the current study are low-throughput, they
demonstrate the type of data extractable from point clouds, and the
potential of this data to be used within plant breeding programmes.
Non-destructive biomass estimation will provide plant breeders with a
valuable data set that has previously been inaccessible. Current
methods of AGB measurement or estimation are destructive and la-
borious (in the case of manual sampling), subjective (in the case of
visual assessment), or prone to saturation after canopy closure (in the
case of VIs). The use of point cloud data to estimate AGB will allow
plant breeders to objectively estimate AGB from field trials, while
maintaining the full integrity of yield plots for grain yield assessment.
Though the methods of the current study are currently too impractical
to apply to large scale field research, there are opportunities to help
alleviate throughput challenges. For example, rigid frames with a large
number of inexpensive cameras could be placed or driven over plots,
allowing all images for any given plot to be collected at once. This
would also remove any confounding effects of wind, as encountered in
this study. Another example could be a motorised arm which pivots a
camera around the centre of the plot and collects images as it travels,
this again could be placed over each plot, or attached to a vehicle for
easy transport.

Throughput of image processing could be improved through the use
of computing clusters, however this would quickly become expensive
when purchasing sufficient software licencing. While there is currently
no open-source software capable of the processing conducted in the
present study, there is promising open-source software in development
(e.g. OpenDroneMap (http://opendronemap.org/)), which may offer an
alternative to current licenced software options. Current software op-
tions take advantage of multi-thread and GPU processing of single
machines, but do not allow for distributed parallel processing across

multiple machines (Pix4D, 2016). Implementation of such processing
may also allow for increased throughput, whether through processing
speed or processing many projects simultaneously.

Despite the current throughput challenges, the main advantage of
these methods is that they use inexpensive and intuitive sensors,
making them easily accessible to plant breeders and research scientists.
No specialist skills are required for digital camera operation, and the
processing pipelines of software such as PiX4D are user-friendly. This is
in contrast to other sensors of interest, such as LiDAR, which are ex-
pensive in comparison and require specific skill sets (e.g. software en-
gineering) to initiate data collection and create in-house processing
pipelines (Deery et al., 2014).

5. Conclusion

This study has demonstrated a set of methods, which can be con-
ducted relatively cheaply, using commercially-available digital cameras
and photogrammetry software, for the creation of point cloud data and
the estimation of AGB, canopy height and HI. Point cloud derived vo-
lume estimates showed strong correlation to AGB, supporting the re-
sults from the few studies in this area of research. Multiple sets of point
clouds were created from differing numbers of images to determine an
optimal amount for processing, with a conclusion that biomass esti-
mated from as few as 48 images per plot would be suitable to use for
plant breeding and other research purposes. Estimates of both plot ca-
nopy height and HI derived from point clouds correlated well to manual
measurements, both of which could be applied within breeding pro-
grammes or research projects. The current study demonstrates that high
fidelity point cloud data can be a valuable tool for wheat research and
breeding, when collected and processed with high-throughput methods.
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Above-ground biomass (AGB) is a trait with much potential for exploitation within wheat 
breeding programs and is linked closely to canopy height (CH). However, collecting 
phenotypic data for AGB and CH within breeding programs is labor intensive, and in the 
case of AGB, destructive and prone to assessment error. As a result, measuring these 
traits is seldom a priority for breeders, especially at the early stages of a selection program. 
LiDAR has been demonstrated as a sensor capable of collecting three-dimensional data 
from wheat field trials, and potentially suitable for providing objective, non-destructive, 
high-throughput estimates of AGB and CH for use by wheat breeders. The current study 
investigates the deployment of a LiDAR system on a ground-based high-throughput 
phenotyping platform in eight wheat field trials across southern Australia, for the non-
destructive estimate of AGB and CH. LiDAR-derived measurements were compared to 
manual measurements of AGB and CH collected at each site and assessed for their 
suitability of application within a breeding program. Correlations between AGB and 
LiDAR Projected Volume (LPV) were generally strong (up to r = 0.86), as were correlations 
between CH and LiDAR Canopy Height (LCH) (up to r = 0.94). Heritability (H2) of LPV (H2 = 
0.32–0.90) was observed to be greater than, or similar to, the heritability of AGB (H2 = 
0.12–0.78) for the majority of measurements. A similar level of heritability was observed 
for LCH (H2 = 0.41–0.98) and CH (H2 = 0.49–0.98). Further to this, measurements of LPV 
and LCH were shown to be highly repeatable when collected from either the same or 
opposite direction of travel. LiDAR scans were collected at a rate of 2,400 plots per hour, 
with the potential to further increase throughput to 7,400 plots per hour. This research 
demonstrates the capability of LiDAR sensors to collect high-quality, non-destructive, 
repeatable measurements of AGB and CH suitable for use within both breeding and 
research programs.

Keywords: wheat, phenomics, high throughput phenotyping, field phenotyping, plant breeding

INTRODUCTION

In recent years there has been much discussion regarding the role of high-throughput phenotyping 
(HTP) technologies within field crop breeding programs, focused primarily on the potential of 
these technologies to reduce the current disparity between the amount of phenotype and genotype 
data available to breeders (Cobb et al., 2013; Araus and Cairns, 2014). There are three key aspects 
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of these technologies which interest field crop breeders: i) the 
ability to collect data faster than traditional methods; ii) the 
ability to collect higher-quality objective data than traditional 
methods; and (iii) the ability to collect data which cannot be 
collected through existing methods. With these three aspects 
in mind, the trait of above-ground biomass (AGB) is a prime 
candidate to benefit from the potential advantages offered by 
HTP technologies.

Above-ground biomass is traditionally measured through 
laborious and destructive methods, requiring crop cuts to be 
collected from field plots and dried in an oven before being 
weighed to assess the dry biomass of each sample. This multi-
step process is prone to error, from variability in the area 
within the plot sampled, to the potential loss of material while 
cutting, transporting, and handling samples. Furthermore, 
the destructive nature of crop cuts is undesirable within field 
crop breeding programs due to the loss of plot area and edge 
effects that influence plot yield. Despite the inconvenience of 
phenotyping AGB, it is an important trait of interest in many 
field crop breeding programs. For bread wheat (Triticum 
aestivum L.), AGB has been identified as a trait with much 
potential to exploit within breeding programs, particularly 
in relation to yield improvements through harvest index and 
radiation use efficiency (Reynolds et al., 2012), water use 
efficiency (Richards et al., 2002), drought tolerance (Fischer 
and Wood, 1979), as well as potential advantages in crop 
competitiveness (Zerner et al., 2016).

Of the sensors investigated to estimate AGB with HTP to date, 
one of the most promising is LiDAR, a laser-based sensor, from 
which raw data can be transformed into a three-dimensional 
(3D) point cloud. As AGB is a 3D trait in nature, point cloud 
data provides a logical advantage compared to two-dimensional 
sensors such as digital or multispectral cameras, to accurately 
account for and estimate AGB of field crops. Although there are 
other methods and technologies that can be used to generate 
point cloud data, such as digital images and photogrammetry 
techniques (Walter et al., 2018), LiDAR-based systems offer not 
only a high-throughput and high-density method of collecting 
such data, but also the possibility of penetrating and collecting 
measurements from within the crop canopy.

To date, few studies have investigated the use of LiDAR, or 
similar technologies, to estimate the AGB of field crops. Those 
that have, often used LiDAR-derived canopy height (CH) as a 

proxy of AGB (Long and McCallum, 2013; Pittman et al., 2015; 
Eitel et al., 2016). This approach may be suitable for large-scale 
biomass estimation, such as in commercial crops, but in cereal 
breeding programs there is often little variation in CH among 
breeding lines. Investigations into processing methods which 
utilize the 3D nature of LiDAR-derived point cloud data have 
been undertaken, with volume measurements of point clouds 
(Jimenez-Berni et al., 2018; Sun et al., 2018; Walter et al., 2018), 
and 3D indices (Jimenez-Berni et al., 2018) shown to correlate 
strongly to manually measured AGB. While the findings of 
these studies are promising, they have not fully investigated how 
these methods and data may be applied to field crop breeding 
programs. One particular shortcoming of these previous studies 
is that they were limited to a single environment and a relatively 
small number of plots, in contrast to commercial breeding 
programs, which operate across many environments and require 
many plots to be evaluated.

The current study investigates the deployment of a LiDAR-
based system for the non-destructive estimation of AGB and 
CH across multiple environments, with this system based on 
the High-throughput Imaging Boom (HIB) described by Walter 
et al. (2019). The logistics of integrating such a system within 
a breeding program are discussed, along with the relevance of 
the data to breeding programs, particularly focusing on trait 
heritability and genetic and residual correlations. Though the 
current study takes place within a wheat breeding program, we 
believe this discussion is relevant to a wide variety of field crop 
breeding and research programs.

METHODS

Site and Trial Design
To investigate the application of LiDAR sensors within a wheat 
breeding program, field trials were run across eight sites in 
southern Australia, encompassing a range of environments with 
differences in yield potential. The trial sites selected are used for 
the evaluation of germplasm by a commercial wheat breeding 
program and are representative of the environmental range over 
which wheat is grown in the region. Location and details of the 
eight sites are shown in Table 1.

Each trial consisted of eight bread wheat (Triticum aestivum 
L.) cultivars, grown in small plots and designed as a completely 

TABLE 1 | Location and details of the eight field trial sites present in the current study. Latitude and longitude are presented in the WGS84 datum.

Site Latitude (°) Longitude (°) Mean crop above-
ground biomass at 

ZGS 65 (t/ha)

Mean crop canopy 
height at ZGS 65 

(cm)

Angas Valley (AV) −34.758645 139.241074 6.7 76.5
Booleroo (BL) −32.801685 138.296129 5.5 63.5
Kaniva (KV) −36.436664 141.197603 14.6 87.7
Minnipa (MN) −32.841374 135.156289 1.4 39.6
Pinnaroo (PN) −35.350264 141.066939 7.9 81.4
Roseworthy (RS) −34.526346 138.665595 11.1 92.8
Rudall (RD) −33.656549 136.141373 5.0 49.4
Winulta (WT) −34.253630 137.884995 12.4 88.2
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randomized factorial design, with factors of genotype and 
sample time and three replicates (192 plots total). More 
sampling times were allocated during experimental design 
than were ultimately utilized in the current study. Trials 
were uniquely randomized at each site and were specifically 
designed to provide large amounts of phenotypic variation for 
plant height and above-ground biomass. Cultivars selected for 
this purpose were: Axe, Beckom, Halberd, Krichauff, Scepter, 
Shield, Wyalkatchem, and Yitpi. Trials were located within 
large-scale wheat breeding sites (approximately 6 ha and 8,000 
plots per site) and managed by Australian Grain Technologies 
(AGT). Plots were 3.2 × 1.32 m and consisted of five rows 
spaced at 25 cm.

Manual Measurements
Manual measurements were collected across all sites during the 
growing season. Sample times differed between sites (Table 2), 
though all sites were sampled at anthesis — Zadoks growth 
scale 65 [ZGS 65 (Zadoks et al., 1974)] — as a measurement of 
maximum leaf biomass. Developmental rate differs between the 
varieties used in the current study, with flowering time spread 
approximately across a two week window. As such ZGS values 
assigned are nominal, and sample dates were determined when 

50% of varieties were at, or had surpassed, the designated ZGS. 
This does not impact on the processing or analysis methods used 
for the purpose of comparing manual and digital measurements 
in the current study. At each sample time CH was measured in 
each plot, while AGB was measured in plots of the corresponding 
sample time. Canopy height was measured with a ruler at four 
randomly-selected points within each plot, with an average of 
these heights recorded to provide a representative CH. Above-
ground biomass was collected from individual plots as two linear 
meters of plant material (1m from two adjacent rows) cut at 
ground level. Cuts were taken from the inner seed rows to avoid 
edge effects. Cuts from each plot were bundled, dried at 45ºC for 
two weeks, then weighed to obtain AGB. Due to the small size of 
plots sown in the trial it was impractical to take multiple AGB 
samples from individual plots. To circumvent this, sampling time 
was allocated as a factor within the trial design, such that each 
sampling time was undertaken within unique plots.

LiDAR Measurements
The LiDAR sensors used in the current study were SICK 
LMS400-2000 (SICK AG, Waldkirch, Germany). These 2D 
sensors have a 70° field of view and are capable of scanning 
between 270–500 Hz at an angular resolution of 0.1°–1.0°, 
with a ± 4 mm systematic measurement error and a 3–10 mm 
statistical error, depending on remission distance. For the 
purpose of the current study, two sensors were mounted on a 
boom of adjustable height and attached to a tractor as shown in 
Figure 1. The sensors are mounted at a nadir angle, with scans 
occurring along the crop row. Measurements are collected 
across the crop rows as the tractor moves. Detailed information 
on the boom and its implementation within field plot trials is 
provided in Walter et al. (2019). For the current study all LiDAR 
measurements were collected from a single direction of travel, 
as opposed to the serpentine manner described in Walter et al. 
(2019). To investigate the repeatability of LiDAR measurements 
at Roseworthy, three scans were conducted at each timepoint. 
Two scans were collected from the same direction of travel, to 
observe the repeatability of duplicate scans, with the third scan 

TABLE 2 | Sample times and associated Zadoks growth scale for each of the 
sites in the current study. 

Site Sample time

ZGS 31 ZGS 49 ZGS 59 ZGS 65 ZGS 96

AV ✓ ✓
BL ✓
KV ✓
MN ✓
PN ✓
RS ✓ ✓ ✓ ✓ ✓
RD ✓
WT ✓ ✓ ✓

FIGURE 1 | The tractor mounted LiDAR system used in the current study showing the boom system and LiDAR sensor mounting positions, with major components 
annotated (A) and a closer view of one of the mounted LiDAR sensors (B).
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collected from the opposite direction of travel, to observe any 
effects of travel direction on scan data.

Scans were captured at a speed of 2 km/h with the LiDAR 
sensor capturing data in a 70° nadir field of view, at 300 Hz, 
with an angular resolution of 0.133° and a theoretical scanning 
resolution of 1.5 mm between consecutive scans. Sensors were 
configured to output data to laptop computers in the tractor cab. 
Data capture was triggered by a 1.5 V pulse, output from a Trimble 
FM1000 RTK GPS unit (Trimble Inc., Sunnyvale, California, 
USA). This allowed individual plots to be identified in-situ using 
shapefiles created using GIS software MiniGIS (geo-konzept 
GmbH, Adelschlag, Germany) loaded onto the Trimble FM1000. 
LiDAR sensors were mounted at a height of 230 cm above the 
ground throughout all scans, allowing for an approximate field 
of view of 2 m at 80 cm above-ground level (estimated average 
wheat canopy height). All data collection occurred on the same 
day, within each sample time, with manual measurements taken 
immediately after plots were scanned by the LiDAR system.

LiDAR Processing
Raw scan data was processed in the R software package (R-Core 
Team, 2017). Scan data was cleaned to remove false returns 
through a process of removing negative height values and 
filtering each scan line through a 98th percentile check to remove 
excessively high points. To better extract data from each plot, 
scanlines of two plot rows within each plot were processed, with 
ends of each scan trimmed to give a total plot length of 1 m (i.e. 
0.5 m either side of the sensor), equating to the area of plot to 
be manually sampled. Points with a height less than 5 cm were 
re-assigned a height of 0 cm to eliminate returns from raised 
soil along seeding furrows, rocks or other miscellaneous objects. 
Visualization of these point cloud processing steps are shown 

in Figure 2. Similar procedures, for the removal of ground-
level points, when dealing with fixed-height LiDAR data, have 
been demonstrated by Friedli et al. (2016); Sun et al. (2017) and 
Jimenez-Berni et al. (2018).

Canopy height was extracted through percentile algorithm 
in R (R-Core Team, 2017). Firstly, identifying the 98th percentile 
of maximum returned height in each scan line (Figure 3A), and 
secondly taking the 86th percentile of these values to provide 
an estimate of overall canopy height, henceforth referred to as 
LiDAR Canopy Height (LCH) (Figure 3B). The 86th percentile 
was selected through optimization of Pearson’s correlation 
coefficient and RMSE between LCH and CH for all sample times 
at Roseworthy (Supplementary Material).

As a surrogate to AGB, plot volume estimates were produced 
by calculating the distance between each point in a scan line, the 
distance between scan lines and the height of each point. Using 
these three variables, a rectangular prism was created for each 
point in the point cloud, and volume of this prism calculated. 
A two-dimensional representation of these prisms for a single 
scan line is presented in Figure 3C with the z axis distance for 
these prisms provided by the movement of the LiDAR sensor. 
The summation of all prism volumes from within the point 
cloud was used as an estimate of plot volume. This measure will 
henceforth be referred to as LiDAR Projected Volume (LPV), 
as it encompasses all space below the LiDAR returns, rather 
than purely the area occupied by plant material. In the current 
study this volume is calculated as m3/m2, as this can be directly 
compared to plant material per square meter of plot, as measured 
in kg/m2 for AGB. A single automated script was written in R to 
clean raw data and simultaneously calculate LCH and LPV, with 
processing taking approximately 13 s per plot.

In addition to the LPV calculations, point clouds for the 
Roseworthy data set were processed using the formulas described 

FIGURE 2 | Visualisation of a point cloud collected in the current study (at Zadoks growth scale 65), showing the three steps of data processing; raw point cloud, 
cleaned point cloud, and segmented area used for processing of measurements, from a side, top and perspective view.
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by Jimenez-Berni et al. (2018) to calculate their 3D profile index 
(3DPI) used to estimate AGB. This index is based around the 
fraction of points present throughout the point cloud, rather 
than a volume-based measurement. It requires splitting the 
point cloud into layers, applying a correction factor to each layer 
and finally taking a summation of the corrected point fractions 
present in each later. This process, and the required formula, are 
described in detail by Jimenez-Berni et al. (2018). The processing 
and AGB estimation methods of Jimenez-Berni et al. (2018) were 
followed, using the separate equations for pre- and post-anthesis 
measurements presented, and finally estimating AGB through 
transforming LiDAR data with the linear regression equation 
between AGB and 3DPI at each measurement time.

Statistical Analysis
All statistical analyses were conducted in the R software 
package (R-Core Team, 2017). Mixed linear models were used 
for multivariate analyses, comparing traits and trait collection 
methods, using ASREML (Gilmour et al., 2015). From 
multivariate analyses Pearson’s correlation coefficients were 
calculated between traits (raw correlations), along with genetic 
and residual correlations, accounting for the proportion of 
variance observed between the two traits based on genetic and 
residual components, respectively (Falconer, 1960). Outputs of 
multivariate analyses were also used for the calculation of broad-
sense heritability (Equation 1), which can be described as the 
proportion of observed trait variation attributable to genetics 
(Visscher et al., 2008), for the traits CH, LCH, and LPV. Outputs 
from a randomized complete block analysis with ASREML were 
used to calculate broad-sense heritability for AGB.
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2

2 2=
+

σ
σ σ

G
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 (Equation 1.)

where H2 is broad-sense heritability, σG
2  is the variance attributable 

to genetic effects and σ E
2  the variance attributable to environmental 

effects (residual variance).
Due to the small sample size and large spatial spread of AGB 

measurements collected within trials at each sample time, genetic 

and residual correlations were not calculated between AGB and 
other traits.

RESULTS

LiDAR Repeatability
Repeatability of multiple measurements taken at Roseworthy 
was generally high for both LCH and LPV measurements at both 
individual sample times (Table 3) and when pooling sample times 
(Figure 4). Scans taken in the same direction of travel show greater 
repeatability than scans taken in opposite directions of travel.

Repeatability of height measurements was seen to be 
extremely high at three of the five sample times, ZGS 49, 65, and 
96, when scanned in the same direction of travel, with high r2 
values, linear regression coefficients nearing one and intercepts 
nearing zero (Table 3). In contrast repeatability of samples 
taken at ZGS 31 and 59 showed much greater variation, with 
lower linear regression coefficients and intercepts further away 
from zero (Table 3, Figure 4A). Repeatability of measurements 
in opposite directions of travel was less accurate than the same 
direction of travel (Figure 4C). Generally, measurements of 
LCH from opposite directions had linear regression coefficients 
nearing one and intercepts nearing zero, though lower r2 values 
than scans from the same direction (Table 3), with differences 
between timepoints being less pronounced. A similar trend for 
repeatability of LPV measurements was also observed, though 
overall LPV showed greater reproducibility than LCH. High 
repeatability was observed between LPV measurements in the 
same direction of travel (Figure 4B) and good repeatability in 
opposite directions of travel (Figure 4D).

Canopy Height
A wide range in canopy height was observed between site 
locations and sample timepoints, with this being especially 
apparent between environments. Strong raw correlations were 
observed between LCH and manually measured height for 
all sites (r = 0.56–0.94), and at the majority of sample times 
(Table  4). However, individual sample times at some sites 
showed poorer correlation compared to the rest of the data set. 

FIGURE 3 | The height of all laser returns present in each scan line of a point cloud segmented for processing (A), a visualization of the LiDAR Canopy Height 
calculation process (B) showing the 98th percentile of processed points within each scan line and the over-all LiDAR Canopy Height value, represented with a 
dashed blue line, as calculated by the 86th percentile of these points, and a two-dimensional representation of LiDAR Projected Volume calculated for a single scan 
line of the point cloud (C); the width and height of each prism being represented by the x axis (scan line width) and the y axis (prism height) respectively. The depth 
of each prism is calculated from the distance between scan lines as the LiDAR sensor moves, producing the unplotted z axis (prism depth).
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TABLE 3 | Coefficient of determination (r2) and components (slope ± standard error, and intercept ± standard error) for linear regression models between repeated 
scans in the same and opposite directions, processed for the traits LiDAR Canopy Height (LCH) and LiDAR Projected Volume (LPV), at each sample time (ZGS) at 
Roseworthy. 

Trait Scan 1 vs Scan 2 (Same direction) Scan 1 vs Scan 3 (Opposite Direction)

ZGS r2 Slope ± s.e. Intercept ± s.e. ZGS r2 Slope ± s.e. Intercept ± s.e.

LCH 31 0.08 0.31 ± 0.08 31.98 ± 3.67 31 0.31 0.71 ± 0.08 17.73 ± 3.21
49 0.99 0.97 ± 0.01 1.32 ± 0.46 49 0.88 0.97 ± 0.03 1.76 ± 1.50
59 0.61 0.72 ± 0.04 20.02 ± 3.28 59 0.76 0.93 ± 0.04 5.58 ± 2.84
65 0.95 0.94 ± 0.02 5.15 ± 1.28 65 0.86 0.95 ± 0.03 2.45 ± 2.26
96 0.95 0.98 ± 0.02 1.38 ± 1.36 96 0.68 0.87 ± 0.04 11.14 ± 3.47

LPV 31 0.82 0.92 ± 0.03 0.01 ± 0.00 31 0.75 0.93 ± 0.01 0.01 ± 0.01
49 0.99 0.99 ± 0.01 0.00 ± 0.00 49 0.79 0.82 ± 0.04 0.04 ± 0.01
59 0.99 0.99 ± 0.01 0.00 ± 0.00 59 0.91 0.88 ± 0.04 0.04 ± 0.01
65 0.96 0.94 ± 0.01 0.02 ± 0.00 65 0.89 0.82 ± 0.05 0.05 ± 0.01
96 0.95 0.95 ± 0.02 0.01 ± 0.00 96 0.84 0.81 ± 0.05 0.05 ± 0.00

All models are significant at the level of p < 0.001.

FIGURE 4 | The repeatability of LiDAR-based measurements collected at Roseworthy throughout the season, comparing scans collected from the same direction 
(A, B) and the opposite direction (C, D) for the measurement of LiDAR canopy height (A, C) and LiDAR projected volume (B, D). Dashed lines indicate the line 
of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green 
triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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TABLE 4 | Correlations between traits, plus or minus standard error, at each site and sample time (ZGS), measured in the current study. 

Site ZGS Correlation

Raw Raw Genetic Residual Raw Genetic Residual

AGB AGB AGB LPV LPV LPV LPV LPV LPV CH CH CH

LPV CH LCH CH LCH CH LCH CH LCH LCH LCH LCH

AV 49 0.86 ± 0.11
***

0.64 ± 0.16
***

0.68 ± 0.16
***

0.52 ± 0.06
***

0.87 ± 0.04
***

0.68 ± 0.24
***

0.92 ± 0.08
***

0.48 ± 0.06
***

0.87 ± 0.02
***

0.58 ± 0.06
***

0.88 ± 0.10
***

0.48 ± 0.06
***

65 0.64 ± 0.16
***

0.16 ± 0.21 0.28 ± 0.20 0.67 ± 0.06
***

0.76 ± 0.05
***

0.89 ± 0.09
***

0.92 ± 0.06
***

0.44 ± 0.07
***

0.73 ± 0.04
***

0.90 ± 0.03
***

0.98 ± 0.01
***

0.67 ± 0.04
***

BL 65 0.69 ± 0.16
***

-0.15 ± 
0.21

0.21 ± 0.21 0.30 ± 0.07
***

0.62 ± 0.06
***

0.84 ± 0.13
***

0.81 ± 0.14
***

0.17 ± 0.07
***

0.63 ± 0.05
***

0.76 ± 0.05
***

1.00 ± 0.01
***

0.42 ± 0.06
***

KV 65 0.45 ± 0.19
*

0.25 ± 0.20 0.22 ± 0.21 0.67 ± 0.05
***

0.80 ± 0.04
***

0.88 ± 0.09
***

0.89 ± 0.08
***

0.33 ± 0.07
***

0.67 ± 0.04
***

0.91 ± 0.03
***

1.00 ± < 0.01
***

0.51 ± 0.06
***

MN 65 0.70 ± 0.15
***

0.71 ± 0.15
***

0.69 ± 0.15
***

0.29 ± 0.07
***

0.80 ± 0.04
***

0.64 ± 0.25
***

0.88 ± 0.10
***

0.04 ± 0.08 0.74 ± 0.03
***

0.56 ± 0.06
***

0.91 ± 0.08
***

0.08 ± 0.08

PN 65 0.66 ± 0.16
***

0.39 ± 0.20 0.42 ± 0.20
*

0.77 ± 0.05
***

0.86 ± 0.04
***

0.90 ± 0.07
***

0.92 ± 0.06
***

0.55 ± 0.05
***

0.88 ± 0.02
***

0.94 ± 0.03
***

1.00 ± < 0.01
***

0.58 ± 0.05
***

RD 65 0.66 ± 0.16
***

0.58 ± 0.17
**

0.72 ± 0.15
***

0.58 ± 0.06
***

0.82 ± 0.04
***

0.74 ± 0.18
***

0.80 ± 0.14
***

0.26 ± 0.07
***

0.72 ± 0.04
***

0.77 ± 0.05
***

0.99 ± 0.01
***

0.45 ± 0.06
***

RS 31 0.86 ± 0.11
***

0.58 ± 0.17
**

0.71 ± 0.15
***

0.70 ± 0.05
***

0.83 ± 0.04
***

0.45 ± 0.34
***

0.62 ± 0.26
***

0.53 ± 0.06
***

0.86 ± 0.02
***

0.83 ± 0.04
***

0.97 ± 0.04
***

0.62 ± 0.05
***

49 0.73 ± 0.15
***

0.70 ± 0.15
***

0.70 ± 0.15
***

0.76 ± 0.05
***

0.90 ± 0.03
***

0.93 ± 0.06
***

0.97 ± 0.03
***

0.50 ± 0.06
***

0.87 ± 0.02
***

0.90 ± 0.03
***

1.00 ± < 0.01
***

0.64 ± 0.05
***

59 −0.05 ± 0.21 0.21 ± 0.21 0.04 ± 0.21 0.60 ± 0.07
***

0.72 ± 0.06
***

0.64 ± 0.23
***

0.83 ± 0.12
***

0.20 ± 0.08
***

0.64 ± 0.05
***

0.77 ± 0.05
***

0.95 ± 0.04
***

0.28 ± 0.07
***

65 0.62 ± 0.17
**

0.35 ± 0.2 0.51 ± 0.18
*

0.65 ± 0.07
***

0.73 ± 0.06
***

0.82 ± 0.13
***

0.77 ± 0.16
***

0.25 ± 0.09
***

0.71 ± 0.05
***

0.94 ± 0.02
***

1.00 ± < 0.01
***

0.29 ± 0.07
***

96 0.47 ± 0.19
*

−0.01 ± 
0.21

0.06 ± 0.21 0.22 ± 0.10
*

0.31 ± 0.10
**

0.18 ± 0.37
*

0.19 ± 0.37
**

0.25 ± 0.11
***

0.28 ± 0.11
***

0.90 ± 0.03
***

1.00 ± < 0.01
***

0.27 ± 0.07
***

31 0.75 ± 0.14
***

0.44 ± 0.19
*

0.27 ± 0.21 0.63 ± 0.06
***

0.56 ± 0.06
***

0.82 ± 0.13
***

0.84 ± 0.11
***

0.31 ± 0.07
***

0.70 ± 0.04
***

0.58 ± 0.06
***

0.96 ± 0.03
***

0.24 ± 0.07
***

WT 49 0.55 ± 0.18
**

0.70 ± 0.15
***

0.66 ± 0.16
***

0.74 ± 0.05
***

0.86 ± 0.04
***

0.84 ± 0.11
***

0.91 ± 0.07
***

0.29 ± 0.08
***

0.81 ± 0.03
***

0.91 ± 0.03
***

0.99 ± 0.01
***

0.41 ± 0.07
***

65 0.47 ± 0.19
*

0.22 ± 0.21 0.37 ± 0.20 0.65 ± 0.06
***

0.74 ± 0.06
***

0.82 ± 0.13
***

0.81 ± 0.13
***

0.44 ± 0.07
***

0.71± 0.04
***

0.93 ± 0.03
***

1.00 ± < 0.01
***

0.56 ± 0.05
***

Raw correlations shown for Above-ground Biomass (AGB), LiDAR Projected Volume (LPV), Canopy Height (CH) and LiDAR Canopy Height (LCH); raw, genetic and residual correlations between LiDAR Projected Volume, Canopy 
Height and LiDAR Canopy Height; and raw genetic and residual correlations between Canopy Height and LiDAR Canopy Height. Significance of each correlation is indicated as *p < 0.05, **p <0.01 and ***p < 0.001.
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FIGURE 5 | The relationship between LiDAR Canopy Height and Canopy Height, presented individually for each site and sample time (ZGS). Dashed lines indicate 
the line of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, 
green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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Strong linear relationships were observed between CH and LCH 
at the majority of sites (Figure 5), though weaker relationships 
were observed for some early growth stages (Roseworthy at ZGS 
31 and Angas Valley at ZGS 49), or when CH was low (Minnipa 
ZGS 65). Pooling measurements throughout the season showed 
strong continuity of data and strong linear relationships between 
CH and LCH, such as presented in Figure 6 for Roseworthy.

Raw (r = 0.56 to 0.94) and genetic (rg = 0.91 to 1.00) correlations 
between CH and LCH were strong across all sample times, while 
residual correlations ranged from 0.08 to 0.67 (Table  4). For 
repeated measures there were no apparent trends for raw, genetic 
or residual correlations over time. Both CH and LCH had high 

heritability at all times of measurement, excluding Winulta at 
ZGS 31. Heritability tended to increase over time at sites where 
repeated measurements were taken (Table 5).

Above-Ground Biomass
Above-ground biomass samples collected showed large amounts 
of variation between sites, with LPV showing similar amounts 
of variation. Raw correlations between AGB and LPV were 
predominantly strong and positive, though some weaker 
correlations were observed, with one weak negative correlation 
(Table 4). Figure 7 shows the linear nature of the relationship 
between AGB and LPV within each sample. The relationships 
between measurements of AGB and LPV collected over the 
growing season at Angas Valley, Roseworthy and Winulta are 
displayed in Figure 8. Both Angas Valley and Winulta showed 
an increase of AGB and LPV over time. This was also observed at 
Roseworthy for most sample times. However, samples collected 
at ZGS 65 and 96 showed increased AGB (compared to previous 
samples) but did not show any increase in LPV, with slight 
decreases in LPV being observed.

Above-ground biomass correlated most strongly to LPV for 
much of the raw data, though a number sites showed stronger, or 
similar, correlations to CH and LCH (Table 4). LiDAR projected 
volume correlated strongly to LCH for most measurements. 
Similar but generally weaker correlations were observed between 
LPV and CH.

The heritability of AGB measurements was generally lower 
than that of LPV measurements, although this was reversed in 
some instances. Heritability of AGB appears to show no trend 
across repeated measures, though heritability of LPV appears to 
generally increase over time, with the exception of Roseworthy 
at ZGS 96.

To assess the effectiveness of the LPV measurements 
calculated in the current study as an AGB estimator, LPV was 
compared to 3DPI, as described by Jimenez-Berni et al. (2018), 
for the Roseworthy data set. Except for ZGS 31, LPV was strongly 
correlated with 3DPI and, in general, showed slightly greater 
correlations to AGB (Table 6). A strong relationship between 
AGB and 3DPI-predicted AGB was observed throughout the 
season (Figure 9), excluding the ZGS 49 measurement which 
did not fit this trend. A similar relationship was observed by 
Jimenez-Berni et al. (2018).

FIGURE 6 | The relationship between LiDAR Canopy Height and Canopy 
Height for all sample times measured at Roseworthy. Dashed lines indicate 
the line of best fit, coloured shapes indicate measurements collected at 
Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow 
triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 
and pink squares at ZGS 90.

TABLE 5 | Broad-sense heritability of each trait, at each site and sample time (ZGS), measured in the current study.

Trait Site and sample time

AV BL KV MN PN RD RS WT

49 65 65 65 65 65 65 31 49 59 65 96 31 49 65

Above-ground 
biomass

0.47 0.22 0.46 0.32 0.67 0.26 0.48 0.52 0.12 0.42 0.78 0.59 0.63 0.33 0.45

LiDAR projected 
volume

0.32 0.79 0.48 0.76 0.61 0.78 0.75 0.58 0.80 0.89 0.90 0.83 0.33 0.57 0.76

Canopy height 0.76 0.90 0.76 0.97 0.82 0.94 0.76 0.89 0.91 0.97 0.98 0.98 0.49 0.86 0.95
LiDAR canopy height 0.67 0.86 0.78 0.93 0.84 0.95 0.82 0.87 0.95 0.97 0.98 0.96 0.41 0.84 0.94
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FIGURE 7 | The relationship between LiDAR Projected Volume and Above-ground Biomass, presented individually for each site and sample time measured in the 
current study. Dashed lines indicate the line of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at 
ZGS 31, yellow triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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DISCUSSION

The adoption of LiDAR and terrestrial laser scanners (TLS) as field-
based sensors for the non-destructive phenotyping of AGB and 
canopy height has been discussed and demonstrated numerous 
times in the literature (Deery et al., 2014; Tilly et al., 2014; Eitel 
et al., 2016; Friedli et al., 2016; Kronenberg et al., 2017; Sun et al., 
2017; Virlet et al., 2017; Jimenez-Berni et al., 2018; Sun et al., 2018), 
ultimately contributing towards a solution to the phenotyping 
bottleneck present in large-scale research and plant breeding 
programs (Cobb et al., 2013; Araus and Cairns, 2014). Despite the 
different approaches to the deployment of these sensors, there are 
still many questions left unanswered, particularly with regard to the 
robustness and reliability of the data collected and its application 
and value within research or field crop breeding programs.

In the current study, adaption of the imaging boom described in 
Walter et al. (2019) to accommodate a dual LiDAR system allowed 
for LiDAR sensors to be efficiently deployed across eight large-scale 
wheat breeding trial sites in a range of environments, and for large 
amounts of point cloud data to be collected at multiple growth stages.

Data Repeatability
Objective and repeatable data collection is of key importance 
within breeding and research programs but can be difficult to 
obtain through traditional in-field measurements. Thus, the 

FIGURE 8 | The relationship between LiDAR Projected Volume and Above-ground Biomass for each sample time collected at Angas Valley (A), Roseworthy (B) and 
Winulta (C). Coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green 
triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.

TABLE 6 | Pearson’s correlation coefficients (r), between LiDAR Projected Volume (LPV), 3DPI and Above-ground Biomass (AGB), for each sample time (ZGS) at 
Roseworthy. 

ZGS LPV: AGB 3DPI: AGB LPV: 3DPI

31 0.75 ± 0.14 *** 0.17 ± 0.21 0.05 ± 0.07
49 0.55 ± 0.18 ** 0.42 ± 0.19 * 0.82 ± 0.04 ***
59 −0.05 ± 0.21 −0.07 ± 0.75 0.88 ± 0.03 ***
65 0.62 ± 0.17 ** 0.44 ± 0.19 * 0.90 ± 0.03 ***
96 0.47 ± 0.19 * 0.48 ± 0.19 * 0.95 ± 0.02 ***

Values are shown as ± standard error. Significance of each correlation is indicated as *p < 0.05, **p <0.01 and ***p < 0.001.

FIGURE 9 | The relationship between 3DPI Biomass and manually measured 
Above-ground Biomass, for each sample time at Roseworthy. Coloured 
shapes indicate measurements collected at Zadoks growth scales (ZGS) as 
follows, red circles at ZGS 31, yellow triangles at ZGS 49, green triangles at 
ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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overall high repeatability and objective nature of point cloud data 
collected with LiDAR sensors in the current study shows great 
potential for integration within field-based research programs.

Repeated LiDAR scans from the same direction of travel were 
capable of producing near identical LCH measurements for 
three of the five physiological growth stages measured (ZGS 49, 
65, and 96). The remaining two growth stages (ZGS 31 and 59) 
still showed sound repeatability of LCH measurements, though 
not to the extent seen at other growth stages. Interestingly, the 
repeatability of LPV across all physiological growth stages 
showed a strong relationship, with few outlying points, similar to 
that observed for LCH at ZGS 49, 65, and 96. There is no apparent 
cause of the variation observed between LCH measurements at 
ZGS 31 and 59 and we can only speculate that this is an artefact 
of the LCH calculation process, as the variation between LPV 
measurements for these samples is much lower than for LCH and 
is similar to that observed for other LPV measurements.

Measurements of both LCH and LPV were less repeatable when 
measured with opposite directions of travel, however repeatability 
was still strong. The discrepancies observed between measurements 
collected in opposite directions likely arise for two reasons; firstly, 
despite endeavors to mount LiDAR sensors identically on each 
side of the boom, there are likely to be small differences between 
the two, altering the laser emission and return pattern of each unit. 
Secondly, triggering of the LiDAR sensors relative to shapefiles on 
the RTK GPS unit requires calibration, which if not precise may 
result in small variations to the area of plot measured. Towards 
addressing these issues, LiDAR sensor and direction of travel 
could be fitted as random terms within spatial analyses, which may 
help to account for variation between measurements.

To the authors’ best knowledge, repeatability of data derived 
from LiDAR plot scans has yet to be described in the literature, 
however Busemeyer et al. (2013) have reported very high 
repeatability of canopy height measurements collected with a 
light-curtain (r2 = 0.99, Mean Relative Error = 0.01). Given the 
similarities between the type of data obtained from these two 
sensors, the high repeatability of LiDAR data observed in the 
current study is a positive, but not unexpected, result.

Canopy Height
Point cloud data collected through the LiDAR system was able to 
accurately and repeatedly estimate canopy height of wheat grown 
in field plots across multiple growth stages and environments. 
Strong raw correlations were observed at the majority of 
locations and growth stages measured, ranging from r = 0.56 
at the weakest, to r = 0.94 at the strongest. Similar results have 
been previously reported for wheat and other field crops, with 
r2-values of 0.99 (Jimenez-Berni et al., 2018), 0.99 (Kronenberg 
et al., 2017), 0.99 (Virlet et al., 2017), 0.97 (Sun et al., 2018), 0.91 
(Tilly et al., 2014), 0.87 (Eitel et al., 2016), 0.84 (Walter et al., 
2018) and 0.73 to 0.93 (Friedli et al., 2016). The current study 
and those of Jimenez-Berni et al. (2018) and Sun et al. (2018) 
collected data with mobile LiDAR systems deployed in field; 
Virlet et al. (2017) used a dual 3D laser scanner system mounted 
on the Field Scanalyzer gantry; Kronenberg et al. (2017) used 
a cable suspended laser scanner mounted on the ETH field 

phenotyping platform; Tilly et al. (2014); Eitel et al. (2016) and 
Friedli et al. (2016) used TLS systems; and Walter et al. (2018) 
used digital cameras and photogrammetry. Though each of these 
systems differ, comparable results have been achieved from each, 
reinforcing the concept that 3D data collected in the form of 
point clouds is highly suitable for the derivation of canopy height.

While the correlations presented in the current study do 
not appear to be as strong as some previously reported in the 
literature, it is important to consider the way in which the 
data has been collated for presentation. Data from the current 
study has been collected from eight wheat varieties across eight 
locations and in some circumstances at multiple time points. This 
contrasts with the data presented by Jimenez-Berni et al. (2018), 
where three replicates of 18 genotypes were measured at a single 
location and time point, with the mean values of each genotype 
being presented and used for correlation. The results presented 
by Jimenez-Berni et al. (2018) are more similar to those from 
Table 4, of genetic correlations between CH and LCH at each 
site, which showed improved correlations compared to raw data.

The weakest correlation between CH and LCH in the current 
study occurred at Minnipa, where severe drought conditions 
occurred during most of the 2017 growing season. Very little 
variation was observed between canopy heights, with varieties 
ranging from 32.5 to 47.5 cm, much less than the variation 
observed at other sites. A similar explanation is likely for the weaker 
correlations present at Roseworthy at ZGS 31 and Angas Valley 
at ZGS 49, where plants measured early in the growing season 
had short canopies and little variation in CH. These correlations, 
as well as all correlations in the current study, could likely be 
improved through optimisation of the percentile algorithm used 
to process the data. A similar process has been described by Friedli 
et al. (2016), with data in Supplementary Material reinforcing 
this work, and showing the variability in selecting an algorithm 
based on maximizing the correlation and reducing the RMSE. The 
authors believe the use of a single algorithm is suitable in large-
scale breeding or research programs as it is generally not feasible 
to collect ground truth data for each site and timepoint to optimize 
this process. Moreover, the implications of taking physical 
measurements are counterintuitive to the aims of deploying these 
sensor systems for rapid collection of large amounts of data.

The similarity in the heritabilities calculated for CH and LCH 
gives great confidence in LiDAR-derived canopy height, showing 
that in terms of accuracy/repeatability within a breeding program it 
is as good as, or in some cases superior to, manual measurements. 
In addition to the high heritability of LCH demonstrated in the 
current study, a  similarly high heritability of LiDAR-derived CH 
has previously been reported by Kronenberg et al. (2017) for a 
diverse set of European bread wheat cultivars (H2 = 0.96), though 
this was not compared to the heritability of manual measurements. 
While in the current study, and in that of Kronenberg et al. (2017), 
heritabilities were calculated for material containing greater variation 
in CH than often present within breeding populations, it is expected 
these results are still directly applicable as CH is known to be a highly 
heritable trait. The strong genetic correlations observed between 
CH and LCH in the current study further support that LCH will be 
suitable for estimating CH within breeding populations, as similar 
genetic components are measured by both methods. The moderately 

75



LiDAR for Field Crop BreedingWalter et al.

13 September 2019 | Volume 10 | Article 1145Frontiers in Plant Science | www.frontiersin.org

strong residual correlations between CH and LCH would seem to 
indicate the ability of LCH to capture differences in CH resulting 
from environmental variance across the experimental area. This 
makes sense from a physiological perspective, as plant height can be 
influenced by a number of biotic and abiotic factors, which may result 
in uneven growth throughout the trial. While the variation observed 
in CH within the current study was typically greater than would be 
observed within modern breeding populations, the results of current 
study suggest that LiDAR sensors would be suitable for measuring 
relative CH, or for measuring absolute CH if required. The slopes of 
lines of best fit for Figures 5 and 6 show that as CH increased LCH 
underestimated CH, generally by around 10 cm. This is likely due to 
the data cleaning process and LCH algorithm function, and though it 
is not an issue if relative CH is desired, if an absolute measurement of 
CH is required this discrepancy will need to be accounted for.

Above-Ground Biomass
The LPV measurement in the current study has been shown 
capable of estimating a wide range of AGB, across different 
varieties, phenological stages and environments. To date, very few 
studies have investigated the use of point cloud data for the type 
of bio-volume measurements presented here. The few that have 
presented data for different plant species, such as cotton (Sun et al., 
2018), arctic shrubs (Greaves et al., 2015) and trees (Rosell Polo 
et al., 2009), or for wheat which was grown in a single environment 
(Jimenez-Berni et al., 2018; Walter et al., 2018), except for one study 
by Eitel et al. (2014), where two adjacent fields of wheat plots with 
differing micro-climates were investigated. The collection of the 
point cloud data across eight different environments in the current 
study is an important addition to the current understanding of 
AGB estimation from point cloud bio-volume measurements.

The multi-location measurements presented in the current study 
provide a unique set of results, where large ranges in AGB were 
observed across a single phenological growth stage. At each location 
there was a moderately strong correlation between AGB and LPV, 
with each of these relationships (excluding Roseworthy at ZGS 59) 
being suitably explained by a linear regression model (Figure 7).

Combining repeated measurements from within sites at 
Angas Valley, Roseworthy and Winulta showed heteroscedastic 
relationships, which appear to be curvilinear. This is most apparent 
at Roseworthy, where AGB increases with time, however LPV 
plateaus and declines following ear emergence (ZGS 59). This 
trend also appears to be occurring at Angas Valley and Winulta, 
where AGB seems to be increasing more than LPV, though the final 
sample occurring at ZGS 65 for these sites prevents confirmation 
of this. This can likely be explained by the senescence of the crop. 
As the crop senesces, leafy volume is lost through leaves drying 
out and contracting, however, overall AGB continues to increase 
due to grain fill. Though this curvilinear relationship can be 
explained, it does highlight the limitation of using volume as an 
estimator for AGB at later growth stages. A further limitation of 
using LPV for AGB estimation may be present in dense canopies, 
where laser penetration within the canopy is poor. In such cases an 
over-estimation of volume will occur, as only points collected from 
the top of the canopy will be used to compute LPV. While this did 
not appear to be a limitation in the current study, with the laser 
sufficiently penetrating the canopy at maximum leafy biomass, it 

should be noted as a potential limitation of LiDAR-based volume 
measurements in high AGB environments. Furthermore, different 
relationships are observed over time at Angas Valley, Roseworthy 
and Winulta, suggesting that unique curvilinear relationships 
may be required for each environment. Considering geographical 
differences as a predictor of seasonal differences, it is likely these 
relationships will also alter from year to year as a result of the 
differing abiotic and biotic factors which occur between seasons 
and environments. This in turn may affect numerous aspects of crop 
morphology, which may alter the relationship between volume-
based measurements and AGB. This introduces the question of how 
breeders will use such data. Will it be used to measure AGB over 
time within trials, comparing relative AGB at a single time point 
between trials, or for comparing relative AGB at individual time 
points? To better understand the interactions occurring between 
volume-based measurements and AGB, and how these interactions 
may influence a breeder’s use of these measurements, a series of 
multi-year, multi-environment trials would be beneficial.

The moderately strong correlations observed between AGB and 
LPV within individual measurement points, align with the results 
of Walter et al. (2018) and Jimenez-Berni et al. (2018), where linear 
regressions provided a suitable explanation for the relationship 
between AGB and point cloud bio-volume estimates. The work of 
Jimenez-Berni et al. (2018) is the most comparable to the current 
study, and their results indicate a strong linear relationship between 
AGB of wheat and their 3D Indices of processed LiDAR data for 
numerous physiological growth stages. However, optimization of 
equations was conducted for the processing of these 3D Indices, 
based on developmental stage, which were further transformed 
using separate equations for pre and post-anthesis measurements 
for comparison to measured AGB. These processes of optimisation 
require ground-truth data, which as discussed previously, are not 
likely to be collected within a breeding program. It is also worth 
noting that in the current study, and that of Jimenez-Berni et al. 
(2018), as AGB increases, digital measurements obtained with 
LiDAR sensors correlate less strongly to manual measurements, with 
the pooling of measurements showing a heteroscedastic relationship. 
This is likely a limitation imposed by the LiDAR sensors used in 
these studies, which return only a single discrete point, compared 
with units capable of returning multiple discrete points or a full wave 
form. Capturing multiple discrete returns or the full wave form, may 
overcome this issue and allow for deeper penetration within the crop 
canopy. However, such systems are currently prohibitively expensive 
for their deployment within plant breeding programs, both from an 
upfront cost and from a data processing perspective.

Processing LiDAR data from Roseworthy using 3DPI as 
described by Jimenez-Berni et al. (2018), yielded a positive linear 
relationship across all sample times (Figure 9). The results presented 
here align with those of Jimenez-Berni et al. (2018), and show the 
robustness of their 3DPI when applied to an alternate data set, even 
in the absence of optimisation. The sample at ZGS 49 did fall outside 
of the linear relationship observed for 3DPI, however, similar results 
were observed for ZGS 49 in the processing methods of the current 
study, where samples at ZGS 49 did not increase in projected volume 
but did increase in AGB. Values of 3DPI at individual sample times 
correlated strongly with LPV, with the exception of the ZGS 31 
sample, which showed a weak correlation (Table 6). 3DPI also 
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showed similar, but slightly weaker, correlations to AGB compared 
to LPV (Table 6). It is likely these correlations could be improved 
through the optimization of the k value within the 3DPI equation. 
However, as described for canopy height, continued optimization 
of such equations runs contrary to the benefits of implementing 
such phenotyping systems within field crop breeding programs. For 
this reason, we believe the performance of the LPV measurement 
used within the current study is applicable to field crop breeding 
programs, providing sound estimates of AGB and requiring no 
optimization for deployment within breeding programs. Similar 
volume based measurements to those used in the current study were 
successfully utilized to estimate cotton AGB by Sun et al. (2018), 
who observed manually-measured biomass to correlate strongly to 
volume measurements across a small number of plots.

Above-ground biomass of cereal crops is highly variable 
(Sharma, 1993); which was confirmed in the current study where 
H2 ranged from 0.12 to 0.78. Despite this broad range, only at two 
measurement times (Roseworthy at ZGS 31 and Angas Valley at 
ZGS 49) did AGB have a substantially greater heritability than 
LPV, while for all other measurements LPV showed similar, or 
substantially greater heritability than AGB. This generally high 
heritability of LPV, combined with the moderate correlations 
to AGB, indicates that it could be used as an effective tool for 
making genetic gain if selecting for AGB.

Application of Data
Past studies investigating the use of LiDAR sensors as a phenotyping 
tool have shown strong correlations to manually-collected data for 
multiple traits and have suggested potential applications of such 
data. Despite these often strong relationships, practical applications 
have yet to be published. For this point cloud generated phenotype 
data to be used effectively within wheat breeding programs, data 
collection and processing needs to be quick and largely automated, 
reducing the manual labor and time required. While the travel 
speed of the LiDAR system was relatively slow in the current study 
(2 km/h) this can be easily increased with alterations to the system 
hardware, specifically the path from GPS signal to LiDAR sensor 
trigger. Despite this, throughput of the system allows two unique 
plots to be scanned every 3 s, allowing for 2,400 plots to be scanned 
per hour. To the author’s knowledge the throughput of similar 
ground-based LiDAR systems has not previously been reported in 
the literature, with the exception of Sun et al. (2018) who reported an 
approximate throughput of 600 plots per hour for cotton field plots 
of similar size to the plots measured in the current study. While the 
current reported throughput of 2,400 plots per hour is high, there is 
still potential to improve upon this by increasing the travel speed of 
the system in conjunction with alterations to the system hardware. 
It is expected this could increase throughput to approximately 7,400 
plots per hour, as reported for the HIB described by Walter et al. 
(2019). However, it should be noted that were travel speed to be 
increased, longitudinal resolution of collected point clouds would 
decrease. As such, further validation for correlations between 
LiDAR-based and manual measurements would be required at 
greater speeds of travel. Processing of the data takes approximately 
13 s per plot (though this could potentially be optimized for greater 
speed) resulting in a total time of approximately 15 s to collect and 
convert raw data into LCH and LPV measurements for a single plot. 

This is an immense increase in throughput compared to manual 
methods, with CH measurements taking approximately 10 s per 
plot and AGB cuts several minutes per plot, not including time 
required for handling, drying and weighing samples post collection. 
Further to this, all measurements taken with the system are non-
destructive, allowing for repeated measurements in season and for 
AGB to be estimated without impacting upon plot grain yield. This 
now provides the opportunity for breeders to collect large-scale 
data sets for AGB, which were previously impossible to collect due 
to the destructive nature of manual measurements.

Even though in the current study, the LiDAR system was 
effectively able to provide large increases in throughput and 
decreases in manual labor for the collection of CH and AGB 
measurements, it is likely that within a large-scale breeding 
program, collection of this data would only occur at one or two 
key physiological time points throughout the season. Examples 
of this could be; once the greater part of a site has reached first 
node (ZGS 31) for estimating early AGB, or at anthesis (ZGS 65) 
for estimating maximum AGB, though these timepoints would 
be driven by the specific trait of interest. For routine integration 
within a wheat breeding program, these measurements would 
ideally be combined with another field operation, such as herbicide 
or fungicide spraying. Combining data collection with routine field 
maintenance practices would allow for repeated measurements 
during the season, while also reducing the logistical burden of 
transporting equipment between field sites. Alternatively, a more 
focused set of measurements could be conducted at a single site, 
allowing many repeated measures throughout the season. However, 
this would fail to assess the genotype-by-environment interaction 
effects which need to be considered by breeders. Ultimately the field 
campaign undertaken will depend on the breeding objectives of the 
program and consequently the specific data desired by the breeder. 
The data presented on LiDAR data repeatability in the current study 
suggests that LiDAR sensors could be used to measure absolute 
values of CH and to a lesser extent AGB. However, it seems the 
most apparent fit for such data within breeding programs is for the 
relative measurement of these traits, which could be used to select 
within populations to achieve the desired breeding objective.

The LiDAR-based data generated in the current study shows 
great promise for application within breeding programs, particularly 
as the heritability of LCH and LPV assessments were generally 
comparable to, or greater than, manual measurements, indicating 
that genetic gain can be made through selection of each trait. There 
are many examples as to how the type of data collected within the 
current study could be applied within wheat breeding programs: 
one example is the selection of breeding lines based on early AGB 
accumulation at first node (ZGS 31). Some programs may wish to 
select for this trait, or against it, depending on the desired purpose 
of the material, e.g. for dual-purpose wheats (i.e. those producing 
large amounts of grazeable biomass prior to ZGS 31) or for weed 
competitiveness. A second example is for breeders wishing to select 
for increased AGB independently of CH. Currently to achieve this, 
breeders must manually collect measurements of CH and AGB. 
However, this process can be greatly simplified as LCH and LPV 
are calculated from the same data, and a combination of the two 
measurements could be used for the selection of increased AGB 
while maintaining lower CH. Broadening the scope of potential 
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application, there are many other field crop breeding programs 
which could take advantage of the type of data presented in the 
current study, prime examples being biomass heavy crops, such 
as those used for hay or silage, as well as horticultural breeding 
programs where leafy biomass or volume may be key traits.

CONCLUSION

Through the deployment of a mobile ground-based LiDAR 
system across multiple environments within a large-scale 
commercial wheat breeding program, it has been shown that 
the collection and processing of 3D point cloud data is highly 
repeatable, strongly correlated to manual measurements of CH 
and AGB, and highly heritable. This combination makes LiDAR 
sensors a promising and valuable tool for wheat or other field 
crop breeders who wish to non-destructively measure CH and or 
AGB within their breeding programs.

Discussion on the application of LiDAR sensors to breeding 
programs in the current study has been based around the direct 
or indirect selection of specific traits within breeding programs, 
however there are also the exciting possibilities of fitting LiDAR 
data in multivariate analyses of yield trials, or within crop 
physiological models, in both cases to improve upon current 
techniques of data analysis and variety performance prediction. 
The authors suggest that the possibilities listed above are the 
logical progression for future work investigating LiDAR sensors, 
either for use in breeding or research programs.
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Chapter 5

General Discussion

The concept for this project arose from a knowledge gap surrounding next generation

phenotyping technologies (NGP) and high-throughput field phenotyping (HTFP), and the

speculation that these technologies would be one of the next frontiers to advance genetic

gain in plant breeding. Here the term NGP is used rather than High-throughput Phe-

notyping (HTP), and subsequently HTFP, as NGP encompasses all technologies which

may offer breeding programmes improvement through increased accuracy, throughput

or efficient resource allocation. While HTP and HTFP technologies also aim to improve

accuracy and resource allocation, intrinsically they must be higher throughput than tra-

ditional methods. However, it may be possible to deploy a new technology in a breeding

programme which provides improvements to accuracy and resource allocation of tradi-

tional phenotyping methods but is no higher throughput. Though there are many studies

investigating these technologies, and how they can be applied within field trials, as of the

date of thesis submission there is still little literature exploring the context of how data

collected with these technologies can be adopted by breeding programmes, nor the value

of such data from a breeding perspective.

The objectives of the current study were to investigate the deployment of commercially

available proximal remote sensing technologies, in this case digital cameras and LiDAR

sensors, within the large-scale small-plot field trials run by wheat breeding programmes,

and to determine the suitability of collected data for routine breeding use.
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5.1 Key Findings and Contributions

From the original research articles contained within this thesis, the following key find-

ings were identified in regard to specific sensors and their suitability for adoption within

breeding programmes:

• Digital cameras are a versatile tool suitable for imaging small-plot field trials at either

low or high throughput

• Digital images can be processed to measure colour-based traits of interest (such as

canopy cover and senescence), with outputs being suitable for use in routine breed-

ing analyses due to their high heritability and strong genetic correlation to manually

measured traits

• Colour-based traits can be simply measured using open-source image processing

software, making this a readily available and deployable tool for breeders and re-

searchers

• Ground-based digital images can be collected and processed into a three-dimensional

point cloud, using commercial photogrammetry software, for the estimation of canopy

height, above-ground biomass (AGB) and harvest index when grain yield data is

available

• High-fidelity point clouds show great potential as a non-destructive measurement

tool within breeding programmes, though currently photogrammetric methodolo-

gies are low throughput and resource intensive

• LiDAR sensors offer a high-throughput method to collect three-dimensional point

clouds, with this data being processable in open-source scripting and programming

languages

• LiDAR-acquired point clouds are suitable for the estimation of canopy height and

AGB of field plots; LiDAR-derived measurements have similar or higher heritability

compared to manual measurements and are suitable for inclusion in routine breed-

ing analyses
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Furthermore, insights into ground-based phenotyping platforms and strategies for their

deployment were identified as follows:

• Ground-based platforms provide the opportunity to collect high fidelity and high-

spatial resolution data, with few limitations to the type of sensors which can be de-

ployed through these means

• These platforms can be designed to utilise equipment and management strategies

already in place within breeding programmes, such as tractors used for field main-

tenance and predefined GPS pathways for traversing field trials, allowing for a more

streamline deployment

• It is important to consider the design and layout of breeding trial sites to ensure suit-

able platforms are deployed to maximise efficiency of data collection and minimise

any disruption resulting from deployment to the breeding programme

• The deployment of ground-based platforms can be limited by transportation logis-

tics and unfavourable weather conditions, such as wind, rain and waterlogged soil

The findings outlined above provide field-crop breeders confidence in the data collected

by next generation phenotyping technologies, with the articles contained within describ-

ing the objective, repeatable and genetically significant nature (in terms of heritability and

genetic/residual correlations) of this data. Each of these characteristics is of great im-

portance for inclusion within breeding analyses, and until now have not been examined

critically within the literature. Furthermore, it has been demonstrated how a novel high-

throughput field phenotyping platform, designed from the ground-up for deployment

within the small-plot field trials of breeding programmes, can take advantage of existing

equipment and infrastructure within said programmes to achieve unprecedented through-

put of ground-based image and point cloud collection.

Further advancements in technology and data processing methods which have occurred

since the commencement of this project will be discussed, along with efforts to date of de-

ploying NGP technologies within breeding programmes. Furthermore, potential avenues

for future research are identified, and a strategic framework for choosing when to deploy

new technologies within a breeding programme is presented.
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5.2 Ongoing Technological Advancements

Technology is a field in which improvements occur exponentially, with this notion popu-

larised as Moore’s law (Moore, 1965). This holds true for sensors used in next generation

phenotyping, which continue to get smaller and lighter, while simultaneously new sen-

sors are developed which are of higher resolution or provide new methods of measure-

ment compared to sensors currently in use. The image sensors utilized by digital cameras

are a prime example of this, clearly showing an adherence to Moore’s law. Early work in-

vestigating the use of digital images for measuring traits of interest within field plots was

undertaken with sensors in the range of 0.4 (Lukina et al., 1999) to 0.7 (Adamsen et al.,

1999) megapixels (MP); less than 20 years later, digital cameras with image sensors con-

taining 18 or more MP are commonly available, such as those used in Chapters 2 and 3.

Today, high-end image sensors of 150 MP are commercially available (PhaseOne), which

in future will likely be readily and cheaply available in small, lightweight camera bodies.

Such advancements in technology are impressive, though one must question at what point

more data is being captured than can be efficiently utilized? For example, Hu et al. (2019)

demonstrated the effect spatial resolution plays when calculating percentage canopy cover

from digital images, where reduced spatial resolution resulted in exaggeration of canopy

cover estimates compared to a reference value. While this work focused on the effect of re-

ducing spatial resolution, an alternative thought process is that there may be a theoretical

limit to actionable spatial resolution, beyond which there is no significant gain in useful

information, especially when considered in the context of a breeding programme.

Continued advancement of technology has also been observed for phenotyping platforms ,

with perhaps the most impressive being the progress of Unmanned Aerial Vehicles (UAVs),

which have transitioned from specialist equipment through to readily deployable con-

sumer items. While UAVs now provide an attractive platform to enable NGP within

breeding programmes, they are still limited to lightweight sensors and as such generally

lack the spatial resolution desired for image analysis of field plots. There are, of course,

exceptions to this, for example, a large hexacopter (e.g. DJI Matrice 600) fitted with a dig-

ital camera containing a 100+ megapixel sensor (e.g. PhaseOne XF series). Such a system
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could achieve spatial resolutions nearing that observed from the High-throughput Imag-

ing Boom (HIB) in Chapter 2, however the small, easy to deploy nature of consumer UAVs

would subsequently be lost.

With this in mind, there will likely be a place for multiple platform types within the field

of NGP research, and perhaps within breeding programmes, for the foreseeable future.

Though ground-based platforms may bare a logistical burden in regard to deployment at

remote sites, and hence potentially a low scalability to large-scale breeding programmes,

their advantages stem from the lack of limitations regarding sensor payload and high-

spatial resolution of collected data. To put this in perspective, the HIB described in Chapter

2 was designed and developed with two specific ideas in mind:

i To produce a platform which seamlessly integrated into current field maintenance

practices used within field-crop breeding programmes

ii To facilitate the collection of high-spatial resolution data from desired sensors, re-

gardless of their weight or size

By developing a platform based around these concepts, sensors can be deployed with

relative ease to rigorously evaluate data captured from field plots and its potential use in

breeding programmes. Sensors identified as valuable to breeding programmes can then be

deployed on more scalable platforms, as technology advances and sensor size and weight

are reduced.

The above section has discussed advancements to physical NGP technologies, however,

advancements in analytical methods are expected to contribute as much as, or more than,

advancements in sensors and platforms toward the implementation of NGP within breed-

ing programmes. Traditional image analysis methods, such as those described in Chapter

2, which look at individual pixel values have a limited application, for which the informa-

tion of interest must be contained within each pixel. These approaches are well suited to

analysing images based upon pixel colour values but are ill-suited to identifying shapes

and patterns within images. Computer vision and machine learning (ML) algorithms are

able to overcome this limitation, identifying objects of interest within images learned from

user defined training data. Over the past few years the barrier to entry for ML has been
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greatly lowered, with ML modules and packages being made available to object-oriented

programming languages such as Python and R. This has facilitated the investigation of ML

as a set of analytical tools for NGP, where great potential has already been identified for

the identification of wheat heads (Hasan et al., 2018; Sadeghi-Tehran et al., 2017, 2019) and

anther extrusion (Sadeghi-Tehran et al., 2017), determining heading date and head/awn

morphology (Wang et al., 2019), as well as improving upon traditional methods for es-

timating canopy cover of field plots (Guo et al., 2017). Further-more ML can be applied

to a variety of data types and is not limited purely to images. One interesting avenue of

exploration would be to develop and test a ML model in an attempt to improve upon the

point cloud derived estimates of aboveground biomass of wheat, as described in Chapters

3 and 4.

Though the barrier to entry for ML has been lowered, specialist skill sets are still required

to understand the theory behind the function of each algorithm, and for writing the base

code required to train and run these models. While, in its current state, it is unlikely that

ML is to be adopted by the average plant breeder to analyse NGP data, efforts have been

made to make ML more accessible to the average breeder and researcher. For example,

the decision tree segmentation model for evaluating canopy cover EasyPCC developed by

Guo et al. (2017) was built into an easy to use graphical user interface, and the wheat

spike detecting neural network DeepCount developed by Sadeghi-Tehran et al. (2019) was

published with all required Python scripts. It is encouraging to see researchers making

such tools freely available as this will help foster the uptake of NGP and the realisation of

its potential application within breeding programmes.

5.3 Progress Towards the Integration of Next Generation Pheno-

typing Data

From the current study, it has been demonstrated that NGP technologies can be deployed

in a high-throughput manner within the large-scale field trials of wheat breeding pro-

grammes, to collect phenotype data suitable for inclusion within routine breeding anal-

yses. While the methods for collecting this data were demonstrated and suggestions on



Chapter 5. General Discussion 86

how this data could be integrated within breeding programmes were raised, the true fit

and value of this data within breeding programmes was not investigated. To date there

has been little literature published regarding the integration of NGP data within breeding

programmes, with efforts so far focused on the fitting of proxy traits, i.e. spectral readings

which may be associated with traits, into multi-variate models for pedigree and genomic

prediction (Rutkoski et al., 2016; Sun et al., 2017; Krause et al., 2019).

Rutkoski et al. (2016) showed the accuracy of grain yield prediction for breeding lines

within a univariate analysis could be significantly improved upon by fitting proxy traits

(canopy temperature and NDVI) into the analysis, along with pedigree (A) or marker (K)

relationship matrices. Sun et al. (2017) continued this line of work, investigating differ-

ent models (simple repeatability, multitrait and random regression) for the analysis of

proxy trait (canopy temperature and NDVI) data collected across time, subsequently to

be included in pedigree and genomic prediction models. Again, fitting proxy traits into

multi-variate prediction models with either A or K matrices was shown to improve upon

univariate analyses of grain yield.

A slightly different approach to the application of proxy traits to genomic prediction has

been investigated by Krause et al. (2019), where collected proxy trait (hyperspectral) data

was used to generate relationship matrices (H), as an alternative to A or K matrices. H

matrices were shown to provide similar increases to grain yield prediction accuracy as A

and K matrices when predicting within and between sites, and combining A or K with

H matrices further improved prediction accuracy. The use of H matrices as part of ge-

nomic prediction models may be particularly beneficial to breeding programmes where

genotypic data is limited, though in breeding programmes where genotypic data is read-

ily available it is likely K matrices will continue to be used, though perhaps in multi-kernel

models including H matrices as described by Krause et al. (2019). If H matrices were to

provide a true alternative to K matrices, the collection of phenotypic data to generate these

H matrices must provide a better economic proposition than collecting genotypic data.

Given the potential to increase the accuracy of genomic prediction models for grain yield

through fitting genetically correlated proxy traits, the next course of action should be to

fit ’known’ traits with strong genetic correlations to grain yield. A prime example of this
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would be to use NGP-derived yield component traits such as AGB (demonstrated in Chap-

ters 3 and 4), plant number per plot and spike number per plot (both of which are showing

great potential to be measured using a combination HTFP platforms, such as described in

Chapter 2, and ML analyses as described above). Theoretically, accounting for these com-

ponents should provide a large proportion of the variability driving yield, allowing for

improved genomic prediction and selection models. This will of course require further

research to determine whether fitting these ’known’ NGP-derived traits provides this ex-

pected benefit, though given the strong heritability of NPG-derived traits and their strong

genetic correlation to their manually measured counterparts (as demonstrated in Chapters

2 and 4), breeders and researchers can fit these into multi-variate models with confidence.

An alternative course of action, which may be ’higher risk’ than that described above,

would be to investigate fitting NGP data per se into statistical or ML analysis. In this

instance no ’known’ trait would be measured, but rather NGP data per se would be inves-

tigated for its predictive ability of a breeding objective. This could incorporate data from a

multitude of sensor types, either individually or in combination. The caveat to this being

that with so many unknown variables involved, a great deal of research may be required

to find potential benefits from such methods.

The above outlines currently suggested paths for NGP-derived data, and two potential

paths of investigation moving forward, though further to this, there is the question of

when NGP technologies can be most effectively deployed within breeding programmes to

collect this data and optimise their implementation. The works of Rutkoski et al. (2016),

Sun et al. (2017) and Krause et al. (2019) are all conducted on field plots where grain yield

is able to be measured. However, each of these studies, as well as the review of Rebetzke

et al. (2019), suggest that the fit of these technologies may be in the earlier stages of breed-

ing programmes, where plot sizes are generally smaller, population sizes are larger and

grain yield data may not always be collected efficiently. This question of when to apply

NGP technologies within a breeding programme, along with the question of how best to

utilise the data, is key to efficiently deploying NGP technologies within functional breed-

ing programmes and is perhaps best discussed in regards to the fundamentals of plant

breeding.
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5.4 A Strategic Approach for New Technology in Wheat Breeding

The goal of plant breeding, as a whole, is to improve the performance of economically

valuable plant species through the use of genetic principles. As such, it can be thought

of as the amount of genetic gain that is made for the economic trait of interest. In wheat

breeding this is generally focused on grain yield, albeit not exclusively.

The concept of genetic gain is fundamental to plant breeding and can be described as the

response to selection over time (Falconer, 1960), i.e. the measurable increase in genetic

performance over time. This response can be calculated using the equation for genetic

gain, colloquially known as the ’breeder’s equation’:

Rt =
ihσA

t
(5.1)

Where Rt represents genetic gain per unit time (response to selection), i selection intensity,

h selection accuracy, σA genetic variance (standard deviation of breeding values), and t

generation interval.

Each component of this equation can be influenced by the breeder in an attempt to in-

crease genetic gain. For example, selection intensity can be increased with larger popula-

tion size, selection accuracy can be increased through more accurate measurement of the

trait of interest, genetic variance can be increased through wider crossing strategies, and

generation interval can be reduced by identifying parents at earlier generations within the

programme.

Looking at the equation for genetic gain, there are two apparent avenues through which

NGP technology can most assist:

i Selection intensity can be increased as a factor of population size, due to the in-

creased capacity of phenotyping available with NGP and HTFP technologies, as op-

posed to traditional methods

ii Selection accuracy can be increased through more accurate, repeatable and objective

measurements of traits, as opposed to traditional methods. Or through providing

additional information for inclusion in statistical modelling.
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A third potential option, suggested by Rebetzke et al. (2019), is that NGP technologies may

allow for greater genetic variance, as larger populations can be grown and phenotyped to

accommodate wider crossing strategies.

In essence, this equates to: i) ’can it measure the trait faster?’, and ii) ’can it measure the

trait more accurately?’. When considering the practical application of this technology to

a breeding programme there is also the question of iii) ’what is the cost compared to tra-

ditional methods?’. With these three core questions it is possible to examine where these

technologies are best deployed within a breeding programme. This could be examined

in minute detail for any given breeding programme, though the overall concepts of ques-

tions i, ii and iii are broad and fundamental to the application of any technology within

any breeding programme. As such, for the purpose of this discussion, a strategy agnos-

tic of technology and programme structure will be presented to aid breeders’ decision in

adopting new technology.

Figure 5.1 outlines a decision tree for determining whether a new technology should be

deployed within a breeding programme, irrespective of the trait, technology or stage of

breeding programme considered. The only assumption of this decision tree is that the

technology is capable of being deployed within the programme, i.e. this tree cannot be

used for a technology which has a physical limitation preventing its deployment.

As shown in Figure 5.1 it can be a complex process deciding whether a new technology

should be deployed. Interestingly this decision is much simpler when considering the

merits of measuring a new trait, rather than when considering altering methods for a trait

routinely measured. For a new trait, provided it can be measured by the new technology

and it is a breeding objective for the programme, all that need be considered is whether

the value of genetic gain achievable for the trait will offset the cost of deploying the tech-

nology. This is a concept that is often overlooked within the literature, as not only the cost

deploying the technology needs to be considered, but also the cost-benefit ratio in terms

of genetic gain. In cases where the trait is not a breeding objective, the question changes to

whether collecting and analysing this data (in a cost efficient manner) could be used to in-

crease the accuracy for a trait which is a breeding priority, through multi-variate statistical

analyses, which will be measured regardless of this new trait. This also applies when



C
hapter

5.
G

eneralD
iscussion

90

Would you normally measure the trait of interest in this 
experimental format?

Yes

NoCan the new technology measure the trait as or 
more accurately than traditional methods

YesNo

Can the new technology contribute to the statistical 
analysis of the traditional measurement to improve 

upon accuracy of the trait?

Yes

Can new technologies measure the trait faster?

Yes

No

No

Can the new technology measure the trait?

Yes

No

Can the cost of deployment be 
offset by genetic gain made for the 

trait?

Yes

Is the new technology faster than 
traditional methods?

Yes

No

No

Does the improvement in accuracy 
offset the cost of deployment?

Yes
No

Is the trait a breeding objective?

Yes No

Would statistical analysis of this data  improve the 
accuracy of an economically valuable trait measured 

in this experimental format?

Can the cost of deployment be offset 
by improvements in accuracy to the 

economic trait?

Yes

No

Deploy the technology

Yes

No

Is the new technology cheaper 
than traditional methods?

Is the new technology cheaper 
than traditional methods?

No Yes

YesNo

Is the new technology cheaper 
than traditional methods?

Is the new technology cheaper 
than traditional methods?

YesNoYes

No

Is the reduction in accuracy offset by 
the  increased speed and reduced cost 

of deployment?

Yes

No

Is the reduction in accuracy and the 
increased cost of deployment offset by 

the increase in speed?

Yes

No

Are the reductions in accuracy and 
speed offset by the reduced cost of 

deployment?

Yes

No

YesNo

Do the increases in accuracy 
offset the reduced speed and 

cost of deployment?

YesNoYesNo

Is the traditional measurement a 
by-product of a required breeding 

process?

Yes

No

Do not deploy the 
technology

Is the traditional measurement a 
by-product of a required breeding 

process?

No

Yes

Do the increases in accuracy and 
reduced cost of deployment offset 

the reduced speed?

Do the increases in accuracy and 
speed offset the cost of 

deployment?

Does the original experimemtal 
format need to be planted for 

other reasons?

Yes
Does a more efficient experimental 

format offset any negative(s) 
associated with deployment?

Yes

Change experimemtal 
format and deploy the 

technology

No

Maintain experimental 
format and measure trait 

traditionally

No

Would deploying this technology 
allow for a more efficient 

experimemtal format?

Yes No

Could the experimental format be changed 
alongside deployment of the technology to 

improve efficiency?

Does the original experimemtal 
format need to be planted for 

other reasons?

Yes

No

Would deploying this technology 
allow for a more efficient 

experimental format?

Yes

No

Deploy the technology in the 
original experimental format

Change experimental format and 
deploy the technology alongside 

traditional measurements

Yes

Maintain experimental format and 
deploy the technology alongside 

traditional measurements

NoYesNo

Could the experimental format be changed 
alongside deployment of the technology to 

improve efficiency?

A decsion tree for the application of new technology to aid in selection

Definitions:

Experimental format: The planting format of the experiment (e.g. single plant, hill plot, row, yield plot), size of the format (e.g. 
small plots, large plots) or level of replication within the experiment (e.g. full replication, partial replication)

Required breeding process: A process which must occur for the breeding programme to function and progress (e.g. it is required to 
collect seed of breeding lines to plant in experiments the following year, a by-product of which can be measuring grain yield)

Breeding objective: That of which is perceived as a high priority within the programme and is actively selected upon

Other reasons: Something which requires a certain experimental format be planted (e.g. large amounts of crop product may be 
required for quality testing, so large plots are required to be grown and harvested)

FIGURE 5.1: A decision tree for the application of new technology to aid selection in a breeding programme. Blue italicised terms are described within the
figure. The blue circle with a question mark indicates the start point, green circles with ticks indicate an outcome where the new technology will be deployed,
red circles with crosses indicate an outcome where the new technology will not be deployed. Green and red lines follow yes and no answers respectively.
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considering measuring a trait for the purpose of indirect selection (Falconer, 1960), where

accuracy and speed contribute toward genetic gain of the breeding objective, which must

be considered in relation to the cost of deployment.

For traits which are traditionally measured within the breeding programme, it can be a

more complicated decision as to whether new technology should replace, or be used in

conjunction with, traditional methods. While the key questions of accuracy, speed and

cost are still present, the context in which the trait is measured, as well as how it fits

in the experimental format need to be considered. Firstly, it is important to understand

whether the trait is measured as a by-product of a required breeding process, as this will

alter how new technology may be deployed. For example, grain yield is an important

trait to assess wheat breeding line performance, however, measuring grain yield can also

be a by-product of seed multiplication, a required breeding process. Secondly, it needs

to be considered whether deploying this technology would allow for a more efficient ex-

perimental format to be planted. Efficiency could be gained from miniaturisation of the

planting format (e.g. small plot to row), or through reducing replication within the trial,

such as using sparse (partially replicated) experimental designs across multiple locations

(Cullis et al., 2006). In instances where experimental format can be changed, the breeder

has the option to free up resources that can either be reallocated within the programme or

held on to, to run a leaner, cheaper, programme. In some circumstances, while the deploy-

ment of new technology may allow a more efficient experimental format to be planted, the

original format may still be required for other reasons within the programme. For exam-

ple, multiple replicates of yield plots may be required to harvest grain for quality testing

and reducing replication would produce insufficient amounts of grain. Given the number

of flow-on effects which may occur from simply changing a method of trait assessment,

it is unsurprising that plant breeders can be hesitant to change from current practices or

adopt new technology within their programmes, even when from the outside it appears

that only a small change is occurring. In reality, implementing a simple change may result

in the reassessment of the overall programme structure.

Further to its potential use by plant breeders, this tree can also be used by researchers

either developing new technologies, or investigating current technologies for use within

breeding programmes. Every yes/no question which cannot currently be answered lends
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itself to further research. As an example of this, the use of LiDAR to measure wheat AGB

in a yield plot format could be investigated. In a situation where AGB is not generally

measured and not being directly selected for, it could be measured with LiDAR for input

into multi-variate analyses with grain yield. However, it is not known how this would

affect the accuracy of the of grain yield estimate from the trial, it may be improved, but

it may also have no effect. This then opens a research question, which when answered

would allow breeders to decide if this is a technology worth considering. Following this

line of enquiry, it is possible to look further down the tree and address a question to which

the previous question does not yet have a clear answer. In the example of wheat AGB and

grain yield, it is possible to skip this currently unanswered question and instead question

whether a theoretically large improvement in grain yield accuracy would offset the de-

ployment cost of the technology? Should the answer to this question be ’no’, research into

the deployment of this technology would not be considered a high priority by breeders.

When considering deploying NGP technology it is important to ask how well the technol-

ogy can measure the trait of interest, as well as whether the technology has a logistically

and economically sound data processing pipeline to generate data for that trait, with these

questions being encapsulated within the broad questions posed within Figure 5.1, regard-

ing accuracy and cost respectively. It is difficult to give broad recommendations on the

application of NGP technologies to wheat breeding programmes as there are so many

variables at play. Even after the in-depth work conducted in Chapters 2 through 4, broad

recommendations of how digital cameras and LiDAR can be utilised within programmes

cannot be made, only suggestions as to how breeders may choose to consider their appli-

cation. Every programme is structured differently, with different objectives and different

resources available to reach those objectives. Decision trees such as Figure 5.1 will aid in

the strategic implementation of NGP within breeding programmes, though ultimately it

is at the discretion of each breeder as to what is best suited for their programme.
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5.5 Future Considerations for Next Generation Phenotyping in

Wheat Breeding

Using the decision tree described in Figure 5.1 it is easy to imagine how NGP technology

could be deployed within a wheat breeding programme, however there are still challenges

to be addressed before this can be realised. Phenotyping platform development and de-

ployment are still an issue for many breeding programmes, with progress in this area

being hindered due to the diversity of breeding programme structures and the inability,

so far, to apply a ’one size fits all’ solution. In Chapter 2 we proposed and developed

the high-throughput imaging boom (HIB), a ground-based phenotyping platform, specif-

ically to meet needs of a single wheat breeding programme. While we achieved this goal,

challenges in the deployment of the system still arose. Being tractor-based, the logistics

of transporting such a system between remote sites are complex, requiring two people be

present for safe loading, unloading and transport of the system on a truck. While this

may be somewhat location specific (i.e. dependent on local workplace safety laws), in this

case large amounts of time (and hence cost to the breeding programme) were required

to transport the system between sites. Aside from the physical logistics of transporting

equipment to remote sites, it is also difficult to match phenotyping activities to desired

physiological growth stages at remote sites. This is where a team of trained technical staff

and a fleet of phenotyping systems would be beneficial, though this would be expensive

for the programme. Furthermore, there are limitations in deployment of the system after

large rainfall events, as soil beneath the tractor tyres is churned and trial sites are damaged

when excessive moisture is present. This is particularly limiting during the beginning of

the southern Australian cropping season where large amounts of rain can generally be

expected, yet traits such as plant number, canopy cover and early vigour are desirable to

assess.

To overcome this logistical burden of transporting NGP systems it may be feasible to fuse

NGP technologies with equipment required for routine trial maintenance procedures. For

example, sensors could be attached to spray booms (or a secondary boom used in conjunc-

tion with a spray boom) and data collected while herbicides, fungicides or pesticides are

being applied to the trial site. As these booms are typically larger than that used for the
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HIB, a greater number of sensors could be attached, increasing the number of plots simul-

taneously measured. While this solution would reduce time and labour in transporting a

dedicated phenotyping system, it does not solve limitations to deployment on excessively

moist soil, and adds a new limitation; that of limiting data collection to growth stages at

which herbicides, fungicides and pesticides are applied. This may be suitable for some

breeding programmes, but likely not all.

For the obstacle of field access, the most apparent solution is to switch from a ground-

based platform to an aerial platform, such as UAVs, for the collection of phenotype data.

As discussed previously UAV platform and sensor technology technology is constantly

improving, and while UAVs may not currently be able to efficiently and routinely obtain

the phenotype data desired by breeders, it is likely they will be able to in future. Though

the transport and deployment of UAVs can be much simpler than a ground-based system,

a minimum of a single operator is still required to be present to conduct the phenotyp-

ing activities. An optimal solution to this would be a UAV base station which could be

established at, or prior to, the sowing of each trial site. From here the UAV would au-

tonomously deploy (or be remotely activated) to collect phenotype data and return to the

base station for battery charging and data transmission. This would allow breeders to col-

lect phenotypic data routinely from multiple field sites with minimal effort. Such a system

may seem like a blue sky concept, however, similar ’drone in a box’ services have been

developed for mining and security applications (Airobotics, 2019; Percepto, 2019).

Even with a clear idea of what an optimal phenotyping platform may look like within a

particular wheat breeding programme, the deployment of these technologies still hinges

on the ability to demonstrate their value to breeders. Current and potential future research

efforts have been discussed previously, however, it is worth reiterating that a high priority

for future research should be placed on demonstrating the use of NGP measurements to

advance genetic gain for common breeding objectives. Given that grain yield is often

the primary objective of breeding programmes, demonstrating significant advancements

in genetic gain for this trait should be a high priority. Specifically the work of Rutkoski

et al. (2016) and Sun et al. (2017) should be expanded upon to investigate the potential

of improving grain yield accuracy through using a range of NGP derived traits within

genomic selection and multi-variate models. Ideally this would not focus on fitting single
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traits, but rather suites of traits expected to account for genetic variation in grain yield and

for residual variation within field trials.

Further to the improvement of genomic selection and multi-variate models, another high

priority avenue of research should be the use of NGP derived phenotype data, in combi-

nation with site-specific environmental and dense genomic data, for the inclusion within

crop growth models (CGMs) to simulate genotype performance. Crop growth models can

be used to predict phenotype based upon genetic-by-environment-by-management inter-

actions (Hammer et al., 2019) and as such can be a useful tool for increasing genetic gain

within breeding programmes (Cooper et al., 2014). While CGMs have not traditionally

handled large-scale phenotype data, Messina et al. (2018) have proposed the concept of

second generation crop growth models (SGCGMs) capable of incorporating large-scale

phenotypic data generated from HTFP platforms, for the improvement of physiological

models (such as the genotype-to-phenotype model (Messina et al., 2011)) as well as the

training of CGM-whole genome prediction models (Technow et al., 2015; Messina et al.,

2018). Deployment of such models within a wheat breeding programme could improve

the way in which variety performance is evaluated and allow for increased genetic gain.

With grain yield as an example, the use of SGCGMs could allow for improved performance

prediction for genotypes absent from the population, or for genotypes absent from specific

locations. This could also allow for better understanding of varietal adaption within spe-

cific environments, and the investigation of the value of specific traits or trait combinations

within certain environments. In turn, this may allow targeted deployment of NGP within

environments, focusing on the traits best associated with adaption and performance. Fur-

thermore, with deployment of these models it may also be feasible to gain useful infor-

mation from field sites abandoned mid-season due to environmental conditions such as

drought and frost. This would negate the lost opportunity cost of an abandoned site and

greatly improve efficiency within the breeding programme.

Going forward, provided research demonstrates the value of NGP measurements to breed-

ing programmes, and sensor, platform and data processing technology improves to a point

where it can be reliably and conveniently deployed within breeding programmes, these

tools will find their fit within breeding programmes and will become valuable assets for
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breeders to deploy. The prospect of being able to collect grain yield data along with NGP-

derived traits such as above-ground biomass, plants per plot and spikes per plot, and seed

traits such as thousand grain weight and kernel size within a wheat breeding programme

is an exciting one. This information could contribute a great deal towards understanding

how these components define grain yield in specific environments, providing the oppor-

tunity to increase its genetic gain.

5.6 Conclusion

Next generation phenotyping is an exciting frontier for wheat and other field-crop breed-

ers, offering to revolutionise the way in which phenotype data is collected from large-

scale field trials. Herein it has been shown how digital cameras and LiDAR sensors can

be deployed within large-scale field trials for the non-destructive, accurate and repeat-

able measurement of numerous traits commonly measured within wheat breeding pro-

grammes. All traits measured were shown to be highly suitable for inclusion in routine

breeding analyses, providing breeders confidence in deploying these technologies, should

they choose, or for inclusion in future research on how these measurements can best ben-

efit breeding programmes. Furthermore, the data produced using these technologies can

be of great value to researchers, particularly in regard to recording phenotypic differences

observed in agronomic and crop physiologic research, as well as broad genetic studies

aimed at the dissection of traits. As phenotyping and associated technologies continue

to improve and future research demonstrates how these technologies can contribute to-

wards improving genetic gain within breeding programmes, the decision tree framework

proposed herein can be used by breeders to find the appropriate fit of these technologies.
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A.1 Supplementary Material 1

Basic Colour Segmentation of Digital Images.

Detailed methods for the basic image analysis of colour-based traits from digital images.

Also available online:

https://www.frontiersin.org/articles/10.3389/fpls.2019.00449/full#supplementary-material

https://www.frontiersin.org/articles/10.3389/fpls.2019.00449/full#supplementary-material


   

Supplementary Material 

Basic Colour Segmentation of Digital Images 

Using: 

FiJI –  https://fiji.sc/ 

Threshold_Colour Plugin – http://www.mecourse.com/landinig/software/software.html 

 

1. Import images as a stack 

• File > Import > Image Sequence… 

• Navigate to the folder containing your images and select the first image 

 

• Specify number of images (if default is incorrect) in the Sequence Options Window*  

• *Depending on RAM limitations of the computer, images may need to be resized 

before loaded into image-J, especially when dealing with a large number of files. 
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 2 

 

2. Define Regions of Interest (ROI) in images (if required) 

• Analyze > Tools > ROI manager 

• Using the cursor, select the area of your image you wish to perform the analysis on* 

 

• Once the area is selected, press the ‘Add’ button in the ROI manager 

• *You can cycle through images using the scroll bar at the bottom, to ensure the ROI is 

suitable across your image set 
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3. Convert images to ROI stack 

• Ensure that the ROI you have created is selected (highlighted) in the ROI manager 

 

• Image > Duplicate (make sure the ‘Duplicate stack’ box is checked) 

 

• A new window will appear with all the ROI from your image stack. This may take a moment 

to process, especially for large image sets 

• At this point, the original image stack and the ROI manager window can be closed (if desired) 

• The ROI image stack can also be saved by navigating to File > Save As > Image sequence 

 

4.  Duplicate the ROI stack 

• Duplicate the ROI image stack, one stack will be used for measuring Total Leaf Area, while 

the other will measure Leaf Area Yellow 

• Image > Duplicate (make sure the ‘Duplicate stack’ box is checked) 

• A second window containing the ROI stack will appear 
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 4 

5. Threshold for Total Leaf Area 

• Select one of the ROI stacks 

• Navigate to Plugins > Threshold Colour > Threshold Colour 

• Use the scroll bars in the Threshold Colour window to select the desired threshold 

• Hue values should remove reds and blues from the image, keeping yellows and greens. This 

will likely be in the range of 15 – 100 

• Thresholding on Brightness may be useful to remove dark and shadowy patches of soil, but it 

is important not to remove large areas of dark leaves. 

• Saturation values may or may not be useful, depending on the situation. 

• This stage needs to be tweaked for each set of images analysed, taking into account soil 

colour and illumination of the image. 

 

• Press the ‘Stack’ button to apply these selections to all images and check they are suitable 

• Once a suitable threshold has been created, check the ‘Threshold’ box and then press the 

‘Stack button’ to apply a black and white threshold across all images. 

 

6.  Convert to binary image 

• Process > Binary > Make Binary 

• In the Convert Stack to Binary window, use the settings from the below figure 
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7.  Count Total Plant Area Pixels 

• Plugins > Voxel Counter 

• This will give the number of black pixels per image i.e. the number of plant pixels 

• Save data from the results window, or copy to the desired document. 

 

9. Threshold for Yellow Leaf Area 

• Select the unprocessed image stack, created in step 4 

• Repeat steps 5, 6 and 7. In step 5 instead of thresholding for greens and yellows, threshold for 

the yellow colour of interest. 

• This will likely be in the Hue region of 15-35 

 

10. Calculate percentage of Total Leaf Area and Leaf Area Yellow 

• Use (Yellow Leaf Area Pixels/Total Leaf Area Pixels)*100 to get a percentage score of 

Yellow Leaf Area 

• Percentage canopy cover can also be calculated as (Total Leaf Area Pixels/Total Pixels in 

ROI)*100 
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A.2 Supplementary Material 2

Image processing examples for Senescence, Septoria Tritici Blotch Severity and Canopy

Cover.

Examples of images processed in FiJI, showing different stages of processing for the traits

senescence, Septoria Tritici Bloctch and canopy cover.

Also available online:

https://www.frontiersin.org/articles/10.3389/fpls.2019.00449/full#supplementary-material

https://www.frontiersin.org/articles/10.3389/fpls.2019.00449/full#supplementary-material


   

Supplementary Material 

Image processing examples for Senescence, Septoria Tritici Blotch Severity and Canopy Cover 

 

 

Supplementary Figure 1. Examples of images processed for the assessment of senescence, showing 

the original image (A), segmented plant material (B), binary plant material threshold (C), segmented 

senesced material (D) and binary senesced material threshold (E), for plots with scored 

approximately 25% and 75% yellow leaf area. 
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Supplementary Figure 2. Examples of images processed for Septoria tritici blotch assessment, 

showing (A) original image, (B) binary plant material threshold and (C) binary Septoria tritici blotch 

material threshold. 

 

 

 

Supplementary Figure 3. Examples of images processed for canopy cover assessment, showing (A) 

original image, (B) segmented plant material and (C) binary plant material threshold, for plots at 

Zadoks growth scale 25 (top) and 69 (bottom). 
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Appendix B

Chapter 4 Supplementary material

B.1 Supplementary Material 1

Algorithm Selection for LiDAR Canopy Height.

An explanation of the process used for selecting the parameters of the LiDAR Canopy

Height algorithm, including figures illustrating the response of the algorithm to different

parameters.

Also avialable online:

https://www.frontiersin.org/articles/10.3389/fpls.2019.01145/full#supplementary-material

https://www.frontiersin.org/articles/10.3389/fpls.2019.01145/full#supplementary-material


   

Supplementary Material 

Algorithm Selection for LiDAR Canopy Height 

Algorithms ranging from the 60th to 99th percentile height across scan lines were compared across all 

sample times and repeated measures at the Roseworthy site. Each sample time contains 192 

observations. Values form each of these algorithms were correlated to their corresponding manual 

measurement, with the correlation coefficients and the root mean square error (RMSE) of the data, 

from all time points, being compared in Supplementary Figures 1 and 3 respectively. Due to the 

reversed relationship between percentile algorithm, correlation coefficients and RMSE for 

measurements during the first sample time (ZGS 31), these measurements were not included in 

determining the mean correlation coefficient or RMSE across the data sets. Supplementary Table 1 

below indicates which plots relate to which sample time and measurement. 

 

Supplementary Table 1. Labels of scans presented in Supplementary Figures 1 and 3, with the 

associated Zadoks Growth Scale (ZGS) and scan direction. 

ZGS Scan 1 (Forward) Scan 2 (Forward) Scan 3 (Reverse) 

31 t11 t12 t13 

49 t21 t22 t23 

59 t31 t32 t33 

65 t41 t42 t44 

96 t51 t52 t55 

 

The 89th percentile algorithm produced the greatest mean correlation coefficient, while the 86th 

percentile algorithm produced the minimum mean RMSE. Looking at Supplementary Figures 2 and 4 

it is apparent there is no large peak for either mean statistic, and there is likely very little difference in 

selecting percentile algorithms within a 5-percentile range. With this is mind the 86th percentile 

algorithm was selected to broadly represent crop canopy height, and henceforth data referred to as 

LiDAR Canopy Height (LCH) in the current study was produced with this algorithm. 
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Supplementary Figure 1. RMSE between manually measured canopy height and LiDAR measured 

canopy height, for percentile algorithms ranging from the 60th to 99th percentile. Where figures are 

labelled as sample time and LiDAR sample repetition (1: forward, 2: forward, 3: reverse). RMSE is 

presented on the Y axis, with percentile algorithm on the X axis. 
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Supplementary Figure 2. Mean RMSE across all sample times, excluding t11, t12 and t13, of 

manually measured canopy height and LiDAR measured canopy height, for percentile algorithms 

ranging from the 60th to 99th percentile. RMSE is presented on the Y axis, with percentile algorithm 

on the X axis. 
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Supplementary Figure 3. Pearson’s correlation coefficients between manually measured canopy 

height and LiDAR measured canopy height, for percentile algorithms ranging from the 60th to 99th 

percentile. Where figures are labelled as sample time and LiDAR sample repetition (1: forward, 2: 

forward, 3: reverse). Correlation coefficient is presented on the Y axis, with percentile algorithm on 

the X axis. 
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Supplementary Figure 4. Mean Pearson’s correlation coefficient across all sample times, excluding 

t11, t12 and t13, of manually measured canopy height and LiDAR measured canopy height, for 

percentile algorithms ranging from the 60th to 99th percentile. Correlation coefficient is presented on 

the Y axis, with percentile algorithm on the X axis. 
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