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ABSTRACT

Macrophages differentiation into M1 (inflammatory) and M2 (healing) phenotypes 

plays a vital role in determining the fate of biomaterials. The biophysical properties of 

the extra-cellular matrix are known to affect macrophage behavior. Mimicking these 

special biophysical properties of the extra-cellular matrix have led to increasing 

interest in biomaterial constructs with tailor-engineered surface nanotopographical 
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and chemical properties. However, significant gap of knowledge exists in the role 

played by the combinational effect of surface nanotopography and chemistry. To 

address this gap, we have fabricated nanoporous surfaces of controlled pore size (30, 

65 and 200 nm) and lateral spacing with uniform outermost surface chemistry tailored 

with amines (NH2), carboxyl (COOH-) and hydrocarbon (CH3-) functionalities. We 

show that the combinatory effects of surface properties can direct the differentiation of 

macrophages to the pro-healing M2 phenotype. This is most evident on the surface 

containing featuring nanopores of 200 nm and -COOH functionality. Overall, the 

concentration of pro-inflammatory cytokines significantly decreases while the 

concentration of anti-inflammatory cytokines increases many folds on 

nanotopographically, and chemically modified surfaces compared to their planar 

counterparts. Our data provides pioneering knowledge that could provide pathways to 

tuning inflammatory and foreign body responses and instruct the design of tailor-

engineered biomaterial implants to enable better clinical outcomes.
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INTRODUCTION

The biggest performance challenge that biomaterial implants face is modulation of the 

host immune response. Immediately upon implantation, adsorption and desorption of 

different proteins occur on the biomaterial’s surface, a phenomenon known as the 

Vromann effect1-2. This governs the subsequent biological phenomena underlying 

binding and activation of waves of innate immune effector cells such as neutrophils, 

macrophages, dendritic cells, mast cells, granulocytes and natural killer cells3-8. Of all 

these, macrophages are an important class of immune cells which attempt to eliminate 

the foreign body (i.e. biomaterial implant) by fusing among themselves to form foreign 

body giant cells (FBGC). Macrophages are a critical component of the host immune 

response, both to implants and microorganisms, through their phagocytic activities9. 

Macrophages are considered as ‘plastic’ cells, being categorized into ‘M1’ and ‘M2’ 

phenotypes based on their respective roles8, 10-12. M1-activated macrophages are key 

elements in inflammation and responsible for ‘cleaning the site’ by expressing pro-

inflammatory cytokines such as tumor necrosis factor (TNFα) and interleukin (IL6 and 
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IL1β). Conversely, the M2-activated macrophages produce anti-inflammatory 

cytokines (Arginase, IL10 and IL1RA) and are involved in wound healing and 

remodeling. 

Recent studies by our group and others have shown that macrophage adhesion, 

phagocytic activity and cytokine production can be modulated by using biomaterial 

surface properties such as chemistry and nanotopography. These engineering tools 

can be effectively used to modulate inflammatory responses by biomaterial surfaces 

with tailored properties13-17. This provides exciting opportunity for the rational design 

of biomedical constructs to modulate and elicit desired immunological responses. For 

example, our work utilizing ‘hill-like’ nanotopography of 16 nm, 38 nm and 68 nm 

demonstrated that the scale of nanofeature significantly affected immune cells 

attachment and expression of inflammatory markers13-15. The effect of 

nanotopography was further modulated by the outermost surface chemistry, revealing 

a complex picture of mutually dependent parameters but also an opportunity to 

harness surface properties to design and guide inflammatory responses to 

biomaterials. We have also recently reported that ‘hill-like’ nanotopography induced 

conformational changes to adsorbed fibrinogen leading to unfolding and presentation 
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of normally hidden peptide sequences that activate the MAC-1 receptor of 

inflammatory cells17.   

In this work, we further expand the knowledge in the field and reveal the combinational 

role of nanopores and surface chemistry on modulating immune cell responses. As 

model substrata, we employed anodic alumina (NAA) which provides a nanoporous 

surface with hexagonally distributed nanopores. The geometric features of these NAA 

substrates can be precisely controlled by altering the fabrication conditions. NAA-

based implants are not envisaged for developing brain implants due to potential 

leaching of aluminium ions under physiological conditions. However, NAA is 

recognized as a biocompatible material and has been intensively used to develop 

orthopaedic and dental implants 18,19. Many studies have reported on the use of NAA-

coated implants (e.g. orthopaedic, dental, coronary, etc.) and immunoisolation, 

showing reduced leaching of aluminium ions under physiological conditions20. NAA 

surfaces have also been engineered as active drug-releasing coatings in orthopaedic, 

dental and coronary implants and in immunoisolation20-21. Pioneering osteogenesis 

studies demonstrated the biocompatibility of NAA, suggesting that its nanoporous 

structure provides key cues in bone cell adhesion and osseointegration22-24. In vitro 
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immunoisolation studies performed onto NAA surfaces suggest that this nanoporous 

material does not generate significant complement activation. However, in vivo 

transient inflammatory response was observed for unmodified and PEG-functionalized 

NAA surfaces upon implantation into the peritoneal cavity of rats20. Reduction in 

granulation along with the existence of blood vessels in the tissue surrounding the 

NAA implant indicated complex inflammatory consequences that require further 

elucidation. Furthermore, the interplay of nanotopography and surface chemistry in 

macrophage differentiation has not been comprehensively investigated. To unravel 

these phenomena, the outermost surface chemistry of NAA with varying porous 

structure was tailored by a thin layer of functional polymers deposited by plasma. A 

key benefit of plasma polymerization is that, it generates coatings of desired 

physicochemical properties in an arbitrary substrate, without requiring any pre-

modification of the surface25 compared to techniques such as LbL or SAMs26. The 

method consists of a single step, occurring within minutes and does not require 

solvents which provides benefit in terms of time costs27-30. Moreover, these coatings 

can also be deposited on complex structures including micro and nano particles16, 31-

34. Immune responses were evaluated on these nanotopographically and chemically 
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modified surfaces by measuring the expression of pro- and anti-inflammatory 

cytokines from macrophages. 

MATERIALS AND METHODS

Materials:
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Aluminium foils (99.9997% purity and 0.32mm thick) were purchased from Goodfellow 

Cambridge Ltd. (UK). Oxalic acid (H2C2O4), perchloric acid (HClO4) and chromic acid 

(H2CrO4), were supplied by Sigma-Aldrich (Australia). Ethanol (C2H5OH, EtOH), 

sulfuric acid (H2SO4) and phosphoric acid (H3PO4) were purchased from ChemSupply 

(Australia). Ultrapure Milli-Q® water (18.2 mΩ·cm) was utilized to prepare all aqueous 

solutions.

Fabrication of Nanoporous Anodic Alumina:

Aluminum substrates were cleaned under sonication in a bath of EtOH and Milli-Q® 

water for 15 min each before anodization, and dried under air stream. The surface of 

cleaned Al substrates was electropolished in an electrolyte of HClO4 and EtOH 1:4 

(v:v) at 20 V and 5 oC for 3 min. This process was performed in an electrochemical 

reactor with a circular window of ~1 cm in diameter. Three types of nanoporous anodic 

alumina (NAA) substrates with tuned geometric features of nanopores were fabricated 

by two-step anodization35-38: i) NAA produced in sulfuric acid (NAA-Su, 30 nm), ii) NAA 

fabricated in oxalic acid (NAA-Ox, 65 nm), and iii) NAA anodized in phosphoric acid 

(NAA-Ph, 200 nm). The first anodization step was performed for 20 h in 0.3 M sulfuric 
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acid at 6 oC for NAA-Su, 0.3 M oxalic acid at 6 oC for NAA-Ox, and 0.1 M phosphoric 

acid for NAA-Ph at 1 oC, with anodization voltages of 25, 40 and 195 V, respectively. 

The resulting NAA films with disordered nanopores at the top were selectively 

removed by wet chemical etching in 0.2 M H2CrO4 and 0.4 M H3PO4 at 70 oC for 3 h. 

Then, we performed the second anodization step under the same conditions as during 

the first step but for 2 h. The final nanopore size in the NAA films was precisely tuned 

by  by wet chemical etching in H3PO4 5 wt % at 35 oC for 8, 18 and 30 min for 35 nm, 

65 nm and 200 nm samples, respectively.

Plasma Polymerization:

A plasma reactor with a 13.56 MHz generator was utilized to modify NAA substrates 

with desired surface chemistry27. Nanoporous membranes were cleaned under oxgen 

plasma for 2 minutes at a power of 50W. Methyl oxazoline, acrylic acid and octadiene 

were utilized to overcoat the surface of NAA substrates with a 5nm thin layer of plasma 

polymer coating. Surface coatings of methyl oxazoline, acrylic acid and octadiene 

were deposited using a power of 40, 10 and 20 W, respectively, while the deposition 

time was kept constant at 20 s for all three monomers. 
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Scanning Electron Microscopy:

The geometrical features of the NAA substrates were established by field emission 

gun scanning electron microscopy (FEG-SEM FEI Quanta 450). Image J was utilized 

for processing FEG-SEM images.

X-ray photoelectron spectroscopy:

Elemental composition of the plasma surface coatings deposited onto the surface of 

the NAA substrates were determined using XPS. A Spec SAGE XPS 

spectrophotometer with a monochromatic Mg radiation source was operated at 10 kV 

and 20 mA to record all XPS spectra over 0-1000eV at a pass energy of 100eV and 

resolution of 0.5 eV. Survey spectra were then utilized to quantify atomic percentage 

of the elements present in the polymers. Neutral C1s carbon peak at binding energy 

(BE) of 285.0 eV was used as a reference to correct all other BE. All spectra were 

quantified using casaXPS.

Ellipsometer:

Silicon wafers were kept adjacent to the NAA substrates and plasma coated using the 

same parameters. A variable angle spectroscopic ellipsometer (J. A. Woollam Co. 
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Inc.) was used to measure the thickness of the polymer coatings. Reference silicon 

wafer was used for calibration and then all measurements were performed over a 

wavelength range of 250 to 1100 nm at 10nm increment at different angles from 65o 

to 75o at an interval of 5o. The data obtained was quantified using Cauchy model. 3 

measurements per sample were performed to obtain the average thickness, which 

were reported to have less than 10% experimental error.

Cell Culture:

THP-1 cells (Human monocytes) were grown in RPMI 1640 (Sigma Aldrich) with 1% 

(v/v) penicillin/streptomycin (Life Technologies)  and 10 % fetal bovine serum (FBS, 

Thermo Scientific) and were then used for immune studies. An incubator set at 37 °C 

containing 5% CO2 was used for maintaining cells and growth media was changed at 

80% confluency (i.e. every 3 days). 

Inflammatory response of macrophage:

 Phorbol-12-myristate 13-acetate (PMA, 100ng/ml) was used to differentiate THP-1 

cells into dTHP-1 (macrophages), according to the previously reported protocol39-40. 

Cells were treated for 48 h with media containing PMA and for another 24 h with fresh 
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media without PMA. Differentiated dTHP-1 macrophage cells were seeded on 

unmodified and modified NAA substrates at a density of 1 x 105 cells ml–1 and grown 

overnight for cell attachment. Once the cells were attached, the media was changed 

with fresh media containing 1μg ml–1 LPS (lipopolysaccharide) to activate the 

macrophages. Cells were exposed with LPS for further 6 h and conditioned media 

were collected for quantification of cytokine production41. After collecting the media, 

macrophage cell counts were performed using trypsin and hemocytometer to quantify 

the number of cells that produced cytokines on each surface. Pro- and anti-

inflammatory cytokines [IL-12p70, TNF-α, IL-6, IL-1β, IL-12p40, IL-23, IFN-γ, IP-10, 

IL-4, IL-10, Arginase, and TARC] were quantified using LEGENDplex human 

macrophage/microglia Panel (13-plex) and ELISA kits (BioLegend, San Diego, CA, 

USA) following the manufacturer's instructions. 

Statistical Analysis:

Graph Pad prism 8 was used to quantify all statistical analysis using a 1-way ANOVA 

with Dunnett’s multiple comparison test. The data obtained from all measurements 

(n=9) was presented as mean ± standard error mean (SEM). 
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RESULTS

Fabrication of NAA substrates having defined porous structure and outermost surface 

chemistry

Figure 1:  Geometric parameters of NAA substrates produced by two-step anodization. 

A,B) Slanted and top view schematics of a NAA substrate with details of geometric 

parameters (i.e. nanopore diameter dp; nanopore length Lp; interpore distance dint). C-

E) Top (left) and cross-sectional (right) FEG-SEM images of NAA produced in sulfuric 

(scale bar (left) = 500 nm; scale bar (right) = 2 µm), oxalic acid (scale bar (left) = 500 
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nm; scale bar (right) = 1 µm), and phosphoric acid (scale bar (left) = 2.5 mm; scale bar 

(right) = 1 µm), respectively.The geometric parameters of NAA films (i.e. nanopore 

diameter dp; nanopore length Lp; interpore distance dint; and pore density rp; Figures 

1A and B) were measured through FEG-SEM image analysis. Figures 1C–E show 

representative FEG-SEM images of the cross-section and top surface of NAA films 

fabricated in this study35-38. Figures 1C–E show cross-sectional FEG-SEM images of 

NAA films with straight cylindrical nanopores grown perpendicularly to the underlying 

aluminum substrate. These nanopores feature a closed oxide barrier layer at their 

bottom (Figure 1A). In average, the nanopore length of NAA-Su, NAA-Ox and NAA-

Ph substrates under the fabrication conditions used in our study were Lp = 13.1 ± 0.5, 

6.1 ± 0.4 and 7.5 ± 0.3 μm, respectively. The top surface of NAA substrates shows an 

array of nanopores of uniform size and distribution arranged in a self-organized 

hexagonal pattern (Figures 1C–E). The average nanopore diameter and interpore 

distance for NAA-Su, NAA-Ox and NAA-Ph substrates were dp = 30 ± 2, 65 ± 4 and 

200 ± 4 nm and dint = 66 ± 3, 105 ± 5 and 449 ± 24 nm, respectively. The pore densities 

(i.e. number of nanopores per unit area) were rp = 2.65 × 1011, 1.05 × 1011 and 5.73 × 

109 cm-2 for NAA-Su, NAA-Ox and NAA-Ph substrates, respectively.
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Figure 2: FEG-SEM image of nanoporous anodic alumina with three different pore 

sizes, 30 nm, 65 nm and 200 nm (scale bars = 1 µm) overcoated with three different 

chemistries (acrylic acid, methyl oxazoline and octadiene).

NAA substrates with desired outermost surface chemistry was obtained by 

overcoating 5 nm thick layer of plasma polymers obtained from different monomers 
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such as acrylic acid, methyl oxazoline and octadiene (ACpp, Meoxpp, ODpp).These 

surface coatings were chosen as they represent chemical compositions consistent 

with that of biological matter such as in amino acids, extra-cellular matrix and proteins 

(i.e. COOH- (ACpp), NH2- (Meoxpp) and CH3- (ODpp)42-43. All these coatings have 

negative surface charges in aqueous medium at physiological pH = 7.4 as Meoxpp 

and ODpp coatings are slightly negatively charged -18 mV and -19 mV, respectively, 

whereas the ACpp coatings had the highest negative charge of -28 mV (Figure S1)44-

45. The different chemistries of the coatings result in different wetting characteristics, 

as indicated by water contact angles of 35◦ for ACpp, 60◦ for Meoxpp and 85◦ for 

ODpp (Figure S2)17, 46. The thickness of the plasma polymer films was tailored to be 

of 5 nm, in order to preserve as much as possible the original nanoporous structure. 

We know from our published work that plasma polymer films of 5 nm and above are 

continuous and pinhole-free, allowing us to preserve the nanotopography generated 

by the NAA substrates and thus study the combinational effect of nanotopography and 

surface chemistry25, 47. FEG-SEM images of overcoated NAA substrates are shown in 

Figure 2. The images demonstrate that the nanopores retain their original shape and 
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the surface morphology (i.e. nanopore diameter) is not affected by the outermost 

surface chemistry.

Figure 3: Surface chemical composition determined by XPS. Atomic percentage of 

element of interest on NAA substrates modified by plasma deposited surface coating 

from methyl oxazoline, octadiene and acrylic acid chemistries. (A) aluminum, (B) 

aluminum carbon ratio, (C) oxygen carbon ratio and (D) nitrogen carbon ratio. 

The surface chemical composition of the coatings deposited by plasma polymerization 

on NAA substrates was characterized by XPS. The unmodified NAA substrates had 

35 atomic percent of aluminum (Figure 3A). After deposition of a 5 nm thin plasma 
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polymer coating of Meoxpp, ODpp and ACpp, the atomic percentage of aluminum 

decreased by half, which indicates that the coatings were successfully deposited on 

the NAA substrates. Furthermore, the aluminum to carbon (Al/C) and oxygen to carbon 

(O/C) ratios decreased by one fourth in case of Meoxpp and ODpp coated nanoporous 

and NAA substrates as compared to their uncoated counterparts (Figures 3B and C). 

This is due to the high concentration of carbon present in the molecules of these 

monomers. Whilst Al/C ratio decreased by half and O/C ratio remained the same in 

ACpp overcoated NAA substrates compared to their uncoated analogs (Figures 3B 

and C). This is due to high concentration of oxygen present in the structure of acrylic 

acid. Moreover, alumina membrane has a top oxide layer which leads to high O/C ratio 

in case of uncoated alumina surface. The nitrogen by carbon (N/C) ratio is presented 

in Figure 3D. Nitrogen was detected only in case of Meoxpp and not in case of ODpp 

and ACpp coated surfaces constant with the chemical structure of the precursors. 

Inflammatory responses (pro-inflammatory and anti-inflammatory) on different 

chemistry and nanoporosity
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Macrophages play a central role in the host response to implanted biomaterials. These 

cells have the capability to polarize into M1 (inflammatory) and M2 (wound healing) 

phenotypes, which further generate an array of pro-inflammatory and anti-

inflammatory cytokines, respectively. In this study, inflammatory responses to surface 

chemistry and nanoporosity (individually and in combination) was assessed in culture 

of macrophage dTHP-1 cells, obtained from differentiated THP-1 cell line. The results 

are presented in Figures 4 and 5.
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Figure 4:  Expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1β) from 

macrophages stimulated by LPS (1μg/ml) to nanoporous alumina surfaces with 

different pore size and surface chemistry, as determined using Legendplex ELISAs. 

TNFα, IL-6, and IL-1β expression on nanoporous alumina modified with methyl 

oxazoline (Meox), octadiene (OD) and acrylic acid AC (A, D & G)), uncoated alumina 

with different pore sizes 30 nm, 65 nm and 200 nm (B, E &H), and from NAA modified 

with Meoxpp, ODpp and ACpp (C, F&I). * = p<0.05, ** = p<0.01 and *** = p<0.001

An overall reduction in cytokine expression levels was observed upon addition of a 

combination of nanoporosity and chemistry compared to the uncoated aluminium 

membranes (Figure 4). In the case of Meoxpp (** = p<0.01) and ACpp (* = p<0.05)  

coated surfaces, a significant reduction in the concentration of the cytokine tumor 

necrosis factor alpha (TNFα) was observed, while only a moderate reduction in 

concentration of interleukin-6 (IL-6) and interleukin-1β (IL-1β) was observed as 

compared to aluminum control surfaces (Figures 4 A, D and G). Upon addition of 

nanoporosity, a significant increase in the concentration of all three cytokines (TNFα, 

IL-6 and IL-1β) was observed on 30 nm surfaces, while the cytokine expression 
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decreased significantly on surfaces with larger pore size (i.e. 65 nm and 200 nm) 

(Figures 4 B, E and H). 

The combination of nanoporosity and surface chemistry led to an overall significant 

decrease in the concentration of proinflammatory TNFα and IL-6 cytokines (compared 

to the control aluminum surfaces (Figures 4 C, F and I). Though an overall decrease 

in cytokines level was observed, the chemistries in combination with large pore size 

(200 nm) showed a more prominent decrease in the cytokine concentration compared 

to same chemistries on smaller pore sizes (i.e. 65 nm and 30 nm). Furthermore, 

nanoporous surfaces overcoated with Meoxpp and ACpp showed significant reduction 

in expression of all three pro-inflammatory cytokines compared to planar surfaces as 

well as to nanoporous surfaces with ODpp overcoating. The most significant reduction 

in the inflammatory cytokines was observed in case of Meoxpp and ACpp overcoated 

200 nm (large pore diameter) surface. In case of nanoporous surfaces overcoated with 

ODpp chemistry, the expression of TNFα and IL-6 cytokines decreased significantly 

with the increase in pore size while an overall increase in the concentration of IL-1β 

was observed on these surfaces compared to planar alumina surfaces.
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Table 1. Heat map summarizing the results obtained from ANOVA analysis performed 

to differentiate the individual effect of nanotopography and chemistry in the 

combination of the two, in case of pro-inflammatory cytokines expression.

Biomarkers Nanotopography Chemistry Combination

TNFα 84% 2% 14%

IL-6 79% 7% 14%

IL1β 32% 66% 2%

Our experimental data shows (Figure 4) that the combination of nanotopography and 

chemistry has a synergistic effect on pro-inflammatory cytokine expression. However, 

to determine, the weighted impact of individual surface parameters in case of 

combination of t nanotopography and chemistry, a two way ANOVA was performed. 

The results presented in Table 1 were plotted by using the F0 values presented in 

supplementary Table S1. The ANOVA analysis demonstrates that in the case of TNFα 

and IL-6 nanotopography plays a much more significant role (83.9 % and 78.9%, 

respectively) compared to surface chemistry (1.9% and 6.7% respectively). Whereas, 

in case of IL-1β, both nanotopography (32.2%) and chemistry (66%) appear to be 
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important, however, surface chemistry has more prominent effect than 

nanotopography.

Figure 5: Expression of anti-inflammatory cytokines (Arginase, IL-1RA and IL-10) from 

macrophages stimulated by LPS (1μg/ml) to nanoporous alumina surfaces with 

different pore size and surface chemistry, as determined using Legendplex ELISAs. 

Cytokines Arginase, IL-1RA and IL-10 on nanoporous alumina modified with oxazoline 

(Meox), octadiene (OD) and acrylic acid (AC) plasma polymer (A, D &G)), alumina 
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with different pore sizes 30 nm, 65 nm and 200 nm (B, E &H), and from NAA modified 

with Meox, OD and AC (C, F&I). * = p<0.05, ** = p<0.01 and *** = p<0.001

An overall increment in anti-inflammatory cytokine concentration upon combination of 

nanoporosity and chemistry for all surface chemical modifications was observed 

(Figure 5). Meoxpp and ACpp coated surfaces displayed a significant increase in the 

concentrations of the cytokines, interleukin 1 receptor antagonist (IL-1RA) and 

interleukin-10 (IL-10), and only a moderate increment in concentration of arginase 

compared to aluminum control surfaces (Figure 5 A, D and G). Upon addition of 

nanoporosity, the concentration of IL-1RA increased significantly on surfaces with 

larger nanopores (200 nm) compared to counterpart surfaces with smaller nanopores 

(30 nm and 65 nm). While an increase in the concentration of IL-10 was more 

significant on 65 nm compared to 30 nm and 200 nm surfaces, and only a moderate 

increase in concentration of arginase (as compared to aluminum control surfaces) was 

observed (Figures 5 B, E and H). 

The combination of different nanoporosity with these chemistries led to an overall 

significant increase in the concentration of the anti-inflammatory cytokines (arginase, 

IL1RA and IL-10) compared to the control aluminum surfaces (Figures 5 C, F and I). 
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Although, an overall increase in cytokines level was observed, the chemistries in 

combination with large pore size showed a more prominent increase in the cytokine 

concentration compared to chemistries on smaller pore size. Furthermore, anti-

inflammatory cytokines increased to a much greater extent on nanoporous surfaces 

overcoated with Meoxpp and ACpp overcoated surfaces compared to ODpp 

overcoated nanoporous surfaces. The most significant increase in the expression of 

Arginase and IL1RA was observed in case of Meoxpp and ODpp overcoated 65 nm 

and 200 nm surfaces. While the most significant increase in the concentration IL-10 

was observed in case of ACpp overcoated 30 nm and 65 nm surfaces.

Table 2. Heat map summarizing the obtained results from ANOVA analysis performed 

to differentiate the individual effect of nanotopography and chemistry in the 

combination of the two, in case of anti-inflammatory cytokines.

Biomarkers Nanotopography Chemistry Combination

Arginase 48% 49% 3%

IL1RA 27% 72% 1%

IL10 27% 55% 18%
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Two-way ANOVA analysis was performed to determine the weighted contribution of 

individual surface properties. The results in Table 2 were obtained by using the F0 

values from supplementary Table S2. Table 2, clearly demonstrates that in the case 

of Arginase, IL1RA and IL10 both chemistry and nanotopography plays a significant 

role. However, in case of IL1RA, chemistry is three times more significant than 

nanotopography while in case of IL10, chemistry is only twice as significant as 

nanotopography.

DISCUSSION

It is well established that different surface features play a critical role in modulating 

inflammatory responses 13-17. However, the effect of these surface features on 

macrophages are still not well known. Macrophages become activated into ‘M1’ and 

‘M2’ phenotype and expresses (pro and anti) inflammatory cytokines on its interaction 

with the biomaterial. While an initial pro inflammatory response to biomaterials 

generated by M1 macrophages is desired, its prolonged expression results in chronic 

inflammatory events followed by the formation of FBGC and failure of biomaterial 

implant. In addition, ‘M2’ phenotype expresses anti-inflammatory cytokines which 

Page 27 of 48

ACS Paragon Plus Environment

ACS Applied Bio Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



promotes tissue remodeling and aids in vascularization of regenerative biomaterials, 

inhibiting fibrous capsule formation. This suggests that controlling the fate of 

macrophage polarization is beneficial in retaining the integrity and normal functioning 

of the biomaterial implant. Therefore, understanding macrophage polarization through 

modulation of surface features has critical implications on the design and engineering 

of implantable biomaterials. This study reveals that a combination of surface 

nanoporosity with tailored surface chemistry can be readily used to modulate 

macrophage polarization by modulating the secretion of pro-inflammatory and anti-

inflammatory cytokines. 

NAA substrates were fabricated by two-step anodization to tune the geometric 

features of nanopores with precision35-38. A thin layer of Meoxpp, ODpp and ACpp (~5 

nm) was deposited onto these nanoporous surfaces to generate desired uniform 

surface chemistries to further modulate macrophage responses. Using this approach, 

we were able to generate 15 independent types of surfaces with unique combinations 

of nanoporosity and chemistry. FEG-SEM and XPS analysis were used to establish 

the geometric and chemical features of the nanoporous substrates.
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Our data demonstrates that the expression of pro-inflammatory cytokines decreased 

while anti-inflammatory cytokines increased on Meoxpp and ACpp coated surfaces, 

and the effect was boosted by combining these chemistries with increasing surface 

nanoporosity (30<65<200 nm). This is consistent with previous studies showing that 

hydrophilic -COOH surfaces can reduce inflammatory responses and fibrotic 

encapsulation48-49. Our previous studies also demonstrated that the combination of 

nanotopography (nanohills) with the -COOH surfaces reduced the level of expression 

of proinflammatory cytokines 14 and fibrotic capsule thickness16 while increasing the 

expression of collagens47. Furthermore, the results presented in this paper indicate 

that the expression of cytokines can be modulated to a greater extent by using 

nanoporous surfaces with same chemistry compared to gold nanoparticles 

nanotopography surfaces with the same chemistry14. It is noteworthy that the cell 

numbers were same across all 15 substrates (Figure S3 and S4). Therefore, the 

decrease in pro-inflammatory signals or the increase in anti-inflammatory signals were 

not affected by adherent cells. 

Furthermore, the levels of TNFα decreased significantly on Meoxpp and ACpp coated 

surfaces as well as on nanoporous surfaces with greater pore size compared to 
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uncoated alumina membranes. But the reduction in IL-6 and IL-1β expression was 

only observed upon combination of nanoporosity with surface chemistry. Additionally, 

IL-1RA and IL-10 increased significantly on Meoxpp and ACpp surfaces and remained 

unchanged on different nanoporous surfaces compared to uncoated alumina 

membranes. However, concentration of arginase only increased when a combination 

of nanoporosity with chemistry was utilized. Interestingly, hydrophobic ODpp surfaces 

showed no change in inflammatory responses (pro and anti). Also, expression of TNFα 

decreased while IL-1RA increased, but there was no change observed in the 

concentration of IL-6, IL-1β, Arginase and IL-10 on surfaces with greater nanoporosity 

(30<65<200 nm). 

ODpp and nanoporous surfaces alone have been known to enhance inflammatory 

responses and fibrotic encapsulation around biomaterials49-52. On the contrary, our 

data indicates a significant reduction in the expression of TNFα and IL-6, and an 

increase in the expression of arginase when ODpp and large surface pores are used 

together. This suggests that surface nanoporosity or surface chemistry cannot be used 

alone as a tool to modulate immune responses. A possible explanation for 

nanoporosity mediated macrophage polarization could be nanotopography induced 
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orientation and conformational changes of adhered proteins53-54, exposing unknown 

cell-surface receptors, causing unprecedented cellular behavior17.

Schematic 1. Schematic representation of macrophage polarization (M1 and M2 

phenotypes) on chemically and nanotopographically modified surfaces.

One of the biggest problems with medical devices is fibrosis or fibrous encapsulation55-

58. Several strategies involving addition of growth factors59-62, surface chemical 

modifications46, 63-65 or the addition of surface nanotopography13, 66-68 have been 

explored to address these problems. The data presented here suggest that the 

combinatorial effect of surface nanoporosity and surface chemistry can be used to 

control macrophage differentiation by modulating pro-inflammatory and anti-
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inflammatory cytokines. For example, large pores and ACpp based outermost surface 

chemistry was shown to reduce expression of proinflammatory cytokines (Figure 4) 

and increase the production of arginase (Figure 5) suggesting differentiation to M2 

type macrophages which contribute to improved healing. This has been further 

illustrated in schematic 1. To the best of our knowledge, this is the first comprehensive 

study, demonstrating that macrophage differentiation can be controlled by utilizing the 

right combination of surface nanoporosity and chemistry. As pro-inflammatory 

cytokines decreased, and anti-inflammatory cytokines increased on -COOH surfaces 

with large nanopores. Such surfaces can be utilized to fabricate biomaterials that can 

tune immune responses to enhance implantation site healing and can be used to 

establish a base for the future rational design of biomaterial implants.

CONCLUSION

In this study, the role of surface nanoporosity and chemistry in controlling 

macrophages polarization into ‘M1’ and ‘M2’ phenotypes was assessed. Controlled 

surface nanotopography was generated by utilizing three different sizes of surface 

pores (30, 65 and 200 nm). Whereas, desired outermost surface chemistry on NAA 
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substrates was generated by coating 5 nm plasma polymer layer obtained from 

different monomers such as methyl oxazoline, 1, 7 octadiene and acrylic acid. This 

model system enabled the evaluation of the interplay between surface 

nanotopography and chemistry. We have shown that the concentration of pro-

inflammatory cytokines (TNFα, IL-6 and IL-1β) decreased significantly on nanoporous 

surfaces featuring large nanopores and having Meoxpp and ACpp surface coatings 

compared to surfaces with smaller pore sizes and methyl group rich chemistry (OD). 

Furthermore, the concentration of anti-inflammatory cytokines (Arginase, IL-1RA and 

IL-10) increased significantly on large nanoporous surfaces with Meoxpp and ACpp 

coatings. Our data suggests that the macrophage differentiation can be controlled by 

selecting desired combinations of surface nanoporosity and chemistry. The knowledge 

obtained from this study provides cues that could aid in tuning foreign body responses 

and will eventually facilitate the rational design of biomaterial implants and constructs.
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The Supporting Information is available free of charge on the ACS Publications 

website at DOI:

Zeta Potential Measure (Figure S1) and water contact angle (Figure S2) of chemically 

modified surfaces. Macrophage cell count (Figure S3 and S4) on chemically and 

nanotopographically modified surfaces.
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Schematic representation of macrophage polarization (M1 and M2 phenotypes) on chemically and 
nanotopographically modified surfaces. 
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