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Abstract 

Sleep is crucial for the health of every individual, especially children. One of the common 

causes of disturbed sleep in children is disordered breathing. Children who suffer from sleep 

disordered breathing are likely to have severe consequences for their physical growth, heart 

health and neuropsychological function. Sleep disordered breathing (SDB) comprises a 

spectrum of severity from a mild form of upper airway resistance syndrome (UARS) to 

severe form of obstructive sleep apnea syndrome (OSAS). While OSAS is considered 

clinically significant, UARS and its health consequences have been underestimated. The most 

common treatment for OSAS in children is adenotonsillectomy. However, breathing 

disturbances related to UARS may persist even after adenotonsillectomy. The current 

diagnostic marker for OSAS, the Apnea-Hypopnea Index (AHI) often overlooks the less 

severe conditions of breathing disturbances.  

Therefore, the research objective of this thesis is to investigate the new alternative markers 

for SDB in children using non-invasive physiological measurements, such as 

thoracoabdominal signals and the photoplethysmogram. As the body experiences an array of 

complex changes, specifically in respiratory and autonomic nervous system activation during 

breathing disturbances, advanced signal processing and analysis techniques were used to 

identify the physiological variables that could reflect changes in those systems in children 

with SDB. Thoraco-abdominal asynchrony (TAA), heart period (HP) and pulse wave 

amplitude (PWA) were the three physiological variables were investigated. A total of five 

studies were conducted on two high-quality clinical research datasets to test the potential of 

the proposed physiological variables to effectively identify children with SDB.  
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In the thesis: 1) Hilbert transform was applied for TAA estimation on the childhood 

adenotonsillectomy trial (CHAT) dataset; 2) symbolic dynamic analysis on HP was used to 

assess the effect of adenotonsillectomy on autonomic activations in children with SDB; 3) the 

conventional method of estimating PWA was combined with joint symbolic analysis of PWA 

and HP to analyse the effect of SDB on autonomic activation compared to healthy controls; 4) 

to improve the performance of the previous PWA measurement technique, a more robust and 

simpler method was proposed to estimate PWA using a simple envelope method, and a more 

extensive dynamic analysis method was created to capture more complete information; and 5) 

adding TAA and HP information with AHI, unsupervised machine learning method K-means 

clustering and linear discriminant analysis were used to discover the pathophysiology nature 

difference of children with SDB in CHAT dataset.  

The main results from this thesis suggest that children with SDB have higher values in all 

three physiological variables, which indicates a high respiratory effort and elevated frequency 

of autonomic activation. Adenotonsillectomy showed to reverse the effects on these 

physiological variables, suggesting it assisted in the reduce of pathophysiological symptoms 

in those children. Interestingly, TAA was found inversely correlated with quality of life and 

unreported baseline difference in HP in children who had their AHI normalised 

spontaneously. These findings further indicate the limitation of AHI as the only marker for 

paediatric sleep disordered breathing. By combining the TAA and HP information with AHI, 

the alternative proposed diagnosing approach could help doctors predict who may benefit 

from adenotonsillectomy or not. 

In conclusion, this thesis provides new evidence that TAA, HP and PWA can provide 

additional information and may yield more effective markers for diagnosing paediatric sleep 

disordered breathing. 
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Chapter 1 Introduction 
 

 

 

 

 

 

 

 

 

Children suffering from respiratory disorders during sleep in children can have crucial health 
problem later on in their life. Years of sleep research have conducted, and researchers have 
developed the current clinical criteria to diagnose children with sleep disordered breathing. 

However, the current clinical criteria have underestimated the severity of the mild cases. This 
Chapter introduces the background and motivation of the studies presented in this thesis.  
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1.1 Thesis Overview 

This thesis comprises a total of seven main chapters and two Appendices. The main chapters 

include ONE introduction chapter, ONE method chapter, FOUR clinical studies chapters, and 

ONE conclusion chapter. The outline of each chapter is described below. 

Chapter 1 introduces the main topic of sleep disordered breathing in children and reviewed 

the common physiological changes associated with the disease. 

Chapter 2 describes the developed and applied physiological measurement methods in the 

thesis studies.  

Chapter 3 investigates the effect of adenotonsillectomy for children with obstructive sleep 

apnoea on TAA using Hilbert Transform. 

Chapter 4 explores the effect of adenotonsillectomy for children with obstructive sleep 

apnoea on autonomic activation using symbolic dynamic analysis on heart rate. 

Chapter 5 investigates the effect of adenotonsillectomy for children with sleep disordered 

breathing on autonomic activation by analysing the joint symbolic dynamic of pulse wave 

amplitude and heart rate. It also explores the difference between the joint dynamics of 

children with sleep disordered breathing and healthy subjects.  

Chapter 6 explores the effect of adenotonsillectomy for children with obstructive sleep 

apnoea using a data-driven approach that combines cluster analysis and linear discriminant 

analysis. 

Chapter 7 summarises the work conducted in this thesis and provides possible prospective 

research directions. 
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Appendix A proposes a simple method on continuous pulse wave amplitude estimation and 

an alternative and more extensive dynamic analysis method  

Appendix B shows the framework flow chart for TAA estimation presented in Chapter 2 

1.2 Introduction  

1.2.1 Normal sleep 

Humans spend about one-third of their lifetime asleep. Good sleep acts as an important factor 

in the health of every individual. Before rapid eye movement (REM) sleep was discovered 

(Aserinsky and Kleitman, 1953), people believed during sleep the brain would be 

relaxed/inactive same as the body. In fact, our body and brain still keep busy during sleep. 

Four distinctive sleep stages were defined, which are sleep stage 1, 2, 3 and REM sleep 

stage(Altevogt and Colten, 2006). Stage 1, 2 and 3 are considered as non-repaid eye moment 

(NREM) sleep, where sleep stage 1 is a transition stage from wakefulness to sleep. Muscle 

tone starts to relax throughout the body and brain wave activity begins to slow down. The 

body is easily woken up during this stage. In sleep stage 2, heart rate slows down, body 

temperature drops, and the body prepares for deep sleep. Stage 2 indicates entry into a deep 

stage of sleep, and it is more difficult to be awakened compared to sleep stage 1. While 

during sleep stage 3, the body enters in slow wave sleep and muscles are fully relaxed, and it 

is even more difficult to arouse the body. There are significant physiological differences 

between non-REM sleep stages and REM sleep stages (Altevogt and Colten, 2006). During 

non-REM sleep, decreases trend of physiology activities, such as brain activities, heart rate, 

blood pressure, sympathetic nerve activity, body temperature and respiration. While limbs 

completely paralysis during REM sleep, the physiology activities are as active as awake. 

Sleep is a crucial process for our neurons and other cells to repair themselves, reset body 
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biochemical (hormones) and strength out the immune system. It turns on the glymphatic 

system (Jessen et al., 2015) which is the brain’s waste-flushing system. The glymphatic 

system is close to 10 times more active than when awake (Xie et al., 2013). Critical hormones 

are released, for example, growth hormone released during slow-wave sleep (stage 3) (Sassin 

et al., 1969), and reset hunger hormone balance which could reduce the risk of obesity  (Van 

Cauter and Knutson, 2008, Spiegel et al., 2009, Leproult and Van Cauter, 2010). Furthermore, 

sleep is important to mental health, such as memory conciliation, reconciliation and mood 

regulation. Especially in children, it is directly linked to children’s growth, development, 

energy and happiness. However, not everyone experiences restorative sleep due to sleep-

related breathing disorder. 

1.2.2 Sleep disordered breathing 

People who are suffering from sleep disordered breathing experience insufficient ventilation 

and abnormal breathing patterns during sleep. The obstructive sleep related disordered 

breathing is one of the most common types for this disease, and it is due to obstructed or 

narrow up airway. From obstructive sleep apnea syndrome (OSAS) to upper airway 

resistance syndrome (UARS), sleep disordered breathing consists of a spectrum of severity. 

Typically, obstructive respiratory events based on respiratory airflow are obstructive apnea, 

obstructive hypopnea and flow limitation (FL), where FL occurs with an increase of 

esophageal pressure without an increase of actual flow (Arora et al., 2015). While apnea and 

hypopnea are mainly used for diagnosing OSAS, FL is used for diagnosing UARS. The 

illustration for these events related to airway and respiratory flow is shown in Figure 1. 

Those that possess SDB are normally experience excessive daytime sleepiness/fatigue, and it 

is responsible for many accidents during driving and industrial work (Howard et al., 2004, 

Jordan et al., 2014).  
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Figure 1. The fundamental of sleep and obstructive sleep apnea 

The obstructive sleep apnea syndrome is a severe form of sleep-related breathing disorder 

disease, which is characterised by repetitive pauses in breathing during sleep (Jordan et al., 

2014). In adults with OSAS, the condition is usually caused by the upper airway closure due 

to the relaxing of the throat and tongue muscle during sleep, or excess tissue resulting from 

obesity (Jordan et al., 2014). Patients with OSAS show symptoms of choking during sleep, 

recurrent wakening from sleep, excessive daytime sleepiness and impaired concentration 

(Fleetham et al., 2006). Evidence suggests an increased risk of fatal cardiovascular events in 

people who have obstructive sleep apnea (Punjabi, 2008). The number of apnea and 

hypopnea events occurring during an hour is called apnea and hypopnea index (AHI), which 

is a key assessment index for the diagnosis of OSAS. Combined with the symptoms, an 

individual that registers an AHI of five or above is considered as having obstructive sleep 
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apnea (Fleetham et al., 2006). Here, an obstructive apnea event is defined as airflow reduced 

to less than 10% of baseline for at least 10 seconds (Berry et al., 2012). An obstructive 

hypopnea is a clear 50% or more reducing in airflow amplitude that lasts for at least 10 

seconds, or a clear decreasing in airflow amplitude with an arousal or least 3% oxygen 

desaturation following a putative event (Berry et al., 2012). 

 

Figure 2. Completely blocked the respiratory upper airway (www.somnologymd.com)   

The upper airway resistance syndrome (UARS) (Guilleminault et al., 1993) is defined as a 

mild level of sleep breathing disturbances. It causes inefficient breathing and increases the 

effort of breathing. UARS creates abnormal breathing patterns without a decreasing in 

oxygen saturation level and consists of very short transient arousals, which are not considered 

in OSAS. It is also known as respiratory effort-related arousal (RERA). UARS was found to 

be a cause of excessive daytime sleepiness (Guilleminault et al., 1993).  

1.2.3 Sleep Disordered Breathing in Children 

Similarly, SDB also exists in children.  (Guilleminault et al., 1996). In clinical practice, SDB 

in children have been characterised differently than adults (Marcus, 2001), obstructive 

respiratory events and arousal are rarer in children because of the development of the body 

structure and neural control system (Marcus, 2001). In the present clinic scoring rules for 
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children, apnea and hypopnea are defined as events during which the peak of airflow signal 

drop at least 90% and 30% away from baseline with duration last at least two respiratory 

cycles (Berry et al., 2012). Additionally, hypopnea scoring rules require one of the following 

events also occurs: a more than 3% oxygen desaturation or arousal during the event. RERA is 

defined if FL occurs and last over two respiratory cycles in children, where FL characterises a 

flattening inspiratory segment in nasal pressure airflow waveform with snoring or end-tidal 

PCO2 related arousal (Berry et al., 2012).  

Different from adults, the cause of OSAS in children usually is enlarged tonsils and adenoids, 

presented in Figure 3. Large tonsils and adenoids naturally narrow down the upper airway, 

which reduces airflow. The standard treatment for children with OSAS is called 

adenotonsillectomy. It is a type of surgery for opening the obstructive upper airway by 

removing the large tonsils and adenoid tissue. Adenotonsillectomy has been proved that it can 

significantly improve the initial symptoms. However, residual of the initial symptoms from 

treatment could have similar symptoms caused by nonstandard breathing pattern 

(Guilleminault et al., 2004). Current clinical scoring rules disregard nonstandard breathing, 

such as UARS, the subtle form of the SDB (Guilleminault et al., 2004, Lin and Guilleminault, 

2011). Since discrete scored events are less frequent in mild SDB, current clinic marker AHI 

is not sufficient enough to reflect the complete view of respiratory disturbances. Long-term 

remaining residual problems, the effects can still be significant, such as long-term learning 

problems, memory loss, poor growth, and heart-related diseases (Sinha and Guilleminault, 

2010).  
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Figure 3. Respiratory upper airway for healthy children (left) and children with OSAS (right) 

(www.capitaltmjcenter.com, 2015) 

The OSAS commonly has severe physiological and psychological impacts on children. Three 

main categories of resulting disease are generally related to children with OSAS, which are 

associated with metabolic, neurocognitive, and cardiovascular consequences (Katz and 

D'Ambrosio, 2010, Marcus et al., 2012). They are directly linked with physical growth, 

neuropsychological functionalities, and heart health. Many symptoms are related with OSAS 

in children, including snoring loudly, morning headaches, tiredness after sleeping, excessive 

sleepiness during the day, poor academic performance, unusual daytime behaviour, 

Hyperactive (ADHD), etc. (Guilleminault et al., 2005). 

1.2.4 Diagnostic tests  

Overnight polysomnography (PSG) is the standard test for diagnosing OSAS. The PSG 

contains multiple bio-physiological signals recorded during sleep. The recording of bio-

signals includes heart rhythm (electrocardiography – ECG), blood volume changes 

(photoplethysmogram – PPG), brain activities (electroencephalography – EEG), skeletal 

muscle activation (electromyography – EMG), eye movement (electrooculography – EOG), 

airflow, limb movements, oxygen saturation, chest movement (ribcage), belly movement 

(abdominal) etc. While current laboratory-based PSG test is considered the gold standard, it 
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can be burdensome for some patients in its intensity, and associated costs and long waiting 

times due to the limited facility (Van De Water et al., 2011). By reducing the numbers of 

recorded signals, it has become a common approach to overcoming the complexity of the 

laboratory-based PSG test, to make the test more accessible and convenient even in a home 

setting. (Flemons et al., 2003). So far, there are four different levels of sleep monitoring tests 

that are commonly used (Collop, 2017, Hamilton and Chai-Coetzer, 2019). Level 1 is the 

attended in-laboratory PSG test. This type of test records a minimum of seven channels, 

which requires a technician supervise the device during the test. This level of test is 

considered as the gold standard for diagnosing sleep apnea. Level 2, 3 and 4 tests use portable 

devices without technician attend during the test. These tests allow patients to be tested in a 

home-based environment.  Level 2 is the comprehensive portable PSG, which is similar to the 

level 1 test but in a home environment. However, frequently detached sensor leads often 

cause data loss since the test is supervised. To simplify the level 2 portable sleep test, the 

recorded signals are minimised to four for the Level 3 modified portable sleep apnea testing. 

A common selection of recorded physiological parameters includes two respiratory signals 

(such as airflow and respiratory effort), a cardiac signal (heart rate/ECG), and oxygen 

saturation. Since both heart rate and oxygen saturation information can be derived from a 

pulse oximetry signal, the level 3 test can be simplified even more. Hence, the level 4 sleep 

test only monitors 1 or 2 channels, such as one respiratory signal and pulse oximetry. While 

physiological variables currently derived from level 3 and 4 are sufficient to detect 

respiratory events for OSAS, events related to UARS cannot be detected since EEGs are not 

included. Although home PSGs are becoming increasingly available, making relevant 

diagnosis more accessible, and less complicated and cheaper, the reduction of the number of 

recorded signals compromises the amount of information that can be obtained during sleep. 

Hence, physiological variables that can be derived from Level 3 and 4 sleep tests, for use as 
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more effective diagnostic markers for more complete SDB detection still require to be 

determined.   

 

1.2.5 Research on sleep disordered breathing in children  

Research related to sleep-disordered breathing has been conducted for approximately half of 

the century. In 1966, Gastaut et al. firstly discovered the obstructive sleep apnea associated 

symptoms in Pickwick syndrome patients (Gastaut et al., 1966). Afterwards, sleep-related 

studies have been widely conducted. The focus of the OSAS research was on adults at the 

beginning, until 1976, Guilleminault et al. have shown that the sleep apnea may also exist in 

children (Guilleminault et al., 1976). Since then, many studies have been conducted on OSAS 

in children to find out the physiological effects, the diagnosing rules for OSA, and the 

treatment options. The main recommended treatment is surgical (tonsillectomy and/or 

adenoidectomy). 

Many researchers have reviewed adenotonsillectomy treatment and confirmed that 

adenotonsillectomy gives physiological improvement by relief of airway obstruction. 

However, a series of unexpected findings were reported. In 1982, Brouillette et al. discovered 

that prolonged periods of partial airway obstructive and shorter complete obstructive still 

exist in most subjects after adenotonsillectomy during sleep (Brouillette et al., 1982).  

In the same year, Guilleminault et al. reported a concern with adenotonsillectomy 

(Guilleminault et al., 1982). The adenotonsillectomy can only be recommended as a 

treatment if there has a clear clinical evidence of obstructed airway. However, the narrow 

airway cases were ignored, which cannot be identified as an obstructed airway. Guilleminault 

and his colleagues highlight that this abnormal airway could cause an increased respiratory 
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resistive load by increasing endoesophageal pressure, and it could lead to significant impacts 

on nighttime sleep airflows. 

In 1993, Guilleminault et al. defined this abnormal airway related syndrome in terms of 

UARS. They emphasised UARS is different from OSAS and required specific treatments 

(Guilleminault et al., 1993). 

Two years after, another group, Suen et al. also evaluated the adenotonsillectomy treatment 

and confirmed the patients showed physiological improvements after the treatment (Suen et 

al., 1995). However, the respiratory disturbances were not completely eliminated from the 

surgery. They have noted that the outcome from the adenotonsillectomy is difficult to be 

predicted based on history and physical findings. 

After UARS was recognised, OSAS and UARS have been combined and described as Sleep 

Disordered Breathing (SDB) to distinguish from other sleep disorder. Although they are 

different syndromes, they still have similar symptoms and hard to be distinguished 

(Guilleminault et al., 1996). Besides of the physiological impacts for children with SDB, such 

as failure to thrive (Guilleminault et al., 1996), it also could cause significant effects on 

children’s school performance, such as poor learning abilities and unusual daytime 

behavioural (Gozal, 1998).  

In 1996, Guilleminault et al. successfully investigated and proved that sleep breathing 

patterns are associated with sleep events (e.g. Apnea, Hypopnea) (Guilleminault et al., 1996). 

In the later years (Guilleminault et al., 2004), they also investigated sleep breathing patterns 

using nasal cannula pressure transducer based on clinical practice suggestion. They have 

further demonstrated that it is effective by using a breathing pattern to identify a range of 

breathing abnormalities which associate with apnea and hypopnea, as well as other non-
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standard breathing patterns. They also have further proved those non-standard breathing 

patterns (e.g. flow limitation) other than apnea and hypopnea patterns commonly exist as an 

incomplete recovery for children with SDB after adenotonsillectomy compared with control 

children. The clinic PSG scored criteria have been questioned as they overlook those 

common abnormal breathing patterns. Researchers have suggested that further treatment 

might be necessary. Although alternative treatments have been recommended, for example, 

continuous positive airway pressure (CPAP) which is a non-surgical treatment (Marcus, 

2001), adenotonsillectomy surgery is still commonly used as a clinical treatment for children 

with OSAS. However, the initial symptoms are still yet entirely resolved with 

adenotonsillectomy treatment. While the OSA have been clearly defined with clinic scoring 

rules, it is still necessary to effectively define the scoring rules related to hypopnea, flow 

limitation and breathing-related abnormality. The physiological and psychological 

consequence of other breathing disturbance during sleep is still under investigation. The 

efficacy of adenotonsillectomy and the clinic soring criteria are continuously evaluated 

(Marcus et al., 2012).  

1.2.6 Monitoring the physiological changes associated with sleep 

disordered breathing  

At the mild end of the sleep disordered breathing spectrum, the lack of discrete events could 

limit the true reflection of the physiology changes caused by breathing abnormalities by the 

AHI.  The body experiences a variety of physiological changes during SDB, especially 

affecting respiration and autonomic nervous systems.  

Respiration  

Respiration is the process of body exchange gas with the outside environment. During 

inspiration, oxygen is inhaled into the lung to alveolus and exchange with carbon-dioxide 
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carried by blood capillary around each alveolus. A high concentration of oxygen contained in 

the blood when it leaves the hung and delivered to every cell in the body, meanwhile the 

exchanged carbon-dioxide is exhaled out of the system during expiration. The crucial 

biochemical process of respiration is to produce energy for the body, and it happens down in 

the cell level. In each cell, the oxygen will react with glucose and produce carbon dioxide, 

water and energy in form of adenosine triphosphate (ATP) (Hlastala and Berger, 2001). 

Abnormal breathing would cause the gas exchange to become inefficient, and this would 

result in a lack of oxygen and carbon dioxide would build up in the body. A low level of 

oxygen in the bloodstream would affect the process to produce sufficient energy for the cell. 

Furthermore, a high level of carbon-dioxide would decrease oxygen consumption and 

production of ATP. It would cause mitochondrial dysfunction in the cells (Vohwinkel et al., 

2011) and eventually harm organs. Serious consequences, such as coma or death, would 

happen if an extreme level was reached. Therefore, respiratory ventilation is the most direct 

measurement in assessing breathing related disturbances. Airflow and thoracoabdominal 

movements are commonly used to measure respiration. 

Airflow 

Measurement of airflow is a direct indicator of gas exchange from respiration. There are two 

typical ways of measuring airflow, one is using thermal sensors (e.g. thermistor), and another 

is using air pressure sensors (e.g. cannula pressure transducer system). Thermal sensors 

measure the temperature change in airflow exchange during respiration to indicate airflow. 

Air pressure sensors measure the air pressure fluctuations associated with inhalation and 

exhalation airflow. 

In the early studies, as breathing related abnormality is directly related to breathing airflow, 

the thermistor is used as a common tool for monitoring and assessing breathing related 
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disorder (Farre et al., 1998), because the thermistor is sensitive to absence of airflow, e.g. 

during apnea (Gehring et al., 2014). However, it is less suitable  for detecting partial airflow, 

e.g. during hypopnea  (Gehring et al., 2014, Flemons et al., 2003), and it is worse for UARS 

events detection, because it does not respond linearly to actual airflow (Rapoport et al., 2001, 

Flemons et al., 2003, Gehring et al., 2014, Farre et al., 1998). 

Guilleminault et al. proposed the use of esophageal pressure recordings for recognising 

UARS and were able to distinguish it from OSAS (Guilleminault et al., 1996). They have 

shown that esophageal pressure traces can effectively recognise clinic defined sleep events, 

which include apnea and hypopnea, as well as upper airway resistance events. It was 

recommended for analysing abnormal breathing patterns during sleep and later was used as 

the gold standard (Montserrat and Badia, 1999). However, this invasive measurement method 

is hard to tolerate for patients, especially for children. In the meantime, the non-invasive 

method nasal cannula pressure transducer system was mentioned as an alternative tool for 

characterising SDB (Montserrat and Badia, 1999). Later on, it was demonstrated that nasal 

cannula pressure transducer system can be used to detecting all sleep events including UARS 

events, which gives same or better results as esophageal pressure signal (Ayappa et al., 2000, 

Hernández et al., 2001, Serebrisky et al., 2002, Hosselet et al., 1998). These studies proved a 

nasal cannula pressure transducer system provides more premising diagnosing results 

compare to thermistors. Nevertheless, many patients with the mild severity of OSAS are less 

likely to tolerate CAPA due to discomfort(Janson et al., 2000). While other believe there is 

not a single reason for a high non-adherence rate of patients on CPAP treatment, and it is 

more likely depend on the day time symptoms and performance (Weaver and Grunstein, 

2008).  
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Thoracoabdominal movement 

Beside of airflow, thoracoabdominal movements are more easily measured and commonly 

used, which contains ribcage and abdominal signal. During normal breathing, ribcage and 

abdomen should expand or contract in the same direction simultaneously, which gives a 

baseline of the ribcage and abdominal breathing signal pattern. However, when abnormal 

breathing happens, the amplitude of ribcage and abdominal signals would reduce 

significantly, or thoracoabdominal paradox would occur. Here, thoracoabdominal paradox 

means that the ribcage and abdominal signals are out of phase due to asynchrony movements 

(Berry et al., 2012).  

Two ways of using these measurements are often applied to detect breathing abnormality in 

clinic practice. One is the sum of thoracoabdominal movements by assessing the relevant 

amplitude difference of two signals compare to baseline. Another is thoracoabdominal 

asynchrony by evaluating the phase difference between two signals (Berry et al., 2012).  

Sum of thoracoabdominal movements is also recommended for sleep breathing abnormality 

detection, especially for UARS, instead of using esophageal pressure signal (Montserrat and 

Badia, 1999, Masa et al., 2003). While sum of thoracoabdominal movements can detect 

apnea and hypopnea, the central or obstructive events cannot be distinguished. 

Alternatively, studies have shown thoracoabdominal asynchrony can be used for measuring 

both server and subtle upper airway obstruction (Sivan and Newth, 1990, Immanuel et al., 

2014). Although thoracoabdominal movement measurements have used for apnea and 

hypopnea detection in the currently defined clinic scoring rule (Berry et al., 2012), they still 

have not been included in RERA detection rules.  
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Autonomic nervous system 

When the body perceives stress or danger, unconsciously amygdala sends a signal to the 

hypothalamus to release corticotropin releasing hormone (CRH), which triggers the pituitary 

gland to release adrenocorticotropic hormone (ACTH). Adrenal glands will respond to this 

hormone by release more adrenaline in the blood. Adrenaline will cause numbers of physical 

changes, which include increased heart rate, breathing and blood pressure. These series of 

responses are mediated by sympathetic nervous system activation, which is a part of the 

autonomic nervous system. When the body experiences upper airway obstruction during 

sleep, negative intrathoracic pressure increases, this results in stimulated baroreceptors and 

increases sympathetic tone (Miglis, 2016). Studies showed the autonomic system become 

abnormal in children with disordered breathing during sleep (Walter et al., 2013, Nisbet et al., 

2013, Liao et al., 2010, Kwok et al., 2008) and daytime (O'Brien and Gozal, 2005). Increase 

of autonomic activation has been identified as an important cause of cardiovascular 

abnormalities in children with OSAS (Ng et al., 2005, Montesano et al., 2010). Although 

cortical activation is included in the current scoring manual by scoring the arousals using 

EEG signal, cortical activation is less frequent and shorter in children during sleep compared 

to adults. Alternatives measurement, such as autonomic activation, were recommended for 

improving the scoring for arousal in children (Paruthi and Chervin, 2010). ECG and PPG 

signals are commonly used to extract autonomic activation, by measuring the altered heart 

period (HP), pulse wave amplitude (PWA) or pulse transit time (PTT) (Alian and Shelley, 

2014, Allen, 2007, Catcheside et al., 2001, Pitson, 1998).  

Heart rate variability 

The timing of every beat adjusts based on the demand of the body responds to the change in 

the environment. The variation of the heart beat to beat interval is a good reflector of the 
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autonomic activities (Berntson et al., 1997). However, conflicting findings are reported in the 

literature about how cardiac autonomic control changes in children with OSAS by measuring 

heart rate variability. In an early study with a small dataset, children with OSAS had 

dysfunctional cardiovascular and autonomic activities. A variation change in heart rate 

variability (HRV) was found based on the different heart rate interval dispersion in children 

with OSA during events include sleep data, an increased HRV found at lower heart rate 

intervals, vice versa, a decreased HRV found at higher heart rate intervals (Aljadeff et al., 

1997). On the one hand, children with OSAS were shown to have a lower HRV compared to 

controls and demonstrated reduction in HRV that may indicate an increased sympathetic or 

decreased parasympathetic activities during wakefulness (Montesano et al., 2010) and event-

free sleep (Liao et al., 2010). While others showed prolonged heart rate delay in response to 

increased blood pressure variability and this suggests the increased sympathetic and 

decreased parasympathetic activities (Walter et al., 2013). An early study based on frequency 

analysis of HRV in children with OSAS demonstrated the increased power in lower 

frequency HRV in children with OSAS through all sleep stages and even during awake at the 

beginning of the study than control subjects. Their finding suggested an enhanced 

sympathetic activity in those children with OSAS (Baharav et al., 1999). Conversely, Lauren 

C. Nisbet et al. have shown evidence of increased power in the high frequency band of HRV 

and a lower sympathovagal balance in moderate to severe OSAS children during both events 

included and event-free sleep. In that study, a lower sympathovagal balance was calculated 

using the power ratio of between HRV low-frequency bands and high-frequency bands 

(Nisbet et al., 2013).  
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Pulse Wave Amplitude 

PWA provides alternative non-invasive measures of cardiovascular response to cortical and 

subcortical activation (Nisbet et al., 2014, Catcheside et al., 2001, Allen, 2007).  Pulse wave 

amplitude measures the amplitude difference between the peak and the nadir of each pulse 

from PPG signal. Activation of the sympathetic nervous system causes peripheral 

vasoconstriction changes after body experience subcortical arousal, which reflects in 

attenuated PWA (Nisbet et al., 2014, Alian and Shelley, 2014). Partial upper airway 

obstructions would create stress in the system, autonomic reaction kicks in increases heart 

rate and blood pressure, blood vessel contracted cause less amount but fast of blood flow to 

the finger, and hence heart period and PWA decreases (Grote et al., 2003). The body 

responds differently to different stressors, even HP and PWA all have a consistent response 

to arousal (Catcheside et al., 2001). For example, after either normoxic or hypoxic type of 

events, PWA drops below the baseline and then recovers itself gradually. However, normoxic 

events followed by an oscillatory type of pattern is observed in heart rate during its 

recovering, but not the same for hypoxic events. Studies have shown the benefit of using 

PWA to be the marker of respiratory related autonomic activation and as a cheap and 

accessible alternative of PSG (Delessert et al., 2010, Janssens et al., 2011, Grote et al., 2003, 

Ramirez et al., 2013), but not much data exist on children. 

Pulse Transient Time 

Another alternative non-invasive measurement that extracted from PPG signal is pulse 

transient time (PTT). It measures the estimated time delay for a pulse travels from the aortic 

valve to the peripheral site (Mukkamala et al., 2015). Also, studies suggest that PTT can be 

used as a surrogate indicator of measuring blood pressure (BP) and has an inverse relation 

with BP (Smith et al., 2018). While PTT was shown a sensitive indicator of OSAS events and 
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arousals in children, it was still limited to use to distinguishing mild SDB from primary 

snoring (Smith et al., 2018).  

From the previous literature review, it could be established that there are no well-established 

methods/rules for scoring more general breathing abnormalities. The effect of the 

adenotonsillectomy treatment on pathophysiological changes in inspiratory effort and 

autonomic activation in children with SDB are unclear. It is necessary to create more 

effective and reliable physiological markers that are applicable to children for detecting and 

monitoring a subtler version of abnormal breathing events, using non-invasive signals.  

1.3 Open Questions to Address 

• Does adenotonsillectomy normalise thoracoabdominal asynchrony children with 

OSAS? 

• Does upper airway obstruction affect autonomic activation in children with sleep 

disordered breathing compared with normal children? 

• Do children benefit from adenotonsillectomy by reducing the OSAS caused 

autonomic activation? 

• Are thoracoabdominal asynchrony and autonomic activation similar in different sleep 

stages? 

• Instead of only using AHI, can it combine with multiple other non-invasive 

measurements (thoracoabdominal signals or pulse signal) use for a more accurate 

SDB diagnose? 
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1.4 Data 

Two clinical research study datasets were used for all the analyses in this thesis. 

The CHAT study dataset 

The Childhood Adenotonsillectomy Trial (CHAT) (Marcus et al., 2013) data will be used for 

the studies presented in this thesis. CHAT study is a randomized controlled trial for 

evaluating the childhood adenotonsillectomy treatment for childhood OSAS by randomly 

assigned the participants into early adenotonsillectomy group or a strategy of the watchful 

waiting group, then followed up after seven months as a comparison. Total of 453 children 

successful participate in CHAT study and provides 453 baseline PSG recordings and 407 

follow up PSG recordings. Manual scoring results for each of the recordings using the 

Profusion system from CHAT study will use as a reference for developing new algorithms in 

this thesis. Besides of PSG recordings, the following neurophysiological outcomes that 

measured as part of the CHAT study were included in the analysis:  

1) Behaviour, by the parent rating on the Conners’ Parent Rating Scale-Revised: Long 

version Global Index (CGI T score), a two-factor score comprising the Restless Impulsive 

and Emotional-Lability factor sets, and by the Behaviour Rating Inventory of Executive 

Function (BRIEF) Global Executive Composite (GEC) T score, comprising summary 

measures of behavioural regulation and metacognition. Teacher ratings from parallel 

instruments (the CGI short version and BRIEF Teacher Report Form) were also evaluated. 

2) Symptoms of OSAS, by the total score of the Paediatric Sleep Questionnaire (PSQ), 

Sleep-Related Breathing Disorder Scale (SRBD). 

3) Sleepiness, the Epworth Sleepiness Scale modified for children.   
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4) Global quality of life, by the parental total score from the Paediatric Quality of Life 

Inventory (PedsQL), and disease-specific quality of life, assessed by the total score of the 

OSA-18, a composite of OSAS-related symptoms and quality of life.  

5. The Differential Ability Scales II (DAS), a measure of generalised intellectual functioning. 

Adelaide Women’s and Children’s Hospital Study Dataset 

The additional existing dataset is provided by Adelaide Women’s and Children’s Hospital in 

Australia is also used for validation. The detail of the dataset can be found in a previously 

published study (Immanuel et al., 2014). Briefly, there is a total of 80 children participated in 

the study, which includes a group of 40 children with a history of frequent snoring and a 

matched group of 40 non-snoring healthy children. The frequent snoring children were 

suspected of having upper airway obstruction and waiting for adenotonsillectomy. Overnight 

PSGs were recorded before and six months after AT. The healthy control group also 

underwent sleep studies at similar time points. Participants were screened to ensure they had 

not previously undergone ear, nose, throat or craniofacial surgery, or had a medical condition 

(other than upper airway obstruction) associated with hypoxia or sleep fragmentation or were 

taking medication known to affect sleep or cardiorespiratory physiology. 

1.5 Statement of Original Contribution 

A total of five academic peer-reviewed papers were prepared from the studies conducted 

towards this thesis, which are four original journal articles in Chapters 3 to 6 and one 

conference paper in Appendices A. The engineering methods and frameworks employed in 

each study were developed solely by the author using MATLAB. Additionally, formulated 
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the hypothesis, developed appropriate research methodology and analysis to test the 

hypothesis in each study were the original contributions of the author. 
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Chapter 2 

Biomedical Signal Processing 

Methods 

 

 

 

 

 

 

 

This chapter gives descriptions of all signal processing methods that have been developed 

and applied to the clinical research studies present in this thesis. This chapter contains four 

main sections, including: (1) measuring of thoraco-abdominal asynchrony; (2) measuring of 

pulse wave amplitude; and (3) physiological signal dynamic analysis 
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2.1 Measuring of thoraco-abdominal asynchrony 

In this section, the detail of TAA estimation using the Hilbert Transform and related 

framework are described. Pre and post processing are required before applying the Hilbert 

transform for the TAA estimation to obtain reliable TAA. 

2.1.1 TAA estimation using Hilbert Transform 

The Hilbert transform creates analytic signals of the ribcage and abdominal (𝜁1(𝑡), 𝜁2(𝑡)) that 

allow calculating of the instantaneous phase. The analytic signal of 𝑥(𝑡) is 

𝜁(𝑡) = 𝑥(𝑡) + 𝑗𝑥̃(𝑡) = 𝐴𝑒𝑖𝜑(𝑡),     (1) 

where 𝑥̃(𝑡) is the Hilbert transform of 𝑥(𝑡), which is 𝑥(𝑡) with a 90° phase shift, 𝐴 and 𝜑 are 

the instantaneous amplitude and phase of the analytic signal.  

The phase of the analytic signal is: 

𝜑(𝑡) = arctan (𝑥̃(𝑡)
𝑥(𝑡)

)      (2) 

Hence, the relative phase difference between two signals is obtained as follows: 

 φ1(𝑡) − φ2(𝑡) = arctan [𝑥1(𝑡) 𝑥̃2(𝑡)−𝑥2(𝑡) 𝑥̃1(𝑡)
𝑥1(𝑡) 𝑥2(𝑡)+𝑥̃1(𝑡) 𝑥̃2(𝑡)

].     (3) 

In my study the Matlab “hilbter.m” from signal processing toolbox is used to produce the 

analytic signal of the discrete time signal 𝑥[𝑛]. An example of outcomes of estimated TAA 

are shown below in Figure 4.  
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Figure 4. Illustration of TAA estimation plots for four epochs (30 seconds/epoch) in three 

different cases: normal breathing (top), central disordered breathing (centre), and obstructive 

disordered breathing (bottom). Measurement colour representation: blue – TAA estimation in 

degree; green – abdominal and chest movement signals in mV; and magenta – cannular flow 

signal in mV 

2.1.2 Framework for TAA estimation  

The framework flow chart for applying above method for discrete TAA estimation is shown 

in Appendix B. 
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PSG recordings of ribcage (RC) abdominal (ABD) inductance belts were considered for 

analysis in this study. In the pre-processing stage, both signals are filtered with a finite 

impulse response bandpass filter (0.1 - 5 Hz) with a filter length M that is 5 times the average 

human breathing period (average of 10 and 60 breaths per minute), and filter order as M if the 

M is odd or M-1 if M is even. Instantaneous TAA was computed within a window slide 

throughout the recording. The length of the sliding window was set to 3 times the average 

respiratory period, which was calculated from the fundamental frequencies of the RC and 

ABD signals that were estimated from the entire recordings using the Welch power spectral 

density estimation method with 50% of window overlap. The step size of the sliding window 

was set to a quarter of the average respiratory period.  

TAA was calculated by applying the Hilbert transform to the RC and ABD signals 

(𝑥1(𝑡), 𝑥2(𝑡)) contained in the sliding window, after subjecting both signals to a frequency 

selective filter that was set to the fundamental frequency. The fundamental frequencies from 

both RC and ABD window signals are estimated using the Welch power spectral density 

estimation method. Due to technical recording issues, some recording signal segments 

contain high energy at its second harmonic frequency. To accurately estimate the 

fundamental frequency for the signal, the algorithm classifies each window signal into 

different cases at frequency per-defining stage. If any signal has high energy at its second 

harmonic frequency, it is necessary to compare between the first two harmonics of two 

signals and define the most meaningful frequencies pair, since the signal frequencies of two 

signals are expected to be same/similar (defined as ± 20% difference in frequency).  

Each calculated TAA value was subsequently automatically checked for validity and 

excluded if: 
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1) Signals were noisy (defined as the ratio of spectral power within the frequency band 

of interest to total power < 0.65),  

2) Breathing frequencies lie outside the physiological range for children (i.e. 0.12 - 0.585 

Hz or, respectively, 7.2 - 35.1 breaths/min), 

3)  Disparity between RC and ABD fundamental frequencies (defined by a difference > 

20%) 

Importantly, episodes of discretely scored respiratory events (e.g. apnea and hypopnea) were 

also excluded from the clinical research study shown in Chapter 3. All TAA results, therefore, 

represent periods of breathing that were free of frank respiratory events. 
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2.2 Measuring of Pulse Wave Amplitude 

In this section, two methods are developed for measuring PWA. The first method introduced 

below is a conventional approach, which is a beat-to-beat PWA measurement. Every PWA is 

measured between every two consecutive heartbeats. The second method is a simplified way 

to estimate a continuous PWA using an envelope extraction of the finger 

photoplethysmogram. 

2.2.1 Beat to beat pulse wave amplitude measurement 

The PWA was measured for each cardiac cycle as the amplitude difference between the 

systolic peak and the preceding diastolic valley of the PPG signal. PWA values were 

calculated only if a valid pulse waveform could be identified within the time frame defined 

by concurrent QRS complexes in ECG. 

Systolic peaks and diastolic valleys were located after filtering the photoplethysmogram 

(500th order FIR bandpass filter from 1 to 10 Hz). A systolic peak was considered valid, if (a) 

it occurred > 50 ms after a detected diastolic valley and (b) had an amplitude difference 

between systolic peak and diastolic valley > 50% of the difference between maximum and 

minimum value of the photoplethysmogram segment defined by two consecutive R peaks in 

ECG (Figure 5). 

Occasionally, the systolic peak or diastolic valley were not detectable within segment 

spanned by two consecutive R peaks, because the R peak occurred at, or slightly after, the 

diastolic valley, or the subsequent R peak was located slightly before the systolic peak. To 

maximise available pulse data for PWA calculation in those instances, systolic peaks or 

diastolic valleys were estimated based on the gradient of the filtered photoplethysmogram 
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segment. More specifically, the diastolic valley was estimated as the minimum gradient 

obtained between the start of the segment and the maximum gradient found before the 

systolic peak. To be valid, the minimum gradient had to be ≤ 0.1 % of the difference between 

the max and min of the filtered plethysmography signal segment. Likewise, systolic peaks 

were estimated at the minimum gradient from the maximum gradient found after the diastolic 

valley to the end of the segment. 

Once both peak and valley were identified and met the criteria for a valid pulse, the pulse 

wave amplitude was calculated using the original, unfiltered plethysmography signal. In the 

event no valid pulse waveform could be detected the corresponding PWA was blanked. As 

PPG was recorded in arbitrary units, PWA time series were normalized to zero mean and unit 

variance prior to further analysis. Additionally, PWA time series were smoothed using a 

moving averaging window with a length of 11 heartbeats, to reduce the effect of respiratory 

modulation of PWA while maintaining the effect of autonomic vasomotor tone variations.  
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Figure 5: Schematic illustration of the Pulse wave amplitude detection algorithm. 
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2.2.2 Continuous PWA estimation using a simple envelope method 

As PWA was defined as the pulse amplitude difference between a systolic peak to its 

following diastolic valley in each cardiac cycle, PWA is extracted from a figure PPG signal. 

To extract PWA, PPG can be filtered with a 500th order bandpass FIR filter with cut-off from 

1 to 10 Hz. If the PPG sampling rate is too high, the PPG signal can be down sampled to 100 

Hz to reduce the computational time. Since the PWA is a discrete measurement with one 

value per heartbeat, continuous PWA measurement can be obtained by applying interpolation. 

A simple method to estimate continuous PWA involves estimating the difference between the 

upper and lower peak envelopes of the pulse signal, an example shown in Figure 6. The 

envelope function of Matlab® 2018b is used for this estimation. The envelope is determined 

using spline, interpolation over local peaks separated by at least 50 samples, which are half of 

the signal sampling rate. The estimated PWA signal is filtered with a 0.1 Hz (about 6 

breath/min) low pass FIR filter, to remove the respiratory modulation. All results are 

normalized by removing the mean and then divided by its standard deviation.  
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Figure 6. Illustration of PWA estimation and a zoomed in section. Measurement colour 

representation: green – estimated normalised PWA; blue – upper envelope of PPG; red – 

PPG; and magenta – lower envelope of PPG  
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2.3 Analysis of Physiological Signal Dynamics  

In nature, a complex physiological system is often affected by many factors or variables that 

might be unknown, so the system is most likely nonlinear, nonstationary and noisy. As the 

system may seem chaotic, it is usually challenging to characterise it with linear models. Even 

though some systems can be described with nonlinear models, they are still difficult to solve 

most of the time. This section describes two main developed methods for analysing the 

dynamics of the cardiac system. One of which is symbolic dynamic analysis, which is a 

model-free approach to understand the behaviours and structure of a complex system (Porta 

et al., 2015). Instead of predicting the actual output of the system, the symbolic approach 

provides a way to predict system states and their relationships that are associated with system 

behaviours. By defining some conditions/thresholds, the system outcomes can be divided into 

a fixed number of states, which can be represented by a group of abstract symbols. The 

symbolic analysis merely encodes every sample into one of the defined abstract symbols and 

disregards unessential detailed information, which minimises the effect of the noise in the 

system. For an ordinary dynamic system, the system would produce symbolic trajectories that 

consist of symbol sequences with a fixed length from one symbol to another. A frequently 

appearing trajectory is considered a symbolic pattern, which likely indicates a particular state 

of the system. A state of the system could be closely linked with a particular system 

behaviour, which can be identified by analysing the pattern rate of a particular symbolic 

sequence. Hence, by observing the system change from one symbolic pattern to another, 

changes in the dynamics/behaviour of a complex nonlinear system can be understood without 

a model. However, since the symbolic dynamics cannot capture detailed information, the 

intensity level of the changes in the extracted patterns is unknown. Alternatively, a more 
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extensive method has been developed to capture the entire dynamic in terms of both depth 

and duration in my study. 

2.3.1 Symbolic dynamic analysis 

Symbolic dynamic analysis on Heart period 

Heartbeat locations were extracted from ECG. The temporal distance between heartbeat 

locations yields a beat-to-beat time series of heart period (HP). Heart period changes were 

transformed into a sequence of symbols {0, 1 and 2} that represent coarse-grained heart rate 

dynamics (Figure 7). We used a symbolization scheme that proved effective in earlier studies 

(Baumert et al., 2015), where symbols are assigned based on the following rules: 

𝑠𝑛 = {
 0 ∶ (𝑥𝑛 − 𝑥𝑛−1) > 𝑙𝑥
 1 ∶  (𝑥𝑛 − 𝑥𝑛−1) < −𝑙𝑥
 2 ∶ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,         (1) 

Where 𝑠𝑛 is the nth symbol in the beat to beat time series, 𝑥𝑛 represents the nth heart period in 

the beat to beat time series, 𝑥𝑛−1 the preceding heart period, and 𝑙𝑥  is a pre-defined non-

negative threshold. In other words, symbol 0 represents an increase in heart period between 

consecutive beats beyond the threshold, while symbol 1 indicates a decrease in heart period 

and symbol 2 represents changes less or equal to the threshold.  From the resulting symbols 

sequences series, ‘words’ comprising three consecutive symbols were constructed using a 

sliding window approach (the window slides only by one symbol to the right at each step). 

The relative frequency of word types 000 and 111 was considered for further analysis, 

indicating the steady increase and decrease in heart period, respectively over four consecutive 

heartbeats.  
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Based on the results of a previous study investigating its ability for differentiating heart rate 

dynamics in children with sleep disordered breathing and normal children, we set  𝑙𝑥 = 0 ms 

(Liu et al., 2018). This threshold showed the best performance when using either entire PSG 

data as well as PSG segments free from discretely scored respiratory or motor events (e.g. 

apnoea, hypopnoea, arousal, limb movement, etc.). 

 

 

Figure 7. Schematic illustration of symbolic analysis of heart period (RR) patterns.  
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Joint Symbolic dynamic analysis on pulse wave amplitude and heart period 

When observed in HP, these symbolic patterns may capture cyclic bradycardia-tachycardia 

sequences associated with obstructive apnea (Guilleminault et al., 1984). While in PWA, they 

capture tonic vasoconstrictions mediated by sympathetic activation due to cortical and/or 

subcortical arousal (Grote et al., 2003). We also considered the joint occurrence of these 

patterns in both PWA and HP as an additional marker of monotonic changes. By applying the 

same method to both PWA and HP to find out their joint dynamics. Since the word length is 

3 and each symbol is taken from an alphabet of three the total number of possible word types 

(e.g. 020, 001, 201, …)  is 27 (33 = 27), shown in Figure 8. The relative frequency of words 

000 and 111, quantifying the presence of monotonous increase and decrease of PWA or HP, 

was used as a novel marker of autonomic activation during sleep.  

Suitable values for the threshold 𝑙𝑥 were identified by systematically investigating its ability 

for differentiating HP and PWA dynamics in children with upper airway obstruction (UAO) 

and non-snoring children, yielding suitable values of 0 milliseconds for HP and 0 normalise 

units for PWA respectively.  
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Figure 8. Schematic illustrating the analysis of symbolic dynamics of heart period (RR) and 

pulse wave amplitude (PWA). Joint symbolic dynamics are captured in the diagonals of the 

word type distribution matrix. 
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2.3.2 Extensive dynamic analysis 

In order to capture all the detailed information in the system, an extensive dynamic analysis 

has been developed. The continuously dropping or rising PWA trends were detected based on 

slopes between every two samples. Continuous series of non-positive slopes were considered 

as a dropping trend, vice versa, continuous series of non-negative slops were considered as a 

rising trend. For every detected trend, the depth and duration of the trend were recorded. 

Dropping and rising trends have negative and positive depths in the normalized unit 

respectively. The duration of each trend was recorded in seconds. PWA dynamics were 

assessed by capturing the depth and duration of each drop and rise in this measurement. A 

PWA histogram matrix of dropping and rising trends was created for this analysis (Figure 9). 

The matrix was 121 in depths by 201 in durations and created for visualizing the distribution 

of depths and durations of the trends. The bin width of the depths was set as 0.05 in 

normalized amplitude from the range -3 to 3, and the bin width of the durations were set to be 

0.1 seconds from 0 to 20 seconds. 
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Figure 9. PWA dynamics – examples of dropping and rising trends distribution in contour 

plots of one normal child (top) and one child with SDB (bottom). Positive depth refers to 

rising trends, vice versa, negative refers to dropping trends. The colour bar indicates the 

percentage of the counts out of all trends in a particular range of depth and duration 

combination  
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ABSTRACT The efficacy of adenotonsillectomy for treating obstructive sleep apnoea syndrome (OSAS)
in children has been established, but its precise effects on inspiratory effort are not well documented.

In 353 children enrolled in the Childhood Adenotonsillectomy Trial, randomised to undergo either
early adenotonsillectomy (n=182) or a strategy of watchful waiting with supportive care (WWSC) (n=171),
thoraco-abdominal asynchrony (TAA) was analysed during quiet, non-apnoeic and non-hypopnoeic
breathing during sleep at baseline and at 7 months using overnight polysomnography.

Children who underwent early adenotonsillectomy demonstrated a reduction in TAA post-surgery while
the WWSC arm showed no change. On assessing TAA with regard to normalisation of clinical
polysomnography findings at follow-up, TAA was reduced in children who had surgical resolution of
OSAS (based on apnoea–hypopnoea index), but not in children who displayed spontaneous normalisation
of apnoea–hypopnoea index. In the latter group, TAA was inversely correlated with quality of life.

We conclude that adenotonsillectomy reduces TAA during quiet sleep. Monitoring of instantaneous
TAA may yield additional insight in the dynamic changes of inspiratory effort. In combination with
traditional indices of obstruction, TAA may more accurately characterise the degree of sleep-disordered
breathing in children.
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Introduction
Upper airway obstruction during sleep is relatively common during childhood, with a reported prevalence
between 3 and 15% [1]. Its severity ranges from primary snoring to obstructive sleep apnoea syndrome
(OSAS), with the majority of children showing symptoms at the milder end of the spectrum. While
clinical concerns have focused largely on the associated behavioural and cognitive deficits, mounting
evidence suggests that OSAS during childhood also affects the cardiovascular system, which if untreated
may develop into cardiovascular disease later in life [2, 3].

In otherwise normal children, OSAS is most frequently observed when the tonsils and adenoids are
enlarged and a family history of OSAS exists. It is characterised by increased upper airway collapsibility
and upper airway loading. Consequently, adenotonsillectomy (AT) is commonly the first line of treatment.
The efficacy of AT in treating the range of adverse health outcomes reported in children with OSAS,
particularly for milder OSAS, has remained largely untested. Additional concerns pertain to post-surgical
complications and the healthcare costs of performing large numbers of ATs [4–6].

Clinically, the severity of OSAS is assessed by using overnight polysomnography (PSG) and observing the
rate of respiratory events (apnoea and hypopnoea). Although the limitations of simple indices derived
from discretely scored events, such as the apnoea–hypopnoea index (AHI), have been debated within the
sleep community, they are considered useful in current clinical practice [7, 8]. However, since the
frequency of respiratory events is low in children with mild OSAS, the AHI may not reflect the overall
impact on respiratory loading. Thus, other PSG measures that quantify inspiratory effort might add a
useful dimension to the assessment of breathing disturbance. While AT has been shown to effectively
reduce the number of incidents of apnoea and hypopnoea, it is less clear cut whether it also reduces
inspiratory effort during respiratory-event-free periods of sleep [9].

The aim of this study was to investigate the effects of AT for treatment of OSAS on an indirect marker of
inspiratory effort, namely the phase shift between thoracic and abdominal movements (thoraco-abdominal
asynchrony (TAA)), by utilising data from the Childhood Adenotonsillectomy Trial (CHAT). The CHAT study
is a landmark multicentre controlled trial evaluating health and behavioural outcomes in children with OSAS
randomised into early AT (eAT) or watchful waiting with supportive care (WWSC) [10, 11]. We hypothesised
that AT reduces inspiratory effort throughout respiratory-event-free sleep and thereby reduces TAA.

Methods
Study sample
Detailed particulars of the CHAT protocol have been published [11]. Data are publicly available at https://
sleepdata.org/datasets/chat. Children between 5.0 and 9.9 years of age with PSG-confirmed OSAS
(i.e. obstructive AHI ⩾2 events·h−1 or an obstructive apnoea index (OAI) ⩾1 events·h−1), a history of
snoring and considered to be surgical candidates for AT were recruited from paediatric sleep centres/sleep
laboratories, paediatric otolaryngology clinics, general paediatric clinics and the general community from
six clinical centres. Exclusion criteria included comorbidities, medications for psychiatric or behavioural
disorders, recurrent tonsillitis, extreme obesity and severe OSAS (AHI ⩾30 events·h−1, OAI ⩾20 events·h−1
or oxyhaemoglobin saturation <90% for >2% of total sleep time). The study was approved by the
Institutional Review Board of each institution. Informed consent was obtained from caregivers, and assent
from children ⩾7 years of age. The study was registered at Clinicaltrials.gov (#NCT00560859).

CHAT interventions
Children were randomly assigned to either eAT (surgery within 4 weeks after randomisation) or a strategy of
WWSC with reassessment of all the study variables at approximately 7 months. Complete bilateral tonsillectomy
and removal of obstructing adenoid tissue was performed using standard surgical techniques.

Overnight polysomnography
Each child underwent in-laboratory baseline and follow-up PSG carried out by study-certified technicians,
following American Academy of Sleep Medicine paediatric guidelines for both acquisition and scoring
[12]. The PSGs were centrally scored by registered sleep technicians. Overnight PSG was repeated
approximately 7 months after randomisation [11, 13].

Analysis of thoraco-abdominal asynchrony
PSG recordings of ribcage and abdominal inductance belts were utilised to measure the instantaneous
phase difference between thoracic and abdominal excursions (TAA). For details, see supplementary
material. Only portions of PSG that were free from discretely scored events (e.g. arousal, apnoea,
hypopnoea, limb movement) and artefacts were included in the analysis. Instantaneous TAA values were
averaged within each sleep stage. The mean±SD portion of sleep included in TAA analysis of the eAT arm
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was 76.8±12.9% at baseline and 86.5±7.68% at follow-up. In the WWSC arm, the sleep portions were
77.8±11.9% and 80.4±12.3%, respectively (supplementary table S1). The TAA values for each recording
can be obtained at https://sleepdata.org/datasets/chat

Neurophysiological tests and surveys
Neurophysiological tests and surveys were performed as part of the original CHAT study to assess behaviour,
OSAS symptoms, sleepiness, quality of life and generalised intellectual functioning (supplementary material).

Statistical analysis
Anthropometric data were compared using t-tests and Chi-squared tests as appropriate. TAA values were
log-transformed to achieve normal distribution and analysed for stages 2 (N2) and 3 (N3) in non-rapid
eye movement (NREM) sleep as well as rapid eye movement (REM) sleep (R). One-way repeated measures
ANOVA was performed to investigate the effect of sleep stage on TAA, followed by a Bonferroni test based
on the t-statistic for post hoc comparison. Two-way ANCOVA was carried out to test the effect of surgery
and time point (baseline versus follow-up; repeated measure) on TAA. Anthropometric variables that were
likely to confound statistical analysis (body mass index (BMI) z-score, BMI z-score change between
follow-up and baseline, age, sex and race) were included in the model as covariates. Subsequently,
three-way ANCOVA was conducted to investigate the effects of AHI normalisation, study arm and time
point on TAA. Spearman correlation analysis was performed to explore the relationship between AHI, the
extent of oxygen desaturation, peak end-tidal carbon dioxide and TAA. To explore whether TAA has
potential clinical value in stratifying OSAS diagnostics, we performed Spearman correlation analysis
between TAA and previously reported measures of behaviour, OSAS symptom indicators, sleepiness,
global quality of life and intellectual functioning [10] in those children whose AHI was normal during
follow-up and hence OSAS was considered resolved.

Results
Subject demographics
In total, 353 children of the original CHAT study who underwent both baseline and follow-up PSG and
whose respiratory inductance signals met the technical criteria were included in this study. Of these, 182
children underwent eAT and 171 children joined the WWSC group (figure 1). Both groups had
comparable demographic profiles (table 1). The mean age of the participants at baseline was 6.6 years and
49% were male. Approximately half (54%) of the sample were African American and 34% were obese.
Around 5% of children were treated with montelukast and ∼22% received glucocorticoids for rhinitis or
asthma at the time of the baseline PSG. At follow-up, 83% of children in the eAT arm no longer had
AHI-defined OSAS, i.e. values of AHI ⩽2 and OAI ⩽1, while 40% of children in the WWSC arm had
spontaneous normalisation of AHI scores. Approximately 7% of children in the eAT arm and 8% in the
WWSC arm were on montelukast, and 24% (eAT) and 26% (WWSC) were on glucocorticoids at the time
of the follow-up PSG, representing a small but statistically nonsignificant increase compared with baseline.

Effect of sleep stage on TAA
Sleep stage had a significant effect on TAA (reported and analysed as log-transformed values in degrees) (N2:
3.20±0.72 log°, N3: 3.24±0.81 log°, R: 3.56±0.67 log°; p<0.001; measured on baseline PSG). Post hoc analysis
showed significantly higher TAA in REM sleep compared with both NREM sleep stages (R versus N2: p<0.001,
R versus N3: p<0.001), but no significant difference between NREM sleep stages (N2 versus N3: p=0.448).

Due to the effect of sleep stage on TAA, all subsequent data analyses were performed separately for each
sleep stage.

Correlation between TAA and clinical measures of hypoxia and hypoventilation
Using TAA values obtained from baseline and follow-up PSG, statistically significant but weak positive
correlations with the extent of oxygen desaturation were observed (percentage of sleep time spent at
oxygen saturation ⩽90%, N2: r=0.179, p<0.001; N3: r=0.135, p<0.001; R: r=0.172, p<0.001). A weak yet
statistically significant positive correlation between TAA and the percentage of sleep time at a partial
carbon dioxide pressure above 50 mmHg (log-transformed) was observed in REM sleep (r=0.082,
p<0.048). TAA also showed a statistically significant but weak positive correlation with AHI across all
three sleep stages (N2: r=0.281, p<0.001; N3: r=0.251, p<0.001; R: r=0.238, p<0.001).

Effect of surgery on TAA
No significant difference in TAA between baseline and follow-up PSG was observed in any sleep stage
(table 2). Significant study arm effects were observed in sleep stages N2 and N3. Time point×study arm
interaction effects were significant across all stages of sleep, consistently pointing towards a reduction in
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TAA in the eAT arm following AT. Post hoc comparison showed significantly lower TAA during follow-up
PSG compared with baseline in the eAT arm only across all sleep stages (N2: p<0.0001; N3: p<0.0001;
R: p<0.0001). The eAT arm displayed significantly lower TAA than the WWSC arm during follow-up PSG
throughout all sleep stages (N2: p<0.0001; N3: p<0.0001; R: p=0.031). Of the covariates included in the
model, increase in age was associated with a significant TAA reduction in REM sleep (F=8.73, p=0.003).
Sex showed a weak but significant association with TAA in sleep stage N2 (F=3.99, p=0.046), where boys
had lower TAA than girls.

TABLE 1 Baseline characteristics of subjects grouped according to study arm and apnoea–
hypopnoea index (AHI) normalisation at 7 months

Characteristic Study arm AHI at 7 months

eAT WWSC Normalised Not normalised

Subjects 182 171 219 134
Age years 6.64±1.46 6.60±1.40 7.10±1.46 7.31±1.43
Male n (%) 83 (45.6%) 89 (52%) 102 (46.6%) 70 (52.2%)
Race n (%)#

African American 95 (52.2%) 97 (56.7%) 105 (47.9%) 87 (64.9%)
Caucasian 67 (36.8%) 59 (34.5%) 90 (41.1%) 36 (26.9%)
Other 20 (11%) 15 (8.8%) 24 (11%) 11 (8.2%)

BMI z-score 0.91±1.36 0.86±1.26 0.94±1.20 1.38±1.25
Weight class n (%)¶

Overweight 92 (50.5%) 79 (46.2%) 104 (47.5%) 86 (64.2%)
Obese 63 (34.6%) 58 (33.9%) 70 (32%) 68 (50.7%)

Montelukast n (%) 8 (4.4%) 9 (5.3%) 12 (5.5%) 15 (11.2%)
Glucocorticoids n (%) 40 (22%) 37 (21.6%) 52 (23.7%) 37 (27.6%)

Data are presented as mean±SD unless otherwise stated. eAT: early adenotonsillectomy; WWSC: watchful
waiting and supportive care; BMI: body mass index. #: reported by caregivers; ¶: overweight was defined as
BMI ⩾85th percentile, obese as BMI ⩾95th percentile.

453 children were randomised to eAT 
or WWSC

226 children were assigned to eAT
 20 children crossed over to WWSC

182 children were analysed for TAA

224 children included in the eAT arm
 18 children were lost during follow-up

206 children were considered for TAA analysis
 24 children were excluded due to missing
 or partially available signals, poor signal  
 quality, or identical ribcage and 
 abdominal traces in baseline (8),
 follow-up (11), or both (5) PSG recordings

227 children were assigned to WWSC
 18 children crossed over to eAT

229 children included in the WWSC arm
 35 children were lost during follow-up

194 children were considered for TAA analysis
 21 children were excluded due to missing
 or partially available signals, poor signal
 quality, or identical ribcage and 
 abdominal traces in baseline (12),   
 follow-up (4), or both (5) PSG recordings
 2 children were excluded due to missing
 BMI z-score value at follow-up

171 children were analysed for TAA

FIGURE 1 Summary of Childhood Adenotonsillectomy Trial study participants included in the thoraco-abdominal
asynchrony (TAA) analysis. BMI: body mass index; eAT: early adenotonsillectomy; PSG: polysomnography; WWSC:
watchful waiting with supportive care.
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Effect of AHI normalisation and surgery on TAA
No significant TAA differences between baseline and follow-up, between eAT and WWSC groups, or
study arm×AHI normalisation interactions were observed in any of the sleep stages (table 3). AHI
normalisation and time point×study arm×AHI normalisation interactions were significant in stages N2
and N3. Study×AHI normalisation interaction effects were significant across all sleep stages, consistently
pointing towards a reduction in TAA in the normalised group post-AT. However, the time point×study
arm interaction effect was significant only within stage N2. Of the covariates included in the model,
increase in age was associated with a significant TAA reduction in REM sleep (F=8.99, p=0.003). Sex
showed a weak but significant association with TAA in sleep stage N2 (F=4.96, p=0.027), where boys had
lower TAA than girls.

When comparing baseline TAA with follow-up TAA for both arms (figure 2), significant differences were
found only in the subgroup of children in the eAT arm whose AHI normalised during follow-up. This was
consistent across all sleep stages (N2: p<0.00001; N3: p<0.00001; R: p<0.00001).

Post hoc comparisons of the follow-up data showed a significant TAA decrease in children whose AHI
normalised compared with children whose AHI remained abnormal (figure 3). This was observed within
the WWSC and eAT arms across all sleep stages (WWSC: N2: p=0.0078; N3: p=0.0044; REM: p=0.0254;
eAT: N2: p=0.0007; N3: p=0.0023; R: p=0.0200) (figure 3). The TAA reduction was more pronounced in
children of the eAT arm compared with the WWSC arm (N2: p=0.028).

Correlation between TAA and cognitive, behavioural and OSAS symptom indicators in children
with normal AHI
Among those children that were classified as normal on clinical PSG score during follow-up, statistically
significant negative correlations were observed between the parent total scale score of the Paediatric
Quality of Life Inventory and TAA during NREM sleep (N2: r=−0.183, p<0.01; N3: r=−0.147, p<0.05),
but not with AHI. In addition, the total obstructive sleep apnoea-18 (OSA-18) survey score was positively
correlated with TAA during NREM sleep (N2: r=0.151, p<0.05; N3: r=0.149, p<0.05), but not with AHI.
No correlations were found between TAA and behaviour, OSAS symptom measures or sleepiness. When
analysing the eAT and WWSC arms separately, correlations between the parent total scale score of the
Paediatric Quality of Life Inventory and TAA were evident in the WWSC arm (N2: r=−0.360, p<0.005;
N3: r=−0.314, p<0.01; R: r=−0.246, p<0.05) (figure 4), but not in the eAT arm. Correlations between
OSA-18 score and TAA were no longer significant.

Discussion
Our main finding is a reduction in TAA during quiet, event-free sleep in children with OSAS following
AT, indicating an overall reduction in inspiratory effort. However, this was not observed in children whose
OSAS resolved spontaneously (as measured by the clinical diagnostic marker, i.e. AHI). Outcome-specific
analysis suggests that normalisation of AHI, in particular in those children who underwent AT, is
associated with TAA reduction at 7-month follow-up. In children whose AHI normalised without surgical
intervention and hence were clinically diagnosed as OSAS free at follow-up, high TAA values were
associated with poorer quality of life. This indicates that increased inspiratory effort, even in the absence of
frank apnoea or hypopnoea, has adverse health outcomes.

TAA measures the phase angle between thoracic and abdominal excursions and is considered a
noninvasive measure of inspiratory effort [9]. We have recently devised a robust, fully automated method
of TAA measurement that can be easily implemented in PSG analysis [14]. Although TAA cannot provide

TABLE 2 Comparison of thoraco-abdominal asynchrony (TAA) between time points and study arm across sleep stages

Parameter eAT (n=182) WWSC (n=171) p-value

Baseline Follow-up Baseline Follow-up Time point Study arm Study arm×time point

N2 TAA# (degree) 3.23±0.72 2.89±0.72 3.17±0.72 3.21±0.73 0.326 0.025 <0.0001
N3 TAA# (degree) 3.26±0.83 2.92±0.86 3.21±0.78 3.29±0.83 0.175 0.019 <0.0001
R TAA# (degree) 3.62±0.70 3.29±0.67 3.49±0.63 3.44±0.67 0.687 0.739 0.0019

Data are presented as group mean±SD. p-values were obtained by using two-way ANCOVA adjusted for likely confounding factors of age
(5–9 years), race (black, white, other), body mass index (BMI) z-score, BMI z-score change and sex. eAT: early adenotonsillectomy; WWSC:
watchful waiting with supportive care; N2: stage 2 non-rapid eye movement sleep; N3: stage 3 non-rapid eye movement sleep; R: rapid eye
movement sleep. #: reported and analysed as log-transformed values.
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TABLE 3 Comparison of thoraco-abdominal asynchrony (TAA) between time points, study arm and apnoea–hypopnoea index (AHI) normalisation across sleep stages

Parameter eAT (n=182) WWSC (n=171) p-value

AHI
normalised
(n=151)

AHI not
normalised

(n=31)

AHI
normalised

(n=68)

AHI not
normalised
(n=103)

Time point Study arm Normalisation Time
point×study arm

Study
arm×AHI

normalisation

Time
point×AHI

normalisation

Study
arm×time
point×AHI

normalisation

N2 TAA# (degree)
Baseline 3.25±0.72 3.15±0.71 3.06±0.71 3.25±0.73 0.743 0.633 0.001 0.043 0.924 0.005 0.050
Follow-up 2.81±0.69 3.26±0.75 3.04±0.73 3.33±0.72

N3 TAA# (degree)
Baseline 3.31±0.79 3.02±0.97 3.09±0.74 3.28±0.80 0.595 0.305 0.011 0.169 0.388 <0.001 0.016
Follow-up 2.84±0.81 3.35±0.97 3.06±0.81 3.44±0.82

R TAA# (degree)
Baseline 3.65±0.71 3.47±0.66 3.47±0.65 3.50±0.62 0.337 0.701 0.110 0.306 0.789 0.002 0.272
Follow-up 3.25±0.68 3.47±0.61 3.31±0.67 3.53±0.67

Data are presented as group mean±SD, unless otherwise stated. p-values were obtained using three-way ANCOVA adjusted for likely confounding factors of age (5–9 years), race (black,
white, other), body mass index (BMI) z-score, BMI z-score change and sex. eAT: early adenotonsillectomy; WWSC: watchful waiting with supportive care; N2: stage 2 non-rapid eye
movement sleep; N3: stage 3 non-rapid eye movement sleep; R: rapid eye movement sleep. #: reported and analysed as log-transformed values.
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a direct measure of increase in workload in terms of energy expenditure, it reflects changes in inspiratory
effort due to airway obstruction [9]. Upper airway obstruction leads to increased inspiratory effort in order
to maintain airway patency; this manifests as asynchronous or paradoxical inward motion of the ribcage
[15–17] and hence increased TAA. TAA has been demonstrated in children with increased inspiratory
effort due to upper airway obstruction and OSAS [18, 19].

Our study suggests that TAA adds important information towards the diagnosis of OSAS by quantifying
overall inspiratory effort. In children with mild symptoms, in whom frank apnoeic events are rare, measuring
the rate of events may not represent the full extent of respiratory disturbance during sleep. Children who
snore have to overcome an increased respiratory load, but may not necessarily display frank respiratory
events, desaturation or cortical arousals [20, 21]. TAA was also associated with standard PSG measures of
hypoxia (percentage of sleep time spent at <90% oxygen desaturation) and with increased AHI throughout
all stages of sleep. Presumably, children with more frequent/severe respiratory events also experience higher
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watchful waiting with supportive care (WWSC) (a–c) at baseline and follow-up polysomnography grouped by apnoea–hypopnoea index (AHI)
normalisation. TAA values are reported and analysed as log-transformed values (degrees). Data are presented as mean±SEM. N2: stage 2 non-
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inspiratory loads during event-free periods of sleep. While the detailed effects of increased TAA in the
absence of frank apnoea or hypopnoea and underlying mechanisms have not been fully elucidated, studies in
children with primary snoring have shown elevated blood pressure and reduced arterial distensibility [22,
23], subtle dysregulation of glycaemic homeostasis [24] and neurocognitive impairments [25]. Pre-pubescent
rats subjected to increased upper airway loading (without hypoxia) demonstrated reduced production of
growth hormone and insulin-like growth factor I and impaired longitudinal growth [26].

As has been shown previously, AT is effective at resolving clinical PSG markers of OSAS (83% of the
children in the eAT arm had AHI normalisation). However, 40% of the children in the WWSC arm,
primarily those with mild OSAS, had AHI values below the clinical cut-off during follow-up, raising
important questions about whom to treat and when. Our analyses show that children who underwent
surgery and subsequently normalised their AHI values also demonstrated reduced TAA. This suggests a
benefit of AT on inspiratory effort by enlarging the upper airway (figure 2), as the decrease in upper
airway volume is related to the increase in respiratory effort during sleep [27]. Within the WWSC arm,
spontaneous AHI normalisation did not coincide with TAA reduction, but children who had normal AHI
values at follow-up demonstrated lower TAA at baseline, possibly because their OSAS was milder [28].
Interestingly, in children whose AHI normalised spontaneously during follow-up, TAA was inversely
correlated with quality of life, suggesting that increased inspiratory effort persists in some of these children
and has adverse effects on their well-being.

We have previously measured TAA during quiet, event-free sleep in children with sleep-disordered
breathing undergoing AT in comparison to normal children, and observed increased TAA levels at
baseline that were no longer different from TAA of normal children 6 months post AT [29], providing
further evidence for the beneficial effect of AT on inspiratory effort. Our study also confirms that TAA
values are higher in REM sleep than in NREM sleep [29]. This difference is possibly caused by the
reduction in intercostal muscle activity, contributing to distorted ribcage movement [30] and/or decreased
pharyngeal muscle activity associated with upper airway obstruction [31]. Interestingly, we observed an
inverse association between TAA and age during REM sleep. Paradoxical inward ribcage motion in REM
sleep and its lessening with age has been well documented in infants and toddlers [32]. Although the chest
wall and ribcage are fully developed at the age of 5 years, neural respiratory control may still undergo
maturation, explaining our observation [33]. Our analysis also demonstrated sex differences in TAA; to our
knowledge this has not been reported previously in pre-pubescent children.

Our study has several limitations. Children in this study had only mild to moderate OSAS as defined by
AHI, and the follow-up time was relatively short. More severe OSAS is likely to result in higher inspiratory
effort. Although our results are based on a large randomised control trial with racially diverse groups, and
included standardised measurements and high follow-up rates, there are limitations with respect to their
interpretation. Several of the recordings from the original study were omitted due to poor signal quality
and the per-protocol design. Sleep position is known to affect TAA [29]. We were not able to retrieve
reliable information on body position from the PSG database. In addition, anti-inflammatory medication
may have affected TAA in some children.
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FIGURE 4 Relationship between thoraco-abdominal asynchrony (TAA) averaged across all sleep stages and
Paediatric Quality of Life Inventory Parent Total Scale Score. TAA values are reported and analysed as
log-transformed values (degrees). Lines indicate the linear regression function (solid) and 95% confidence
intervals (dashed).
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We conclude that, in addition to its well-established effectiveness for resolving frank respiratory events in
children with OSAS, AT also reduces inspiratory effort throughout quiet respiratory-event-free sleep.
Surgery may therefore have an additional, previously unrecognised benefit. TAA appears to be a sensitive
marker of increased inspiratory effort that is inversely associated with quality of life in children with
symptomatic OSAS. Monitoring TAA over time may yield additional insight into the dynamic changes of
inspiratory effort during sleep and, in combination with traditional indices of obstruction, more accurately
characterise the degree of sleep-disordered breathing in children. Furthermore, our findings demonstrate
that spontaneous AHI normalisation does not necessarily indicate that OSAS has resolved, highlighting the
need for more sensitive measures.

Acknowledgements
We would like to thank Michael Rueschman, Division of Sleep and Circadian Disorders, Brigham and Women’s
Hospital, Boston, MA, USA for support with handling and interpreting the CHAT dataset.

Xiao Liu, Sarah Immanuel and Mathias Baumert had full access to all of the data in the study and take responsibility for
the integrity of the data and the accuracy of the data analysis. Yvonne Pamula, James Martin and Declan Kennedy
contributed substantially to the interpretation and the writing of the manuscript.

References
1 Lumeng JC, Chervin RD. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc 2008; 5:

242–252.
2 Nisbet LC, Yiallourou SR, Walter LM, et al. Blood pressure regulation, autonomic control and sleep disordered

breathing in children. Sleep Med Rev 2014; 18: 179–189.
3 Baumert M, Pamula Y, Martin J, et al. The effect of adenotonsillectomy for childhood sleep apnoea on

cardiorespiratory control. ERJ Open Res 2016; 2: 00003-2016.
4 Brietzke SE, Gallagher D. The effectiveness of tonsillectomy and adenoidectomy in the treatment of pediatric

obstructive sleep apnea/hypopnea syndrome: a meta-analysis. Otolaryngol Head Neck Surg 2006; 134: 979–984.
5 Bhattacharjee R, Kheirandish-Gozal L, Spruyt K, et al. Adenotonsillectomy outcomes in treatment of obstructive

sleep apnea in children: a multicenter retrospective study. Am J Respir Crit Care Med 2010; 182: 676–683.
6 Costa DJ, Mitchell R. Adenotonsillectomy for obstructive sleep apnea in obese children: a meta-analysis.

Otolaryngol Head Neck Surg 2009; 140: 455–460.
7 Rapoport DM. POINT: Is the apnea-hypopnea index the best way to quantify the severity of sleep-disordered

breathing? Yes. Chest 2016; 149: 14–16.
8 Punjabi NM. COUNTERPOINT: Is the apnea-hypopnea index the best way to quantify the severity of

sleep-disordered breathing? No. Chest 2016; 149: 16–19.
9 Hammer J, Newth C, Deakers T. Validation of the phase angle technique as an objective measure of upper airway

obstruction. Pediatr Pulmonol 1995; 19: 167–173.
10 Marcus CL, Moore RH, Rosen CL, et al. A randomized trial of adenotonsillectomy for childhood sleep apnea.

N Engl J Med 2013; 368: 2366–2376.
11 Redline S, Amin R, Beebe D, et al. The Childhood Adenotonsillectomy Trial (CHAT): rationale, design, and

challenges of a randomized controlled trial evaluating a standard surgical procedure in a pediatric population.
Sleep 2011; 34: 1509–1517.

12 Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM
Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force
of the American Academy of Sleep Medicine. J Clin Sleep Med 2012; 8: 597–619.

13 Redline S, Amin R, Beebe D, et al. Childhood Adenotonsillectomy Trial. National Sleep Research Resource.
http://sleepdata.org/datasets/chat Date last accessed: October 14, 2016.

14 Immanuel S, Kohler M, Pamula Y, et al. Thoraco-abdominal asynchrony in children during quiet sleep using
Hilbert transform. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 3448–3451.

15 Bower CM, Gungor A. Pediatric obstructive sleep apnea syndrome. Otolaryngol Clin North Am 2000; 33: 49–75.
16 Guilleminault C, Poyares D, Palombini L, et al. Variability of respiratory effort in relation to sleep stages in

normal controls and upper airway resistance syndrome patients. Sleep Med 2001; 2: 397–405.
17 Sivan Y, Ward SD, Deakers T, et al. Rib cage to abdominal asynchrony in children undergoing polygraphic sleep

studies. Pediatr Pulmonol 1991; 11: 141–146.
18 Reber A, Bobbia SA, Hammer J, et al. Effect of airway opening manoeuvres on thoraco-abdominal asynchrony in

anaesthetized children. Eur Respir J 2001; 17: 1239–1243.
19 Kohyama J, Shiiki T, Shimohira M, et al. Asynchronous breathing during sleep. Arch Dis Child 2001; 84: 174–177.
20 Guilleminault C, Winkle R, Korobkin R, et al. Children and nocturnal snoring: evaluation of the effects of sleep

related respiratory resistive load and daytime functioning. Eur J Pediatr 1982; 139: 165–171.
21 Guilleminault C, Poyares D. Arousal and upper airway resistance (UAR). Sleep Med 2002; 3: S15–S20.
22 Li AM, Au CT, Ho C, et al. Blood pressure is elevated in children with primary snoring. J Pediatr 2009; 155:

362–368.
23 Kwok KL, Ng DKK, Cheung YF. BP and arterial distensibility in children with primary snoring. Chest 2003; 123:

1561–1566.
24 Khalyfa A, Gharib SA, Kim J, et al. Peripheral blood leukocyte gene expression patterns and metabolic parameters in

habitually snoring and non-snoring children with normal polysomnographic findings. Sleep 2011; 34: 153–U150.
25 Brockmann PE, Urschitz MS, Schlaud M, et al. Primary snoring in school children: prevalence and neurocognitive

impairments. Sleep Breath 2012; 16: 23–29.
26 Tarasiuk A, Segev Y. Chronic upper airway resistive loading induces growth retardation via the GH/IGF-I axis in

prepubescent rats. J Appl Physiol 2007; 102: 913–918.

https://doi.org/10.1183/13993003.01177-2016 9

PAEDIATRIC PULMONOLOGY AND SLEEP | X. LIU ET AL.

http://sleepdata.org/datasets/chat
http://sleepdata.org/datasets/chat


27 Guilleminault C, Li KK, Khramtsov A, et al. Sleep disordered breathing: surgical outcomes in prepubertal children.
Laryngoscope 2004; 114: 132–137.

28 Chervin RD, Ellenberg SS, Hou XL, et al. Prognosis for spontaneous resolution of OSA in children. Chest 2015;
148: 1204–1213.

29 Immanuel SA, Kohler M, Martin J, et al. Increased thoracoabdominal asynchrony during breathing periods free of
discretely scored obstructive events in children with upper airway obstruction. Sleep Breath 2015; 19: 65–71.

30 Tabachnik E, Muller NL, Bryan AC, et al. Changes in ventilation and chest wall mechanics during sleep in normal
adolescents. J Appl Physiol 1981; 51: 557–564.

31 Mezzanotte WS, Tangel DJ, White DP. Influence of sleep onset on upper-airway muscle activity in apnea patients
versus normal controls. Am J Respir Crit Care Med 1996; 153: 1880–1887.

32 Gaultier C, Praud JP, Canet E, et al. Paradoxical inward rib cage motion during rapid eye movement sleep in
infants and young children. J Dev Physiol 1987; 9: 391–397.

33 Carroll JL, Donnelly DF. Respiratory physiology and pathophysiology during sleep. In: Sheldon SH, Kryger MH,
Ferber R, Gozal D, eds. Principles and Practice of Pediatric Sleep Medicine. 2nd edn. Philadelphia, Elsevier, 2014;
pp. 179–194.

https://doi.org/10.1183/13993003.01177-2016 10

PAEDIATRIC PULMONOLOGY AND SLEEP | X. LIU ET AL.



 



Page 53 

Chapter 4 

 

 

 

Effect of adenotonsillectomy for 
childhood obstructive sleep apnea on 

nocturnal heart rate patterns 

 

LIU, X., IMMANUEL, S., KENNEDY, D., MARTIN, J., PAMULA, Y. & BAUMERT, M. 

2018. Effect of adenotonsillectomy for childhood obstructive sleep apnea on nocturnal heart 

rate patterns. Sleep, zsy171-zsy171. DOI: 10.1093/sleep/zsy171 

 

  



Chapter 4 

 

Page 54 

 



Chapter 4 

 

Page 55 

 



Submitted: 23 April, 2018; Revised: 28 June, 2018

© Sleep Research Society 2018. Published by Oxford University Press on behalf of the Sleep Research Society.  
All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

1

Original Article

Effect of adenotonsillectomy for childhood obstructive 
sleep apnea on nocturnal heart rate patterns
Xiao Liu1, Sarah Immanuel1, Declan Kennedy2,3, James Martin2, 
Yvonne Pamula2 and Mathias Baumert1,*,

1School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, Australia, 2Department of 
Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, Australia and 3Children’s Research 
Centre, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, Australia

*Corresponding author. Mathias Baumert, School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.  
Email: mathias.baumert@adelaide.edu.au.

Abstract
Study Objectives: To assess the effect of adenotonsillectomy for relieving obstructive sleep apnea syndrome (OSAS) 
symptoms in children on cardiac autonomic modulation.

Methods: In 354 children enrolled in the Childhood Adenotonsillectomy Trial, randomized to undergo either early 
adenotonsillectomy (eAT; N = 181) or a strategy of watchful waiting with supportive care (WWSC; N = 173), nocturnal heart 
rate control was analyzed during quiet, event-free sleep at baseline and at 7 months using overnight polysomnography 
(PSG). The relative frequency of patterns indicating monotonous changes in heart rate was quantified.

Results: Children who underwent eAT demonstrated a significantly greater reduction in heart rate patterns postsurgery 
than the WWSC group. On assessing those heart rate patterns regarding normalization of clinical PSG, heart patterns were 
reduced to a similar level in both groups. In children whose AHI normalized spontaneously, heart rate patterns were already 
significantly less frequent at baseline, suggesting that upper airway obstruction was milder in this group at the outset.

Conclusions: Adenotonsillectomy reduces monotonous heart rate patterns throughout quiet event-free sleep, reflecting 
a reduction in cardiac autonomic modulation. Heart rate pattern analysis may help quantifying the effect of OSAS on 
autonomic nervous system activity in children.

Clinical Trial Registration: The study was registered at Clinicaltrials.gov (#NCT00560859).

Key Words:  sleep apnea; children; adenotonsillectomy; autonomic control

Statement of Significance
This study shows that adenotonsillectomy for obstructive sleep apnea syndrome affects cardiac autonomic modulation 
during sleep. We identified a previously unreported baseline difference in heart rate dynamics in children who normal-
ize spontaneously. Analysis of heart rate pattern may therefore help identify children with mild–moderate symptoms 
who do not require surgery.
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Introduction
Between 3 and 15 per cent of children experience some level of 
upper airway obstruction (UAO) during sleep [1], ranging from 
primary snoring to obstructive sleep apnea syndrome (OSAS). 
Most children are at the milder end of this spectrum. UAO has 
often been associated with impairment of neurocognitive and 
behavioral function, but increasing evidence suggests that it 
also affects autonomic cardiovascular control [2–5]. Importantly, 
OSAS is a key driver of change in the cardiovascular system [6–8] 
and may increase the risk of developing cardiovascular disease 
later in life [4, 5, 9].

As the most common etiology for childhood OSAS is enlarged 
tonsils and adenoids, the recommended first-line of treatment 
is adenotonsillectomy (AT). Although the efficacy of AT for chil-
dren with UAO has been widely confirmed, residual symptoms 
and parental concerns are known to persist after surgery [10–14]. 
Additionally, current clinical diagnostic markers of UAO derived 
from overnight polysomnography (PSG), such as apnea–hypopnea 
index (AHI), are less discriminative in identifying children with mild 
OSAS who despite their lower AHI may benefit from AT. The effect 
of mild UAO on children’s health remains debatable. Postsurgical 
complications and the healthcare costs associated with perform-
ing large numbers of AT have become further concerns [11–13].

Heart rate variability (HRV) is commonly used to noninvasively 
measure cardiac autonomic activation. But findings on the effect 
of UAO on HRV in children are inconclusive [2, 15–19]. Absolute 
HRV values may vary significantly between and within individu-
als, hampering its diagnostic potential. Symbolic analysis of heart 
rate patterns provides an alternative way to quantify autonomic 
control. It allows detecting particular heart rate patterns of inter-
est, e.g. sequences of monotonously increasing or decreasing 
heart rates. Several studies have shown that symbolic analysis can 
capture diagnostically useful features of cardiac control [20–23].

The aim of this study was to investigate the effects of AT 
for OSAS on cardiac autonomic modulation by measuring the 
relative frequency of monotonously increasing/decreasing heart 
rate patterns. We hypothesized that AT reduces cardiac auto-
nomic modulation throughout quiet, scored event-free sleep, 
observable through a reduction of monotonously increasing/
decreasing heart rate patterns on standard overnight PSG.

Methods
Study sample

We utilized data from the Childhood Adenotonsillectomy Trial 
(CHAT), a landmark multicenter randomized controlled trial, 
evaluating health and behavioral outcomes in children with 
OSAS who underwent early AT (eAT) versus watchful waiting 
with supportive care (WWSC) [24, 25]. Detailed particulars of the 
CHAT protocol have been previously published [25]. All data are 
publicly available at https://sleepdata.org/datasets/chat. In brief, 
children between 5.0 and 9.9  years of age with PSG-confirmed 
OSAS (obstructive AHI ≥ 2 events/hr or an obstructive apnea 
index [OAI] ≥ 1 events/hr), a history of snoring and considered to 
be surgical candidates for AT were recruited from pediatric sleep 
centers/sleep laboratories, pediatric otolaryngology clinics, gen-
eral pediatric clinics, and the general community from six clinical 
centers. Exclusion criteria included comorbidities, medications 
for psychiatric or behavioral disorders, recurrent tonsillitis, 

extreme obesity (body mass index > 2.99 for age group and sex-
z-score) and severe OSAS (AHI ≥ 30 events/hr, OAI ≥ 20 events/hr 
or oxyhemoglobin saturation < 90 per cent for >2 per cent of total 
sleep time). The study was approved by the Institutional Review 
Board of each institution. Informed consent was obtained from 
caregivers, and assent from children ≥7 years of age.

CHAT interventions

Children were randomly assigned to either eAT (surgery within 
4 weeks after randomization) or a strategy of WWSC with reas-
sessment of all the study variables at approximately 7 months. 
Complete bilateral tonsillectomy and removal of obstruct-
ing adenoid tissue was performed using standard surgical 
techniques.

Overnight polysomnography

Each child underwent in-laboratory baseline and follow-up PSG 
carried out by study-certified technicians, following American 
Academy of Sleep Medicine pediatric guidelines for both 
acquisition and scoring [26]. The PSGs were centrally scored 
by registered sleep technicians. Overnight PSG was repeated 
approximately 7 months after randomization [25, 27].

Symbolic analysis of heart rate patterns

Heart beat locations were extracted from ECG as detailed in 
Supplementary Material. The temporal distance between heart-
beat locations yields a beat-to-beat time series of heart period 
(HP). HP changes were transformed into a sequence of sym-
bols { , , }0 1 2  and   that represent coarse-grained heart rate 
dynamics (Supplementary Figure S1). We used a symbolization 
scheme that proved effective in earlier studies [20], where sym-
bols are assigned based on the following rules:
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where sn  is the nth symbol in the beat to beat time series, xn  
represents the nth HP in the beat to beat time series, xn−1  the 
preceding HP, and lx  is a predefined nonnegative threshold. In 
other words, symbol 0 represents an increase in HP between 
consecutive beats beyond the threshold, whereas symbol 1 
indicates a decrease in HP; symbol 2 represents changes less or 
equal to the threshold. From the resulting symbols sequences 
series, “words” comprising three consecutive symbols were con-
structed using a sliding window approach (the window slides 
only by one symbol to the right at each step).

The relative frequency of word types 000 and 111 was con-
sidered for further analysis, indicating the steady increase and 
decrease in HP, respectively, over four consecutive heartbeats.

Based on the results of a previous study investigating its abil-
ity for differentiating heart rate dynamics in children with sleep-
disordered breathing and normal children, we set lx   =  0  ms 
[28]. This threshold showed the best performance when using 
either entire PSG data as well as PSG segments free from dis-
cretely scored respiratory or motor events (e.g. apnea, hypopnea, 
arousal, and limb movement).
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Statistical analysis

Statistical analysis were conducted using IBM SPSS 25 (Chicago, 
United States). Anthropometric data [28] were compared by 
using t-tests and Χ2 tests as appropriate. One-way repeated 
measures ANOVA was carried out to investigate the effect of 
sleep stage on heart rate patterns, followed by a Bonferroni test 
based on Student’s t statistic for post hoc comparisons. A two-
way analysis of covariance (ANCOVA) was carried out to look at 
the effect of surgery on heart rate patterns with study (baseline 
vs. follow-up) and study arm (eAT vs. WWSC) in three different 
sleep stages. Also, a three-way analysis of covariance (ANCOVA) 
was carried out to test for the effect of AHI-normalization and 
study arm (eAT vs. WWSC) with study (baseline vs. follow-up) 
as the repeated measure on heart rate patterns in three differ-
ent sleep stages. Anthropometric variables that were likely to 
confound statistical analysis (BMI z-score, BMI z-score change 
between follow-up and baseline, age, gender, and race) were 
included in the model as covariates. Spearman correlation ana-
lysis was conducted to explore the relationship between AHI, 
the extent of oxygen desaturation, peak-end tidal CO2, and heart 
rate patterns across all available PSG.

Results
Participant demographics

A total of 354 children of the original CHAT study who under-
went both baseline and follow-up PSG and who had ECG signals 
meeting technical criteria were included in this study. The data-
set comprised 181 children who underwent eAT and 173 chil-
dren who were assigned to the WWSC group and participated in 
both the baseline and follow-up sleep studies and had PSG that 

met the technical requirements (Figure  1). Baseline anthropo-
morphic characteristics are summarized in Table 1. Both groups 
had comparable demographic profiles. Overall, the mean age of 
the participants at baseline was 6.55 years and 48 per cent were 
male. Approximately half (54.5 per cent) of the sample were 
African American and 33.9 per cent were obese.

At follow-up, 82.3 per cent of participants in the eAT group 
no longer had AHI-defined OSAS, i.e. values of AHI ≤ 2 and 
OAI ≤ 1, whereas in the WWSC group, 43.4 per cent of children 
had spontaneous normalization of AHI scores. Children in the 
WWSC group who AHI-normalized spontaneously had an AHI of 
3.42 ± 2.99 at baseline and 0.58 ± 0.47 at follow-up (p < 0.00001). 
Children who did not normalize had a baseline AHI of 6.81 ± 5.84 
at baseline that increased to 9.18 ± 11.61 at follow-up (p = 0.07). 
In the eAT group, children who normalized had a baseline and 
follow-up of 5.20 ± 5.49 and 0.50 ± 0.44 (p < 0.00001), respectively. 
Children who did not normalize following surgery had baseline 
and follow-up AHIs of 7.37 ± 5.32 and 3.63 ± 3.38 (p = 0.0014), 
respectively, i.e. were more severely affected.

Spontaneously AHI-normalized children had significantly 
lower BMI z-score at baseline compared with children in the 
WWSC arm who did not normalize (0.63 ± 1.15 vs. 1.08 ± 1.23, 
p = 0.018). The change in BMI z-score at follow-up was signifi-
cantly larger in children who did not normalize spontaneously 
(−0.007 ± 0.40 vs. 0.11 ± 0.33, p = 0. 038). There was no significant 
relationship between race and spontaneous AHI normalization.

Around 5.4 per cent of children were treated with 
Montelukast and approximately 21.2 per cent received nasal 
glucocorticoids for rhinitis or asthma at the time of the base-
line PSG. Approximately 7.7 per cent of children in the eAT arm 
and 9.2 per cent in the WWSC arm were on Montelukast, and 
23.8 and 26 per cent of children in the eAT arm and WWSC arm, 

Figure 1. Summary of CHAT study participants included in the heart rate pattern analysis.
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respectively, were on nasal glucocorticoids at the time of the fol-
low-up PSG, representing a small but statistically nonsignificant 
increase compared with the baseline sample. Comparing chil-
dren in the WWSC arm who did not spontaneously normalize 
versus those who did, no significant differences were found in 
the use of Montelukast (10.20 vs 8.70 per cent) or glucocorticoids 
(29.59 vs 21.33 per cent).

Effect of sleep stage on heart rate patterns

During baseline PSG the percentage of heart rate patterns 
observed, during different sleep stages, were 18.64  ±  6.65 
per cent (N2), 16.52  ±  6.92 per cent (N3), and 16.57  ±  5.12 per 
cent (R), respectively, showing a significant sleep stage effect 
(p < 0.00001). Post hoc testing showed more frequent patterns in 
N2 sleep compared with both N3 and rapid eye movement (REM) 
sleep stages (N2 vs N3: p  <  0.00001; N2 vs REM: p  <  0.00001). 
Consequently, all subsequent data analyses were carried out for 
individual sleep stages.

Correlation between heart rate patterns and 
polysomnographic measures of hypoxia and 
hypoventilation

Statistically significant, but small positive correlations between 
the relative frequency of heart rate patterns and the extent of 
oxygen desaturation (percentage of sleep time spent at oxygen 
saturation T < 90 per cent: N2: r = 0.139, p < 0.001; N3: r = 0.134, 
p < 0.001; REM: r = 0.081, p < 0.032) were observed. A small, yet 
statistically significant positive correlation between heart rate 
pattern frequency and the percentage of sleep time at a partial 
CO2 pressure above 50 mm Hg (log-transformed; 0 replaced with 
0.00001): (N2: r = 0.202, p < 0.00001; N3: r = 0.220, p < 0.00001; REM: 
r = 0.172, p < 0.0001) was observed. Heart rate pattern frequency 
also showed a statistically significant, but weak positive correl-
ation in all three sleep stages with AHI calculated as the total 
number of obstructive apneas and hypopneas associated with 
all desaturations per hour of sleep (N2: r = 0.319, p < 0.00001; N3: 
r = 0.313, p < 0.00001; REM: r = 0.239, p < 0.00001) and also with 

the central apnea index based on all desaturations (N2: r = 0.196, 
p < 0.00001; N3: r = 0.152, p < 0.00005; REM: r = 0.180, p < 0.00001).

Effect of surgery on heart rate patterns

A significant reduction in the percentage of heart rate patterns 
was observed at follow-up PSG in all three sleep stages (N2: 
p < 0.00001; N3: p < 0.00001; REM: p < 0.0001; Table 2). Significant 
study arm differences were observed in non-REM sleep stages 
(N2: p  =  0.019; N3: p  =  0.011). Study x study arm interaction 
effects were significant in all stages of sleep (N2: p  =  0.0006; 
N3: p = 0.0026; REM: p = 0.0046), consistently pointing towards a 
reduction in heart rate patterns in the eAT group post-AT. Post 
hoc results demonstrate significantly less frequent patterns 
during follow-up compared with baseline PSG in all three sleep 
stages in the eAT group only (N2: p < 0.00001; N3: p < 0.00001; 
REM: p < 0.00001). The eAT group displayed significantly fewer 
heart rate patterns than the WWSC group during follow-up PSG 
throughout all sleep stages (N2: p < 0.00005; N3: p < 0.0001; REM: 
p = 0.011).

Of the covariates included in the models, increase in age was 
associated with a significant reduction in heart rate patterns in 
all three sleep stages (N2: F = 14.60; p = 0.00015; N3: F = 14.78; 
p = 0.00013; REM: F = 7.54; p = 0.0062). Gender showed a small 
yet significant association with heart rate pattern frequency in 
sleep stage N3 (F = 4.92; p = 0.027), where boys had fewer pat-
terns than girls. BMI z-score change between follow-up and 
baseline was also significantly, but weakly associated with heart 
rate patterns in all the sleep stages (N2: F = 4.85; p = 0.028; N3: 
F = 7.71; p = 0.0056; REM: F = 4.76; p = 0.030), where a greater BMI 
z-score increase was associated with a higher the percentage of 
heart rate patterns.

Effect of AHI normalization and surgery on heart 
rate patterns

To explore the effect of AHI normalization on heart rate pat-
terns, we performed three-way ANCOVA. No significant differ-
ences in heart rate pattern frequency were observed between 

Table 1. Baseline characteristics of participants grouped according to study arm and AHI normalization at 7 months, respectively

Characteristic

Study arm AHI at 7 months

Early adenotonsillectomy
(N =181)

Watchful waiting
(N =173)

Normalized
(N = 224)

Not normalized 
(N =130)

Age^ (years) 6.57 ± 1.438 6.53 ± 1.38 6.98 ± 1.43 7.25 ± 1.43
Male sex—N (%) 81 (44.8%) 89 (51.4%) 105 (46.9%) 65 (50%)
Race—N (%)†

African American 96 (53%) 97 (56.1%) 106 (47.3%) 87 (66.9%)
Caucasian 65 (35.9%) 59 (34.1%) 91 (40.6%) 33 (25.4%)
Other 20 (11%) 17 (9.8%) 27 (12.1%) 10 (7.7%)
BMI z score‡ 0.88 ± 1.35 0.88 ± 1.22 0.92 ± 1.19 1.40 ± 1.23
Weight class—N (%)§

Obese (BMI ≥ 95th percentile)—N (%) 62 (34.3%) 58 (33.5%) 70 (31.3%) 67 (51.5%)
Montelukast—N (%) 9 (5%) 10 (5.8%) 14 (6.3%) 16 (12.3%)
Glucocorticoids||—N (%) 38 (21%) 37 (21.4%) 53 (23.7%) 35 (26.9%)
OAHI 5.58 ± 5.51 5.34 ± 5.09 0.53 ± 0.45 7.82 ± 10.48

† Race reported by caregivers.
‡Data are presented as mean ± SD.
§ Overweight was defined as a body mass index in the 85th percentile or higher, obese as a BMI in the 95th percentile or higher.
||Topical application.
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normalized and not normalized, or study x AHI-normalization 
interaction, or study x study arm x AHI normalization interac-
tions were observed in any of the sleep stages (Table 3).

Significant differences in heart rate patterns between base-
line and follow-up were observed in nonrapid eye movement 
(NREM) sleep stages, consistent with the two-way analysis. 
Comparing the eAT and WWSC arms, heart rate patterns in the 
eAT arm are slightly but statistically significantly less frequent 
than in the WWSC arm in N3. Study x study arm interaction 
effects and study arm x AHI-normalization interaction effects 
were significant in all stages of sleep, consistently pointing 
towards a bigger reduction in heart rate patterns post-AT in both 
AHI-normalized and not normalized children.

Of the covariates included in the models, increase in age was 
associated with a reduction in heart rate patterns in non-REM 
sleep (N2: F  =  7.211; p=0.008, N3: F  =  87.386; p=0.007). Study x 
BMI z-score change interaction showed a weak yet significant 
association with heart rate patterns in sleep stage N2 (F = 4.117; 
p=0.043). The percentage of patterns increases as the BMI z-score 
increases.

Post hoc comparison of children who did not AHI-normalize 
spontaneously at follow-up (Figure  2) showed significantly 
more frequent heart rate patterns in all three sleep stages than 
children who underwent surgery, but did not normalize (N2: 
p = 0.0005 [Figure 2, A and D]; N3: p = 0.0004 [Figure 2, B and E]; 
REM: p = 0.0126 [Figure 2, C and F]).

Considering baseline PSG in the WWSC arm, children whose 
AHI normalized spontaneously showed significantly lower fre-
quencies of heart rate patterns than children in whom AHI 
did not normalize (N2: p = 0.027; N3: p = 0.037; REM: p = 0.016) 

These differences persisted at follow-up (N2: p  =  0.001; N3: 
p = 0.005; REM: p = 0.013). Children who had spontaneously AHI-
normalized also showed significant less frequent heart rate pat-
terns at baseline compared with children in the eAT arm in N2 
(p = 0.0341, Figure 2, A and D) and REM sleep (p = 0.0053, Figure 2, 
C and F).

In the WWSC arm, heart rate patterns were significantly 
less frequent during follow-up PSG than during baseline PSG in 
both the AHI-normalized and not normalized subgroup in NREM 
sleep stages (AHI-normalized: N2: p = 0.002; N3: p = 0.007, AHI 
not normalized: N2: p = 0.024; N3: p = 0.026).

Similar results were also found in the eAT arm where the dif-
ference was even more significant. Heart rate patterns reduced 
even more dramatically at follow-up than in the WWSC arm in 
both AHI-normalized and not normalized subgroups in all sleep 
stages (AHI-normalized: N2: p < 0.00001; N3: p < 0.00001; REM: 
p < 0.00001, AHI-not normalized: N2: p = 0.0002; N3: p = 0.0015; 
REM: p = 0.020).

Discussion
Our study demonstrates that AT for childhood obstructive sleep 
apnea affects autonomic cardiac modulation. By employing 
a nonlinear signal processing technique originating from the 
mathematical framework of symbolic dynamics, we observed 
a significant reduction in the relative frequency of steadily 
increasing and decreasing heart rate patterns post AT; this effect 
was independent of the AHI-normalization.

Considering the WWSC arm, the AHI normalized sponta-
neously in 43.35 per cent of children. A  reduction in steadily 

Table 2. Comparison of heart rate patterns between study, study arm for three sleep stages N2, N3, and R

Heart rate 
patterns 
[%]

Early adenotonsillectomy
(N = 181)

Watchful waiting
(N = 173) P

Baseline Follow-up Baseline Follow-up Study Study Arm Study Arm x Study

N2 18.98 ± 6.75 14.34 ± 5.79 18.30 ± 6.54 16.88 ± 6.16 <0.00001 0.019 0.0006
N3 16.74 ± 7.14 12.41 ± 6.01 16.29 ± 6.69 14.9 ± 6.50 <0.00001 0.011 0.0026
R 16.98 ± 5.23 14.27 ± 4.64 16.13 ± 4.99 15.47 ± 4.39 <0.0001 n.s. 0.0046

All p values have been obtained using two-way ANCOVA adjusted for likely confounding factors of age (5 to 10 years of age), race (black, white, and other), BMI 
z-score, BMI z-score change, and gender.
n.s. = not statistically significant.

Table 3. Per-protocol comparison of heart rate patterns between sleep study, study arm and AHI normalization for three sleep stages

Heart rate 
patterns [%]

Early adenotonsillectomy 
(N = 181)

Watchful waiting 
(N = 173) P

Normalised  
AHI 
(N = 149)

AHI not  
normalised 
(N = 32)

Normalised  
AHI 
(N = 75)

AHI not 
normalised 
(N = 98) Study

Study 
Arm Normalised

Study  
x  
Study 
arm

Study Arm  
x  
AHI 
normalization

Study  
x  
AHI 
normalization

Study Arm  
x  
Study  
x  
AHI normalization

N2 Baseline 19.39 ± 6.76 17.05 ± 6.43 16.93 ± 6.92 19.34 ± 6.07 0.007 0.082 n.s. 0.0001 0.009 n.s. n.s.
Follow-up 14.48 ± 5.51 13.69 ± 7 15.2 ± 6.07 18.17 ± 5.94

N3 Baseline 17.28 ± 7.1 14.24 ± 6.88 14.98 ± 7.33 17.3 ± 5.99 0.005 0.035 n.s. 0.001 0.006 n.s. n.s.
Follow-up 12.64 ± 5.74 11.33 ± 7.11 13.33 ± 6.24 16.11 ± 6.48

R Baseline 17.36 ± 5.18 15.23 ± 5.18 15.1 ± 4.92 16.91 ± 4.93 n.s. n.s. n.s. 0.003 0.010 n.s. n.s.
Follow-up 14.44 ± 4.35 13.51 ± 5.83 14.6 ± 4.23 16.14 ± 4.41

All p values have been obtained using three-way ANCOVA adjusted for likely confounding factors age (5 to 10 years of age), race (black, white, and other), BMI z-score, 
BMI z-score change, and gender.
n.s. = not statistically significant.
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increasing/decreasing heart rate patterns was evident in NREM 
sleep, possibly due to the effect of aging [29]. Importantly, 
children whose AHI normalized spontaneously already had 
fewer heart rate patterns at baseline PSG and also lower AHI 
values, demonstrating that their OSAS was milder to begin 
with, challenging the notion of spontaneous OSAS resolution. 
Quantification of heart rate patterns may help stratifying chil-
dren who may not require AT.

It is conceivable, and indeed it has been frequently argued, 
that the diagnostic accuracy of PSG is poor in children with 
mild UAO based on AHI criteria, classifying them somewhat 
arbitrarily as either normal or having OSAS [10, 30]. The rate of 
spontaneous OSAS resolution, observed in the original CHAT 
report, exemplifies the bluntness of AHI as a much-described 
gold standard diagnostic tool and predictor of outcomes in the 
pediatric population. Considering those children that have been 
classified as not normalized based on their AHI regardless of 
the study arm, we observed the reduction in their increasing/
decreasing heart rate patterns after 7 months, but the effect was 
significantly higher in children who underwent surgery com-
pared with those in the WWSC arm. This further demonstrates 
the benefit of AT for reducing autonomic cardiac modulation 
in these children; pronounced autonomic cardiac modulation 
appears to persist if not treated.

The reduction in frequency of steadily increasing/decreas-
ing heart rate patterns following surgery indicates a reduction in 
neural outflow to the heart. Although the (patho-) physiological 
source of those patterns cannot be clearly identified from this 
analysis, they likely reflect subcortical activation due to increased 
inspiratory load. We have previously shown slower breathing rate 
and increased thoraco-abdominal asynchrony in these children 
[31] and others [32] that might modulate cardiac rhythm via cen-
tral mechanisms and baroreflex blood pressure control.

Importantly, we excluded any discrete respiratory events 
identified by experienced sleep technicians using current scor-
ing conventions from the analysis; heart rate patterns quan-
tified in this study are therefore not the secondary result of 
clinically scored obstructive events, but rather capture inde-
pendent information that is currently not included in standard 
sleep assessment.

HRV has been previously studied in children with OSAS to 
quantify cardiac autonomic control, but findings reported in the 
literature are conflicting. In an early study on a small number of 
children with OSAS, typical heart rate patterns associated with 
respiratory events were observed in Poincare plots [15]. More 
recent studies have shown lower HRV in children with OSAS 
compared with controls, during wakefulness [2] and event-free 
sleep and argued that it indicates an increased sympathetic 
activity [16]. Other authors believe reduced HRV points towards 
an overall depression of autonomic tone [17]. Power spectrum 
analysis of HR during event-free period sleep in children with 
OSAS demonstrated increased power in lower frequency range 
in comparison to normal children, which has been interpreted 
as increased sympathetic activity [18]. Others have reported 
higher HRV in children with moderate to severe OSAS argu-
ing for altered “sympathovagal balance” during sleep that was 
present when respiratory events are included and in event-free 
sleep [19].

Discrepancy in HRV analysis results can be partly explained 
by methodological differences (e.g. the somewhat arbitrary 
definitions of high frequency and low frequency bands in the 
power spectrum, neglecting the confounding effect of respira-
tory rate) and high interindividual differences that are common 
in the normal population and more so in patient cohorts, yield-
ing low sensitivity and specificity. Previous analysis of CHAT 
data found a weak relationship between OSAS and heart rate 

Figure 2. Heart rate patterns in sleep stages in children who underwent eAT versus WWSC at baseline and follow-up PSG grouped by AHI normalization. Data are 
presented as mean and SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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[33], but no differences in respiratory sinus arrhythmia [4]. Here, 
we employed a technique that overcomes some of these issues; 
symbolic analysis is robust to noise, captures nonlinear as 
well as linear characteristics, and often yields superior perfor-
mance. Unlike conventional HRV analysis, it does not quantify 
the magnitude of HRV, but its dynamics (patterns). Results are 
therefore unaffected by high interindividual differences in the 
magnitude HRV.

Our study suggests that heart rate pattern analysis may add 
additional information towards diagnosis of OSAS by quantify-
ing the level of autonomic modulation in children at the mild–
moderate range of the OSAS spectrum. Frank apneic events 
rarely occur in that part of the spectrum in children; therefore, 
counting the frequency the discrete respiratory events may not 
capture the full extent of respiratory disturbance. For example, 
subtle UAOs may cause children to snore when working against 
increased inspiratory load, and those characteristics are not 
identified in the OAHI index [34, 35].

Our analysis shows that heart rate pattern frequency was 
positively correlated with standard PSG measures of hypoxia 
and hypercapnia, suggesting that children with more serve 
OSAS also have higher levels of respiratory load during respira-
tory event-free sleep, as reported previously [31].

Our study has several limitations: the children studied here 
were only in the mild to moderate range of the OSAS spectrum, 
and only been followed for a short period of 7 months. The heart 
rate patterns described here may likely be more frequent in 
more severe OSAS cases. We did not observe an overall effect of 
AHI-normalization on heart rate pattern frequency; this illus-
trates limited ability of the AHI to capture autonomic activation 
related to mild OSAS. Several recordings were excluded from the 
analysis due to the poor quality of the signal. Anti-inflammatory 
medication, such as Montelukast, might have some effect on 
autonomic heart rate modulation in some patients. Interestingly, 
many children in both groups were receiving nasal steroids, 
which did not seem to influence AHI normalization.

In conclusion, children with OSAS benefit from AT that 
reduces cardiac autonomic modulation during sleep, regard-
less of whether the child was considered cured as measured by 
AHI. We identified a previously unreported baseline difference 
in heart rate dynamics in children who normalize AHI spon-
taneously. Symbolic analysis of heart rate pattern is a robust 
tool for measuring the cardiac autonomic modulation and may 
therefore help identify children with mild–moderate OSAS who 
do not require surgery.

Supplementary Material
Supplementary material is available at SLEEP online.
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a b s t r a c t

Objective: The aim of this study was to assess cardiovascular autonomic modulation in children with
upper airway obstruction (UAO), to compare this modulation to that of non-snoring children and to
investigate the effect of adenotonsillectomy (AT).
Methods: ECG and finger photoplethysmographic signals obtained from overnight polysomnographic
(PSG) recordings of 31 children with mild-to-moderate UAO and 34 non-snoring children were analysed.
The extent of autonomic modulation was assessed by symbolic analysis of heart period (HP), pulse wave
amplitude (PWA), and their joint dynamics during nonerapid eye movement (NREM) sleep and rapid eye
movement (REM) sleep.
Results: Children with UAO showed more frequent patterns of monotonically increasing and decreasing
HP in NREM sleep and monotonically increasing and decreasing joint PWA-HP patterns in REM and
NREM sleep at baseline compared to controls, even when considering only periods of sleep free of
discrete respiratory events. Following AT, HP, and joint PWA-HP dynamics significantly altered towards
levels observed in the control group.
Conclusions: In children with mild-to-moderate UAO, cardiovascular autonomic modulation is more
prevalent, even during quiet, event-free sleep. AT appears to reverse this pattern.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Upper airway obstruction (UAO) is common in children and
ranges from primary snoring to obstructive sleep apnoea. While
UAO has been commonly associated with neurocognitive and
behavioural impairment, increasing evidence suggests that it may
also be associated with functional or structural cardiac changes and
increased risk of cardiovascular disease later in life [1,2].

Because enlarged tonsils and adenoids are often the underlying
cause of UAO in children, adenotonsillectomy (AT) is often recom-
mended as the first line of treatment. The efficacy of AT for children
with UAO is well established, but residual obstruction and parental
concerns may persist post-surgery [3e7].

While severe levels of UAO can be easily identified by overnight
polysomnography (PSG) using the apnoeaehypopnoea index (AHI),
mild-to-moderate obstruction is less easily delineated based on
AHI because it does not capture the subtle changes in breathing
associated with increased inspiratory load that do not qualify as
hypopnoea. Given that even children at the milder end of UAO
appear to develop cognitive and cardiovascular changes, the
effectiveness of AHI as a measure of paediatric UAO has become an
increasing concern [3,8,9].

Chronic autonomic activation has been identified as a key driver
for structural and functional cardiovascular changes in children
with UAO [10e14]. Studies have shown autonomic system
dysfunction in children with UAO during both sleep [15e18] and
daytime wake [19]. Autonomic activation can be observed on ECG
and finger photoplethysmogram (PPG) bymeasuring the variability
in heart period (HP), pulse wave amplitude (PWA) or pulse transit
time (PTT) [2,20e23]. During sleep, sympathetic overactivity and
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weaker parasympathetic modulation have been shown in children
with UAO [13]. During wakefulness, magnitude of sympathetic
discharge-induced attenuation of pulse arterial tonometry signal
was found to be significantly increased in children with UAO [15].
Blood pressure regulation has also been explored to quantify
autonomic dysfunction in children during sleep [11,14].

The aim of this study was to probe autonomic nervous system
(ANS) activation in the context of UAO by measuring PWA and HP
during sleep and to quantify the following: (i) the frequency of
monotonic increase or decrease in beat-to-beat PWA and HP and
(ii) concurrent monotonic beat-to-beat changes in both PWA and
HP by using the concept of joint symbolic dynamics [24e27].
Symbolic dynamics is an effective approach to characterise the
dynamics of time series. It involves coarse graining of the observed
time series into a few symbols and subsequent quantification of
sequences of symbols (‘words’). Symbolic dynamics has been
extensively explored to characterise dynamics in RR interval time
series in health and disease, and its relevance in the field of heart
rate variability (HRV) research has been firmly established [28].
Rather than quantifying the magnitude of HRV, the occurrence of
specific patterns is quantified. Considering that the finger
plethysmogram is uncalibrated and hence its variance difficult to
interpret, symbolic analysis may be useful for identifying patterns
of amplitude reduction typical of vasoconstriction associated with
autonomic arousal. PWA changes may be more sensitive to
subcortical arousal than to PTT shortening [29].

We hypothesised that autonomic activation during sleep is
augmented in children with UAO compared to that in non-snoring
children, and this can be captured by symbolic analysis of HP and
PWA. Surgical treatment will restore the cardiac autonomic control
to normal levels.

2. Material and methods

2.1. Study participants

We analysed overnight polysomnographic (PSG) recordings of 40
childrenwith parental reports of frequent snoring (UAO) and40non-
snoring children matched for age and gender; details of study pro-
tocols can be found in a previously published study [30]. In brief,
childrenwithUAOunderwentPSGbeforeATandsixmonths after the
procedure. Non-snoring children underwent sleep studies at similar
time points. Childrenwere excluded if they had undergone previous
ENTor craniofacial surgery; had amedical or psychological condition
associated with hypoxaemia, sleep fragmentation, cognitive and/or
behavioural problems andwere currently takingmedicationsknown
to affect sleep, respiration or neuropsychological performance. This
studywas approved by theWomen's and Children's Health Network
Human Research Ethics Committee, South Australia, with parental
consent and child assent obtained from all participants.

2.2. Overnight PSG and sleep scoring

Each child was well on the night of the sleep study and free of
sedation, sleepdeprivationorany recent illness including respiratory
infection. Overnight PSG began close to each child's usual bedtime,
and a parent was present throughout the procedure. Using the S-
Series Sleepwatch System (Compumedics, Australia), the following
signals were continuously recorded: electroencephalogram (C3-A2
andC4-A1), left and right electrooculogram (EOG), heart rate by ECG,
submental and diaphragmatic electromyogram (EMG) with skin
surface electrodes, piezoelectricmotion detection for legmovement,
thermistor and nasal pressure to measure oronasal airflow, respira-
tory movements of the chest and abdominal wall using uncalibrated
respiratory inductive plethysmography, arterial oxygen saturation

(SpO2) by pulse oximetry (NellcorN-595, Covidien, Ireland;with a 3-
s averaging time), and transcutaneous carbon dioxide, using a heated
(43 !C) transcutaneous electrode (TINA, Radiometer Pacific,
Australia). Each child was monitored continuously overnight using
an infrared camera and by a paediatric sleep technician who also
documented observations of sleep behaviour including the presence
or absence of snoring. A repeat PSG was performed on average
29.4 ± 5.9 weeks later (range 19e55 weeks), after AT for the UAO
group and without any intervention for the control group.

Sleep stages were scored visually in 30-s epochs according to
the standardised EEG, EOG, and EMG criteria of Rechtschaffen and
Kales [31]. Movement time (>50% of an epoch obscured by
movement artefact) was scored as a separate category and was not
included in either sleep or wake time. Respiratory variables were
scored according to standard guidelines recommended for paedi-
atric sleep studies [32]. All respiratory events were scored if " 2
respiratory cycles in duration and associated with a minimum 3%
SaO2 desaturation and/or an arousal within two breaths of event
termination. Obstructive apnoeas were defined as the absence of
airflow associated with continued chest and abdominal wall
movement. Obstructive hypopnoeas were defined as a " 50%
reduction in the amplitude of RIP and/or airflow signal associated
with paradoxical chest/abdominal wall movement. The presence
of any other supportive data such as increased diaphragmatic or
submental EMG activity was further used to distinguish obstruc-
tive from central hypopnoeas. Central apnoeas were scored if
there was an absence of respiratory effort as determined by RIP
and diaphragmatic EMG in association with an absence of airflow.
Central apnoeas were also scored if the event lasted for " 20 s.
Central hypopnoeas were defined as a " 50% reduction in airflow
from the baseline in association with a " 50% reduction in respi-
ratory effort from the baseline. Apnoea events that included both
central and obstructive components were scored as a mixed
apnoea. The obstructive apnoeaehypopnoea index (OAHI) was
calculated as the total number of obstructive apnoeas, mixed ap-
noeas, and obstructive hypopnoeas per hour of total sleep time.
The total number of obstructive apnoeas, mixed apnoeas, and
obstructive hypopnoeas divided by the total sleep time and
expressed as the number of events/h of sleep yielded the OAHI.
The SpO2 desaturation index represents the number of " 3% O2
desaturations/h of sleep. The BMI z-scores were calculated using
the height and weight of the children measured on the night of
PSG along with established growth charts corrected for age and
gender [33].

2.3. PWA and HP measurement

In this study, finger PPG and ECG signals were analysed. Both
signals were sampled at 500 Hz and used to extract PWA and HP,
respectively.

HP was measured on the basis of QRS locations in ECG that were
automatically detected using a template matching algorithm and
subsequently visually checked for errors, which were manually
corrected.

The PWA was measured for each cardiac cycle as the amplitude
difference between the systolic peak and the preceding diastolic
valley of the PPG signal. PWA values were calculated only if a valid
pulse waveform could be identified within the time frame defined
by concurrent QRS complexes in ECG. For details, see online
supplement.

2.4. Joint symbolic dynamics of PWA and HP

Beat-to-beat values of PWA and HP were transformed into
a sequence of symbols f0; 1 and 2g based on the tertiary
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symbolisation scheme proposed by Baumert et al. [24], where
symbols are assigned on the basis of the following rules:

sn ¼

8
<

:

0 : ðxn % xn% 1Þ> lx
1 : ðxn % xn% 1Þ< % lx
2 : Otherwise

(1)

where sn is the nth symbol in the beat-to-beat time series, xn is the
nth PWA or HP in the beat-to-beat time series, xn% 1 is the preceding
PWA or HP in the beat-to-beat time series and lx is a pre-defined
non-negative threshold set for PWA or HP time series. In other
words, symbol 0 represents that the value difference between
current PWA or HP value and the previous one is greater than the
defined threshold lx, symbol 1 for the value difference less than the
negative value of the defined threshold lx and symbol 2 is for
anywhere else. From the resulting symbolic sequences, a series of
‘words’ of length three were constructed using a sliding window
approach, ie the window slides only by one symbol to the right at
the time. Because theword length is three and each symbol is taken
from an alphabet of three, the total number of possible word types
(eg, 020, 001, 201, …) is 27 (33 ¼ 27) (see Fig. 1).

The relative frequency of words 000 and 111, quantifying the
presence of monotonic increase and decrease of PWA or HP, was
used as a novel marker of autonomic activation during sleep. When
observed in HP, these symbolic patterns may capture cyclic
bradycardiaetachycardia sequences associated with obstructive
apnoeas [34], whereas in PWA, these patterns capture tonic vaso-
constrictions mediated by sympathetic activation owing to cortical
and/or subcortical arousal [35]. We also considered the joint
occurrence of these patterns in both PWA and HP as an additional
marker of monotonic changes.

Suitable values for the threshold lx were identified by system-
atically investigating its ability for differentiating HP and PWA
dynamics in children with UAO and non-snoring children, thereby
yielding suitable values of 0 ms for HP and 0 normalised units for
PWA, respectively. For details, see online supplement.

2.5. Statistical analysis

Anthropometric data were compared using one-way ANOVA.
PWA, HP and joint HP-PWA patterns were analysed separately for
NREM and REM sleep stages. The pairwise t-test was used to
examine the effect of sleep stage on PWA, HP and joint HP-PWA
patterns. Two-way ANCOVA was carried out to test the effects of
study (baseline versus follow-up; repeated measure) and group on
PWA, HP and joint HP-PWA patterns across, followed by post-hoc
comparison using the Bonferroni test. In the initial analysis, we
included the entire PSG to quantify the full extent of autonomic
modulation in the presence of respiratory perturbation. Subse-
quently, we reanalysed scored event-free sections of the PSG to
investigate whether autonomic activity is generally altered in the
absence of events triggering autonomic cardiovascular response.

Anthropometric variables that were likely to confound statisti-
cal analysis (bodymass index (BMI) z-score at baseline, BMI z-score
at follow-up, age at baseline and gender) were included in the
model as covariates. Spearman correlation analysis was performed
to explore the relationship with AHI at baseline and follow-up.

3. Results

3.1. Anthropometric data

In total, 65 of original study participants, who underwent both
baseline and follow-up PSG and whose plethysmography and ECG
signals met the technical criteria, were included in our study.

Fourteen children were excluded because of a missing pulse signal
in either one of the baseline or follow-up PSG. One child was
excluded because of a missing BMI z-score. Of the remaining par-
ticipants, 34 children were non-snoring and 31 children had UAO.
Both groups had comparable demographic profiles (Table 1). The
mean age of the participants at baseline was 7.6 years, and 56.9%
were male. There was no significant age difference between the
two groups at both baseline and follow-up. No significant differ-
ence in BMI z-score was found at baseline, but a slightly increased
BMI z-score was observed in the UAO group compared to controls
at follow-up. The average OAHI was significantly higher in children
with UAO than in controls at baseline. In the control group, all
children had a normal OAHI (ie, <1), whereas 20 children in the
UAO group had an OAHI <5 (ie, mild-to-moderate severity). After
AT, the UAO group still had a small but significantly higher average
OAHI, but no child had an OAHI >5.

3.2. Sleep stage and cardiovascular dynamics

To investigate the effect of sleep stage on symbolic and joint
symbolic dynamics of interest derived from PWA and HP, we
considered baseline PSG data from non-snoring children and chil-
dren with UAO (Table 2). Pairwise t-tests showed significantly
higher values in REM than in NREM sleep for all the measures in
both groups, when considering both event-free sleep and the entire
PSG, except for HP, which did not show significant group differ-
ences when the entire PSG was analysed. Because of the significant
sleep stage differences in PWA, HP, and joint HP-PWA patterns, all
subsequent data analyses were performed separately for these
sleep stages.

3.3. UAO and cardiovascular dynamics during the entire sleep
period

The results of two-way ANCOVA analysis based on symbolic and
joint symbolic dynamics of interest derived from HP and PWA
during the entire night sleep are summarised in Table 3. Although
no significant overall group differences between UAO and controls
or overall time effects between baseline and follow-up were
observed for PWA, HP and their joint patterns in either REM or
NREM sleep, we identified significant study ' group interaction
effects in HP and joint HP-PWA patterns across both NREM and
REM sleep as well as in PWA patterns during REM sleep. The results
are consistent with a higher relative frequency of symbolic patterns
associated with monotonic increases and decreases in HP and PWA
in children with UAO at baseline. Post-hoc comparison (Fig. 2)
confirmed significantly higher relative frequencies of HP and joint
HP-PWA patterns measures in children with UAO than in non-
snoring children in NREM sleep at baseline only (HP: p ¼ 0.018;
joint HP-PWA: p ¼ 0.011). Following AT, childrenwith UAO showed
significantly lower relative frequencies of HP and joint HP-PWA
measures than those at baseline in NREM sleep (HP: p < 0.0001;
joint HP-PWA: p < 0.0001) and significantly lower relative fre-
quencies of all three dynamics measures at follow-up than those at
baseline in REM sleep (PWA: p ¼ 0.015; HP: p ¼ 0.0004; joint HP-
PWA: p ¼ 0.0002).

3.4. UAO and cardiovascular dynamics during event-free sleep

Similar to the results reported in the previous section, no sig-
nificant overall group effects or overall time effects on HP, PWA, and
joint HP-PWA dynamics were observed during analysis of scored
event-free periods of sleep (Table 4). Study ' group interaction
effects were significantly different for HP and joint HP-PWA pat-
terns across both NREM and REM sleep and were significantly
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different in REM for PWA dynamics, all showing higher relative
frequencies in children with UAO group before AT (Table 4). Post-
hoc comparison (Fig. 2) at baseline confirmed that, compared to
the controls, the UAO groups showed significantly higher relative
frequencies of HP and joint HP-PWA dynamics measures during
NREM sleep (HP: p ¼ 0.033; joint HP-PWA: p ¼ 0.023), whereas
joint HP-PWA dynamics were more frequent during REM sleep
(p ¼ 0.026). Following AT, the UAO group showed significantly
reduced relative frequencies of HP and joint dynamics measures in
NREM sleep (HP: p < 0.0001; joint HP-PWA: p ¼ 0.00028) and all
three measures of symbolic dynamics in REM sleep compared to
baseline (PWA: p ¼ 0.0091; HP: p ¼ 0.00024; joint HP-PWA:
p < 0.0001).

3.5. Correlation between PWA, HP and their joint dynamics and
clinical measures of UAO

Significant positive correlations were found between PWA, HP,
and joint HP-PWA dynamics measures with OAHI in baseline PSG
during both NREM sleep (PWA: r ¼ 0.309, p ¼ 0.012; HP: r ¼ 0.287,
p ¼ 0.020; joint HP-PWA: r ¼ 0.343, p ¼ 0.005) and REM sleep of
overnight sleep (HP: r ¼ 0.256, p ¼ 0.040; joint HP-PWA: r ¼ 0.245,
p ¼ 0.049). Similar results were observed when considering only
the event-free periods of NREM sleep (PWA: r ¼ 0.283, p ¼ 0.022;
HP: r ¼ 0.272, p ¼ 0.028; joint HP-PWA: r ¼ 0.297, p ¼ 0.016) and
REM sleep (HP: r ¼ 0.256, p ¼ 0.039) during baseline PSG.

4. Discussion

The main finding of our study is significantly altered dynamics
of HP as well as joint patterns of HP and PWA during sleep in
childrenwith UAO compared to age- and sex-matched non-snoring
children. This was observed in sleep that included discrete respi-
ratory events, but notably, this was also observed during quiet,
event-free segments of NREM sleep. Joint HP-PWA patterns were
also significantly more pronounced during event-free REM sleep,

thus indicative of more frequent ANS activation in children with
UAO. Following AT, these cardiovascular activations significantly
reduced compared to baseline and appeared to normalise and were
no longer different from those of non-snoring children. In addition,
PWA patterns normalised in REM sleep but not in NREM sleep.

Both HP and PWA provide non-invasive measures of cardio-
vascular oscillations and response to cortical and subcortical acti-
vation [2,21,22]. PWA has been shown to attenuate as part of the
sympathetic nervous system activation because of subcortical
arousal, which results in peripheral vasoconstriction [2,20]. Partial
UAO, which is not clinically scored according to current guidelines,
could still trigger increase in heart rate and blood pressure.
Contraction of peripheral arterial blood vessels increases blood
flow velocity and reduces PWA. Although both HP and PWA show a
consistent response to arousal, they still react somewhat differently
when the body is exposed to different stressors [22]. An oscillatory
pattern in heart rate is observed as it recovers to baseline after a
normoxic event, but not after a hypoxic event. However, this phe-
nomenon has not been observed in PWA. Our results support the
differentiated HP and PWA response as illustrated by a frequency of
joint HP-PWA patterns which is much lower than that the fre-
quency of PWA and HP patterns (Fig. 2).

Comparing NREM sleep with REM sleep, monotonic HP and
PWA patterns as well as their joint occurrence were generally more
frequent in the latter, thus reflecting higher levels of ANS activation.
In children with UAO, there was no statistical difference in HP
patterns when respiratory events were included in the analysis,
possibly reflecting the cumulative effect of heart rate response to
obstruction.

Our study suggests that all three measures add information
towards quantifying the level of autonomic activation in children
with predominately, mild-to-moderate UAO, even in the absence of
discrete respiratory events. Because complete obstructions are rare
in children at the milder end of the UAO spectrum, the OAHI cannot
characterise the full extent of symptoms and sequelae of UAO such
as those during subtler version of obstructed breathing not

Table 2
Comparison of pulse wave amplitude (PWA), heart period (HP) and their joint symbolic dynamics between REM and NREM sleep in each group at baseline PSG.

Parameter Control (N ¼ 34) p value UAO (N ¼ 31) p value

NREM REM NREM REM

Entire PSG
PWA [%] 31.1 ± 8.01 36.2 ± 7.47 <0.0001 35.4 ± 7.84 39.5 ± 6.68 <0.0001
HP [%] 14.9 ± 5.71 18.1 ± 5.15 <0.0001 19.8 ± 7.09 20.8 ± 5.11 0.151
Joint HP-PWA [%] 3.35 ± 1.87 4.75 ± 2.18 <0.0001 5.15 ± 2.66 6.24 ± 2.54 <0.001

Event-free
PWA [%] 30.1 ± 8.30 35.6 ± 7.71 <0.0001 34.1 ± 8.53 38.9 ± 7.37 <0.0001
HP [%] 13.8 ± 5.87 16.9 ± 5.31 <0.0001 18.5 ± 7.59 20.1 ± 5.56 0.023
Joint HP-PWA [%] 2.69 ± 1.76 4.11 ± 2.13 <0.0001 4.29 ± 2.67 5.70 ± 2.52 <0.0001

All p values have been obtained using paired t-tests.

Table 1
Subject demographics of non-snoring children (Control) and children with upper airway obstruction (UAO) at baseline and follow-up.

Variables Baseline Follow-up

Control (n ¼ 34) UAO (n ¼ 31) p Control (n ¼ 34) UAO (n ¼ 31) P

Age, years 7.9 ± 2.7 7.1 ± 2.6 ns 8.3 ± 2.7 7.8 ± 2.6 ns
BMI z-score 0.35 ± 0.88 0.67 ± 1.35 ns 0.34 ± 0.85 0.89 ± 1.18a 0.032
OAHI (median, range) 0.32 ± 1.21 6.19 ± 10.06a 0.0015 0.26 ± 0.35 0.90 ± 0.97a 0.0006

0.00 (0e7) 2.75 (0e49.64) 0.16 (0e1.69) 0.58 (0e3.17)
CAHI (median, range) 0.70 ± 0.84 1.38 ± 2.22 ns 0.49 ± 0.58 0.90 ± 0.74a 0.017

0.41 (0e4.42) 0.65 (0e10.28) 0.33 (0e2.76) 0.95 (0e2.79)
Gender, n 17 males, 17 females 20 males, 11 females 17 males, 17 females 20 males, 11 females

Data are presented as mean ± SD.
a Significant difference between UAO OAHI at baseline and follow-up and BMI z-score at follow-up.

X. Liu et al. / Sleep Medicine 50 (2018) 55e6258



Fig. 1. Schematic illustrating the analysis of symbolic dynamics of heart period (RR) and pulse wave amplitude (PWA). Joint symbolic dynamics are captured in the diagonals of the
Word-type distribution matrix.
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identified as an apnoeic event [36,37]. All three measures were
positively associated with OAHI throughout NREM sleep, especially
joint PWA-HP patterns. Possibly, the relative dormancy of the
sympathetic nervous system during normal NREM sleep makes our
novel measures more susceptive to ANS activation patterns. By
contrast, baseline sympathetic activity is already high in REM sleep;
the superimposed effect of UAO may be comparably lower.

Despite a relatively low incidence of monotonic increases and
decreases, more robust information on cardiovascular activation
related to UAO may be obtained by analysing HP and PWA patterns
jointly. Although PWA patterns were not discriminatory, joint
analysis of PWA-HP patterns yielded bigger differences than HP
patterns alone, in the ability to distinguish between groups. Pre-
sumably, a higher AHI is also associated with a more frequent
subcortical arousal even in the absence of obstructive apnoeas or
hypopnoeas.

Previous studies have demonstrated that AT is effective in
reducing the number of apnoeic events in children with UAO, but
some of the UAO symptoms remain post AT [4e6,38], such as non-
specific impaired breathing. However, we have previously shown in

these data that AT also normalises overall increased inspiratory
effort caused by UAO, as indicated by lower thoracoabdominal
asynchrony after surgery [39], which we subsequently confirmed in
a secondary analysis of the childhood AT trial [40]. Notably, thor-
acoabdominal asynchrony was inversely related to quality of life.
This raises the questionwhether AHI, the current clinical diagnostic
marker that quantifies UAO in children, is effective. This study
suggests that children with primarily mild-to-moderate UAO also
benefit from AT, which resulted in normalised PWA, HP, and joint
PWA-HP patterns in REM sleep as well as HP and joint PWA-HP
patterns in NREM sleep (Fig. 2).

PPG is non-invasive and a commonly used physiological signal
for probing cardiac pulse waves. It is readily available in most PSG
systems, and it can be used to extract simple non-invasive mea-
sures of autonomic activity such as PTT in addition to PWA [22].
While PWA measures the amplitude of each pulse, PTT measures
the time taken for a pulse to propagate through the arterial tree.
Both PWA and PTT react in a similar way to autonomic arousal, but
it remains to be establishedwhichmeasure is more sensitive. In our
previous study of HP and PTT that utilised a similar symbolic

Table 3
Comparison of pulse wave amplitude (PWA), heart period (HP) and their joint symbolic dynamics obtained from REM and NREM sleep periods of overnight PSG.

Parameter Control (N ¼ 34) UAO (N ¼ 31) p value

Baseline Follow-up Baseline Follow-up Study Group Study x Group

PWA NREM [%] 31.1 ± 8.01 30.7 ± 8.60 35.4 ± 7.84 32.1 ± 8.01 0.385 0.254 0.116
PWA REM [%] 36.2 ± 7.47 36.6 ± 7.84 39.5 ± 6.68 36.8 ± 7.10 0.704 0.767 0.027
HP NREM [%] 14.9 ± 5.71 15.2 ± 6.08 19.8 ± 7.09 14.9 ± 5.63 0.823 0.298 <0.0001
HP REM [%] 18.1 ± 5.15 17.9 ± 4.64 20.8 ± 5.11 17.9 ± 4.46 0.501 0.487 0.025
Joint HP-PWA NREM [%] 3.35 ± 1.87 3.34 ± 2.09 5.15 ± 2.66 3.61 ± 1.88 0.586 0.105 0.0040
Joint HP-PWA REM [%] 4.75 ± 2.18 4.81 ± 2.26 6.24 ± 2.54 4.88 ± 1.89 0.382 0.434 0.0037

All p values have been obtained using two-way ANCOVA adjusted for likely confounding factors of age at baseline (3.25e12.87 years of age), BMI z-score at baseline, BMI z-
score at follow-up and gender.

Fig. 2. Bar plots of univariate PWA, HP and joint HP-PWA dynamics throughout the entire sleep recordings (AeC) and during event-free sleep (DeF) at baseline and follow-up for
both non-snoring children (control), and childrenwith upper airway obstruction (UAO). Data are presented as mean ± SEM. NREM: nonerapid eye movement sleep; REM: rapid eye
movement sleep. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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dynamics approach, no significant improvement was found in
children with UAO [41], whereas multivariate autoregressive
modelling of HP and PWA dynamics identified improvement in
cardiovascular control following AT in these children [42].

Consistent with previous findings [43,44], BMI increased
following AT. Although it is beyond the scope of this study to
determine why this occurs, it is important to consider the impact of
disproportionate growth on PWA and HP.

Our study has several limitations. The age of the children varied
across awide range, whichmight have affected the results. Younger
children are more likely to have ANS activation than older children
because of the development of the ANS [45]. The severity of UAO
varied broadly, although most children had mild-to-moderate UAO
levels, which, together with the small sample size, prevented us
from analysing the effect of severe UAO on ANS activation. Owing to
the lack of calibration of finger plethysmograms, our analysis does
not relyonabsolute valuesof PWA. Therefore, thedynamic changeof
PWA only captures relative changes in peripheral vascular tone and
sympathetic nervous system activation, respectively. Because the
original study commenced before the release of the ASSM recom-
mendations, Rechtschaffen and Kales criteria were used for scoring.

5. Conclusion

Symbolic analysis of joint PWA-HP dynamics suggests increased
activation of ANS in children with UAO that persists throughout
scored event-free sleep. This implies that AT not only resolves
respiratory obstructions in children with UAO but also normalises
the ANS activation during scored event-free sleep. Assessing joint
PWA-HP patterns may provide additional information when
assessing UAO when combined with current clinical criteria using
overnight PSG. This study adds to a growing body of evidence that
ANS dysfunction is evident even in childrenwith mild-to-moderate
UAO, which if left untreated may be the precursor to the develop-
ment of cardiovascular disease in adulthood.
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Abstract 
Objective: To investigate the effect of adenotonsillectomy on OSAS symptoms based on a data-

driven approach and thereby identify criteria that may help avoid unnecessary surgery in children 

with OSAS. 

Methods: In 323 children enrolled in the Childhood Adenotonsillectomy Trial, randomized to 

undergo either early adenotonsillectomy (eAT; N=165) or a strategy of watchful waiting with 

supportive care (WWSC; N=158), the apnea-hypopnea index, heart period pattern dynamics and 

thoraco-abdominal asynchrony measurements from overnight polysomnography (PSG) were 

measured. Using machine learning, all children were classified into one of two different clusters 

based on those features.  The cluster transitions between follow-up and baseline PSG were 

investigated for each to predict those children who recovered spontaneously, following surgery 

and those who did not benefit from surgery. 

Results: The two clusters showed significant differences in OSAS symptoms, where children 

assigned in cluster A had fewer physiological and neurophysiological symptoms than cluster B. 

While the majority of children were assigned to cluster A, those children who underwent surgery 

were more likely to stay in cluster A after 7 months. Those children who were in cluster B at 

baseline PSG, were more likely to have their symptoms reversed via surgery. Children who were 

assigned to cluster B at both baseline and 7 months after surgery had significantly higher end-tidal 

carbon dioxide at baseline. Children who spontaneously changed from cluster B to A presented 

highly problematic ratings in behaviour and emotional regulation at baseline. 

Conclusions: Data-driven analysis demonstrated that AT helps to reverse and to prevent the 

worsening of the pathophysiological symptoms in children with OSAS. Multiple 

pathophysiological markers used with machine learning can capture more complete information 

of childhood OSAS. Children with mild physiological and neurophysiological symptoms could 

avoid AT, and children who have UAO symptoms post AT may have sleep-related hypoventilation 

disease which requires further treatment. Furthermore, the findings may help surgeons more 

accurately predict who they should perform AT on.  

Keywords: sleep apnea, children, adenotonsillectomy, machine learning, data-driven 
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Statement of significance 
This study shows that machine learning can be used to demonstrate the efficacy of 

adenotonsillectomy for childhood obstructive sleep apnea syndrome. We identified previously 

unreported baseline differences in children who reversed their pathophysiological symptoms 

spontaneously and therefore could avoid surgery. The combination of OAHI3, N2 event free heart 

period pattern dynamics and N3 event free thoraco-abdominal asynchrony measurements may, 

help identify children with mild-moderate symptoms who do not require surgery. 
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Introduction 
Between 3 to 15% of children are reported as having upper airway obstruction (UAO) during sleep 

[1]. Although a wide spectrum of UAO from primary snoring to obstructive sleep apnea syndrome 

(OSAS) exists, the majority of children are at the milder end of the range. Children with UAO 

have demonstrated impaired neurocognitive and behavioural function [3-5] and increasing 

evidence suggests they also have altered cardiovascular function [6]. OSAS is considered a key 

driver of changes in the cardiovascular system [7-9] that may lead to cardiovascular disease later 

in life [10-13]. Early detection and treatment of UAO in childhood may therefore reduce 

cardiovascular morbidity in adulthood. 

Contrary to adults, OSAS in otherwise normal healthy children stems most commonly from 

enlarged tonsils and adenoids. The first-line treatment is, therefore, adenotonsillectomy (AT), 

which reduces upper airway resistance by removing the enlarged tissue. Although AT has 

demonstrated positive health outcomes in children with significant OSAS, residual symptoms 

often exist in some children and related parental concerns also persist post-surgery [14-18].  

In contrast, the benefits of AT in children with milder UAO remains largely untested. The 

landmark Childhood Adenotonsillectomy Trial (CHAT)  reported around 46% of the children had 

their apnea-hypopnea index (AHI) spontaneously normalise without having AT treatment [19]. 

The AHI metric is obtained from overnight polysomnography (PSG) and is the current clinical 

measure of UAO severity and a major determinant in the decision to treat UAO. However, 

concerns have been raised about the limitations of the AHI as it over-simplifies the spectrum and 

severity of UAO and correlates poorly with numerous health endpoints [20-22].  This raises the 

question of how to identify individuals for whom surgery will be beneficial and those who may 

recover without surgery, thereby reducing the health care costs and risks of performing AT [15-

17].  

Children with mild UAO generally have a low AHI, and it is currently not known if they would 

benefit from AT as the AHI only measures the frequency of discrete respiratory events but not 

necessarily the severity. Furthermore, other markers of UAO such as increased respiratory load 

and other abnormal breathing patterns are not quantified in routine PSG [22]. Even though some 

children enrolled in the CHAT had spontaneously normalised AHI at follow-up without surgical 

intervention, our previous study found that those children had a relatively lower quality of life 

after 7 months compared to who AHI normalised via AT [23]. This illustrates one of the numerous 

limitations of relying on the AHI as the sole measure of UAO severity. 
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Our previous studies have found that those children whose AHI-normalised spontaneously in the 

CHAT had relatively lower cardiac autonomic activation and inspiratory load at baseline than 

children who’s AHI did not resolve spontaneously [23, 24]. Similar findings were shown in studies 

on normal children in comparison with children with sleep-disordered breathing [25, 26]. Further 

analysis of the CHAT suggested that the Paediatric Sleep Questionnaire (PSQ) and snoring score 

could be used to identify children who do not need AT [27].  

To overcome limitations of the current diagnostic criteria for childhood UAO, assessment should 

comprise multiple physiological variables rather than relying on the AHI alone. Using a data-

driven approach, children with similar pathophysiological profiles should cluster into the same 

group and possibly help identify which children have fewer pathophysiological symptoms thereby 

possibly not requiring surgery. The emergence of large data sets in the medical field in recent 

years has seen machine learning increasingly being utilised to aid diagnosis, prognosis and 

treatment decisions across a range of clinical disciplines including sleep disorders [28-31].  The 

aim of this study therefore was to investigate the effects of AT for OSAS using a data-driven 

approach that combines cluster analysis and linear discriminant analysis. Using baseline and 

follow-up measurements of the CHAT dataset, we sought to create better diagnostic criteria for 

OSAS in children. By analysing the transition of children between clusters from baseline to 

follow-up data, it may be possible to predict when AT is needed.  
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Method 

Study samples  
Details of the CHAT protocol have been previously published [32]. All data are publicly available 

at https://sleepdata.org/datasets/chat. In brief, children between 5.0-9.9 years of age with PSG-

confirmed OSAS (obstructive apnea-hypopnea index [AHI] ≥2 events/h or an obstructive apnea 

index [OAI] ≥1 events/h), a history of snoring and considered to be surgical candidates for AT 

were recruited from paediatric sleep centres/sleep laboratories, paediatric otolaryngology clinics, 

general paediatric clinics and the general community from six clinical centres. Exclusion criteria 

included comorbidities, medications for psychiatric or behavioural disorders, recurrent tonsillitis, 

extreme obesity (body mass index >2.99 for age group and sex-z-score) and severe OSAS (AHI ≥ 

30 events/h, OAI ≥20 events/h or oxyhemoglobin saturation <90% for >2% of total sleep time). 

The study was approved by the Institutional Review Board of each institution. Informed consent 

was obtained from caregivers, and assent from children ≥7 years of age. The study was registered 

at Clinicaltrials.gov (#NCT00560859).  

CHAT interventions 
Children were randomly assigned to either early adenotonsillectomy (eAT; surgery within 4 weeks 

after randomization) or a strategy of watchful watching with supportive care (WWSC) with a 

reassessment of all the study variables at approximately 7 months. Complete bilateral 

tonsillectomy and removal of obstructing adenoid tissue were performed using standard surgical 

techniques. 

Overnight polysomnography 
Each child underwent in-laboratory baseline and follow-up PSG carried out by study-certified 

technicians, following the American Academy of Sleep Medicine paediatric guidelines for both 

acquisition and scoring [33]. The PSGs were scored centrally by registered sleep technicians. 

Overnight PSG was repeated approximately 7 months after randomization [32, 34].  

Data-driven analysis 
The goal of our data-driven analysis (Figure 2) was to assign all children to one of two clusters 

(named A and B) based on three variables that we have previously identified  as potentially useful 

discriminators: (1) OAHI3 (as derived from the CHAT study), (2) heart period (HP) pattern 

dynamics in N2 and  REM sleep, and (3) thoraco-abdominal asynchrony (TAA, log-transformed) 

during N3 sleep, (the latter two variables were  discriminators calculated using original methods 
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[23, 24]). OAHI3 represents the number of apneas and hypopneas per hour of sleep associated 

with a >  3% oxygen desaturation. OAHI3 was transformed due to its nonlinearity using box-cox 

transformation with lambda at 0.2019. Heart period patterns quantify the degree of cardiac 

autonomic modulation related to OSAS and were demonstrated to help to identify children who 

spontaneously normalised their AHI without surgery at baseline [24].  We chose event-free N2 

sleep for analysis because it provides more reliable and stable recordings than REM sleep. To 

measure inspiratory-effort changes due to upper airway obstruction we considered N3 sleep 

epochs free of respiratory events [23]. 

All features were normalised to zero mean and unit variance prior to further analysis. We used the 

CHAT follow-up PSG, including children from both arms (WWSC and eAT), for training the 

classifier, whereas baseline PSG was used as the predicating dataset.  

Cluster definition 
The characteristics of the two clusters were determined with the CHAT follow-up dataset using 

the K-mean clustering method, which is a frequently utilised unsupervised machine learning 

technique [35]. To separate the two clusters, two points are randomly chosen as the initial cluster 

centroid. Subsequently, each data point is assigned to its closest cluster, based on the shortest 

space representation distance to the cluster centroid compared the other cluster centroids. The 

cluster centroid is recalculated every time a data point was assigned to a cluster. This process is 

repeated until the centroid of each cluster no longer changes. We used the squared Euclidean 

distance to represent space, and the clustering was repeated 20 times to obtain the best clustering 

results, where a new set of initial centroids was used each time. 

Classification using Linear Discriminant Analysis 
Once the two reference clusters were defined on the follow-up dataset, linear discriminant analysis 

(LDA) was used to create a classifier model. The LDA is a supervised machine learning method 

frequently used to reduce the feature space dimension, maximizing the difference in means 

between classes while minimising the variance of each class to separate two or more classes by 

finding a linear combination of predictive features. The LDA model was used to validate the 

follow-up dataset and classify the baseline dataset.   

Definition of cluster transition classes 
Four transition classes were defined according to the cluster change from baseline to follow-up 

study, which are baseline cluster A to Follow-up cluster B (A→B), baseline cluster B to follow-
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up cluster A (B→A), baseline cluster A to follow-up cluster A (A→A), and baseline cluster B to 

follow-up cluster B (B→B). The cluster transitions were used to identify children would not need 

AT surgery.  

Statistical analysis 
Anthropometric data were compared by using t-tests and Χ2 tests as appropriate. One-way analysis 

of covariance (ANCOVA) was carried out to investigate the effect of clustering on key 

physiological and neurophysiological measurements on all available data. One-way analysis of 

covariance (ANCOVA) was also carried out to investigate the effect of cluster transition classes 

on key physiology and neurophysiological measurements for baseline watchful waiting and eAT 

groups respectively, followed by a Bonferroni test based on Student's t statistic for post-hoc 

comparisons. The key physiological and neurophysiological measurements included in the 

analysis were: obstructive apnea-hypopnea index (>=3% desaturation, OAHI3), central apnea 

index all desaturations (CAI0P), percentage of time < 90% oxygen saturation (SaO2) (PCTLT90),  

percentage of total sleep time (TST) where end-tidal carbon dioxide (ETCO2) > 50 mmHg 

(RPCTCO2G50), event free symbolic HP patterns, event free TAA, previously reported measures 

of behaviour, OSAS symptom indicators, pediatric sleep questionnaire scale, global quality of life 

and intellectual functioning (DAS-II GCA). Anthropometric variables that were likely to confound 

statistical analysis (BMI z-score, age, gender and race) were included in the statistical model as 

covariates. 
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Results 

Subject Demographics 
A total of 323 children of the original CHAT study who underwent both baseline and follow-up 

studies and who had all three physiological discriminators and PSG that met the technical 

requirements were included in this analysis. The dataset comprised 165 children who underwent 

eAT and 158 children in the WWSC group (Figure 1). Baseline anthropomorphic characteristics 

are summarized in Table 1. Both groups had comparable demographic profiles. Overall, the mean 

age of the participants at baseline was 6.6 years and 48% were male. Approximately half (54.5%) 

of the samples were African American and 34.4% were obese. Around 4.6% of children were 

treated with Montelukast and approximately 21.1% received nasal glucocorticoids for rhinitis or 

asthma at the time of the baseline PSG. At follow up, 83% of subjects in the eAT group no longer 

had AHI-defined OSAS, i.e. values of AHI ≤2 and OAI ≤1, while in the WWSC group 40.5% 

of children had spontaneous normalization of AHI scores. Approximately 6.7% of children in the 

eAT arm and 8.7% in the WWSC arm were on Montelukast and 23.6% (eAT) and 26.6% (WWSC) 

were on nasal glucocorticoids at the time of the follow-up PSG, representing a small but 

statistically non-significant increase compared to the baseline sample.  
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Data-driven Analysis  

Patient clustering using the K-mean clustering method 
From the follow-up dataset (Table 2), 199 out of 323 children were assigned to cluster A, which 

has its centroid at OAHI3, HP patterns and TAA values of  -0.484, -0.444 and -0.385, respectively. 

The remaining 124 children were assigned to cluster B whose centroid of OAHI3, HP patterns and 

TAA dimensions was located at 0.763, 0.705 and 0.603, respectively. Considering the positive 

effect of surgery, 132 children (80 %) in the intervention arm were assigned to cluster A and 33 

children (20%) assigned to cluster B. Of the children in the WW arm, around 42.4% (67 children) 

were part of cluster A and the remaining 57.6% (91 children) were part of cluster B. 

Classification of children using linear discriminate analysis of follow-up PSG 
Considering the clustering results of the previous section, LDA was employed to create a function 

that separates both clusters. Defining the coefficients of classification equation as  

𝑌 =  −2.2259 ∗ 𝑂𝐴𝐻𝐼3 − 2.8297 ∗ 𝐻𝑃 − 2.3290 ∗ 𝑇𝐴𝐴 + 1.3966, 

Where values of Y ≤ 0, result in a given child classified cluster A (otherwise cluster B), yields 

classification results shown in Figure 3.  

The accuracy of the classification results for the follow-up dataset is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝐴 + 𝑇𝐵

𝑇𝐴 + 𝐹𝐴 + 𝑇𝐵 + 𝐹𝐵
=

199 + 122
199 + 2 + 122 + 0

= 99.38% 

Where TA is the true classification of cluster A, FA is the false classification of cluster A, TB is 

the true classification of cluster B and FB is the false classification of cluster B. The results 

obtained for the follow-up study with LDA (Table 3) was in agreement with the K-means 

clustering results. 

Eighty-one percent of children who underwent surgery (134 out of 165 children) were classified 

into cluster A and 19% (31 out of 165) into cluster B (Tables 2 and 3). Furthermore, comparing 

LDA results with the current clinical marker of OSAS using AHI normalisation, about 84% (168 

out of 201) of normalised children were in cluster A and 73% (89 out of 122) of children were 

considered as not normalised were in cluster B. 
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Classification of the baseline PSG using linear discriminate analysis  
The linear discriminate analysis was applied to the baseline dataset using the classification 

equation created by using follow-up dataset (Figure 3).  Around 2/3 (208 out of 323) of children 

were classified as cluster A, while only about 1/3 (115 out of 323) were classified as cluster B 

(Table 3). Similar classified results were obtained in both watchful waiting and surgery groups, 

106 children are considered as cluster A in WW group, and 102 children in the eAT group. For 

cluster B, 52 out of 158 were in the WW group, which is over 42% less than the follow-up result, 

and 63 out of 165 children were in the eAT group.  

Effect of the clusters on physiology and neurophysiological measurements 
To explore the physiological and the neuropsychological differences between the two clusters, 

one-way ANCOVA was applied to baseline and follow-up for the two clusters respectively 

(Tables 4 & 5).  Of the 646 PSGs recorded, 514 PSG contained all of the interested physiological 

and neuropsychological measurements for analysis, 256 at baseline and 258 at follow-up.  

At baseline (Table 4), significant differences were  found between clusters in OAHI3, 

RPCTCO2G50, PCTLT90, symbolic heart rate patterns and TAA in all sleep stages (N2, N3 and 

REM). Of the covariates included in the models, age associated with symbolic heart rate pattern 

in N3 sleep; male gender showed a significant effect on TAA in N3 sleep; generalised intellectual 

functioning was significantly influenced by race and BMIZ; and moreover, BMIZ significantly 

affected OAHI3, PCTLT90, the total score of the paediatric sleep questionnaire, and TAA in N2 

and N3 sleep. 

Similar significant differences between clusters were found at follow-up (Table 4), expect TAA 

in REM sleep. Additionally, questionnaire-based OSAS symptom indicators and the total score of 

the paediatric sleep questionnaire showed significant differences between clusters, where cluster 

B has higher scores than cluster A. Of the covariates included in the models, age associated with 

symbolic heart rate pattern in all sleep stages (N2, N3 and REM) and TAA in REM sleep; both 

male gender and race showed a significant effect on the total score of the paediatric sleep 

questionnaire; male gender also had an impact on the central apnoea index (CAI0P); generalised 

intellectual functioning was significantly influenced by race and BMIZ. 
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Cluster Transition Analysis 

Cluster transition and the effect of surgery 
The transition of children between the two clusters from baseline to follow-up study comprised 62 

children from A→B, 55 children from B→A, 146 children from A→A and 60 children from B→

B (Table 5). The relationships of the four transition classes with respect to whether children had 

surgery or OAHI normalisation were analysed.  Comparing between the interventions, 47 children 

from WW and 15 from eAT was classified as A→B, 8 children from WW and 47 from eAT was 

classified as B→A, 59 children from WW and 87 from eAT was classified as A→A and 44 

children from WW and 16 from eAT was classified as B→B. 

Effect of cluster transition classes on physiology and neurophysiological measurements for 
baseline WW group 
Considering the baseline characteristics of children in the control arm (Table 6), 118 out of 158 

children had complete data on neurophysiological measurements (37 transitioning from A→B, 5 

from B→A, 45 from A→A and 31 from B→B). Significant difference between all classes were 

observed in OAHI3, OMAHI3, the extent of oxygen desaturation, Conners' GI Restless - 

Impulsive T-Score, Conners' GI Emotional Liability T-Score, the Behavior Rating Inventory of 

Executive Function (BRIEF), symbolic heart rate pattern in all sleep stages (N2, N3 and REM), 

TAA in NREM sleep stages (N2 and N3). Of the covariates included in the statistical models, no 

covariance was significantly associated with any of the above measurements. 

Post-hoc comparisons showed that children transitioned B→A had significantly higher values 

compared to other classes in Conners' GI Restless - Impulsive T-Score (B→A vs A→A: p = 0.002; 

B→A vs B→B: p = 0.010; B→A vs A→B: p = 0.008), Conners' GI Emotional Liability T-Score 

(B→A vs A→A: p = 0.0004; B→A vs B→B: p = 0.0005; B→A vs A→B: p = 0.0005), the 

Behavior Rating Inventory of Executive Function (BRIEF) (B→A vs A→A: p = 0.0078; B→A 

vs B→B: p = 0.011; B→A vs A→B: p = 0.015), TAA in sleep stage N2 (B→A vs A→A: p 

<0.0001; B→A vs B→B: p = 0.038; B→A vs A→B: p = 0.0005) and TAA in sleep stage N3 

(B→A vs A→A: p < 0.0001; B→A vs A→B: p = 0.0004).  

Children who remained in A (A→A) had significant lower values compared to children who 

remained in B (B→B) in OAHI3 (p < 0.0001), TAA in sleep stage N2 (p = 0.0025) and N3 (p < 

0.0001), heart rate pattern in all three sleep stages (N2: p < 0.0001; N3: p < 0.0001; REM: p = 

0.0004). 
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Effect of cluster transition classes on physiology and neurophysiological measurements for 
baseline eAT group 
Considering children who underwent surgery (Table 7), 138 out of 165 children had data on 

neurophysiological measurements (10 children transitioning from A→B, 39 children transitioning 

from B→A, 77 children transitioning from A→A and 12 children transitioning from B→B). 

Significant differences between all classes were observed in OAHI3, OMAHI3, the extent of 

oxygen desaturation, peak end-tidal carbon dioxide, symbolic heart rate pattern and TAA in all 

sleep stages (N2, N3 and REM). Of the covariates included in the models, no covariance was 

significantly associated with any of the above measurements. Of the covariates included in the 

models, age was associated with TAA in N3 stage, symbolic heart rate pattern in N2, N3 and REM 

sleep; TAA in N3 stage was significantly associated with race; and BMI z-score affected OAHI3, 

the extent of oxygen desaturation, and TAA in N2 and N3 sleep stages. 

Post-hoc comparisons showed that children who remained in cluster B (B→B) had significant 

higher values of peak end-tidal carbon dioxide compared to all other children (B→B vs A→A: p 

< 0.0001; B→B vs B→A: p = 0.0067; B→B vs A→B: p = 0.0086). Additionally, those children 

had significantly higher OAHI3 values (p < 0.022), TAA in sleep stage N2 (p = 0.0008) and N3 

(p < 0.0038), and monotonous heart rate pattern in all three sleep stages (N2: p < 0.0001; N3: p < 

0.0007; REM: p = 0.0023) compared to children who remained in the A cluster (A→A). 

Children who transitioned from B→A had a significant higher values in OAHI3 (p < 0.0001), 

OMAHI3 (p < 0.0001), the extent of oxygen desaturation (p = 0.0011), TAA in all three sleep 

stages (N2: p < 0.0001; N3: p < 0.0001; REM: p = 0.010), and heart rate pattern in all three sleep 

stages (N2: p < 0.0001; N3: p < 0.0001; REM: p = 0.0001) compared to children who transitioned 

from A→B. 
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Discussion 
Our data-driven analysis of the CHAT dataset confirms that children with OSAS can benefit from 

AT. By separating the entirety of follow-up study into 2 clusters (A, B) based on their AHI and 

respiratory effort and ANS activation, significant differences in OSAS clinical indicators and sleep 

quality measures were observed, where children in cluster A showed fewer physiological and 

neurophysiological deficits compared to those in cluster B. Additionally, we found that the 

majority of children were assigned to cluster A at baseline, despite being considered to have OSAS 

based on the current clinical diagnostic metric, the AHI. Analysis of cluster transitions from 

baseline to follow-up PSG demonstrated that surgery (Table 5) is able to reverse symptoms (47 

out of 165 children) or preventing symptoms (87 out of 165 children) from worsening. 

Additionally, children who had residual UAO despite AT in terms of physiological and 

neurophysiological symptoms had significantly higher peak end-tidal carbon dioxide at baseline. 

Children who spontaneously reversed PSG indices of UAO (i.e., AHI) had high problematic 

ratings in behaviour and emotional at baseline.  

Machine-learning can reveal novel patterns in alarge, complex datasets and uncover hidden 

relationships by anlaysing non-linear associations among multiple variables. A study has 

demostrated that the spectrum of children with sleep-disordered breathing can be classified into 6 

unique classes using machine learning [2]. In our study, each follow-up PSG was assigned to one 

of two clusters, solely based on the three features. The three chosen features, i.e. OAHI, N2 sleep 

stage heart period dynamics and N3 sleep stage  respiratory event-free TAA, may represent key 

pathophysiological domains affected by OSAS in children. These three discriminators are 

calculated from data that included respiratory events as well a segments that excluded respiratory 

events, providing apects levels ofOSAS related information [23-25]. Statistical comparison of all 

other clinical variables between the two clusters enabled a more comprehensive characterisation 

of the  both groups of children and helped to define their pathophysiological profile. 

Previous studies using the CHAT data have demonstrated the benefit of AT for children with 

OSAS.  Children who had surgery demonstrated fewer pathophysiological symptoms compared 

to their baseline PSG and the PSG of children in the WWSC group (i.e. AHI [19], heart rate, heart 

rate variability [24, 36], respiratory rate [37], respiratory effort [23]). Therefore the follow-up PSG 

data provided an ideal training set  for the machine learning to create our classification model, 

which may overcome the limitation of using AHI as the only marker for children having OSAS.  



Chapter 6 

 

Page 90 

  

Our study showed that children in cluster A had fewer discrete OAH events during sleep, showed 

less respiratory effort and fewer autonomic activations during the respiratory-event free sleep 

period compared with children in cluster B. These findings may suggest children from cluster A 

have milder OSAS despite having clnically defined OSAS based on the AHI and may be more 

likely to show spontaneosu resolution of AHI [6, 25, 26]. 

Our previous studies reported fewer pathophysiological symptoms at baseline PSG in children 

who spontaneously normalised their AHI [23, 24]. This further questions the validity of the AHI 

as the current gold standard for defining clinically significant OSAS in children, which may over 

diagnose OSAS in paediatric populations due to the low cut-off that is typically applied. Since 

AHI was included in our data-driven analysis, we observed a positive correlation between AHI 

normalisation and data classification at follow-up (Table 3), where the majority of AHI-

normalised children were assigned to cluster A. Cluster B in contrast contained most of the 

children who’s AHI-did not normalise However, the approximately 20% of the children 

categorized into the other clusters reflect the additional information gained by heart rate patterns 

and TAA analysis. Furthermore, almost 2/3 of children were classed as A using baseline data 

(Table 3), demonstrating comparably fewer pathophysiological symptoms despite meeting the 

diagnostic (AHI) criteria for OSAS. 

Considering the number of children classified into each cluster at baseline and follow-up, we found 

a similar ratio (2:1) of children in cluster A vs cluster B in the surgery and watchful waiting group 

at baseline (Table 3), reflecting the randomization of the trial. However, follow-up results (Table 

3) showed an increased number of children classified into cluster A for children who underwent 

surgery, while most of the children in cluster B did not undergo surgery, which confirmed the 

beneficial effect on children from the intervention group as reported previously [6, 23-25]. 

By analysing the cluster transitions for each child separately for both study arms (Table 5), we 

found over half of the children who underwent surgery were assigned to cluster A at baseline and 

follow-up, while only 1/3 of children in the watchful waiting group were assigned to, and remained 

in cluster A. Considering the higher percentage for children who underwent surgery, surgery 

appears to improve the likelihood of children staying in cluster A. The presence of children of the 

watchful waiting arm in cluster A suggests that their condition was mild and did not worsen 

without undergoing surgery.  

By contrast, our results suggest it is more likely for children in the watchful waiting arm, who 

were assigned to cluster B, to remain in B even after 7 months. Importantly, there were 16 children 
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who had surgery and remained in cluster B; our post hoc analysis showed that those children had 

extremely high peak end-tidal carbon dioxide measure during sleep at baseline PSG. This suggests 

the presence of sleep-related hypoventilation even in the absence of discrete respiratory events, 

and intimates these children still had significant UAO despite AT. Significant lung disease could 

lead to high peak end-tidal carbon dioxide in children. For example people with asthma [38] might 

show symptoms on PSG similar OSAS. Similarly, unresolved lung diseases might be a possible 

reason to explain why their UAO related physiological and neurophysiological symptoms still 

remain comparably high.   

It was almost 6 times more likely for children in the surgery group who were in cluster B at 

baseline to transition to cluster A at follow-up than for children in the watchful waiting group. 

Children in the watchful waiting group were > 3 times more likely to transition from cluster A to 

B than those who underwent surgery. This further demonstrates that surgery can help reduce the 

OSAS related physiological symptoms. Moreover, those symptoms are more likely getting worse 

if children remain without treatment. Interestingly, 5 children in the watchful waiting group 

transitioned from cluster B to cluster A after 7 months. These children had higher 

pathophysiological symptoms at baseline PSG, and significantly more problematic behaviour and 

emotional issues than others, which has controversial with studies have presented in the current 

literature [39, 40].   

Our study has several limitations. Children enrolled in CHAT were within the mild and moderate 

spectrum of OSAS and the follow-up duration was relatively short. Distinct clusters may form 

more clearly if more severe cases of OSAS are considered; possibly more than two clusters could 

be considered. Since the trial did not include an arm of healthy control children, we cannot verify 

if cluster A had similar symptoms as healthy subjects.  Several children from the original trial had 

to be excluded due to poor signal quality. Some of the transition subclasses had very few children, 

which may have impacted the reliability of some results.  

In conclusion, data-driven analysis shows that AT has a beneficial effect on children with OSAS 

by reversing and preventing the worsening of the syndrome. Multi-domain analysis of PSG 

markers and machine learning may provide a more complete picture of children with OSAS than 

AHI alone and may help predict which individuals do not need surgical intervention to recover. 
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Figures

 
Figure 1 Summary of Childhood Adenotonsillectomy Trial study participants included in the data 

driving analysis. eAT: early adenotonsillectomy; WWSC: watchful waiting with supportive care; 

PSG: polysomnography; TAA: thoraco-abdominal asynchrony; HP: Heart rate patterns. 
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Figure 2 Data-driven analysis processes flowchart presented vertically; each process module was 

presented with the key description and purpose horizontally 
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Figure 3 Clusters separation by the LDA model for follow-up dataset 

 

Figure 4 Clusters separation by the LDA model for baseline dataset 
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Tables 
Table 1 Subject characteristics at baseline and 7 month follow-up grouped according to study arm. 

characteristics 
Early Adenotonsillectomy 

(N =165) 

Watchful Waiting 

(N =158) 

 Baseline Follow-up Baseline Follow-up 

Age^ (years) 6.61 ± 1.46 7.16 ± 1.46 6.58 ± 1.40 7.13 ± 1.44 

Male sex- N (%) 74 (44.8%) 81 (51.3%) 

Race - N (%)†   

African American 86 (52.1%) 90 (57.0%) 

Caucasian 60 (36.4%) 53 (33.5%) 

Other 19 (11.5%) 15 (9.5%) 

BMI z score^ 0.91 ± 1.35 1.19 ± 1.21 0.88 ± 1.23 1.03 ± 1.26 

Weight Class - N (%)‡     

Overweight (BMI ≥ 85th percentile) - N (%) 85 (51.5%) 93 (56.4%) 74 (46.8%) 85 (53.8%) 

Obese (BMI ≥ 95th percentile) - N (%) 58 (35.2%) 69 (41.8%) 53 (33.5%) 58 (36.7%) 

Montelukast - N (%) 6 (3.6%) 11 (6.7%) 9 (5.7%) 14 (8.7%) 

Glucocorticoids - N (%) 34 (20.6%) 39 (23.6%) 34 (21.5%) 42 (26.6%) 

^ Data are presented as mean ±SD.  
† Race reported by caregivers. 
‡ Overweight was defined as a body-mass index in the 85th percentile or higher, obese as a BMI in the 95th percentile 
or higher. 
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Table 2 Cross tabulation of classification result from K-mean cluster vs factor study arm at follow-

up  

Cluster 
Study arm 

Total 
WW eAT 

A 67 132 199 
B 91 33 124 

Total 158 165 323 
 

Table 3 Cross tabulation of classification result from LDA vs study arm at baseline and follow-

up, and LDA vs factor Normalisation at follow-up 

Cluster 
Baseline Follow-up 

Study arm Study arm Normalisation 
WW eAT WW eAT Not normalised Normalised 

A 106 102 67 134 33 168 

B 52 63 91 31 89 33 
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Table 4 Comparison of interested physiology and neuropsychological measurements between 
LDA clusters on all baseline and follow-up data 

 Baseline Follow-up 

Measurements 
Cluster A Cluster B 

p-value Cluster A 
(N =165) 

Cluster B p-value 

(N =169) (N =87) (N =93)  

OAHI3 3.46 ± 3.06 9.42 ± 6.50 <0.00001 0.79 ± 1.01 6.68 ± 9.57 <0.00001 

CAI0P 0.91 ± 0.88 1.19 ± 1.82 0.1272 0.87 ± 0.93 0.81 ± 0.97 0.7547 

RPCTCO2G50 5.82 ± 14.75 16.35 ± 22.89 0.00003 6.09 ± 13.35 13.82 ± 22.32 0.0007 

PCTLT90 0.03 ± 0.20 0.20 ± 0.43 0.00003 0.00 ± 0.02 0.17 ± 0.64 0.0012 
CON10B(CI_Restless_T_scor
e) 53.09 ± 11.07 53.47 ± 11.09 0.6499 51.96 ± 11.23 51.31 ± 9.44 0.6226 

CON11B(CI_Emotional_T_sc
ore) 49.98 ± 11.30 48.55 ± 10.18 0.3897 48.58 ± 10.37 46.60 ± 7.53 0.1199 

BRI13B(GEC_T_score) 50.11 ± 10.74 48.92 ± 10.30 0.4843 48.71 ± 11.84 47.74 ± 10.15 0.5018 

The total score of the Pediatric 
Sleep Questionnaire 0.49 ± 0.18 0.51 ± 0.18 0.2845 0.29 ± 0.21 0.42 ± 0.22 <0.00001 

Pediatric Quality of Life 
Inventory Parent Total Scale 
Score 

77.99 ± 15.49 79.03 ± 15.91 0.7770 82.25 ± 14.64 81.00 ± 15.28 0.5490 

Total score of the OSA-18 2.97 ± 1.00 3.11 ± 1.13 0.2915 2.05 ± 1.02 2.58 ± 1.15 0.0002 

Differential Ability Scales II  94.93 ± 10.81 97.16 ± 10.61 0.1401 97.22 ± 10.66 97.83 ± 12.74 0.4877 

TAA (N2) 2.91 ± 0.63 3.53 ± 0.63 <0.00001 2.74 ± 0.64 3.37 ± 0.70 <0.00001 

TAA (N3) 2.88 ± 0.70 3.68 ± 0.70 <0.00001 2.73 ± 0.73 3.59 ± 0.79 <0.00001 

TAA (REM) 3.48 ± 0.68 3.76 ± 0.57 0.0014 3.35 ± 0.63 3.47 ± 0.68 0.1468 

HP (N2) 16.11 ± 5.89 23.50 ± 5.47 <0.00001 12.89 ± 5.08 20.03 ± 4.79 <0.00001 

HP (N3) 14.10 ± 6.26 21.10 ± 6.19 <0.00001 10.96 ± 5.22 18.33 ± 5.40 <0.00001 

HP (REM) 14.90 ± 4.47 19.03 ± 5.09 <0.00001 13.09 ± 3.92 17.10 ± 4.04 <0.00001 

Data are presented as mean ±SD. All p-values have been obtained using one-way ANCOVA 
adjusted for likely confounding factors of age (5 to 10 years of age), race (black, white and 
other), BMI z-score and gender.   
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Table 5 Cross-tabulation of Cluster transitions from baseline to follow-up vs study arm.  

Transition 
Study arm 

Total 
WW eAT 

BA2FB 47 15 62 
BB2FA 8 47 55 
BA2FA 59 87 146 
BB2FB 44 16 60 
Total 158 165 323 
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Table 6 Comparison of interested physiology and neurophysiological measurements between all 

transition classes on baseline WW group 

Measurements 
A→B B→A A→A B→B 

p-value 
(N =37) (N =5) (N =45) (N =31) 

OAHI3 3.67 ± 2.41 5.80 ± 2.04 3.51 ± 3.48 10.13 ± 6.81 <0.00001 
CAI0P 0.96 ± 0.66 0.88 ± 0.64 0.70 ± 0.69 1.10 ± 0.84 0.1041 

RPCTCO2G50 7.68 ± 14.67 14.56 ± 31.55 4.17 ± 14.68 12.26 ± 
20.03 0.2171 

PCTLT90 0.01 ± 0.02 0.00 ± 0.00 0.04 ± 0.25 0.16 ± 0.37 0.0497 
CON10B(CI_Restless_T_score) 52.03 ± 10.08 67.00 ± 14.37 51.04 ± 9.10 52.10 ± 9.58 0.0053 

CON11B(CI_Emotional_T_score) 46.81 ± 11.30 64.20 ± 14.74 46.98 ± 7.32 46.29 ± 7.02 0.0007 

BRI13B(GEC_T_score) 48.32 ± 8.78 62.80 ± 13.37 48.07 ± 10.27 47.58 ± 9.76 0.0128 

The total score of the Pediatric 
Sleep Questionnaire 0.50 ± 0.15 0.65 ± 0.19 0.47 ± 0.18 0.48 ± 0.19 0.1990 

Pediatric Quality of Life Inventory 
Parent Total Scale Score 78.27 ± 13.87 70.88 ± 20.98 79.44 ± 14.81 80.48 ± 

15.51 0.6703 

Total score of the OSA-18 3.01 ± 0.98 3.61 ± 1.53 2.85 ± 1.01 3.10 ± 1.18 0.3815 

The Differential Ability Scales II 
(DAS), a measure of generalized 
intellectual functioning 

93.27 ± 9.60 89.60 ± 8.26 93.84 ± 10.58 97.55 ± 
12.69 0.4692 

TAA (N2) 3.02 ± 0.62 4.24 ± 0.77 2.86 ± 0.69 3.41 ± 0.59 <0.00001 
TAA (N3) 2.97 ± 0.68 4.33 ± 0.81 2.85 ± 0.75 3.63 ± 0.66 <0.00001 
TAA (REM) 3.51 ± 0.68 4.08 ± 0.52 3.45 ± 0.62 3.51 ± 0.64 0.2541 
HP (N2) 18.20 ± 5.51 21.50 ± 5.31 15.16 ± 6.20 23.48 ± 4.53 <0.00001 
HP (N3) 16.53 ± 5.65 18.46 ± 5.92 12.90 ± 6.30 21.23 ± 5.54 <0.00001 
HP (REM) 16.22 ± 4.25 18.73 ± 6.23 13.91 ± 4.30 18.51 ± 5.02 0.0003 

Data are presented as mean ±SD. All p-values have been obtained using one-way ANCOVA 

adjusted for likely confounding factors of age (5 to 10 years of age), race (black, white and other), 

BMI z-score and gender.  
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Table 7 Comparison of interested physiology and neurophysiological measurements between all 

transition classes on baseline eAT group 

Measurements 
A→B B→A A→A B→B 

p-value 
(N =10) (N =39) (N =77) (N =12) 

OAHI3 4.17 ± 3.70 9.78 ± 7.23 3.24 ± 3.03 7.88 ± 3.39 <0.00001 
CAI0P 0.66 ± 0.49 1.30 ± 2.58 1.05 ± 1.07 1.21 ± 0.91 0.7443 
RPCTCO2G50 8.84 ± 18.45 14.15 ± 20.70 5.49 ± 14.46 34.80 ± 26.92 0.00002 
PCTLT90 0.00 ± 0.00 0.30 ± 0.53 0.03 ± 0.22 0.06 ± 0.12 0.0012 
CON10B(CI_Restless_T_score) 51.90 ± 11.33 53.51 ± 11.39 54.95 ± 12.37 51.25 ± 9.70 0.5702 

CON11B(CI_Emotional_T_score) 51.80 ± 14.97 48.97 ± 11.03 53.01 ± 12.01 46.50 ± 6.72 0.1262 

BRI13B(GEC_T_score) 49.70 ± 14.33 48.18 ± 9.81 52.22 ± 11.15 49.00 ± 8.79 0.1758 

The total score of the Pediatric 
Sleep Questionnaire 0.44 ± 0.15 0.52 ± 0.18 0.51 ± 0.19 0.51 ± 0.13 0.4790 

Pediatric Quality of Life Inventory 
Parent Total Scale Score 78.91 ± 19.82 78.96 ± 16.39 76.90 ± 16.22 78.92 ± 14.10 0.8869 

Total score of the OSA-18 2.93 ± 1.13 3.07 ± 1.14 3.02 ± 1.01 3.08 ± 0.81 0.9724 
Differential Ability Scales II  95.20 ± 14.98 97.95 ± 8.78 96.34 ± 10.92 96.75 ± 10.97 0.8161 
TAA (N2) 2.99 ± 0.40 3.52 ± 0.57 2.88 ± 0.63 3.55 ± 0.71 <0.00001 
TAA (N3) 2.79 ± 0.39 3.69 ± 0.68 2.87 ± 0.71 3.54 ± 0.72 <0.00001 
TAA (REM) 3.43 ± 0.75 3.87 ± 0.49 3.48 ± 0.71 3.91 ± 0.48 0.0040 
HP (N2) 19.09 ± 5.10 23.46 ± 6.00 15.27 ± 5.69 24.51 ± 6.36 <0.00001 
HP (N3) 17.81 ± 5.80 21.22 ± 6.49 13.16 ± 6.17 21.51 ± 7.35 <0.00001 
HP (REM) 15.81 ± 3.33 19.15 ± 4.53 14.72 ± 4.68 20.05 ± 6.85 <0.00001 

Data are presented as mean ±SD. All p-values have been obtained using one-way ANCOVA 

adjusted for likely confounding factors of age (5 to 10 years of age), race (black, white and other), 

BMI z-score and gender.  
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Appendix 
Table S1 Cross-tabulation of classification result from LDA vs study time for all data 

 

  

Cluster * Study Cross-tabulation 

Count   

 

Study 

Total 

Predicting/

Baseline 

Training/ 

Followup 

Cluster A 208 201 409 

B 115 122 237 

Total 323 323 646 
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Table S2 Comparison of interested physiology and neurophysiological measurements between all 

transition classes on all baseline data 

Measurements 
A→B B→A A→A B→B 

p-value 
(N =47) (N =44) (N =122) (N =43) 

OAHI3 3.78 ± 2.70 9.33 ± 6.95 3.34 ± 3.19 9.51 ± 6.10 <0.00001 

RPCTCO2G50 7.93 ± 15.34 14.20 ± 21.71 5.01 ± 14.50 18.55 ± 24.10 0.0003 

PCTLT90 0.00 ± 0.02 0.27 ± 0.51 0.03 ± 0.23 0.13 ± 0.32 <0.00001 

CON10B(CI_Restless_T_score) 52.00 ± 10.23 55.05 ± 12.36 53.51 ± 11.39 51.86 ± 9.50 0.4061 

CON11B(CI_Emotional_T_score) 47.87 ± 12.17 50.70 ± 12.31 50.79 ± 10.89 46.35 ± 6.86 0.0782 

BRI13B(GEC_T_score) 48.62 ± 10.04 49.84 ± 11.12 50.69 ± 10.98 47.98 ± 9.42 0.4168 
The total score of the Pediatric Sleep 
Questionnaire 0.49 ± 0.15 0.54 ± 0.19 0.49 ± 0.19 0.49 ± 0.17 0.4394 

Pediatric Quality of Life Inventory 
Parent Total Scale Score 78.40 ± 15.08 78.04 ± 16.89 77.84 ± 15.70 80.04 ± 14.98 0.8873 

Total score of the OSA-18 3.00 ± 1.00 3.13 ± 1.18 2.96 ± 1.01 3.09 ± 1.08 0.7656 

Differential Ability Scales II  93.68 ± 10.80 97.00 ± 9.04 95.42 ± 10.82 97.33 ± 12.11 0.5030 

TAA (N2) 3.02 ± 0.58 3.60 ± 0.63 2.87 ± 0.65 3.45 ± 0.62 <0.00001 

TAA (N3) 2.93 ± 0.63 3.76 ± 0.72 2.86 ± 0.73 3.60 ± 0.67 <0.00001 

TAA (REM) 3.49 ± 0.68 3.90 ± 0.49 3.47 ± 0.67 3.62 ± 0.62 0.0025 

HP (N2) 18.39 ± 5.38 23.24 ± 5.90 15.23 ± 5.86 23.77 ± 5.04 <0.00001 

HP (N3) 16.80 ± 5.64 20.91 ± 6.42 13.06 ± 6.20 21.31 ± 6.01 <0.00001 

HP (REM) 16.13 ± 4.04 19.11 ± 4.66 14.42 ± 4.54 18.94 ± 5.54 <0.00001 

Data are presented as mean ±SD. All p-values have been obtained using one-way ANCOVA 

adjusted for likely confounding factors of age (5 to 10 years of age), race (black, white and other), 

BMI z-score and gender.  
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This chapter summarises the work conducted, and key findings of this thesis and suggests 

future research directions. 
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Decades of sleep research have revealed paediatric sleep disordered breathing to be a 

significant health problem. Current clinical scoring rules have been well defined for 

diagnosing the more severe end of the SDB spectrum in children, such as obstructive sleep 

apnea. However, the clinical marker is not effective at identifying mild SDB. Health 

consequences related to the mild end of SDB have been underestimated. Therefore, 

development and testing of more effective physiological markers are required to cover the 

full range of SDB. This thesis proposes and develops advanced signal processing and analysis 

techniques to create alternative physiological markers, and verifies them against large, well-

described, clinical datasets. Furthermore, a machine learning approach has been applied to 

make alternative diagnosis suggestions by combining the information from AHI and the 

created alternative markers. This chapter summarises the main findings of the studies 

conducted for this thesis, and discusses potential future research directions for developing 

better diagnostic markers and criteria for childhood SDB.  

7.1 Thesis Summary 

Chapter 1 gives a brief introduction to sleep disordered breathing. A review of the literature 

on paediatric SDB research, and the related health consequences in children with SDB, 

identifies that more effective diagnostic makers are need to identify children with mild SDB. 

The two main physiological systems affected SDB are the respiratory and autonomic nervous 

systems. The physiological variables that can be measured to reflect the changes in these 

systems are reviewed in Chapter 1. For the respiratory system, airflow and thoracoabdominal 

movement are the direct and indirect measurements of the system. Heart rate variability, 

pulse wave amplitude, and pulse transient time are the common indicators for autonomic 

activation. Based on these factors, research questions have been formulated with a focus on 
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investigating if the physiological variables TAA, HP, and PWA, are more sensitive identifiers 

for mild SDB in children than only using AHI. Chapter 2 presents the biomedical signal 

processing methods developed, and is applied to measure and analyse the proposed 

physiological variables. Furthermore, these methods are used in the clinical studies discussed 

in this thesis.  

Chapter 2 describes the estimation of TAA using an analytic method called Hilbert 

Transform and establishes a framework for determining the validity of the estimated TAA. 

This method is used in the CHAT study presented in Chapter 3. Two methods were 

developed to measure PWA. A direct method calculates the amplitude difference of each 

pulse located between every two consecutive heartbeats, and is applied on the Adelaide 

Women’s and Children’s Hospital study dataset in Chapter 5. An alternate, simplified, PWA 

estimation was developed where a continuous PWA signal is calculated without knowing the 

locations of heartbeats, by simply calculating the difference of extracted upper and lower 

envelops of the photoplethysmography signal. Since actual PWA can only be calculated if a 

valid pulse can be detected between two consecutive heartbeats, this method avoids invalid 

pulses caused by filtering during PPG signal acquisition. In contrast, this method does not 

provide true PWA calculation, instead, giving an estimation of changes in the PWA trend. 

This new method has been tested with the same dataset from Adelaide Women’s and 

Children’s Hospital, presented in Appendix A.  

As the autonomic system is a complex physiological system, symbolic dynamic analysis, as a 

nonlinear analysis method, is developed to understand the dynamic changes of the measured 

physiological variables, such as heart period. This analysis method is applied in the CHAT 

study in Chapter 4. Additionally, a joint symbolic dynamic method was developed to explore 

the joint dynamic of heart period and PWA to give a more reliable view of autonomic 
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activations, and is applied in the study presented in Chapter 5. The symbolic dynamic 

analysis, however, only reveals how frequently a general pattern change trend exists in the 

system, while the details of the signal dynamic changes cannot be captured. Therefore, an 

extensive dynamic analysis was proposed to obtain more information that includes the depths 

and durations of the changes occurring in the system. This analysis has been tested with the 

simplified PWA estimation method using the dataset from Adelaide Women’s and Children’s 

Hospital, and is presented in Appendix A. 

Further investigation involved a data driven analysis, using unsupervised machine learning, 

and was applied to the CHAT study presented in Chapter 6. It combined the heart period and 

TAA data with AHI, exploring the nature of subjects by differentiating them into two groups, 

and the transition changes of subjects from one group to another, from the beginning and the 

end of the trial.   

The findings from the studies conducted in this thesis provide answers to all the open 

questions listed in the introduction, for both the respiration and autonomic nervous systems. 

For respiration, in order to maintain respiratory flow during a partially blocked up-airway, a 

greater respiratory effort is required to overcome the resistance. As TAA is a non-invasive 

measure of inspiratory effort, the study in Chapter 3 shows TAA can be calculated from a 

non-invasive rib and abdominal signal, and is strongly affected by different sleep stages.  In 

this study, evidence indicates adenotonsillectomy can not only help children with OSAS 

reduce their AHI, but also can reduce TAA during scored respiratory event free sleep, which 

indicates an overall reduction in inspiratory effort. However, this was not observed in 

children whose AHI normalised spontaneously. Additionally, in the AHI spontaneous 

normalised group, a negative health-related outcome, indicated by quality of life, is 
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associated with high TAA value. Thus, the finding from this study demonstrates that TAA 

can provide additional information for identifying mild SDB in children.  

The study presented in Chapter 4, using the same dataset in the TAA analysis, shows that 

autonomic activation can be quantified by the dynamic of the heart period. Similar to the 

results found in the TAA study, the heart rate dynamic is also affected by sleep stages. 

Adenotonsillectomy is found to reduce the monotonic changes in heart rate patterns during 

respiratory event free sleep in children with OSAS, which is independent of AHI 

normalisation. Additionally, heart rate dynamics in children whose AHI normalised 

spontaneously was significantly lower at baseline, which was not identified previously. This 

is a significant finding which indicates that heart rate patterns can identify children with mild 

OSAS, who can avoid surgery. 

As pulse wave amplitude and heart rate response differ under different physiological stress, 

PWA was found to be more beneficial at identifying hypoxic events related to autonomic 

activation compared to heart rate. Additionally, PWA is easier and cheaper to obtain, only 

using a PPG signal. In Chapter 5, PWA is combined with heart period information, studying 

the use of joint symbolic dynamic analysis on the Adelaide Women’s and Children’s Hospital 

Study dataset. Compared with healthy children, it was confirmed that upper airway 

obstruction elevates the frequency of autonomic activation in children with SDB during sleep 

and clinical scored respiratory-event-free sleep. This study confirmed the finding from 

Chapter 4, where adenotonsillectomy helped reduce autonomic activation in children with 

SDB. While heart rate dynamics showed a greater ability to identify children with SDB in 

NREM sleep compare to PWA, the evidence of joint results can distinguish them from 

healthy subjects, even in REM sleep. This suggests the joint PWA-HP dynamic can provide 

additional information on paediatric SDB assessment.  
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Instead of following the current diagnosing criteria for children with SDB, the data-driven 

analysis methods are used for separating the children into groups based on physiological and 

neurophysiological symptoms measured from TAA, HP and AHI. The study, therefore, 

presented in Chapter 6, investigated the possibility of using machine learning to predict 

children with SDB who can benefit from adenotonsillectomy, by adding the respiratory effort, 

and autonomic activation information, with the current clinic marker AHI. The results 

indicated that children with mild physiological and neurophysiological symptoms could avoid 

adenotonsillectomy, and children who have UAO symptoms post-surgery may have sleep-

related hypoventilation disease, which requires further treatment. These findings have 

indicated possible alternative diagnostic criteria that may assist surgeons predict which child 

requires adenotonsillectomy with greater accuracy.  

7.2 Future Research Directions 

In this section, future research directions are discussed that extend the work done in this 

thesis. 

7.2.1 Simplified PWA estimation and extensive dynamic analysis on 

children with sleep disordered breathing 

The study in Chapter 5 showed the advantage of including PWA to help identifying children 

with SDB, rather than the use of heart rate alone. However, for PWA estimation, the 

conventional method of estimating PWA requires the extraction of heartbeat R peak positions 

from ECG signals in advance. As heartbeat R peak positions are crucial for PWA estimation, 

as shown in Chapter 2 section 2.2.1, the simplified PWA estimation developed is presented in 

Appendix A. For the signal dynamic analysis presented in both Chapters 4, and 5, the 

symbolic analysis only provides information for the most effective length of three heartbeats. 
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However, the continuous changes for more than three heartbeats, and the continuous change 

in signal amplitude, cannot be captured. The proposed extensive dynamic analysis in 

Appendix A can compensate for this limitation. It would be interesting if the improved 

methods on a larger clinic dataset to investigate autonomic nervous system dynamics in 

children with SDB can further verify the efficacy of including PWA as an alternative marker.  

7.2.2 The effect of change in inspiration effort on autonomic 

activation in children with sleep disordered breathing 

The study presented in Chapter 3 showed the elevated inspiration effort for children with 

OSA during respiratory event free period. Additionally, studies presented in Chapters 4, and 

5, demonstrated the altered autonomic activation in children with SDB. These further proved 

that mild upper airway obstruction may still exist without AHI being detected, and it may be 

associated with some important physiological changes in children with SDB. It would be 

interesting to investigate if autonomic activation extracted by HP, or PWA, is affected by 

inspiration effort measured by TAA, and how autonomic activation changes with the change 

in inspiration effort. 

7.2.3 Predicting surgical treatment candidates for childhood upper 

airway obstruction using machine learning 

The study in Chapter 6 showed the benefit of using the physiological and neurophysiological 

symptoms measured from TAA, HP, and AHI, to identify the children with SDB who can 

benefit from surgery. Due to the subjects in this study only having mild and moderate OSAS 

conditions, the separation of the group from the cluster analysis was not very clear. The same 

study conducted on a large clinical trial, that includes more severe cases of OSAS, may help 

distinguish the groups better. Additionally, as previously discussed, PWA provides extra 

information for identifying children with SDB, and it can be included as a reference 
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physiological and neurophysiological symptom into a similar study. Further studies could 

also investigate if this method can identify children with SDB from healthy controls since this 

dataset does not contain healthy subjects. 

7.3 Closing statement 

Open questions from Chapter 1 have been addressed through the studies conducted in this 

thesis. Physiological variables TAA, HP, and PWA, can provide additional information on 

children with mild SDB, and they are potentially becoming the alternative markers for this 

disease. All work presented in this thesis is unique and original, laying the groundwork for 

future clinical sleep research on creating a better diagnosis of paediatric sleep disorder 

breathing.  
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Abstract—Sleep disordered breathing (SDB) is a common 
pediatric disorder, which results in increasing respiratory 
workload during sleep, restless night time sleep and excessive 
daytime sleepiness. It has significant negative effects on 
children with SDB on their physical growth and cognitive 
related developments. Chronic autonomic activation was 
suggested to be one of the possible key drivers causing 
cardiovascular structural changes in SDB children and 
increasing the risk of developing cardiovascular disease in their 
future. The aim of this study was to investigate the effect of 
SDB on autonomic activation changes in children, by analyzing 
the pulse wave amplitude (PWA) dynamics using a simple 
envelope estimation method extracting PWA from PPG signal. 

Children with SDB (n = 40) showed a significantly wider 
dynamic distribution in PWA compare to matched controls (n 
= 40), which suggests a higher and stronger level of autonomic 
response in SDB children.  

In conclusion, the PWA dynamic is altered in children with 
SDB during sleep and indicate changes in autonomic activation.  

I. INTRODUCTION 

Sleep disordered breathing (SDB) is relatively common in 
children. It is mostly caused by an obstructed upper airway 
due to enlarged tonsils and adenoids. Children with SDB 
commonly have impaired cognitive and behavioral functions. 
Studies have shown that SDB may also be a key driver for 
cardiovascular structural changes, and it may increase the 
risk of developing cardiovascular disease later on [1, 2].  

While the apnoea-hypopnoea index (AHI) is efficient for 
diagnosing severe forms of upper airway obstruction, the 
mild forms of SDB  that are related to increased inspiratory 
load but do not classify as hypopnea are not captured by the 
AHI. Studies have shown that cardiovascular and cognitive 
changes may develop even in children at the milder end of 
the SDB spectrum, and increasing concerns about the 
effectiveness of the AHI for diagnosing children with SDB 
have been expressed [3-5].  

The autonomic system regulates body functions under 
physiological stress. When the body is under stress, it 
changes the cardiac output and vascular stiffness, which 
results in a changing heart rate and blood pressure. Further, it 
leads to changes in peripheral vascular resistance and stroke 
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volume. The aforementioned processes are observable in 
changes of the pulse transit time and pulse wave amplitude. 
Frequently increasing inspiratory load would cause chronic 
autonomic nervous system activation and is a key reason for 
changes in cardiovascular structure and function in children 
with SDB [6-10]. Commonly, autonomic activation 
information can be extracted from cardiac and pulse signals, 
by measuring heart rate variability [11], pulse transit time 
(PTT) [12] or pulse wave amplitude (PWA) [2, 13-17]. These 
measures can respond in a similar or different pattern to 
autonomic activation under different stressors [15]. 

The aim of this study is to develop a simple technique to 
measure PWA continuously, to probe the level of autonomic 
activation in children with SDB by measurement the depth 
and duration of the autonomic changing trends. Furthermore, 
we assessed the difference in autonomic activation between 
children with SDB and a group of normal children. We 
hypothesized that children with SDB would have comparably 
more frequented and stronger autonomic activations during 
sleep. 

II. METHODS 

A. Patients 
This study was approved by the Women’s and Children’s 

Health Network Human Research Ethics Committee, South 
Australia, with parental consent and child assent obtained 
from all participants. Participants were 40 children aged 
3.25-12.9 years, with a history of frequent snoring, awaiting 
Adenotonsillectomy for suspected UAO and a matched group 
of 40 non-snoring healthy controls. More details of the study 
protocol are published elsewhere [18-22]. Both groups 
underwent overnight PSG to evaluate sleep and breathing 
parameters. Participants were screened to ensure they had not 
undergone previous ear, nose, throat or craniofacial surgery, 
or had a medical condition (other than UAO) associated with 
hypoxia or sleep fragmentation or were taking medication 
known to affect sleep or cardiorespiratory physiology. 

B. Overnight polysomnography 
Overnight PSG was conducted without sedation or sleep 

deprivation and began close to each child’s usual bedtime 
with a parent present throughout the procedure. The S-Series 
Sleepwatch® System (Compumedics®, Australia) was used 
to continuously record: EEG (250 Hz; C3-A2 and C4-A1), 
left and right EOG, ECG (modified lead II, 500 Hz), 
sub-mental and diaphragmatic EMG with skin surface 
electrodes, leg movements assessed by piezoelectric motion 
detection, oronasal airflow by thermistor, respiratory 
movements of the chest and abdominal wall using 
uncalibrated respiratory inductive plethysmography (RIP), 
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Figure 3. Percetage of the area for duration-depth trends histogram equal or 

above chosen threshold 

 
Figure 2. PWA dynamics –  Examples of dropping and rising trends 

distribution in contour plots of one normal child  (Top) and  one child with 
SDB (Bottom). Positive depth refers to rising trends, vice verse, negtive 

refers to dropping trends. The color bar indicates the percetage of the counts 
out of all trends in a paticular range of depth and duration combination 

mean age of the participants is 7.56 years, and 57.7 % were 
male. SDB group demonstrated with a significant higher 
OAHI with a p-value of 0.0015 than controls as expected. 

TABLE I.  SUBJECT DEMOGRAPHICS AT THE BASELINE STUDY 

 
Control 
(n = 39) 

SDB 
(n = 39) 

Age (years) 7.67 ± 2.69 7.45 ± 2.78 
# males 19 26 

BMI z-score 0.29 ± 0.89 0.61 ± 1.35 
OAHI 0.31 ± 1.13 5.24 ± 9.16 ** 

Data are presented as mean ± SD. **: p < 0.01; 

B. Pulse Wave Amplitude measurement 
An example of PWA calculated from PPG signal was 

shown in Figure 1, where the PWA signal is in cyan, PPG 
signal is in red; upper and lower envelops of the PPG signal 
is in blue and magenta.  

C. PWA dynamics analysis 
A sprout looking distribution was found for the trends. 

Examples are shown in contour plots in Figure 2. The one on 
the top is from a normal child with OAHI of 0. The one on 
the bottom is from a child with SDB with OAHI of 11.92. 
The trend distributions in these two plots appear quite 
different. In the normal child, the trends distribution is 
concentrated with a higher percentage of trends were 
distributed around the center of the plot with the depth of the 
trends close to zero duration between 2 to 6 seconds. In 
contrast, the trends distribution is much more spread out in 

the child with SDB. 

D.  Threshold test on PWA dynamic  
From the threshold test, a range of thresholds was shown 

to effectively distinguish the control group from SDB group, 
where 0.0196 % is the best threshold that can separate 
controls with SDB group with a p-value of 0.003 (Figure 3). 
SDB children showed a significantly higher PWA dynamic 
than controls. The mean and standard error of each of the 
control and SDB groups at this threshold is 4.496 ± 0.342 and 
5.699 ± 0.3063. 

IV. DISCUSSION 

In this study, we investigated autonomic activation 
through PPG by assessing PWA dynamics during sleep in 
children with SDB and healthy children. The main finding is 
a wider distribution of PWA dynamics in children with SDB 
than in controls. Children who experience SDB are likely to 
have an increased number of longer and larger trends in PWA. 
This may indicate children with SDB experience longer and 
stronger autonomic activations that are more frequently 
compared to healthy controls. A threshold of the percentage 



Appendix A 

 

Page 120 

  



 



Page 121 

Appendix B 

 

 

 

 

 

 

Framework flow chart for TAA estimation 
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