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Abstract  

Microorganisms are key-drivers of carbon-, nitrogen-, sulfur- and metal cycling on Earth. 

Through their metabolic activities they directly and indirectly link element cycles. This leads to 

the cycling of elements through the Earth’s ecosystems from/to the atmosphere to/from the 

lithosphere. Gold (Au) is a rare, redox-active, noble transition metal, which is neither essential as 

a nutrient nor, reputedly, mobile in the environment. Therefore, observations published in recent 

decades, which have shown that gold is highly mobile and subject to biogeochemical cycling 

largely driven by microbiota, have surprised many. Questions concerning the fundamental 

biogeochemical processes mediating gold cycling, the organisms involved and the benefits they 

may gain have puzzled researchers. In this review we integrate the cycling of the major biogenic 

elements carbon, nitrogen and sulfur with that of gold. We identify key-processes that drive gold 

cycling and evaluate how different chemical Au(I/III)-species affect microbiota that form 

biofilms on gold-bearing minerals and placer gold particles. Additionally, we assess how the 

cycling of the gold-associated metal(loid)s silver, copper, iron, manganese, mercury and arsenic 

is linked to that of gold. Microbially produced compounds resulting from carbon, nitrogen, 

sulfur, iron and manganese cycling (e.g., organic acids, cyanides, (thio)sulfates, ammonium, iron 

sulfides/oxy-hydroxides and managanese oxides) can each play important roles for the 

mobilization of gold. Highly toxic, mobile Au(I/III)-complexes affect the phylogenetic and 

functional composition of microbial communities resident on gold particles. This leads to gold 

detoxification coupled to active and passive biomineralization, and ultimately the aggregation 

and (trans)formation of metallic gold particles. The complex interplay between gold, microbiota 

and physicochemical conditions modified by these organisms (e.g., redox or pH) has throughout 

the Earth’s history led to the aggregation of gold particles (grains to nuggets), led to the 
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formation of the largest known gold deposit (i.e., Witwatersrand paleo-placer), and the largest 

gold reservoir in seawater. Today it opens up exciting biotechnological pathways for mineral 

exploration, processing and remediation. 

 

Keywords: Biogeochemistry; element cycles; intercycle coupling; gold; carbon; nitrogen; sulfur; 

microorganisms; bacteria 
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1. Introduction 

Elements are transported through and between the Earth’s compartments in different forms, 

including as gases, liquids, solids, organic or inorganic chemicals, and in their ionic, complexed 

or native forms. Although schematic models commonly depict cycles of individual elements, 

e.g., the carbon cycle, processes affecting the cycling of one element commonly also affect the 

cycling of other elements (Jelen et al., 2016). By driving the biotransformation of elements via 

their highly diverse and complex enzymatic machineries, biota, especially prokaryotic 

microbiota, are central to element cycling on Earth (Banfield et al., 2005; Stahl et al., 2013; Paul, 

2014). During their >3500 Ma evolution, prokaryotes have developed genetic, physiological, 

metabolic and ecological capabilities, which allow them to live anywhere where water is 

available and ambient temperatures are below 121 ºC (Gogarten et al., 2002; Ramette and Tiedje, 

2007). Due to their metabolic capabilities ranging from photo-litho-autotrophy to chemo-organo-

heterotrophy, they are able obtain metabolic energy from a wide variety of substrates and 

environments (Madigan et al., 2008). As a result of these capabilities and their high abundances 

(total bacterial biomass on Earth ~10^15 kg) they create the foundation of interconnected 

biogeochemical cycles of elements leading to cycling of elements from the atmosphere, 

hydrosphere into the pedosphere and lithosphere and vice versa (Falkowski et al., 2008). 

Microorganisms acquire and metabolize essential macronutrients (C, Ca, K, Mg, N, Na, P 

and S) from many different environmental sources (Alexander, 1964). Diverse metabolic 

activities of microbes (e.g., the excretion of organic acids and siderophores) ensure the 

bioavailability of essential micronutrients (e.g., Co, Cu, Fe, Mn, Mo, Se, V, and Zn). These 

elements serve, for example, as co-factors for enzymes involved in photosynthesis, glycolysis, 

nitrogen-fixation and a wide range of other biochemical pathways (Moat et al., 2003; Gottschalk, 
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2012). Metals and metalloids can also be directly and indirectly influenced by microbial 

activities. This includes the enzymatic bio-transformations of metals, the oxidation and reduction 

of metals to obtain energy, cell-mediated detoxification via active efflux or methylation, and the 

secretion of various metabolites to either obtain metals or avert their toxicity (Da Silva and 

Williams, 2001; Gadd, 2010). Consequently, the cycling of most major metals (Ca, Fe, K, Mg, 

Mn and Na), metalloids (As, Se and Te), trace- and ultra-trace metals (Ag, Cd, Cr, Cu, Hg, Mo, 

Ni, Pd, U, V, and Zn) in Earth’s surface and many crustal environments is driven by 

biogeochemical processes (Gadd, 2010; Ehrlich et al., 2015). 

In most environments, microorganisms exist as part of biofilm communities, rather than 

as free-living planktonic cells. This is attributed to the symbiotic potential and the protection 

conferred in biofilms (Donlan, 2002). Microbial biofilms commonly are multispecies, sessile 

aggregations of microbiota attached to abiotic or biotic surfaces by extracellular polymeric 

substances (EPS; Costerton et al., 1995). Collective activities of these biofilm communities 

(especially the dissolution and precipitation minerals and metals) play crucial roles for the 

weathering in the Earth’s upper crust (Douglas and Beveridge, 1998; Banfield et al., 1999; Gadd, 

2004). 

An example of a biogeochemical cycle of a metal, which until recently was considered to 

be inert, immobile and not biologically active under Earth surface conditions is that of gold (Fig. 

1). Gold is a rare, non-essential, transition metal, which occurs in Earth’s surface environments 

as primary metallic gold-silver alloy (electrum), in a range gold-bearing minerals (especially 

sulfides and tellurides) within hardrock deposits and as metallic gold particles in placers (Fig. 

2A, B). At the Earth’s surface, gold cycling starts with the weathering of gold-bearing rocks and 

minerals, e.g., the mobilization of gold from gold-hosting sulfide minerals (Southam et al., 2009; 
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Reith et al., 2013). Geochemical and geobiological processes can stabilize Au(I/III)-ions in 

aqueous solutions, because free Au(I/III)-ions are unstable in aqueous solutions under standard 

conditions (Reith and McPhail, 2006; Pan et al., 2007; Fairbrother et al., 2009; Zou et al., 2015). 

For instance, many microorganisms excrete substances, which act as complexing ligands for Au-

ions promoting gold mobilization. This, in combination with Ag-dissolution, can lead to the 

formation of a range of dissolution features commonly observed on placer gold particle surfaces 

(Fig. 2C). 

 

 

 

Figure 1  The biogeochemical cycle of gold in Earth’s surface and near-surface 

environments comprises the solubilization, biomineralization and aggregation of 

gold. This leads to the formation of mobile or immobilized Au(I/III)-complexes 
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and metallic gold nanoparticles as well as the (trans)formation of placer gold 

particles. 

Mobile Au(I/III)-complexes are highly cytotoxic by exerting oxidative and heavy metal 

stresses; note they display toxicity levels similar to those of Ag(I)- and Hg(II)-compounds (Nies, 

1999; Wiesemann et al., 2013). Some bacteria living in biofilms on placer gold particle surfaces 

(Fig. 2 E, F) have developed biochemical responses to deal with the toxicity of Au(I/III)-

complexes (Checa et al., 2007; Reith et al., 2009; Johnston et al., 2013; Wiesemann et al., 2013; 

Wiesemann et al., 2017). As a result they reductively precipitate Au(I/III)-complexes, which 

leads to the biomineralization of metallic gold nanoparticles (Reith et al., 2009; Johnston et al., 

2013; Bütof et al., 2018). Aggregation and recrystallization of these nanoparticles contributes to 

the formation of pure (>99 wt.%) secondary gold overgrowths on placer gold (Fig. 2 B, D). The 

overgrowths exhibit a range of morphologies, including triangular, spherical, hexagonal and 

octahedral shapes (Fig. 2D). Microcrystals and bacteriomorphic gold as well as sheet and wire 

gold can also form (Southam and Beveridge, 1994; Kerrich et al., 2000; Shuster et al., 2017a). 

Ultimately, the above mentioned biogeochemical processes lead to: the (trans)formation of 

placer gold particles (i.e., grains and nuggets, defined here following Hough et al. (2007) as gold 

masses weighing less or more than 1 g, respectively), the dispersion of gold in the world’s 

oceans, and the accumulation of gold in (sulfo-)organic sediments. The latter gave rise to the 

formation of a range of large gold deposits, such as shale-hosted- and quartz pebble 

conglomerate (QPC) deposits. The former has been the subject of scientific debate, especially in 

relation to the processes affecting the formation of gold nuggets (e.g., discussed in Falconer et 

al., 2006). According to Hough et al. (2007), following on from the work on Australian nuggets 

by Liversidge (1893 and 1897), the formation of large gold nuggets is the result of hypogene 
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processes, as demonstrated by internal structures of coarse grained and often twinned crystals of 

electrum. In contrast, Kamenov et al. (2013) and Rakovan et al. (2017), who have assessed lead 

isotope signatures and mineral inclusions of gold nuggets from the Rich Hill (Arizona, United 

States) and Bodaibo (Lena Goldfields, Russia), respectively, suggest that these have largely, and 

in some cases entirely, formed in surface environments. 
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Figure 2 (A) An optical micrograph of a placer gold particle. (B) Quantitative electron 

microprobe map of a polished whole-mount showing a transformed placer gold 

particle consisting of a primary core composed of electrum and a biotransformed 

rim of pure secondary gold (Rea et al., 2019). (C) Backscatter electron (BSE) 

SEM micrograph of a placer gold particle surface showing a porous network of 

gold dissolution morphotypes. (D) BSE SEM micrograph of a gold particle 

surface showing re-precipitation of secondary nanophase gold pseudo-spheres and 

euhedral crystals embedded in a clay-organic polymorphic layer. (E, F) 

Secondary electron (SE) SEM micrograph showing biofilms composed of 

bacterial cells and EPS on the surfaces of placer gold particles. 

 

While we now understand a range of the processes that mediate gold cycling in the 

environment, a synthesis of knowledge in relation to integrating gold cycling with the major 

biologically-driven element cycles is urgently needed. The aim of this review is to enlighten the 

fundamental understanding of interconnected element cycles and assess how the cycling of 

biogenic elements drives the cycling of gold. The paper encompasses an in-depth review of 

critical microbial populations and processes that mediate carbon, nitrogen and sulfur cycling and 

how the cycling of these elements affects gold cycling in Earth’s surface environments. In 

particular, the microorganisms driving major element and gold cycling in biofilms on placer gold 

particles are assessed. In addition, gold cycling in relation to the cycling of other metals with 

critical geochemical or biochemical links to gold is discussed. 

 

2.   Effect of biogenic element cycles on gold cycling 
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2.1. Carbon and gold 

If one element was nominated to signify life it has to be carbon, because the global carbon cycle 

exerts its dominance over all living things and the processes that affect them (Fig. 3; Fenchel et 

al., 2012; Ehrlich et al., 2015;). In the global carbon cycle, carbon is recycled through all Earth’s 

major reservoirs, i.e., from the atmosphere and hydrosphere through to the biosphere, pedosphere 

and lithosphere and vice versa (Janzen, 2004). A vast amount of carbon on Earth is stored in 

sedimentary rocks within the planet’s crust. These rocks are produced by the sedimentation and 

diagenesis of organic carbon-rich mud and the formation of carbonate minerals, e.g., calcite and 

dolomite, which is largely associated with marine systems (Altermann et al., 2006; Brumsack, 

2006). Carbonaceous substances in sedimentary and metamorphic rocks are excellent sorbents of 

heavy metals (including gold) resulting in their diagenetic concentration and low-temperature 

metallogenesis (Razvozzhaeva et al., 2008; Large et al., 2011). This points to an important role 

of carbonaceous organic substances for the formation of large gold deposits (Fig. 3; Disnar and 

Sureau, 1990; Razvozzhaeva et al., 2008; Frimmel, 2014). Indeed, numerous reports have also 

shown highly elevated concentrations of gold in crude oil (Shah et al., 1970; Hulen and Collister, 

1999; Yin et al., 2012). In some gold deposits ore bodies have been shown to contain elevated 

amounts of light hydrocarbons with C1 – C9 carbon chains (Hulen and Collister, 1999; Polito et 

al., 2002). In others, gold is finely dispersed in organic lenticular carbonaceous substances 

(Mossman and Dyer, 1985; Mossman et al., 2008; Wood and Popov, 2006). This is the case at 

the Sukhoi Log deposit, one of the largest gold deposits in Russia, where gold is associated with 

carbonaceous substances and sulfides in a black shale and siltstone sequence (Large et al., 2007).  

However, according to Frimmel (2014 and 2018) and Frimmel and Hennigh (2015) the largest 

concentrations of gold in the Earth’s crust occur in laterally extensive carbonaceous seams. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

11 
 

These are the result of gold accumulation in extensive mats of early photosynthetic bacteria 

(likely cyanobacteria) occurring in the oxygen-deficient environments more than 2900 Ma ago. 

Frimmel (2018) further suggests that reworking of gold from these mats by fluvial processes in 

ancient placer environments led to the formation of quartz-pebble conglomerate (QPC) deposits. 

Of these the super large Witwatersrand deposits in the Kaapvaal Craton in South Africa are the 

best persevered examples, other examples are found in the Pilbara Craton (Australia), as well as 

old cratons in Canada, China, Brazil and Fennoscandia (Frimmel, 2014). Frimmel (2014 and 

2018) further argues that these gold-bearing bioorganic sediments also provided a source for 

large orogenic, porphyry-type, hydro- and epithermal gold deposits. The formation of the latter, 

so Frimmel (2014 and 2018), is a result of the onset of modern-style plate tectonics during the 

Neoarchaean, which led to the reworking of gold-rich sediments along active plate margins. 

Arguably the first step in carbon cycling is the biological reduction of atmospheric, 

inorganic carbon, i.e., carbon fixation (Fig. 3). It is one of the most important biogeochemical 

processes on Earth, because it creates a bridge between inorganic and organic/biological realms 

(Rothschild and Mancinelli, 1990). In modern and ancient ecosystems, the production of biomass 

through photosynthesis is the most widespread form of carbon fixation. Other forms of 

autotrophic carbon fixation have also been described, e.g., by communities surrounding deep-sea 

hydrothermal vents (McKendry, 2002; Ver Eecke et al., 2012). Photosynthesis converts photo 

energy (sunlight) into chemical energy by converting atmospheric carbon dioxide to reduced, 

energy-rich, organic chemicals such as sugars. Eukaryotic phototrophy mediated by plants and 

algae dominates in current terrestrial environments (Smil, 2003; Raven, 2009; 3). Oxygenic 

photosynthesis by cyanobacteria is an important driver of carbon fixation in freshwater and 

marine environments and here provides organic carbon as a substrate for a heterotrophic 
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succession (Stanier and Bazine, 1977; Huertas et al., 2014). Due to their ability to fix carbon 

phototrophically and their unique stress adaptation capabilities (including heavy metal resistance 

and salt tolerance) cyanobacteria are ubiquitous on Earth. They are found in fresh and saltwater 

environments, in top-soils, in sediments as well as in ‘extreme’ environments, including at metal-

contaminated or hypersaline sites (Huertas et al., 2014) 
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Figure 3  Integration of the short- and long-term biogeochemical cycles of carbon and 

nitrogen with the biogeochemical cycle of gold. 

 

In ancient (and modern anoxic) environments, prokaryotically-driven anoxygenic 

photosynthesis is thought to be the main pathway to fixing carbon. During this process cellular 

energy is produced without producing oxygen as a by-product (Blankenship, 2014). Therefore, 

anoxygenic photosynthesis is also considered to be an important link between the carbon cycle 

and the cycles of nitrogen, iron and sulfur, because electron donors other than water (e.g., NO2
-, 

H2S, Fe2+) are utilized (Burgin et al., 2011). Some modern cyanobacteria have the capability to 

grow by anoxygenic photosynthesis and morphological fossils of cyanobacteria have been 

recorded in Archean sediments (Nealson and Rye, 2003). For example, some communities 

forming Archean stromatolites (e.g., in Pilbara Craton of Western Australia and in the Pongola 

Supergroup of South Africa) are thought to have been capable of driving anoxygenic 

photosynthesis; note: the occurrence of early oxygenic photosynthesis in the Archean has also 

been proposed (Allwood et al., 2006; Frimmel and Hennigh, 2015). Several other groups of 

obligate and facultatively anaerobic chemolithoautotrophs, e.g., green sulfur bacteria, red and 

filamentous purple bacteria (Chloroflexi, some Acidobacteria and Heliobacteria) also use 

anoxygenic photosynthesis.  

 A scenario where the importance of microbial carbon fixation on gold has been 

demonstrated, is formation of gold deposits in the Witwatersrand basin of South Africa 

(Frimmel, 2014; Heinrich, 2015). The Witwatersrand gold deposits host approximately 30 % of 

the world’s gold resources (Frimmel, 2014). A large proportion of this gold, in some reef 

deposits as much as 70 % of all gold, is directly associated with organic carbon derived from 
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microbial mats (Hallbauer and Joughin, 1973; Mossman et al., 2008; Frimmel, 2005 and 2018). 

These (cyanobacterial) mats grew in shallow lakes or river pools in an early anoxic Earth and 

accumulated mobile gold complexes from solution (Fig. 3; Frimmel, 2014, Heinrich, 2015). 

Geochemical modelling has shown that gold solubility in ancient waterbodies was much higher 

than today and that gold likely occurred as Au(I)-sulfide complexes (Heinrich, 2015). Different 

authors have suggested different precipitation mechanisms for these Au-complexes, including: i) 

adsorption (Mossman et al., 2008); ii) oxidative precipitation triggered by the release of oxygen 

on the surface of the microbial mats resulting from oxygenic photosynthesis (Frimmel, 2014; 

Frimmel and Hennigh, 2015); iii) precipitation via reduction by organic hydrocarbons (Heinrich, 

2015); and iv) reductive precipitation as a result of bacterial activities (Horscroft et al., 2012). A 

laboratory study by Lengke et al. (2006) has shown that the cyanobacterium Plectonema 

boryanum can withstand high concentrations of mobile Au-complexes and has the ability to 

biomineralize them to metallic nano- and micro-phase gold. The study revealed that P. boryanum 

releases membrane vesicles, which are responsible for the reduction of Au-complexes and the 

precipitation of metallic gold nanoparticles outside of the cells and so prevent intracellular 

uptake of toxic mobile gold (Lengke et al., 2006).  

Based on these results, Shuster and Southam (2015) have developed an experimental 

roller-bottle system, comprising cyanobacteria, iron-oxidizing- and sulfate-reducing bacteria 

(SRB), sand and fine-grained gravel, as well as nano- and microphase gold. The aim was to 

produce a simplified version of biogeochemical conditions in fluvial placer environments. Using 

this system the authors have successfully formed millimeter-scale gold particles in a range of 

experiments. These microbially produced gold particles are morphologically highly similar to 

particles from modern QPC deposits, e.g., gold deposits in the Waimumu district, New Zealand 
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(Falconer et al., 2006; Shuster and Southam, 2015). Gold from the Waimumu district, especially 

the Belle Brooke and Parker Road deposits, is commonly composed of sheet-like high purity 

secondary gold, resulting from the biogeochemical cycling of gold driven locally by the cycling 

of carbon and sulfur (Falconer et al., 2006). Similarities to gold particles from ancient 

Witwatersrand placer have also been made (e.g., Hallbauer and Barton, 1987), but can be 

misleading due to the fact that here the microbially produced gold particles have been altered by 

post-depositional hydrothermal processes and metamorphism.  

 The next step of the carbon cycle is the decomposition of reduced organic carbon, which 

is important as it also regenerates other nutrients, e.g., phosphorus and trace metals and hence 

links to the cycles of these elements (Fig. 3; Schimel, 1995). Under oxic conditions, aerobic 

respiration yields the most energy of any catabolic process. Here oxygen is the primary and 

ultimate oxidant for organic carbon. This results in the decomposition of carbohydrates and 

organic acids to the metabolic end-products CO2, H2O and mineral nutrients (Ehrlich et al., 

2015). Under anoxic conditions, the decomposition of organic carbon involves a chain of 

activities mediated by a diverse group of facultative and obligate anaerobic heterotrophic 

bacteria and fungi. It starts with the hydrolysis of complex polymeric organic substances, i.e., 

high molecular weight organic substances (HMWOS) to low molecular weight organic 

substances (LMWOS), and ends with the production of methane and carbon dioxide (Fig. 3; 

Madigan et al., 2008). A wide range of heterotrophic microorganisms play a role in producing 

metabolites, e.g., low molecular weight organic acids (LMWOA) as metabolic by-products or 

through formation/degradation of HMWOS (Uroz et al., 2009). Many of these organic 

intermediates can act as lixiviants and/or reducers of Au(I/III)-complexes. They are therefore 

important determinants of gold mobility (Fig. 3). A number of experimental studies have shown 
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that amino acids, e.g., aspartic acid, alanine, histidine, serine, and glycine, can solubilize gold via 

the formation of Au(I)-amino-acid-complexes (Korobushkina et al., 1976; Saxby, 2012). 

Bacteria such as Chromobacterium violaceum, Bacillus spp., Pseudomonas aeruginosa and P. 

fluorescens are known to contribute to gold solubilization via amino acid formation and 

cyanidation (Reith and McPhail, 2006; Fairbrother et al., 2009). Microcosm studies by Reith and 

McPhail (2006) and Fairbrother et al. (2009) have shown that bacterial consortia in soils can 

solubilize gold by producing Au-complexes with amino acids and cyanide. During the later 

stages of the experiments (after 40–50 days of incubation) bacterial consortia metabolized Au-

complexing ligands and thus destabilized gold in solution, leading to its precipitation. Under 

anoxic conditions, LMWOAs are degraded to acetate by acetogenic bacteria (Fig. 3). Acetogens 

are a specialized, yet ubiquitous, group of anaerobic bacteria that produce acetate (Drake et al., 

2008). Gold has been shown to readily form complexes with acetate increasing its mobility 

(Shock and Koretsky, 1993; Bakrania et al., 2009). As a result of the anoxic carbon 

decomposition in soils and sediment, organo-Au-complexes and organically stabilized 

nanoparticulate gold colloids may be transported in the soil solution and groundwater as part of 

the dissolved organic matter (DOM; Reith et al., 2007).  

Together with acetogens, methanogenic archaea constitute the last limbs of the anaerobic 

carbon decomposition (Fig. 3; Liu and Whitman, 2008). Under anoxic conditions, acetoclastic 

methanogens convert acetate to CH4 and CO2 (Horn et al., 2003). Methanogens typically thrive in 

environments in which all electron acceptors, other than CO2, have been exhausted (Horn et al., 

2003). A study by Takai et al. (2001) has shown high abundances of methanogenic archaeal 

communities in modern gold mine waters from mines in the Witwatersrand (South Africa). 

Therefore, the presence of hydrocarbon seeps in gold deposits containing light hydrocarbons 
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may be attributed to the biochemical activity of methanogenic archaea. Methanogenesis and 

sulfate reduction are thought to be the dominant anaerobic microbial processes in the deep 

subsurface marine environment. In the immediate vicinity of deep sea hot (~350 °C), reducing, 

metal-rich hydrothermal systems, i.e., ‘black smoker’ and ‘white smoker’ chimneys, where H2, 

CH4, H2S gases are abundant, active chemolithoautotrophic thermophilic sulfate reducers and 

methanogens were detected (Ver Eecke et al., 2012). This suggest that these microbial 

communities might play an important role in subsurface metal deposit formation (Jannasch and 

Mottl, 1985; Tivey, 2007). However, further research is required to establish the role of 

methanogens on gold biogeochemistry, especially close to hydrothermal systems. 

Methanotrophic bacteria are a group of bacteria, which metabolize methane as their only 

source of carbon and energy, have been detected on secondary gold particles (Rea et al., 2016). 

A study by Levchenko et al. (2002) has shown that a methanotrophic strain of Micrococcus 

luteus isolated from a gold mine site has a unique Au-binding protein, which forms a Au-protein 

complex that enhances the methane oxidation rate.  

Complex biogeochemical processes produce recalcitrant carbonaceous substances, e.g., 

humic and fulvic acids as well as humins. These substances are not readily biodegradable and 

find their way into the pedosphere and finally into the lithosphere (Fig. 3; Atlas, 1998). As an 

element of group IB in the periodic table gold has a strong affinity for complex organic matter 

(Vlassopoulos et al., 1990). Due to the complexity and diversity of DOM researchers have found 

contradicting results in their solubilization/precipitation experiments (e.g., Freise, 1931; Baker, 

1978; Varshal et al., 1984; Bowell et al., 1993). For example, metallic gold has been mobilized 

into solution by waters containing high amounts of organic matter derived from lignite in the 

absence of oxygen (Freise, 1931). Ong and Swanson (1969) have found that organic acids did 
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not dissolve, complex or oxidize gold, but reduced auric chloride solution to Au(0) and formed 

stable gold colloids in aqueous solutions with a high DOM content. Overall, the interactions of 

Au-complexes with organic matter seem to be predominantly linked to nitrogen- and sulfur-

containing functional groups, which constitute important reactive sites in many HMWOS 

(Housecroft, 1993). 

Carbon is taken out of the fast biogeochemical cycle and moved into slow, geological 

cycle through burial of refractory organic material (i.e., coal and oil) as well as through 

precipitation as carbonate minerals (e.g., calcite, dolomite, vaterite and aragonite; Fig. 3; 

Schlesinger, 1995; Jiao et al., 2010). For example, calcrete is a type of pedogenic calcium-

carbonate covering many arid environments around the world (Lintern, 2001). Calcrete is 

considered an important sampling medium for geochemical gold exploration, because in calcrete, 

calcium displays a strong positive correlation with gold, but not with base metals (Lintern et al., 

2006; Reith et al., 2011). A comprehensive biogeochemical model for gold-anomalous calcrete 

formation has been proposed, which is based on microbial metabolic processes that combine 

biogenic calcium carbonatogenesis with gold co-precipitation (Schmidt-Mumm and Reith, 2007; 

Reith et al., 2011). The process involves the destabilization of Au-amino-acid-complexes 

through degradation to urea and suggests that nitrogen-containing compounds formed by 

microbes are also strongly involved in gold cycling (Schmidt-Mumm and Reith, 2007).  

 

2.2. Nitrogen and gold 

Nitrogen comprises most of Earth’s atmosphere and is the fourth most abundant element in 

cellular biomass (Stein and Klotz, 2016). Several studies have shown that reactive nitrogen-
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containing compounds, such as proteins, their building blocks (i.e., peptides and amino acids) 

and decomposition products (e.g., cyanides and ammonium) can react with metallic gold in the 

presence of a strong oxidants (e.g., some manganese oxides or bioorganic manganese 

compounds; Ta et al., 2014 and 2015) to form soluble Au-complexes (e.g., Au(I)-cyanide 

[Au(CN)2]-, Au(I)-diammine [Au(NH3)2]+ ; Campbell et al., 2001; Vicente et al., 1997). 

Therefore, it is likely that the biogeochemical cycling of nitrogen plays an important role for 

gold mobility and cycling. The global biogeochemical nitrogen cycle is closely linked to that of 

carbon and largely dependent on the activities of microbiota (Fig. 3; Godfrey and Glass, 2011). 

Steps of the nitrogen cycle are nitrogen fixation, anammox, ammonification, nitrification and 

denitrification (Fig. 3). All of the processes are highly dependent on the activities of a diverse 

assemblage of microorganisms (e.g., Gutknecht et al., 2006; Madigan et al., 2008).  

Atmospheric nitrogen fixation is the starting point and most essential part of the nitrogen 

cycle (Fig. 3). Nitrogen fixation is an energy-requiring process, in which two moles of ammonia 

are produced from one mole of nitrogen gas using the enzyme complex nitrogenase (Canfield et 

al., 2010). Only relatively few species of microorganisms are capable of fixing atmospheric 

nitrogen, all of which are prokaryotes. Important groups of prokaryotes that catalyze nitrogen 

fixation in terrestrial ecosystems are symbiotic, nitrogen-fixing bacteria belonging to the genera 

Rhizobium, Bradyrhizobium, and Frankia, which live in root nodules of legumes (Canfield et al., 

2010). A number of free-living soil bacteria (e.g., some Clostridium spp., Bacillus spp. and 

Azotobacter spp.) are also able to fix atmospheric nitrogen (Gutknecht et al., 2006). In aquatic 

environments, cyanobacteria (in addition to their role in carbon fixation) are the dominant drivers 

of nitrogen fixation, hereby fueling aquatic primary production (Geider et al., 2001).  
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Reduced nitrogen in the form of NH4
+ can be assimilated into biomass, such as amino 

acids, which are then incorporated into other nitrogen-containing biomolecules, e.g., nucleotides 

and proteins (Fig. 3). Amino acids are abundant in geological bodies and have the ability to form 

mobile Au-complexes (Vlassopoulos et al., 1990; Reith and McPhail, 2006). Ambient 

temperature and acidity as well as type and concentration of amino acids in solution are 

important factors for Au-amino-acid complex formation. A study by Jingrong et al. (1996) 

indicates that organic acids in waters at moderate to shallow depths, i.e., in meso-epithermal 

solutions, are capable of forming soluble Au-complexes, and thus enhance the gold mobility. 

This suggests that these processes may play an important role in metallogenesis of gold deposits 

by enabling migration of gold from source rocks (Jingrong et al., 1996). Amino acids, such as 

glycine, function as metabolic precursors for cyanide production in bacteria, including 

Chromobacterium spp. and Pseudomonas spp., which have been shown to solubilize of gold via 

cyanidation (Knowles, 1976; Blumer and Haas, 2000; Campbell et al., 2001; Faramarzi and 

Brandl, 2006). In some ecosystems, e.g., in rhizosphere soils, cyanide-producing microorganisms 

can constitute up to 50 % of the microbial community (Kremer and Souissi, 2001). Eksteen and 

Oraby (2015) have developed a gold extraction process using a glycine-hydrogen peroxide 

system, which may provide a cheap, environmentally friendly alternative to conventional 

extraction methods. Moreover, they suggest that this method has the potential to turn Western 

Australia’s low-grade copper-gold deposits into commercially viable operations by enabling the 

in situ recovery of the metals.  

Ammonification involves the conversion of organic nitrogen to ammonia via 

deamination, i.e., the metabolic break-down of amino acids and other organic acids by 

heterotrophic microorganisms (Fig 3; Mancinelli, 1996). The ammonia generated dissolves in 
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water to form ammonium ions (NH4
+). Interestingly, Klyakhin and Levitskiy (1969) suggest that 

NH4
+ in hydrothermal solutions enhances the solubility of heavy metals by acting as a 

transporting agent, and therefore may play a crucial role in formation of metalliferous ore 

deposits. Studies on ammonium-rich minerals present in gold deposits indicate that ammonium 

contributes to ore-forming processes by enhancing the mobility of gold in hydrothermal solutions 

(Klyakhin and Levitskiy, 1969; Bottrell and Miller, 1990). In addition, a fluid inclusion study by 

Bottrell (1986) on an ammonium-mineral-rich black shale-hosted quartz-vein gold deposit in 

northern Wales has revealed a close association between nitrogen levels in the fluids and the 

grade of gold deposit.  

Urea is a common intermediate product of microbial ammonification in soils. Several 

studies have demonstrated that the formation of gold anomalies in calcrete (i.e., accumulations of 

calcium carbonate forming in soil and regolith environments) is driven by ureolytic microbes 

(Schmidt-Mumm and Reith, 2007; Reith et al., 2011). These studies have shown that resident 

ureolytic bacterial communities are capable of utilizing amino acids, including L-aspartic acid 

and urea. This leads to the destabilization of the Au-amino-acid-complexes and concomitant co-

precipitation of gold with calcium carbonates (Reith et al., 2009 and 2011). Here the formation 

of ammonium and carbon dioxide from urea creates suitable physicochemical conditions 

required for calcium-carbonatogenesis.  

Nitrification is the next step of nitrogen cycle, where microbial ammonium is converted 

to nitrate via nitrite (Fig. 3; Gutknecht et al., 2006). Nitrification is an aerobic process performed 

by nitrifying bacteria. Nitrification contributes to soil acidification, which can result in increasing 

the mobility of heavy metals, such as gold, particularly in poorly buffered soils (Prosser, 2005). 

Gold nitrate complexes have been reported from the laboratory, but evidence for their existence 
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in nature is lacking (Manfait et al., 1981). The final step of the nitrogen cycle is denitrification 

(Fig. 3). Dentrification is a microbially facilitated process in which nitrate is reduced and 

ultimately atmospheric nitrogen is produced through a series of intermediate nitrogen oxide 

products. Again an important link exists here between nitrogen cycling and the cycles of other 

biogenic elements, because reduced carbon or sulfur compounds serve as electron donors for this 

process. In relation to gold mobility, autotrophic denitrifying bacteria have reported to 

destabilize Au-complexes by utilizing sulfur-containing ligands such as thiocyanate and 

thiosulfate (Broman et al., 2017). This suggests that denitrifying bacteria may play a role in gold 

cycling. Overall, one can conclude that reactive nitrogen-containing compounds formed during 

biogeochemical cycling of nitrogen likely have a strong impact on gold mobility, gold 

biomineralization and ore forming processes. 

 

2.3. Sulfur and gold 

Sulfur is an essential nutrient for all organisms and geochemically very important due to its 

ability to form a wide range of metal sulfide minerals. Indeed, most of the Earth's sulfur is tied 

up in primary rocks as metal sulfides (e.g., pyrite, galena, sphalerite, millerite, bornite or 

covellite), in sediments and weathered materials as sulfate minerals (e.g., gypsum, jarosite, and 

barite) and in secondary (biogenic) sulfides (e.g., pyrite, marcasite; Ivanov and Freney, 1983; 

Hedges, 1992). Microorganisms especially sulfate-reducing bacteria (SRB) are a major 

contributors to the formation of biogenic sulfides and facilitate sulfide and gold co-precipitation 

by creating localized reducing conditions through their metabolic activities (Fortin and 

Beveridge, 1997). Some of these are products of microbial processes from earlier periods of the 

Earth’s history, e.g., sulfides and sulfates in sedimentary Precambrian rocks (Farquhar et al., 
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2000). Like nitrogen and carbon, microbiota cycle sulfur and thereby transform it from its most 

oxidized- (sulfatic) to its most reduced (sulfidic) form (Fig. 4; Fike et al., 2016). The individual 

processes involved in sulfur cycling are dissimilative and assimilative sulfur- and sulfate 

reduction as well as sulphide- and elemental sulfur oxidation (Fig. 4; Kellogg et al., 1972; 

Nordstrom and Southam, 1997).  

Gold has a unique relationship with sulfur, because it is incorporated in solid solution and 

as nanophase gold in (biogenic) sulfide minerals (e.g., pyrite, chalcopyrite, arsenopyrite and 

marcasite; Arehart et al., 1993; Groves et al., 1998). In hydrothermal fluids, gold exists as 

sulfide- and bisulfide-complexes, e.g., [Au(HS)0], [Au(HS2)−], [Au2S2
2−] (Renders and Seward, 

1989; Gammons and Williams-Jones, 1997). Changes in ambient pressure and/or temperature 

can lead to the precipitation of quartz. During this processes, Au-complexes are co-precipitated 

as metallic gold or in gold-hosting sulfide minerals leading to the formation of gold-bearing, 

hydrothermal quartz-veins (Knight, 1999). In these sulfides gold is either finely dispersed in 

crystal lattices or occurs as metallic nano-inclusions (Boyle, 1979; Hough et al., 2011).  

In Earth’s surface environments sulfur-bearing minerals and compounds are readily 

transformed as a result of biogeochemical oxidation-reduction reactions (Ehrlich et al., 2015). 

Generally, the oxidative dissolution of sulfide minerals involves a complex interplay between 

microorganisms, solutions and mineral surfaces that leads to the formation of sulfuric acid, 

fuelling for example acid mine drainage (Edwards et al., 2000). Here acidophilic 

chemolithotrophic iron-sulfur-oxidizing bacteria (e.g., Acidithiobacillus thiooxidans, A. 

ferrooxidans, A. caldus, Leptospirilium ferrooxidans) play a critical role in the dissolution of 

sulfides and in regulating the mobility of sulfur compounds and associated metals (Nordstrom 

and Southam, 1997). Under acidic weathering conditions these bacteria can dissolve gold-
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hosting sulfide minerals. This releases the gold trapped within minerals via the formation of 

mobile Au-complexes (Fig. 4; Lindström et al., 1992). Specifically, the oxidation of metal-

sulfides produces thiosulfate as a metastable intermediate, which can act as ligand for the 

formation of soluble Au(I)-thiosulfate complexes (Lengke and Southam, 2005; Nordstrom and 

Southam, 1997).  

A study by Schippers and Sand (1999) has shown that iron- and sulfur-oxidizing bacteria 

drive the biogeochemical oxidation of metal sulfides via the t thiosulfate-leaching- or the 

polysulfide-leaching mechanism, depending on the mineralogy of the metal sulfides. For acid-

insoluble metal sulfides, oxidation via the thiosulfate-leaching mechanism’ is commonly used. 

Hereby Fe-S2 is cleaved. This followed by bacterial oxidation of Fe(II) to Fe(III)-hexahydrate, 

which drives the oxidation of inorganic sulfide to thiosulfate and ultimately produces sulfuric 

acid (Schippers and Sand, 1999). For acid-soluble metal sulfides, a polysulfide-leaching 

mechanism has been proposed. Hereby sulfides are attacked by both Fe(III)-ions and protons, 

resulting in the formation of intermediate polysulfides, elemental sulfur and ultimately sulfate 

(Friedrich, 1997;  
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Figure 4  Integration of the biogeochemical cycles of sulfur and iron with the 

biogeochemical cycle of gold. 

 

Nordstrom and Southam, 1997; Schippers and Sand, 1999). On the basis of these biogeochemical 

mechanisms an industrial scale bioleaching process for refractory gold ores named BIOX® has 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

26 
 

been developed (Van Aswegen et al., 2007). In this process, consortia of iron- and sulfur-

oxidizing bacteria oxidize gold-containing sulfidic ores. This reduces the quantity of toxic 

lixiviants (i.e., cyanide) required in downstream leaching steps and ultimately increases gold 

yields (Van Aswegen et al., 2007). The process has been used in gold mines in South Africa 

(Fairview mine), in Australia (Fosterville, Harbour Lights and Wiluna mines), in Ghana 

(Ashanti-Shansu and Bogoso mines), in China (Jinfeng mine), in Brazil (Sao Bento mine), in 

Peru ( Tamboraque mine), in Kazakhstan (Suzdal mine) and in Uzbekistan (Kokpatas mine; 

Kaksonen et al., 2014). 

The next step of the sulfur cycle is the assimilative reduction of sulfate (Fig. 4). The 

process involves the uptake of SO4
2– by organisms, which is intracellularly reduced to sulfhydryl 

groups (R–SH). These are incorporated as active functional groups in a range of organic 

metabolites, e.g., into the sulfur-bearing amino acids cysteine and methionine (Madigan et al., 

2008). These amino acids constitute the key functional regions of peptides and proteins capable 

of gold-binding and intracellular Au-S-complex formation in bacteria (e.g., in C. metallidurans; 

Reith et al., 2009). Hence, assimilative sulfate reduction can also lead to the biomineralization of 

gold and ultimately result in the formation metallic gold nanoparticles associated with the 

microbial cell or plant tissues (Anderson et al., 1999; Reith et al., 2009). Studies by Lintern et al. 

(1997) and Ryan et al. (2013) have shown that substantial amounts of gold can be detected in 

eucalypts and other plants growing in goldfields of southern Western Australia. In these plants 

gold appears to exist as metallic nanoparticles inside the cells (Ryan et al., 2013). 

In the following steps of the sulfur cycle (i.e., dissimilative sulfate and sulfur reduction) 

sulfate or elemental sulfur are reduced to hydrogen sulfide under anoxic condition (Fig. 4). The 

processes, where sulfate/sulfur act as terminal electron acceptors, are mediated by a diverse 
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group of SRB, including members of the genera Desulfovibrio Desulfomonas, Desulfurimonas 

and Desulfobacter (Nealson and Stahl, 1997). Thereby, substantial amounts of hydrogen sulfide 

are produced, which react with available aqueous metal ions, e.g., Fe2+, to form metal-sulfides 

(e.g., pyrite and marcasite; Fortin and Beveridge, 1997). A study by Boice (2002) assessed 

present-day microbial communities in the deep subsurface of the Witwatersrand Basin, and 

found a diverse SRB communities to be present. A laboratory study by Lengke and Southam 

(2006) has shown that SRB (e.g., Desulfovibrio spp.) are capable of metabolizing thiosulfate 

from mobile Au(I)-thiosulfate complexes. This destabilizes the Au-complexes in solution, which 

leads to extracellular precipitation of gold nanoparticles and the production of hydrogen sulfide 

as a metabolic by-product (Lengke and Southam, 2006). A study by Tomkins (2013), assessing 

anoxic ancient oceanic and sedimentary systems, has theorized that bacterial sulfate reduction 

played a crucial role for the formation of sedimentary pyrite minerals and organic muds. 

Tomkins (2013) also suggests that bacterial sulfate reduction has led to a dramatic reduction in 

the solubility of gold in deep seawater environment and the subsequent formation of gold-

bearing pyrite. Therefore, in early Earth’s euxinic conditions, where waters were both anoxic and 

sulfidic, bacterial sulfate reduction likely played a crucial role in the formation of gold-bearing 

sedimentary sequences, which are ideal source rocks for gold deposits (Hutchinson, 1987). 

Walsh and Lowe (1985), who studied gold-bearing rocks the 3,500-Myr-old Onverwacht Group 

(Barberton Mountain Land, South Africa), suggested that SRB may have contributed in 

precipitation of gold. In the Witwatersrand basin in South Africa, the highest gold contents were 

detected in syn-sedimentary concentrically laminated pyrite, which are likely of microbial origin 

(Frimmel, 2018). Gold-bearing sulfide minerals, which bear strong textural resemblances to 

Witwatersrand precipitates, are found at the Bellebrook deposit in New Zealand. Here 
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authigenic, secondary gold is abundant in quartz-pebble conglomerates, which are forming under 

present day conditions (Falconer et al., 2006). The sulfides at the Bellebrook deposit are 

framboidal anhedral marcasite as well as framboidal euhedral pyrite, which are common 

products of BSR (Falconer et al., 2006). Sulfur isotope data of marcasite from Bellebrooke 

corroborate that BSR is responsible for the formation of these iron sulfides (Falconer et al., 

2006). Overall, this suggests that SRB and other sulfur transforming bacteria are likely to play a 

key role in formation economically valuable gold deposits, such as QPC-deposits.  

 

3. Gold and other metals  

In the environment the occurrence and behavior of gold is strongly intertwined with 

biogeochemical cycles of other metals, particularly: i) silver, through the gold-silver alloy 

(electrum) commonly constituting primary gold; ii) copper, through copper occurring in primary 

gold and soils/sediments overlying gold deposits; iii) iron, through gold-hosting, biogenic iron 

sulfides and sorption to iron oxides; iv) manganese, through sorption/oxidation of gold by 

reactive manganese oxides; v) arsenic, through arsenic-containing sulfides (e.g., arsenopyrite) 

hosting gold in primary deposits; and vi) mercury, through natural and anthropogenic gold-

mercury amalgamation. Therefore, the biogeochemical cycling of these elements in relation to 

gold mobility is briefly discussed. 
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Figure 5  Examples of the association of gold with copper, iron, manganese and mercury. 

(A) The plot shows copper and gold contents of Australian auriferous soils from 

four sites i) Old Pirate (); Humpback (□); Wildcat (); and Tomakin Park () (  

Wiesemann et al., 2017). (B) SE micrograph of acicular Fe(III)-oxides on the 

surface of a placer gold particle. (C) SE micrograph showing microbially formed 

birnessite on the surface of gold spheres. (D) A high resolution BSC micrograph 

of a gold particle affected by anthropogenic amalgamation with mercury.  
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3.1. Silver and gold 

Silver (Ag) is a white, lustrous transition metal, which forms a natural alloy (electrum) with gold 

in primary gold deposits. In addition, silver occurs in silver-bearing sulfides, in mercury/gold-

silver-alloys and as free native silver (nano)particles (Boyle, 1968). Because of its close 

association with gold and its mobility, silver is commonly used as a pathfinder element in 

geochemical exploration for gold (Boyle, 1979). Under surface conditions, especially in acidic 

and oxidizing environments, silver is more mobile than gold (Boyle, 1968). Therefore, it is 

depleted from primary gold-silver particles. This, in combination with the re-precipitation of 

mobilized gold, results in the formation of transformed secondary placer gold particles (grains 

as well as nuggets) that have silver-poor, gold-rich rims and silver-rich cores (Fig. 2B; Boyle, 

1979). Leaching of silver from placer gold particles commonly occurs from the outside and can 

be seen as a continuous process. Generally, modern oxic environments seem to facilitate silver 

leaching from silver-bearing minerals and gold-silver alloyed particles, whereas the anoxic 

conditions in Precambrian environments may not have been conducive to silver mobilization 

(Hallbauer and Utter, 1977). Therefore, detrital gold particles in ancient conglomerates, e.g., in 

the Pilbara Craton, and any diagenetically added gold may have remained silver-rich if the 

diagenesis of gold was abruptly halted and preserved (Falconer, 2018). However, care has to 

be taken during with interpreting gold/silver ratios in these particles, as they may be the result 

of later stage alteration. For instance the Witwatersrand gold particles have been 

compositionally altered by post-formation hydrothermal processes, so that no information 

about the original gold/silver distribution can be obtained (Frimmel and Gartz, 1997). Silver 

dissolution and complexation can be counteracted by re-precipitation of secondary, silver-
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bearing minerals or elemental silver in the environment, but this appears to be a rare 

phenomenon (Yin et al., 2012). Craw (1992) has shown that during the re-precipitation of gold-

silver alloyed particles, only between 1 and 8 % of mobilized silver is re-precipitated. The 

reason behind this likely is the high environmental mobility of silver ions, which readily form 

water-dispersible complexes with sulfate and nitrate, as well as chloride (Levard et al., 2012; 

Shuster et al., 2017b). This suggests that in addition to gold toxicity the organisms also have to 

deal with mobile silver. Mobile Ag-complexes and nanoparticles are highly cytotoxic, because 

they detach cytoplasmic membranes from cell walls and affect a wide range of biochemical 

processes in cells (Ratte, 1999; Levard et al., 2012). A range microbes have evolved 

mechanisms to detoxify Ag-complexes through the silver-specific resistance genes expressing 

transmembrane efflux protein systems, i.e., sil (silver resistance determinant) and cus (copper-

sensing copper efflux system; Silver, 2003). These are found in metal-resistant and gold-

cycling bacteria living on gold particle surface, such as C. metallidurans, Geobacter 

metallireducens and a range of other Ralstonia spp., Shewanella spp. and Pseudomonas spp. 

(Silver, 2003). Mobile Ag-complexes can also be extracellularly reduced to metallic silver 

nanoparticles, e.g., in polysaccharide (EPS) layers, which are important components of 

microbial biofilms on placer gold particles (Miao et al., 2009; Gillan, 2016).  

 

3.2.  Copper and gold 

Copper has a unique geochemical relationship with gold, because it occurs as a component of 

primary gold particles, and is a main constituent of copper-gold-porphyry and iron-oxide-copper-

gold (IOCG) deposits (Sillitoe, 1979; Groves et al., 2010). Here, it occurs as copper sulfides and 

sorbed to iron-oxides (Sillitoe, 1979; Groves et al., 2010). Analyses of copper contents in soils 
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overlying gold deposits have shown elevated total copper and gold concentrations, although the 

gold/copper ratios can vary depending on site conditions (Fig. 5A; Wiesemann et al., 2017). 

Under the Earth’s surface conditions, copper is more mobile and therefore more bioavailable 

than gold (Gadd, 2010). Notably, copper is an essential nutrient, which plays a central role in 

cellular biochemistry, but is toxic if present at high concentrations inside cells. Because of this 

copper concentrations in cells are tightly regulated via active biochemical import and efflux 

mechanisms (Pena et al., 1999). In gold-containing soils, microorganisms may commonly 

encounter elevated concentrations of toxic soluble Cu-ions and -complexes (Wiesemann et al., 

2017). Therefore, organisms have developed sophisticated copper regulation and resistance 

systems, e.g., the cop (copper-inducible copper resistance system) and cus systems. These are 

found in many bacteria living in metal-rich environments (Nies, 1999; Wiesemann et al., 2013). 

The toxicity of mobile Cu-ions and -complexes can, similar to silver and other metals, play an 

important role in gold-containing environments by exerting a continuous selective pressure on 

resident microorganisms, which drive the (trans)formation of placer gold particles. This is well 

reflected in genome of the metallophilic bacterium C. metallidurans, which can occur in high 

abundances in biofilms on gold particles (Reith et al., 2010). Cupriavidus metallidurans harbors 

a wide range of well-coordinated metal resistance systems and can co-utilize its copper 

resistance elements for the detoxification of toxic Au(I/III)-complexes (Wiesemann et al., 2017; 

Bütof et al., 2018). Biomolecular studies of this bacterium have shown that its periplasmic Cu(I)-

oxidase (CopA) is involved in Au(I/III) detoxification (Wiesemann et al., 2017; Bütof et al., 

2018). Here CopA functions as an oxygen-consuming Au(I)-oxidase, which converts Au(I) to 

Au(III). This prevents entry of Au(I) in the cytoplasm and the subsequent formation of Au(I)-S 

adducts, which create cellular oxidative stress (Bütof et al., 2018). The result is the direct 
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reduction of Au(III) to Au(0) nanoparticles in the periplasm without the formation of toxic Au(I) 

intermediates (Bütof et al., 2018). Based on these results, Bütof et al. (2018) have concluded that 

synergistic gold-copper detoxification is the core of gold biomineralization in C. metallidurans 

CH34, and may also be important in other organisms living on gold particle surfaces.  

 

3.3.  Iron and gold 

Iron (Fe) is the most abundant redox-active metal in the Earth’s crust (Emerson et al., 2012). It 

occurs naturally as ferrous iron (Fe(II)), and ferric iron (Fe(III; Fig. 4). During the 

(bio)geochemical iron cycle, iron is oxidized and reduced via a range of abiotic and biotic 

processes. Microorganisms catalyze the oxidation of Fe(II) under oxic or anoxic conditions and 

the reduction of Fe(III) in anoxic habitats (Raiswell and Canfield, 2012). This leads to the 

formation of a range of iron-oxide and -sulfide minerals, e.g., through bacterial 

biomineralization, which effect the mobility of trace elements including gold (Konhauser, 1998). 

The oxidation of Fe(II) to Fe(III) leads to the formation of Fe(III)-oxyhydroxides at neutral and 

alkaline pH, e.g., goethite and ferrihydrite (Fig. 4 and 5B; Kappler et al., 2015). 

Chemolithoautotrophic acidophilic bacteria (e.g., A. ferrooxidans, Sulfobacillus acidophilus, 

Leptospirillum ferrooxidans) as well as some heterotrophic acidophilic bacteria, play important 

roles in Fe(II)-sulfide oxidation in acidic conditions (Kappler et al., 2015). Under anoxic 

conditions, chemolithotrophic and heterotrophic bacteria and archaea can couple the reduction of 

Fe(III) with the conservation of energy (Kappler et al., 2015). This leads to the formation of Fe-

sulfide minerals (e.g., pyrite, arsenopyrite, chalcopyrite and marcasite; Miot and Etique, 2016). 

Microbial reduction of Fe(III)-minerals by dissimilatory Fe(III)-reducing prokaryotes has a 
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strong influence on overall biogeochemical cycles of trace metals due their incorporation into 

resulting Fe(II)-sulfides (Emerson et al., 2012).  

Gold has a close geochemical relationship with iron, because it is commonly incorporated 

in Fe-sulfides and adsorbed by Fe(III)-oxyhydroxides (Fig. 5B; Reith and Cornelis, 2017). The 

oxidation of Fe(II)-sulfides, such as gold-bearing pyrite, can lead to the mobilization of 

associated gold as soluble Au(I)-thiosulfate complexes (Southam and Saunders, 2005). Field and 

experimental studies have shown that Fe(III)-oxides possess a substantial capacity for the 

sorption of mobile Au(I/III)-complexes and gold nanoparticles (Gray and Lintern, 1998; Reith 

and Cornelis, 2017). In lateritic systems, gold is associated with Fe(III)-oxides at a range of 

mining sites, including at Kangaba (Mali), at Cassiporc (Brazil), at Ashanti (Ghana) and in the 

Yilgarn (Western Australia). It occurs as coatings on the surface of Fe(III)-oxides or 

interstratified within Fe(III)-minerals (Greffié et al., 1996). In samples from the Darling Ranges 

in Western Australia, gold has been found as micrometer-sized particles incorporated into 

Fe(III)-oxide pisoliths (Anand and Verrall, 2011). An experimental study by Cancès et al. (2007) 

on gold and goethite proposed the presence of gold interlocked in goethite. This, so the authors 

propose, is likely due to the strong inner-sphere sorption of Au(III) on the surface of goethite. In 

a study on the interactions of gold with magnetite (Fe3O4), Spiridis et al. (2014) have shown that 

atomic structure of the magnetite surface can act as a template for the ordered adsorption of gold. 

Recently, magnetic nanoparticles, such as magnetite nanoparticles, have been extensively studied 

as an industrial adsorbent for the recovery of Au(III)-complexes from aqueous or waste solutions 

(Sheel and Pant, 2018).  

The biochemical activities of Fe(III)-reducing thermophilic bacteria and archaea provide 

a glimpse of the possible role of these organisms in the formation of Precambrian gold deposits. 
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The reduction of Fe(III) to Fe(II) by thermophilic Fe(III)-reducers and subsequent bacterial 

sulfate reduction can lead to the formation of sedimentary pyrite (Tomkins, 2013). In an 

experimental study, enzymatically catalyzed precipitation of gold has been observed in 

dissimilatory Fe(III)-reducing hyperthermophilic bacteria (Thermotoga maritime) and archaea 

(Pyrobaculum islandicum and Pyrocococcus furiosus; Kashefi et al., 2001). With the aid of an 

unique membrane-enclosed hydrogenase enzyme these organisms can perform extracellular 

precipitation of metallic gold nanoparticles from Au(III)-chloride at 100 °C under anoxic 

conditions in a hydrogen-rich atmosphere (Kashefi et al., 2001). These results suggest that on 

early Earth, and today in the deep subsurface and hydrothermal systems, Fe(III)-reducing 

extremophiles along with SRB may have been involved in the formation of sedimentary metal 

sulfide deposits (e.g., gold-bearing sulfide deposits; Southam and Saunders, 2005). 

 

3.4. Manganese and gold 

Manganese (Mn) is an essential trace element for living organisms and plays a crucial role in 

cellular metabolism (Ehrlich et al., 2015). In the natural environment, manganese is found as a 

major or minor component in more than 100 oxide, carbonate and silicate minerals (Das et al., 

2011). Natural manganese oxide accumulations often consist of a range of manganese 

minerals including manganese dioxide (MnO2), hausmannite (Mn3O4), ormanganite 

(MnOOH), and the biomineral birnessite ((Mn4+,Mn3+)2O4). Manganese-oxides are strong 

oxidants and scavengers of trace elements, whereas manganese-carbonates (e.g., rhodochrosite, 

manganese-calcite and kutnahorite) are important long-term reservoirs for carbon (Tebo et al., 

2004). In surface environments, the oxidation/biomineralization of Mn(II) to Mn(III/IV)-

oxides is mediated directly or indirectly by a diverse group of microorganisms including 
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cyanobacteria, heterotrophic and lithothrophic organisms (e.g., Hyphomicrobium sp., 

Pseudomonas spp., Leptothrix sp., Nitrosomonas europaea, Nitrobacter winogradskyi; 

Nealson, 2006). Ultimately, these processes lead to the formation of reactive biogenic 

manganese-oxides, such as birnesitte (Fig. 5C; Webb et al., 2005).  

 In 1958 Goldschmidt first proposed a role of manganese oxides for the mobilization of 

gold (Goldschmidt, 1958). In a range of studies, Ta et al. (2014, 2015) have corroborated the role 

of manganese-oxides for the solubilization of gold. These studies revealed that under acidic 

conditions, birnesitte, can catalyze the oxidation of Au0 and Au(I) to mobile Au(III)-complexes, 

which can persist in saline and hypersaline environments at neutral to alkaline pH and reducing 

conditions. In contrast, manganic oxide (Mn2O3) has also been shown to spontaneously reduce 

Au(III) to metallic gold with an ability of both anchoring and dispersing of gold nanoparticles in 

the absence of a specific reducing agent (Wang et al., 2008). The unique surface redox properties 

of Mn2O3 play a critical the role in this process (Wang et al., 2008; Yamashita et al., 2008). Due 

to their omnipresence in most weathering environments and their high reactivity and variable 

reactions with gold, manganese oxides minerals play an important role in gold mobility in Earth 

surface environments. 

 

3.6. Mercury and gold 

Mercury (Hg) is a highly cytotoxic heavy metal, which occurs naturally with gold as gold-

(silver)-mercury amalgamate in a number of deposits, e.g., OPC-deposits near Gore in New 

Zealand and the Prophet Gold Mine in Kilkivan, Australia (Fig. 5D; Falconer et al., 2006; Holley 

et al., 2010; Reith et al., 2010). Since Roman times mercury has been used in artisanal and small-
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scale gold mining in a process called mercury-gold amalgamation (De Lacerda and Salomons, 

2012). In this process, mercury is mixed with gold-containing materials, which leads to the 

formation of a pasty mercury-gold amalgam. This is then heated and the mercury is vaporized 

leaving the gold behind (Adler Miserendino et al., 2017). Today, mercury amalgamation is 

widely used for the artisanal production of gold in many countries in South America (especially 

in the Amazon region), in Asia, (e.g., in the Philippines and China) and throughout Africa 

(Lacerda, 1997). In Brazil more than 100 t of mercury are used annually for extraction of alluvial 

gold (Palheta and Taylor, 1995). Pacyna et al. (2010) have reported that South Africa contributes 

>10% of the global mercury emissions, which are derived mostly from artisanal gold mining. 

Mercury is highly persistent in the environment, and, partly due to microbial activities, is also 

highly dispersible and bioavailable. As a results, soils and waterways surrounding artisanal 

mining sites, in which mercury is used, are commonly highly contaminated with the metal. To 

combat mercury toxicity biota, especially prokaryotes, have developed a range of mercury-

specific resistance mechanism (Parks et al., 2013). Mercury methylation and enzymatic reduction 

of Hg2+ to Hg0 by members of the MerR (mercury resistance) family of proteins are the most 

common of the detoxification mechanisms. In some bacteria (e.g., C. metallidurans, Escherichia 

coli, Salmonella enterica) MerR family regulatory proteins have also been shown to defend the 

cells against gold toxicity (Irawati et al., 2012; Jian et al., 2009; Pontel et al., 2007). For 

example, CupR/CueR or GolS, which selectively respond to toxic soluble Au(I/III)-stress, 

upregulate the expression of Au(I) or Cu(II) translocating ATPase proteins, which translocate 

toxic Au(I) from bacterial cell cytoplasm (Checa et al., 2007; Jian et al., 2009).  

 

3.7. Arsenic and gold 
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Arsenic (As) is a cytotoxic metalloid, which in the environments is transformed by a diverse 

group of bacteria (Sanyal et al., 2016). In arsenic-rich gold deposits, gold is often found 

incorporated in arsenic-bearing sulfide minerals, e.g., arsenopyrite (FeAsS), realgar (As2S2) or 

orpiment (As2S3; Simon et al., 1999). Microcosm experiments with Australian soils have shown 

that resident microbial communities can solubilize gold and arsenic from these soils (Reith and 

McPhail, 2007). Due to the high mobility of As(III), compared to gold, it is readily dispersed in 

soils and groundwaters (Ehrlich et al., 2015). Therefore like silver and copper, arsenic is 

considered as an important pathfinder element for gold exploration (Reith and McPhail, 2007). 

As a result, microorganisms may encounter arsenic toxicity in the environment leading to the 

evolution of various genetic resistant mechanisms, including those regulated by the ars (arsenical 

resistance) operon and arr (arsenate reductase) and aio (arsenite oxidase) genes clusters (Sanyal 

et al., 2016). However, links between bacterial arsenic resistance and detoxification of soluble 

Au-complexes need to be further investigated. 

 

4.  Microbial biofilm communities on placer gold particles 

Multispecies biofilms are commonly found on natural placer gold particles and are known to 

play a key-role in their biotransformation (Fig. 2; Reith et al., 2010; Reith et al., 2018; Reith et 

al., 2012b; Shuster et al., 2015; Rea et al., 2016; Rea et al., 2018). This next section will 

therefore briefly summarize our current understanding concerning the composition and the 

functional roles of the organisms constituting these biofilms. Biomolecular studies on bacterial 

biofilms present on gold particles have revealed that the biofilms create favorable micro-

environments for the leaching of gold, silver and other metals and for re-precipitation of mobile 

Au-complexes as secondary gold (Reith et al., 2010; Rea et al., 2016). These biofilms have the 
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ability to drive the biomineralization of gold via the formation of intra- and extracellular 

spherical nanoparticles. These can subsequently aggregate, which leads to the biotransformation 

of primary placer gold particles and may induce the neoformation of secondary gold particles 

(grains to nuggets) in Earth’s surface environments (McCready et al., 2003; Reith et al., 2009; 

Reith et al., 2010; Kamenov et al., 2013; Shuster and Southam, 2015; Rakovan et al., 2017). 

Taxonomic evaluation and studies of putative functional abilities have shown that 

bacterial groups capable of carbon, nitrogen and sulfur biotransformation (including carbon- and 

nitrogen fixation, nitrification, denitrification, sulfur oxidation, sulfate reduction) are present in 

these biofilms (Fig. 6; Rea et al., 2016; Rea et al., 2018; Reith et al., 2018). Carbon- and nitrogen 

fixation are essential for the initial bacterial colonization of the gold particles in many placer 

environments, because organic carbon concentrations are commonly so low that they alone are 

likely insufficient to support the growth and proliferation of heterotrophic bacteria. Initial 

colonization with autotrophic bacteria is assumed to generate the supply of bioavailable carbon 

and nitrogen, which provides the foundation for the subsequent colonization with heterotrophic 

bacteria (Fig. 6). The presence of the autotrophic bacteria Rhodobacter spp., Rhodospirillium 

spp. as well as cyanobacteria highlights the ability of the biofilm community for carbon and 

nitrogen fixation. Other bacteria capable of nitrogen fixation can also be abundant in the biofilm 

communities and include many Alpha-proteobacteria (e.g., Beijerinckia spp. and Rhizobium 

spp.). Other nitrogen transformations occurring in the biofilms include nitrite oxidation, which is 

for example mediated by Nitrobacter spp. (Fig. 6).  
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Figure 6 A neighbor-joining circular phylogenetic tree of bacterial taxa detected on placer 

gold particles biofilms from sites in Australia, New Zealand, Brazil, Finland and 

the UK, demonstrating the diversity of bacterial species. The tree was generated 

using MEGA 5 and further analyzed using the Interactive Tree of Life 

(https://itol.embl.de/) online platform; colored circles indicate biochemical 

functions required for biofilm functioning on gold particles. 

 

A diverse group of heterotrophic bacteria (from the phyla Proteobacteria, Firmicutes, 

Bacteriodetes and Actinobacteria) is likely to promote the solubilization of gold and other metals 

by producing ligands capable of mediating the formation of soluble Au-complexes (e.g., amino- 

and carboxylic acids; Fig. 6; Rea et al. 2016). Resident cyanogenic bacteria, such as the resident 

Pseudomonas spp., and Stenotrophomonas spp,. can also promote gold solubility by excreting 

gold-complexing cyanide (Fig. 6; Fairbrother et al., 2009). Other bacteria (e.g., Diaphorobacter 

spp., Sphingomonas spp., Methylobacterium spp.) harbor complete sox (sulfur-oxidizing) gene 

clusters. Expression of these permits the conversion of elemental sulfur to thiosulfate, which can 

from the water-soluble Au(I)-thiosulfate complexes at the biofilm/particle interface (Friedrich et 

al., 2005).  

When taken up by cells, soluble Au(I/III)-complexes, are very toxic, because they create 

oxidative stress by stripping electrons from cell compounds. This leads to the disruption of both 

extracellular and intracellular structures as well as heavy metal stress, which can interrupt 

enzyme pathways (Reith et al., 2007). The presence of EPS-producing bacteria, such as some 

Pseudomonas spp., Acinetobacter spp., in the biofilm bacterial community is a safeguard for the 

structural integrity of the biofilm (Fig. 6; Karthikeyan and Beveridge, 2002; Teitzel and Parsek, 
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2003). To reduce the biofilm’s exposure to Au-complexes, EPS layers act as the first biological 

defense against gold toxicity. EPS layers immobilize Au-complexes extracellularly, which 

reduces the amount of soluble gold reaching the inside of cells constituting the biofilms 

(Harrison et al., 2007; Fairbrother et al., 2013; Johnston et al., 2013).  

Other resident organisms have an even more targeted approach to dealing with gold 

toxicity. The extensively studied bacterium Delftia acidovorans produces a siderophore ( 

delfibactin) in presence of Au(I/III)-complexes. Delftibactin reduces gold extracellularly to 

metallic gold nanoparticles and thus protects the biofilm from the toxicity of Au-complexes 

(Johnston et al., 2013). The metallophilic bacteria C. metallidurans, Stenotrophomonas 

maltophilia, Achromobacter spp., can detoxify Au(I/III)-complexes through a range of 

intracellular mechanisms, including excretion, reductive precipitation, nanoparticle formation 

and possibly also gold biomethylation (Rea et al., 2016). In C. metallidurans CH34, 

biomineralization of gold nanoparticles occurs via the reduction of mobile Au(I/III)-complexes 

in the periplasmic space by the copper- and gold-handling CopA (Zammit et al., 2016; Bütof et 

al., 2018). The resulting nanoparticulate gold can be highly mobile, susceptible to chemical 

dissolution and transport as well as uptake by macrobiota (trees), and hence drive the 

environmental dispersion of gold and the formation of secondary gold anomalies. Overall, the 

combination of the wide range of carbon, nitrogen and sulfur cycling capabilities coupled with 

metal-resistance and detoxification mechanisms enables the existence of a thriving biofilm 

community on gold particles despite the omnipresence of toxic mobile metals (e.g., gold, silver, 

copper and mercury). As a whole the community gains an ecological advantage by being able to 

live on the toxic mobile metal-rich microenvironments that are placer gold particles. 
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5. The biogeochemical gold cycle – starting point for biotechnical applications 

So far this review has shown that environmental gold cycling is highly complex and combines 

geochemical processes and microbial cycling of major elements. In combination, these processes 

control the nature and kinetics of gold dispersion and re-concentration in near surface- and 

surface environments (Boyle, 1979; Reith et al., 2007; Southam et al., 2009; Reith et al., 2013;). 

The fundamental knowledge of environmental gold cycling can now be used to develop efficient 

and cost-effective methods for gold exploration, processing and remediation. Using state-of-the-

art (meta)genomic techniques allows us to characterize the microbiota and microbial functions 

important for gold cycling and biomineralization in key metallogenic environments, e.g., in soils 

and deeper regolith materials, overlying different styles of gold deposits. An understanding of 

the distribution, diversity and function of microorganisms in soils overlying gold deposits can be 

used to develop bioindicator systems, which can assist with gold exploration (Fig. 7; Zammit et 

al., 2012). In combination with novel micro-analytical techniques, a probalistic link between 

microbial communities and physiochemical parameters occurring in metal anomalous soils can 

be established. In several recent Australian studies of soils overlying volcanogenic massive 

sulfide (VMS), gold-, platinum-, copper-gold-uranium and base metal deposits, microbial 

community compositions and abundances of metal-resistance genes were closely linked to the 

underlying deposits, demonstrating that pinpointing underlying ore bodies is feasible using these 

techniques (Reith et al., 2012a; Wakelin et al., 2012; Reith et al., 2015). To provide a dataset 

against which these microbial anomalies can be compared the Biomes of Australian Soil 

Environments (BASE) project is currently underway and to date contains phylogenetic and 

geochemical data of 1400 sites across the Australian continent (Bissett et al., 2016). From these 

databases a selection of OTUs and functional genes indicative of gold deposits can be combined 
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on a low cost, high-throughput microarray, and a scoring system resulting in one number score 

per sample can be implemented (Fig. 7). Scores for soil samples on tenement and larger scales 

can then be imported into mapping software, and score maps can be produced. Importing the 

results into a mapping software will also enable to link these data to other datasets, e.g., 

geological, geochemical and geophysical data. 
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Figure 7 Flow-diagram highlighting the development of a bioindicator scoring system for 

gold exploration that can be integrated with other spatially resolved data, e.g., 

geophysical or geochemical exploration datasets.  

 

Additionally, an in-depth knowledge of how microorganisms interact with Au-complexes 

can be used to develop biosensors, e.g., using the gold detoxification mechanism observed in a 

strain of Salmonella enterica serovar Typhimurium. The organism harbors gold 

resistance golTSB gene cluster to alleviate gold toxicity through an active efflux system (Checa 

and Soncini, 2011). Based on this Zammit et al. (2013) have developed a whole cell biosensor 

containing the golTSB gene. The sensor was tested on soil samples and was able to measure the 

concentration of gold accurately down to a quantification limit of 20 ppb (0.1 µM) and a 

detection limit of 2 ppb (0.01 µM)(Zammit et al., 2013).  

Gold processing technologies can also be improved based on advances in our 

understanding of the interactions between gold and microorganisms (Kaksonen et al., 2014). For 

example, thiosulfate- and cyanide-producing microorganisms can be used in-situ leaching of 

gold. Other metallophilic microbes, such as C. metallidurans and D. acidovorans, are being 

assessed for their ability to bioaccumulate mobile Au-complexes and nanoparticles to make them 

ameneable to conventional recovery (Johnston et al., 2013; Kaksonen et al., 2014). A recent 

study by Tay et al. (2013) has shown that metabolically engineered a strain of Chromobacterium 

violaceum enables the recovery gold from electronic (E-) waste. The organism has the ability to 

produce a large quantities cyanide lixiviants, which can efficiently dissolve gold from the E-

waste (Tay et al., 2013). Another study by Sheel and Pant (2018) has proposed a chemical 

technique, assisted by microbial biosorption, for removal gold from electronic (E-) waste. The 
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technique involves a combination of ammonium thiosulfate and a novel strain Lactobacillus 

acidophilus for gold recovery (Sheel and Pant, 2018). In future, the strains of C. metallidurans 

and D. acidovorans strain may also be used to efficiently recover gold from mining and 

electronic waste. Additionally, the range of application for gold nanoparticles is growing rapidly. 

A range of sizes and shapes of gold nanoparticles are now used in electronics as conductors, in 

diagnostics as biomarkers, in therapeutic drug delivery systems, in sensory devices and as 

industrial catalysts. Thereby, microbial processes may offer a cost-effective way of producing 

gold nanoparticles, of particular shapes and sizes. 

 

6. Conclusion and outlook 

This review reveals that a microbially driven interconnected web of element cycles affects gold 

mobility and governs gold cycling. The geobiological cycling of carbon, nitrogen, sulfur, iron 

and gold leads to the (trans)formation of placer gold particles, the dispersion of gold in the 

environment, and enabled the formation of large gold deposits, including QPC and shale-hosted 

deposits. Molecular profiling of gold particles and subsequent studies identifying the 

biochemical pathways of gold cycling have shown that a wide range of organisms are involved 

in driving biogeochemical cycle of gold. Therefore, now is a good the time to use this 

fundamental knowledge of gold biogeochemistry to develop biotechnological applications. These 

have the potential to revolutionize gold exploration, processing, as well as enabling gold 

recovery from mining and E-waste. In addition, a wide range of applications for organisms 

forming gold nanoparticles exist in the area of nanobiotechnology. Additional studies should 

therefore focus on metagenomic, (meta)transcriptomic and (meta)proteomic approaches to fully 

understand the functions that directly or indirectly affect the gold biotransformation in biofilms. 
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Novel gold-transforming bacteria should be isolated and studied to uncover novel resistance 

pathways and associated proteins, which will enhance our understanding of the overall 

biochemistry of the microbial biofilm on gold particles and provide additional isolates for 

biotechnical applications.  
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