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Abstract 

Neuropathic pain is a debilitating persistent (chronic) pain condition which affects 2% of the 

total population, characterised by spontaneous pain (stimulus independent), allodynia (pain 

generated from non-noxious stimuli) and hyperalgesia (heightened sense of pain to noxious 

stimuli). Unlike other types of pain such as nociceptive or inflammatory, neuropathic pain is 

maladaptive and therefore neither protects or supports healing or repair. It is defined as “pain 

caused by a lesion or disease of the somatosensory nervous system” and can develop 

following an array of aetiologies such as peripheral or central nerve lesions, diabetes, herpes 

zoster, HIV and cancer, to name a few. However, resolution of the underlying disease and/or 

healing of the injury often does not alleviate the associated neuropathic pain symptoms 

suggesting that central maladaptive plasticity may occur in people with neuropathic pain. 

Compounding this situation, this maladaptive plasticity often renders traditional analgesics 

used for nociceptive and inflammatory pain ineffective, thus reducing the treatment options 

available for neuropathic pain sufferers. The spinal mechanisms which lead to persistent pain 

development have yet to be fully elucidated. It is well understood that adaptations in the 

reactivity of spinal glial cells (microglia and astrocytes) may also contribute to central neuronal 

plasticity, by releasing inflammatory mediators such as nitric oxide and other reactive nitrogen 

species, that enhance excitatory and/or reduce inhibitory neuronal signalling (also referred to 

as neuro-immune signalling). Previous limitations in methodology have limited our 

understanding of longitudinal changes in spinal glial during critical developmental stages in 

persistent pain pathology. Whether there is a correlation between glial reactivity and 

neuropathic pain severity during the development of the disease model, has yet to be 

established. Therefore, the initial aim of this thesis was to determine if reactivity characteristics 

of spinal microglia may correlate with peripheral injury severity and subsequent neuropathic 

pain symptoms, in mouse models of persistent pain (Chapter 5). 

Studies suggest that following peripheral injury, there may be alternative reactive nitrogen 

species, other than nitric oxide, released by highly reactive glial cells which may facilitate 

neural plasticity within the spinal cord. The recent development of novel fluorescent tools for 

measuring reactive nitrogen species, such as nitroxyl, have yet to be used to identify the 

endogenous presence of this reactive nitrogen species in neuropathic pain development. 

Therefore, the second aim of this thesis was to validate the use of a novel fluorescent probe 
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for the detection of endogenous nitroxyl in mouse models of persistent pain (Chapter 3). The 

role of nitroxyl in persistent pain development, has been complicated by recent reports 

whereby exogenous application of high concentration of this reactive nitrogen species, can act 

as therapeutic agent for persistent pain. The mechanism of action has yet to be fully 

elucidated, however nitroxyl is highly reactive towards thiols and metalloproteases which have 

been implicated in various persistent pain pathways. This led to the subsequent aim of this 

thesis, which was to determine whether the exogenous nitroxyl donor (Angelis’s salt) may 

reduce allodynia via its ability to cleave active cysteine residues on lysosomal proteasomes 

and thus reduce their enzyme function (such as Cathepsin B) in persistent pain mouse models 

(Chapter 4).  

The studies offered herein demonstrate that: both the onset time post-injury, and level of 

microglial reactivity is closely correlated with the severity of peripheral injury and subsequent 

allodynia; endogenous nitroxyl is produced in models of persistent pain (and other diseases) 

and can be detected in multiple imaging platforms using novel fluorescent probes; and 

exogenous nitroxyl donor can reduce both Cathepsin B enzyme activity and allodynia, however 

Cathepsin B inactivation does not directly account for the reduced allodynia and may not be 

the pathway involved in this phenomenon.  

Collectively, these results highlight that there is a correlation between microglial reactivity and 

the severity of injury and subsequent allodynia which may suggest that physicians should 

consider the severity of the injury when prescribing treatment and at which timepoint post-

injury to best intervene. In addition, novel tools developed at the ARC Centre of Excellence for 

Nanoscale Biophotonics, University of Adelaide, have provided a way to demonstrate that 

stimuli used in persistent pain models can generate endogenous nitroxyl which can be semi-

quantitatively measured. Furthermore, exogenous nitroxyl donors may reduce allodynia via the 

in-activation of key thiols and metalloproteases which are critical to persistent pain 

development. With future research, these novel fluorescent probes may be used in vivo to 

measure the endogenous nitroxyl output in central glial cells in relation to peripheral injury 

severity. Furthermore, future work exploring the mechanisms by which exogenous nitroxyl is 

able to reduce allodynia, could provide a safe therapeutic tool for treating symptoms in 

neuropathic pain patients. 
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Chapter 1. An introduction to neuropathic pain  

This chapter introduces neuropathic pain and its pathogenesis following peripheral nerve 

injury and compares it with acute nociceptive pain, while focusing on contributions of the 

reactive nitrogen system within the spinal cord. An overview of the current tools used to study 

reactive nitrogen/oxygen species, and potential glial mechanisms underlying the associated 

pain behaviours, will also be presented. In conjunction with the literature on the reactive 

nitrogen species, nitroxyl and its contributions to pain, this offers the relevant background 

information used to formulate the aims and hypotheses explored throughout this thesis.  

1.2 Definition and epidemiology of neuropathic pain  

Neuropathic pain is a pathophysiological chronic pain state, defined as “pain caused by a 

lesion or disease of the somatosensory nervous system” (www.iasp-pain.org; 2018). This 

differs from acute nociceptive pain which as of August 2019, is described as an aversive 

sensory and emotional experience typically caused by, or resembling that caused by, actual or 

potential tissue injury (www.iasp-pain.org; 2019). Unlike other types of pain such as 

nociceptive or inflammatory, neuropathic pain is maladaptive and therefore neither protects or 

supports healing or repair (Costigan et al., 2009). In the general population, neuropathic pain 

affects approximately 1-2% of adults (Bowsher, 1991; Bennett, 1997) however these values 

may be an underestimate due to exclusions based on symptoms more akin to nociceptive 

pain. In Australia alone the total annual economic cost of chronic pain in 2018 was estimated 

at more than $139.3 billion, including $48.3 billion productivity costs and $12.2 billion direct 

health care costs (painaustralia.org.au, Deloitte report March 2019). In the US, the economic 

burden is estimated at $635 billion per annum (Gaskin & Richard, 2012). 

Epidemiological studies of neuropathic pain need to overcome many barriers surrounding the 

criteria for categorizing and identifying neuropathic pain symptoms before we can have a clear 

understanding of the prevalence in the total population. It has been suggested that much of the 

challenge lies in determining what a “lesion” or “disease” of the nervous system is and whether 

one can diagnose neuropathic pain without proof of the former (Smith and Torrance, 2012). 

The second part of the challenge is once the lesion or disease has been confirmed, how do 

you identify those who do or do not have neuropathic pain? Neuropathic pain or even 

nociceptive pain is not a binary phenomenon but rather lies along a sensory spectrum that may 

or may not have neuropathic mechanisms driving the symptoms (Smith and Torrance, 

http://www.iasp-pain.org/
http://www.iasp-pain.org/
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2012). As neuropathic pain can be attributed to a myriad of clinical conditions, it questions the 

need to understand the prevalence and treatment of the resulting neuropathic pain. However, 

there are enough similarities in the way neuropathic pain affects the population and its 

treatment, that it should be considered a distinct clinical condition.   

Many diseases can cause lesions resulting in neuropathic pain, for example, autoimmune 

disease (e.g. multiple sclerosis), metabolic diseases (e.g. diabetic neuropathy), infection (e.g. 

shingles, postherpetic neuralgia), vascular disease (e.g. stroke), HIV, cancer as well as 

peripheral and central nerve trauma (Campbell and Meyer, 2006). It is often regarded as an 

important co-morbidity associated with these diseases. However, neuropathic pain is also 

acknowledged as its own condition supported by the following set of set criteria (IASP 

revised).  It is characterized by the presence of spontaneous pain (stimulus independent), 

allodynia (pain generated from non-noxious stimuli) and hyperalgesia (heightened sense of 

pain to noxious stimuli) with patients presenting with symptoms such as burning or freezing 

pain, stabbing pain, tingling pain, numbness and extreme sensitivity to touch. However, the 

clinical manifestation varies depending on the type of underlying disease, suggesting there 

may be different mechanisms leading to the neuropathy which may also be reflected in the 

variable response to therapy. In the clinical setting, the lack of consensus regarding the clinical 

definition and diagnostic criteria for neuropathic pain has made epidemiological studies 

difficult. Estimates of neuropathic pain prevalence vary greatly throughout the literature based 

on 1) the type of questionnaire used; 2) whether the study was measuring the overall 

population frequency of neuropathic pain based on estimates of the prevalence of the main 

etiological conditions or 3) if they were measuring the proportion of individuals with a primary 

lesion or disease that experience neuropathic pain (Smith & Torrance, 2012). For example, 

neuropathic pain affects approximately 25% of people with diabetes, about 20% of people with 

herpes zoster infections (postherpetic neuralgia) upon presentation of shingles rash and 

around 37% of patients with lower back pain. These estimates of prevalence vary greatly 

according to disease state and are generally higher than the overall prevalence in the general 

population. Associated risk factors to developing neuropathic pain include female gender, 

older age, anatomical location of the lesion, manual work, poor socioeconomic lifestyle 

and poor general health (Torrance et al., 2006; Bouhassira et al., 2008; Smith et al., 2007). 

Future epidemiological studies into neuropathic pain prevalence would require a strict set of 
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criteria for case definition and established methods for diagnosis, together with longitudinal 

studies to identify risk factors throughout the population, independent of the primary disease 

state.  

1.2.1 Neuropathic pain disease pathology  

Peripheral nerve damage caused by mechanical trauma and primary diseases such 

as metabolic diseases, neurotoxic chemicals, infection, or tumor invasion cause lesions to the 

peripheral nerve have all been reported to lead to neuropathic pain. (Dworkin et al, 2003; 

Woolf and Mannion, 1999). Although the primary disease and/or initial tissue injury (whereby 

neurons become stimulated and potentially damaged) are thought to be responsible for 

initiating the cascade of maladaptive changes that lead to and sustain the neuropathic pain, 

resolution of the underlying disease and/or healing of the injury often does not alleviate the 

associated neuropathic pain symptoms. Understanding the mechanisms responsible for the 

maladaptive plasticity allows the therapeutic opportunity to prevent the development of 

neuropathic hypersensitivity and allow normalization of function in established neuropathic 

pain (Costigan et al, 2009).   

1.2.2 Peripheral nerve injury (PNI) & epidemiology  

Damage to peripheral nerves can result from various trauma including; motor vehicle accident, 

penetrating injury, gunshot wound, crush, compression, traction, ischemia, occupational injury, 

sports-related injury, and explosion-related injury (Robinson, 2000). The anatomic location of 

common injury sites includes, nerves in the upper limbs including the ulnar, median, and radial 

nerves, along with the brachial plexus, while in the lower limbs the sciatic and deep peroneal 

nerves are more frequently involved (Ciaramitaro et al, 2010; Eser et al, 2009; Kouyoumdjian, 

2006; Noble et al, 1998). The prevalence of each of these etiologies varies globally and is 

summarized in table 1 below, with the majority of peripheral nerve injuries stemming from 

either motor vehicle accidents or iatrogenic (eg. surgery) causes. Based on these causes, the 

risk factors associated with traumatic PNI are males aged 18-35 with predominantly partial 

nerve injuries (partial axonotmesis) most prominent in the ulna nerve in the upper extremities 

and sciatic nerve of the lower extremities. Which is different when compared to the risk factors 

described for neuropathic pain in general, in section 1.2.  
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Table 1: Prevalence of peripheral nerve injuries by clinical presentation  

Country of 
origin  

Number of 
cases  

Highest prevalence  Subsequent causes  
Percentage of 

NP   
Reference  

Italy  158  
Motor vehicle 

accident (45%)  
Workplace accident 

(15%)  
50%  

Ciaramitaro et al., 
2010  

Puerto Rico  163  
Domestic gun 

violence (35%)  
Motor vehicle 

accidents (24%)  
Not reported  

Miranda and Torres, 
2016  

Turkey  938  
Motor vehicle 

accidents (26%)  
Iatrogenic   

(11%)  
Not reported  Eser et al., 2009  

Switzerland  231  
Elective surgery   

(55%)  
Post-traumatic surgery 

(28%)  
100% NP 

cases  
Decrouy-Duruz et al., 

2018  

  

1.3 Pain pathology  

It is important to our survival to be able to detect noxious stimuli, which we sense as pain, in 

order to protect us against further damage and facilitate normal healing processes. Changes in 

pain processing pathways which lead to a hypersensitivity of the system in which pain 

surpasses the healing process and becomes chronic, is maladaptive and 

debilitating. Persistent or chronic pain can be initiated at either peripheral and/or central 

locations and result from the plasticity of central circuits and molecules which will be discussed 

in the following sections.   

1.3.1 Anatomical overview  

Nociceptive pain signalling is perceived via nociceptive neuronal fibres (also referred to as 

primary sensory afferents), of which there are various types that are differentially triggered by 

changes in mechanical, temperature or chemical stimuli (see section 1.3.2 for details).  The 

cell body of these nociceptive neurons reside in the dorsal root ganglia (DRG) and their axons 

terminate within specific layers of the outer laminae (Lamina 1 – 5) of the dorsal horn within the 

spinal cord, depending on their class or subtype (Figure 1.1). Secondary neurons then relay 

information to various brain regions (reticular formation, periaqueductal grey (PAG), limbic 

system, hypothalamus, basal ganglia, the insular, cingulate and somatosensory cortices) via 

ascending spinothalamic, spinoreticular, spinohypothalamic and spinomesencephalic tracts 

(from peripheral inputs) or the trigeminal ganglia (from head/face inputs) (Willis et al., 1999; 

Tracy, 2005). The brain can also influence pain perception by inhibitory descending control 

generated from the midbrain (PAG) and rostroventromedial medulla (RVM) acting on the 

dorsal horn of the spinal cord (Dafny, 1997). Cortical nociceptive processing occurs via the 

activation of several cortical and subcortical brain regions including: insula cortex, frontal and 
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pre-frontal cortices, primary and secondary somatosensory cortices (S1 and S2 respectively) 

as well as many other regions (Tracy, 2005). Additionally, S1 and S2 regions of the 

somatosensory cortex have a predominant role in early nociceptive processing and are able to 

discriminate the location and intensity of the painful stimulus. As such, clear differences in 

activation of S1 (Yucel et al., 2015) and S2 (Ferretti el al, 2004) has been reported between 

painful and nonpainful stimulation.  

In addition to neuronal processes, other cells types are also involved in the modulation of pain 

signalling and can directly and indirectly influence the neuronal signal strength at the synaptic 

interface within the spinal cord. The following section will outline some of the anatomical 

structures and molecular pathways involved in acute nociceptive signalling and the 

dysregulations which follows peripheral nerve damage to drive more chronic neuropathic type 

pain. Further to this, we will introduce the role of reactive nitrogen species and how they are 

involved in chronic pain signalling. 
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Figure 1.1 Anatomical overview of pain signalling. Neural responses begin as a transduction of 
signal at the periphery which is then transmitted along the A-delta and C fibres via their nerve 
cell bodies (which reside within the dorsal root ganglion) and terminate to form synapses with 
second order neurons in the outer laminae of the spinal dorsal horn. The second order fibres 
then project the nerve signals via tracts such as the spinothalamic tract, to higher processing 
centers into various brain regions where the perception of pain occurs. Image modified from 
Cameron MH: Physical agents in rehabilitation: from research to practice, ed 3, St Louis, 2009, 
Saunder.  
 

1.3.2 Primary sensory afferents. 

Primary sensory afferents or nociceptor fibres are pseudo-unipolar fibres with both peripheral 

and central terminals and a cell soma which resides in the dorsal root ganglion (DRG) or 

trigeminal neuron. There are 2 types of nociceptor fibres that are characterised based on 

whether they are myelinated (Aδ type) or unmyelinated (C type). Each of these fibre types 

terminate into anatomically distinct laminae within the dorsal horn of the spinal cord with Aδ-

fibres terminating predominately in lamina I and lamina V of the dorsal horn and C-type fibres 

terminating throughout lamina I and dorsal part of lamina II (also referred to the Substantia 

gelatinosa) of the dorsal horn. These fibres can be further classified based on anatomical and 

electrophysiological properties (shown in Table 2). Briefly, small diameter C-fibres are slow 
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conducting and contribute to the dull ache and burning pain symptoms, compared to the 

myelinated Aδ-fibres which are faster conducting and responsible for the “sharp and tingling” 

pain responses. The C-fibres can be further categorised based on their response to either 

mechanical, thermal or chemical stimuli. Polymodal C-fibres (also referred to as wide dynamic 

range (WDR) neurons) respond to all three stimuli (mechanical, thermal and chemical), 

whereas importantly, C-silent type fibres which generally respond to heat stimuli, but become 

mechanically sensitive after injury (Schmidt et al., 1995). The presence of these complex fibre 

types means that humans can differentiate between different types of noxious stimuli and 

avoid particular dangers. 

Table 2: Nerve Fibre types and their associated properties  

Fibre 
class  

Myelin  
Diameter 

(mm)  
Conduction 

velocity (m/s)  
Spinal cord tract  Location  Function  

A  +  6-22  30-120  Ipsilateral dorsal column  Efferent to muscles  Motor  

A  +  6-22  30-120  
Contralateral 

spinothalamic tract  
Afferent from skin and 

joints  
Tactile, proprioception  

A  +  3-8  15-35  Ipsilateral dorsal column  
Efferent to muscle 

spindles  
Muscle tone  

A  +  1-4  5-30  
Contralateral 

spinothalamic tract  
Afferent sensory nerves  

Pain, cold, 
temperature, touch  

sC  -  0.3-1.3  0.7-1.3  -  
Postganglionic 
sympathetic  

Various autonomic 
functions  

dC  -  0.4-1.2  0.1-0.2  
Contralateral 

spinothalamic tract  
Afferent sensory nerves  

Various autonomic 
functions & pain, warm, 

temperature, touch  

Modified from: Seddighi A, et al (2016) Peripheral Nerve Injury: A review article. International 
Clinical Neuroscience Journal.   
  

1.3.3 Signal transduction  

Following the detection of noxious stimuli, pain signalling follows a clear pathway starting from 

the transduction of signal at the periphery, followed by transmission of signal via the DRG to 

the dorsal spinal cord, where the signal is modulated, prior to being projected via dorsal 

column and spinothalamic tracts to higher order brain centres. This section will focus on the 

transduction of signal at the periphery and the central modulation and compare the acute and 

chronic injury mechanisms. 

1.3.4 Acute pain – peripheral modulation  

As discussed in section 1.3.2, the peripheral terminals of the primary sensory neurons located 

within the peripheral tissue, transfer sensory information from the periphery to the dorsal horn 



   
 

8 
 

of the spinal cord. The specialised fibre subtypes transfer information about changes in 

mechanical, thermal and chemical stimuli via electrical signalling. Free endings of the 

nociceptive fibres transduce potentially noxious stimuli into depolarising currents, leading to 

ionic signalling (via action potential generation and propagation).    

1.3.4.1 Nociceptor activation  

Following acute noxious stimulation (such as heat, cold, mechanical or chemical), various 

mediators are released by the damaged peripheral tissue and signal the various nociceptors 

based on their receptor expression profile. This leads to channel opening at the terminals, 

allowing an influx of calcium to depolarize the cells and activate the signal transduction via an 

action potential. Damaged tissue can release bradykinin (BK) which is mediated via the B1/B2-

type receptor (Whalley et al., 1989) which activates protein kinase C (PKC), leading to 

an activation of sodium conductance via sodium channel activation (Dunn and Rang., 

1990) and thus signal transduction. Further to this, tissue can also release adenosine 

triphosphate (ATP) and hydrogen ions (H+) which can activate terminals via P2X and acid-

sensing channels (ASIC), respectively. 

In cases where there is severe tissue damage and the noxious stimuli is prolonged, localised 

mast and macrophage cells can also release various peptides to directly or indirectly sensitise 

the peripheral nociceptor terminals, causing them to become hyperexcitable. This 

phenomenon occurs to help protect the damaged tissue whilst it is healing and can lead to 

hyperalgesia, a term describing the behaviour of a hyper-sensitivity to painful stimuli. It is 

generated by an increase in spontaneous activity, a lowered threshold for activation and 

increased and prolonged firing of peripheral nociceptors. Macrophages release inflammatory 

mediators such as cytokines interleukins -1b (IL-1b) and IL-6, tumour necrosis factor-

α (TNFα) and other substances such as nerve growth factor (NGF) and BK. These mediators 

activate peripheral nerves via receptors IL-1-R (IL-1β ligand), tyrosine kinase A receptor (TrkA; 

NFG ligand) and B1/B2 (BK ligand). Recruited mast cells also indirectly contribute to the 

sensitisation via the release of mediators such as prostaglandin E2 (PGE2), prostaglandin I2 

(PGI2), adenosine and serotonin (5-HT2 & 5-HT3) (Taiwo and Levine; 1988, 1990 and 1992), 

which activate their respective nociceptive receptors (Prostanoid receptor EP type (EP), ligand 

PGE2; prostacyclin receptor (IP), ligand PGI2; P2X receptor, ligand ATP; adenosine A1 

receptor (A1r), ligand adenosine; 5-hydroxytryptamine receptor (5HTr), ligand serotonin) 
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(Costigan and Woolf, 2000).  C-fibre activation following peripheral inflammation, causes a 

release of substance P (SP), calcitonin gene-related peptide (CGRP), neurokinin A and nitric 

oxide (NO). This release of “inflammatory soup” leads to the activation of the C-silent type 

fibres which then contribute to the pain signalling peripheral input to the spinal cord (Chapman 

et al., 2008). The function of NO release and how it contributes to pain signalling are discussed 

in detail in later sections (1.4 & 1.5). It should be noted, that as damage caused by acute 

noxious stimulus heals, the associated pain sensation reduces until no pain is detected.   

1.3.5 Persistent pain – peripheral modulation  

The most common types of nerve damage clinically presented following peripheral nerve injury 

is either stretch, laceration or compression injury (Ciaramitaro et al., 2010). Following nerve 

compression injury (also referred to as entrapment injury), total loss of motor and sensory 

function may occur.  The mechanical compression and ischemia which 

occurs immediately after injury provides a significantly stronger and longer lasting noxious 

stimulus compared to acute pain and is thought to contribute to the pathophysiology 

development of neuropathic pain. Local neutrophils and macrophages are attracted to the 

damaged nerve site by the release of chemo-attractants such as NGF, leukotriene-

B4 and chemokine ligand CX3CL1 from the damaged nerve (Perkins and Tracey, 2000; 

Mueller et al., 2001). Further release of chemokine ligands CCL2 and 3 from macrophages, 

together with the release of matrix metalloproteases (MMP-9) from denervated Schwann cells 

(peripheral astrocyte-like cells) and activated macrophages, disrupts the blood nerve 

barrier (Perrin et al., 2005) thus facilitating the recruitment of monocytes from the peripheral 

blood. This invasion of immune cells is further supported by injured axons releasing vasoactive 

mediators SP, CGRP, BK and NO resulting in local hyperemia and swelling (Perrin et al., 

2005; Shubayev et al., 2006). These vascular changes and subsequent influx of immune cells 

(macrophages, neutrophils and mast cells) over the first 48 hours, facilitate the removal of 

degenerating axons and myelin debris and enable Schwann cells to support the regeneration 

process of the injured axons (Stoll et al., 2002). However, immune cells also release pro-

inflammatory cytokines such as IL-1β, IL6 and TNFα which can contribute to axonal damage 

and modulate spontaneous nociceptor activity in sensory neurons. Evidence to support a role 

for cytokines in persistent pain has been demonstrated by blocking the IL-1β and 

IL6 signalling pathway which inhibits the development of spontaneous (ectopic) sensory 
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neuron firing and attenuates neuropathic like-behaviour (Arruda et al, 2000; Wolf et al., 2006). 

TNFα effects nociceptor neuronal activity via the TNF receptor 1 (TNFR1; which is upregulated 

on neurons following injury; George et al., 2005) activating the p38 MAP kinase system, which 

increases the density and activation of tetrodotoxin resistant (TTX-R) sodium channels 

(Jin and Gereau, 2006) and contributes to the increased sensitivity and ectopic firing of the 

nociceptor fibers. Furthermore, the release of ATP from damaged tissue which act on 

purinergic receptors (P2X) expressed on neurons (P2X2 and P2X3 receptors) (Chen et al., 

2005; Jarvis et al., 2002), also contributes to activation of TTX-R sodium channels. Purinergic 

receptors P2X3, P2X2/3 are upregulated in small diameter sensory nerve fibers in animal 

models of neuropathic pain (Novakovic et al., 1999) and activation of these receptors by ATP, 

has an excitatory effect on nociceptors by the pre-synaptic release of glutamate (Gu 

and MacDermott, 1997).  The mechanisms discussed here, provide support for a heightened 

transduction and transmission of signal following peripheral nerve injury, which causes an 

increased excitability and spontaneous firing rate of peripheral nociceptors which transmit 

signal to the DRG and dorsal horn of the spinal cord for further modulation.   

1.3.6 Acute pain - Central Modulation   

Following the transduction of signal from the peripheral terminals, the message is then relayed 

to the dorsal horn of the spinal cord where it can be modulated by a complex of excitatory and 

inhibitory interneurons and then projected to various regions of the brain for higher order 

perception, as well as the ventral region of the spinal cord to contribute to spinally-

mediated nociceptive reflexes. The balance between excitation and inhibition is critical for 

maintaining normal sensory function. Synaptic inputs from peripherally 

derived nociceptive fibres can be modulated by changes in molecular signalling by both 

neuronal and non-neuronal cells within the dorsal horn and/or by descending inputs from the 

brain. Critically, these changes can lead to an overall increased state of hyperexcitability and 

enhanced nociceptive processing, which is referred to as central sensitization.     

1.3.6.1 Molecular changes  

Following peripheral activation, sensory fibres (including nociceptive Aδ and C fibres) release 

pre-synaptic modulators glutamate, Substance-P and brain derived neurotrophic factor 

(BDNF), which act on ionotropic (NMDA & AMPA), metabotropic (mGluR, NK1) and tyrosine 

kinase (TrkB) post-synaptic receptors initiating a cascade of multiple signalling transduction 
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pathways.  Glutamate binds to AMPA receptors which are non-selective cation channels and 

metabotropic receptors which are g-protein coupled receptors that then in turn either increase 

or decrease the channel activity of the ionotropic receptors to allow the influx of sodium, 

potassium and calcium ions into the cell which leads to depolarization. The depolarized cells 

can then generate fast excitatory postsynaptic potentials which ultimately encode the onset, 

duration, intensity, and location of peripheral noxious stimuli (Yoshimura and Nishi., 1993). An 

increased intensity or longer duration of nociceptor activation, results in the additional release 

of peptide and protein neuromodulators, which contributes to the generation of sustained 

depolarization (Sivilotti et al., 1993; Doubell et al., 1999; Miller and Woolf, 1996) and 

subsequent sensitisation of nociceptive fibres.   

1.3.7 Persistent pain - Central Modulation  

Following peripheral nerve injury, many adaptations occur within the dorsal horn of the spinal 

cord which lead to the development of neuropathic pain. Neuronal and glial cells alike, 

contribute to this phenomenon which cumulates in both increased neuronal excitability and 

synaptic plasticity which is referred to central sensitisation. 

Following peripheral nerve injury, there is an increased release of the excitatory 

neurotransmitter glutamate from the pre-synaptic terminals (of the primary afferent Aδ and C-

fibres) within the outer lamina of the spinal cord. Unlike in acute pain signalling, the sustained 

release of glutamate leads to a depolarisation of post-synaptic neurons which could remove 

Mg2+ from blocking the NMDA receptor. The activation of post-synaptic NMDA receptors 

allows Ca2+ influx, which in turn activates calcium-sensitive intracellular signalling cascades 

that lead to phosphorylation of the NMDA receptor and other receptor-ion channels, resulting 

in increased excitability of post-synaptic neurons (Woolf and Salter, 2000; Krieger et al, 

2000). This phenomenon is referred to as “wind up” and once developed can potentiate 

sensory neurons to undergo phenotypic changes such that, tactile sensing fibres (Aβ) can now 

behave more like nociceptor fibres and contribute to the tactile hypersensitivity following 

peripheral nerve injury, which clinically manifests as allodynia (Ma et al., 1996, 1998). 

Furthermore, the signalling events initiated by glutamatergic receptor activation include 

changes phosphorylation of receptor proteins which alter channel kinetics and more sustained 

actions due to second messenger-mediated alterations in gene expression. Such changes in 

transcription levels, lead to what is termed a potentiated or sensitised state and represents 
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longer term changes in primary sensory neurons within the dorsal horn which can progress to 

a persistent pain state. 

One result of the calcium influx signalling cascade is the release of nitric oxide (NO) via 

enzyme neuronal-nitric oxide synthase (nNOS), which diffuses out of the neuron and can act 

as a neurotransmitter on adjacent pre- and post-synaptic nerve endings (Vincent, 1994). This 

leads to the increase in intracellular second messenger cyclic guanosine monophosphate 

(cGMP) via soluble guanylate cyclase (sGC) transduction. Details regarding NO involvement in 

persistent pain are further discussed in section 1.4 & 1.5.  Activation of NMDA receptors also 

facilitates the recruitment of additional AMPA receptors to the membrane surface, thus 

increasing the sensitivity of the post-synaptic neuron and adding to synaptic potentiation of 

excitatory transmission in the spinal cord dorsal horn Li and Zhuo, 1998; Li et al., 1999), which 

in turn exacerbates responses to noxious stimuli and hence generates hyperalgesia.   

1.3.8 Acute pain - Interneurons and descending disinhibition  

Most neurons with cell bodies located within the outer laminae (I-III) of the spinal cord project 

locally onto motor neurons in the ventral horn of the spinal cord. These spinal interneurons can 

be divided into two main classes: excitatory (glutamatergic) or inhibitory (GABAergic or 

glycinergic). These neurons can be further characterised by their chemical, morphological, 

electrical and molecular phenotypes, which has been covered extensively in reviews 

elsewhere (Todd, 2010; Sengul and Watson, 2012).  Briefly, GABAergic neurons release 

inhibitory neurotransmitter, γ-aminobutyric acid (GABA) which exerts its fast-inhibitory effects 

through ubiquitously expressed GABAA receptors.  Activation of these receptors results in the 

gating of chloride channels leading to membrane hyperpolarization and subsequent neuronal 

inhibition (Darlison, 2007).  Further to this, there is also descending control from the brain 

centres which can contribute to the facilitation or inhibition of pain signalling. The midbrain 

periaqueductal grey (PAG) and the rostral ventromedial medulla (RVM) brain sites, provide 

inputs into both the superficial and deeper layers of dorsal horn laminae which influence 

nociceptive function (Fields et al, 2006; Heinricher and Ingram, 2008). In normal pain 

states, noradrenaline release from descending fibres provide inhibitory control acting via a2-

adrenergic receptors to inhibit the release of neurotransmitters from primary afferent neurons, 

thus minimising nociceptive transmission (Heinricher et al, 2009). 
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1.3.9 Persistent pain - Interneurons and descending disinhibition  

Following peripheral nerve injury, there is a decrease in the release of pre-synaptic GABA 

neurotransmitter in the spinal cord (Moore et al, 2002) which contributes to the 

hyperexcitability of the cells, in a similar fashion to releasing the breaks of a car while the 

accelerator is being applied at the same time (Sivilotti and Woolf., 1994). In addition to the 

increased excitatory signalling, mechanisms which normally regulate the inhibitory input of the 

synaptic response are supressed following nerve injury. GABAergic neurons normally release 

inhibitory neurotransmitter GABA, which act on post-synaptic GABAA receptors to cause 

hyperpolarisation of the cell and suppress firing of action potentials. However, following nerve 

injury there is a loss of inhibitory regulation in the outer layers of the dorsal horn, that is 

suggested to be driven by reduced GABA release at pre-synaptic neurons, rather than a loss 

of GABAA receptors at post-synaptic neurons. This is supported by a significant decline of the 

enzyme responsible for synthesising GABA, GAD65 (glutamic acid decarboxylase: isoform 65) 

following nerve injury (Moore et al, 2002; Eaton et al, 1998). GAD65 is preferentially 

targeted to membranes and nerve endings where it normally synthesises GABA for vesicular 

release (Soghomonian and Martin, 1998).  Further to this, in persistent pain states there is a 

switch in descending influence whereby the adrenergic inhibitory effect is supressed and an 

increase in serotonin signalling via the ionotropic 5-HT2 and 5-HT3 receptors (located on 

terminals of small-diameter fibres) becomes dominant, leading to an overall increase in 

excitatory signalling (Colloca et al, 2017; Suzuki et al, 2004).  

1.3.10 Glial cell regulation of pain processing  

The modulation of neuronal synapses within the spinal cord also include other non-neuronal 

cell types such as microglia and astrocytes, which form a tightly regulated complex referred to 

as the “tetrapartite synapse”. The glial cells are responsible for monitoring and responding to 

synaptic neurotransmitter release and can actively contribute to the signal strength of incoming 

and outgoing neuronal activity. Glial involvement in acute pain signalling generated from 

noxious stimuli, is somewhat contentious, however the general consensus is that glial cell 

activation has no effect on normal responses to acute pain stimuli (Watkins et al., 2001). This 

section will explore the homeostatic role of glial cells to form the basis for further 

understanding of the changes which occur during chronic pain development. 
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1.3.10.1 Tetrapartite synapse   

The tetrapartite synapse describes a complex functional unit made up of a pre- and post-

synaptic neuron, astrocyte and microglial cells (De Leo et al., 2006).  It is suggested that this 

unit contributes to the regulation of excessive excitatory signalling at the synapse, by 

moderating neurotransmitter release. Each of the glial cell types within the unit have their own 

distinct functional role that can alter with excessive incoming signal from the periphery, 

following noxious stimuli. 

1.3.10.2 Microglia homeostatic regulation  

Microglia are considered the resident immune-like cell of the CNS and are part of the 

tetrapartite synapse. They are in close proximity with both pre-synaptic neurons and astrocytes 

(Tremblay et al., 2010) therefore perfectly placed to monitor neuronal firing activity and 

synaptic function. In the healthy CNS, microglia are very active and are constantly surveying 

the CNS tissue for signs of threat or damage (Nimmerjahn et al., 2005) and are also involved 

in triggering apoptosis and clearing neuronal debris during CNS development, supporting 

survival and proliferation of neurons and regulating synaptic activity (Salter and Beggs, 

2014).  In their surveying state (often reported as their “resting” state), microglia have a 

complex and highly ramified morphology with long, thin and highly branched processes that 

extend and retract as they survey the surrounding tissue. The density of microglia, the velocity 

of process movement, the frequency at which extensions and retractions occur, process length 

and degree of ramification are all important components of baseline surveillance (Madry and 

Attwell, 2015). Microglial baseline motility and process length is enhanced by neurotransmitter 

signalling, such as ATP released from excited neurons or adjacent astrocytes which can 

amplify the ATP signal (Hamilton and Attwell, 2010; Anderson et al., 2004; Cotrina et al., 

2000). These neurotransmitters act on ionotropic purine receptors (such as P2X4 and P2X7) 

on the cell surface of microglia (Boucsein et al., 2003; Tsuda et al., 2003; Chessell et al., 

2005; McGaraughty et al., 2007), resulting in evoked process outgrowth toward the neurons 

and thus enhancing microglial-neuron contacts which can attenuate both spontaneous and 

evoked activity of previously highly active neurons (Li et al., 2012). However, the mechanism 

for this process has not yet been elucidated. 

Neuron-to-microglia communication occurs via ligands found on the cell surface on neurons, 

such as CX3CL1 (fractalkine), which can prevent the activation of microglia via their 
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chemokine receptor CX3CR1 (Zujovic et al., 2000; Cardona et al., 2006; Lauro et al., 

2008). The involvement of microglia in acute pain signalling has not been fully elicited 

with some reports suggesting that microglia are only activated following nerve damage but not 

inflammatory tissue injury (Basbaum et al., 2009), however others have reported spinal 

microglial activation following acute formalin inflammation (Lin et al., 2007; Sweitzer et al., 

1999). 

1.3.11 Persistent pain - Microglia modulation  

Following peripheral nerve injury, microglial cells are activated and recruited to form clusters 

around the nerve terminals of the injured nerve fibers in both the dorsal and ventral horn of the 

spina cord. This activated state begins approximately 2-3 days post injury and peaks around 7-

9 days before tapering down in following weeks, however this is altered depending on type of 

injury (Smith, 2010). Nerve damage also triggers proliferation and activation of astrocytes 

within the spinal cord, however compared with microglia this begins and peaks later 

(approximately 1-3 days following injury) and can last substantially longer (Mika et al., 2009). 

This suggests that microglial activation is required for the development of neuropathic pain 

following nerve injury whilst astrocyte activation is involved in the maintenance phase 

(Tanga et al., 2004; Raghavendra et al., 2003).    

Technical constraints have limited longitudinal spinal glial activation studies in the spinal cord 

of animals. Much of the evidence to date has been generated by collecting tissue samples 

from multiple animals across different time points post-injury and comparing cellular and 

molecular markers, together with behavioural observations, between groups of animals. 

Differences in injury type, animal strain, molecular markers together with inherent 

individual behavioural differences, means that it is challenging to draw conclusions about the 

dynamic and temporal adaptations which glial cells undergo following nerve injury. Recent 

advancements in surgical techniques (Farrar et al., 2012; Jahromi et al., 2017; Fenrich et al., 

2012) as well as high resolution microscopy (Davalos and Akassoglou, 2012; Weinger et al., 

2015; Akassoglou et al., 2017) means that we can now create windows into the spinal cord of 

animals to allow longitudinal observations of glial changes within individual animals post 

peripheral nerve injury and associate those changes and/or adaptations to behavioural 

responses throughout the development of neuropathic pain. More details regarding these 

techniques and recent outcomes are discussed in Chapter 5. 
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Signalling molecules released from the injured neurons can act on microglia to trigger; 1) 

migration, proliferation and activation 2) release of agents which contribute to synapse 

hyperexcitability and 3) release of cytokines and reactive nitrogen species which can 

contribute to neuronal cell death. 

Under chronic pain conditions, CX3CL1 (fractalkine)  ligand and others such as CCL1 and 

CCL2 released from injured neurons may be cleaved by either lysosomal cysteine protease 

Cathepsin S (Cat S) (Clark et al., 2009) or metalloprotease 9 (MMP-9) (Kawasaki et al., 2008) 

and activate the microglia via CX3CR1, CCR8 and CCR2 receptors, respectively (Biber et al., 

2008; Akimoto et al., 2013; Thacker et al., 2009) to cause the release of IL-1β via p38/MAPK 

phosphorylation (Zhuang et al., 2007). Activation of these receptors result in microglial 

activation (microgliosis) and subsequent release of cytokines and neurotrophic factors such 

as IL-1β, IL6, BDNF and further facilitate migration of microglia to the terminals of injured 

neurons. 

The signalling molecule ATP released by both neurons and astrocytes, acts on P2X4 and 

P2X7 receptors to cause the release of BDNF (leading to reduced GABAergic inhibition) and 

microglial activation/migration/proliferation, respectively through the intracellular influx of 

Ca2+ (Coull et al., 2005; Trang et al., 2009; Monif et al., 2009; Zou et al., 2012). P2X4 is 

located within lysosomal compartments of microglia (Qureshi et al., 2007) and requires the 

activation of TLR4 receptors (Toll-like 4 receptor: pattern recognition receptors) to migrate to 

the cell surface (Boumechache et al., 2009; Toulme et al., 2010). Ligands such as saturated 

fatty acids, released by damaged neurons following nerve injury are through to further enhance 

the activation state, by binding and activating TLR4 receptors on microglia and contribute to 

the release of pro-inflammatory cytokines (IL-6, IL-18, TNFα, IL-1β) and pro-inflammatory 

mediators (MMP-9, iNOS, NO, COX-2) via NFκB (nuclear factor kappa-B) activation 

(Boumechache et al., 2009; Toulme et al., 2010). Interestingly, levels of cytokine mRNA (IFN-

γ, IL-1, and TNF-α) are reduced in the spinal cord of injured TLR4-KO animals (Tanga et al., 

2005) and, in animal models of peripheral nerve injury, inhibition of TLR4 was associated 

with reduced allodynia (Hutchinson et al., 2008). 

The influx of intracellular Ca2+ caused by the activation of P2X4 and TLR4 receptors also leads 

to the release of reactive nitrogen species, such as NO, via the inducible nitric oxide synthase 

(iNOS) found in microglia. It is important to note here that macrophages (peripherally) and glia 
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(both microglia and astrocytes; centrally) are the biggest producers of nitric oxide (Ignarro, 

1996; Stuehr et al., 2004). More details regarding the effect of reactive nitrogen species in 

neuropathic pain are outlined in the section below.  The release of pro-inflammatory cytokines 

by microglial cells can affect multiple mechanisms including; recruiting more microglia to 

injured terminals, activating and cross-talking with surrounding astrocytes and facilitating the 

hyperexcitability of nociceptive neurons (Taves et al., 2013). Furthermore, the release of pro-

inflammatory mediators contributes to the cleavage of extracellular matrix (ECM) proteins 

including cytokines to their active form. For example, following nerve injury MMP-9 is co-

released with pro-IL-1β into the ECM whereby it cleaves pro-IL-1β to generate mature IL-

1β which can then activate ionotropic receptors on post-synaptic neurons (Kawasaki et al., 

2008; Schonbeck et al., 1998).  

Compared to nociceptive and inflammatory pain where spinal microglia are either not active at 

all or are only temporally activated while the injury persists then resolving back to their normal 

“resting” state, peripheral nerve injury can cause a long-term phenotypic change in microglia. 

Once activated, microglia can remain in this “primed” or “sensitised” active state and continue 

to significantly contribute to neuronal hyperexcitability, resulting in long term neuropathic pain 

(Perry, 2004; Nicotra et al., 2012). This defining characteristic flags microglia as key 

contributors of, and hence potential therapeutic targets in, the development of neuropathic 

pain (Tsuda et al., 2005).  

1.3.12 Acute pain – Astrocyte modulation  

Under normal conditions, astrocytes serve to protect the CNS and support synaptic activity by; 

1) active clearance of extracellular glutamate, 2) regulate synaptic transmission by the release 

of neurotransmitter, 3) providing an energy source for neurons by ATP production via glucose 

transport (Lukovic et al., 2015). Moreover, astrocytes also interact with blood vessels to 

regulate CNS blood flow and contribute to the maintenance of the blood brain barrier 

(Sofroneiw and Vinters, 2010). Glutamate clearance from the extracellular space is 

accomplished primarily by transporter-mediated uptake. Glutamate transporters (excitatory 

amino acid transporters: EAAT1 and EAAT2) are expressed by astrocytes, as well as other cell 

types in the CNS, including neurons, oligodendrocytes and microglia (Anderson and Swanson, 

2000). However, astrocytic EAAT1 and EAAT2 have high affinity for glutamate and are the 

predominant glutamate uptake mechanism in the central nervous system (Rothstein et al., 
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1996). Once glutamate is taken up by astrocytes, it is converted to glutamine via the 

glutamine-synthetase-pathway (Martinez-Hernandez et al., 1977; Norenberg and Martinez-

Hernandez, 1979) where it is released back to pre-synaptic neurons for uptake and conversion 

back to glutamate (Daikhin and Yudkoff, 2000). Centrally located astrocytes have been 

implicated in the development of hyperalgesia following acute peripheral inflammation. 

Following acute inflammatory stimulus (subcutaneous formalin injection) astrocytes expressing 

immunoreactive marker, glial fibrillary acidic protein (GFAP; a classic marker of astrocyte 

reactivity) were transiently increased within the superficial layers of rat dorsal horn, peaking at 

45 minutes following injection and having resolved by 120 minutes (Qin et al., 2006), Their 

function during this activated period may serve to clear the excess glutamate being released 

by pre-synaptic nociceptors until the noxious peripheral stimulus is cleared. However, the 

precise neuro-glial mechanism during acute noxious stimulation, requires further investigation. 

1.3.13 Persistent pain - Astrocyte dysregulation  

Following nerve injury, microglia and neurons release growth factors/cytokines (TNFα, IFNγ, 

IL-1, IL-6, IL-18 and others) and neurotransmitters (glutamate, noradrenaline, ATP) which lead 

to activation of astrocytes (astrogliosis). This can result in further release of cytokines (TNFα, 

IL-1β, IL-6, IL-17) and other mediators (ATP, glutamate and PGE2) as well as large amounts of 

NO, which contribute to increased expression and activation of ionotropic receptors (NMDA) 

on post-synaptic neurons , via PKA, PKC mediated phosphorylation of the NR1 subunit 

(Gao et al., 2007), as well as neuronal cell death (Sofroniew, 2009; Milligan and Watkins, 

2009; Miyoshi et al., 2008; Chao et al., 1996; Meng et al., 2013; Guo et al., 2007).  These 

factors can also modulate microglial activity and increased migration to the site of injured nerve 

terminal via the release of ATP and subsequent intracellular Ca2+ waves which propagate 

through a network of astrocytes via end feet gap junctions. These intracellular Ca2+ waves are 

characteristic of astrocyte excitability and are triggered predominantly by ATP (Cotrina et al., 

1998), causing the release of Ca2+ from intracellular stores (Sofroniew and Vinters, 2010). ATP 

acts via astrocytic P2X7 receptors, however, it has recently been noted that there are 

differential mechanisms for ATP triggered release of Ca2+ waves versus ATP derived (calcium-

independent) release of transmitters, glutamate and D-serine (Pan et al., 2015; Volterra et al., 

2014). It is interesting to note however, that although astrocytes also expressed TLR on their 
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membrane (TLR2, 3, 4, 7 & 9) (Nicotra et al., 2012), TLR activation is not required for priming 

ATP-P2X7 receptor activation, as observed in microglial cells (Facci et al., 2014).  

It has also been demonstrated that activation of astrocytes following nerve injury, leads to a 

reduced uptake of extracellular glutamate (via down regulation of the glutamate 

transporter EAAT2) thereby increasing neurotransmitter levels at the cleft which can lead to 

increased post-synaptic excitatory transmission (Sung et al., 2003; Tawfik et al., 2006).   

Based on the above, there are multiple communication pathways between activated neurons, 

microglia and astrocytes that contribute to and assist in the development and maintenance of 

increased excitatory transmission associated with increased firing of nociceptors, which 

encompasses neuropathic pain. There are many potential targets for pharmacological 

intervention, however there are few that have been successfully translated from animal 

models to human trials. The remainder of this chapter will focus on a specific mediator 

released by both neurons and glia following nerve injury, NO and its protonated 

species, nitroxyl (HNO) which has been recently implicated as a potential target for 

neuropathic pain therapy.   

1.4 Reactive nitrogen species in neuropathic pain  

Following nerve injury, neurons and glia release NO both peripherally and centrally as part of 

the transduction and modulation process, respectively, hence contributing to the development 

of neuropathic pain. This section will discuss some of the proposed mechanisms of actions 

and highlight the disparate outcomes of endogenous versus exogenous influences of both NO 

and other reactive nitrogen species, in pain signalling.   

1.4.1 NO function and endogenous production  

Nitric oxide (NO) is a small gaseous molecule with a half-life of a several seconds which 

readily permeates cell membranes to elicit its action. It was identified in 1978 as being the 

potent endothelial vasodilator, EDRF (endothelium derived relaxation factor) and a key 

component of blood pressure regulation (Furchgott, 1988). Since that time, research has 

discovered NO is involved in many physiological systems including; cardiovascular, nervous 

system, immune response (including cytokine release) and wound healing (Moncada and 

Higgs, 1993). Within these systems, NO acts as a messenger molecule interacting with 

numerous molecular targets to regulate; vascular tone (by stimulating NO-sensitive guanylyl 

cyclase), neurotransmission, gene transcription and mRNA translation (e.g. by binding to iron-
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responsive elements) and produces post-translational modifications of proteins (e.g. by ADP 

ribosylation) (Pfeiffer et al., 1999; Forstermann and Sessa, 2012).   

Endogenous NO is generated from amino acid L-arginine, by a group of enzymes known as 

nitric oxide synthase (NOS). There are three main isoforms of NOS which are differentially 

located throughout the body. Neuronal NOS (nNOS or NOS 1) is expressed by both peripheral 

and centrally located neurons (Forstermann and Sessa, 2012). Inducible NOS (iNOS or NOS 

2) is localized to immune cells including microglia and astrocytes with the nervous system and 

endothelial NOS (eNOS or NOS 3) is, as the name suggests located predominantly throughout 

the vascular system. NO production is stimulated by an increase in intracellular Ca2+ which 

activates calmodulin to dimerize the NOS monomers and facilitate electron transfer within the 

reductase domain from co-substrate NADPH (nicotinamide-adenine-dinucleotide phosphate) 

to the oxygenase domain. This is enabled by co-factors; flavin adenine dinucleotide (FAD), 

flavin mononucleotide (FMN), (6R-)5,6,7,8-tetrahydro-L-biopterin (BH4) and molecular oxygen 

(O2). The electrons are used to reduce and activate O2 and to oxidize the main substrate, L-

arginine to L-citrulline and NO. It is important to note here that nNOS and eNOS are 

constitutively expressed on their respective cells but require intracellular Ca2+ for activation, 

however, iNOS is only expressed on glial cells upon activation by endotoxins or cytokines and 

produces NO in a Ca2+-independent manner (Forstermann and Sessa, 2012). This key 

difference will be further explored later in this section. Many of the physiological actions of NO 

have been extensively reviewed, however this section will focus on the role of NO in 

neuropathic pain.   

1.4.2 Evidence of NO role in neuropathic pain  

Numerous animal studies have shown that NO contributes to central sensitization during both 

inflammatory and neuropathic pain. However, NO does not appear to be involved in normal 

nociceptive pain signalling and/or perception (Schmidtko et al., 2008). Therefore, blocking this 

pathway could act as a potential therapeutic target specifically for neuropathic pain. There is, 

however, some conflicting observation regarding NO as it has been shown to exhibit both pro- 

and anti-nociceptive effects. The body of work conducted over the years in an attempt to 

elucidate the role of NO in neuropathic pain, can be categorized into the following areas: 

assessing expression of the manufacturing NOS enzyme following nerve and/or tissue 

damage; inhibition of NO production, NO enzyme (NOS) knock-out animal models or NO 
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substrate or donor administration. During neuropathic pain, nNOS expression is primarily 

upregulated in DRG neurons (Schmidtko et al, 2009; 2015), leading to an increased number 

of nNOS-positive DRG neurons and enhanced nNOS immunoreactivity in their central 

terminals in the dorsal horn of the spinal cord (Zhang et al, 1993; Luo et al, 1999; Guan et al, 

2007; Martucci et al, 2008).   

Furthermore, iNOS has been shown to be induced in macrophages and Schwann cells both at 

the site and distal to the injury (Levy and Zochodne, 1998; Levy et al, 1999), as well as in 

microglia within the dorsal horn of the spinal cord (Mika et al, 2010, Martucci et al, 2008). Local 

inhibition of NO synthesis in the spinal cord by intrathecally (i.t.) administered non-specific 

NOS inhibitors (L-NAME and L-NMMA), led to a reduction of the nociceptive behaviour in 

several animal models of inflammatory and neuropathic pain (Meller and Gabhart, 1993). 

Experiments with more selective NOS isoform inhibitors such as L-NAME or 7-NI (nNOS 

inhibitors) and 1400W (iNOS inhibitor), identify key roles for nNOS and iNOS in the 

development and maintenance of neuropathic pain. Inhibiting these specific isoforms results in 

attenuation of mechanical allodynia and thermal hyperalgesia in animal models of neuropathic 

pain. (Guan., et al, 2007).  However, studies using knock-out animal models of specific 

isoforms have shown only a moderate reduction in neuropathic pain pathophysiology which 

may be attributed to compensatory upregulation of other NOS isoforms (Hervera et al., 2010) 

or the availability of functionally active splice variants (Eliasson et al., 1997). 

As inhibition or knock-out of NO synthase was shown to reduce pain, administration of NO 

substrate and donors were expected to have mainly a pro-nociceptive effect. This hypothesis 

was supported by many reports that observed an increase in hyperalgesia following intrathecal 

administration of NO donors (Ferreira et al., 1999).  However, there have also been reports of 

anti-nociceptive effects following intrathecal injection of the NO substrate, L-arginine (Haley et 

al., 1992; Zhuo et al., 1993). One rationale proposed for this dual pro- and anti-nociceptive 

effect is due to the concentration of NO present. In support of this idea, low dose 

administration of NO donors was shown to reduce pain symptoms in both animals and 

humans, however, high doses resulted in increased neuropathic pain effects (Sousa and 

Prado, 2001).  Further to this, a study examining the use of exogenous producing NO donors 

in endothelial cell lines, determined that NO can elicit physiological effects at concentrations 

ranging from picomolar to molar values (Thomas, et al., 2009). Although studies inhibiting NOS 
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activity support the role of NO in neuropathic pain, conflicting findings regarding NO donors 

could be attributed to various downstream signalling mechanisms.   

1.4.3 Downstream signalling mechanism of NO  

There are various mechanisms by which NO elicit its signal including activation of NO-sensitive 

soluble guanylyl cyclase (sGC), S-nitrosylation, tyrosine nitration and the interaction with 

superoxide to form peroxynitrite (Schmidtko A. 2015). Evidence suggests that the sCG 

pathway is the most important in neuropathic signalling. Following peripheral nerve injury, 

activation of post-synaptic NMDA receptors causes an influx of intracellular Ca2+ leading to the 

production of NO by nNOS and L-arginine. The resulting NO molecules can then pass through 

cell membranes to elicit their effect on sGC which catalyses the formation of cyclic guanosine 

3’-5’ monophosphate (cGMP) from guanosine 5’-triphosphate (GTP) (Figure 1.2). Cyclic GMP 

then can act as an intracellular messenger by activating specific protein kinases (PKG), 

phosphodiesterase’s (PDEs) and potassium and other ion channels (Pfeiffer et al., 

1999).  Previous studies have demonstrated that modulating this NO/sGC/cGMP/PKG 

pathway either by inhibiting sGC, PKG or using sGC knock-out animals (Schmidtko et al., 

2003; 2008), can reduce symptoms of neuropathic pain, providing further support of a role for 

NO in neuropathic pain signalling.   

Although there have been many studies published over the years reporting NO action in 

neuropathic pain and other pathologies, it is important to consider that the chemistry of NO 

makes it a highly reactive radical in biological media which can yield many other highly reactive 

chemical by-products. Hence, establishing differential regulation of distinct nitroxidative 

species would be useful, as specific oxygen or nitrogen species have unique outcomes in the 

neuroinflammatory responses.  Further to this, differentiating between the direct action of NO 

and other highly reactive intermediates is made more complex because they are hard to 

detect. Literature reporting purported generation and activity of NO in neuropathic pain and 

other pathologies, is previously implied using measurements of by-products (such as Griess 

reagent and others, for nitrate/nitrite detection) or by application of fluorescent probes. These 

methods are limited in their temporal and spatial resolution and are insufficient for defining 

concentrations and time courses of specific nitroxidative species. A recent review has outlined 

some of the more common used methods for detecting NO and intermediate species and gives 

some insight into potential novel detection methods (Grace et al., 2016).   
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Overall, it is evident that upregulation of nitric oxide synthase and subsequent downstream 

effects occur after peripheral nerve injury. However, the specific effector NO species in 

neuropathic pain remains unclear, with some suggestion that activation may be occurring via 

oxidised or reduced forms of NO in biology (Paolocci et al., 2007).   

 

Figure 1.2 Signalling mechanisms of nitric oxide. The production of NO by nNOS and L-
arginine. The resulting NO molecules can then pass through cell membranes to elicit their 
effect on sGC which catalyses the formation of cyclic guanosine 3’-5’ monophosphate (cGMP) 
from guanosine 5’-triphosphate (GTP). Cyclic GMP then can act as an intracellular messenger 
by activating specific protein kinases (PKG), phosphodiesterase’s (PDEs) and potassium and 
other ion channels to elicit various biological responses.  
 

1.4.4 Chemical biology of NO   

The challenge in pin-pointing the specific actions of NO comes from the enormous variety of 

chemical reactions and biological properties associated with it. There are excellent reviews 

covering the details of the chemical reactions of NO (Pfeiffer et al., 1999; Meller & Gebhart, 

1993), which are summarised in this section focusing on the differential signalling due to the 

varying concentrations of NO that can be endogenously generated.  The chemical biology of 

NO can be divided into two categories: direct reactions and indirect reactions (Wink et al., 

1996). The direct effects of NO are those chemical reactions that occur fast enough to allow 

NO to directly react with a target molecule. In contrast, the indirect effects require that NO 

reacts with oxygen (O2) or superoxide (O2
−) to generate RNS, which subsequently react with 

the biological targets. Further to this, it is understood that the direct effects occur at low 

concentrations, while indirect effects occur at much higher concentrations of NO. The indirect 

effects can be separated further into nitrosative and oxidative stress (Wink and Mitchell, 1998), 
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whereby nitrosative stress implies the addition of a nitrosonium [NO+] equivalent to a thiol or 

amine and oxidative stress requires reactive oxygen species (OH radical, O2
−) which can 

create peroxynitrite (ONOO−) and nitrogen dioxide (NO2). The balance between oxidation 

and nitrosation chemistry depends largely on the flux of NO (Figure. 1.3).   

Figure 1.3: Direct versus indirect actions of NO  

  

Modified from: Thomas DD et al., (2009) ‘The Chemical Biology of Nitric Oxide. Implications in 
Cellular Signalling.’ Free Radic Biol Med; 45(1): 18–31.  
  

The signalling pathways activated by NO appears to be highly dependent on its concentration, 

with different components being recruited over a broad (1000-fold) concentration range 

(Thomas et al., 2009).  In addition to concentration, temporal aspects of NO exposure are also 

important. Certain proteins respond immediately to NO exposure, while others require hours or 

even days to be activated. The concentration levels of NO and its associate species is thought 

to be regulated by the presence of O2 and other reactive oxygen species (ROS) products, and 

vice versa, hence they can regulate each other’s signalling behaviour. Many of the cellular 

responses elicited by NO have been determined both in vitro, and in vivo using endogenous 

activators and exogenous NO donors to control the local concentration. In vivo, macrophages 

(peripherally) and glia (centrally) are the biggest producers of nitric oxide (Ignarro, 

1996; Stuehr et al., 2004). The amount of NO produced from activated macrophages is 

dependent upon how they are stimulated. For example, different cytokines and proteins can 

trigger altered amounts of NO from cultured macrophages. Treatment with IFNγ + LPS 

(Lipopolysaccharide: TLR4 receptor agonist) yields the highest of NO release, with IFNγ pre-
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treatment plus TNFα or IL-1β stimulating 10-fold less, and treatment with TNFα or IL-1β alone 

stimulating 30-fold less (Espey et al., 2000).  This profile suggests that NO generation and 

release is considerably potentiated when activation is mediated via the Toll-like receptors. This 

also contributes towards our understanding of how glial NO output is highly regulated in 

neuropathic pain conditions by the release of cytokines and other mediators following injury. 

However, as NO is involved in so many broad biological systems and has been demonstrated 

to have both detrimental and antioxidant effects, it may create many off-site effects if used as a 

therapeutic target for neuropathic pain. Other reactive nitrogen species have also been 

implicated as having a specific action in neuropathic pain, which may potentially serve as a 

better therapeutic target. 

1.5 Nitroxyl (HNO) involvement in neuropathic pain   

Aside from NO, many other reactive nitrogen species (peroxynitrite: ONOO-, nitrogen 

dioxide: NO2, dinitrogen trioxide: N2O3) have been identified as being involved in 

physiological/pathophysiological functions, separate from that of NO. Reduced forms of NO 

(hydroxylamine: NH2OH) have also been examined to determine their biological activity and 

toxicity. One such species that has been identified is nitroxyl (HNO), the reduced, protonated 

form of NO (Miranda, 2005). Physiological effects of HNO, which to date have been identified 

using exogenous donors, include; potent vasodilation (Andrews et al., 2015), increased cardiac 

output (Sabbah et al, 2013), anti-alcoholism (DeMaster et al, 1998) and recently implicated as 

an anti-nociceptive modulator of neuropathic and inflammatory pain (Longhi-Balbinot, DT., et 

al, 2016; Zarpelon, AC., et al, 2013). Longhi-Balbinot et al, demonstrated that chronic 

administration of HNO donor, Angeli’s salt was able to reduce chronic constriction injury (CCI; 

commonly used animal models of nerve entrapment) induced hyperalgesia by reducing the 

reactivity of spinal microglia and astrocytes together with expression of their associated 

cytokines.  The authors suggested this analgesic affect was via the cGMP-PKG-K channel 

pathway after inhibition of these molecules were able to reverse the analgesic effects 

of Angeli’s salt. HNO has also been implicated as an analgesic after pre-treatment 

with Angeli’s salt was found to inhibit the induction of inflammatory pain responses, via the 

cGMP-PKG-K channel pathway (Staurengo-Ferrari et al., 2014).   

Interestingly, it has been proposed that HNO can alter NMDA receptor activity by modifying al 

thiol residue leading to a decrease in Ca2+ influx (Kim et al., 1999). As NMDA activation is 
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critical in the development of the increased post-synaptic excitatory signalling in neuropathic 

pain, this may provide an alternative mechanism of action. Further to this, HNO was also found 

to irreversibly inhibit the lysosomal cysteine protease Cathepsin B (Vaananen et al., 2008). 

Cathepsin B has been implicated in chronic pain by promoting the release and cleavage of IL-

1β in either a direct or indirect mechanism (Nakanishi, 2012). Pharmacological inhibition and 

gene knock-out of Cathepsin B showed reduced both tactile allodynia and IL-1β level in 

models of inflammatory pain but not neuropathic pain (Sun et al., 2012). 

These studies were carried out using exogenous HNO donors therefore the question remains 

as to whether HNO is endogenously present. There has been much speculation regarding the 

possible chemical reactions that could result in endogenous HNO production. There are some 

thorough reviews that detail the proposed chemistry for the production and action of HNO in 

biology (Miranda, 2005; Fukuto et al., 2005; Shoman and Aly, 2016). There are several 

potential endogenous pathways by which it may be created. It has been proposed that HNO 

can be formed via NOS when cofactor BH4 is reduced (Adak et al., 2000; Wei et al., 2003), 

NH2OH oxidation by a variety of heme proteins or reduction of NO to NO- by cytochrome c 

leading to the formation of HNO at physiological pH, or by reaction with ubiquinol, manganese 

superoxide dismutase, and xanthine oxidase (Choe et al., 2011). Currently there is no direct 

evidence to support the endogenous production of HNO in mammalian cells. Therefore, many 

of the proposed chemical reactions and physiological actions remain uncertain.   

1.5.1 Measuring endogenous nitric oxide and nitroxyl release  

Understanding the effects of concentration dependency of NO on physiological responses is 

important. However, NO’s rapid diffusion, high reactivity, and short half-life make accurate and 

precise measurements challenging. Clearly any in vitro assessment should closely mimic the 

in vivo environment of the proposed application. It is important to also note that depending on 

the cellular location of the NO being produced, once diffused it will form a concentration 

gradient from the epicentre of release to the outer limit of the diffusion circumference meaning 

that the concentration at the point of production will be quickly diluted and may only elicit 

effects in close proximity to the source (Thomas et al., 2009). Recently there has been an 

upsurge in the development of small molecular fluorescent probes for detecting NO and HNO. 

Common fluorescent probes use o-diaminofluorescein, a common reactive moiety for NO, can 

rapidly trap NO under aerobic conditions, and elicit fluorescence through suppression of 
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photoinduced electron transfer (PET). This concept was used to create a commercially 

available series of DAF probes for detecting, measuring and imaging NO in cell and tissues 

(Kojima et al, 1998). These probes have been well validated, and although next generation 

probes that are more stable, produce good quantum yield upon reacting with NO and stay with 

the cell, they are not always commercially available to apply to an immediate biological 

question.  

Endogenous detection of HNO has also been difficult to resolve due to its physico-chemical 

nature. If not in the presence of thiols or metalloproteins, HNO reacts with itself to form a dimer 

that dehydrates to ultimately give nitrous oxide and water. This property alone requires nitroxyl 

to be introduced to systems by the use of donor molecules such as Angeli's salt (Na2N2O3) 

(Shafirovich et al, 2002). HNO’s reactivity with metalloproteins gave rise to Rosenthal and 

Lippard (2010) developing the first small-molecule fluorescent probe selective for HNO 

named CuII[BOT1]. This probe senses HNO in the 0.5-5 mM range and displays selectivity 

over other biological relevant species.  Using this probe, faint intracellular HNO signals have 

been resolved in HeLa cells, however, the HNO donor Angeli's salt was required to raise 

intracellular fluorescence to quantifiable levels (Rosenthal et al, 2010). Furthermore, the 

wavelengths required to excite this probe are known to cause photobleaching and phototoxicity 

to live cells and tissue and led to the generation of another probe GCTPOC-1 (Zheng et al, 

2015). Zheng, et al (2015) developed the first two-photon fluorescent turn-on HNO probe 

using tri-arylphosphine as the reactive site for HNO. The two-photon probe GCTPOC-1 has a 

large fluorescence enhancement, which makes it attractive for imaging HNO in living tissues 

with deep tissue penetration. Despite the development of these chemical probes, there are still 

some limitations for their general use in biology due to either low quantum yield for detection, 

rapid photobleaching, use of toxic wavelengths for detecting fluorophore, cell toxicity or low 

specificity for a specific RNS. As the next generation of RNS fluorescent probes are generated 

it will help advance our understanding of the biologically relevant concentrations, location and 

function in mammalian in vitro and in vivo. Current fluorescent probes and other assays used 

for the detection of short-lived molecules such as nitric oxide and its related reactive nitrogen 

species has recently been reviewed (Grace et al., 2016) and outlines some of the 

advancements and limitations of current and next generation detection tools.  
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1.6 Animal models of Neuropathic pain  

Neuropathic pain may develop either due to a disease state or trauma to peripheral or central 

nerves. Neuropathic pain is difficult to study in humans as the stimulus required to induce 

neuropathic pain is irreversible and as such, recruiting participants is understandably 

problematic and raises ethical issues.  This necessitates the need to develop a well validated 

and easily reproducible animal model of neuropathic pain. The ideal models should result in 

reproducible sensory deficits such as allodynia, hyperalgesia and spontaneous pain over a 

sustained period, thus creating the opportunity to evaluate several pathophysiological 

conditions observed in humans, including responses to pharmacotherapies. This last point is 

critical as current pharmacotherapy for neuropathic pain has had limited success with little or 

no response to commonly used pain reducing drugs, such as NSAIDS and opiates (Woolf and 

Mannion, 1999). Consequently, there is a need to develop disease-modifying treatments as 

well as finding better targets for symptom management. 

This section will focus on the types of animal models currently employed to study peripheral 

neuropathic pain and compare some of the benefits and limitations of each. Together with this, 

the various types of behavioural measures used to report the sensory deficits established 

within these models will be discussed. 

1.6.1 Types of neuropathic pain animal models  

Approximately 40 types of neuropathic pain animal models have been established that 

encompass the diverse aetiology and hence diverse manifestations of the neuropathy which 

include peripheral nerve injury, central pain and disease modifying models of neuropathy 

(Jaggi et al., 2011). A list of neuropathic pain animal models has been provided in 

Table 3 with further details being covered in other reviews (Jaggi et al., 2011). This section will 

focus on the most common peripheral nerve injury models currently used in literature and a 

more recent modified model that better represents the heterogeneity of neuropathic pain 

symptoms reported clinically.   
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Table 3: List of animal models of neuropathic pain  

Name of model  Principle of injury  Species  

Axotomy (complete sciatic nerve 
transection)  

Complete sciatic nerve transection  Rats  

Chronic constriction injury  Four loose ligatures around sciatic nerve  Rats, mice  

Partial sciatic nerve ligation  Tight ligation of one-third to half of sciatic nerve  Rats, mice  

Spinal nerve ligation  (i) Tight ligation of L5, L6 spinal nerves  Rats  

  (ii) Tight ligation of L7 spinal nerve  Macaca fascicularis  

Spared nerve injury  Axotomy of tibial and common peroneal nerves  Rats, mice  

Tibial and sural nerve transection  Axotomy of tibial and sural nerves  Rats  

Ligation of common peroneal nerve  Ligation of common peroneal nerve  Mice  

Sciatic cryoneurolysis  Freezing of the sciatic nerve  Rats  

Caudal trunk resection  Resection of caudal trunk  Rats, mice  

Sciatic inflammatory neuritis  
Injection of zymosan, HMG, TNFα around sciatic 
nerve  

Rats, mice  

Cuffing-induced sciatic nerve injury  
Implantation of polyethylene cuff around sciatic 
nerve  

Rats, mice  

Photochemical-induced sciatic nerve 
injury  

Thrombosis in small vessels supplying sciatic 
nerve by photosensitizing dye and laser  

Rats, mice  

Laser-induced sciatic nerve injury  
Radiation mediated reduction in blood supply to 
sciatic nerve  

Rats  

Weight drop or contusive spinal cord 
injury  

Dropping a weight over the exposed spinal cord  Rats, mice  

Excitotoxic spinal cord injury  Intraspinal injections of excitatory amino acids  Rats, mice  

Photochemical spinal cord injury  
Thrombosis in blood vessels supplying the spinal 
cord by photosensitizing dye and laser  

Rats  

Spinal hemisection  Laminectomy of T11-T12 segments  Rats  

Drug-induced      

(a) Anti-cancer agents  
Direct injury of drugs to the nerves of peripheral 
nervous system  

Rats, mice, guinea 
pigs  

(b) Anti-HIV agents    Rabbits, rats  

Diabetes-induced  
Persistent hyperglycaemia-induced changes in the 
nerves  

Rats, mice  

(a) Streptozotocin-induced      

(b) Generic models      

Bone cancer pain models  
Inoculation of cancerous cells into respective 
bones  

  

(a) Femur, calcaneus, 
tibial, humerus bone cancer pain  

  Rats, mice  

(b) Neuropathic cancer pain  Growing a tumour in vicinity of sciatic nerve  Mice  

(c) Skin cancer pain  
Injection of melanoma cells in plantar region of 
hind paw  

Mice  

HIV-induced neuropathy  Delivery of HIV-1 protein gp120 to sciatic nerve  Rats  

Post-herpetic neuralgia      

(a) Varicella Zoster virus  Injection of viral infected cells in the footpad  Rats, mice  

(b) Herpes simplex virus  
Depletion of capsaicin-sensitive afferents 
with resiniferotoxin  

Rats  

(c) Non-viral model    Rats  
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Chronic ethanol 
consumption/withdrawal  

Administration of ethanol over extended period 
(approx.70 days)  

Rats  

Pyridoxine-induced  
Administration of high dose pyridoxine for long 
period  

Dogs, rats  

Trigeminal neuralgia  
Compression of trigeminal ganglion chronic 
constriction injury to infra-orbital nerve  

Rats  

Orofacial pain  
Injection of formalin, carrageenan into 
temporomandibular joints and maxilla  

Rats, mice  

Acrylamide-induced  Administration of acrylamide for prolonged period  Rats  

Adapted from: Jaggi AS, Jain V, Singh N. (2011) Animal models of neuropathic pain. 
Fundamental & Clinical Pharmacology; 25: 1–28.  
 

1.6.1.1 Peripheral nerve injury models  

The first model generated to study neuropathic pain was established in the 1970’s by Wall et 

al., which involved a complete transect of the sciatic nerve (Wall et al., 1979). This model 

resulted in neuroma development and autotomy behaviour (self-mutilation of digits on injured 

hind-paw), which best represented amputee patients and their associated phantom pain. This 

work contributed significantly to the pathophysiological mechanisms of chronic pain, which are 

quite distinct from acute noxious pain, however it only represented a small percentage of 

clinical neuropathic pain cases. By the late 1980’s Bennett and Xie (Bennett and Xie, 

1988) generated a model of peripheral mononeuropathy, known as chronic constriction injury 

(CCI) that become one of the most commonly used animal models of nerve entrapment. The 

model involves loosely tying four gut ligatures around the mid-thigh level of the sciatic nerve, 

until a brief twitch in the foot is observed. This results in intraneural oedema, swelling and local 

axonal damage leading to Wallerian degeneration of the axons. The associated behaviours 

include signs of spontaneous pain including; mild autotomy, guarding, excessive licking, 

limping of ipsilateral hind paw and flicking of injured hind-paw. These behaviours appear to 

develop approximately 7 days post-injury and peak around 14 days lasting up to 2 months. 

Subsequent models were later developed by Seltzer et al, (Partial sciatic nerve ligation: 

Seltzer et al., 1990) and Kim and Chung (L5/L6 spinal nerve ligation: Kim and Chung, 1992) 

that mimic human symptoms of causalgia (burning pain). In the partial sciatic nerve ligation 

model, the dorsal third to a half of the sciatic nerve is tightly ligated just distal to the point at 

which posterior biceps semitendinosus nerve branches. Signs of spontaneous pain include 

paw guarding and licking on the injured side. These behaviour changes are reported 

approximately a week following injury and persist for up to 6 weeks. The L5/6 spinal nerve 

ligation is a more involved surgery, however, easier to reproduce between animals than the 
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aforementioned sciatic models. It involves separating out the L5 and L6 spinal nerves and 

tightly ligating each nerve individually just distal the DRG. Behavioural changes attributed to 

spontaneous pain, allodynia and hyperalgesia are present in these animals 24-48 hours 

following injury and persist for up to 16 weeks. These models have contributed significantly to 

the understanding of the pathophysiological mechanisms underlying neuropathic pain and 

provided a platform to measure the potential of therapeutic agents. Although these models can 

generate behaviours which are closely analogous to human symptoms, a major limitation is 

that they represent a binary model of pain (present versus absent). Clinically, patients present 

with a range of pain sensitivities suggesting that pain sensory experiences fall along a 

spectrum. However, it should be noted that although the injury model is binary there is growing 

evidence to suggest that measuring complex behaviours (such as emotional symptoms 

anhedonia, motivation and depression) in rats may be more closely related to changes in the 

degree of neuroimmune activation following peripheral nerve injury, as opposed to only 

measuring mechanical responses for signs on allodynia (Fiore & Austin, 2019).   

In 2010, Grace et al, developed an animal model of neuropathic pain which was a modification 

of the Bennett and Xie CCI sciatic injury model. This involved modifying the number of 

ligatures tied around the sciatic nerve, from 0 to 4, but ensuring that each animal was exposed 

to 4 pieces of suture to control for the immune response to the suture itself. The additional 

sutures were placed beneath the skin prior to closing the wound. This study identified a ‘dose–

response’ relationship, demonstrating that varying the number of sutures both delayed the 

onset of allodynia and altered the absolute level of allodynia accordingly. In animals with 

ligatures, mechanical allodynia was observed from day 3 post injury and persisted until day 

29. The authors also reported a graded relationship between the associated molecular 

changes in the spinal glia of these animals and the number of nerve ligations. This model 

provided an alternative system to detect subtle pathophysiological and molecular changes 

following pharmacological intervention at sub-maximal pain thresholds. 

1.6.2 Behavioural measures of nociception in animals  

One major limitation of using animal models to learn about neuropathic pain is their inability to 

verbally communicate their sensory experiences. Therefore, experimenters often rely on tactile 

measures and obvious physiological or behavioural changes to determine altered states of 



   
 

32 
 

nociception, which can be somewhat subjective and can introduce observer bias. This makes it 

somewhat difficult to compare animal outcomes with clinical presentation of symptoms.  

 However, there are a number of techniques adopted over the years (Table 4) which have 

allowed for researchers to observe these pathophysiological changes in a more reproducible 

way (Deuis et al., 2017). It is important to point out however, that each of these methods have 

their limitations which have been extensively reviewed elsewhere (Mogil, 2009). The most 

common phenomena tested for the presence of “pain-like” behaviours in animals include 

observation of spontaneous pain characteristics (over grooming, autotomy, vocalisation, 

reduced mobility), or stimulus invoked responses such as tactile allodynia and mechanical and 

thermal hyperalgesia. There are many reportable elements within each of these observations, 

however tactile allodynia which is one of the most common phenomena reported and will be 

the focus of this next section. 

Table 4: Methods to evaluate pain behaviours  

Stimulus evoked pain like behaviours  

Stimulus  Phenomenon tested  Method  Reference  

Mechanical pressure  Mechanical allodynia  Manual von Frey  von Frey, 1896  

Mechanical pressure  Mechanical allodynia  Electronic von Frey  Martinov et al., 2013  

Mechanical pressure  Mechanical hyperalgesia  Randall-Selitto test  Randal and Selitto, 1957  

Heat stimulus  Heat allodynia  Tail flick test  D’Amour and Smith, 1941  

Heat stimulus  Heat allodynia  Hot plate test  Woolfe & Macdonald, 1944  

Heat stimulus  Heat allodynia / hypoalgesia  Hargreaves test  Hargreaves et al., 1988  

Heat stimulus  Heat allodynia / hypoalgesia  Thermal probe test  Deuis and Vetter, 2016  

Cold stimulus  Cold allodynia  Cold plate test  Allchome et al., 2005  

Cold stimulus  Cold allodynia  Acetone evaporation test  Carlton et al., 1994  

Cold stimulus  Cold allodynia / 
hyperalgesia  

Cold plantar test  Brenner et al., 2012  

Thermal stimulus  Thermal sensitivity  Thermal preference test  Mogrich et al., 2005  

Non-stimulus evoked nociception test  

Automated behaviours  Spontaneous pain  Grimace scale  Langford et al., 2010  

Automated behaviours  Spontaneous pain  Burrowing  Deacon, 2006  

Automated behaviours  Spontaneous pain  Weight bearing/gait analysis  Schott et al., 1994  

Automated behaviours  Spontaneous pain  Automated behaviours  Brodkin et al., 2014  

Adapted from Deuis JR, Dvorakova LS and Vetter I (2017) Methods Used to Evaluate 
Pain Behaviors in Rodents. Front. Mol. Neurosci; 10(284): 1-17  
  

1.6.2.1 Tactile allodynia  

Tactile allodynia is the phenomenon of pain generated by a touch stimulus, which is otherwise 

considered non-noxious in non-pathological states. This is quantified in rodents by a 

withdrawal response from an applied stimulus (such as von Frey filament), that does not 
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normally evoke a withdrawal response. In most studies reporting tactile allodynia, von Frey 

filaments (also known as Semmes-Weinstein (S-W) monofilaments) are utilized to assess 

mechanical sensitivity. These filaments were designed to assess tactile sensation in 

humans (Bell–Krotoski, 1987) and have been successfully used in rodent models over the 

years (Chaplan et al., 1994). The monofilaments are generally selected in either random or 

increasing logarithmic stiffness and are applied perpendicular to the surface with enough force 

to cause the filament to buckle. The dwell time (1-10 seconds) or number of applications (1 – 

10) per filaments varies depending upon the method employed, but the resulting measure is 

always counted once the animal withdrawals the hind-paw (or exhibits vocalization in the case 

of face measurements). The outcomes reported vary depending upon; the weight and/or 

species of the animal, if the animal is restrained or freely moving, if application is from the 

plantar or dorsum aspect of the paw (Ren, 1999); if the experimenter is measuring graded 

response or binary (Grace et al., 2010) or if the experimenter is assessing male or female 

subjects (Nicotra et al., 2014; Mogil, 2009). These variations in methodological approach to 

tactile assessment means caution is required when comparing between studies. For example, 

dwell time differences of filament application may be activating different mechanisms, with 

Bove et al, (2006) suggesting that longer application times may trigger the itch response, 

rather than pain. Further to this, many methods were developed examining only male animal 

cohorts and when employed to compare male to female cohorts, reported baseline difference 

prior to intervention (Mogil, 2009) inferring that female animals exhibit inherently lower pain 

thresholds than their male counterparts. This was challenged by Nicotra et al, (2014) that 

suggested the tactile testing methods employed in previous ‘male v female’ studies may not 

best represent the clinical pain scenario. They were able to demonstrate a refined preclinical 

tactile allodynia test that was sensitive enough to determine post-injury male and female 

difference in a graded injury model, taking into consideration the oestrus phase of the cycling 

females, using phasic application of lower threshold filaments (Nicotra et al., 2014). This 

methodology is well suited for measuring responses in animal models of graded injury 

(Grace et al., 2010) which generates more subtle and clinically relevant changes then binary 

models previously described.  As patient’s pain experiences often fall along a spectrum, this 

graded model is important for better translation of both pain experiences and treatment 

response from animal to human subjects, and vice versa.  
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Chapter 2. Current tools for detecting nitroxyl in biology 

This chapter has been peer-reviewed and formally published as a contribution to a 

collaborative review paper [Grace PM et al. (2016) Trends in Neuroscience, Vol 39, Issue 12, 

P862-879]. 

2.1 Abstract 

Tissue injury can initiate bidirectional signaling between neurons, glia and immune cells that 

creates and amplifies pain. While the ability for neurotransmitters, neuropeptides, and 

cytokines to initiate and maintain pain has been extensively studied, recent work has identified 

a key role for reactive oxygen and nitrogen species (nitroxidative species), including 

superoxide, peroxynitrite, and hydrogen peroxide. In this review, we describe how nitroxidative 

species are generated after tissue injury, and the mechanisms by which they enhance 

neuroexcitability in pain pathways. Finally, we discuss potential therapeutic strategies for 

normalizing nitroxidative signaling, which may also enhance opioid analgesia, to help to 

alleviate the enormous burden of pathological pain. 

2.2 The link between nitroxidative signalling and pain  

Investigation of oxidative processes, such as rusting, began with the “phlogiston theory”, 

developed by Georg Ernest Stahl during the scientific revolution, which postulated that a fire-

like element (phlogiston) is released during combustion. Oxidation was formally linked to 

biology during the early 20th Century, when it was found to underpin cellular metabolism [1–3]. 

The connection between reactive oxygen species (ROS) and altered sensory processing was 

empirically identified around the same time [4]. Since then, research has shown that 

prolonged, unchecked increases in reactive oxygen and nitrogen (nitroxidative) species after 

infection or tissue damage can promote cytotoxicity and inflammation. These processes can 

cause peripheral and central sensitization, which underlie pathological pain (see Glossary) 

[5,6]. Thus, restoring nitroxidative balance in peripheral and central nervous systems (PNS, 

CNS) is a possible therapeutic approach for ameliorating neuropathology [6–10].  

In this review, we summarize recent research on how nitroxidative species participate in 

neuroimmune signalling throughout the neuraxis to drive pathological pain. We additionally 

discuss potential therapeutic strategies for normalizing nitroxidative signalling by activating 



   
 

64 
 

endogenous antioxidant systems, which may also enhance opioid analgesia. As pathological 

pain is often intractable to current therapies, new strategies to normalize nitroxidative signalling 

may help to alleviate the enormous burden of pain [11]. 

2.3 Production of nitroxidative species by neurons, glia, and immune cells 

The role of nitroxidative signalling in pain has been studied using rodent experimental models 

of inflammatory pain (e.g. intraplantar complete Freund’s adjuvant (CFA), formalin) and 

neuropathic pain (e.g. peripheral nerve injury (PNI), chemotherapy-induced peripheral 

neuropathy (CIPN), diabetic neuropathy (DN), spinal cord injury (SCI), experimental 

autoimmune encephalomyelitis (EAE)), which have recently been reviewed elsewhere [12]. 

There are numerous endogenous sources of ROS and nitric oxide (NO) that are engaged 

during pain processing [13]. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, 

NO synthases and mitochondrial respiration are among the best characterized ROS/NO 

producers and will be discussed here (Figs. 2.1 and 2.2). 
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Figure 2.1 Induction of nitroxidative species after tissue injury 
Nitroxidative species can induce posttranslational modifications of proteins and lipids, which 
subsequently drive pathological pain by modulating nociceptive neurotransmission, activating 
TRP channels, inducing mitochondrial dysfunction, and induce inflammatory signaling. In 
healthy cells, endogenous antioxidant systems prevent nitroxidative damage. Cell 
damage/pathology can perturb this balance, driving accumulation of potentially damaging 
nitroxidative species. O2: oxygen; NO: nitric oxide; O2•−: superoxide; ONOO−: peroxynitrite; 
H2O2: hydrogen peroxide; •OH: hydroxyl radical; H2O: water; NOX: NADPH oxidase; NOS: 
nitric oxide synthase; mETC: mitochondrial electron transport chain; SOD: superoxide 
dismutase; CAT: catalase; GPx: glutathione; HO: heme oxygenase. 
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2.3.1 NADPH oxidases 

NADPH oxidases (NOX) are membrane-bound enzyme complexes. They transport electrons 

donated from cytosolic NADPH to generate extracellular or luminal superoxide anions or 

hydrogen peroxide, that can be transported into the cytosol via aquaporin channels [13,14]. In 

contrast to other sources of ROS that are generated as a by-product of catabolism, ROS 

generation is the primary function of NOX. There are seven members in the NOX family; 

NOX1, 2, and 4 have been implicated in pathological inflammatory and neuropathic pain 

models [13,15,16]. NOX1 and 2 are expressed at the cellular membrane and produce 

superoxide anions following phosphorylation of cytosolic subunits [17]. NOX4 is expressed on 

organelles, such as the endoplasmic reticulum, and constitutively produces hydrogen peroxide 

[17]. 

NOX1 is inducibly expressed by microglia, neurons, astrocytes, and macrophages in the dorsal 

root ganglion (DRG) and CNS [17–19]. Nociceptive hypersensitivity induced by the 

inflammatory stimuli formalin and carrageenan is attenuated in Nox1 deficient mice [18]. 

NOX1-derived ROS induce translocation of PKC  to the membrane to enhance Transient 

Receptor Potential (TRP) V1 activity in DRG neurons [18], a change consistent with pain 

amplification (Fig. 2.2). In contrast, another study showed that NOX1 mRNA failed to 

upregulate in the DRG following peripheral nerve injury (PNI) [20]. These results indicate that 

DRG NOX1 may have a preferential role in inflammatory versus neuropathic pain.  

NOX2 is predominantly expressed by phagocytic cells—peripheral macrophages and CNS 

microglia [13]. PNI induces a rapid upregulation of NOX2 mRNA by DRG macrophages and 

spinal microglia, which is correlated with increased intracellular superoxide [20,21]. PNI-

induced nociceptive hypersensitivity was attenuated in Nox2 deficient mice [20,21]. Nox2 

deficiency attenuated TNF, but not IL-1, mRNA expression, as well as expression of the 

neuronal injury marker ATF3 in DRG (Fig. 2.2) [20]. However, Nox2 deficiency did not 

influence macrophage recruitment to the injured DRG, suggesting a role for NOX2 in 

macrophage function rather than chemotaxis [20]. Nox2 deficiency attenuated PNI-induced 

Iba1 expression and the attendant expression of pro-inflammatory cytokines TNF and IL-1  in 

the spinal dorsal horn [21]. As these studies were performed in global knockouts, it is still 

unclear whether alterations in the DRG and dorsal horn are subject to NOX-dependent 
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changes in macrophage function at the injury site. In contrast to NOX1, NOX2 activity in 

monocytes appears to play no role in inflammatory pain [22]. 

NOX4 is expressed by DRG neurons—both myelinated (A-fibers) and unmyelinated (C-fibers) 

DRG neurons—and by microglia, astrocytes and macrophages [13,23,24]. Nociceptive 

hypersensitivity following PNI is attenuated in Nox4 deficient mice, with attenuation of 

hydrogen peroxide at the sciatic nerve injury site [23]. These results are supported by the 

absence of NOX4 upregulation in the DRG after PNI [20]. The myelin proteins MPZ and 

PMP22 are decreased at the sciatic nerve injury site over time in an NOX4-dependent fashion, 

suggesting that myelin degeneration by hydrogen peroxide may maintain neuropathic pain 

(Fig. 2.2). However, attenuated damage at the injury site did not alter expression of the 

nitroxidative stress and neuroinflammation indices at the spinal dorsal horn or DRG (microglia 

proliferation, hydrogen peroxide levels) [23]. This contrasts with other studies showing that 

such processes are dependent on manipulations at the sciatic nerve [25–27]. Finally, a role for 

NOX4 may be limited to neuropathic, rather than inflammatory pain [23]. 

Together, these data suggest that NOX1, 2, and 4 isoforms contribute to pathological pain. 

Future studies could expand the role of various NOX isoforms to other sites in the neuraxis, 

and well as identifying a role for other NOX isoforms in pain. These data may help to guide 

development of therapeutics that target the activity of specific NOX isoforms to reduce 

nitroxidative stress and pain. 

2.3.2 Nitric oxide synthases 

NO is a diffusible gas mediator that is synthesized from L-arginine by one of three nitric oxide 

synthase (NOS) isoforms: NOS1 (neuronal), 2 (inducible), and 3 (endothelial). NO and all three 

NOS isoforms have a well-established role in nociception (Fig. 2.2) [28]. It easily passes 

through membranes to directly impact nearby cells. 

NOS1 is constitutively expressed in the cytosolic compartment of postsynaptic terminals of 

neurons, and of stressed Schwann cells, and requires calcium for its activation [29–31]. In 

abnormal pain states, N-methyl-D-aspartate (NMDA) receptors are activated, resulting in 

calcium influx and activation of NOS1 [28]. Nociceptive hypersensitivity induced by PNI and 

CIPN is attenuated by genetic ablation and pharmacological inhibition of NOS1 [32–35]. 

NOS2 is a cytosolic isoform that is widely expressed in many immune cells and in glia. 

Transcription of NOS2 is initiated by Toll like receptors (TLRs) and, once translated, is 
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constitutively active—that is, unlike NOS1 and 3, its activity is independent of calcium [28]. 

NOS2 inhibition attenuates nociceptive hypersensitivity associated with inflammatory and 

neuropathic pain models [15,36,37].   

NOS3 is best known for its expression in the cardiovascular system as a regulator of vascular 

tone. NOS3 is a membrane-bound enzyme that is constitutively expressed; however, it 

requires the interaction of calcium and calmodulin for its activation [28]. NOS3 expression is 

increased in the DRG after subcutaneous administration of CFA, and is correlated with 

allodynia, suggestive of increased NOS3 activity [38]. CFA-induced inflammatory pain is 

attenuated by NOS3 inhibition [38]. 

2.3.3 Cellular respiration 

One critical function of mitochondria is energy metabolism. The mitochondrial electron 

transport chain (mETC) is a series of five molecular complexes through which electrons are 

transported to synthesize ATP from ADP. Premature electron leakage can occur during cellular 

respiration, particularly at Complexes I and III, resulting in superoxide production (Fig. 2.2) 

[39]. Mitochondrial ROS are elevated in spinal neurons, microglia and astrocytes in 

neuropathic pain models [21,40,41]. Furthermore, blocking the mETC attenuates hyperalgesia 

associated with a range of inflammatory and neuropathic pain models [42–45]. However, a 

direct link between mETC-dependent pain and mitochondrial ROS has yet to be shown. These 

results suggest that cellular respiration is increased, but is inefficient due to enhanced ROS-

generating electron leakage from the mETC, as ATP production by sciatic nerves is impaired 

during CIPN [46]. 
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Figure 2.2 Sources of nitroxidative species after tissue injury 
Principal sources of nitroxidative species include NADPH oxidase (NOX), nitric oxide synthase 
(NOS), and electron leakage from the mitochondrial electron transport chain (mETC). The 
NOX1, 2, and 4 isoforms are differentially expressed across cell types and tissues after injury. 
NOX1-derived reactive oxygen species induce enhance Transient Receptor Potential (TRP) 
V1 activity in dorsal root ganglia (DRG) neurons. NOX2 activity in macrophages and microglia 
drives mRNA expression of proinflammatory cytokines (PIC) in DRG the spinal dorsal horn. 
NOX4 expression at the site of peripheral nerve injury decreases expression of myelin proteins 
(MP). The three NOS isoforms—NOS1 (neuronal), 2 (inducible), and 3 (endothelial)—are also 
differentially expressed by cell type. In abnormal pain states, N-methyl-D-aspartate receptors 
(NMDARs) are activated, resulting in calcium influx and activation of NOS1. Transcription of 
NOS2 is initiated by Toll like receptors (TLRs). These enzymes and processes have a well-
established role in pathological pain. 
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2.4 Mechanisms of nitroxidative signalling in neuronal hyperexcitability 

Injury or disease can provoke intense, repeated, and sustained activity of primary afferent 

(sensory) neurons. This activity, together with the release of mediators from reactive glia and 

immune cells, elicits well-characterized changes in neuronal and biochemical processing at 

peripheral terminals and central synapses [5,47–50]. This is termed ‘sensitization’, and results 

in nociceptive hypersensitivity. Here, we discuss how nitroxidative signalling engages neurons 

in pain pathways, leading to peripheral and central sensitization (Figs. 2.1 and 2.3).  

2.4.1 Nitroxidative species as neuromodulators in pain pathways 

Nitroxidative species can directly increase the excitability of nociceptive neurons. Intraplantar 

administration of superoxide, peroxynitrite, or intrathecal delivery of the ROS donor tert-butyl 

hydroperoxide (tBOOH) is sufficient to induce nociceptive hypersensitivity in naïve rats [51–

54]. These studies demonstrated that ROS activates calcium calmodulin-dependent protein 

kinase II (CamKII) in glutamatergic spinal neurons and induced presynaptic inhibition of 

GABAergic interneurons (disinhibition). Furthermore, hydrogen peroxide enhanced the 

frequency and amplitude of action potentials of DRG neurons from neuropathic rats (Fig. 2.3) 

[55].  

In neuropathic pain models, administration of the non-selective ROS scavenger phenyl-N-tert-

butylnitrone (PBN), selective small molecule superoxide and peroxynitrite decomposition 

catalysts such as M40403, FeTMPyP5+ and MnTE-2-PyP5+, or selective peroxynitrite 

decomposition catalysts such as SRI6 and SRI110 attenuated nociceptive hypersensitivity 

[15,51,53,54,56–58]. Accordingly, PBN attenuated injury-induced hyperexcitability of spinal 

dorsal (sensory) horn “pain” responsive neurons and phosphorylation of CamKII [51,57], an 

effect consistent with pain normalization. Several mechanisms of enhanced excitatory 

signalling have been identified. Hydrogen peroxide can activate cGKI , resulting in increased 

neurotransmitter release from the terminals of primary afferent neurons in the dorsal horn 

[59,60]. Peroxynitrite and ROS disrupt glutamate homeostasis leading to potentiation of 

synaptic currents and calcium influx, and ultimately excitotoxicity [56,61]. Mechanisms include 

nitration and phosphorylation of several NMDA receptor subunits, as well as inhibition of 

glutamine synthetase and the glutamate transporter GLT-1 that limit the synaptic half-life of 

glutamate [15,56,62,63]. Nitroxidative products also induce disinhibition after PNI, as PBN 

normalized the decrease in GAD-67+ GABAergic dorsal horn neurons, and increased GABA 
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release (Fig. 2.3) [53,64]. Together, these data suggest that nitroxidative species directly 

enhance neuroexcitability in pain pathways. 

2.4.2 Nitroxidative species activate TRP channels 

The TRP family of nonselective cation channels plays a vital role in the molecular integration of 

multiple endogenous and exogenous sensory stimuli [65]. Several of these channels, 

expressed at the peripheral and central terminals and cells bodies of primary afferent neurons, 

are activated by nitroxidative species and products. TRP channel activation by nitroxidative 

species can also initiate neurogenic inflammation—recruitment and activation of immune cells 

following release of neuropeptides by neurons—which is a key process underlying pathological 

pain (Fig. 2.3) [5,66]. Here, we focus on known roles of TRPA1, TRPM2, and TRPV1. 

TRPA1 is a chemoreceptor expressed exclusively by peptidergic C-fibers [65]. Nitroxidative 

species induce protein carbonylation, and membrane phospholipid peroxidation and nitration, 

and subsequent production of reactive aldehydes such as acrolein (Fig. 2.1). These products 

all share the ability to induce nociceptive hypersensitivity by directly activating TRPA1 [67–72]. 

Acrolein is elevated in the DRG and spinal cord after SCI, and blockade with hydralazine or 

phenelzine partially attenuated allodynia [73,74]. Moreover, nociceptive hypersensitivity 

induced by CIPN was abolished in Trpa1 deficient mice, or with a TRPA1 antagonist [75]. In 

this model, the chemotherapeutic bortezamib did not directly activate TRPA1, suggesting that 

ROS may act as an intermediate [75]. 

TRPM2 is expressed by neurons, and abundantly by immune cells, including 

monocytes/macrophages, neutrophils and T cells, and microglia. This channel is directly 

activated by hydrogen peroxide, and cytosolic ADP-ribose that is generated after nitroxidative 

damage to mitochondria [76–81]. Furthermore, TRPM2 activation is critical for activation of 

spinal microglia and for macrophage infiltration into the spinal cord after PNI [82]. TRPM2 also 

activates ERK MAPK and induces nuclear translocation of NF B, resulting in production of 

proinflammatory cytokines and chemokines [76,77,81,83,84]. Consequently, pharmacological 

and genetic studies have demonstrated that TRPM2 contributes to inflammatory and 

neuropathic nociceptive hypersensitivity [77–79,82,85].  

TRPV1 is found on unmyelinated, slowly conducting neuronal C-fibers, and is an essential 

component underlying injury-elicited thermal hyperalgesia and nociceptive hypersensitivity 

[65]. TRPV1 expression is upregulated by an exogenous ROS donor (tBOOH), and is a target 
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of oxidation and nitration events that increase responsiveness of the channel [18,86–88]. 

Moreover, linoleic acid metabolites, created during production of eicosanoids, are endogenous 

TRPV1 agonists when oxidized, and contribute to nociceptive signaling [89,90]. 

2.4.3 Nitroxidative species induce mitochondrial dysfunction 

Mitochondria have pivotal roles in a variety of cellular functions, including energy metabolism, 

calcium homeostasis, lipid synthesis, and apoptosis. As noted above, cellular respiration can 

be elevated under neuropathic pain conditions, with an attendant elevation of ROS derived 

from neuronal and microglial mitochondria [21,40,41]. Together with nitroxidative species 

derived from NOX and NOS enzymes, these species disrupt mitochondrial homeostasis via 

several mechanisms, leading to bioenergetic crisis (due to impaired mETC efficiency) and 

degeneration of primary afferents (Fig. 2.3) [91].  

Mitochondrial DNA is a target of oxidation and nitration, while peroxidated lipid end-products, 

such as reactive aldehydes, can form covalent modifications (adducts) with an array of 

mitochondrial proteins, including antioxidants [92,93]. Together, these changes impair the 

structural integrity and function of mitochondria. Nitroxidative species can also trigger release 

of pro-apoptotic factors from mitochondria. For example, NO can disrupt mitochondrial 

dynamics (fission and fusion; responsible for maintaining metabolic homeostasis) that results 

in translocation of Bcl-2-associated X protein from the cytosol to the organelle membrane, 

where it activates apoptosis pathways [94–96]. Activation of apoptosis pathways contributes to 

neuropathic pain, as inhibition of several caspase enzymes attenuates vincristine- and 

dideoxycytidine-induced nociceptive hypersensitivity [97]. Neuropathic pain is associated with 

impaired mitochondrial function, and nociceptive hypersensitivity is accordingly attenuated by 

pharmacologically normalizing mitochondrial dynamics or preventing mitotoxicity [46,98–100]. 

2.4.4 Nitroxidative species induce neuroinflammatory signalling 

Pro-inflammatory mediators released by glial and immune cells increase neuroexcitability in 

pain pathways after injury (e.g. TNF, IL-1 , BDNF) [5,50,101–103]. Several mechanisms 

include enhanced glutamate release, increased AMPA receptor expression, phosphorylated 

NMDA receptor subunits, and downregulated astrocyte glutamate transporters [5]. These 

proinflammatory mediators can also induce disinhibition of neuronal excitability by attenuating 

GABA and glycine release from interneurons and inhibitory descending projections, and 

downregulating KCC2 on postsynaptic terminals [5].  
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Nitroxidative species regulate the production of proinflammatory mediators during pathological 

pain. For example, NFkB and p38 MAPK are responsible for the production of a wide array of 

proinflammatory mediators in immune cells. Nitroxidative products degrade/inhibit I B and 

MAPK phosphatases, resulting in activation of NFkB and p38 that both mediate inflammatory 

and neuropathic pain [52,104–107]. Furthermore, nitroxidative species may promote release of 

neuron-to-glia signals, such as matrix metalloproteases (MMPs) (Fig. 2.3) [108]. 

Nitroxidative species also elicit proinflammatory responses via toll-like receptor (TLR) 

signalling. TLRs bind a variety of endogenous ligands (danger associated molecular patterns: 

DAMPs), including DNA and N-formyl peptides from nitroxidatively damaged mitochondria, to 

trigger innate immune responses that contribute to pathological pain [5,109]. ROS serve a vital 

role as second messengers for TLR signalling. A rapid (minutes) respiratory burst occurs upon 

activation of TLR2 and 4, which is mediated by a direct interaction with the intracellular 

domains of NOX1, 2, and 4 enzymes. This NOX activity is essential for downstream NFkB- 

and p38 MAPK-dependent cytokine production [110–114]. Furthermore, activation of NOX 

enzymes by TLR signalling induces transcription of TLRs, and promotes membrane 

expression in lipid rafts, which is necessary for efficient signalling [111,115,116]. In concert 

with disruption of blood-brain barrier tight junctions by nitroxidative species, the TLR2-NOX1 

interaction also upregulates adhesion molecules via CCL3 to facilitate transendothelial cell 

migration, which contributes to nociceptive hypersensitivity after PNI (Fig. 2.3) [102,110,117].  

ROS have been implicated in the activation of NLRP3 inflammasomes [118]—protein 

complexes responsible for the proteolytic activation of IL-1 , a pro-inflammatory cytokine with a 

well-established role in pathological pain [5,101,119]. Among the various sensor molecules 

that trigger formation of inflammasomes, NLRP3 has been most widely investigated, and has a 

recently described role in neuropathic pain [120]. The relative contributions of ROS to the 

activation versus priming of NLRP3 inflammasomes remains to be elucidated [119]. 

Mitochondria are key participants in the activation of NLRP3 inflammasomes; they are a 

source of ROS that can directly activate NLRP3, as well as oxidized mitochondrial DNA that 

can also activate NLRP3 (Fig. 2.3) [118,121–123]. Furthermore, TRPM2 activation by 

nitroxidative species induces a calcium flux that activates the NLRP3 inflammasome [124].  
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Finally, there is a reciprocal relationship between nitroxidative species and inflammatory 

signalling. For example, the transcription of NOX and NOS enzymes is upregulated by TLR4 

and 9 signalling, and by NFkB and p38 activation [19,125–129]. The purinergic receptor P2X7, 

which has a documented role in pathological pain, also induces ROS production [5,120,130]. 

ATP signalling through P2X7R activates NOX2 in a calcium and p38-dependent fashion [131–

133]. 
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Figure 2.3 Nitroxidative mechanisms of neuroexcitability after tissue injury 
Reactive nitroxidative species, such as hydrogen peroxide and peroxynitrite, and modified 
proteins and lipids, like carbonylated proteins, peroxidated and nitrated lipids, and reactive 
aldehydes, all contribute to peripheral and central sensitization after tissue injury. These 
processes drive pathological pain. Several of the Transient Receptor Potential (TRP) family of 
nonselective cation channels are activated by nitroxidative species and modified proteins and 
lipids (see Nitroxidative species activate TRP channels). TRPA1 is expressed by peptidergic 
C-fibers, and is activated by modified proteins and lipids. TRPM2, which is expressed by 
neurons, monocytes/macrophages, microglia, and T cells, is directly activated by nitroxidative 
species. TRPM2 also activates intracellular signaling pathways, including mitogen activated 
protein kinase (MAPK) and nuclear translocation of nuclear factor κ-light-chain-enhancer of 
activated B cells (NFκB) pathways. TRPV1 is found on C-fibers and is directly activated by 
some modified proteins and lipids, as well as being a target of oxidation and nitration events by 
nitroxidative species that increase responsiveness of the channel. Reactive nitroxidative 
species can directly modulate neuroexcitibility in central synapses by promoting glutamate 
release from primary afferent terminals, by activating calcium calmodulin-dependent protein 
kinase II (CamKII) in glutamatergic spinal neurons, and by inhibiting GABAergic interneurons 
(see Nitroxidative species as neuromodulators in pain pathways). Nitroxidative species also 
disrupt glutamate homeostasis by nitration and phosphorylation of NMDA receptor (NMDAR) 
subunits, as well as inhibiting glutamine synthetase (GS) and the glutamate transporter GLT-1. 
Mitochondrial DNA is a target of oxidation and nitration, while some nitroxidative species can 
form adducts with many mitochondrial proteins, which together impairs the structural integrity 
and function of mitochondria (see Nitroxidative species induce mitochondrial dysfunction). 
Nitroxidative species can also trigger release of pro-apoptotic factors from mitochondria by 
disrupting organelle dynamics. Nitroxidative species induce production of proinflammatory 
mediators, and can activate NFκB and MAPK intracellular signalling pathways (see 
Nitroxidative species induce neuroinflammatory signalling). Toll like receptors (TLRs) bind a 
variety of endogenous danger signals, including those released from nitroxidative-damaged 
mitochondria, to activate NFκB and MAPKs. NOX-derived ROS are second messengers for 
NFκB- and p38 MAPK-dependent TLR signalling, and TLR expression. The TLR2-NOX1 
interaction also upregulates adhesion molecules via CCL3, which facilitates transendothelial 
cell migration into the CNS. Mitochondria-derived ROS also activate NLRP3 inflammasomes, 
which are protein complexes responsible for the proteolytic activation of IL-1β. 
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2.5 Endogenous regulators of nitroxidative signaling 

Under healthy conditions, nitroxidative species and antioxidants exist in a balanced state, as 

nitroxidative products play a vital physiological role in cellular processes (e.g. signal 

transduction, pathogen defense [134–136]). In response to increased production of 

nitroxidative species during injury or infection, antioxidant and regulatory systems are activated 

in an attempt to recover homeostasis (Fig. 2.1) [14]. 

2.5.1 Antioxidant defense 

Transcription of antioxidant genes is a critical step in controlling nitroxidative signalling. One 

key transcription factor is nuclear factor E2-related factor 2 (Nrf2). Nrf2 is expressed in CNS 

and PNS neurons, macrophages, Schwann cells, astrocytes, and microglia [137–139]. Under 

homeostatic conditions, cytosolic Nrf2 is sequestered by the protein Keap1 and ubiquinated for 

degradation. However, in the presence of oxidants and electrophiles Nrf2 is released from 

Keap1 and translocates to the nucleus [140]. Nrf2 binds to the antioxidant response element 

(ARE) promoter region to elicit expression of 200+ antioxidant genes, including superoxide 

dismutases (SOD1: cytosolic; SOD2: mitochondrial), catalase, glutathione, and heme-

oxygenases [140]. Another transcription factor, forkhead box, class O (FoxO), is also 

responsible for the production of SOD2 and catalase [141]. Many of these antioxidants are 

ubiquitously expressed, and their catabolic function is summarized in Figure 2.1 [142].  

These endogenous antioxidant systems collaborate to detoxify reactive nitroxidative species 

(Fig. 2.1). Evidence is mixed whether neuroinflammatory or traumatic events increase nervous 

system antioxidant levels [143–152]. This likely reflects a temporally- and injury-specific 

antioxidant response, and the fact that injury-induced nitroxidative species can negatively 

regulate antioxidant production [15,76]. Antioxidant system activation can limit pathological 

pain: deletion of SOD1 exacerbates neuropathic pain, while exogenous antioxidants attenuate 

nociceptive hypersensitivity in a range of inflammatory and neuropathic pain models 

[37,108,153–155]. Similarly, heme-oxgenases, which elicit expression of various antioxidants, 

protects cells and could improve inflammation and neuropathic pain [21].  Therefore, therapies 

that increase antioxidant systems could resolve neuroinflammation and pain symptoms. 

2.5.2 Anti-inflammatory cytokine and adenosine signalling 

Cytokines such as IL-10 and TGF  counter-regulate proinflammatory signalling and contribute 

to the resolution of neuropathic pain hypersensitivity [5,156,157]. One mechanism of action is 
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regulation of nitroxidative signaling. For example, IL-10 and TGF  inhibit NOX2 activity and 

promote antioxidant production [158–160]. This is a reciprocal relationship, as antioxidants can 

also drive production of anti-inflammatory cytokines [161,162]. Adenosine signalling is also 

anti-nociceptive in pathological pain models [163–165]. Signalling through A2A and A3 

receptors inhibits NOX activity, and drives production of anti-inflammatory cytokines and 

antioxidants [163,166,167].  

2.6 Opposition of opioid analgesia by nitroxidative species 

Opioid analgesics remain the cornerstone of management of moderate-to-severe pain. 

However, the clinical utility of opioids is limited by tolerance, which is characterized by dose 

escalation due to reduced sensitivity to an opioid agonist, as well as hyperalgesia, a 

paradoxical increase in pain sensitivity due to opioid exposure [168,169]. Recent evidence has 

identified a role for nitroxidative signalling in these phenomena [6,170]. 

NOX activity is elevated by morphine, and genetic or pharmacological disruption of these 

enzymes attenuates tolerance and hyperalgesia [171–173]. Superoxide and peroxynitrite have 

been implicated as downstream mediators, as decomposition catalysts also attenuate 

tolerance and hyperalgesia [174–176]. It remains unclear how morphine engages these 

enzymes, but it may be mediated by classical -opioid receptors and/or TLR4 [168]. The pro-

nociceptive mechanisms of nitroxidative species, described above, may act as an opponent 

process of neuronally-mediated opioid analgesia to create tolerance, or may overshadow 

analgesia to induce hyperalgesia. Therefore, correcting nitroxidative imbalance may improve 

the clinical profile of opioids [170].  

Nitroxidative signaling also disrupts endogenous opioid analgesia in supraspinal sites that is 

engaged to inhibit spinal nociception via descending projections. For example, induction of 

peroxynitrite during inflammatory pain results in nitration of met-enkephalin in the rostral 

ventromedial medulla (RVM), which reduces opioid receptor binding affinity [177]. This may be 

normalized by intra-RVM microinjections of FeTMPyP5+, which was antinociceptive in 

inflammatory and neuropathic pain models [177].  

2.7 Nitroxidative signaling as a therapeutic target for pathological pain 

Under pathological conditions, endogenous antioxidant responses can be insufficient, leading 

to an accumulation of toxic nitroxidative species. As mentioned above, unchecked increases in 

nitroxidative species can promote cytotoxicity and inflammation via cascading pronociceptive 
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signalling. Therefore, discovering therapeutic treatments that enhance cellular antioxidant 

capacity could help achieve nitroxidative balance to recover homeostasis.  

Initial efforts to combat increases in nitroxidative species in a wide range of neurological 

disorders used direct antioxidant compounds (e.g. vitamins C and E, co-enzyme Q). The 

consensus view is that the possible beneficial effects are outweighed by unfavorable 

pharmacokinetic and pharmacodynamic profiles [13,178,179]. A variety of redox-active 

therapeutics are being developed to overcome these issues and are effective in in treating 

cancer-induced bone pain, inflammatory, and neuropathic pain, and can also potentiate opioid 

analgesia [9,10,180].  

Newer approaches have instead aimed to inhibit sources of nitroxidative species, stimulate 

endogenous antioxidants, and prevent nitroxidative damage [13,178]. To this end, inhibitors of 

specific NOX and NOS isoforms, and ROS toxifiers such as MPO, are being developed and 

may prove effective for pain treatment [13,181]. As noted above, A2A and A3 adenosine 

receptor agonists attenuate spinal NOX activity and promote antioxidant production, with a 

concomitant decrease in neuropathic pain [163–165]. Another promising approach is the 

development of small molecules that catalyze the clearance of reactive aldehydes [182]. 

Indirect antioxidants augment the redox response without being antioxidants themselves. For 

example, sulforaphane, resveratrol, and curcumin induce nuclear translocation of Nrf2, a 

transcription factor responsible for the production of a wide array of antioxidants, and attenuate 

nociceptive hypersensitivity in neuropathic pain models [21,183–186]. Non-pharmacological 

approaches may also function in this capacity. For example, exercise increases Nrf2 

expression and promotes the expression of antioxidants in the CNS as well as peripherally 

[187–189]. Consequently, voluntary wheel running has been shown to both prevent and 

reverse neuropathic pain [187,190]. 

Finally, ROS have a role in normal physiological processes [134–136], and there is some 

evidence that ROS may have protective effects after injury. For example, inflammation induced 

by endotoxin is exacerbated in NADPH-impaired mice, relative to their wild-type counterparts 

[191]. In another study, yeast survival to hydrogen peroxide stress was dependent on 

superoxide [192]. Further work is required to determine whether reactive oxygen species may 

also have a protective role after sterile nervous system injury. However, agents have been 

developed to spare superoxide (e.g. peroxynitrite decomposition catalysts SRI110 and SRI6 
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[15]), and such approaches may prove to be important for restoring homeostasis after nervous 

system injury.  

2.8 Concluding remarks 

Nitroxidative species are generated by mitochondria and by NOX and NOS enzymes. They 

enhance neuroexcitability in pain pathways through direct neuronal interactions, and indirectly 

by impairing mitochondria and inducing neuroinflammation. Normalizing nitroxidative signalling 

may be an alternative strategy to help to alleviate the enormous burden of pathological pain, 

which affects ~20% of the population, and is poorly treated [11,193,194]. There are several 

areas of basic science research that may move us towards that goal (see 2.8.1 Outstanding 

Questions). 

Despite the extensive research implicating nitroxidative species in pathological pain states, no 

studies to date have quantified the critical relationships between real-time local cellular 

creation of nitroxidative species, their concentration at the effect site, or the distribution of their 

direct effect. This challenge has not been overcome owing to the volatility of these nitroxidative 

species and hence the very short life-time in vivo and ex vivo. Several new technologies are 

being developed to address these issues and are discussed in section 2.9. 

Lessons from the failure of direct antioxidants to improve clinical disease need to be 

recognized within the pain field; the effects of direct antioxidants on preclinical pain models 

continue to be reported, despite the strong probability that the results will not translate 

clinically. Several studies suggest that more robustly engaging antioxidant systems after injury 

can help alleviate pain: for instance, in animal pain models, increasing action of master 

antioxidant transcription factors Nrf2 or FoxO, or activating the heme-oxygenase system show 

promising pain-relieving effects. Future studies could explore whether combinatorial strategies 

aimed at boosting multiple antioxidants or targeting both antioxidant and nitroxidative systems 

simultaneously dampen inflammation and pain. Nitroxidant dysregulation clearly contributes to 

neuropathology; thus, discovering new targets and therapies that restore nitroxidative balance 

could help relieve pathological pain. 

2.8.1 Outstanding Questions• 

 How ubiquitous are nitroxidative signalling mechanisms within the neuraxis, beyond 

the classical sites already tested (peripheral nerve injury site, DRG, spinal cord)? 
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 Are nitroxidative signalling mechanisms common or different between different 

preclinical pain models? 

 What is the relationship between the antioxidant and anti-inflammatory cytokine 

systems? 

 Do indirect antioxidants have improved translational potential for treatment of 

pathological pain? 

2.9 New and emerging tools to study nitroxidative species – the following section was 

contributed by Vasiliki Staikopoulos and edited by Prof Mark Hutchinson. 

Colorimetric and fluorescent methods for detecting the “shadow” of the presence of 

nitroxidative species production is well established by the quantification of attendant cellular 

events (e.g. oxidative stress such as lipid peroxidation (TBARS) [195]; and DNA damage (8-

Oxoguanine: 8-OxoG) [196,197]) or the quantification of more stable metabolites (e.g. 

nitrite/nitrate using Griess reaction [198]). These methods are not only limited in their temporal 

and spatial resolution, but also due to their insufficient ability to define concentrations and time 

courses of specific nitroxidative species. Establishing differential regulation of distinct 

nitroxidative species would be useful, as specific oxygen or nitrogen species have unique 

outcomes in the neuroinflammatory responses.  A recent example demonstrated that 

specifically targeting peroxynitrite reduced inflammatory progression via NLRP3 

inflammasome-dependent IL-1β/IL-18 release following ICH induced inflammatory injury [199]. 

Thus, new biosensors are required to improve our mechanistic understanding of how 

nitroxidative species affect the nervous system. 

The chemistry of fluorescent probes for specific detection of both ex vivo and in vivo 

production of nitroxidative species has grown rapidly. A range of approaches and hence 

biosensors have been created that exploit platform sensing modalities, such as photoinduced 

electron transfer (PET) and Förster resonance energy transfer (FRET) signalling. Additionally, 

composite biosensors that incorporate a sensor functionalised to a nanoparticle (gold particles, 

UCNP and QDots) are used to detect and/or measure ROS/RNS species (detailed in Table 1).  

Such ROS species probes can quantify hypochlorite [200,201], hydroxyl [202,203], superoxide 

[204], hydrogen peroxide [205] and singlet oxygen [206]. Biosensors for nitric oxide [207,208], 

nitroxyl [209–211], peroxynitrite [212] are also being developed.   
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These probes detect targeted species either in cell-lines, in ex vivo tissue, or in in vivo models 

of inflammation. However, these biosensor tools require further optimization. Further refining 

biosensors will help improve the stability of the probe; the brightness of the fluorescing 

molecule; the specificity to defined species; the sensitivity of detection; and the consumption of 

the probe in the sensing process. Thus, real-time continued visualisation and/or quantification 

of nitroxidative species within the CNS of a behaving preclinical rodent model of pathological 

pain remains an elusive goal.  

The ultimate nitroxidative species biosensor would have real-time sensing capacity, with signal 

brightness that detected subcellular localisation of the nitroxidative species; ideally, this probe 

would not be consumed/bleached in the sensing process allowing for repeated measurements 

in vivo.  Next generation probes will address some of these limitations. For instance, a redox 

sensitive fluorescent protein (rxRFP1), whose fluorescence intensity is positively related to the 

extent of oxidation of the probe, can detect varying amounts of oxidative stress within separate 

cellular compartments [213].  Further refining these tools will enable an improved 

understanding of how certain species contribute to oxidative or nitrosative stress and will allow 

researchers to define how spatiotemporal regulation of nitroxidative activity contributes to 

pathological pain. 

 

.
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Table 2.1 Probes able to detect specific ROS and RNS species, in vitro, ex vivo or in vivo. 

 ROS Species 

Probe type Imaging platform used Tested in vitro Tested  

ex vivo/  

in vivo 

ROS/RNS stimulation Ref 

Hypochlorite Iridium (III) complex-based two-photon 
phosphorescent probe. 

Two-photon laser scanning 
fluorescence microscope & Confocal 
laser microscope 

HeLa cells/ RAW 
264.7 cells 

 

Zebrafish 10mM NaClO (HeLa) 

 

1mg/mL LPS (RAW 264.7 & Zebrafish) 

[201] 

Hypochlorite Rhodamine-based hydrazide protein 
fluorescent probe 

Fluorescence microscope HeLa cells  50μM OCl−  [200] 

Hydroxyl Ratiometric fluorescence biosensor 
(gold particles conjugated with organic 
fluorophore) 

Confocal laser microscope HeLa cells  10μg/mL LPS  [203] 

Hydroxyl Ratiometric fluorescence biosensor 
(upconversion nanaoparticles 
conjugated with organic fluorophore) 

Fluorescence microscope equipped 
with 980nm laser. 

HeLa cells Mouse liver 500ng/mL PMA (in vitro) 

 

1-4mg LPS/100g body weight (in vivo) 

[202] 

Superoxide Fluorescein protein based fluorescent 
probe 

Confocal laser microscope HCT116/ BV-2/ 
RAW 264.7 cells 

Zebrafish 500ng/mL LPS & 50ng/mL IFN-γ (in vitro) 

 

PMA 200 ng/mL or antimycin A 500 nM (in vivo) 

[204] 
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Hydrogen 
Peroxide 

Chemo-selective fluorescent 
naphthylimide peroxide probe 

Two-photon laser scanning 
fluorescence microscope 

RAW 264.7 cells Mouse lung 
& skin 

1μg/ml LPS (in vitro) 

20μg LPS (in vivo) 

[205] 

Singlet Oxygen Far-red silicon-rhodamine based 
chemical fluorescent probe  

Fluorescence microscope with 640nm 
laser  

HeLa cells/ RAW 
264.7 cells 

 Photosensitizers:  

150μg/mL
 
5-ALA  

5μM TMPyP4  

[206] 

RNS Species       

Nitric oxide Chemo-selective copper (II) based 
fluorescence probe 

Confocal laser microscope HeLa cells/ RAW 
264.7 cells 

 50-200μM DEA-NONOate (HeLa) 

 

200ng/mL LPS (RAW 264.7) 

[208] 

Nitric oxide Far-red two-photon chemical 
fluorescent probe 

Two-photon laser scanning 
fluorescence microscope 

HeLa cells/ RAW 
264.7 cells 

Mouse liver 25μM NOC-9 (HeLa) 

 

20μg/mL LPS, 200U/mL IFN-  and 0.5mg/mL L- 
arginine (RAW 264.7)  

 

1-4mg/ml LPS (in vivo) 

[207] 

 

Nitroxyl FRET-based ratio-metric chemical 
fluorescent probe 

Confocal laser microscope HeLa cells  100μM AS [211] 
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Nitroxyl Near infra-red chemical fluorescent 
probe 

Confocal laser microscope 

& 

In Vivo Imaging System 

RAW 264.7 cells Mouse (in 
vivo) 

100μM AS (RAW 264.7)  

 

500μM AS (i.p. Mouse)  

[210] 

Nitroxyl Lysosome-targetable near infra-red 
chemical fluorescent probe 

Confocal laser microscope 

& 

In Vivo Imaging System 

RAW 264.7 cells Mouse (in 
vivo) 

200μM AS (RAW 264.7)  

 

1mM AS (i.p. Mouse) 

[209] 

Peroxynitrite Boronate-based chemical fluorescent 
probe 

Confocal laser microscope HeLa cells/ RAW 
264.7 cells 

 5 & 20μM Peroxynitrite solution (HeLa) 

 

1μg/mL LPS, 50ng/ml IFN-  2.5ng/ml PMA 
(RAW 264.7) 

[212] 

 

LPS: Lipopolysaccharide (produces endogenous ROS/RNS); PMA: phorbol 12-myristate-13-acetate (activates protein kinase C in vivo and in vitro); 
IFN-γ: Interferon gamma (produces endogenous ROS/RNS); Antimycin A: Produces endogenous ROS/RNS by driving apoptosis; 5-ALA: 5-
Aminolevulinic acid (drug used in photodynamic therapy, known to produce singlet oxygen); TMPyP4: 5, 10, 15, 20-tetra-(N-methyl-4-
pyridyl)porphyrin (drug used in photodynamic therapy, known to produce singlet oxygen); DEA-NONOate: 2-(N,N-Diethylamino)-diazenolate 2-oxide 
(Nitric Oxide donor); NOC-9: 6-(2-Hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine (Nitric Oxide donor); AS: Angeli’s salt (Nitroxyl 
donor) 
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2.10 Update of new tools since publication 

Since publishing this article, [Grace PM et al. (2016) Trends in Neuroscience, Vol 39, Issue 12, 

P862-879] there have been approximately 41 new papers released (research and reviews 

papers combined) reporting on nitroxyl fluorescent probes as of 6 July, 2019 (Web of Science; 

search terms “nitroxyl” + “fluorescent” + “probe”). A subset of these articles have been 

summarised in table 2.2 below highlighting the expanding selection of probe types which are 

becoming available to try and overcome some of the innate challenges of working with 

fluorescent substances in biology., However, this is still very much a chemistry dominated field, 

with very few papers being published showing a translation of this technology into identifying 

nitroxyl presence in biological systems, at this point in time. This section will provide an update 

in the latest development of chemical tools being generated to measure nitroxyl in vitro, ex vivo 

and in vivo and outline the benefits and limitations of using these methods for accurate and 

practical detection in biology.  

2.10.1 Nitroxyl biochemistry 

Investigating nitroxyl in biology has been problematic due to its spontaneous dimerisation in 

solution, with its final products yielding nitrous oxide (N2O) and water (H2O) (Equation 1) 

(Shafirovich and Lymar, 2002). 

 

2HNO→[HONNOH] → N2O+H2O       (1) 

 

Therefore, to study the effects of nitroxyl in biology, most of the literature have reported using 

the exogenous donors Angeli’s salt (sodium trioxodinitrate, Na2N2O3). The highly reactive 

nitroxyl, which unlike NO, can act as a strong electrophile and be readily oxidised, can also 

target thiols, thiol proteins (Fukuto et al., 2009; Liochev et al., 2003; Smulik--Izydorczyk et al., 

2014; Miranda et al., 2003) and metalloproteins (such as superoxide dismutase (SOD) and 

cytochrome c) (Murphy et al., 1991; Liochev et al., 2001, 2002). Although several mechanisms 

have been proposed, the highly reactive property of nitroxyl has meant that there has been no 

unequivocal evidence to support its formation in vivo to date. The most supported proposed 

mechanism of endogenous nitroxyl formation is during the nitric oxide synthase-mediated 

oxidation of Nω-hydroxyl-L-arginine (Fukuto et al., 1992; Schmidt et al., 1996; Pufahl et al., 

1995; Hobbs et al., 1994; Adak et al., 2000; Tantillo et al., 2000; Pagliaro, 2003). The lack of 
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evidence to support these mechanisms is due to the highly reactive nature of nitroxyl, making 

detection challenging. Several methods have been previously attempted to measure nitroxyl in 

biological systems such as; electrochemical analysis (Suarez et al., 2013), mass spectrometry 

(Cline et al., 2011), electron paramagnetic resonance (EPR) spectroscopy (Adachi et al., 2008) 

and fluorescent probes. Fluorescent probes utilise the highly reactive nature of nitroxyl with 

various compounds (metal complexes, metalloporphyrins, thiols, phosphines or nitroso 

compounds) to detect and report the presence of the elusive nitrogen species (Smulik-

Izdorczyk et al., 2018). As previously discussed, fluorescent probes are highly sensitive and 

often used for the detection of many reactive species in biology. They are versatile as they can 

be excited in range of wavelengths which do not interfere with endogenous biological 

fluorophores and even near-infrared wavelengths that allow for deep penetration of light for 

detecting nitrogen species in vivo (Smulik-Izdorczyk et al., 2018; Dong et al., 2018). 

Fluorescence quantum yield (Φ) is a measure of the efficiency of photon emission through 

fluorescence, which is the loss of energy by a substance that has absorbed light via emission 

of a photon (Lakowicz, 2006). This is a key factor in characterising the brightness of a 

fluorophore which is often determined in water or solvent based samples. However, the 

fluorescence quantum yield of a probe can be affected in biological samples by the solvent 

polarity throughout extracellular and sub-cellular regions, the proximity and concentration of 

quenching species (such as reactive nitrogen and oxygen species) and the pH of the 

environment (Lakowicz, 2006). These elements must be taken into consideration when 

designing fluorophores for measuring in biological systems. 

There is a growing list of fluorogenic probes designed for the detection of nitroxyl which are 

categorised into four classes based on their reaction chemistry; (Smulik-Izydorczyk et al., 

2018; Dong et al.,2018).  

1. Copper (II) based fluorescent probes: nitroxyl reacts with Cu2+ ions to form NO and 

Cu+. 

2. Arylphosphine based fluorescent probes: reacts with nitroxyl to form phosphine oxides 

and aza-ylides. 

3. Nitroxide based fluorescent probes: reduced by nitroxyl to form hydroxylamines. 

4. 2-Mercapto-2-methylpropionic acid based fluorescent probes: react with nitroxyl to 

form N-hydroxysulfenamide.  
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Generally, in each of these classes the reaction with nitroxyl causes the liberation of a 

fluorophore, thus most of these probes are considered “turn on” probes. The advantage of 

using any of these probes is that they are generally a one-step direct reaction with nitroxyl to 

yield the observed fluorescence response. However, the biggest disadvantage is the non-

specificity of the probes when used in biological systems. Many of the probes can react with 

other species (such as thiols, oxygen, hydrogen sulphide, hydrogen peroxide) either once they 

are reduced by nitroxyl or competitively. Further to this, there is also the consideration of the 

nitroxyl scavenger glutathione, which can interfere with the system by either quickly removing 

any endogenous nitroxyl generated before it can react with the probes or reacting itself with 

the probe (Smulik-Izydorczyk et al., 2018). Further research is required in this field to produce, 

not only sensitive and bright probes, but tools that are highly specific and reversable to allow 

for real-time monitoring in living systems.  

2.11 Summary 

It is clear that fluorescent probes are a valuable tool for detecting and measuring highly 

reactive nitrogen species in support of understanding their mechanistic role in neuropathic pain 

and other diseases. As with many other tools for measuring reactive nitrogen and oxygen 

species, the extent as to which these methods accurately report the specific species targeted 

without directly or indirectly interfering with the biological system being observed, is 

contentious. Currently, there is no probe available that can accurately measure endogenous 

nitroxyl production in vivo in a mammalian system. Due to the vastly complex biochemistry of 

nitric oxide, nitroxyl and other reactive nitrogen species, many factors need to be carefully 

considered when deciding on the appropriate fluorescent probe to select for addressing aims 

directed at understanding the in vivo role of these species in neuropathic pain states.  

It is also evident that design and chemical synthesis of these probes, together with the 

selected wavelength and electron transfer rate of the of the attached fluorophore are also a 

major determining factor in the successful use of these tools in biological systems. While many 

studies by chemist have created probes with good specificity, high quantum yield, high 

sensitivity and readily reactive to their target molecule, they fall short in reproducing these 

results in the complex milieu which makes up biological systems.  Therefore, the use of current 

nitroxyl fluorescent probes, may be inadequate to explore the role of nitroxyl in pathologies 

such as neuropathic pain. For future studies, there is a need to create and thoroughly validate 
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a highly stable, bright, sensitive and specific nitroxyl probe that can withstand the highly 

complex mix of potentially reactive molecules which make up biological cells and tissue. 
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Table 2.2 Probes able to detect nitroxyl, in vitro, ex vivo or in vivo post 2016. 

 ROS 
Species 

Probe chemistry Imaging platform In vitro model 
Ex vivo/ In vivo 

model 
Nitroxyl stimulus 

λem/ex 
(nm) 

wavelength 

Ref 

Nitroxyl 

A coumarin-based HNO probe 
featuring a  

2-mercaptoacetate trigger 

Confocal microscope 
(details not reported) 

Human breast 
adenocarcinoma 

cell line  
(MDA-MB-231) 

 AS (250 to 1000 μM) 505/525 
Pino et al., 

2017 

Nitroxyl 
Staudinger reaction chemistry-

based bio-orthogonal probe with 
coumarin fluorophore 

Confocal laser 
scanning microscope 

 

Two-photon 
fluorescence 
microscope 

(details not reported) 

HeLa cells  
AS (0–100 mM) 

DEA NONOate  

405/470–
500 

Sunwoo et al., 
2017 

Nitroxyl 

HNO-responsive ratiometric two-
photon fluorescence probe 

based on benzo- 
[h]chromene-rhodol dayds with 

FRET reporter 

Two-photon confocal 
microscope 

(details not reported) 

HeLa cells 
& 

Human umbilical 
vein cells (HUVECs) 

Ex vivo rat liver 
& brain tissue 

 

AS 500 μM  
 

NaHS 500 μM and DEA-
NONOate 500 μM  

 
AS 2mM  

 
N-methyl-D-aspartic acid 

(NMDA) and NaHS 
solution1 mM 

750/540 
fluorescenc

e ratio 
(F540/F470) 

Zhou Y et al., 
2017 

Nitroxyl 
Merocyanine skeleton as the 

NIR fluorescent platform and 2-
Olympus FV1000 

confocal laser 
Human 

hepatocellular 
 AS 80 mM  

635/655-
755 

Gong et al., 
2016 
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(diphenylphosphino)benzoyl 
group as the HNO recognition 

moiety 

scanning microscope 
(Japan). 

carcinoma (SMMC-
7721) 

Nitroxyl 

Aza-BODIPY as fluorescent 
signal transducer, 

triphenylphosphonium cationic 
as mitochondria navigator, and 
diphenylphosphino-benzoyl as 

HNO-response unit. 

Laser scanning 
confocal microscope  
(details not reported) 

RAW264.7 cells 
BV-2 cells Ex vivo, synovial 

membrane 
tissue of ankle 

joint 
In vivo mouse 

AS 100 μM  
NOC-5 and/or NaHS 

LPS 1 μg/ml 
AS 500 μM 

680/730 
Huang et al., 

2019 

Nitroxyl 
“Turn off” probe - copper(II) 

complex, Cu(II)-AbTCA, as a 
sensor for nitroxyl detection 

TCS-SP5-X AOBS 
confocal scanning 
microscope (Leica, 
Wetzlar, Germany) 

EAHY-44926 cells 

RAW 264.7 cells  

 

In vivo Zebra 
fish 

AS 200 μM  

DEA NONOate and sodium 
ascorbate 

 

AS 200 μM 

375/450 
Palanisamy et 

al., 2018 

Nitroxyl 

NIR fluorescent turn-on probe 
(DCX-TPP) 

DCX-OH, consisted of a 
dicyanomethylene-4H-chromene 
conjugated to a xanthene moiety 

Fluorescence 
microscopy  

(details not reported) 

HeLa cells  
Raw264.7 cells 

 

AS (0, 10, 50 and 100 μM) 
SNP 2 mM 

NaASc 2 mM 
 

360/500 
Zhang CX et 

al., 2019 

Nitroxyl 
Naphthalene-based fluorescent 

probe for HNO 2-
(Diphenylphosphino) benzoate 

Olympus FV1200-
MPE multiphoton 

laser scanning 
confocal microscope 

(Japan) 

Human 
hepatocellular liver 
carcinoma (HepG2) 

 AS 50 mM  370/556 Ma et al.,2019 

Nitroxyl Caged D-luciferin with a In vivo imaging fLuctransfected  AS 50 & 100 mM  390/543 Li et al., 2019 
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(diphenylphosphino)-benzoate 
moiety 

system  
(details not reported) 

Human breast 
adenocarcinoma 

cell line (MDA-MB-
231 cells) 

 
 
 
 
 

In vivo, fLuc-
transfected 
MDA-MB-
231tumor-

bearing nude 
mice 

 
 
 
 
 
 

AS 1 mM  

Nitroxyl 
Synthesized [CuII-DQ468] as 
anHNO probe upon a dansyl-

quinoline platform 

fluorescence 
microscope (Leica 
DM3000, Germany 

Human 
hepatocellular liver 
carcinoma (HepG2) 

 AS 10 μM   
520/580−63

0 
Maiti et al., 

2019 

Nitroxyl & 
GSSH 

Dual-site fluorescent probe NCF 
containing two individual 

reactive sites; organophosphine 
for HNO detection and the 

double bond between TCF and 
naphthaline for GSH addition 

Olympus IX81 
confocal laser 

scanning microscope 
(Japan) 

Human 
hepatocellular liver 
carcinoma (HepG2) 

 AS 50 μM  750/432 
Nie et al., 

2019 

Nitroxyl 

Two-photon fluorophore 6-
acetyl-2-naphthol bound to 2-

(Diphenylphosphino)-benzoate 
as the HNO recognition moiety 

Two-photon 
fluorescence 
microscope  

(details not reported). 

HeLa cells  

 

Ex vivo, fresh 
liver tissue 

slices 

(species not 
reported) 

AS 20 and 50 mM 

NaASc 2.0 mM and  
SNP 2.0 mM  

 
 
 

AS 100 mM 

488/550 
Zhang P et al., 

2019 
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Nitroxyl 

Mitochondrial-targeting moiety 
triphenylphosphonium, HNO 

recognition moiety of 2-
(diphenylphosphino)-benzoate 

attached to the rhodol 
fluorescent platform 

Nikon 
A1MP confocal 

microscope 

HeLa cells  AS 30 mM 488/550 
Ren et al., 

2017 

LPS: Lipopolysaccharide (produces endogenous ROS/RNS); DEA-NONOate: 2-(N,N-Diethylamino)-diazenolate 2-oxide (Nitric Oxide donor); NOC-5: 
3-(Aminopropyl)-1-hydroxy-3-isopropyl-2-oxo-1-triazene (Nitric Oxide donor); AS: Angeli’s salt (Nitroxyl donor); SNP: Sodium nitroprusside (Nitric 
oxide donor); NaHS: Sodium hydrosulphide (H2S donor); NaASc: Sodium ascorbate (electron donor); RA model: Rheumatoid arthritis model. 
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Thesis aims and hypotheses  

The introductory chapters (Chapter 1 and 2) of this thesis aimed to highlight that neuropathic 

pain is a highly complex pathophysiological state that can be derived from many disease 

states. It is very likely that processes of peripheral and central sensitisation contribute to the 

observed pain symptoms. Furthermore, both neuronal and glial cells contribute to the 

development of disease via changes in activation state and the subsequent release of 

molecules, such as reactive nitrogen species, which can affect the overall excitability of post-

synaptic neurons and contribute to the pain symptoms. However, current methods utilised to 

detect these species are inadequate, non-specific, degrade quickly and not sensitive enough 

to measure endogenous products in biological systems.  

The aim of the first primary research study (Chapter 3) in this thesis was therefore:  

- To validate a novel designed nitroxyl turn-on fluorescence probe that allows for the studies of 

nitroxyl species in biological systems, without the interference of other nitrogen species (Aim 

1).  

 

Based on the current understanding of the limitations of previously designed fluorescent 

nitroxyl probes, we hypothesise that:  

- The current novel probe will readily pass into different cell types without inducing metabolic 

stress or toxicity of the cell; and 

- Where nitroxyl is assumed to be present either by endogenous generation or exogenous 

application of nitroxyl, the probe will generate a high enough fluorescent quantum yield to be 

detected by confocal microscopy and/or plate reader spectroscopy.  
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Further, recent literature suggests that exogenous administration of reactive nitrogen species, 

nitroxyl, may inhibit the development of neuropathic pain symptoms via similar pathways to 

nitric oxide. It is also been suggested that nitroxyl is highly reactive with cysteine residues on 

cathepsin enzymes, which regulate modulation of pain signalling in both inflammatory and 

neuropathic pain.  

The second primary research study (Chapter 4) therefore aimed:  

- To determine the ability of nitroxyl to alter Cathepsin B enzyme activity and downstream 

signalling using both in vitro and in vivo mouse models of neuropathic pain reported in Chapter 

1 as the Grace model of chronic constriction injury (Aim 2). 

 

Based on the current understanding of the role of Cathepsin B enzyme activity in modulating 

glial release of cytokines in models of chronic pain, and recent suggestion of nitroxyl inhibition 

in chronic pain, we hypothesise:  

- The reactive nitrogen species, nitroxyl will directly reduce Cathepsin B enzyme activity; and  

- Nitroxyl administration will alter pain states of animals with developed neuropathic pain via a 

Cathepsin B enzyme pathway. 

- Nitroxyl administration will alter key proteins, within the lumbar spinal cord which are involved 

in the release of cytokine, IL-1β. 

 

At present, studies investigating neuropathic pain spinal glial modulation have primarily 

focused on static end point measurements of molecular changes at multiple time points 

throughout the progression of the pathophysiology. However, it is now well established the 

innate neuroimmune responses in the spinal cord are highly dynamic and variable and can 
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occur quickly following peripheral injury leading to central sensitisation and progression to 

neuropathic pain symptoms long term. This includes changes in the cellular characteristics of 

microglia within the spinal cord which may be correlated with the intensity of the peripheral 

injury and subsequent symptoms. Further to this, changes in cerebral haemodynamic blood 

flow and oxygenation may be a surrogate measure of neuronal activity. Clinical studies have 

reported changes in somatosensory cortex which correlate with pain intensity from neuropathic 

pain patients, however this has not previous been explored in animal models.  

Hence, the aims of the third primary research study (Chapter 5) were:  

-To determine whether the expression and cellular characteristic of spinal microglia are altered 

prior to the development of neuropathic pain symptoms, using the clinically relevant mouse 

model of peripherally induced neuropathic pain reported in Chapter 1 as the Grace model of 

chronic constriction injury (Aim 3).  

- To determine whether haemodynamic blood flow and oxygenation are altered following the 

development of neuropathic pain symptoms, using the above-mentioned animal model (Aim 4). 

 

Given that an increase in spinal glial reactivity has been reported to correlate with heightened 

neuropathic pain sensations, and peripheral nerve lesions can vary in size of the damaged 

area, we hypothesise:  

- Microglial expression will be increased in the lumbar spinal cord of mice with sciatic nerve 

lesions; and  

- The alterations in microglial reactivity will be relative to the extent of the lesion developed with 

increasing injury.  
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As increased blood flow and oxygenation has been previously reported to correlate with pain 

sensations in humans, we hypothesise:  

- Haemodynamic blood flow and oxygenation of blood will be increased in the primary 

somatosensory cortex of mice with established allodynia. 
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Chapter 3. Multi-coloured fluorescent sensing toolbox for selective detection of Nitroxyl 

in vitro and ex vivo.  

This chapter has been prepared as a manuscript for submission as a primary research paper 

in Nature Chemistry and is set out in the following heading order: Abstract, Results, 

Discussion, Conclusion, Methods, References. [Staikopoulos V, Zhang X, Liu, J, Lee SM, Abell 

A, Hutchinson MR. Multi-coloured fluorescent sensing toolbox for selective detection of Nitroxyl 

in vitro and ex vivo.  Manuscript in preparation] 

 

3.1 Abstract: 

The endogenous detection of nitroxyl (HNO), the reduced and protonated derivative of nitric 

oxide (NO), would greatly contribute to the understanding of the role of this species in 

biological systems. In this study we show the design and synthesis of 3 super-bright, highly 

sensitive, specific and non-cytotoxic arylphosphine based fluorescent nitroxyl sensors and their 

ability to detect endogenous nitroxyl in vivo. We show the presence of endogenously produced 

nitroxyl in murine microglial cell line, BV2 and H9C2 cells following stimulation, using both 

spectroscopy and confocal microscopy. We propose that of these sensors, Sensor 3 (rhodol 4 

on a 2-(diphenylphosphanyl)benzoate backbone) shows the most sensitivity in detecting 

endogenous nitroxyl following stimulation, in the presence of biological media such as HBSS 

and DMEM. Herein, we provide a validated tool for measuring nitroxyl in biological systems.  

3.2 Introduction 

Nitroxyl is the protonated product of the one-electron reduced nitric oxide and has its own 

unique chemical properties resulting in specific biological functions. Nitroxyl can lead to potent 

vasodilation (Andrews et al., 2015), increased cardiac output (Sabbah et al., 2013), alter post-

ischemic myocardial injury (Ma et al., 1999; Pagliaro et al., 2003; Takahira et al., 2001), be 

used to treat alcoholism (DeMaster et al., 1998), and acts as an anti-nociceptive modulator of 

neuropathic and inflammatory pain (Longhi-Balbinot et al., 2016; Zarpelon et al., 2013). The 

chemical properties and reactivity of HNO is distinct from NO, and although they have similar 

biological targets (thiols, thiol protein and metalloproteins), the mechanisms of interaction and 

resulting products are distinctly different (Fukuto et al., 2005, 2009, 2012, 2013, 2019). The 

role for nitroxyl in biological systems has been established through the use of donor species 

such as Angeli’s salt and Piloty’s acid (Shoman et al, 2016). Furthermore, proposed 
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endogenous production has been speculated based on chemical reactions and the use of 

scavengers (Miranda et al., 2005). Despite the growing body of evidence supporting the 

biochemistry of nitroxyl, it remains unclear if nitroxyl is generated in vivo and the mechanism 

involved.  A reliable method for detecting nitroxyl in vivo is required to help answer these 

questions. The use of fluorescent probes for detecting reactive nitrogen species in vitro and in 

vivo is growing due to their high sensitivity, simple use, non-invasive nature, spatiotemporal 

resolution and wide range of wavelengths. This makes them ideal candidates for detecting 

HNO in complex biological environments. Several classes of HNO-sensitive fluorescent probes 

have been previously generated with various mechanisms of detection and limitations (Smulik-

Izydorczyk et al., 2018). These classes of probes are based on the reaction of nitroxyl with 

chemicals such as; copper (II), nitroxide, 2-Mercapto-2-methylpropionic acid and 

arylphosphine. With probes based on the reduction of Cu(II) (Rosenthal & Lippard, 2010; 

Royzen et al., 2013; Zhou et al., 2011) other biological reductants such as ascorbate or 

glutathione can cause interference, limiting their applications in biological studies. 

Arylphosphine based probes rely on the reaction between HNO and triaryl-phosphine to yield 

the aza-ylide intermediate and lead to subsequent ester aminolysis (Reisz et al., 2009; Kawai 

et al., 2013) to the original fluorophores. These chemosensors are highly selective for HNO 

over other cellular reductants and have resulted in several probes being designed (Mao et al., 

2014; Liu et al., 2014; Zheng et al., 2015; Kawai et al., 2013; Jing et al., 2014; Miao et al., 

2015; Zhang et al., 2015).  

Here we report a new, highly sensitive and biostable tri-arylphosphine-based fluorescent 

chemosensor 3 (Scheme 3.1), for selective detection of HNO in cells and blood samples and 

demonstrate the use of this sensor to image exogenous and endogenous HNO in cellular and 

animal models of neuropathic pain and myocardial ischemic reperfusion. This sensor, together 

with two other highly selective sensors (1 and 2, Scheme 3.1), form a multicoloured sensing 

toolkit for HNO that encompass a wide range of common wavelengths (480 nm – 560 nm) 

used in sensing studies. All chemo-sensors in this toolkit demonstrated good ability to detect 

HNO in various aqueous buffers and cellular media without the use of organic solvent, and low 

cytotoxicity to common cell lines, such as BV2 (mouse microglia) and H9C2 (rat 

cardiomyocytes). The excellent biocompatibility of this toolkit makes it suitable for a wide range 

of biological studies. These probes were applied for imaging exogenous and endogenous HNO 
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following LPS (inflammatory mediator) or LPA (de-myelinating agent) challenge of BV2 cells 

and in pilot studies using animal models of neuropathic pain and myocardial ischemia-

reperfusion injury (supplementary data). 

 

3.3 RESULTS – Chemistry  

3.3.1 Design and synthesis of sensors 1-3.  

Sensors 1 - 3 consist of a triarylphosphine group conjugated with three distinctive fluorophores, 

fluorescein, coumarin and a mono-substituted rhodol 4, to selectively detect intracellular HNO 

(Scheme 3.1 A-C). The attachment of this moiety is reported to quench the fluorescence of the 

fluorophore, (Reisz et al., 2009) and upon the reaction with HNO, releases the free fluorophore 

to give a measurable increase in fluorescence. This in turn leads to detection by fluorescence 

spectroscopy and confocal microscopy. This reaction is bio-orthogonal as phosphines are abiotic 

and essentially unreactive toward other biomolecules inside or near cells. The fluorophores were 

selected to represent a wide range of common wavelengths used in sensing studies. Importantly, 

the three sensors encompass wavelength ranges commonly used in chemical sensing, with 

sensor 2 emitting in the blue range (λem = 460 nm), sensor 1 in the green range (λem = 512 nm) 

and sensor 3 in the yellow range (λem = 550 nm). In particular, sensor 3 reacts with HNO to form 

the fluorescent rhodol 10, with superb brightness and high biostability to allow detection of subtle 

changes in concentrations of HNO in cells and tissues. In addition, this fluorophore emits in a 

wavelength region (λem = 550 nm) where biological samples typically have weaker 

autofluorescence. This ensures that sensing of HNO can be achieved with minimal background 

fluorescence and hence further enhances sensitivity. Together these sensors form a multi-

coloured fluorescent sensing tool kit that can be used in conjunction with a broad range of 

biosensing techniques including green-fluorescent protein, fluorescent antibodies, nucleus stain 

and mitochondria stain.  

Sensors 1 - 3 were synthesised as shown in Scheme 3.2. Briefly, fluorescein (5) or 7-

hydroxycoumarin (7) was subjected to esterification with 2-(diphenylphosphino) benzoic acid (6) 

to give sensor 1 or 2 in 44% and 28% yield respectively. Sensor 3 was synthesised from 

fluorescein (5). Fluorescein was monoprotected with triflate to afford compound 9, which was 

subsequently coupled with azetidine (10) under the catalysis of Pd2dba3 and XPhos to give 
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rhodol 4. Esterification of rhodol 4 with 2-(diphenylphosphino) benzoic acid (6) gave sensor 3 in 

8% yield. All sensors were purified by HPLC. 

 

 

Scheme 3.1 (A) Structure of sensor 1 (fluorescein-based) and its reaction with HNO; (B) 
structure of sensor 2 (coumarin-based) and its reaction with HNO; (C) structure of sensor 3 
(rhodol based) and its reaction with HNO.  
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Scheme 3.2. Synthesis of (A) sensor 1, (B) sensor 2 and (C) sensor 3 
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3.3.2 Spectroscopic characterisation of sensors 1 - 3. 

The spectroscopic properties of sensors 1 - 3 were assessed in water. First, the fluorescence of 

sensors 1 - 3 with and without Angeli’s salt (AS) was measured in an airtight cuvette to 

demonstrate their ability to sense HNO in solution. AS is a common donor to generate HNO in 

aqueous environment. Briefly, a solution of the sensor (2 μM for sensor 1 and 3, 5 μM for sensor 

2) in 5% DMSO in water was purged with N2 for 10 min before mixing with AS (0-100 μM) in 10 

mM NaOH. Final concentration of NaOH was 0.5 mM. Sensor 3 (λex = 512 nm and λem max  = 550 

nm) provides a 120-fold increase in fluorescence upon addition of 100 μM AS, the largest turn-

on response amongst all three sensors (Figure 1C). In comparison, sensors 1 and 2 gave a 30-

fold and 12-fold increase in a similar experiment (Figure 1A and B). Sensors 1 and 2 were also 

found to have typical fluorescence emission profiles of fluorescein and coumarin respectively, 

with λex = 488 nm and λem max = 512 nm for sensor 1, and λex = 380 nm, λem max = 460 nm for 

sensor 2. (Figure 3.1A and B). The standard curves of calibration of sensors 1-3 were derived 

(Figure 3.1 inserts) to provide a first step towards the quantification of HNO concentration. 

Briefly, the fluorescence of sensors 1 - 3 increased with increasing concentration of AS, with 

sensors 1 and 3 following a trend of one-phase association and sensor 2 following a linear trend. 

The quantum yield of each sensor was determined in the presence of 100 μM Angeli’s salt. All 

three sensors demonstrated very high quantum yield (Φsensor1 = 0.9, Φsensor2 = 0.85, 

Φsensor3 = 0.77) with sensor 1 being the highest (Figure 3.2). This is expected as sensor 1 

reacts with HNO to give fluorescein, which has a reported quantum yield of 0.93 in 0.1 M NaOH. 

The high quantum yield ensures high sensitivity of these chemosensors for HNO detection in 

biological studies. In addition, the limit of detection of sensor 3 was 100 nM (Figure 3.3), which 

is the lowest amongst the three sensors reported herein, and to our best knowledge, one of the 

lowest reported in literature. Overall, sensor 3 provides the optimal sensing profile that combines 

low detection limit and large fluorescence turn-on response. This warrants good sensitivity 

towards HNO and fluorescence read-out. Thus, sensor 3 is the optimal tool assessed here for 

detecting HNO levels in biological environments. 

3.3.3 Kinetic, Stability and Selectivity Profiles 

The kinetic profiles of the sensors were next investigated to examine their stability in water and 

rate of reaction with AS. Briefly, a similar solution of sensor was prepared using above mentioned 

conditions and mixed with AS (200 μM) in 10 mM NaOH. Fluorescence of both samples was 
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continuously monitored for 60 min (Figure 3.4 a-c). Sensor 1 reacts with AS faster than sensor 

2 and 3, taking 10 min to reach the saturation of fluorescence signal, while sensors 2 and 3 

taking more than 10 min. The fast rate of reaction of sensor 1 is desirable to capture this 

particularly unstable analyte as HNO is oxidised rapidly to corresponding RNS in biological 

environments (reaction rates with; HNO (k = 8 x 106 M-1 s-1), NO (k = 5.8 x 106 M-1 s-1), oxygen 

(k = 3 x 103 M-1 s-1)) (Miao et al, 2016). At a concentration of 1 μM, sensor 1 showed a 67-fold 

increase in fluorescence compared to 0 μM, sensor 2 showed a 19-fold increase in fluorescence 

and sensor 3 showed the highest fluorescence increase with a 368-fold increase (Figure 3.4 d-

f). Interestingly, at 100 nM concentration, sensor 1 showed a 5.5-fold increase in fluorescence 

compared to 0 μM, sensor 2 showed a 3-fold increase in fluorescence and sensor 3 showed a 

38-fold increase. The high turn-on fluorescence of sensor 3 makes it more sensitive for 

measuring potentially low concentrations of endogenous HNO. This data was used to determine 

the optimal concentration of sensor and incubation time to use in our subsequent in vitro work. 

The stability of the sensors in common biological buffers (PBS and HBSS) and cell media 

(DMEM, DMEM serum-free (SF), DMEM phenol-red free (PRF) and DMEM serum-free and 

phenol-red free (SF PRF) was investigated to examine their applicability in cell-based 

experiments. The sensor was dissolved in buffer or media containing 1% DMSO followed by the 

addition of NaOH (final concentration 0.5 mM) or AS (100 μM, in 10 mM NaOH). The sample 

was incubated for 10 min in the dark and the resulting fluorescence was measured and shown 

in Figure 3.5. All three sensors were found to retain sensing ability in the tested buffers and 

media, with sensor 3 providing the most ideal sensing profile. PBS buffer gave a similar sensing 

profile compared to sensors in water, with sensor 1, 2 and 3 giving a 32-fold, 7-fold and 65-fold 

increase in fluorescence upon addition of AS respectively. Incubation in HBSS resulted in 

decreased fluorescence response in sensors 1 and 2 while enhancing the response of sensor 

3. Incubation in cell media resulted in a decrease in sensitivity for all three sensors. Sensor 3 is 

shown to be the most compatible with cell media, with the retained ability to produce a 40-fold 

fluorescence response in DMEM PRF. In comparison, sensors 1 and 2 gave lower fluorescence 

response (12-fold and 4-fold) in DMEM-related media. This demonstrates that sensor 3 is 

optimal for cell-based experiments.  

Next, sensors 1-3 were assayed against a range of biologically relevant RNS (NO, NO2
-, NO3

-, 

N3
-, ONOO-), amino acids (Cys, Arg), small molecules (ascorbate, H2S, GSH, GSNO), and ROS 
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(H2O2, OH) to define the selectivity profile. All three sensors clearly show good selectivity for AS 

(Figure 3.6), with sensor 3 showing the optimal selectivity and is non-reactive to all species 

tested. Importantly, the sensors display an excellent selectivity for AS over all other tested RNS, 

NO in particular. This is critical as RNS always co-exist in biological environments and thus the 

ability to detect HNO amongst a complex mixture of RNS is highly desirable. Both sensor 1 and 

sensor 2 showed minimal affinity to arginine. This is important as arginine is the precursor of 

RNS and thus the ability to distinguish between these species is critical to accurate sensing of 

intracellular HNO. Sensor 1 is also found to react with H2S to a limited extent, which is consistent 

with literature. However, due to the low concentration of H2S present in cells, the weak affinity 

to H2S is not expected to disrupt the applicability of sensor 1 in biosensing. Collectively, sensor 

3 demonstrates excellent fluorescence turn-on response to AS, superb brightness, low detection 

limit, high compatibility with cell media and excellent selectivity. Therefore, this sensor is selected 

for all subsequent cell-based studies. 
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Figure 3.1 Sensor 3 has highest ‘turn-on’ fluorescence response to 100 μM AS. 
(A) Fluorescence emission profiles of sensor 1 (2 uM) with and without Angelis salt (AS, 0-100 
uM), a donor of HNO, λex = 488 nm. Insert: standard curve of calibration of sensor 1 (2 uM) with 
AS (0-100 uM) where the concentration of AS (x-axis) is plotted against the fluorescence 
intensity at 512 nm (y-axis); (B) fluorescence emission of sensor 2 (5 uM) with and without AS 
(0-100 uM), λex = 380 nm. Insert: standard curve of calibration of sensor 2 (5 uM) with AS (0-100 
uM) where the concentration of AS (x-axis) is plotted against the fluorescence intensity at 460 
nm (y-axis). (C) fluorescence emission of sensor 3 (2 uM) with and without AS (0-100 uM), λex = 
512 nm. Insert: standard curve of calibration of sensor 3 (2 uM) with AS (0-100 uM) where the 
concentration of AS (x-axis) is plotted against the fluorescence intensity at 547 nm (y-axis). 
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Figure 3.2. Sensor 1 give highest quantum yield of all 3 sensors. 
The integrated fluorescence depends linearly on the absorbance for (A) Fluorescein (black 
circles) and Sensor 1 (green squares) (ΦSensor 1 = 0.9). (B) Quinine (black circles) and 
Sensor 2 (blue squares) (ΦSensor 2 = 0.85) and (C) Fluorescein (black circles) and Sensor 3 
(yellow squares) (ΦSensor 3 = 0.77). 
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Figure 3.3. Sensor 3 has lowest detection limit of all 3 sensors.  
Fluorescence of sensor 3 (1 uM) with AS (100 nM) (red) and without AS (black).  
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Figure 3.4 Sensor 1 - 3 kinetics in the presence of Angeli’s salt in HBSS solution. 
Data showing the time it takes for each sensor 1 (a), 2 (b) and 3 (c) to saturate fluorescence 
over time in the presence of Angeli’s salt (200 μM). At a concentration of 1 μM, Sensor 1 
reached saturation of fluorescent signal by 10 min, Sensors 2 and 3 took longer than 10 min to 
reach saturation. The fluorescence at 1 hour following the addition of Angeli’s salt (200 μM) for 
increasing concentrations of Sensor 1 (d), Sensor 2 (e) and Sensor 3 (f). At a concentration of 
1 μM, Sensor 1 showed a 67-fold increase in fluorescence compared to 0 μM, Sensor 2 
showed a 19-fold increase in fluorescence and Sensor 3 showed the highest fluorescence 
increase with a 368-fold increase.  
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Figure 3.5. Sensor 3 shows highest fluorescent signal in biological buffers and media 
following AS. 
Fluorescence of sensors 1 (A), 2 (B) and 3 (C) in buffers (PBS pH 7.2, HBSS pH 7.2) and cell 
media (DMEM, DMEM SF, DMEM PRF, DMEM SF PRF) with 100 μM AS.  
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Figure 3.6. Sensor 3 shows optimal selectivity profile against a range of biologically 
relevant species.  
Sensor 1 (2 μM) was separately incubated with each species (as denoted on the x-axis, 100 μM) 
for 10 min in the dark before measuring the fluorescence at λex/em = 488/512 nm; Sensor 2 (5 
μM) was separately incubated with each species (as denoted on the x-axis, 100 μM) for 10 min 
in the dark before measuring the fluorescence at λex/em = 380/455 nm. All experiments were 
performed in 0.5-1% DMSO in water. Sensor 3 (2 μM) was separately incubated with each 
species (as denoted on the x-axis, 100 μM) for 10 min in the dark before measuring the 
fluorescence at λex/em = 512/550 nm. All experiments were performed in 0.5-1% DMSO in water. 
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3.4 RESULTS – application in biological systems 

3.4.1 Stability and kinetics of Sensors 1 – 3 in biological buffer 

The fluorescent stability of all 3 sensors in biological buffer (HBSS) were assessed by 

spectroscopy. Angeli’s salt (AS) was used as a donor of HNO and tested at concentrations 

ranging from 0 to 200 μM (Figure 3.7). All 3 Sensors were tested at 2.5, 5 and 10 mM and 

measured for up to an hour. Sensors 1 and 2 display a similar ‘turn-on’ fluorescent profile 

across all concentrations of probe and donor, and the starting baseline increased in proportion 

to the sensor concentration. Sensor 2 appeared to be the least stable in AS concentration 

ranges between 100 – 200 μM. The time taken for the fluorescence signal to peak before 

plateauing was 20 minutes for Sensors 1 and 2, and 10 minutes for Sensor 3 making it the 

fastest responder of all 3 probes.  Together with the kinetic data and fluorescent characteristics 

in biological buffers and media (Section 3.3.3) we were able to determine a concentration 

range (1 – 3 μM) and incubation time (at least 10 min) to proceed with future biological 

experiments.  

3.4.2 HNO Sensors 1, 2 and 3 are not cytotoxic to microglial cells.  

Following the evaluation of Sensors 1-3 in biological media samples, Trypan Blue and MTT 

experiments were conducted to evaluate the cell viability and cytotoxicity of Sensors 1-3 

(Figure 3.8). BV2 cells were incubated with 1-10 μM of Sensors 1, 2 or 3, for either 1.5 hours 

for cell viability assay using Trypan blue (Figure 3.8 a-c) or up to 48 hours for MTT (Figure 3.8 

d-f). The results indicate the all three sensors are of low toxicity towards living cells at 

concentrations below 10 μM, within 24 hours of exposure. Therefore, further qualifying our 

concentration range of 1 - 3 μM for Sensor 3 was for subsequent spectroscopy and confocal 

imaging studies.  

3.4.3 Sensor 3 can detect exogenous and endogenous HNO in microglial cell lines 

As sensor 3 was shown to be the brightest and most stable in biological media of all 3 probes, 

this sensor was selected to carry-out the following experiments. The presence of both 

exogenous and endogenous HNO in BV2 microglia cells was examined by spectroscopy and 

confocal microscopy. Exogenous donor AS was used to observe the activation of Sensor 3 

and used as a positive sensor control in the following experiments. BV2 cells were treated with 

inflammatory agent lipopolysaccharide (LPS, 0 – 1000 ng/ml) for 24 hours to stimulate the 

endogenous production of reactive nitrogen species (RNS), such as HNO. The supernatant 
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was removed and added to 3 μM of Sensors 3 and incubated for 15 min before being 

measured by spectroscopy detect fluorescence signal pertaining to endogenous HNO (Figure 

3.9). Sensor 3 was able to detect HNO levels above baseline following LPS treatment. Next, 

we wanted to determine if we could measure signal coming from within the cells using 

spectroscopy. BV2 cells or culture media alone, were co-incubated with 2 μM of Sensor 3 and 

either LPS (100, 500 or 1000 ng/ml) or control treatment (AS; 200 μM, AS; 200 μM + L-

cysteine 1 mM or L-cysteine 1 mM only) and measured every 5 minutes for 24 hours at 37°C 

(Figure 3.10). After 10 hours, it was observed that the fluorescence signal started to decline, 

as these are ‘turn-on’ probes, we suspected that there may be degradation of signal occurring 

and therefore disregarded any readings beyond this time point.  We subtracted the signal 

produced by the media alone from the signal produced by the cells in media and reported the 

difference. We observed an increase in Sensor 3 RFU in the presence of increasing 

concentration of LPS (Figure 3.10, a) between 4 – 10 hours of treatment. A simple linear 

regression was calculated to determine the effect of LPS concentration on endogenous nitroxyl 

production over time. For each concentration of LPS, there was a significant change in slope 

compared to control (LPS 100 ng/ml; F(1,13) = 26.86, p < 0.001, r2 = 0.67; LPS 500 ng/ml, 

F(1,13) = 217, p < 0.0001, r2 = 0.943; LPS 1000 ng/ml, F(1,13) = 5.512, p < 0.035, r2 = 0.29). 

Interestingly, it appears that there was an inverse relationship between the concentration of 

LPS and the Sensor 3 fluorescent signal with the lowest concentration of LPS (100 ng/ml) 

producing the highest signal as determined by the slope (control: -0.81 ± 35.98; LPS 100 

ng/ml: 211.6 ± 40.83; LPS 500 ng/ml: 160.9 ± 10.93; LPS 1000 ng/ml: 70.44 ± 30). The 

control treatments (Figure 3.10, b) indicated that most of the fluorescent signal produced by 

AS is derived in the media and may be absorbed by the cells. HNO scavenger, L-cysteine (1 

mM) was able to diminish approximately 91% of the signal produced by AS, indicating that 

Sensor 3 signal was specific to HNO as observed by a change in slope being shifted closer to 

baseline (AS: 341.3 ± 47.22; AS + L-cysteine: 29.63 ± 1.07). Confocal microscopy imaging 

was carried out to assess the ability for each sensor to be taken up by BV2 cells. BV2 cells 

were incubated with 1 μM of Sensor 3 for 30 min prior to confocal imaging (Figure 3.11). 

Eleven minutes of video capture at 40x magnification was taken at the appropriate wavelength. 

Following 1 min of recording baseline values either LPS (500 ng/ml), AS (200 μM) or vehicle 

control (0.01M NaOH) was added to the well, followed by a further 10 minutes of recording. To 
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determine if the increase in fluorescent signal was due to HNO, control wells were pre-treated 

for 30 minutes with L-cysteine (1 mM) prior to the addition of AS. To determine the change in 

fluorescence signal, 20 randomly selected BV2 cells were outlined using ImageJ (v1.52p, 

National Institute of Health, USA) from the DIC image, then the mask applied to the 515 nm 

channel and the mean pixel intensity was measured for those cells at each frame. The 

baseline values (1 min pre-treatment time) of were subtracted from the brightest frame in the 

captured series at approximately the 10-minute time point and the data expressed as the 

percentage change in fluorescence (reported as ‘random fluorescence units’: RFU) from the 

baseline frame. The data shows that acute LPS treatment (p < 0.0001) and HNO donor AS (p 

< 0.0001) both increased fluorescence signal compared to control (Sensor 3 only) (control: 

13.59 ±0.86 RFU; LPS: 25.58 ±0.96 RFU; AS: 49.26 ±1.2). Pre-treatment with L-cystine (1 

mM) was able to prevent the AS derived signal (LC: -9.718 ± 0.8 RFU), indicating that the 

Sensor 3 probe is specific to HNO. Together this data suggest that Sensor 3 is sensitive 

enough to detect endogenous HNO signal from BV2 cells using both spectroscopy and 

confocal microscopy.  

3.4.4 Endogenous HNO may be produced by iNOS enzyme following LPS and LPA 

challenge. 

To determine the mechanism deriving the endogenous signal within BV2 cells, a series of 

spectroscopy and confocal microscopy experiments were carried out using 24-hour treatment 

of stimuli LPS, Lysophosphatidic Acid (LPA) and controlled using iNOS enzyme inhibitor, 

1400W (Figure 3.12). LPA is a bioactive lipid species which is thought to be involved in 

signalling during neuropathic pain development and can act at receptors found on microglial 

cells causing them to become activated (Yung et al., 2015). Twenty-four-hour treatment with 

LPS (500 ng/ml) (4196 ± 489 RFU) significantly increased Sensor 3 fluorescence when 

compared to ‘Sensor only’ controls (2721 ± 142 RFU, p < 0.05). Furthermore, pre-incubation 

with 1400W (1861 ± 64 RFU) significantly prevented the HNO signal compared to both LPS (p 

< 0.001) (Figure 3.12, A) and the ‘Sensor only’ control (p < 0.01) which suggests that the 

homeostatic baseline fluorescent levels observed in sensory only control, may also be derived 

from iNOS production. However, 24 hour-LPA (1 μM) treatment (2750 ± 298 RFU) did not 

produce a higher fluorescence signal compared to ‘Sensor only’ (2721 ± 142 RFU) and pre-

incubation with 1400W did not reduce the LPA signal (1953 ± 77.7 RFU) (Figure 3.12, A) when 
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measured by spectroscopy. Control data (Figure 3.12, B) indicates that Sensor 3 is specific to 

HNO as (200 μM) significantly increased Sensor 3 RFU signal (28,589 ± 4636 RFU) (p < 

0.001), which was almost totally abolished by L-cysteine pre-treatment (8912 ± 175 RFU).  

Confocal microscopy determined that both LPS (500 ng/ml) (47.72 ± 2.5 RFU, p < 0.0001) and 

LPA treatment (1 μM) (58.05 ± 2.2 RFU, p < 0.0001) were able to increase the RFU of Sensor 

3 within BV2 cells (Figure 3.13; A & B) when compared to ‘Sensor only’ control (32.07 ± 0.56 

RFU) (Figure 3.13; D) which was reduced when cells were pre-incubated with 1400W (iNOS 

inhibitor) (LPS: 5.69 ± 0.18 RFU, LPA: 23.36 ± 0.5 RFU, p < 0.0001) (Figure 3.13; A’ & B’). AS 

also increased signal within cells (109 ± 3.2 RFU, p < 0.0001) (Figure 3.13; C) which was 

prevented by pre-incubation of L-cysteine (16.65 ± 0.4, p < 0.0001) (Figure 3.13; C’). This data 

suggests that endogenous HNO signal in LPS and LPA treated BV2 cells is derived from iNOS 

enzyme.  

3.4.5 Sensor 3 is taken up into BV2 cell mitochondria 

Sub-cellular localisation of Sensor 3 within AS treated BV2 cells was determined by confocal 

microscopy using a mitochondria specific stain (Figure 3.14). Confocal imaging determined 

that AS activated Sensor 3 appears more punctate around the nucleus of cells (Figure 3.14; A, 

A’) in a similar location to Mitotracker Deep Red (Figure 3.14; B, B’). Overlay of the 2 channels 

shows the co-localisation of signal (in yellow) (Figure 3.14; D, D’) suggesting that Sensor 3 is 

taken up predominately by mitochondria within BV2 cells.  
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Figure. 3.7 Fluorescence relationship between HNO Sensor concentration (1 – 3) and 
HNO donor, Angeli’s salt in buffer. 
A-C) Fluorescence intensity of Sensor 1 (concentrations; 2.5, 5 and 10 μM) over 1 hour with 
increasing amounts of AS (0 – 200 μM). D-F) Sensor 2 with increasing amounts of AS (0 – 200 
μM). G-I) Sensor 3 with increasing amounts of AS (0 μM; blue line – 200 μM; light pink line), all 
in Hank’s balanced salt solution (HBSS). Peak signal time shown by red dotted line. 
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Figure 3.8 The effect of Sensors 1, 2 & 3 on cell toxicity and viability 
Data showing the toxicity of sensor 1 (a), 2 (b) and 3 (c) with increasing concentrations 
following a 1.5-hour incubation in BV2 cells. There was no toxic effect observed of the sensors 
at any of the concentrations following the incubation. There also was no effect on cell viability 
(change in cell metabolism) in the presence of increasing concentrations of either sensor 1 (d), 
2 (e) or 3 (f) for up to 48 hours. This data was used to determine which concentration of sensor 
and incubation time to use in our in vitro work. 
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Figure 3.9 Sensor 3 detects endogenous HNO released into the supernatant by BV2 
cells following 24-hour LPS treatment. 
Data showing the fluorescent levels detected by spectrophotometer for sensors 3 (A) following 
24 hours incubation of increasing concentrations of LPS, in BV2 cells. Sensor 3 appeared 
sensitive enough to detect endogenous HNO levels above control (0 ng/ml LPS; indicated by 
red dotted line) at all concentrations of LPS. Data reported at ‘random fluorescence units’ 
(RFU), n = 3.  
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Figure 3.10 Sensor 3 detects increasing endogenous HNO in BV2 cells stimulated with 
LPS. 
Data showing the relative fluorescent units (RFU) of Sensor 3 detected over time by 
spectrophotometer. The RFU values from the Media only samples, were subtracted from the 
Cell samples to differentiate the signal coming from the cells only. Line graph A shows the 
increasing level of endogenous HNO in the presence of LPS (100 ng/ml: red line, 500 ng/ml: 
green line and 1000 ng/ml: purple line) when compared to control (0 ng/ml: blue line). The LPS 
signal peaked at 10 hours post-incubation for all concentrations. (LPS 100 ng/ml; F(1,13) = 
26.86, p < 0.001, r2 = 0.67; LPS 500 ng/ml, F(1,13) = 217, p < 0.0001, r2 = 0.943; LPS 1000 
ng/ml, F(1,13) = 5.512, p < 0.035, r2 = 0.29) Line graph B shows that the control conditions (0 
ng/ml LPS: blue line, HNO exogenous donor Angeli’s salt: orange line, HNO scavenger L-
cysteine pre-incubation: black line and L-cysteine: brown line) generated a signal that was 
predominantly derived from the media. n = 3. 
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Figure 3.11 Sensor 3 can detect endogenous HNO produced in BV2 cells generated by 
acute LPS challenge. 
Representative confocal images (40x) showing the fluorescence intensity of Sensor 3 (1 μM) 
captured immediately following a 15 min incubation in BV2 cells and then again 10 min 
following the addition of the treatments; vehicle (0.01 M NaOH), Angeli’s salt 200 μM (HNO 
donor), Angeli’s salt 200 μM plus L-cysteine 1 mM (HNO scavenger) and LPS 500 ng/ml. The 
change in fluorescence signal from baseline (1-minute pre-treatment) to the brightest frame 
(~10 min post-treatment) were determined and show that both acute Angeli’s salt and LPS 
challenge can increase the fluorescence signal and hence HNO output from BV2 cells, 
compared to control. Pre-incubation with HNO scavenger, L-cysteine, attenuated the Angeli’s 
salt derived fluorescence signal of Sensor 3, which suggests the fluorescence signal is specific 
to HNO. Scale bar = 50 μm. (***p < 0.0001).  
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Figure 3.12 LPS may cause an increase of endogenous HNO production via iNOS 
enzyme.  
Bar graphs showing the RFU from spectrophotometer readings of Sensor 3 in BV2 cells (n = 3) 
following 24-hour incubation of LPS (black bars) and LPA (dark grey bars) (A). LPS treatment 
(500 ng/ml) significantly increased Sensor 3 RFU compared to control (HNO only) (*p < 0.05). 
However, pre-treatment with iNOS inhibitor 1400W, showed reduced RFU compared with LPS 
alone (***p < 0.001). LPA (1 μM) treatment did not increase the Sensor 3 signal when 
compared to HNO only control. Pre-incubation with 1400W significantly attenuated Sensor 3 
fluorescent signal when compared to control conditions (light grey bars) (*p < 0.01), but not 
LPA treatment (n = 3). Graph B shows that the signal derived from Sensor 3 is HNO specific 
due to the signal increase following application of Angeli’s salt (HNO donor: 200 μM) (***p < 
0.001) which could be scavenged by L-cysteine (HNO scavenger: 1 mM).   
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Figure 3.13 Confocal data indicates LPS and LPA may cause an increase of endogenous 
HNO production via iNOS enzyme.  
Representative confocal images (40x) showing the fluorescence intensity of Sensor 3 (1 μM) 
captured immediately following a 15 min incubation in BV2 cells. Cells were treated for 24 
hours with inflammatory mediator LPS (A; 500 ng/ml) or de-myelination agent, LPA (B; 1 μM) 
for 24 hours, with or without iNOS inhibitor 1400W (A’ and B’ respectively). Control conditions 
included incubating naïve cells with Sensor 3 alone (D; HNO only), adding HNO donor (C; 
Angeli’s salt, 200 μM) with or without HNO scavenger (D’; L-cysteine, 1 mM) and imaging 
naïve cells without any Sensor 3 (E; blank controls). The bar graph below shows the mean 
RFU measured from 20 cells within each image. LPS and LPA treated cells had significantly 
higher RFU compared to HNO only control (#p < 0.0001), and pre-treatment with 1400W 
attenuated this signal in both LPS (***p < 0.0001) and LPA (***p < 0.0001) treatment groups. 
The increased signal following application of Angeli’s salt (HNO donor: 200 μM, p < 0.0001)) 
which could be scavenged by L-cysteine (HNO scavenger: 1 mM, ***p < 0.0001) indicated that 
Sensor 3 signal is specific to HNO in these conditions. Scale bar = 50 μm, n = 3. 
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Figure 3.14 Sensor 3 localises to mitochondria within BV2 cells 
Confocal images (60x) showing Sensor 3 (A, A’: 1 μM), Mitotracker Deep Red (B, B’), DIC 
contrasted (C, C’) and merged composite of all 3 (D, D’) represented in BV2 cells. BV2 cells 
were incubated with Sensor 3 for 15 min then replaced with HBSS and Mitotracker Deep Red 
for a further 15 min. The Mitotracker solution was washed with HBSS, then Angeli’s salt (200 
μM) added to the cells to activate Sensor 3. Uptake of Sensor 3 was seen throughout the 
whole of the BV2 cells, however following AS addition, there was an increased fluorescence 
signal within the mitochondria observed as yellow overlay in image D and D’ insert.  Scale bar 
= 50 μm (A – D), scale bar = 20 μm (A’ – D’). 
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3.5 Discussion 

Previous literature has shown distinct chemical and physiological properties of the one-

electron reduced, protonated form of NO, nitroxyl (Miranda et al., 2005; Kemp-Harper, 2011; 

Fukuto et al., 2005, 2011). Endogenous production of nitroxyl is suggested to occur via several 

possible mechanisms such as; NOS activation in the absence of the cofactor 

tetrahydrobiopterin (BH4) (Wei. CC., et al. 2003), hydroxylamine (NH2OH) oxidation by a 

variety of heme proteins, reduction of NO to NO- by cytochrome c (Choe, CU., et al, 2011), or 

by reaction with either ubiquinol (Poderoso et al., 1999), manganese superoxide dismutase 

(Niketic et al., 1999), or xanthine oxidase (Saleem et al., 2004). Furthermore, potential 

mechanisms of HNO generation in microglial cells includes; iNOS enzyme, reduction 

hydroxylamine (NH2OH) to HNO via myeloperoxidase (MPO), the conversion of S-nitrosothiols 

to HNO by dithiols (Choe et al., 2011) or by the interaction between H2S and NO (Yong et al., 

2010). However, there is only indirect evidence to support the endogenous generation of HNO 

in vivo and therefore the development of analytical tools to assess this is paramount. 

Fluorescent probes are high sensitivity, simple to use, non-invasive, have good spatiotemporal 

resolution and can be developed in a wide range of wavelengths, thus making excellent 

candidates for detecting HNO. Many fluorescent probes have been developed over recent 

years based on different chemical reactions to HNO, however, the Arylphosphine based 

probes have demonstrated the highest selectivity and the least interference from other 

potential reducing agents in biological systems (Smulik-Izydorczyk et al., 2018).  

In the current study we have demonstrated the generation of a suite of bright, highly sensitive 

and very stable triarylphosphine based HNO fluorescent probes, with Sensor 3 detection limit 

the lowest reported to our knowledge. Using LPS, LPA or hypoxia challenge, we have 

observed the presence of endogenous HNO in BV2 and H9C2 cells using Sensor 3 by both 

spectroscopy and confocal microscopy.  

Our study found that all the sensors were able to detect HNO generated by AS in biological 

buffers and media, with HBSS buffer and DMEM phenol red free (DMEM-PRF) media yielding 

the best fold increase for Sensor 3. This is important for live imaging studies which require the 

cells to be imaged in their conditioned media and stimulated to produce endogenous HNO 

signal. Many studies reporting the generation of HNO probes that can detect intracellular 

signal via the use of HNO donors such as Angeli’s salt (Miao et al, 2015; Dong et al., 2018), 
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following the uptake of probe and therefore require the removal of excess probe by washing. 

This method may be misleading in determining the sensitivity of the probe, as the timing and 

concentration of the endogenous signal may be significantly slower and lower than what is 

produced by AS, and hence below the limit of detection for many probes.  

Our study found that BV2 cells challenged with LPS (100-1000 ng/ml) showed increased 

intracellular HNO fluorescence which began at 4 hours and peaked approximately 10 hours 

post-incubation. This is supported by Parka et al, (2015) which reported increased iNOS 

mRNA level between 6 – 12 hours and protein levels around 12 hours post LPS treatment 

(Parka et al., 2015). Interestingly, the HNO fluorescence signal was inversely proportional to 

the LPS concentration. This phenomenon may be explained by a previous report showing an 

inflammatory response in monocytes to low-dose LPS (100 pg/ml), while a high-dose LPS (1 

μg/ml) caused inflammatory tolerance (Yuan et al., 2016). However, this is in contrast to 

another study which found that in BV2 cells ROS continued to increase with increasing doses 

of LPS up to 1 μg/ml, before showing a decrease at 1.5 μg/ml (Gaikwad et al., 2015). This may 

be explained by the different cell types used in these studies, however it requires a thorough 

investigation as the range of LPS used in literature varies from pg/ml to μg/ml ranges which 

may elicit different downstream activation pathways of its target TLR4 receptor or off target 

effects (Yuan et al., 2016). This differential effect was further demonstrated in a review of dose 

and timing of in vivo LPS administration in rodents (Lopes, 2016). We were also able to detect 

increases in HNO fluorescence of Sensor 3 with acute LPS (10-15 minutes) treatment of BV2 

cells which was not present in control cells. However, the mechanism of HNO production 

following such a short time exposure to LPS is yet to be elucidated and requires further 

investigation. We observed a significant reduction of HNO fluorescence in BV2 cells pre-

treated with iNOS inhibitor 1400W, prior to 24-hour incubation with LPS or LPA treatment, 

which suggests that endogenous HNO is generated via iNOS activation. Both LPS (Kim et al., 

2004; Pocock et al., 2001) and LPA (Plastira et al., 2016) have been shown to increase iNOS 

expression and release of NO in BV2 cells. Further to this, studies suggest that iNOS can 

produce HNO in the absence of co-factor BH4 (Wei et al., 2003), which implicates iNOS as a 

potential source of HNO in vivo. However, as the measure of BH4 was beyond the scope of this 

study, we are unable to speculate its involvement in our findings.  
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We were able to localise HNO sensor 3 to the mitochondria of the BV2 cells via the use of live 

cell stain, Mitotracker Deep Red. The localisation of HNO probes within mitochondria has been 

previously reported (Ren et al., 2017; Gong et al., 2016) and supports our findings. Further to 

this, the generation of ROS and RNS has been suggested to also be localised to the 

mitochondria of cells (Ren et al., 2017; Gong et al., 2016; Sunwoo et al., 2017).  

Two pilot studies were carried out using sensor 1 to measure blood levels of endogenous HNO 

in animal models of neuropathic pain and myocardial ischemia-reperfusion injury 

(supplementary data sections 3.10 & 3.11). This study reported for the first time the potential 

detection of HNO in red blood cell fractions of neuropathic pain animals (Supplementary figure 

3.15). Interestingly, using Sensor 1 we observed a trending non-significant increase in 

fluorescent signal using spectroscopy which was not present in control samples. This finding 

was unexpected as many previous studies measuring RNS describe methods by which the 

plasma fraction is measured for RNS, not the red blood cells (Bryan et al., 2007). One 

explanation for these findings may be due the time point of blood collection. Although allodynia 

in these animals was still present at day 28, the peak systemic inflammation caused by the 

injury occurs much earlier on. Therefore, future experiments should consider taking blood 

samples at 1-3 days post injury. Furthermore, caution is required when measuring circulating 

RNS as the short-lived half-life and potentially low circulating levels of nitroxyl and other 

species, may be below the limit of detection for many methods. However, these super bright 

sensors can detect down to 100 nM of HNO and could potentially be used to measure in vivo 

samples, however further investigation is required.  

Using a cellular model of ischemic-reperfusion injury, H9C2 cells showed increased 

intracellular HNO fluorescence following the replacement of oxygenated media and/or buffer, 

after a period of hypoxia (Supplementary figure 3.16). This is the first study to our knowledge 

that has demonstrated endogenous production of HNO in myocardial-like cells. Further to this, 

using sensor 1 we were able to detect elevated levels of HNO fluorescent signal in plasma 

fractions of blood samples taken immediately at the onset of reperfusion to the heart following 

at 30-minute period of ischemia, when compared with pre-ischemia (Supplementary figure 

3.17). Samples were collected from a catheter inserted into the jugular vein directly into a 

syringe pre-loaded with sensor 1.  Previous studies have identified a dual role for nitroxyl in 

myocardial ischemia-reperfusion, whereby administration of AS just prior to reperfusion causes 
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an increase in myocardial injury (Ma et al., 1999), however pre-ischemic administration is 

protective (Pagliaro et al., 2003; Irvine et al., 2008).  Further investigation is required to 

validate this model and understand the role the endogenous nitroxyl may be having following 

reperfusion.  

3.6 Conclusion 

The validation of these super bright, highly specific and stable HNO fluorescent sensors in 

biological systems provides evidence to support the use of these tools to further our 

understanding of the role of endogenous nitroxyl. Since the first fluorogenic nitroxyl probe was 

synthesised in 2007 by Tennyson et al., there has been a flourish of subsequent HNO probes 

designed and synthesised. However, this is the first study to report such an extensive 

validation in multiple biological systems using both spectroscopy and confocal microscopy for 

detection. These triacylphosphine based sensors described here show excellent potential for 

detecting HNO in vivo in future studies and furthering our understanding of the role of this 

endogenously produced reactive nitrogen species. 

 

3.7 METHODS – Chemistry (This section was contributed by collaborator Dr. Xiaozhou 

Zhang) 

3.7.1 Synthesis of sensors 1-3 

3'-hydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-6'-yl 2-(diphenylphosphanyl)benzoate 

(sensor 1). To a solution of fluorescein (5) (1 g, 3.00 mmol) in anhydrous DMF (20 mL) under 

N2 was added 2-(diphenylphosphino)benzoic acid (6) (760 mg, 2.48 mmol), DIC (520 mg, 4.12 

mmol) and DMAP (126 mg, 2.80 mmol). The mixture was stirred under N2 at room temperature 

for 21 h before H2O (50 mL) was added. The aqueous phase was extracted with ethyl acetate 

(3 * 50 mL) and the combined organic layer was washed with H2O (50 mL) and brine (100 mL). 

The organic layer was dried over Na2SO4 and concentrated in vacuo to give the crude product 

as a yellow oil (2.093 g). The mixture was purified by flash column chromatography to afford 

pure sensor 1 as a yellow solid (845 mg, 44%).  1H NMR (500 MHz, DMSO-d6) δ 10.21 (s, 1H), 

8.02 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 7.9 Hz, 1H), 7.83 – 7.78 (m, 2H), 7.77 – 7.68 (m, 2H), 

7.62 – 7.49 (m, 10H), 7.39 (dd, J = 13.0, 7.8 Hz, 1H), 7.35 – 7.30 (m, 2H), 6.88 (d, J = 8.7 Hz, 

1H), 6.79 (d, J = 8.7 Hz, 1H), 6.74 (s, 1H), 6.59 (s, 2H). 13C NMR (126 MHz, DMSO-d6) δ 

171.7, 162.8, 155.5, 154.7, 154.0, 138.9, 136.7, 136.2, 135.2, 134.5, 133.4, 132.0, 128.9, 
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127.9, 121.0, 119.9, 116.2, 113.5, 112.2, 105.4. HRMS (m/z) for [C39H25O6P]+ calculated 

620.1389, found 620.1389. 

 

2-oxo-2H-chromen-7-yl 2-(diphenylphosphanyl)benzoate (sensor 2). To a solution of 7-

hydroxycoumarin (7) (91 mg, 0.56 mmol) in anhydrous DCM (20 mL) under N2 was added 2-

(diphenylphosphino)benzoic acid (6) (205 mg, 0.67 mmol), DIC (92 mg, 0.73 mmol) and DMAP 

(61 mg, 0.50 mmol). The mixture was stirred under N2 at room temperature for 21 h before 

H2O (20 mL) was added. The aqueous phase was extracted with ethyl acetate (3 * 20 mL) and 

the combined organic layer was washed with H2O (20 mL) and brine (50 mL). The organic 

layer was dried over Na2SO4 and concentrated in vacuo to give the crude product as a brown 

oil (130 mg). The mixture was purified by flash column chromatography to afford pure sensor 2 

as a white solid (70 mg, 28%).  1H NMR (500 MHz, CDCl3) δ 8.29 – 8.23 (m, 1H), 7.67 (d, J = 

9.6 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.43 (d, J = 8.0 Hz, 1H), 7.39 – 7.28 (m, 10H), 7.06 – 6.98 

(m, 1H), 6.95 – 6.86 (m, 2H), 6.39 (d, J = 9.5 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 167.3, 

163.0, 157.3, 155.7, 145.5, 144.5, 139.9, 136.6, 135.6, 135.2, 134.2, 131.6, 131.3, 121.2, 

119.3, 118.7, 113.2. HRMS (m/z) for [C28H19O4P]+ calculated 450.1021, found 450.1015. 

3'-(azetidin-1-yl)-6'-hydroxy-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one (4). To a dry solution 

of fluorescein (5) (1 g, 3.00 mmol) in anhydrous DMF (7.5 mL) was added phenyl triflimide (9) 

(1.08 g, 3.00 mmol). The mixture was stirred under N2 and DIPEA (1.56 mg, 12.04 mmol) was 

added dropwise. The mixture was further stirred under N2 for 48 h at room temperature and 

acidified to pH 1 with 1 M HCl. The mixture was extracted with ethyl acetate (3 * 50 mL) and 

the combined organic layer was washed with H2O (50 mL), dried over MgSO4, and 

concentrated in vacuo to give crude product white solid (800 mg), which was used without 

further purification. To a solution of compound 8 (150 mg, 0.32 mmol), Pd2dba3 (30 mg, 0.03 

mmol), XPhos (46 mg, 0.1 mmol) and Cs2CO3 (295 mg, 0.9 mmol) in anhydrous 1,4-dioxane 

(2.5 mL) under N2 was added azetidine (44 mg, 0.78 mmol). The mixture was stirred under N2 

at 100 °C for 20 h and diluted with MeOH (20 mL). The volatiles were removed in vacuo to 

give the crude product as a dark red oil (849 mg). The mixture was purified by column 

chromatography to give rhodol 4 as a red solid (88 mg, 73%).  H NMR (500 MHz, Methanol-d4) 

δ 8.11 (m, 1H), 7.83 – 7.64 (m, 2H), 7.27 (d, J = 7.5 Hz, 3H), 6.86 – 6.75 (m, 2H), 6.67 (d, J = 

2.4 Hz, 1H), 6.41 (dd, J = 4.6, 2.6 Hz, 2H), 4.11 (m, 4H), 2.48 (p, J = 7.4, 2H). 



   
 

139 
 

 

3'-(azetidin-1-yl)-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-6'-yl 2-

(diphenylphosphanyl)benzoate (sensor 3). Rhodol 4 (88 mg, 0.24 mmol), 2-

(diphenylphosphino)benzoic acid (73 mg, 0.24 mmol), EDC (110 mg, 0.71 mmol) and DMAP 

(29 mg, 0.24 mmol) was dissolved in anhydrous THF (2 mL). The mixture was stirred under N2 

at room temperature for 20 h. The mixture was acidified to pH 1 with 1 M HCl and extracted 

with DCM (2 * 20 mL). The combined organic layer was washed with H2O (20 mL) and brine 

(50 mL), dried over Na2SO4 and concentrated in vacuo to give the crude product as a pink oil 

(97 mg). The crude mixture was purified by rp-HPLC to afford sensor 3 as a pale pink solid (12 

mg, 8%). 1H NMR (500 MHz, CDCl3) δ 8.33 – 8.16 (m, 1H), 8.01 (d, J = 7.5 Hz, 1H), 7.63 (m, 

2H), 7.47 (m, 2H), 7.38 – 7.22 (m, 10H), 7.17 (d, J = 7.5 Hz, 1H), 7.05 – 6.92 (m, 2H), 6.71 (d, 

J = 8.7 Hz, 1H), 6.61 – 6.54 (m, 2H), 6.21 (s, 1H), 6.12 (d, J = 8.7, 1H), 3.93 (t, J = 7.3 Hz, 4H), 

2.40 (p, J = 7.3 Hz, 2H).13C NMR (126 MHz, CDCl3) δ 172.1, 167.4, 156.3, 155.8, 155.0, 

154.7, 154.3, 144.3, 144.1, 140.2, 140.1, 137.5, 137.1, 136.8, 136.7, 135.7, 135.3, 134.0, 

132.2, 131.5, 131.5, 131.3, 131.2, 131.2, 131.1, 131.0, 129.5, 127.6, 126.8, 119.7, 113.0, 

110.7, 109.5, 100.2, 86.1, 54.7, 19.3. HRMS (m/z) for [C28H19O4P]+ calculated 659.1862, found 

659.1860. 
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NMR of sensor 1 
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NMR of sensor 2 
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NMR of sensor 3 
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HPLC trace (λ = 220 nm) of sensor 1 

  

HPLC trace (λ = 220 nm) of sensor 2 

  

HPLC trace (λ = 220 nm) of sensor 3 
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3.7.2 Fluorescence of sensors 1-3 with and without added AS. 

A solution of sensors 1-3 (2 uM for sensors 1 and 3 and 5 uM for sensor 2) in 1% DMSO in 

water (2 mL) was prepared in a sealed container and purged with N2 for 30 min. Varying 

concentrations of AS ([AS] = 0–100 uM) in 10 mM NaOH (20 ul) was added and the mixture 

was incubated in the sealed container for 10 min in the dark at room temperature. All 

concentrations of sensors 1-3 and AS reported are final concentrations of the solution after 

mixing. The resultant fluorescence (sensor 1: λex = 488 nm; sensor 3: λex = 512 nm) spectra of 

sensors 1 and 3 with each concentration of GSH was recorded on a Cary Eclipse 

Fluorescence Spectrophotometer. The fluorescence spectra of sensor 2 (λex = 380 nm) was 

similarly measured on a microplate reader. The maximum fluorescence intensity of each 

spectrum was plotted against AS concentration in uM to produce a standard curve of 

calibration for sensors 1-3. A linear trendline was fitted to the plot by GraphPad Prism 7.0. 

3.7.3 Limit of detection of sensor 3. 

A solution of sensor 3 (1 uM) in 1% DMSO in water (2 mL) was prepared in a sealed container 

and purged with N2 for 30 min. AS (10 uM) in 10 mM NaOH (20 uL) was added and the mixture 

was incubated in the sealed container for 10 min in the dark at room temperature. The 

resultant fluorescence (λex = 512 nm) spectrum was recorded on a Cary Eclipse Fluorescence 

Spectrophotometer. 

3.7.4 Fluorescence of sensors 1-3 with and without added AS in buffers and cell media. 

A solution of sensors 1-3 (2 uM for sensors 1 and 3 and 5 uM for sensor 2) in 1% DMSO in 

various buffers (PBS and HBSS)  and cell media (DMEM, DMEM serum-free (SF), DMEM 

phenol-red free (PRF) and DMEM SF PRF) (2 mL) was prepared in a sealed container and 

purged with N2 for 30 min. AS (100 uM) in 10 mM NaOH (20 uL) was added and the mixture 

was incubated in the sealed container for 10 min in the dark at room temperature. The 

resultant fluorescence (sensor 1: λex/em = 488 nm/512 nm; sensor 2: λex/em = 380 nm/460 nm; 

sensor 3: λex/em = 512 nm/550 nm) was measured on the microplate reader (Figure S2). The 

intensity was plotted in GraphPad Prism 7.0 as bar graphs. The experiment was conducted in 

triplicate. 

3.7.5 Selectivity of sensors 1-3. 

In a black 96-well plate, sensors 1-3 (2 uM for sensors 1 and 3 and 5 uM for sensor 2) was 

separately mixed with solutions (100 uM) of various biologically relevant species (NO, NO2
-, 
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NO3
-, N3

-, ONOO-, Cys, Arg, ascorbate, H2S, GSH, GSNO, H2O2 and .OH) in 1% DMSO in 

H2O. The mixtures were incubated in the dark for 30 min before fluorescence (sensor 1: λex/em 

= 488 nm/512 nm; sensor 2: λex/em = 380 nm/460 nm; sensor 3: λex/em = 512 nm/550 nm) of 

each mixture was measured on the plate reader. The experiments were carried out in triplicate. 

3.7.6. Quantum Yield Calculations 

The integrated fluorescence intensity is calculated as a sum of the intensities over the 

emission spectra for each sample. The integrated fluorescence intensity from a blank was 

subtracted and the plot of the integrated fluorescence intensity as a function of absorbance 

should show a linear relationship. The slope of the linear fit for the standards, ar, is used to 

calculate the quantum yield of the fluorescent protein, ΦS. According to the equation: 

𝛷𝑆 = 𝛷𝑅 
𝑎𝑠

𝑎𝑟
(

𝑛𝑠

𝑛𝑟
)

2

    (1) 

where ar is the quantum yield of the standard (Fluorescein; Φ = 0.93 (Sjöback et al., 1995), 

Quinine; Φ = 0.55 (Eaton, 1988)), as is the slope of the linear fit for the integrated fluorescence 

intensity of the fluorescent protein as a function of absorbance, and ns and nr are the refractive 

indices of the fluorescent protein and the standard solutions, respectively. Graph pad Prism 

was used for all linear fitting and calculations.  

3.8 METHODS – Biological validation  

3.8.1 Chemicals and Sensors 

LPS (Lipopolysaccharides from Escherichia coli O111:B4, L2630), L-cysteine (L-cysteine 

Hydrochloride; C7477) and LPA (Oleoyl-L-α-lysophosphatidic acid sodium salt; L7260), were 

supplied by Sigma-Aldrich and Angeli’s Salt (AS; 82230), carboxy-PTIO (cPTIO; 81540) and 

1400W (1400W hydrochloride; 81520) from Cayman Chemicals. HNO sensors 1, 2 & 3 was 

synthesised and provided by Dr. Xiaozhou Zhang, School of Sciences, University of Adelaide. 

Details provided in section 3.7 of this thesis chapter.  

3.8.2 Cell culture 

Immortalized BV2 cells from a murine microglial cell line (BV2) were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM; Sigma-Aldrich) supplemented with 10% fetal bovine serum 

(FBS; Gibco, ThermoFisher-Scientific), 100 IU/ml penicillin, 100 μg/ml streptomycin, (Penicillin-

streptomycin; Sigma-Aldrich) 2 mM L-glutamine (Gibco, ThermoFisher-Scientific ) and 100 

μg/ml Normocin (InvivoGen). Cells were maintained at 37 °C in a saturated humidity 
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atmosphere containing 95% air and 5% CO2 and used for assays when 75-80% confluent. To 

prepare samples for spectrophotometer experiments, 10,000 cells/ml of BV2 cells were 

seeded in a 96 well plate in 200 μl of media per well. Cells were grown to approximately 75-

80% confluency prior to carrying out experiments. On the day of experimentation Sensors 

were added to wells and allowed to incubate for 15 - 30 min prior to the addition of stimulus 

(unless otherwise specified below).  

3.8.3 Cell viability and function in the presence of Sensors 1, 2 and 3. 

A trypan blue spectrophotometric assay (Uliasz et al., 2000) was used to measure the effect of 

1.5 hours exposure to Sensors 1, 2 and 3 on BV2 cell death, before using them for HNO 

detection. Briefly, BV2 cells were exposed to 4 concentrations [0, 1, 5 & 10 μΜ] of each Sensor 

(1, 2 or 3) for 1.5 hours before removing media and replaced with a 0.05% Trypan blue 

solution in PBS (0.01M) and incubated (37°C) for 15 minutes. Cells were then gently washed 

3x with ice cold PBS (0.01M) before adding 200 μl of 1% SDS solution (sodium dodecyl sulfate 

made in PBS) and contents gently triturated.  Finally, 175 μl of the SDS/trypan solution was 

transferred into a clean 96 well culture plate and the absorbance read at 590 nm on a 

spectrophotometer. 

Cytotoxicity of Sensors 1, 2 & 3 were further assessed using MTT (dimethylthiazol-

diphenyltetrazolium bromide; Sigma-Aldrich) assay. For the cytotoxicity experiments, 3 x 104 

cells/ml BV2 cells were seeded into a 96 well culture plate and incubated for 24 hours at 37°C 

with 5% CO2 until cells were 75-80% confluent. Four time points of exposure were used; 30 

minutes, 2 hours, 24 hours and 48 hours in the presence of 4 concentrations [0, 1, 5 & 10 μΜ] 

of each Sensor. At the end of the incubation, the supernatant was removed and used for the 

LDH assay and to the cells, 100 μl of MTT solution (0.25mg/ml) was quickly added to each well 

and the plate incubated for 2 hours at 37 °C with 5% CO2. After the incubation period, the MTT 

solution was removed and 100 μl of DMSO (dimethyl sulfoxide) added to each well for 10 

minutes and the plate gently agitated. The absorbance was then measured on a 

spectrophotometer at 570 nm.  

3.8.4 Detecting HNO in cell free media 

The following series of experiments were all measured using a BioTek SynergyMx 

spectrophotometer. Measurements were taken at appropriate excitation/emission wavelengths 

for each Sensor (Sensor 1 λ ex/em = 470/512 nm, Sensor 2 λex/em = 387/456 nm, Sensor 3 λex/em 
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= 518/550 nm). The relationship between Sensor concentration and HNO concentration was 

assessed in HBSS (Gibco, ThermoFisher-Scientific) buffer. Three concentrations of each 

Sensor [2.5, 5 & 10 μΜ] were assessed with increasing concentrations of AS were added [0, 

0.195, 0.39, 0.78, 1.562, 3.125, 6.25, 12.5, 25, 50, 100 & 200 μΜ] and measurements taken 

every 2.5 minutes for 40-60 minutes total time.  In a separate series of experiments, 

spectrophotometric fluorescent measurements for each Sensor [at 1 μΜ] were assessed in 

HBSS over 1 hour in the presence of 200 μΜ Angeli’s salt. In another series of experiments, 

the limit of detection for each Sensor in the presence of Angeli’s salt [200 μΜ] was determined 

in HBSS. Angeli’s salt was added increasing concentrations of each Sensor [0, 0.1, 0.5, 0.75, 

1, 5 & 10 μΜ] and measured after 1-hour incubation time. 

3.8.5 Detecting HNO in BV2 cells 

The presence of Sensors 3 in BV2 cells was observed using spectrophotometric and confocal 

microscopic analysis in the presence of Angeli’s salt or relative treatment (described below) 

used to stimulate endogenous HNO, to determine the cellular localisation of HNO-activated 

Sensor 3 fluorescence.   

3.8.5.1 Detection and sub-cellular localisation of endogenous HNO using Sensor 

3 in BV2 cells.  

LPS (Kim et al., 2004) is known to induce increased iNOS enzyme expression and subsequent 

NO and other reactive nitrogen species production in BV2 cells and was used as potential 

driver of endogenous HNO production in this study. BV2 cells (triplicates) were co-incubated 

with increasing concentrations of LPS (100, 500 and 1000 ng/ml) and Sensor 3 (2 μΜ) for 24 

hours and spectral measurements taken at appropriate peak wavelength every 5 minutes for 

24 hours. Control cells were incubated with 200 μΜ Angeli’s salt, with and without 1 mM L-

cysteine, to demonstrate the increase and reduction of fluorescence in the presence of HNO 

donor and scavenger, respectively. Negative control wells included cells without any stimuli or 

absence (HNO Sensor only) of Sensor 3 (blank control). These experimental conditions were 

repeated (triplicate) in wells containing media only, and the values of the media on wells were 

subtracted from the values measured with the cells and the difference reported.  

In a separate series of experiments, both LPS and LPA were used as endogenous HNO 

stimuli in BV2 cells. BV2 cells (triplicates) were co-incubated with either increasing 

concentrations of LPS (200, 500 and 1000 ng/ml) or LPA (1 & 2 μM) for 24 hours. In parallel 
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experiments, cells were pre-incubated for 2 hours with 1400W (10 μM) prior to the addition of 

LPS or LPA, to demonstrate the reduction of fluorescence in the presence of an iNOS inhibitor. 

Control cells were incubated with 200 μΜ Angeli’s salt, with and without 1 mM L-cysteine 

following the addition of Sensor 3, to demonstrate the increase and reduction of fluorescence 

in the presence of HNO donor and scavenger, respectively. Negative control wells included 

cells without any stimuli or absence (HNO Sensor only) of Sensor 3 (blank control). Following 

the 24-hour LPS/LPA incubation, Sensor 3 (2 μM) was added to each well (except blank 

control wells) and incubated for 30 minutes prior to measuring the unwashed cells on the 

spectrometer using a top down spiral read.  

3.8.6 Image analysis 

The Sensor 3 Olympus FV3000 images were analysed for mean pixel intensity of the 

intracellular fluorescence of 20 randomly selected cells and were compared for the change in 

mean fluorescence intensity following a 10-minute incubation to baseline images (acute LPS 

treatment experiments). Images captured following 24-hours incubation with LPS/LPA ± 

1400W were also analysed for mean pixel intensity of the intracellular fluorescence of 20 

randomly selected cells and were compared between treatments and to controls outlined 

above.  

3.8.7 Statistics 

Data were analysed using GraphPad Prism software (GraphPad Software, Inc. La Jolla, CA, 

USA). Shapiro-Wilk or Kolmogorov-Smirnov normality test was used to test the normality of 

data distribution. One-way ANOVA was used to compare three or more groups and the p-

values for significant differences were derived from relevant post-hoc test for multiple 

comparisons. Two-way ANOVA was used to compare multiple treatments across groups and 

the p-values for significant differences were derived from relevant post-hoc test for multiple 

comparisons. Where applicable, linear regression was used to determine the slope of a line. 

All data are reported as mean ± standard error of the mean (SEM), along with the individual 

data points where relevant to demonstrate biological variability.  
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3.10 SUPPLEMENTARY DATA 

METHODS 

3.10.1 Cell culture 

H9C2 cells are a rat cardio-myoblast cell line and were maintained in accordance to 

manufacturer’s instructions. Briefly, H9C2 cells were cultured in ATCC-formulated Dulbecco's 

Modified Eagle's Medium (ATCC, Australia), supplemented with 10% fetal bovine serum (FBS; 

Gibco, ThermoFisher-Scientific) and maintained at 37 °C in a saturated humidity atmosphere 

containing 95% air and 5% CO2 and used for assays when 75% confluent. To prepare cells for 

experimentation, 2.5 x 104 cells/ml were seeded (quadruplicates) either in 96 well cell culture 

plates or 4 well ibidi slides and allowed to adhere overnight at 37 °C.  

3.10.2 Detection of endogenous HNO using sensor 1 in supernatant of H9C2 cells 

Hypoxia-reoxygenation injury is a commonly used cell-based model of ischemia-reperfusion 

injury. Hypoxia is induced by incubating the cells with hypoxic gas mixture/buffers, causing 

energetic failure due to the lack of oxygen and driving anaerobic metabolism and can lead to 

oxidative stress (Gerő, 2017). The replacement of hypoxic conditions, back to that of normoxic 

is akin to the reperfusion of oxygenated blood in vivo and can cause an immediate and 

significant spike in NO levels which is thought to drive the myocardial tissue injury (Hu et al., 

2016). H9C2 cells (2.5 x 104 cells/ml; quadruplicates) were seeded in 96 well culture plates 

and allowed to adhere overnight at 37°C. Cells were exposed to either media or hypoxic buffer 

for 2 hours at 37°C. Samples of the supernatant (50 μl) were taken and added to 5 μM of 

sensor 1 in a second 96 well culture plate, the remaining supernatant was removed and 

replaced with either media or normoxic buffer (Table 1) and left to incubate for 1-2 minutes 

before a second sample (50 μl) was transferred to 5 μM of sensor 1 and read using a 

spectrophotometer at λ ex/em = 470/512 nm. The values of the second sample were subtracted 

from the first value to determine the difference in fluorescence signal.  
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Table 1 

Combo Treatment 1 Treatment 2 

1 Media Media 

2 Hypoxic buffer Media 

3 Hypoxic buffer Normoxic buffer 

4 Media Normoxic buffer 

 

3.10.3. Confocal Experiments 

For H9C2 confocal imaging experiments, cells (2.5 x 104 cells/ml) were seeded on 4 well ibidi 

slides in 700 μl of media per well and allowed to adhere overnight at 37°C. Sensor 1 (2 μM) 

was added to the cells for 30 minutes in the presence of the first treatment. After the incubation 

period a z-series 60x magnification image was captured on SP5 Leica scanning confocal 

system, with a 512 x 512-pixel image size. The treatment 1 buffer was then removed and 

replaced with the second treatment solution and allowed to incubate for 1-2 minutes before a 

second confocal image was captured of the same field of view for comparison (Table 2). 

Sensor 1 was detected using 488 nm/512 nm (emission/excitation) wavelength. 

 

Table 2 

Combo Treatment 1 Treatment 2 

1 Media Media 

2 Normoxic buffer Media 

3 Media Normoxic buffer 

4 Hypoxic buffer Normoxic buffer 

 

3.10.4 Image analysis 

The Sensor 1 Leica SP5 confocal time series images were analysed for mean pixel intensity 

on a per cell basis over time using Image J (FIJI version 1.52d). An AVI file was created from 

the 60x magnification image stacks and 20 random cells were selected per series and masked 

using the DIC image as reference. H9C2 were analysed for mean pixel intensity of the 

intracellular fluorescence of 20 randomly selected cells and the random fluorescence units 

(RFU) were compared between treatments. 
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3.10.5 Detecting HNO in plasma/ red blood cells 

All animal care and handling procedures were approved by Animal Ethics Committee of the 

University of Adelaide. All procedures were performed in accordance with the Australian Code 

for the Care and Use of Animals for Scientific Purpose (2013). Ethics application M-2017-005 

(Chronic constriction injury), M-2016-039a (Myocardial ischemic reperfusion injury).  

3.10.6 Chronic constriction injury model 

In a pilot study using an animal model of neuropathic pain injury as described by Grace et al., 

(2010), cardiac blood was collected from Sprague-Dawley male rats which were scavenged 28 

days following chronic constriction injury of the sciatic nerve (once allodynia had been 

established) following a lethal i.p. injection with 60mg/kg of sodium pentobarbitone. Using 

cardiac puncture, blood was drawn from the heart into a 1 ml syringe containing EDTA/PBS 

solution with either 200 μl of Sensor 1 (10 μM), 200 μl PBS as the vehicle control or 200 μl of 

Sensor 1 with Angeli’s salt. The collected samples were mixed well in the syringe and allowed 

to sit in the dark for 20 minutes before being transferred to a 1.5 ml tube and spun at 3000 rpm 

for 10 minutes. The separated samples (plasma and red blood cell fractions) were then 

aliquoted in triplicate into a 96 well plate and reading was done on the Biotek SynergyMx 

spectrophotometer at (Sensor 1) λ ex/em = 470/512 nm.  

3.10.7 Myocardial ischemic reperfusion injury model 

Myocardial Ischemic reperfusion injury occurs when heart tissue undergoes an ischemic event 

thus being deprived of blood flow and oxygen (creating hypoxic conditions) for a period of time, 

followed by the reperfusion of oxygenated blood. The reintroduction of oxygen causes the 

injury and results in the necrosis of tissue (Switzer el, 2009). This phenomenon is reported to 

occur due to production of ROS and increased oxidative stress as well as increases in NO 

other RNS production immediately following reperfusion (Wang & Zweier, 1996). However, 

although a role for HNO in pre-conditioning the heart prior to ischemia has been established 

using donors (Pagliaro et al, 2003), lack of tools to measure HNO have meant that little is 

known about the production of HNO during ischemia and following reperfusion. Therefore, we 

sought to identify the presence of HNO using Sensor 1 prior to ischemia and following 

reperfusion. 

In a pilot experiment using an animal model of myocardial ischemic-reperfusion injury as 

described by Wu et al., (2011), blood samples were scavenged from a Sprague-Dawley male 
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rat undergoing surgery. Blood samples were collected directly from a catheter surgically 

inserted the aorta at 3 time points; before ischemia, immediate after and 15 minutes after the 

cardiac ischemia-reperfusion and was drawn up into 1 ml syringes as described above. Sensor 

1 (10 μM) was used in this experiment and only triplicates of the plasma fraction were read on 

the Biotek SynergyMx spectrophotometer over 4 hours at (Sensor 1) λ ex/em = 470/512 nm.  

 

3.11 RESULTS 

3.11.1 Sensor 1 may detect endogenous HNO signal in blood of neuropathic pain 

animals 

A pilot study was carried out to determine if endogenous HNO could be measure from the 

blood of animals with neuropathic pain. Blood collected via cardiac puncture from either 

chronic constriction injury (CCI; N3S1, n = 5) animals displaying allodynia (pain response to 

non-noxious stimulus) and sham operated animals (control non-injured group, n = 5) was 

mixed with Sensor 1 before being separated into plasma and red blood cell samples (RBC) 

(Figure 3.15). Spectrometer readings determined that the separated plasma contained higher 

fluorescent signals in both sham operated (37.6 ±9.9 RFU) and CCI (37.4 ±3.5 RFU) when 

compared to blood samples without Sensor 1 (6 ±0.7 RFU) (Figure 3.15; A) however, the 

addition of AS to the blood mixture to determine the saturation value, generated a slightly 

lower RFU signal for both sham operated (30.5 ±9.9 RFU) and CCI group (25.3 ±4.3 RFU) 

than plasma with sensor alone. One possibility for this unexpected result may be accounted by 

the reaction kinetics of AS in whole blood, which may be scavenged by plasma haemoglobin, 

and therefore was not available to interact with sensor 1 (He et al., 2008).  

Interestingly, in the separated RBC portion of blood Sensor 1 (Figure 3.15; B) showed a 

trending increase in fluorescent signal from blood collected from CCI operated animals (19.2 ± 

8 RFU) but not sham operated animals (4.4 ±2.1 RFU) when compared to samples containing 

AS (4.8 ±3.1 RFU). These data suggest that most of Sensor 1 may be separated into the 

plasma portion of blood, however the residual signal in the RBC fraction may be more 

indicative of changes in HNO due to disease state.  
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Supplementary figure 3.15 Sensor 1 may potentially detect increased circulating HNO in 
red blood cell fraction of neuropathic rats. 
Bar graphs showing the random fluorescent unit (RFU) signal of Sensor 1 in cardiac blood 
samples separated into plasma (A) and red blood cells (B). Blood samples were taken via 
cardiac puncture from rats with developed neuropathic pain (grey bars: CCI, n = 5) and sham 
operated controls (black bars: Sham, n= 5). Samples were measured using a 
spectrophotometer.  

3.11.2 Sensor 1 detects endogenous HNO in, in vitro and in vivo models of ischemic 

reperfusion injury  

To explore further potential use of Sensor 1 to detect endogenous HNO signal, the fluorescent 

signal derived from human coronary artery endothelial (H9C2) treated cells (Figure 3.16, n = 3) 

and cardiac blood collected from rat models of ischemic reperfusion injury (Figure 3.17, n = 1) 

was measured using spectroscopy and confocal microscopy.  The coronary endothelial cells 

were imaged using confocal microscopy in the presence of AS and hypoxic stimuli. H9C2 cells 

pre-treated with hypoxia solution followed by either normoxic (8175 ± 136RFU) (Figure 3.16; 

C) or media (8420 ± 130 RFU) (Figure 3.16; D) showed significantly increased intracellular 

fluorescent signal when compared to cells pre-treated with media followed by either a second 

media exchange (7164 ± 124) (Hypoxic/Normoxic v Media/Media, p < 0.05; Hypoxic/Media v 

Media/Media, p < 0.01)(Figure 3.16; A) or normoxic solution (6926 ± 303 RFU) 

(Hypoxic/Normoxic v Media/Normoxic, p < 0.01; Hypoxic/Media v Media/Normoxic, p < 0.001) 

(Figure 3.16; B) (as shown in graph E). To further determine the detection capabilities using 

spectroscopy, a sample of supernatant from H9C2 cells treated with either media, normoxic or 

hypoxic solution was measured to determine a baseline fluorescent reading, then a second 

supernatant sample was compared following the switching of solutions to either media or 

normoxic buffers (Figure 3.16; F). Only cells pre-treated with hypoxic solution followed by 
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normoxic solution showed a significant fold-change increase (3.22 ± 0.57 fold) in fluorescent 

signal when compared to media/media treatment only (0.91 ± 0.12 fold) (p < 0.05) and 

media/normoxic treatment (1.3 ± 0.16 fold) (p < 0.05). This data suggests that after a period of 

hypoxia, HNO is released by H9C2 cells following the reintroduction of oxygen. 

HNO has been implicated as a factor in the damaged generated in cardiac tissue following 

ischemic reperfusion. Sensor 1 fluorescence signal was measured from rat aortic blood 

collected before ischemia (Pre-IR), immediately following reperfusion (Post-IR) and 15 min 

after reperfusion (15 min Post-IR), using spectroscopy (Figure 3.17; A). The mean RFU 

overtime was compared (Figure 3.17; B) and showed a significant increase in Sensor 1 

fluorescent signal immediately following reperfusion (17509 ± 98 RFU), when compared to 

Pre-IR (15544.5 ± 106.5 RFU) (p < 0.01). Fifteen minutes following reperfusion, Sensor 1 

fluorescent signal is significantly less (12508.5 ± 44.5 RFU) when compared to both Post-IR (p 

< 0.0001) and Pre-IR (p < 0.001). These data indicate that there is a temporal change in HNO 

production as it is increased immediately following the re-introduction of oxygenated blood to 

cardiac tissue which has undergone a period of ischemia, that then drops to below baseline 

levels shortly after.  Together this data supports the use of Sensor 1 for the detection of 

endogenous HNO generated by in vitro and in vivo models of ischemic reperfusion injury.  
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Supplementary figure 3.16 HNO increased in H9C2 cells following hypoxic/normoxic 

treatment  

Confocal images (60x) showing Sensor 1 fluorescent signal in H9C2 cells following 

media/media treatment (A), media/normoxic buffer treatment (B), hypoxic/normoxic treatment 

(C) and hypoxic/media treatment (D) (n = 3 per treatment). The bar graph E, represents the 

relative fluorescent signal (RFU) measured from 20 randomly selected cells within each frame 

and shows hypoxic treatment followed by normoxic solution or media, significantly increases 

Sensor 1 signal (** p < 0.01, *** p < 0.001, # p < 0.05, ## p < 0.01. A second experiment was 

carried out with the supernatant of both the 1st and 2nd treatment measured in the presence of 

Sensor 1 on a spectrophotometer (F). The fold change between conditioned media determined 

that H9C2 cells challenged with normoxic solution following a period of hypoxia gave a 

significant increase the fold change of signal of Sensor 1. Together this data suggests that 

HNO is released by H9C2 cells following the reintroduction of oxygen, following a period of 

hypoxia.  
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Supplementary figure 3.17 HNO increases in cardiac blood samples taken immediately 

following ischemic reperfusion injury. 

Data showing the time-course of signal development of Sensor 1 from cardiac blood samples 

taken, before (blue line), immediately after (red line) and 15 mins post (green line) cardiac 

ischemic reperfusion injury (A) (n = 1). The mean RFU overtime was compared (B) and 

showed a significant increase in Sensor 1 fluorescent signal immediately following reperfusion, 

when compared to Pre-IR (*p < 0.01). Fifteen minutes following reperfusion, Sensor 1 

fluorescent signal is significantly less (#p < 0.001) when compared to both Pre-IR and Post-IR 

(^p < 0.0001). These data indicate that there is a temporal change in HNO production as it is 

increased immediately following the re-introduction of oxygenated blood to cardiac tissue 

which has undergone a period of ischemia, that then drops to below baseline levels shortly 

after.   
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Chapter 4. Nitroxyl reduces Cathepsin B enzyme activity in both in vitro and in vivo 

models of neuropathic pain. 

This chapter is unpublished and unsubmitted work written in manuscript style. 

 

4.1 Abstract 

Peripheral nerve injury leads to spinal adaptations involving cysteine proteases which contribute 

to the development of neuropathic pain states. Using LPS treated BV2 cells and in vivo (chronic 

constriction injury; CCI) animal model of neuropathic pain we assessed the role of protonated 

nitric oxide species, nitroxyl (HNO; liberated from Angeli’s salt), on enzymatic activity of the 

lysosomal cysteine protease, cathepsin B (CB), and downstream generation of metalloproteases 

MMP-2 and MMP-9 and the inflammatory cytokine IL-1β. Further to this, we measured the effect 

of Angeli’s salt (AS) on mechanical allodynia in sham and CCI-injured animals. AS was able to 

temporally reduce allodynia in injured animals 4 h following AS (3 mg/kg) administration. AS was 

also able to reduce CB activity in LPS stimulated BV2 cells and the spinal cord of both Sham 

operated and CCI-injured animals. Downstream proteins MMP-2 and MMP-9 were not altered 

in the spinal cord lysates by AS treatment and LPS stimulated IL-1β protein increase was not 

inhibited by AS. The current findings support the use of HNO to inhibit CB enzyme activity, 

however quantitative protein analysis does not support the CB/MMP/IL-1β pathway in regulating 

the anti-allodynia effects of HNO donor, AS.  

4.2 Introduction 

Neuropathic pain is a maladaptive type of chronic pain (Costigan M, et al., 2009) which affects 

approximately 2% of the adult population (Bennet, 1997; Bowsher, 1991). Described as “pain 

caused by a lesion or disease of the somatosensory nervous system” (IASP 2018), symptoms 

include; spontaneous pain (stimulus independent), allodynia (pain generated from non-noxious 

stimuli) and hyperalgesia (heightened sense of pain to noxious stimuli). Many adaptations occur 

within the dorsal horn of the spinal cord which lead to the development of neuropathic pain, 

hence previous studies have focused on understanding central nervous system (CNS) 

mechanisms for the development and treatment of the disease.  

It is well understood that the reactive nitrogen species, nitric oxide (NO), is increased within the 

CNS following peripheral injury and can contribute to neuropathic pain signalling via several 

pathways (Bian K, 2016; Schmidtko A, et al., 2009). The soluble guanylate cyclase (sGC) 
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pathway has been implicated as a key pathway in neuropathic signaling, with studies 

demonstrating that modulation of NO/sGC/cGMP/PKG components can reduce symptoms of 

neuropathic pain (Schmidtko A, et al., 2008; Song XJ, et al., 2006; Ferreira J, et al., 1999), 

Recently nitroxyl (HNO), the reduced, protonated form of NO, was also reported to reduce 

neuropathic pain symptoms via the cGMP-PKG-K+ pathway (Longhi-Balbinot DT et al, 2016), 

suggesting that alternate reactive nitrogen species contribute to neuropathic pain signalling. 

Others suggest HNO may reduce chronic pain symptoms via alternative mechanisms, such as 

by reducing the enzymatic activity of the lysosomal cysteine protease, Cathepsin B (CB) 

(Väänänen AJ, et al., 2018). Cysteine cathepsins have been implicated in the development of 

neuropathic pain (Barclay J, et al., 2007; Abbadiea C, et al., 2009). A proposed mechanism 

involves the cathepsin B-mediated inactivation of MMP-9 and MMP-2 inhibitors, Tissue inhibitor 

matrix metalloproteinase 1 and 2 (TIMP1 and TIMP2) (Kostoulasa G., et al, 1999). MMP-9, 

released from the spinal terminals of DRG neurons, and MMP-2, released due to astrocytic 

activation, potentiate the cleavage of pro-IL-1β to the inflammatory cytokine IL-1β, which is 

associated with increased excitatory synaptic signalling (Kawasaki Y, et al., 2008; Schönbeck 

U, et al., 1998). Hence, cathepsin B may contribute to chronic pain by promoting the release and 

cleavage of IL-1β (Schotte et al., 1998; Hentze et al., 2003; Terada, et al., 2010). However, a 

direct relationship between HNO and reduction of neuropathic pain via cathepsin B inactivation 

has yet to be explored. Therefore, we aimed to determine if HNO reduces in vivo activity of CB 

and can lead to changes in expression of MMP-9, MMP-2 and IL-1β in cellular and animal 

models of neuropathic pain.   

4.3 Methods 

4.3.1 Chemicals and assays. 

Angeli's salt (Cayman Chemicals, Ann Arbor, MI) was used as an HNO donor and added to 

either cell-culture media or injected subscapular in vivo, to initiate the release of HNO. To 

produce an appropriate stock solution of the HNO donor, Angeli’s salt was dissolved in ice-cold 

10 mM NaOH. Both salt and stock solutions were stored at -80°C. Unless otherwise specified, 

all other kits or reagents were obtained from Sigma-Aldrich (St. Louis, MO).   

4.3.2 Enzymatic assay to determine exogenous Cathepsin B activity 

The direct effect of HNO on CB enzymatic activity was determined by fluorometric assessment 

of 7-amino-4-methylcoumarin (liberated from the Cathepsin B substrate Z-Arg-Arg-7-amido-4-
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methylcoumarin; Z-Arg-Arg-AMC) using spectroscopy. The protocol outlined below was adapted 

from the Sigma-Aldrich recommended protocol (Appendix 1). CB is a lysosomal cysteine 

protease which will hydrolyse proteins by preferential cleavage at the carboxyl side of Arg-Arg 

bonds in small molecule substrates. It has been suggested that HNO may exert its biological 

effect via the oxidised cysteine residues on proteins, therefore this assay was used to test this 

hypothesis. Increasing amounts of HNO donor, Angeli’s salt (to achieve concentrations of 0, 

0.05, 0.26, 1.3, 6.6, 30, 150 μM) were added to the CB enzyme solution (5-10 units/ml) in the 

presence of Z-Arg-Arg-AMC (0.02 mM) and the resulting fluorescence measured using a 

spectrophotometer at λex/em = 348/440 nm. Absence of Z-Arg-Arg-AMC and the addition of the 

HNO scavenger L-cysteine (150 μM) were used as controls.   

4.3.3 Cell culture 

Immortalized BV2 cells from a murine microglial cell line were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM; Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS; 

Gibco, ThermoFisher-Scientific), 100 IU/ml penicillin, 100 μg/ml streptomycin, (Penicillin-

streptomycin; Sigma-Aldrich) 2 mM L-glutamine (Gibco, ThermoFisher-Scientific ) and 100 μg/ml 

Normocin (InvivoGen). Cells were maintained at 37°C in a saturated humidity atmosphere 

containing 95% air and 5% CO2 and used for assays when 75-80% confluent.  To prepare 

samples for spectrophotometer experiments, 10,000 cells/ml of BV2 cells were seeded in poly-

D-lysine coated 96 well plate (triplicate) in 200 μl of media per well. To prepare cell lysates for 

western blot experiments, 75,000 cells/ml of BV2 were seeded in poly-D-lysine coated 6 well 

plates (triplicate) in 2 ml of media and allowed to adhere overnight. To prepare samples for 

confocal imaging, BV2 cells (50,000 cells/ml) were seeded in 8 well Ibidi slides (Cat: 80826, 

Ibidi, DAKO Australia) in 300 μl of media per well.  

4.3.3.1 Cell experiments 

Experiment series 1: The following fluorogenic experiments were conducted in triplicate wells. 

For CB enzyme assay, BV2 cells were treated with LPS (500 ng/ml) or vehicle (sterile PBS 

0.01M) and incubated for 24 h at 37°C. Increasing concentrations of Angeli’s salt (0, 50, 100 & 

150 μM) were added to either vehicle or LPS treated cells for the last hour of incubation and kept 

at 37 °C. Study design: 2 (LPS v Veh) by 4 (Veh, 50, 100 and 150 μM AS).  

Experiment series 2: The following fluorogenic experiments were conducted in triplicate wells. 

For Cathepsin B enzyme assay experiments, HNO scavenger, L-cysteine (1 mM) was added in 

https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-cathepsin-b.html
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control wells 30 min prior to the addition of AS/vehicle following a 24 h treatment with LPS (100 

ng/ml). Study design: 2 (LPS v Veh) by 2 (AS v Veh) by 2 (L-cysteine v Veh).  

Experiment series 3: The following western blot experiments were conducted in triplicate. BV2 

cells were incubated with LPS (100ng/ml) for 4 h at 37 °C, followed by a 1 h incubation with AS 

(10, 50, 100 or 200 μM) with or without a 30-minute L-cysteine (1 mM) pre-treatment. Control 

conditions included AS incubation alone, L-cysteine incubation alone or vehicle (PBS 0.01 M) 

only treatment. Study design: 2 (LPS v Veh) by 4 (Veh, 50, 100 and 150 μM AS) by 2 (L-cysteine 

v Veh).  

At the end of each experimental protocol outlined above, cells were washed with ice cold PBS 

(0.01M) and lysed with ice cold lysis buffer and samples collected for either cathepsin B enzyme 

assay or western blot analysis, described in detail below.   

 

4.3.4 Animal experiments 

Male C57B6J mice (8-10 weeks old) were used in all experiments, unless otherwise specified. 

All mice were maintained under a specific pathogen-free (SPF) barrier facility at the University 

of Adelaide, Laboratory Animal Services, with ad libitum access to food and water and 

maintained on a 12 h light /12 h dark cycle. All experimental procedures were performed in 

accordance with the National Health and Medical Research Council Australian code for the care 

and use of animals for scientific purposes (8th edition, 2013) and the University of Adelaide 

Animal Ethics Guidelines, and were approved by the University of Adelaide Animal Ethics 

Committee (Application number: M-2016-123).   

4.3.4.1 Experimental protocol 

All animals were acclimatised for 7 days following arrival to the animal facility prior to starting 

experimentation (Table 1). Following the acclimatisation period, animals were habituated to the 

behavioural testing set-up for 3-5 days prior to testing. Animals underwent baseline behavioural 

testing (Baseline) to determine their mechanical withdrawal threshold. The following day (Day 

0), animals underwent surgery (details in section 4.3.4.2) and were followed up with subsequent 

behavioural testing assessments (post-surgery Days 1, 3, 5 & 7). On Day 7 following the initial 

behavioural testing assessment, animals were injected with either vehicle (10 μM NaOH), AS 

(0.3, 1 or 3 mg/kg s.c.) and/or pre-treated with vehicle (0.9% saline) or L-cysteine (1 mg/kg i.p.) 

and returned to their home cage for 4 h before a second behavioral assessment was conducted. 
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Study design: 2 (CCI v Sham) by 4 (Veh, 0.3, 1 & 3 mg/kg AS) by 2 (L-cysteine v Veh). A 24 h 

follow up behavioural assessment was performed on Day 8, then animals were humanely killed 

by sodium pentobarbital (60mg/kg; i.p.) overdose and the lumbar 3-5 spinal segments were 

rapidly removed and kept on ice, hemisected into left (ipsilateral) and right (contralateral) 

segments, snap frozen in 100 μl of cell lysis buffer and stored at -80°C until required.  A timeline 

of the experimental protocol is shown below, n = 6 animals were used in each group.  

Table 1: Protocol Timeline 

Day Day -1 Day 0 Day 1, 3, 5 & 7 Day 7 Day 8 

Protocol 
Baseline 

behavioural 
testing 

Surgery 
Behavioural 

testing 

Treatment injection(s) 
followed by 4 h post-
injection behavioural 

testing 

Behavioural testing 
followed by 

tissue collection 

 

4.3.4.2 Graded chronic constriction injury (CCI) model  

The CCI model of sciatic nerve injury was performed aseptically at the mid-thigh level of the left 

hind-leg, as previously described (Walczak et al, 2006; Grace et al., 2010; Kwok et al., 2013), in 

order to produce clinically relevant pain behaviour. Briefly, animals were anesthetized with 2% 

isoflurane, the skin of the hindquarters was shaved and the sciatic nerve gently elevated using 

glass hooks. Zero or 3 sterile chromic gut sutures (cuticular 4-0 chromic gut; Ethicon, Somerville, 

NJ, USA) were loosely tied around the isolated sciatic nerve (N; approximately 3–4 mm in 

length). Once the superficial muscle overlying the nerve was sutured with silk, and prior to 

surgical stapling of the skin incision, additional equal lengths of chromic gut were placed 

subcutaneously (S; approximately 3 – 4 mm in length), such that each animal was exposed to 

four equal lengths of chromic gut in total. Thus, the surgery treatment groups, differing in pain 

behaviour, were sham (N0S4) and medium-high pain (N3S1). 

4.3.4.3 von Frey mechanical allodynia behavioural testing 

The von Frey test was used to investigate mechanical allodynia using phasic stimulation of von 

Frey filaments across a range of thresholds. Briefly, mice were subjected to 10 stimulations with 

6 calibrated von Frey filaments (0.04, 0.07, 0.16, 0.4, 0.6 & 1 grams of force). Von Frey filaments 

were applied for 1 s at 1 s intervals in random force assignment at each test session as described 

by Nicotra et al (2014). In order to avoid sensitization, a 10-minute break was given between 

each set of simulations. The von Frey test investigated the response frequency when each 

gauge of von Frey filament was applied, and behavioural responses were recorded as the 
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average number of responses out of 10 for each von Frey filament. Behavioural testing days are 

outlined in section 4.3.4.1.  

4.3.4.4 Tissue collection and preparation 

Animals were humanely killed by sodium pentobarbital (60mg/kg; i.p.) overdose, following 

behavioural testing on Day 8 post-surgery. The lumbar region of the spinal cord was quickly 

excised, rinsed with ice cold PBS (0.01M) and placed onto an inverted glass petri dish over ice. 

The section was trimmed to only contain lumber regions 3-5 and hemisected into left (ipsilateral) 

and right (contralateral) samples, placed into a 1.5 ml microtube, snap frozen in liquid nitrogen 

and stored at -80°C until required. Once all required samples were collected, ipsilateral samples 

were thawed on ice with 100 μl of cell lysis buffer (provided by Cathepsin B enzyme assay kit) 

and homogenised using a probe homogeniser for 10 sec, followed by 1 min on ice. Samples 

were then left on ice for 30 min before being centrifuged at 20,000 x g for 5 min at 4°C and the 

supernatant collected into a clean 1.5 ml microtube. Samples were either kept on ice if 

immediately used or stored at -80°C until required.  

4.3.5 Cathepsin B enzyme assay 

Samples collected from both cell and animal experiments were assessed to measure CB 

enzymatic activity present using a commercial fluorometric kit (Abcam Australia, ab65300). 

Briefly, the protein concentration of each tissue sample was measured using a colourmetric BCA 

protein assay kit (Pierce, ThermoFisher-Scientific). 50 μg of tissue protein was added (in 

triplicate) to a black 96 well plate and the volume adjusted to 50 μl using cell lysis buffer. For cell 

experiments, 50 μl of each sample was added to each well. The remaining protocol was the 

same with CB reaction buffer (50 μl) added to each well followed by the cathepsin B substrate 

(Ac-RR-AFC, 2 μl) and the samples incubated at 37°C for 2 h. The resultant fluorescence was 

measured using a BioTek SynergyMx spectrophotometer at λ ex/em = 400/505 nm. Relative 

fluorescence values were compared between treatment groups.  

4.3.6 Western Blotting 

Western blot analysis was used to determine the relative abundance of the following proteins in 

both cell and tissue lysate samples; interleukin-1b (IL-1b;  pro- 31 kD, mature- 17 kD), cathepsin 

B (38 kD), metalloprotease 2 (MMP-2; 72 kD), metalloprotease 9 (MMP-9; 102-105 kD) and 

beta-actin (β-actin; 42 kD). The protein concentration of both cell and tissue lysate samples were 

measured using a colourmetric BCA protein assay kit (Pierce, ThermoFisher-Scientific). 
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Samples were prepared with an equal volume of standard 5x Laemmli buffer (80 mM SDS, 10% 

glycerol,50 mM DTT, 0.004% bromophenol blue, 63 mM Tris-HCl) and boiled for 10 minutes at 

100°C, before 20 μg of protein was loaded into 4–12% gradient SDS-PAGE gels (NUPAGE, 

ThermoFisher-Scientific) and transferred to nitrocellulose membranes, which were blocked with 

skim powdered milk (5% in Tris-buffered saline). Immunoreactive proteins were visualized with 

antibodies to goat anti-mouse cathepsin B (0.2 μg/ml, AF965; R & D systems), rabbit anti-human 

MMP-2 (2 μg/ml , ab37150; Abcam Australia), rabbit anti-mouse MMP-9 (2 μg/ml, ab38898; 

Abcam Australia), rabbit anti-mouse IL-1b (1 μg/ml, ab9722; Abcam Australia) (used for cell 

lysate samples only) and anti-rabbit β-actin (0.1 μg/ml, A2066; Sigma-Aldrich, Australia) 

incubated overnight at 4°C, followed by secondary antibody incubation for 1 h at room 

temperature with donkey anti-rabbit IgG IRDye 680 (0.01 μg/ml, Millennium Science, Australia) 

or donkey anti-goat IgG Dye Light 800 (0.01 μg/ml, Invitrogen, ThermoFisher-Scientific). The 

fluorescent bands were detected and quantified using Licor Odyssey CLx scanning system at 

excitation/ emission wavelengths λex/em = 680/694 nm and λex/em = 794/778 nm respectively. 

Band intensities were normalised against loading control (βActin) and then compared between 

treatments for each protein.  

4.3.7 Immunohistochemistry 

In a separate set of experiments, male CX3CR1gfp+ (Kindly provided from Dr. Peter Psaltis, 

SAHMRI, originally from Jackson Laboratories) mice (8-10 weeks old) were used to generate 

tissue for IHC. Nine animals underwent the same protocol as outlined in Experimental Protocol 

section with an n = 3 animals in each of the following treatment groups; CCI surgery + Angeli’s 

salt (3 mg/kg) Day 7, CCI surgery + Vehicle (0.01M NaOH) or Sham surgery + no injection.  At 

the end of Day 8, animals were humanely killed by overdose with sodium pentobarbital (60 

mg/kg; i.p.) and perfused with PBS (0.01M) followed by ice cold 4% paraformaldehyde (PFA, pH 

7.2). The lumbar spinal cord regions (L3-L5) were removed and placed in 4% PFA overnight at 

4°C, followed by 3 x 10 min washes with PBS and 1-2-day incubation at 4°C with PBS-sucrose 

(20%) for cryoprotection. The tissues segments were frozen in OCT (ProSciTech, Australia), 

sectioned (in triplicate for each animal) using a Leica cryostat at 10 μm, mounted on SuperFrost® 

glass microscope slides (Menzel-Gläser; Braunschweig, Germany) and processed for IHC. 

Briefly, following 1 h air drying, sections were rinsed with PBS to remove residual OCT and 

incubated for 1 h at room temperature with blocking solution (1% BSA 0.3% TritonX in 0.01 M 
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PBS). Following the blocking step, sections were incubated for 2 nights at 4°C in primary 

antibodies goat-anti cathepsin B (0.2 μg/ml, AF965; R&D Systems) and rabbit-anti NeuN (0.1 

μg/ml; ab177487, Abcam Australia). After washing, sections were incubated for 1 h at room 

temperature with donkey anti-goat Alexa Fluor® 594 secondary antibody (0,01 μg/ml , A21203; 

Invitrogen, ThermoFisher-Scientific) and donkey anti-rabbit Alexa Fluor® 647 (0,01 μg/ml, 

ab150063; Abcam, Australia). Sections were washed using PBS (0.01 M) 3 ×10 min before 

adding DAPI nuclear stain (0.1 μg/ml, ThermoFisher Scientific) for 5 minutes at room temp 

before final washes with PBS (0.01 M) 3 × 10 minutes. All sections were mounted with Tris-

based Fluoro-Gel medium (IM030; ProSciTech; Queensland, Australia).  

4.3.8 Live cell preparation and Cathepsin B staining 

BV2 cells (10,000 cells/well) were seeded in 96 well culture plates and left overnight to adhere. 

To triplicate wells, cells were incubated with either LPS (500 ng/ml) or vehicle (PBS 0.01M) for 

24 h at 37°C. At the 23 h timepoint, AS (200 μM) was added to either LPS treated or vehicle 

treated cells for 1 h at 37°C. At 24h, the intracellular cathepsin B enzymatic activity was 

assessed by incubation with the fluorogenic substrate, Magic Red® Cathepsin B assay 

(#ICT938, Immunochemistry Technologies, Bio-Rad, Australia). Briefly, cells were incubated 

with the Magic Red substrate for 1 h at 37°C, before rinsing the cells with PBS and adding 

Hoechst (33342) nuclear stain for a further 10 min. After a final rinse with PBS, fluorescence 

was captured on an Olympus FV3000 laser scanning confocal using the live cell system (heated 

and oxygenated stage) using appropriate lasers and filters (Magic Red λex/em = 550-590/610 nm, 

Hoechst λex/em = 365/480 nm).  

4.3.9 Confocal acquisition 

Immunohistochemistry: Slides were viewed with an Olympus FV3000 scanning confocal 

microscope (Olympus; Japan) using a 20x objective (NA 0.75) and appropriate excitation 

wavelengths (Alexa Fluor® 594 λex/em = 592/619 nm, Alexa Fluor® 647 at λex/em = 645/660 nm, 

DAPI nuclear stain λex/em = 350/470 nm and GFP protein λex/em = 488/510 nm) Images were 

acquired using FLUOVIEW FV3000 software (Olympus; Japan). Final images (1024 x 1024 

pixels) are digital composites of 1.5 - 2 μm Z-series scans (approximately 4 optical sections 

through a depth of 6-8 μm). All images per antibody label were taken at the same gain and offset 

parameters between animals. Each spinal dorsal horn per section (both ipsilateral and 

contralateral) was imaged separately. 
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Live cell cathepsin B enzyme Magic Red® assay:  

Ibidi slides (Cat: 80826, Ibidi, DAKO Australia) containing BV2 cells, were viewed with an 

Olympus FV3000 scanning confocal microscope (Olympus; Japan) using a 60x objective oil 

immersion lens (NA 1.4) and appropriate excitation wavelengths (Magic Red: λex/em = 550-

590/610 nm, Hoechst: λex/em = 365/480 nm). Images were acquired using FLUOVIEW FV3000 

software (Olympus; Japan). Final images (512 x 512 pixels) are digital composites of 1.5 μm Z-

series scans (approximately 9 optical sections through a depth of 13.5 μm). All images per 

antibody label were taken at the same gain and offset parameters between treatment.  

4.3.10. Image analysis 

Immunohistochemistry  

Semiquantitative analyses were performed on collected images using ImageJ Fiji software 

(ImageJ 1.52n, NIH, USA). All images were examined blinded as to animal treatment. Maximized 

Z-stack of images were converted from Olympus image files (.oir) to 8-bit greyscale (.jpg) 

images, and signal pixels of positive staining areas in the region of interest (ROI) were selected. 

The ROI was an ellipsoid shape that remained a consistent size for each triplicate image 

between animals and was positioned over laminae I-V. The number of cells within the ROI and/or 

percentage of immunofluorescence in the ROI was calculated. The duplicate area 

measurements for each dorsal horn were averaged to obtain a single percentage area value per 

ipsilateral and contralateral dorsal horn, per animal. 

Live cell cathepsin B enzyme Magic Red® assay:  

Semiquantitative analyses were performed on collected images using ImageJ Fiji software 

(ImageJ 1.52n, NIH, USA). All images were examined blinded as to animal treatment.  

Maximized Z-stack of images were converted from Olympus image files (.oir) to 8-bit greyscale 

(.jpg) images, and signal pixels of positive staining areas in the region of interest (ROI) were 

selected. The ROI was the outline of 40 cells selected using the DIC image and added to the 

ROI manager. The mask outline was then applied to the other channels and the mean integrated 

density (sum of the value of the pixels) within each cell was measured.  

4.3.11 Statistical analysis 

Data were analysed using GraphPad Prism 7 software (GraphPad Software, Inc. La Jolla, CA, 

USA). The Shapiro-Wilk or Kolmogorov-Smirnov normality test was used to test the normality of 

data distribution. One-way ANOVA was used to compare three or more groups and the p-values 
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for significant differences were derived from relevant post-hoc test for multiple comparisons. A 

two-way ANOVA was used to compare multiple treatments across groups and p-values for 

significant differences were derived from relevant post-hoc test for multiple comparisons. Where 

applicable, linear regression was used to determine the slope of a line. All data are reported as 

mean ± standard error of the mean (SEM), along with the individual data points where relevant 

to demonstrate biological variability. Significance was set at p < 0.05 

4.4 Results 

4.4.1 Nitroxyl deactivates exogenous Cathepsin B enzyme  

The enzymatic activity of the CB enzyme (provided from an exogenous source) in the presence 

of HNO donor was assessed by fluorogenic substrate and measured using spectroscopy. 

Angeli’s salt (AS) was used as an HNO donor and tested at concentrations ranging from 0 to 

150 μM (Figure 4.1). The presence of HNO was able to significantly reduce fluorescent signal F 

(7, 152) = 947.3, p < 0.0001) as determined by the change in slope over time. Furthermore, the 

half maximal inhibition concentration (IC50) of Angeli’s salt was determined as 41.32 μM. This 

data, reported for the first time, shows that HNO can directly inhibit CB enzyme activity.  

4.4 2 Nitroxyl inhibits LPS derived Cathepsin B enzyme activity in BV2 cells 

Following the chemistry-based demonstration of HNO inhibition of exogenous CB enzyme 

activity, in vitro experiments were conducted to evaluate the effects of HNO on endogenous CB 

activity by LPS (inflammatory agent) challenge of mouse microglia-like cells. BV2 cells were 

incubated with LPS (500 ng/ml) for 24 h followed by a 1 h incubation with increasing 

concentrations of AS. CB enzyme activity was measured in cell homogenates using a 

commercially available fluorometric assay (Figure 4.2).  LPS treatment produced a significant 

increase in fluorescence (2534 ±109.6 RFU; p < 0.0002) compared to vehicle (827 ± 75.2 RFU), 

which was decreased in the presence of AS in a concentration dependant manner (50 μM AS, 

1714 ± 46.5, p < 0.0001; 100 μM AS, 1232 ± 103.5, p < 0.0001; 150 μM AS 1333 ± 56.6, p < 

0.0001) (Figure 4.2A). AS alone had no effect on fluorescence on vehicle treated cells (50 μM 

AS, 798 ± 17.6, p > 0.05; 100 μM AS, 740.3 ± 17.7, p > 0.05; 150 μM AS 712.3 ± 35.7, p > 

0.05). To determine if this response was specific to AS, an additional series of experiments was 

conducted in which BV2 cells were pre-treated with HNO scavenger, L-cysteine (1 mM) for 30 

minutes prior to the addition of AS (Figure 4.2B). On LPS (100 ng/ml) treated cells, pre-treatment 

with L-cysteine (1 mM) effectively abolished the attenuating effect of AS (200 μM) on CB 
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fluorescence (i.e. LPS only: 17,228 ± 907 RFU; LPS + AS: 13,451 ± 340 RFU (p < 0.05) and L-

cysteine + LPS + AS: 25,200 ± 2964 RFU (p < 0.01 compared to LPS + AS).  Control 

experiments revealed that LPS treatment alone (17,228 ± 907 RFU) and L-cysteine alone 

(15,216 ± 403.7 RFU) were sufficient to increase CB fluorescence above that detected from 

naïve, untreated cells (4279 ± 830 RFU, p < 0.01 for both comparisons).  In contrast, application 

of AS alone did not elicit an increase in CB fluorescence above that of untreated cells (AS only: 

8634 ± 565 RFU; Untreated cells: 4279 ± 830 RFU, p > 0.05). To understand the relationship 

between LPS and AS concentrations in affecting CB enzyme activity, two LPS (10 & 100 ng/ml) 

concentrations were compared with increasing concentrations of AS. Data showed a right-wards 

shift in IC50 (LPS 10 ng/ml, IC50 28.7 μM; LPS 100 ng/ml, IC50 77.8 μM) with increasing 

concentration of LPS, indicating that a higher concentration of AS is required to reduce the CB 

fluorescent signal (Figure 4.2C).  

To determine the intracellular localisation of these changes in CB enzymatic activity within live 

cells, non-toxic intracellular fluorogenic substrate Magic Red®, was incubated with BV2 cells 

treated with LPS (100 & 1000 ng/ml) for 24 h, followed by a 1 h incubation with AS (200 μM). 

Cells were counterstained with Hoechst nuclear stain to identify cell nuclei. Representative 

confocal images are shown in Figure 4.3A. The Magic Red® CB enzyme staining was localised 

to the cytoplasm of BV2 cells, with dense patches of punctate staining observed just outside the 

nucleus. The mean integrated density (IntDens) of 40 cells per image, 3 images per treatment, 

were measured (Figure 4.3B). Results demonstrated that AS was able to significantly reduce 

the IntDens of 1000 ng/ml LPS incubated cells (LPS only: 7465 ± 487 RFU compared to AS + 

LPS: 5462 ± 333 RFU; p < 0.01), but not following 100 ng/ml LPS treatment (LPS only: 7731 ± 

439 RFU compared to AS + LPS 7276 ± 405 RFU; p > 0.05). These data indicate that whilst an 

AS-mediated reduction in LPS induced CB enzyme activity can be detected in intact living cells, 

more robust changes in enzymatic activity were resolved via the homogenate-based CB assay. 

4.4 3 Cathepsin B or IL-1β protein levels are not altered by LPS treatment in BV2 cells 

To determine if observed changes in CB enzyme activity was due to alterations in protein 

production, western blot analysis of BV2 lysates was conducted (Figure 4.4). Western blot 

analysis determined that there was no change in CB protein levels caused by any of the 

treatment conditions compared to control (Figure 4.4A). To address the hypothesis that HNO 

inhibition of CB enzyme ultimately leads to decreased IL-1β production, we quantified IL-1β 



   
 

180 
 

protein levels and found that 24 h LPS (100 ng/ml) increased IL-1β levels in BV2 cells (ratio 1.5 

± 0.13 relative to -actin compared to 0.26 ± 0.02 in control cells, p < 0.0001), but this increase 

was not altered by a 1 h AS incubation (ratio 1.5 ± 0.06, p > 0.05) (Figure 4.4B).  

4.4.4 Nitroxyl reduces neuropathic pain symptoms in mice.  

To determine the in vivo effect of HNO on neuropathic pain symptoms, a modified chronic 

constriction injury model was used as described by Grace et al (2010). Mechanical allodynia 

was assessed in mice with (CCI) or without (Sham) injured sciatic nerves until Day 7 post-

surgery, using 6 varied strength von Frey filaments adjusted for mouse weight, and applied to 

the hind paw as described by Nicotra et al (2014) (Figure 4.5). Data collected shows allodynia 

at Day 7 generated by lighter hairs (0.04 g, 10 ± 2.6%; 0.07 g, 15 ± 2.4%; 0.16 g, 21.6 ± 3.7%) 

in the ipsilateral hind paw of CCI animals when compared to baseline (0.04 g, 0.8 ± 0.5%, p < 

0.05; 0.07 g, 2.9 ± 1.4%; p < 0.01; 0.16 g, 2.9 ± 1.1%, p < 0.001). Allodynia was not present in 

Sham operated animals at Day 7 (Figure 4.5A). A closer inspection of hair strength responses 

found that hair weighted 0.16 g gave the greatest percentage change in mechanical withdrawal 

in CCI animals at Day 7 compared to pre-surgery baseline (Day 7: 21.6 ± 3.7%; Baseline: 2.9 ± 

1.1%, p < 0.001) (Figure 4.5B). To assess the effect on HNO on established allodynia, a 

subscapular injection of AS (0.3, 1 & 3 mg/kg; as described by Longhi-Balbinot et al, 2016) or 

vehicle (10 μM NaOH) was given to both CCI and Sham operated animals immediately after 

behavioural testing in the morning of Day 7 and the animals were returned to their home cages 

and allowed full access to food and water and monitored for changes in general behaviour.  At 

4 h and 24 h post-injection, animals underwent subsequent behavioural testing. We observed a 

significant reduction in mechanical withdrawal response at 4 h post-injection of AS (3 mg/kg) for 

von Frey filament weights: 0.04, 0.07, 0.16, 0.4 g (0.04 g, 5 ± 3.4%; 0.07 g, 11% ± 6%; 0.16 g, 

6.6 ± 3.3%; 0.4 g, 16.6 ± 6.6%) (Figure 4.5C) when compared to pre-injection (0.04 g, 26.6 ± 

5.5%; p < 0.01; 0.07 g, 28.3 ± 3%; p < 0.05; 0.16 g, 35 ± 4.2%; p < 0.0001; 0.4 g, 35 ± 9%, p < 

0.05), but not the 24 h timepoint (0.04 g, 23.3 ± 8.4%; 0.07 g, 20 ± 5%; 0.16 g, 28.3 ± 6%; 0.4 

g, 28.3 ± 4.7%). Vehicle injections did not alter behavioural responses in either CCI or sham 

operated animals, and AS injections did not change behavioural responses in sham operated 

animals. Lower concentrations of AS (0.3 & 1 mg/kg) did not produce a significant decrease in 

mechanical withdrawal response (data not shown). In a separate group of animals, the specificity 

of the reduced allodynic response to AS was assessed by a pre-injection (i.p) of HNO scavenger, 
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L-cysteine, 30 minutes prior to AS or vehicle (10 μM NaOH) injection (Figure 4.5d). L-cysteine 

abolished the reduced allodynic change generated by AS at the 4 h timepoint.  

4.4.5 Nitroxyl reduces Cathepsin B enzyme activity in mouse spinal cord  

To determine whether HNO administration affected CB enzyme activity in the homogenates of 

ipsilateral lumber 3-5 spinal segments of these mice, a fluorogenic assay was used (Figure 4.6). 

CB activity (reported as RFU) was significantly reduced following AS administration at all 

concentrations in both CCI [Vehicle: 19074 ±1377; 0.3 mg/kg AS: 12724 ± 675 (p < 0.0001); 1 

mg/kg AS: 13993 ± 608 (p < 0.001); 3mg/kg AS: 12945 ± 743 (p < 0.0001)] and Sham operated 

mice [Vehicle: 15684 ± 767; 0.3 mg/kg AS: 11756 ± 884 (p < 0.05); 1 mg/kg AS: 12027 ± 518, 

p < 0.05; 3 mg/kg AS: 11702 ± 866 (p < 0.05)]. 

4.4.6 HNO reduces CX3CR1 expression but not cathepsin B in mouse spinal cord of CCI 

- injured animals 

To further assess the localisation of CB protein within the spinal cord of CX3CR1gfp+ mice (which 

express GFP within macrophage and microglial cells), immunohistochemical assessment was 

performed in CCI and sham operated animals. Spinal cords collected on Day 8 post-surgery 

were stained using the nuclear stain DAPI and antibodies to the neuron-specific nuclear protein 

NeuN and cathepsin B (CB). Representative confocal images are show in Figure 4.7.1. Image 

overlay showed that CB protein was predominately co-localised with NeuN positive cells (white 

arrowhead) and was also detected in some GFP expressing microglia (white arrowhead with 

asterisk) (Figure 4.7.2). The mean pixel intensity and number of cells of GFP, Cathepsin B and 

NeuN in laminae I-V (pain processing regions) of both the ipsilateral and contralateral sides of 

the spinal dorsal horn were assessed. As this was a global focus within the dorsal pain 

processing region, no further analysis was done to look at specific laminae outside these regions. 

Mean percentage of GFP positive cells (%GFP positive cells) and mean pixel intensity of GFP 

was higher in ipsilateral dorsal horn of CCI operated animals (%GFP positive cells, 6.4% ± 0.3; 

Mean pixel intensity, 2050 ± 59 RFU) compared to contralateral dorsal horn (%GFP positive 

cells, 11.7% ± 0.2; Mean pixel intensity, 1659 ± 134 RFU), AS treated CCI ipsilateral dorsal horn 

(%GFP positive cells, 8.4% ± 0.8; Mean pixel intensity, 1673 ± 117 RFU) and sham ipsilateral 

dorsal horn (%GFP positive cells, 8.7% ± 1.6; Mean pixel intensity, 1268 ± 94.5 RFU) (Figure 

4.7.3a/b).  Cathepsin B mean cell percentages (%CB positive cells) and mean pixel intensity, 

were unchanged between all treatment groups (Table 2a). The mean percentage and mean pixel 
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intensity of NeuN positive cells did not change between treatment groups (Figure 4.7.2e/f) (Table 

2b).  

Table 2a %CB positive cells and mean pixel intensity values (RFU) 

 Sham ipsi Sham contr CCI ipsi CCI contr CCI AS ipsi 
CCI AS 

contr 

%CB pos 
cells 

43.18 ± 2.3 61.87 ± 4.6 41.73 ± 6.1 47.39 ± 7.8 53.74 ± 7.9 50.14 ± 2.1 

Mean Pixel 
Intensity 

1412 ± 213 1306 ± 205 1866 ± 173 1898 ± 131 1312 ± 236 1248 ± 236 

 

Table 2b %NN positive cells and mean pixel intensity values (RFU) 

 Sham ipsi Sham contr CCI ipsi CCI contr CCI AS ipsi 
CCI AS 

contr 

%NN pos 
cells 

64.79 ± 1.9 66.11 ± 2.3 69.87 ± 5.2 65.38 ± 3.1 66.93 ± 3.4 62.58 ± 3.9 

Mean Pixel 
Intensity 

1479 ± 215 1443 ± 158 1556 ± 60.6 1668 ± 84.6 1134 ± 74.3 1034 ± 202 

 

4.4.7 Nitroxyl treatment did not change Cathepsin B, MMP-2 and MMP-9 protein levels 

To determine the changes in proteins which may be involved in downstream signalling of CB 

enzyme within the spinal cord, western blot analysis of ipsilateral tissue homogenates was 

conducted (Figure 4.8). Western blot data showed no significant changes in protein ratios of CB, 

MMP-2 or MMP-9 when comparing CCI operated animals to sham controls in the presence or 

absence of AS. However, the L-cysteine pre-treatment followed by AS injection, resulted in a 

decrease in MMP-9 in both sham (0.44 ±0.05) and CCI animals (ratio 0.51 ± 0.12), when 

compared to CCI + AS injection only (ratio 1.14 ± 0.13, p < 0.01).  
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Figure 4.1 HNO inhibits exogenous Cathepsin B enzyme activity.  
Fluorometric measure of exogenous Cathepsin B enzymatic activity over time in the presence 
of a range of Angeli’s salt (HNO donor) concentrations (A). In the absence of Angeli’s salt, 
fluorescence increased over the 10 min acquisition time (as shown by blue line). As the 
concentration of Angeli’s salt was increased, the extent by which fluorescence increased from T 
= 0 to T = 10 min was attenuated (F (7, 152) = 947.3, p < 0.0001). B) Inhibition of Cathepsin B 
enzyme activity by Angeli’s salt after 10 minutes of incubation time. Increasing concentration of 
Angeli’s salt (log conc 0 – 150 M) was added to cathepsin B enzyme (5-10 units/ml). The half 
maximal inhibition concentration of Angeli’s salt was calculated at 41.32 μM. 
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Figure 4.2 HNO inhibits LPS triggered cathepsin B enzyme activity in BV2 cells  
(A) Treating BV2 cells with LPS for 24 h increases cathepsin B enzyme activity, the extent of 
which is reduced by high concentration of Angeli’s salt (*** p < 0.001). (B) L-cysteine (HNO 
scavenger) reverses the inhibitory effect of Angeli’s salt on cathepsin B enzymatic activity 
following LPS treatment. (* LPS v Control, p < 0.01; # LPS v LPS + AS, p < 0.05; ** LPS + AS + 
LC v LPS + AS, p < 0.01; ^ LC v control, p < 0.01). (C) Increasing LPS concentration produced 
a right-ward shift in IC50 (LPS 10 ng/ml, IC50 28.7 μM; LPS 100 ng/ml, IC50 77.8 μM) of Angeli’s 
salt required to reduce cathepsin B enzyme activity.  
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       A 

 

 

Figure 4.3 Angeli’s salt reduces cathepsin B enzyme activity in LPS treated cells in vitro. 
Representative z-stack confocal images of BV2 cells taken at 60x magnification showing (A) 
Cathepsin B enzyme stain (red) and nuclear DAPI stain (cyan). Panels show LPS treatment only; 
100 ng/ml (a, a’) and 1000 ng/ml (c, c’) and with Angeli’s salt pre-treatment followed by LPS 
incubation at 100 ng/ml (b, b’) and 1000 ng/ml (d, d’). Control images show cathepsin B enzyme 
activity fluorescence in the presence of Angeli’s salt only (e, e’) and with pre-treatment of 
cathepsin B enzyme inhibitor prior to LPS 1000 ng/ml incubation (f, f’). Scale bar = 50 μm. (B) 
The bar graph represents the mean integrated density measurements taken of cathepsin B 
enzyme activity fluorescence within cells from each treatment. AS (200 μM) was sufficient to 
reduce CB activity in live cells treated with 1000 ng/ml LPS, but not 100 ng/ml (** p < 0.01).  
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Figure 4.4 Angeli’s salt treatment does not reduce cathepsin B or IL-1β protein levels.  
(A)Relative levels of cathepsin B protein in BV2 cell lysates following 24 h treatment with LPS 
(100 ng/ml) +/- Angeli’s salt. Cathepsin B levels were not altered by either LPS or Angeli’s salt 
treatment. (B) A 24 h treatment with LPS (100 ng/ml) increased the relative amount of IL-1β 
protein in BV2 cell lysates (*p <.0.0001). Pre-treatment with Angeli’s salt did not alter IL-1β 
protein expression compared to LPS treatment or control. Data is represented as a ratio of 
protein of interest expression to β-actin loading control.  
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Figure 4.5 Angeli’s salt reduces mechanical allodynia in CCI operated mice.  
Mechanical allodynia was determined using von Frey testing. (A) Summary graph showing the 
percentage paw withdrawal response to each of the von Frey hairs used at Baseline and Day 7 
post-surgery for CCI operated (n = 6) and sham operated animals (n = 6). (B) Graph showing 
the development of allodynia in the hind-paw of injured animals at Day 7 post-surgery.  CCI 
animals displayed a significantly increased withdrawal response to the 0.16 g filament compared 
to sham operated animals, indicating the development of allodynia. Sub-scapular injection of 
Angeli’s salt (3 mg/kg) reduced allodynia at 4 h, but not 24 h when measured with von Frey hairs 
(0.04, 0.07, 0.16 and 0.4 g) (C). Pre-injection with nitroxyl scavenger, L-cysteine (1 mM) was 
able to attenuate the Angeli’s salt inhibition at the 4 h time-point (D) for all 4 von Frey hairs. *p < 
0.001, #p < 0.05 – 0.0001 (see Results section 4.3.4 for details)  
 

 

 



   
 

188 
 

 

Figure 4.6 Angeli’s salt reduces Cathepsin B enzyme activity in the spinal cord of mice.   
A colourmetric assay was used to determine relative cathepsin B enzyme activity in 
homogenates of L3-5 ispilateral spinal cord from sham (black bars) and CCI (grey bars) animals. 
Angeli’s salt reduced cathepsin B enzymatic activity in both CCI and sham operated animals for 
all concentrations of Angeli’s salt (0.3, 1 and 3 mg/kg), when compared to vehicle control (0.01M 
NaOH). *p < 0.05, **p < 0.001-0.0001, see results section 4.4.5 for details. N = 6 per treatment 
group. 
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Figure 4.7.1 Localisation of cathepsin B and NeuN immunopositive cells in dorsal spinal 
cord of CCI and sham operated CX3CR1 gfp+ mice.  
Representative z-stack confocal images of ex vivo ipsilateral dorsal horn from lumbar spinal cord 
slices taken at 20x magnification showing nuclear DAPI stain (white), GFP (green) expression 
indicative of microglial CX3CR1 expression (green), cathepsin B enzyme protein (red) and 
neuronal marker NeuN (cyan). Panel shows ipsilateral spinal dorsal horn region from sham 
operated animals (1a, 1b, 1c and 1d), CCI operated animals with vehicle injection (2a, 2b, 2c 
and 2d) and CCI operated animals with Angeli’s salt (3mg/kg) injection (3a, 3b, 3c and 3d). Scale 
bar = 100 μm. 
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Figure 4.7.2 Overlay of immunohistological labelling of cathepsin B and NeuN in dorsal 
spinal cord of CX3CR1 gfp+ mice.  
Representative z-stack confocal images of ex vivo lumbar spinal cord slices taken at 20x 
magnification showing GFP (green) expression in microglial cells on the CX3CR1 gene, 
Cathepsin B enzyme protein (red) and neuronal marker NeuN (cyan). Panel shows ipsilateral 
spinal dorsal horn region CCI operated animals. Cathepsin B immunoreactivity localised to both 
neuronal (white arrowhead) and microglial cells (white arrowhead with asterisk). Scale bar = 100 
μm for panel, scale bar = 20 μm for expanded images. 
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Figure 4.7.3 Angeli’s salt treatment reduces percentage of CX3CR1 positive cells. 
Graphs representing the mean percentage of cells and mean pixel intensity of the spinal dorsal 
horn region expressing (A, B) GFP – CX3CR1 (microglial marker), (C, D) Cathepsin B enzyme 
protein and (E, F) NeuN (neuronal marker). The mean percentage (A; *p < 0.05) and mean pixel 
intensity (B *p < 0.01) of microglial cells is increased in the ipsilateral dorsal horn of CCI injured 
animals compared with Sham operated and contralateral dorsal horn of CCI injured animals (A; 
**p < 0.01)(n = 3) .  
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Figure 4.8 Cathepsin B, MMP-2 and MMP-9 protein levels within spinal cord tissue 
homogenates 24h following Angeli’s salt treatment.   
Relative levels of Cathepsin B enzyme protein (A/B), metalloprotease 2 (C/D) and 
metalloprotease 9 (E/F) in homogenates of ipsilateral L3-5 spinal cord tissue from sham-
operated (solid bars, n = 6) and CCI-operated (lined bars, n = 6) animals. A) Cathepsin B 
expression levels in both sham and CCI operated animals were unchanged by Angeli’s salt (AS) 
or L-cysteine (LC) treatment. B) There was no change in MMP-2 expression levels regardless 
of surgery or AS/LC treatment. C) MMP-9 protein expression levels did not change following CCI 
surgery or AS treatment, however a decreased expression was noted in both sham and CCI, AS 
+ LC treated samples when compared to CCI injured AS treated samples (**p < 0.01). Data is 
represented as a ratio of protein of interest expression to β-Actin loading control.  
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4.5 Discussion 

Here we demonstrate that 1) the direct action of HNO on reducing cathepsin B enzyme activity, 

2) a HNO dependent decrease in cathepsin B activity in both BV2 cells and ipsilateral spinal 

cord of CCI-injured and sham-operated mice, 3) reduced allodynia 4h  post HNO administration, 

4) the detection of CB protein within BV2 cells and mouse dorsal spinal cord tissue, which was 

not altered by LPS treatment, CCI-injury or subsequent HNO administration, and 5) no changes 

in MMP-2, MMP-9 or IL-1β protein levels following HNO treatment. 

The involvement of reactive nitrogen species in central mechanisms of neuropathic pain are 

being increasingly explored. The one electron reduced NO species, HNO has been implicated 

in reducing neuropathic pain symptoms via different pathways, however the central mechanism 

is still uncertain. HNO is reported to inhibit the LPS driven inflammatory response in BV2 cells, 

via NFκB and p38 MAPK pathways, and specifically targeting the Cys-179 residue of IKKβ and 

preventing the phosphorylation and degradation of IκBα and subsequent release of NFκB (Zhou 

et al., 2016). It has also been proposed that HNO can alter NMDA receptor activity by modifying 

a critical thiol residue leading to a decrease in Ca2+ influx (Kim et al., 1999). As NMDA activation 

is critical in the development of the increased post-synaptic excitatory signalling in neuropathic 

pain, this may provide an alternative mechanism of action. Furthermore, in animal models of 

neuropathic pain HNO was also reported to reduce glial inflammatory markers (GFAP and Iba1) 

and inflammatory mediators (IL-1β, TNFα) in the spinal cord (Longhi-Balbinot et al., 2016). 

Another possible pathway is via the inactivation of lysosomal cysteine, CB, which has been 

reported to aid the release of cytokine IL-1β in models of neuropathic pain (Longhi-Balbinot et 

al., 2016). The active-site cysteines in cysteine proteases are suggested to be highly sensitive 

for modification by HNO.  

Our study found that HNO can directly inhibit CB enzyme activity, which was restored by the 

HNO scavenger, L-cysteine. We determined that the concentration of HNO required to reduce 

CB enzymatic activity by 50% (IC50) was 41.32 μM. In support of our findings, previous studies 

report a similar IC50 for the AS-mediated reduction of CB activity in THP-1 and RAW 264.7 

macrophages (IC50; 51 μM) (Väänänen et al., 2006, 2008), Pro-inflammatory mediator LPS, can 

increase CB activity in various cells (Li et al., 2009; Creasy et al., 2010) triggering cell apoptosis 

and playing a major role in many disease models. LPS is used as an inflammatory stimulant for 

in vitro models of inflammatory and neuropathic diseases and is the major ligand for Toll-like 
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receptor 4 (TLR4) predominantly found on macrophage like cells, which when activated, 

releases many pro-inflammatory cytokines and NO (Nakamura et al., 1999). We also report that 

HNO (liberated from Angeli’s salt) was able to inhibit LPS stimulated CB activity in BV2 cells, in 

a concentration dependent manner. The specificity of Angeli’s salt to reduce CB activity was 

confirmed via the pre-treatment with the HNO scavenger, L-cysteine, which not only reversed 

the inhibitory effect of the HNO donor, but also potentiated CB activity. As L-cysteine cannot 

discriminate between Angeli’s salt derived, or endogenously generated HNO, this suggests that 

BV2 cells produce a basal level of endogenous HNO which modulates CB activity. Recent 

unpublished work from our laboratory observed an increase in iNOS derived endogenous HNO 

signal in BV2 cells following LPS stimulation, using a novel arylphosphine based fluorescent 

HNO probe (see Chapter 3). However, the local concentration of endogenous HNO may be in 

the nM to μM range, as approximately 40 μM of Angeli’s salt was required to reduce CB activity 

by 50%. We also showed that the concentration of AS required to reduce CB activity was 

positively correlated with LPS concentration, suggesting that the more CB is active, the higher 

amount of HNO is required to inhibit it. Despite increased CB activity in response to LPS 

stimulation, western blot analysis of BV2 cell lysates revealed that CB protein levels remain 

unchanged, suggesting that increased CB activity detected by the fluorescence assay may be 

due to enhanced enzymatic activity and not an increase in CB protein per se. A lack of mRNA 

transcript changes for CB following 24 h LPS stimulation in macrophage cells despite increases 

in CB activity (Creasy et al., 2010) also support post- rather than pre-transcriptional 

modifications.  

A change in CB activity in chronic pain is suggested to drive the release and cleavage of cytokine 

IL-1β, thus, enhancing excitatory synaptic signalling (Schotte et al., 1998; Hentze et al., 2003; 

Terada, et al., 2010). Further to this, IL-1β levels are reduced in CB knock-out models of chronic 

pain (Sun et al., 2012).  We observed an increase in pro-IL-1β protein levels in cell lysates 

following 24 h LPS (100 ng/ml) treatment, however Angeli’s salt did not alter IL-1β production 

suggesting that it is not driven by HNO. This is in contrast to the finding that pro- IL-1β mRNA 

expression in spinal cord of CCI-injured mice was significantly reduced following acute AS 

treatment (Longhi-Balbinot et al., 2016). It is worth noting that the spinal samples in Longi-

Balbinot, 2016 study were collected at 5 h post-AS treatment when the anti-allodynic effect was 

at peak, compared to the current study in whereby samples were collected 24 h post AS 
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treatment and the anti-allodynic effect had resolved. Future experiments using sensitive ELISA 

analysis of supernatants may assist in quantifying IL-1β levels in cell lysates. 

Our study also found that acute administration of HNO can reduce allodynia in CCI-injured 

animals, however this effect appears to be transient as it is present at 4 h post injection and 

resolved by 24 h, which has been previously reported (Longhi-Balbinot et al., 2016). Although 

previous study has shown that AS can disrupt the blood brain barrier and potentially reach the 

spinal cord following treatment, future experiments using intrathecal administration may increase 

the duration of reduced allodynia (Boje, 2000).  

As cathepsins have been previously implicated in the development of neuropathic pain (Barclay 

J, et al., 2007; Abbadiea C, et al., 2009) we examined HNO’s effect on CB activity within the 

ipsilateral spinal cord of both sham-operated and CCI-injured animals. Interestingly, HNO 

decreased CB activity in both surgery groups in a non-concentration dependant manner but did 

not alter mechanical withdrawal thresholds of sham operated animals.  This suggests that the 

anti-allodynic effect of HNO is not mediated by its actions on CB activity. This is supported by 

pervious work showing pharmacological inhibition and gene knock-out of CB reduced tactile 

allodynia in models of inflammatory pain but not neuropathic pain (Sun et al., 2012). Similarly, 

to BV2 cells, we also observed no change in CB protein levels in mouse spinal cord following 

CCI-injury or subsequent HNO treatment, as determined by both immunohistological and 

western analysis. However, this is contradicted by a study which reported increases in both CB 

mRNA and protein from spinal cord tissue lysates of spinal injured rats (Ellis et al., 2004). Similar 

studies which reported increases in CB protein levels, appeared to use pain models which have 

a high impact traumatic CNS injury (Fan et al., 2001; Hu et al., 2002) and may be providing a 

greater stimulus than our current study, thus driving more CB activated cellular pathways 

required for apoptosis and tissue degradation. We observed that CB enzyme was predominantly 

located in discrete punctate bundles just outside of the nucleus of BV2 cells or diffused 

throughout the cytoplasm (Figure 4.3) which has been previously reported in bone marrow 

derived macrophage (BMDM) cells (Lopez-Castejon et al., 2010). However, immunohistological 

observations from dorsal spinal cord tissue of CCI injured animals, indicate a high proportion of 

CB immunoreactivity in NeuN positive cells (neurons) as well as some GFP expressing microglial 

cells. Similar to our findings, a report by Ellis et al, (2005) shows CB staining localised only to 
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the lysosomes of spinal neurons in normal rats and observing CB in OX42 positive microglia 

only following spinal cord injury.  

Further to this, we also observed an increase in mean cell percentage and mean pixel intensity 

of GFP expressing microglial cells in ipsilateral dorsal horn of CCI-injured mice when compared 

to Sham controls. Microglial activation is a well characterised phenomenon following sciatic 

nerve injury in various animal models (Colburn et al., 1997; Mika et al., 2009). Longhi-Balbinot 

et al, (2016) observed a reduction in IBa1 mRNA levels in the spinal cord of HNO treated CCI-

injured mice, following both acute (single AS injection 3 mg/kg) and chronic (daily AS injection 

up to 7 days, 3 mg/kg) administration, supporting the idea that HNO reduces spinal microglial 

activation in response to nerve injury. 

Our data shows that MMP-2 & -9 protein was not increased in the ipsilateral spinal cord of CCI-

injured mice compared to Sham operated mice. Further to this HNO treatment (AS 3 mg/kg) did 

not alter MMP-2 or -9 levels. These findings do not support our hypothesis, however similar to 

our CB observations, HNO may be involved in S-nitrosylation of cysteine residues on these 

metalloproteases, hence reducing activity but not translation of these proteases. Further 

investigation may elucidate whether HNO can regulate MMP-9 and MMP-2 enzyme function, 

similar the inactivation of MMP-9 function observed by NO during cerebral ischemia (Gu et al., 

2002). Interestingly, HNO scavenger, L-cystine pre-treatment reduced MMP-9 levels in both CCI 

and Sham operated mice. MMP-9 is an extracellular protease released from various cells types 

in the CNS (neuron, glia and leukocytes) and is an important regulator of synaptic activity and 

excitatory signalling (Vafadari et al., 2016). Enzymatic activity, protein abundance and gene 

expression of MMP-9 is markedly increased following various physiological stimulus, including 

peripheral nerve injury (Vafadari et al., 2016). Previous studies have shown that L-cysteine pre-

incubation can reduced stimulated levels of MMP-9 mRNA and protein in rat astrocytes (Wang 

et al., 2017) and lung fibroblast cells (Wang et al., 2006), suggesting that MMP-9 activity is 

mediated by reactive oxygen species and supports our current observations.   

4.6 Conclusion 

Understanding the various adaptations which occur in the spinal cord during neuropathic pain 

development may provide potential therapeutic targets. Lysosomal cysteine proteases play a 

critical role in the regulation of cytokines such as IL-1β and other extracellular matrix molecules, 

such as metalloprotease in chronic pain pathologies. HNO, the protonated form of NO is able to 
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cleave cysteine residues on thiols and was shown to directly reduce cysteine protease, 

Cathepsin B activity in both BV2 cells and mouse spinal cord tissue. However, there was no 

change observed in protein levels of MMP-2 & -9 or IL-1β which suggests that CB may not have 

a direct role in IL-1β regulation in neuropathic pain, however MMP-2 and MMP-9 enzyme 

function requires further assessment. It should be noted, that the cysteine protease cathepsin S 

is another potential candidate which may be inactivated by HNO and has also been implicated 

in IL-1β production in neuropathic pain, which warrants further investigation. However, as HNO 

incubation in BV2 cells did not reduced LPS stimulated IL-1β levels in this study, careful 

assessment should be made as to whether HNO reduces allodynia via inactivation of either 

cathepsin substrate.  The ability of HNO to reduce allodynia in CCI-injured animals highlights its 

importance as a future therapeutic treatment option for persistent pain patients.  
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Chapter 5 - Graded peripheral nerve injury alters the progression and severity of 

microglial activity within the spinal cord of CX3CR1-GFP mice.  

 

This chapter has been submitted as a primary research paper in Neurobiology of Disease and 

is currently under review. [Staikopoulos V, Qiao S, Liu J, Song X, Yang X, Luo Q, Hutchinson 

MR, Zhang Z. Graded peripheral nerve injury alters the progression and severity of microglial 

activity within the spinal cord of CX3CR1-GFP mice. Neurobiology of disease. 2019] 

 

5.1 Abstract 

The reactivity of microglia within the spinal cord in response to nerve injury, has been 

associated with the development and maintenance of neuropathic pain. However, the temporal 

establishment of spinal microglial reactivity following injury remains to be fully defined.  Using a 

heterozygous CX3CR1 gfp+ transgenic mouse strain, we monitored microglial activity as 

measured by cell density, morphology, movement and process length over 14 days via in vivo 

confocal microscopy. Uniquely, this was explored in groups of mice which had graded nerve 

injury and associated graded behavioural mechanical nociceptive sensitivity. Significant 

mechanical allodynia was quantified from ipsilateral hind paw and was shown to interact with 

the extent of nerve injury from day 5 to day 14 (p < 0.009) and the extent of this ipsilateral 

allodynia was proportional to the nerve injury from day 5 to 14 (Spearman rho = -0.58 to -0.77; 

p < 0.002). This approach allowed for the assessment of the association of spinal microglial 

changes with the magnitude of quantified mechanical sensitivity. Additionally, the 

hemodynamic response in the somatosensory cortex was also quantified as a surrogate 

measure of brain activity. We found that spinal dorsal horn microglia underwent changes 

unilateral to the injury in density (Spearman rho = 0.47; p = 0.01), velocity (Spearman rho = -

0.68; p = 0.00009), and circularity (Spearman rho = 0.55; p = 0.01) proportional with the 

degree of the neuronal injury. Importantly, these data demonstrate that the allodynic behaviour 

is not a binary all or nothing state and that microglial reactivity are changing proportional to 

this. Increased total haemoglobin levels in the somatosensory cortex of higher-grade injured 

animals was observed when compared to sham controls. The degree of phenotypic microglial 

changes throughout the injury lifespan may provide an explanation for how microglia can 
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induce both rapid onset and sustained functional changes in the spinal cord dorsal horn, 

following peripheral injury.  

 

5.2 Introduction 

Damage to somatosensory nerves can create exaggerated nociception which is expressed by 

the individual as pain behaviour responses. Within 24 hours following peripheral nerve injury, 

neuronal adaptations occur in the dorsal horn of the spinal cord including, altered expression 

of receptors, ion channels and neurotransmitters, which leads to an increased generation and 

firing of action potentials and associated presentation of exaggerated pain behaviours 

(Latremoliere and Woolf, 2009; Scholz and Woolf, 2007). In addition to the neuronal 

adaptations, it is now well accepted that peripheral nerve injury also leads to the recruitment of 

a reactive microglial phenotype within the spinal cord dorsal horn, which can occur within 

hours of injury (Tanga et al., 2004) and last up to several months (Clark et al., 2007; Coyle, 

1998).    

Microglia are resident immune-like cells of the central nervous system. When challenged, 

microglia undergo molecular changes, including the release of various pro-inflammatory 

cytokines and take on a more phagocytic phenotype (Austin and Moalem-Taylor, 2010). After 

nerve injury, several molecular factors released from neurons contribute to spinal cord dorsal 

horn microglia transitioning to a reactive state (also known as microgliosis), causing changes 

in morphology (developing a more ameboid appearance), allowing them to migrate easily to 

sites of reactivity and increase proliferation (Cavlo and Bennett, 2012; von Hehn et al., 2012). 

The temporal resolution of these microglial transitions during the initiation and maintenance of 

chronic pain states remains unclear. Unfortunately, refining the knowledge around these 

critically timed transitions with standard approaches that require terminal tissue collection and 

analysis would require unacceptably large experimental designs and the use of excessive 

numbers of animals. Understanding the real time, longitudinal molecular and cellular changes 

within individuals, would offer a clearer appreciation of the transitional phenomena that occurs 

as exaggerated pain behaviours (e.g. mechanical allodynia) develop. This may identify a 

critical time point at which therapeutic interventions could circumvent the establishment of 

long-term neuropathic pain.  As new interventional therapies are being sought to target 

microglial contributions to hyper-nociception, it is critical to differentiate the cellular adaptations 



   
 

207 
 

within the spinal cord during the early phases (first 24-36 hours) and later phase (days to 

weeks) following peripheral nerve injury. Importantly, these changes need to account for inter- 

and intra-individual responses rather than assuming group mean responses represent the 

breadth of mechanisms that may be involved in establishing a phenotypically similar response.   

The animal models of peripheral nerve injury, which are often used to model the human 

neuropathic pain pathology, use a binary approach (pain versus no-pain) to create the 

extremes of the disease. The limitation with this approach is that binary methods cannot 

capture the dynamic range of the degrees of symptoms that are observed in clinical 

presentation of neuropathic pain which vary from mild to severe. Nor can they address the 

hypothesised molecular mediators that contribute differentially to different magnitudes of 

exaggerated pain. We have previously developed an animal model of neuropathic pain, 

adapted from the well validated Bennet and Xie (1988) chronic constriction injury model (CCI), 

that allows for the development of graded behavioural response to mechanical stimuli (Grace 

et al., 2010). Importantly, this model explores mechanical hypersensitivity across hypothesised 

clinically relevant ranges, rather than focusing on sparsely observed extremes of potential pain 

behaviours. We previously demonstrated that by using a graded CCI injury approach, animals 

produced both distinct pathological responses that aligned with the increased expression of 

glial markers, CD11b (microglia) and GFAP (astrocytes) within the ipsilateral lumbar dorsal 

spinal cord. Although the behavioural pathology could be assessed from the same animals 

throughout the study, the molecular changes within the spinal cord were only determined at the 

endpoint (day 14 post-op), once mechanical allodynia had been established. Using endpoint 

based experimental protocols such as the aforementioned study, would require a significant 

number of animals to be used to observe the progressive spinal changes (both cellular and 

molecular) which occur during the transition between acute and chronic pain states.  

Novel in vivo imaging can circumvent the previous methodology limitations by allowing 

researchers to observe the spinal cord throughout the experimentation period, such as 

repeated observations of GFP expressing cells within the spinal cord using 2-photon imaging 

(Farrar et al., 2012; Ali et al., 2017). These implanted windows into the spine, allow for up to 60 

days of observation of the animal, giving spatial and temporal information regarding cellular 

activity of tagged cells, such as microglia, encoding information such as shape and numbers of 

cells and their movement over time.  
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Further to this, owing to the known multi-neuroanatomical compartment processing of 

ascending nociceptive signals, understanding the functional changes occurring in multiple 

regions of the somatosensory cortex across similar time-course would add valuable 

information towards understanding corresponding changes in neuronal activity of higher order 

processing, following the development of mechanical allodynia. An example of a technology 

that would enable this, is photoacoustic tomography (PAM). PAM measures haemodynamic 

responses to neural activity, allowing non-invasive quantification of cerebral haemodynamic 

changes (Qiao et al., 2017).  

In this study we created a convergence experimental design through the use of three 

innovative experimental and analytical techniques to further understand 1) microglial reactivity 

changes following nerve constriction injury as mechanical allodynia develops; 2) 

haemodynamic changes within the somatosensory cortex following the establishment of 

mechanical allodynia; and 3) how these changes relate to the degree of nerve injury and the 

graded behavioural response.   

 

5.3 Methods 

5.3.1 Animals 

Male CX3CR1gfp+ (Stock No. 005582, purchased from Jackson Lab) mice (8 weeks old) were 

used in all experiments. All mice were maintained under a specific pathogen-free (SPF) barrier 

facility at Animal Centre of Wuhan National Laboratory for Optoelectronics. All animal studies 

were conducted in compliance with protocols that had been approved by the Hubei Provincial 

Animal Care and Use Committee and in compliance with the experimental guidelines of the 

Animal Experimentation Ethics Committee of Huazhong University of Science and 

Technology.  During surgeries 0.2 g/kg chloral hydrate + 1 g/kg urethane was used as 

anaesthesia, and 1-2 % isoflurane as anaesthesia during spinal and brain imaging. 

5.3.2 Experimental design 

5.3.2.1 Surgery (spinal window) 

The surgery has been described in detail previously (Farrar et al., 2012 Nature Methods; 

Figure 5.1). Under general anaesthesia (i.p. 0.2 g/kg chloral hydrate and 1 g/kg urethane), the 

dorsal surface above the lumbar spine (L4-5) was shaved and the exposed skin washed three 

times alternatively with 70% (v/v) ethanol and iodine to reduce risk of infection. Intraperitoneal 
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injections of 1 ml/100 g mouse of 5% glucose in saline (for hydration) and 0.2 mg/kg mouse 

dexamethasone (an anti-inflammatory steroid to reduce inflammation) were administered prior 

to surgery. A subcutaneous injection of 0.1 ml of 0.125% (v/v) lidocaine was administered at 

the site of skin incision. A small incision in the skin at the lumber level of the mouse’s spine 

and the skin retracted. An incision along three vertebrae on either side of L5 was made and 

the bone scraped clean on the top and the sides. The attached tendons to the three vertebrae 

were severed and all incongruous tissue was trimmed to reduce necrosis. Three vertebrae 

were clamped by magnetic stainless-steel bars with a notched groove and held under pressure 

on 30 mm stainless steel posts with a three-pronged plug, consisting of two pins to prevent 

rotation and a central magnet to hold the bar. The dorsal lamina of L5 was removed, the lateral 

edges of the bone back were trimmed as close as possible to the edges of the bars and the 

surface of the bone sealed with dental acrylic and cyanoacrylate. Where possible, the dura 

was left intact. 

Keeping the cord irrigated with normal saline, the top plate was positioned, and screws 

inserted into the metal bars. Kwik-Sil silicone elastomer (World Precision Instruments) was 

injected into the space between the cord and the top plate and the chamber was sealed with a 

5 mm diameter coverslip. Dental acrylic (Liquid, Teets,8501. Powder, TCI) and cyanoacrylate 

(Loctite 495) was used to seal the chamber at the rostral and caudal vertebrae. With pressure 

maintained by the screws, the three-pronged steel posts were then removed. The skin was 

pulled to the edge of the implant and secured with cyanoacrylate glue and dental acrylic. The 

set screws were inserted into the wings of the top plate. 

 

Figure 5.1 An imaging chamber for longitudinal optical access to mouse spinal cord without the 
need for repeated surgeries, adapted from Farrar et al., 2012 Nature Methods. (a) Photograph 
of the imaging chamber. Scale bar, 10 mm. (b) Photograph of a mouse with an implanted 
chamber (same mouse from panel a)). 
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Study 1: Spinal window imaging 

Day -7 Day -1  Day 0  Days 2, 5, 7 & 14 PO 

Spinal 
window 
surgery 

Baseline von Frey testing 
and spinal confocal imaging 

CCI 
surgery 

Von Frey behavioural testing 
and spinal confocal imaging 

 

5.3.2.2. Surgery (sensory cortex window) 

This surgery has been described in detail previously (Shih et al., 2012). Under general 

anaesthesia (i.p. 0.2 g/kg chloral hydrate and 1 g/kg urethane), the mouse was fixed on a brain 

stereotactic apparatus to avoid motion disturbance. The region covering the somatosensory 

cortex hind limb was thinned using a dental drill with low speed after removing the scalp over 

the entire dorsal skull surface, to create a thinned-skull window for photoacoustic imagine, 

described here below.  

 

Study 2: Photoacoustic cortex imaging 

Day 0  Day 30+ PO 

CCI surgery Photoacoustic imaging 

 

5.3.3. Graded chronic constriction injury (CCI) model  

The CCI model of graded sciatic nerve injury was performed aseptically at the mid-thigh level 

of the left hind-leg, as previously described (Grace et al., 2010), in order to produce a graded 

intensity of pain behaviour. Briefly, animals were anesthetized with 1-2 % isoflurane, the skin 

of the hindquarters was shaved and the sciatic nerve gently elevated using glass hooks. 

Zero,1, 2, 3 or 4 sterile chromic gut sutures (cuticular 4-0 chromic gut; Ethicon, Somerville, NJ, 

USA) were loosely tied around the isolated sciatic nerve (N; approximately 3–4 mm in length). 

Once the superficial muscle overlying the nerve was sutured with silk, and prior to surgical 

stapling of the skin incision, additional equal lengths of chromic gut were placed 

subcutaneously (S; approximately 3 – 4 mm in length), such that each animal was exposed to 

four equal lengths of chromic gut in total. Thus, the treatment groups, differing in pain 
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behaviour, were: sham (N0S4; n = 4); low pain (N1S3; n = 4); low-medium pain (N2S2; n = 4); 

medium-high pain (N3S1; n = 4) and high pain (N4S0; n = 4). 

5.3.4 von Frey mechanical allodynia behavioural testing 

The von Frey test investigated mechanical allodynia using phasic stimulation of von Frey 

filaments across a range of thresholds. Briefly, mice were subjected to 10 stimulations with 6 

calibrated von Frey filaments (0.04, 0.07, 0.16, 0.4, 0.6 & 1; grams of force). von Frey 

filaments were applied for 1 s at 1 s intervals in random force assignment at each test session 

as described by Nicotra et al (2012). In order to avoid sensitization, a 10-minute break was 

given between each set of simulations. von Frey Testing investigated the response frequency 

at each von Frey filament and behavioural responses were recorded as the average number of 

responses out of 10 for each von Frey filament.  

5.3.5 Confocal imaging of spinal cord:  

CX3CR1gfp+ mice were imaged at different time points: pre (the date before the CCI injury), day 

2, day 5, day 7, day 14 (the date when CCI injury operation finished was denoted as day 0). 

Mice were anaesthetized with 1-2% isoflurane in oxygen flow at 0.6 L/min controlling by a 

Matrix VMS small animal anaesthesia machine (Midmark, Kettering, Ohio, USA) and was 

placed on an imaging bracket in which the spinal cord chamber was fixed through the screw 

hole in the lateral of top plate. Imaging was performed using a multiphoton microscope (LSM 

780, Axio Examiner, Zeiss) with a 20× water-immersion objective lens (numerical aperture 

(NA) = 1.0; Zeiss). Imaging was performed using 488 nm wavelength with an Ar laser. 

Emission filters at 525/50 nm were used to isolate fluorescence GFP. The large scale of 

imaging stacks, 3000 μm × 1500 μm (in the xy plane) × 200 μm (in the z plane) with 10 μm 

axial spacing, were acquired first, from which the dorsal vein was clearly shown and the 

bilateral of spinal cord were distinguished. Then 20 min imaging sequences with an interval of 

5 seconds were monitored in both ipsi- and contra-lateral aspects of the spinal cord. 

5.3.6 Photoacoustic microscopy of somatosensory cortex imaging 

The Sensory 1, hindlimb region (S1HL) of mice were imaged through the thinned-skull window 

between day 30-40 post-injury using a custom photoacoustic microscopy (Jiang et al., 2016; 

Yang et al., 2017) with a step size of 2 μm. To image the cerebral microvascular structure 

through the thinned skull window, during each experiment, an isosbestic wavelength of 584 nm 

was used. A separate 2 mm x 2 mm cross-sectional area of the S1HL cortex was chosen for 
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both the ipsilateral and contralateral side. The selected cross scan was used for dynamic 

monitoring of the diameter, HbT, and SO2. Three wavelengths of 576, 580, and 584 nm were 

used for the monitoring. Each monitoring trial lasted for ∼23 min per wavelength (150 B-scans 

at three wavelengths). 

5.3.7. Confocal imaging 

Imaging stacks and time series were analysed with Imaris (Version 7.6, Bitplane) and ImageJ 

(Version 1.49, Fiji). Volume density of microglia in each lateral of spinal cord were acquired 

from large scale z stacks through counting the average cell numbers from 5 random cubes 

with a volume of 250 μm × 250 μm × 60 μm per cube in each mouse and are presented here 

as cells/3.75 x 106 μm3. The morphology change (circularity) was evaluated according to the 

formula of form factor. Form factor = 4πA/P2 (A; area; P, perimeter). The area and perimeter of 

microglia were calculated with Fiji. Cells that are more circular or ameboid in shape are given a 

score closer to 1 (with a circle being = 1), in contrast, a cell that is highly ramified or less 

circular is scored closer to zero. When analysing the movement of microglial processes, intact 

processes were randomly chosen. The motility (velocity) of microglial processes during a 20 

min time series was tracked manually with Imaris software (version 9.2, Advance Tracking). 

We randomly selected intact processes, and tracked the processes in each frame, over a 

whole image sequence containing 240 frames, using the SPOT selection tool. The velocity is 

described below as the microglial process velocity in micrometres per min (μm/min). The 

average process length originating from the soma was also determined from these frames and 

described below as microglial process length in micrometres (μm).     

5.3.8 Photoacoustic imaging 

The total haemoglobin (HbT) signal (denoted as, PA amplitude) of cerebral micro vessels were 

mapped in images through scanning under the wavelength of 584 nm. The PA amplitude value 

were acquired from random regions of micro vessels with MATLAB. SO2 of S1HL cortex micro 

vessels were calculated using a multi-wavelength method. With the use of three wavelengths 

shown above, the formula following were acquired by least-squares fitting. 
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 [HbR]   = (MT M)-1 MT (x,y,z)K    (1) 

[HbO2] 

 

SO2 =           [HbO2]   (2) 

             [HbO2] + [HbR]  

where 

 

HbR is deoxygenated haemoglobin. HbO2 is oxygenated haemoglobin. K is the proportionality 

coefficient that is considered to be constant. ε is the molar extinction coefficient. φ is the 

amplitude of photoacoustic signal. Further data processing was the same as that used in HbT 

to get the relative change in SO2. Then the SO2 of S1HL cortex micro vessels were collected 

from micro vessels randomly with MATLAB. 

5.3.9. Statistical analysis 

The 50% response threshold was calculated from the von Frey mechanical stimulation of both 

ipsi and contralateral hind paw plantar surfaces. A repeated measure (within individual) linear 

mixed-effects model was used to determine the effect of time (days post-surgery), the extent of 

nerve injury on the quantified mechanical allodynia, and any possible interaction between them 

(ipsi and contralateral responses assessed separately). Similar repeated measures linear 

mixed effects modelling was performed for each imaging measure collected to determine if any 

significant time or nerve injury effects had been observed (ipsi and contralateral responses 

assessed separately). Given some data for specific imaging measures were missing, the 

subsets of data and the behavioural statistical tests were re-run to ensure the main 

behavioural effects were still represented in the remaining animals (any loss of significance 

was reported). For the day 14 imaging and behavioural data, a Spearman rank correlation of 

allodynia x extent of nerve injury, imaging data x extent of nerve injury, and allodynia x imaging 

data were performed to determine if any relationship between the level of nerve injury and 

other behavioural and imaging parameters existed (ipsi and contralateral responses assessed 

separately). All statistics were performed using the 64-bit distribution of R statistical program, 
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version 3.6 (R Development Core Team, 2011) via the graphical user interface: R-studio 

(RStudio). Statistical analyses of Photoacoustic measurements were carried out using 

GraphPad Prism 7.03 software. PAM data were analysed using a Two-way ANOVA with a 

Tukey’s test as post hoc test. Results are means +/- standard error of the mean (SEM). A 

value of p < 0.05 was considered statistically significant.  

 

5.4 Results 

5.4.1 Development of graded mechanical allodynia following nerve injury. 

Prior to CCI surgery, mice showed similar 50% response withdrawal threshold on the left 

(ipsilateral; p = 0.87) and right (contralateral; p = 0.996) hind paws. Following surgery, the 

change in the 50% response withdrawal (PWR) to tactile stimulus of the ipsilateral hind paw 

showed a main effect of time and degree of nerve injury with significant interactions between 

the degree of nerve injury and days post-surgery at day 5 (p = 0.009), day 7 (p = 0.0006) and 

day 14 (p < 0.00001). In contrast, no such time or injury effect was observed on the 

contralateral hind paw (p = 0.28) (Figure 5.2). Further assessment of the relationship between 

the degree of the nerve injury and the development of graded mechanical allodynia 

demonstrated that whilst no correlation was found on day 0 (Spearman rho = -0.22; p = 0.2) 

and day 2 post-surgery (Spearman rho = -0.31; p = 0.08), by day 5 (Spearman rho = -0.60; p = 

0.0003) and onwards through 7 (Spearman rho = -0.72; p < 0.00001) and day 14 (Spearman 

rho = -0.80; p < 0.00001) post-surgery significant correlations between the number of neuronal 

sutures and the extent of mechanical allodynia was evident. No such relationship was evident 

for the contralateral paw (Spearman rho = -0.12 to 0.30; p = 0.15).  

5.4.2 Microglial density, circularity, process length and movement following graded 

nerve injury.  

Microglial density, circularity, process length and velocity were measured from the ipsilateral 

and contralateral dorsal lumbar regions of the spinal cord of mice pre- and post- surgery for up 

to 14 days post-injury. At baseline, the density, circularity and velocity of the microglia were the 

same for all animals in both the ipsilateral and contralateral side of the spinal cord. 

Representative confocal images of microglia taken from the contralateral and ipsilateral dorsal 

spinal cord are shown in Figure 5.3E. Microglial density within the ipsilateral side of the spinal 

cord increased depending on the grade of the nerve of injury as well as the time following 
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surgery from day 7 (p < 0.0001) until day 14 (p < 0.01) (Figure 5.3A). Importantly, this increase 

in density was significantly correlated with the degree of nerve injury (day 14 Spearman rho = -

0.77; p < 0.0001). These relationships were not evident for the contralateral side (p = 0.18 for 

day by nerve relationship and Spearman rho = -0.1, p = 0.6). 

Circularity of microglia was used to measure the change in microglial morphology from a 

ramified shape to an amoeboid shape, which is reported to be related to the functional change 

from dormant or surveillance properties, to more active or phagocytic properties as seen in 

pain states (Zanier et al., 2015). Briefly, cells that are more circular or amoeboid in shape are 

given a score closer to 1 (with a circle = 1), in contrast, a cell that is highly ramified or less 

circular is scored closer to zero.  A linear mixed-effects model was constructed analysing the 

effect of day of assessment and CCI surgery model on ipsilateral microglial circularity (Figure 

5.3B). The test revealed a significant day by nerve injury effect from day 2 to 14 (p < 0.03) on 

the ipsilateral side but not the contralateral side (p > 0.21). As for microglial density, a 

significant correlation was observed for the degree of microglial circularity with the extent of 

nerve injury from day 5 (Spearman rho = 0.58; p = 0.008) until day 14 (Spearman rho = 0.55; p 

= 0.01). No such effect was observed on the contralateral side (p > 0.21 for day by nerve 

relationship and Spearman rho = -0.1, p = 0.8). 

The velocity of microglia was measured by tracking the movement of individual microglial 

processes during a 20 min video capture. The data is expressed as movement in micrometres 

per minute (μm/min). A linear mixed-effects model was constructed analysing the effect of day 

of assessment and CCI surgery model on ipsilateral microglial process velocity (Figure 5.3C). 

The test revealed a significant day by nerve injury effect from day 7 to 14 (p < 0.03) on the 

ipsilateral side but not the contralateral side (p > 0.38). As for microglial density and circularity, 

a significant correlation was observed for the degree of microglial velocity on day 14 

(Spearman rho = -0.68; p < 0.0001). No such effect was observed on the contralateral side (p 

> 0.21 for day by nerve relationship and Spearman rho = -0.16, p = 0.4). 

Length of microglial processes was measured as distance originating from the cell soma to the 

end of the extended tip and the data is expressed in micrometres. A linear mixed-effects model 

was constructed analysing the effect of day of assessment and CCI surgery model on 

ipsilateral microglial process length. The test failed to detect any significant effect of time since 

nerve injury or degree of injury on the ipsilateral (p > 0.26) or contralateral (p > 0.92). Unlike 
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the other measures of microglial state, no relationship to nerve injury was observed on either 

side of the spinal cord (Spearman rho = -0.02 to 0.02; p > 0.95). 

5.4.3 Sensory motor cortex oxygen levels increase due to injury. 

The cerebral haemodynamic responses in both the ipsilateral and contralateral sides of 

sensory 1, hindlimb region (S1HL) primary somatosensory cortex, was measured from N0S4 

(sham control), N2S2 (med pain) and N4S0 (high pain) animals. A two-way ANOVA was 

constructed to analyse the effect of graded CCI surgery on both contralateral and ipsilateral 

photoacoustic amplitude (PA) and oxygen saturation (SO2). The test revealed an overall effect 

of CCI surgery (p < 0.0001) on PA. A post-hoc test using Tukey’s correction showed that there 

was a significant increase in PA signal in both ipsilateral (p < 0.01) and contralateral (p < 0.01) 

blood vessels of N4S0 S1HL sensory cortex when compared to sham (N0S4) animals (Figure 

5.4A & B). This indicates a higher total haemoglobin level and blood flow in the cortex of N4S0 

injured animals.  The test also revealed that there was an overall effect of CCI surgery (p < 

0.01) on SO2. However, the Tukey’s post-hoc test showed no difference between surgery 

groups (Figure 5.4C & D).  
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Figure 5.2 Graded nerve injury creates graded mechanical allodynia. Graded sciatic nerve 
injury (N0S4, N1S3, N2S2, N3S1, N4S0) causes the presentation of mechanical allodynia to 
von Frey stimuli over the 14 days of the study which is correlated with the extent of nerve 
injury. Error bars are SEM with n = 4.  
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Figure 5.3. Graded peripheral injury results in changes in spinal microglial density, 
morphology, velocity but not process length.  
Graphs representing measures of microglia density (A), form (B) velocity (C) and (D) process 
length for each graded sciatic nerve injury group over time (Day). Error bars are SEM with n = 
4. (E) Confocal images taken of the dorsal aspect of the L4/L5 contralateral and ipsilateral 
dorsal spinal cord at Day 0, 2, 5, 7 and 14 post-injury. The rostral aspect is to the top of the 
image with more caudal towards the bottom. Scale bar = 50 μm.  
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Figure 5.4 Photoacoustic amplitude is increased in the S1HL somatosensory cortex of 
high grade (N4S0) injured animals  
(A) Quantitation of photoacoustic amplitude from vasculature in S1HL. (B)Typical MAP 
(maximum amplitude projection) images in different injury groups are showed and 
magnification of single vessels are shown in white box. Ipsilateral refers to peripheral injury 
side. Injury groups: N0S4 (a; ipsilateral, a’; contralateral), N2S2 (b; ipsilateral, b’; contralateral) 
and N4S0 (c; ipsilateral, contralateral). Scale bar = 200μm. (C) Oxygen saturation (SO2) in 
S1HL somatosensory cortex of injured animals is not different from control animals. (D) Typical 
MAP (maximum amplitude projection) images are shown. Colour bar of SO2 shows changes 
from normoxia (0) to hyperoxia (1.5). Ipsilateral refers to peripheral injury side. Injury groups: 
N0S4 (a; ipsilateral, a’; contralateral), N2S2 (b; ipsilateral, b’; contralateral) and N4S0 (c; 
ipsilateral, contralateral). Scale bar = 100μm. Error bars are SEM with n = 3, significance is 
reported as p < 0.05. 
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5.5 Discussion  

We have established, using a graded nerve injury model with repeated imaging of spinal 

microglia, that the degree of nerve injury influences (i) the development of graded allodynia 

from days 5 - 14 post-surgery (ii) the extent of microglial density from day 7 – 14 post-surgery 

(iii) the extent of microglial circularity from day 5 -14 post-surgery (iv) the velocity of microglial 

processes at day 14 post-surgery. However, there were no observable changes associated 

with overall process length. Further to this, higher level sciatic injury (N4S0), resulted in an 

increased haemoglobin levels and blood flow in the somatosensory cortex (S1HL).  

Our study found that the extent of peripheral nerve injury, as determined by the number of 

sciatic sutures, was correlated with graded mechanical allodynia from days 5 14 following 

injury. Previous work (Grace et al., 2010) has shown that graded chronic constriction injury of 

the sciatic nerve, can generate hind paw allodynia that is correlated to the number of neural 

sutures in rats. We confirmed these results in our study using mice. However, it is worth noting 

that our injured mice did not develop allodynia on the contralateral hind paw, as was reported 

in the same study. The correlation observed by Grace et al (2010), also extended to the 

expression levels of CD11b (a known microglial reactivity marker) in the ipsilateral dorsal horn 

of the spinal cord, but not on the contralateral side. To understand the relationship between 

increased microglial reactivity and functional changes that are occurring, such as the release 

of inflammatory mediators that act on the local neurons, further investigation is warranted.  

This study was able to observe and measure microglial reactivity within the superficial region 

of the lumbar spinal cord and compare ipsilateral and contralateral changes, from before injury, 

through to the development of allodynia within the same animal. We observed a change in cell 

morphology from a more ramified shape to that resembling a circular or amoeboid shape, 

indicative of cell reactivity within 48 hours following injury in the high neural injury group 

(N4S0) when compared to the surgical sham animals (N0S4). A significant correlation between 

the degree of microglial circularity and the extent of nerve injury was observed from day 5 to 

14 post-injury. Previous studies have also observed changes in morphology of microglia to a 

reactive state, 24 hours after peripheral nerve injury (Eriksson et al., 1993). It is worth noting, 

in other groups, the extent and time course of microgliosis changes varied between studies 

depending on the type of injury and the location (Colberg et al., 1999; Parkhurst & Gan, 2010 

Review). 
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The importance of the timing of microgliosis in the context of neuropathic pain was recently 

demonstrated in a study that inhibited the development of mechanical allodynia following 

spinal nerve injury by depleting microglial (CX3CR1+) cells within 5 days. However, this 

reversal was not seen if the depletion was done at later time points (7- & 9-days following 

injury) (Peng et al., 2016). Additionally, pharmacological inhibition of microglia attenuated the 

development but not existing hypersensitivity following peripheral nerve injury (Ledeboer et al., 

2005; Raghavendra et al., 2003). These past studies and the new evidence generated here 

support the growing body of evidence, that microglial cells contribute to the initiation, but not 

maintenance of neuropathic pain development (Colburn et al., 1999; DeLeo et al., 2004; Jin et 

al., 2003; Narita et al., 2006; Tanga et al., 2004, Mika et al., 2009).  

Knowledge of whether the increased density of microglia following injury was due to either 

proliferation or peripheral infiltration was limited by our ability to identify between these cell 

types in vivo. However, previous studies have observed an increase in microglial proliferation 

in the ipsilateral spinal cord of rats following nerve ligation which peaked at day 3 post-surgery, 

with the newly generated cells continuing to proliferate over time peaking at 14 days post-

surgery (Echeverry et al., 2008). Furthermore, a recent study using transgenic reporter mice, 

and resident microglial versus monocyte cell specific immunostaining, found that there were no 

monocytes entering the spinal dorsal horn within 14 days of spinal cord injury (Gu et al., 2016). 

This is in contrast to previous work that showed peripheral monocytes infiltrating the 

parenchyma of the spinal cord following peripheral nerve injury. The authors of the study 

concluded that the chemokine, monocyte chemoattractant protein-1 (MCP-1) cause local 

microglial activation as well as drove the infiltration of bone-derived monocytes into the spinal 

cord (Zhang et al., 2007). Taken together, this evidence suggests that the increased microglial 

density observed in this study requires further investigation to identify the source of the 

increased cell numbers.  

This study observed a decreased in microglial process velocity from day 7 to 14 post-surgery. 

However, a correlation with the degree of injury was only observed at day 14. Under normal 

physiological conditions, microglia display a constant motility of their highly branched cellular 

processes within the intact mouse CNS (Stence et al., 2001; Nimmerjahn et al., 

2005).  Experiments in mice, have shown that microglial processes contact and pause on 

active neuronal synapses in vivo, suggesting a possible role of microglia motility in synaptic 
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remodelling and/or function (Wake et al., 2009). Following acute CNS damage, Stence et al 

(2001), has elegantly described a series of morphological stages that microglia undergo, which 

sees the highly ramified processes of resting microglia completely retract into the cell body 

within approximately an hour after initial observations begin, using confocal time lapse capture. 

This retraction occurs before transitioning, into what was described as a dynamic motile stage, 

where new extending and retracting processes develop. In this study, it is likely that these 

secondary processes, are what we are observing in the spinal cord, 48 hours following 

peripheral injury. At the molecular level, this dynamic motile stage, appears to proceed a series 

of stages, which differ in their expression of molecules for cell adhesion, cytoskeletal 

organization and antigen presentation (Raivich et al., 1999). 

Within days to weeks following this dynamic motile stage, microglia then transition into the 

phagocytic amoeboid morphology and can move quite rapidly to clean up axonal damage. 

Microglial processes are capable of rapid extension (1 - 4 µm/min) towards the site of injury 

(Stence et al., 2001; Nimmerjahn et al., 2005), our study found that there was no difference in 

baseline velocity of microglial processes in all groups prior to surgery (2.0 +/- 0.1 µm/min, 

ipsilateral and 1.9 +/- 0.1 µm/min, contralateral). However, we observed a significant change in 

the velocity of microglial processes within the ipsilateral dorsal spinal cord at day 14 following 

injury. The reduction in process movement may be occurring due to the retraction of 

processes, as the microglia transition into a more phagocytic morphological phenotype. 

Previous work reporting changes in microglial process velocity only measure acute responses 

(1-2 hours post-injury) following focal injury in the brain. This is the first study to look at longer 

term changes in motile behaviour of spinal microglia following peripheral nerve injury.   

Microglial process length has previously been reported as a morphological marker of 

activation. Resting microglia display small compact somata and long, thin, ramified processes, 

whereas activated microglia exhibit marked cellular hypertrophy and retraction of processes 

(Zhang et al., 2008).  Following the microglial changes detected in circularity and process 

velocity, we expected to observe similar changes in overall process length. However, our 

results showed that there was no relationship between graded injury and process length over 

time. Furthermore, linear mixed effects analysis did not identify any injury group differences. A 

previous study (Gu et al., 2016) reported a decrease in spinal microglial process length at 3- 

and 7-days post-injury, which is in contrast with our study.  However, our study employed a 
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less extreme and more clinically relevant mode of neuropathic pain which may attribute to 

these differences and highlight the relevant association between the intensity of injury and 

overall microglial response. As it is now understood that microglia are fundamental to 

neuropathic pain processing in male rodents. There is a differential role for this cell type in 

female rodents (Mapplebeck et al, 2016; Watkins et al, 2003), as it has been reported that 

pharmacological inhibition of microglia produces a reversal of hypersensitivity in male but not 

female mice (Sorge et al, 2015). Futures studies into the activation of spinal microglia following 

injury, similar to this study, would allow us to further understand how microglia characteristics 

change over time in the spinal cord of CCI injured female mice, compared to male cohorts.  

We observed an increase in PA signal (measure of total haemoglobin) to both the contralateral 

and ipsilateral aspects of the S1HL region of the primary somatosensory cortex in N4S0 

injured animals (compared to N0S4), indicating an increase in blood flow to these regions 

following peripheral injury. It is worth noting, that these measurements were done 

approximately 30 days following the initiation of peripheral injury, and any changes in neural 

activity relating to the injury, may have resolved by this time. A limitation of this study is that 

although these animals were established as allodynic at day 14 post-injury, they did not 

undergo von Frey testing at the same time (day 30) as the PAM imaging, therefore, we cannot 

report if the animals were allodynic at that time. However, previous studies have reported 

persistent allodynia in rodent models of neuropathic pain for up to and beyond 20 weeks post 

injury (Decosterd & Woolf., 2000; Seminowicz et al., 2009), therefore we conclude that our 

animals used for PAM imaging at 30 days post-injury, were most-likely still allodynic. 

This is the first study to measure hemodynamic changes in the sensory cortex of neuropathic 

pain animals. We observed increased haemoglobin levels in the somatosensory cortex of 

animals with a high degree of injury (N4S0) when compared to sham controls. This suggests 

that higher levels of injury result in changes in neuronal activity within the somatosensory 

cortex. These changes were observed in both the ipsi- and contralateral sides of the cortex 

despite the unilateral injury. Bi-lateral changes in cortical neural activity have previously been 

reported in CCI operated rats when compared to sham operated, as inferred from increased 

local glucose utilization rate, measured using 14C-2-deoxyglucose (2-DG) autoradiography 

(Mao et al., 1993). Mao et al., (1993) looked at topographical changes of 2-DG throughout 

sections of the whole brain and reported increased neuronal metabolic activity only in deeper 
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contralateral brain regions, including the mid and deep S1HL region. As PAM measurements 

of the cortical blood vessels are taken through the thinned skull, we may have not reached the 

required imaging depths to determine the haemodynamic activity of the deeper layers of S1HL 

region and highlights a possible limitation of our system. 

Previous work using fMRI scans of the primary sensory cortex of spinal cord injured (SCI) 

patients, observed changes in cerebral blood flow in patients with neuropathic pain compared 

without reported pain. The authors reported a reorganization of the primary somatosensory 

cortex that correlated with pain intensity in subjects with complete SCI and neuropathic pain 

when compared to SCI subjects without pain (Wrigley et al., 2009). Similarly, a study using 

functional Near-Infrared Spectroscopy (fNIRS) measured distinguishable changes in signal 

from the S1 region of the somatosensory cortex following painful and non-painful electrical skin 

stimuli. Functional NIRS is a non-invasive method to measure cerebral hemodynamic activity 

and is sensitive enough to differentiate painful and non-painful stimuli, based on their signal 

size and profile (Yucel et al., 2015). These findings suggest that non-invasive measurements 

of hemodynamic changes in the cortex could potentially be used as an objective measure of 

pain levels in patients and supports our current animal findings.   

5.6. Conclusion 

The aims of this study were to investigate, 1) the cellular characteristics of microglia during the 

development of allodynia; 2) the haemodynamic changes of the somatosensory cortex 

following the establishment of allodynia; and 3) how these changes relate to the degree of 

nerve injury and/or graded behavioural responses.  This was carried out using an animal 

model of graded neuropathic pain and a combination of the latest techniques in in vivo spinal 

cord imaging. The density, morphology and velocity of microglia was altered within the 

ipsilateral dorsal spinal cord of injured animals, and dependent upon the severity of the grade 

of sciatic nerve injury at varying time-points throughout the course of the experiment. These 

immune-like cells remained both abundant and exhibited morphological characteristics 

suggestive of being ‘active’ for up to 14 days post-injury, suggesting a concerted development 

of both microglial and behavioural adaptations throughout the first 14 days of injury. In 

addition, the altered hemodynamic changes occurring in the somatosensory cortex of the brain 

are also correlated with the degree of injury and allodynia and may provide an adjunct method 

for measuring the extent of pain.  
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This study contributes to the understanding of the progression of the characteristic changes of 

microglia within the spinal cord of the same animal, throughout the development of neuropathic 

pain.  
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Chapter 6: Discussion 

The studies described in this thesis were conducted to explore the use of novel techniques to 

further our understanding of persistent pain development and molecular signaling within the 

CNS. The results provide insight into the activity of the immune-like glial cells within the CNS, 

and the reactive nitrogen species, nitroxyl (HNO). The work contributes novel findings which 

add to the literature on persistent pain, and shape future investigations. Specifically, the key 

results from these studies have identified: 

 An acrylphosphine based novel fluorescent probe and validated its use for the 

detection of endogenously produced HNO in cell and animal models of persistent pain 

(Aim 1); 

 Changes in the activity of lysosomal cysteine protease Cathepsin B in the spinal cord, 

due to inactivation by exogenous HNO, are not involved in the anti-nociceptive 

behavioural adaptations observed in animals with persistent pain (Aim 2); 

 A relationship between the degree of spinal microglial activation and graded peripheral 

injury during the development of persistent pain in animals (Aim 3). 

 An increase in total haemoglobin levels in the somatosensory cortex of animals with a 

high degree of injury (Aim 4). 

6.1 Detection of endogenous nitroxyl in persistent pain models 

Much of our understanding of pain mechanisms is based on the technology available to us for 

detecting molecules involved such as DNA, RNA and proteins. However, short-lived, rapid 

acting gaseous molecules can also be produced via metabolic pathways which can act as 

transmitters and exhibit biological functions of their own. Their presence is often suggested via 

surrogate methods such as upregulation of associate enzymes; detection of reactive by-

products; loss of function by scavengers or predictive chemistry (Shoman et al, 2016; Fukuto 

et al., 2005). 

Direct detection of gaseous molecules is notoriously difficult due to their rapid diffusion away 

from the site of release, conversion to other species or self-dimerisation. Further to this, their 

activity can often be scavenged by other biological molecules present as part of their 

modulation, making it difficult to resolve the actual bio-available amount of endogenous 

product. Therefore, the rate of reaction and specificity of the species of interest, coupled to the 
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detection moiety is critical to ensuring the most accurate representation of endogenous levels. 

This will provide opportunities to further understand the endogenous role of particular gaseous 

molecules such as HNO. In recent years, the development of fluorescent based chemosensors 

has created useful tools for direct (or indirect) detection of these nitrogen species (see Chapter 

2; Table 2.1 & 2.2). 

As such, using arylphosphine based fluorescent probes which specifically detect HNO 

described in Chapter 3, we have demonstrated the presence of endogenous HNO in multiple 

cell populations (microglia and myocardial cells) and in blood samples taken from animals with 

either persistent pain or myocardial ischemic-reperfusion injury. 

HNO was detectable from both BV2 cells, an immortalized line of murine cultured microglial 

cells (when stimulated with LPS and LPA) and H9C2 cells, an immortalized line of rat 

myocardial cells (following the re-oxygenation of cells after a period of hypoxia). Our finding 

supports the hypothesis that HNO is derived by the iNOS enzyme as 1400W (iNOS inhibitor) 

was able to prevent the detection of both LPS and LPA stimulated HNO release in BV2 cells. 

Although we demonstrated the generation of HNO following LPS and LPA stimulation was 

derived by enzyme iNOS, many alternative NOS-independent sources of production have also 

been previously suggested (Shoman et al, 2016; Fukuto et al., 2005; Irvine et al., 2008). 

Oxidized products of NO such as peroxynitrite, nitrite, nitrate, nitrogen dioxide and dinitrogen 

trioxide have long been considered the main mediators of various physiological responses. 

However, it is now understood that reduced intermediate species such as HNO, elicit their own 

biophysiological responses via various pathways (Irvine et al., 2008; Miranda, 2005). Thus, the 

nitroxyl signaling pathway represents another target to be explored for intervention in various 

pathologies including persistent pain and cardiovascular disease, where modulation of NO and 

related oxidized species may produce broad ‘off-target’ effects. Differential reactivity of NO and 

HNO towards metals and thiols has been demonstrated in cardiovascular disease. 

Furthermore, where traditional NO donors are failing clinically due to tolerance development 

and decreased effectiveness, HNO donors are proving to be a superior alternative due to their 

ability to increase myocardial function and reduce the workload of the heart, due to potent 

vasodilation properties (Andrews et al., 2015; Sabbah et al., 2013). Further to this, HNO 

donors have also been implicated as a potential anti-nociceptive treatment given their actions 

to attenuate the activation of spinal glia in persistent pain models (Longhi-Balbinot et al., 2016; 
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Zarpelon et al., 2013). However, despite the clear clinical application of HNO, little is known 

about the potential endogenous formation, biological targets and regulation of function due to 

the lack of tools available for measuring its presence.  

Through the multi-disciplinary environment of the ARC Centre of Excellence for Nanoscale 

Biophotonics at the University of Adelaide, I was able to directly engage with chemist Dr Zhang 

and physicist Dr Reineck and work together to produce multiple generations of HNO 

fluorescent sensors. Being a part of the creation and testing process allowed us to have a 

better appreciation of some of the limitations within both chemistry and physics. Conversely, it 

also allowed Drs Zhang and Reineck, to better understand the complex environment biologists 

work with, when trying to identify specific targets in a multifarious system. This is an important 

distinction, as quite often chemists and physicists will only generally test their products in either 

water or in-organic solvent, neither of which is directly relevant to biological solutes. This 

experience also afforded us an appreciation of the rigorous life cycles of research, 

development and testing chemists conduct to reach the desired end-product. Once we had a 

good understanding of each other’s needs and wants, together we were able to develop the 

right tools and systems to test the presence of HNO in vitro. 

Our findings in Chapter 3 demonstrated the presence of endogenous HNO in persistent pain 

and cardiovascular disease models Using a novel arylphosphine based fluorescent probe, we 

were able to detect endogenously produced HNO in both BV2 and H9C2 cells using LPS/LPA 

and hypoxia, respectively. Future studies should focus on further characterizing the role of 

endogenous HNO in these systems and provide direct functional links between HNO 

production, bioactivity and disease development. Such experiments could include examination 

of persistent pain behaviour in the presence of HNO scavengers (L-cysteine, N-acetyl-L-

cysteine, DTT), allowing researchers to specifically determine whether sequestering 

endogenous HNO can modulate this condition. Functional experiments in which the synthesis 

of HNO has been disrupted, for example by inhibiting the synthesis enzymes iNOS (expressed 

by microglia/astrocytes), or nNOS (expressed in neurons) will however need to be interpreted 

with caution as these synthesis enzymes and pathways are common to other reactive nitrogen 

species.  

Indeed, the intraperitoneal, intrathecal and oral administration of N-acetyl-L-cysteine has 

already been shown to alleviate pain in CCI-induced neuropathic pain in rats (Naik et al., 2006; 
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Chen et al., 2000). These reports would indicate that endogenous production of HNO may 

contribute to neuropathic pain development, however, as mentioned recent literature has also 

reported that exogenous administration of HNO via donor AS, can also reduce allodynic pain 

behaviours in rodent CCI-induced neuropathic pain. These conflicting outcomes may be due to 

concentration specific actions of HNO, similar to that observed for NO and warrants further 

examination. With future investigations, these agents may provide additional support as 

analgesics so desperately needed for many people with persistent pain. 

An interesting observation of the experiments in Chapter 3 was the ability to detect elevated 

levels of HNO in the red blood fraction of neuropathic pain animals. Although this work 

requires further experimentation, it highlights the possibility of using circulating HNO levels as 

a biomarker for pain. The term biomarker has been defined by The National Institutes of Health 

as “a characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacological responses to a therapeutic 

intervention”. As reactive nitrogen species are involved in many pathologies, it would be 

challenging to use circulating levels of HNO to detect specific diseases, however it may 

potentially be used in conjunction with other specific markers, such as plasma CGRP which 

has been shown to be a biomarker of HNO activity (Paolocci et al., 2001). 

To support our findings, it would be ideal to included additional groups of animals with graded 

pain and observe if the HNO level detected in CCI-induced pain animals are relative to 

allodynic measures. Further to this, additional control experiments would determine if the 

sensor used was specifically targeting HNO in circulation. This was unfeasible during the 

experimental period due to constrains with time and resources. Our findings support the 

hypothesis that endogenous HNO is produced both in vitro and in vivo and demonstrates a 

potential role in various pathologies including persistent pain. 

 

6.2 Exogenous HNO in persistent pain and its cysteine interactions 

Spinal glial cells can release pro-inflammatory cytokines following peripheral injury which can 

contribute to the establishment of persistent pain. This cytokine release may be further 

modulated by lysosomal cysteine proteases (such as Cathepsin B and S) and as such, a role 

for lysosomal cysteine proteases in pain has been demonstrated in pathophysiological 

conditions (Barclay et al., 2007; Abbadiea et al., 2009). Nitrosylation of enzyme regulatory 
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cysteines is one of the key posttranslational modification mechanisms of enzyme function. 

HNO has been suggested to irreversibly inhibit lysosomal cysteine protease Cathepsin B, via 

modification of the active-site cysteine (Väänänen et al., 2008), and our results from Chapter 4 

suggest that this direct inactivation of enzyme activity may occur within microglia cells at the 

spinal cord level. We hypothesized that HNO would reduce allodynia via a cathepsin B enzyme 

mediated pathway. Our findings in Chapter 4, only partially support our original hypothesis that 

HNO directly inactivates Cathepsin B enzyme activity, however the Cathepsin B pathway does 

not appear to effect IL-1β production in BV2 cells or contribute to the reduced allodynia 

observed in CCI-injured animals. In these experiments, LPS stimulated murine microglial cells 

(BV2) displayed increased lysosomal cathepsin B activity which was reduced when co-

incubated in the presence of HNO. However, LPS stimulated IL-1β cytokine levels were not 

reduced by HNO.  

Further to this, in vivo experiments showed that CCI-operated animals administered high 

concentration of HNO donor (3 mg/kg), displayed less allodynia than vehicle treated CCI 

animals. Sham operated animals did not develop allodynia and showed no behavioural 

changes with HNO. However, both non-injured and CCI-injured animals receiving the HNO 

donor displayed reduced spinal cathepsin B activity. This implies that cathepsin B is not 

involved in the reduced allodynia observed in CCI-injured animals, although literature suggests 

it may be involved in inflammatory models of persistent pain (Sun et al., 2012). Furthermore, 

our observations may be a result of HNO mediated inactivation of another lysosomal cysteine 

enzyme Cathepsin S, which is implicated in neuropathic pain peripheral and spinal modulation 

(Barclay et al., 2007; Clark et al., 2009). It would be beneficial to determine if HNO can 

irreversibly in-activate cathepsin S enzyme. In the spinal cord, cathepsin S is secreted by 

activated spinal microglia and upregulated after nerve injury to cleave the soluble chemokine 

ligand CX3CL1 (also known as fractalkine) from spinal local neurons and primary afferent 

fibers (Zhang et al., 2017). Released CX3CL1 activates CX3C-chemokine receptor 1 

(CX3CR1) on microglial cells and leads to IL-1β secretion via p38 MAPKs (Inoue et al., 2018), 

however as HNO incubation in BV2 cells did not reduced LPS stimulated IL-1β levels, careful 

consideration should be made as to whether HNO reduces allodynia via inactivation of either 

cathepsin substrate. Further to this, it would be important to measure spinal IL-1β protein 

levels via ELISA to confirm the BV2 observations. This was not carried out during the 
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experimental period as the samples generated where prioritized towards cathepsin B 

enzymatic activity assays and western blot assessment. Western blot experiments did not 

generate usable IL-1β protein data from spinal cord lysates and hence were not included in 

Chapter 4.  

 

6.3 Spinal microglial activation is dependent upon degree of injury 

The reactivity of microglia within the spinal cord, in response to nerve injury, has been 

associated with the development and maintenance of neuropathic pain. However, the temporal 

establishment of spinal microglial reactivity following injury remains to be fully defined. 

Therefore, in Chapter 5 we observed the changes in spinal microglial activity (as measured by 

cell density, morphology, movement and process length), using a heterozygote CX3CR1 gfp+ 

transgenic mouse strain, monitored over 14 days via in vivo confocal microscopy. Changes in 

microglial activity was explored in groups of mice which had graded nerve injury and 

associated graded behavioural mechanical nociceptive sensitivity, allowing for association of 

spinal microglial changes to be related to the extent of quantified mechanical sensitivity. 

Measuring GFP positive cells, we found that the density, circularity and process velocity of 

spinal dorsal horn microglia were altered following sciatic injury and correlated with the extent 

of nerve injury at various time points post-surgery. Some changes where observed as early as 

2 days post-injury (circularity) with other characteristics taking longer to develop, such as 

density changes (5 days post-surgery) and process length decline (14 days post-injury). 

Furthermore, higher-grade injured animals generally produced earlier onset of changes in 

microglial density and morphology compared to both lower-grade injured animals and sham 

controls. 

Our findings suggest that microglial reactivity is not a binary all or nothing state, but rather is a 

spectrum of response proportional to the degree insult or injury. Varying levels of injury and 

subsequent development of graded mechanical allodynia are also associated with positively 

correlated changes in the expression of spinal glial markers, GFAP (astrocytes) and CD11b 

(microglia) (Grace et al., 2010). These findings suggest that there is a threshold in the extent of 

microgliosis (and astrogliosis) required to develop persistent pain, possibly via changes in 

neuronal plasticity within the spinal cord. Knowing what this threshold is, would provide critical 

information about which injuries are most likely to develop into persistent pain or not, and 
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enable personalised therapeutic intervention at specific time points and doses that would 

prevent the onset of long-term pain. Further to this, the degree of phenotypic microglial 

changes throughout the injury lifespan may provide an explanation for how microglia can 

induce both rapid onset and sustained functional changes in the spinal cord dorsal horn, 

following peripheral injury.  

Our spinal cord observations would benefit further from exploring the effect of pharmacological 

intervention on the observed changes in microglial activity, when administered at the 2 to 5-

day time window and observe which time-point generates the greatest prevention of persistent 

pain. As such, pharmacological inhibition of microglia using minocycline at 24 hours post-

injury, has been shown to attenuate the development but not existing hypersensitivity following 

peripheral nerve injury when administered following 1 week (Ledeboer et al., 2005; 

Raghavendra et al., 2003). Minocycline is a tetracycline derivative antibiotic used to treat of 

bacterial infections which also possesses potent anti-inflammatory activity. It has been 

demonstrated to strongly suppress microglial activation in a variety of neuroinflammatory and 

neurodegenerative disorders (reviewed in Garrido-Mesa et al., 2013). However, although 

proven to be safe for human use, it is not readily prescribed for persistent pain. Therefore, 

exploring more commonly prescribed therapeutic agents such as opioids and non-steroidal 

anti-inflammatory drugs (NSAID) during this 2 to 5-day window, would further our 

understanding of their effect on microglial activity following injury. Our findings support our first 

and second hypothesis that microglial activation is evident following peripheral injury and is 

correlated to the degree of peripheral injury and subsequent graded mechanical allodynia.   

Changes in microglial activity can occur both in response to and can contribute to increased 

spinal neuronal activity following peripheral injury. Spinal dorsal horn regions including 

superficial laminae I-II and deep laminae V – VI show increased neural activity in CCI animals 

and transmit somatosensory information via ascending spinothalamic tracts (Boadas-Vaello et 

al., 2016; Colloca et al., 2017). A limitation of this study is the use of male cohorts only. It is 

well understood that microglia are fundamental to neuropathic pain processing in male rodents 

however, there appears to be a differential role for this cell type in female rodents (Mapplebeck 

et al, 2016; Watkins et al, 2003). Studies have shown that pharmacological inhibition of 

microglia produces a reversal of hypersensitivity in male but not female mice (Sorge et al, 

2015). Futures studies into the activation of spinal microglia following injury, similar to this 
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study, would allow us to further understand how microglia characteristics change over time in 

the spinal cord of CCI injured female mice, compared to male cohorts. Changes in 

somatosensory activity can be measured by functional spectroscopy and photoacoustic 

tomography (PAM). These techniques are non-invasive methods used to measure cerebral 

hemodynamic responses (such as blood flow and oxygen saturation) to neural activity and is 

sensitive enough to differentiate painful and non-painful stimuli (Qiao et al., 2017). We 

observed increased haemoglobin levels in the somatosensory cortex of animals with a high 

degree of injury (N4S0) when compared to sham controls. This suggests that higher levels of 

injury result in changes in neuronal activity within the somatosensory cortex. These changes 

were observed in both the ipsi- and contralateral sides of the cortex despite the unilateral 

injury. Bi-lateral changes in cortical neural activity have previously been reported in CCI 

operated rats when compared to sham operated, as inferred from increased local glucose 

utilization rate, measured using 14C-2-deoxyglucose (2-DG) autoradiography (Mao et al., 

1993). Mao et al., (1993) looked at topographical changes of 2-DG throughout sections of the 

whole brain and reported increased neuronal metabolic activity only in deeper contralateral 

brain regions, including the mid and deep S1HL region. As PAM measurements of the cortical 

blood vessels are taken through the thinned skull, we may have not reached the required 

imaging depths to determine the haemodynamic activity of the deeper layers of S1HL region 

and highlights a possible limitation of our system. 

Our findings suggest that changes in haemoglobin levels in the S1HL region of the 

somatosensory cortex could be used to measure the presence of pain in non-verbal patients 

following peripheral injury. This may be used in conjunction with other brain activity measures 

to create a suite of minimally invasive tools for assessing pain.  

As with the longitudinal spinal microglial observations, future work observing the change in 

haemoglobin levels and blood flow in the somatosensory cortex during the development of 

persistent pain, would further our understanding of the time scale involved in cortical changes 

following injury. However, this was outside the scope of our current study and would have 

created too many interventions to the cohorts of animals being used. To our knowledge, this is 

first study to measure these changes in rodents following injury, as previous literature has 

generally reported similar findings in humans. Our findings support our third hypothesis that 

peripheral nerve injury will create haemodynamic changes within the somatosensory cortex.   
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6.4 Concluding remarks 

Persistent pain is a global debilitating condition brought on by various underlying etiologies 

such as neuronal lesions and many other diseases, which impose a significant burden upon 

the quality of daily life for millions of people as well as contributing towards major social 

economic deficit. Diagnosis and treatment of neuropathic pain and other chronic pain 

conditions are confounded by the underlying disease and quite often, treatment of the causal 

disease does not resolve the persistent pain. Contributing to the complexity and challenging 

nature of persistent pain, pharmacological therapies used to treat nociceptive pain, often have 

limited success in treating persistent pain symptoms, likely due to the diverging and variable 

spinal mechanisms which are involved. Understanding the underlying pathogenesis of 

persistent pain will better aid future outcomes for both prevention and treatment. In order to 

develop understanding, often we first need to develop new tools and methods to allow 

researchers to ask and answer questions which were not before possible. 

The studies reported in this thesis have provided evidence indicating that reactive nitrogen 

species, nitroxyl, may influence persistent pain in both an endogenous and exogenous setting 

via spinal glial involvement. Furthermore, a detailed analysis of spinal glial changes during 

persistent pain development has contributed to our understanding of the tightly regulated 

activation status of microglia based on the degree of peripheral injury.  

Briefly, we have created a tool that can detect the presence of nitroxyl in immune-like cells 

which may be derived via the inducible NOS receptor following pain generating stimulus. 

Further research into this finding could expand the understanding of the reactive nitrogen 

species in chronic pain development. In addition, our studies support the recent finding that 

exogenous application of nitroxyl can reduce pain symptoms, however the mechanism of 

action still remains elusive. Future work on the impact of nitroxyl on alleviating pain symptoms 

could facilitate the development of novel centrally targeted analgesic therapies, providing much 

needed relief for patients with untreatable neuropathies using current available treatments. 

Finally, our studies have shown that there is a relationship between the severity of nerve injury 

and the resulting spinal glial changes which may predict the severity of pain-like symptoms 

within in the first 2 - 7 days following the initial injury. This creates a window into which 

therapeutic management should be targeted to prevent the development of persistent pain in 



   
 

243 
 

these patients. It is hoped that the present work will drive future research with a significant 

focus on improving the knowledge of treatment and possible prevention of neuropathic and 

other chronic pain conditions, giving back quality of life to millions of chronic pain sufferers and 

preventing many more.  
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APPENDICIES 

Appendix 1. Exogenous Cathepsin B enzyme assay protocol (Sigma- Aldrich) 

https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-

cathepsin-b.printerview.html 

Enzymatic Assay of Cathepsin B 

1. Objective 

To standardize a procedure for determining the enzymatic activity of Cathepsin B. 

2. Scope 

This procedure applies to all products that have a specification for Cathepsin B activity, such 

as Sigma-Aldrich Product Numbers C0150 and C8571, determined by the liberation of 7-

amino-4-methylcoumarin from Z-Arg-Arg 7-amido-4-methylcoumarin. 

3. Definitions 

3.1 Purified Water = water from a deionizing system, resistivity > or = 18MΩ•cm @ 25ºC 

3.2 CBZ – carbobenzoxy. 

3.3 Arg-Arg – arginylarginine 

3.4 7-AMC – 7-amino-4-methylcoumarin. 

3.5 Unit definition – one unit will liberate 1 nanomole of 7-amino-4-methylcoumarin from Z-Arg-

Arg 7-amido-4-methylcoumarin per min at pH 6.0 at 40ºC. 

4. Discussion 

4.1 Cathepsin B is a lysosomal cysteine proteinase which will hydrolyse proteins with a broad 

specificity for peptide bonds, but will preferentially cleave at the carboxyl side of Arg-Arg bonds 

in small molecule substrates. Lysosomal Cathepsin B has also been shown to degrade soluble 

monomeric collagen and insoluble polymeric collagen in vitro. 

 

Nα–CBZ–Arg–Arg–7–amido–4–methylcoumarin + H2O    Cathepsin B   > Arg–Arg + 7–AMC 

  

https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-cathepsin-b.printerview.html
https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-cathepsin-b.printerview.html
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=C0150&Brand=SIGMA
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=C8571&Brand=SIGMA
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4.2 The substrate Nα–CBZ–Arg–Arg–7–amido–4–methylcoumarin is used for the fluorometric 

detection of Cathepsin B activity. The Km value for this substrate is 0.39 mM, with an optimum 

pH of 6.0. The fluorescence of the free aminomethylcoumarin released. 

5. Responsibilities 

It is the responsibility of trained Analytical Services laboratory personnel to follow this 

procedure as written. 

6. Safety 

Refer to Safety Data Sheets (SDS) for hazards and appropriate handling precautions. 

7. Procedure 

7.1 CONDITIONS: 

7.1.1    T = 40°C, pH = 6.0, Excitation = 348 nm, Emission = A440nm, Light path = 1 cm 

7.2 METHOD: 

7.2.1    Fluorometric Rate Determination 

7.3 REAGENTS: 

7.3.1    352 mM Potassium Phosphate Buffer, 48 mM Sodium Phosphate, and 4.0 mM 

Ethylenediaminetetraacetic Acid; pH 6.0 at 40°C (Buffer). 

Prepare a solution in purified water using 47.9 mg/ml of Potassium Phosphate Monobasic, 

such as Sigma-Aldrich Product Number P5379; 6.8 mg/ml of Sodium Phosphate Dibasic, 

such as Sigma-Aldrich Product Number S0876; 1.7 mg/ml of Ethylenediaminetetraacetic 

Acid, such as Sigma-Aldrich Product Number ED4SS. Adjust the pH to 6.0 at 40°C using 1N 

HCl or 1N KOH. 

7.3.2    8.0 mM L-Cysteine HCL Solution, pH 6.0 at 40°C (L-Cys). 

Prepare a fresh solution in Reagent 7.3.1 (Buffer) using 1.4 mg/ml of L-Cysteine 

hydrochloride, such as Sigma-Aldrich Product Number C7880. Adjust to pH 6.0 at 40°C with 

1N NaOH. 

https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=P5379&Brand=SIAL
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=S0876&Brand=SIAL
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=ED4SS&Brand=SIGMA
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=C7880&Brand=SIAL
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7.3.3    0.1% (v/v) Brij 35 Solution (Brij 35). 

Prepare a 0.1% (v/v) solution in purified water using Brij 35 Solution, 30% (w/v) solution, such 

as Sigma-Aldrich Product Number B4184. 

7.3.4    0.02 mM Nα–CBZ–Arg–Arg–7–amido–4–methylcoumarin (Arg-Arg-7-AMC). 

Prepare a fresh solution in Dimethyl Sulfoxide such as Sigma-Aldrich Product Number 

D5879 using 7.1 mg/ml of Nα–CBZ–Arg–Arg–7–amido–4–methylcoumarin, such as Sigma-

Aldrich Product Number C5429. Dilute to a final concentration of 0.02 mM with Reagent 

7.3.3 (Brij 35) and use within 3 hours of preparation. Protect this solution from light. 

7.3.5    5.0 μM 7–amino–4–methylcoumarin (Standard). 

Prepare a solution in Dimethyl Sulfoxide, such as Sigma-Aldrich Product Number D5879, 

using 1 mg/ml of 7–amino–4–methylcoumarin such as Sigma-Aldrich Product Number 

A9891. Dilute to a final concentration of 5.0 μM with Reagent 7.3.3 (Brij 35). Protect this 

solution from light. 

7.3.6    Cathepsin B Enzyme Solution (Enzyme). 

Immediately before use, prepare a solution containing 5-10 units/ml of Cathepsin B in cold 

Reagent 7.3.3 (Brij 35). 

7.4 PROCEDURE 

7.4.1    For measuring enzymatic activity, pipette (in milliliters) the following reagents into 

fluorometric cuvettes: 

  Blank Test 

Reagent 7.3.2 (L-Cys) 0.75 0.75 

Reagent 7.3.3 (Brij 35) 0.90 1.00 

Reagent 7.3.6 (Enzyme) 0.10 ---- 

  

7.4.2    Mix by inversion and equilibrate to 40°C. Monitor the intensity of fluorescence at the 

excitation wavelength of 348 nm and the emission wavelength of 440 nm until constant using a 

suitably thermostatted fluorometer. 

https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=B4184&Brand=SIAL
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=D5879&Brand=SIAL
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=D5879&Brand=SIAL
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=C5429&Brand=SIGMA
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=C5429&Brand=SIGMA
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=D5879&Brand=SIAL
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=A9891&Brand=SIGMA
https://www.sigmaaldrich.com/ProductLookup.html?ProdNo=A9891&Brand=SIGMA
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7.4.3    Then pipette (in milliliters) the following reagents into fluorometric cuvettes: 

  Blank Test 

Reagent 7.3.4 (Arg-
Arg-7-AMC) 

0.75 0.75 

  

7.4.4    Immediately mix by inversion and record the increase in intensity of fluorescence at the 

excitation wavelength of 348 nm and the emission wavelength of 440 nm for 5 minutes. Obtain 

the maximum Δ Intensity/min using the maximum linear rate for both the test and the blank. 

7.4.5    For standard curve determination, pipette (in milliliters) the following reagents into 

fluorometric cuvettes: 

  STD1 STD2 STD3 STD4 STD5 
STD 
BLANK 

Reagent 
7.3.2      (L-
Cys) 

0.75 0.75 0.75 0.75 0.75 0.75 

Reagent 
7.3.3    
(Brij 35) 

1.55 1.35 1.15 0.95 0.75 1.75 

Reagent 
7.3.5 
(Standard) 

0.20 0.40 0.60 0.80 1.00 ---- 

  

7.4.6    Mix by inversion and equilibrate to 40°C. Measure the fluorescence intensity at the 

excitation wavelength of 348 nm and the emission wavelength of 440 nm for all standards and 

standard blank. 

7.5 CALCULATIONS 

7.5.1    Correct standard intensities versus the standard blank. 

    Δ Intensity Standard = Intensity STD – Intensity STD blank 

    Obtain the linear regression of the standards by plotting the Δ Intensity Standard versus 

nanomoles of 7–amino–4–methylcoumarin for each standard. 
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7.5.2    Determine the nanomoles of 7–amino–4–methylcoumarin liberated using the linear 

regression obtained from the standard data: 

nanomoles of 7-AMC liberated = (ΔIntensity/min sample - ΔIntensity/min 
blank)- y intercept slope 

  

Units/ml enzyme = nanomoles of 7-AMC liberated) (DF) 0.100 ml 

  

where: 

    DF = dilution factor 

    0.100 ml = volume of enzyme used 

7.6 FINAL ASSAY CONCENTRATION: 

7.6.1 In a 2.50 ml reaction mix, the final concentrations are 105.6 mM potassium phosphate, 

14.4 mM sodium phosphate, 1.2 mM ethylenediamine tetraacetic acid, 2.4 mM L-cysteine, 

0.07% (v/v) Brij 35, 0.006 mM Nα–CBZ–Arg–Arg–7–amido–4–methylcoumarin, 0.0525% (v/v) 

dimethyl sulfoxide, and 0.2 – 0.4 units of Cathepsin B. 

8. References & Attachments 

8.1 Barret, A.J.; Kirschke, H. Methods in Enzymology 80, 535-538 (1981). 

8.2 Cathepsin B from human placenta, Product Information, C0150. 

9. Approval 

Review, approvals and signatures for this document will be generated electronically using the 

EDMS. Print a “For Use” copy if hardcopy with signature verification is required. 

 

 



   
 

252 
 

Materials 

Product # Image Description Molecular Formula 

A9891 

 

7-Amino-4-methylcoumarin 
Chromophore for substrates 

C10H9NO2 

B4184  
Brij® L23 solution 30 % (w/v) 
in H2O 

  

C8571   

Cathepsin B from human liver 
buffered aqueous solution, 
≥1,500 units/mg protein 
(E1%/280) 

  

C0150   
Cathepsin B from human 
placenta lyophilized powder, 
≥5 units/mg protein 

  

C7880 

 

L-Cysteine hydrochloride 
monohydrate reagent grade, 
≥98% (TLC) 

C3H7NO2S · HCl · 
H2O 

ED4SS 

 

Ethylenediaminetetraacetic 
acid tetrasodium salt 
dihydrate 99.0-102.0% 
(titration)  

C10H12N2Na4O8 · 
2H2O 

P5379 

 

Potassium phosphate 
monobasic ReagentPlus®

 

H2KO4P 

S0876 

 

Sodium phosphate 
dibasic ReagentPlus®, 
≥99.0% 

HNa2O4P 

C5429 

 

Z-Arg-Arg-7-amido-4-
methylcoumarin 
hydrochloride 

C30H39N9O6 

  

 

 

 

https://www.sigmaaldrich.com/catalog/product/sigma/a9891
https://www.sigmaaldrich.com/catalog/product/sigma/a9891?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/a9891?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/b4184
https://www.sigmaaldrich.com/catalog/product/sial/b4184?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/b4184?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c8571
https://www.sigmaaldrich.com/catalog/product/sigma/c8571?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c8571?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c8571?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c8571?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c0150
https://www.sigmaaldrich.com/catalog/product/sigma/c0150?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c0150?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c0150?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/c7880
https://www.sigmaaldrich.com/catalog/product/sial/c7880?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/c7880?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/c7880?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/ed4ss
https://www.sigmaaldrich.com/catalog/product/sigma/ed4ss?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/ed4ss?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/ed4ss?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/ed4ss?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/p5379
https://www.sigmaaldrich.com/catalog/product/sial/p5379?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/p5379?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/s0876
https://www.sigmaaldrich.com/catalog/product/sial/s0876?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/s0876?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sial/s0876?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c5429
https://www.sigmaaldrich.com/catalog/product/sigma/c5429?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c5429?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/c5429?lang=en&region=AU
https://www.sigmaaldrich.com/catalog/product/sigma/a9891
https://www.sigmaaldrich.com/catalog/product/sial/c7880
https://www.sigmaaldrich.com/catalog/product/sigma/ed4ss
https://www.sigmaaldrich.com/catalog/product/sial/p5379
https://www.sigmaaldrich.com/catalog/product/sial/s0876
https://www.sigmaaldrich.com/catalog/product/sigma/c5429
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Appendix 2. Publications arising from this thesis. 

This thesis was written as a combination of traditional (Chapters 1 & 6) and manuscript style 

(Chapters 2-5) sections. The peer-reviewed, formally published manuscript (Chapter 2) is 

presented in its original format. Here, the final PDF (.pdf) file of the published manuscript is 

presented. 
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