ACCEPTED VERSION

Kimberly E. Becker, Michael K. Murray, Daniel Stevenson
The Weyl map and bundle gerbes
Journal of Geometry and Physics, 2020; 149:103572-1-103572-19
©2019 Elsevier B.V. All rights reserved.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Final publication at: $\underline{h t t p: / / d x . d o i . o r g / 10.1016 / j . g e o m p h y s .2019 .103572 ~}$

PERMISSIONS

https://www.elsevier.com/about/policies/sharing

Accepted Manuscript

Authors can share their accepted manuscript:
24 Month Embargo
After the embargo period

- via non-commercial hosting platforms such as their institutional repository
- via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license - this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy
- not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article

22 March 2022

THE WEYL MAP AND BUNDLE GERBES

KIMBERLY E. BECKER, MICHAEL K. MURRAY, AND DANIEL STEVENSON

Abstract

We introduce the notion of a general cup product bundle gerbe and use it to define the Weyl bundle gerbe on $T \times S U(n) / T$. The Weyl map from $T \times S U(n) / T$ to $S U(n)$ is then used to show that the pullback of the basic bundle gerbe on $S U(n)$ defined by the second two authors is stably isomorphic to the Weyl bundle gerbe as $S U(n)$-equivariant bundle gerbes. Both bundle gerbes come equipped with connections and curvings and by considering the holonomy of these we show that these bundle gerbes are not D-stably isomorphic.

Contents

1. Introduction

2. Bundle gerbes
2.1. Surjective submersions
2.2. Bundle gerbes
2.3. Connections, curvings and holonomy
3. Cup product bundle gerbes
3.1. The cup product bundle gerbe construction
3.2. Stable isomorphisms of general cup product bundle gerbes
3.3. Geometry of cup product bundle gerbes
4. Cup product bundle gerbes over $T \times S U(n) / T$
4.1. The i-th cup product bundle gerbes

-

4.2. Geometry of the i-th cup product bundle gerbes

4.3 . The Weyl bundle gerbe	10

5. The basic bundle gerbe and the Weyl map 11
5.1. The basic bundle gerbe 11
5.2. The pullback of the basic bundle gerbe by the Weyl map 12
5.3. Geometry of the pullback of the basic bundle gerbe 16
5.4. Other choices of general cup product bundle gerbes 17
6. The stable isomorphism 19
6.1. Set up of the problem 19
6.2. Finding the stable isomorphism 19

[^0]6.3. Comparing holonomies

References
25

1. Introduction

The basic bundle gerbe is defined over a compact, simple, simply connected Lie group G and has Dixmier-Douady class equal to a generator of $H^{3}(G, \mathbb{Z}) \simeq \mathbb{Z}$. In this work, we will restrict our study to the case where $G=S U(n)$ and use the finitedimensional construction of the basic bundle gerbe in this case given by the second two authors [16], see also [11. The history of the various constructions of the basic bundle gerbe and its extensions to other groups can be found in the Introduction to [16]. As well as the construction of the basic bundle gerbe over $S U(n)$, 16] gives an explicit connection and curving on this bundle gerbe with three-curvature equal to $2 \pi i$ times the basic 3 -form

$$
\nu=-\frac{1}{24 \pi^{2}} \operatorname{tr}\left(g^{-1} d g\right)^{3}
$$

on $S U(n)$. These explicit formulae will be used extensively in our work.
Our work here can be understood as a follow up to [16]. Namely, we study the pullback of the basic gerbe over $S U(n)$ from [16] by the Weyl map

$$
\begin{aligned}
p: T \times S U(n) / T & \rightarrow S U(n) \\
p(t, h T) & =h t h^{-1}
\end{aligned}
$$

and explain why the pulled back bundle gerbe decomposes into simpler objects. Our motivation for this is the following observation. The pullback of the basic 3form by the Weyl map, $p^{*} \nu$, defines a class in $H^{3}(T \times S U(n) / T)$. By the Kunneth formula, and noting that the cohomology of $S U(n) / T$ vanishes in odd degree [4], we see that

$$
\left[p^{*} \nu\right] \in H^{3}(T) \oplus\left(H^{2}(S U(n) / T) \otimes H^{1}(T)\right)
$$

It follows from T being abelian that the restriction of ν to T vanishes. Therefore

$$
\left[p^{*} \nu\right] \in H^{2}(S U(n) / T) \otimes H^{1}(T)
$$

For this reason, we expect that the three-curvature of the pullback of the basic bundle gerbe by the Weyl map to equal a sum of wedge products of 1 -forms and 2 -forms (modulo exact forms). We are interested in the impact this fact has on the geometry of the pulled back basic bundle gerbe. It follows from work of Johnson in [7] that a bundle gerbe whose Dixmier-Douady class is the cup product of a one-class and a two-class can be realised by a geometric cup product construction from a $U(1)$-valued function whose winding class is the one-class and a line bundle whose chern class is the two-class. We expect therefore that the pullback of the basic bundle gerbe by the Weyl map is stably isomorphic to a particular product of these cup product bundle gerbes which we call the Weyl bundle gerbe.

Following Johnson [7] we introduce the cup product bundle gerbe construction. The Weyl bundle gerbe is then defined as a reduced product (see Section 2.2 below) of certain cup product bundle gerbes over $T \times S U(n) / T$ for T the maximal torus of $S U(n)$ consisting of diagonal matrices. We call any such bundle gerbe that is the
reduced product of cup product bundle gerbes a general cup product bundle gerbe. In our main theorem (Theorem 6.8), we
(1) describe an explicit $S U(n)$-equivariant stable isomorphism of the Weyl bundle gerbe and the pullback of the basic bundle gerbe over $S U(n)$ via the Weyl map $p: T \times S U(n) / T \rightarrow S U(n)$;
(2) explicitly define a 2-form $\beta \in \Omega^{2}(T \times S U(n) / T)$ that satisfies $d \beta=\omega_{p^{*} b}-$ ω_{c} for $\omega_{p^{*} b}$ and ω_{c} the three-curvatures associated to the pullback connective data on the pullback of the basic bundle gerbe and natural connective data on the Weyl bundle gerbe, respectively;
(3) show there is no general cup product bundle gerbe that is stably isomorphic to the pullback of the basic bundle gerbe such that the three-curvature ω_{c}^{\prime} associated to the induced connective data on the general cup product bundle gerbe satisfies $\omega_{c}^{\prime}=\omega_{p^{*} b}$; and
(4) consider the holonomies of our bundle gerbes to show that the pullback of the basic bundle gerbe and the Weyl bundle gerbe are not D-stably isomorphic with respect to their natural connective data.

There is a long history of exploiting the attractive features of the Weyl map going back to Weyl's proof of the Integral Formula [18] and the K-theory of compact Lie groups [1]. Cup product constructions similar to ours have been used by Brylinski [5] to construct projective unitary group bundles, in index theory [10] and in twisted K-theory [6, 2]. We note also that [9, Section 8.2] gives a general construction of the cup product bundle gerbe for a decomposable Dixmier-Douady class.

In summary, in Section 2 we briefly review basic results, definitions and notation from the theory of bundle gerbes. In Section 3, we introduce the notions of cup product and general cup product bundle gerbes, and study the geometry of the former. Criteria for general cup product bundle gerbes to be stably isomorphic are also considered. Next, in Section 4 we apply the theory from Section 3 to construct the Weyl bundle gerbe over $T \times S U(n) / T$. The pullback of the basic bundle gerbe is considered in Section 5] and we show that it is also a general cup product bundle gerbe over $T \times S U(n) / T$. The stable isomorphism between the pullback of the basic bundle gerbe and the Weyl bundle gerbe is given in Section 6, where we exploit the results of Section 3 using the fact that both bundle gerbes are general cup product bundle gerbes. We conclude Section 6 by demonstrating that these bundle gerbes, with their given connections and curvings, are not stably isomorphic, i.e. they are not D-stably isomorphic. Our results are summarised in Theorem 6.8.

2. Bundle gerbes

We review some notation and basic facts about bundle gerbes. For more detail on bundle gerbes see [12, 13, 3].
2.1. Surjective submersions. Let $\pi: Y \rightarrow M$ be a surjective submersion. Denote by $Y^{[p]}$ the p-fold fibre product of Y; note that the canonical map $Y^{[p]} \rightarrow M$ is also a surjective submersion. Define $\pi_{i}: Y^{[p+1]} \rightarrow Y^{[p]}$ by omitting the i-th entry for each $i=1, \ldots, p+1$. Notice that this means that the two maps $Y^{[2]} \rightarrow Y$ are (perhaps confusingly) $\pi_{1}\left(\left(y_{1}, y_{2}\right)\right)=y_{2}$ and $\pi_{2}\left(\left(y_{1}, y_{2}\right)\right)=y_{1}$. If $g: Y^{[p]} \rightarrow A$ is a map to an abelian group A, define $\delta(g): Y^{[p+1]} \rightarrow A$ by $\delta(g)=g \circ \pi_{1}-g \circ \pi_{2}+\cdots$ and if $g: M \rightarrow A$ define $\delta(g): Y \rightarrow A$ by $\delta(g)=g \circ \pi$.

Similarly, if $\omega \in \Omega^{q}\left(Y^{[p]}\right)$ is a q-form, define $\delta(\omega) \in \Omega^{q}\left(Y^{[p+1]}\right)$ by $\delta(\omega)=$ $\pi_{1}^{*}(\omega)-\pi_{2}^{*}(\omega)+\cdots$ and likewise $\delta(\omega)=\pi^{*}(\omega)$ if $\omega \in \Omega^{q}(M)$. It is straightforward to check that the fundamental complex defined by

$$
\begin{equation*}
0 \rightarrow \Omega^{q}(M) \xrightarrow{\delta} \Omega^{q}(Y) \xrightarrow{\delta} \Omega^{q}\left(Y^{[2]}\right) \xrightarrow{\delta} \Omega^{q}\left(Y^{[3]}\right) \xrightarrow{\delta} \cdots \tag{2.1}
\end{equation*}
$$

is exact [12, Section 8].
If $K \rightarrow Y^{[p]}$ is a Hermitian line bundle, define a Hermitian line bundle $\delta(K)$ over $Y^{[p+1]}$ by $\delta(K)=\pi_{1}^{-1}(K) \otimes \pi_{2}^{-1}(K)^{*} \otimes \cdots$. Note that the Hermitian line bundle $\delta \delta(K)$ over $Y^{[p+2]}$ has a canonical trivialisation. If K is equipped with a connection ∇_{K}, then there is an induced connection $\delta\left(\nabla_{K}\right)$ on $\delta(K)$.
2.2. Bundle gerbes. Let M be a manifold. Recall that a bundle gerbe over M, denoted (P, Y) or (P, Y, π), consists of a surjective submersion $\pi: Y \rightarrow M$ and a Hermitian line bundle $P \rightarrow Y^{[2]}$. The bundle P is equipped with a bundle gerbe multiplication $\pi_{3}^{-1}(P) \otimes \pi_{1}^{-1}(P) \rightarrow \pi_{2}^{-1}(P)$ which is associative in the sense that the two different ways of mapping

$$
P_{\left(y_{1}, y_{2}\right)} \otimes P_{\left(y_{2}, y_{3}\right)} \otimes P_{\left(y_{3}, y_{4}\right)} \rightarrow P_{\left(y_{1}, y_{4}\right)}
$$

agree for any $\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in Y^{[4]}$.
If (P, Y) is a bundle gerbe over M and (Q, X) is a bundle gerbe over N, then a morphism of bundle gerbes $(P, Y) \rightarrow(Q, X)$ is a triple of maps $f: M \rightarrow N$, $g: Y \rightarrow X$ and $h: P \rightarrow Q$. These have to satisfy: g covers f and thus induces a map $g^{[2]}: Y^{[2]} \rightarrow X^{[2]}$ and $h: P \rightarrow Q$ is a bundle morphism covering $g^{[2]}$.

A bundle gerbe is called trivial if there is a Hermitian line bundle $R \rightarrow Y$ and an isomorphism of P to $\delta(R)=\pi_{1}^{-1}(R) \otimes \pi_{2}^{-1}(R)^{*}$ such that the bundle gerbe product on P commutes with the obvious contraction

$$
\begin{equation*}
R_{y_{2}} \otimes R_{y_{1}}^{*} \otimes R_{y_{3}} \otimes R_{y_{2}}^{*} \rightarrow R_{y_{3}} \otimes R_{y_{1}}^{*} \tag{2.2}
\end{equation*}
$$

A trivialisation of (P, Y) is a choice of such a trivialising line bundle R and isomorphism (2.2).

If (P, Y) and (Q, X) are bundle gerbes over M, we define the dual of (P, Y) by $\left(P^{*}, Y\right)$ with the obvious multiplication and their product $(P, Y) \otimes(Q, X)$ by $\left(P \otimes Q, Y \times_{M} X\right)$, where $Y \times_{M} X$ is the fibre product of $Y \rightarrow M$ and $X \rightarrow M$ and

$$
(P \otimes Q)_{\left(\left(y_{1}, x_{1}\right),\left(y_{2}, x_{2}\right)\right)}=P_{\left(y_{1}, y_{2}\right)} \otimes Q_{\left(x_{1}, x_{2}\right)}
$$

with the obvious multiplication. In the case that $X=Y$ we have the diagonal inclusion of Y into $Y \times_{M} Y$ and we may use this to pull back $P \otimes Q$ to define the reduced product $\left(P \otimes_{R} Q, Y\right)$.

We say that (P, Y) and (Q, X) are stably isomorphic if there exists a trivialisation of $(P, Y)^{*} \otimes(Q, X)$. Similarly a stable isomorphism from (P, Y) to (Q, X) is a choice of such a trivialisation. It is shown in [17] that stable isomorphisms can be composed. The notion of morphism introduced above of course leads to a notion of isomorphism, which is much stronger than the notion of stable isomorphism. We use the notations \cong and $\cong_{\text {stab }}$ for the notions of isomorphism and stable isomorphism respectively.

[^1]Associated to a bundle gerbe (P, Y) is a characteristic class called its DixmierDouady class or $D D$-class, $\operatorname{DD}(P, Y) \in H^{3}(M, \mathbb{Z})$, which determines exactly the stable isomorphism class of the bundle gerbe [15].

If (P, Y) is a bundle gerbe over M and $f: N \rightarrow M$, then $f^{-1}(Y) \rightarrow N$ is a surjective submersion and we have $f^{[2]}: f^{-1}(Y)^{[2]} \rightarrow Y^{[2]}$. The pullback of P by $f^{[2]}$, more conveniently called $f^{-1}(P)$, then inherits a natural bundle gerbe multiplication. The bundle gerbe $\left(f^{-1}(P), f^{-1}(Y)\right)$ over N is called the pullback of (P, Y) by f. Pulling back preserves products and duals and is natural for the Dixmier-Douady class. For more details see [3].

Similarly, we can consider the pullback of bundle gerbes over M by morphisms of surjective submersions over M. These are maps $f: X \rightarrow Y$ of surjective submersions $X \rightarrow M$ and $Y \rightarrow M$ covering the identity map $M \rightarrow M$. If (P, Y) is a bundle gerbe we can pull back using $f^{[2]}$ to obtain a bundle gerbe we denote by $\left(f^{-1}(P), X\right)$ over M. A basic fact [15, Proposition 3.4] is that $\left(f^{-1}(P), X\right)$ is stably isomorphic to (P, Y). Moreover, there is a canonical choice of stable isomorphism. This implies immediately that the product and reduced product of two bundle gerbes are canonically stably isomorphic.

Finally, if G is a Lie group we can consider (strongly) equivariant bundle gerbes where G acts on $Y \rightarrow M$ and P, preserving all relevant structure, for a precise definition see, for example, [14]. The notion of stable isomorphism extends to this case by requiring that R also have a G-action and that the isomorphism $\delta(R) \cong P$ be G-equivariant. We use the obvious notation \cong_{G} and $\cong_{G \text {-stab }}$ for G-equivariant isomorphisms and stable isomorphism between G-equivariant bundle gerbes.
2.3. Connections, curvings and holonomy. Any bundle gerbe (P, Y, π) admits a bundle gerbe connection ∇ which is a Hermitian connection on P preserving the bundle gerbe multiplication. As a result of this condition, the curvature $F_{\nabla} \in$ $\Omega^{2}\left(Y^{[2]}\right)$ of a bundle gerbe connection satisfies $\delta\left(F_{\nabla}\right)=0$. It follows from exactness of the fundamental complex (2.1) that there exist imaginary 2-forms $f \in \Omega^{2}(Y)$ satisfying $\delta(f)=F_{\nabla}$. A choice of such an $f \in \Omega^{2}(Y)$ is called a curving for ∇, and the pair (∇, f) is called connective data for (P, Y). Notice that the curving is determined only up to addition of the pullback of a form in $\Omega^{2}(M)$. Commutativity of the maps δ in the fundamental complex with exterior differentiation implies $\delta(d f)=d \delta(f)=d F_{\nabla}=0$, so that $d f=\pi^{*}(\omega)$ for a unique $\omega \in \Omega^{3}(M)$ called the three-curvature of (∇, f). We have that $d \omega=0$ and the class of $\omega / 2 \pi i$ in de Rham cohomology is the image of $D D(P, Y)$ in real cohomology under the de Rham isomorphism.

Connective data on bundle gerbes naturally induce connective data on dual, pullback, reduced product and product bundle gerbes. For more on this see [3].

There is a notion of stable isomorphisms of bundle gerbes with connective data. Following Johnson [7] we say two bundle gerbes (P, Y) and (Q, X) with connective data are D-stably isomorphic, denoted $(P, Y) \cong_{D \text {-stab }}(Q, X)$, if $(P, Y) \cong_{\text {stab }}(Q, X)$ and this stable isomorphism preserves connections and curvings. Here the trivial bundle gerbe $P^{*} \otimes Q$ is assumed to have trivial connective data, i.e. connective data of the form $\left(\delta\left(\nabla_{R}\right), F_{\nabla_{R}}\right)$ for ∇_{R} a connection on a line bundle $R \rightarrow Y$ with curvature $F_{\nabla_{R}}$. The D-stable isomorphism classes of bundle gerbes over M (or Deligne classes) are in bijective correspondence with the Deligne cohomology group $H^{3}\left(M, \mathbb{Z}(3)_{D}\right)$ [15, Theorem 4.1]. For more on this, see [7, 15].

If (P, Y) is a bundle gerbe over an oriented two-dimensional manifold Σ, then $H^{3}(\Sigma, \mathbb{Z})=0$ and there exists a Hermitian line bundle $R \rightarrow Y$ trivialising P. Suppose ∇ is a bundle gerbe connection on P and ∇_{R} is a connection on R. Denote by $\delta\left(\nabla_{R}\right)$ the connection on (P, Y) induced by the isomorphism $P \cong \delta(R)$. As both ∇ and $\delta\left(\nabla_{R}\right)$ are bundle gerbe connections, it follows that $\nabla=\delta\left(\nabla_{R}\right)+\alpha$ for $\alpha \in \Omega^{1}\left(Y^{[2]}\right)$ satisfying $\delta(\alpha)=0$. From exactness of the fundamental complex we can solve $\alpha=\delta(\beta)$ for some $\beta \in \Omega^{1}(Y)$ and thus $\nabla=\delta\left(\nabla_{R}+\beta\right)$. It follows that we may suppose without loss of generality that $\delta\left(\nabla_{R}\right)=\nabla$. Denote by $F_{\nabla_{R}}$ the curvature of ∇_{R} and note that $\delta\left(F_{\nabla_{R}}\right)=F_{\nabla}$. Then $\delta\left(f-F_{\nabla_{R}}\right)=F_{\nabla}-F_{\nabla}=0$ so we have $f-F_{\nabla_{R}}=\pi^{*}(\mu)$ for $\mu \in \Omega^{2}(\Sigma)$. We define the holonomy of (∇, f) over Σ, $\operatorname{hol}(\nabla, f)$, by $\exp \left(\int_{\Sigma} \mu\right)$. This is independent of the choice of R and ∇_{R}. Similarly, if $\chi: \Sigma \rightarrow M$ and (P, Y) is a bundle gerbe over M with connective data (∇, f), we can define the holonomy of (∇, f) over $\chi, \operatorname{hol}(\nabla, f, \chi)$, to be the holonomy of the pullback of (∇, f) by χ. Notice that the holonomy depends on the choice of curving. It is a straightforward calculation that if bundle gerbes over M are D-stably isomorphic they have the same holonomy.

3. Cup product bundle gerbes

3.1. The cup product bundle gerbe construction. Our aim is to show that, after pulling back by the Weyl map $p: T \times S U(n) / T \rightarrow S U(n)$, the basic bundle gerbe decomposes into a product of simpler objects. In this section, we define these simpler objects (namely cup product bundle gerbes), and consider more generally the class of bundle gerbes that decompose into such objects (namely general cup product bundle gerbes).

In [7, Johnson constructed the cup product bundle gerbe $\left(f \cup L, f^{-1}(\mathbb{R})\right)$ over M from a smooth map $f: M \rightarrow S^{1}$ and a line bundle $L \rightarrow M$. The motivating idea for this construction was that the Dixmier-Douady class of the cup product bundle gerbe should be the cup product of the winding class of f and the chern class of L. The definition is as follows: let $\mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}=U(1)$ and note that $f^{-1}(\mathbb{R}) \rightarrow M$ is a surjective submersion, in fact a principal \mathbb{Z}-bundle. As a result there is a welldefined map $d: f^{-1}(\mathbb{R})^{[2]} \rightarrow \mathbb{Z}$ given by $d(x, y)=y-x$ and satisfying $\delta(d)=0$, in the sense of Section 2.1. Johnson's cup product bundle gerbe is then defined by $(f \cup L)_{(m, x, y)}=L_{m}^{d(x, y)}=L_{m}^{(y-x)}$. Tensor product gives rise to a bundle gerbe product via the obvious identification $L^{(y-x)} \otimes L^{(z-y)}=L^{(z-x)}$. Note that if $n<0$ then we define $L^{n}=\left(L^{*}\right)^{-n}$ and L^{0} is the trivial bundle.

For our purposes we need more general surjective submersions. Notice first that if $K \rightarrow X$ is a Hermitian line bundle and $h: X \rightarrow \mathbb{Z}$ is a smooth function (that is, locally constant), then there is a Hermitian line bundle $K^{h} \rightarrow X$ defined fibrewise by

$$
\left(K^{h}\right)_{x}=\left(K_{x}\right)^{h(x)}
$$

for every $x \in X$. In other words, K^{h} on each connected component of X is just K raised to the tensor power determined by the constant value of h on that component.

We consider $Y \rightarrow M$ a surjective submersion, $g: Y^{[2]} \rightarrow \mathbb{Z}$ with $\delta(g)=0$ and $L \rightarrow M$ a line bundle. Let $L^{g} \rightarrow Y^{[2]}$ be $\left(\pi^{[2]}\right)^{-1}(L)^{g}$ where $\pi^{[2]}: Y^{[2]} \rightarrow M$. We will often abuse notation like this and omit obvious projections. The existence of the bundle gerbe product follows from the fact that $\delta(g)=0$. We have the following definition.

Definition 3.1. Let $Y \rightarrow M$ be a surjective submersion, $L \rightarrow M$ be a line bundle, and $g: Y^{[2]} \rightarrow \mathbb{Z}$ be a smooth map satisfying $\delta(g)=0$. The bundle gerbe $\left(L^{g}, Y\right)$ over M is the cup product bundle gerbe over M of $L \rightarrow M$ and $g: Y^{[2]} \rightarrow \mathbb{Z}$.

Any use of the term 'cup product bundle gerbe' henceforth shall refer to Definition 3.1, rather than Johnson's definition mentioned above. More generally we have the following definition:

Definition 3.2. If $\left(L_{i}^{g_{i}}, Y\right)$ are cup product bundle gerbes over M for $i=1, \ldots, n$, we call the reduced product $\otimes_{R}\left(L_{i}^{g_{i}}, Y\right)$ the general cup product bundle gerbe of $L_{i} \rightarrow M$ and $g_{i}: Y^{[2]} \rightarrow \mathbb{Z}$ for $i=1, \ldots, n$.

Associated to $g: Y^{[2]} \rightarrow \mathbb{Z}$ is a class in $H^{1}(M, \mathbb{Z})$. This is defined by using the fundamental complex (2.1) to solve $\delta(\psi)=g$ for some $\psi: Y \rightarrow \mathbb{R}$ and taking the class to be the winding class of the map $q: M \rightarrow U(1)$ whose value at $m \in M$ is $\exp (2 \pi i \psi(y))$, where $\pi(y)=m$. This class is represented in de Rham cohomology by $\frac{1}{2 \pi i} q^{-1} d q$. A straightforward calculation shows that the Dixmier-Douady class of the cup product bundle gerbe $\left(L^{g}, Y\right)$ is the cup product of this class and the chern class of L. Hence it is decomposable in the sense of [?]. More generally, the Dixmier-Douady class of a general cup product bundle gerbe is a sum of such cup products.
3.2. Stable isomorphisms of general cup product bundle gerbes. In this section we will consider sufficient criteria for cup product bundle gerbes and general cup product bundle gerbes to be stably isomorphic. These results, in particular Corollary 3.5, will simplify calculations in Section 6. The proofs of the following are straightforward:

Proposition 3.3. Let $\left(L^{g}, Y\right)$ be a cup product bundle gerbe. If there exists a smooth map $h: Y \rightarrow \mathbb{Z}$ such that $g=\delta(h)$, then $\left(L^{g}, Y\right)$ is trivialised by $L^{h} \rightarrow Y$.

Corollary 3.4. Let $\left(L^{f}, Y\right)$ and $\left(L^{g}, X\right)$ be cup product bundle gerbes over M. If there exists a smooth map $h: X \times_{M} Y \rightarrow \mathbb{Z}$ such that $f-g=\delta(h)$, then

$$
\left(L^{f}, Y\right) \cong_{\text {stab }}\left(L^{g}, X\right)
$$

with trivialising line bundle $L^{h} \rightarrow X \times_{M} Y$.
Corollary 3.5. Let $\left(L_{i}^{f_{i}}, Y\right)$ and $\left(L_{i}^{g_{i}}, X\right)$ be cup product bundle gerbes over M for $i=1, \ldots, n$. If there exist smooth maps $h_{i}: X \times_{M} Y \rightarrow \mathbb{Z}$ for each $i=1, \ldots, n$ satisfying $f_{i}-g_{i}=\delta\left(h_{i}\right)$ for all $i=1, \ldots, n$, then

$$
\bigotimes_{i=1}^{n}\left(L_{i}^{f_{i}}, Y\right) \cong_{\text {stab }} \bigotimes_{i=1}^{n}\left(L_{i}^{g_{i}}, X\right)
$$

with trivialising line bundle $\otimes_{i} L_{i}^{h_{i}} \rightarrow X \times_{M} Y$.
3.3. Geometry of cup product bundle gerbes. We next describe connective data (∇, f) and compute the associated three-curvature ω on a cup product bundle gerbe. The induced connective data on a general cup product bundle gerbe can then be easily inferred.

Let $\left(L^{g}, Y\right)$ be a cup product bundle gerbe over M and ∇ be a connection on $L \rightarrow M$ with curvature F_{∇}. Then $L^{g} \rightarrow Y^{[2]}$ restricted to each connected component of $Y^{[2]}$ is a tensor power of L (pulled back to $Y^{[2]}$) with the power
determined by the corresponding value of $g: Y^{[2]} \rightarrow \mathbb{Z}$. Taking appropriate tensor powers of ∇ gives a natural connection for L^{g} which we denote by ∇^{g}. It is easy to check that this is a bundle gerbe connection and that it has curvature:

$$
F_{\nabla^{g}}=g \pi^{[2]^{*}} F_{\nabla}
$$

To construct a curving for this connection we need a small amount of additional data as follows:

Proposition 3.6. Let $\left(L^{g}, Y, \pi\right)$ be a cup product bundle gerbe over M, ∇ be a connection on $L \rightarrow M$, and ∇^{g} be the bundle gerbe connection defined above. Then
(1) there exists a smooth function $\varphi: Y \rightarrow \mathbb{R}$ such that $\delta(\varphi)=g$;
(2) the 2 -form $f \in \Omega^{2}(Y)$ defined by

$$
f=\varphi \pi^{*} F_{\nabla}
$$

satisfies $\delta(f)=F_{\nabla^{g}}$, so f is a curving for the connection ∇^{g};
(3) if $q: M \rightarrow U(1)$ is defined by $q=\exp (2 \pi i \varphi)$, the three-curvature $\omega \in \Omega^{3}(M)$ of $\left(\nabla^{g}, f\right)$ is given by

$$
\omega=\frac{q^{-1} d q}{2 \pi i} \wedge F_{\nabla}
$$

(4) the real $D D$-class of $\left(L^{g}, Y\right)$ is represented by

$$
-\frac{1}{4 \pi^{2}} q^{-1} d q \wedge F_{\nabla}
$$

Proof. The existence of φ follows by exactness of the fundamental complex and $\delta(g)=0$. For (2) we have

$$
\delta(f)=\delta(\psi) \pi^{[2]^{*}}\left(F_{\nabla}\right)=g \pi^{[2]^{*}}\left(F_{\nabla}\right)=F_{\nabla^{g}}
$$

Equations (3) and (4) follow from definitions.
Similarly in the general cup product gerbe case we have the following Proposition.
Proposition 3.7. For each $i=1, \ldots$, n let $\left(L_{i}^{g_{i}}, Y, \pi\right)$ be a cup product bundle gerbe over M, ∇_{i} be a connection on $L_{i} \rightarrow M$, and $\nabla_{i}^{g_{i}}$ be the corresponding bundle gerbe connection defined above. Then
(1) there exist smooth functions $\varphi_{i}: Y \rightarrow \mathbb{R}$ such that $\delta\left(\varphi_{i}\right)=g_{i}$;
(2) the 2 -form $f \in \Omega^{2}(Y)$ defined by

$$
f=\sum_{i=1}^{n} \varphi_{i} \pi^{*} F_{\nabla_{i}}
$$

satisfies $\delta(f)=\sum_{i=1}^{n} F_{\nabla_{i}^{g_{i}}}$, so f is a curving for the product connection induced by the $\nabla_{i}^{g_{i}}$;
(3) if $q_{i}: M \rightarrow U(1)$ is defined by $q_{i}=\exp \left(2 \pi i \varphi_{i}\right)$, the three-curvature $\omega \in$ $\Omega^{3}(M)$ of the general cup product gerbe of the $\left(L_{i}^{g_{i}}, Y, \pi\right)$ is given by

$$
\omega=\sum_{i=1}^{n} \frac{q_{i}^{-1} d q_{i}}{2 \pi i} \wedge F_{\nabla_{i}}
$$

(4) the real DD-class of the general cup product bundle gerbe of the $\left(L_{i}^{g_{i}}, Y, \pi\right)$ is represented by

$$
-\frac{1}{4 \pi^{2}} \sum_{i=1}^{n} q_{i}^{-1} d q_{i} \wedge F_{\nabla_{i}}
$$

4. Cup product bundle gerbes over $T \times S U(n) / T$

4.1. The i-th cup product bundle gerbes. In this section, we will define cup product bundle gerbes over $T \times S U(n) / T$ called the i-th cup product bundle gerbes, for T the subgroup of $S U(n)$ consisting of diagonal matrices. Our aim is to construct their reduced product, which we call the Weyl bundle gerbe. We begin with some preliminaries. For $n \in \mathbb{N}$, let Proj_{n} be the set of n-tuples of orthogonal projections $\left(P_{1}, \ldots, P_{n}\right)$, where, for each $i, P_{i}: \mathbb{C}^{n} \rightarrow W_{i}$ for W_{i} mutually orthogonal onedimensional subspaces of \mathbb{C}^{n}. It follows from the characterisation of homogeneous spaces [8, Theorem 21.18] that there is a bijection $S U(n) / T \cong \operatorname{Proj}_{n}$, which implies Proj_{n} is a smooth manifold diffeomorphic to $S U(n) / T$.

For each $i=1, \ldots, n$, let $p_{i}: T \rightarrow S^{1}$ be the homomorphism $p_{i}\left(t_{1}, \ldots, t_{n}\right)=t_{i}$. Define $J_{i} \rightarrow S U(n) / T$ to be the (homogeneous) Hermitian line bundle associated to the principal T-bundle $S U(n) \rightarrow S U(n) / T$ via the action of T on \mathbb{C} by $t \cdot z=$ $p_{i}\left(t^{-1}\right) z$. Define $K_{i} \rightarrow \operatorname{Proj}_{n}$, a subbundle of the trivial bundle $\mathbb{C}^{n} \times \operatorname{Proj}_{n}$, by $\left(K_{i}\right)_{\left(P_{1}, \ldots, P_{n}\right)}=\operatorname{im}\left(P_{i}\right) \times\left\{\left(P_{1}, \ldots, P_{n}\right)\right\}$. It can be verified easily that J_{i} and K_{i} are $S U(n)$-equivariant line bundles with respect to the $S U(n)$-action on $S U(n) / T$ defined by left multiplication and the $S U(n)$-action on Proj_{n} defined by

$$
g \cdot\left(v, P_{1}, \ldots, P_{n}\right)=\left(g v, g P_{1} g^{-1}, \ldots, g P_{n} g^{-1}\right)
$$

By the equivalence of linear representations and equivariant line bundles, there is an $S U(n)$-equivariant isomorphism $J_{i} \cong K_{i}$. Throughout this work, we will continue to write $J_{i} \rightarrow S U(n) / T$, but will in practice work with the line bundles $K_{i} \rightarrow \operatorname{Proj}_{n}$.

Denote by X_{T} the subset of $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ which sum to zero. Define a surjective submersion $\pi: X_{T} \rightarrow T$ by

$$
\pi\left(x_{1}, \ldots, x_{n}\right)=\operatorname{diag}\left(e^{2 \pi i x_{1}}, \ldots, e^{2 \pi i x_{n}}\right)
$$

Note that this defines a surjective submersion $\pi_{c}: X_{T} \times S U(n) / T \rightarrow T \times S U(n) / T$ and that $\left(X_{T} \times S U(n) / T\right)^{[2]}=X_{T}^{[2]} \times S U(n) / T$. Define $d_{i}: X_{T}^{[2]} \rightarrow \mathbb{Z}$ by $d_{i}(x, y)=$ $x_{i}-y_{i}$ and extend it to $X_{T}^{[2]} \times S U(n) / T$ by projection with the same name.

The i-th cup product bundle gerbe is defined as follows.
Definition 4.1. The i-th cup product bundle gerbe over $T \times S U(n) / T$ for $i=$ $1, \ldots, n$ is the cup product bundle gerbe

$$
\left(J_{i}^{d_{i}}, X_{T} \times S U(n) / T, \pi_{c}\right)
$$

Proposition 4.2. The i-th cup product bundle gerbe is $S U(n)$-equivariant for the action of $S U(n)$ on $T \times S U(n) / T$ defined by multiplication in the $S U(n) / T$ factor.

Proof. This follows easily by $S U(n)$-homogeneity of $J_{i} \rightarrow S U(n) / T$ and by noting that the $S U(n)$-action on each of the spaces in the bundle gerbe is given by multiplication on the $S U(n) / T$ factor.
4.2. Geometry of the i-th cup product bundle gerbes. We will now apply the results from Section 3.3 to the i-th cup product bundle gerbes. The following standard fact will be used repeatedly: let $L \rightarrow M$ be a line bundle that is a subbundle of the trivial bundle of rank n. Let $P: \mathbb{C}^{n} \times M \rightarrow L$ be orthogonal projection. Then the induced connection $\nabla=P \circ d$ on L (for d the trivial connection) has curvature $F_{\nabla}=\operatorname{tr}(P d P d P)$.

Proposition 4.3. There is a canonical line bundle connection $\nabla_{J_{i}}$ on $J_{i} \rightarrow S U(n) / T$ with curvature $F_{\nabla_{J_{i}}}=\operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)$ for $P_{i}: S U(n) / T \times \mathbb{C}^{n} \rightarrow J_{i}$ orthogonal projection.

Proof. By the standard fact above, we need only show that J_{i} is a subbundle of the trivial bundle of rank n. This follows by noting that J_{i} is a subbundle of the $S U(n)$-homogeneous vector bundle $\left(\mathbb{C}^{n} \times S U(n)\right) / T \rightarrow S U(n) / T$, which is isomorphic to the trivial bundle $\mathbb{C}^{n} \times S U(n) / T \rightarrow S U(n) / T$ by the equivalence of linear representations and equivariant bundles.

Proposition 4.4. Let $\nabla_{J_{i}}$ be the connection on J_{i} from Proposition 4.3. Let

$$
\pi_{c}^{[2]}: X_{T}^{[2]} \times S U(n) / T \rightarrow T \times S U(n) / T
$$

be projection. Then there is a bundle gerbe connection $\nabla_{c_{i}}$ on the i-th cup product bundle gerbe with curvature

$$
F_{\nabla_{c_{i}}}=d_{i}\left(\pi_{c}^{[2]}\right)^{*} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

for $P_{i}: T \times S U(n) / T \times \mathbb{C}^{n} \rightarrow J_{i}$ orthogonal projection.
Proof. This follows from our discussion in Section 3.3 and Proposition 4.3.
Proposition 4.5. Let $\nabla_{c_{i}}$ be the connection on the i-th cup product bundle gerbe from Proposition 4.4. Let $P_{i}: T \times S U(n) / T \times \mathbb{C}^{n} \rightarrow J_{i}$ be orthogonal projection, and define a 2-form $f_{c_{i}} \in \Omega^{2}\left(X_{T} \times S U(n) / T\right)$ by

$$
f_{c_{i}}(t, g T, x)=-x_{i} \pi_{c}^{*} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

Abuse notation and denote the pullback of p_{i} to $T \times S U(n) / T$ by p_{i}. Then
(1) the 2 -form $f_{c_{i}}$ satisfies $\delta\left(f_{c_{i}}\right)=F_{\nabla_{c_{i}}}$, so $f_{c_{i}}$ is a curving for $\nabla_{c_{i}}$;
(2) the three-curvature $\omega_{c_{i}} \in \Omega^{3}(T \times S U(n) / T)$ of $\left(\nabla_{c_{i}}, f_{c_{i}}\right)$ is given by

$$
\omega_{c_{i}}=-\frac{1}{2 \pi i} p_{i}^{-1} d p_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

(3) the real DD-class of the i-th cup product bundle gerbe is represented by

$$
\frac{1}{4 \pi^{2}} p_{i}^{-1} d p_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

Proof. Consider the proof of Proposition 3.6. If $\varphi(y)=-y_{i}$ then $\delta(\varphi)(x, y)=$ $\varphi(y)-\varphi(x)=x_{i}-y_{i}=d_{i}(x, y)$ and $q(x)=\exp \left(-2 \pi i x_{i}\right)=p_{i}^{-1}$. The results then follow by substitution into the formula in Proposition 3.6

By comparing this result to Proposition 3.6. we see that the real Dixmier-Douady class of the i-th cup product bundle gerbe is the cup product of the winding class of the map $p_{i}^{-1}: T \rightarrow U(1)$ and the chern class of the line bundle $J_{i} \rightarrow S U(n) / T$.
4.3. The Weyl bundle gerbe. We can now define the Weyl bundle gerbe, and compute its connective data and associated three-curvature using results from Section 4.2

Definition 4.6. The Weyl bundle gerbe over $T \times S U(n) / T$ is the reduced product of the i-th cup product bundle gerbes, denoted

$$
\left(P_{c}, X_{T} \times S U(n) / T, \pi_{c}\right):=\bigotimes_{i=1}^{n}\left(J_{i}^{d_{i}}, X_{T} \times S U(n) / T\right)
$$

Proposition 4.7. The Weyl bundle gerbe is $S U(n)$-equivariant for the action of $S U(n)$ on $T \times S U(n) / T$ defined by multiplication in the $S U(n) / T$ factor.

Proof. This follows from Proposition 4.2 and the fact that the reduced product of equivariant bundle gerbes is again equivariant.

We compute connective data and the curvature of the Weyl bundle gerbe as follows.

Proposition 4.8. Let $P_{i}: S U(n) / T \times T \times \mathbb{C}^{n} \rightarrow J_{i}$ be orthogonal projection and $\pi^{[2]}: X_{T}^{[2]} \times S U(n) / T \rightarrow T \times S U(n) / T$ be projection. The i-th cup product bundle gerbe connections $\nabla_{c_{i}}$ from Proposition 4.4 induce a bundle gerbe connection ∇_{c} on the Weyl bundle gerbe with curvature

$$
F_{\nabla_{c}}=\sum_{i=1}^{n} d_{i}\left(\pi^{[2]}\right)^{*} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

Proof. This follows from elementary bundle gerbe theory and Proposition 4.4
Using Proposition 4.5 and elementary facts about products of bundle gerbe connections and curvings we similarly obtain the connective data on the Weyl bundle gerbe.
Proposition 4.9. Let ∇_{c} be the connection on the Weyl bundle gerbe from Proposition 4.8, Let $P_{i}: T \times S U(n) / T \times \mathbb{C}^{n} \rightarrow J_{i}$ be orthogonal projection, and define a 2 -form $f_{c} \in \Omega^{2}\left(X_{T} \times S U(n) / T\right)$ by

$$
\begin{equation*}
f_{c}\left(x_{1}, \ldots, x_{n}, g T\right):=-\sum_{i=1}^{n} x_{i} \pi_{c}^{*} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right) \tag{4.1}
\end{equation*}
$$

Abuse notation and denote the pullback of p_{i} to $T \times S U(n) / T$ by p_{i}. Then
(1) the 2 -form f_{c} satisfies $\delta\left(f_{c}\right)=F_{\nabla_{c}}$, so f_{c} is a curving for ∇_{c};
(2) the three-curvature $\omega_{c} \in \Omega^{3}(T \times S U(n) / T)$ of $\left(\nabla_{c}, f_{c}\right)$ is given by

$$
\omega_{c}=-\frac{1}{2 \pi i} \sum_{i=1}^{n} p_{i}^{-1} d p_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

(3) the real DD-class of $\left(P_{c}, X_{T}\right)$ is represented by

$$
\frac{1}{4 \pi^{2}} \sum_{i=1}^{n} p_{i}^{-1} d p_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

5. The basic bundle gerbe and the Weyl map

5.1. The basic bundle gerbe. We review the construction of the basic bundle gerbe over $S U(n)$ in [16]. Our aim is to show that, when pulled back to $T \times S U(n) / T$ by the Weyl map, the basic bundle gerbe is a general cup product bundle gerbe different to the one defined in 4.6. We will then exploit the techniques from the first section to construct a stable isomorphism between them.

Let $Z:=U(1) \backslash\{1\}$ and define the manifold

$$
Y:=\{(z, g) \in Z \times S U(n) \mid z \notin \operatorname{spec}(g)\}
$$

Let $\pi_{b}: Y \rightarrow S U(n)$ be the surjective submersion defined by projection onto the second factor. Note that $Y^{[2]}$ can be identified with triples $\left(z_{1}, z_{2}, g\right)$ with
$z_{1}, z_{2} \notin \operatorname{spec}(g)$, the set of eigenvalues of g. Order the set Z by anti-clockwise rotation and define the following notions.
Definition 5.1. Let $\left(z_{1}, z_{2}, g\right) \in Y^{[2]}$ and λ be an eigenvalue of g. Say that $\lambda \in Z$ is between z_{1} and z_{2} if $z_{1}<\lambda<z_{2}$ or $z_{2}<\lambda<z_{1}$. Call $\left(z_{1}, z_{2}, g\right) \in Y^{[2]}$ positive if there exist eigenvalues of g between $z_{1}>z_{2}$, null if there are no eigenvalues of g between z_{1} and z_{2}, and negative if there exist eigenvalues of g between $z_{1}<z_{2}$.

Denote the set of all positive, null, and negative triplets in $Y^{[2]}$ by $Y_{+}^{[2]}, Y_{0}^{[2]}$ and $Y_{-}^{[2]}$ respectively. Note that $\left(z_{1}, z_{2}, g\right) \in Y_{+}^{[2]}$ if and only if $\left(z_{2}, z_{1}, g\right) \in Y_{-}^{[2]}$. Elements in each of these sets are depicted in Figure 5.1] where we assume for simplicity that all eigenvalues of g are in the connected component of $Z \backslash\left\{z_{1}, z_{2}\right\}$ containing λ.

$$
\left(z_{1}, z_{2}, g\right) \in Y_{-}^{[2]}
$$

$$
\left(z_{1}, z_{2}, g\right) \in Y_{0}^{[2]}
$$

$\left(z_{1}, z_{2}, g\right) \in Y_{+}^{[2]}$

Figure 5.1. Components of $Y^{[2]}$
We define a Hermitian line bundle $P_{b} \rightarrow Y^{[2]}$ as follows. For λ an eigenvalue of $g \in S U(n)$, let $E_{(g, \lambda)}$ denote the λ-eigenspace of g. Define the vector bundle $L \rightarrow Y_{+}^{[2]}$ fibrewise by

$$
\begin{equation*}
L_{\left(z_{1}, z_{2}, g\right)}=\bigoplus_{z_{1}>\lambda>z_{2}} E_{(g, \lambda)} \tag{5.1}
\end{equation*}
$$

For a proof that this is indeed a vector bundle see [16]. Note that $L_{\left(z_{1}, z_{2}, g\right)}$ has finite dimension as a finite sum of finite-dimensional spaces. Therefore we can define

$$
\left(P_{b}\right)_{\left(z_{1}, z_{2}, g\right)}= \begin{cases}\operatorname{det}\left(L_{\left(z_{1}, z_{2}, g\right)}\right) & \text { if }\left(z_{1}, z_{2}, g\right) \in Y_{+}^{[2]} \\ \mathbb{C} & \text { if }\left(z_{1}, z_{2}, g\right) \in Y_{0}^{[2]} \\ \operatorname{det}\left(L_{\left(z_{2}, z_{1}, g\right)}\right)^{*} & \text { if }\left(z_{1}, z_{2}, g\right) \in Y_{-}^{[2]}\end{cases}
$$

By [16], $P_{b} \rightarrow Y^{[2]}$ is a smooth locally trivial Hermitian line bundle, and there is an associative multiplication operation endowing $\left(P_{b}, Y, S U(n)\right)$ with a bundle gerbe structure.

Definition 5.2. Call the bundle gerbe $\left(P_{b}, Y, \pi_{b}\right)$ over $S U(n)$ constructed above the basic bundle gerbe over $S U(n)$, or simply the basic bundle gerbe.
5.2. The pullback of the basic bundle gerbe by the Weyl map. Recall that, for G a compact, connected Lie group and T a maximal torus of G, the Weyl mar2 is the G-equivariant map defined by

$$
p: T \times G / T \rightarrow G, \quad(t, g T) \mapsto g t g^{-1}
$$

[^2]The Weyl map has a number of attractive features for our purposes. Firstly, the action of $S U(n)$ by conjugation on itself lifts to an action of $S U(n)$ on $T \times S U(n) / T$ where it acts only on the left of $S U(n) / T$. Secondly, if $g \in S U(n)$, we can decompose \mathbb{C}^{n} into a direct-sum of distinct eigenspaces of g. These eigenspaces may change in dimension as g varies and thus do not extend to vector bundles over the whole of $S U(n)$. However, on $T \times S U(n) / T$ things are much more pleasant. If we consider $(t, h T)$ which maps to $g=h t h^{-1}$, then we can write \mathbb{C}^{n} as a direct sum of the onedimensional spaces which are multiples of the standard basis vector or eigenspaces of t. Moreover, if we act on these by h, we decompose \mathbb{C}^{n} into a direct sum of one-dimensional spaces which are subspaces of the eigenspaces of g. In fact, these one-dimensional spaces are a decomposition of the trivial \mathbb{C}^{n} bundle over $T \times S U(n) / T$ into homogeneous vector bundles $J_{1} \oplus J_{2} \oplus \cdots \oplus J_{n}$ pulled back from $S U(n) / T$. We will make extensive use of these basic geometric facts.

It is straightforward to see that under the identification $S U(n) / T \cong \operatorname{Proj}_{n}$ the Weyl map $p: T \times \operatorname{Proj}_{n} \rightarrow S U(n)$ is given by

$$
p:\left(t, P_{1}, \ldots, P_{n}\right) \mapsto \sum_{i=1}^{n} p_{i}(t) P_{i} .
$$

Notice that $p^{-1}(Y)$ is the collection of all $(t, z, g T) \in T \times Z \times S U(n) / T$ with $z \neq t_{i}$ for any $i=1, \ldots, n$. If we let $Y_{T} \subset T \times Z$ be all (t, z) with $z \neq t_{i}$ for any $i=1, \ldots, n$ then we have

$$
p^{-1}(Y)=Y_{T} \times S U(n) / T .
$$

Our aim in this section is to prove the following Proposition for particular ε_{i} defined below in Definition 5.6, thereby realising the pullback of the basic bundle gerbe as a general cup product bundle gerbe.

Proposition 5.3. There is an $S U(n)$-equivariant isomorphism over $T \times S U(n) / T$

$$
p^{-1}\left(P_{b}, Y\right) \cong_{S U(n)} \bigotimes_{i=1}^{n}\left(J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right)
$$

The proof of Proposition 5.3 relies on the following intermediary isomorphisms over $T \times S U(n) / T$:

$$
\begin{aligned}
p^{-1}\left(P_{b}, Y\right) & \stackrel{\operatorname{Prop} 5.5}{\cong} S U(n) \\
& \left.P_{b, T} \times{ }_{T} S U(n), Y_{T} \times S U(n) / T\right) \\
& \xlongequal{\cong}\left[\begin{array}{l}
5.9(n) \\
\end{array} \bigotimes_{i=1}^{n} J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right)
\end{aligned}
$$

We begin with the following proposition and leave the proof of this result as an exercise. Let $P_{b, T}:=\left.\left(P_{b}\right)\right|_{Y_{T}^{[2]}}$. The restriction of the basic bundle gerbe to T is $\left(P_{b, T}, Y_{T}\right)$.

Proposition 5.4 ([16, p. 1582]). Define $P_{b, T} \times{ }_{T} S U(n)$ to be the set of equivalence classes in $P_{b, T} \times S U(n)$ under the relation

$$
\left(v_{1} \wedge \cdots \wedge v_{k}, g\right) \sim\left(t v_{1} \wedge \cdots \wedge t v_{k}, g t^{-1}\right)
$$

for all $t \in T$ where k is the rank of L in (5.1). Then $P_{b, T} \times{ }_{T} S U(n)$ is a line bundle over $Y_{T}^{[2]} \times S U(n) / T$, and there is an associative multiplication induced by that on
$\left(P_{b, T}, Y_{T}\right)$ making

$$
\begin{equation*}
\left(P_{b, T} \times_{T} S U(n), Y_{T} \times S U(n) / T\right) \tag{5.2}
\end{equation*}
$$

an $S U(n)$-equivariant bundle gerbe over $T \times S U(n) / T$ with respect to the $S U(n)$ action on $T \times S U(n) / T$ defined by multiplication on the $S U(n) / T$ component.

The following proposition is shown in [16, Proposition 7.1].
Proposition 5.5 ([16, Proposition 7.3]). There is an $S U(n)$-equivariant bundle gerbe isomorphism over $T \times S U(n) / T$

$$
\left(P_{b, T} \times_{T} S U(n), Y_{T} \times S U(n) / T\right) \cong_{S U(n)} p^{-1}\left(P_{b}, Y\right)
$$

Recall that T is the maximal torus of $S U(n)$ consisting of diagonal matrices, and $p_{i}: T \rightarrow S^{1}$ is the homomorphism sending $t \in T$ to its i-th diagonal. To define ε_{i} we use the ordering on Z from Section 5.1. Let $i \in\{1, \ldots, n\}$ throughout.
Definition 5.6. Define $\varepsilon_{i}: Y_{T}^{[2]} \rightarrow \mathbb{Z}$ by

$$
\varepsilon_{i}\left(z_{1}, z_{2}, t\right)= \begin{cases}1 & \text { if } z_{1}>p_{i}(t)>z_{2} \\ -1 & \text { if } z_{2}>p_{i}(t)>z_{1} \\ 0 & \text { otherwise }\end{cases}
$$

Notice that ε_{i} is a smooth function (that is, locally constant) on $Y_{T}^{[2]}$.
Definition 5.7. Let $\mathbb{C}_{p_{i}}$ be the space \mathbb{C} equipped with the T-action $v \cdot t:=p_{i}\left(t^{-1}\right) v$.
Throughout this section, let $\mathbb{C}_{p_{i}}^{1}:=\mathbb{C}_{p_{i}}, \mathbb{C}_{p_{i}}^{-1}:=\mathbb{C}_{p_{i}}^{*}$, and $\mathbb{C}_{p_{i}}^{0}:=\mathbb{C}$, where $\mathbb{C}_{p_{i}}^{0}$ is equipped with the identity action. The space $\mathbb{C}_{p_{i}}^{*}$ can be understood as the dual of $\mathbb{C}_{p_{i}}$, or equivalently as the space \mathbb{C} equipped with the dual action $v \cdot t=p_{i}(t) v$.

Recall that $J_{i} \rightarrow S U(n) / T$ is the $S U(n)$-homogeneous line bundle defined by setting $J_{i}:=\mathbb{C} \times_{p_{i}} S U(n)$ under the relation $(z, s) \sim_{p_{i}}\left(p_{i}\left(t^{-1}\right) z, s t\right)$ for all $t \in T$.
Proposition 5.8. There is an associative multiplication making

$$
\begin{equation*}
\left(J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right) \tag{5.3}
\end{equation*}
$$

a cup product bundle gerbe over $T \times S U(n) / T$. Moreover, this bundle gerbe is $S U(n)$-equivariant with respect to the $S U(n)$-action on $T \times S U(n) / T$ defined by multiplication on the $S U(n) / T$ component.

Proof. To see that this is a cup product bundle gerbe, and hence a bundle gerbe, it suffices to show that $\varepsilon_{i}: Y_{T}^{[2]} \rightarrow \mathbb{Z}$ satisfies the cocycle condition $\delta\left(\varepsilon_{i}\right)=0$. This is trivial to verify on the connected components of $Y_{T}^{[2]}$. The equivariance result follows easily.

Proposition 5.9. There exists an $S U(n)$-equivariant bundle gerbe isomorphism over $T \times S U(n) / T$

$$
\left(P_{b, T} \times_{T} S U(n), Y_{T} \times S U(n) / T\right) \cong_{S U(n)}\left(\bigotimes_{i=1}^{n} J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right)
$$

Proof. First, we show there is a line bundle isomorphism $P_{b, T} \cong \otimes \mathbb{C}_{p_{i}}^{\varepsilon_{i}} \times Y_{T}^{[2]}$. Let $\left(z_{1}, z_{2}, t\right) \in Y_{T}^{[2]}$ with $z_{1}>z_{2}$. Suppose there are eigenvalues of t between z_{1} and z_{2}. Denote these eigenvalues by $p_{k_{1}}(t), \ldots, p_{k_{m}}(t)$ for $1 \leq k_{1} \leq \cdots \leq k_{m} \leq n$. Then

$$
\begin{equation*}
L_{\left(z_{1}, z_{2}, t\right)}=E_{\left(t, p_{k_{1}}(t)\right)} \oplus \cdots \oplus E_{\left(t, p_{k_{m}}(t)\right)} \tag{5.4}
\end{equation*}
$$

and
$\left(P_{b, T}\right)_{\left(z_{1}, z_{2}, t\right)}=\operatorname{det}\left(L_{\left(z_{1}, z_{2}, t\right)}\right)=\bigotimes_{z_{1}>\lambda>z_{2}} \operatorname{det}\left(E_{(t, \lambda)}\right)=E_{\left(t, p_{k_{1}}(t)\right)} \otimes \cdots \otimes E_{\left(t, p_{k_{m}}(t)\right)}$.
Each eigenspace $E_{\left(t, p_{k}(t)\right)} \cong \mathbb{C}$ is equipped with a T-action $v \cdot s:=p_{k}\left(s^{-1}\right) v$, hence $E_{\left(t, p_{k}(t)\right)} \cong \mathbb{C}_{p_{k}}$ for each k. Since $\varepsilon_{k_{i}}\left(z_{1}, z_{2}, t\right)=1$ for $i=1, \ldots, m$ and $\varepsilon_{k}=0$ otherwise

$$
\left(P_{b, T}\right)_{\left(z_{1}, z_{2}, t\right)} \cong \mathbb{C}_{p_{k_{1}}} \otimes \cdots \otimes \mathbb{C}_{p_{k_{m}}} \cong \mathbb{C}_{p_{1}}^{\varepsilon_{1}\left(z_{1}, z_{2}, t\right)} \otimes \cdots \otimes \mathbb{C}_{p_{n}}^{\varepsilon_{n}\left(z_{1}, z_{2}, t\right)}
$$

By almost identical arguments, this holds over the other components of $Y_{T}^{[2]}$. Therefore we have an isomorphism $P_{b, T} \cong \otimes_{i=1}^{n} \mathbb{C}_{p_{i}}^{\varepsilon_{i}} \times Y_{T}^{[2]}$, as claimed. This implies we have an isomorphism

$$
\begin{equation*}
P_{b, T} \times_{T} S U(n) \cong\left(\otimes \mathbb{C}_{p_{i}}^{\varepsilon_{i}} \times Y_{T}^{[2]}\right) \times_{T} S U(n), \tag{5.5}
\end{equation*}
$$

where the latter line bundle is $S U(n)$-equivariant with T-action defined by

$$
\begin{equation*}
\left(z_{1}, \ldots, z_{n}, u, g\right) \cdot t=\left(p_{1}\left(t^{-1}\right) z_{1}, \ldots, p_{n}\left(t^{-1}\right) z_{n}, u, g t\right) \tag{5.6}
\end{equation*}
$$

It can be verified that the line bundle isomorphism (5.5) is $S U(n)$-equivariant. This will act as our 'intermediary isomorphism'. Next, consider $\left(\otimes_{i=1}^{n} \mathbb{C}_{p_{i}}^{\varepsilon_{i}}\right) \times_{T} S U(n)$, the space of equivalence classes under the T-action defined similarly to (5.6). This is an $S U(n)$-homogeneous line bundle over $S U(n) / T$, and it can be verified that the natural map

$$
\begin{equation*}
\left(\mathbb{C}_{p_{1}}^{\varepsilon_{1}} \otimes \cdots \otimes \mathbb{C}_{p_{n}}^{\varepsilon_{n}} \times Y_{T}^{[2]}\right) \times_{T} S U(n) \rightarrow Y_{T}^{[2]} \times\left(\mathbb{C}_{p_{1}}^{\varepsilon_{1}} \otimes \cdots \otimes \mathbb{C}_{p_{n}}^{\varepsilon_{n}} \times{ }_{T} S U(n)\right) \tag{5.7}
\end{equation*}
$$

is a well-defined, $S U(n)$-equivariant line bundle isomorphism over $Y_{T}^{[2]} \times S U(n) / T$. It follows by the equivalence of linear representations and equivariant bundles that there are $S U(n)$-equivariant line bundle isomorphisms

$$
\begin{aligned}
\mathbb{C}_{p_{1}}^{\varepsilon_{1}} \otimes \cdots \otimes \mathbb{C}_{p_{n}}^{\varepsilon_{n}} \times{ }_{T} S U(n) & \cong\left(\mathbb{C}_{p_{1}}^{\varepsilon_{1}} \times_{T} S U(n)\right) \otimes \cdots \otimes\left(\mathbb{C}_{p_{n}}^{\varepsilon_{n}} \times{ }_{T} S U(n)\right) \\
& \cong J_{1}^{\varepsilon_{1}} \otimes \cdots \otimes J_{n}^{\varepsilon_{n}} .
\end{aligned}
$$

This, combined with (5.7), implies there is an $S U(n)$-equivariant line bundle isomorphism

$$
\left(\bigotimes_{i=1}^{n} \mathbb{C}_{p_{i}}^{\varepsilon_{i}} \times Y_{T}^{[2]}\right) \times_{T} S U(n) \cong \bigotimes_{i=1}^{n} J_{i}^{\varepsilon_{i}}
$$

and hence, by (5.5), we obtain an $S U(n)$-equivariant isomorphism of line bundles $P_{b, T} \times_{T} S U(n) \cong \otimes_{i=1}^{n} J_{i}^{\varepsilon_{i}}$. It remains to show that this isomorphism preserves the bundle gerbe product. Suppose $\left(z_{1}, z_{2}, z_{3}, g\right) \in Y^{[3]}$ with $z_{1}>z_{2}>z_{3}$, and that there are eigenvalues of g between z_{1} and z_{2} and also between z_{2} and z_{3}. Then $L_{\left(z_{1}, z_{2}, g\right)} \oplus L_{\left(z_{2}, z_{3}, g\right)}=L_{\left(z_{1}, z_{3}, g\right)}$ and the basic bundle gerbe product is induced from

$$
\operatorname{det}\left(L_{\left(z_{1}, z_{2}, t\right)}\right) \otimes \operatorname{det}\left(L_{\left(z_{2}, z_{3}, t\right)}\right) \cong \operatorname{det}\left(L_{\left(z_{1}, z_{2}, t\right)} \oplus L_{\left(z_{2}, z_{3}, t\right)}\right) \cong \operatorname{det}\left(L_{\left(z_{1}, z_{3}, t\right)}\right) .
$$

From the discussion above and equation (5.4), each $L_{\left(z_{i}, z_{j}, t\right)}$ decomposes into appropriate sums of powers of the J_{l}, so this becomes

$$
\bigotimes_{i=1}^{n} J_{i}^{\varepsilon_{i}\left(z_{1}, z_{2}, t\right)} \otimes \bigotimes_{i=1}^{n} J_{i}^{\varepsilon_{i}\left(z_{2}, z_{3}, t\right)} \cong \bigotimes_{i=1}^{n} J_{i}^{\varepsilon_{i}\left(z_{1}, z_{3}, t\right)},
$$

which is the cup product multiplication. The other cases proceed similarly.

Clearly, the reduced product of the $S U(n)$-equivariant bundle gerbes (5.3) will be an $S U(n)$-equivariant bundle gerbe. This leads us to our final isomorphism, which follows from Propositions 5.5 and 5.9 .

Proposition 5.3. There is an $S U(n)$-equivariant isomorphism over $T \times S U(n) / T$

$$
p^{-1}\left(P_{b}, Y\right) \cong_{S U(n)} \bigotimes_{i=1}^{n}\left(J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right)
$$

5.3. Geometry of the pullback of the basic bundle gerbe. In 16, connective data $\left(\nabla_{b}, f_{b}\right)$ was defined on the basic bundle gerbe as follows. First, a connection on the bundle L defined in equation (5.1) was constructed using orthogonal projection of the flat connection. Taking the highest exterior power of this connection gave rise to a bundle gerbe connection ∇_{b} on the basic bundle gerbe. Second, the curving f_{b} was constructed using holomorphic functional calculus. We will not detail this construction here as we only need the connective data on the pullback of the basic bundle gerbe which is given by Proposition 5.10 below from [16].

Recall from Section 4.2 that the cup product bundle gerbes $\left(J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right)$ can be endowed with a so-called cup product bundle gerbe connection using orthogonal projection, similar to Proposition4.4. This in turn induces a general cup product bundle gerbe connection on $\otimes_{R}\left(J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right)$ in the obvious way. We see that this general cup product bundle gerbe connection and ∇_{b} are both tensor products of or the determinant of connections defined by orthogonal projection of the flat connection onto subbundles. By the naturality of these constructions it follows that the pulled back connection on $p^{-1}\left(P_{b}, Y\right)$ under the isomorphism in Proposition5.3 is the general cup product connection on $\otimes_{R}\left(J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right)$.
Proposition 5.10 ([16, Appendix B]). Let $\nabla_{p^{*} b}$ be the connection on the pullback of the basic bundle gerbe by the Weyl map induced by ∇_{b}. The pulled back curving and curvature are given by

$$
\begin{equation*}
f_{p^{*} b}=\frac{i}{4 \pi} \sum_{\substack{i, k=1 \\ i \neq k}}^{n}\left(\log _{z} p_{i}-\log _{z} p_{k}+\left(p_{k}-p_{i}\right) p_{k}^{-1}\right) \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right) \tag{5.8}
\end{equation*}
$$

and

$$
\begin{align*}
\omega_{p^{*} b}=\frac{i}{4 \pi} \sum_{\substack{i, k=1 \\
i \neq k}}^{n}\left(p_{i}^{-1} d p_{i}-p_{k}^{-1} d p_{k}-p_{k}^{-1} d p_{i}\right. & \left.+p_{k}^{-1} d p_{k} p_{k}^{-1} p_{i}\right) \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right) \tag{5.9}\\
& -\frac{i}{4 \pi} \sum_{\substack{i, k=1 \\
i \neq k}}^{n} p_{i} p_{k}^{-1} \operatorname{tr}\left(d P_{i} d P_{k} d P_{k}\right)
\end{align*}
$$

Here $\log _{z}$ is the branch of the logarithm defined by cutting along the ray through $z \neq 1$ and requiring $\log _{z}(1)=0$. Note that here and in the remainder of this work, we abuse notation and let the homomorphisms p_{i} and projections P_{i} be defined on the spaces $Y_{T} \times S U(n) / T, X_{T} \times S U(n) / T$, or $\left(X_{T} \times{ }_{T} Y_{T}\right) \times S U(n) / T$ depending on the context.

The formulae in Proposition 5.10 can be simplified in a way that makes them more comparable to the Weyl bundle gerbe data as follows.

Proposition 5.11. Let $\nabla_{p^{*} b}$ be the connection on the pullback of the basic bundle gerbe and $\pi_{p^{*} b}: Y_{T} \times S U(n) / T \rightarrow T \times S U(n) / T$ be projection. Define $\beta \in$ $\Omega^{2}(T \times S U(n) / T)$ by

$$
\beta=-\frac{i}{4 \pi} \sum_{\substack{i, k=1 \\ i \neq k}}^{n} p_{i} p_{k}^{-1} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right)
$$

Then

$$
\begin{equation*}
f_{p^{*} b}=\sum_{k=1}^{n}\left(\frac{-1}{2 \pi i} \log _{z} p_{k}\right) \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)+\left(\pi_{p^{*} b}\right)^{*} \beta \tag{5.10}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\omega_{p^{*} b}=-\frac{1}{2 \pi i} \sum_{k=1}^{n} p_{k}^{-1} d p_{k} \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)+d \beta \tag{5.11}
\end{equation*}
$$

Proof. The proof needs a number of ingredients, some of which are proved in the Appendix. Firstly, we know that $\sum_{k=1}^{n} P_{k}=I$ and thus $\sum_{k=1}^{n} d P_{k}=0$. Also as shown in the Appendix if $i \neq k$ then $\operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right)=-\operatorname{tr}\left(P_{k} d P_{i} d P_{i}\right)$. Again from the Appendix $\sum_{k=1}^{n} \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)=0$. Using these it is straightforward to show that (5.8) reduces to (5.10) and (5.9) reduces to (5.11).
5.4. Other choices of general cup product bundle gerbes. By comparing the curving and three-curvature of the Weyl bundle gerbe with the curving and three-curvature of the pullback of the basic bundle gerbe from Proposition 5.11, we can begin to establish a relationship between these bundle gerbes. To do so, we require the following key observation.
Lemma 5.12. For each $i=1, \ldots, n$ and $(z, w, t) \in Y_{T}^{[2]}$,

$$
\varepsilon_{i}(z, w, t)=\frac{1}{2 \pi i}\left(\log _{z} p_{i}(t)-\log _{w} p_{i}(t)\right)
$$

Proof. Recall Definition 5.6. Let $(z, w, t) \in Y_{T}^{[2]}$ with $z>w$. If $w<p_{i}(t)<z$, $\log _{z} p_{i}(t)-\log _{w} p_{i}(t)=2 \pi i$. Otherwise, this difference is zero. Therefore in general

$$
\log _{z} p_{i}(t)-\log _{w} p_{i}(t)= \begin{cases}2 \pi i & \text { if } z>p_{i}(t)>w \\ -2 \pi i & \text { if } w>p_{i}(t)>z \\ 0 & \text { otherwise }\end{cases}
$$

Dividing through by $2 \pi i$, we see that this is precisely the definition of ε_{i}.
It follows from Propositions 4.3 and 3.7 and equations (5.10) and (5.11) that if we let $\varphi_{i}=-\frac{1}{2 \pi i} \log _{z}\left(p_{i}\right): Y_{T} \rightarrow \mathbb{R}$, then $\delta\left(\varphi_{i}\right)=\varepsilon_{i}$ and we can construct a general cup product curving f and curvature ω for the pullback of the basic bundle gerbe which would be

$$
\begin{aligned}
& f=\sum_{k=1}^{n}\left(\frac{-1}{2 \pi i} \log _{z} p_{k}\right) \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)=f_{p^{*} b}-\left(\pi_{p^{*} b}\right)^{*} \beta \\
& \omega=-\frac{1}{2 \pi i} \sum_{k=1}^{n} p_{k}^{-1} d p_{k} \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)=\omega_{p^{*} b}-d \beta
\end{aligned}
$$

We can ask more generally if there is a choice of functions $f_{i}: Y_{T}^{[2]} \rightarrow \mathbb{Z}$ and $\varphi_{i}: Y_{T} \rightarrow \mathbb{R}$ satisfying $\delta\left(\varphi_{i}\right)=f_{i}$ such that the curving f and three-curvature ω of the resulting general cup product bundle gerbe of J_{i} and f_{i} satisfy $f_{p^{*} b}=f$ and $\omega_{p^{*} b}=\omega$. For this to hold we would require functions $\alpha_{i}: T \times S U(n) / T \rightarrow \mathbb{R}$ for $i=1, \ldots, n$ such that $\beta=\sum_{i=1}^{n} \alpha_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)$. We claim that for $n>2$ this is not possible.

Proposition 5.13. If $n>2$, there do not exist functions $\alpha_{i}: T \times S U(n) / T \rightarrow \mathbb{R}$ for $i=1, \ldots, n$ such that $\beta=\sum_{i=1}^{n} \alpha_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)$.
Proof. By Lemma A.2 there exists $\beta_{i j}$ such that β decomposes into the sums

$$
\beta=\sum_{i<j<n}\left(\beta_{i j}-\beta_{i n}+\beta_{j n}\right) \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)-\sum_{i<n} \beta_{i n} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

Moreover, the first of these summations is non-zero by LemmaA.2(3). By LemmaA. 1 (4), $\sum_{k=1}^{n} \alpha_{k} \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)=\sum_{k<n}\left(\alpha_{k}-\alpha_{n}\right) \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)$. Therefore it suffices to show that

$$
\begin{equation*}
\operatorname{span}\left\{\operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right) \mid i<j<n\right\} \cap \operatorname{span}\left\{\operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right) \mid k<n\right\}=\{0\} \tag{5.12}
\end{equation*}
$$

Let $E_{i j}$ be the $n \times n$ matrix with a 1 in the (i, j) entry and zeros elsewhere. Set $O_{i}:=E_{i i}$. Then

$$
\begin{align*}
E_{i j} E_{k l} & =\delta_{j k} E_{i l} \tag{5.13}\\
O_{i} E_{k l} & =\delta_{i k} E_{k l} \tag{5.14}\\
E_{k l} O_{i} & =\delta_{i l} E_{k l} \tag{5.15}
\end{align*}
$$

The root spaces for the Lie algebra $L S U(n)$ are spanned by matrices of the form $A_{i j}^{\mu}=\mu E_{i j}-\bar{\mu} E_{j i}$ for $\mu \in \mathbb{C}$. Let $\gamma(t)=g \exp (t X) T$ be a curve in $S U(n) / T$ through $g T$. So

$$
P_{i}(\gamma(t))=g \exp (t X) O_{i} \exp (-t X) g^{-1}
$$

and $d P_{i}(g X)=g\left[X, O_{i}\right] g^{-1}$. Using this, it can be verified easily that

$$
\begin{aligned}
\operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)(g X, g Y) & =-\operatorname{tr}\left(O_{j} X O_{i} Y\right)+\operatorname{tr}\left(O_{j} Y O_{i} X\right) \\
\operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)(g X, g Y)= & \operatorname{tr}\left(-O_{i} X Y\right)+\operatorname{tr}\left(O_{i} X O_{j} Y\right) \\
& +\operatorname{tr}\left(O_{j} Y X\right)-\operatorname{tr}\left(O_{i} Y O_{j} X\right)
\end{aligned}
$$

In particular, using equations (5.13) - (5.15), a simple computation yields

$$
\begin{align*}
\operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)\left(g A_{i n}^{\mu}, g A_{i n}^{\lambda}\right) & =0 \tag{5.16}\\
\text { and } \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)\left(g A_{i n}^{\mu}, g A_{i n}^{\lambda}\right) & =\delta_{k i}(\bar{\lambda} \mu-\mu \bar{\lambda}) \tag{5.17}
\end{align*}
$$

Consider an element

$$
\sum_{i<j<n} b_{i j} \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)=\sum_{k<n} \alpha_{k} \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)
$$

in the intersection from (5.12). By equations (5.16) and (5.17), evaluating this element at $\left(g A_{k n}^{\mu}, g A_{k n}^{\lambda}\right)$ yields $0=\alpha_{k}(\lambda \bar{\mu}-\mu \bar{\lambda})$. Choosing λ and μ so that $\alpha_{k}=0$ for all k proves (5.12).

By the earlier discussion, the following corollary is immediate.

Corollary 5.14. Let $n>2$. There does not exist a choice of functions $f_{i}: Y_{T}^{[2]} \rightarrow \mathbb{Z}$ and $\varphi_{i}: Y_{T} \rightarrow \mathbb{R}$ satisfying $\delta\left(\varphi_{i}\right)=f_{i}$ such that the curving f and three-curvature ω of the resulting general cup product bundle gerbe of J_{i} and f_{i} satisfy $f_{p^{*} b}=f$ and $\omega_{p^{*} b}=\omega$.

6. The stable isomorphism

6.1. Set up of the problem. Our central aim in this section is to prove that the pullback of the basic bundle gerbe by the Weyl map is $S U(n)$-stably isomorphic to the Weyl bundle gerbe, i.e.

$$
\begin{equation*}
p^{-1}\left(P_{b}, Y\right) \cong_{S U(n)-\operatorname{stab}}\left(P_{c}, X\right) \tag{6.1}
\end{equation*}
$$

By Definition 4.6 and Proposition 5.3 (6.1) is equivalent to

$$
\bigotimes_{i=1}^{n}\left(J_{i}^{\varepsilon_{i}}, Y_{T} \times S U(n) / T\right) \cong \cong_{S U(n) \text {-stab }} \bigotimes_{i=1}^{n}\left(J_{i}^{d_{i}}, X_{T} \times S U(n) / T\right)
$$

Since both of these bundle gerbes are general cup product bundle gerbes, Corollary 3.5 applies to give us the following result.
Proposition 6.1. The pullback of the basic bundle gerbe is $S U(n)$-stably isomorphic to the Weyl bundle gerbe if, for all $i=1, \ldots, n$, there exist smooth functions $h_{i}:\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T \rightarrow \mathbb{Z}$ such that

$$
\begin{equation*}
\varepsilon_{i}(z, w, t)-\left(x_{i}-y_{i}\right)=h_{i}(y, w, t, g T)-h_{i}(x, z, t, g T) \tag{6.2}
\end{equation*}
$$

for all $\left(x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right), z, w, t, g T\right) \in\left(X_{T} \times_{T} Y_{T}\right)^{[2]} \times S U(n) / T$.
6.2. Finding the stable isomorphism. It follows from a standard fact in bundle gerbe theory that, if equation (6.1) holds with respect to the connective data $\left(\nabla_{p^{*} b}, f_{p^{*} b}\right),\left(\nabla_{c}, f_{c}\right)$ from Propositions 5.11 and 4.9, there exists a trivialising line bundle R with connection ∇_{R} and $\beta \in \Omega^{2}(T \times S U(n) / T)$ such that

$$
\begin{align*}
f_{p^{*} b}-f_{c} & =F_{\nabla_{R}}+\pi^{*} \beta \tag{6.3}\\
\omega_{p^{*} b}-\omega_{c} & =d \beta
\end{align*}
$$

for $\pi:\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T \rightarrow T \times S U(n) / T$ projection. As in Corollary 3.5 we take R to be the line bundle

$$
R:=\bigotimes_{i=1}^{n} J_{i}^{h_{i}} \rightarrow\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T
$$

where we implicitly pull J_{i} back from $S U(n) / T$ to $\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T$. Here, the functions $h_{i}:\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T$ are parameters that we aim to define. In this situation we can take ∇_{R} to be the product connection and thus

$$
\begin{equation*}
F_{\nabla_{R}}=\sum_{i=1}^{n} h_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right) \tag{6.4}
\end{equation*}
$$

First we compare the curving and curvature for the two bundle gerbes.
Proposition 6.2. The pulled back connective data for $\left(P_{p^{*} b}, Y_{T} \times S U(n) / T\right)$ from Proposition 5.11 and the Weyl bundle gerbe connective data for $\left(P_{c}, X_{T} \times S U(n) / T\right)$
from Proposition 3.6 satisfy

$$
\begin{aligned}
f_{p^{*} b}-f_{c} & =\sum_{k=1}^{n}\left(-\frac{1}{2 \pi i} \log _{z} p_{k}+x_{i}\right) \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)+\pi^{*} \beta \\
\omega_{p^{*} b}-\omega_{c} & =-\frac{1}{2 \pi i} \sum_{k=1}^{n} p_{k}^{-1} d p_{k} \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)+d \beta
\end{aligned}
$$

It follows by comparison with equations (6.3) and (6.4) that we want to take

$$
h_{i}(x, z, t, g T)=x_{i}-\frac{1}{2 \pi i} \log _{z} p_{i}(t)
$$

for all $i=1, \ldots, n$. It remains to be shown that these h_{i} satisfy equation (6.2) and hence define the required stable isomorphism.

Proposition 6.3. For $i=1, \ldots, n$ define $h_{i}:\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T \rightarrow \mathbb{Z}$ by

$$
h_{i}(x, z, t, g T)=x_{i}-\frac{1}{2 \pi i} \log _{z} p_{i}(t)
$$

for $\left(x=\left(x_{1}, \ldots, x_{n}\right), z, w, t, g T\right) \in\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T$. Then h_{i} is smooth and

$$
\varepsilon_{i}(z, w, t)-x_{i}+y_{i}=h_{i}(y, w, t, g T)-h_{i}(x, z, t, g T)
$$

for all $\left(x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right), z, w, t, g T\right) \in\left(X_{T} \times_{T} Y_{T}\right)^{[2]} \times S U(n) / T$.
Proof. First, note that $h_{i}(x, z, t, g T) \in \mathbb{Z}$ since $e^{2 \pi i x_{i}}=p_{i}(t)$, so upon exponentiating h_{i} we obtain $e^{2 \pi i h_{i}}=e^{2 \pi i x_{i}} p_{i}(t)^{-1}=1$. Smoothness of h_{i} follows by noting that \log is smooth over the given range as $z \neq p_{i}(t)$. By Lemma 5.12,

$$
\begin{aligned}
h_{i}(y, w, t, g T)-h_{i}(x, z, t, g T) & =y_{i}-x_{i}+\frac{1}{2 \pi i}\left(\log _{z} p_{i}(t)-\log _{w} p_{i}(t)\right) \\
& =y_{i}-x_{i}+\varepsilon_{i}(z, w, t)
\end{aligned}
$$

so these are the desired functions h_{i}.
The next result then follows immediately from Propositions 6.1 and 6.3. A more precise statement of this result will be provided in Theorem 6.8,

Proposition 6.4. The Weyl bundle gerbe is $S U(n)$-stably isomorphic to the pullback of the basic bundle gerbe by the Weyl map, i.e.

$$
\left(P_{c}, X\right) \cong_{S U(n)-\operatorname{stab}} p^{-1}\left(P_{b}, Y\right)
$$

6.3. Comparing holonomies. Recall that bundle gerbes are D-stably isomorphic if they are stably isomorphic as bundle gerbes with connective data. It is a standard fact that, if two bundles gerbes over a surface are D-stably isomorphic, then they have the same holonomy. Therefore if we can show our bundle gerbes have different holonomies on a surface $\Sigma \subset T \times S U(n) / T$, then the restriction of our bundle gerbes to Σ (and hence the original bundle gerbes) cannot be D-stably isomorphic, and their D-stable isomorphism classes (Deligne classes) will not be equal.

By our choice of trivialising line bundle, the curvings of the pullback of the basic bundle gerbe and Weyl bundle gerbe satisfy

$$
\begin{align*}
f_{p^{*} b} & =f_{c}+F_{\nabla_{R}}+\pi^{*} \beta_{n} \tag{6.5}\\
\text { for } \beta_{n} & =-\frac{i}{4 \pi} \sum_{\substack{i, k=1 \\
i \neq k}}^{n} p_{i} p_{k}^{-1} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right) \tag{6.6}
\end{align*}
$$

Here we introduce the notation β_{n} to emphasise that β_{n} is defined on $T \times S U(n) / T$. It follows from Proposition 6.4, equation (6.5) and standard facts in holonomy that, for $\Sigma \subset T \times S U(n) / T$ a surface, the holonomies of the pullback of the basic bundle gerbe and Weyl bundle gerbe satisfy

$$
\begin{equation*}
\operatorname{hol}\left(\left(\nabla_{p^{*} b}, f_{p^{*} b}\right), \Sigma\right)=\exp \left(\int_{\Sigma} \beta_{n}\right) \operatorname{hol}\left(\left(\nabla_{c}, f_{c}\right), \Sigma\right) \tag{6.7}
\end{equation*}
$$

It could be the case that $\int_{\Sigma} \beta_{n}=k 2 \pi i$ for some $k \in \mathbb{Z}$, implying these holonomies are equal. We next show that there exists a surface $\Sigma_{2} \subset T \times S U(2) / T$ for which $\int_{\Sigma_{2}} \beta_{2} \neq k 2 \pi i$ for any $k \in \mathbb{Z}$. We will then generalise this result to obtain a surface $\Sigma_{n} \subset T \times S U(n) / T$ for which $\operatorname{hol}\left(\left(\nabla_{p^{*} b}, f_{p^{*} b}\right), \Sigma_{n}\right) \neq \operatorname{hol}\left(\left(\nabla_{c}, f_{c}\right), \Sigma_{n}\right)$.
Proposition 6.5. Define a surface $\Sigma_{2} \subset T \times S U(2) / T \cong S^{1} \times S^{2}$ by $\Sigma_{2}:=$ $\left\{e^{\pi i / 4}\right\} \times S^{2}$. Then the holonomies of the pullback of the basic bundle gerbe over $S U(2)$ and the Weyl bundle gerbe over $T \times S U(2) / T$ are not equal over Σ_{2}.

Proof. By equation (6.7), we need only show that $\int_{\Sigma_{2}} \beta_{2} \neq k 2 \pi i$ for any $k \in \mathbb{Z}$. Since $P_{1}+P_{2}=1$ and $p_{2}=p_{1}^{-1}$, by setting $P:=P_{1}$ and $p:=p_{1}$ in equation (6.6) we obtain

$$
\beta_{2}=\frac{i}{4 \pi}\left(p^{2}-p^{-2}\right) \operatorname{tr}(P d P d P)
$$

It is a standard fact that $\operatorname{tr}(P d P d P)$ is the curvature of the tautological line bundle over S^{2}, which has chern class minus one, i.e. $\frac{i}{2 \pi} \int_{S^{2}} \operatorname{tr}(P d P d P)=-1$. Therefore

$$
\begin{aligned}
\int_{\Sigma_{2}} \beta_{2} & =\frac{i e^{\frac{i \pi}{2}}-i e^{-\frac{i \pi}{2}}}{4 \pi} \int_{S^{2}} \operatorname{tr}(P d P d P) \\
& =\frac{-e^{\frac{i \pi}{2}}+e^{-\frac{i \pi}{2}}}{2 \pi} \\
& =\frac{1}{\pi i} \neq k 2 \pi i \forall k \in \mathbb{Z}
\end{aligned}
$$

hence $\exp \left(\int_{\Sigma_{2}} \beta_{2}\right) \neq 1$ and the holonomies are not equal over this surface.
Corollary 6.6. There exists a surface $\Sigma_{n} \subset T \times S U(n) / T$ such that

$$
\operatorname{hol}\left(\left(\nabla_{p^{*} b}, f_{p^{*} b}\right), \Sigma_{n}\right) \neq \operatorname{hol}\left(\left(\nabla_{c}, f_{c}\right), \Sigma_{n}\right)
$$

Proof. First, note that surface $\Sigma_{2}=\left\{e^{\pi i / 4}\right\} \times S^{2}$ from Proposition 6.5 is an embedded submanifold of $T \times S U(n) / T$ with respect to the inclusion $\iota: S U(2) / T_{1} \hookrightarrow$ $S U(n) / T_{n-1}$ defined by

$$
X T_{1} \mapsto\left[\begin{array}{c|c}
X & 0 \\
\hline 0 & \mathbf{I}_{n-2}
\end{array}\right] T_{n-1}
$$

Here, T_{1}, T_{n-1} denote the subgroups of diagonal matrices in $S U(2)$ and $S U(n)$ respectively, and \mathbf{I}_{n-2} is the $(n-2) \times(n-2)$ identity matrix. Let $\Sigma_{n}:=\iota(\Sigma)$. By equation (6.7) it suffices to show that

$$
\int_{\Sigma_{n}} \beta_{n}=\int_{\Sigma_{2}} \iota^{*} \beta_{n} \neq k 2 \pi i
$$

for any $k \in \mathbb{Z}$. To do so, we prove that $\iota^{*} \beta_{n}=\beta_{2}$, hence $\int_{\Sigma_{n}} \beta_{n} \neq k 2 \pi i$ by the proof of Proposition 6.5. We compute $\iota^{*} \beta_{n}$ as follows. Recall that the maps $p_{i}: T \rightarrow S^{1}$ were defined as projection onto the i-th diagonal. Clearly

$$
p_{i} \circ \iota= \begin{cases}p_{i} & \text { if } i=1,2 \\ 1 & \text { if } 2<i \leq n\end{cases}
$$

Further recall that P_{i} was defined to be orthogonal projection onto $J_{i}:=\mathbb{C} \times p_{i}$ $S U(n)$, where p_{i} was the relation $(z, s) \sim_{p_{i}}\left(p_{i}\left(t^{-1}\right) z, s t\right)$ for all $(z, s) \in \mathbb{C} \times S U(n)$. Now, when the maps p_{i} are the constant value 1 , this relation is equality, and $J_{i} \rightarrow S U(n) / T$ is isomorphic to the trivial line bundle over $S U(n) / T$. In this case, P_{i} will be the constant projection onto the span of e_{i}, the i-th standard basis vector of \mathbb{C}^{n}. That is, $P_{i}=O_{i}$ for O_{i} the matrix with a 1 in the (i, i) position and zeros elsewhere. Therefore

$$
P_{i} \circ \iota= \begin{cases}P_{i} & \text { if } i=1,2 \\ O_{i} & \text { if } 2<i \leq n\end{cases}
$$

Of course, $d O_{i}=0$, so any term of the form $\operatorname{tr}\left(P_{k} d P_{i} d P_{i}\right)$ for $i>2$ in our expression for β_{n} in (6.6) will equal zero. Furthermore, any term of the form $\operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right)$ for $i>2$ will also be zero, by Lemma A.1 (2). So $\iota^{*} \beta_{n}=\beta_{2}$ as required.

The following corollary is immediate from our earlier discussion.
Corollary 6.7. There does not exist a D-stable isomorphism of $\left(P_{c}, X\right)$ and $p^{-1}\left(P_{b}, Y\right)$ with respect to the connective data $\left(\nabla_{c}, f_{c}\right)$ and $\left(\nabla_{p^{*} b}, f_{p^{*} b}\right)$.

The results of Sections 5 and 6 culminate in the following theorem.
Theorem 6.8. Let $p^{-1}\left(P_{b}, Y\right)$ be the pullback of the basic bundle gerbe (Definition (5.2) by the Weyl map with connective data $\left(\nabla_{p^{*} b}, f_{p^{*} b}\right)$ and three-curvature $\omega_{p^{*} b}$ (Proposition 5.10). Let $\left(P_{c}, X\right)$ be the Weyl bundle gerbe (Definition 4.6) with connective data $\left(\nabla_{c}, f_{c}\right)$ and three-curvature ω_{c} (Propositions 4.8-4.9). Then
(1) there is an $S U(n)$-equivariant stable isomorphism over $T \times S U(n) / T$

$$
\left(P_{c}, X\right) \cong_{S U(n)-\operatorname{stab}} p^{-1}\left(P_{b}, Y\right),
$$

with trivialising line bundle

$$
\begin{aligned}
& R:=\bigotimes_{i=1}^{n} \pi_{2}^{-1}\left(J_{i}\right)^{h_{i}} \rightarrow\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T \\
& \text { for } \pi_{2}:\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T \rightarrow S U(n) / T \text { projection and } \\
& h_{i}:\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T \rightarrow \mathbb{Z} \\
&\left(\left(x_{1}, \ldots, x_{n}\right), z, t, g T\right) \mapsto x_{i}-\frac{1}{2 \pi i} \log _{z} p_{i}(t)
\end{aligned}
$$

(2) if ∇_{R} is the connection on R induced by $\nabla_{J_{i}}$ (Proposition4.3), then

$$
\begin{aligned}
f_{p^{*} b}-f_{c} & =F_{\nabla_{R}}+\pi^{*} \beta \\
\text { and } \omega_{p^{*} b}-\omega_{c} & =d \beta
\end{aligned}
$$

for $\pi:\left(X_{T} \times_{T} Y_{T}\right) \times S U(n) / T \rightarrow T \times S U(n) / T$ projection and

$$
\beta=-\frac{i}{4 \pi} \sum_{\substack{i, k=1 \\ i \neq k}}^{n} p_{i} p_{k}^{-1} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right)
$$

where $P_{i}: T \times S U(n) / T \times \mathbb{C}^{n} \rightarrow J_{i}$ is orthogonal projection;
(3) there does not exist a general cup product bundle gerbe of J_{i} and some functions $f_{i}: X_{T}^{[2]} \rightarrow \mathbb{Z}$ and $\varphi_{i}: X_{T} \rightarrow \mathbb{R}$ with $\delta\left(\varphi_{i}\right)=f_{i}$ whose induced connective data (following Proposition 4.9) has associated three-curvature $\omega=\omega_{p^{*} b} ;$
(4) there does not exist a D-stable isomorphism of $\left(P_{c}, X\right)$ and $p^{-1}\left(P_{b}, Y\right)$ with respect to the connective data $\left(\nabla_{c}, f_{c}\right)$ and $\left(\nabla_{p^{*} b}, f_{p^{*} b}\right)$.

Appendix A. Computational lemmas

Here, we present the lemmas used to prove various results in Section 6

Lemma A.1. Let $i, j, k=1, \ldots, n$. Then
(1) for distinct $i, j, k, \operatorname{tr}\left(P_{i} d P_{j} d P_{k}\right)=0$;
(2) if $i \neq j, \operatorname{tr}\left(P_{i} d P_{j} d P_{j}\right)=-\operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)$;
(3) $\sum_{k=1}^{n} \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right)=0$;
(4) $\sum_{i=1}^{n} \alpha_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)=\sum_{i=1}^{n-1}\left(\alpha_{i}-\alpha_{n}\right) \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)$.

Proof. To prove (1), note that $P_{i} P_{j}=0$ if $i \neq j$, and $d P_{i}=d P_{i} P_{i}+P_{i} d P_{i}$ (where we obtain the second equation by differentiating $P_{i}^{2}=P_{i}$). So for distinct i, j and k we have

$$
\begin{aligned}
\operatorname{tr}\left(P_{i} d P_{j} d P_{k}\right) & =\operatorname{tr}\left(P_{i}\left(P_{j} d P_{j}+d P_{j} P_{j}\right) d P_{k}\right) \\
& =\operatorname{tr}\left(P_{i} d P_{j} P_{j} d P_{k}\right) \\
& =\operatorname{tr}\left(P_{i} d P_{j} P_{j}\left(P_{k} d P_{k}+d P_{k} P_{k}\right)\right) \\
& =\operatorname{tr}\left(P_{i} d P_{j} P_{j} d P_{k} P_{k}\right) \\
& =\operatorname{tr}\left(P_{k} P_{i} d P_{j} P_{j} d P_{k}\right)=0
\end{aligned}
$$

thereby proving (1). Next, by differentiating the identity $P_{i} P_{j}=0$, we obtain $d P_{i} P_{j}=-P_{i} d P_{j}$ for $i \neq j$. Therefore, using (1) and that $\sum_{i=1}^{n} d P_{i}=0$, we obtain

$$
\begin{aligned}
\operatorname{tr}\left(P_{i} d P_{j} d P_{j}\right) & =-\operatorname{tr}\left(d P_{i} P_{j} d P_{j}\right) \\
& =\operatorname{tr}\left(P_{j} d P_{j} d P_{i}\right) \\
& =\operatorname{tr}\left(P_{j}\left(-\sum_{k \neq j} d P_{k}\right) d P_{i}\right) \\
& =-\sum_{k \neq j} \operatorname{tr}\left(P_{j} d P_{k} d P_{i}\right) \\
& =-\operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)
\end{aligned}
$$

thereby proving (2). For (3) we use (2). We have

$$
\begin{aligned}
\sum_{k=1}^{n} \operatorname{tr}\left(P_{k} d P_{k} d P_{k}\right) & =-\sum_{i \neq k} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right) \\
& =-\sum_{i<k} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right)-\sum_{k<i} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right) \\
& =-\sum_{i<k} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right)-\sum_{i<k} \operatorname{tr}\left(P_{k} d P_{i} d P_{i}\right) \\
& =-\sum_{i<k} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right)+\sum_{i<k} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right) \\
& =0
\end{aligned}
$$

Lastly, by $(2), \operatorname{tr}\left(P_{k} d P_{l} d P_{l}\right)+\operatorname{tr}\left(P_{l} d P_{l} d P_{k}\right)=0$. Using this, together with (1) we obtain

$$
\begin{aligned}
\sum_{i=1}^{n} \alpha_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)= & \sum_{i=1}^{n-1} \alpha_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)-\alpha_{n} \operatorname{tr}\left(\left(\sum_{m=1}^{n-1} P_{m}\right)\left(\sum_{k=1}^{n-1} d P_{k}\right)\left(\sum_{l=1}^{n-1} d P_{l}\right)\right) \\
= & \sum_{i=1}^{n-1} \alpha_{i} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)-\alpha_{n} \sum_{i=1}^{n-1} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right) \\
& -\alpha_{n} \sum_{\substack{k, l=1 \\
k \neq l}}^{n-1} \operatorname{tr}\left(P_{k} d P_{l} d P_{l}\right)+\operatorname{tr}\left(P_{l} d P_{l} d P_{k}\right) \\
= & \sum_{i=1}^{n-1}\left(\alpha_{i}-\alpha_{n}\right) \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
\end{aligned}
$$

proving (4).

Lemma A.2. Consider $\beta=-\frac{i}{4 \pi} \sum_{\substack{i, k=1 \\ i \neq k}}^{n} p_{i} p_{k}^{-1} \operatorname{tr}\left(P_{i} d P_{k} d P_{k}\right)$. Then
(1) there exist coefficients $\beta_{i j}$ such that

$$
\beta=\sum_{i<j \leq n} \beta_{i j} \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)
$$

(2) if $n>2$, these $\beta_{i j}$ satisfy

$$
\beta=\sum_{i<j<n}\left(\beta_{i j}-\beta_{i n}+\beta_{j n}\right) \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)-\sum_{i<n} \beta_{i n} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right)
$$

(3) if $n>2$, these $\beta_{i j}$ satisfy

$$
\sum_{i<j<n}\left(\beta_{i j}-\beta_{i n}+\beta_{j n}\right) \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right) \neq 0
$$

Proof. It follows from LemmaA. $1(2)$ that $\beta=\sum_{i<j \leq n}\left(p_{j} p_{i}^{-1}-p_{i} p_{j}^{-1}\right) \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)$, so by setting $\beta_{i j}:=p_{j} p_{i}^{-1}-p_{i} p_{j}^{-1}$ we obtain (1). It follows that we can write

$$
\begin{aligned}
\beta & =\sum_{i<j<n} \beta_{i j} \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)+\sum_{i<n} \beta_{i n} \operatorname{tr}\left(P_{n} d P_{i} d P_{i}\right) \\
& =\sum_{i<j<n} \beta_{i j} \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)-\sum_{i<n} \sum_{j=1}^{n-1} \beta_{i n} \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right) \\
& =\sum_{i<j<n} \beta_{i j} \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)-\sum_{i<j<n} \beta_{i n} \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right) \\
& -\sum_{j<i<n} \beta_{i n} \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)-\sum_{i<n} \beta_{i n} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right) \\
& =\sum_{i<j<n}\left(\beta_{i j}-\beta_{i n}+\beta_{j n}\right) \operatorname{tr}\left(P_{j} d P_{i} d P_{i}\right)-\sum_{i<n} \beta_{i n} \operatorname{tr}\left(P_{i} d P_{i} d P_{i}\right) .
\end{aligned}
$$

For (3), consider an element

$$
\mathbf{S}:=\left[\begin{array}{cc}
\mathbf{T} & 0 \\
0 & \mathbf{I}_{n-2}
\end{array}\right] \in T
$$

for $\mathbf{T}:=\left[\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right], t \in U(1)$, and \mathbf{I}_{n-2} the $(n-2) \times(n-2)$ identity matrix. Clearly $\beta_{i j}=\beta_{\text {in }}$ and $\beta_{j n}=0$ if $j>2$ evaluated at \mathbf{S}. Therefore the only non-zero coefficient in this summation evaluated at \mathbf{S} is $\beta_{12}-\beta_{1 n}+\beta_{2 n}=2 t-2 t^{-1}+t^{-2}-t^{2}$. The result then follows by choosing t such that this coefficient is non-zero.

References

[1] M. F. Atiyah. On the K-theory of compact Lie groups. Topology, 4, 95-99, 1965.
[2] D. Baraglia and P. Hekmati, A Fourier-Mukai approach to the K-theory of compact Lie groups, Adv. Math., 269, 335-345, 2015.
[3] K. E. Becker, Bundle gerbes and the Weyl map, MPhil Thesis, University of Adelaide, 2019. arXiv:1910.01776
[4] I. N. Bernšteĭn, I. M. Gel' fand, and S. I. Gel ${ }^{\prime}$ fand. Schubert cells, and the cohomology of the spaces G / P. Uspehi Mat. Nauk, 28, 3 (171), 3-26, 1973. (Russ. Math. Surv. 28, 1, 1-26, 1973.)
[5] J.-L. Brylinski. Loop Spaces, Characteristic Classes and Geometric Quantization. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008. Reprint of the 1993 edition.
[6] A. J. Harju and J. Mickelsson. Twisted K-theory constructions in the case of a decomposable Dixmier-Douady class, J, K-theory 14, 247-272, 2014.
[7] S. Johnson. Constructions with Bundle Gerbes. PhD thesis, The University of Adelaide, 2002, arXiv:math/0312175
[8] J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.
[9] V. Mathai and R. B. Melrose, Geometry of pseudodifferential algebra bundles and Fourier integral operators. Duke Math. J. 166, 1859-1922, 2017.
[10] V. Mathai, R. B. Melrose and I. M. Singer, The index of projective families of elliptic operators: the decomposable case. Astérisque No. 328 (2009), 255-296 (2010).
[11] J. Mickelsson. Gerbes on quantum groups, 2003. arXiv:math/0308235
[12] M. K. Murray. Bundle gerbes. J. London Math. Soc. (2), 54(2):403-416, 1996.
[13] M. K. Murray. An introduction to bundle gerbes. In The Many Facets of Geometry, pages 237-260. Oxford Univ. Press, Oxford, 2010.
[14] M. K. Murray, D. M. Roberts; D. Stevenson, R. F. Vozzo. Equivariant bundle gerbes. Adv. Theor. Math. Phys. 21, no. 4, 921-975, (2017).
[15] M. K. Murray and D. Stevenson. Bundle gerbes: stable isomorphism and local theory. J. London Math. Soc. (2), 62(3):925-937, 2000.
[16] M. K. Murray and D. Stevenson. The basic bundle gerbe on unitary groups. J. Geom. Phys., 58(11):1571-1590, 2008.
[17] D. Stevenson. Bundle 2-gerbes. Proc. London Math. Soc. (3), 88(2):405-435, 2004.
[18] H. Weyl. Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I. Math. Z., 23(1):271-309, 1925.
(K. E. Becker) Wolfson College, Linton Road, Oxford, OX2 6UD, United Kingdom E-mail address: kimberly.becker@univ.ox.ac.uk
(M. K. Murray) School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia

E-mail address: michael.murray@adelaide.edu.au
(D. Stevenson) School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia

E-mail address: daniel.stevenson@adelaide.edu.au

[^0]: Date: December 13, 2019.
 2010 Mathematics Subject Classification. 53C08, 55N45.
 Key words and phrases. bundle gerbe, basic bundle gerbe, cup product bundle gerbe, stable isomorphism.

 The second two authors acknowledge support under the Australian Research Council's Discovery Projects funding scheme (project number DP180100383). The first author acknowledges the support of an Australian Government Research Training Program Scholarship.
 (C)2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

[^1]: ${ }^{1}$ The proof given there is actually for $Y \rightarrow M$ a fibration but can be adapted to the case where $Y \rightarrow M$ is a surjective submersion using the fact that surjective submersions admit local sections.

[^2]: ${ }^{2}$ So-called because it is used in the Weyl integral formulae in 18 .

