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Abstract

Background: Insulin resistance (IR) is predictive for type 2 diabetes and associated with various metabolic
abnormalities in fasting conditions. However, limited data are available on how IR affects metabolic responses in a
non-fasting setting, yet this is the state people are mostly exposed to during waking hours in the modern society.
Here, we aim to comprehensively characterise the metabolic changes in response to an oral glucose test (OGTT)
and assess the associations of these changes with IR.

Methods: Blood samples were obtained at O (fasting baseline, right before glucose ingestion), 30, 60, and 120 min
during the OGTT. Seventy-eight metabolic measures were analysed at each time point for a discovery cohort of
4745 middle-aged Finnish individuals and a replication cohort of 595 senior Finnish participants. We assessed the
metabolic changes in response to glucose ingestion (percentage change in relative to fasting baseline) across the
four time points and further compared the response profile between five groups with different levels of IR and
glucose intolerance. Further, the differences were tested for covariate adjustment, including gender, body mass
index, systolic blood pressure, fasting, and 2-h glucose levels. The groups were defined as insulin sensitive with
normal glucose (IS-NGT), insulin resistant with normal glucose (IR-NGT), impaired fasting glucose (IFG), impaired
glucose tolerance (IGT), and new diabetes (NDM). IS-NGT and IR-NGT were defined as the first and fourth quartile of
fasting insulin in NGT individuals.

Results: Glucose ingestion induced multiple metabolic responses, including increased glycolysis intermediates and
decreased branched-chain amino acids, ketone bodies, glycerol, and triglycerides. The IR-NGT subgroup showed smaller
responses for these measures (mean + 23%, interquartile 9-34% at 120 min) compared to IS-NGT (34%, 23-44%, P < 0.0006
for difference, corrected for multiple testing). Notably, the three groups with glucose abnormality (IFG, IGT, and NDM)
showed similar metabolic dysregulations as those of IR-NGT. The difference between the IS-NGT and the other subgroups
was largely explained by fasting insulin, but not fasting or 2 h glucose. The findings were consistent after covariate
adjustment and between the discovery and replication cohort.

Conclusions: Insulin-resistant non-diabetic individuals are exposed to a similar adverse postprandial metabolic milieu, and

analogous cardiometabolic risk, as those with type 2 diabetes. The wide range of metabolic abnormalities associated with
IR highlights the necessity of diabetes diagnostics and clinical care beyond glucose management.
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Background

Diabetes affects approximately 1 in 11 adults worldwide,
and people with diabetes are at a twofold excess risk for
cardiovascular disease (CVD) [1, 2]. A decline in insulin
sensitivity is an early sign of susceptibility to type 2 diabetes,
typically manifested as elevated levels of fasting insulin [3].
Insulin is a key regulator of glucose metabolism by promot-
ing glucose uptake in peripheral tissues and inhibiting glu-
cose production in the liver [4]. Insufficient insulin action
results in increased fasting glucose and eventually leads to
overt type 2 diabetes [4]. Insulin resistance (IR) is also
linked to the development of cardiometabolic complica-
tions, the risk arising already prior to the onset of type 2
diabetes [5, 6]. Studies in the fasting state have identified a
cluster of biomarkers robustly associated with IR and pre-
disposing to increased risk for CVD [3, 5, 6]. In the modern
society, however, people spend most of their waking hours
at a postprandial state, yet we are not aware of epidemio-
logical studies on non-fasting metabolism in representative
cohorts.

An oral glucose tolerance test (OGTT) assesses an in-
dividual’s ability to clear circulating glucose after an in-
gestion of a 75-g glucose bolus taken after an overnight
fast. An OGTT induces a transition from fasting to feed-
ing, and subsequent changes in various metabolic nutri-
ents occur as the body makes adjustments to achieve
glucose homeostasis [7]. It is thus feasible to expect that
individuals with impaired insulin action are likely to dis-
play a widespread systemic abnormality beyond glucose.
Although the dynamics of insulin and glucose during an
OGTT in both healthy and insulin-resistant individuals
are well studied [8, 9], much less is known on other, par-
ticularly emerging cardiometabolic biomarkers, for ex-
ample, lipoprotein lipid profiles, amino acids, ketone
bodies, and inflammatory markers [10, 11].

Metabolic profiling, simultaneously measuring mul-
tiple metabolic measures, has been frequently used in
studying metabolic dysregulations in the fasting state.
Previous studies have revealed that higher fasting ketone
bodies, branched-chain amino acids, and aromatic amino
acids are predictive for future type 2 diabetes [10, 12].
Similarly, higher concentration of very-low-density lipo-
protein (VLDL) particles and increased triglycerides are
associated with higher risk of cardiovascular diseases
[13]. In particular, recent genetic studies have suggested
that disturbed branched-chain amino acid metabolism
and increased triglycerides are on the causal path of car-
diometabolic diseases [14, 15]. Metabolic profiling has
also been applied to assess the metabolic changes during
OGTT in small studies. For example, amino acids, ke-
tone bodies, and triglycerides are decreased during an
OGTT and some of these changes seem to be blunted in
obese and insulin-resistant individuals [7, 16—-21]. How-
ever, all these studies have been limited in their sample
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size (up to a few hundred individuals) and often spanned
only two time points (pre- and post-OGTT).

In this study, we performed an OGTT across 4 time
points and quantified 78 metabolic measures for a total
of 5340 individuals (over 21,000 serum samples) from 2
independent population-based cohorts. Our aims were
(1) to comprehensively characterise systemic metabolic
responses to oral glucose in large scale and (2) to inves-
tigate how insulin resistance is associated with postpran-
dial metabolic dysregulation across multiple clinical
categories of glucose intolerance. To our knowledge, this
is the first population-based large-scale metabolomics
time-series study of an OGTT, providing new insights
into the metabolic consequences of insulin resistance in
non-fasting conditions.

Methods

Study population

The Northern Finland Birth Cohort 1966 (NFBC66) was
initiated to study factors affecting preterm birth and
subsequent morbidity in the two northernmost prov-
inces in Finland [22]. It included 12,058 children born
alive, comprising 96% of all births during 1966 in the re-
gion. The participants were further followed up at the
age of 1, 14, 31, and 46 years. Data collection conducted
in 2012 at their age of 46, including clinical examination
and serum sampling, was available for 5839 individuals.
Among them, 4745 study participants, who were free of
prior diagnosed diabetes, underwent metabolic profiling
of OGTT serum samples (97% had 4 time points), and
had information on baseline fasting insulin and glucose,
were used in this study.

The Oulul945 cohort studies ageing populations in
Ouluy, Finland. It was started in 2000 and was originally
comprised of 1400 individuals born in 1945. In the
follow-up study conducted in 2015, data collection in-
cluding clinical examination and serum sampling was
available for 717 participants. Among them, 595 partici-
pants who were free of prior diagnosed diabetes, under-
went metabolic profiling of OGTT samples (92% had 4
time points), and had data on baseline fasting insulin
and glucose were included.

Clinical assessment

Subjects underwent a 2-h, 75-g OGTT after an over-
night fasting. Blood samples were obtained at 0 (fasting
baseline, right before glucose ingestion), 30, 60, and 120
min during the OGTT. Plasma glucose were analysed by
an enzymatic dehydrogenase method (Advia 1800, Sie-
mens Healthcare Diagnostics, Tarrytown, NY, USA) and
serum insulin by a chemiluminometric immunoassay
(Advia Centaur XP, Siemens Healthcare Diagnostics,
Tarrytown, NY, USA). Insulin resistance was estimated
by fasting insulin, homeostasis model assessment of
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insulin resistance (HOMA-IR), and insulin sensitivity
index-Matsuda (ISI-Matsuda). First-phase insulin secre-
tion, an index of beta-cell function, was measured by
insulinogenic index. The formulas for these models are
shown in the legend for Table 1.

According to an individual’s insulin resistance status
and the American Diabetes association 2003 criteria [8],
participants were classified into five groups (Table 1,
Fig. 1, and Additional file 1: Table S1):

1) Insulin-sensitive subgroup of normal glucose
tolerance (IS-NGT, fasting insulin at the bottom
quartile of NGT and fasting glucose < 5.6 mmol/L
and 2-h glucose < 7.8 mmol/L)

2) Insulin-resistant subgroup of normal glucose
tolerance (IR-NGT, fasting insulin at the top
quartile of NGT and fasting glucose < 5.6 mmol/L
and 2-h glucose < 7.8 mmol/L)

3) Impaired fasting glucose (IFG, fasting glucose
between 5.6 and 6.9 mmol/L and 2-h glucose <7.8
mmol/L)

4) Impaired glucose tolerance (IGT, fasting glucose <
6.9 mmol/L and 2-h glucose between 7.8 and 11.0
mmol/L)

5) New onset of type 2 diabetes (NDM, fasting glucose
>7.0 mmol/L or 2-h glucose = 11.1 mmol/L)

Table 1 Characteristics of the Northern Finland Birth Cohort 1966
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Metabolic profiling

The human serum metabolome is dominated by
hydrophobic lipid-like molecules, including diglycer-
ides, triglycerides, phospholipids, fatty acids, steroids,
and steroid derivatives [23]. These lipids are packed in
various lipoprotein particles, e.g. VLDL, intermediate-
density lipoprotein (IDL), low-density lipoprotein
(LDL), and high-density lipoprotein (HDL). Other me-
tabolites found in high abundance in serum include
amino acids, glucose, lactate, and several waste or
catabolic by-products, such as urea and creatinine
[23]. Here, a nuclear magnetic resonance (NMR) spec-
troscopy metabolomics platform was used to measure
all the detectable lipids and metabolites in a non-
selective way. The high-throughput NMR metabolo-
mics platform was applied to quantify over 200 lipid
and metabolite measures from serum samples col-
lected at 0, 30, 60, and 120 min during an OGTT chal-
lenge. The platform applies a single experimental
setup, which allows for simultaneous quantification of
standard clinical lipids, 14 lipoprotein subclasses, and
individual lipids (triglycerides, phospholipids, free and
esterified cholesterol) transported by these particles,
multiple fatty acids, glucose and various glycolysis pre-
cursors, ketone bodies, and amino acids in absolute
concentration units [24—-26]. As the total lipids and

Without glucose abnormality

With glucose abnormality

All NGT IS-NGT IR-NGT IFG IGT NDM
N 2847 708 713 1380 412 106
Age [year] 46.7 [46.2-47.1] 465 [46.2-469] 468 [464-473] 466 [462-47.1]1 467 [46.3-47.2] 46.8 [46.3-47.2]
Men [%] 34 33 38 61 48 63
BMI [kg/mz] 249 [22.7-276] 231 [216-251] 278 [251-309] 270 [246-299] 292 [263-324] 300 [27.3-333]
Systolic blood pressure [mmHg] 120 [111-131] 118 [109-128] 125 [114-135] 128 [118-138] 130 [122-142] 136 [124-150]
Diastolic blood pressure [nmHg] 82 [75-89] 79 [73-86] 85 [78-93] 86 [80-93] 90 [82-97] 94 [86-100]
Triglycerides [mmol/L] 1.0 [0.7-1.3] 0.8 [0.6-1.1] 1.3 [1.0-1.7] 1.3[09-1.8] 1.6 [1.1-2.2] 1.7 [1.3-2.2]
LDL cholesterol [mmol/L] 1.8 [1.5-2.2] 1.7 [1.5-2.2] 19 [1.6-24] 20 [1.6-24] 1.9 [1.6-2.3] 20 [1.7-23]
HDL cholesterol [mmol/L] 1.7 [14-19] 1.8 [1.6-2.0] 15[1.3-17] 1.5[1.3-1.8] 14 1.2-1.7] 14 [1.1-1.6]
Fasting insulin [mU/L] 6.5 [4.6-9.5] 36 [3.0-4.1] 122 [106-149] 98 [6.9-13.5] 124 [8.3-183] 15.5 [10.5-244]
2 h insulin [mU/L] 370[252-532] 252[179-342] 599 [41.9-928] 479 [316-776] 1204 [688-1874] 1299 [66.0-195.5]
Fasting glucose [mmol/L] 5.2 [5.0-54] 5.0 [4.8-5.3] 53 [5.1-54] 5.8 [5.7-6.0] 5.7 [54-6.1] 6.9 [63-7.2]
2 h glucose [mmol/L] 5.2 [46-59] 49 [43-5.6] 56 [4.9-6.3] 59 [5.1-6.6] 86 [8.1-9.2] 11.5 [84-12.6]
HOMA-IR 1.5[1.0-22] 0.8 [0.7-0.9] 2.8 [2.5-35] 2.5[1.8-35] 32 [2.0-47] 4.5 [3.2-7.6]
ISI (Matsuda) 6.3 [44-8.6] 10.6 [8.9-12.7] 34 [26-4.2] 38 [26-55] 25[1.7-39] 1.9 [1.2-3.0]
Insulinogenic index 21.7[133-382] 157 [9.9-26.2] 322 [202-49.2] 207 [126-33.2] 180 [10.5-30.2] 10.8 [7.6-20.2]

Values are median [interquartile range]. Characteristics for the replication cohort Oulu45 is shown in Additional file 1: Table S1
Abbreviations: BMI body mass index, NGT normal glucose tolerance, IFG isolated impaired fasting glucose, /GT isolated impaired glucose tolerance, NDM new type
2 diabetes, IS-NGT insulin-sensitive individuals within NGT (at the first quartile of fasting insulin within NGT), IR-NGT insulin-resistant individuals within NGT (at the
top quartile of fasting insulin within NGT)
HOMA-IR = fasting glucose (mmol/L) x fasting insulin (mIU/L)/22.5
ISI-Matsuda = 10,000/square root of [fasting glucose (mg/dL) x fasting insulin (mIU/L) x mean glucose X mean insulin during OGTT]
Insulinogenic index = (Insulinzg (miu/) — INsuling)/(Glucosesommolry — Glucose,) during OGTT
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Fig. 1 Mean concentration of insulin and glucose at 0, 30, 60, and 120 min during an oral glucose tolerance test. Insulin and glucose trajectories
for insulin-sensitive subgroup of normal glucose tolerance (IS-NGT, dashed blue, n = 708), insulin-resistant subgroup of normal glucose tolerance
(IR-NGT, solid blue, n=713), impaired fasting glucose (IFG, green, n=1380), impaired glucose tolerance (purple, n=412), and newly-diagnosed
type 2 diabetes (red, NDM, n=106) are shown. IS-NGT was defined as the bottom quartile of fasting insulin within NGT, and IR-NGT was defined
as the top quartile. The dots denote mean absolute concentrations. Interquartile ranges are listed in Table 1

individual lipids within the same lipoprotein subclass
are highly correlated [27], we chose a priori to analyse
the total lipids in the 14 subclasses and limit specific
lipids for the 4 major fractions (VLDL, IDL, LDL, and
HDL). These together with all the fatty acids and non-
lipid measures provided by this platform, in total 77
measures, were used in the present study. A similar
metabolic panel has been widely applied in previous
studies [3, 28, 29].

Statistical analyses

In total, 78 metabolic measures were used in the ana-
lyses. Of those, 77 were measured by NMR metabolo-
mics and glucose by a clinical assay. Insulin was treated
as an exposure in this study. All analyses were under-
taken in the R programming environment (version
3.5.1). Primary analyses were conducted using NFBC66,
and key results were replicated in Oulul945.

To study the physiological response to an OGTT,
metabolic trajectories for NGT individuals were re-
ported. Metabolic trajectories were calculated as per-
centage changes in relative to baseline concentration
at 30, 60, and 120 min, respectively, e.g. (Concentra-
tion;so, — Concentration,,)/Concentrationg,, x 100%.
In the formula, metabolic concentrations are in their

original units, e.g. mmol/L. The significance of a
change was evaluated via paired ¢ test by comparing
the metabolite concentration at post-load time points
against the fasting baseline. The analyses were re-
peated for men and women separately. Due to the cor-
related nature of the metabolic measures, 19 principle
components were able to explain 95% variation of the
78 measures; therefore, P<0.05/19/4=0.0006 was
considered statistically significant after correcting for
multiple comparisons (corrected for 19 independent
components and across 4 time points) [30, 31].

To assess whether metabolic trajectories would be dif-
ferent across the groups, two-way ANOVA was used, with
metabolite change (%) as the response, time points x
groups as the interaction term, and gender as the covari-
ate. In total, 60 out of 78 measures showed significant
interaction of time points and groups, suggesting the
metabolic trajectories would be different between the
groups for these measures (Additional file 2: Table S2). ¢
tests were further used to compare the metabolic trajec-
tories between IR-NGT and IS-NGT across the 78
measures. For those metabolic measures that showed sig-
nificant differences between IR-NGT and IS-NGT, we fur-
ther assessed their differences between IR-NGT and those
with IGT or NDM.
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In addition, sensitivity analyses were conducted to
assess the effect of potential covariates for those
measures that showed significant differences between
IR-NGT and IS-NGT. Linear regression models were
used to quantify the metabolic differences between
the groups, using 2-h change in metabolite concen-
tration as the response variable and group category
as the independent variable. Four sets of covariates
were used: (1) sex, (2) sex + BMI + systolic blood
pressure, (3) sex + baseline glucose +2-h glucose,
and (4) sex + fasting insulin. Metabolite concentra-
tions at baseline and 2 h were log-transformed, and
the changes between the baseline and 2 h were
scaled to baseline SD.

Results

Two population cohorts were used to study the meta-
bolic changes during an OGTT. The primary analyses
were conducted in 4745 individuals in the NFBC66
(mean age 47 years, 44% men, Table 1), and the key re-
sults were replicated in 595 participants in the Oulu1945
(mean age 69 years, 41% men, Additional file 1: Table
S1). Among the participants in the NFBC66, 60% of in-
dividuals had normal fasting and 2-h glucose (NGT),
29% had impaired fasting glucose (IFG), and 11% had
impaired 2-h glucose tolerance (IGT or NDM). Al-
though NGT individuals are generally considered
healthy, the IR-NGT subgroup had over 3 times higher
fasting insulin than the IS-NGT. After glucose ingestion,
these insulin-resistant individuals secreted even more in-
sulin in the early phase (30 min), yet they were still un-
able to restore glucose levels back to the pre-OGTT
levels after 2h (Table 1 and Fig. 1). The IR-NGT indi-
viduals were also more likely to be male and had higher
BMI, blood pressure, and fasting triglycerides and lower
HDL cholesterol (Table 1). Similar characteristics were
observed for IFG, IGT, and NDM, and their fasting insu-
lin levels were comparable to IR-NGT, ranging from 2.7
to 4.3 times more than IS-NGT.

Metabolic trajectories under normal glucose tolerance

Selected responses to an OGTT for the NGT individ-
uals are summarised in Fig. 2 (P <0.0006 at any time
point), and results for all measures are available in
Additional file 1: Figure S1 and Additional file 2:
Table S3. During the OGTT, glycolysis-related meta-
bolic measures (pyruvate and lactate) were primarily
increased during 30 and 60 min (peaking at 60 min
with 49% [interquartile 19%, 74%] and 31% [14%,
47%), respectively), lagging approximately 30 min be-
hind the glucose rise (Fig. 2a). A smaller increase was
seen with citrate (peaking with 7% [- 2%, 15%] at 30
min). On the other hand, ketone bodies beta-
hydroxybutyrate and acetoacetate were continuously
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reduced after glucose ingestion and lowered by 26%
(8%, 42%) and 41% (29%, 56%) at 120 min, respect-
ively. Similarly, almost all amino acids were decreased
during the OGTT, except for alanine (Fig. 2b).
Branched-chain (isoleucine, leucine, and valine) and
aromatic amino acids (phenylalanine and tyrosine)
were decreased (15 to 45%) more than the other
amino acids (6 to 10%) at 120 min. Acetate and
glycerol were decreased throughout the OGTT and
reduced by 24% (16%, 33%) and 39% (25%, 55%) at
120 min, respectively (Fig. 2c). Changes in lipids and
fatty acids were generally smaller in comparison to
the aforementioned non-lipid measures (Fig. 2 and
Additional file 1: Figure S1A). The largest changes in
lipids were seen for the total lipids in extremely large,
very large, large, and medium VLDL particles, with
11 to 32% reduction at 120 min, after initial increases
at 60 min (e.g. large VLDL in Fig. 2c). All HDL sub-
class measures were suppressed during the OGTT,
with a 2 to 9% decrease at 120 min (e.g. very large
HDL in Fig. 2c). Interestingly, circulating triglycerides
in all main lipoprotein particles, VLDL, IDL, LDL,
and HDL, were decreased at 120 min (1 to 11%, e.g.
VLDL-TG and HDL-TG in Fig. 2c). Inconsistent and
small changes were seen in the corresponding choles-
terol concentrations (see Additional file 1: Figure S1A
for details).

Metabolic trajectories under insulin resistance

Metabolic trajectories of IR-NGT were compared to those
of IS-NGT (Fig. 3). The analyses were restricted to individ-
uals with normal glucose tolerance to rule out any second-
ary effects from hyperglycaemia. Full results for all 78
measures are available in Additional file 1: Figure S2 and
Additional file 2: Table S4. Pronounced differences were ob-
served in multiple metabolic pathways including glycolysis-
related metabolites, branched-chain amino acids, ketone
bodies, and triglyceride-related measures (Fig. 3b—e). Typical
differences were initially small at 30 min and became more
pronounced from 60 min onwards (except for insulin and
glucose). At 120 min, the IR-NGT individuals showed higher
increase in glucose yet smaller increase in pyruvate, lactate,
and alanine levels. Also, they displayed smaller decrease in
branched-chain amino acids and ketone bodies as well as
triglyceride-related measures. Overall, the changes at 120
min across these measures (Fig. 3b—e) were 34% (interquar-
tile 23-44%) in IS-NGT, whereas only 23% (9-34%) in IR-
NGT. These differences were statistically significant with
P <0.0006 (Additional file 1: Figure S2B). The results were
consistent when stratified by sex (Additional file 1: Figure
S3). Also, the results were similar when we compared the
top and bottom quartiles of the HOMA-IR and 1/Matsuda
indices (Additional file 1: Figure S4).
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Metabolic trajectories under prediabetes and diabetes

Figure 4 (Additional file 2: Table S5) presents the com-
parison of the metabolic trajectories in individuals with
2-h impaired glucose tolerance (IGT or NDM) and those
of IR-NGT. Although large differences in glucose re-
sponses were observed by definition, these two groups
showed marginal differences in metabolic responses in
glycolysis products, branched-chain amino acids, ketone
bodies, and triglyceride-related measures (Fig. 4b—e). In
addition, the IFG individuals who had normal 2-h glu-
cose response but high fasting glucose (5.9 vs 5.2 mmol/
L in IFG and IR-NGT) also showed marginal differences
in metabolic trajectories compared to those of IR-NGT
(Additional file 1: Figure S5). The metabolic trajectories
in percent change and absolute concentrations across all
five individual groups (IS-NGT, IR-NGT, IFG, IGT, and
NDM) are shown in Additional file 1: Figures S6 and S7.
Results corresponding to those shown in Figs. 2, 3, and
4 for the discovery cohort NFBC66 are replicated in the

Page 7 of 12

Oulul945 cohort (see Additional file 1: Figure S8 for de-
tailed results).

Metabolic responses associated with IR with or without
glucose abnormality

Figure 5a displays the distributions of insulin resistance
measured by HOMA-IR and Matsuda index in individuals
with IS-NGT, IR-NGT, and IFG + IGT + NDM. Despite the
IFG + IGT + NDM group having impaired glucose metabol-
ism by definition, these individuals together with the IR-
NGT group showed comparable HOMA-IR and Matsuda
indices. Interestingly, these two groups also showed similar
differences in the 2-h metabolite responses when compared
to the IS-NGT group (Fig. 5b). This was consistently ob-
served in the two independent cohorts. The metabolic dif-
ferences associated with IR-NGT and IFG +IGT +IGT
remained the same or became slightly attenuated after
adjusting for BMI, systolic blood pressure, baseline glucose,
and 2-h glucose (Fig. 6). By contrast, the associations were
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A. Comparing IR in NGT and IFG+IGT+NDM
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B. Comparing metabolic associations of IR with or without glucose abnormality

IR with the presence of
glucose abnormality

(comparing IFG+IGT+NDM to IS-NGT)

IR without the presence of
glucose abnormality

(comparing IR-NGT to IS-NGT)
Glycolysis-related

Pyruvate _L —-.-O—
Lactate il *_ 5|
Alanine 4_ ’—O—
BCAA
Isoleucine 4_ _t_
Leucine LO— ._._
Valine 5 L P
Ketone bodies
Beta—hydroxybutyrate '.'_._ _&
Acetoacetate 'L._ _Q'L
Triglycerides-related
VLDL TG ¥ <°
HDL TG % ¥ ]
Glycerol LO— '.'_._
-08 -04 00 04 08 -08 -04 00 04 08

SD difference in 2h—change (95%Cl)
Closed symbol: P <0.0006; Open symbol: P > 0.0006
—eo— NFBC1966 —— OULU1945
Fig. 5 Summary and replication. a Estimated insulin resistance in IS-NGT (grey), IR-NGT (blue), and pooled of IFG, IGT, and NDM (red) in NFBC66.
b Two-hour metabolic responses associated with IR with or without glucose abnormality in NFBC66 (purple) and replicated in Oulu45 (red).
Groups were compared by linear regression models with the 2-h concentration change as the response variable. Baseline and 2-h metabolite
concentrations were log-transformed, and the changes between 2-h and baseline metabolite concentrations were scaled to baseline SD. Group
sizes within NFBC66: n =708 in IS-NGT, n=713 in IR-NGT, and n= 1898 in combined IFG, IGT, and NDM. Group sizes within Oulu1945: n=62 in
IS-NGT, n =64 in IR-NGT, and n =343 in combined IFG, IGT, and NDM

substantially attenuated to almost null after adjusting for
fasting insulin. Similar results were observed when IFG,
IGT, and NDM were individually compared to IS-NGT
with the adjustments (Additional file 1: Figure S9).

Lastly, we observed distinctive patterns in fasting
metabolic concentrations and the 2-h metabolite
responses (Additional file 1: Figures S7 and S10).

Branched-chain amino acids and triglycerides in IR
individuals were higher at baseline and exhibited less
decrease at 2 h, compared to the IS-NGT group.
Glycolysis-related measures were higher in IR individuals
at baseline, but increased less at 2 h, whereas ketone
bodies seemed to be lower at baseline, but decreased less
at 2 h compared to the IS-NGT group.
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IS-NGT group (n=708). b Differences in 2-h changes in the combined IFG, IGT, and NDM (n = 1898) and the IS-NGT group (n = 708). Groups were
compared by linear regression models with the 2-h concentration change as the response variable. Baseline and 2-h metabolite concentrations
were log-transformed, and the changes between 2-h and baseline metabolite concentrations were scaled to baseline SD. Insulin

Discussion

We profiled four time points of OGTT data for in
total 5340 Finnish individuals from 2 independent co-
horts to obtain new large-scale population-based in-
formation on how insulin resistance is associated with
a systemic post-load metabolic dysregulation. These
changes include adverse modifications in multiple

cardiometabolic biomarkers suggesting that insulin re-
sistance may underlie the shared susceptibility to dia-
betes and CVD also in the post-load milieu. Our study
is important because most people spend a significant
amount of their daily lives in a postprandial state—this
aspect of insulin resistance has not been captured in
previous metabolomics studies of fasting samples. The
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results also carry practical significance: we found that
IR-associated metabolic aberrations exist already in
participants with normal glucose tolerance (with im-
plications for CVD risk) and are similar in extent to
those observed in type 2 diabetes.

The large sample size and multiple metabolomics time
points allowed us to obtain accurate and systemic under-
standing of the expected metabolic changes in response to
glucose ingestion in people with normal glucose tolerance.
Our temporal data on the 2-h changes were consistent with
previous small studies with pre- and post-OGTT measures
and support the known action of insulin in promoting gly-
colysis metabolism (pyruvate and lactate) and suppression of
ketogenesis (ketone bodies), proteolysis (amino acids), and
lipolysis (glycerol) [4, 7, 18, 20]. Additionally, our results
showed that glucose ingestion also reduces the circulating
concentration of triglycerides in VLDL particles after the ini-
tial increase during the first 60 min. This may reflect a com-
plex balance of hepatic triglyceride production between
increased conversion from excess glucose and reduced re-
esterification from free fatty acids (as a result of reduced lip-
olysis) [4]. A general observation is that different metabolic
pathways were differentially affected. For example, concen-
trations of glycolysis-related measures peaked within 2h,
whilst most other measures (e.g. amino acids, ketone bodies,
and triglycerides) continuously decreased during the 2 h and
had an evident trend afterwards.

The extensive metabolic data demonstrate that insulin-
resistant individuals had systematically smaller relative meta-
bolic responses in comparison to the insulin-sensitive ones.
Some of these blunted changes have been previously
reported for insulin-resistant or obese individuals separately
in small studies, e.g. for lactate [7, 20], beta-hydroxybutyrate
[7, 20], isoleucine [7, 20], glycerol [7], and VLDL-TG [16,
18]. Interestingly, the metabolic measures which showed
blunted changes in insulin-resistant individuals in this study
have been also associated with insulin resistance in the fast-
ing state [28]. It has been suggested that insulin resistance is
associated with higher fasting glycolysis-related measures
and greater fasting concentrations of branched-chain amino
acids, glycerol, and triglycerides [28]. Prospective studies
have suggested that the associated metabolic dysregulations
at fasting state are predictive of future cardiometabolic risk
[10, 11, 29, 32]. Further, recent Mendelian randomisation
analyses have indicated a causal link from insulin resistance
to higher branched-chain amino acids and triglycerides in
the fasting state [3]. Our results here underline the possibil-
ity that fasting concentrations may also reflect the insuffi-
cient suppression of branched-chain amino acids and
triglycerides in the postprandial state in the insulin-resistant
individuals. Regardless of the exact sequence of events, this
study provides new evidence that insulin-resistant individ-
uals are at greater cardiometabolic risk both in the fasting
and post-load settings.
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The comparison between IR-NGT and IS-NGT addressed
the differences in IR whilst having normal glucose metabol-
ism. We also performed a mirror experiment where we
compared the metabolic trajectories of IFG, IGT, and NDM
to IR-NGT (varying glucose levels but minimising the differ-
ences in IR). Interestingly, we found similar metabolic dysre-
gulations in individuals with prediabetes and diabetes to
those of insulin-resistant individuals with normal glucose
metabolism. These findings suggest limited impact of glu-
cose on these metabolic associations. This interpretation is
reinforced by our adjusted analyses: the metabolic dysregula-
tions appear to be exclusively driven by insulin resistance
but not fasting or 2-h glucose. Type 2 diabetes, characterised
by increased circulating glucose concentrations, is a known
risk factor for CVD. However, a meta-analysis of prospective
studies found only a marginal association between circulat-
ing glucose and CVD outcomes [2]. Consistently, a meta-
analysis of over 300 trials found limited evidence to support
glucose-lowering drugs would reduce the risk of cardiovas-
cular disease and all-cause mortality in patients of estab-
lished type 2 diabetes [33]. By contrast, individuals at the
stage of IR-NGT or prediabetes are reported to have higher
risk of CVD [6, 34]. Taking these together, it seems that
long-term exposure for the metabolic consequences of insu-
lin resistance across multiple tissues would account for the
concerting development of type 2 diabetes and cardiometa-
bolic complications [5, 6]. Our study revealed that glucose-
independent postprandial dysfunction might be a novel
component of this exposure that is hitherto poorly recog-
nised as a potential interventional target.

Large-scale population studies and multiple time points
of metabolomics data gave us a unique opportunity to
study the systemic metabolic trajectories across multiple
clinical glucose categories. Analyses with multiple testing,
multivariate adjustments, and replication in an independ-
ent cohort all point towards the robustness of the current
findings. The associations of insulin resistance with the
metabolic changes were consistent when assessed across
three different surrogate markers of insulin resistance.
However, we acknowledge that insulin resistance markers
may reflect a composite state of insulin sensitivity levels of
multiple tissues. In order to understand the metabolic sig-
natures of specific tissues, further experiments are re-
quired. In addition, the results were coherent whether the
metabolic changes were assessed via relative or absolute
concentration changes. The associations remained similar
between men and women, between middle-aged and older
individuals, and also between those with or without the
presence of glucose abnormality. However, ethnic and so-
cioeconomic context should be taken into account when
extending these results to other populations. The OGTT
corresponds to the ingestion of sugary drinks, but not
mixed meals, and thus, these results should not be gener-
alised to post-meal metabolic responses.
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Conclusions

In conclusion, our results highlight the detrimental ef-
fects of insulin resistance on systemic metabolism after
glucose ingestion. The population health impact of these
metabolic consequences is likely substantial given the
spurious and energy-dense eating patterns in the mod-
ern world, i.e. people are mostly living in a non-fasting
state and consume high amounts of added sugar and re-
fined carbohydrates. The observed metabolic effects
manifest very early on, and these findings suggest new
avenues to understand the increased CVD risk in insulin
resistance and diabetes. It might therefore be beneficial
if diabetes diagnostics and clinical care would be ex-
tended beyond glucose management. We call for better
recognition of postprandial dysfunction beyond glucose
tolerance categories as an important cardiometabolic
risk factor, and new preventive efforts and strategies to
reverse all aspects of metabolic dysregulation. We main-
tain that this is particularly important at the early stages
of insulin resistance, and may also hold untapped thera-
peutic opportunities.
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