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Abstract 20 

Changing climate is forcing many terrestrial and marine species to extend their ranges poleward 21 

to stay within the bounds of their thermal tolerances. However, when such species enter higher-22 

latitude ecosystems, they engage in novel interactions with local species, such as altered 23 

predator-prey dynamics and competition for food. Here we evaluate the trophic overlap 24 

between range-extending and local fish species along the east coast of temperate Australia, a 25 

hotspot for ocean warming and species range extensions. Stable isotope ratios (δ15N and δ13C) 26 

of muscle tissue and stomach content analysis were used to quantify overlap of trophic niche 27 

space between vagrant tropical and local temperate fish communities along a 730 km (6˚) 28 

latitudinal gradient. Our study shows that in recipient temperate ecosystems, sympatric tropical 29 

and temperate species do not overlap significantly in their diet – even though they forage on 30 

broadly similar prey groups – and are therefore unlikely to compete for trophic niche space. 31 

The tropical and temperate species we studied, which are commonly found in shallow-water 32 

coastal environments, exhibited moderately-broad niche breadths and local-scale dietary 33 
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plasticity, indicating trophic generalism. We posit that because these species are generalists, 34 

they can co-exist under current climate change, facilitating the existence of novel community 35 

structures. 36 

 37 
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 40 

Introduction 41 

To persevere in a changing environment, species must acclimate (Donelson, Munday, 42 

McCormick, & Pitcher, 2011; Stillman, 2003), adapt, or relocate (Booth, Bond, & Macreadie, 43 

2011; Pecl et al., 2017; Perry, Low, Ellis, & Reynolds, 2005). The balance between persistence 44 

and extinction is jeopardized by climate change, causing shifts in range edges (Cheung et al., 45 

2012; Poloczanska et al., 2013; Sinervo et al., 2010), greatly impacting the structure and 46 

function of ecosystems (Dawson, Jackson, House, Prentice, & Mace, 2011). Marine species 47 

shift their range edges under global warming at an average rate of 19 km year-1 (Sorte, 48 

Williams, & Carlton, 2010), an order of magnitude faster than the average terrestrial rate of 0.6 49 

km year-1 (Maggini et al., 2011; Poloczanska et al., 2013; Sorte et al., 2010). Range shifts may 50 

be facilitated by the strengthening of boundary currents, such as Australia’s East Australian 51 

Current (EAC), as well as a drought-related reduction in freshwater flow (Booth et al., 2011; 52 

Johnson et al., 2011; Last et al., 2011). To date, 75% of marine range shifts occur in a poleward 53 

direction (Sorte et al., 2010).  54 

Whilst there are ample insights into the mechanisms and implications of species 55 

invasions within terrestrial systems (Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; Estrada, 56 

Morales-Castilla, Caplat, & Early, 2016; Peers, Wehtje, Thornton, & Murray, 2014), different 57 

traits and processes (e.g. ocean currents) can regulate invasions in marine ecosystems, and 58 



therefore the same principles may not be relevant to both biomes (Burrows et al., 2011; Dawson 59 

et al., 2011; McKnight, García-Berthou, Srean, & Rius, 2017). Even among marine 60 

ecosystems, range edge movement cannot always be generalized, in part due to the largely 61 

indiscriminate nature of water movement, e.g. non-linear eddies (Bates et al., 2014; McKnight 62 

et al., 2017). When range shifts occur near islands and continent edges, where habitat is limited 63 

(Cahill et al., 2012; Wernberg et al., 2016), or where water movement is caused by non-linear 64 

currents and eddies (Garciá Molinos, Burrows, & Poloczanska, 2017), range shifts become 65 

even more difficult to predict, and sometimes recede rather than extend.  66 

 Many studies have focussed on range-extensions of warm-affiliated species to higher 67 

latitudes, but we still lack a detailed understanding of how recipient ecosystems and 68 

communities are affected by these native invasions (Bates et al., 2014; Feary et al., 2014). 69 

Several scenarios exist in which range-extending species might exert positive effects or 70 

ecosystem services on recipient communities. For example, range-extending species can serve 71 

as functional substitutes for extinct local species and provide food and habitat to rare local 72 

species, which may be vital in achieving future conservation goals (Dudgeon & Smith, 2006; 73 

Gozlan, 2008; Schlaepfer, Sax, & Olden, 2011). Research on the range extensions of boreal 74 

arctic generalist fish showed an increase in connectivity between pelagic and benthic 75 

communities and a subsequent reduction in modularity (Kortsch, Primicerio, Fossheim, 76 

Dolgov, & Aschan, 2015). Additionally, range-extending species may be more adaptable than 77 

native species, and as the climates continue to change, outlast local species and ultimately 78 

evolve into new endemic species (Schlaepfer et al., 2011).  79 

Negative effects of range-extensions include novel predators causing local extinction 80 

of native species (Bampfylde & Lewis, 2007; Wiens, 2016), hybridization altering the integrity 81 

of local species (Gozlan, 2008), threating ecosystem functions, such as the overgrazing of 82 

macrophytes (Gallardo, Clavero, Sanchez, & Vila, 2016) and the creation of urchin barrens 83 



(Ling et al., 2015), and carrying infectious diseases that can harm native species (Schlaepfer et 84 

al., 2011). If a non-native species has high rates of consumption and growth, they have the 85 

potential to damage local communities by outcompeting, and potentially replacing, native 86 

consumer populations (McKnight et al., 2017; Schlaepfer et al., 2011). This replacement could 87 

intensify the local extinction rates of native species by increasing their susceptibility to 88 

anthropogenic stressors, having both ecological and commercial repercussions (McKnight et 89 

al., 2017). On the other hand, tropical species in temperate environments may experience 90 

greater predation by local predators, as they are a novel species within the community (Almany 91 

& Webster, 2004). The exact effect of range-extending species on recipient ecosystems, 92 

however, depends on a variety of factors including a species’ geographic range, abundance, 93 

and per capita effects. Species are thought to have a high per capita effect if they are 94 

functionally distinctive in their food web position, their response to environmental factors, their 95 

acquisition of resources, or their effects on disturbance regimes (Chapin et al., 1997; Vitousek, 96 

1990; Wardle, Bardgett, Callaway, & Van der Putten, 2011). In general, it is difficult to 97 

estimate the per capita impact that a species will have until the invasion begins to happen 98 

(Strayer, 2012). 99 

Here we test how range-extending tropical reef fish, thought to be the most at-risk group 100 

under future climate change (Comte & Olden, 2017), create novel trophic niches in temperate 101 

coastal ecosystems. Novel interactions such as changes in predator-prey relationships and 102 

trophic competition are likely to arise between newly sympatric groups (Alexander, Diez, Hart, 103 

& Levine, 2016; Pörtner & Farrell, 2008; Wernberg et al., 2011). Using stable isotopes and 104 

stomach contents, we determine how trophic niche partitioning might facilitate co-existence 105 

among coastal vagrant tropical and local temperate species by exploring several scenarios of 106 

niche modification: segregation, overlap, displacement, and expansion or contraction (Fig. 1). 107 

Our study focuses on the temperate east coast of Australia, where coastal waters are warming 108 



at a rate 3-4 times the global average (Holbrook & Bindoff, 1997; Johnson et al., 2011; 109 

Ridgway, 2007).  110 

Fig. 1: Conceptual diagram of trophic niche space of co-existing species based on existing 111 

theory. Niches are displayed as convex hull polygons in isotope (δ15N and δ13C) space. Possible 112 

arrangements include niche segregation (no overlap) (a), niche overlap (b), niche displacement 113 

(c), and niche expansion and/or contraction (d). The different coloured niches represent 114 

different affinities (tropical vs temperate) or species. In the case of niche displacement, the 115 

dashed blue line represents where the blue niche was before it was displaced. 116 

 117 

Materials and Methods 118 

Study species 119 

The fish species studied were selected based on their ubiquity and ease of capture at known 120 

locations, and include tropical pomacentrid damselfishes (Abudefduf bengalensis*, A. 121 

sexfasciatus*, A. vaigiensis*, Chrysiptera brownriggii, Dascyllus aruanus, Pomacentrus 122 

bankanensis, P. coelestis, P. moluccensis), tropical butterflyfishes (Chaetodon auriga*, C. 123 

citrinellus, C. flavirostris, C. kleinii, C. rainfordi, C. tricinctus, and C. vagabundus), two 124 

temperate sea chubs (Atypichthys strigatus* and Microcanthus strigatus*), a temperate 125 

pomacentrid damselfish (Parma microlepis*), and the temperate Port Jackson glassfish 126 

(Ambassis jacksoniensis) (See Table S1 for fish lengths, weights, sample sizes, and in situ 127 

densities). Some of these common tropical species, namely A. sexfasciatus and A. vaigiensis, 128 

are often observed to school with the temperate A. strigatus and M. strigatus (Figueira, Curley, 129 

& Booth, 2019; Smith, Fox, Booth, & Donelson, 2018). All above species were included in the 130 

stable isotope analysis, but due to their small sample sizes in some regions, only species 131 

indicated with ‘*’ could be used for stomach contents analysis, and consequently for 132 

calculation of diet breadth and niche breadth.  133 



The tropical species are commonly found in warm Indo-Pacific waters, including the 134 

Great Barrier Reef (Getlekha et al., 2016; Masuda, Amaoka, Araga, Uyeno, & Yoshino, 1984). 135 

The temperate species M. strigatus is found from Japan down into tropical and temperate 136 

Australia and east towards the Hawaiian Islands, while temperate species A. jacksoniensis, A. 137 

strigatus, and P. microlepis are found in south-eastern Australia only. The tropical species used 138 

in this study that were observed at Sydney and further south (Fig. 2; A. bengalensis, A. 139 

sexfasciatus, A. vaigiensis, C. auriga, C. citrinellus, C. flavirostris, C. vagabundus, P. 140 

bankanensis, and P. coelestis) are considered vagrants as they only occur at these locations on 141 

a seasonal-basis. Their presence drops quickly as water temperature decreases throughout the 142 

seasons, and their presences are also much lower at the cold-water Merimbula site than the 143 

warmer Sydney site (Table S2). The remainder of the tropical species were not observed as far 144 

south as Sydney. Furthermore, the peak temperatures (below which abundances start to 145 

decline) of all the selected tropical species (Booth, Beretta, Brown, & Figueira, 2018) are lower 146 

than the mean winter temperatures at the two study sites (Table S2). All species studied are 147 

omnivorous (Lieske & Myers, 1994; Myers, 1991; Randall, 1985). The East Australian Current 148 

(EAC) transports larvae of coral reef fishes from tropical regions to southern sub-tropical and 149 

temperate regions (Booth, Figueira, Gregson, Brown, & Beretta, 2007; Smith, Fox, Donelson, 150 

Head, & Booth, 2016). 151 

 152 

Field collection 153 

Field sampling was conducted in February and March of 2017 and 2018 in four different 154 

regions (Fig. 2; true coral reefs, and North, Middle, and South regions of range extensions). 155 

Sample locations include South West Rocks (two sites) and Port Stephens (two sites) 156 

(“North”); Sydney (two sites) (“Middle”); Bass Point (one site), Narooma (one site), and 157 

Merimbula (two sites) (“South”); and One Tree Island (two sites) and Lord Howe Island (three 158 



sites) (“coral reef”) (Fig. 2). One Tree Island and Lord Howe Island were sampled in 2017 159 

only, and only tropical species were present and captured there. These coral reef locations were 160 

chosen based on their latitude and geographical spacing, as well as a priori knowledge that our 161 

species of interest reside there (Booth et al., 2007). Sample sizes of each species at each site 162 

are shown in Table S1 and species’ seasonal ranges are shown in Table S2. Fish were caught 163 

using hand nets at depths of 1-3 m using ethanol and clove oil, to anesthetize the fish. The fish 164 

were immediately killed using the iki jime method, and placed on ice before being frozen. All 165 

samples were frozen within four hours of collection and remained frozen at -30 ˚C before 166 

processing.  167 

 168 

Fig. 2: Sample locations along the southeast coast of Australia, including South West Rocks 169 

(two sites; 30°52'34"S, 153°04'02"E and 30°53'00"S, 153°02'17"E) and Port Stephens (two 170 

sites; 32°42'56"S, 152°10'58"E and 32°44'55"S, 152°10'19"E) (included in region “North”, red 171 

marker); Sydney (two sites; 33°42'07"S, 151°18'28"E and 33°47'44"S, 151°17'25"E) (included 172 

in region “Middle”, purple marker); Bass Point (34°35'54"S, 150°53'18"E), Narooma 173 

(36°12'54"S, 150°07'51"E), and Merimbula (two sites; 36°44'13"S, 149°58'58"E and 174 

36°53'40"S, 149°55'25"E) (included in region “South”, blue marker); and One Tree Island 175 

(23°30'30"S, 152°05'30"E) and Lord Howe Island (31°33'15"S, 159°05'06"E) (“Coral reef”, 176 

black marker). Tropical species were collected from study sites spanning 1,500 km (13˚ 177 

latitude), while temperate species were collected along 730 km (6˚ latitude) of coastline. 178 

Temperate species were not present at One Tree Island or Lord Howe Island. 179 

 180 

Sample preparation 181 

The scales and skin were removed from the right lateral side of each fish. After a thorough 182 

cleaning of the scalpel blade, a pea-sized piece of white muscle tissue, free of bone, organs, 183 



and scales, was removed and placed into a labelled tube, and immediately re-frozen. Stomachs 184 

and guts were removed and frozen separately for subsequent stomach content analysis, with 185 

the exception of stomachs collected in 2017, which were stored in 70% ethanol.  186 

The fish tissue was freeze-dried for at least 36 hours to remove moisture. A small metal 187 

ball was then placed into each individual tube, and the tissue was ground into a fine powder 188 

using a ball mill. This ensured that the sample was homogeneous, and therefore representative 189 

of the organism’s true δ15N and δ13C content (Eurich, Matley, Baker, McCormick, & Jones, 190 

2019). Powdered samples were then weighed into tin capsules and analysed for stable isotope 191 

content using a Nu Instruments Nu Horizon Continuous Flow IRMA (CF-IRMA). 192 

 193 

Stable Isotope Analysis (SIA) 194 

Stable isotope analysis (SIA) can be used to estimate an individual’s position in trophic space 195 

(Layman, Arrington, Montana, & Post, 2007), track migration routes (Hobson, 1999), and 196 

assess shifts in diet (Phillips & Eldridge, 2006). These questions can be answered by analysing 197 

the type and abundance of prey and associated carbon and nitrogen stable isotopes that have 198 

been incorporated into muscle tissue over the past few weeks or months (Fitzgerald, 199 

Winemiller, Perez, & Sousa, 2017; Fry, 2006; Newsome, del Rio, Bearhop, & Phillips, 2007). 200 

In this way, the accumulation and transformation of organic matter can be traced within a 201 

community over time (Fanelli, Azzurro, Bariche, Cartes, & Maynou, 2015). SIA utilises δ15N, 202 

the ratio of 15N:14N, as an indicator of trophic position and δ13C, the ratio of 13C:12C, as an 203 

indicator of what the individual’s source of prey has been over the past few weeks or months 204 

(Cabana & Rasmussen, 1994; Campbell, Wandera, Thacker, Dixon, & Hecky, 2005; Newsome 205 

et al., 2007). δ15N increases ~3.4‰ on average (Post, 2002) at each trophic transfer due to 206 

nitrogen fractionation, with different prey items resulting in different fish tissue signatures 207 

(Checkley & Entzeroth, 1985; DeNiro & Epstein, 1978; McCutchan, Lewis, Kendall, & 208 



McGrath, 2003). δ13C varies little between trophic levels (0-1‰), as carbon fractionation is 209 

primarily influenced by prey type (DeNiro & Epstein, 1978; Newsome et al., 2007; Post, 2002). 210 

Here, stable isotope analysis was used to display the trophic niche of 1) temperature 211 

affinity groups, and 2) individual species in isotopic (δ15N and δ13C) space. At the affinity level, 212 

species were grouped into ‘tropical’ or ‘temperate’ affinities. Trophic niche areas of the two 213 

affinities and of individual species were calculated for each region (North, Middle, and South) 214 

using convex hulls in the rKIN package available in R (Albeke, 2017). Individual fish were 215 

plotted in isotopic space (i.e. isospace) and a convex hull (100% of data points used) was 216 

created to encapsulate the data points for each species or affinity, depending on the analysis 217 

(Layman, C. A. et al., 2007; Syväranta, Lensu, Marjomäki, Oksanen, & Jones, 2013). In 218 

addition to convex hulls, standard Bayesian ellipses (95% confidence interval of the bivariate 219 

means) were used to calculate the niche area (SEAc) of individual species using the R package 220 

SIBER (Jackson, Inger, Parnell, & Bearhop, 2011; Jackson & Parnell, 2019; Jackson et al., 221 

2012). Standard ellipses can correct for small sample size, such is the case for some of the 222 

species used in this study, making them a more suitable tool for individual species niche area 223 

analysis than convex hulls alone. 224 

In addition to niche area, we also calculated the degree of overlap between niches. For 225 

overlap between affinities, percentages were calculated using convex hulls in the program rKIN 226 

(Albeke, 2017), with overlap expressed as the percent that each species area is being 227 

overlapped. Affinity overlap percentages are from the perspective of the temperate species, as 228 

it is the temperate recipient community that is being invaded and is under investigation. For 229 

individual species, niche overlap was calculated using ellipses in the R package nicheROVER 230 

(Lysy, Stasko, & Swanson, 2014). Ten random elliptical projections were created for each 231 

species at each region based on posterior distribution. Overlap was then  determined based on 232 

the probability of one species falling into the niche of another (Swanson et al., 2015). Because 233 



niches are not symmetrical, there are two possible values for each species pair, one for the 234 

percent probability that hypothetical group “X” is being overlapped by group “Y”, and the 235 

other for the percent probability that group “Y” is being overlapped by group “X”. For example, 236 

if a large ellipse was directly on top of a smaller ellipse in isospace, one could calculate the 237 

probability of overlap from the perspective of the large ellipse, e.g., 15% probability of overlap, 238 

whereas the overlap probability from the perspective of the small ellipse would be 100%. Niche 239 

areas which overlap by > 60% are thought to be sharing a significant amount of niche space 240 

(Guzzo, Haffner, Legler, Rush, & Fisk, 2013; Schoener, 1968; Wallace, 1981). The niche 241 

range, or the maximum/minimum difference of both δ15N and δ13C values, was also calculated 242 

for each species, and then averaged across affinity for each region, to identify whether the fish 243 

are occupying a similar isotopic breadth across the regions. 244 

 245 

Stomach Content Analysis 246 

Stomach content analysis is used to provide direct evidence of prey items consumed in the 247 

hours leading up to the fish’s collection (Rybczynski, Walters, Fritz, & Johnson, 2008). Stable 248 

isotope signatures provide a measure of where in δ15N and δ13C isospace fishes are situated, 249 

but stomach content analysis reveals on what taxa, and in what quantities, tropical and 250 

temperate fish are feeding (Svensson et al., 2017). Only stomachs collected in 2018 were used 251 

for stomach content analysis, due to disintegration of the 2017 stomachs that were stored in 252 

ethanol. As such, some species did not have a large enough regional sample size (e.g. A. 253 

bengalensis in the Middle and C. auriga in the North) to be used in diet analyses (stomach 254 

contents, Levins’ index of niche breadth, and Pianka’s index of diet overlap) in all regions. 255 

Only species with at least 3 replicate stomachs were included for the diet analyses. However, 256 

all species were still used in the isotopic niche analyses, as stable isotope data from both 2017 257 

and 2018 were included. 258 



The stomachs of all fish were emptied of their contents. Contents that were too digested 259 

to be distinguished, as well as gastric juices, were excluded from analysis. Food items were 260 

divided into broad categories, including algae, seagrass, crustaceans, worms, gastropods, eggs, 261 

zooplankton, detritus, hydroids, fish larvae, parasites, nudibranchs, and terrestrial insects and 262 

seeds (Layman, Quattrochi, Peyer, & Allgeier, 2007). For example, both fleshy green algae 263 

and branching red algae were grouped into the broad category ‘algae’. If a stomach was 264 

composed of 10% zooplankton, 10% algae, 30% gastric juice, and 50% unknown matter, it 265 

would be classified as containing 50% zooplankton and 50% algae to standardise diets solely 266 

based on identifiable prey items consumed. The prey categories in the stomachs of each species 267 

were averaged for each region to calculate diet overlap among species and across regions using 268 

Pianka’s index (Pianka, 1973). Pianka’s diet overlap is calculated using the following equation: 269 

 270 

(Equation 1) 271 

𝑂𝑗𝑘 =  
∑ 𝑝𝑖𝑗𝑝𝑖𝑘

𝑛
𝑖

√∑ 𝑝𝑖𝑗
2𝑛

𝑖 ∑ 𝑝𝑖𝑘
2𝑛

𝑖

 272 

where: 273 

 274 

𝑂𝑗𝑘   = Pianka’s index of diet overlap between species j and species k 275 

𝑝𝑖𝑗    = proportion resource i is of the total resources used by species j 276 

𝑝𝑖𝑘   = proportion resource i is of the total resources used by species k 277 

𝑛      = total number of resource states 278 

 279 

Pianka’s values range from 0-1, with 0 indicating total segregation, and 1 indicating total diet 280 

overlap (Vieira & Port, 2007). Similar to isotope niche overlap, Pianka’s values > 0.6 are 281 

considered to represent a significant diet overlap (Wathne, Haug, & Lydersen, 2000; Zaret & 282 



Rand, 1971). Statistical analyses were performed by grouping Pianka’s values into either intra-283 

affinity overlap (tropical-tropical or temperate-temperate), or inter-affinity overlap (tropical-284 

temperate). ANOVA was then performed to test if there was a significant difference in overlap 285 

between each of these three groups. As such, ANOVA only had region (North, Middle, South) 286 

and affinity group (tropical-tropical, temperate-temperate, and tropical-temperate) as factors. 287 

Niche breadth represents the range of resources that a species uses (Slatyer, Hirst, & 288 

Sexton, 2013) and can be used to determine feeding strategies, and separate species into 289 

specialists or generalists. Niche breadth was calculated using Levins’ method (Levins, 1968) 290 

and standardized using Hurlbert’s method (Hurlbert, 1978). Levins’ standardized niche breadth 291 

equation is as follows: 292 

 293 

(Equation 2) 294 

𝐵𝐴 =

1
∑ 𝑝𝑗

2 − 1

𝑛 − 1
 295 

where: 296 

 297 

𝐵𝐴  = Levins’ standardized niche breadth 298 

𝑝𝑗   = proportion of individuals using resource state 𝑗 299 

𝑗    = resource state 300 

𝑛   = number of possible resource states 301 

 302 

Levin’s standardized index produces niche breadths ranging in value from 0-1, with species 303 

exhibiting a value < 0.3 considered to be specialists and values of 0.3-1 considered to be 304 

generalists (Nagelkerken, Van Der Velde, Wartenbergh, Nugues, & Pratchett, 2009; 305 

Novakowski, Hahn, & Fugi, 2008; Sa-Oliveira, Angelini, & Isaac-Nahum, 2014). A food 306 



specialist consumes a narrow range of food sources, while a generalist consumes a wide variety 307 

of food sources (Amundsen, Gabler, & Staldvik, 1996). Note that Levins’ index does not take 308 

into account the possibility of variation in resource abundance and availability.  309 

 310 

Statistical analyses 311 

Statistical analyses were performed using the program Primer-e, except the isospace niche 312 

areas and overlap analyses which were calculated using the packages rKIN and nicheROVER 313 

available in R (Albeke, 2017; Lysy et al., 2014). Analysis of variance (ANOVA – type III error) 314 

was used to test the effects of region (“Re”; North, Middle, South; fixed factor), affinity (“Af”; 315 

tropical, temperate; fixed factor), and species (“Sp”; 18 species for isotope statistics, and 7 316 

species for all other analyses; random factor) on niche space. All analyses were performed on 317 

fourth root transformed data, and used either Bray-Curtis or Euclidian resemblance matrices. 318 

All residuals were permutated under a reduced model. Where significant differences were 319 

found, pairwise tests were used to determine which treatments differed. Because the factor 320 

‘species’ is nested within factor ‘affinity’, post-hoc tests of any significant Re × Sp (Af) 321 

interactions yielded only intra-affinity comparisons, e.g., how a particular tropical species 322 

differed across regions, or how a temperate species in the North differed from other temperate 323 

species in the North. As such, Re × Sp (Af) post-hoc results are not useful in investigating 324 

dynamics between tropical and temperate affinities, only changes within each affinity. 325 

 326 

Results 327 

Niche segregation 328 

Trophic niches of tropical and temperate species were largely segregated (despite their co-329 

schooling in situ), irrespective of latitude (Figs. 1a, 3). The niche convex hulls showed that 330 

overlap between tropical and temperate niche space was minimal (28.4% in the North, 8.8% in 331 



the Middle, 15.5% in the South). The negligible overlap between tropical and temperate species 332 

was driven primarily by tropical Abudefduf species overlapping with temperate sea chubs 333 

(Microcanthus strigatus and/or Atypichthys strigatus) in the North and Middle, with Chaetodon 334 

species also overlapping temperature niche space in the South, respectively, and a combination 335 

of all temperate species in the Middle (Fig. S1). In total, only four tropical-temperate species 336 

pairs out of a possible 37 combinations exhibited overlap greater than 60%, above which 337 

overlap is considered to be significant (Table S3). In the North, the trophic niche of tropical 338 

species A. bengalensis was overlapped by M. strigatus 67.5%, yet none of the trophic niches 339 

of temperate species were overlapped significantly by tropical species. In the Middle, 340 

temperate species Parma microlepis was overlapped by tropical species Chaetodon auriga 341 

(69.7%), but no tropical species was overlapped significantly by a temperate species. In the 342 

South, temperate species A. strigatus overlapped tropical species A. sexfasciatus (76.9%) and 343 

C. flavirostris (98.9%), but similar to the North, no temperate species was significantly 344 

overlapped by a tropical species. The considerable overlap between A. sexfasciatus and A. 345 

strigatus in the South is particularly notable because they are known to co-school. 346 

Unsurprisingly, species exhibited considerable overlap with other species of the same affinity 347 

(i.e. tropical species overlapping with other tropical species), regardless of region. The niche 348 

segregation between affinity groups was caused by temperate species having consistently 349 

higher δ15N values (indicative of feeding at a higher trophic level; Fig. 3) than tropical species 350 

(3-way ANOVA, p < 0.001), but δ13C values did not differ (p = 0.077; Table S4a). 351 

 Pianka’s index of diet overlap between tropical and temperate species affinities did not 352 

exceed 0.6 in any region, the value above which overlap is considered significant (Fig. S3). 353 

Diet overlap between species with tropical and temperate affinities was similar to the intra-354 

tropical and intra-temperate dietary overlap (Pianka’s index, 2-way ANOVA, p = 0.620; Table 355 

S4a; Fig. S3), indicating that affinity did not affect diet overlap. In contrast to isotope niche 356 



area and Pianka’s diet overlap, tropical and temperate species affinities had similar diet 357 

compositions (3-way ANOVA, p = 0.538; Table S4a; Fig. 4). 358 

 Niche range (i.e. maximum minus minimum values) of trophic levels (δ15N; 3-way 359 

ANOVA, p = 0.762) and of prey origin (δ13C; p = 0.098) did not differ between tropical and 360 

temperate fishes, indicating that they feed within similar isotopic boundaries (Table S4a; Fig. 361 

S4). Species with tropical and temperate affinities had similarly moderately-broad niche 362 

breadths (Levins’ index, 3-way ANOVA, p = 0.455; Table S4a; Fig. 5) with most species-363 

location combinations showing an index of > 0.3 (Fig. S5), indicative of trophic generalism. 364 

 365 

Fig. 3: Trophic niche of tropical and temperate affinity groups, displayed in δ15N and δ13C 366 

space for North, Middle, and South regions (see Fig. 2) based on convex hulls. Tropical fish 367 

are indicated with triangles, and temperate fish are indicated with circles. Each marker 368 

represents a single fish, and polygons represent convex hulls that encapsulate 100% of data 369 

points. The percentage of the temperate niche that is being overlapped by the tropical niche is 370 

shown for each region. Percent overlap was calculated using the rKIN package available in R. 371 

See Fig. S6 for the total niche area size of these convex hulls, and Fig. S1 for standard ellipses 372 

of individual species. 373 

 374 

Fig. 4: Proportional stomach contents averaged for fish species within tropical and temperate 375 

affinity groups in North, Middle, and South regions from fish collected in 2018. Stomach 376 

gastric juice was excluded, as was partially-digested, unidentifiable food. The remaining food 377 

items were scaled up to 100%. Affinity means were calculated based on the species means in 378 

each region. Algae, seagrass, crustaceans, worms, and gastropods are broad groups and may 379 

contain multiple families within the taxa. See Fig. S7 for the stomach contents of individual 380 

species. 381 



Fig. 5: Mean (± SE) Levins’ index of niche breadth (ranging from 0 to 1) for tropical and 382 

temperate species across regions. A low value indicates that a species has a very small niche 383 

breadth and is a specialist, and higher values (> 0.3) indicate broad niche breadth, or 384 

generalism. Affinity values were calculated using species means at each region. See Fig. S5 385 

for the niche breadths of individual species. 386 

 387 

Niche expansion/contraction 388 

When grouped into affinities, tropical species had the largest niche in the tropics (One Tree 389 

Island, southern Great Barrier Reef; Figs. 1d, S2, S6a); likewise, the largest temperate species 390 

niche area was found at the coldest location (i.e. highest latitude sampled). In the regions where 391 

tropical and temperate species geographically overlap (North, Middle, and South), tropical 392 

species had the largest niche area where temperate species had their lowest (Middle), with 393 

tropical species exhibiting a niche area nearly three times the size of the temperate niche area 394 

(10.5 vs 3.8, Fig. S6a). Similarly, temperate species exhibited their largest niche area where 395 

tropical species exhibited their smallest (South), with the temperate niche almost double the 396 

size of the tropical niche (10.9 vs 5.8). When examining species individually (using either 397 

convex hulls or standard ellipses), affinity-level patterns were less discernible, although 398 

temperate species continued to have a large niche area in the South and several tropical species 399 

a large area in the Middle (Figs. S6b, c). The considerable dichotomy in mean tropical and 400 

temperate affinity niche areas in the Middle is primarily due to the large niche areas of tropical 401 

species C. auriga and A. vaigiensis (and A. sexfasciatus when using standard ellipses) and the 402 

small niche areas of all temperate species, particularly A. strigatus. Both trophic level (δ15N; 403 

3-way ANOVA, p < 0.001) and prey origin (δ13C; 3-way ANOVA, p < 0.001) signatures 404 

differed regionally, with signatures in the tropics being lower in δ15N and higher in δ13C than 405 

all other regions, suggesting that coral reef fishes were consuming isotopically-different prey 406 



items from the far north to the South (Tables S4a, b; Fig. S2a). However, the niche range of 407 

δ15N (3-way ANOVA, p = 0.624) and δ13C (p = 0.645) did not differ between regions for either 408 

tropical or temperate species (Table S4a; Fig. S4).  409 

Tropical and temperate fish consumed primarily algae, zooplankton, and crustaceans, 410 

and overall decreased their consumption of algae and increased their consumption of 411 

zooplankton and crustaceans as a function of increasing latitude, i.e. from North to South (Figs. 412 

4, S7; Table S4a). All tropical species had different diet compositions between the latitude 413 

extremes (North and South), with one species (A. vaigiensis) also differing between North and 414 

Middle regions. Only one temperate species (M. strigatus) had a different diet composition 415 

between the latitude extremes, yet all differed between the Middle and South regions (Fig. S7; 416 

Table S4b). Additionally, temperate species decreased the number of food items consumed 417 

from the highest latitude (South: 13 items) to the two lower latitudes (North/Middle: 9 and 10, 418 

respectively), but tropical species ate a similar number of food items across all three latitudes 419 

(9, 8, 9, respectively) (Fig. 4). Neither diet overlap (Pianka’s index, 2-way ANOVA, p = 0.702; 420 

Fig. S3) nor niche breadth (Levins’ index, 3-way ANOVA, p = 0.917; Fig. 5) varied among 421 

regions for temperate or tropical species affinity groups. On the individual species level, the 422 

tropical species A. vaigiensis and the temperate species M. strigatus varied in niche breadth 423 

between regions (Fig. S5; Table S4b). 424 

 425 

Discussion 426 

Here we show that the novel co-existence of range-extending tropical and local temperate 427 

species in temperate ecosystems under climate change is facilitated by trophic niche 428 

segregation (see conceptual diagram Fig. 1a). On average, temperate species had consistently 429 

higher δ15N values than tropical species in all regions, indicating that temperate species are 430 

consuming food sources that are higher up the food chain than the tropical species they co-431 



occur with. Some individual species exhibited some degree of isotopic niche overlap, although 432 

only four out of 37 tropical-temperate species combinations exhibited an overlap in niche space 433 

of > 60%, above which overlap is considered to be significant. Similarly, there was a low 434 

degree of overlap in stomach contents between tropical and temperate species (i.e., based on 435 

Pianka’s index < 0.6) in all regions. In contrast, stomach content composition revealed that 436 

species of different affinities were foraging on broadly similar prey groups. This similarity in 437 

prey groups is likely due to the low resolution of prey identification from stomachs (e.g. broad 438 

categories like ‘crustaceans’ and ‘algae’), which may not reflect taxonomic differences in prey 439 

species within broader groups consumed. Previous studies have demonstrated that minor prey 440 

items (which might not be significantly reflected within bulk stable isotope signatures) can be 441 

of great importance in facilitating species co-existence (Koussoroplis et al., 2010; Nagelkerken 442 

et al., 2009), and that co-existence can occur between species even when there is no apparent 443 

partitioning of food resources (Pratchett, 2005). Nevertheless, niche segregation (based on 444 

isotopic niche space and Pianka’s dietary overlap) was observed across all latitudes studied and 445 

indicates that tropical and temperate fishes are therefore less likely to compete for the same 446 

prey resources at the initial phases of range-extensions in a warming ocean. 447 

The fishes studied here consumed a wide range of prey groups (8-13 per region), 448 

suggesting that they are generalists (Roper, 1994). Additionally, affinities exhibited 449 

moderately-broad niche breadths (based on Levins’ index of > 0.3) across regions, which 450 

further indicates a certain degree of trophic generalism (Devictor et al., 2010; Hurlbert, 1978; 451 

Sa-Oliveira et al., 2014). Generalistic feeding strategies are known to play an important role in 452 

spatial partitioning and co-existence among species by minimizing competition for trophic 453 

space (e.g. pomacentrid fishes) (Eurich et al., 2019). Generalists are thought to have an 454 

advantage over specialists, as they are able to consume a wider array of food sources and are 455 

therefore better equipped to deal with food shortages (Clavel, Julliard, & Devictor, 2011; 456 



Wilson et al., 2008). Additionally, generalists are thought to be less vulnerable to climate 457 

change as they have higher trophic niche plasticity and may be better able to accommodate 458 

changes in resource availability and habitat (Afonso Silva et al., 2017; Slatyer et al., 2013; 459 

Sunday et al., 2015; Travis, 2003). As such, trophic generalists, such as the tropical vagrants 460 

and temperate locals that were examined in this study and are known to frequently co-occur or 461 

school together under increasing ocean warming (Smith et al. 2018), will likely be the most 462 

successful feeding strategists, or “winners”, under future climate change (Ho, Fu, Sun, Kao, & 463 

Jan, 2009; Warren et al., 2001; Wilson et al., 2008). Our findings therefore provide strong 464 

support that trophic generalism is mediating the co-existence of tropical fishes with various 465 

local species in temperate waters under ongoing global warming. 466 

 Across broad spatial scales (from tropical coral reefs to temperate kelp systems), 467 

tropical fishes exhibited a niche contraction with increasing latitude (as per Fig. 1d), whilst at 468 

smaller spatial scales (i.e. within their novel temperate ranges) they showed niche expansion 469 

where local species experienced niche contraction. In the regions where species of both 470 

affinities co-occurred, tropical species exhibited their largest niche area in the region where the 471 

temperate niche area was the smallest, and vice versa. This suggests that tropical and temperate 472 

fish may be unable to maintain large trophic niches simultaneously, although this may simply 473 

be an artefact of small and unequal sample sizes. Previous studies have suggested that an 474 

expanding niche area may be a result of ecological release, or a sudden population increase due 475 

to the disappearance of limiting factors (Bolnick et al., 2010; Svanbäck & Bolnick, 2007), 476 

while others posit that an expansion of niche area may be due to competition (Namgail, Mishra, 477 

De Jong, Van Wieren, & Prins, 2009; Schulter, Price, & Grant, 1985). In the case of 478 

competition, a narrow niche may prove harmful for the local temperate fish, as a previous study 479 

has shown that a small niche area and high overlap with non-native species can lead to a decline 480 

in native fish populations in a freshwater lake (Córdova-Tapia, Contreras, & Zambrano, 2015). 481 



A study of marine snails living along their range edge showed that thermal stress, as is possibly 482 

experienced by our tropical species in the South (cool water) and temperate species in the North 483 

(warm water), led to increased diet variation and therefore trophic niche expansion (Reddin, 484 

O'Connor, & Harrod, 2016), highlighting the effect that range edges may have on feeding 485 

plasticity. Our findings highlight that species that extend their ranges from coral reefs with high 486 

prey diversity to less-diverse temperate areas may need to adjust to novel environments by 487 

contracting their trophic niche. However, on smaller spatial scales local (a)biotic conditions 488 

may alter trophic dynamics and lead to opposite outcomes in terms of niche expansion versus 489 

niche contraction. These initially variable and plastic dynamics at the leading edges of range 490 

extensions are typical of species invading new environments (irrespective of climate change) 491 

(Broennimann et al., 2007; Fernández & Hamilton, 2015; Michel & Knouft, 2012), but as 492 

oceans continue to warm such spatial refuges where local species can resist invasion are likely 493 

to slowly disappear with more definite outcomes in terms of which species will become 494 

winners versus losers under climate change (Byers, 2002; Hellmann, Byers, Bierwagen, & 495 

Dukes, 2008; Moyle & Light, 1996). 496 

It is important to note that stable isotope signatures may be confounded by 497 

environmental stressors unrelated to changes in diet, potentially leading to inaccurate 498 

depictions of trophic niche space (Karlson, Reutgard, Garbaras, & Gorokhova, 2018). A study 499 

of freshwater snails showed that high temperatures, such as those experienced by temperate 500 

species along their trailing range edge, may enrich δ15N and δ13C values (Ek, Karlson, Hansson, 501 

Garbaras, & Gorokhova, 2015). Other factors that may contribute to differential incorporation 502 

of stable isotopes include body size, growth rate, and protein turnover (Martínez del Rio, Wolf, 503 

Carleton, & Gannes, 2009). Because tropical species are not yet established in the southern 504 

study sites, fish were caught opportunistically, making it difficult to control for body size. 505 

Temperature extremes may affect metabolic rate (Clarke & Johnston, 1999; Gillooly, Brown, 506 



West, Savage, & Charnov, 2001), causing altered stable isotope tissue incorporation to increase 507 

for reasons unrelated to food intake (Carleton & Rio, 2005). For these reasons, other factors 508 

might have also partially contributed to some of the variability in trophic niche segregation as 509 

displayed by our study species. 510 

 511 

Conclusions 512 

How tropical and temperate species fill and share trophic niches within novel mixed 513 

communities resulting from global change is a key determinant of future species persistence 514 

and biodiversity. We demonstrate that range-extending tropical and local temperate fish species 515 

exhibit segregated trophic niches, mediated by trophic generalism and local-scale dietary 516 

plasticity. We conclude that range-expanding species adjust their trophic niches at their leading 517 

edges and occupy open niche space thereby avoiding significant dietary overlap with local 518 

species, despite operating under suboptimal environmental and biotic conditions that are 519 

characteristic of novel ranges at the initial stages of climate change. 520 
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