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ABSTRACT

Myelomatosis (MM) is an incurable B cell malignancy, characterised by the presence of

osteolytic bone lesions, a major cause of morbidity and mortality. This study investigated the

effect of zoledronic acid, a potent nitrogen-containing bisphosphonate (BP), on myeloma cells

and osteoblasts-like cells to establish the molecular and cellular mechanism responsible for

the clinical effectiveness of BPs in the treatment of patients with MM.

These studies indicate that zoledronic acid induces apoptotic and non-apoptotic cell death in

myeloma cell lines bV (1) inducing S phase arrest in a time and dose dependent manner, (2)

inhibiting the mevalonate pathway, and (3) up regulating TRAIL expression and uncoupling

the regulated expression of TRAIL death and decoy receptors.

Using an established model of osteoblast differentiation, zoledronic acid was found to

increase the number of mature osteoblast/osteocyte-like cells, with a concomitant decrease in

the number of stromal precursor cells. In accordance with these findings, zoledronic acid was

found to enhance the osteoblast-like cells' ability to form a mineralised bone matrix, when

used at concentrations in the range of 5pM and 25 pM. Therefore, we conclude that

zoledronic acid mediates the differentiation of osteoblasts-like cells, which accounts for the

enhanced bone formation. Zoledronic acid also upregulates the gene expression of IL-l8 and

TNF-cr, which serve to increase the number of osteoprogenitors cells which in tum can

respond to zoledronic acid. Furthermore, zoledronic acid was found to decrease the

expression of membrane-associated RANKL by increasing TACE expression, a

metalloproteinase disintegrin. In conclusion, the studies presented herein show that zoledronic

acid enhances bone formation by directly acling on osteoblasts.

In conclusion, work reported in this thesis suggests that myeloma cell death, and proliferation

and maturation of osteoblasts represent two mechanisms that zoledronic acid inhibits MM-

induced ostolysis.
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CHAPTER 1

INTRODUCTION

Myelomatosis (multiple myeloma, MM) is an incurable B cell malignancy, chatacterised by

the presence of a monoclonal population of end-stage B cells (plasma cells), a monoclonal

immunoglobulin (Ig) protein (M-, or para-protein) and "punched out" lytic bone lesions.

Osteolytic bone destruction, a major cause of morbidity and mortality, is a striking clinical

feature for approximately 80% of patients with MM. It is generally accepted that the

osteolysis is related to the accumulation of the myeloma cell clone within the bone marrow

(BM), in close vicinity to the bone trabeculae. Although current evidence suggests that

myeloma cells cannot directly resorb bone, they produce a variety of osteoclast-activating

factors (OAFs) which lead to the recruitment and activation of osteoclasts (OC) (Michigami

et al., 2000 Roodman, 1997). The normal equilibrium between bone formation by

osteoblasts (OB), and bone resorption by multinucleated OC, is therefore disrupted leading to

localised bone loss (Hjorth-Hansen et al., 1999). It has been known for many years that

cultures of human myeloma cells in vitro prodttce several OAFs, including tumour necrosis

factor-cr (TNF-cr), Tl.tF-P (lymphotoxin), interleukin-lp (L-18), and IL-6, macrophage-

colony stimulating factor (M-CSF) and parathyroid hormone related protein (PTHTP) (Costes

et al., 1998; Filella et al., 1996; Pfeilschifter et al., 1989). However, most of the studies

identifying factors produced by myeloma cells in vivo are inconclusive due to the presence of

other contaminating cell t1pes, including stromal cells and macrophages. In the last three

years, a newly identified clokine system has provided us with a greatly improved

understanding of bone remodelling physiology. This system includes receptor activator of

nuclear factor-rcB ligand (RANKL), which is a member of the tumour necrosis factor (TNF)

ligand family, its receptor, termed receptor activator of nuclear factor-rB (RANK), and its

soluble decoy receptor, osteoprotegerin (OPG). Studies by our group (Famrgia et al',2002)

and others (Croucher et a1.,2001; Giuliani et a1.,2001; Hofbauer et a1.,2001; Sezer et al.,

2002) have demonstrated that this system plays a vety important role in myeloma-induced

osteolysis.

Understanding the molecular mechanisms, by which MM cells induce osteolysis is essential

for the development of new drugs to cure bone disease. To this end, the discovery of

bisphosphonates (BPs), which are stable analogues of naturally occurring pyrophosphate-

containing compounds, represents a significant milestone in the history of treatment of bone



disease. BPs inhibit resorption of bone predominantly through an effect on OC, and have

provided us with an expectation of improved treatment for the skeletal complications of

myeloma. Several double blind, placebo-controlled randomised trials have demonstrated that

BPs reduce the skeletal complications of multiple myeloma, decrease the associated

morbidity (Berenson et al., 1996; McCloskey et al., 1998) and improve the survival

outcomes in some patients (Berenson et al., 1998). The underlying mechanisms, by which

these compounds act on the tumour cells and OB, require further elucidation.

In this project, we investigated the role of the most potent BP, zoledronic acid (formerly

referred to as zoledronate), on myeloma cells and OB, to clarify the underlying molecular

mechanism of clinical effectiveness.

1.1 MYELOMATOSIS

1.1.1 Generøl Description

Myelomatosis is a differentiated B cell neoplasm characterised by the malignant clonal

expansion of plasma cells that accumulate in the BM. It accounts for 2.9Yo of all

malignancies in black people and 1 .0o/o in white people. The median age of diagnosis is 69

and 7l years for males and females, respectively. The diagnosis of MM depends on the

demonstration of increased numbers of marrow plasma cells (>10%) which present as

atlpical and immature forms, the presence of monoclonal paraprotein (M-protein, >3/d1) in

serum, Bence-Jones protein in urine, and osteolytic skeletal lesions. Extensive bone disease is

a hallmark of MM and contributes to most of the debilitating morbidity and mortality

associated with this disease (Roodman, 1995). Multiple myeloma induced osteolytic bone

lesions or osteoporosis cause intractable bone pain and other distressing symptoms such as

pathological fractures after trivial injury, spinal cord compression, and disturbance in calcium

homeostasis. At diagnosis, approximately 50o/" of patients have vertebral fractures, and

approximately 30%o have non-vertebral fractures (Lahtinen et al., 1992). Valuable adjunct

therapies for bony complications in addition to chemotherapy and BM transplantation, are

therefore necessary for improving the quality of life for MM patients.

1"1"2 Myeloma ønd Drug Resistance

Despite initial responses to chemotherapy, myeloma patients ultimately develop drug

resistance and become uffesponsive to a wide spectrum of anti-cancer agents. This

2



phenomenon is termed multi-drug resistance (MDR). MDR presents a major obstacle to

curing myeloma, and understanding factors that determine drug response and the

development of drug resistance aÍe essential in developing means of preventing or

overcoming this problem (Dalton, 1997).

The development of intrinsic cellular resistance to front-line chemotherapeutic drugs, such as

melphalan (an alkylating agent) and doxorubicin (an anthracycline), is a major factor

responsible for treatment failure of MM. Classically, investigators of MDR have focused on

the drug resistant single cells, selected by exposing cells to cytotoxic agents. In summary,

these studies have revealed a number of potential mechanisms including: (1) Reduction of

intracellular drug concentration due to the overexpression of membrane pump proteins such

as P-glycoprotein, MRP, and LRP, (2) Altered drug metabolism or enhanced drug

detoxification (changes in glutathione and glutathione-associated enzyrnes), (3) Alterations in

the drug target that reduce drug efficacy (alterations in topoisomerase II), (4) Enhanced

cellular repair of drug-induced damage (Dalton, 1997), and (5) Cell adhesion-mediated drug-

resistance (for review see Dalton and Jove, 1999; Damiano and Dalton, 2000).

The integrin family of cellular adhesion molecules represents a major family of cell-surface

receptors that mediate both cell-cell and cell-extracellular matrix (ECM) interactions. They

are transmembrane heterodimers composed of noncovalently bound u- and þ-subunits' To

date, 16 different g subunits have been identified, which associate with as many as nine

known p-subunits (for review see (Hynes,7992; H¡mes and Zhao,2000)). The u4B1 (Very

Late Activation Antigen 4, or VLA-4), cr5B1 (VLA-5) and u4þ7 heterodimers are the major

ñbronectin (FN) receptors of the integrin family (Clark and Brugge, 1995; Hynes, 1992)'

cr4B1 is unique among the integrins as it is the only heterodimer that has conclusively been

shown to mediate cell-ECM as well as cell-cell interaction (Pulido et a1.,1991). cr4B1 is one

of the main adhesion receptors involved in the homing and localization of myeloma cells to

the BM microenvironment. A better understanding of its regulatory adhesive mechanisms

might contribute to a greater knowledge of the pathology of MM (Sanz-Rodriguez et al',

r99e).

It is well recognised that cell-cell andlor cell-ECM adhesion may regulate apoptosis and cell

survival in a wide variety of tumour types (Clark and Brugge, 1995). It was demonstrated

J



that myeloma cell lines and patient-derived myeloma cells express the FN receptors cr4B1

and cr5Bl (Damiano et al., 1999), which facilitate the attachment and communication

between the myeloma cells and the BM microenvironment (Barker et a|.,1992; Jensen et al.,

1993). Fibronectin, as well as VCAM-L, are expressed on the surface of MM stromal

monolayers (Faid et al., 1996; Lokhorst et al., 7994), and antibodies to VCAM-I partially

inhibit myeloma cell adhesion to MM stroma (Kim et al., 1994; Robledo et al., 1998). In

addition, anti-a4 and anti-Bl antibodies have been reported to inhibit the adhesion of

myeloma cells to total FN and intact MM stroma, which indicates that o4B1 has an important

role in this adhesion (Lokhorst et al., 1994; Uchiyama et al., 1992; Uchiyama et al., 1993;

van Riet et a1.,1994).

Damiano and colleagues (1999) recently presented data suggesting that integrin receptors on

myeloma cells may be responsible for cell adhesion-mediated drug resistance (CAM-DR)

following attachment to FN (Damiano et al., 1999). These investigators showed that the

drug-sensitive myeloma cell line RPMI 8226, known to express both u4B1 and cr,5B1 integrin

FN receptors, were relatively resistant to the apoptotic effects of doxorubicin and melphalan,

when cells were pre-adhered to FN, compared to cells exposed to the drug while in

suspension culture. Consistent with previous studies, which demonstrated that o4B1

mediated adhesion decreased the proliferation of haemopoietic progenitor cells (Hurley et al.,

1995), Damiano and co-workers reported that chronic exposure of the myeloma cell line,

RPMI 8226, to either doxorubicin or melphalan, prolonged cell doubling times by over-

expressing a4 integrin (Damiano et al., 1999). This suggested that integrin-mediated

adhesion decreased the response of RPMI8226 cells to chemotherapeutic drugs. Clinically,

elevated FN receptor expression or function in myeloma cells within the BM may be an

indicator of a more aggressive tumour cell that has a survival advantage against the cytotoxic

effects of anti-cancer drugs. In vivo alterations in FN receptor expression or function may

have a magnified effect on myeloma cell survival when they are in direct association with

stromal cells and ECM component of the BM. The CAM-DR mediated by FN adhesion may

be sufficient to allow the eventual emergence of drug resistance mechanism such as the up-

regulation of P-glycoprotein, MRP, and topoisomerase II, which then become the

predominant cytoprotective processes.
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Blocking intercellular communications by blocking cell adhesion may represent a new

approach for the treatment of myeloma. These findings provide evidence that antagonists of

cellular adhesion, or signaling events related to adhesion, ffiày serve as a means of inducing

myeloma cell apoptosis or improving the effrcacy of anti-cancer therapy for myeloma.

IL-6 is a potent growth factor for myeloma cells. It is secreted from both tumour and stromal

cells in response to co-adhesion and a4Bl ligation (Uchiyama et al., 1993), where it is

thought to play a role in drug resistance in MM patients. Autocrine IL-6 reflects a highly

malignant phenotype of myeloma cells, and autocrine IL-6 production and deregulated

apoptosis may induce expansion of IL-6+ myeloma cells resistant to spontaneous and drug-

induced cell death (Frassanito et a1.,2001).

1.2 BONE REMODELLING

1.2.1 Physíological Bone Remodelling

Bone is a highly organised structure composed of a calcified connective tissue matrix

(hydroxyapatite) formed by OB, bone lining cells and osteocytes. Bone remodelling

represents the predominant form of bone tumover in the adult human skeleton and serves to

prevent the accumulation of micro-damage and allow the skeleton to respond appropriately to

changes in mechanical loading. Although trabecular bone represents 20o/o of the skeletal

mass, it accounts for up to 80% of the bone tumover. The process of bone remodelling, is

mediated by the highly coordinated activities of two cell types, namely the bone resorbing

OC and the bone forming OB (Parfitt, 1984). Osteoclastic bone resorption is preceded by a

cascade of events that starts with the activation of haemopoietic stem cells and is followed by

proliferation, differentiation, chemotaxis, attachment, and subsequent terminal differentiation

and fusion of the OC precursors into functioning multinucleated OC. After activation, OC

start to erode and form a cavity (lacuna) on the bone surface. This process occurs for

approximately two weeks. After completion of resorption, the OC disappear and OB

subsequently differentiate and form new bone at the same site. Newly formed sites then

remain quiescent, normally for 2-3 years, until a new activation stimulus event occurs at this

site.

1.2.2 Osteoblasts

Osteoblasts represent a heterogeneous population of cells, which are derived from the stromal

or mesench¡rmal cell system. This family includes mature OB, the bone lining cells, which
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cover bone surfaces, and osteocytes, which are buried within bone and communicate with

each other via the canalicular system.

Mature OB line the bone surface, and have a single eccentric nucleus and a well-developed

endoplasmic reticulum and Golgi apparatus (for review see Mundy, 1995). They are

identified morphologically by their cuboidal appearance and their association with newly

synthesized mineralized bone matrix (hydroxyap atite) at sites of active bone formation. This

may be mediated in part by subcellular particles known as matrix vesicles, which are

generated from the OB cytoplasm, are enriched in alkaline phosphatase. Osteoblasts also

produce other bone matrix constituents that may be important in the mineralisation process

such as phospholipids and proteoglycans. These committed osteogenic cells afe

characterised histologically by the synthesis of certain bone-associated matrix proteins, such

as collagen type I (COLI), osteocalcin (OCN), bone sialoprotein (BSP), osteonectin (ON),

and osteopontin (OP). Approximately 95o/o of the organic bone matrix is comprised of COLI,

with the remainder consisting of various other molecules such as proteoglycans, other

collagen tlpes and non-collagenous proteins (Robey, 1996). Osteoblasts secrete the growth

factors that are stored in the bone matrix, such as transforming growth factor B, bone

morphogenic proteins, platelet-derived and the insulin-like growth factors (Hauschka et al.,

1986). Expression of the membrane-bound ectoenzyme alkaline phosphotase (ALP) is one of

the earliest, and most widely accepted indicators that a cell has initiated a program of

osteogenic differentiation. ALP probably plays an essential role in bone mineralisation and is

frequently used by bone cell biologists as a marker of cells with an OB phenotype, and by

clinicians as a serum marker of OB activity. The majority of OB die by apoptosis, and those

remaining have two alternative fates: to become lining cells or osteocytes (Jilka et a1.,1998).

The fact that bone remodelling process continues throughout adult life, and both OB and OC

have a limited functional lifespan, points to the existence of precursor cell populations with

the potential for extensive proliferation and further differentiation. The osteogenic cell

lineage belongs to the stromal fibroblastic system of the BM, which includes other stromal

tissue, such as cartllage, smooth muscle, and fat (Beresford, 1989; Owen and Friedenstein,

1988). Although there is heterogeneity within the OB lineage with regard to their

proliferative capacity and functional state, these cells have a common stromal cell precursor

capable of differentiation into a number of mature lineages, including adipocytes, reticular

cells, fibroblasts and chondrocfes (Liu et al., 1997). Although the factors involved in
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controlling the differentiation of precursors into cells of the OB lineage have not yet been

fully determined, a number of growth regulatory factors such as transforming growth factor

B (TGFB), fibroblast growth factors, bone morphogenetic proteins (BMPs), and platelet-

derived growth factor (PDGF), have been implicated (as reviewed by Mundy,1995).

The exact location of BM stromal precursor cells in the marrow spaces is still a matter of

conjecture. Histological evidence suggests that multipotential stromal progenitors may reside

in the soft fibrous tissue of the marrow stroma. The osteogenic potential of the marrow

stroma was attributed to the presence of a small population of highly adherent, clonogenic

cells, termed colony-forming units fibroblastic (CFU-F) (Owen and Friedenstein, 1988). A

monoclonal antibody (-Ab) STRO-I has been used to recognize a trypsin-resistant cell

surface antigen present on a osteoprogenitor stem cell subpopulation of BM cells, including

essentially all detectable CFU-F (Simmons and Torok-Storb, 1991). BM mononuclear cells

sorted on the basis of STRO-I expression are capable of establishing an adherent stromal

layer in vitro, consisting of a number of phenotl,pically distinct stromal cell types, including

fibroblasts, smooth muscle cells, adipocfes, and OB (Gronthos et al., 1994).In addition, it

has been demonstrated that the STRO-I* population of human BM cells is capable of

osteogenic differentiation and that osteoprogenitors are present in the STRO-1+ population

(Gronthos et a1.,1994). The growth factors required for the expansion of the maffow CFU-F

population have also been characterised (Gronthos and Simmons, 1995).

Using two independent cell surface markers, STRO-I and ALP, cells of the OB lineage at

different stages of maturation have also been identified (Gronthos et al., 1999; Stewart et al.,

19gg). The bone/liver/kidney isoform of ALP is broadly used as a general marker of

committed OB, and STRO-I is used as a marker representiative of a preosteoprogenitor

phenotype. Gronthos et al (1999) showed that the majority of normal human bone cells

(NHBCs), which express the STRO-I-/ALP* and STRO-I7ALP- phenotypes, appear to

represent fully differentiated OB, while the cells that express the STRO-I*/ALP* phenotype

are considered as osteoprogenitors, and cells which express the STRO-I antigen are stromal

precursors (Gronthos et al., 1999). This observation is based on the expression of bone-

associated matrix proteins and the ability of each subpopulation to form a mineralised bone

7
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Studies on human bone have shown that cells of the OB lineage express arange of integrin cr

and p subunits, bothin situ andin culture (Clover et al.,1992; Gronthos et a|.,1997; Grzesik

and Robey,1994; Saito e¡ al., 1994). pl integrins appear to be the predominant adhesion

receptor subfamily used by stromal precursor cells to adhere to matrix glycoproteins

commonly found in the BM microenvironment and bone surfaces (Gronthos et aL.,2001). In

addition, the ability of human BM stromal cells (BMSC) to initiate matrix mineralisation was

found to be significantly diminished in the presence of a functional blocking monoclonal

antibody to the B1 integrin subunit, demonstrating a role for this integrin subfamily during

bone formation (Gronthos et a\.,2001). Collectively, these studies suggest that the resorption

of bone by OC may be mediated through integrins such as crvp3 and perhaps crvB5, while

OB development and bone formation may be more dependent on B1 integrin interactions.

1.2,3 Osteocløsts

Osteoclasts are derived from pluripotent precursors of the monocyte macrophage lineage in

the BM (for review see Mundy, 1995). They are seen frequently at active sites of bone

remodelling, such as the metaphyses of growing bones or adjacent to collections of tumour

ce|ls. Usually the large multinucleated cells have less than 10 nuclei, and have primary

lysosomes, numerous and pleomorphic mitochondria, and a specific area of the cell

membrane that forms adjacent to the bone surface, known as the ruffled border. This area of

the cell membrane comprises folds and invaginations, which facilitates intimate contact with

bone resorption sites and the formation of resorption pits (also known as the Howship's

lacuna or resorption bay). The ruffled border is surrounded by a cleat zone, which contains

actin filaments, and appears to anchor the ruffled border area to the bone surface undergoing

resorption. This structure may be critical to the polarisation of the OC, which occurs

immediately when the cell is activated prior to bone resorption'

Osteoclasts are produced in the BM where they are in physical contact with stromal cells.

Experimental data suggest that OB and their progeny (bone lining cells) may act as accessory

cells for osteoclastic resorption. Interactions may occur by either direct cell-cell contact or by

the production of soluble mediators that are critical for the proliferation and differentiation of

haemopoietic OC precursors. Using the mononuclear fraction of peripheral blood of adults as

a source of precursors, terminally differentiated OC capable of extensive resorption pit
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formation can be cultured in vitro either in the presence of OB or essential mediators (Azuma

et a1.,2000; Fujikawa et a1.,1996; Matayoshi et a1.,1996).

1.3 MECHANISM OF INCREASED OSTEOCLAST ACTIVITY IN MM

It is widely accepted that the underlying mechanism of osteolysis in MM patients is increased

osteoclastic bone resorption. Myeloma cells are found in the close vicinity of bone

trabeculae, suggesting a strong relationship between tumour cells and their environment (for

review see Van Fiiet et al., 1993). Recent studies suggest that there is considerable

interdependence between malignant myeloma cells and BM stromal cells present within the

bone environment, through the interaction of different adhesion receptors with their ligands.

The BM microenviroment itself is a site of synthesis of numerous cytokines which may be

important in the proliferation and/or survival of myeloma cells (Bataille et al., 1996). The

adhesion of myeloma cells to MM stroma triggers s¡mthesis of cytokines, including IL-6,

which augments myeloma cell growth and survival and confers drug resistance. IL-6, a

potent growth factor for myeloma cells, is secreted from both tumour and stromal cells in

response to co-adhesion and a4p I ligation (Uchiyama et al., 1993).In addition, the important

OAFs secreted by myeloma cells and OB, such as IL-6, IL-1P, TNF-o, TNF-P, and PTHTP,

are also increased (Bataille et al., 1992b; Caligaris-Cappio et al., 1992) (figure 1.1). It has

been showed that MM patients with advanced aggressive disease, secrete significantly higher

levels of IL-6, TNF-ø, and IL-1 than normal controls (Filella et al.,1996; Lichtenstein et al.,

1e8e).

1.3.1 Interleukin-6

Interleukin-6 (IL-6), a pleiotropic cytokine produced by a variety of cells, is a critical growth

factor for normal B-cell growth and development and represents a major tumour survival and

proliferation factor for MM cells (Klein et al., 1995; Nilsson et al., 1990; Ohtake et al.,

1990). Although the origin of IL-6 is controversial, some primary plasma cells have been

shown to produce, or can be induced to produce,IL-6. This is thought to mediate autocrine

growth of human myeloma cells by modulating IL-6 signalling and IL-6 receptor expression

in myeloma cells (Hirano et al., 1990; Jernberg-Wiklund et al., 1992; Kang et al., 1996).

Autocrine IL-6 production reflects a highly malignant phenotype of myeloma cells, and

together with deregulated apoptosis, may induce expansion of selective IL-6* myeloma cells

resistant to spontaneous and drug-induced cell death (Frassanito et a|.,2001).
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Figure 1.1.Increased osteoclastic bone resorption is an underlying mechanism of
osteolysis in MM. A number of OAFs including IL-6, IL-1P, TNF-ct, TNF-8, and

PTIkP, have been implicated in the pathogenesis of the ostelytic bone

destruction observed in patients with myeloma.
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The development of MM is a multistep transformation process and Hallek et al supported

that several oncogenic events result in the selection and malignant expansion of a single IL-

6* clone (Hallek et a1.,1998). On the other hand, some studies show that IL-6 is produced by

stromal components grown from myeloma BM, suggesting a paracrine regulation of tumour

growth, which implies that the proliferation of myeloma cells is dependent upon close contact

with stromal cells (Lichtenstein et a1.,1989; Lokhorst et al., 1994). The importance of the IL-

6/IL-6R interaction in MM was demonstrated by de Hon et al. (1.994), who showed that the

growth of MM cell line XG-l could be inhibited by the addition of mutant form of IL-6,

which displayed a 5-fold enhanced affinity for IL-6R, but was incapable of signalling through

the IL-6R (de Hon et al., 1994). Although IL-6 can stimulate osteoclast-like cell formation

(Kurihara et al., 1990), the role of IL-6 in osteoclastic bone resorption is complex and

remains unclear.

1.3.2 Interleukin-l

Serum interleukin-l (L-1) level in myeloma BM cells was found to be significantly higher

than that found in similarly processed BM cells from control individuals (Filella et al., 1996;

Lichtenstein et a1.,19S9). IL-l was shown to be mainly responsible for IL-6 production in the

tumoral BM environment of patients with MM through a prostaglandin E2 (PGE2) loop

(Costes et al., 1998; Lu et al., 1995).Inhibition of PGE2 slmthesis using an IL-1 receptor

antagonist (IL-1RA) and indomethacin, an inhibitor of cyclooxygenase which can block

PGE} synthesis, was found to inhibit myeloma cell proliferation by reducing IL-l-induced

endogenous IL-6 production invitro andin vlvo (Costes et al., 1998). In addition, IL-l8 is

also a principal bone resorption agent present in the supernatants of myeloma cell cultures

that enhances destructive bone lesions in the patients with MM (Cozzolino et al., 1989;

Yamamoto et al., 1939). This bone-resorbing activity can be neutralised by an antibody

directed against IL-lP (Cozzolino et al., 1989; Kawano et al., 1989). Thus, IL-1 can promote

the secretion of IL-6, and both IL-l and IL-6 enhance the bone lysis in MM'

1.3.3 Tumour Necrosis Factor

Tumour necrosis factor-o (TNF-cr), is found at higher levels in supernatants from BM

cultures of MM patients, and is capable of markedly stimulating osteoclast-like

multinucleated cell formation in human marrow cultures (Filella et al., 1996; Lichtenstein er

al., 1989; Pfeilschifter et al., 1989). The role of TNF-B in myeloma bone disease has been
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downplayed by more recent studies, which failed to find significant differences in the amount

of this cytokine in supematants derived from fresh BM plasma cultures from myeloma

patients, compared to controls. In addition, antibodies to TNF-p do not reduce the bone

resorbing activity of fresh BM plasma from myeloma patients. Interestingly, TNF-a has a

more potent effect than IL-6 in stimulating the growth of primary myeloma cultures from the

same patient, indicating that TNF-o in selected myeloma patients has a growth-promoting

effect equal to that of IL-6 (Borset et al.,1994)'

1.3.4 Parathyroìd Hormone Related Protein

Parathyroid hormone related protein (PTHTP) is a widely expressed hormone that is a major

mediator of malignancy-associated hypercalcemia and shows 70o/o homology to parathyroid

hormone (PTH). The binding of PTHrP to the PTH receptor activates cyclic adenosine

monophosphate (cAMP) and enhances osteoclastic bone resorption (Kaji et al., 1993). The

elevated PTHrP can be measured in the plasma of patients with myeloma (Horiuchí et al.,

1997; Schneider et a1.,1998). PTHrP released by myeloma cells acts in a paracrine manner

by binding to the PTH receptor expressed by OC to produce local bone resorption. When

secreted in large amounts by malignant cells, PTHrP may act in a humoral manner to cause

systemic hypercalcemia (Firkin et a1.,1996). Thus, PTHrP might be an important contributor

to the skeletal complications in MM.

Although several OAFs have been implicated in the enhanced OC activity, the precise role of

any of these factors in osteolytic bone disease in patients with myeloma has not been clearly

demonstrated in vivo. Recently, a new cytokine system RANKL/RANIIOPG was identified

and provides us with a novel paradigm as to the mechanisms of osteoclastogenesis and bone

resorption in physiological and pathological bone remodelling.

1.3.5 R,INKL/ ODF/TRANCE/OPGL: the Ligønd

Receptor activator of nuclear factor-rB ligand (RANKL) is a member of the TNF ligand

family, variously termed TNF-related activation-induced clokine (TRANCE),

osteoprotegerin ligand (OPGL), or OC differentiation factor (ODF) (Anderson et al., 1997;

Lacey et a1.,1998). It is secreted by BM OB/stromal cells, chondrocytes, mesenchymal cells

of the periosteum, OC, endothelial cells and T cells (Anderson et al., 1997; Lacey et al.,

1998; Yasuda et a1.,1998b). RANKL is a type II membrane-anchored polypeptide, which is

released from the plasma membrane by a metalloprotease-disintegrin TNF-alpha convertase
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(TACE) (Lum et a1.,1999). Truncated RANKL is an important component of the function of

transmembrane RANKL in bone and immune homeostasis (Lum et a1.,1999).

The development of OC comprises several stages: recruitment, proliferation, differentiation

of the progenitors into mononuclear OC, and fusion of mononuclear OC to form activated

multinucleated OC capable of resorbing bone. Numerous studies demonstrate that RANKL

provides an essential signal to OC progenitors, enabling their differentiation into OC (Yasuda

et al.,199Sb). RANKl-deficient mice show severe osteopetrosis, defects in tooth eruption,

and completely lack OC as a result of the inability of OB to support osteoclastogenesis (Kong

et al., 1999a; Kong et al., 1999b). Soluble RANKL (sRANKL) causes murine as well as

human OC differentiation when co-stimulated with macrophage-colony stimulating factor

(M-CSF) in vitro (Quinn et al., 1998; Udagawa et aL, 1999). This suggests that the RANKL-

mediated signals can be transduced not only by cell-to-cell contact between OB/stromal cells

and OC progenitors, but also by the cleaved or soluble form of RANKL in a paracrine

manner. The cell-to-cell interaction is essential for OC formation in the co-culture system,

suggesting a pivotal role for the membrane-bound RANKL in osteoclastogenesis. The

cleaved-form of RANKL may play a role in pathological bone resorption mediated by

abnormal osteoclastogenesis. Taken together, these results demonstrate that RANKL is an

essential OC differentiation factor in vivo and in vitro.

1.3.6 RANK: the Receptor

Receptor activator of nuclear factor-rB (RANK) is a member of the TNF receptor family and

represents the membrane-associated counter receptor for RANKL (Yasuda et al., 1999).

RANK is expressed by several cell types, including dentritic cells, B cells, and mainly by OC

precursor cells and is capable of initiating osteoclastogenic signal transduction after ligation

with RANKL or anti-RANKL agonist antibodies (Anderson et al., 1997; Hsu e/ a1.,7999).

RANK deficient mice show a profound defect in bone resorption and bone remodelling,

resulting from an apparent block in OC differentiation and an intrinsic defect in OC function

(Dougall et al., 1999; Li et a\.,2000). Severe osteopetrosis was observed in transgenic mice

expressing a soluble RANK-Fc fusion protein (Hsu e/ al., 1999). Recombinant RANK-Fo

bound with high affinity to RANKL in vitro and blocked OC differentiation and activation in

vitro and in vivo (Hsu e/ al., 1999). These results all indicate that RANK is an OC receptor

capable of mediating the biological activities of RANKL during normal bone homeostasis
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and in disease. The RANKL signalling pathway is the ultimate common mediator of humoral

signals that regulate bone resorption and calcium metabolism.

1.3.7 OPG/OCIF: the Decoy RecePtor

Osteoprotegerin (OPG), also called osteoclastogenesis inhibitory factor (OCIF), is a heparin-

binding, basic glycoprotein. It has been isolated as both a monomer and a disulfide-linked

homodimer, with a molecular weight of 60 kD and 120 kD, respectively. OPG is a secreted

member of the TNF receptor family, containing four cysteine-rich domains and two regions

which exhibit homology to death domains (Simonet et a1.,1997; Yamaguchí et a1.,1998). It

acts as a naturally occurring decoy receptor for RANKL by disrupting the interaction

between RANKI and RANK (Yasuda et al., 1999). OPG inhibits osteoclastogenesis by

blocking cell-to-cell signalling between stromal cells and OC progenitors (Yasuda et al.,

1998a). A mouse co-culture system using calvarial OB and BM cells prepared from OPG-

deficient mice suggested that OPG produced by OB/stromal cells is a physiologically

important regulator in OC differentiation and function (Udagawa et a|.,2000)'

1.3.8 The Retationshíp between RANKL, RANK and OPG in MM

As discussed previously, RANKL promotes the differentiation of OC precursor cells to OC

through the RANK receptor expressed on the OC precursor cells. OPG acts as a decoy

receptor that regulates the signalling between RANKL and RANK. The over-expression of

OPG in transgenic mice results in a muted osteopetrotic phenotype (Simonet et al., 1997).

Conversely, targeted ablation of OPG in knockout mice leads to severe osteoporosis (Bucay

et al., 1998). These results demonstrate that OPG is a key factor acting as a negative

regulator of osteoclastogenesis. It has been demonstrated that the bone resorbing agents 1

alpha, 25-dihydroxyvitamin D3 (1,25-(OH)2D3), PTH, and PGE2 can upregulate RANKL

expression, and stimulate OB-induced pit-forming activity of OC (Udagawa et al., 1999)'

Other investigators also reported that anumber of osteotropic agents including 1,25-(OH)2D3,

PTH or IL-l1, could increase the ratio of RANKL:OPG (Horwood et al., 1998). Thus, OC

formation may be determined principally by the relative ratio of RANKL to OPG in the BM

microenvironment. Alterations in this ratio may be a major cause of bone loss in many

osteolytic neoplasms including MM. It has been demonstrated that myeloma cells affect the

RANKI/OPG ratio in the BM environment by stimulating OB to overexpress RANKL

(Giuliani et al.,2O0l), and OPG could inhibit the development of osteolytic bone disease in

myeloma-beanngmice (Croucher et a|.,2001). Furthermore, freshmyeloma cells (as defined
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by their high expression of the CD38 cell surface molecule) isolated from patients with MM,

express RANKL and can facilitate bone pit formation in co-culture system in the absence of

OB (Famrgia et a1.,2002). These observations confirm that the RANKL/OPG system is

involved in the pathogenesis of MM induced osteolysis.

1.3.9 The Relationship between RANKL/RANI{/OPG ønd OAFs Secreted by MM.

As previously discussed, recent in vitro studies suggest that MM cell-derived OAFs may play

a central role in the pathogenesis of MM induced osteolysis. In terms of IL-6, Dai et al

reported that alcohol ingestion induced osteoclastogenesis and bone loss through an lL-6

mediated mechanism in mice, and that IL-6 achieved this effect by inducing RANKL to

promote osteoclastogenesis (Dai et at.,2000). However, the data from another group showed

IL-18 and TNF-cr, but not IL-6, could stimulate RANKL gene expression in human

osteoblastic cells (Hofbauer et al., 1999). These studies demonstrate that IL-6 induced

stimulation of OC activity remains controversial. In addition, IL-6 also appears to have a

complex interaction with IL-l, TNF and PTHrP in MM. Therefore, determining which of

these molecules represent the key factor in this complicated cytokine network remains to be

investigated.

1.3.10 Other Molecules That Affect RANKL/RANI(/OPG System in MM

(ø) TRAIL

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, also called Apo2L) is a

member of a superfamily of cell death-inducing ligands that also includes TNF-a and Fas

ligand (FasL or CD95L). TRAIL induces apoptosis of malignant cells by interacting with a

complex system of cell surface receptors, including the two death-signalling receptors DR4

(also known as TRAIL-RI) and DR5 (TRAIL-R2) (Pan et al., 1997; Sheridan et a1.,1997).

These 2 receptors transmit a pro-apoptotic signal via interaction of their intracellular death

domains with adaptor proteins, which are not well characterised. The death domains of these

adaptors constitutively bind to caspases, initiating a cascade of proteolytic activation of

downstream caspases and apoptosis (Schulze-Osthoff et al., 1993). Additional antagonist

decoy receptors have also been described and include DoRI/TRID/TRAIL-R3 and

DcR2/TRAIL-4. These receptors have aî extracellular TRAIL-binding domain and a

transmembrane domain, but lack an intracellular death signalling domain (Pan et al., 1997;

Sheridan et al.,I9g7). Thus, ectopic expression of DcRl and DcR2 protects mammalian cells

from TRAIL-induced apoptosis and inhibits TRAIL cytotoxicity (Degli-Esposti et a|.,1997;
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Sheridan et al.,lggT). However, one report showed that the expression of DcRl or DcR2 did

not appear to be a significant factor in determining the resistance or sensitivity of some

tumour targetcells to the effects of TRAIL (Griffith et al.,1999). Although non-toxic to most

normal human cells iz¡ vitro (Pitti et al., 1996; V/iley et al., 1995), TRAIL was found to

effectively induce extensive apoptosis in RPMI 8226 and ARP-I myeloma cell lines in a

time- and dose-dependent manner, and also induce substantial apoptosis in freshly isolated,

flow-sorted myeloma cells obtained from different MM patients (Gazitt, 1999). Furthermore,

TRAIL-induced apoptosis in MM cell lines was not blocked bybcl-2 (Gazitt,1999; Gazitt et

al., 1999), and not abrogatecl by IT,-6, a major growth and survival factor for MM cells

(Mitsiades et al., 2001). Preclinical studies also suggest that TRAIL can overcome

conventional drug resistance and provides the basis for clinical trials of TRAIL-based

treatment regimens to improve survival outcomes in patients with MM (Mitsiades et al.,

2001).

It was subsequently found that OPG, a secreted homologue of the TNF receptor, represented

a fifth TRAIL receptor (Emery et a1.,1998). OPG-Fc bound TRAIL with an affinity of 3.0

nM, which was marginally weaker than the interaction of DcRl-Fc or DR5-Fc with TRAIL.

It was reported that OPG could inhibit TRAIL-induced apoptosis of Jurkat cells, whilst in

contrast, TRAIL blocked the anti-osteoclastogenic activity of OPG (Emery et al., 1998).

These data suggest that the mechanisms of potential cross-regulation may be mediated by

OPG and TRAIL.

(b) Syndecan-l

Syndecan-1 (CD 138) is a heparin sulfate bearing integral membrane proteoglycan that is

expressed and actively shed from the surface of most myeloma cells (Dhodapkar et al',1998;

Saunders et al., 1939). Syndecan acts as a matrix receptor on human myeloma cells by

binding type I collagen viahepainsulfate chains, and it is thought to participate in regulating

myeloma cell adhesion to the BM stromal cell matrix (Ridley et al., 1993)' Therefore,

syndecan-l may play a dual role in inhibiting the metastasis of tumour cells by promoting

cell adhesion to the extracellular matrix and suppressing the proteolytic activity needed for

invasion (Kaushal et al., 1999; Liebersbach and Sanderson, 1994). It has been found that

elevated level of syndecan-1 in serum is a strong and independent negative prognostic factor

for patients with myeloma (Seidel et a1.,2000b). However, some studies show that syndecan-

1 could induce apoptosis and inhibit the growth of myeloma tumour cells. In addition,
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syndecan-l increased OB development and inhibited OC formation in murine BM

(Dhodapkar et a1.,1998). Since syndecan-1 can bind with heparin-binding proteins, like OPG

or hepatocyte growth factor, it has been suggested that it may also regulate the biological

activity of heparin-binding cytokines (Borset et a1.,2000). These data indicate that soluble

syndecan-l may participate in the pathology of myeloma induced osteolysis by modulating

RANKL/RANIIOPG activity within the BM (refer to section 1.3.8).

(c) HGF

Hepatocle growth factor (HGF) is a cytokine overproduced by myeloma cells and has

implications for the prognosis of patients (Borset et a1.,1999). The biological significance of

HGF overexpression in multiple myeloma is likely to include effects on bone turnover and

angiogenesis (Borset et al., 1999). HGF exists in a complex with soluble syndecan-l.

Washing myeloma cells with purified soluble s¡mdecan-l was found to effectively displace

HGF from the cell surface, suggesting that soluble syndecan-l could act as a catrier for HGF

in vivo (Seidel et al., 2000a). HGF is only one of several heparin-binding cytokines

associated with myeloma (Seidel et a\.,2000). The relationship between HGF and syndecan-

1 and the effects of HGF on bone turnover requires further investigation.

In summary, it appears that RANKL and OPG will be a key agonist and antagonist cytokine

system in regulating MM induced osteolysis (figure 1.2). Other molecules, such as IL-6,IL-

1B, TNF-g, PTHrP and syndecan-l, secreted by MM cells may play a complex role in the

RANKL/RANK/OPG system that regulates bone tumover in MM patients. The

understanding of precise mechanisms responsible for myeloma-induced bone loss may enable

us to understand how BPs may achieve clinical therapeutic effect in the patients with MM by

affecting the molecules involved in the osteoclastic bone resorption.

1.4 BISPHOSPHONATES

1.4.1 Generøl Properties

Bisphosphonates represent stable pyrophosphate analogues that differ from pyrophosphate by

replacement of the oxygen bridge with a carbon atom to form a P-C-P structure which has

various side chains (figure 1.3). These compounds were first slmthesised in 1865 (for review

see Rodan and Fleisch, 1996). In the early 1960s, Neuman and Fleisch discovered that

inorganic pyrophosphate (PPi), a naturally occurring polyphosphate, was present in serum
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Figure 1.2. The role of the newly defined TNF-family members RANKL and OPG in

osteoclastogenesis. RANKL promotes the differentiation of osteoclast precursor cells

to osteoclasts via the RANK receptor expressed on osteoclast precursor cells. OPG acts

as a decoy receptor that regulates the signalling between RANKL and RANK by

binding ro RANKL.



and urine, and could prevent calcification by binding to newly forming crystals of

hydroxyapatite. BPs were found to be able to inhibit the dissolution of hydroxyapatite crystal

and bone resorption both in vitro and in vivo (for review see Russell and Rogers, 1999). As a

result, BPs have been developed and over the last three decades used in the treatment of a

number of bone diseases, including Paget's disease, metastatic, osteolytic bone disease and

hypercalcemia of mali gnancy.

BPs can be classified into at least two groups with different modes of action. BPs that closely

resembles pyrophosphate (such as clodronate and etidronate) can be metabolically

incorporated into nonhydrolysable analogues of adenosine triphosphate (ATP) that may

inhibit ATP-dependent intracellular enzymes (figure 1.4). In contrast the more potent,

nitrogen-containing BPs (such as pamidronate, alendronate, risedronate, ibandronate,

tiludronate, incadronate and zoledronic acid) are not metabolized in this way, but serve to

inhibit enzymes of the mevalonate pathway (figure 1.5), a bios¡mthetic pathway responsible

for the production of cholesterol and isoprenoid lipids. Therefore nitrogen-containing BPs

serve to prevent the biosynthesis of isoprenoid compounds that are essential for the

posttranslational modification of small GTPases (refer to section 1.4.2).

The BPs, like pyrophosphate, bind to the bone mineral hydroxyapatite with high affinity,by

virtue of the PCP structure, which accounts for their uptake in bone and their selective action

on the skeleton. For example, it was demonstrated that the BP, alendronate, 'was rapidly

eliminated from plasma and was not detectable 1 day after injection, whilst the concentration

in bone was much higher than that in plasma. Approximately 30-40%" of the dose was

excreted in urine in24hours, whilst 60o/o of the dose was localised to the bone tissue; BPs

that adsorbed to the bone remained as an unchanged compound for a long period of time (Lin

et a1.,1991). Moreover, studies have demonstrated that BPs do not distribute uniformly in

long bones (Azuma et a1.,1995; Sato et al.,l99l). The metaphysis of the tibia were found to

possess a greater concentration than the diaphysis. Indeed, BPs are found to deposit where

bone mineral is exposed to the surrounding fluids, especially where bone is formed and

resorbed. It was reported that the distal femoral metaphyses of mice contained -5%o bone

resorption surfaces, -48% active bone formation surfaces, and the other surfaces were

considered as resting and eroded surfaces (Sato e/ al., 1997). Sato et al. reported that

following injection of 0.4 mglkg [3H] alendronate to newborn rats,72%o of the osteoclastic
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surfaces, 2o/o of the bone forming surfaces and -73Yo of all other surfaces were densely

labelled at day 1. In contrast, -46Yo of the bone forming surfaces were found to be

moderately labelled at day 1. It was assumed that the amount of alendronate in the densely

labelled site was about five-fold higher than in the moderately labelled site. The lower level

of ¡3U1 alendronate uptake on bone formation surfaces was thought to be due to the lower

accessibility of alendronate to the hydroxyapatite embedded within the newly syrthesised

osteoid (Sato e/ al.,l99I). These observations suggest that bone is the specific binding organ

for BPs, and bone resorption as well as bone formation surfaces are the major deposit sites

for BPs. In addition, BPs hind to bone particles by strong pH dependence and 50 % of this

drug would be released at pH 3.5 by virtue of the interaction of phosphate with

hydroxyapatite (Sato et al., 1991). Several studies showed that dense distribution of BPs was

seen primarily under OC at day I following administration, but 5 days later, it was no longer

observed under OC and was shifted from the metaphysis to the diaphysis (Azuma et al.,

1995; Sato et at.,I99l). These results imply that BP binding is strongly influenced by bone

growth and, therefore, one may expect that BP treatment inhibits osteoclastic activity only at

the level of the existing resorption sites. When new bone is laid down at sites of previous

resorption, the BP remains buried and functionally excluded within the bone tissue.

Therefore, as soon as the treatment is withdrawn, new remodelling sites will appear and

hence a non inhibited bone turnover can be restored despite the extended physical presence of

BPs in the skeleton. These observations may explain the need for repeated BP administration.

1.4.2 The Elfect of Bísphosphonates on Osteocløsts

Since mature, multinucleated OC are formed by the fusion of mononuclear precursors of

haemopoietic origin, BPs can inhibit bone resorption in the following ways: (1) lnhibition of

OC recruitment to the bone surface (Hughes et a1.,1989; Schmidt et al.,1996); (2) Inhibition

of the excavation of resorption pits by mature OC directly (Murakami et al., 1995; Sato and

Grasser, 1990; van Beek et al., I99l); (3) Shortening of the OC life span (Hughes et al',

1995); (4) Secretion of an inhibitor of OC-mediated resorption by OB (Vitte et al., 1996);

and (5) Interfering with the attachment of OC to certain bone matrix proteins via cell-surface

integrins (Colucci et a1.,1998).

It is likely that BPs are selectively intemalised by OC because of their accumulation in bone

and the phagocytic nature of OC. The uptake of bisposphonate by OC in vivo has been
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confirmed using radiolabeled alendronate. These studies demonstrate that following

intemalisation, aledronate was localised to the intracellular vacuoles, and other subcellular

compartments such as the cytoplasm, mitochondria, and nuclei (Masarachia et a1.,1996; Sato

et a1.,1991). After cellular uptake, a characteristic morphological feature of BP treated OC is

the lack of a ruffled border (Sato and Grasser, 1990). It was reported that the presence of

alendronate on the bone surface in vivo and in vitro interfered with ruffled border formation

in OC by causing an increase in the leakiness of ruffled border to ions that stopped bone

resorption (Sato e/ at.,l99l). During the resorption process the low concentration of BPs in

extracellular fluids can rise to a very much higher local concentration in the OC resorption

lacuna. Sato et ctl (1991) demonstrated that acidification (Zimolo et al., 1995) produced

during the initiation of resorption caused the local release of alendronate with the

concentration of 0.1-1.0 mM under the ruffled border of OC (Sato et al.,l99l). This is much

higher than the concentrations of BPs required to affect OC morphology and cause OC

apoptosis in vitro (Hughes et al., 1995; Sato and Grasser, 1990). Breuil et al (1998)

demonstrated that in a human model, inhibition of resorption by alendronate was mediated

primarily by reduction of OC activity and OC number at very high concentrations (Bireúl et

a|.,1998).

One possible molecular mechanism of BPs activity on OC is based on its ability to inhibit

some of the enzymes involved in the pathway for cholesterol synthesis' Two groups of

enzymes were shown to be inhibited by BPs: squalene synthetase, a lipid metabolism enzgme

which has farnesyl pyrophosphate as its substrate (Ciosek et al., 1993), and protein tyrosine

phosphatases (pTp), which control tyrosine phosphorylation involved in signal transduction

pathways (Schmidt et al.,1996;Endo et al.,1996).

Inhibition of geranylgeraniol PPi (GGPP) synthase has been implicated in the induction of

apoptosis following BP treatment. GGPP is required for the prenylation and subsequent

membrane localisation of proteins, particularly small GTP proteins of the Rho/Rac/Rab

family. The Rho/Rac/Rab family of proteins are involved in a number of cellular processes

including assembly of the actin cytoskeleton, vesicular trafficking, signal transduction and

cell adhesion (Hall, 1998; ZenaI and Stenmark, 1993). BPs inhibit the farnesylation and

geranylgeranylation of proteins, by inhibiting enzymes required for synthesis of

farnesyldiphosphate (FPP) and geranylgeranyldiphosphate (GGPP), and therby disrupt OC

function. Several studies have demonstrated that alendronate and tibudronate disrupt the
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formation of actin rings in polarised, resorbing OC (Murakami et al., 1995; Sato e/ al., l99l).

The ability to inhibit GGPP syntheses appears to be restricted to the nitrogen-containing BPs,

suggesting that different BPs may have distinct targets. Disruption of the cytoskeleton also

could be brought about indirectly by the inhibition of protein kinases or phosphatases that

regulate cytoskeletal structure. Indeed, several recent reports have shown that alendronate

can inhibit several protein tyosine phosphatases (PTP), which determine the level of tyrosine

phosphorylation and play an important role in the transduction of signals that control cell

growth and differentiation (Endo et al., 1996; Schmidt et al., 1996). It is likely that BPs

inhibit metabolic pathways that firstly affect OC function (eg. via disruption of the OC

cytoskeleton and ruffled border) and therefore cause OC cell death as a later effect (figure

1.6). Differences probably also exist between the ability of different BPs to cause apoptosis,

depending on their molecular mechanism of action.

Previous studies of direct actions of BPs on bone have been limited, mainly to their effects on

bone-resorbing OC cells. Although several studies have demonstrated that the inhibition of

osteoclastic bone resorption induced by BPs may be mediated indirectly through paracrine

factors produced by the bone-forming OB cells, little is known about the direct actions of

BPs on the important bone-forming OB.

1.4.3 The Effect of Bisphosphonates on Osteoblasts

It has been established that the osteoblastic cells are important in the formation of tartrate-

resistant acid phosphatase-positive multinucleated cell (TRAP* VfNC; induced by 1,25(OH)2

D3 and PTH in mouse maffow cultures (Takahashi et al., 198S) and in co-culture of spleen

cells with osteoblastic cells (Takahashi et a1.,1988a). Therefore, it is postulated that direct

cell-cell interaction is crucial in the process of osteoblastic cell-supported OC formation and

maturation (Kurihara et al.,1989). Thus, BPs may aclvia OB to inhibit bone resorption, by

stimulating OB to produce osteoclast-inhibitory factors, or by differentiating OB progenitor

cells into mature and functional OB'

It is now generally accepted that cells of osteoblastic lineage control the recruitment and

activity of OC under physiological and pathological conditions. The inhibitory effect of BPs

on osteoclastic bone resorption might be mediated, at least in part, through the regulation of

the production of cytokines secreted by OB. The first experimental evidence to support this
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notion comes from studies which demonstrate that BPs can inhibit the synthesis of

prostaglandin Ez (Ohya et al., 1985) and osteocalcin (Stronski e/ al., 1988) in murine

osteoblastic cells. It was also reported that BPs could inhibit IL-6 secretion by human OB-

like cells in a dose-dependent manner (Giuliani et aL,1998b). Recently, it has been shown

that conditioned media taken from rat CRP 10/30 osteoblastic cells briefly (5min) (Sahni e/

al.,1993) or continuously (Nishikawa et al., 1996) exposed to low concentrations of potent

BPs contains a factor(s) that reduces osteoclastic bone resorption in culture. The decrease in

resorption was subsequently found to be due to the secretion from OB of a protein with a

molecular weight between 1 and 10 kD, which was able to inhibit OC recruitment and

survival (Nishikawa et al., 1996; YíIte et al., 1996). Another study has shown that the OB-

like cell line IIMR-106 signifrcantly reduces its PTH-induced pit formation when pre-treated

with BPs in co-culture with rat OC. Furthermore, conditioned media from UMR-106 cells

pretreated with ibandronate was found to reduce bone resorption when added to cultures of

rat OC. This effect however was abrogated by culturing ibandronate-pretreated UMR-106

cells in l0-8 M PTH before harvesting the conditioned media. It is apparent that osteoclastic

bone resorption can be affected independently by the ibandronate-induced osteoclast-

inhibiting factor and the PTH-induced osteoclast-stimulating factor, but the final level of

bone resorption depends on the relative concentration of these two factors (Yu et al., 1996).

However, a contradictory finding showed that a low concentration of the nitrogen-containing

BPs APD and MezAPD act synergistically with PTH and increase osteoclastic resorption,

possibly also through interference with factor(s) produced by osteogenic cells (van der Pluijm

et al.,I99Ia).

Further studies have demonstrated that BPs can inhibit the secretion of molecules such as

prostaglandin Ez, osteocalcin, andIL-6 by OB-like cells (Giuliani et al., L998b; Ohya et al.,

1985; Stronski et al., 1983). Pamidronate and zoledronic acid were found to inhibit the

production of IL-6 by HBSCs at concentration of 1 ¡rmol/L or less (Derenne et al., 1999). A

statistically significant increase of TNF-cr and a mild increase of IL-6 in serum are observed

in patients receiving BP treatment, with the greatest effects seen with the highest

concentration of both pamidronate and zoledronic acid. No changes in IL-l were observed

with any agents. These increased cytokine production, which are demonstrated to be

transiently produced by macrophages and monocytes, are considered as an acute-phase

response associated with BPs (Thiebaud et al.,1997).
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Like pyrophosphate, BPs can affect mineral dissolution. Previous data indicate that BPs have

a negative effect on the mineralisation of bone matrix at a very high dose, with osteomalacia

and defective mineralisation reported (Adamson et al., 1993). Impaired mineralisation

associated with the first generation BPs, etidronate, has led to the development of more

potent second and third generation compounds, in which anti-resorptive efficacy is

dissociated from mineralisation effects. It has now been demonstrated that the low

concentrations of BP, and especially the newer more potent ones necessary to produce a

pharmacological effect, have no significant impact on mineral dissolution. It is notable that

concentrations of BPs as low as 10-11 M have an effect on OB. Animal and clinical studies

show that BP treatment markedly decreases trabecular bone turnover with normal

mineralisation (Balena et al., 1993; Chavassieux et al., 19971' Storm et al., 1993).

Furthermore, other investigators have also described an enhancement of OB function with

BPs (Giuliani et al.,I998a; Tenenbaum et al.,1992; Toolan et al.,1992; Tsuchimoto et al.,

1994). In one study, the BP-induced formation of CFU-F did not show a clear dose

dependency but rather an "on-off effect". There was also a biphasic effect on the formation of

bone-like nodules, with a dose-dependent stimulation at lower concentrations and an

inhibitory effect at higher concentrations (Giuliani et a1.,1998a). The differences in efficacy

and in effects on mineralisation among different BPs require further investigation at a

molecular, cellular and physiological level.

It is not yet clear how BPs access the OB in vivo. One possibility is that they come directly

from the general circulation after their administration. A more likely explanation, consistent

with their stability and long duration of action, is that they are released from bone into the

microenvironment of OB, either by passive diffusion or during resotption. The actual

concentration ranges of the BPs that OB and other cells in the body are exposed to under

pharmacological conditions are unpredictable. In one study, at pharmacologically effective

doses, 3H-alendronate labelled eightfold more OC surface than OB surface. In contrast, 3H-

etidronate labelled approximately equal fractions of OC and OB surface. Therefore,

alendronate, at pharmacological active doses, showed higher uptake on resorption versus

formation surfaces than etidronate. However, the extent of bone formation on surfaces

containing alendronate or etidronate was similar to that of controls (Masarachia et a1.,1996)'

Therefore, the differences in the distribution of these different drugs in the skeleton cannot

explain the differences in efficacy and effects on mineralisation among different BPs.
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Proliferation and differentiation of OB or preosteoblast are essential steps in bone formation.

It has been demonstrated that pamidronate and zoledronic acid decreased OB proliferation

but enhanced the differentiation and bone-forming activities of OB (Reinholz et a1.,2000)'

Furthermore, BPs also have been reported to inhibit apoptosis of the murine osteocyte cell

line MLO-Y4 and primary murine OB (Plotkin et al., 1,999). The underlining mechanisms

however remain unclear. It was known that agents such as prostaglandins, PDGF, FGF,

TGFp and bone morphogenetic proteins were shown to stimulate OB proliferation in vitro

and in vivo (Canalis et a1.,1993). The receptors for these proteins are all protein kinases.

Therefore, the finding that BPs inhibit the PTP activity of a novel receptor type protein

tyrosine phosphatase sigma (PTPo) and stimulate the proliferation of quiescent calvaria OB

(1-10 ¡rM) supports the notion that PTP activities play an important role in the regulation of

cellular proliferation (Endo et al., 1996). However, the concentrations of circulating BPs do

not reach the concentrations required to inhibit PTPo in OB. But it is possible that other

PTPs that are not yet identified or tested are more sensitive to BPs. The increase in bone mass

which is produced by BP treatment may not be fully explained by inhibition of bone

resorption. Therefore, the finding that BPs inhibit the activity of PTP expressed in OB and

stimulate the proliferation of these cells could provide additional clues regarding the action

and molecular targets of BPs.

1.4.4 The Effict of Bisphosphonates on Myeloma Cells

In a randomised, double blind, phase III study, the second-generation BP, pamidronate,

prevented bony complications in the patients with active Durie-Salmone stage III MM.

Skeletal-related events, including the incidence of pathologic fracture, the use of radiotherapy

to skeletal sties of disease, bone pain, episodes of hypercalcemia, and the need for narcotic

analgesia, were all signihcantly reduced in pamidronate-treated patients (Berenson et al.,

1996). Similar results were found with clodronate in MM patient in another clinical trial

(McCloskey et a1.,199S). There was also a significant prolongation of survival from 14 to 2I

months in the patients who were on salvage chemotherapy receiving pamidronate (Berenson

et a1.,1993). These survival advantages suggest that BPs not only decrease morbidity and

mortality associated with bone events but also may induce an anti-tumor effect resulting in a

longer survival rate. In support of these observations, several in vitro studies have shown that

BPs such as pamidronate and incandronate can decrease cell proliferation and induce

cytostasis and apoptosis in some human myeloma cells (Aparicio et a1.,1998; Shipman et al.,

1997). The third generation BP, YM529 at a concentration of 50 ¡rM, also induced inhibition
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of proliferation in all MM cell lines dose-dependently (Takahashi et a|.,2001). A slmergistic

induction of apoptosis was demonstrated when myeloma cell lines lvere exposed to a

combination of zoledronic acid and Dex (Tassone et a1.,2000). In addition, it was reported

that the BP, incadronate, caused apoptosis of myeloma cells in vitro by inhibiting the

mevalonate pathway (Shipman et a1.,1998). Bisphosphonate-induced apoptosis has also been

demonstrated in breast cancer cells. The osteolytic bone lesions induced by metastatic MDA-

231 breast carcinoma cells, as well as tumour burden in a mouse model of breast cancet)

could be reduced by risedronate (Sasaki et a1.,1995). These effects are considered to be the

results of both decreased osteoclastic bone resorption and inhibited release of bone-derived

tumour growth factors. However, although the potent BP ibandronate did not reduce tumor

burden, it significantly reduced the occurrence of osteolytic bone lesions in myeloma-bearing

mice (Cruz et al., 2001; Dallas et al., 1999; Shipman et a1.,2000). Despite these promising in

vitro and animal model studies, there is no direct evidence to support the notion that that BPs

induce apoptosis of myeloma cells in patients with MM.

Overall, these observations suggest that BPs might have some benefit not only on the

improvement of bone disease but also on the prolongation for survival in some myeloma

patients.

1.4.5 The Effect of Bísphosphonates on Cell Adhesion

There is also evolving evidence that BPs may act by inhibiting integrin-mediated adhesion.

As described in section 1.1.3, molecules that mediate cell adhesion molecules, such as

laminin and E-cadherin, play key roles in several important events involved in cancer cell

invasion and metastasis. Cell adhesion molecules (CAMs) mediate not only cell-to-cell but

also ce|l-to-substratum communications. The most abundant CAMs are integrins. Integrins

have been shown to mediate attachment of cancer cells to vascular endothelial cells and to

matrix proteins such as laminin and FN.

A large cohort of adhesion molecules modulating adhesion between myeloma cells and

stromal cells have been defined (Tricot, 2000; Uchiyama et al., 1993; Vidriales and

Anderson, 1996). Preliminary data suggest that BPs modulate adhesion molecule profile and

thereby overcome drug resistance (refer to Section 1rl.2). Adhesion assays using bone slices

pretreated with alendronate, at the established active concentration, showed that, although the

morphology of OC plated onto pretreated bone slices was not modified, the number of
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adherent OC was reduced about 50% compared with controls. The inhibitory effect of

alendronate on cell adhesion may be due to the interference with receptors specifically

recognising bone matrix proteins, such as crup3 integrins (Colucci et a1.,1998). For instance,

FN can be recognised not only by crsÞ¡ , but also by cruÊ¡, and bone sialoprotein (BSP) acts as

an adhesion molecule with which tumour cells establish contact with the bone matrix. Van

der Pluijm et al (van der Pluijm et al., 1996) showed that bone slices that were incubated

with BPs were resistant to the adhesion molecules of tumour cells. Another study showed

drastically reduced adhesion properties of breast and prostate carcinoma cell lines when the

cells were pretreated with BPs (Boissier et a|.,2000).

Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases with

proteolytic activity for a large range of components of the extracellular matrix, are also

known to play a critical role in bone remodelling and tumour invasion. Members of the MMP

family are divided into three classes based on their substrate specificity: collagenases,

gelatinases, and stromelysins. Interstitial collagenase (MMP-l) is the only protease beside

neutrophil collagenase that is known to initiate the degradation of types I collagen at neutral

pH. Collagen I is the major structural protein of bone and osteoid layer and the degradation

of collagen I is critical for the initiation of bone resorption. After fragmentation by MMP-I,

the denatured collagen I becomes a substrate for the gelatinases MMP-2 and MMP-9. It has

been reported that myeloma cells express MMP-9 and induce BM stromal cells to express

MMP-1 and MMP-2 (Barille et a\.,1997). An increase in MMP-1 levels reflects an enhanced

capacity to degrade collagen I. The conversion of proMMP-2 into its active form will

actively contribute to the final collagenolytic activity by achieving the degradation of

collagen I initiated by MMP-I. The beneficial effects of the BPs on the metastatic process

may be related to inhibition and downregulation of various genetically distinct MMPs

(MMp-2, MP-9, MMP-13, and membrane type MMPs (MT-MMPs)) that are obligatory for

successful tumor cel| invasion, and bone destruction at a metastatic site (Teronen et al.,

2000).

In bone metastases, it is conceivable that BPs released from resorbed bone inhibit the

proteolytic activity of MMPs secreted from tumor cells and stromal cells. It has been

demonstrated that the inhibitory activity of BPs on tumor cell invasion requires the R¿ chain

of the molecule, which is effective at low concentrations. Inhibition of MMP activity by BPs
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occurs however through the so-called "bone hook" of the molecule, which is effective only at

high concentrations (Boissier et al',2000)'

The many different actions of BPs suggest that inhibition of bone resorption can be due to the

overlap of several different actions ocurring together to exert their final effect.

More potent third-generation BPs are now available and have been shown to be 100-1000

times more potent than pamidronate, a commonly used BP in the treatment of MM. These

new BPs may therefore represent a better treatment option for patients with myeloma.

Bisphosphonates containing a hydroxyl group at the Rl side chain and a 1:ufüary nitrogen

within a ring structure in the R2 side chain appear to be the most potent anti-resorptive BPs

discovered to date, including zoledronic acid, which contains animidazole ring.

1.4.6 Zoledronic Acíd

Zoledronic acid (formerly referred to zoledronate), CGP 42' 446 l2-(imidazol-1-yl)-1-

hydroxyethylidene-l,1-bisphosphonate], is a heterocyclic imidazole, nitrogen-containing

third-generation Bp (figure 1.7). Among the clinically tested BP compounds, it is the most

potent amino-substituted BP, which appeares to be 850 times more active than pamidronate

in the thyroparathyroidectomized (TPTX) rats with hypercalcemia induced by 1, 25-(OH)2

vitamin D3, and 40-100 times more potent than pamidronate in inhibiting calcium release

induced by vitamin D3, parathyroid hormone, parathyroid hormone-related protein, or

recombinant human interleukin-1B from mouse calvaria in vitro (Green et al., 1994)' Unlike

the first generation Bps, zoledronic acid produces potent and specific inhibition of bone

resorption at low dose level without any significant detrimental effects on bone growth and

mineralization. Although both pamidronate and zoledronic acid cause a dose-dependent

suppression of cancellous bone tumover and resorption, and augment cancellous bone

formation in a rat model, zoledronic acid is 100 times more potent than pamidronate in vitro

and 850 times more active than pamidronate in vivo (Pataki et al., 1997). Recent clinical

trials show that very small doses of zoledronic acid can effectively normalise high calcium

levels in patients with tumour-induced hypercalcemia (Body et al., 1999)' In addition,

zoledronic acid has the largest therapeutic ratio of any BPs tested in terms of the desired

inhibition of bone resorption versus unwanted renal toxicity and inhibition of bone

mineralisation (Arden-Cordone et a1.,7997; Body, 1997; Buckler et al., 1999).It was also

demonstrated that a short duration, single intravenous bolus injection of zoledronic acid was
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Figure 1.7. Chemical structure of zoledronic acid. Zoledronic acid is a nitrogen-

containing heterocyclic imidazole bisphosphonate. It is 100 times more active than

pamidronate invitro and 850 times more active than pamidronate invivo.

N



safe and well tolerated, and effectively suppressed bone resorption in cancer patients with

metastatic bone disease, in a phase I clinical study (Berenson et al.,200la; Berenson et al.,

2001b). Furthermore, a phase II trial demonstrated that zoledronic acid (4mg and 8mg) was

superior to pamidronate (90mg) in normalising serum calcium in cancer patients with

moderate to severe hlpercalcemia (Majot et a1.,2001)'

In addition to its highly potent effects on bone resorption, several preclinical studies suggest

that zoledronic acid exhibits anti-tumor activity. In vitro studies demonstrate that zoledronic

acid not only inhibits the proliferation of breast carcinoma cells (Fromigae et al., 2000) and

prostate cancer cells (Lee et a1.,2001), but also induces cytostasis and apoptosis of myeloma

cells (Apari cio et al., 1998). Zoledronic acid also may interfere with the process of metastasis

atvery low concentrations. It has been demonstrated that zoledronic acid at concentrations of

10-12-10-6 M, inhibits the ability of human prostate and breast carcinoma cells to invade the

extracellular matrix in vitro, without inducing apoptosis and inhibiting tumour cell migration.

However, apoptosis is induced at a higher concentration (10-a M) (Boissier et at., 2000).

These preliminary results suggest that zoledronic acid may prove to be a powerful drug in

reducing tumour burden and increasing patient survival, and as such wanants further

investigation.
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1.5 HYPOTHESES

BPs and TRAIL act synergistically to enhance myeloma cell death'

BPs disrupt the integrin-mediated cell adhesion of myeloma cells to Stromal/OB cells

leading to myeloma cell death.

BPs act via OB to inhibit bone resorption, by stimulating or inhibiting OB to produce

osteoclast-inhibitory or osteoclast-activating factors, respectively.

BPs possess anabolic activity and are capable of differentiating OB progenitor cells into

mature and functional OB.

1.6 AIMS AND EXPERIMENTAL RATIONALE OF THIS PROJECT

To examine the mechanism(s) of BP- and TRAIL-induced myeloma cell death'

a

a

a

a

a To examine if BPs reduce bone resorption by acling on OB cells as well as OC cells

o To examine if BPs can induce new bone formation.
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1.7 SIGNIFICANCE OF PROJECT

The osteolytic lesions in MM represent one of the major clinical manifestations of the

disease. The new RANKL/RANIIOPG cytokine system and OC activating factors play an

important role in the normal bone remodelling and pathological bone resorption including

MM induced osteolysis. Numerous studies have shown that BPs provide gteat benefits to

MM patients including improved life quality and prolonged life expectation. Better

undcrstanding of the mechanism of actions of these compounds on osteolysis in cancer

patients provides a new means by which the mechanism of tumour metastasis can be

understood. Furthermore, it also enables us to obtain a greater understanding of normal bone

remodeling biology as well as its precise mechanisms of action'

This project is centred on investigating two aspects of BP activity, and include (1) finding a

new drug combination to overcome multiple drug resistance in MM patients, and (2)

understanding the normal biology of OB and the underlying mechanism of BPs on

osteoblastic bone formation.

V/e anticip a1e thatthis study will provide some novel and valuable insights into the molecular

and cellular mechanisms responsible for the clinical effectiveness of BPs on the skeletal

complications associated with MM.
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CHAPTER 2

MATERIALS AND METHODS

2.1. SOL(ITIONS, BUFFERS AND MEDIA

2.1,1 Sodíum þruvøte

Stock solutions of 100 mM sodium pyruvate (100x) were prepared by dissolving 1.1 g of

sodium pynrvate powder (cr-Ketopropionic Acid; 2-Oxopropanoic Acid, Sigma, USA, Cat.

No. P-5280) in 100 ml Milli-Q water. The solution v/as filter sterilised and stored at 4C.

2.1.2 2-Mercøptoethanol (2-ME)

A lM stock solution of 2-ME was prepared by diluting 0.7 ml of 14.27 M p-mercaptoethanol

(Sigma, St. Louis, MO, USA,Cat. No. M-3148) into 9.3 ml Hank's Balanced salt Solution

(HBSS, Infectious Diseases Laboratories, IMVS) and was stored at -20"C. The 1 M stock

solution was further diluted 1:10 (in HBSS) to prepare a 0.1 M working solution. This was

filter sterilised and stored as 500 ¡rl aliquots aI -20oC.

2.1.3 PI/Trìton X-100 Støining Solution v,ith RNAse A

The solution was prepared freshly by adding 0.2 mglml of DNAse-free RNAse A (Roche

Diagnostics, Castle Hill, NSW, Australia, Cat. No. C 109169),20 pglml of propidium iodide

(PI, Sigma Chemical Co. Ltd, St Louis, MO, USA), and 0.1% (vlv) Triton X-100 (ICN

Biomedicals Inc, Ohio, USA, Cat. No. 807423) to PBS.

2.1,4 Fluorometríc Caspase 3 Assøy Buffir

The fluorometric caspase 3 assay buffer @H 7.4) was prepared by adding 1.2% (wlv)

HEPES, l0% (wlv) sucrose (BDH AnalaR@, Victoria, Australia), and O.lYo (w/v) CHAPS (3-

[(3-cholamidopropyl) dimethyl-ammonio]-1-propanesulfonate (Pierce, IJkkinios, USA) to

MilliQ-water.

2.1.5 Btocking Bufferfor Flow Cytometric Anølysis

HBSS was supplemented with 0.4o/o (w/v) bovine serum albumin, 4%(vlv) normal human

serum (NHS; Red Cross, Adelaide, South Australia), 5%(v/v) foetal calf serum (FCS; CSL

Limited, Victoria, Australia, Cat. No. 09102301) and penicillin (50 i.u./ml)/streptomycin
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sulphate (50 pglml)(Csl Biosciences, Victoria, Australia, CaL No. 05081901). The buffer

was filter sterilised through a0.22 pm bottle filter (Nalge Nunc International Corp, USA) and

stored at 4C.

2.1.6 Flow Cytometry Fixative (FACS Fix)

To 1 litre of PBS, 10 ml of formaldehyde (40% w/v, ACE Chemical Company, Adelaide,

Australia), 20 g of D-glucose (BDH AnalaR@, CoHrzOo, Victoria, Australia), and 0.2 g of

sodium azide (Sigma, USA, Cat.No. 5-8032) were added.

2.1.7 Double-Strength Iscove's Modifted Dulbecco's Medium (2xIMDM)

To prepare 500 ml of 2xIMDM (Cytosystems, Castle Hill, NSW, Australia, Cat. No. 50-016-

PA), one sachet (17.67g) of IMDM powder was dissolved in Milli-Q water. To this, sterile

stocks of penicillin, streptomycin, DEAE-Dextran (Pharmacia-LKB Biotechnology AB,

Uppsala, Sweden, Cat. No. 170350-01) and L-asparagine (Sigma, Cat. No. A-0884) were

added at concentrations of 200 i.u./ml, 200 pglm|5.2 mglml and 0.4 mglml, respectively.

Filter sterilised medium was stored as 50 ml aliquots at -20oC or used immediately.

2.1.8 10%(w/v) Bovine Serum Albumin (BSA)

To prepare l}%(wlv) BSA, 20 g BSA (CSL Limited, Victoria, Australia, Cat. No. 06711701)

was carefully overlayed on the surface of Milli-Q water (88.4 ml), and was allowed to sit at

4.C for 24 hours. Once dissolved, 3 g of AG@ 501-X8 (D) Resin (Bio-Rad Laboratories, CA,

USA, Cat. No. 142-6425) was used to deionise the BSA and to remove trace elements and

contaminants. The beads were removed by filtration through Whatman No. I paper

(Whatman Laboratory Division, England) when beads had changed colour from green to

yellow. The procedure was repeated 3 times. An equal volume (100 ml) of 2x IMDM (or

2xPBS) was added to the BSA and sterilised by filtration through a 0.22 pm bottle filter,

prior to storage at -20"C.

2.1.9 Dulbecco's Modified Eøgles Medium-I0 (DMEM-I0)

To prepare 500 ml of DMEM-I0, Dulbecco' Modified Eagles Medium (JRH Biosciences,

USA, Cat. No. 51444-500M) was supplemented with penicillin (50 i.u./ml)/streptomycin

sulphate (50 pglml), l0o/o (v/v) foetal calf serum (FCS, CSL Limited, Victoria, Australia,

Cat. No. 09702301),2 mM of glutamine (JRH Biosciences, USA, Cat. No. 59202-I00M), 1

mM of sodium pyruvate, 15 mM of HEPES buffer (JRH Biosciences, USA, Cat. No' 59205-
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100M / TRACE Scientific LTD, Melbourne, Australia, Cat. No. 21-115-0100V), and was

buffered with 1 g of sodium bicarbonate (Infectious Diseases Laboratories, IMVS)' The

medium was subsequently filter sterilised and stored at 4"C. The medium was replenished

with 2mM L-glutamine at weekly intervals.

2.1.10 Alpha Mínimøl Essentiøl Medium-I| (a-MEM-LL) for Osteobløst-like Cell Culture

To prepare 500 ml of single strength o-MEM-1O,410 ml of cr-MEM (JRH Biosciences,

USA, Cat. No. 51451-500M) was supplemented with penicillin (50 i.u./ml)/streptomycin

sulphate (50 pg lml), l0o/o (v/v) FCS, 2 mM of glutamine, 1 mM of sodium pyruvate, 15 mM

of HEPES buffer, 100 pM L-ascorbate-2-phosphate (V/AKO pure chemical industries, LTD,

Japan, Cat. No. 013-12061), and buffered with 1 g of sodium bicarbonate. The medium was

subsequently filter sterilised and stored at 4"C. The medium was replenished with2 mM L-

glutamine at weekly intervals.

2.1.11 Alpha Minimal Essential Medium-L| (a-MEM-LL) for Myeloma Cell Culture

To prepare 500 ml of single strength o-MEM-10, 415 ml of a-MEM was supplemented with

penicillin (50 i.u./ml)/streptomycin sulphate (50 ¡rg lml),I0o/o (v/v) FCS, 2 r'rlNI of glutamine,

1 mM of sodium pyruvate, 15 mM of HEPES buffer, 0.45% (w/v) D-glucose (BDH

AnalaR@, CoHrzOo, Victoria, Australia) and buffered with 1 g of sodium bicarbonate. The

medium was subsequently filter sterilised and stored at 4"C'

2.2 CELL CULTURE

2.2.1 Humøn Myeloma Cell Lines

Myeloma cell lines RPMI 8226, ARH-77, and tJ266 were purchased from the American

Tlpe Culture Collection.WL2 was kindly provided by Dr. Doug Joshua, Royal Prince Alfred

Hospital, Sydney). All the myeloma cell lines were cultured in cr-MEM-lO supplemented

with glucose. The cells were cultured at a cell density of 2x10s cells/ml and the medium was

changed every 2 to 3 days. Cells were cultur ed at 37"C in the presence of 5%o COz'

2.2.2 Murine Cytokine-Dependent Myeloid Cell Line, FDC-PI

The murine cytokine-dependent myeloid cell line, FDC-PI, was cultured in DMEM-IO

supplemented with 100 U/ml of murine granulocyte macrophage-colony stimulating factor
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(GM-CSF; which was kindly provided by Dr. Thomas J. Gonda, Hanson Institute). Cells

were culturedat3T"C inthepresence of 5YoCOz.

The cells were washed with DMEM-10 thrice and cultured in DMEM-I0 without GM-CSF'

Following starvation for 24 hrs, the cells were harvested and prepared as a positive control

for apoptosis and intranucleosomal fragmentation analysis (refer to section 2.3.5).

2,2.3 Normal Human Bone Cells (NHBC)

Trabecular bone specimens were obtained from osteoarthritis patients, during routine knee

and hip replacements, from the Department of Orthopaedic Surgery and Trauma at the Royal

Adelaide Hospital. Bone chips were cultured in T-75 tissue-culture flasks in c¿-MEM-1O

supplemented with 100 pM L-ascorbate-2-phosphate. Medium was changed two times per

week for 5-6 weeks, and cultures were incubated at 37" C in the presence of 5o/o COz until

confluent.

2.2.4 Normal Osteoblast Donor (NOD)

Normal OB-like cells (NOD's) were derived from young healthy donors as part of an

institutional ethics approved Normal Bone Marrow Donor Program. Briefly, the donated

bone marroìw was strained using a cell strainer (Becton Dickinson, USA) and the small bone

chips were washed through with HHF (HBSS supplement wíth 5o/o FCS) and cultured in cr-

MEM-10 supplemented with 100 ¡rM L-ascorbate-2-phosphate. Medium was changed twice

weekly for 5-6 weeks, and cultures were incubated at 37" C in the presence of 5o/o COz until

confluent.

2.2.5 Enzymatic Digestíon of Osteobløst-like Cell Cultures

Single-cell suspensions were obtained from confluent primary osteoblast-like cell cultures by

enzymatic digestion. The cells were washed twice in PBS, and then digested in a 2 ml

mixture of collagenase (1 mg/ml, Worthington Biochemical Corporation, NJ, USA) and

dispase (l mglml, Boehringer Mannheim, Cat. No. 165859) for 45 mins at 37"C. The

detached cells were transferred to a 50 ml Falcon tube, following a wash in 10 ml PBS. The

remaining adherent cells were treated with Trypsin-EDTA (0.05% trlpsin, 0.53 mM EDTA-4

Na, GIBCO Invitrogen Corporation, Canada, Cat. No. 15400-054) for 5 mins at 37' C. After

washing with HHF, cells were mixed and pelleted by centrifugation at 1.,400 rpm for 5 mins

and used in experiments outlined below.
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2.2.6 Cryopreservation of Cells

Cells were cryopreserved in FCS containing 70o/o (v/v) of the cryoprotectant, dimethyl

sulphoxide (DMSO, BDH AnalaR@ Merck Pty Limited, Victoria, Australia). Immediately

prior to freezing,0.5 ml of sterile freeze mix (20o/o (v/v) DMSO in FCS) was added dropwise

with mixing, to 0.5 ml of FCS containing 5-10 x 106 cells. The cell mixture was kept on ice

and immediately transferred to cryoampoules (Greiner Labortechnik) for liquid nitrogen

storage (-196' C).

2.2.7 Thcrwing Cryopreserved Samples

Following removal from liquid nitrogen storage, cryoampoules were rapidly thawed at 37"C,

and the cells were transferred to a 14 ml pollpropylene round-bottom tube (Becton

Dickinson, NJ, USA), Dropwise, 3 ml of appropriate medium was added, and then the

sample was made up to a final volume of 10 ml. Cells were pelleted by centrifugation at

1,400 rpm for 5 minutes, and subsequently washed twice in medium to remove residual

DMSO. Finally, cells were resuspended in appropriate growth medium and cultured in T75

flask (Greiner Bio-one, Germany) at37"C in the presence of 5%o COz'

2.3 EFFECT OF ZOLEDRONIC ACID ON THE CELL GROWTH

2.3.1 Reøgents Used in Thís StudY

Zoledronic acid was kindly provided by Dr Kevin Lynch (Novartis Pharmaceuticals).

Recombinant soluble human TRAIL (Peprotech, Rocky Hill, NJ, USA) and TNFcr were

kindly provided by Drs. Andreas Evdokiou and Pu Xia, respectively (Hanson Institute).

2.3.2 Cell Proliferation AssøY

2.3.2.1 Dose Dependent Effects of Zoledronic Acid on Myeloma Cells

Different myeloma cell lines were seeded in 96-we11 plates (Nalgene Nunc International,

Denmark), at a density of 1x104 cells per well in 100 ¡rl of cr-MEM-lO. Cells were cutured

with zoledronate at different concentrations for 3 days. The relative number of viable cells in

each well was determined on day 3 using the colorimetric assay reagent WST-I (Roche

Molecular Biochemicals, Cat. No. 1644807). Briefly, 10 pl of WST-1 was added to each

well, including three wells containing only medium, to enable background subtraction. WST-

1 is a tetrazolium salt that is cleaved to formazan by cellular enzyrnes. An expansion in the
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number of viable cells results in an increase in the overall activity of mitochondrial

dehydrogenase in the sample that leads to an increase in the amount of formazan dye' After a

2.5-hour incubation at 37"C in the dark, the colour of the medium turned to orange, which

was proportionate to the degree of cell viability and cell number. The absorbance of dye

solution was measured directly with a plate reader (BIO-RAD Model 3550 microplate reader,

CA, USA) using the test wavelength of 450 nm. Different treatment groups were performed

in triplicate and the results were compared against controls using the Student's /-test'

2.3.2.2 Dose Dependent Assay of TRAIL on Myeloma Cells

Myeloma cell lines v/ere seeded in 96-well plates as described in section 2.3.2.1.

Alternatively, the cells were treated with recombinant soluble human TRAIL at different

concentrations. On day 3, the cell number and viability were assessed using 'WST-l, 
as

described above.

2.3.2.3 Cell Proliferation Assay of Osteoblast-like cells Treated with Zoledronic Acid

Osteoblast-like cells from three different donors (two NHBCs and one NOD) were seeded

into 96-we11 plates using the ACDU facility of the FACStar cell sorter at a cell density of

4000 cells/well and incubated at 37oC for 24 hrs in a-MEM culture medium. The medium

was then replaced with 100 pllwell fresh medium containing various concentrations of

zoledronic acid. The cell number was assessed using WST-I on day 3, as described before'

Altematively, when exploring the effect of zoledronic acid on the growth of osteoblast-like

cells, STRO-I* and STRO-I- cells were sorted directly into the 96-well plates at a cell

density of 4000 cells/well, and cell proliferation assay was performed as discribed above'

2.3.2.4 Cetl Proliferation Assay Examing the Effects of Zoledronic Acid and TRAIL on

Myeloma Cells

Myeloma cell lines were seeded into 96-well plates as described in section2.3.2.l. The cells

were exposed to both TRAIL and zoledronic acid. The RPMI 8226 cell line was treated with

zoledronic acid at concentrations from 0.01 to 25 ¡rM and TRAIL at constant concentration

of 30 nglml. The concentration of zoledronic acid used for the ARH-77, WL2 andU266 cell

lines was from 0.1 to 50 ¡.rM with 100 nglml of TRAIL. The cell number was assessed on day
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3 and day 5 by using WST-I, as described previously. The experiment was performed twice

with triplicate well samples.

2.3.3 Time Course Experiment of Zoledronic Acid on Myeloma Cells

Myeloma cells in exponentially grown phase were seeded into 48-well plates at an initial

concentration of 5x104/ml. Zoledronic acid was added at the specified concentrations (10 ¡rM

for ARH-77, RPMI 8226 and Balm, 50 pM lor WL2 andU266). At each time point after

treatment, the cells were harvested and counted in triplicate using a haemocytometer. The

viability was determined by trypan blue dye exclusion. Two separate counts were performed

on each sample and the results were compared against controls using Student's /-test.

2.3.4 Analysis of Nuclear Morphology

To assess the effect of zoledronic acid on cell apoptosis, myeloma cells were seeded into 96-

well plates at the cell density of 1x104 cells per well and treated with 0, 5 and 25 ¡t'ld

zoledronic acid for 48 hrs, respectively. The cells were cytospun onto slides using a Shandon

cytospin 2 (500 rpm for 5 min), air dried over night and fixed in FACS fix for 10 mins at

room temperature. The cells were stained with 1 ¡tglml DAPI (4'-6-diamidino-2-phenyl-

indole, Sigma, USA) in PBS lor l-2 mins and examined with the fluorescence microscope.

Apoptotic cells were defined on the basis of the characteristic changes in nuclear

morphology, including condensation of chromatin to produce crescent shapes around the

periphery of the nucleus and apoptotic bodies'

Alternatively, osteoblast-like cells \Mere cultured in 8-chamber slides (Nalge Nunc

International, Denmark) and treated with 5 ¡rM zoledronic acid. The cells were centrifuged

before being fixed with FACS fix for 10 mins. The cells were stained with DAPI and

assessed using fluorescence microscopy as described above.

2.3.5 Agørose Gel Analysis of Intrønucleosomøl Fragmentatíon

The osteoblast-like cells from different donors were detached by trypsin and washed once

with cold PBS. The cell viability was determined using typan blue exclusion. The cell pellets

were treated with lysis buffer (10 ¡rl/106 cells with a minimum of 50 ¡.rl) for 10 seconds: 1olo

(v/v) NP 40 (Nonidet@P 40, Fluka, BioChemika),20 mM EDTA, 50mM Tris-HCl(pH 7.5) in

MilliQ-water. The nuclei were pelleted by centrifugation at 1,600 xg for 5 mins. The
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supernatant was collected and the nuclei were resuspended in 50¡rl of lysis buffer. The

suspension was brought up to final concentration of 1% SDS (5pl of 10% SDS for 50 ¡rl) and

treated for 2 hrs with RNAse A (5¡rg/pl) at 56oC, and subsequently digested with Proteinase

K (PK, 2.5 pgl¡;J, Sigma, Cat. No. P 2308) for 2 hrs at 37"C. This was followed by the

addition of 0.5 volumes of 10 M ammonium acetate, and the DNA was precipitated with 2.5

volumes of absolute ethanol. The reaction was incubated on ice for 10 mins, and centrifuged

at 12,000x g at 4"C for 15 mins. The DNA pellet was air dried and then dissolved in loading

buffer. The DNA ladder was separated by electrophoresis on I% (wlv) agarose gel and

visualised with SYBR Gold (Quantum Scientific, Cat. No. S-11494) staining.

2.3.6 Cell Cycle Analysis

Untreated and zoledronate-treated myeloma cells (10 pM for RPMI 8226 and 25 pM for

WL2) were harvested and washed twice with PBS, and then fixed in 70% (vlv) cold ethanol

for at least2 hrs at 4oC. After fixation, the cells were pelleted by centrifugation at 1100 rpm

for 5 mins. The cells were washed once with PBS and stained with 1 ml of PVTriton X-100

staining solution (containing RNAse) for 30 mins at room temperature (or at 37'C for 15

mins) in the dark. Cell cycle distribution was determined by analysing 10,000 events on a

Excel flow cytometer (Beckman Coulter) using the red fluorescence of excited propidium

iodide-stained nuclei as a measure of DNA content. Linear displays of fluorescence

emissions were fitted to cell cycle distribution analysis by use of the MODFIT program for

MAC Y2.0. The degraded sub- Go/Gr DNA content was quantitated and considered

characteristic of an apoptotic cell.

2.3.7 Cøspase Activity Assay

Caspase-3 activity was measured by determining the degradation of the fluorometric

substrate DEVD (Ac-Asp-Glu-Val-Asp-AFC), which contains the amino acid sequence of

the caspase-3 cleavage site in poly (ADP-ribose) polyrnerase (PARP), conjugated with AFC.

Cells were lysed in caspase lysis buffer (5 mM Tris-HCl lpIl7.4l, 5 mM EDTA lp}J 7.61,

0.5% NP a0) by incubating on ice for 20 mins with shaking. Protein concentration \¡/as

measured using Bicinchoninic Acid (Pierce, Illinios, USA). Lysates (15 pg protein) were

incubated with 200 ¡rl of caspase activity assay mixture (Fluorometric caspase 3 assay buffer

þIJ7.al supplemented with 10 mM DTT and 9 pM caspase-3/ CPP 32 substrate IAo-DEVD-

AFC, Kamiya biomedical company]) for 4 hours at room temperature in the dark. The
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released fluorescent molecule AFC (7-amino-4-trifluoromethyl coumarin) was measured in a

microplate fluorescence reader FL 500 (Bio Tek Instruments, 'Winooski, Vermont USA) with

emission wavelength of 505 nm.

2.4 DETECTION OF GENE EXPRESSION IN CELLS

2.4.1 TRlzolrvlsolation of Total RNA

Total RNA was extracted from 5-10x106 cells by adding 1 ml of TRIzolrM (Life

Technologies, Catl No. 15596-026). Washing cells before addition of TRIzol reagent was

avoided as this increases the possibility of mRNA degradation. RNA was solubilised by

passing the lysate through a pipette several times. The homogenized samples were incubated

for 5 minutes at room temperature to permit the complete dissociation of nucleoprotein

complexes. To each tube, 0.2 ml of chloroform (APS Finechem, A division of Asia Pacific

Specialty Chemicals Limited CAN, NS'W, Australia) was added per I ml of TRIzol Reagent.

The tubes were shaken vigorously by hand for 15 seconds and then incubated at room

temperaturefor2 to 3 mins. The samples were centrifuged at 12,000xg for 15 minutes at 4o

C to separate the mixture into a lower red phenol-chloroform phase, an interphase, and a

colourless upper aqueous phase. RNA that remained exclusively in the aqueous phase was

carefully removed and transferred to a fresh 1.5 ml eppendorf tube (Scientific Specialties

Incorporated Life Technologies Australasia, Cat. No. 1220-00). The total RNA was then

precipitated by the addition of 0.5 ml of isopropyl alcohol (BDH Chemicals, Victoria,

Australia, Cat. No. 10224) per 1 ml of TRIzol Reagent used for the initial homogenization'

Following incubation for 10 mins at room temperature, the RNA was pelleted by

centrifugation at 12,000 x g for 10 mins at 4"C. The RNA pellet was washed once withT5o/o

(v/v) ethanol by adding at least 1 ml of 7 5o/o ethanol per 1 ml of TRIzol Reagent used for the

initial homogenization. The samples were mixed by vortexing and were centrifuged at 7,500

x g for 5 mins at4" C. At the end of the procedure, the RNA pellet was briefly air-dried at

37" C for 5-10 mins. RNA was resuspended in RNase free diethylpyrocarbonate (DEPC,

Sigma Aldrich Ltd, Cat. No. D 5768)-treated Milli-Q water, and to facilitate RNA solubility,

the samples were incubated for 10 minutes at 55 to 60o C. The concentration of RNA was

determined by spectrophotometry, and the integrity of the RNA was determined by l% (w/v)

agarose gel electrophoresis. RNA was stored at -80'C or used immediately for cDNA

synthesis.
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2.4.2 Determínation of RNA Concentrøtion

The concentration of RNA in solution was determined by measuring the absorption at 260

nm on a Beckman UV spectrophotometer (Beckman Instruments, Mt. Waverley, Victoria,

Australia), assuming that an A¿oo of 1.0 represents 40 pglml of RNA. Alternatively, the

sample was electrophoresed in agarose gels and the intensity of the sample's ethidium

bromide-stained bands was compared with the intensities of bands containing RNA standards

of known concentration.

2.4.3 Reverse Trønscríption (RT) Polymerase Chain Reaction (PCR) Amplificøtion of

DNA

2.4.3.1 Synthesis of Complementary DNA (cDNA)

Total cellullar RNA from cell lines or tissues was prepared with TRIzol, as described in

section 2.4.1. The following components were added to a nuclease-free microcentrifuge tube:

1 pl random hexamers (Geneworks, Cat. No. RP-6) at the concentration of 250 nÚþ1,1¡rg of

total RNA and RNase free DEPC-treated Milli-Q water to 12 p"l. The mixture \¡/as heated at

70oC for 10 mins and quickly chilled on ice. The contents of the tube was collected by brief

centrifugation and was then added to a mixture containing 4 þl of 5x first strand buffer, 2 pl

of 0.1M DTT, and 2 ¡rl of 5 mM dNTP Mix (5 mM each dATP, dGTP, dCTP and dTTP at

neutral pH). The contents of the tube were mixed gently and incubated at room temperature

for 10 mins. One ¡rl (200 units) of Suppnscrupr II (Gibco Life Tech, Cat. No. 18064-014) was

added and mixed by pipetting gently up and down. The mixture was incubated at 42"C for 50

mins and the reaction was inactivated by heating at 70"C for 10 mins. The cDNA was then

used as a template for amplification in PCR.

2.4.3.2 Polymerase Chain Reaction (PCR) Amplification of cDNA

gDNA was amplified by PCR to generate products corresponding to mRNA encoding the

gene products. One pl of each oDNA synthesis reaction was ustilised as template DNA in

each PCR reaction. Routinely, the cDNA mixture was added to a 200 ¡.rl microcentrifuge

tube, to which 2 ¡i of 10 x PCR amplification buffer (10 x PCR buffer: 670 mM Tris HCI pH

8.8, 166 mM (NH+)zSO+, 4.5%oTnton-X 100, 2 mglml gelatin), 1.2 ¡i of 25 mM MgCl2,2 ¡l
of 2 mM dNTP mixture, 100 ng each of the appropriate sense and antisense primers (table

7),0.2 pl (1 Unit) of Amplitaq DNA Polymerase (Applied Biosystems, Roche, Switzerland),
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and DEPc-treated water were added to a final volume of 20 ¡r1. Amplitaq Gold is a "hot

start" DNA polymerase that has an inactivating protein modification that only allows the

enzyme to become active at high temperatures. Amplification was achieved by incubation in

a Corbett Research thermal cycler. DNA was amplified under the following typical cycling

conditions: denaturation at 94"C for 1 minute, annealing at the temperatures suitable for

different primers for 1 minute, extension at 72"C for 1 minute for 20-40 cycles, with a final

10 minutes extension performed at 72"C, such that all products were assayed in the

exponential phase of the amplification curve. Following amplification, the PCR products (10

¡rl of each reaction mixture) were separated on 2% (wlv) agarose gel according to molecular

weight, and visualised by SYBR Gold staining under UV light at 570 nm.

2.4.4 Primers Used in This Study

All the primers used in these studies are displayed in table 1. The cycle numbers were

determined by cycle course analysis, and annealing temperatures were determined

empirically using AmpliTaq Gold in a gradient thermal cycler.

2.5 IMMUNOFLI]ORESCENCE STAINING AND FLOW CYTOMETRY

Flow cytometry was performed using an Epics@-XL-MCL analyser (Beckman Coulter).

Cells to be analysed were immunostained with primary antibodies that recognise specific

antigens of interest. Cell populations were analysed on the basis of their forward and side

light scattering properties, which is indicater of cell size and cell density, respectively'

2.5.1 One-Colour Flow Cytometric Analysis

Cells were harvested from culture (2xl0s cells per condition), and pelleted by centrifugation

at 1,400 rpm for 5 mins at 4C. Prior to immunolabelling, cells were incubated in blocking

buffer at a concentration of 5x106 cells/ml, and were incubated on ice for 30 mins. For each

condition, aliquots of 2x10s cells were incubated with 50 ¡rl of antibody or isotype-matched

control (used as culture supernatants or purified mAbs al a final concentration of 10 ¡rg/ml).

After a 45 minute incubation at 4oC, the cells were washed twice in chilled HHF to remove

unbound antibody, and the pellets were resuspended in 50 ¡rl HHF containing 1:50 dilution of

fluorescein isothiocyanate (FlTC)-conjugated or phycoerythrin (PE) conjugated goat anti-

mouse Ig (Southern Biotechnology Associates Inc. Birmingham, AL, USA). Following
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Table 1: RT-PCR primers and conditions for the specific amplification of human mRNA.

Target
Gene

Sense/ Antisense (5'-3') Primer Sequences

Arurealing Cycle
temperature number

('c)

Product
Size Ref

CACTGACACGTTGGCAGTGG/
CATGGAGAAGGCTGGGGCTC

CAGTTGTCAAGGACAGCAC/
GCTGGAGGATCCCTCGGACTG

AGGAAGATGCTGGTTCCCTCTC/
CAGTTCAGTGATCGTACAGGTGC

ATGAACTCCTTCTCCACAAG/
GTGCCTGCAGCTTCGTCAGCA

TCAGATCATCTTCTCGAACC/
CAGATAGATGGGCTCATACC

AATAGAATATCAGAAGATGGCACTC/
TAAGGAGGGGTTGGAGACCTCG

AACAGGCCTTTCAAGGAGCTG/
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incubation with secondary antibody for a further 45 mins at 4"C, cells were washed as above

and fixed in FACS fix. Tlpically, for each sample 10,000 events were analysed on the flow

cytometer, and stored as list mode data for further analysis using WinMDI software

(Windows Multiple Document Interface Flow Cytometry Application, 1993-1998 Joseph

Trotter).

Altematively, when cells were stained with rabbit anti human antibodies (OCN and

RANKL), a l:200 dilution of RDF (Sheep Anti-Rabbit Immunoglobulin F (ab)z Fraction

Fluorescein conjugated, AMRAD Biotech, Victoria, Australia, Cat. No. 984141020) was

used as a secondary antibody.

2.5.2 Intracellular Antigen Detection

Single cells were blocked in blocking buffer for 30 mins on ice and then washed twice in

PBS. After fixing in lo/" (w/v) paraformaldehyde (BDH Chemical Ltd, England) in PBS for

20 mins at room temperature, cells were washed twice by HHF containing 0.1olo saponin

(w/v, Sigma Cat. No. 5-4521). The cells were resuspended with 50 pl of culture supernatant

or purified mAbs at a final concentration of 10 ¡rglml (diluted in HHF containing 0.1%

saponin). Following a 60 min incubation at 4"C, the cells were washed twice in HHF

(containing 0.1% saponin), and resuspended in wash medium containing a 1:50 dilution of

goat anti-mouse IgG (y-chain specific)-FlTC and a goat anti-mouse IgM (p-chain-specific)-

PE. After a further incubation at 4oC for 45 mins, the cells were washed as described above

and then fixed in FACS fix prior to analysis.

2.5.3 Two-Colour Flow Cytometric Analysis

The single cells were incubated in blocking buffer for 30 mins. For each condition, aliquots

of 2x105 cells were incubated with 100 pl of STRO-1 mAb supernatant and 100 ¡rl of B4-78

at the concentration of 10 ¡rglml for t hour on ice. The isotype matched negative control

antibodies, IgGr (1B5) and IgM (146.12) were used under identical conditions. The cells

were then washed in HHF and incubated with a goat anti-mouse IgG-FITC (l:50) and a goat

anti-mouse IgM-PE (1:50) for 45 mins on ice. The cells were then washed twice and

resuspended in 300 pl of FACS fix prior to analysis.
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2.5.4 Anølysis of cetl cycling status of sTRo-I* ceus hy Ki-67 Reactivity

Single cell suspension of osteoblast-like cells was stained with STRO-I using a goat anti-

mouse IgM-PE conjugated second label as described in section 2.5.1. After staining, the cells

were washed twice with ice cold PBS and then fixed with cold ethanol (70%) for 10 mins on

ice. Following this, the cells were washed thrice with PBS and then incubated in blocking

buffer for 15 mins. The monoclonal antibody FlTC-conjugated Ki-67 (DAKOPATTS a/s,

Denmarþ was added directly to the cells (1/10 dilution in blocking buffer) for 45 mins on

ice. The FITC conjugated mouse IgGl negative control antibody was used under the same

conditions. After washing and fixation, the cells were analysed by dual-colour flow

cytometric analysis.

2.5.5 Three-Colour Flow Cytometríc Analysis

Single cell suspension of osteoblast-like cells were dual stained with ALP and STRO-1 using

a goat anti-mouse IgG-FITC and IgM-PE conjugated second label as described in section

2.5.3. After staining, the cells were fixed in 0.5Yo (wv) paraformaldehyde in PBS (2x106

cells/ml) for 30 mins at 4oC. Then cells were washed once in TPBA (PBS supplement with

0.lo/o Tnxton 100, 0.1% BSA and 0.\o/o sodium azide) and resuspended in 500 pl TPBA

containing 5pg RNAse. The cells were incubated at 37" C for 20 mins and washed once by

TpBA. The cells were resuspended in 500 ¡rl PBA (PBS supplement with 0.1% BSA and

0.1% sodium azide) containing 5 pglml 7-aminoactinomycin D (7-AAD, Molecular Probes,

Netherlands, Cat. No. A-1310) and stored in dark at 4"C until ready to analyse (at least t hr

after staining).

2.5.6 Carboxyfluoresceín Diøcetate Succinimidyl Ester (CFSE) Løbelling of Cells

The cell-permeant fluorescein-based dye CFSE covalently attaches to cytoplasmic

components of cells, resulting in uniform bright fluorescence. Upon cell division, the dye is

distributed equally between daughter cells, allowing the resolution of up to eight cycles of

cell division by flow cflometry. This technique was used to determine division-related

phenotypic and functional change during differentiation of osteoblast-like cells.

The osteoblast-like cells were detached as described previously. The cells were washed once

and resuspended in I ml of PBS/0.1% BSA, and2 pl of 5 mM CFSE (final 10 ¡^tM) was

added to the cells and incubated at 37oC for 10 mins. The staining was quenched by adding 5
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volumes of ice cold culture media (u-MEM supplemented with 10% FCS), followed by

incubation on ice for 5 mins. The cells were washed three times in the culture medium and in

vitro cultures were established as described below.

At appropriate time points, the cells were detached by Trypsin-EDTA and were stained with

STRO-I or ALP mAbs coupled with PE as described above. Dual-colour flow cytometric

analysis was performed to analyse samples.

2,5.7 Fluorescence-Activated Cell Sorting (FACS)

After detachment, approximately 1x107 osteoblast-like cells were pelleted in 14 ml

polypropylene tubes and resuspended in 2 ml (100 pl/ 5x10s cells) of a saturating

concentration of STRO-1 supernatant for 60 minutes on ice. The monoclonal mouse isotype

control Ig M (146.12) was used under identical conditions. The cells were then washed in

HHF and incubated with a goat anti-mouse IgM-PE (1/50) in a final volume of 1 ml (50 pV

5x10s cells) for 45 minutes on ice. The cells were resuspended to approximately 106 cells/ml

and passed through a cell strainer to obtain a single cell suspension prior to analysis using

FACStarPLus flow cytometer (Becton Dickinson, Mountain View, CA, USA). Positive

fluorescence for STRO-1 stainingwas defined as the level of fluorescence greater than99o/o

of the corresponding isotype-matched control antibody.

STRO-I positive and negative cells were collected and cultured in the presence/absence of

different treatments. Single cell deposition was performed using the ACDU facility of the

FACStaTPLUS cell sorter and 4000 single cells were sorted directly into the appropriate

medium in 96-well plates for cell proliferation assays.

2.5.8 Antibodies Used ín Thís Study

All the antibodies used in this study are listed in the table 2

2.6 CELL ADTIESION ASSAYS

2.6.1 Cølciene Labelling of Non-Adherent Cells.

Untreated and zoledronate (5 pM) treated myeloma cells were washed twice and resuspended

in 500 pl cell adhesion buffer (IMDM-0.2%BSA). Ten pM calciene-AM (stock 1 mM in
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Table 2: List of Antibodies Used in This StudY

Antibody Name Specificity Isotype Source

B4-78

STRO-1

LF32

Ki-67

TRANCE

RANKL

6G10

TRAIL

DR4

anti-human bone/liver/kidney isoform of ALP mlgGl DSHB

Erythroid, Stromal cells, CFU-F, Endothelial cells mIgM DSHB

Osteoclacin (OCN), Bone-associated matrix protein rlg G Dr. L' Fisher2

Cell cycle antigen (Gr, S, M, &G2) mIg G, DAKO3

TNF-related activation induced cytokine dgGro R&D4

Receptor activator of nuclear factor-rB ligand tnlg G Santa Cruz5

vascular cell adhesion molecule-l (VCAM-l), CD106 mlg G1 Dr. B.
Masinovski6

R&DTumour necrosis factor-related apoptosis-inducing
ligand

h TRAIL-RI, Death-signalling receptor of TRAIL

mlg G1

dgGru R&D

h TRAIL-R2, Death-signalling receptor of TRAIL rnlg Gt R&D

h TRAIL-R3, Antagonist decoy receptors of TRAIL mlg Gt R&D

h TRAIL-R4, Antagonist decoy receptors of TRAIL dg Gt R&D

B2 microglobulin (MHC class I o subunit) mIg Gt Dr. L.
AshmanT

DAKOMembrane-bound glycoproteins expressed on the

surface ofnearly all nucleated cells

Subunit of HLA Class I

mlgG2u

mlg M PharMingen8

6r.2c4 (þr) CD29, Integrin P 1 subunit dg G, Dr. J. Gamblee

DR5

DcRl

DcR2

TB,4.BI2

HLA Class I

p2 microglobulin

8A2 (p1) CD2g,Úrtegrin Blsubunit(mAb shown to activate B1

integrin function)

1998 (c[2Bl) CD49blCD29, very later antigen (vlA-2cr), integtinu2

mlg G1

mlg G1

Drs. J. Harlan
and N.

,10
Á.ovacn
Chemiconrl

1992 (u3þl) CD49clCD29, VLA-3ct, integrin cr3 mlg G1 Chemicon



Table 2: List of Antibodies Used in This Study, Continued.

Antibody Name Specificity Isotype Source

P4C2 (a4) CD49í/CD29,YLA-4a, integrin a 4

1999 (crsÞ1) CD49elCD29, VLA-5cr, integrin cr 5

PHM2 (cr5Bl) CD49elCD29, VLA-5o, integrin cr 5

aF10 (cr6B1) CD49flCD29, VLA-6cr, integrin a 6

1997 (crvp3) Integrin ovB3

23 C6 Úrtegrin ovB3

Leucocyte Function Associated- 1 antigen (LFA- 1 ),
alpha chains

Phagocytic glycoproteìn-1 (Pgp-1), CD44

Leucocyte Common Antigen (LCA)

Intracellular Cell Adhesion Molecule-1 (ICAM-1),
CD54

Natural killer cell, N-CAM, NKH1

mlg G1 Dr. L. Ashman

dgGru Chemicon

mlg G1 Prof. R. A.
Atkinsr2

mIgG26 Serotecl3

-Ig G, Chemicon

mlg G1 Dr. L. Ashman

mlg G, Immunotechra

mlg G1 Dr. P.

Simmonsls

Becton
l6L'lcKlnson

Dr. L. Ashman

mlg G1

mIgGzu

mlgGzu Immunotech

mlgGru Dr. L. Ashman

Immunotech

Dr. G

CDlla

H9H11

CD45

1IJ4

CD56

CD58

CD138

185

1D4.5

146.11

cr-MAP

LFA-3

Syndecan-1, a heparin sulfate bearing integral membrane mlg G1

proteoglycan

Isotype-matched negative control/ o-Giardia mlg Gt
Mayrhoferr

Isotype-matched negative control/cr-Salmonella dgGru Dr. L. Ashman

Isotype-matched negative control/cr-S almonella mlgGro Dr. L. Ashman

Multiple antigenic peptide(MAP, HBV 2I-47 pre S) rlg G Dr. G. Atkinsl8

7

tA6.t2 Isotype-matched negative control/a-Salmonella mlg M Dr. L. Ashman



DSHBT: Developmental Studies Hybridoma Bank, University of Iowa, IA, USA

Dr. L. Fisher2: Craniofacial and Skeletal Disease Branch, National Institute of Dental and

Craniofacial Research, National [rstitute of Health, bethesda, maryland, USA

DAKO3 : DAKAOPATTS A/S, Glostrup, Denmark

R&Da: R&D Systems Inc. Minneapolis, MN, USA

Sants Cruzs: Santa Cruz Biotechnology, Inc. Santa Cruz, California, 95060, USA

Dr. B. Masinovski6: FCOS Cotp., Seattle, WA, USA

Dr. L. AshmanT: School of Biomedical Science, The University of Newcastle, NSW, Australia

PharMingens: BD Biosciences, San Diego, California, USA

Dr. J. Gamblee: Dept. Human Immunology, Hanson Lrstitute, I.M.V.S, Adelaide, South Aushalia

Drs. J. Harlan and N. Kovachl0: University of Washington, Seattle, USA

Chemicon,CArr: Chemlcon Inc. Pittsburgh, PA, USA

Prof. R. A. Atkinsr2: Monash Medical Centre, Melbourne, Victoria, Australia

Serotecl3: Serotec, Oxford, England

Immunotechla: Bio Online,Inc. Berkeley, CA, USA

Dr. P. Simmonsl5: Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, Melboume,

Victoria, Australia

Becton Dickinsonl6: Becton, Dickinson and Company, NJ, USA

Dr. G. MayrhoferlT: Molecular Lifescience, University of Adelaide, South Australia, Australia

Dr. G. Atkinsls: Department of Orfhopaedics and Trauma, University of Adelaide, South Australia



DMSO) were added to the cells and incubated at37oC for 60 mins. Cells were washed twice

in adhesion buffer and resuspended at an appropriate density (l-2x 104 cells/ well). The assay

was performed in triplicate.

2.6.2 Cell Adhesion Assøys of Myelomø Cells on Fibronectin or VCAM-I

After labelling with calciene, myeloma cells were washed twice with adhesion assay buffer,

resuspende d in 25 pl of adhesion buffer at a concentration of 8x 10s cells/ml, and chilled on

ice for 10 minutes prior to assay. The same volume of different test antibodies was added to

the cells and 50 ¡rl of the labelled cell suspension was placed, in triplicate into 96 wells

previously coated with Fibronectin or VCAM-I (10 ¡rglml, 50 prl/well). The entire procedure

was carried out on ice. Plates were centrifuged at 1,000 rpm for 5 mins at 4"C to sediment

cells into direct, uniform contact with treated surfaces. Plates were incubated in a humidified

(100%) incubator at 37"C for the indicated periods (usually 90 mins). Assay medium was

removed by aspiration and wells were washed three times by adding 150 pl of the adhesion

assay medium and flicking it off. After the last wash, cell adhesion was examined using an

inverted-contrast microscope before adding 150 ¡rl of lo/o (w/v) sodium dodecyl sulphate

(SDS) in HzO. Plates v/ere scanned using the Fluorimag"rtt 595 (Sunnyvale, CA, USA)

using the 530 nm filter.

2.7 IN VITRO MINERALISATION AND MEASUREMENT OF CALCIUM

PTIOSPHATE PRODUCTION

The conditions for the induction of human bone marrow stromal cells to develop mineralised

bone matrix in vitro have been reported by Gronthos et al (Gronthos et al., 1994). Briefly,

primary BM stromal cells were seeded into 96-well plates (8x103 cells/well), in cr-MEM

supplemented with 10% FCS, B-mercaptoethanol (5x10-5 M), dexamethasone sodium

phosphate (10-8 M), and KHzPOo (1.8 mM) at 37"C in the presence of 5Yo COz. The medium

was supplemented with zoledronic acid at the different concentrations. Culture medium

(200p1) was changed at weekly intervals for a period of 5 weeks. Alternatively, cells were

only treated with zoledronic acid at day 0 (d0). Calcium levels were determined as described

below at weekly intervals. The cultures were washed three times with Ca+ and Mg* free PBS

and then solublized in 0.6 N HCI (100 ¡rl per well) ovemight. Samples from each well were

then reacted with o-cresol-phthalein-complexone, and the colorimetric reaction was read at

570 nm. The absolute calcium concentration was determined by a standard curve for calcium
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according to the manufacturer's recommendations. The method used here is based on the

cresolphthalein complexone (CPC) method of Moorehead and Briggs (Moorehead and Biggs,

lg74). CPC reacts with calcium and magnesium in alkaline solution to form a deeply

coloured complex. The intensity of the purple colour formed is proportional to the calcium

concentration and can be measured photometrically between 540 and 600 nm with maximum

absorbance at 575 nm. Alternatively, the calcium levels were also detected using AAnalyst

300 Atomic Absorption Spectrometer (Perkin Elmer intruments). Statistical significance

(p<0.05) in the level of calcium detected between the zoledronic acid-treated BM stromal cell

cultures and the untreated cells was determined using the paired /-test.

2.8 STATISTICALANALYSIS

Results are expressed as the mean +the standard error of the mean (SEM). Student's /-test

was used to determine the statistical significance of differences between the means of several

experiments for normal distribution data. Wilcoxon test was used for non-parametric data.

Spearman's test was used for correlation analysis. A probability value < 0.05 was considered

to be statistically significant. Each experiment was repeated at least two times for these

analyses.
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CHAPTER 3

MYELOMA CELL LINES EXHISIT INHIBITION OF CELL PROLIFERATION AND

ENHANCED CELL DEATH IN RESPONSE TO ZOLEDRONIC ACID

3.1 INTRODUCTION

It has been demonstrated that BPs prevent bony complication and prolong the survival of

myeloma patients in clinical trials (Berenson e/ a1.,1998; Berenson et al.,1996; McCloskey

et a1.,1998). This survival advantage has been attributed to anti-tumour effects mediated by

the BP family of drugs. In vitro studies have demonstrated that BP such as pamidronate and

incandronate, can decrease cell proliferation and induce cytostasis and apoptosis in some

human myeloma cells (Aparicio et a\.,1998; Shipman et a\.,1,997; Takahashi et a|.,2001). A

synergistic induction of apoptosis was also observed when myeloma cell lines were exposed

to a combination of zoledronic acid and dexamethasone (Tassone et a|.,2000).

Simultaneously, it was found that TRAIL can effectively induce extensive apoptosis in some

myeloma cell lines in a time- and dose-dependent manner, and also induce substantial

apoptosis in myeloma cells freshly isolated from MM patients (Gazitt, 1999).Importantly, it

is not toxic to most normal human cells in vitro (Pitti et al., 1996; Wiley et al., 1995)'

Furthermore, TRAIL-induced apoptosis in MM cell lines is not abrogated by IL-6, a major

growth and survival factor for MM cells (Mitsiades et a1.,2001). Preclinical studies also

suggest that TRAIL can overcome conventional drug resistance and provides the basis for

clinical trials of TRAIL-based treatment regimens to improve outcome in patients with MM

(Mitsiades et al., 2001).

It is generally accepted that cultures of human myeloma cells, in vitro, ptoduce several

OAFs, including TNFcr, IL-1P, IL-6, M-CSF (Costes et al., 1998; Filella et al., 1996;

Pfeilschifter et a\.,1989). It has been recently demonstrated that myeloma cells, also express

RANKL, an important molecule involved in the pathogenesis of MM induced osteolysis

(Famrgia et a1.,2002).In addition, the anti-resorptive effects of BPs are considered, at least

partially, to be the result of inhibited release of some OAFs from OB (Derenne et al., 1999;

Giuliani et a1.,1998b; Ohya et a1.,1985; Stronski et a1.,1938). However, to date, it is still

unknown whether or not BPs inhibit the secretion of OAFs and RANKL from myeloma cells.

In this study, we have investigated the effect of zoledronic acid on cultures of human

myeloma cell lines. In addition, we have investigated if zoledronic acid in combination with
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TRAIL can mediate a synergistic anti-tumour effect. Finally, we have investigated whether

zoledronic acid treatment of myeloma cells, leads to an inhibition of OAF syrthesis.
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3.2 RESULTS

3.2.1 Multìple Myeloma Cell Línes Display Differentíal Sensitivity to Zoledtoníc Acid

Initial experiments monitored possible cytotoxic effects of zoledronic acid on the myeloma

cell lines using the colorimetric reagent WST-I. The WST-I assay is a measure of the

combined effects of cytostasis (inhibition of proliferation) and cytolysis (induction of target

cell death). As shown in Figure 3.1, a significant reduction in cell number was observed

when the RPMI 8226 cell line was exposed to zoledronic acid for 72 hours. At a

concentration of lpM, zoledronic acid induced a significant reduction in cell number

(p<0.005). A classical dose-dependent sigmoid response curye was evident and a plateau was

achieved at concentrations greater than 5 ¡rM. In contrast, this drug had little or no effect on

the myeloma cell lines V/L2 and 1J266. The ARH-77 cell line was less responsive to

zoledronic acid treatment than RPMI 8226, and a significant reduction in cell number was

only observed when more than 10pM of zoledronic acid was used (p<0.05).

To investigate whether zoledronic acid was mediating its effect by inducing clostasis or cell

death, a time course study was performed by counting viable cells using trypan blue

exclusion. In agreement with the above findings, a significant reduction in cell number was

achieved at day I (p<0.005) in RPMI 8226 cells treated with zoledronic acid (figure 3.2).

Zoledronic acid induced a significant reduction in cell number over the period of 5 days in

RPMI 8226 cells (p<0.005). ARH-77 cell proliferation was also inhibited in the presence of

zoledronic acid (B) (p:0.025), however, no effects were observed with theWL2 andU266

(p>0.05) cell lines. Interestingly, the proliferation rate of RPMI 8226 cells in the normal

culture media was significantly greater than that of the other three myeloma cell lines.

3.2.2 Zoledronic Acid Induces Cell Death by Inhibiting Cell Cycle Progression ín RPMI

8226

To identify the mechanisms of the cytoreductive effect of zoledronic acid on the myeloma

cell line RPMI 8226, flow cytometric cell cycle analysis was performed (figure 3.3). There

was a 2-fold increase in the number of cells, which accumulated in S-phase of the cell cycle

after exposure to zoledronic acid for 24I'ns. After 48 hrs culture in zoledronic acid, there was

an increase in the proportion of hypo-diploid cells in the sub-Go/Gr peak consistent with the

onset of apoptosis. This increase in the sub-Go/Gr peak was time dependent. In contrast, no
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Figure 3.1. Multiple myeloma cell lines display differential sensitivity to zoledronic

acid. Four myeloma cell lines, ARH77, RPMI-8226,WL2 andU266 were seeded in 96-

well plates at a cell density of 10,000 cells/ well. The cells were cultured in the presence

or absence of zoledronic acid and the cell number and viability was quantitated at d3

using WST-I, as described in the methods (refer to section 2.3.2.I). Zoledronic acid

induced a significant decrease (p<0.005, Êtest) in cell number at a concentration of I

pM in RPMI 8226 cell lines. A classical dose-dependent sigmoid response curve was

evident and a plateau was achieved at concentrations greater than 5 pM (A). ARH-77

was less responsive to zoledronic acid treatment and the decrease in cell number was

observed when more than 10pM of zoledronic acid was used (8, p<0.05, t-test)' In

contrast, myeloma cell lines V/L2 (C) and 1J266 (D) were resistant to the effects of

zoledronic acid treatment. Values represent means +SEM of triplicate cultures of each

concentration. The results displayed ate a representative example of 2 independent

experiments.
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Figure 3.2. F,ffects of zoledronic acid on the proliferation of myeloma cell lines. The

myeloma cell lines were cultured in 48-well plates at a density of 5 x 104 cells/well'

ARH-77 and RPMI 8226 cell lines were cultured in the presence of 10 pM zoledronic

acid, whilstIJ266 andWL2 cell lines were treated with 50 ¡rM zoledronic acid. Using

trypan blue exclusion, viable cells were counted each day for the period of 5 days' The

results showed that the proliferation rate of RPMI 8226 (A) was greater than the other

three cell lines. The significant reduction in cell number was achieved at day I

þ<0.005, /-test) in RPMI 8226 fieated with zoledronic acid. Zoledronic acid induced a

significant reduction in cell number over the period of 5 days in RPMI 8226 cells

þ<0.005, Wilcoxon test). ARH-77 cell proliferation was also inhibited in the presence

of zoledronic acid (B) (p:0.025, Wilcoxon test), however, no effects were observed in

WL2 (C) andrJ266 (D) (p>0.05,'Wilcoxon test) cell lines.



BA
60

lso
c
é40
o
Êro
Ê

=20oo
10

0

70

åoo
x
Yso
oo
E40
f
Ê,

=30o
C'

20

10

0

<- wlozole

+zole('1O¡rM)

c
+w/o zole

-r-- zole (50pM)

d2 d3

t¡me points

d2 d3

time points

RPMt8226

d4 d5

wL2

d4 d5

+ w/o zole

-r- zole (10¡rM)

D
--+ w/o zole

---r- zole (50¡.rM)

d2 d3

tlme po¡nts

d2 d3

time points

ARH.77

d4 d5

u266

d1d0d1d0

35

å30
X
Y2s
ú¡ô
820ac
=15o(,

10

30

Oor
x

iro
E
Ets
0lo10

5

0

5

0
d1d0d1d0 d4 d5



Figure 3.3. Zoledronic acid induces cell death by inhibiting cell cycle progression rn

RPMI 8226 cells. The myeloma cell line RPMI 8226 was treated with zoledronic acid at

concentrations of 10 ¡rM. Cells were harvested at different time points over a period of

5 days and stained with the DNA fluorochrome, propidium iodide (PI), as described in

the methods. The samples were subsequently analysed by flow cytometry and ModFit

LT for win 32 (version 2.0). There was a 2-fold increase in the number of cells, which

accumulated in S-phase of the cell cycle after exposure to zoledronic acid fot 24 hts.

After 48-hr culture there is an increase in the proportion of hlrpo-diploid cells in the

sub-Go/Gr peak, consistent with the onset of apoptosis. This increase in the sub-Go/Gr

peak was time dependent.
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alteration of cell cycle was observed in the zoledronic acid-resistant cell line V/L2 (data not

shown).

The changes in nuclear morphology of myeloma cell lines induced by zoledronic acid were

also examined by fluorescence microscopy. As shown in figure 3.4, morphological changes

characteristic of apoptosis (Wyllie et a1.,1980) including condensation and the formation of

dense, rounded apoptotic bodies are clearly evident in a small percentage of all four myeloma

cell lines when compared with untreated cells. Consistent with the cell proliferation results

(ftg 3.113.2), fewer apoptotic nuclei were noted in ARH-77 , WL2 and U266 compared with

RPMI 8226. However, the proportion of cells with apoptotic nuclei was not proportional to

the reduction in cell numbers. Therefore, the most profound effect mediated by zoledronic

acid is the induction of cytostasis.

3.2.3 Zoledronic Acid Does not Increase Cøspøse Activíty

It is generally acknowledged that apoptotic cell death can be triggered by caspase activation.

Therefore, the caspase activity of myeloma cell lines RPMI8226 andWL2 was investigated

(figure 3.5). Consistent with previous observations, zoledronic acid significantly inhibited

cell proliferation of RPMI 8226 G)<0.001) and ARH-77 cells (p<0.05) at the indicated

concentrations. However, caspase inhibitor I did not prevent the zoledronic acid-mediated

reduction in cell numbers. Interestingly, untreated myeloma cells displayed a relatively high

caspase activity, and zoledronic acid did not enhance caspase activity in both of these

myeloma cell lines. The caspase inhibitor I, z-VAD-FMK (50 ¡rM) successfully inhibited the

basal caspase activity.

The nitrogen-containing BPs inhibit the mevalonate pathway by inhibiting

geranylgeranylation of small GTP-binding proteins such as Ras, Rho, Rac and Rab

(Murakami et al., 1995; Sato e/ al., l99l), which is important for many cellular processes,

including proliferation, cytoskeletal organisation and intracellular signalling (Hall, 1998;

Zenal and Stenmark, 1993). To examine the involvement of the mevalonate pathway on the

zoledronic acid-mediated apoptosis of myeloma cells, \rye assessed the ability of

geranylgeraniol (GGO), an intermediate product in mevalonate pathway, to protect myeloma

cell lines from zoledronic acid-induced apoptosis. Consistent with the findings of others

(Miquel et al., 1996; Ohizumi et al., 1995; Ohizumi et al., 7997), this study (figure 3.513.6)

also showed that GGO alone induced cytostasis and cell death in RPMI 8226 cells in a dose-
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Figure 3.4. Zoledronic acid induces apoptosis in myeloma cell lines. Myeloma cell lines

were treated with 10 pM zoledronate for 72 hrs, stained with DAPI, and examined by

fluorescence microscopy as described in the methods (refer to section 2.3.4).

Morphological changes characteristic of apoptosis including condensation and the

formation of dense, rounded apoptotic bodies are clearly evident in a small percentage

of all four myeloma cell lines (8, D, F & H) when compared with untreated cells (4, C,

E & G). Consistent with the cell proliferation results (figure 3.113.2), fewer apoptotic

nuclei were noted in ARH-77 (D), WL2 (F) and U266 (H) compared with RPMI 8226

(B). The affows display the apoptotic cells.





Figure 3.5. Zoledronic acid does not enhance caspase activity in myeloma cell lines.

Myeloma cell lines RPMI 8226 and ARH-77 were seeded in 96-well plates under the

different treatment conditions and the cell proliferation was assessed at day 3 using

WST-I. At the same time, cells were also cultured in24-well plates under the same

treatment condition. Caspase-3 activity was measured at day 3 by measuring the

caspase-3 dependent degradation of the fluorogenic substrate DEVAFC, as described in

the methods. Consistent with the previous observations, zoledronic acid significantly

inhibited cell proliferation of RPMI 8226 (A, p<0.001, Êtest) and ARH-77 (8, p<0'05,

/{est) cells at the indicated concentrations. Geranylgeraniol (GGO) alone, also

decreased cell number in both cell lines (A&8, condition 3, p<0.05, Êtest). However,

caspase inhibitor I did not prevent the cells from a zoledronic acid-mediated reduction

in cell number (A&B, 4tn, 6tn condition). Similarly, GGO at a concentration of 50 ¡rM

did not have a protective effect on the myeloma cell lines treated with zoledronic acid

(A&8, condition 5&6). Interestingly, untreated myeloma cells displayed a relatively

high caspase activity, and zoledronic acid and GGO did not enhance caspass activity in

both of myeloma cell lines (C&D, condition 2eÐ. The caspase inhibitor I, z-VAD-

FMK (50 pM) successfully inhibited the basal caspase activity (C&D, condition 4e,q.

The data represent means + SEM of triplicate cultures of each condition.
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dependent manner (p<0.05) at both d3 and d5. However, GGO did not enhance caspase

activity in either myeloma cell lines ARH-77 or RPMI 8226 (figwe 3.5). The results also

show that GGO protects myeloma cells against the effects of zoledronic acid, in a dose-

dependent manner at high concentrations (figure 3.6). Notably, this protection was observed

when GGO was used at concentrations greatt than 300 ¡rM (p<0.01). The protective effect

of GGO suggests that zoledronic acid, in part, mediates its effects by inhibiting the

mevalonate pathway.

3.2.4 Gene Expressíon of Myelomø Cells Treøted wíth Zoledroníc Acid

The effect of zoledronic acid on the gene expression of the myeloma cell lines RPMI8226

and WL2 was examined using semi-quantitative RT-PCR, as described in the methods. As

seen in figure 3.7, TNF ø, IL-IB and COX-2 gene expression was upregulated in RPMI 8226

cells following zoledronic acid treatment þ<0.005). In contrast, the WL2 cell line, which is

resistant to zoledronic acid, showed no changes in gene expression.

3.2.5 Zoledronic Acid Upreguløtes the Cell Surface Molecule Expression on the

Myelomø Cell Lines

Cell-cell and/or cell-ECM adhesion plays an important role in regulating apoptosis and cell

survival in tumour cells (Clark and Brugge, 1995). Previous studies demonstrate that

myeloma cells overexpress a vaÅety of cell surface molecules (Leo et al., 1992; Damiano,

1999 #59; Van Driel et a1.,2002), which may be responsible for cell adhesion-mediated drug

resistance (Barker et al., 1992; Damiano et al., 1999; Jensen et al., 1993). Therefore, the

expression of various cell surface molecules by myeloma cells was examined using single

colour flow cytometric analysis (figure 3.8). One interesting finding is that RPMI 8226 cells

express high levels of HLA class I, B2 microglobulin and CD138. In contrast,WLz, which is

resistant to zoledronic acid, did not express any of these antigens. However, zoledronic acid

had no effect on the expression of these molecules þ>0.05) at dl or d3. Consistent with other

studies (Clark and Brugge, 7995; Damiano et al., 1999), both cell lines expressed c¿¿Fr

integrin (61.2C4,P4C2), whilst the expression by the zoledronic acid-resistant cell line WL2

was greater when compared to the zoledronic acid-sensitive cell line RPMI 8226. Zoledronic

acid marginally increased the expression of oaBl integrin in both cell lines (p<0.05).

Moreover, zoledronic acid was also found to marginally increase the expression of CD44,

CD45, CD54 and CD56 in both cell lines (p<0.01).
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Figure 3.6. GGO pafüal|y protects against zoledronic acid-mediated cell death in a

dose-dependent manner. RPMI 8226 cells were seeded in 96-well plates and cultured

for 3 and 5 days in the presence of GGO alone or GGO in combination with zoledronic

acid, at the indicated concentrations. The cell number and viability were quantitated

using WST-I. The results show that GGO alone induced cytostasis and cell death of

RPMI 8226 ín a dose-dependent manner (p<0.05, /-test) at both d3 (A) and d5 (B).

GGO was found to protect zoledronic acid-induced cytostasis and cell death at a

concentration of 300 pM (p<0.01, Êtest). The data represent means t SEM of trþlicate

cultures of each condition. The cell morphology ìwas assessed at d5 and representative

examples are shown in C (negative control), D (zole, 10 pM), E (zole, 10 pM and GGO

25 ¡tM),F (zole, 10 prM and GGO 100 ¡rM), G (zole, 10 ¡rM and GGO 300 pM), and H

(zole,10 ¡rM and GGO 500 pM).
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Figure 3.7. The effect of zoledronic acid on the gene expression of myeloma cell lines.

Myeloma cell lines RPMI 8226 and WL2 were treated with zoledronic acid at a

concentration of 10 ¡rM and the cells were harvested at three different time points over a

period of 5 days. Total RNA was isolated and semi-quantitative RT-PCR was

performed as described in the methods. The house-keeping gene, GAPDH was used as

an internal control for mRNA integrity and enabled relative gene expression to be

determined. PCR products were subjected to electrophoresis on l%o agatose gel, stained

with SyBR gold and visualised using a Fluorimager. The product bands were semi-

quantitated and plotted as a histogram of the ratio of specific gene expression relative to

the expression of GAPDH. The experiments were performed twice and the Wilcoxon

test was employed for statistical analysis. The data shows that zoledronic acid

upregulates IL-IB (A), TNF-cr (B) and COX-2 (C) gene expression in RPMI 8226 cells

0<0.005, Wilcoxon test), which is sensitive to zoledronic acid treatment. However, no

alteration was noted in the WL2 cell line.
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Figure 3.8. Zoledronic acid upregulates the expression of cell surface molecules on the

myeloma cells. Myeloma cell lines RPMI8226 andWL2 were treated with zoledronic

acid and harvested at dl and d3 for single-colour immunofluorescence staining of each

of the different cell surface molecules, as described in the methods. Data arc displayed

as the mean fluorescence of each protein, from which the mean fluorescence value of

the isotype-matched negative control has been subtracted. RPMI 8226 cells were found

to express high levels of HLA class I, p2 microglobulin and CD138 (A&B). However,

zoledronic acid had no effect on the expression of these molecules (p>0.05, 'Wilcoxon

test) at dl or d3. In contrast, V/L2 did not express any of these antigens (A&B).

Consistent with other studies (Clark and Brugge,1995; Damiano et a1.,1999), both cell

lines expressed aaBl integrin (61.2C4,P4C2), whilst the expression by the zoledronic

acid-resistant cell line WL2 was greater contrast to zoledronic acid-sensitive cell line

8226 çeD). Zoledronic acid marginally increased the expression of aapl integrin in

both cell lines (p<0.05, Wilcoxon test). Furthermore, it was also found to marginally

increase the expression of CD44, CD45, CD54 and CD56 expression in the both cell

lines (E&F) þ<0.01, Wilcoxon test).
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To investigate if zoledronic acid altered the functional status of the adheston mo

expressed by myeloma cell lines, adhesion to FN and VCAM-I was examined using a

quantitative adhesion assay. The results show that myeloma cells adhere preferentially to

VCAM-I and not FN. RPMI 8226 cells use craBl to adhere to VCAM-I and CD44 to adhere

to FN. V/L2 cells use both craBl and CD44 to adhere to FN, and use oaBl adhere to VCAM-I.

This data also shows that zoledronic acid does not augment adhesion of myeloma cells to two

important ligands (frgure 3.9).

3.2.6 Dffirentiøl Sensitivity of Myelomø Cell Línes to TRAIL-Mediated Cell Death

As shown in figure 3.10, myeloma cells are differentially sensitive to the cytotoxic effects of

TRAIL. Interestingly, the response amongst the different cell lines was similar to the

response seen following zoledronic acid treatment. In brief, TRAIL mediated a significant

reduction in RPMI 8226 cell number in a dose-dependent manner. A significant decrease in

cell number was found when the cells were treated with TRAIL at concentrations greater than

100 nglml (p<0.05). In contrast, TRAIL had no effect on the other cell lines, ARH-77,WL2

andU266.

3.2.7 TRAIL Enhønced the Efþct of Zoledroníc Acid When Used in Combinøtion on the

Myelomø Cells

The culture of myeloma cell lines with zoledronic acid in combination with TRAIL resulted

in a decrease in the cell number and viability that was consistently greater than that observed

in cultures treated with either drug alone in the four cell lines tested (figure 3.11). Of note,

there is no significant difference between d3 and d5, indicating that prolonged exposure of

drugs did not enhance the effect. TRAIL rendered the cells more sensitive to zoledronic acid

(p<0.05) at concentrations previously shown to have no significant effect on cell

proliferation. When the concentration of TRAIL was increased to 100 nglml in RPMI 8226,

zoledronic acid was only effective when used at a concentration greater than 5 pM (p<0.05).

These results indicated that zoledronic acid might affect the cells through the TRAIL and

TRAIL receptor pathway. The expression of TRAIL and TRAIL receptors in response to

zoledronic acid treatment was therefore investigated using semi-quantitative RT-PCR and

flow cflometry.
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Figure 3.9. Zoledronic acid does not regulate integrin-mediated adhesion of myeloma

cells to FN and VCAM-I. Calciene labelled suspensions of myeloma cell lines RPMI-

8226 and WL2 were incubated with function-blocking antibodies directed against the

various adhesion molecules. The cells were seeded into plates, previously coated with

either FN or VCAM-I as described in the methods. The data present the mean values *

SEM of trþlicate wells, expressed as a percentage of the input population (2 x I}a

cells). The level of significance for the percentage of attached cell in all conditions was

compared between with zoledronic acid treated and untreated groups. The results show

that myeloma cells adhere preferentially to VCAM-I and not FN. RPMI 8226 cells use

a+Þr b adhere to VCAM-I and CD44 to adhere to FN. V/L2 cells use both oaBl and

CD44 to adhere to FN, and use crapl to adhere to VCAM-I. Futhermore, these data

indicate that zoledronic acid does not augement adhesion.
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Figure 3.10. Differential sensitivity of myeloma cell lines to TRAll-mediated cell

death. The myeloma cell lines were seeded in 96-well plates at a cell density of 10,000

cells/well. The cell number and viability were assessed by WST-I at d3. The results

showed that TRAIL mediated a significant reduction in RPMI 8226 cellnumber (A) in a

dose-dependent manner. A significant decrease in cell number was found when the cells

were treated with TRAIL at concentrations more than 100 nglml (p<0.05). In contrast,

TRAIL had no effect on the other cell lines, ARH-77 (B), WL2 (C) and U266 (D).

Values represent means +SEM of trþlicate cultures of each concentration. The results

displayed are a representative example of 2 independent experiments.
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Figure 3.11. TRAIL enhanced the effect of zoledronic acid when used in combination

on the myeloma cells. The myeloma cell lines were seeded in 96-well plates and treated

with either zoledronic acid alone, or zoledronic acid and TRAIL at the concentrations as

indicated. The cell number and viability were assessed at d3 and d5 using V/ST-l.

Values represent means tSEM of triplicate cultures of each concentration. The results

displayed are a representative example of 2 independent experiments. Of note, there is

no difference between d3 (A) and d5 (B) data, indicating that prolonged exposure of

drugs did not enhance the effect. TRAIL rendered the cells more sensitive to zoledronic

acid þ<0.05, Wilcoxon test) at concentrations previously shown to have no significant

effects on cell proliferation [30 nglml for RPMI 8226 (C of d3 &C' of d5) and 100

nglml for other cell lines (E, F, G of d3 &E', F', G' of d5)]. When the concentration of

TRAIL was increased to 100 nglml in RPMI 8226 (D&D'), zoledronic acid was only

effective when used at concentrations greater 5 pM (p<0.05, /-test).
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3,2.8 The Effect of Zoledronic Acíd on the Expressíon of TRAIL and TRAIL Receptots

on Myeloma Cell Lines

TRAIL and its receptors were investigated at both the transcriptional and protein levels, using

semi-quantitative RT-pCR and flow cytometry. Gene expression analysis showed that the

TRAIL transcript was increased in response to zoledronic acid treatment in both cell lines

(figure 3.I2). The protein expression study indicated that the zoledronic acid sensitive cell

line RpMI g226 had increased TRAIL receptors DR4 and DR5 with a decreased or

unchanged level of expression of decoy receptors (DcR1 and DcR2) in permeablised staining

(figure 3.13). However, an increased DR4 and DR5 expression, coupled with increased DcRl

and DcR2 expression respectively, were noted in the resistant cell line WL2 when the cells

were exposed to the zoledronic acid.
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Figure 3.I2. The effect of zoledronic acid on the TRAIL and TRAIL receptor gene

expression in myeloma cell lines. Myeloma cell lines RPMI 8226 and WL2 were

cultured in 6-well plates in the presence or absence of zoledronic acid at a concentration

of 10 pM. The cells were collected at day 3, total RNA was isolated and semi-

quantitative RT-PCR were performed as described in the methods. The results revealed

increased TRAIL gene expression in rosponse to zoledronic acid treatment in both cell

lines (A&B). Values represent means +SEM of the ratio of TRAIL gene expression

relative to the expression of GAPDH.
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Figure 3.13. The effect of zoledronic acid on the protein expression of TRAIL and

TRAIL receptors. The myeloma cell lines RPMI 8226 and WL2 were treated with

zoledronic acid and both membrane and cytoplasmic protein expression of TRAIL and

its receptors were detected as described in the methods. Data of d3 are displayed as the

mean fluorescence of each protein from which the mean fluorescence value of the

isotype-matched negative control has been subtracted. The results indicated that the

zoledronic acid-sensitive cell line RPMI 8226had increased TRAIL receptors DR4 and

DR5 with the decreased or unchanged level of decoy receptor DcRl and DcR2 when

cytoplasmic protein expression was examined (C). However, the increased DR4 and

DR5 expression, coupled with increased DcRl and DcR2 expression respectively, were

noted in zoledronic acid-resistance cell line V/L2 (B&D).
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3.3 DISCUSSION

The prolonged survival benefit seen in the patients with MM treated with BPs (Berenson e/

al., 1998; Berenson et al., 1996; McCloskey et al., 1998) has initiated numerous in vitro

studies in an attempt to determine the mechanisms of the anti-tumour effect of BPs. The anti-

tumour effects of BPs have been demonstrated in different cell lines, including human

myeloma cells (Aparicio et al., 1998; Shipman et al., 1997; Takahashi et a1.,2001), breast

carcinoma cells (Fromigae et a1.,2000; Sasaki et al., 1995) as well as prostate cancer cells

(Lee et a1.,2001). The studies reported herein, also demonstrate that zoledronic acid had a

dose- and time-dependent cytotoxic effects on myeloma cell lines RPMI8226 and ARH 77.

Both dye exclusion (refer to figure 3.2) and V/ST-I assays (refer to figure 3.1) revealed that

zoledronic acidhad aprofound cytoreductive effect inthe sensitive cell line RPMI 8226.11

contrast, the myeloma cell lines, 'WL2 andtJ266 (which is an Il-6-autocrine MM cell line),

were completely unaffected by zoledronic acid. Given the apparent difference in sensitivity

between cell lines, it ',¡/ill be of interest to examine the underlying mechanism, for the

differential sensitivity seen in myeloma cells.

As described in the results, zoledronic acid at concentrations greater than 5 pM induced a

classical dose-dependent sigmoid response curve of cell number reduction. Therefore, in

these in vitro studies, the concentrations of zoledronic acid used were generally over 5 pM.

These doses are high relative to the peak serum concentrations achieved in the patients

undergoing treatment with bisphosphonates. Thus, it remains to be determined whether

sufficiently high levels of zoledronic acid could readily be attained in the patients for this

anti-tumour activity. The peak serum concentrations of ibandroante achieved in the murine

model were approximately 5 pM. This concentration did not affect the growth or viability of

the mouse myeloma cell line 5TGM1 in vitro, and cytotoxic effects were seen only at doses

of 50 ¡rM and higher (Dallas et al., 1999). Therefore, it is possible that BPs with different

chemical structures may have different effects on tumour cell growth and apoptosis. Thus,

the cytotoxic effects of Bps on myeloma cells may be limited to particular BPs with specific

structural features. The concentration required to inhibit the growth of myeloma cells in the

present study was far higher than the peak serum concentrations in vlvo. However, owing to

the singular skeletal distribution of administered BPs, maffow concentration may be

sufficient to inhibit growth of myeloma cells. It was demonstrated that the pharmacological

doses of BP required to inhibit bone resorption could lead to even higher concentrations, up
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to 1000 ¡rM, in the space beneath the ruffled border of osteoclasts in vivo, due to osteoclast-

induced acidification (Sato et a\.,1991). Since the areas of active bone resorption have been

described as specific homing sites of tumour cells in the patients with MM (BataiTle et al.,

1,995; Khan et al., 1997; Mundy et al., 1914), it is possible that the tumour cells may be

exposed to relatively high concentrations of BPs, which are sufficient to induce cell death.

However, the actual concentration of BPs encountered by cells other than osteoclasts remains

unknown. Moreover, it is unclear as to the period of time that high concentrations in these

areas are maintained.

The studies described here show that the zoledronic acid mediates its effect through a

combination of cytostasis and cytolysis. Flow cytometric analysis of DNA content (refer to

figure 3.3) demonstrated that following zoledronic acid treatment, there was an accumulation

of cells in S-phase of the cell cycle. This may be due to slowing of progression through S

phase or a block between S and G2M phase, and hence inhibition of cell proliferation. These

observations are consistent with reports that nitrogen-containing BPs can inhibit cell

proliferation in other cell types (Fromigue et a\.,2000;Lee et a|.,2001; Sasaki et al., 1995).

The accumulation of RPMI 8226 cells in S phase was observed following treatment with

zoledronic acid for 5 hours. After 48 hrs, there was a signifcant increase in the number of

cells in the sub-Go/G1 phase of the cell cycle. The sub-Go/Gr hypodiploid population, is a

characteristic of cells undergoing apoptosis, which have lost DNA owing to nuclear

fragmentation. Apoptosis was also confirmed by morphologic analysis. Although only few

apoptotic nuclei were observed, at least part of the cytoreductive effect induced by zoledronic

acid could be attributed to the induction of apoptotic death. In contrast, the WL2 myeloma

cell line was resistant to the effects of zoledronic acid. Of interest, RPMI 8226 was found to

possess a greater proliferativ e rate thanWL2 (refer to figure 3.2), which may account for the

different sensitivity. Myeloma cells typically show a very low rate of proliferation in patients

with MM. Therefore, the studies using myeloma cell lines are subject to limitations and

myeloma cells isolated from the patient with MM should be used in the future studies.

Howeve , it should be emphasised that in our study, treatment of tumour cells with

zoledronic acid was performed in the presence of serum, which is a survival factor for these

cells. Therefore, it is conceivable that serum counteracts some pro-apoptotic effect of

zoledronic acid.
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Interestingly, zoledronic acid did not enhance the caspase activity in either RPMI 8226 or

ARH-77 (refer to figure 3.5) although it induced apoptosis in a proportion of cells, which was

confirmed by morphologic observation (refer to figure 3.4). Furtherrnore, caspase inhibitor I,

which inhibits caspase activity, could not protect against cell death induced by zoledronic

acid. This indicated that zoledronic acid may induce cell death in RPMI 8226 tn a caspase

independent pathway (via non-apoptotic programmed cell death with necrotic-like

appearance, or via the mitochondrial pathway), which has also been reported (Mochizuki et

a1.,2002;Daugas et a1.,2000; Kroemer, 1999)

We next examined whether zoledronic acid induces myeloma cell death via inhlbition of the

mevalonate pathway (refer to figure 3.6), a biosynthetic pathway responsible for the

production of cholesterol and isoprenoid lipids. Consistent with previous reports (Shipman er

al., 1998; for review see Russell and Rogers, 1999), we have shown that the effects of

zoledronic acid on myeloma cells is mediated, in part, through the inhibition of the

mevalonate pathway. The cell death induced by zoledronic acid was reversed in the presence

of GGO, an intermediate of the mevalonate pathway, at a concentration greater than 300 pM.

However, the cell number was still lower than that in negative controls, suggesting that GGO

could not fully overcome the inhibitive effect of zoledronic acid on myeloma cell

proliferation. These results suggest lhat zoledronic acid induces its cytoreductive effect on

drug sensitive myeloma cell lines partially through the mevalonate pathway. Consistent with

the findings of others (Miquel et al., 1996; Ohizumi et al., 1995; Ohizumi et al., 1997), out

study also demonstrated that GGO caused a degree of cell death in RPMI 8226, in a dose-

dependent manner, without activating caspases.

Human myeloma cells were reported to produce several OAFs, including TNFcr, IL-lp, IL-6,

M-CSF and RANKL et al (Costes et a\.,1998; Filella et a\.,1996; Pfeilschifter et a1.,1989),

which play an important role in the pathogenesis of MM induced osteolysis' In addition, the

anti-resorptive effects of BPs, at least partially, are considered to be the result of inhibited

release of some OAFs from OB (Derenne et al., 1999; Giuliani et al', 1998b; Ohya et al.,

1985; Stronski et a1.,1988). To investigate whether BPs inhibit the secretion of OAFs from

myeloma cells, gene expression was examined using semi-quantitative RT-PCR.
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Surprisingly, zoledronic acid significantly upregulated gene expression of TNFa in the

sensitive myeloma cell line RPMI 8226 (refer to figure 3.7). TNF was initially recognised

and named for its ability to cause necrosis of tumour masses. It has been shown to also have

dramatic systemic effects. At the cellular level, TNF-o has widespread pleiotropic actions

and has been shown to modulate the fundamental processes associated with cell proliferation,

differentiation, and apoptosis or necrotic cell death in a number of different cell t1pes. TNF-

a is a survival and proliferation factor for human myeloma cells (Borset et al.,1994; Jourdan

et al.,l9gg), and a high level of TNF-a was found in supernatant from bone marrow cultures

of MM patients, which was capable of markedly stimulating formation of OC-like

multinucleated cells in human maffow cultures (Filella et al.,1996; Lichtenstein et a1.,1989;

pfeilschifter et al., 1989). In our study, TNF-cr was upregulated in the zoledronic acid

sensitive myeloma cell lines, whilst it remained unchanged in drug resistant cell line WLz,

suggesting it may represent a rescue mechanism in response to zoledronic acid treatment'

Horilever, TNF-c¿ was found to mediate apoptotic cell death in a mitotically active human

erythroleukemic cell line, and to induce cell proliferation in mitotically quiescent cells

(Baxter et al., Iggg). As we have shown in the results that the RPMI 8226 cell line had

greater proliferative potential thanWL2 cells (refer to figure 3.2), it is also possible that

zoledronic acid induces cell death by up regulating TNF-a gene expression. To differentiate

these two possibilities, blocking antibodies to TNF-cr could be used to examine whether they

can protect from zoledronic acid-mediated cell death in the myeloma cell line RPMI 8226.

Zoledronic acid also significantly upregulated gene expression of IL-lp and COX-Z in the

sensitive myeloma cell line RPMI 8226 Qefer to figure 3.7). IL-lp is a principal bone

resorption agentpresent in the supernatant of myeloma cell cultures that enhances destructive

bone lesions in the patients with MM (Cozzolino et a\.,1989; Yamamoto et al',1989). TNF-

cx, and IL-1p produced by MM or accessory cells are also able to stimulate IL-6 production by

OB, through a prostaglandinE2 (PGE2) loop and show additive effects (Costes et a|.,1998;

Lu et al., 1995; Thomas et a1.,1998), while IL-6 is a growth factor for MM. In addition,

TNF-a and IL-1p are also able to increase the adhesion of MM cells to stromal cells (Thomas

et al., 1998). Thus, IL-18 can promote the secretion of IL-6, and both IL-18 and IL-6

enhance the bone lytic lesions in MM. Furthermore, both TNF-o and IL-1p can induce COX-

2 expression. Cyclooxygenase (COX) is a family of enzyrnes that catalyse the conversion of

arachidonic acid to prostaglandins (for review see (Hinz and Brune, 2002)). Two COX
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isoforms have been identified: COX-I and COX-2. COX-1 is constitutively expressed as a

"housekeeping" enzyme and is ubiquitous in its distribution. COX-2 is inducible and it can

be upregulated by various pro-inflammatory agents, including lipopolysaccharide, cytokines,

and growth factors. The induction of COX-2 has been shown to promote cell growth, inhibit

apoptosis, and enhance cell motility and adhesion in a number of cell and animal models.

Expression of COX-2 appears to be important in tumour promotion, growth, metastasis and

angiogenesis (Cianchi et al., 2001; V/illiams et al., 1999), which is a key step in

carcinogenesis. Therefore, the upregulation of COX-2 may be in response to the increased

expression of IL-l B and TNF-ø, or induced directly by zoledronic acid. It is our contention,

however, that the upregulation of transcripts represent a rescue reaction of cell lines to the

zoledronic acid treatment since COX-2, ILI p, and TNF-cr are able to promote cell

proliferation.

Cells have the capability of responding to a multitude of signals that they encounter in the

extracellular environment. Therefote, an additional anti-tumour effect of BPs might occur

secondary to effects on MM cell growth factors, which can be secreted by both myeloma

cells and the bone ma¡¡ow environment. In contrast, our study demonstrates that zoledronic

acid does not inhibit the secretion of TNF-a,IL-lp and COX-2, at least atthe transcriptional

level. Although BPs were reported to potentially inhibit the production/release of IL-6 and

MMP-1 from myeloma cells and myeloma bone malrow stoma cells (Dereme et al.,1999),

we did not detect a significant change in the IL-6 gene expression when the cells were

exposed to zoledronic acid. It is well accepted that IL-6 is a potent myeloma growth factor

which acts via an autocrine and paracrine mechanism (Kawano et al., 1988; Klein et al.,

1989), and can be upregulated by TNF-a and IL-IB (Costes et al., 1998; Lt¿. et al', 1995;

Thomas et a1.,1998). In addition, zoledronic acid increased the expression of TNF-cr and IL-

1B in RPMI 8226, however, no upregulation of IL-6 gene expression was observed. The

detection of protein levels of IL-6 should be considered in future studies. In contrast to breast

cancer cells, myeloma cells are derived from haemopoietic cell lineages, which normally

reside in the bone marrow. Thus, the marrow microenvironment may already be favourable

for growth of the myeloma cells independent of local rates of bone resorption, or of the

production of cytokines secreted by OB such as IL-6. This may explain why myeloma cells

appear to be able to gtow in the marrov/ cavity and completely replace the normal maffow

cells even when osteoclastic activity is inhibited by BPs. Thus myeloma cells may be less
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dependent than breast cancer cells on factors released by resorbing osteoclasts, for their

growth in the bone marrow cavitY.

Cell-cell and/or cell-ECM adhesion not only play important roles in regulating apoptosis and

cell survival in tumour cells (Clark and Brugge,1995), but are also involved in the migration

of the MM cells into the extravascular compartment of the bone marrow, a process referred to

as "homing". Therefore, an additional anti-myeloma mechanism mediated by zoledronic

acid was considered to be the inhibition of the adhesiveness to bony matrix of circulation

myeloma cells, preventing further myeloma tumour deposits within the skeleton, thereby

overcoming the adhesion-mediated drug resistance (Boissier et a1.,2000; van der Pluijm e/

at., 1996). The cell surface molecules of interest which are expressed by myeloma cell lines

include p2-microglobulin, integrin o+Þr, CD44, CD45, CD54, CD56. The expression of these

molecules was examined using single-colour flow cytometric analysis in our study (refer to

figure 3.8).

One interesting finding is that RPMI 8226 cells express high levels of HLA class I' its

subunit B2 microglobulin, and CD138. In contrast,WLz,which is resistant to zoledronic acid,

did not express any of these antigens. It is generally accepted that the serum level of pz-

microglobulin is a reliable prognostic marker in the patient with MM (Bataille et al', 1992;

Bataille et al., 1984; Durie et al., 1990; Greipp et al',1988; Greipp et al., 1993)' A low B2-

microglobulin level is associated with a significantly better complete response rate among the

patients undergoing transplantation for myeloma (Rajkumar et al., 1999). The relationship

between the serum level of B2-microglobulin and cell surface expression on myeloma cells is

unknown. It is possible that zoledronic acid-resistant cells secrete more soluble þr-

microglobulin, or this molecule is cleaved from the cell surface into serum' It would be

interesting to investigate the relationship between drug resistance and B2-microglobulin

expression on myeloma cells derived from the patients' in future studies.

Consistent with other studies (Clark and Brugge,1995; Damiano et a1.,1999), both cell lines

were found to express c¿¿Þr integrin (61.2C4, P4C2), which allows attachment and

communication between the myeloma cells and the bone marrow microenvironment (Barker

et al.,1992; Jensen et a1.,1993). Our study found that the expression of ctaBl integrin by the

zoledronic acid resistant cell line WL2 was greater in contrast to zoledronic acid sensitive
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cell line RPMI 8226, suggesting that differential sensitivity to zoledronic acid between the

two cell lines may be partially attributed to the extent of u+Þr integrin expression.

Our results also showed that the zoledronic acid-resistant cell line WL2 strongly expressed

CD44 and CD45. CD44 is a transmembrane glycoprotein expressed by wide variety of cell

types. It functions in cell-cell adhesion and binds to components of the extracellular matrix,

including fibronectin, collagen, hyaluronan (HA), and osteopontin. The many isoforms of

these cell surface glycoproteins are encoded by a single gene that consists of standard exons

(1s to 10s) and variant exons (lv to 10v). The standard exons encode the common part of the

CD44 family members (CD44s, which is widely distributed), and the variant exons are

alternatively spliced, giving rise to the different members of the family (Gunthert, 1993). It

was demonstrated that CD44v10 mediates murine MM cells binding to bone marrow

endothelium (Asosingh et a1.,2001). CD44v9 was involved in binding to bone marrow

stromal cells which resulted in a significant induction of IL-6 secretion by bone marrow

stromal cells, which may account for correlation between CD44v9 expression and adverse

prognosis in MM (Stauder et al.,1996 van Driel et a\.,1998; Van Driel et a|.,2002). CD45

antigen was initially characterised as leucocle coÍtmon antigen expressed on all

haemopoietic cells except for mature erythrocytes and platelets, It has been reported to

identify subpopulations of myeloma cells with higher proliferative capacily (Joshua et al.,

1996; Kawano et al., 1993). The CD45* subpopulation of myeloma cells proliferate in

response to IL-6 (Fujii et al., 1999) and CD45 expression also can be induced by IL-6

stimulation (Mahmoud et al., 1998). The activities of src family protein tyrosine kinases

(PTKs) associated with the CD45 protein tyrosine phosphatase (PTP), seem to be a

prerequisite for the myeloma cell proliferation. The activation of signal transducer and

activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK1/2) by

IL-6 were further required (Ishikawa et a1.,2002). Therefore, CD44 and CD45 are two other

key molecules regulating myeloma cell adhesion, which may contribute to the resistance of

WL2to zoledronic acid treatment.

In contrast, the zoledronic acid sensitive myeloma cell line RPMI 8226 was found to strongly

express CD54, and CD56. CD54, an intercellular adhesion molecule-l (ICAM-l), was also

expressed by myeloma cells (Leo et a|.,7992; Van Riet et a\.,1991) and anti-CD54 antibody

had anti{umour activity without inhibiting adhesion and cell proliferation (Huang et al.,

1995). This suggests that CD54 may not be a key molecule in the adhesion of myeloma cells'
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CD56 antigen, a 140 kD isoform of the neural cell adhesion molecule (N-CAM), is a

membrane glycoprotein and belongs to the immunoglobulin superfamily. It is also known as

a differentiation antigen of natural killer (NK) cells and has been described as a prognostic

marker in MM (Kaiser et al., 1996). Down regulation of CD56 and upregulation of CD44

were found in extramedullary myeloma (Dahl et a1.,2002). The lack or weak expression of

CD56 is a characteristic feature of plasma cell leukemia (PCL) (Pellat-Deceunlmck et al.,

1998). It is difficult to compare myeloma cell lines and the myeloma cells isolated freshly

from patients with MM since the cell lines were immortalised and cultured in vitro for a long

time.

Our in vitro studies also showed that zoledronic acid marginally increased the expression of

craBl integrin, CD44, CD45, CD54 and CD56 expression in both cell lines, which could be

considered as a rescue response of myeloma cells to drug treatment. The up regulation of

CD54 may be a response to the upregulated IL-18 and TNF-c¿ expression, since it was found

that IL-IB and TNF-cr can upregulate CD54 expression (Thomas et al., 1998). It has been

reported that during the course of initial or chronic drug exposure, myeloma cells

overexpressing aapr mayhave a selection advantage over cells expressing low levels of this

protein. Selection pressure is required for cqBl upregulation in drug-resistant cells (Damiano

et al., 1999) and cells under selection pressure may then use soluble or cell-bound integrin

ligands as a protective mechanism. Furtherrnore, myeloma cells in patients are suffounded by

other cell types in the bone marrow microenvironment and they are exposed to the numerous

cytokines secreted by both myeloma cells and OB, and as such, myeloma cells may react to

zoledronic acid differently in an in vivo setting.

Our functional assays examining the adhesion of myeloma cell lines showed that both

rnyeloma cells adhere preferentially to VCAM-I and not FN. Both RPMI 8226 and WL2

cells use a4Bl to adhere to VCAM-1. RPMI 8226 use CD44, whilst WL2 cells use both

u4Bland CD44 to adhere to FN. Surprisingly, zoledronic acid does not change adhesion of

myeloma cells (refer to figure 3.9). This may be due to the relatively low concentration or

short exposure time of the drug. Breast cancer cells were found to adhere rapidly to

extracellular bone matrix, which can be inhibited by pre-treating of cortical or trabecular

bone with BPs (van der Pluijm et al.,1996). Moreover, the anti-adhesive effect of nitrogen-

containing BPs was bone specific since pre-treatment of non-mineralised tissues with BPs did
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not affect adhesion of the breast cancer cells (van der Pluijm et al., 1996). The one

underlying mechanism is that BPs, like pyrophosphate, specifically bind strongly to the bone

mineral, hydroxyapatite, thereby non-mineralised tissue cannot retain BPs to affect breast cell

adhesion. In addition, human bone cells express high levels of integrins (Hughes et al.,1993)

and BPs might affect the integrin expression on the bone instead of cancer cells. Thus, we

postulate that zoledronic acid may inhibit the adhesiveness of circulating myeloma cell to

bony matrix, and prevent further myeloma tumour deposits within the skeleton by inhibiting

the integrin expression on the OB. As we have known, FN and VCAM-1. arc expressed on

the surface of MM stromal monolayers (Faid et al., 1996; Lokhorst et al., 1994), and

antibodies to VCAM-I partially inhibit myeloma cell adhesion to MM stroma (Kim et al.,

1994; Robledo et al., 1993). Our preliminary experiments showed that zoledronic acid

decreased VCAM-I protein expression on the OB-like cells (data not shown), further

confirming that zoledronic acid might affect the adhesion of cells by acting on OB.

TRAIL is a TNF superfamily member that is capable of inducing apoptosis. It interacts with

five distinct receptors: DR4, DR5 (Pan et aL, l99l; Sheridan et al., 1.997), DcRl, DcR2

(Degli-Esposti e/ al., 1997; Sheridan et al., 1991) and OPG (Emery et al., 1998). DR4 and

DR5 are necessary and sufficient to mediate cell death, while DcRl, DcR2 and OPG may be

protective receptors by acting either as membrane-bound or soluble antagonistic receptors

(Degli-Esposti et al., 1997; Emery et al., 1998; Pan et al., 1997; Sheridan et al., 1997).

Consistent with the findings of others (Gazitt,1999), we found that TRAIL induced apoptosis

in a dose-dependent manner in one of four myeloma cell lines we used in this study (refer to

figure 3.10). Of note, our experiments showed that TRAIL and zoledronic acid had a similar

pattern of effect on the myeloma cell lines. RPMI 8226 cells are sensitive to both TRAIL and

zoledronic acid in a dose-dependent manner. TRAIL had no effect on the other myeloma cell

lines, WL2 andlJ266. Although TRAIL had no significant effect on ARH-77, it may produce

an effect if the dose was increased, since ARH -77 was only sensitive to zoledronic acid at

high doses. Zoledronic acid-induced reduction in cell number was significantly enhanced by

the addition of TRAIL in all four myeloma cell lines (refer to figure 3.11). However, when

the concentration of TRAIL was increased to 100 ng/ml in RPMI 8226 cells, which alone can

induce a significant reduction in cell number, zoledronic acid had limited effects on cells,

suggesting zoledronic acid may partially act on the myeloma cells through the upregulation

of TRAIL expression.
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At the 6RNA level, both RPMI8226 andWL2 cells expressed TRAIL, DR4 and DR5 (refer

to figure 3.I2). At the protein level, although zoledronic acid-resistant cell line, WL2, hardly

expressed cytoplasmic DR4 and DR5 receptors, both cell lines expressed membrane death

receptors (refer to figure 3.13). Therefore, the level of surface expression of either DR4 or

DR5 correlates with TRAll-sensitivity in our panel of MM cell lines. It has been reported

that some TRAll-resistant cells have very strong expression of both receptors, in comparison

to some TRAll-sensitive cells (Mitsiades et a1.,2001). DcRl and DcR2 expression has been

suggested as another potential mechanism for protection of cells against TRAIL. DcR2 was

uniformly expressed by both TRAIL sensitive and resistant cells by either RT-PCR or flow

cytometric analysis. In contrast, DcRl was hardly expressed at the mRNA level and

membrane protein levels on both MM cell lines, but cytoplasmic DcRl was strongly

expressed on both cell lines. Therefore, TRAIL receptor status alone cannot serve as a

reliable predictor of TRAIL sensitivity in MM cells, with the exception of the lack of both

DR4 and DR5 expression. This lack of correlation of TRAIL decoy receptor expression with

TRAIL sensitivity in MM cells observed in this study is consistent with another report

(Mitsiades et a1.,2001). It should be emphasised that it is not known how the different

TRAIL receptors interact with one another on the cell surface. Neither is it known how much

DcRl and DcR2 must be present on the surface of normal cells to prevent the formation of

DR4 or DR5 signalling complexes to provide protection from the cytotoxic effects of TRAIL'

After exposure of myeloma cells to zoledronic acid, the TRAIL transcript was increased in

both zoledronic acid-sensitive and resistant cell lines. Of interest, the flow cytometric

analysis indicated that the zoledronic acid-sensitive cell line RPMI 8226 had increased

TRAIL receptors DR4 and DR5 with the decreased or unchanged level of decoy receptor

DcRl and DcR2. However, the increased DR4 and DR5 coupled with the increased DcRl

and DcR2 respectively, were noted in resistant cell line, WL2, when the cells were exposed

to zoledronic acid. Therefore, the coupled reaction of TRAIL receptors and decoy receptors

may be decisive for the cell sensitivity to the zoledronic acid. The uncoupled DR4, DR5 and

DcRl, DcR2 in the sensitive cell line RPMI 8226 may be responsible for the drug sensitivity.

This suggest that TRAIL-induced apoptosis is not regulated simply through either the

competitive binding of TRAIL by DcRl and DcR2 or by the transduction of protective

signals mediated by either of these receptors. It does not preclude the possibility that changes

of surface expression of TRAIL receptor(s) in each particular cell lines may modulate its
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TRAIL sensitivity. On the other hand, it also suggests that zoledronic acid may act on the

myeloma cells partially by activating TRAIL and its receptor pathway.

Since myeloma cells are located in the bone marrow microenvironment, the cytokines

secreted by stromal cells in the vicinity should be considered. It was found that OPG, a

secreted homologue of the tumour necrosis factor receptor, represented a fifth TRAIL

receptor (Emery et a1.,1998). Therefore, it is possible that OPG could block the effect of

zoledronic acid on the sensitive myeloma cells since it has been reported that OPG could

inhibit TRAIL-induced apoptosis of Jurkat cells (Emery et al., 1998). Future studies

examining the role of OPG in blocking the effect of zoledronic acid would enable this

question to be addressed.

Taken together, our in vitro studies indicate that zoledronic acid might produce the

therapeutic action on myeloma cells (1) through direct anti-proliferative and apoptotic

effects, (2)bV inhibiting the mevalonate pathway, and (3) activating TRAIL and its receptor

pathway. The results shown here also highlight the potential clinical value of the recently

developed BP, zoledronic acid, which in combination with TRAIL may result in additive

anti-myeloma effects, and yield benefit in the treatment of MM. Further studies are required

to examine whether BPs with different chemical structure may have different effects on

myeloma cell growth and apoptosis.
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CHAPTER 4

IN WTRO STUDIES EXAMINING TIIE EFFECT OF THE NITROGEN

CONTAINING BISPHOSPHONATE, ZOLEDRONIC ACID, ON

OSTEOBLAST.LIKE CELLS

4.1 INTRODUCTION

It is widely believed that the increased bone mineral density in patients receiving BPs can be

attributed to decreased bone turnover (Balena et al., 1993; Chavassieux et al., 1'991; Storm e¡

al., 1993). This observed decrease in bone turnover appears to be due to BP-mediated

inhibition of proliferation and recruitment of OC precursors (Hughes et a|.,1989; Schmidt e/

al., 1996) as well as apoptosis of mature OC (Hughes et al., 1995; Murakami et a1.,7995;

Sato and Grasser, 1990; van Beek et a1.,1997).In recent years, it has been proposed that BPs

may also act indirectly by modulating the expression of osteoclastogenic factors synthesised

by OB (Derenne et al., 1999; Giuliani et al., 1998b; Nishikawa et al., 1996; Sahni et al.,

1993;Yitte et al.,1996). However few studies have been reported detailing the direct effects

of BPs on OB (Giuliani et al.,1998a; Reinholz et a1.,2000; Tenenbaum et al.,1992; Toolan

et al., f992; Tsuchimoto et al., 1994). Therefore, the increase in bone mass observed

following BP treatment may not be fully explained by the inhibition of bone resorption

(Pataki et a1.,1997),but may, in part, be due to increased bone formation by OB.

Osteoblasts play a pivotal role during the biological response of bone to agents including

hormones, polypeptide growth factors, and cytokines that stimulate bone resorption andlor

inhibit bone formation. The proliferation and differentiation of OB precursors (or

preosteoblasts) is an essential step in the bone formation process. It has been reported that

pamidronate and zoledronic acid decrease OB proliferation and enhance the differentiation

and bone-forming activities of OB (Reinholz et al., 2000). However, the underlying

mechanisms of action remain unclear. Therefore, to clarify why BPs inhibit OB proliferation

and stimulate the differentiation of these cells, could provide additional clues with respect to

the action and molecular targets of BPs.

Our understanding of OB differentiation and function has been hampered by a relative lack of

markers which identify the earliest cells of this lineage (Gronthos et a|.,1999). Despite this, a
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number of studies now demonstrate that the OB lineage shares a coÍlmon stromal cell

precursor with adipocytes, reticular cells, fibroblasts and chondrocytes (Gronthos et al',

lgg4). Moreover, a number of independent studies have shown that the OB lineage at

different stages of maturation can be separated, based on their expression of the stromal

precursor cell marker, STRO-1 and the osteoblastic marker, alkaline phosphatase (Gronthos

et al., 1999; Stewart et al., 1999). The majority of the NHBCs, which express the STRO-1-

/ALP+ and STRO-I-IALP- phenotypes, appear to represent fully differentiated OB. In

contrast, the cells that express STRO-I+/ALP* phenotype are considered to be representative

of osteoprogenitors, whilst the cells, which only express STRO-1 antigen, represent stromal

precursors

Zoledronic acid is a new generation, nitrogen-containing BP and the most potent inhibitor of

bone resorption currently available. In this study, we have investigated the effect of

zoledronic acid on cultures of human OB with respect to (a) its ability to regulate the

expression of molecules with roles in osteoclastogenesis and (b) its ability to promote bone

formation, using an established model of human OB differentiation and function.
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4.2 RESULTS

4.2.1 The Elþct of Zoledronic Acid on Osteobløst-Like Cell Proliferøtion and Survival

Osteoblast-like cells derived from 3 donors were cultured in increasing concentrations of

zoledronic acid. As shown in figure 4.1, zo\edronic acid induced a significant decrease in cell

number at concentrations of 0.05pM or greater at d3 in all three donors (p<0.05)'

Furthermore, zoledronic acid induced a decrease in cell number in a dose-dependent manner

at both d3 and d5. Surprisingly, a low concentration (0.05¡rM) of zoledronic acid was found

to increase cell number at d5, although there was no significant difference compared with

negative control (p>0.05).

The actual concentration range of BPs that OB are exposed to under pharmacological

conditions in vivo is unknown. Therefore, it is difficult to design in vitro experiments that can

be directly correlated to in vivo physiological conditions. Five ¡rM of zoledronic acid, a

concentration having an effect in terms of inducing measurable cellular responses, was

chosen for most of the experiments in this study. Osteoblast donor cells were cultured in the

presence of 5pM zoledronic acid and the cell number and viability was assessed at the

different time points using the colorimetric dye WST-I. Zoledronic acid was found to inhibit

cell proliferation and induce cell death in a proportion of the cells. At day 3, a significant

difference between negative control and zoledronic acid treatment goups was observed in

cells from all three donors (p<0.05). In this study, donor #1 responded to zoledronic acid with

the least sensitivity, whereas donor #3 responded to the drug with the most sensitivity (figure

4.2).

To differentiate between cytostatic and clotoxic effects of zoledronic acid, studies were

performed to examine if zoledronic acid induced apoptosis. Using the nuclear fluorochrome,

DAPI, morphological examination revealed that treatment of OB-like cells with zoledronic

acid led to morphological changes characteristic of apoptosis, including chromatin

condensation, nuclear fragmentation and the formation of dense, rounded apoptotic bodies

(figure 4.3). The proportion of apoptotic cells was low in all donor OB-like cell cultures and

it was donor dependent. Donor #3hadmore apoptotic nuclei compared with Donot #l and#2

(refer to figure 4.1). In contrast, analysis by gel electrophoresis showed that zoledronic acid
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Figure 4.I. The effect of increasing concentrations of zoledronic acid on the

proliferation of human OB-like cells. Osteoblast-like cells derived from three different

donors were seeded in 96-well plates at a cell density of 4000 cells/well. Cells were

cultured in media supplemented with zoledronic acid at the different concentrations.

Ce1l number and viability was quantitated at d3 and d5 using V/ST-I as described in

section 2.1.2.1and the results are presented as the mean percentage of negative control

t SEM (trþlicate cultures). Zoledronic acid induced a significant decrease of cell

number at a concentration of 0.05pM at d3 (A) in all three donors þ<0.05, /-test)'

Furthermore, zoledronic acid induced a cytoreductive effect in a dose-dependent

manner. A similar phenomenon was observed at d5 (B), however, zoledronic acid at a

concentration of 0.05pM was found to increase cell number at d5, although this was not

significantly different when compared with untreated cells (p>0.05, /-test). This study

also revealed that OB-like cells derived from donor #3 proliferated faster than those

derived from donor #7 and#2.
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Figure 4.2. Effects of 5 pM zoledronic acid on the proliferation of OB-like cells.

Osteoblast-like cells derived from three different donors were seeded at a cell density of

4000 cells/well in 96-well plates using FACStaTPLUS cell sorter. Cells were cultured in

medium in the presence or absence of zoledronic acid for the period of 5 days. The cell

number and viability was assessed by WST-I as described in the methods, and the data

are presented as the mean absorbance of colorimetric reaction * SEM (triplicate

cultures). These studies demonstrate that zoledronic acid induces an anti-proliferative

effect at a concentration of 5 ¡rM in OB-like cells derived from all three donors. A

significant difference between negative control and zoledronic acid treated groups was

achieved at day 3 (p<0.01, /-test), and the sensitivity of OB-like cells to zoledronic acid

was donor dependent. In this study, donor #1 (A) responded to zoledronic acid with the

least sensitivity, whilst donor #3 (C) responded to the drug with the most sensitivity.

The sensitivity of reaction of donor #2 (B) to zoledronic acid was found to be

intermediate.
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Figure 4.3. Effect of zoledronic acid on apoptosis of OB-like cells in culture. The OB-

like cells were seeded in 8 chamber slides at a cell density of 7,500/we11 and cultured in

the presence of 5 pM of zoledronic acid for 72 hrs. Cells were stained with DAPI and

examined by fluorescence microscopy. Morphological changes characteristic of

apoptosis, including condensation and the formation of dense, rounded apoptotic bodies

were clearly evident in a small percentage of OB-like cells in all donor-derived cells (B,

D, F) when compared with untreated cells (4, C, E). Consistent with the cell

proliferation results (fig 4.114.2), fewer apoptotic nuclei were noted in donor #l (B) and

#2 (D) compared with donor #3 (F).
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treatment failed to induce appreciable levels of apoptosis as evidenced by the lack of low

molecular weight DNA fragments in all donors (figure 4.4).

It has been demonstrated in other cell types that BP-induced apoptosis is proceeded by

activation of the caspase cascade (Benford et a\.,2001 Fromigue et a|.,2000;Hiraga et al.,

2001). To assess whether the cell death observed in OB-like cells might also be mediated by

caspase activation, we assessed caspase 3 activity in all 3 donor OB cultures following

zoledronic acid treatment (hgure 4.5). Using the fluorometric caspase 3 substrate DEVD as

described in the methods, it was clear that untreated OB-like cells possessed low caspase

activity compared with other cell types, such as the myeloma cell line RPMI 8226' However,

zoledronic acid did increase caspase activity in OB-like cells derived from all three donors.

The extent of this increase varied in different donors, with a significant increase of caspase

activity noted in donor #2 (p<0.001) and donor 3# (p<0.005).

4.2.2 Zoledronic Acid Mediates the Dffirentíation of Osteobløst-Like Cells

Using multi-parameter immunofluorescence and flow cflometry, cultured human OB-like

cells can be separated according to their stage of differentiation. Using monoclonal

antibodies (mAbs) STRO-I and B4-78 (anti-bone/liver/kidney isoenzyne of AP), the OB

lineage at different stages of maturation can be identified. Consistent with the previous

findings (Gronthos et al., 1999), the OB-like cell cultures were found to have a

heterogeneous but highly reproducible pattern of expression of both STRO-I and ALP

(figure 4.6). Notably, zoledronic acid was found to alter the proportion of cells expressing

STRO-1 and ALP cell surface markers when compared with the untreated control. There was

an inverse reciprocal relationship between the alteration of cell proportion of STRO-l*/AP-

and STRO-174P- subpopulations. Zoledronic acid increased the percentage of cells

expressing STRO-174P- phenotype, and decreased the percentage of cells expressing the

STRO-1 antigen. At dl there was a minor change in the relative proportion of STRO-l*/AP-

cells, whils t at d3, there was a significant decrease in the number of STRO-I* and AP* cells,

with a concomitant increase in the number of STRO-l-/AP- cells. At d5, the number of

STRO-I+ cells were found to increase, and assumed a phenotlrpe similar to the untreated

control. These observations were qualitatively similar in cells from each of four donors

(p<0.05), and the effect of zoledronic acid appeared partially reversible.
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Figure 4.4. Zoledronic acid does not induce detectable levels of intranucleosomal

genomic DNA fragmentation. Osteoblast-like cells were treated for 72 hours with 5 prM

zoledronic acid, intranuclear and genomic DNA fragmentation was assessed as

described in the materials and methods (section 2.L5). No low-molecular weight DNA

fragments were observed in donor #1 (lanes 5-8), donor #2 (lanes 9-12) and donor #3

(lanes 13-16) either in the presence or absence of zoledronic acid. The murine cytokine-

dependent myeloid cell line, FDC-PI cells were used as a positive control as factor

deprivation leads to the induction of cell death as shown in lanes 1-4.



CNCN
M123 4

FDC-P1 D#1
+

D#1

CN

lane 1,2: FDC-P1 without GM-CSF

lane 3,4: FDC-P1 with GM-CSF

lane 5,6: donor#1 w/o zole

lane 7,8: donor#1 zole (SpM)

lane 9,10: donor#2 w/o zole

lane 11,12: donor#2 zole (sPM)

lane 1 3,14: donor#3 wlo zole

lane 15,16: donor#3 zole (SPM)

C: cytoplasmic fraction

N: nuclear fraction

+
D#3D#2

N
6

Nc
978

CN
56
t-]

+
D#2
t-]CN

11 12 1

D#3

CN
314 10

c
5

4*



Figure 4.5. Zoledronic acid induces low levels of caspase activity in OB-like cells.

Osteoblast-like cells derived from three different donors were seeded in 24-well plates

with a cell density of 10,000 cells/well and cultured in the presence or absence of

zoledronic acid at a concentration of 5 pM. Caspase-3 activity was measured by

measuring the degradation of the fluorometric substrate DEVD as described in the

methods. Osteoblast-like cells displayed relatively low caspase activity compared with

the myeloma cell line RPMI 8226. Treatment resulted in an increase in caspase activity

in the OB-like cells derived from all three donors. Although relatively resistant to

zoledronic acid, cells from donor #l displayed a small but measurable (p<0.01, r-test)

increase in caspase activity. In comparision, caspase activity in donor #2 was increased

dramatically (p<0.001, /-test) whilst there was an intermediate increase (p<0.01, r-test)

in caspase activity in donor #3.
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Figure 4.6. Modulation of STRO-I and ALP expression by OB-like cells treated with

zoledronic acid. A model of bone cell development has been previously described

where cultures of normal human bone cells can be separated on the basis of their

expression of the stromal precursor cell marker STRO-I and the osteoblastic marker,

alkaline phosphotase (AP). According to this model, cells with the surface phenotlpe

STRO-1"/Ap-, STRO-I*/AP*, STRO-174P* and STRO-174P- represent preosteoblasts,

committed OB, mature OB and osteocfes, respectively. Dual-colour

immunofluorescence and flow cytometric analysis was performed using OB-like cells

stained with the mAbs STRO-I (anti-stromal precursors marker) and 84-78 (anti-ALP

Ab). Immunoreactivity was revealed by incubation with an anti IgM-PE (y-axis) and

IgG-FITC (x-axis), as described in the methods. The dot plot histogram represents

10,000 events collected as listmode data. The quadrant lines were established with

reference to staining observed with isot),pe-matched control antibodies, 1B5 (FITC) and

l¡612 (PE), respectively. The results show that zoledronic acid alters the proportion of

cells expressing STRO-I and ALP cell surface markers. There was an inverse reciprocal

relationship between the alteration of cell proportion of STRO-l*/AP- and STRO-174P-

phenotype subpopulations. In briel zoledronic acid increased the percentage of cells

expressing STRO-174P- phenotype, and decreased the percentage of cells expressing

the STRO-I antigen. At dl there was a minor change in the relative proportion of

STRO-1*/AP- cells, whilst at d3, there was a significant decrease in the number of

STRO-I+ and AP* cells, with a concomitant increase in the number of STRO-174P-

cells. At d5, the number of STRO-I* cells increased compared with d3. As seen in

figure 4.6 (B), these observations were consistent in each of the four donors. The data

for donor #2 arc presented as a typical example of results obtained (A). The changes

that occurred at d3 are observed for all four donors. The percentage of cell

subpopulations, for all four donors, is shown in table 4'1.
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Table 4.1. Summary of results of dual-colour immunofluorescence and flow cytometric

analysis of osteoblast-like cells derived from four different donors treated with zoledronic

acid. The percentages of osteoblast-like cells, which have the various phenotpes, are

displayed. Spearman Rank Correlation analysis revealed that there \Mas a negative

correlation between the alteration of STRO-l+/AP- and STRO-174P- subpopulation

induced by zoledronic acid (p<0.05), suggesting that zoledronic acid treatment mediates

differentiation of the osteoblast-like cells, or selectively affects the less mature cells.

STRO.1-IALP' STRO-1-/ALPT STRO.ITALP- STRO.ITALP'

w/ow/ow/o zole
15uM)

zole
(5uM)

zole
(5uM

w/o
zole

zole
lSuM)zole zole zole

Donor #1, d1 (o/o) 46.37 47.36 8.34 8.96 5.47 5.48 39.83 38'20

Donor #1, d3 (%) 49.06 40.01 5.40 5.14 4.38 3.84 41.16 51.01

Donor #1, dS (%) 50.66 42.26 6.21 5.11 4.78 4.47 38.35 48.15

Donor #2, d1 (o/o) 42.84 39.16 21.49 16.49 12.35 14.62 23'34 29-73

Donor #2, d3 (Yo) 49.71 19.14 15.63 9.59 9.43 20.85 25.22 50.42

Donor #2, d5 (yo) 41.79 31.06 12.14 9.45 12.07 13.06 34.00 46.43

Donor #3, d1 (%) 5.83 3.73 21.55 8.49 62.17 69.62 10.45 18.15

Donor #3, d3 (%) 7.90 5.00 25.07 12.85 55.13 54.75 11.90 27.40

Donor #3, d5 (%) 7.69 2.39 44.77 18.77 42.21 65.52 5.33 13.32

Donor #4, d1 (o/o) 55.03 50.98 12.68 11.81 6.37 7.19 25.92 30.01

Donor #4, d3 (Yo) 67.43 34.47 8.76 5.18 2.38 5.98 21'43 54.98

Donor #4, d5 (%) 38.95 35.51 2.74 8.53 2.51 5.86 55.79 50.10



4.2.3 STRO-/'ich'Osteobløst-Like Cetls Proliferate More Røpidly and Are More Sensitive

to Zoledronic Acid

To determine if a difference in the cell cycling status between different subpopulations may

play a role in the differential sensitivity of these cells to zoledronic acid, dual-colour FACS

analysis of OB-like cells was employed, examining the expression of STRO-I and the cell

cycle-specific antigen Ki-67. As seen in figure 4.7,the majority of the OB-like cells were

actively dividing, as indicated by their expression of the Ki-67 antigen. At dl, approximately

600/o of cells were found to express appreciable levels of the Ki-67 antigen, suggesting that

most of the cells were in either Gr, S or GzlM phase of the cell cycle, whilst the remainder

were in Gs phase. Consistent with the data in figure 4.6, zoledronic acid treatment resulted in

the diminution in STRO-I expression. The reduction in STRO-1 expression was associated

with the induction of quiescence in the STRO-lbricht population as evidenced by the

appearance of a STRO-1b'ieht/Ki-6Tnesarive population. The data also revealed that zoledronic

acid appeared to inhibit cell division when compared with the control. Moreover, following

exposure of the cells to zoledronic acid, a distinct population of STRO-lb'ieht cells, which

exhibited low forward and side scatter, were generated by d3, indicating that the STRO-lb'ich'

cells may be undergoing zoledronic acid-induced cell death.

To further clarify the effects of zoledronic acid on the different subpopulation of OB-like

cells, three-colour FACS analysis was employed using mAbs to STRO-1, ALP and the DNA

fluorochrome, 7-AAD. As seen in figure 4.8, the cell cycle status was not related to the extent

of ALP expression by the OB-like cells derived from donor #2. In contrast, the majority of

cells expressing STRO-I antigen at high levels were distributed in the S and Gzlld phase.

Consistent with previous findings, treatment of OB-like cells resulted in a time-dependent

increase in the apoptotic sub-Go/Gr peak, consistent with the onset of apoptosis.

To confirm whether zoledronic acid induced changes in STRO-I and ALP expression was

due to a difference in the rate of cell death in the different subpopulations, the STRo-lb'icht

and STRO-lnesative subpopulations of OB-like cells were sorted using the FACStaTPLUS cell

sorter and the cell proliferation rate assessed using WST-1. Although there was no significant

difference in the growth rate of STRO-lb'icht and STRO-ln"cuti" cells (figure 4.9), the STRO-

lb'isht cells were slightly more sensitive than STRO-lnesative cells to zoledronic acid (p<0.05).

68



Figure 4.7. The cycling status of STRO-I* OB-like cells treated with zoledronic acid'

Osteoblast-like cells were cultured in the presence or absence of zoledronic acid over

the period of 5 days. The cells were harvested at different time points and stained with

the mAb STRO-I followed by IgM-PE, fixed in 70o/o cold ethanol on ice for l0 mins

and subsequently immunoreacted with the FITC conjugated mAb Ki-67. The samples

were analysed by dual-colour immunofluorescence and flow cytometry. The dot plot

represents 10,000 events collected as listmode data. The quad-stat markers were

established with reference to the reactivity obtained with the isotype-matched control

antibodies, IgGI(FITC, X axis) and LA6.I2(PE, Y axis). At d1, approximately 60Yo of

cells were found to express appreciable levels of the I<t-67 antigen, suggesting that most

of the cells were in either Gl, S or GzM of the cell cycle, whilst the remainder were in

G6 phase. Consistent with the data in figure 4.6, zoledronic acid treatment resulted in

the diminution in STRO-I expression. The reduction in STRO-I expression was

associated with the induction of quiescence in the STRO-lb'icht population as evidenced

by the appearance of STRO-lb"chtlKi-6Tnegative population (A). The data also revealed

that the STRo-lb'icht cells, in the presence of zoledronic acid, assume low forward and

side scatter (highlighted in red, on B and C) indicating that the STRO-lbdsht cells may

be urdergoing zoledronic acid-induced cell death.
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Figure 4.8. Three-colour immunofluorescence and flow cytometric analysis reveals that

zoledronic acid induces S-phase arrest and cell death of the STRo-lb'icht OB-like cells.

Osteoblast-like cells derived from donor #2 were cultured in the presence or absence of

zoledronic acid for 72 hrs. The cells were stained with the mAbs STRO-I, B4-78

coupled to FITC, and the DNA fluorochrome, 7-AAD, as described in the methods. The

dot plot represents 10,000 events collected as listmode data. The auxiliary channel was

used to discriminate between single cells and cell doublets. The latter were excluded

and the single cells were gated in accordance to their stage of the cell cycle, including

hypo-diploid sub-Go/Gr, Go/Gr, S and GzlM. Cells expressing ALP antigen were

analysed with respect to their cell cycle status (FL4). Similarly, cells expressing STRO-

1 antigen were also analysed with respect to their cell cycle status (FL4). The results

suggest that cell cycle status was not related to the extent of ALP expression on the OB-

like cells derived from donor #2.In contrast, the majority of cells expressing STRO-I

antigen at high levels were distributed in the S and GzM phase. Consistent with

previous findings (refer to figure 4.2), treatment of OBJike cells resulted in a time-

dependent increase in the apoptotic sub-Go/Gr peak, consistent with the onset of

apoptosis.
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Figure 4.9. The STRo-lb'icht population of OB-like cells is more sensitive to zoledronic

acid induced cytostasis and cell death. Osteoblast-like cells derived from donot #2 werc

sorted into STRO-lbrieht and STRO-lnesative subpopulations using FACStaTPLUS cell

sorter. The cells were seeded in 96-we11 plates at a concentration of 4000 cells/well.

Cells were cultured in the media in the presence or absence of zoledronic acid for the

period of 5 days. The cell proliferation rate was assessed using WST-I at different time

points as previously described. The results demonstrated that although both STRO-I

bright @) and STRo-ln"cutiu' (C) OB-like cells were sensitive to zoledronic acid

treatment (p<0.001 at d3 and d5, r-test), STRo-lb'icht cells were more sensitive than the

STRO-ln"c"ti'" cells to zoledronic acid (D) (r<0.05, r-test).
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To further investigate differences in cell proliferation between STRo-lb'icht and STRO-

lnegative/dim cells, Carboxyfluorescein diacetate succinimidyl ester (CFSE) was used. CFSE is a

cell permeant fluorescein based dye and can be used for tracking cell division in vitro and in

vivo (Lyons, 1999; Lyons, 2000). Using two-colour flow cytometric analysis, we examined

the proliferative rate of the different subpopulations based on their expression of the STRO-1

and ALP cell surface markers. Unlike the cell proliferation results using WST-I, STRo-lb'icht

cells were found to have a significantly enhanced capacity to proliferate compared with the

STR6-ln"cative/dim population (figure 4.10). Furthermore, zoledronic acid inhibited cell

division in a dose dependent manner, and totally inhibited cell division at a concentration of 5

¡rM at dl and d3 (figure 4,11). Although the expression of STRO-1 was marginally increased

in the presence of 0.5 ¡rM of zoledronic acid, it dramatically decreased in the presence of 5

pM of zoledronic acid (figure 4.11). However, following 7 days culture in the present of 5

¡rM zoledronic acid, the cells began to divide and this was accompanied with re-expression of

STRO-I antigen at the cell surface. Therefore, the decrease in STRO-I expression may

correspond to the inhibition of cell division, suggesting that the STRO-I cell surface

molecule, is strongly associated with OB-like cells which are actively dividing.

4.2.4 Zoledronic Acid Reguløtes the Expression of Osteoclast und Osteoblast-Related

Genes

The alteration of gene expression was also detected in zoledronic acid-treated OB-like cells

utilising semi-quantitative RT-PCR (figure 4.12). The mRNA integrity in each of the groups

was confirmed by reproducible and consistent amplification of the "house keeping" gene,

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Among the various genes

investigated in this study, TNF-c¿ and IL-IB were upregulated in donor #2 and donor #3 by

prolonged exposure to zoledronic acid (d3 and d5). TNF-cr gene expression increased 2-fold

at d3 in donor #2, and in donor #3, it was increased 5- and 22-fold at d3 and d5, respectively

(p<0.005). Similar effects on IL-1p gene expression were also noted (p<0.005). However,

zoledronic acid did not alter the expression of other OAFs, including IL-6 and M-CSF.

In addition, the expression of the TNF-family molecules RANKL and OPG, which play a

crucial role in osteoclastogenesis and bone resorption in normal bone remodelling, was also

examined. The expression of OPG was unaltered over treatment periods of 5 days. There was

no significant difference of the relative ratio of RANKL/OPG between the negative control

and the cells exposed to zoledronic acid (figure 4.13).
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Figure 4.10. The STROIb'icht fraction of OB-like cells have a gteater proliferative

capacity than the STRo-1n'cutiu' fraction. Osteoblast-like cells derived from donor #2

were labelled with CFSE as described in the methods. Osteoblast-like cells without

CFSE labelling were used to establish a negative control (auto-fluorescence).

Colchicine (100 nglml) was used to inhibit cell division and provided an input labelling

index to establish a positive control. Cells were subsequently stained with STRO-I-PE

as described above and the cell proliferation was analysed using the ModFit LT for win

32 (Version 2.0). The STRO-lbrieht ce[s (R1) were found to have a significantly

enhanced capacity to proliferate when compared with the STRO-ln"cative/dimpopulation

(R2) at d3 (B) and d5 (C).
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Figure 4.11. Zoledronic acid inhibits the proliferation of OB-like cells in a dose-

dependent manner. Osteoblast-like cells derived from donor #2 were labelled with

CFSE as described in the methods. Cells were subsequently cultured in the presence of

zoledronic acid (0.5 & 5 ¡rM) for 3 (A), 5 (B) and 7 (C) days, stained with STRO-I and

analysed as above. Zoledronic acid was found to inhibit cell division in a dose-

dependent manner. In accordance with previous studies, zoledronic acid treatment

resulted in a decrease in STRO-I expression, which was reacquired upon cell division at

d7 (c).
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Figure 4.12. The effect of zoledronic acid on the temporal expression of OC-related

genes. Osteoblast-like cells derived from three different donors were seeded in 6-well

plates at a cell density of 1.5 x 10s cells/well and cultured in the presence/absence of

zoledronic acid. The cells were harvested at the five different time points, total RNA

was isolated, and semi-quantitative RT-PCR was performed examining the expression

of the OC-relatedmolecules TNF-a (A), IL-l8 (B), IL-6 (C), M-CSF (D), RANKL (E)

and OPG (F) as described in the methods. The house keeping gene, GAPDH was used

as an internal control for mRNA integrity and enabled relative gene expression to be

determined. PCR products were subjected to electrophoresis on 2o/o agarcse gel, stained

with SYBR gold, visualised using a Fluorimager. The product bands were semi-

quantitated and plotted as a histogram of the ratio of specific gene expression relative to

the expression of GAPDH. These data suggest that the gene expression of TNF-a

(p:0.005 in donor #2,p<0.005 in donor #3,'Wilcoxon test), L-18 (p<0.005 in donor #3,

Wilcoxon test) is significantly upregulated in OB-like cells in response to 5 pM

zoledronic acid.
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Figure 4.13. Zoledronic acid does not significantly alter the ratio of RANKL to OPG

expression in OB-like cells. Semi-quantitative gene expression of RANKL and OPG

was detected as described in figure 4.I2. The results here showed that the relative ratio

of RANKL/OPG, a key factor in OC formation, was not significantly altered in

response to zoledronic acid.
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Exposure of OB-like cells to zoledronic acid also increased the expression of bone related

genes (figure 4.14). In donor #3,the expression of OCN increased 6-,Il- and 8-fold at dl,

d3 and d5, respectively. The expression of BSP was also found to be upregulated in donor #3.

However, the exposure of zoledronic acid did not alter the gene expression of OCN and BSP

in donor #l and donor #2, or of the core binding factor alpha-l (CBFA-l), a transcription

factor that plays an integral role in OB differentiation.

4.2.5 The Up Regalation in Gene Expression Mediated by Zoledtonic Acid Wøs Not

Reløted to the Proportional Alteration of Osteoblast-Like Cell Subpopuløtions

As previously described (figure 4.6), culture of OB-like cells in 5 pM zoledronic acid,

resulted in a decrease in the number of cells which expressed a preosteoblast phenotype

(STRO-1+/Ap-), with a concomitant increase in the number of cells with a mature OB

phenotype (STRO-174P-). This prompted us to examine if the alteration in gene expression

observed, was related to the inherent differences in the gene expression profile of the STRO-

lb'icht and STRO-1n'cuti"' subpopulations. In an attempt to answer this question, total RNA

was isolated from freshly sorted STRo-lb'icht and STRo-1n"cuti"" OB-like cells derived from

donor #3. Using semi-quantitative RT-PCR technique, gene expression was examined in both

subpopulations. Interestingly, the gene expression profile detected in these two populations

was comparable (figure 4.15). However, when the sorted cells were re-cultured either in the

presence or absence ofzoledronic acid for three days, significant changes in gene expresion

were noted. As shown in figure 4.16, STRg-lbriehtce[s expressed more IL-lp and TNF-a

than STRO-lnesative cells, whilst STRO-lb'isht cells express less OCN and BSP than STRO-

lnesative cells. Although zoledronic acid did not affect most of the genes expressed in STRO-

lb'ish'and STRO-ln'cu'iu" subpopulations, the expression of message for TNF-a was reduced

in STRO-lbricht 6g-like cells and increased in STRO-1""cutiu' cells when exposed to

zoledronic acid for three days. Furthermore, oCN gene expression in STRo-lb'icht cells was

also found to be upregulated.

4.2.6 Zoledronic Acid Decreased Protein Expression on the Osteoblast'Like Cells

The expression of cell surface protein STRO-I, RANKL and ALP is important for OB

maturation and function, therefore, these proteins were investigated using single-colour

immunofluorescence and flow cytometric analysis. Culture of OB-like cells in zoledronic

10



Figure 4.I4. The effect of zoledronic acid on the temporal expression of OB-related

genes. As described in fig 4.12, the expression of OB-related genes including CBFA-I

(Ð, BSP (B), and OCN (C) was examined by semi-quantitative RT-PCR. These data

suggest that although CBFA-I and BSP gene expression does not appear to be altered in

response to zoledronic acid, OCN gene expression is significantly (p:0.005 in donor #3,

Wilcoxon test) upregulated in OB-like cells, partially in donor #3. The arrow indicates

the position of an upper band for CBFA1.
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Figure 4.15. Freshly sorted STRo-lb'icht and STRO-lnesative cells do not differ with

respect to the expression of OC- and OB-related gene. Osteoblast-like cells derived

from donor #3 were sorted by FACStaTPLUS cell sorter into STRO-lbrieht and STRO-

lneeative populations as previously described (A). Total RNA was isolated from the both

populations, and gene was examined by semi-quantitative RT-PCR. The various

transcripts examined in this study included: TNF-u, IL-18, IL-6, RANKL, OPG, COX-

2, BSP and OCN (B). The product bands were semi-quantitated and plotted as a

histogram of the ratio of specific gene expression relative to the expression of GAPDH

(C). There \ryas no difference in the relative gene expression between two

subpopulations þ>0.05, Wilcoxon test).
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Figure 4.16. Gene expression in sorted STRO-lb'icht and STRo-lnesative subpopulations

of OB-like cells treated with zoledronic acid. Osteoblast-like cells derived from donor

#2were sorted using FACStaTPLUS cell sorter. Unsorted, STRo-1n'cutiu'thorizontal bar

A), STRo-lintermediate (horizontal bar B) and STRO-lbricht (horizontal bar C) cells were

sorted as described previously. The sorted cells were seeded in the 6-well plates (2.5

x 105 cells/well) and cultured for 72 hrs in the presence or absence of zoledronic acid.

The cells were harvested and total RNA isolated, semi-quantitative RT-PCR was

performed in order to detect any changes in gene expression. The product bands were

quantitated using ImageQuant and the results plotted out as a histogram of gene

expression relative to GAPDH. Interestingly, the expression of a majority of the genes

examined was substantially different between the STRO-lnesative, STRO-1int"*"diutt, and

STRO-1b'icht fractions when the cells were cultured for 3 days in the absence of

zoledronic acid. Of note, STRO-lbdsht cells expressed more IL-lB and TNFc¿ transcripts

than STRO-lnesative cells. In contrast, STRO-lb'icht cells expressed less OCN, COx-2

and BSP transcripts than STRO-1n'cutiu" cells. The STRO-lint"rmediate population

expressed very high levels of COX-2 transcript, which was reproducibly down regulated

following 3 days culture in zoledronic acid. Although zoledronic acid did not alter the

expression of most of the genes examined in STRO-lb'icht and STRo-1n"cutiu"

subpopulations, the expression of TNFcr was reproducibly down regulated in STRO-

lbrieht gB-like cells and upregulated in the STRO-1"'cutiu" fraction. In contrast, the

expression of OCN in STRO-lbdBh'was upregulated in response to zoledronic acid.
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acid for three days, resulted in a decrease in the expression of membrane protein expression

of STRO-I (figure 4.17) and RANKL (figure 4.18) on the OB-like cells. In contrast, when

cytoplasmic protein expression was examined, no significant changes were noted, suggesting

that membrane expression was regulated by mechanisms independent of gene expression

(figure 4.20). A comparable down regulation of ALP expression was observed for both

membrane and cytoplasmic expression of this protein (figure 4.19)'

4.2.7 Zoledronic Acid Upreguløted TACE Gene Expression

Our studies suggest that zoledronic acid regulates the membrane expression of RANKL

without demonstrably affecting the level of transcript expression. Recent reports suggest that

membrane-bound RANKL is able to be cleaved by a member of the metalloprotease-

disintegrin, TACE. In the absence of an antibody specific for TACE, we examined the

regulation of TACE expression using semi-quantitative RT-PCR. As seen in frgve 4.21,

zoledronic acid treatment resulted in an up regulation of TACE gene expression at d1 and d3

in donor #2, at d3 in donor #3. The up regulation in TACE expression coincided with a

reduction in RANKL and STRO-I expression. Moreover, TACE gene expression declined to

baseline levels at d5, temporally consistent with the re-expression of RANKL and STRO-I

expression.

4.2.8 TNF-a and IL-Ip Augmented STRO-I*/ALP* Subpopuløtion and Inueased Cell-

Dividing Potential of Osteobløst'Líke Cells

As described previously, zoledronic acid treatment resulted in the up regulation of TNF-c¿

and IL-lp in OB-like cells. To investigate whether TNF-cr and IL-lp expression can

overcome the cytostatic effects induced by zoledronic acid, OB-like cells were cultured with

recombinant human TNF-o or IL-lp and the cell phenotypes were assessed by dual-colour

immunofluorescence and flow clometric analysis. As seen in figure 4.22, cells cultured in

TNF-cr and IL-18 resulted in an increase in the number of STRO-l*/AP* cells.

Consistent with previous f,rndings, STRO-lbrieht and AlPb'isht cells possessed a greater

proliferation capacity than the cells expressing low levels of the STRO-1 and ALP antigens.

Of note, TNF-a had a greater capacity to increase the number of STRO-lbrieht cells, whilst

1L-1p had greater capacity to increase the number of AlPb'isht cells. Moreover, both TNF-o

7t



Figure 4.17. The zoledronic acid-mediated down regulation of STRO-I expression

occurs at the level of surface expression. Fluorescence histograms depicting the

expression of STRO-I protein at the surface (A) and within the cloplasm (B) of OB-

like cells derived from donor #2.The data is expressed as the relative cell count (y-axis)

versus the intensity of STRO-I expression (log scale). 10,000 events were collected as

listmode data. The horizontal bar (region M1) depicts the relative percentage of cells

expressing STRO-I antigen compared to the isotype matched negative control mAb,

1116.12, coupled to FITC. The mean fluorescence of STRO-I expression on the cell

membrane was decreased 3-fold when the cells were exposed to zoledronic acid (from

130.43 to 30.95). In contrast, no difference was noted in permeablised cell staining,

suggesting that zoledronic acid modulates the expression of STRO-1 at the cell surface.



A

rrtr¡

Membrane protein
expression

M 1=97.03%

STRO.1

MnX=130.43

M1= 85.87%

z

STRO-1

Cytoplasmic protein
express¡on

M1= 96.38%

MI

STRO-1

MnX=56.04

M1= 94.82

M1

É(D

w/o zole

af,

Ë
ID

lll

att

Ë
c¡>
IU

M1

o

É
(D

4 o

Et
(D

¡+

1

zole
(spM)

afr

Ë
û¡

uJ

tfr
L
OJ>lu

M1

U
o 4

STRO-1

B

MnX=30.95 MnX=57.89



Figure 4.18. The zoledronic acid mediated down regulation of RANKL expression

occurs at the level of surface and cytoplasmic expression. Fluorescence histograms

depicting the expression of RANKL protein at the surface (A) and within the cytoplasm

(B) of OB-like cells derived from donor #2. The data is expressed as the relative cell

count (y-axis) versus the intensity of RANKI expression (log scale). 10,000 events

were collected as listmode data. The horizontal bar (region M1) depicts the relative

percentage of cells expressing RANKL antigen compared to the isotype matched

negative control mAb, 146.11 (for mAb TRANCE), or a-MAP (for anti-rabbit

RANKL), coupled to FITC. A decrease in mean fluorescence of RANKL expression

both in membrane and permeablised staining was observed when the cells were exposed

to zoledronic acid, with a more profound decrease in membrane protein expression.
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Figure 4.19. The zoledronic acid mediated down regulation of ALP expression occurs at

the level of both the cytoplasmic and membrane expression. Fluorescence histograms

depicting the expression of ALP protein at the surface (Ð and within the cytoplasm (B)

of OB-like cells derived from donor #2. The data is expressed as the relative cell count

(y-axis) versus the intensity of ALP expression (log scale). 10,000 events were collected

as listmode data. The horizontal bar (region M1) depicts the relative percentage of cells

expressing ALP antigen compared to the isotype matched negative control mAb, lB5,

coupled to FITC. A decrease of mean fluorescence of ALP expression both in

membrane and permeablised staining was observed when the cells were exposed to

zoledronic acid.



A

EI
to

Membrane protein
expression

Ml= 91.4o/"

Cytoplasmic protein
expression

M1= 57.12"/"

M1

MnX=12.1

M1= 45.79

M1

(Ð
ßt

wlo zole

af,

Ë
0t
F
uJ

.A

Ë
ût

tu
M1

oo

M1

oo

4
1

ALP

MnX=81.61

sl(fì
æ
f\,t

M1= 81 .63%

zole
(spM)

(4

Ë
r¡J

tu

UT

Ë
ll¡

llJ

1
z 4z 1

ALP ALP

B

MnX=26.09 MnX=7.28



Figure 4.20. Summary of membrane and cytoplasmic protein expression by OB-like

cells treated with zoledronic acid. As described above, zoledronic acid mediated a

decrease in the expression of membrane protein expression (A) for STRO-I, RANKL

and ALP on the OB-like cells. This decrease was not as significant when cytoplasmic

expression was examined for both RANKI and STRO-I (B). Data are displayed as the

mean fluorescence of each protein from which the mean fluorescence value of the

isotype-matched negative control has been subtracted.
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Figure 4.2I. Zoledronic acid upregulates TACE gene expression. As described in figure

4.12, the gene expression of TACE was examined by semi-quantitative RT-PCR. It can

be seen that zoledronic acid upregulates TACE gene expression at d3 in donor #2 (A),

and donor #3 (B).
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Figure 4.22. Recombinant human TNF-o and IL-IB increases the number of STRO-

l*/AP* osteoprogenitor-like cells. Osteoblast-like cells derived from donor #4 were

cultured in the T75 flasks and treated with TNF-o and IL-lp at concentrations of 5

nglml and l0 nglml, respectively. The cells were harvested at d6 and stained with

STRO-I and ALP as described in figure 4.\2. The results show that culture of OB-like

cells in TNF-a and IL-lp increases the number of STRO-l*/AP* osteoprogenitor cells.
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and IL-lB were found to significantly enhance the proliferative capacity of the OB-like cells

in culture (figure 4.23).

4.2.9 Minerølisøtion Potentiøl of Osteoblsst-Like Cells is Enhanced by Zoledronic Acid

Treatment

As demonstrated above, zoledronic acid treatment resulted in a decrease in the STRO-lb'icht

population of OB-like cells, which was due, in part, to the greater death rate of STRO-lb'ich'

cells compared to the STRO-lnegative population. It was also noted that zoledronic acid

treatment resulted in the inhibition of cell proliferation, which was accompanied by a

decrease in STRO-I antigen expression. One possibility of the loss of STRO-I expression

was that the STRO-lbrieht population differentiated into more mature OB-like cells. To

investigate this possibility, the ability of the OB-like cells to form a mineralised bone matrix

was assessed by culturing the cells in osteoinductive conditions in the presence of zoledronic

acid at different concentrations (figure 4.24A). The level of mineral formation by the OB-like

cells was dependent upon the concentrations of zoledronic acid used in cultures. Lower levels

of mineral deposition were evident in the OB cultures treated with zoledronic acid relative to

the negative controls before day 28.In contrast, at day 35 a significantly (p<0.05) higher

level of mineral formation was observed in the OB treated with zoledronic acid at a

concentration of 0.5 ¡rM in donor #1 and donor #2. However, the equivalent levels of mineral

deposition were noted at day 35 in donor #3 in the presence of 0.5 ¡rM of zoledronic acid.

The potential for mineral formation in OB-like cells was significantly reduced when the cells

were cultured with zoledronic acid at concentrations higher than 5 ¡.rM in all three donors. As

zoledronic acid treatment was shown to induce cell death of OB-like cells in a dose

dependent manner (please refer to hgure 4.1), we normalised the amount of calcium

phosphate produced per viable cells. As shown in figure 4.248, when cells were cultured in

zoledronic acid at a concentration of 0.5 pM, this resulted in a significant increase in mineral

formation in donor #1 and #2 (p<0.001).

We noted that the high concentration of zoledronic acid decreased mineral formation of OB-

like cells when treated with fresh drug at weekly intervals for the duration of the assay. To

reduce the cell death caused by constant drug exposure, single dose zoledronic acid was

administrated only at d0 of cultures and omitted in subsequent weekly feeding of the cultures.

As seen in figure 4.25, zoledronic acid at very low concentrations (0.05 and 0.5 ¡rM) did not

enhance the mineral formation in the OB-like cell cultures. However, when zoledronic acid

72



Figure 4.23. TNF-o and IL-IP increases the proliferative potential of OB-like cells.

Osteoblast-like cells derived from donor #2 were labelled with CFSE as described in the

methods. Cells were subsequently cultured in the presence of TNF-a (5 nglml) and IL-

1B (10 nglml) for 3 and 5 days, stained with STRO-1 or ALP and analysed as above.

Consistent with previous findings, STRO-lb'isht and 4¡p bright ce[s had an enhanced

proliferative potential than cells expressing negative/dim STRO-I and ALP (A). Of

note, TNF-o(, was more effective augmenting the growth of STRO-lbdsht cells (B), whilst

IL-18 was more able to augment the growth of AlPb'icht cells (C). Both TNF-o¿ and IL-

1B were found to enhance cell division (D).
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Figure 4.24. Mineralisation potential of OB-like cells is enhanced by zoledronic acid

treatment. Osteoblast-like cells derived from three different donors were seeded in 96-

well plates at a cell density of 8,000 cells/well in triplicate, and cultured in

osteoinductive conditions, as described in the methods. The cells were treated with

zoledronic acid at different concentrations (from 0 to 50 pM) and cultures'were "fed"

weekly with fresh medium containing zoledronic acid at the noted concentrations. The

release of free calcium from the matrix was achieved by treating the adherent cell layers

under acidic condition as described in the methods. Samples then were reacted with o-

cresol-phthalein-complexon and the colorimetric reaction was read af 570 nm. The

absolute calcium concentration was determined according to a standard curve for

calcium. Results were confirmed by measuring calcium levels using AAnalyst 300

Atomic Absorption Spectrometer. The results showed that lower levels of mineral

deposition were evident in the OB-like cells treated with zoledronic acid compared to

the negative control before day 28.In contrast, at day 35 a significantly (p<0.05, Êtest)

higher level of mineral formation was observed in the OB-like cells treated with

zoledronic acid at a concentration of 0.5 ¡rM in donor #l and donor #2. However, the

equivalent levels of mineral deposition were noted at day 35 in donor #3 in the presence

of 0.5 ¡rM zoledronic acid. The potential for mineral formation in OB-like cells was

significantly reduced when cells were cultured with zoledronic acid at concentrations

greater than 5 ¡rM in all three donors. As zoledronic acid induced cell death of OB-like

cells in a dose-dependent manner, calcium levels were noÍnalised to viable cell number

(panel B), and showed that zoledronic acid at a concentration of 0.5 ¡rM significantly

increased mineral formation in donor #1 and #2 (p<0.001, r-test). The morphology of

cells in culture was assessed at d35, photographed, and represented as C (negative

control), D (0.5 pM of zole), E (5 ¡rM of zole) and F (10 pM of zole).
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was used at concentrations between 5 and 25 ¡t}d, this resulted in a significant increase in

mineral formation (p<0.05). V/hen the data vrere noÍnalised to viable cells, the difference

was even more significant (p<0.005) and the trend was the same in the all three donors. It

also shown that a concentration of 10 ¡rM of zoledronic acid is the most suitable

concentration to enhance mineral formation in vitro (p<0.05).
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Figure 4.25. A single high-dose treatment of zoledronic acid enhances mineral

formation of OB-like cells. Osteoblast-like cells were established as described in figure

4.24. Iî contrast, cells were only treated with zoledronic acid at d0 at different

concentrations. The results showed that zoledronic acid at very low concentrations (0.05

and 0.5 pM) did not affect the mineral formation of OB-like cells. Zoledronic acid at

concentrations ranging between 5 and 25 ¡rM significantly increased mineral formation

C)<0.05, Êtest). When the data were noÍnalised to viable cell number, the difference

was more significant (p<0.005, Êtest) and the trend was the same in the all three donors.

Zoledronic acid at a concentration of 10 ¡rM was found to be the optimal concentration

in augmenting mineral formation (p<0.05, Êtest). The typical data of donor #3 before

normalisation (A) and after normalisation (B) are presented.
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4.3 DISCUSSION

To date, zoledronic acid represents the most potent BP in suppressing bone resorption and

normalising serum calcium in patients with metastatic bone disease (Berenson et al.,200lb;

Body et al., 1999; Major et a1.,2001). In animal model studies, zoledronic acidwas found

not only to mediate a dose-dependent suppression of cancellous bone tumover and

resorption, but also augmented cancellous bone formation (Pataki et al., 1997). Moreover,

zoledronic acid was recently shown to enhance bone formation on a calcium sulphate bone

graft substitutes in a rabbit model of tibial fracture repair (Sharpe et a|.,2002).

The zoledronic acid-mediated increase in bone formation seen in animals and humans could

be attributed to the establishment of a positive bone balance between osteoblastic bone

formation and osteoclastic bone resorption. This is thought to occur bV (1) the diminution of

bone resorption by the inhibition of OC recruitment, proliferation, differentiation and

maturation , (2) the newly formed bone would be less likely to be remodelled and therefore

have more time to complete mineralisation, and (3) if the decrease in resorption depth at

individual remodelling sites is not coupled by a decrease in formation, the local bone balance

will be positive. Despite this, the underlying molecular mechanism of this enhanced bone

formation at the level of the OB, is not clearly understood. As such, this study was designed

to explore the effect of zoledronic acid on cultures of human OB-like cells at both a

molecular and cellular level.

Ow in vitro s1¡idies show that zoledronic acid caused a dose and time-dependent decrease in

human OB-like cells (refer to figure 4.114.2). This observation is consistent with the work of

Reinholz and colleagues who demonstrated that zoledronic acid induced cell death and

cytostasis in the immortalised human fetal OB (hFOB) cells (Reinholz et al., 2000)'

Although our studies and studies by others (Reinholz et a1.,2000) show that BPs induce

clostasis and cell death, other studies have shown that BPs can inhibit apoptosis of murine

osteocytes and OB mediated by etoposide, TNF-u or glucocorticoid (Plotkin et al., 1999)'

Meaningful comparisons between these data are difficult, as the experimental systems used

here are dramatically different and as such these opposing effects may be, in part, due to

differences in the cell types, duration of treatment, the BP analogues, and the concentrations

of BPs used in these experiments.
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The zoledronic acid-induced reduction in OB-like cell number was due to the combination of

cytostasis (inhibition of proliferation) and cell death. Staining of nuclei with the nuclear

fluorescent stain DAPI, demonstrated morphological changes characteristic of apoptosis

including chromatin condensation, nuclear fragmentation and formation of dense, round

apoptotic bodies in a small number zoledronic acid treated OB-like cells (refer to figure 4.3).

Despite this, the reduction in cell number was mainly due to an inhibition of cell proliferation

(refer to figure 4.11). Assessment of the induction of intranucleosomal DNA fragmentation

as assessed by gel electrophoresis (refer to figure 4.4), supported this observation. In

addition, the induction of apoptosis in OB-like cells by zoledronic acid was assessed by

monitoring caspase-3 activity. Although the caspase activity was relatively low compared to

the other cell lines, zoledronic acid did significantly enhance caspase 3 activation (refer to

figure 4.5). Therefore, it is conceivable that the cell death in all OB tested may be a late event

following zoledronic acid treatment. Although it is established that caspase-regulated

apoptosis is at least one entity of programmed cell death (PCD), it has also been reported that

non-apoptotic PCD with necrotic-like cell appearance can be regulated independent of

caspases by c-Myc, dexamethasone and ceramide (Mochizuki et al., 2002). Therefore, it is

likely that zoledronic acid induces a combination of apoptosis, and non-apoptotic PCD in the

OB-like cells in vitro.

To date, numerous studies have failed to determine how BPs reach the OB in vivo. Although

BPs may come directly from the general circulation after their administration, they are also

released from bone into the microenvironment of OB, either by passive diffusion or

following resorption. In addition, under pharmacological conditions, the concentration of BPs

encountered by OB in vivo is unknown. As such, it is difficult to design in vitro experiments

that can directly correlate to physiological conditions. Using a mouse model, Sato et al

(1991) reported that half of the bone forming surface had a moderate deposition of BPs, with

one fifth the density compared to the BP deposition on the bone resorption surface (Sato e/

at., I99I). The high concentration of BPs in the space beneath resorbing OC, in vivo, is due

to OC-induced acidification of the bone surface. The high local concentration declines

immediately when the bone resorption is completed. Therefore, it is reasonable to assume

that the concentration of BPs to which OB are exposed would be lower than that encountered

by OC. In time, the BP containing bone will be "buried" under newly formed osteoid (Sato e/

al., I99l), supporting the notion that osteoblastic exposure to BPs will be limited. As such,
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most of the studies detailed here, made use of a concentration of 5 pM zoledronic acid, as

this was shown to mediate a measurable effect on the OB phenotype.

Osteoblasts produce most of the bone matrix constituents and enhance new bone formation.

As we have shown before, zoledronic acid induced OB-like cell death in a dose-dependent

manner. Therefore, this decrease in OB cell number would conceivably result in a loss of

bone mass. On the other hand, the increase in bone mass and strength in an animal model

(Balena et al., 1993) and human systems (Rossini et al., 1994; Storm et al., 1993) led to the

assumption that BPs may enhance the maturity of OB, thereby increasing the bone density.

As described previously (refer to section 4.2.2), OB can be separated into four

subpopulations based on their stage of cellular differentiation. Using dual-colour

immunofluorescence and flow cytometric analysis, we examined the effect of zoledronic acid

on the differentiation of OB-like cells. Treatment of OB-like cells with 5 pM zoledronic acid

resulted in an increase in the number of STRO-174P- cells, with a concomitant decrease in

the number of STRO-l*/AP- cells in all cultures of OB-like cells tested (refer to figure 4.6).

This suggests that zoledronic acid may augment the maturation of OB-like cells by either

selectively inhibiting proliferation and inducing cell death in the OB precursor population

and/or by mediating the differentiation of the preosteoblast population. Although the

representation of each of the four subpopulations was found to be highly donor dependent,

this could not be attributed to the donor age or gender of the individual, from whom the cells

were derived. As described in the materials and methods, OB cultures from two donors were

from individuals diagnosed with osteoarthritis, whilst the remainder were from healthy,

young volunteers. Although there were differences in the response to zoledronic acid

treatment, these differences were restricted to the magnitude of the response but not in its

direction. These studies were confirmed by immunofluorescence and flow cytometric

analysis, which showed that zoledronic acid decreased both membrane and total cell ALP

protein expression (refer to figure 4.1,9). In addition, the dramatic decrease in cell surface

STRO-I expression following zoledronic acid treatment may be due to both a decrease in the

number of cells that express STRO-I andlor a decrease in the level of expression of this

protein at the cell membrane (refer to figure 4.I7).Interestingly, zoledronic acid did not alter

the total STRO-I protein expression in the cytoplasm, indicating that changes in membrane

protein expression may be due to enzymatic cleavage of STRO-I from the cell surface. In

support of this notion, examination of the expression of TACE (ADAM I7), a membrane
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metalloprotease, revealed that the loss of STRO-I protein from the cell membrane was

preceeded by an elevation in TACE expression (refer to figure 4.21). These data suggest that

STRO-I may represent a membrane protein belonging to a small cohort of proteins cleaved

by this eîzyme, which include TNF RI/II, IL-IRII, TNF-c, TGFa, amyloid-beta precursor

protein (APP) and RANKL.

In order to investigate whether the apparent selective reduction in the STRO-I population

seen following zoledronic acid treatment, was due to inherent difference in the sensitivity of

the STRO-lbrieht OB-like cells to this agent, dual colour immumofluorescence and flow

cytometric analysis was performed examining the expression of Ki-67 in combination with

STRO-I. The expression of the human Ki-67 protein is strictly associated with cell

proliferation, and during interphase the antigen can be exclusively detected within the

nucleus, whereas in mitosis most of the protein is relocated to the surface of the

chromosomes. Ki-67 can be used to analyse those cells which are in the so-called growth

fraction, as Ki-67 protein is present during all active phases of the cell cycle (Gr, S, Gz and

mitosis), but is absent from resting cells (Go, or so-called "quiescent" cells) (Scholzen and

Gerdes, 2000). Our data revealed that the majority of the OB-like cells were actively

dividing. 
.When 

compared with the control, zoledronic acid appeared to inhibit cell division,

and moreover resulted in the emergence of a population of cells with low forward and side

scatter in a time-dependent manner. These cells were found to express STRO-I antigen at

high levels and lacked measurable Ki-67 expression (refer to figure 4.7). This suggested that

cells that express STRO-I at high levels, may be more sensitive to zoledronic acid and the

Ki-67 negative cells in this case may represent quiescent cells or cells undergoing apoptosis.

This was further examined using three-colour flow cytometric analysis.

The human OB-like cells at different stages of the cell cycle were analysed using the nuclear

stain, 7-AAD. In combination with STRO-I and ALP, this enabled us to examine the cell

cycle status of the cells at different stages of osteoblastic maturation. One limitation

encountered in these studies, was the inability to resolve those cells in Go or G1, âS these cells

contain the same nuclear content. These studies revealed that zoledronic acid reduced the

number of cells in S and Gzllli4 phase, and the stage of cell cycle was not related to the extent

of ALP expression by the OB-like cells. In contrast, the majority of cells expressing STRO-1

antigen at high levels were distributed in the S and GzlM phases, suggesting that zoledronic

acid preferentially induced quiescence and cell death in these populations (refer to figure
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4.8). These data therefore suggest that STRO-lbricht cells are more susceptible to zoledroic

acid induced cell death due to their enhanced proliferative potential.

To further examine the preferential induction of cell death in the STRO-1b'icht population, the

STRO-lb'icht and STRO-ln"cutiu' subpopulations of OB-like cells were sorted by a

FACStaTPLUS cell sorter and the proliferative potential assessed using V/ST-1. As anticipated,

the STRO-lb'isht cells were more sensitive to zoledronic acid than STRO-lnesative cells (refer

to figure 4.9).

To further examine if the growth rate of cells contributed to their sensitivity to zoledronic

acid, OB-like cells were labelled with CFSE to track cell division over different periods of

culture. To our knowledge, we have shown here for the first time that STRo-lb'icht cells

possess a greater proliferative potential than the STRo-ln"cative/dim subpopulation (refer to

figure 4.10). These data confirmed our previous findings that the most STRO-lbricht cells had

a greatt proliferative potential and were mainly distributed in the S and Gzlll4 phase of the

cell cycle. Furthermore, zoledronic acid inhibited cell division in a dose-dependent manner,

accompanied by a dramatic decrease in STRO-I expression on the cell surface (refer to figure

4.ll). This reduction in STRO-1 expression may be due to the induction of quiescence. In

support of this notion, when the cell proliferation was inhibited with the spindle poison,

colchicine, the expression of STRO-I was also decreased. This suggests that the cells may

lose their STRO-I surface expression when cell division is inhibited. Our results suggest that

cel| division was totally inhibited by zoledronic acid a the concentration of 5 pM at d3 and

d5. Surprisingly, at d7, approximately l2Yo cells of these cells underwent their first division,

which was accompanied by the resumption of STRO-1 expression. This suggests that OB-

like cells may start to recover from the effect of zoledronic acid by either decreased drug

exposure due to drug consumption/breakdown or by up regulating the expression of

molecules, which are essential for cell proliferation and maturation.

For this reason, gene expression of both osteoclastogenesis and osteoblastogenesis-related

molecules were investigated in our studies (refer to figure 4.12). Our data revealed that the

expression of TNF-c and IL-l8 was decreased in the negative control in a time-dependent

manner. Interestingly, these genes were significantly upregulated in OB-like cells following

treatment with 5 pM zoledronic acid, particularly in donor #3, which was the most sensitive

donor. This increased expression of TNF-cr and IL-lÞ may be due to the zoledronic acid-
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induced decrease in cell density due to the induction of cytostasis and cell death. As

described in the chapter 3, TNF-ø is a multifunctional cytokine which can mediate apoptotic

cell death or induce cell proliferation depending on the cell cycle status (Baxter et a1.,1999).

Furthermore, TNF-o plays an essential and dual role in bone remodelling, both stimulating

the proliferation of OB or inducing OB apoptosis (Hill et al., 1997). The effects of TNF-o on

osteoclastic resorption of mineralised matrix are dependent on the stage of OC development

and the concentrations applied (van der Plurjm et a1.,1991). IL-l8 is a key proinflammatory

mediator implicated in the pathogenesis of various diseases associated with bone loss, such as

osteoporosis, tumour-associated osteolysis, and rheumatoid arthritis. IL-lB, a survial factor

for OC, acts through the release of soluble factors from OB and other marro\M cells. The

biological effect of IL-lp on bone, depends on complex interactions with many factors,

including IL-l receptor antagonist secreted by OB, and IL-l receptors expressed by OC

(Sunyer et al.,1999).

Although TNF-a and IL-lp have been shown to stimulate OC-like formation in human

maffow cultures (Lader and Flanagan, 1998), these cytokines are not capable of substituting

M-CSF in stimulating human OC formation (Fujikawa et a|.,2001). Hence, it is more likely

that these cytokines act in the marrow microenvironment to enhance M-CSF-stimulated OC

formation. Two recent reports demonstrating that TNF-c¿ was sufficient to stimulate cultures

of bone marrow macrophages to differentiate into OC independent of RANKL-RANK

interaction, frày be confounded by contamination with minute concentrations of RANKL

(Azumaet a1.,2000; Kobayashi et a1.,2000). In support of this, in stromal-free cultures of

maffow derived macrophage precursors in the presence of saturating concentration of OPG,

TNF-cr by itself, failed to induce differentiation of OC (Lam et a|.,2000). Although previous

studies have established the importance of OC activation by clokines including IL-lB, TNF-

cr and IL-6, the role of these cytokines on OB development of bone loss requires further

clarification.

In our studies, the roles of TNF-cr and IL-18 induced by zoledronic acid are more likely to

rescue OB and compensate for the decrease in cell number. Although some reports suggest

that TNF-c¿ directly mediates the apoptosis of murine OB (Kitajima et al.,l996a;Kitajima et

al., I996b), we could not detect any cell death in human OB-like cells after treatment with

IL-18 and TNF-cr, consistent with the findings of others (Kwon et al., 1998; Tsuboi et al.,
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1999). Furthermore, we found IL-lP and TNF-cr at a concentration of 10 nglml and 5 nglml,

respectively, gave rise to an increase in the STRO-I*/ALP* subpopulation (refer to figure

4.22), which we have shown previously to possess greater proliferative rate than other

subpopulations (refer to figure 4.23). This supported our hypothesis that the upregulation of

TNF-cr and IL-l8, induced by zoledronic acid represents a mechanism, by which OB-like

cells may overcome the growth suppression effects of zoledronic acid.

It is well known that OB control the recruitment and activity of OC under physiological and

pathological conditions. The inhibitory effect of BPs on osteoclastic bone resorption may be

mediated, at least in part, by the regulation of the production of cytokines synthesised by OB.

It was reported that BPs inhibit OC-stimulating factors such as IL-6 (Giuliani et a1.,1998b)

and induce Oc-inhibiting factors (Nishikawa et al., 7996; Yitte et al., 1996) released by the

OB. Under physiological or pathological conditions, IL-6 is released mainly in response to

stimulating factors, including IL-18 and TNF-cr. Although there was an apparent increase in

IL-1P and TNF-c¿ gene expression observed in our studies, there was no significant change

in IL-6 and M-CSF gene expression. It is important to consider that the studies reported here

only examined expression at the genetic level. Future studies examing IL-6 and M-CSF

protein expression are required and should provide us with a more complete understanding

about the regulation of IL-6 and M-CSF expression by zoledronic acid.

The RANKL/RANK/OPG system is considered to mediate the final common step in OC

formation. RANKL promotes the differentiation of OC precursor cells to OC through the

RANK receptor expressed on the OC precursor cells. OPG acts as a decoy receptor that

negatively regulates the signalling between RANKL and RANK. It was found that IL-lp and

TNF-cr, but not IL-6, could stimulate RANKL gene expression in human osteoblastic cells

(Hofbauer et al., 1999). Although zoledronic acid treatment led to an upregulation of IL-l8

and TNF-cr gene expression in our studies, we did not find a significant change in RANKL

and OPG expression at the transcriptional level (refer to figure 4.13). In contrast, at the

protein level, our data suggest that zoledronic acid treatment leads to a significant decrease in

the membrane expression of RANKL on human OB-like cells, without a commensurate

decrease in total protein expression (refer to figure 4.18). This is consistent with the findings

of Mackie and colleagues who demonstrated that RANKL mRNA was down-regulated by the

BP, pamidronate, in the rat osteosarcoma cell line UMR 106-01 (Mackie et a1.,2001). In
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agreement with their findings, we also did not detect any alteration in OPG gene expression.

Thus, we conclude that BPs also can exert an anti-resorptive effect via a decreased

RANKL/OPG ratio.

As discussed previously, RANKL is a type II membrane-anchored polypeptide, which is

released from the plasma membrane by tumour necrosis factor alpha converting eîzpe

(TACE) (Lum et al., 1999). Soluble and truncated RANKL arc important components in

pathological bone loss (Quinn et al., 1998; Udagawa et al., 1999). Although the decreased

RANKL expression in OB-like cell surface may due to the decreased sythesis of this protein,

it is also possible that zoledronic acid treatment leads to the upregulation of TACE

expression and activity leading to the loss of membrane RANKL expression. Examination of

the expression of TACE (ADAM 17) revealed that the loss of RANKL protein from the

membrane was preceeded by an elevation of TACE expression on dl, d3 following

zoledronic acid treatment (refer to figure 4.21). Similary, expression of STRO-I on the

membrane was also significantly down regulated following zoledronic acid treatment (refer

to figure 4.17). This was not associated with an alteration in total STRO-I protein expression

in the cytoplasm, indicating that like RANKL, changes in STRO-I membrane expression

may also be due to enzymatic cleavage. Interestingly, the resumption of STRO-I expression

at d5 and d7 following zoledronic acid treatment is correlated with a decrease in TACE

expression to baseline levels of TACE expression at d5.

The discovery of the DNA-binding protein CBFA1 has provided a marker of early osteogenic

commitment (Ducy et al., 1997; Komori et al., 1997; Rodan and Harada, 1997). CBFA1

belongs to the runt-domain gene family and has been specifically associated with

osteogenesis in rodents. The precise function of CBFA1 is unknown, but it is thought to

regulate the OB-specif,rc genes. Although our results indicated that BSP and OCN gene

expression v/as upregulated by zoledronic acid in the OB-like cells derived from donor #3,

there was no alteration in CBFA-I expression at the transcript level (refer to figure 4'14). At

the protein level, zoledronic acid was found to upregulate the expression of OCN at dl and

d3 at both the transcript and protein level (data not shown).

As discussed above, OB can be separated into four subpopulations based on the stage of

differentiation. Previous studies (Gronthos et al.,1999) have shown that OB at diffeent stages

of development exhibit differential gene expression. Our studies show that zoledronic acid
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dramatically alters the expression of a number of genes, especially in the zoledronic acid

sensitive donors. It was therefore thought that these large changes in gene expression may be

due to changes in the relative proportions of these subpopulations following zoledronic acid

treatment. To exclude this possibility, the STRo-lb'icht and STRo-1n"cutiu" cells were sorted

by FACStaTPLUS cell sorter and their incident gene expression profile was determined.

Interestingly, the gene expressions in these two subpopulations are similar (refer to figure

4.15). However, the difference between the two populations emerged when the cells were

cultured in the media for three days in the presence or absence of zoledronic acid (refer to

figure 4.16). As expected, the STRO-ln"cutiu' subpopulation was found to express more OCN

and BSP than the STRo-lb'icht subpopulation, consistent with their stage of differentiation.

Zoledronic acid increased OCN and BSP expression in STRO-lb'ish' cells indicating that

zoledronic acid may "drive" STRo-lb'icht cells to differentiate into more mature OB.

Furthermore, STRO-lb'ish'cells were found to express more IL-IP and TNF-a than the

STRO-1n"cuti"' subpopulation, suggesting that the upregulation of IL-18 and TNF-cr in the

whole population could not be attributed to a decrease in the proportion of STRO-1b'isht cells.

Of note, the middle population which display intermediate levels of STRO-1, express the

highest level of COX-2, whilst the STRO-lb'ishtcells express the least amount of COX-2.

Zoledronic acid only increased COX-2 expression in the STRO-lb'icht subpopulation, which

may facilitate the proliferation of STRO-lbrieht cells. As expected, there was no significant

difference in IL-6, M-CSF, OPG and CBFA-I expression among the different

subpopulations. In terms of RANKL, zoledronic acid increased RANKL expression in the

STRo-lb'icht subpopulation whilst it was decreased in the STRO-1"'su'u" subpopulation. It

should be noted that the results presented herein were generated from cells isolated by FACS

and cultured separately in the absence of cells at other stages of differentiation, which may

significantly alter the pattern of gene expression seen in a mixed culture.

A previous report suggests that zoledronic acid can enhance the rate of mineralisation of

viable immortalised human fetal OB (hFOB) cells (Reinholz et al., 2000). Consistent with

this finding, our data suggest that zoledronic acid at a concentration of 0.5 pM increases

mineral formation in OB-like cells at day 35. However, the potential for mineral formation in

OB-like cells was decreased when the cells were cultured with zoledronic acid at

concentrations exceeding 5 ¡rM. It should be noted that in these experiments, the cells were

subjected to fresh zoledronic acid every week for the entire 35 day period. As we discussed

previously, zoledronic acid induces cell death in a dose dependent manner, and therefore the
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cell number in the zoledronic acid treated groups was substantially lower than that in the

untreated control group. This suggests that the viable single cells have gteater potential for

mineral formation when cultured in the presence of zoledronic acid. When the data was

normalised to the viable cells number, there was a significant increase in mineral formation

when the cells were treated with 0.5 pM of zoledronic acid. The potential for mineral

formation in OB-like cells was decreased when the cells were cultured with zoledronic acid

at concentration exceeding 10 pM in all donors (refer to 4.24). However, when the cells were

only treated with zoledronic acid once during the whole period of the mineralisation assay, it

was evident that zoledronic acid at low concentrations (<0.5 ¡.rM) had no significant effect on

the mineral formation of human OB-like cells in vitro.In contrast, a significantly higher level

of mineral formation was observed in the OB-like cells treated with zoledronic acid at a

concentration between 5 pM and25 prM. Of note, 10 pM zoledronic acid was found to be the

optimal concentration which enhanced the mineral formation in the OB-like cells (refer to

4.25). Taken together, we can therefore conclude that zoledronic acid at concentrations

between 5 pM and 25 ¡rM can significantly augment mineral formation. It should be

emphasised that zoledronic acids inhibits cell proliferation and induces cell death in a

proportion of cells, therefore leading to the conclusion that the increased mineralisation

potential is due to an increase in the number of mature OB. This may clarify an additional

observation that BPs can mediate a biphasic effect on the formation of bone-like nodules,

with a dose-dependent stimulation at lower concentrations and an inhibitory effect at higher

concentrations (Giuliani et al., 1 998a).

Taken together, our studies show that in addition to its effects on OC, zoledronic acid also

has direct effects on the proliferation and survival of OB-like cells in vitro. Out observations

support the notion that zoledronic acid is anabolic in bone by increasing the proportion of

differentiated OB and enhancing the bone-forming activities of these cells.
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CONCLUSIONS

This thesis presents several novel observations of the molecular and cellular mechanisms of

the way in which zoledronic acid effects myeloma cells and osteoblasts.

The reaction of the human body to a drug is complicated by the fact that different cell types

have distinct responses based on the concentrations to which they aÍe exposed.

Bisphosphonates are uniquely distributed to the bone matrix, by virtue of their affinity for

hydroxyapatite. Only cells in close proximity to the bone matrix will be affected by these

compounds. Three major cell types, namely osteoclasts, myeloma cells and osteoblasts would

therefore be affected in MM patients receiving bisphosphonate treatment. Our studies

indicate that in addition to inhibiting bone resorption, zoledronic acid can enhance bone

formation (figure 5. 1).

Zoledronic acid induces apoptotic and non-apoptotic cell death in myeloma cells by inducing

S phase arrest in a time and dose dependent manner and inhibiting the mevalonate pathway.

In addition, zoledronic acid upregulates the expression of TRAIL in myeloma cells and

induces cell death by uncoupling the regulation of the TRAIL death receptors and decoy

receptors. The uncoupling of TRAIL receptors may ultimately determine the sensitivity of

myeloma cells to zoledronic acid. The in vitro studies suggest that zoledronic acid represents

a potent agenl to reduce bone loss in patients with MM by inducing cell death in myeloma

cells, a source of numerous osteoclast-activating factors'

Zoledronic acid induces cell death in the osteoblast-like cells in a dose dependent manner.

Compared to the other subpopulations, STRO-I bisht osteoblast-like cells have a greater

proliferative potential and this may account for a gteater sensitivity to zoledronic acid by

blocking cell replication in S and GzlMphase in a dose-dependent manner. Zoledronic acid aI

the concentration of 5 pM leads to an increase in the number of STRO-1-/AP- (mature

osteoblast/osteocyte-like) cells, with a concomitant decrease in the number of STRO-l*/AP-

(stromal precursors) cells. Based on the ability of osteoblast-like cells to form mineralised

bone matrix and their expression of bone-associated matrix proteins, we found that a

proportion of STRO-I b'isht osteoblast-like cells differentiate into maturing osteoblast in the

presence of zoledronic acid. This is thought to account for the enhanced bone formation
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Figure 5.1. Zoledronic acid augments bone formation by acting on three major cell

t1pes, namely osteoclasts, myeloma cells and osteoblasts in patients with MM.

Zoledronic acid inhibits bone resorption not only by inducing apoptosis of osteoclasts

but also by inhibiting osteoclast-activating factors s¡mthesised by myeloma cells and

osteoblasts. It also affects osteoblasts directly by expanding and maturing osteoblasts to

enhance osteoblastic bone formation.
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observed. Our studies showed that zoledronic acid optimally increased bone formation at a

concentration of 10 ¡rM. We demonstrate that zoledronic acid is able to upregulate IL-l8 and

TNF-g expression in osteoblast-like cells. Culturing osteoblast-like cells in recombinant

human IL-1P and TNF-cr increase the number of STRO-1*/AP* osteoprogenitors, which in

the presence of zoledronic acid may also differentiate into maturing and functional

osteoblasts. Furthermore, zoledronic acid was found to decrease the expression of RANKL

on the osteoblast-like cell surface possibly by upregulating TACE expression, which may

also be responsible for the decrease in STRO-1 expression on the cell surface.

Taken together, zoledronic acid inhibits bone resorption not only by inducing apoptosis of

osteoclasts but also by inhibiting osteoclast-activating factors synthesised by myeloma cells

and osteoblasts. It also affects osteoblasts directly by expanding and maturing osteoblasts to

enhance osteoblastic bone formation. This represents the first study to provide evidence that

zoledronic acid directly augments bone formation in vitro'
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