# Vehicle Traffic Monitoring

by

Kamran Eshraghian, B.Tech.

A Thesis Submitted to the Department of Electrical Engineering The University of Adelaide for the Degree of MASTER of ENGINEERING SCIENCE.

## THE UNIVERSITY OF ADELAIDE

This thesis embodies the results of supervised project work which made up two-thirds of the work for the degree.

September, 1977

## CONTENTS

| Summary      |                                                               | V        |
|--------------|---------------------------------------------------------------|----------|
| List of      | Principal Symbols                                             | ix       |
|              |                                                               |          |
| Chapter      | 1 TRAFFIC CONTROL                                             | 1        |
| 1.1          | Introduction                                                  | 1        |
| 1.2          | Traffic Control Systems                                       | 2        |
| 1.3          | Fundamentals of Traffic Movement on Freeways                  | 4        |
| 1.4          | Traffic Models                                                | 7        |
| 1.5          | Identification                                                | 9        |
| 1.6          | System Implementation                                         | 9        |
|              |                                                               |          |
|              |                                                               | 1.0      |
| Chapter      |                                                               | 12       |
| 2.1          | Introduction                                                  | 12<br>16 |
| 2.2          | Behaviour of a Coil in Proximity of a Conducting              | 10       |
| 0.7          | Surface                                                       | 19       |
| 2.3          | Inductive Loop Detectors<br>2.3.1 The Bridge-Balance Detector | 22       |
|              | 2.3.2 Self-Tuning Loop Detector                               | 22       |
|              | 2.3.3 Phase Shift Loop Detector                               | 24       |
| 2.4          | Speed Measurement                                             | 27       |
| <u>د</u> • 4 | 2.4.1 Single Loop Technique                                   | 27       |
|              | 2.4.2 Double Loop Technique                                   | 32       |
| 2.5          | Discrimination                                                | 35       |
| 2.6          | Classification                                                | 37       |
| 2.7          | Conclusions .                                                 | 37       |
|              |                                                               |          |
| Chapter      | 3 COUPLED COILS DETECTION TECHNIQUE                           | 40       |
| 3.1          | Introduction                                                  | 40       |
| 3.2          | Derivation of the Induced Voltage in the Receiver             | 42       |
|              | Coil in the Proximity of a Conducting Surface                 |          |
| 3.3          | Behaviour of Image Voltage as a Function of Coil              | 47       |
|              | Spacing and Interface Height                                  |          |
| 3.4          | The Effect of Finite Conductivity of the Interface            | 47       |
|              | on the Image Voltage                                          |          |

| i | i | i |  |
|---|---|---|--|
|   |   |   |  |

| 3.5     | Experimental Evaluation                        | 51         |
|---------|------------------------------------------------|------------|
|         | 3.5.1 Magnitude of Image Voltage               | 51         |
|         | 3.5.2 Ratio Test                               | 56         |
| 3.6     | Conclusions                                    | 58         |
| ,       |                                                |            |
| Chapter | 4 IMAGE VOLTAGE BEHAVIOUR AS A FUNCTION OF     | 59         |
| Unapter | DISTANCE FROM A MOVING PLATE                   | 75         |
| 4.1     | Experimental Hardware                          | 59         |
| 4.2°    | Experimental Observation                       | 63         |
|         | 4.2.1 Derivation of P using Linear Regression  | 63         |
|         | Technique                                      |            |
| 4.3     | Modelling Technique                            | 66         |
| 4.4     | Phase Characteristics                          | 66         |
|         | 2 2                                            |            |
| Chapter | 5 EVALUATION OF PARAMETER P                    | 67         |
| 5.1     | Introduction                                   | 67         |
|         | 5.1.1 Horizontal Plate                         | 67         |
|         | 5.1.2 Vertical Plate                           | 69         |
|         | 5.1.3 L - Shaped Plate                         | 69         |
|         | 5.1.4 Image Voltage Characteristics in the     | 94         |
|         | Presence of Brine Solution                     |            |
|         | 5.1.5 Other Considerations                     | 94         |
| 5.2     | Discussions of the Results                     | 94         |
| 5.3     | Derivation of P Using Vehicles                 | 96         |
| 5.4     | Conclusions                                    | 99         |
|         |                                                |            |
| Chapter | 6 SPEED ESTIMATION                             | 106        |
| 6.1     | Modelling Technique                            | 106        |
| 6.2     | Identification of the Peak Values of the Image | 111        |
|         | Voltage                                        |            |
| 6.3     | Circuit Realization                            | 113        |
|         | 6.3.1 Receiver Amplifier                       | 113        |
|         | 6.3.2 Demodulator                              | 116        |
| *       | 6.3.3 Difference Signal Generator              | 117        |
|         | 6.3.4 Differentiator<br>6.3.5 Divider          | 117<br>117 |
|         | 6.3.6 Time Generator                           | 122        |
| 6.4     | Experimental Results                           | 122        |
| 6.5     | Conclusions                                    | 138        |
| 0.7     |                                                |            |

| Chapter | 7 VEHICLE IDENTIFICATION                  |     | 139 |
|---------|-------------------------------------------|-----|-----|
| 7.1     | Introduction .                            |     | 139 |
| 7.2     | Vehicle Length Measurements               |     | 140 |
| 7.3     | Vehicle Signature                         |     | 148 |
| 7.4     | Identification Process                    |     | 154 |
| 7.5     | Discussions                               |     | 156 |
|         |                                           |     |     |
| Chapter | 8 CONCLUSIONS AND THE FUTURE DEVELOPMENTS | а., | 158 |
| 8.1 *   | Introduction                              |     | 158 |
| 8.2     | Acceleration Measurement                  |     | 159 |
| 8.3     | Conclusions                               |     | 160 |
| 12      |                                           |     |     |
|         |                                           |     |     |
|         |                                           |     |     |
| Appendi | Ces                                       |     | 161 |
| Publica | tions                                     |     | 185 |
| Patents |                                           |     | 186 |

187

Bibilography

iv

#### SUMMARY

The research activity has been primarily directed towards the development of a vehicle sensor to obtain traffic parameters such as vehicle count, speed and vehicle identification. In order to have an appreciation of the technique adopted, a review of the more prominent approaches in traffic monitoring and control systems are made in Chapter 1. Chapter 2 provides an appraisal of the various vehicle detectors in terms of their ability to meet the requirements of the more advanced traffic control systems.

The vehicle sensor selected for the investigation consists of two coils spaced apart with a common axis and located in the road surface, orthogonal to the direction of travel of the vehicle. The operating principle is based on the fact that if one coil is energised by an alternating current source then as a vehicle approaches the sensor, eddy currents are induced in the undercarriage.\* The magnetic field created by these currents result in a change in the induced voltage in the second coil.

Experimental observations have indicated that a constant parameter can be obtained in terms of the change in the induced voltage and the distance of the vehicle from the sensor. This parameter has been found to be independent of the normal variables expected in traffic situations, and is used to construct a mathematical model for determination of the vehicle speed. Through the analysis of actual data collected from several vehicles, it has further been

\* usage of this term includes the whole of the underside of the vehicle

V

demonstrated that good speed prediction is possible using the output of this single sensor.

The report also embodies an identification technique based on the length and the characteristic signature of a vehicle derived from the sensor output.

The economies associated with many traffic control and surveillance systems are generally determined by vehicle sensors. The concept presented in this report represents an attempt to solve some of the known problems and provide an economical solution for speed measurements, count and vehicle identification ( in terms of vehicle grouping)\*using a single vehicle sensor.

\* by wehicle group it is meant vehicles of the same make and model

### ACKNOWLEDGEMENTS

The Author is indebted to Professor R.E. Bogner under whose supervision the research was carried out. He is also grateful to the Management of Philips Allied Industries - R.G. Menzies Research and Development Group for their technical support during the course of the project. He would like to thank the Electrical Engineering Staff of the University whose help has also been invaluable. This thesis contains no material which has been accepted for the award of any other degree or diploma in any University and, to the best of my knowledge and belief, contains no material previously written or published by another person except where due reference is made in the text of the thesis.

K. ESHRAGHIAN.

September, 1977.

#### LIST OF PRINCIPLE SYMBOLS

a = radius of a circular coil (m)  $A_c = cross sectional area of a circular coil (m<sup>2</sup>)$  $\overline{A}$  = magnetic vector potential  $A_{\emptyset} = \emptyset$  - component of the magnetic vector potential  $\overline{B}$  = magnetic flux density  $B_{\rho}, B_{\sigma}, B_{z}$  = cylinderical components of the magnetic flux density  $B_r, B_{\Theta}, B_{\emptyset}$  = spherical components of the magnetic flux density  $d_{c}$  = displacement of conducting surface from centre of sensor d = vehicle lateral displacement D = distance between vehicle sensor and vehicle  $D_{o}$  = effective distance of sensor f = frequency (Hz)h = coil to conducting surface spacing (cm)  $\overline{H}$  = magnetic field intensity  $H_r, H_{\Theta}, H_{\emptyset}$  = spherical components of the magnetic field intensity  $H_x, H_y, H_z$  = rectangular components of the magnetic field intensity  $H_{xi} = x$  component of the magnetic field at the receiver due to the image  $H_{xt}$  = x component of the magnetic field at the receiver due to the transmitter = current in coil Ι  $k = \sqrt{\frac{4a(a-r_w)}{(2a-r_w)^2}}$  $K_i = NA_W\mu_m$  $l_d$  = inductive loop vehicle detector length  $l_{e} = (l_{p} - l_{d})$ 1<sub>m</sub> = vehicle length lme "Electrical" length of vehicle  $\overline{l}_{m}$  = assigned average vehicle length  $l_n = effective electrical length of inductive loop$  $l_{s}$  = length of ferrite rod 1<sub>sd</sub>= separation between two inductive loops

 $L_c =$ inductance of a coil in the presense of a conducting surface

 $L_{T_{c}} = 100p$  detector inductance

 $L_{o} = self$  inductance of a coil

M = mutual inductance between two coils

N = number of turns

 $N_{\rm w}$  = number of vehicles

p = density (vehicles per kilometre)

P = speed constant

q = volume (vehicles per hour)

r = radial distance from origin (metre)

 $r_{c} = correlation coefficient$ 

 $r_w = radius of wire$ 

 $R_{c} = surface resistivity$ 

S = speed (kilometres per hour)

 $S_{y} = vehicle speed$ 

 $S_{dl} =$  vehicle speed using double loops

 $S_{sl}$  = vehicle speed using single inductive loop

 $\overline{S}_{sl}$  = estimated speed using single inductive loop

 $t_{g}$  = time to travel distance  $D_{g}$ 

 $t_w = time$  the inductive loop is occupied

V = voltage across a coil

 $V_n$  = induced voltage change in a receiver coil

 $V_{R}$  = resultant induced voltage in a coil in the presence of a conducting surface

 $V_{p_m} = maximum value of V_p$ 

 $V_{R_{-}}$  = peak to peak induced voltage in receiver coil

 $V_{T_x}$  = peak to peak transmitter voltage

 $W_n = \text{total sensor length}$ 

w = angular frequency (rad./sec.)

x = spacing between transmitter and receiver coils

 $x_{p} = simulated plate length$ 

 $X_{L_{n}} = reflected reactance (ohms)$ 

 $\mathbf{y}_{\mathrm{p}}$  = simulated plate width  $Z_{\pm} = load impedance$ X,Y,Z = rectangular co-ordinates  $r, \theta, \phi$  = spherical co-ordinates  $\rho, \phi, z$  = clinderical co-ordinates  $\mu$  = permeability of a material  $\mu_{o}$  = permeability of a free space  $\mu_r = effective$  permeability of material  $\sim$  = conductivity of material  $\delta$  = approach angle  $\delta_{s} = skin depth$  $\nabla$  = gradiant operator  $\Delta$  = incremental change  $\propto$  = slope  $\sim_{\rm m}$  = modified slope  $\sigma_d^2$  = variance of D  $\sigma_v^2$  = variance of V<sub>p</sub>  $\theta_{\rm p}$  = angle of incline

 $\delta_{e}$  = length constant

### CHAPTER 1

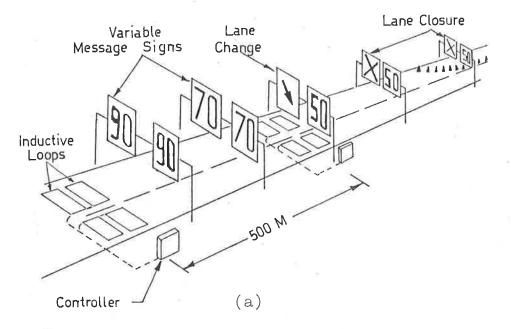
1

#### TRAFFIC CONTROL

### 1.1 INTRODUCTION

In recent years reports on traffic control 1-20 systems have been numerous. The objectives of many of the investigations have been to evaluate not only the behaviour of the systems according to some performance criteria, but also provide justification in terms of reliability, maintenance and economics.

The present research has been primarily concerned with the development of a vehicle sensor to obtain traffic parameters such as vehicle count, speed, length and classification. However, in order to have an appreciation of this approach, it is considered useful to review the more prominent approaches in traffic control and monitoring systems.


#### 1.2 TRAFFIC CONTROL SYSTEMS

There are two basic types of traffic control 21-24 systems: pretimed and traffic - actuated. The pretimed systems are primarily used for downtown urban-area streets, where the daily traffic patterns are well known. Such systems are gradually being replaced by the traffic-actuated controls, the operation of which, depends on traffic parameters obtained from vehicle detectors.

Consequently, many researchers have directed their activities towards the development of traffic actuated control systems in terms of feedback path and have followed two directions.

The first looks for car-borne equipment in the form of an information system whereby traffic and safety information is conveyed to the motorists by radio and by variable signal panels in the vehicle. The complexities and problems with such systems are well known and various proposals are being evaluated.

The second approach is the traffic responsive 27-28 control system and surveillance. To improve the traffic situation, the driver is required to make educated decisions based on the information displayed by variable message signs. Fig 1.1 shows a typical system currently under investigation by N.V. Philips Gloeilampenfabrieken for the Dutch Government.



- Speed Indication Prior the Tail of Traffic Jam

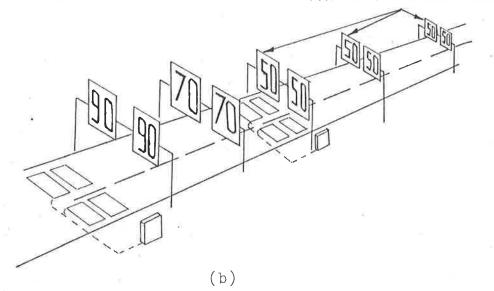



Fig 1.1 Signalling Plan

- (a) Variable message sign indicating lane change.
- (b) Variable message sign indicating the tail of traffic jam.

In this system for example, the lane change is indicated by an arrow, followed by a signal indicating lane closure. Alternatively, in the case of a traffic jam, the tail of the jam is indicated by the allowable speed limit. As the traffic jam grows, the image moves to the left. The visual information conveyed to the driver provides an early warning of a possible traffic jam. The driver, (considered as part of a feed-back loop) is required to take the necessary corrective measures in accordance with the displayed signal, to maintain the smooth flow.

4

Such systems in general are based on those parameters which reflect the overall flow characteristics, such as volume (vehicles per hour per lane), density (vehicles per lane per Kilometre) and mean speed (Kilometres per hour).

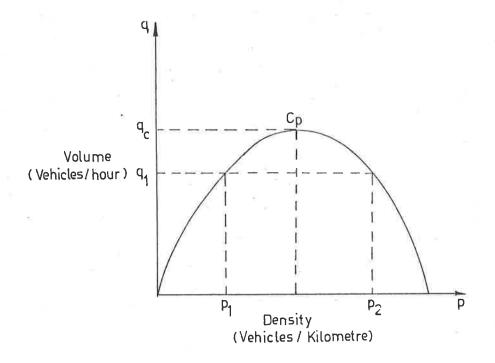
### 1.3 FUNDAMENTALS OF TRAFFIC MOVEMENT ON FREEWAYS

The traffic on freeways under uniform conditions, i.e. all vehicles in a section travelling at the same speed and equal spacing, can be described in terms of continum variables associated with fluid mechanics flow. Lighthill and Whitham in 1954, developed a model on this basis and proposed the identity

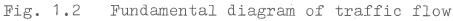
q = p.S

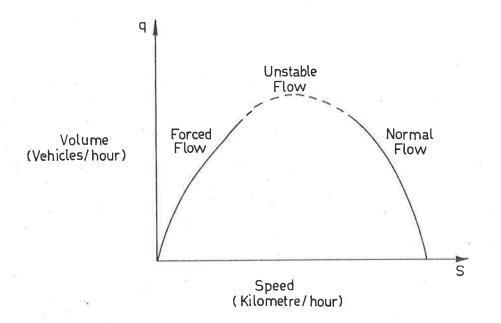
...(1.1)

where


q = volume
p = density
S = speed.


#### 30-3


A typical volume-density curve which reflects many of the properties of road traffic is shown in Fig 1.2. For example if the observed volume is  $q_1$ , then the density may be either at  $p_1$  or  $p_2$  which represents two different traffic conditions. The capacity of the freeway (the maximum sustained volume of vehicles which can pass a point) is determined by the turning point represented by  $C_p$ . Since density gives the true measure of the state of freeway at a given time, it is a vital element for traffic control.


An additional factor which contributes in the understanding of the traffic flow on a freeway is 32-33 the speed-volume characteristics as shown in Fig 1.3. Empirical and theoretical studies have indicated that for normal flow, traffic volume decreases with increasing speeds. At a point of maximum volume, flow becomes unstable and eventually turns into a forced flow. This results in the simultaneous decrease of the volume and speed.

The identity given in Eq. 1.1 is the basic criteria from which many of the traffic models have been derived.











Speed - Volume Characteristics

The traffic on a freeway is generally charact-34-35 erised in terms of macroscopic or microscopic models. In developing a representation of traffic on a freeway segment, several Kilometres in length for several hours, the main objective is concerned with gross features of traffic such as volume, density, speed, and average travel time. Models developed with this objective in mind need only provide an accurate representation of these parameters and are generally termed macroscopic models.

Although accurate measurements of traffic parameters over the entire length of the freeway and knowledge of the proper control action for any given set of traffic conditions are still relatively limited, several authors have formulated various schemes on the data obtained from vehicle detectors placed at regular intervals on the freeway.

Gazis and Knapp<sup>36</sup> developed a modelling technique for estimating the number of vehicles on a section of freeway from speed and flow measurements at the entrance and exit points of a section. From the estimate of the travel time a rough measure of density was obtained. An alternative approach was taken by Mikhalkin<sup>37</sup> where the occupancy (the percentage of time the detector is activated by the vehicle during a given period) was utilized in

place of section density. Although the approach was simple and the technique could readily be implemented, the resultant speed estimates were <sup>38</sup> highly unreliable. Nahi and Trivedie applied the modern estimation theory concept and presented an improved modelling technique which provides simultaneous estimation of traffic parameters such as section density and speed based on various averages over the freeway section.

The above techniques provide a means to accomplish two objectives:

- (a) predict traffic conditions
- (b) indicate congestion.

However there are situations, particularly in incident detection, identification and tracking schemes, where detailed representation of traffic flow down to the level where individual vehicles are concerned, is required. These models are known as microscopic models and are extremely useful tcols in studying problems concerned with relatively short lengths of the freeway and for relatively short periods of time.

#### IDENTIFICATION 1.5

9

Considerable effort has also been expended in recent years to develop automatic vehicle identification The main purpose has been and classification systems. the individual detection of a selected vehicle. A common requirement of such systems is that the vehicle requiring identification be equipped with a transponder which may be either a passive coded or an active" unit capable of sending out a coded signal. When the vehicle comes within the range of an interrogator, the code is read and the vehicle identification is obtained.

#### IMPLEMENTATION 1.6 SYSTEM

Since vehicle detectors are slow speed devices the information obtained from detectors at the entrance and exits of a section is processed initially by a local processor, before being transmitted to a central processor for the overall co-A typical approach to the ordination plan. implementation of a traffic controller is shown by the block diagram of Fig. 1.4. In such arrangements the variable message sign can take various forms, the simplest being the conventional traffic signal lights.

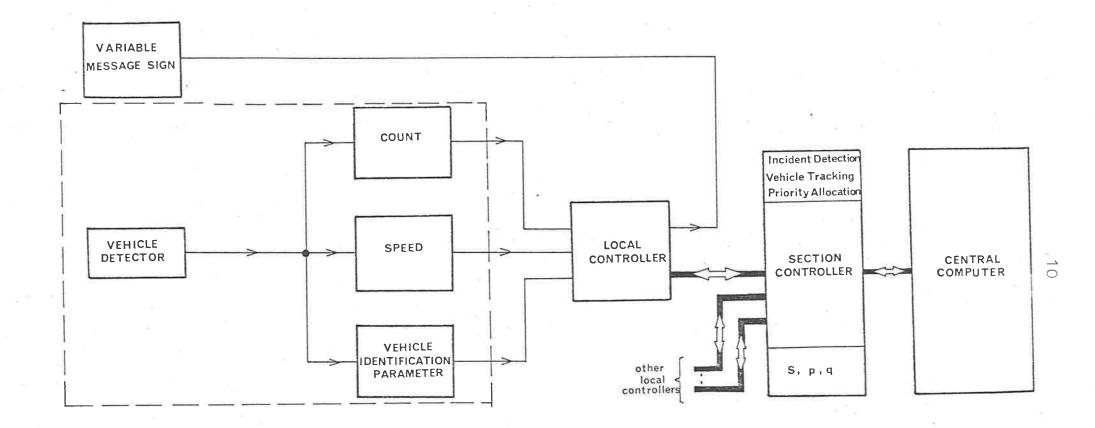



Fig. 1.4 A Typical Representation of A Traffic Monitoring and Control System

The success and the performance of the system is dependant on the accuracy of data obtained from vehicle detectors. Therefore vehicle detectors are the essential link between the vehicle and the control system.

The blocks within the dotted lines of Fig. 1.4 are the subject of the current study.

#### CHAPTER 2

#### SENSORS REVIEW OF VEHICLE

#### INTRODUCTION 2.1

A vehicle sensor can be defined as a special detector which not only provides information regarding the status ( presence or passage) of a vehicle, but also gives an indication regarding its speed and classification.

The basic requirements and the desired accuracies of vehicle sensors are shown in Table 2.1.

#### 51-52

Barker made a detailed comparative study of various detectors such as magnetic, magnetometer, pressure, inductive loop, sonic and radar. Ziolkowski and Tsao investigated an alternative scheme using near-field (freq. 300KHz) and directional (freq. 3 GHz) antennae buried in the road surface. The results of these investigations are shown in This is an extension of Barker's findings Table 2.2. and indicate the performance of the detectors in terms of the relative acceptance criteria defined by: good (G), satisfactory (S), marginal (M), and unsatisfactory (U).

| or 90%<br>e |
|-------------|
|             |
| or 90%<br>e |
|             |
|             |
| or 90%<br>e |
|             |
|             |
|             |
|             |

(a)

|                        | Parameter                                                          | Tolerance                                      |
|------------------------|--------------------------------------------------------------------|------------------------------------------------|
| i<br>ii<br>iii<br>iv   | Temperature<br>Humidity<br>Snow depth<br>Snow-ice mixture<br>depth | -40°C to 75°C<br>O to 100%<br>200 mm<br>150 mm |
| v<br>vi<br>vii<br>viii | Ice depth<br>Water depth<br>Soil depth<br>Grease-oil depth         | 25 mm<br>25 mm<br>25 mm<br>1.5 mm              |

(b)

Table 2.1

- Basic Requirements of Vehicle Sensor(a) Accuracy requirements in terms of traffic parameters
- (b) Environmental conditions

NOTE:

This information was prepared by the Bureau of Public Roads and Federal Highway Administration -Contract No. FH -11-6973

|                      | Count<br>Accuracy | Single Lane<br>Coverage<br>Definition | Speed | Status | Relative<br>Installation<br>Cost | Installation<br>Time (hr.) | Maintenance | Enviroment | Relative<br>(Hardware)<br>Detector<br>Cost | Identificat-<br>ion | Reliability |
|----------------------|-------------------|---------------------------------------|-------|--------|----------------------------------|----------------------------|-------------|------------|--------------------------------------------|---------------------|-------------|
| Pressure             | S                 | G                                     | U     | M      | 2                                | 48-64                      | G           | S          | 1.8                                        | U                   | S           |
| Magnetic             | S                 | S                                     | U     | S      | 0.7-0.9                          | 4-12                       | G           | G          | 1.2                                        | M                   | G           |
| Magnetometer         | G                 | G                                     | υ     | S      | 0.8                              | 0.5                        | G           | G          | 1                                          | M                   | G           |
| Radar                | S                 | S                                     | G     | S      | 0.5-2                            | 2                          | S           | G          | 3                                          | U                   | S           |
| Sonic                | S                 | S                                     | S     | S      | 0.5-2                            | 2                          | S           | S          | 3                                          | U                   | S           |
| Inductive<br>Loop    | G                 | G                                     | M     | S      | 1                                | 2-4                        | G           | G          | 1                                          | M                   | S           |
| Antenna<br>f≑300 KHz | G                 | S                                     | S     | S      | 0.9                              | 2-3                        | G           | G          | 1                                          | S                   | G           |
| Antenna<br>f≑3GHz    | G                 | S                                     | M     | G      | 0.8                              | 1                          | S           | M          | 1.2                                        | G                   | G           |

Table 2.2(a) A Comparative Study of Vehicle Detectors

Savia, Almoita

| DETECTORS                    | INSTALLATION                                                                                                                                                                                                                     |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pressure                     | Installed flush with the road surface in a 2 metre by<br>45cm by 30cm excavated trench sealed with concrete                                                                                                                      |
| Magnetic<br>•                | Mounted flush with road surface in 5cm by 50cm slot or<br>slid into a 5cm diameter nonmetallic conduit in a bored<br>hole from roadside not more than 30cm below the pavement<br>surface                                         |
| Magnetometer                 | Installed in a 5cm diameter by 25cm deep hole in<br>pavement surface with 30 metre nominal lead length                                                                                                                           |
| Radar                        | Mounted on a pole in overhead or sidefire position                                                                                                                                                                               |
| Sonic                        | Mounted on a pole in overhead or sidefire position                                                                                                                                                                               |
| Inductive<br>Loop            | 1-5 turn of insulated no. 14 gauge wire installed in a<br>rectangular slot 0.5cm wide by 0.5-5cm deep cut into the<br>pavement surface. Loop size varies from 1 metre sq. to<br>2 metre by 30 metre, with 200 metre maximum lead |
| Antenna<br>f≑300KHz<br>(HED) | The near-field Horizontal Electric dipole (HED) is<br>constructed from a coaxial cable and installed in a slot<br>2cm by 10cm deep cut in the lane                                                                               |
| Antenna<br>f≑3GHz            | The antenna is seated in a pod of 10cm by 20cm and 2cm<br>deep                                                                                                                                                                   |

Table 2.2(b) Installation Technique for the Various Vehicle Detectors

Although this type of assessment depends on the users' judgement, the technique provides a basis for the development of a figure of merit which can be used as a guide for comparison.

• From the various vehicle detectors developed, no single detector is available which fulfills all the requirements of the modern traffic monitoring system. However one of these, the inductive loop, has been accepted as an interim solution because of its reliability and economic advantage. Therefore, the following section outlines the basic concepts associated with this approach and reviews the relative merits and the limitations in terms of vehicle detection, speed measurement and classification.

2.2 BEHAVIOUR OF A COIL IN PROXIMITY OF A CONDUCTING SURFACE

When a coil carrying a time-varying current is placed in the proximity of a conducting surface, eddy currents are induced in that surface. Subsequently, a pronounced change in the impedance of the coil is observed.

The self inductance L of a loop conductor of 60-61.finite cross section is given by

$$L_{o} = \mu (2a - r_{w}) \left[ \left( 1 - \frac{k^{2}}{2} \right) K(k) - E(k) \right] \dots (2.1)$$

where

$$k^{2} = \frac{4a(a-r_{w})}{(2a-r_{w})}$$

a = radius of loop

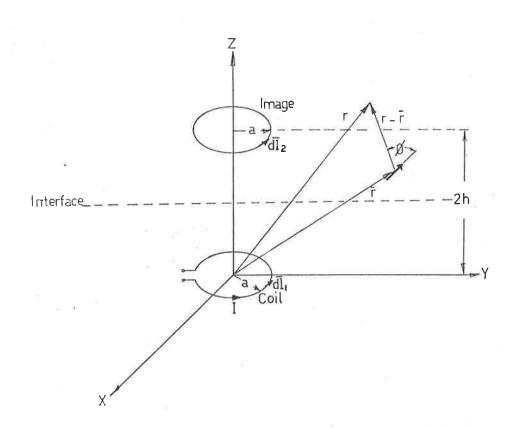
rw= radius of wire

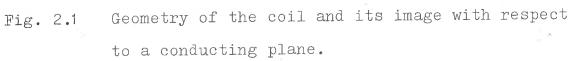
K(k) = complete elliptic integral of the first
 kind

When the coil is placed near a conducting surface, its impedance is modified. This change can be thought to be caused by the presence of an image coil as shown in Fig. 2.1. The modified inductance can be obtained by applying Newman's equation for mutual inductance.

$$M = \frac{\mu}{4\pi} \oint \oint \frac{d\overline{l}_1 \cdot d\overline{l}_2}{r} \qquad \dots (2.2)$$

Where  $\overline{dl}_1$  and  $\overline{dl}_2$  are differential elements of length about the actual and the image loops respectively. The inductance of the coil may be written as


$$L_{c}=L_{o} - \sqrt{a(a-r_{w})} \left[ \left( \frac{2}{k} - k \right) K(k) - \frac{2}{k} E(k) \right] \dots (2.3)$$


where

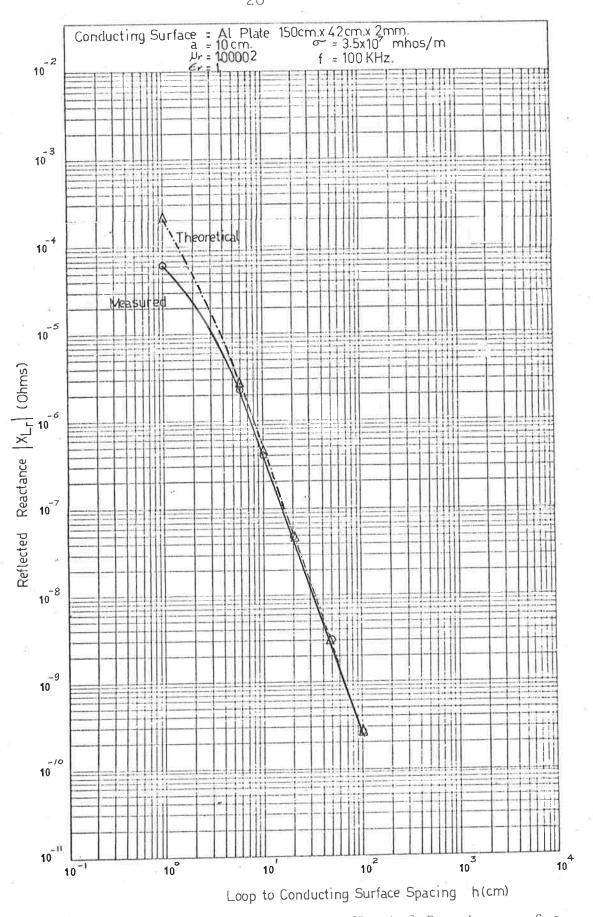
$$k = \sqrt{\frac{4a(a-r_{W})}{(2a-r_{W})^{2}+(2h)^{2}}}$$

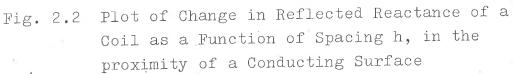
and

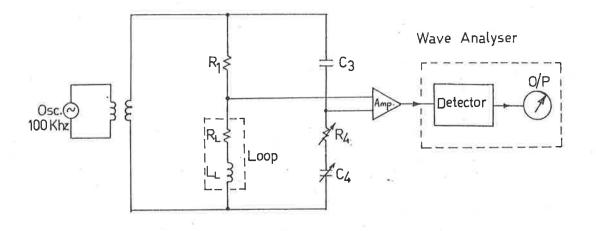
h = spacing between the coil and the conducting surface.

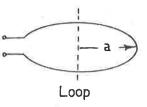





The second term in Eq. (2.3) is the change in inductance of the coil caused by the proximity of a conducting surface. This is illustrated in Fig. 2.2 as a function of the spacing h, for a given frequency and coil size.


The negative sign in Eq. (2.3) implies that the reflected reactance becomes more capacitive as the spacing h is reduced.


The impedance bridge shown in Fig. 2.3 was used for the measurement of the coil inductance. For values of h > 5cm good correlation was obtained between the computed and the experimental results.


### 2.3 INDUCTIVE LOOP DETECTORS

The change in the inductance of the loop due to the presence of a vehicle has been implemented in several designs. The various configurations such as the bridge balance, self-tuning and phase shift systems consist of a loop of one or two turns of wire and approximately 1-2 metres square, located horizontally in the road surface. The loop is energized by an oscillator having a frequency in the range of 40KHz-100KHz.





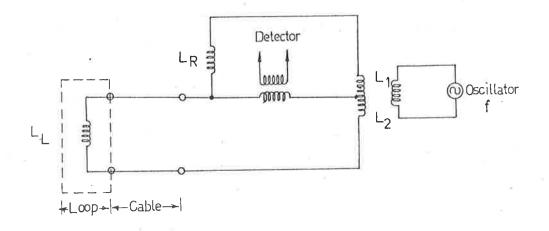




R<sub>L</sub> = Loop Resistance L<sub>L</sub> = Loop Inductance a = 10 cm.

Fig. 2.3

Impedance Brige for Measurement of the Loop Parameters 2.3.1 The Bridge - Balance Detector


A typical configuration for a bridge - balance loop detector is shown in Fig. 2.4. The combined inductance of the loop  $L_1$  and the lead-in cable  $L_d$ form one leg of the bridge while the other leg is comprised of a fixed reference inductor  $L_R$  having similar characteristics as the loop-cable combination. Presence of a vehicle causes a decrease in the inductance of the loop which results in an unbalanced voltage being generated. Subsequently, this is detected and processed.

The main advantage of this arrangement is its insensitivity to changes in the frequency of the excitation source.

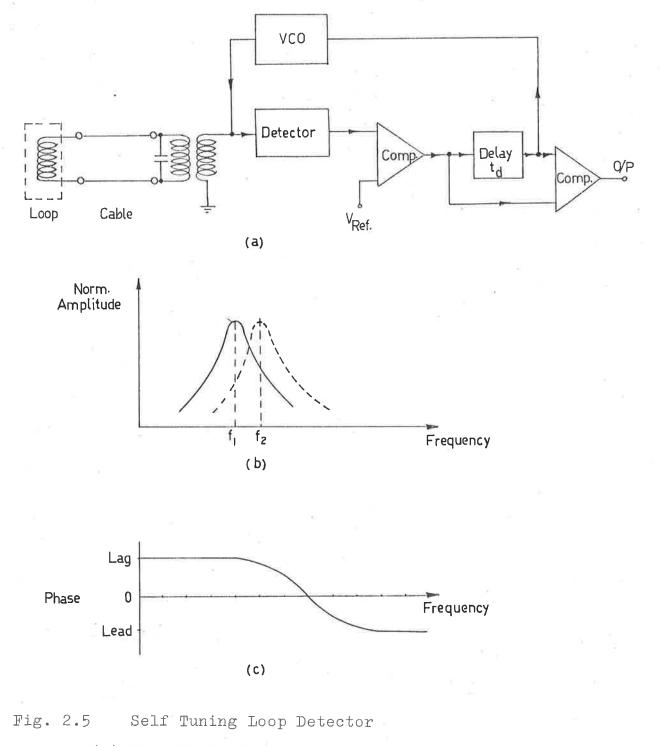
The major drawback is the inability of the reference inductor to follow the changes in inductances of the loop and the lead-in cable, caused by temperature and humidity variations.

2.3.2 Self-Tuning Loop Detector

This technique uses the loop as part of a parallel resonant tank circuit which automatically adjusts a voltage-controlled oscillator (VCO) to a predetermined frequency relative to resonant frequency of a tank circuit. A vehicle in the proximity of the loop causes a reduction in the



 $50\mu$ H < L<sub>L</sub> <  $500\mu$ H 40 KHz < f < 100 KHz


Fig. 2.4 Vehicle Detector Using Bridge-Balance Technique.

inductance of the loop, which in turn changes the frequency of the tank from  $f_1$  to  $f_2$ . This is reflected as a voltage change in the tank circuit, a delayed version of which is applied to the VCO. The delay circuit compensates for slow changes in the characteristics of the loop and the lead-in cable resulting from variations in temperature and humidity. This arrangement is shown in Fig. 2.5.

The main advantage of this configuration is that no field adjustments are necessary during the installation phase.

2.3.3 Phase Shift Loop Detector

In this configuration the loop and the lead-in cable in conjunction with a tuning capacitor form a resonant tank circuit. The phase of the voltage in the loop tank circuit is being continually compared with the phase of the signal derived from the oscillator. Presence of a vehicle detunes the circuit which causes a change in phase of voltage appearing across the tank circuit. Fig. 2.6 shows the circuit arrangement for the phase shift loop vehicle detector.



- (a) Circuit Configuration
- (b) Resonant curves

(c) Phase characteristics

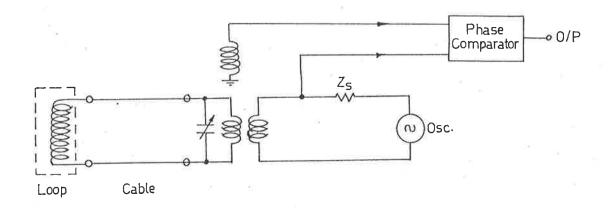



Fig. 2.6 Phase Shift Loop Detector

## 2.4 SPEED MEASUREMENT

The vehicle speed  $\boldsymbol{S}_{_{\boldsymbol{V}}}$  is given by the fundamental relationship

$$S_{v} = \frac{D_{s}}{t_{s}} \qquad \dots (2.4)$$

where

 $D_s$  = distance between two points  $t_s$  = time to travel the distance  $D_s$ 

In a number of traffic monitoring systems inductive loops are used for speed measurements.

## 2.4.1 Single Loop Technique

In systems where the accuracy of the speed information is non critical, a single inductive loop detector is implemented for speed estimations.

The expression defining the speed in terms of loop length  $l_d$  and vehicle length  $l_m$  as shown in Fig 2.8, is given by

$$S_{sl} = \frac{l_{m} + l_{d}}{t_{w}} \qquad \dots (2.5)$$

where

 $t_w$  = period the loop is occupied.

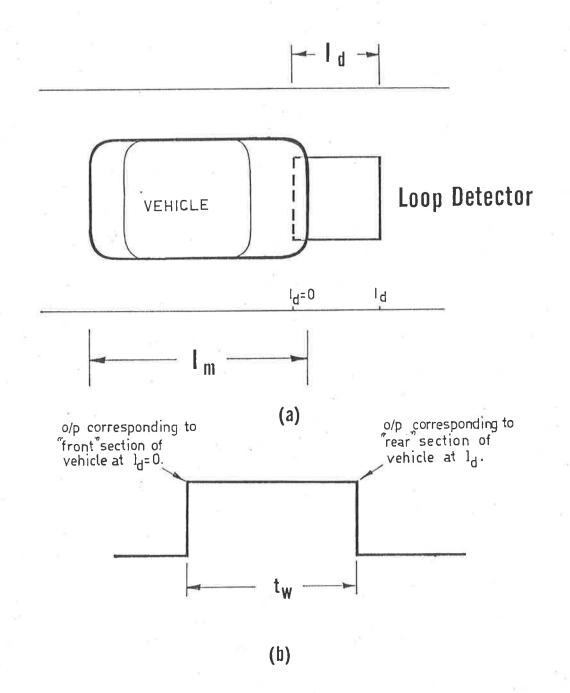



FIG 2.8

(a)

Physical Layout for Single Loop Vehicle Detection.

(b) Detector Output.

Eq. (2.5) assumes that the length of the vehicle is known. To overcome this limitation, an average length  $\overline{l_m}$  which is determined experimentally, is assigned to the vehicle. It is found that  $\overline{l_m}$  is dependent on the highway, location of the detector, and time of the day.

A typical characteristic associated with a particular section of the highway in terms of vehicle count and length is shown in Fig. 2.9. The average length  $\overline{l}_m$  can be expressed as

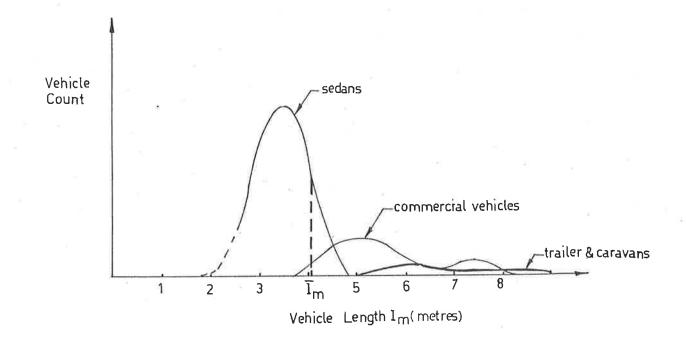
...(2.6)

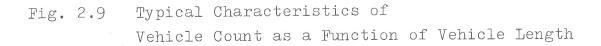
$$\overline{l}_{m} = \frac{1}{N_{v}} \sum_{i=1}^{N_{v}} l_{m_{i}}$$

where

 $N_V =$  number of vehicles

lm; = length associated with the i<sup>th</sup> vehicle.
The modified expression in terms of the average
vehicle length is


$$\overline{S}_{sl} = \frac{\overline{l}_{m} + \overline{l}_{d}}{t_{w}} \qquad \dots (2.7)$$


To obtain an indication of the speed error when  $\overline{l}_{m}$  is used in place of  $l_{m}$ , we differentiate Eq. (2.5) to obtain  $\frac{\Delta S_{S1}}{S_{S1}} = \frac{\Delta l_{m}}{l_{m}+l_{d}}$  ...(2.8)

where

$$\Delta l_{\rm m} = l_{\rm m} - \bar{l}_{\rm m} \qquad \dots (2.9)$$

This is plotted in Fig. 2.10 as a function of the assigned average length  $\overline{l}_m$ .





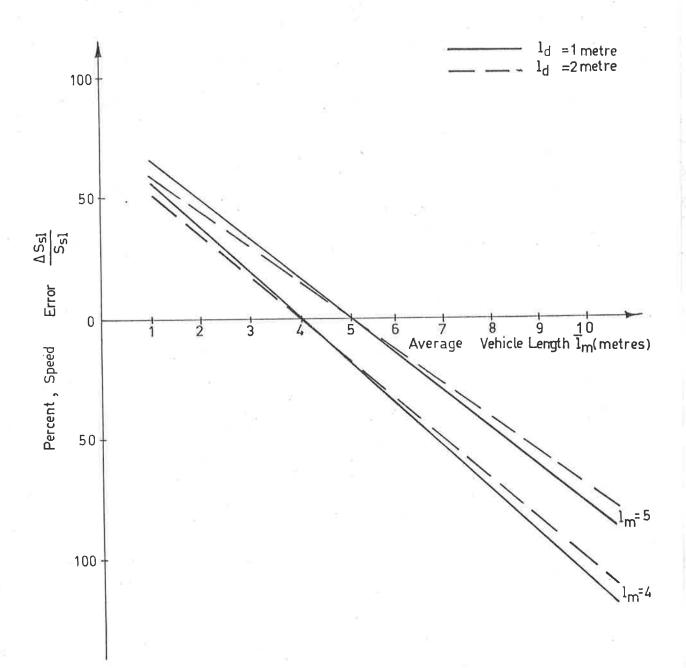



Fig. 2.10 Percent, Speed Error as a function of Average Vehicle Length I<sub>m</sub> for two Loops and Vehicle Dimensions

2.4.2 Double Loop Technique

The vehicle speed derived using Eq. (2.7) is highly unrelaible for most traffic monitoring applications. The accuracy is improved by using two loops spaced a distance l<sub>sd</sub> apart. This configuration is shown in Fig. 2.11.

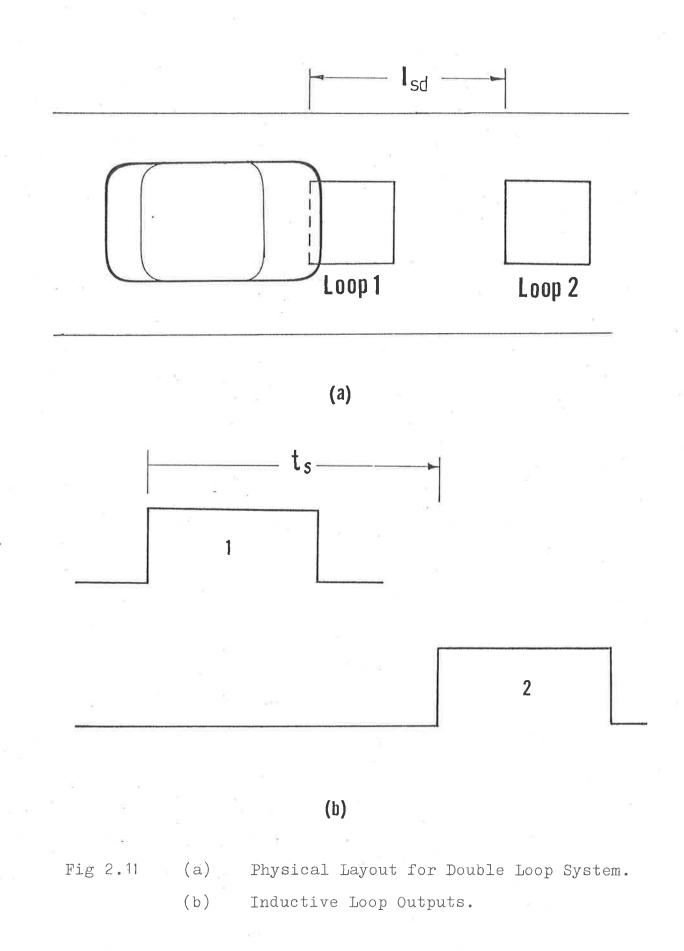
The speed  $S_{d1}$  for double loops is given by

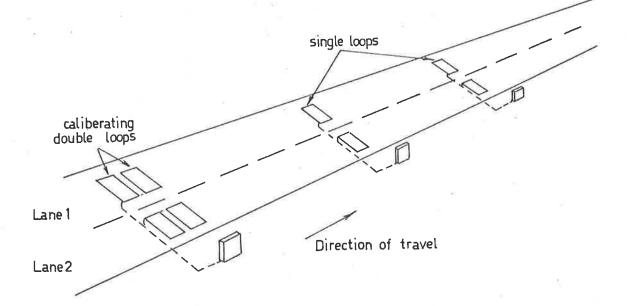
...(2.10)

$$S_{dl} = \frac{l_{sd}}{t_s}$$

where

 $l_{sd}$  = Separation between the loops


and


t<sub>s</sub> = Time difference between the leading edges of the outputs of the loops.

A number of systems avoid duplication of the equipment by using double loops at strategic locations for calibration purposes, followed by single loops. By equating expressions (2.5) and (2.10) the length of the vehicle is

$$l_{\rm m} = l_{\rm sd} \cdot \left(\frac{t_{\rm w}}{t_{\rm s}}\right) - l_{\rm d} \qquad \dots (2.11)$$

This information is then used by the single loop detectors for speed measurement. A typical arrangement is shown in Fig. 2.12.

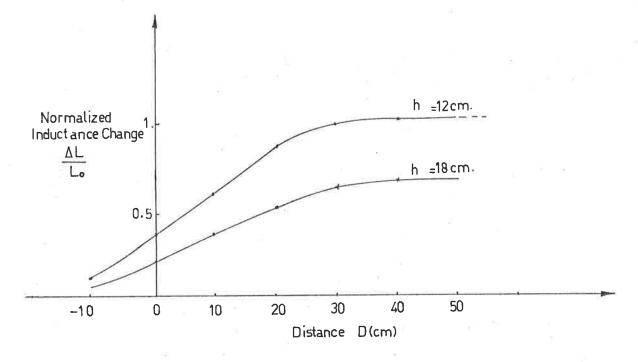




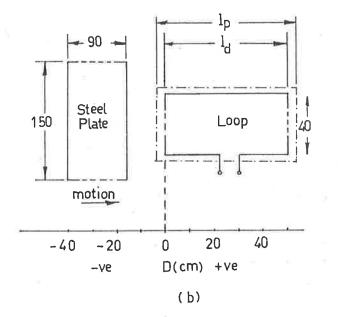


Physical Layout of Double Calibrating Loops followed by Single Loops for Speed and Length Measurements The main difficulty encountered with this approach is that of vehicles changing lane after the calibration points.

## 2.5 DISCRIMINATION


 $l_p = l_d + l_e$ 

The sinusoidal signal associated with the inductive loop produces a magnetic field, the effective size of which is slightly larger than the loop length  $l_d$ . This is demonstrated in Fig. 2.13 where the change in inductance  $L_c$  is plotted as a function of the distance (D) of a steel plate from the inductive loop. The modified loop length  $l_p$  can be expressed as


where  $l_e$  is found to be in the range of 20cm - 80cm, and is dependant on such factors as the number of turns, height and vehicle characteristics.

...(2.12)

The vehicle spacing (expressed in terms of time) is variable with volume and in 90 percent of the cases, is greater than one second. Therefore, the output of the inductive loop provides an accurate indication of the vehicle count for most of the traffic conditions. However during a traffic jam, the spacing between vehicles becomes comparable with the modified loop length 1<sub>p</sub> which may result in the loop being occupied by two vehicles simultaneously, thus giving an incorrect count output.



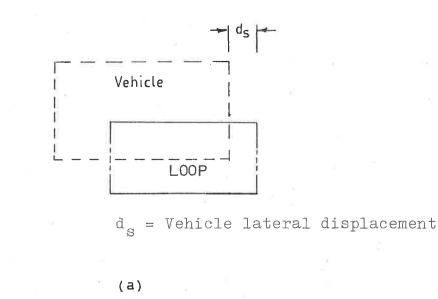
(a)

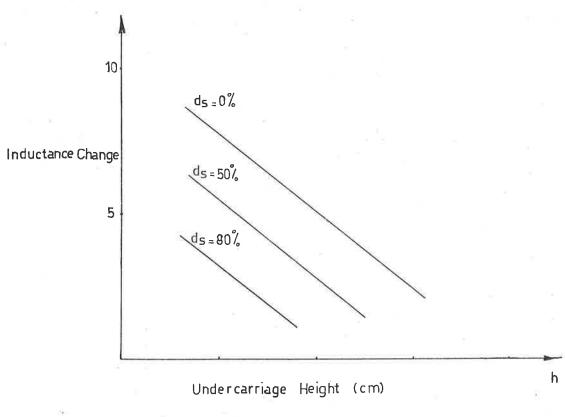


l<sub>d</sub> = 50 cm. freq=100 KHz.

Fig. 2.13 Inductive Loop Characteristics

- (a) Normalized impedance change as a function of approach distance D
- (b) Physical Layout


#### 2.6 CLASSIFICATION


Thilo and Drebinger used the vehicle length and the undercarriage height as the criteria for vehicle classification. The length was measured using double loops, while the undercarriage height was estimated from measurement of the maximum value of the change in the inductance of the loop. In this way they were able to provide a rough indication of the classification, such as sedans, trucks or commercial vehicles.

The main drawback is with vehicles which cover only part of the loop. Fig. 2.14 indicates a typical inductance change of a loop as a function of height for several vehicle displacement values. Thus partial coverage of the loop results in inaccurate height estimation which leads to wrong classification. Problems are also encountered when magnitude of transmitted signal is varied due to environmental changes.

#### 2.7 CONCLUSIONS

From the discussions so far, it is apparent that the vehicle detectors available commercially do not fulfil the requirements of the modern traffic monitoring systems specified in Table 2.1. The obvious installation problems associated with the overhead vehicle sensors make their application less attractive than





## (b)

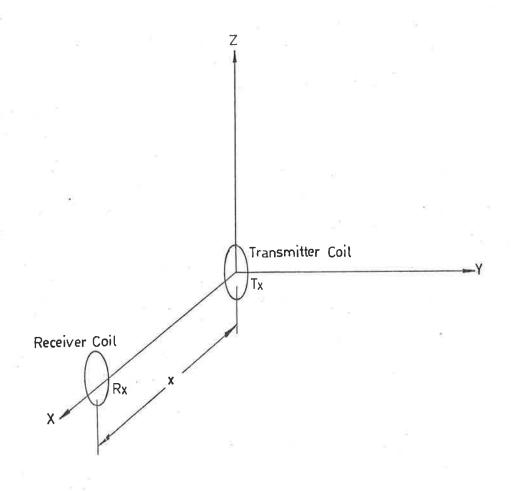
Fig. 2.14 Typical Inductance Change as a Function of Undercarriage Height h for several Values of Vehicle Lateral Displacement

- (a) Physical Layout
- (b) Characteristics

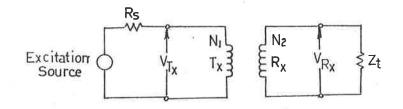
those installed in the road surface. The ability of a detector to discriminate between closely following vehicles and vehicles in the adjacent lanes is also an essential factor which requires careful consideration. The dimensions of the sensor also need attention in order to avoid the weakening of the road surface structure.

Finally, from economics consideration of traffic systems, it is desirable to have only one sensor per lane to obtain the relevant traffic data such as count, status, speed and identification.

# CHAPTER 3


COUPLED COILS DETECTION TECHNIQUE

## 3.1 INTRODUCTION


The requirements of the modern traffic monitoring systems in conjunction with analysis of the various vehicle detectors, as discussed in previous chapters, provided the basis for the development of a vehicle  $\frac{66-67}{100}$  sensor using coupled coils. This technique was adopted because of the simplicity of construction.

In this arrangement two coils are spaced apart with a common axis. One coil  $(T_x)$  is energized by a time-varying current source, resulting in an induced voltage in the second coil  $(R_x)$ . The geometry of the coils and the equivalent circuit is shown in Fig. 3.1.

When the coils are placed in the proximity of a conducting material, eddy currents are induced in that **65,68** material. The magnetic field created by these currents is in opposition to the applied field and hence the average field in the conductor can be approximated to the value of the applied magnetic field. This results in a change in the induced voltage in the receiver, an analytical solution to which may be obtained using the method of images.



(a)



(b)

Fig. 3.1

Coupled Coils Detector

- (a) Co-ordinate system definition
- (b) Equivalent circuit

3.2 DERIVATION OF THE INDUCED VOLTAGE IN THE RECEIVER COIL IN THE PROXIMITY OF A CONDUCTING SURFACE

> The induced voltage in the receiver coil  $R_x$ in the presence of an interface, can be derived by considering the interface as an infinite conducting plane. The change in the induced voltage can then be represented in terms of an image coil situated at Z = 2h. The geometry of the co-ordinate system used is shown in Fig. 3.2.

The components of the magnetic flux density  $^{70}$  from Appendix I is found from the magnetic vector potential  $\overline{A}$ . Thus

$$\nabla x \overline{A} = \overline{B} \qquad \dots (3.1)$$

giving

$$B_{r} = \left(\frac{\mu \text{ NIA}_{c}}{2 \Pi r^{3}}\right) \cos \theta \qquad \dots (3.2)$$

$$B_{\Theta} = \left(\frac{\mu \text{ NIA}_{c}}{4 \Pi r^{3}}\right) \sin \Theta \qquad \dots (3.3)$$

$$^{\mathrm{B}}\phi = 0 \qquad \qquad \dots (3.4)$$

Now we can obtain directly the magnetic field components  $\rm H_r$  and  $\rm H_{\Theta}$  from the relation

$$\overline{B} = \mu_{a}\overline{H} \qquad \dots (3.5)$$

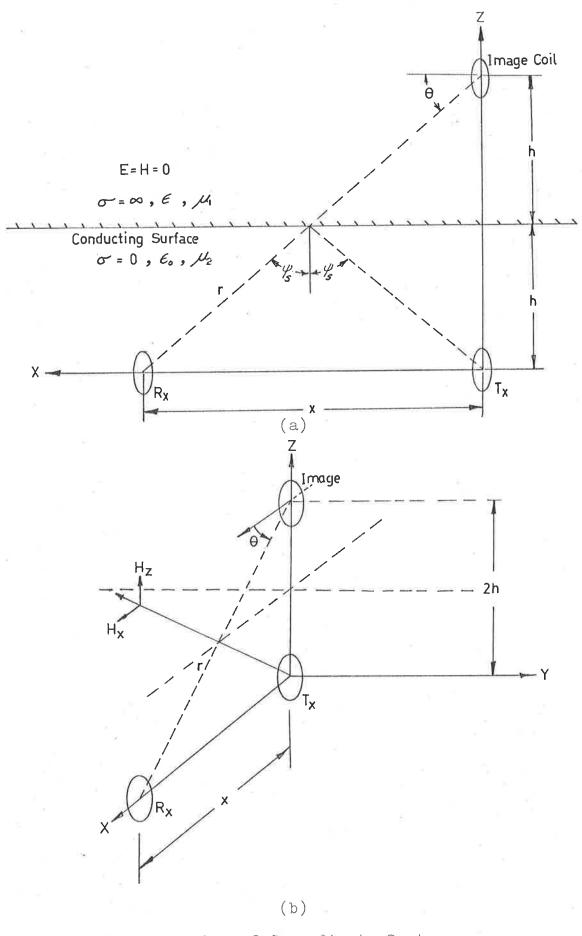



Fig. 3.2 Geometry of Co-ordinate System (a) in terms of XZ plane (b) in terms of XYZ axis The x component of the magnetic field as shown in Fig. 3.2 can be written as

$$H_x = H_r \cos \theta - H_{\theta} \sin \theta$$
 ...(3.6)

Substituting equations (3.2), (3.3) and (3.5) in equation (3.6) we obtain the magnetic field at the receiver coil, written as

$$H_{x} = \frac{m}{4\Pi r^{3}} (3\cos^{2} \theta - 1) \qquad ...(3.7)$$

where

- $m = NIA_{c} \mu_{r} \qquad \dots (3.8)$
- $A_{c}$  = area of coil with radius a

Here  $\mu_{\Gamma}$  is used as an effective permeability when a ferrite rod is introduced into the coil. The value of  $\mu_{\Gamma}$  depends on the material, geometry and permeability. For coils of ellipsoidal shape it can be obtained using the theory of demagnetization factor. For practical geometry empirical determination is more appropriate.

$$\cos \theta = \frac{x}{r} \qquad \dots (3.9)$$

and

$$r = \sqrt{(4h^2 + x^2)}$$
 ...(3.10)

Thus , the magnetic field  ${\rm H}_{{\rm x}{\rm t}}\,{\rm due}$  to the transmitter coil is

$$H_{xt} = \frac{m}{2\Pi x^3}$$
 ...(3.11)

, Here we have assumed that

where

V

a = radius of coil

Similarly, the field  $H_{xi}$  at the receiver coil due to the image is

$$H_{xi} = \frac{m}{2\pi} \cdot \frac{x^2 - 2h^2}{[4h^2 + x^2]} \frac{5}{2} \qquad \dots (3.13)$$

The induced voltage V in a coil in terms of  $$^{62}$$  the magnetic vector  $\overline{A}$  is defined by

$$V = -\frac{\partial}{\partial t} \oint \overline{A} \cdot d\overline{1} \qquad \dots (3.14)$$
$$= -\frac{\partial}{\partial t} \oint \overline{B} \cdot d\overline{S} \qquad \dots (3.15)$$
$$= -jwA_{c} \mu H \qquad \dots (3.16)$$

where  $\mathcal{S}$  is any surface with  $\mathcal{C}$  as its boundry and element  $\overline{dl}$ .

For a loop having N turns, Eq. (3.16) is modified to

$$= -jwNA_{O}\mu H \qquad \dots (3.17)$$

Therefore from Eq. (3.11) and Eq. (3.17) the induced voltage in the receiver coil due to the transmitter coil is

$$V_{R_{x}} = \frac{K_{1}}{2\Pi} \left(\frac{1}{x^{3}}\right) \qquad \dots (3.18)$$

where

and

 $\mu_{\textbf{o}}=$  permeability of free space

Similarly the induced voltage  $V_p$  in the receiver coil due to the image coil from Eq. (3.13) and Eq. (3.17) can be expressed as

$$V_{\rm p} = \frac{K_{\rm i}}{2\Pi} \left( \frac{x^2 - 2h^2}{\left[4h^2 + x^2\right]} \mathbf{5/2} \right) \qquad \dots (3.20)$$

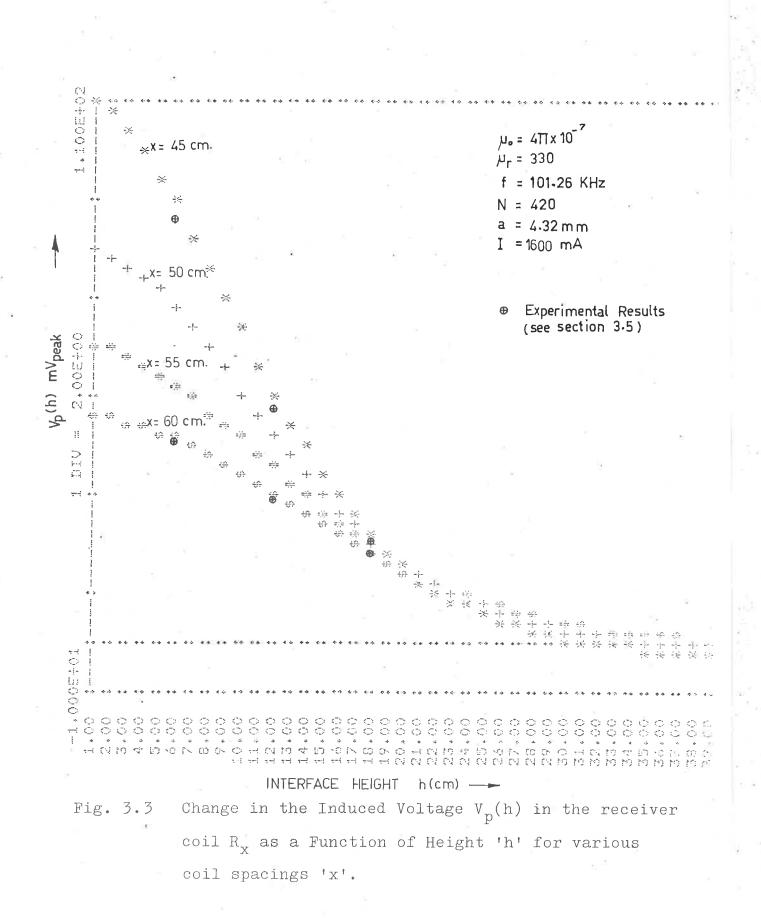
...(3.19)

The resultant induced voltage  ${\rm V}_{\rm R}$  in the receiver coil is given by

$$V_{\rm R} = V_{\rm R_{\rm X}} + V_{\rm p} \qquad \dots (3.21)$$

$$= \frac{K_{1}}{2\Pi} \left( \frac{1}{x^{3}} + \frac{(x^{2} - 2h^{2})}{[4h^{2} + x^{2}]^{5/2}} \right) \dots (3.22)$$

The important factor associated with Eq. (3.21) is that only  $V_p$  in the expression conveys any useful information. Therefore the main task is to examine the behaviour of  $V_p$  as a function of various external parameters such as coil spacing x, interface height h, induced voltage  $V_{R_x}$  and the effect of interface conductivity. 3.3 BEHAVIOUR OF IMAGE VOLTAGE AS A FUNCTION OF COIL SPACING AND INTERFACE HEIGHT


> The change  $V_p$  in the induced voltage  $V_R$  in the receiver coil due to the presence of a conducting plate defined by Eq. (3.20) is shown in Fig. 3.3, as a function of interface height h for several values of coil separation x. The numerator of Eq.(3.20) provides the basis for an important relationship between x and h which can be written in terms of an inequality

...(3.23)

The constraint defined by Eq. (3.23) ensures that the magnitude of the image voltage V is positive for ease of processing.

3.4 THE EFFECT OF FINITE CONDUCTIVITY OF THE INTERFACE ON THE IMAGE VOLTAGE

The model defined by Eq. (3.20) to describe the change in the induced voltage  $V_p$  in the receiver coil is based on the assumption that the interface is a perfect electrical conductor, (i.e. $\sigma = \infty$ ). However in practice we do not have perfect conductors, but the materials we are concerned with such as aluminium and steel have large conductivities, so that at relatively high frequencies, negligible error is made if the dimensions of the conductors are made large,



compared with the skin depth  $\delta_s$ . Here by high frequency we mean one that yields a value of skin depth that is small compared with the conductor dimensions. The skin depth can be expressed as

...(3.24)

$$\delta_{s} = \left[\frac{1}{\Pi \circ \mu f}\right]^{\frac{1}{2}}$$
 (meter)

where

 $\mu$  = permeability of material

and can be defined as the distance the wave propagates in order to decay by an amount  $e^{-1}$ . Therefore as  $\sim$ tends to infinity,  $\delta_s$  approaches zero. This implies that the time-varying electromagnetic field decays infinitely fast and cannot penetrate the conductor. Fig. 3.4 shows the skin depths  $\delta_s$  for steel and aluminium as a function of frequency. The conductor can be shown to be characterised as a boundary surface exhibiting a surface impedance the resistive part of which is given by

 $R_s = \frac{1}{\delta_s}$  ohm/square ...(3.25)

For aluminium and steel (304) at 100KHz the values are  $9.3 \times 10^{-5}$  ohm and  $4.8 \times 10^{-4}$  ohm respectively. For reasonably good conductor,  $R_s$  is small and for all practical purposes the field in front of the conductor is the same as would exist if  $\sigma$  were infinite.

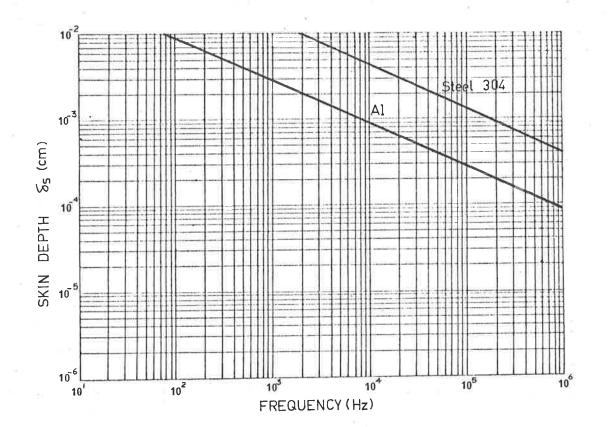
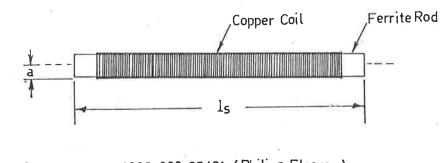
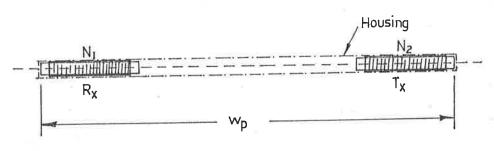



Fig. 3.4 Skin Depth for Aluminium and Steel Plate Conductors


### 3.5 EXPERIMENTAL EVALUATION

To substantiate the theoretical approximations under the assumed ideal conditions, an experimental sensor as illustrated in Fig. 3.5, was developed. A test set-up, which consisted of a wooden frame with adjustable guide rails as shown in Fig. 3.6, was constructed. Two metal plates (aluminium and steel) having different conductivities were used. The resultant characteristics of the plates are shown in Table 3.1.

3.5.1 Magnitude of Image Voltage


The induced voltage  $V_{R_{\chi}}$  was initially set to a predetermined value by controlling the current in the transmitter coil. A horizontal plate was then introduced above the sensor and the value of  $V_p(mV)$ was noted as a function of height h(cm) for three values of induced voltage  $V_{R_{\chi}}(mV)$ . The experimental results are shown in Table 3.2 for two values of coil spacing x.

The computed results for  $V_{R_x} = 500 \text{mV}$  obtained from Fig. 3.3 are also included for comparison. The computed values are in agreement with those obtained experimentally for both aluminium and steel plates.



| Ferrite        | : | 4302 020 35401 (Philips Elcoma)  |
|----------------|---|----------------------------------|
| μr             |   | 330                              |
| N              | : | 420 turns polyester wire 206–170 |
| a              | : | 4.32 mm                          |
| ۲ <sub>W</sub> | : | 0.2 mm                           |





N1=N2=N

(b)

Fig. 3.5 Sensor

- (a) Coil
- (b) Relationship between  ${\rm T}_{\rm X}$  and  ${\rm R}_{\rm X}$

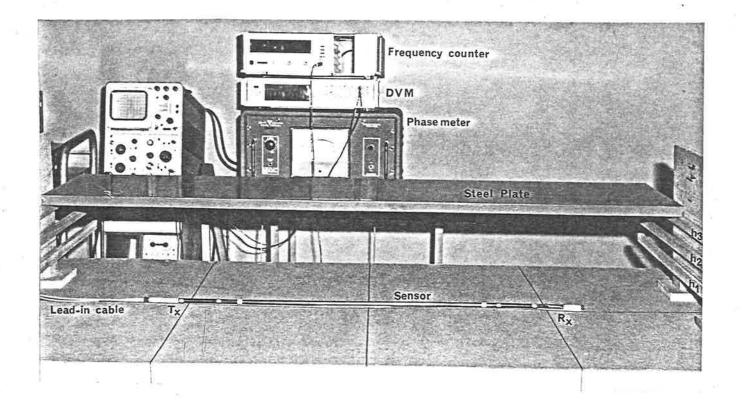



Fig. 3.6 Test Set-up for Measurement of V<sub>p</sub>

|     |              | μ <sub>r</sub> | حہ<br>(moh/m)        | 8 <sub>s</sub><br>(metre) |  |  |
|-----|--------------|----------------|----------------------|---------------------------|--|--|
|     |              |                | 3.72x10 <sup>7</sup> | 2.9x10 <sup>-4</sup>      |  |  |
|     | 304<br>Steel | 1.02           | 1.39x10 <sup>6</sup> | 1.5×10 <sup>-3</sup>      |  |  |
| (a) |              |                |                      |                           |  |  |

|                     | х <sub>р</sub><br>ст | У <sub>р</sub><br>ст | t <sub>h</sub><br>mm |  |  |  |
|---------------------|----------------------|----------------------|----------------------|--|--|--|
| Al                  | 150                  | 42                   | 2.5                  |  |  |  |
| <b>304</b><br>Steel | 150                  | 42                   | 2.0                  |  |  |  |
| (1)                 |                      |                      |                      |  |  |  |

(b)

|                     | ×p<br>cm | У <sub>р</sub><br>ст | t <sub>h</sub><br>mm |
|---------------------|----------|----------------------|----------------------|
| Al                  | 90       | 42                   | 2.5                  |
| <b>304</b><br>Steel | 90       | 42                   | 2.0                  |
|                     | (c)      |                      |                      |

Table 3.1

Plate Characteristics

- (a) Electrical and magnetic characteristics
- (b) Dimensions of set a
- (c) Dimensions of set b

| V <sub>R</sub> (mV | 100  | 250  | 500        |          |         |
|--------------------|------|------|------------|----------|---------|
| h(cm)              |      |      | Experiment | Computed | Error * |
| 6                  | 18.7 | 46.2 | 86.7       | 90.0     | 3.30    |
| 12                 | 9.3  | 25.0 | 47.7       | 50.8     | 3.60    |
| 18                 | 3.8  | 11.7 | 20.4       | 21.9     | 1.50    |

(a)

| V <sub>R</sub> (mV) | 100 | 250  | 500        |          |         |  |
|---------------------|-----|------|------------|----------|---------|--|
| h(cm)               |     |      | Experiment | Computed | Error * |  |
| 6                   | 7.9 | 21.6 | 40.1       | 41.5     | 1.40    |  |
| 12                  | 5.7 | 14.7 | 28.1       | 29.7     | 1.60    |  |
| 18                  | 3.1 | 8.6  | 16.8       | 17.8     | 1.00    |  |

(b)

Table 3.2 Image Voltage Characteristics  $V_p$  as a function of h(cm)  $V_{R_x}(mV)$ (a) x = 45cm

(b) x = 60cm

\* Error = (Computed - Experimental)

# 3.5.2 Ratio Test

The values of  $V_p$  obtained experimentally as shown in Table 3.2 are used to obtain a ratio  $R_h_{1,n}$  defined by

$$R_{h_{1,n}} = \frac{V_{p_1}}{V_{p_{n+1}}}$$
  $n = 1, 2, 3, \dots (3.26)$ 

where

 $V_{p_1} = \text{image voltage with interface height set}$ to  $h_1$ 

 $V_{p_{n+1}}$  = image voltage with interface height set to  $h_{n+1}$ 

Values for  $R_h_{1,n}$  are illustrated in Table 3.3 for three values of  $V_{R_x}$  and two coil spacings. The experimental and computed results are in close agreement for  $V_{R_y}$  set at 500mV.

The notable feature of  $R_h$  is its constancy  ${}^{h_{1,n}}$  with variations of  $V_{R_x}$  which is consistant with Eq.(3.20) when different values of h are used.

| 1 | v <sub>R</sub> (mV) | 100  | 250  | 500        |          |         |
|---|---------------------|------|------|------------|----------|---------|
| 1 | ''1,n               | 100  |      | Experiment | Computed | Error * |
|   | n := 2              | 2.01 | 1.85 | 1.82       | 1.77     | -0.05   |
|   | n = 3               | 4.92 | 3,95 | 4.15       | 4.11     | -0.04   |
| ļ |                     |      | (a)  | .)         |          |         |

| S | $V_{R}(mV)$ | 100  | 250  | 500        |          |         |
|---|-------------|------|------|------------|----------|---------|
|   | ''1,n       |      |      | Experiment | Computed | Error * |
|   | n = 2       | 1.39 | 1.47 | 1.43       | 1.40     | -0.03   |
|   | n = 3       | 2.55 | 2.51 | 2.39       | 2.33     | -0.06   |

(b)

Table 3.3

Values  $R_{h_{m,n}}$  as a Function of  $V_{R_{x}}$ (a) x = 45 cm

(b)  $\dot{x} = 60 \text{ cm}$ 

\* Error = (Computed = Experimental)

#### 3.6 CONCLUSIONS

The modelling technique adopted for the representation of the change in the induced voltage in the receiver coil due to the presence of a conducting surface has provided results which are in agreement with those obtained experimentally. The model has further provided a suitable means for establishing a relationship between the sensor length and the sensor to interface spacing. This is an important factor when variations in the undercarriage of the various vehicles are considered.\*

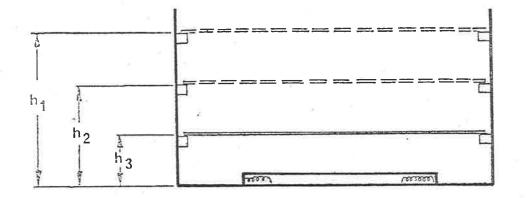
The similarity of the experimental results obtained when using aluminium and steel plates having different conductivities, is not surprising. This is mainly due to the surface resistivity of the two materials which are in the same order.

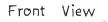
Although at first sight the flat conducting surface shows little resemblence to the complex nature of the vehicle's undercarriage, the assumption serves as a suitable means to explore the behaviour of the change in induced voltage in terms of the changes in the various parameters encountered in practice.

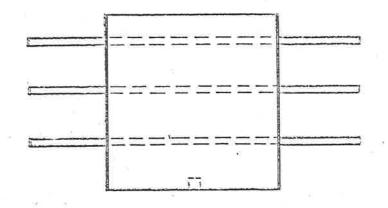
\* Examination of the undercarriage associated with 76 different vehicles indicated a range of 15cm to 65cm. Only 10% of the vehicles considered had values which exceeded 30cm.

## CHAPTER 4

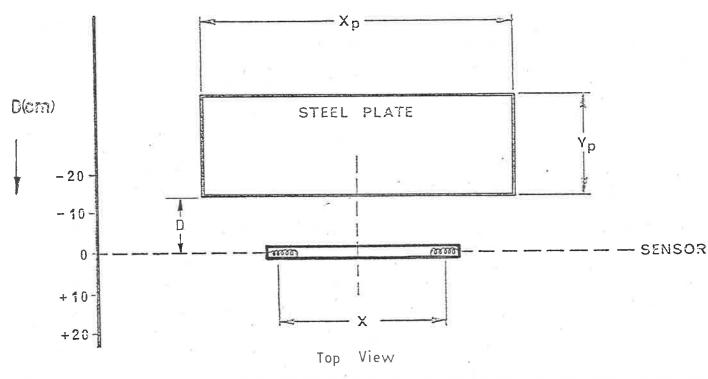
### IMAGE VOLTAGE BEHAVIOUR AS A FUNCTION OF DISTANCE FROM A MOVING PLATE


4.1 EXPERIMENTAL HARDWARE


To explore the existance of any notable feature associated with the image voltage  $V_p$ , the test set up described in section 3.5 was modified such that the motion of a plate over the sensor could be controlled in both the horizontal and the vertical planes.


The distance D between the sensor and the plate as shown in Fig. 4.1 was assigned a negative value for an approaching plate while a receding plate was given a positive value.

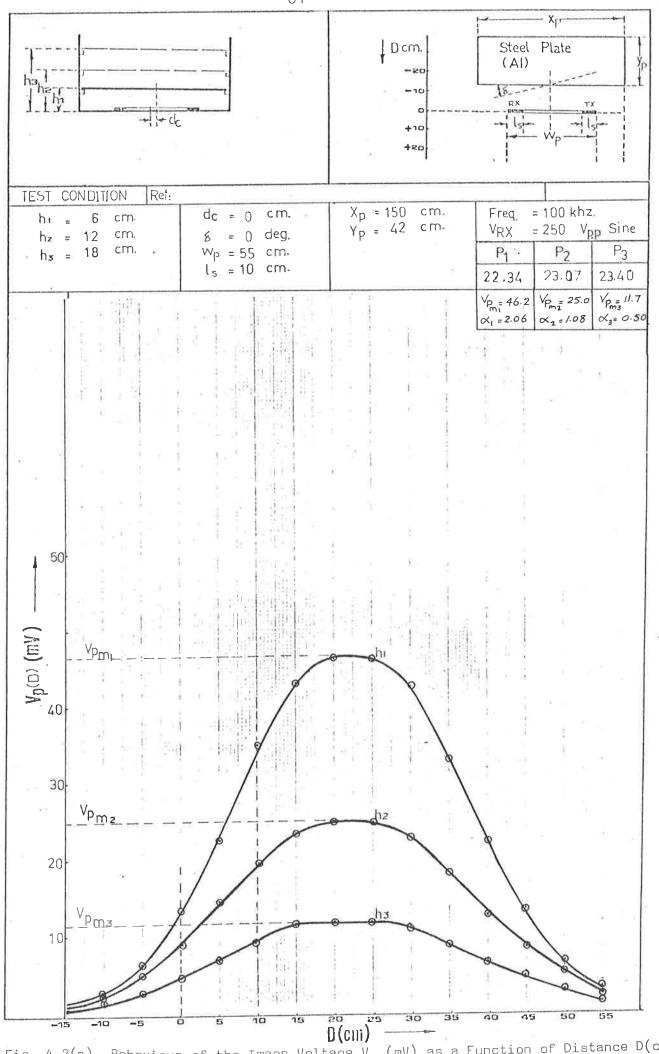
The transmitter coil  $T_x$  was energized by a 100KHz time-varying current source, while the output of the receiver was monitored as a steel plate approached the sensor.

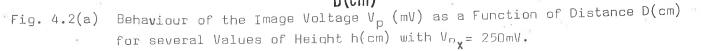

Fig. 4.2 shows the image voltage characteristics  $V_p$  as a function of the distance D(cm) for a horizontal steel plate, for several values of plate height h(cm) and initial induced voltage  $(V_{R_{rec}})$ .









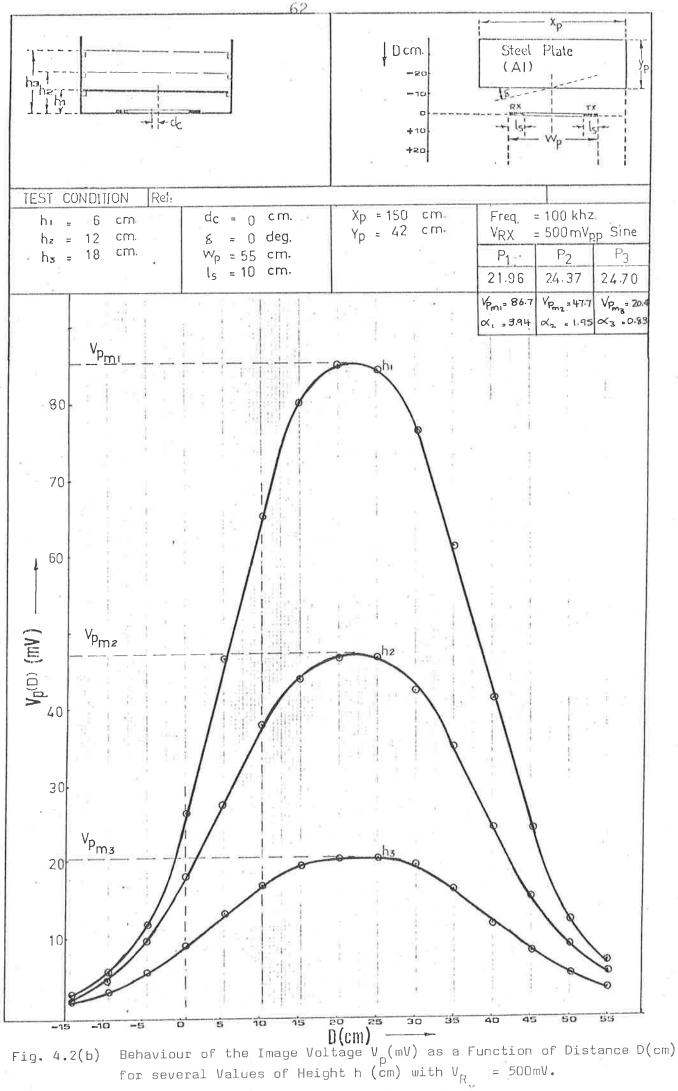


1.2.2

Fig. 4.1 Relationship between the Sensor and the Steel Plate









The image voltage characteristics shown in Fig. 4.2 were examined against several criteria. The similarity of the shape of the  $V_p$  and D curves shown in Fig. 4.2 provided the basis for the derivation of a parameter, the value of which was found to be independant of interface height h and the initial induced voltage  $V_{R_x}$ . This parameter is designated by P and is defined as

$$P = \frac{V_{p_m}}{\swarrow}$$

where

 $V_{p_m}$  = maximum value of image voltage

... (4.1)

4.2.1 Derivation of P Using Linear Regression Technique

To obtain a straight line of best fit for the linear region of  $\rm V_p\,$  versus D curves, the least-

squares linear regression analysis was used. The modified slope  $\bowtie_m$  based on this method is given by

$$\times_{\rm m} = r_{\rm c} \left[ \frac{\sigma_{\rm v}}{\sigma_{\rm d}} \right] \qquad \dots (4.2)$$

where

and

$$G_v^2$$
 = variance of the V<sub>p</sub> values  
 $G_d^2$  = variance of the D values.

The value of P using the modified value of slope is

$$P = {}^{V} p_{m} \cdot \left[ \frac{\sigma_{d}}{\sigma_{v}} \right] \cdot \frac{1}{r_{c}} \qquad \dots (4.3)$$

Derivation of Eq. (4.2) and Eq. (4.3) are given in Appendix II.

Eq. (4.3) was used to obtain values of P as shown in Table 4.1 for several values of plate height h and induced voltage  $V_{R_x}$ , using the  $V_p$  versus D characteristics of Fig. 4.2

| V <sub>R</sub> (mV)<br>h(cm) | 250   | 500   |
|------------------------------|-------|-------|
| 6                            | 22.34 | 21.96 |
| 12                           | 23.07 | 24.37 |
| 18                           | 23.40 | 24.70 |

Table 4.1

Values of P as a Function of Plate Height h(cm) and Induced Voltage  $V_{R_{_{\rm X}}}({
m mV})$ .

## 4.3 MODELLING TECHNIQUE

Although several authors have provided various techniques for the derivation of the magnetic field associated with a coil carrying a time-varying current in the proximity of a conducting surface, no reporting has been noted regarding the characteristics of the magnetic field as a function of distance D. In the absence of such an analysis, a very primitive modelling technique based on a moving image concept, was developed. Due to the obvious short comings of the model, it is included in Appendix III purely as a possible guide for future work.

#### 4.4 PHASE CHARACTERISTICS

The phase relationship between the transmitter and the receiver coils was also examined and found to be in quadrature. Since no new information was obtained from this examination, the phase characteristics were subsequently neglected

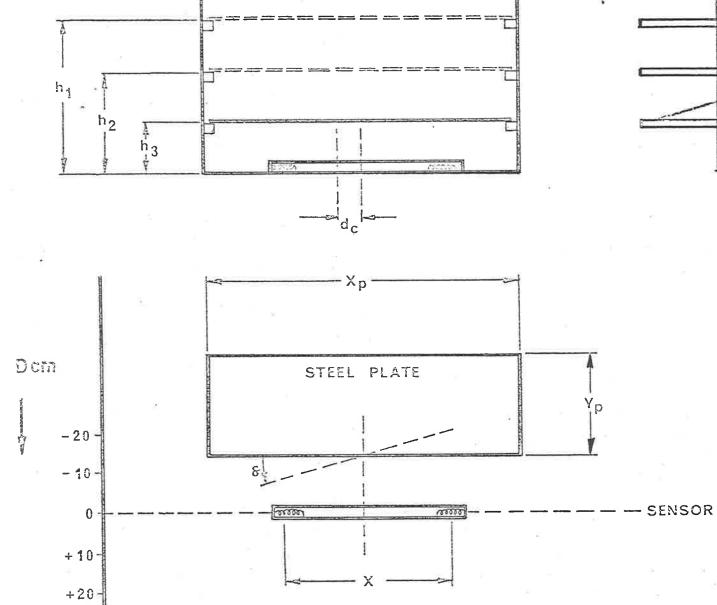
# CHAPTER 5

EVALUATION OF PARAMETER P

# 5.1 INTRODUCTION

The experimental procedure developed in Chapter 4 was extended such that the behaviour of the image voltage  $V_p$  could be evaluated as a function of the approach angle  $\theta_p$  and incline angle  $\delta$ as illustrated in Fig. 5.1 for three different plates. The following structures in addition to actual vehicles, were considered.

(i) horizontal aluminium and steel plates


(ii) vertical aluminium and steel plates

(iii) L-shaped aluminium and steel plates.

5.1.1 Horizontal Plate

The behaviour of the image voltage as a function of the distance for several parameter changes using a horizontal steel plate is as follows (i) Approach Angle **6** 

The V  $_{\rm p}$  versus D characteristics as a function of distance D for three values of approach angle  $\not{\delta}$  and



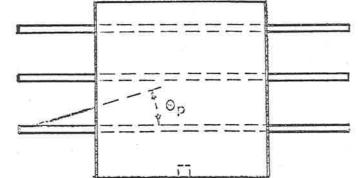
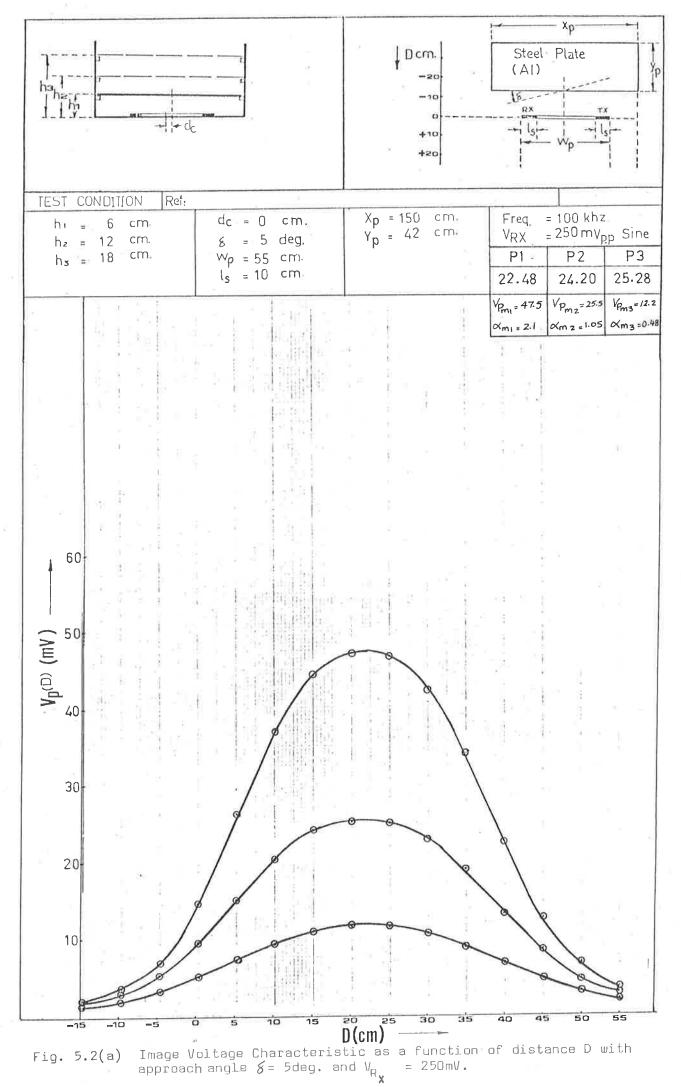
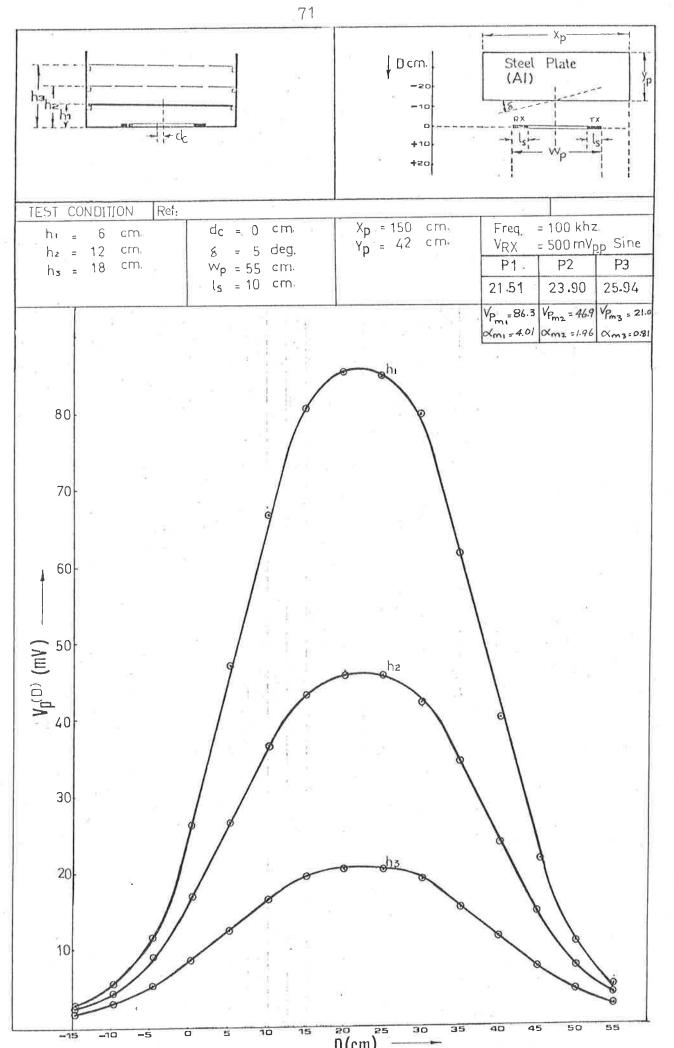


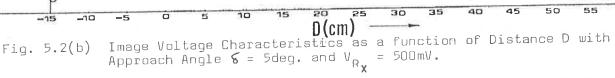

Fig. 5.1 Approach Angle S and Incline Angle  $\theta_p$  of Steel Plate in Relation to the Position of the Sensor

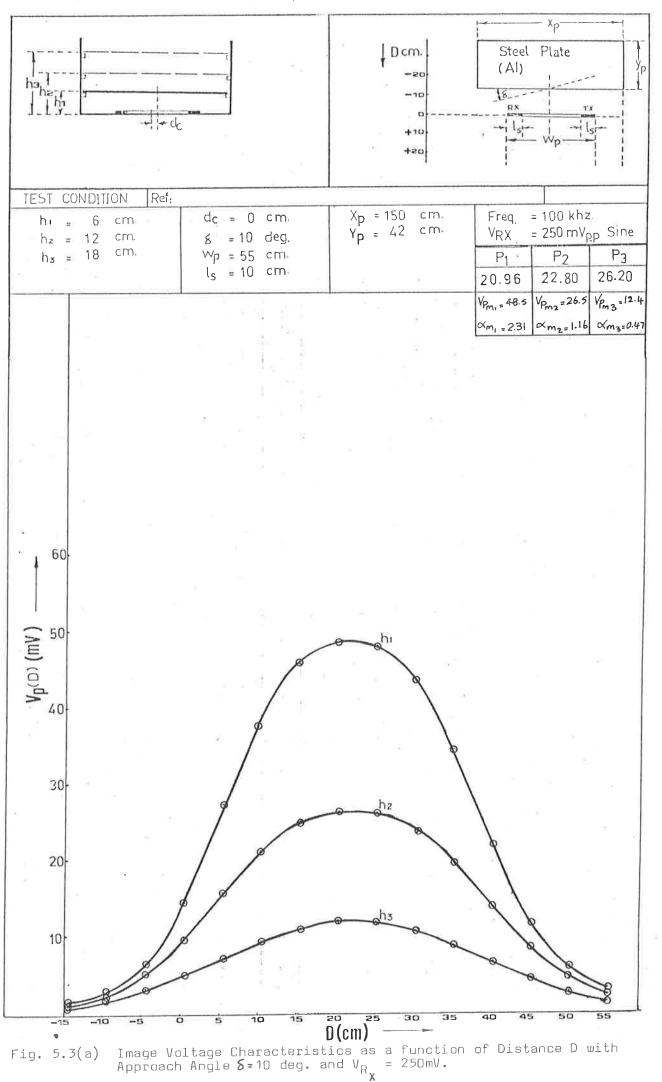
two values of induced voltage  $V_{R_x}$  are shown in Figures 5.2, 5.3 and 5.4. The respective values of P are indicated in Table 5.1.

(ii) Incline Angle  $\theta_{\rm p}$ 


The V<sub>p</sub> versus D characteristics as a function of distance D for three values of incline angle  $\theta_p$ are shown in Figures 5.5, 5.6, 5.7 and 5.8. The respective values of P are tabulated in Table 5.2.


## 5.1.2 Vertical Plate


The image voltage  $V_p$  as a function of distance D for a vertical plate is shown in Fig. 5.9. The notable feature is that the magnitude of  $V_p$  is considerably smaller than that obtained using a horizontal plate. The value for  $V_p$  was found to be in the order of 15% of that obtained for a horizontal plate.


5.1.3 L - Shaped Plate

The V<sub>p</sub> versus D characteristics as a function of approach angle  $\boldsymbol{\delta}$  for several values of induced voltage V<sub>R<sub>x</sub></sub> are shown in Figures 5.10, 5.11, 5.12 and 5.13. Table 5.3 indicates the values of P for four values of V<sub>R<sub>x</sub></sub>. Table 5.4 shows P as a function of approach angle  $\boldsymbol{\delta}$ .









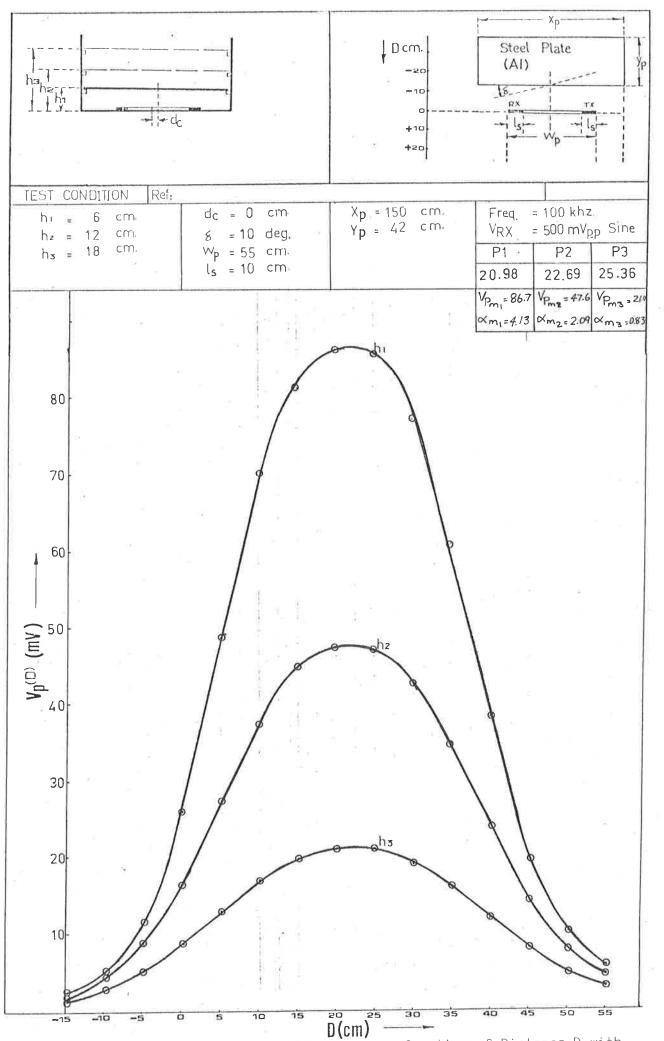



Fig. 5.3(b) Image Voltage Characteristics as a function of Distance D with Approach Angle  $\delta$  = 10 deg. and V<sub>R</sub> = 500mV.

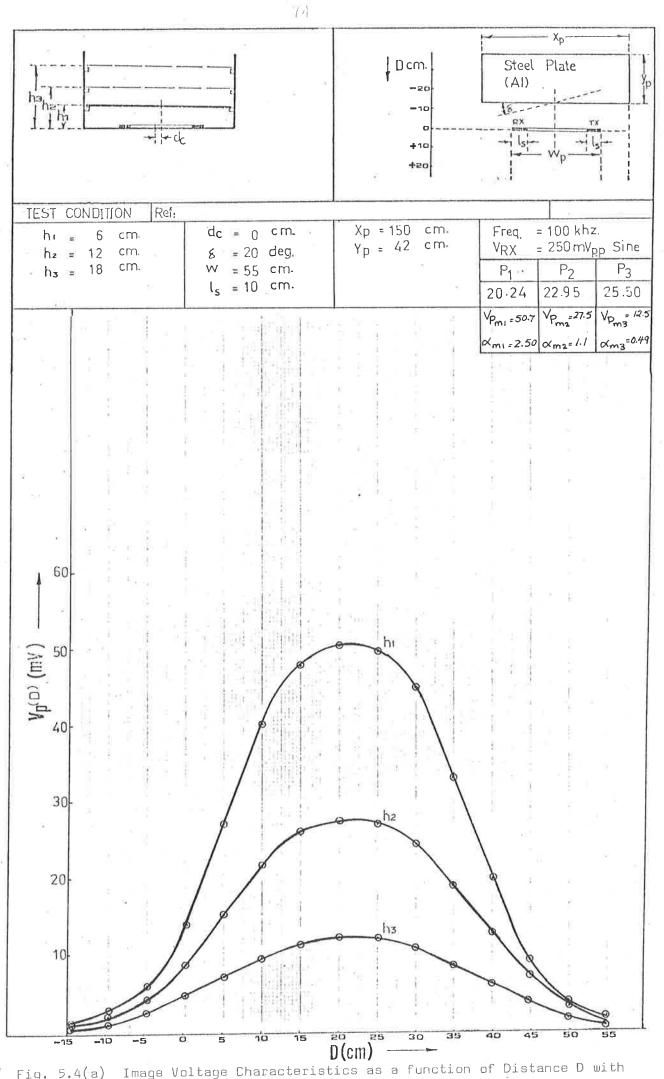
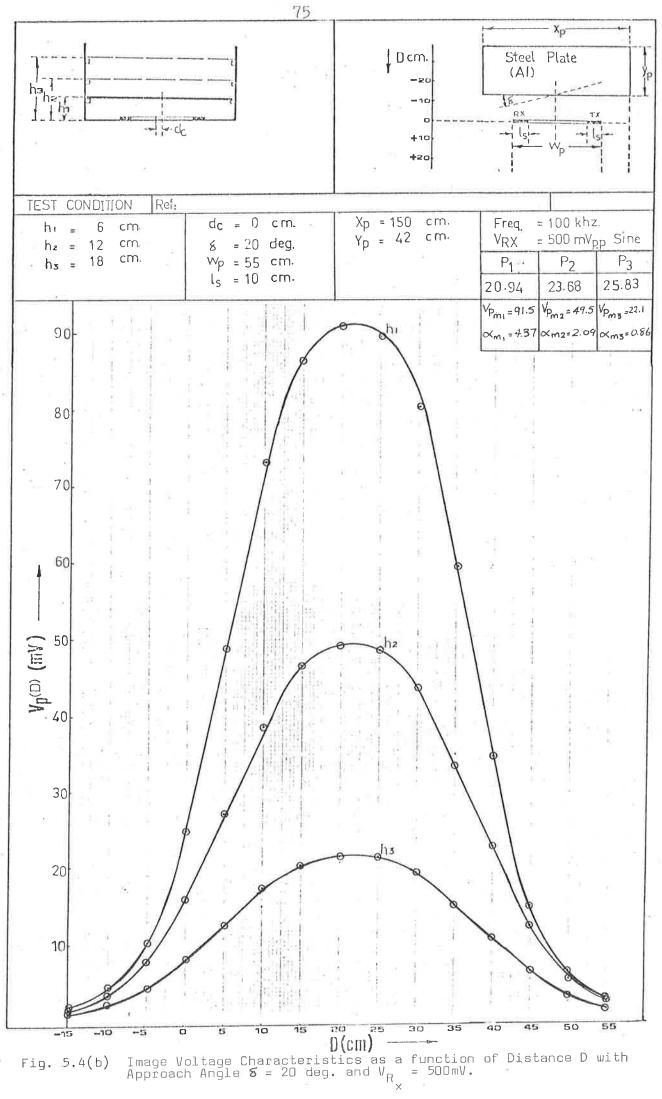
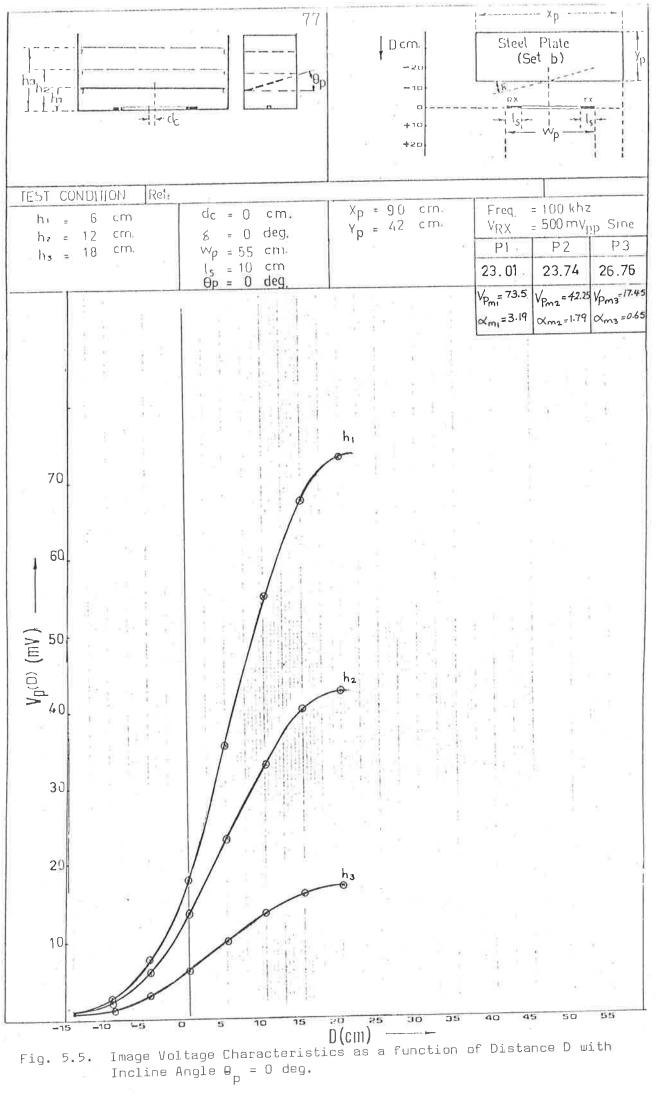



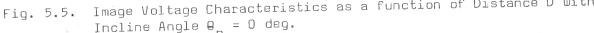

Fig. 5.4(a) Image Voltage Characteristics as a function of Distance D with Approach Angle  $\delta$  = 20 deg. and V<sub>R</sub> = 250mV.

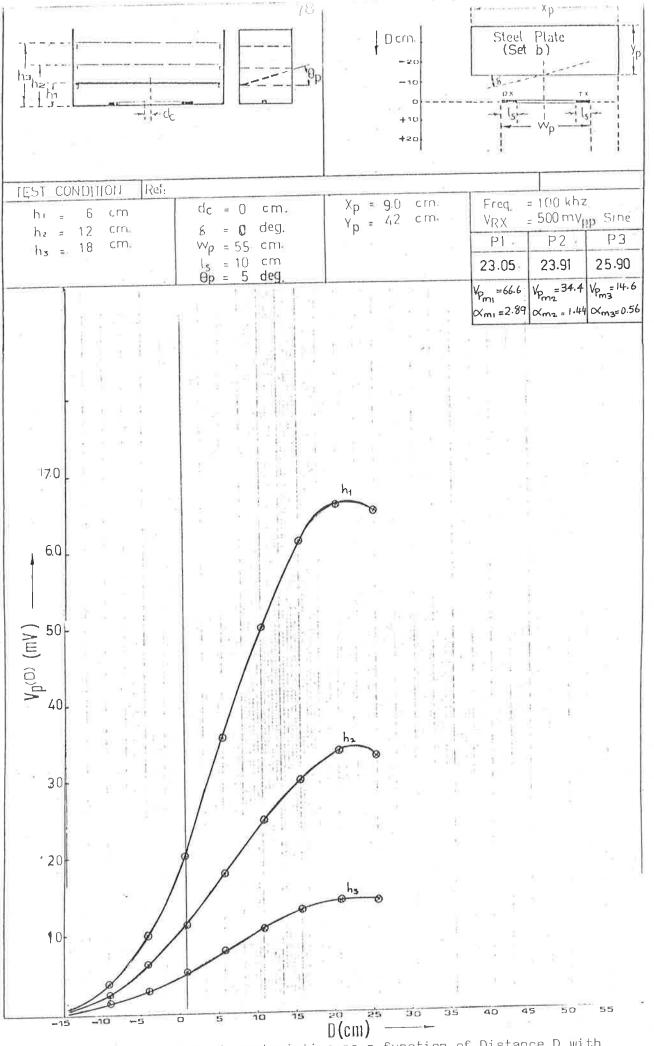


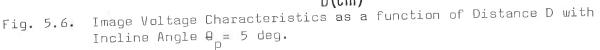


| & degs<br>h(cm) | 0     | 5     | 10    | 20    |
|-----------------|-------|-------|-------|-------|
| 6               | 22.34 | 22.48 | 20.96 | 20.24 |
| 12              | 23.07 | 24.20 | 22.80 | 22.95 |
| 18              | 23.40 | 25.28 | 26.20 | 25.50 |
| (2)             |       |       |       |       |


(a)


| & dags.<br>h(cm) | 0     | 5     | 10    | 20    |
|------------------|-------|-------|-------|-------|
| 6                | 21.96 | 21.51 | 20.98 | 20.94 |
| 12               | 24.37 | 23.90 | 22.69 | 23.68 |
| 18               | 24.70 | 25.94 | 25.36 | 25.83 |
| (b)              |       |       |       |       |


Table 5.1


Value of P as a Function of Plate Height h(cm) and Approach Angle  $\delta$  for

(a)  $V_{R_x} = 250 \text{mV}$ (b)  $V_{R_x} = 500 \text{mV}$ .









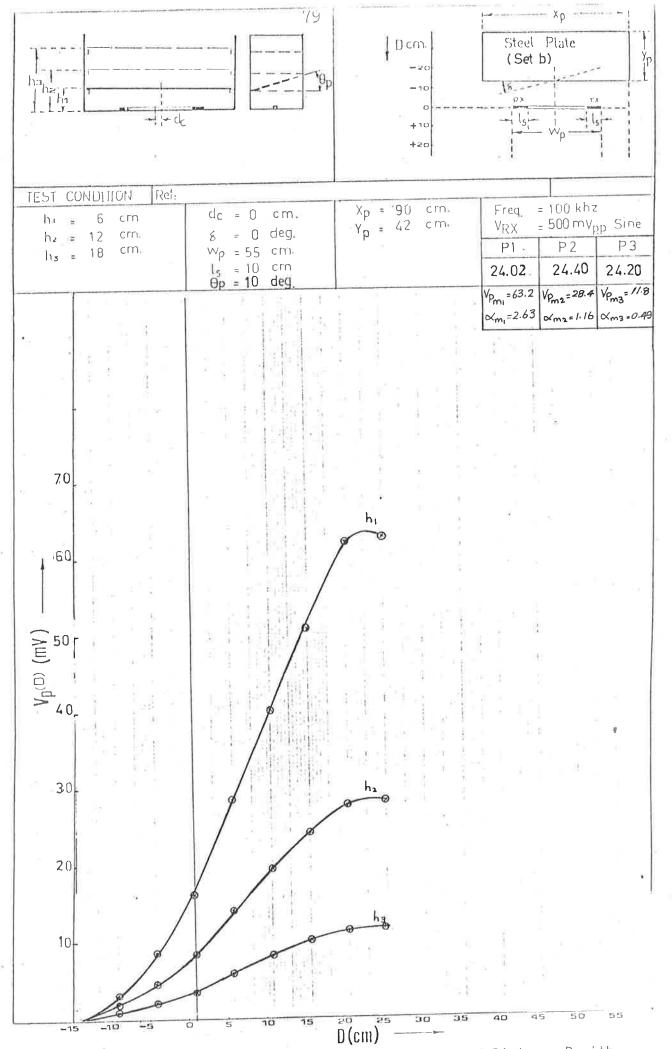
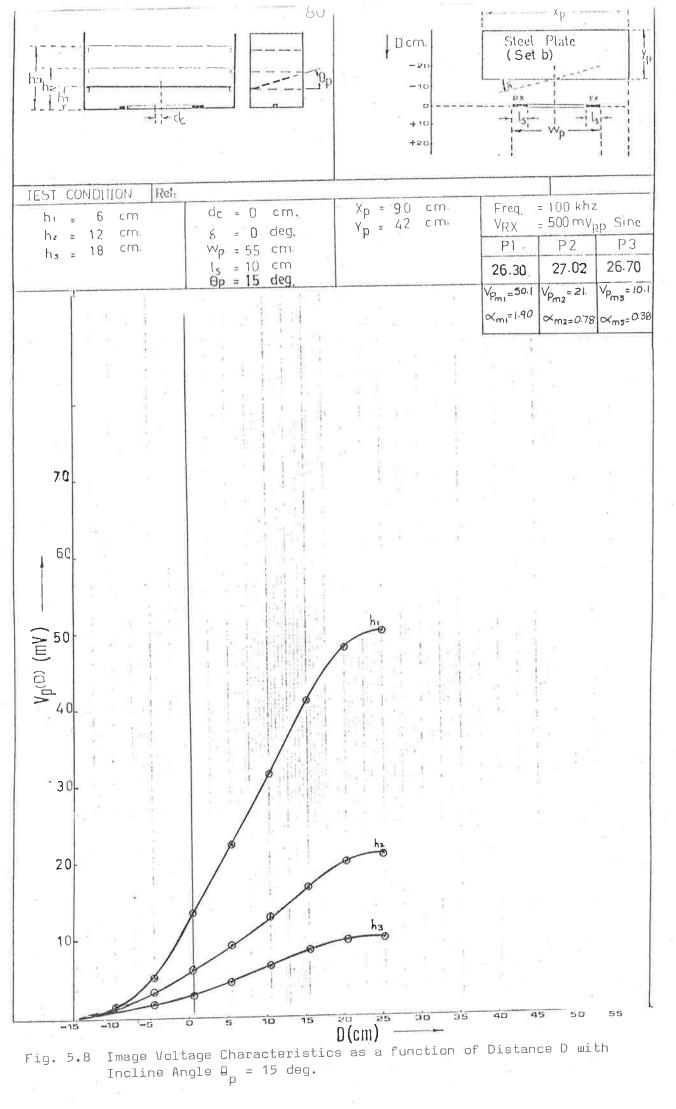




Fig. 5.7 Image Voltage Characteristics as a function of Distance D with Incline Angle  $\Theta_{\rm p}$  = 10 deg.



| θp(deg.)<br>h (cm) | 0     | 5     | 10    | 15    |
|--------------------|-------|-------|-------|-------|
| 6                  | 23.01 | 23.05 | 24.02 | 26.30 |
| 12                 | 23.74 | 23.91 | 24.40 | 27.02 |
| 18                 | 26.76 | 25.90 | 24.20 | 26.70 |

Table 5.2 Value of P as a Function of Plate Height h(cm) and Slope  $\Theta_p$  (degrees) for  $V_{R_x} = 500 \text{mV}$ .

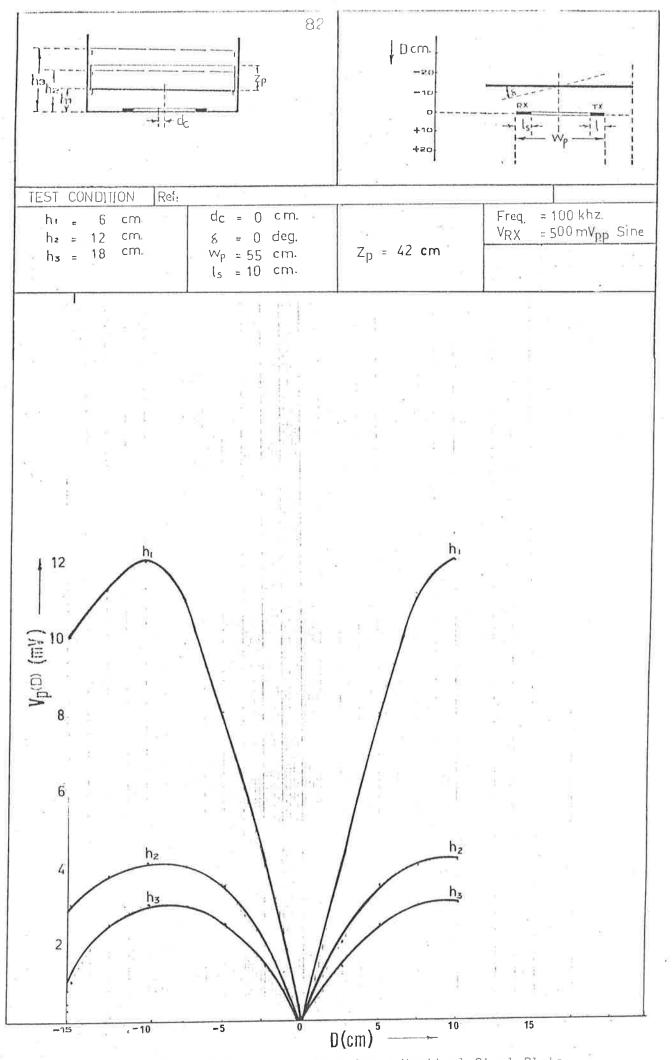
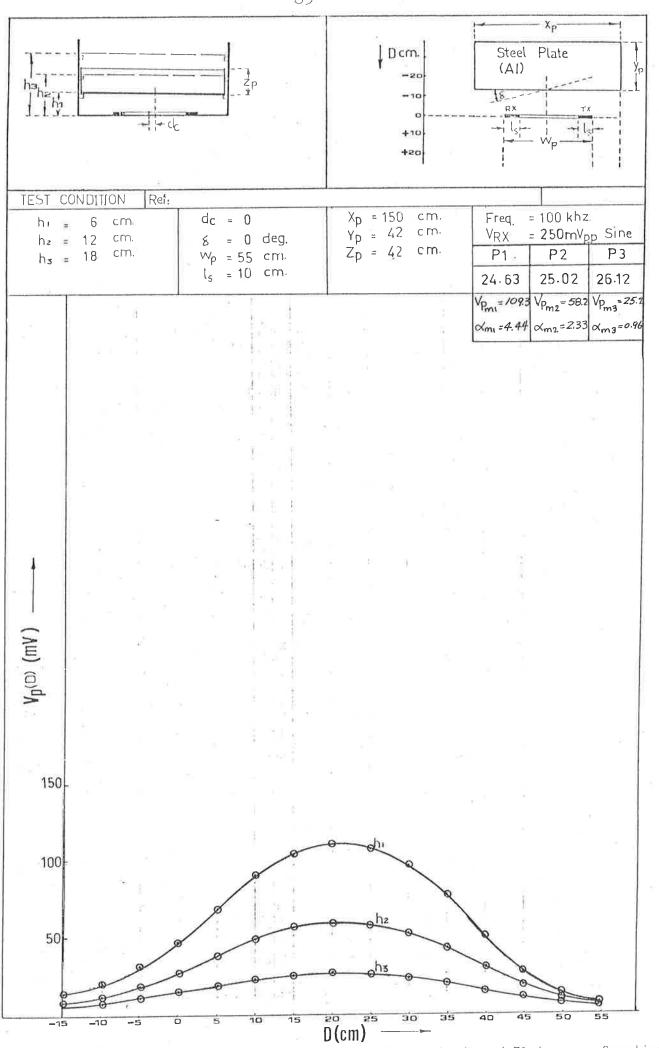
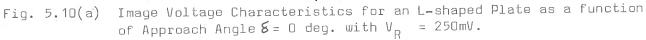
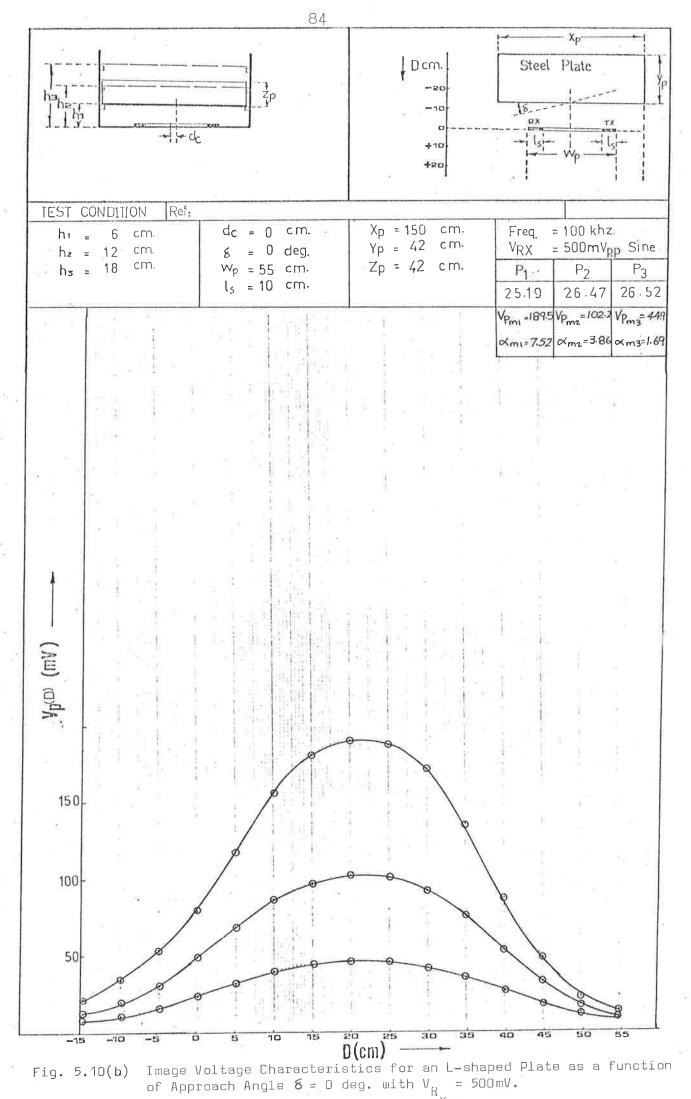
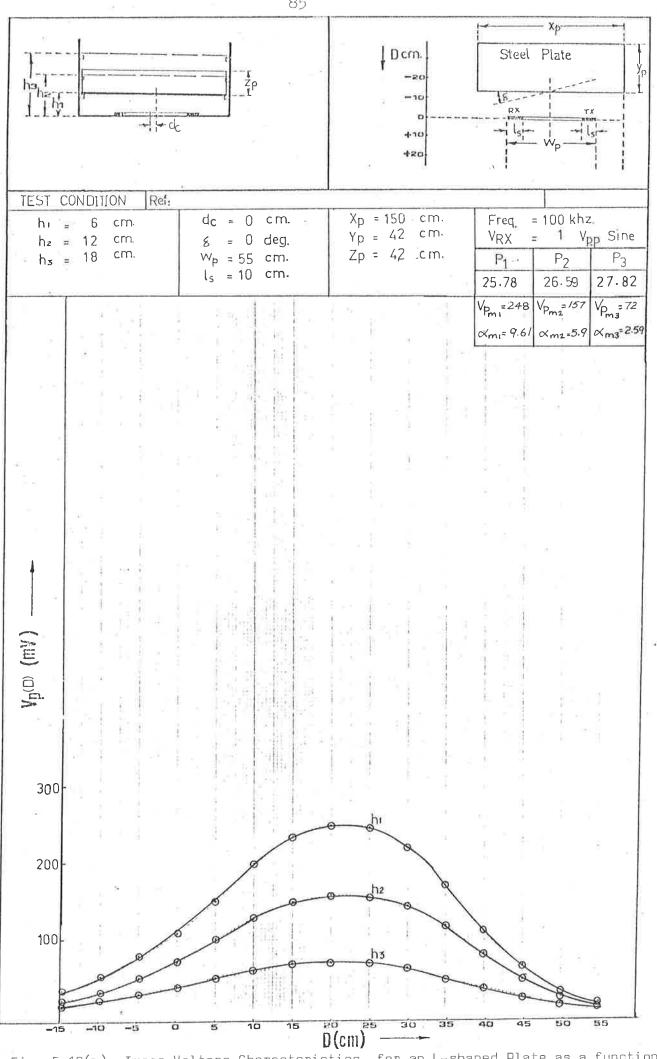
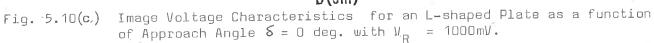
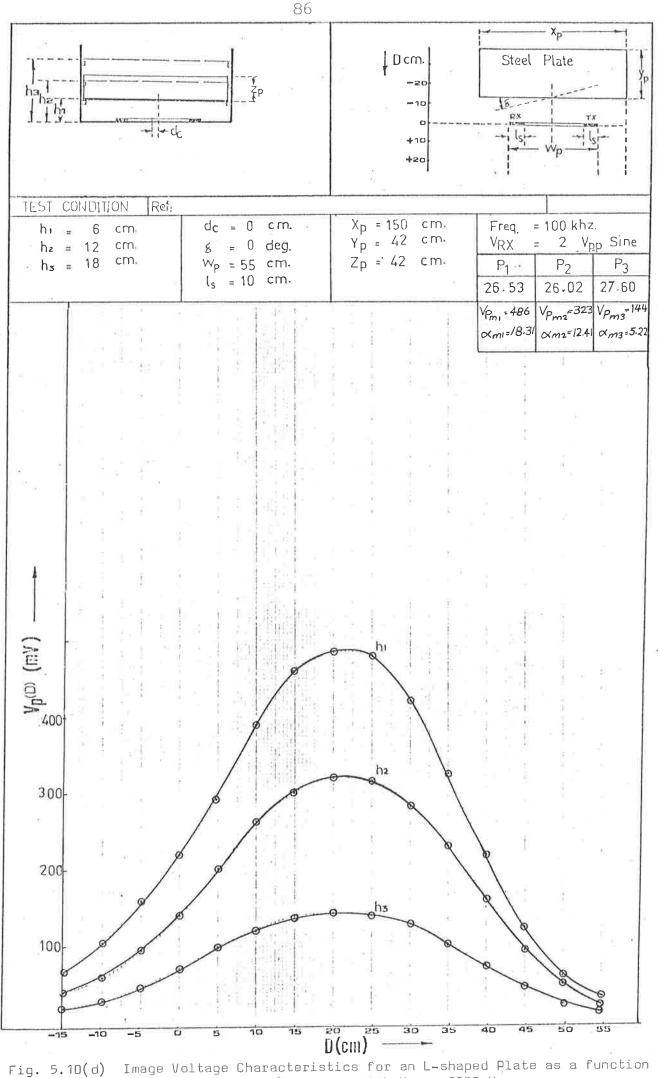





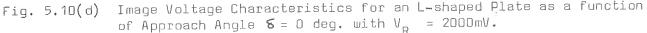


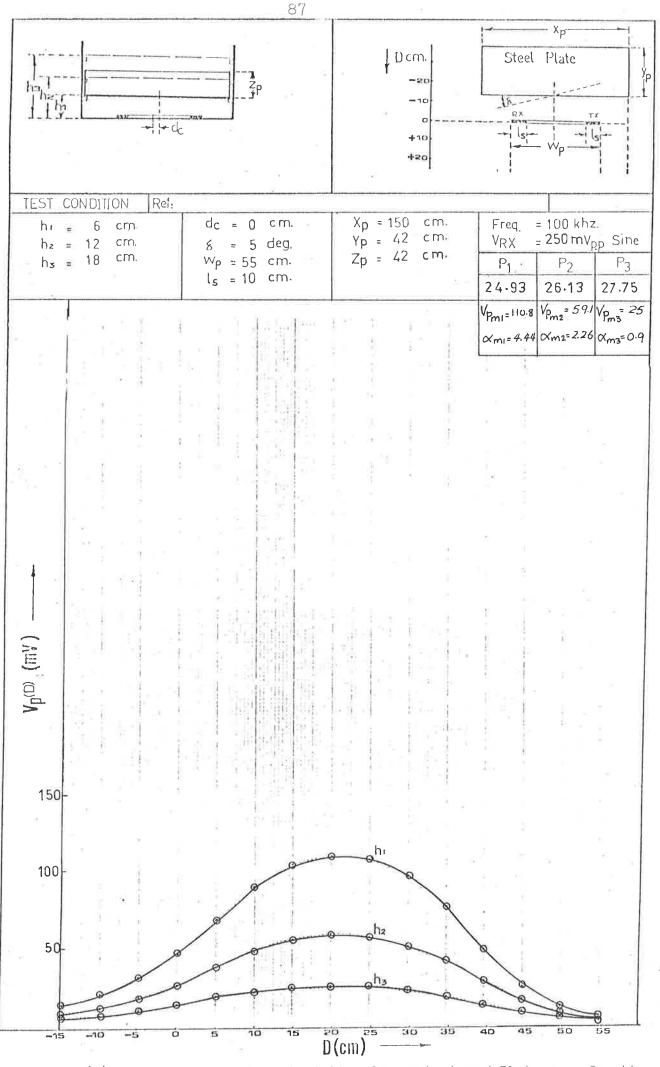

Fig. 5.9

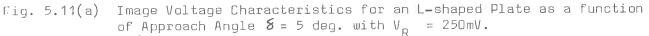


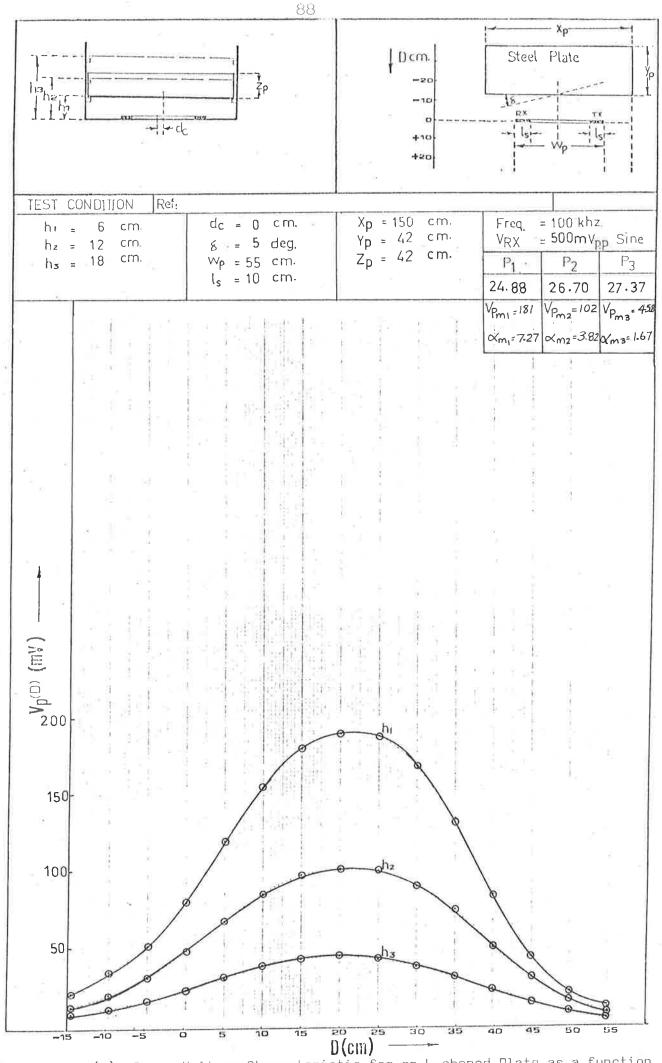



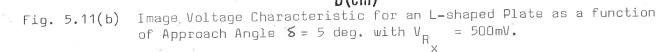



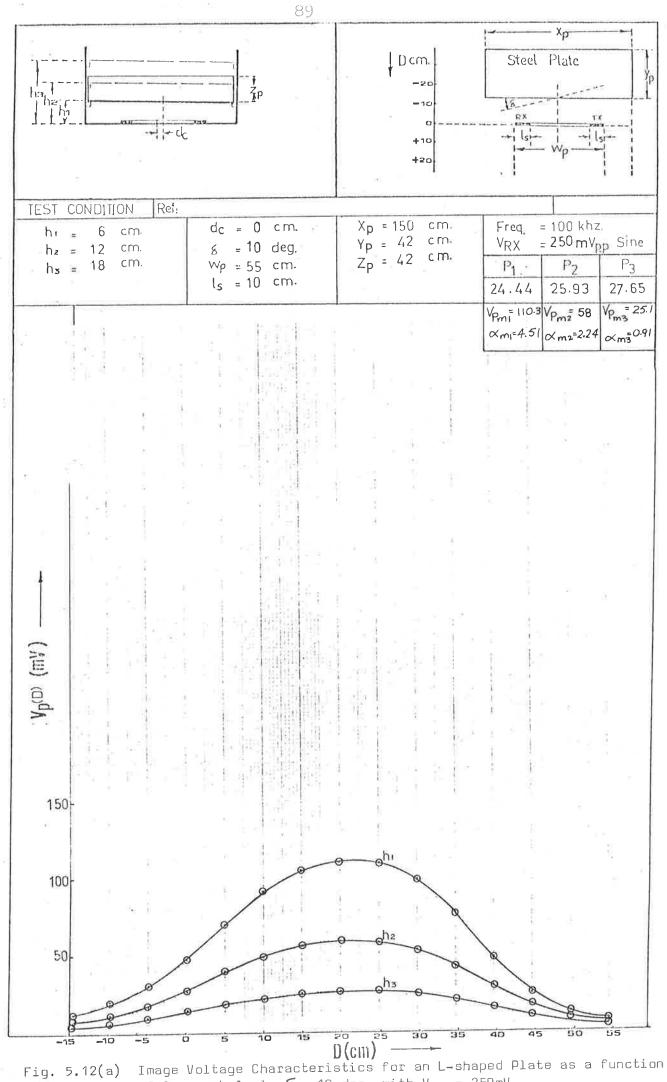


n 53



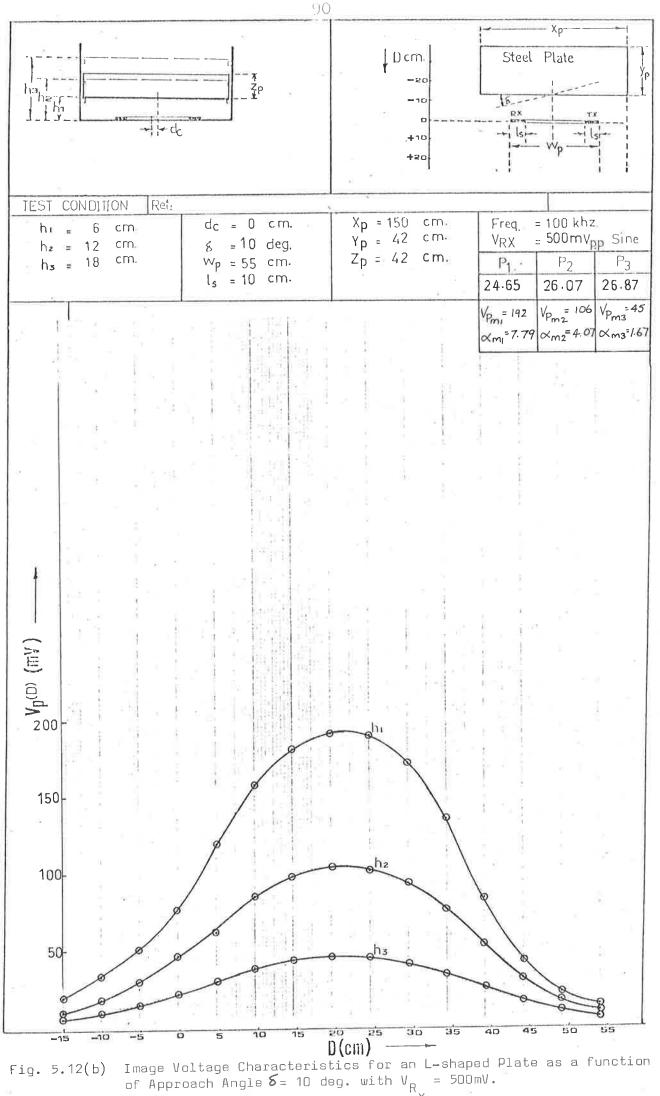



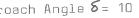



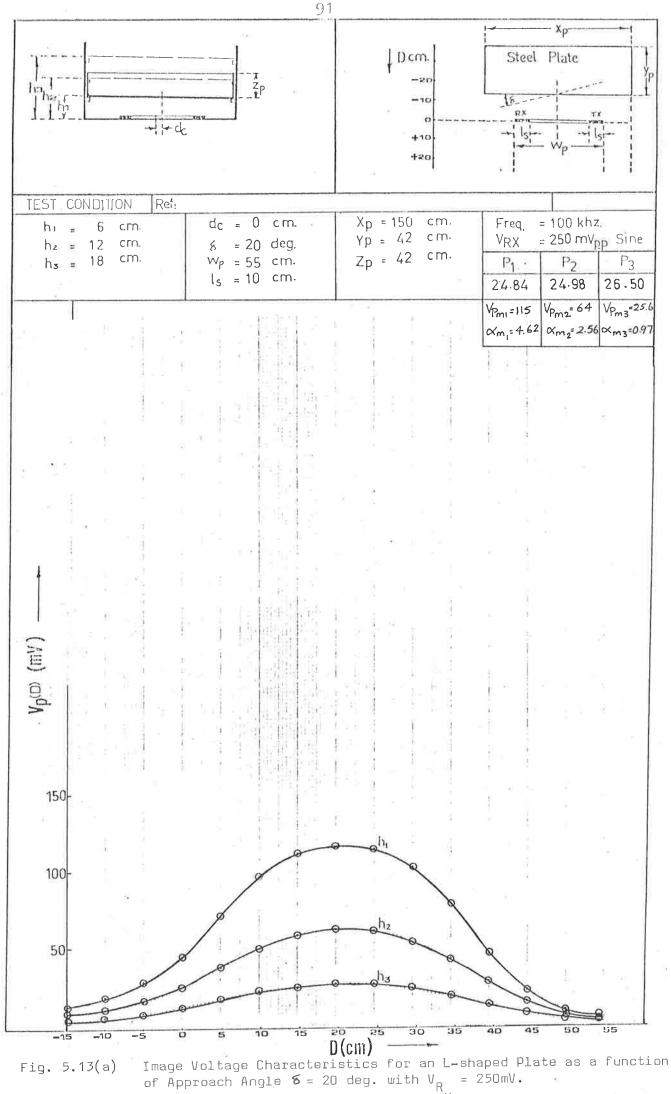



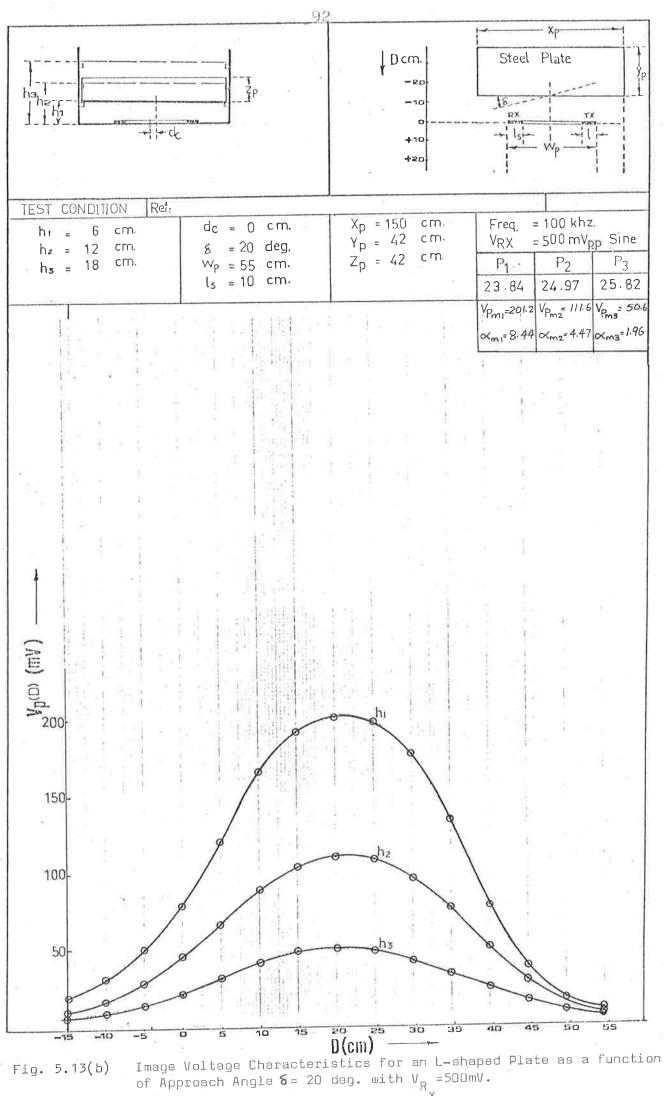






of Approach Angle  $\delta = 10 \text{ deg. with } V_{\text{R}} = 250 \text{ mV}.$ 









| V <sub>R</sub> (mV)<br>h (cm) | 250   | 500   | 1000  | 2000  |
|-------------------------------|-------|-------|-------|-------|
| 6                             | 24.63 | 25.19 | 25.78 | 26.53 |
| 12                            | 25.92 | 26.47 | 26.59 | 26.02 |
| 18                            | 26.12 | 26.52 | 27.82 | 27.60 |

Table 5.3

Value of F as a function of Plate Height h(cm) and Initial Induced Voltage  $V_{R_{\chi}}$  (mV) in the Receiver Coil  $R_{\chi}$  for an L-Shaped Steel Plate.

| h(cm) | 5     | 10    | 20    |  |
|-------|-------|-------|-------|--|
| 6     | 24.93 | 24.44 | 24.84 |  |
| 12    | 26.13 | 25.93 | 24.98 |  |
| 18    | 27.75 | 27.65 | 26.50 |  |
|       |       |       |       |  |

| ( | а | ) |
|---|---|---|
|   |   |   |

| S(deg.) | 5     | 10    | 20    |  |
|---------|-------|-------|-------|--|
| 6       | 24.88 | 24.65 | 23.84 |  |
| 12      | 26.70 | 26.07 | 24.97 |  |
| 18      | 27.37 | 26.87 | 25.82 |  |
|         |       |       |       |  |

(b)

Table 5.4

4 Value of P as a Function of Approach Angle S(deg) for an L-shaped Steel Plate

(a) 
$$V_{R_x} = 250 \text{mV}$$
  
(b)  $V_{R_x} = 500 \text{mV}$ .

5.1.4 Image Voltage Characteristics in the Presence of Brine Solution.

The behaviour of the image voltage was also examined with the sensor immersed in a layer of brine solution. Although this test was rather severe, it provided the basis for the representation of "slush" which exists on the road surface. Fig. 5.14 shows the image voltage characteristics as a function of distance for several values of height h. The notable feature demonstrated was that the change in the image voltage was very marginal. In fact for values of h >12cm no change was noted.

5.1.5 Other Considerations

The value of P was also noted for several displacement values  $d_c$  of the sensor from the centre position and for larger values of h. Since the values were within the range shown in Tables 5.2 - 5.4, the graphical representations have been omitted.

5.2 DISCUSSIONS OF THE RESULTS

The range of the values obtained for P with the imposed variations in the external parameters were rather remarkable. If we further consider the under-carriage heights encountered in practice, we can neglect the results for h < 12cm. Thus we obtain a range of values for P given by

28 > P > 23

...(5.1)

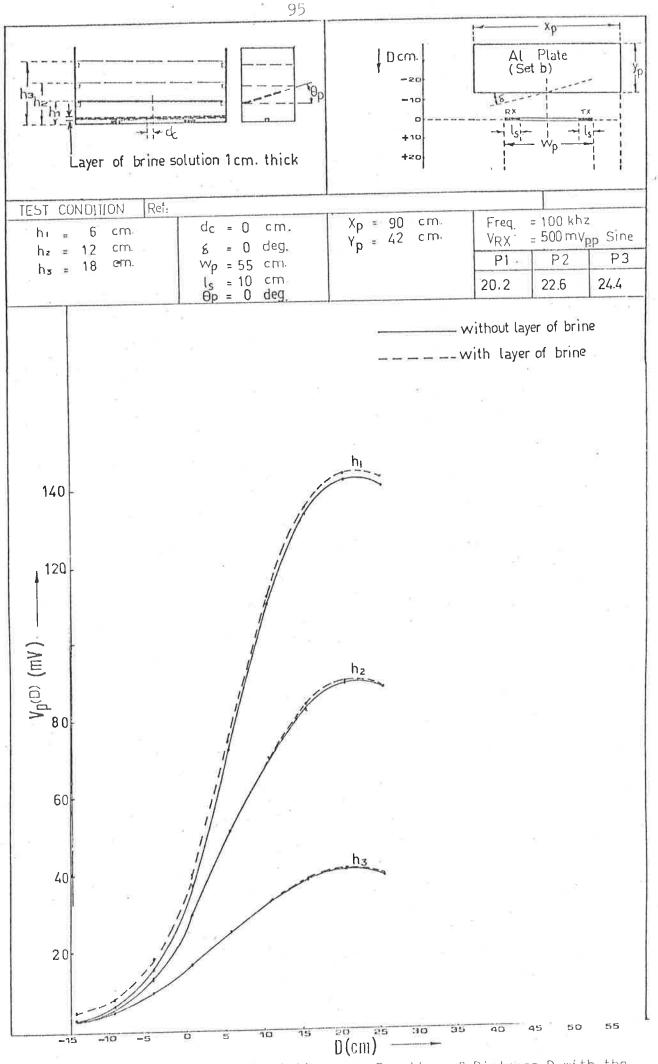



Fig. 5.14 Image Voltage Characteristics as a Function of Distance D with the Sensor Immersed in Brine Solution.

If we consider the L-shaped plate to resemble the front section of the vehicle, and neglect values of P obtained for h < 12 cm, we obtain a new range of values from Table 5.3 which are well defined. Therefore P can be assigned a value of 27 with a

• tolerance of ± 4%.

5.3 DERIVATION OF P USING ACTUAL VEHICLES

The experimental procedure discussed in Chapter 4 was repeated using three different makes of vehicles. The vehicles considered were

(i) 1972 Ford Futura

(ii) 1976 Chrysler Centura

(iii) 1976 Datsun 180B

The above choices were made on the basis that the"front" sections of these vehicles were sufficiently different to allow satisfactory method of testing the model defined by Eq.(4.3)

The sensor was located on the road surface and the output of the receiver coil was recorded as a function of distance D, as a vehicle approached the sensor. Measurement of D was in accordance with our definition of section 4.1. The experimental set up is shown in Fig. 5.15. To have some degree of uniformity of the measurements between the three vehicles, D was referenced with respect to the centre of the front bumper bar as shown in Fig. 5.16. The approach was made on the basis of the regularity of "front" section associated with most vehicles.

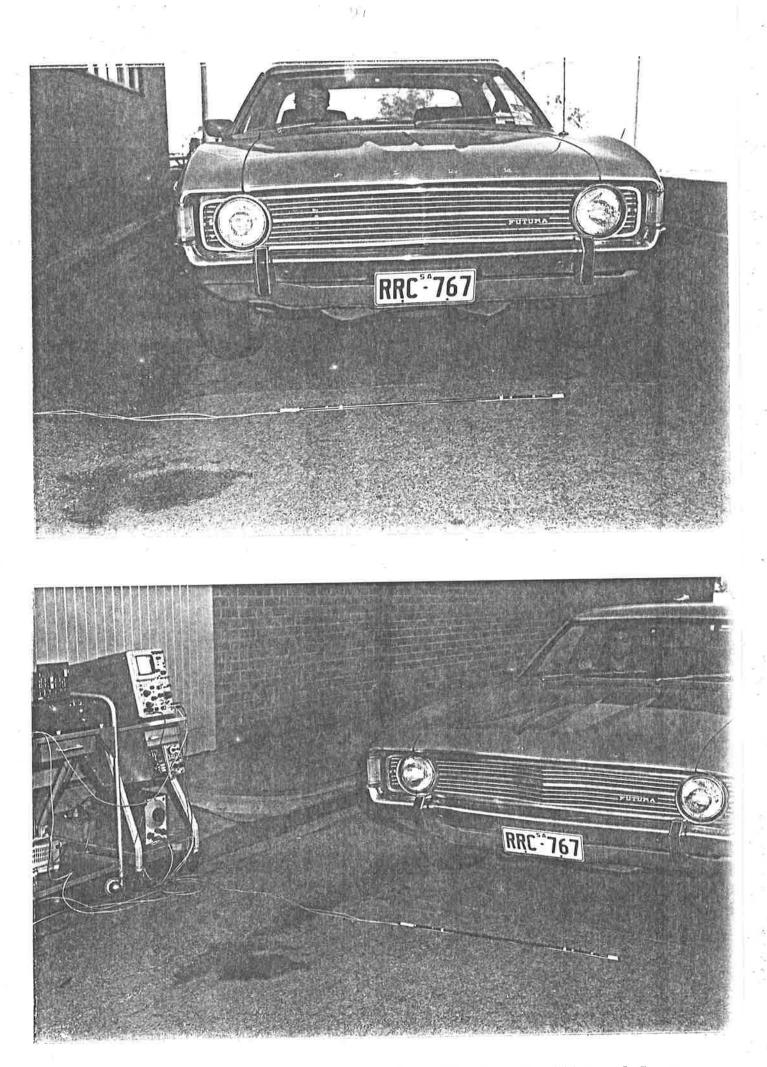



Fig. 5.15 Experimental set up Showing Position of Sensor Relative to the Vehicle

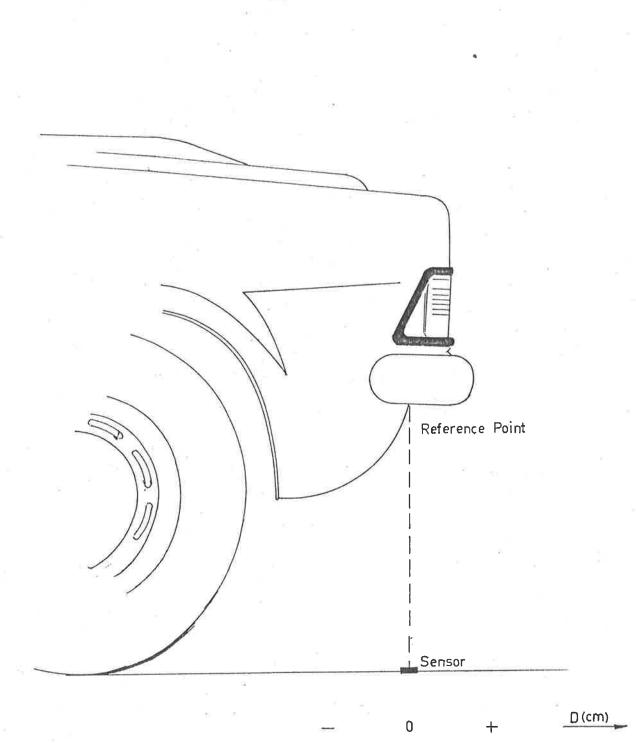
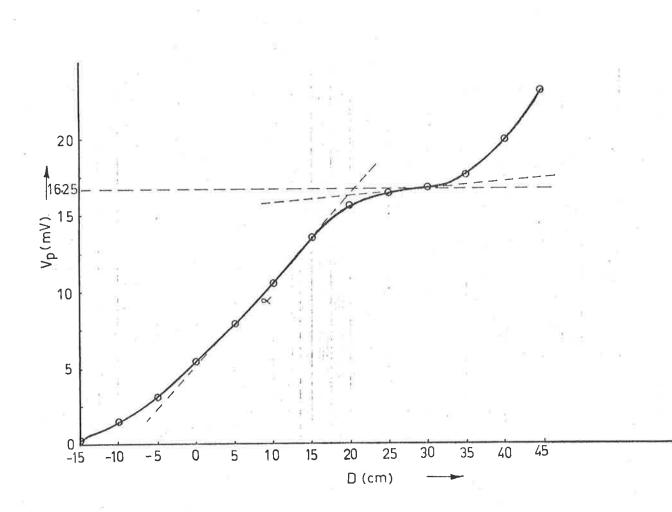


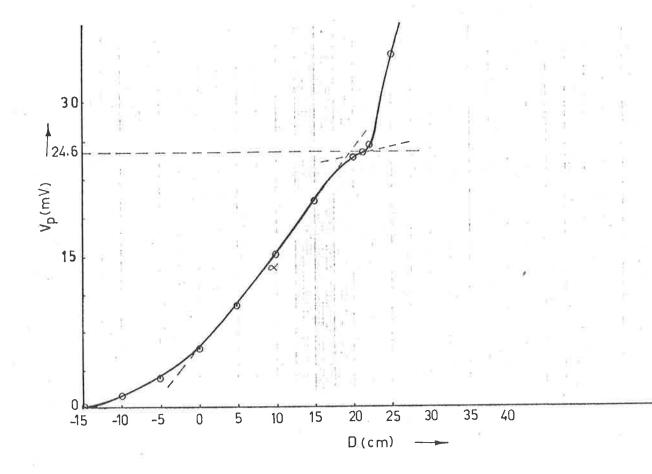

Fig. 5.16 Relationship Between the Sensor and the "Front" Bumper Bar of the Vehicle


The magnitude of the image voltage as a function of distance are shown in Fig. 5.17, Fig. 5.18 and Fig. 5.19. The values of P for the Ford, the Centura and the Datsun are shown in Table 5.5. A similar characteristic was also plotted for the "rear" section of the Datsun as illustrated in Fig. 5.20. The value of P in this case was found to be 26.54.

Two important features in the behaviour of the image voltage characterised by the "front" section of the vehicle are noted:

- (i) The image voltage rises to its peak and then levelling occurs before it rises again. The Ford and Centura gave this effect.
- (ii) the image voltage rises to its peak and then decays. This effect was noted with the Datsun and is mainly due to the flat coverplate used in the undercarriage.

# 5.4 CONCLUSIONS


The L-shaped plate adopted in the experimental procedure, resulted in a value of P which was found to be substantially constant for values of h > 12cm. The value assigned to P is 27 having a tolerance of  $\pm 4\%$ . This is consistent with the observed range. If the results of the horizontal plate are also included, the tolerance can be extended to +4%, -15%.



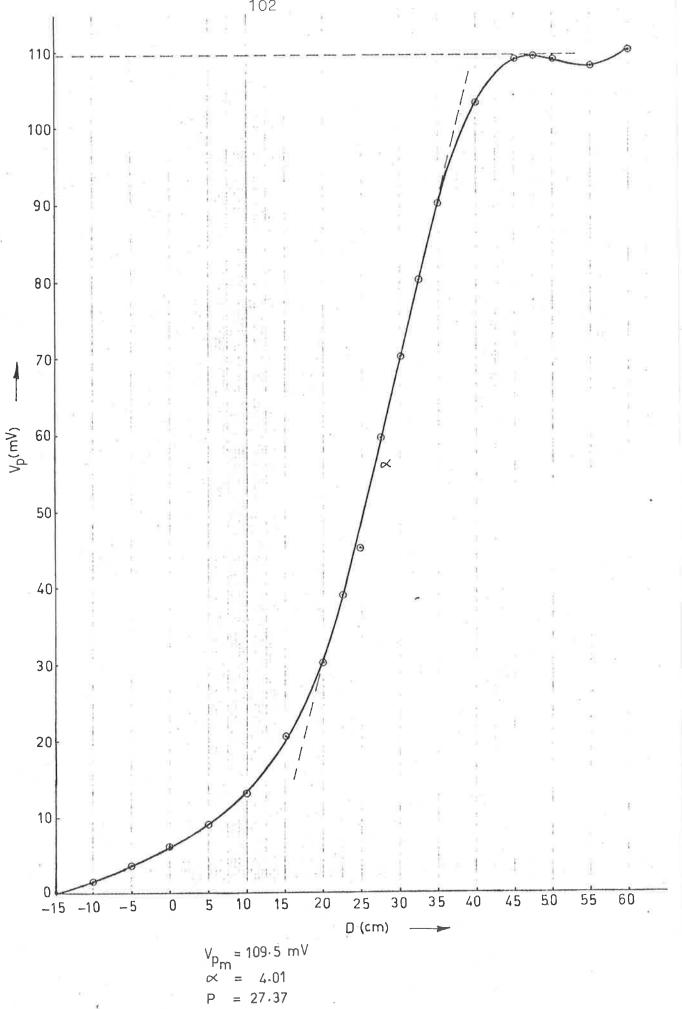
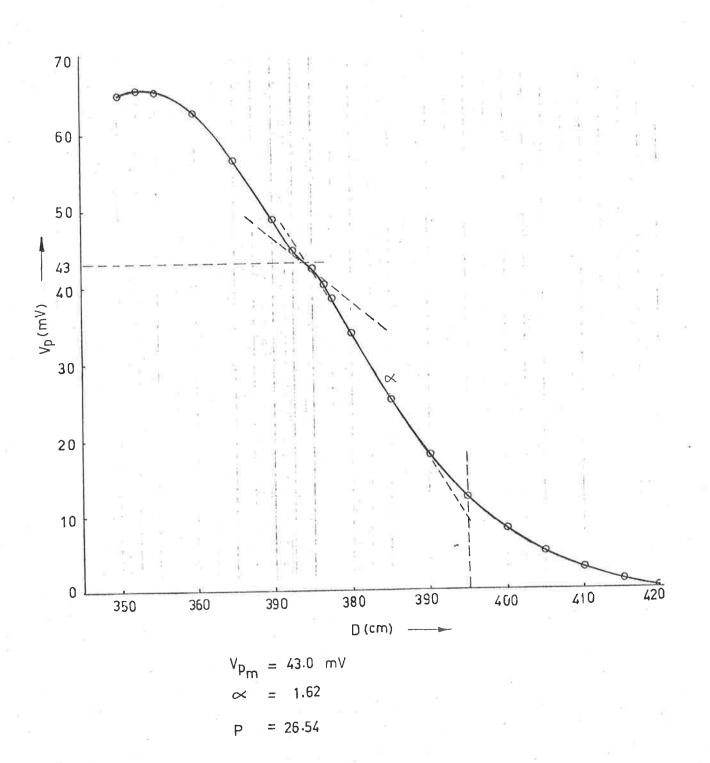
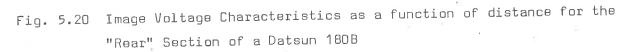

 $V_{P_{m}} = 16.25 \text{ mV}$   $\propto = 0.60$ P = 27.01

Fig. 5.17


Image Voltage Characteristics as a function of distance for "Front" Section of a 1972 Ford Futura




- $V_{P_{m}} = 24.6 \text{ mV}$   $\approx 0.93$  P = 26.45
- Fig. 5.18 Image Voltage Characteristic as a function of distance for the "Front" Section of a 1976 Chrysler Centura.









| Para-<br>meters | ∝ <sub>m</sub> | V <sub>p</sub> m | rc    | Р      |
|-----------------|----------------|------------------|-------|--------|
| FORD            | 0.60           | 16.25            | 0.981 | 27.01  |
| CENTURA         | 0.93           | 24.60            | 0.991 | 26.45  |
| DATSUN          | 4.01           | 109.5            | 0.983 | 2 7.37 |

Table 5.5 Value of P for the Front Section of Three Different Vehicles using the Parameters of the Speed Model

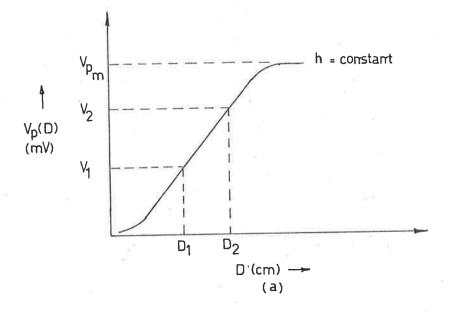
The values of P derived using the V<sub>n</sub> versus D characteristics of the "front" sections of the three vehicles were within the expected range and corresponded closely to the values obtained for an L-shaped plate. The recognition and the subsequent identification process associated with either the first turning point or the point of inflection, provide the basis for establishing the value of  ${\rm V}_{\rm p_m}.$ It should be noted that it is possible other structures associated with the "front" bumper-bar may be encountered in practice where the value of P may be outside the expected range. However limitations of the approach can only be assessed through further experimental studies focused on a variety of vehicles and traffic conditions which are beyond the scope of this thesis.

# CHAPTER 6

#### SPEED ESTIMATION

#### 6.1 MODELLING TECHNIQUE

In order to estimate the speed of a vehicle using the output of the sensor described in Chapter 3, it is necessary to redefine the parameters of the fundamental speed equation (2.4) in terms of the output characteristics of the receiver coil  $R_x$ . Referring to Eq. 4.1, the effective distance  $D_p$  observed by the sensor is given by


$$D_{e} = \frac{(V_{2} - V_{1})}{V_{p_{m}}}$$
. P ....(6.1)

where

$$D_e = (D_2 - D_1)$$

This results from the similarity of the shapes of the V<sub>p</sub> vs D graphs on which the constancy of P is based. This is illustrated in Fig. 6.1(a).

The interval corresponding to  $D_e$  is determined by measuring the transition period of  $V_p(t)$  from  $V_1$ to  $V_2$ , as shown in Fig. 6.1(b).



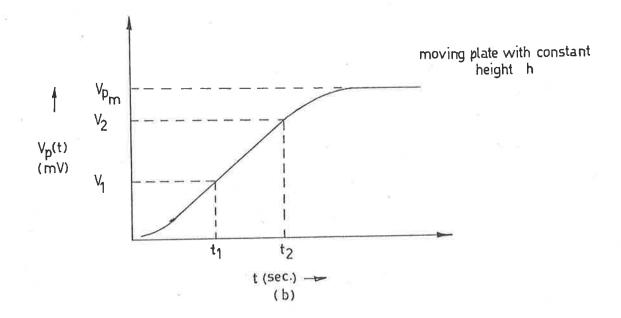



FIG 6.1

- (a) Change in induced voltage in receiver coil as a function of distance D.
- (b) Change in induced voltage in receiver coil
  - as a function of time with change in D.

The speed S can be expressed as

$$= \frac{D_{e}}{(t_{2}-t_{1})}$$
 (6.2)

which can be rewritten in terms of the measurable output parameters of the sensor. Thus

$$S = \frac{(V_2 - V_1)}{(t_2 - t_1)} \cdot \frac{P}{V_{p_m}}$$
 (6.3)

Since units for distance and time in Eq. (6.3) are cm and seconds respectively, a conversion factor of 0.036 is incorporated to change to Kilometres per hour (Kph). The modified expression becomes

$$S = \left(\frac{\Delta V_{p}}{\Delta t_{e}}\right) \cdot \left(\frac{P}{V_{p_{m}}}\right) 0.036 \qquad \dots (6.4)$$

where

S

$$\Delta V_{p} = (V_2 - V_1) \qquad \dots (6.5)$$

and

$$\Delta t_{e} = (t_2 - t_1)$$
 ...(0.0)

 $\langle \rangle$ 

The resolution to which the speed can be estimated, however, will depend on the relative contribution of the constant P and the accuracy with which  $V_{p_m}$  and  $\frac{\Delta V_p}{\Delta t_e}$  are determined.

The accuracy of the procedure due to the slight uncertainty associated with the value of P is determined by differentiating Eq.(6.4) to obtain

$$\frac{\Delta S}{S} = \frac{\Delta P}{P}$$
 ... (6.7)

This is plotted in Fig. 6.2 in terms of percentage speed error as a function of an incremental change  $\Delta P$ .

Similarly the error associated with determination of V  $_{\rm p_m}$  is given by

$$\left|\frac{\Delta S}{S}\right| = \left|-\frac{\Delta V_{p_{m}}}{V_{p_{m}}}\right|$$

.(6.8)

The percentage speed error is plotted in Fig. 6.3 for several values of V as a function of an incremental change  $\Delta V_{p_m}$ .

If  $\frac{\Delta V_p}{\Delta t_e}$  is denoted by  $\propto_t$  then upon differentiation

we obtain

$$\left|\frac{\Delta S}{S}\right| = \frac{\Delta \alpha_{t}}{\alpha_{t}} \qquad \dots (6.9)$$

The behaviour of the error is similar to the previous cases and is mainly circuit orientated.

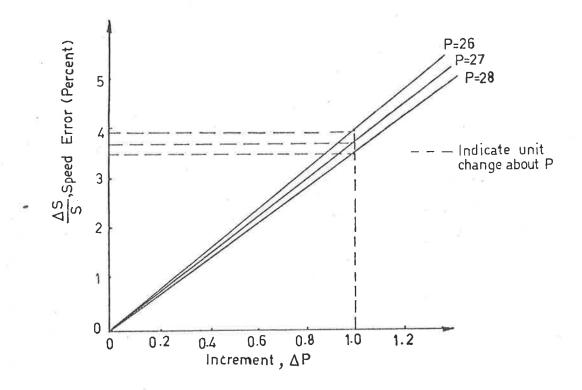
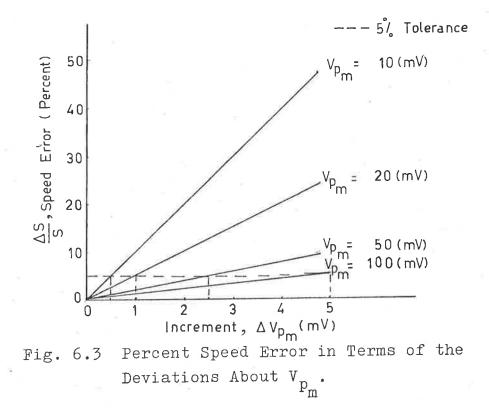



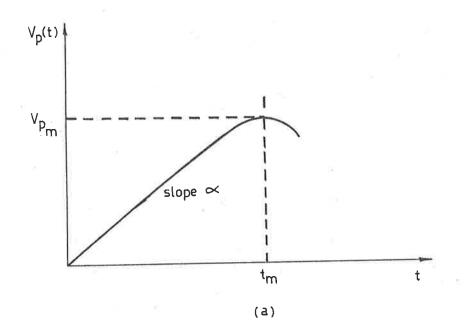

Fig. 6.2 Percentage Speed Error in Terms of the Deviations About P.

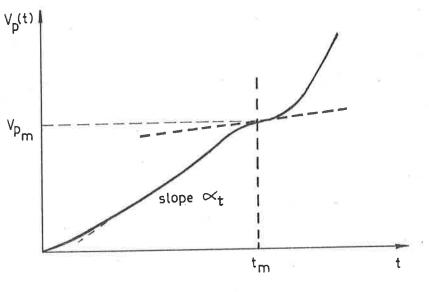


The model defined by Eq.(6.4) for speed measurements requires identification of  $V_{p_m}$ . To define a suitable criteria for detection of  $V_{p_m}$  in real time the properties of  $V_{p_m}$  prior to, and in the vicinity of, the peak must be examined. Observations of the change in image voltage resulting from an approaching vehicle as described in Section 5.3 provided us with two cases of interest.

(i)  $V_{p}(t)$  rises to its peak and then drops.

This is illustrated in Fig. 6.4(a). (ii)V<sub>p</sub>(t) rises to its peak and then levelling occurs before it rises again. This is shown in Fig. 6.4(b).


In case (i) the peak of  $V_p(t)$  may be defined as the first point at which


$$\frac{\mathrm{d}V_{\mathrm{p}}(\mathrm{t})}{\mathrm{d}\mathrm{t}} = 0 \qquad \dots (6.10)$$

$$\frac{d^2 V_p(t)}{dt^2} < 0 \qquad \dots (6.11)$$

and may be identified some time  $\Delta t$  after its occurence.

In case (ii), the curve passes from below the tangent as shown in Fig. 6.4(b) to a point above it.





( b)

Fig. 6.4 Behaviour of  $V_p(t)$  Prior to and in the Vicinity of the Peak

(a)  $V_p(t)$  rises as a non decreasing function to its peak before decaying

(b)  $V_p(t)$  having a point of inflection.

The second derivative  $\frac{d^2 v_p(t)}{dt^2}$  changes sign from

negative to positive, thus we look for

 $\frac{\mathrm{d}^{3}\mathrm{V}_{p}(\mathrm{t})}{\mathrm{d}\mathrm{t}^{3}} > 0$ 

Since the derivatives are "a posterior" function derived from the received signal, they can only be formulated at times  $(t+\Delta t)$ . Although we require at least a one step memory, for small values of  $\Delta t$ , the process can be considered to operate almost in real time.

...(6.12)

#### 6.3 CIRCUIT REALIZATION

The bock diagram and the relevant waveform for the speed measuring system is shown in Fig. 6.5. The circuit basically consists of six main sections.

## 6.3.1 Receiver Amplifier

This is a narrow band tuned circuit receiver having a centre frequency  $f_0 = 100$ KHz and a bandwidth  $\Delta B = 5$ KHz. The circuit consists of a two stage unity gain power amplifier and provides the matching between the lead-in cable and the demodulator.

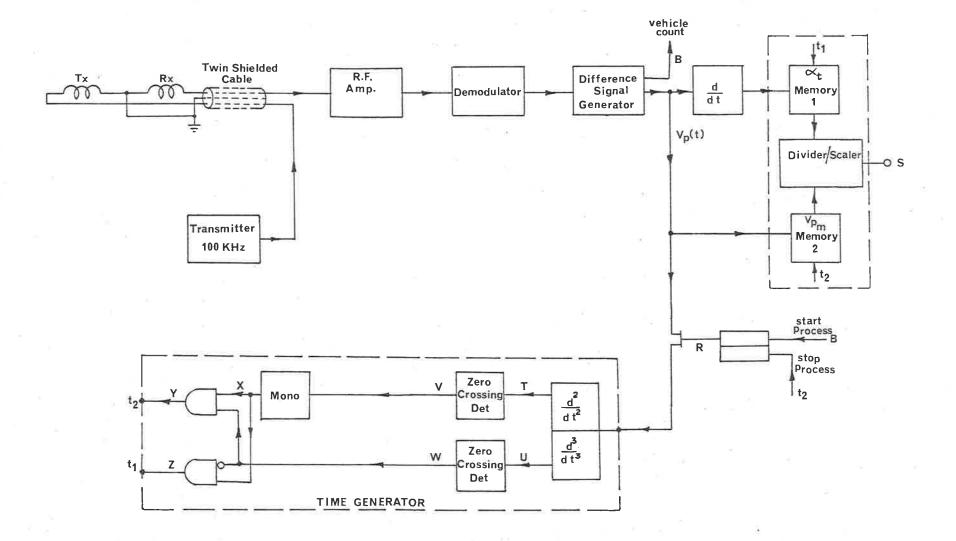



Fig. 6.5(a) Block Diagram for Speed Measuring Circuit

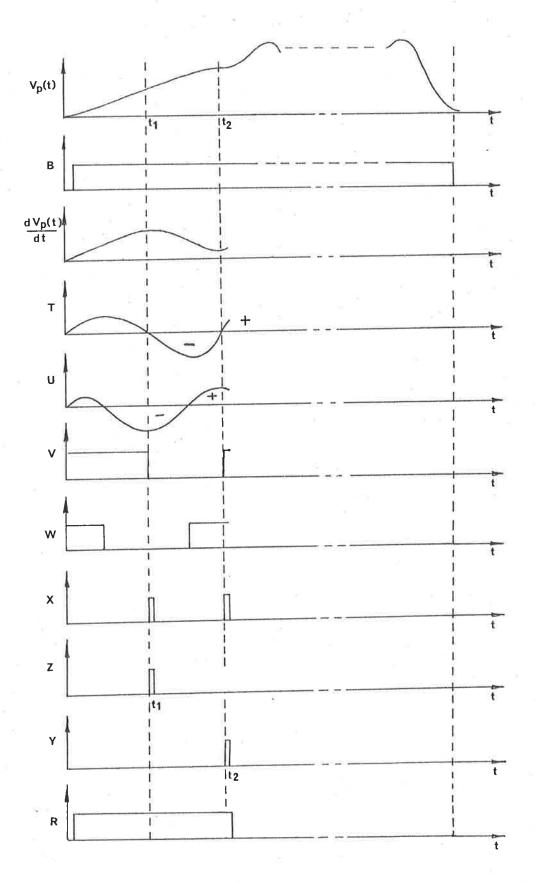





Fig. 6.5(b) Waveforms for Speed Measuring Circuit

### 6.3.2 Demodulator

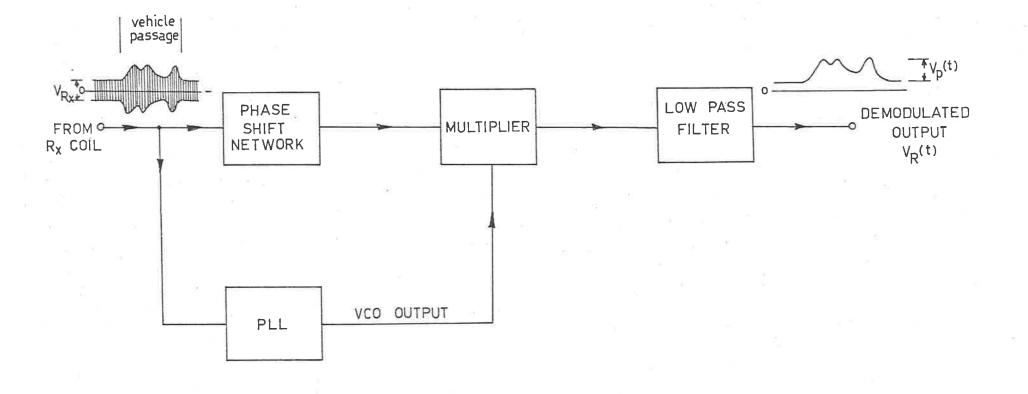
The circuit shown in Fig. 6.6 uses a phase-lock loop (PLL) which functions as a synchronous AM detector and lock onto the carrier of the AM signal (100KHz) so that the voltage controlled oscillator (VCO) output, has the same frequency as that of the carrier but no amplitude modulation. The demodulated AM is obtained by multiplying the VCO signal with the modulated input signal and then filtering the output to remove all but the difference frequency components. When the frequency of the input signal is identical to the free running frequency of the VCO, the loop goes into lock with these signals 90° out of phase. If the input signal is now shifted 90° so that it is in phase with the VCO signal and the two signals are mixed in a second phase comparator, the average DC value (difference frequency component) of the phase comparator output will be directly proportional to the amplitude of the input signal. Thus, the method is essentially a coherent detector which involves averaging of two compared signals, and therefore offers a good immunity against ignition noise.\*

\* Ignition noise covers the range 200KHZ - 30MHZ.

6.3.3 Difference Signal Generator

The circuit removes the bias which exists due to carrier and produces the image voltage  $V_p$  resulting from the presence or the passage of a vehicle. This arrangement is particularly important in compensating for slow changes due to environment. This is shown in Fig. 6.7. The circuit also provides the vehicle count information.

# 6.3.4 Differentiator


The operation of the circuit shown in Fig. 6.8 is based on the time derivative definition of a time dependent voltage

$$\frac{dV(t)}{dt} = \frac{\lim V(t+\Delta t) - V(t)}{\Delta t} \qquad \dots (6.13)$$

Two sample and hold circuits which sample the input signal at times t and  $t + \Delta t$  and subtract one from the other, are used. The value of  $\Delta t$  is set by an external clock and is selected according to the frequency range of the input signal.

6.3.5 Divider

This technique uses logarithmic converters as shown in Fig. 6.9 for dividing two analogue signals. In addition, the arrangement provides the necessary scalling factor of (0.036P).



Signetics NE 561 B Integrated cct.

Fig. 6.6 Block Diagram - Demodulator

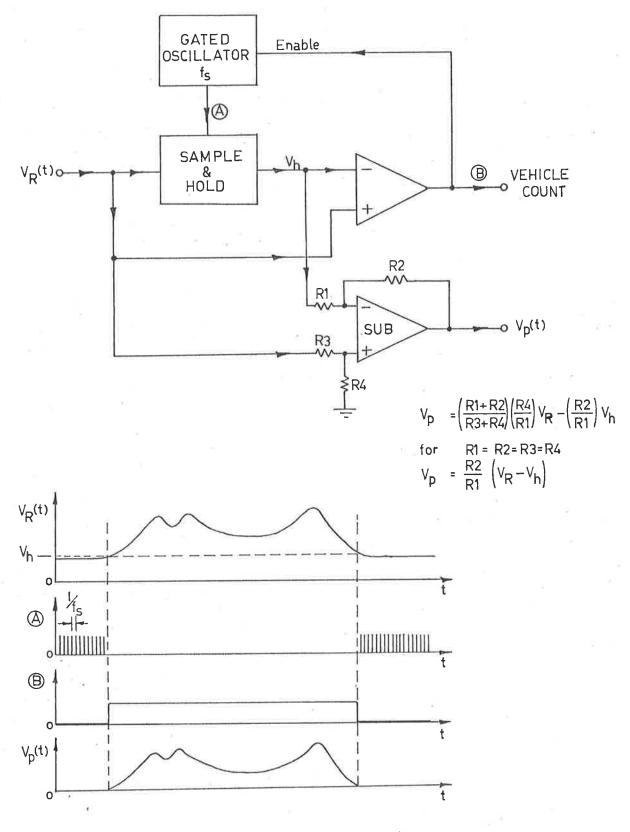
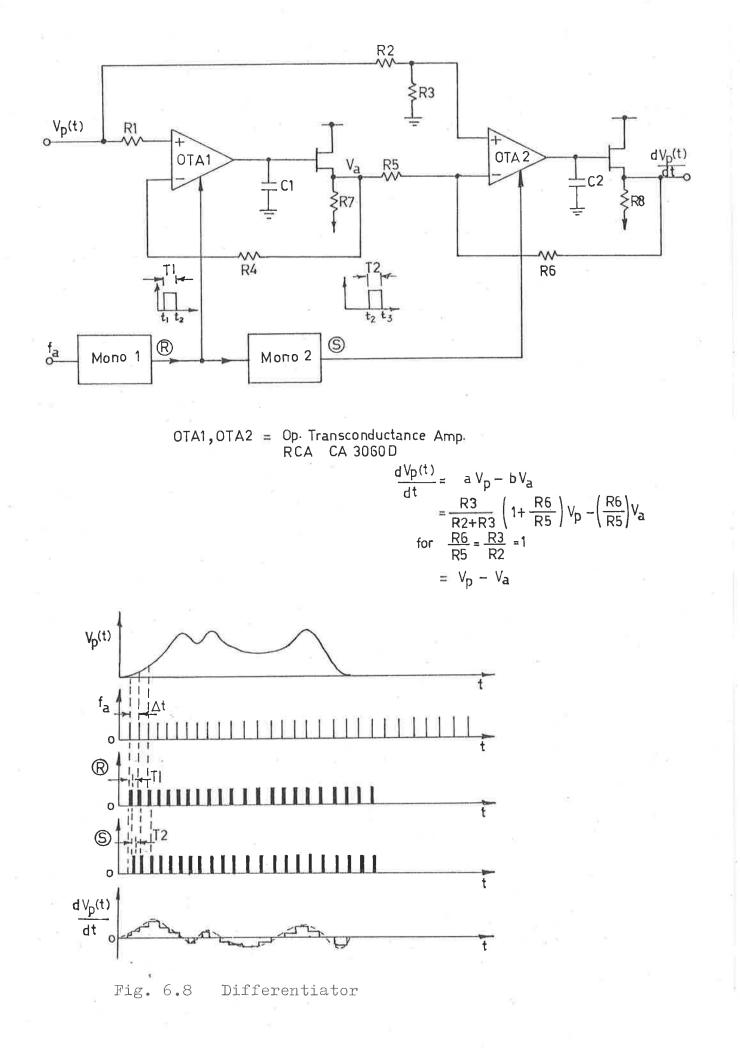
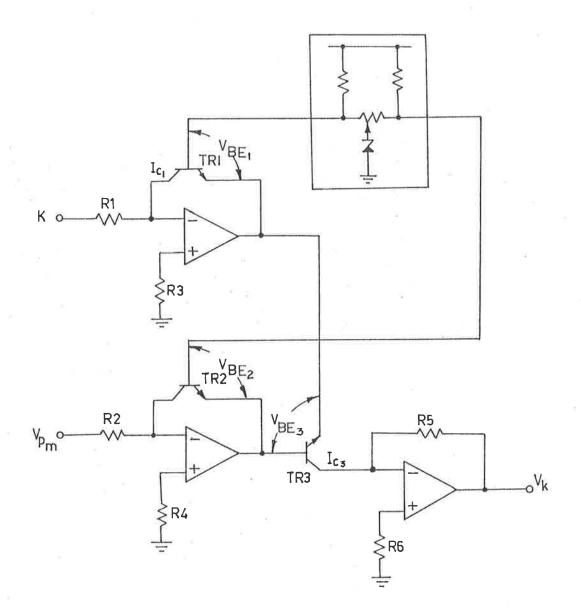





Fig. 6.7 Difference Signal Generator





$$V_{BE_{1}} = \frac{q}{kT} \log_{e} I_{c_{1}}$$
$$I_{c_{1}} = \frac{K}{R1}$$
$$V_{BE_{1}} \propto \log_{e} K$$

Similarly

$$V_{BE_2} \propto \log_e V_{P_m}$$

 $I_{C_3}$  varies as exponent of  $V_{BE_3}$ 

$$I_{c_3} \propto \frac{K}{V_{p_m}}$$

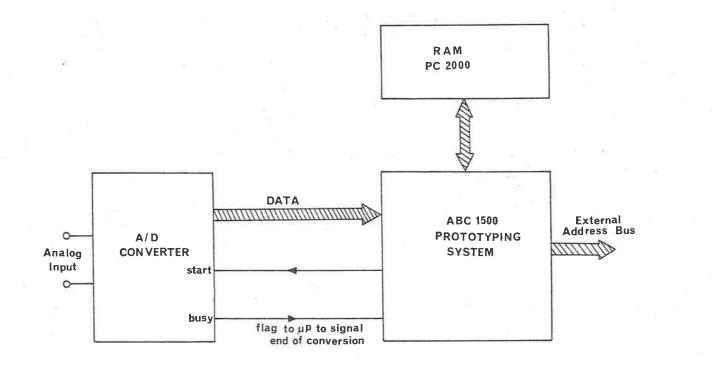
$$V_k = \frac{K}{V_{p_m}}$$
Where  $K = 0.036P$ 

Fig. 6.9 Divider / Scaler

6.3.6 Time Generator

The time generator provides the clocking information as to the instant when a particular process such as storage of  $V_{p_m}$ , division etc., is to commence.

6.4 EXPERIMENTAL RESULTS


Signatures\* of several vehicles were recorded by driving the vehicles at constant speed over the sensor situated on the road surface at a controlled experimental site within the Philips area at Hendon,S.A. The block diagram of the data acquisition system using the Signetics microprocessor ABC 1500 card and additional memories , is shown in Fig. 6.10. The digitized data was subsequently punched and used as the input to the University's CDC 6400 Computer.

Signatures for 72 Ford Futura, '76 Centura and '76 Datsun 180B are shown in Fig. 6.11, Fig. 6.12 and Fig. 6.13 respectively. In order to obtain the speed, the initial part of the waveforms were analysed using the model defined by Eq.(6.4) in accordance with the

identification criteria of section 6.2. The differentiation subroutine used on the data is shown in Appendix V. The results of the procedure are given in Table 6.1.

Table 6.2 shows the comparison between the values

st by this term it is meant the change in the image voltage as the vehicle passes over the sensor



- NOTE: (1) A/D converter type AD7550 (Analog Devices)
  - (2) Sampling period of 0.6 mSec is chosen on the basis of the availabile memory capacity and vehicle speed 20Km/h



. .

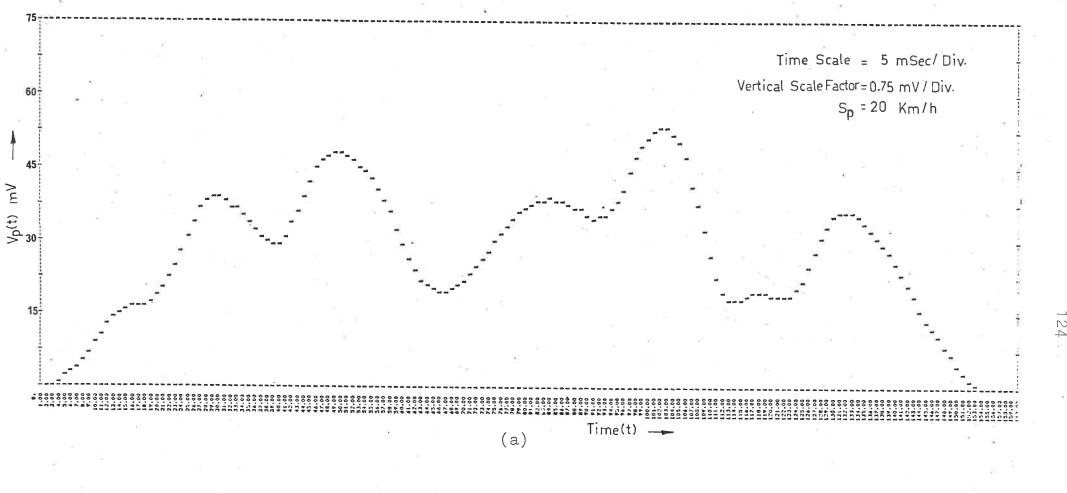



Fig. 6.11

Characteristic Signature for 1972 Ford Futura (a) Signature as a Function of Time

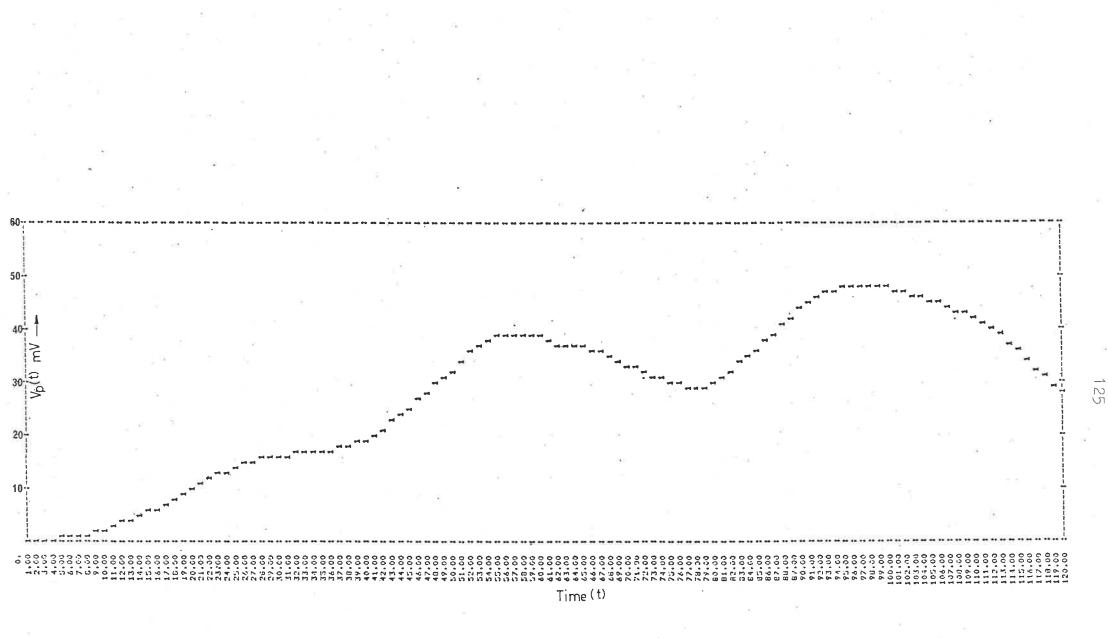
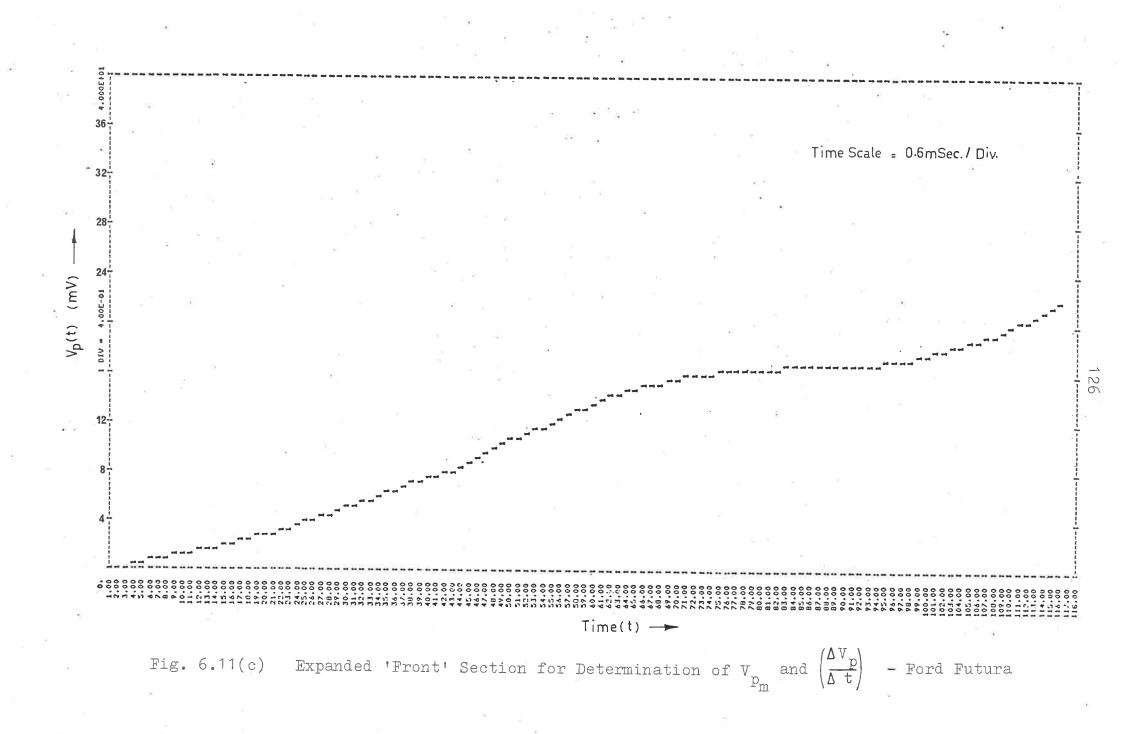
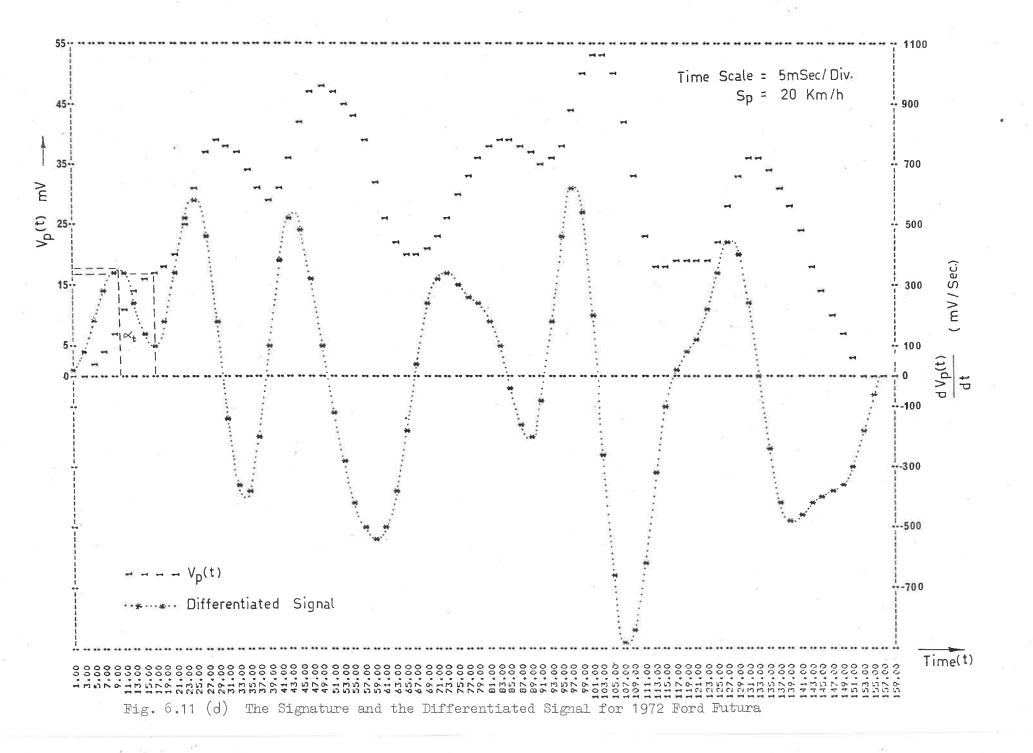





Fig. 6.11(b) Expanded 'Front' Section = Ford Futura





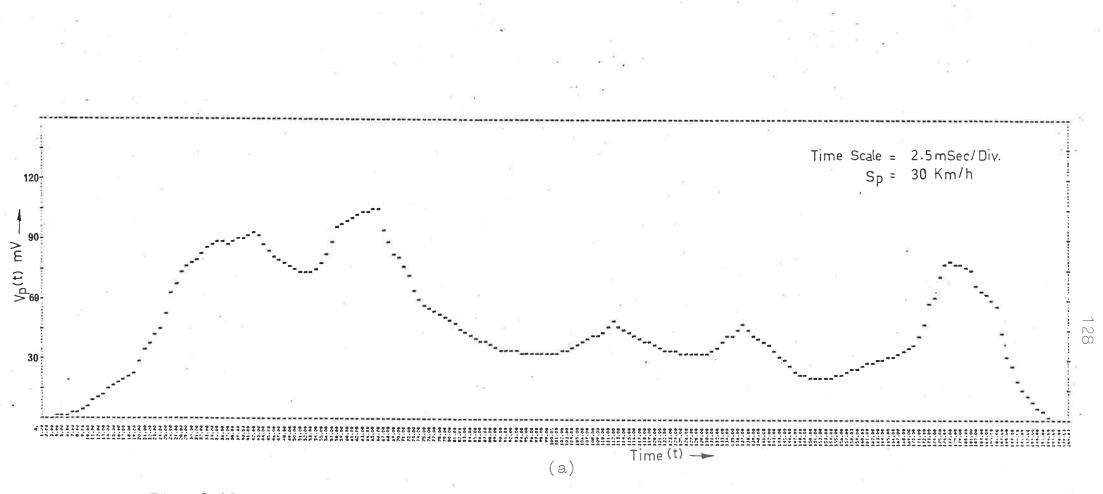
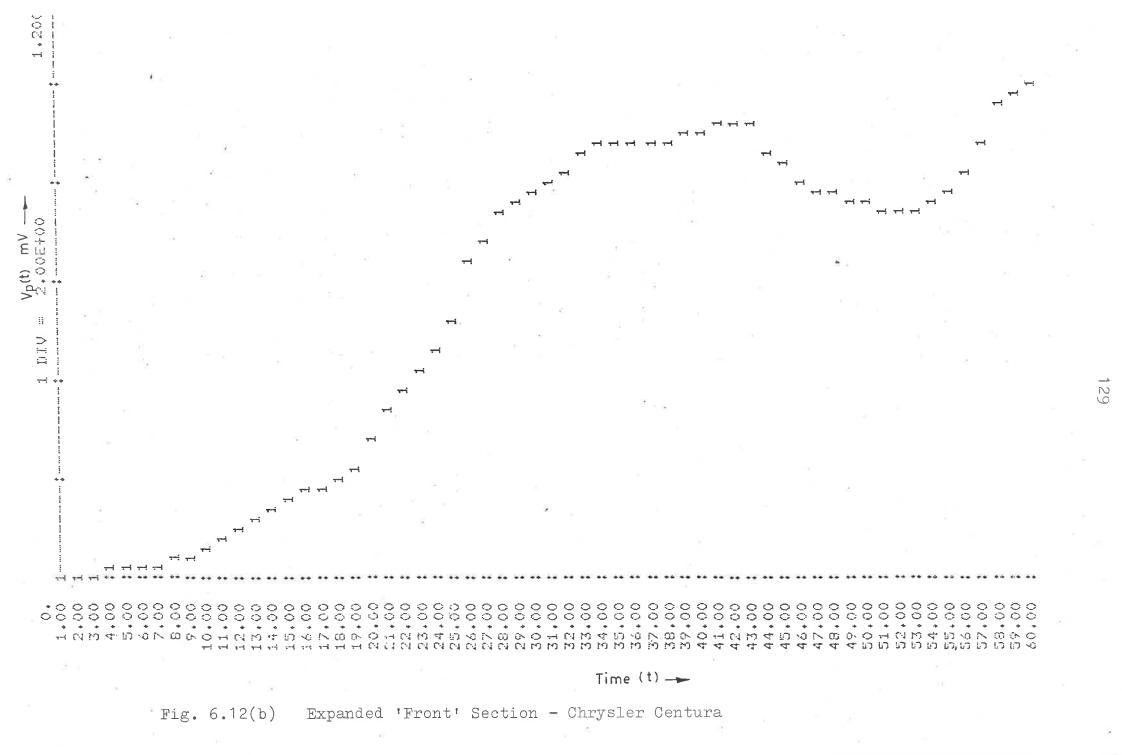
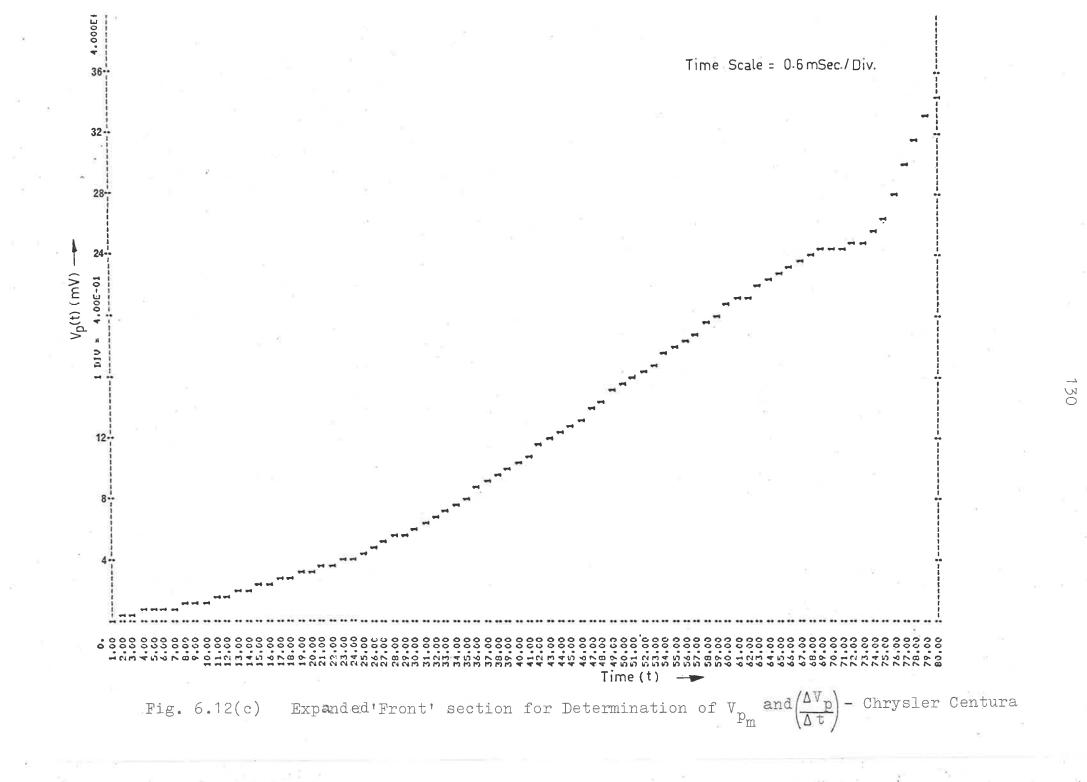
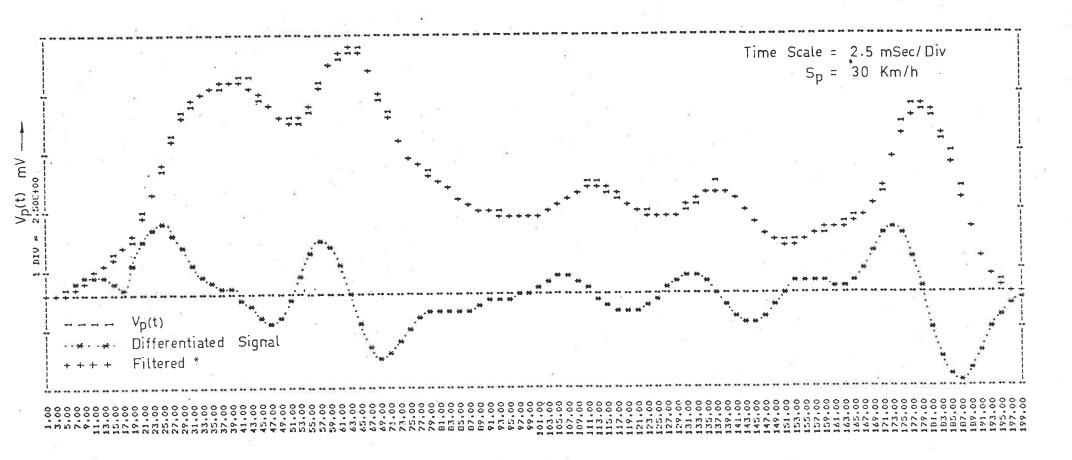
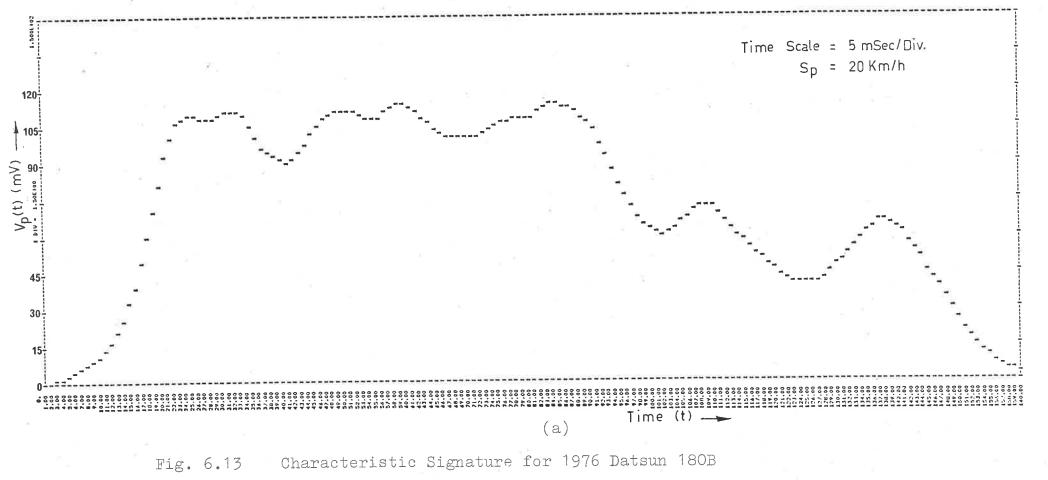
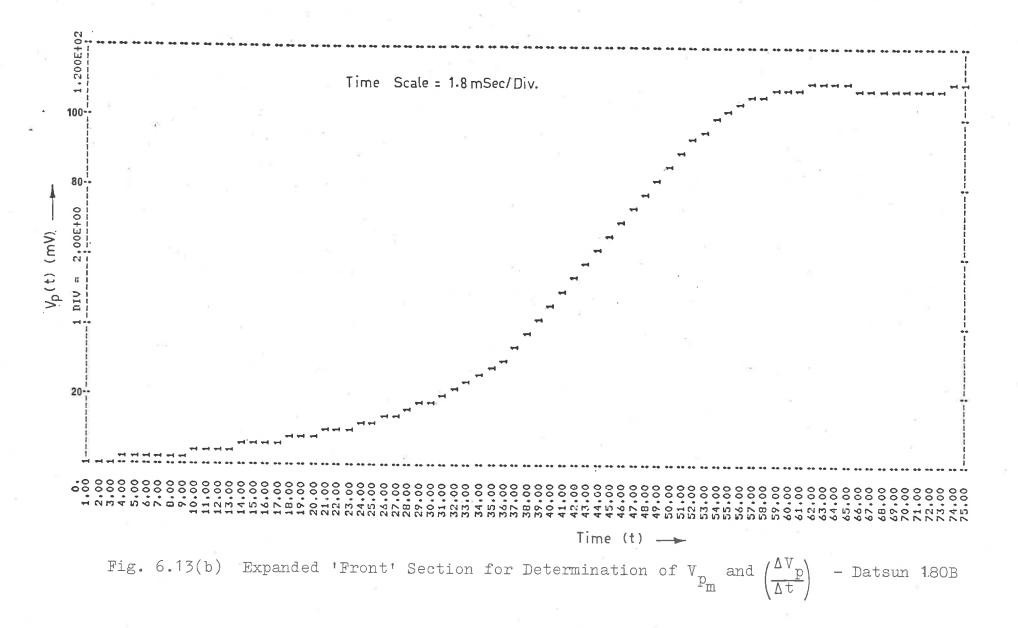
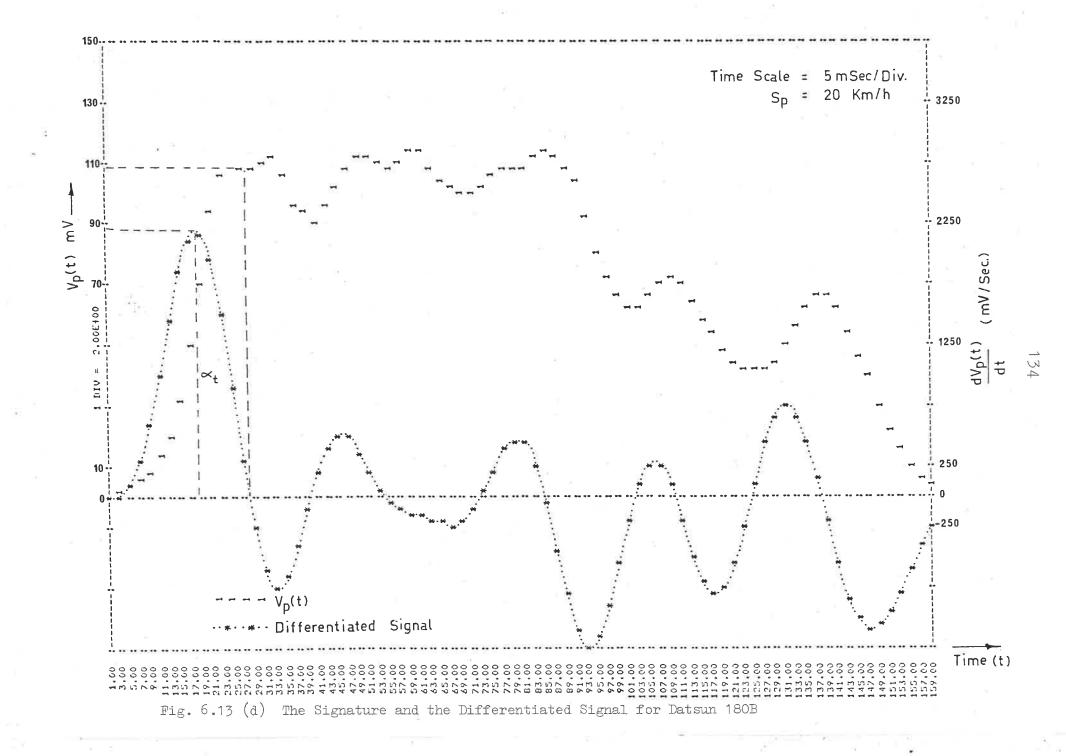





Fig. 6.12 Characteristic Signature for 1976 Chrysler Centura (a) Signature as a Function of Time







Fig. 6.12(d) The Signature and the Differentiated Signal for Chrysler Centura

\* Filtering of data was achieved by obsering the signature through a 'window'.



(a) Signature as a Function of Time





| Vehicle | $\frac{\Delta V_p}{\Delta t_e}$ | V <sub>p<sub>In</sub><br/>(m<u>V</u>)</sub> | S  <sub>P=26</sub><br>Km/h | S   <b>P=27</b><br>Km/h | S<br>P=28<br>Km/h |
|---------|---------------------------------|---------------------------------------------|----------------------------|-------------------------|-------------------|
| Ford    | 358.3                           | 16.51                                       | 20.3                       | 21.1                    | 21.9              |
| Centura | 799.3                           | 24.82                                       | 30.2                       | 31.3                    | 32.5              |
| Datsun  | 2276.1                          | 110-64                                      | 19.3                       | 20.0                    | 20.7              |

Table 6.1 Value of Speed Using three Values for P

|         |                         | Speed usi            | ng Vehicle          | Length   |
|---------|-------------------------|----------------------|---------------------|----------|
| Vehicle | S   <b>P_27</b><br>Km/h | t <sub>W</sub> (Sec) | l <sub>m</sub> (cm) | S1(Km/h) |
| Ford    | 21.1                    | 0.78                 | 469                 | 21.6     |
| Centura | 31.3                    | 0.499                | 458.5               | 32.9     |
| Datsun  | 20.0                    | 0.815                | 419                 | 18.5     |

Table 6.2 Comparison of the Vehicle Speeds using the Vehicle Length and the Speed Model with P = 27

of speed derived from the speed model and that obtained using the vehicle length  $l_m$  and period  $t_w$  given by

$$S_{l} = \frac{l_{m}}{t_{w}} \cdot 0.036$$
 (Km/h) ...(6.14)

where

t = period during which the sensor is occupied by the vehicle (seconds).

The values of  $t_w$  for the three vehicles are obtained from figures 6.11(a) - 6.13(a) respectively.

To check the speed information derived from the model, two additional speed measuring techniques were also implemented.

The first used the transit time of the vehicle over a known distance. Using Eq.(2.4) the speed  $S_v$  was then calculated. The second method used the vehicle's speedometer reading to give an approximate speed indication  $S_p$ . In addition the Ford Futura was fitted with a fully styled digital dashboard. The error associated with this arrangement was  $\pm \frac{1}{2}$  digit. Table 6.3 provides a comparison between the three techniques. The speed error is referenced with respect to  $S_v$ , and was found to be in the order of 5% with P=27.

| Vehicle | S <mark>v</mark><br>Km/h | S <b>p</b><br>Km/h | S <b> .P=27</b><br>Km/h                                                                                                | Error  |      |
|---------|--------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|--------|------|
| Ford    | 20.4                     | 20                 | 21.1                                                                                                                   | 3.4    |      |
| Centura | 30.3                     | 30                 | 31.3                                                                                                                   | 3.3    |      |
| Datsun  | 19.2                     | 20                 | 20.0                                                                                                                   | 4.2    |      |
| Percent | Speed                    | Error              | $= \frac{\left  \begin{array}{c} S_{v} - S \\ \end{array} \right }{\left  \begin{array}{c} S_{v} \end{array} \right }$ | P=27 × | 100% |

Table 6.3 Comparison Between the Speed Values using the Three Different Measuring Techniques

### CONCLUSIONS

The modelling technique adopted has provided a relatively simple technique for estimating the vehicle's speed in real time using a single vehicle sensor. Although the recording of data and the subsequent analysis were carried out for only three vehicles, the results using the speed model were consistent with those obtained from conventional techniques, from which it can be deduced that the speed model may be used as an alternative speed measuring procedure with an accuracy of  $\frac{+}{2}$  5%.

Since the errors associated with the identification and the measurements of the V<sub>p<sub>m</sub></sub> and  $\sim_t$  are circuit orientated, their effects have been excluded in the error assessment. The notable feature of the proposed circuit is the ability of the difference signal generator to vary its reference level continuously so that automatic compensation is achieved for slow environmental changes.

Although some drift problems were encountered with the analog sections, the circuit has provided the basis for future apporach in the development of the integrated circuit using  $I^2L$  (Integrated Injection Logic) technology.

6.5

# CHAPTER 7

### VEHICLE IDENTIFICATION

### 7.1 INTRODUCTION

The basic concepts associated with non contact identification of vehicles and their subsequent classification involve the detection of some form of radiated or reflected energy from the vehicle. When a vehicle moves over the vehicle sensor described in Chapter 3 the irregulatities in the undercarriage height, is reflected in terms of a time varying voltage  $V_p(t)$ known as the "signature" of the vehicle. This characteristic has been demonstrated in Chapter 6 by Fig. 6.11, Fig. 6.12 and Fig. 6.13.

Therefore in this section, the suitability of the coupled coils vehicle sensor is investigated for the purpose of vehicle identification in terms of vehicle grouping and classification.

Although at first sight, processing of the signature in frequency domain seems to be the obvious approach, due to the cost and complexity of the hardware, the technique was not used. The alternative method adopted for investigation looks for a suitable criteria using the amplitude characteristic of the signature.

## 7.2 VEHICLE LENGTH MEASUREMENT

One of the parameters required for the identification process is the vehicle length  $l_m$ . From Eq.(2.5) and Eq.(6.3) we obtain an expression for the vehicle length  $l_m_e$  given by

$$l_{m_{e}} = \left(\frac{\Delta V_{p}}{\Delta t_{e}}\right) \left(\frac{P}{V_{P_{m}}}\right). \quad t_{w} \quad (cm) \quad \dots (7.1)$$

where

 $t_w = period$  the sensor is occupied

It has been demonstrated in Fig. 4.2 (Chapter 4) that the magnitude of the image voltage  $V_p$  as a function of approach distance D is dependent on height h and commences to increase when the plate is several centimeters from the sensor. Therefore the measurement of the interval at the instant in which voltage change occurs results in a vehicle length which is slightly larger than the actual "mechanical" length of the vehicle. This is known as the "Electrical" length  $l_m$  and deviates from the actual length  $l_m$  by an amount given by

$$l_e = l_m - l_m$$

...(7.2)

The similarity of shapes of the V<sub>p</sub> vs D graphs on which the constancy of P depends as discussed in Chapter 5, results also in an approximately constant ratio given by

$$\delta_{e} = \frac{V_{p_{m}}}{V_{d_{o}}}$$

where

 $\aleph_e$  = length constant  $\aleph_d$  = image voltage at D = 0

From the  $V_p$  vs D characteristics shown in Chapter 5, Tables 7.1 - 7.4 are derived showing the value of  $\delta_e$ as a function of the various parameters such as  $V_{R_x}$ ,  $\delta$  and  $\theta_p$ . If we consider Table 7.4 and assume that the L - Shaped plate corresponds to the front section of the vehicle and for practical values of the undercarriage we neglect h <12cm, then we obtain a value for  $\delta_p$  which can be approximated by

 $\delta_{e} \neq 2$ 

Therefore

V<sub>d</sub> ≑ 0.5 V<sub>pm</sub>

...(7.5)

...(7.4)

...(7.3)

Thus vehicle length may be estimated from the time interval between the initial rise of voltage through the value of  $0.5V_{p_m}$  and its subsequent fall through this value combined with Eq.(7.1)

| b(cm) | 0    | 20   |
|-------|------|------|
| 6     | 3.48 | 3.60 |
| 12    | 2.78 | 3.03 |
| 18    | 2.55 | 2.73 |
|       |      |      |

(a)

|                 | Y    | -    |
|-----------------|------|------|
| &(deg)<br>h(cm) | 0    | 20   |
| 6               | 3.33 | 3.53 |
| . 12            | 2.84 | 3.09 |
| 18              | 2.41 | 2.53 |
|                 | (b)  | A,   |

Table 7.1

Value of  $\aleph_{e}$  as a function of Plate Height h(cm) and Approach Angle  $\delta$ (deg.)

(a) 
$$V_{R_x} = 250 \text{mV}$$
  
(b)  $V_{R_x} = 500 \text{mV}$ 

| 0                |      |      |      |      |
|------------------|------|------|------|------|
| e (deg)<br>h(cm) | 0    | 5    | 10   | 15   |
| 6                | 3.48 | 3.30 | 3.75 | 3.70 |
| 12               | 2.78 | 3.13 | 3.56 | 3.50 |
| 18               | 2.55 | 2.90 | 3.28 | 3.30 |

Table 7.2 Value of  $\gamma_e$  as a function of Plate Height h(cm) and Incline Angle  $\Theta_p(\text{deg.})$  with  $V_{R_x} = 500\text{mV}$ 

|   | V <sub>R</sub> (mV)<br>h(cm) | 250  | 500  | 1000 | 2000 |
|---|------------------------------|------|------|------|------|
|   | 6                            | 2.41 | 2.38 | 2.27 | 2.70 |
| = | 12                           | 2.30 | 2.11 | 2.26 | 2.21 |
|   | • 18                         | 2.12 | 2.00 | 2.00 | 2.07 |

Table 7.3 Value of  $\aleph_e$  as a function of Plate Height h(cm) and Initial Induced Voltage  $V_{R_x}(mV)$  for an L - Shaped Steel Plate.

143

| &(deg)<br>h(cm) | 0    | 5    | 10   |  |  |  |
|-----------------|------|------|------|--|--|--|
| 6               | 2.40 | 2.89 | 2.31 |  |  |  |
| 12              | 230  | 2.30 | 2.25 |  |  |  |
| 18              | 2.10 | 2,00 | 2.00 |  |  |  |
|                 |      |      |      |  |  |  |

(a)

| ð (deg)<br>h(cm) | 0    | 5    | 10   |  |  |
|------------------|------|------|------|--|--|
| 6                | 2.38 | 2.38 | 2.53 |  |  |
| 12               | 2.11 | 2.10 | 2.18 |  |  |
| 18               | 2.00 | 2.01 | 2.09 |  |  |
| (b)              |      |      |      |  |  |

Table 7.4

Value of  $\aleph_{e}$  as a function of Plate Height h(cm) and Approach Angle  $\delta$ (deg.) for an L - Shaped Steel Plate

(a) 
$$V_{R_x} = 250 \text{mV}$$
  
(b)  $V_{R_x} = 500 \text{mV}$ 

The determination of the time at which the image voltage reaches  $0.5V_{\rm p}$  implies short term memory of the rise; this can be achieved with the available charge coupled stores.

The measuring technique described in Chapter 5, particularly the relationship between the point of measurement on the vehicle and the sensor shown in Fig.5.16, provides a vehicle length which is different to that specified by the motor vehicle manufacturers. The discrepency is mainly due to the variations in the position of the "front" and "rear" bumper bars. However, this approach provides a more stable measuring technique due to the mechanical uniformity associated with this region of the vehicle.

The expression showing the modified length  $\mathbf{l}_{m_{a}}$  is given by

$$l_{m_a} = \left(\frac{\Delta V_p}{\Delta t_e}\right) \left(\frac{P}{V_{p_m}}\right) \left(t_r + t_o + t_v\right) \quad (cm) \quad \dots (7.6)$$

where

 $t_{r_{o}} = \text{interval corresponding to}(v_{p_{m_{1}}} - v_{do_{1}})$ for "front" section of a vehicle  $t_{f_{o}} = \text{interval corresponding to}(v_{p_{m_{2}}} - v_{do_{2}})$ for the "rear" section of a vehicle  $t_{v} = \text{interval corresponding to}(v_{p_{m_{1}}} \text{ and } v_{p_{m_{2}}})$ 

The definitions of these parameters are illustrated in Fig. 7.1. and Fig. 7.2.

145

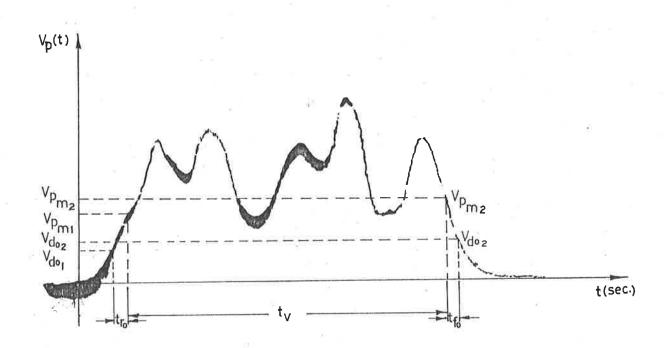



Fig. 7.1

Vehicle Signature Indicating the Parameters for Length Measurement

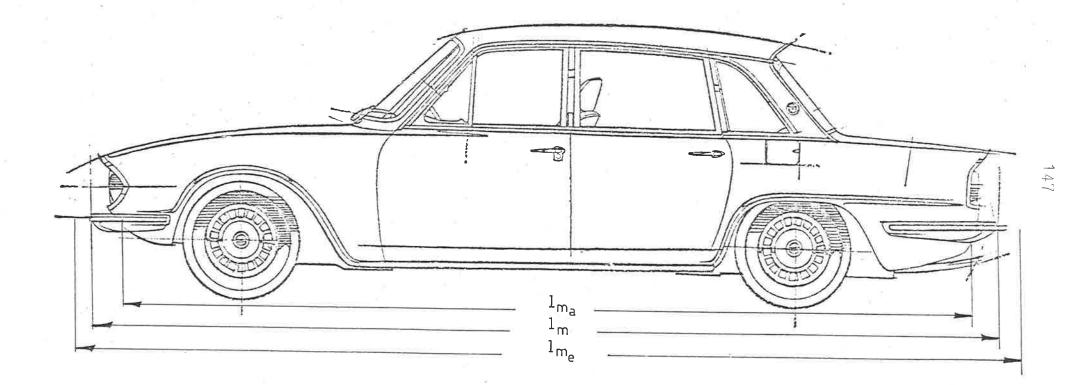



Fig. 7.2 Vehicle Length Definition for Identification in terms of "Mechanical" and "Electrical" Lengths

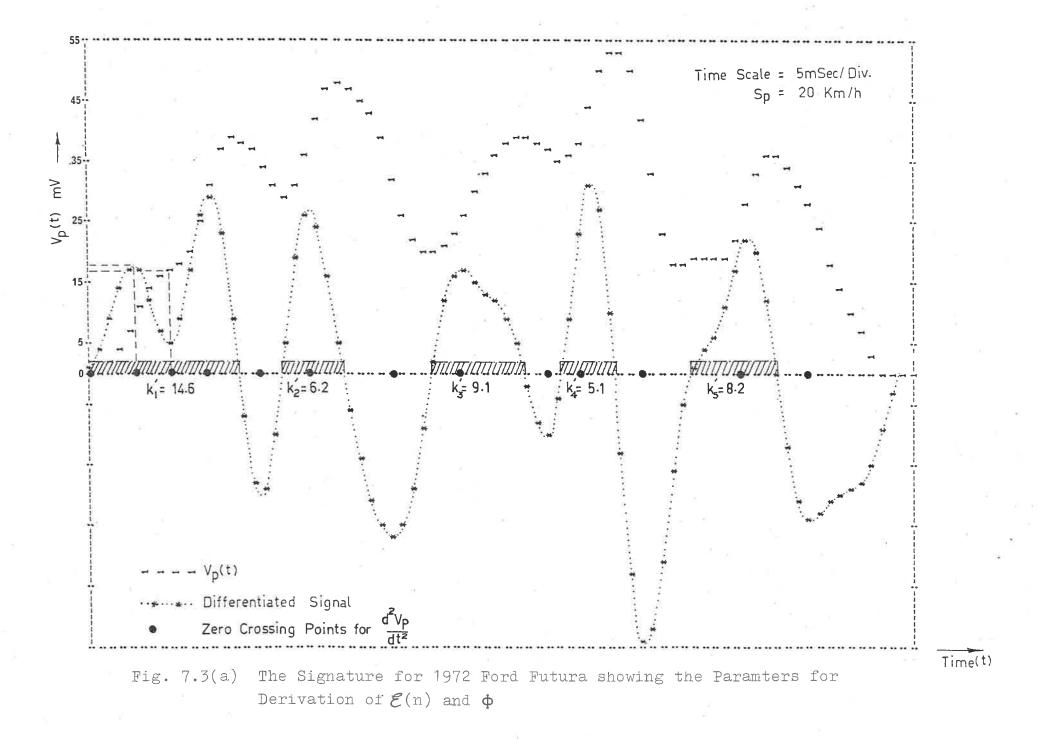
Table 7.5 shows values of  $l_{m_a}$  for the three experimental vehicles derived from Eq.(7.6) and Figures 6.11(a), 6.12(a) and 6.13(a). The corresponding values of vehicle length as specified by the vehicle manufacturers are also included for comparison. Since  $l_{m_a}$  is insensitive to changes in the magnitude of  $V_{R_x}$ , it is used as the first parameter for vehicle identification.

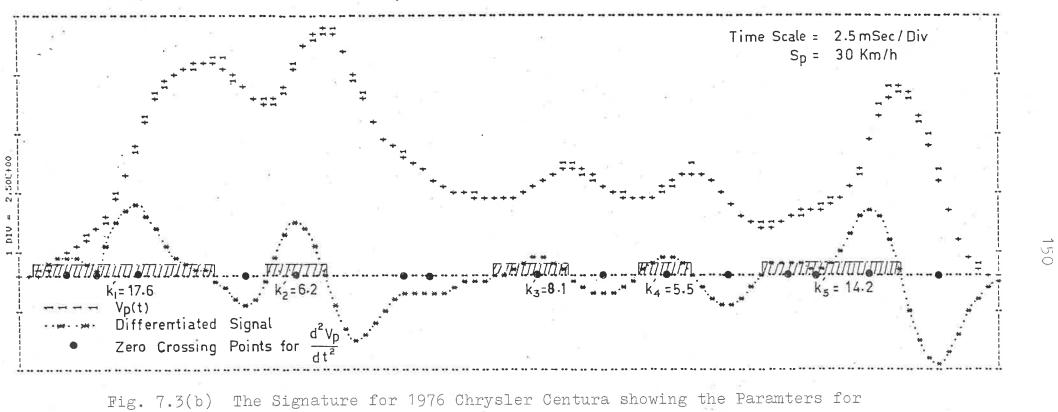
### 7.3 VEHICLE SIGNATURE

The second parameter considered for investigation is the ratio  $\mathcal{E}(n)$  obtained from the time derivative of the vehicle's signature defined as

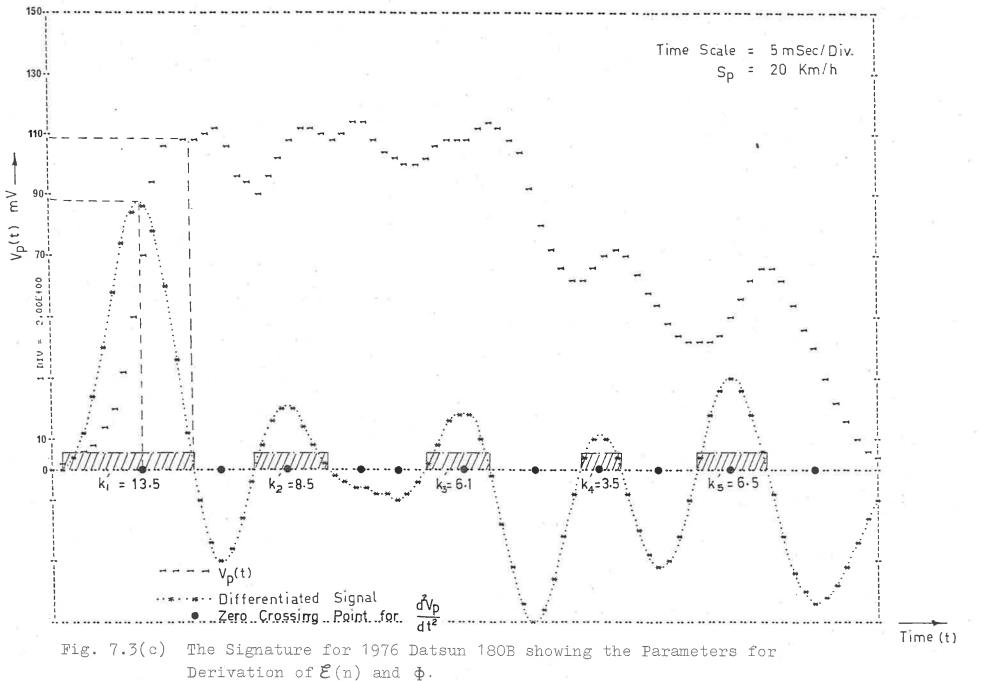
$$\mathcal{E}(n) = \frac{k'_n}{k'_{n+1}}$$
  $n = 1, 2, 3, \dots (7.7)$ 

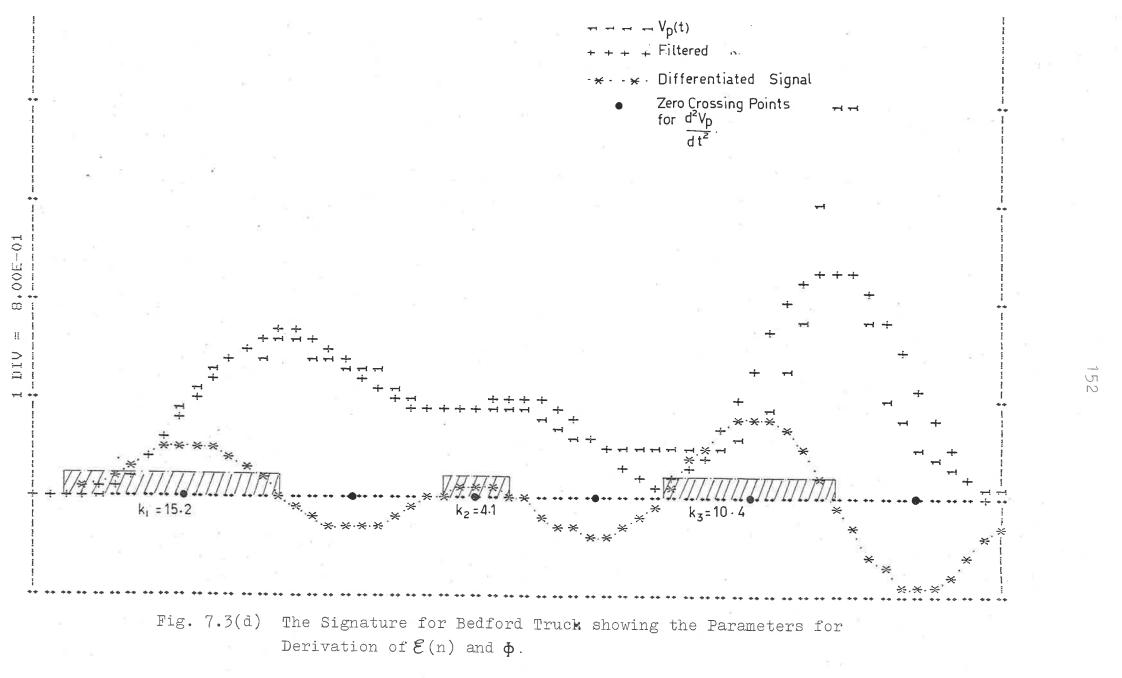
where


k' = interval corresponding to the i<sup>th</sup> positive
 section of the differentiated signal


This is illustrated in Fig. 7.3. The obvious feature of  $\mathcal{E}(n)$  is that it is independent of the variations of  $V_{R_x}$  and the vehicle speed, and can be obtained from the vehicles' signature using simple logic design procedures.

In addition, the number of "peaks" appearing in the signature may be derived from


...(7.8)


 $N_p = n+1$ 





Derivation of  ${\mathcal E}$  (n) and  ${\Phi}$  .





|         |                        | Time : | Time Parameters(mS) |     |                         |
|---------|------------------------|--------|---------------------|-----|-------------------------|
| VEHICLE | <sup>-</sup> m<br>(cm) | tro    | tfa                 | tv  | <sup>-m</sup> a<br>(cm) |
| FORD    | 469                    | 35     | 20                  | 710 | 448                     |
| CENTURA | 458.5                  | 5      | 7.5                 | 425 | 380                     |
| DATSUN  | 419                    | 30     | 15                  | 600 | 358                     |

Table 7.5 Comparison between the "Mechanical" Length  ${\rm l_m}$  and the Length  ${\rm L_m}$  used for Identification a

153

Examination of the waveforms in Appendix IV (although not analysed) indicate that Np may be as high as 6, and therefore five separate values of  $\mathcal{E}(n)$  may be expected. Table 7.6 shows values of  $\mathcal{E}(n)$  for four vehicles including a 1976 Bedford truck.

Since the elements of  $\mathcal{E}(n)$  are directly related to the number of peaks, Np appears redundent and can be neglected.

The final parameter which enables further refinement of the identifation process is designated by  $\Phi$  which is defined by the logic state.

 $\Phi = \begin{cases} '0' & \text{absence of the point of inflection} \\ & \dots(7.9) \\ & \dots(7.9) \end{cases}$ 

This is referred to the initial section of the signature and is determined in accordance with the criteria developed in Chapter 6, using the second and third derivatives. Table 7.7 shows values of  $\Phi$  for four vehicles.

### 7.4 IDENTIFICATION PROCESS

For the identification process, each group of similar vehicles (vehicles of same make and model) are assigned a classification code G defined by

$$G = f(\Phi, \mathcal{E}(n), l_{m_{\alpha}})$$

...(7.10)

| E (n)            | E(1)  | É (2) | É(3)  | E(4)  | E(5)  |
|------------------|-------|-------|-------|-------|-------|
| Vehicle          | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 |
| FORD             | 2.3   | 0.7   | 1.6   | 0.7   | 0     |
| CENTURA          | 2.8   | 0.8   | 1.6   | 0.4   | 0     |
| DATSUN           | 1.6   | 1.4   | 1.7   | 0.5   | 0     |
| BEDFORD<br>TRUCK | 3.8   | 0.4   | 0     | 0     | 0     |

Table 7.6 Identification Parameters  $\mathcal{E}(n)$  for Four Different Vehicles

| VEHICLE          | φ |
|------------------|---|
| FORD             | 1 |
| CENTURA          | 1 |
| DATSUN           | 0 |
| BEDFORD<br>TRUCK | 0 |

Fig. 7.7 Identification Parameter  $\Phi$  for Four Different Vehicles

The number of elements used from  $\mathcal E$  can be tailored to meet the required "false alarm" rate.

The classification codes for the vehicles are then derived from Tables 7.5, 7.6 and 7.7. For example, G for 1972 Ford Futura, 1976 Chrysler Centura and 1976 Datsun 180B group of vehicles are

(1, 2.3, 0.7, 1.6, 0.7, 0, 448)
(1, 2.8, 0.8, 1.6, 0.4, 0, 380)
(0, 1.6, 1.4, 1.7, 0.5, 0, 358)

respectively.

### 7.5 DISCUSSIONS

Although the overall system implication of the identification process has not as yet been fully explored in regards to broad class of vehicles, the concept appears simple and more importantly it can be implemented in real time. The manner in which the classifiaction codes for the various vehicles are stored and the procedure for signature matching are the subject of future investigations.

Although at this stage detailed analysis of the signature due to the vehicle lateral displacement has not been made, observation of several signatures as shown in Appendix IV have indicated that both  $\phi$  and  $l_m_a$  appear reasonably stable. Moreover, only one or two

elements of  $\mathcal{E}(n)$  seem to deviate slightly from the specified values. However it is expected that in the search procedure for signature matching these deviations can be taken into account.

# CHAPTER 8

CONCLUSIONS AND FUTURE DEVELOPMENTS

8.1 INTRODUCTION

Experimental observations associated with the behaviour of the change in the induced voltage of two inductively coupled coils in the presence of a conducting surface provided the basis for the derivation of a constant parameter. This was designated by P and was found to have value of  $27 \pm 5\%$  for an L-shaped plate. A theory based on this parameter, was subsequently developed which enabled the estimation of the vehicle speed with an accuracy in the order of  $\pm 5\%$  for most vehicles.

It has been further demonstrated that using the characteristic signature of a vehicle derived from a single passive sensor embedded under the road surface, it is possible to obtain the three traffic parameters; count, speed and identification (in terms of vehicle grouping). Although the evaluations were restricted to three vehicles, the observation of the signatures for a broader class of vehicles, shown in Appendix IV, has provided further assurance regarding the validity of the experimental results. It is also noted that the initial rise of signatures of these vehicles falls within the two identification criteria as defined in Chapter 6, for speed measurement.

Although further research is still required for the vehicle "group" identification technique, the stability of the signature shown in Appendix IV for various vehicle displacements, are encouraging. The parameters used in the vehicle's classification code have been found to be insensitive to many of the changes encountered in real traffic situations and environment.

Finally, in situations where P lies outside the expected range, after the identification process, it is envisaged that a correction factor can be incorporated so that the speed is within the  $\pm 5\%$  accuracy.

### 8.2 ACCELERATION MEASUREMENTS

A further parameter which has been found to provide useful information in the control of traffic signals at an intersection is the vehicle's acceleration. This parameter becomes particularly important when semitrailers, caravans or commercial vehicles are involved. When one of these vehicles is approaching or crossing a controlled intersection, the knowledge of speed, classification code and acceleration enables the traffic signals to be adjusted so that the vehicle clears the intersection before the traffic signals are changed. It should be noted that in the absence of such information, a complete cycle change of the traffic signals is possible while the vehicle is progressing through the intersection. In order to obtain the vehicle's acceleration, the section of the signature corresponding to the "rear" bumper-bar can be processed in the same manner as that shown in Chapter 6. However in this instance, short term storage of waveform is necessary. The acceleration information may be computed using the two speed informations.

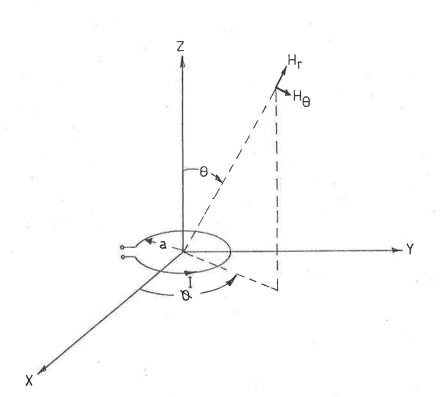
## 8.3 CONCLUSIONS

The magnitude of the research and the experimental work were found to be beyond that foreseen at the commencement of the feasibility study and the scope of this thesis. Limitations of the approach as related to actual highway traffic can only be assessed through further experimental studies focused on a variety of vehicles and traffic conditions. However it is concluded that this development fulfils many of the requirements of the modern traffic monitoring and control systems, as discussed in Chapter 1.

160

### APPENDIX I

DERIVATION OF INDUCED VOLTAGE IN RECEIVER COIL


I.1 Derivation of the Magnetic Field Component

To obtain an analytic solution for the modified field pattern and hence the induced voltage in the receiving coil in the presence of a vehicle, the undercarriage can be represented by an infinite conducting plane.

We can apply the image theory concept and derive expressions for the magnetics field components.

The magnetic vector potential  $\overline{A}$  at a distant point from an elemental current loop can be derived with reference to Fig. I.1

For any point  $P(r, e, \phi)$  at which  $\overline{A}$  is to be found, some current elements Idl are oriented such that they produce components of  $\overline{A}$  in directions other than the  $\phi$  direction. This is shown in Fig. I.1



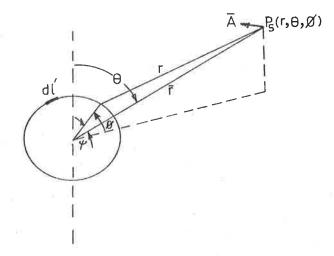



Fig. I.1

Magnetic Vector Potential Representation at a Distant Point from an Elemental Current Loop By the symmetry of the loop, equal and opposite amounts of such components exist. As a result  $\overline{A}$ is  $\phi$  directed and is independent of the value of  $\phi$ at which it is to be found. For convenience, we choose to calculate  $\overline{A}$  at the point (r, $\phi$ ,o).

The  $\phi-$  directed contribution of a differential element of current is

$$dA_{\phi} = \frac{\mu \ dl \ \cos\phi}{4 \, \Pi \, R} \qquad \dots (I.1)$$

Where R is the distance  $|\bar{r}-r|$  from the element dl' to (r,e,o), the total is found as the integral around the loop.

$$A_{\phi} = \frac{\mu I}{4 \pi} \oint \frac{dl \cos \phi}{R} \qquad \dots (I.2)$$
$$= \frac{\mu Ia}{4 \pi} \int \frac{2 \pi}{R} d\phi \qquad \dots (I.3)$$

The distance R can be expressed as

$$R^{2} = (r^{2} + a^{2} - 2ra\cos \psi) \qquad \dots (I.4)$$

Now  $\operatorname{rCos} \varphi$  is the projection of r onto the radius line dl

$$raCos \Psi = raSineCos \phi \qquad \dots (I.5)$$

For r>>a we can approximate

$$R \neq r(1-2\frac{a}{r}\operatorname{SineCos}\phi)^{\frac{1}{2}} \qquad \dots (I.6)$$

Substituting for R we have

$$A_{\phi} = \frac{\mu Ia}{4\pi r} \int_{0}^{2\pi} (\cos\phi + \frac{a}{r} \sin \theta \cos^{2} \phi) d\phi \qquad \dots (I.7)$$
$$= \frac{\mu IA_{\phi} \sin \theta}{4\pi r^{2}}$$

The components of magnetic flux density may be found from

giving

$$B_r = \frac{\mu I A}{2 \Pi r^3} Cose \qquad \dots (I.9)$$

$$B_{\Theta} = \frac{\mu I A}{4 \Pi r^3} \text{ Sine } \dots (I.10)$$

$$B_{\phi} = 0.$$
 ...(I.11)

Now we can obtain directly the magnetic field 'components  $\rm H_r$  and  $\rm H_{\odot}$  from the relation

$$B = \mu H \qquad \dots (I.12)$$

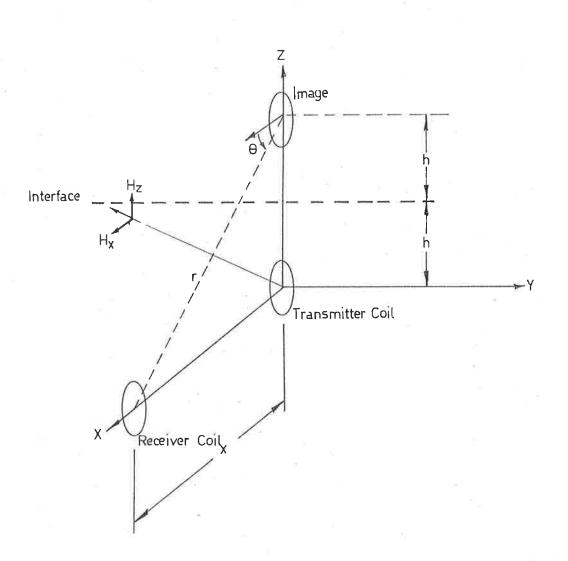
$$H_{\Theta} = \frac{m}{4\Pi r^3} Sin\Theta \qquad \dots (I.13)$$
  
and  $H_{r} = \frac{m}{2\Pi r^3} Cos\Theta \qquad \dots (I.14)$ 

where

$$m = NIA_{c} \mu_{r}$$

=

# $\mu_r$ = effective permeability of material


Now the x component of the magnetic field can be written as

$$H_x = H_r Cose - H_e Sine \dots (I.15)$$

$$\frac{m}{2\Pi r^3} \cos \theta \cos \theta - \frac{m}{4\Pi r^3} \sin \theta \sin \theta \qquad \dots (I.16)$$

$$= \frac{m}{4\Pi r^3} (3\cos^2 \theta - 1) \qquad \dots (I.17)$$

When a conducting surface is brought above the coils to satisify the boundary conditions we can remove the interface and replace it with an image coil as shown in Fig. I.2.



# Fig. II.2

Representation of the Image Coil in Terms of the Co-ordinate System

The field at receiver coil due to image is obtained by considering

$$\cos \theta = \frac{x}{r}$$
 ...(I.18)

and

$$r = \sqrt{4h^2 + x^2}$$
 ...(I.19)

$$H_{x_{i}} = \frac{m}{4\pi r^{3}} \left[ 3 \left[ \frac{x^{2}}{r} \right] - 1 \right] \qquad \dots (I.20)$$

$$= \frac{m}{2\pi} \cdot \frac{x^2 - 2h^2}{\left[4h^2 + x^2\right]} \frac{5}{2} \qquad \dots (I.21)$$

...(I.22)

The magnetic field due to the transmitter coil at the receiver coil in the absence of the interface can be determined by putting  $\theta=0^{\circ}$ . Thus

$$^{\mathrm{H}}\mathrm{x}_{\mathrm{t}} = \frac{\mathrm{m}}{2\Pi\mathrm{x}^{3}}$$

# APPENDIX II

## DERIVATION OF P BASED ON "SCATTERED" POINTS

In order to obtain a straight line of best fit the least-squares linear regression method is used.

The equation for the linear section of the  ${\rm V}_{\rm p}$  versus D curve is shown in Fig.(4.2) and is given by

$$V_p = \alpha D$$
 ...(II.1)

The slope in terms of a line of best fit which minimizes the sum of the squares of the deviation of the data points can be written as

where

$$\overline{v}_{p} = \frac{\sum_{i=1}^{N} v_{p_{i}}}{N}$$

$$\overline{D} = \frac{\sum_{i=1}^{N} D_{i}}{N}$$

...(II.3)

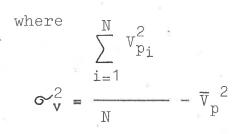
...(II.2)

...(II.4)

$$\sigma_{d}^{2} = \frac{\sum_{i=1}^{N} D_{i}^{2}}{N} - \overline{D}^{2}$$

...(II.5)

Substituting the modified slope  $\approx_{\rm m}$  in Eq.(4.1) we obtain


$$P = \frac{V_{p_{m}} \cdot \sigma_{d}^{2}}{\sum_{i=1}^{N} D_{i} \cdot V_{p_{i}}} - \overline{D}_{i} \overline{V}_{p_{i}} \dots (II.6)$$

To determine the degree of association between the variable  $(D_i, V_{p_i}) \dots (D_N V_{p_N})$  the correlation coefficient  $r_c$  is examined.

Thus

$$r_{c} = \frac{\int_{i=1}^{M} D_{i} \nabla_{p_{i}}}{\sigma_{d} \sigma_{w}} - \overline{D} \overline{\nabla}_{p}$$

...(II.7)



...(II.8)

Eq.(II.1) can be re-written in terms of Eq.(II.2) and Eq.(II.7) giving

$$\propto_{\rm m} = r_{\rm c} \cdot \frac{-\omega_{\rm v}}{\omega_{\rm d}}$$

Therefore the speed constant P can be expressed as

$$P = \frac{v_{p_{m}}}{r_{c}} \cdot \left[\frac{\sigma_{d}}{\sigma_{v}}\right]$$

...(II.10)

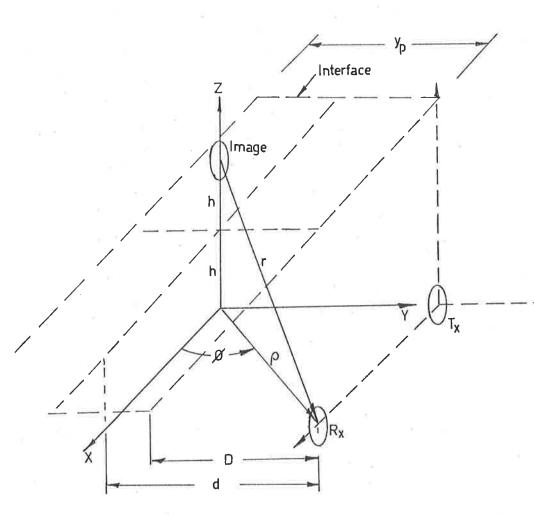
...(II.9)

BEHAVIOUR OF THE IMAGE VOLTAGE IN TERMS OF THE DISTANCE BETWEEN A CONDUCTING SURFACE AND THE SENSOR

In order to have some indications regarding the behaviour of the change  $V_p$  in the induced voltage  $V_R$  as a conducting plate approaches the coils, a simple model was developed.

The image was assumed to have constant intensity having the co-ordinates shown in Fig. III.1.

The approximate field at the receiver coil due to the moving image is obtained by considering the magnetic field  ${\rm H}_{\not O}$  . Thus


$$H_{\emptyset} = -H_{x'} \sin \theta + H_{y'} \cos \theta \qquad \dots (III.1)$$

After rotation of the axis as shown in Fig. III.1 this is re written as

$$H_{\phi} = -H_{v} \sin \phi + H_{z} \cos \phi \qquad \dots (III.2)$$

Substituting for  ${\rm H}^{}_{\rm V}$  and  ${\rm H}^{}_{\rm Z}$  in (III.2)

 $H_{\emptyset} = -(H_{r}Sin\ThetaSin\emptyset + H_{\Theta}Cos\ThetaCos\emptyset + H_{\emptyset}Cos\emptyset)Sin\emptyset +$ 



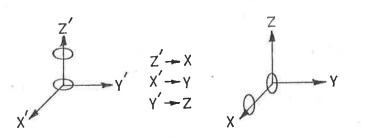



Fig. III.1

Co-ordinates for the Geometry of the Receiver Coil  $R_x$  in terms of a Moving Image Coil due to the Presence of a Conducting Plane.

$$H_{\emptyset} = \frac{H_{r}(\cos\theta \cos\phi - \sin\theta \sin^{2}\phi) - H_{\theta}(\sin\theta \cos\phi - \cos\theta \sin^{2}\phi)}{1 + \cos\theta \sin\phi} \dots (\text{III.4})$$

Now

$$Cos \emptyset = \frac{x}{\rho} \qquad \dots (III.5)$$
  
Sin Ø =  $\frac{d}{\rho} \qquad \dots (III.6)$ 

$$\sin \phi = \frac{d}{\rho}$$
 ...(III.6)

$$o = \sqrt{x^2 + d^2} \qquad \dots (III.7)$$

and

 $\cos\theta = \frac{x}{r}$  ..(III.8)

$$\sin\theta = \frac{2h}{r}$$
 ..(III.9)

$$r = \sqrt{4h^2 + x^2 + d^2} \qquad ..(III.10)$$

$$H_{\emptyset} = \frac{1}{1 + \cos \theta \sin \theta} \left[ \frac{m}{2 \Pi r^{3}} \cos \theta (\cos \theta \cos \theta - \sin \theta \sin^{2} \theta) - \frac{m}{4 \Pi r^{3}} \sin \theta (\sin \theta \cos \theta - \cos \theta \sin^{2} \theta) \right] \dots (\text{III.11})$$

Substituting for r,  $\boldsymbol{\Theta}$  and  $\boldsymbol{\phi}$  we have

$$H_{\not 0} = \frac{m}{2\Pi} \cdot \left[ \frac{x}{\left[ (2h)^{2} + x^{2} + d^{2} \right]^{\frac{1}{2}}} \frac{1}{(x^{2} + d^{2} + xd)} \dots (III.12) \right] \\ \left( (x^{3} - d^{2}x - 2dh) - h \left[ 2h(x^{2} + d^{2})^{\frac{1}{2}} - d \right] \right)$$

If d = 0 we have

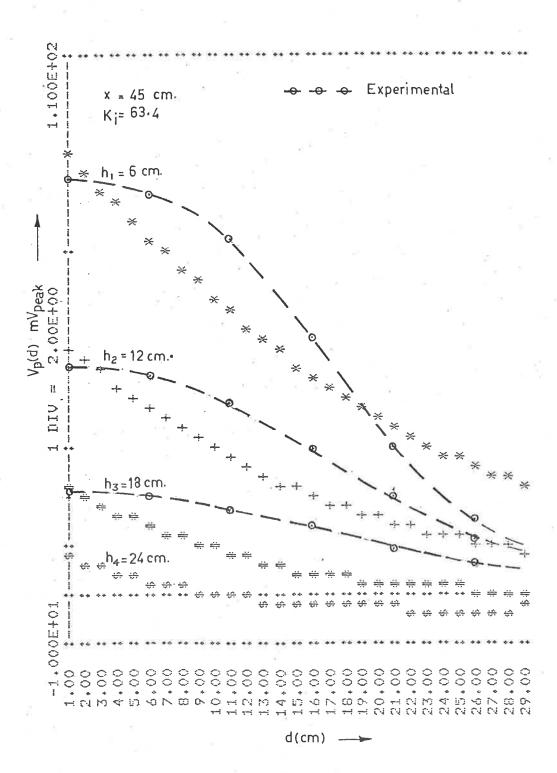
$$H_{\emptyset} = \frac{m}{2\Pi} \cdot \frac{x^2 - 2h^2}{\left[x^2 + (2h)^2\right]^{\frac{5}{2}}} \qquad \dots (III.13)$$

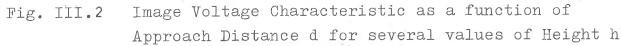
which is the same as Eq. 3.11.

The image voltage as a function of distance d using Eq.(3.16) is given by

$$V_{p} = K_{i} \left[ \frac{x}{\left[ (2h)^{2} + x^{2} + d^{2} \right]^{\frac{5}{2}}} \cdot \frac{1}{(x^{2} + d^{2} + xd)} \cdot \left( (x^{3} - d^{2}x - 2hd) - h \left[ 2h(x^{2} + d^{2})^{\frac{1}{2}} - d \right] \right) \right] \dots (III.14)$$

The plot of  $V_p$  as a function of d for several values of height h is given in Fig III.2. Experimental values for similar conditions are also plotted.


The relationship between D and d is given by


$$D = d - \frac{y_p}{2}$$
 ..(III.15)

Where

 $\mathbf{y}_{\mathrm{p}}$  = Width of the conducting plate

D = Distance between the leading edge of the plate and the coils.





## APPENDIX IV

# CHARACTERISTIC SIGNATURES OF VEHICLES

## IV.1 WAVEFORMS

This section is a supplement to Chapter 6 and Chapter 7 and shows the photographs of the signatures for several vehicles. These are demonstrated by Figures IV.1 - IV.11.

IV.2 LATERAL DISPLACEMENT OF VEHICLES FROM CENTRE POSITION Signatures associated with Lateral displacement of several vehicles from centre position as shown in Fig. IV.12, are also illustrated in Figures IV.13 -IV.15.

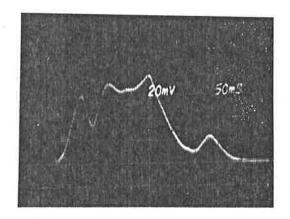



Fig. IV. 1. Signature for Fiat 124

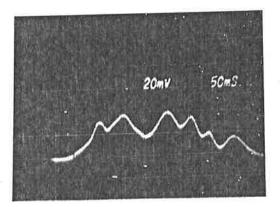



Fig. IV. 2. Signature for 1969 Hillman Hunter

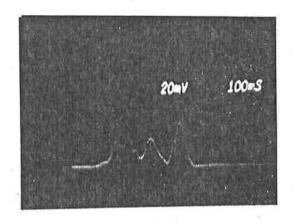



Fig. IV. 3. Signature for H.Q. Holden - Station Wagon

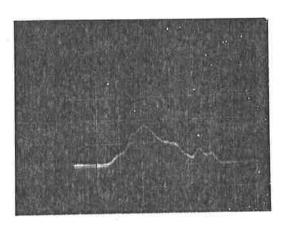
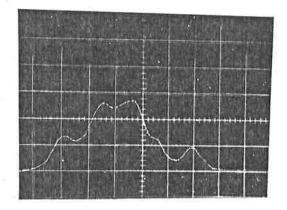
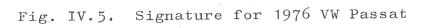





Fig. IV. 4. Signature for 1976 Ford Escort - Panel Van





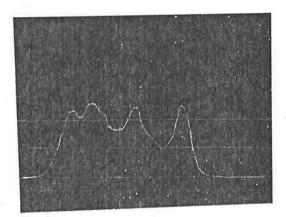
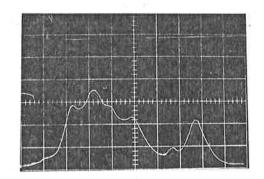
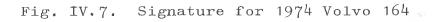





Fig. IV.6. Signature for 1976 Lancer





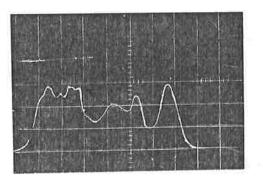



Fig. IV.8. Signature for 1976 Valiant Station Wagon

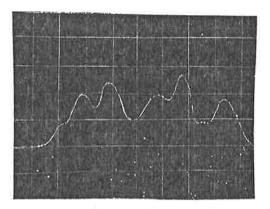
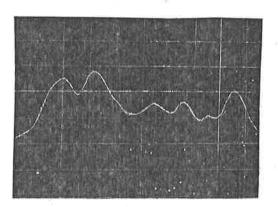
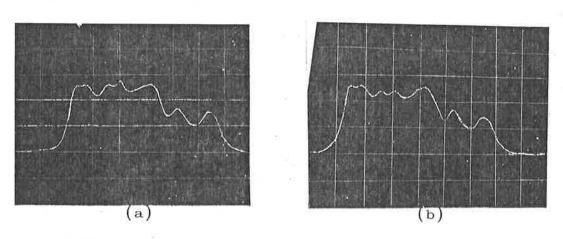
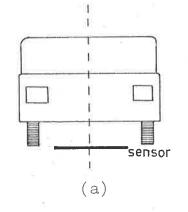
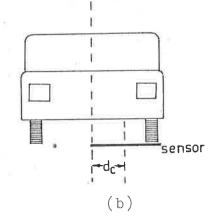
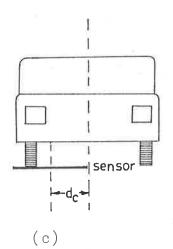



Fig. IV. 9.

Signature for 1972 Ford Futura

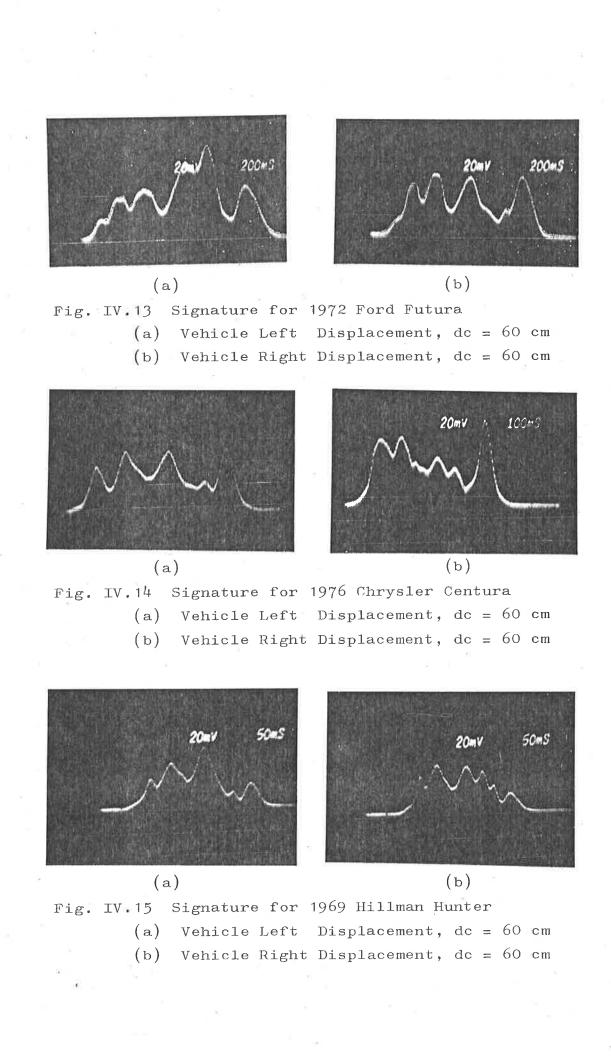







Fig. IV.10. Signature for 1976 Chrysler Centura



Signature for 1976 Datsun 180B (a) 20 K.p.h. (b) 40 K.p.h. Fig, IV.11.








# Fig. IV.12

Lateral Displacement of Vehicle in Relation to the Sensor

- (a) Centre Position
- (b) Left Displacement
- (c) Right Displacement



#### 184 APPENDIX V

C

С

C \*

C

С

C

C

С Ж

汖

## SUBROUTINE FOR DIFFERENTIATION OF DATA

FUNCTION DIF(L, M, NP, VARI, VARD) THIS FUNCTION SUBPROGRAM FINDS THE DERIVATIVE AT A GIVEN POINT L,FOR THE DESIRED X AND Y IN A GIVEN TABLE, THE N-POINT LAGRANGIAN FORMULA IS USED WHERE N IS ODD. L=INTEGER, THE POINT OF X AND Y AT WHICH DERIVATIVE IS FOUND M=INTEGER ,1-5, TO DETERMINE THE POINT FORMULA,N. N=2\*M+1 NP=INTEGER, THE NUMBER OF POINTS IN TABLE OF VARIABLES VARIMARRAY OF INDEPENDENT,X. VARI(NP) VARDHARRAY OF DEPENDENT,Y. - VARD(NP) DIMENSION VARI(NF), VARD(NF), X(11), Y(11) DIF=01777000000000000000 IF(M.LT.1) RETURN **N==2×尚十ま** IF (M.GT.5.OR.N.GT.NP)RETURN M2=NP-M+1 K≔L IF(L.LE.M1.OR.N.EQ.NP)G0 TO 30 K⇔M1 IF(L.LT.M2)60 TO 30 K⇔L-(NP-N) 30 MX=L-K 10 50 J=1FN L+XM⇔UM (LM)TAAV=(U)X 50 Y(J)=VARD(MJ) A=1. B=0. C=0. DO 70 J=1,N IF (J.EQ.K) GO TO 70 F=1. DO 60 I=1,N IF(I,EQ,J)00 TO 60 P=P\*(X(J)-X(I)) 60 CONTINUE T = X(K) - X(J)B=B+Y(J)/(P\*T) 百些白米筆 C=C+1./T 70 CONTINUE DIEII中南来取十Y(K)本C RETURN END

## PUBLICATIONS

- (1) K.Eshraghian and R.E. Bogner, "Traffic Vehicle Monitoring", IREECON Convention Digest, pp 401-403, August 1977.
- (2)

K.Eshraghian and R.E. Bogner, "A Novel Approach to Speed Monitoring and Identifiaction of Road Vehicles", ANZAAS REPORTER, August 1977.

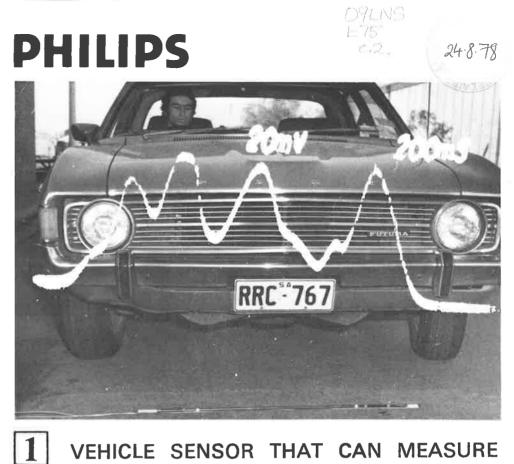
## PATENTS

- (1) "Improved Vehicle Detection System", Australian Patent App. No. PD0001.
- (2) "Vehicle Detection System", Australian Patent App. No. PD0008.

### BIBLIOGRAPHY

- 1. H. Wolff, "Electronic Traffic Control: Can it make the Grade ?," Electronics, pp 157-161, April 1968.
- L.A. Yardeni, "Vehicular Traffic Control: A Time Space Design Model", Proc. ITE, pp 60-74, 1964.
- 3. D.C. Gazis and R.B. Potts, "Route Control at Critical Intersections", Proc. ARRB, Vol.3, part 1, pp 354-363 1966.
- 4. D.J. Buckley, L.G. Hackett, D.J.E. Keuneman and L.A. Beranek, "Optimum Timing for Co-ordinated Traffic Signals", Proc. ARRB, Vol. 3, part 1, pp 334-353, 1966.
- 5. A.D. May, "Experimentation with Manual and Automatic Ramp Control", Highway Research Record, No. 59, pp 9-25, 1964.
- 6. R. Brenner, E.Telford and D. Frisher, "A Quantitative Evaluation of Traffic in a Complex Freeway Network", Highway Research Board Bulletin, No. 291, pp 163-206, 1961.
- 7. A.D. May, "Experimentation with Manual and Automatic Ramp Control", Highway Research Record, No. 59, pp 9-38, 1964.
- 8. E.F. Grevais, "Optimization of Freeway Traffic by Ramp Control", Highway Research Record, No. 59, pp 104-118, 1964.
- 9. J.A. Hillier, "Area Traffic Control by Computer: Equipment in the Glasgow Experiment", Traffic Eng. & Control, Vol. 9, pp 496-498, 1968.
- 10. J.A. Hillier, "Glasgow's Experiment in Area Traffic Control" Traffic Eng. & Control, Vol. 7, pp 502-509, 1966.
- 11. D.I. Robertson, "Transyt method for Area Traffic Control", Traffic Eng. & Control, Vol. 11, pp 276-281.
- W.D. Brooks, "Vehicular Traffic Control Designing Traffic Progression Using a Digital Computer", IBM - Data Processing Report, Kingston, N.Y., 1965.
- J.T. Morgan and J.D.C. Little, "Synchronizing Traffic Signals for Maximal Bandwidth", Opns. Res. Vol. 12, pp 896– 912, 1964.
- 14. A.J. Miller, "Computer Control System for Traffic Network", Proc. Soc. Internat. Symposium on the Theory of Road Traffic Flow, J. Almond (Ed.), O.E.C.D., Paris 1965.

- 15. R. Herman and R. Rothery, "Driver Response to Speed Signs", Traffic Eng. & Control, Vol. 6, pp160, 1964.
- 16. "Warning System Monitors Congestion on Autobahn", Electronic Design, Vol. 25, pp 150, April 12, 1977.
- 17. "Master Controller with Microcomputer for Road Traffic", Ericsson Rev., No. 1, pp 51, 1976.
- J. Smith, "Europe Maps Road-Safety Plan", Electronics, pp 82-83, July 22, 1976.
- R.L. Pera and R.Nenzi, "Tana An Operating Surveillance System for Highway Traffic Control", Proc. IEEE, Vol. 61, No. 5, pp 542-556, May 1973.
- 20. W.F. Arnold, "Computers Switch Traffic Signals", Electronics pp 75-76, Feb. 1, 1973.
- 21. K.W. Mackall, "The History and Development of Modern Traffic Control", Crouse Hinds Bull. 2561, Municipal Signal Engineer, 1940.
- 22. F.V. Webster, "Traffic Signal Settings", Dept. of Scientific and Industrial Research, Road Research Technical Paper No. 39, London, 1958.
- 23. T.R. Horton, "Traffic Control: Theory and Instrumentation", Plenum Press, N.Y., 1965.
- 24. T.M. Matnon, W.S. Smith and F.W. Hurd, "Traffic Engineering" McGraw-Hill, N.Y., 1955.
- 25. W.V. Braun and D.L. Walker, "Vehicular Location and Information Systems", IEEE Trans., Vol. VT-19, pp 136-143, 1970.
- 26. D.A. Rosen, F.J. Mammano and R. Favout, "An Electronic Route - Guidance System for Highway Vehicles", Trans. IEEE, Vol. VT-19, No. 1, pp 143-161, Feb. 1970.
- 27. A.A. Carter, J.W. Hess, E.A. Hodgjins and J. Raus, "Highway Traffic Surveillance and Control Research", Proc. IEEE, Vol. 56, pp 566-576, April 1968.
- 28. R.L. Gordon, K.W. Dodge and J.E. Scott, "Surveillance Aspects of a Computer Controlled Traffic System", Trans IEEE, Vol. VT-19, No. 1, Feb. 1970.

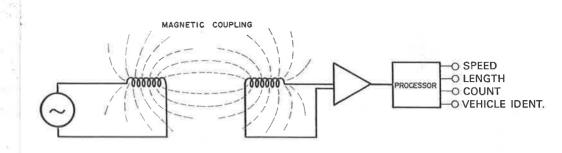

- 29. M.J. Lighthill and G.A. Whitlam, "On Kinematic Waves II. A Theory of Traffic Flow on Long Crowded Roads", Proc. Roy. Soc., Ser. A., Vol. 229, pp 317-345, 1955.
- 30. F.A. Haight, "Mathemetical Theories of Traffic Flow", Academic Prin., N.Y., 1963.
- 31. R.T. Underwood, "Some Aspects of the Theory of Traffic Flow", Aust. Road Research, No. 2, pp 35-47, Jume 1962.
- 32. J.S. Drake, J.L. Schafer and A.D. May, " A Statistical Analysis of Speed - Density Hypothesis", Highway Res. Board Rec., No. 154, pp 53 -87, 1976.
- 33. D. Bushnell, " A Merging Control System for the Urban Freeway", IEE Trans., Vol. VT-19, No. 1, pp 107-120 Feb.1970.
- 34. H.J. Payne, "Models of Freeway Traffic and Control -Mathematical Models of Public Systems", Simulation Council Proc., Vol. 1, No. 1, 1971.
- 35. R. Herman and R.W. Rothery, "Microscopic and Macroscopic Aspects of Single Land Traffic Flow", J.Oper. Res. Soc. Japan, Vol. 5, pp 74-93, 1959.
- 36. D.C. Gazis and C.H. Knapp, "On-line Estimation of Traffic Densities from Time-series of Flow and Speed Data", Trans. Sc. Vol. 5, No. 3, pp 283-302, 1971.
- 37. B. Mikhalkin, "The Estimation of Roadway Behaviour Using Occupancy Detectors", Ph.D. Dissertation, Department of Industrial and Systems Engineering, University of Southern California, 1971.
- 38. N.E. Nahi, "Freeway Traffic Data Processing", Proc.IEEE,
  Vol. 61, No. 5, pp 537-541, May 1973.
- 39. N.E. Nahi and A.N. Trevedi, "Recursive Estimation of Traffic Variables : Section Density and Average Speed", Trans. Sc. Vol. 7, No. 3, August 1973.
- 40. W.M. Brown and L.J. Porcello, "An Introduction to Synthetic Aperture Radar", IEEE Spectrum, pp 52-62, Sept. 1969.

- 41. A.S. Palastnick and H.R. Inhelders, "Automatic Vehicle Identification Systems - Methods of Approach", IEEE Trans., Vol. VT-19, pp 128-136, Feb. 1970.
- 42. Special Issue on Highway Electronic Systems, IEEE Trans. Vol. VT-19, Feb. 1970.
- 43. R.H. Murray, "Traffic Sensor Program", Prepared for the Bureau of Public Roads, Federal Highway Administration, Report No. U1-826602-F, Contract FH-11-6973, Feb. 1970.
- 44. S.G. Gustafssun and J.F. Marion, "LOCOM A Vehicular Location and Communication System for Urban Fleets", Urban Technol. Conf., May 24-26, 1971, AIAA paper No. 71-513.
- 45. H. Staras and S. Honickman, "The Accuracy of Vehicle Location by Trilateration in a Dense Urban Environment", IEEE Trans., Vol. VT-21, pp 38-43, Feb. 1972.
- 46. J.N. Constant, "Microwave Automatic Vehicle Identification (MAVI) System", IEEE Trans., Vol. VT-23, No. 2, May 1974.
- 47. S.H. Roth, "History of Automatic Vehicle Monitoring (AVM)", IEEE Trans., Vol. VT-26, No. 1, pp 2-6, Feb. 1977.
- 48. Special Issue on "Automatic Vehicle Monitoring", IEEE Trans., Vol. VT-26, No. 1, Feb. 1977.
- 49. "Vehicle Identification System Vetag", Philips Traffic Systems - TDS 2671-2500 E-8-73, 1975.
- 50. "Traffic Sensor Program", prepared by the Bureau of Public Roads, Federal Highway Administration by Texas Instruments, Inc., Contract FH-11-6973, Appendix K, Aug. 1969.
- 51. J.L. Baker, "Radar, Acoustic and Magnetic Vehicle Detectors", Trans. IEEE, Vol. VT-19. pp 30-34, Feb. 1970.
- 52. "Manual on Uniform Traffic Control Devices for Streets and Highways", Washington D.C. Bureau of Public Roads, U.S. Dept. of Commerce, pp 3E-11-3E-15, 1961.
- 53. "CL8880 Series Radar Traffic Sensors", Philips Technical Infor. No. 021, Sept. 1976.
- 54. R.I. Gordon, K.W. Dodge and J.E. Scott, "Surveillance Aspects of a Computer-Controlled Traffic System", IEEE Trans., Vol. VT-19, pp 90-97, 1970.

- 55. F.P. Ziolkowski and C.K.H. Tsao, "Antennae Buried in a Roadway for Vehicular Traffic Communications", Trans. IEEE Vol. VT-20, No. 4, pp 104-114, Nov. 1971.
- 56. W.N. Huppert, "Familiarity with loop detectors will aid Application Installation", Traffic Engineering, Aug.1965.
- 57. W. Schempers, "Loop Detectors", Traffic Engineering, Sept. 1966.
- 58. "Design Consideration for Vehicle Detector Loops", Link Precision Systems, Inc., 1968.
- 59. L. Isaksen and H.J. Payne, "Freeway Traffic Surveillance and Control", Proc. IEEE, Vol. 61, No. 5, May 1973.
- 60. S. Ramo and J.R. Whinnery, "Fields and Waves in Communication Electronics", J.Wiley and Son, Inc., N.Y., pp 309-313, 1964.
- 61. J.A. Stratton, "Electromagnetic Theory", McGraw-Hill Book Company, Inc. New York, pp 264, 1941.
- 62. R. Plonsey and R.E. Collin, "Principles and Applications of Electromagnetic Fields", McGraw-Hill, New York, pp275,1961.
- 63. R.L. Anderson, "Electromagnetic Loop Vehicle Detectors", IEEE Trans., Vol. VT-19, No. 1, pp 23-30, Feb. 1970.
- 64. V.K. Drebinger and P. Thilo, "Automatisches Unterscheichen Von Fahrzengasten bei Verkehrszahlung", Siemens -Zeitschrift 44, 1970.
- 65. A.F. Malo, H.S. Mika and V.P. Walbridge, "Traffic Behaviour on an Urban Expressway", Highway Res. Board Bull., No. 235, pp 19-37, 1960.
- 66. G.V. Keller and F.C. Frischkneet, "Electrical Mehod in Geophysical Prosperity", New York, N.Y. Pergamen, pp 294-295, 1966.
- 67. "Magnetic Sensors", Texas Instruments Inc., Contract FH-11-6973, Appendix C (for Bureau of Public Roads -Federal Highway Administration - U.S.) pp C-6 C-14, 1969.

- 68. C.P. Bean, R.W. de Blois and L.B. Nesbitt, "Eddy-Current Method for Measuring the Resistivity of Metals", Journal of Applied Physics, Vol. 30, No.12, Dec. 1959.
- 69. J.D. Kraus, "Antennae", New York, McGraw-Hill, pp 303-318, 1950.
- 70. R.F. Harrington, "Introduction to Electromagnetic Engineering", McGraw-Hill N.Y., pp 123-135, 1958.
- 71. J. Aitchism, "Statistics II", Oliver and Boyd, Edinburgh, 1971.
- 72. D.L. Wardelich and C.J. Renken, "The Impedance of a Coil Near a Conductor", Proc. National Electronics Conference, Vol. 12, pp 188-196, 1956.
- 73. R. Moser, "Low Frequency Shielding of a Circular Loop Electromagnetic Field Source", IEEE Trans., Vol. EMC-9, No. 1, pp 6-18, March 1976.
- 74. "Signetics Digital, Linear and MOS Applications", Signetics, 1974.
- 75. "Linear Applications", National Semiconductors, 1973.
- 76. "2650 DEMO System", App. Memo SP51, Signetics, 1976.
- 77. "2650 Microprocessor Manual", Signetics, 1975.
- 78. "The ABC1500 Adaptable Board Computer", App. Memo SP55, Signetics, 1976.
- 79. R. Malotause, "A Very Simple Interface to Connect an Audio Cassette Tape Recorder to a Serial Binary Data Line", Philips CAB,Lab. Report No. EDP 7705, March 1977.
- 80. J.M. Bakker, "General Protocol for Data Exchange between A 2650 Microcomputer and Peripheral Devices", Philips CAB, Lab. Report No. EDP 7604, Sept. 1976.
- 81. H. Schutte, "Dynamic Memory Interface with the 2650 Microprocessor", Elcoma, Internal Report PRR22-25-493, April 1976.
- 82. S. Kelly, "Low Cost Data-acquisition Systems", Electronic Design, No.24, pp 152-157, Nov. 1976.

- 83. "Advanced Interfacing, A-D Converters", Microprocessor Course, Dept. Elec. Eng., University of Adeliade, 1977.
- 84. "2650 PC2000 4K Memory Card", Signetics, 1976.
- 85. G.P. Banky and A.E. Ferguson, "A Direct Reading Digital Instrument for the Measurement of Speed of Road Vehicles", Dept. Elec. Eng., University of Melbourne, Report No. 3, ISBN 085867 0070, 1971.
- 86. K. Eshraghian, "Digital Speedometer Aided by Electronic Accelerometer Circuitry", Proc. IREE, pp 268-272, Sept. 1974.
- 87. K. Eshraghian and R.E. Bogner, "Vehicle Detection System", Australian Patent App. No. PD0008, 1976.
- 88. K. Eshraghian and R.E. Bogner, "Improved Vehicle Detection System", Australian Patent App. No. PD00001, 1976.
- 89. J.A. Stratton, "Electromagnetic Theory", McGraw-Hill Co. Inc., N.Y. 1941




# VEHICLE SENSOR THAT CAN MEASURE SPEED LENGTH COUNT & PRESENCE

It can even identify some types of vehicle crossing it. This has not previously been possible with a single sensor.



Philips Allied Industries



# **APPLICATIONS**

Traffic Light Control Freeway Traffic Monitoring Vehicle Monitoring on Airports

This device was developed jointly with the University of Adelaide, Department of Electrical Engineering.

For further information contact Phillips Allied Industries Box 1. P.O. Alberton South Australia 5014 Phone (08) 45 0211 Telex 82230

# PHILIPS

# **PSF1 Traffic Controller Technical Notes**

#### Controller Module Assembly.

The controller, which is completely selfcontained, incorporates an 8 bit micro-processor, nonvolatile solid state memory, input and output isolation, system monitoring and clock. Solid state circuitry is used throughout, assembled on plug-in cards which mount in an international standard frame.

All outside information required by the processor is presented to the input ports via optical isolators. As well as lantern power switching, the output ports drive 22 control panel light emitting diodes (LED's) which continuously display the operation of the programme, A combination of 8 LED's and an 8 position row selector switch provides a display of 64 bits making a total software information display of 78 bits. An additional 40 LED's continuously monitor the hardware.

Additional hardware is used to monitor correct operation of the system power supplies and time out the main programme. A mains derived clock provides the controller timing.

The processor memory, which has a maximum capacity of 16K/8 words, is made up of a non-volatile Read Only Memory for both the main programme and the intersection strategy. If necessary, the information may be erased by exposure to high level ultra-violet radiation and fresh data permanently implanted. A Random Access Read/Write Memory is provided for all variable data such as timers and stored demands. Up to 92 four bit plug switches set the various time periods and are read by the processor as memory.

Software.

The main loop and facility monitors are interrupted every 50 m.sec. by the RTC programme. A full interrupt with "save and restore" technique is utilised and a library of 40 sub-routines is provided. The total slave controller programme occupies 2.5K/8 words and the traffic actuated programme up to 4.5K/8 words.

The programme start-up is fully automatic and the reading of 5 RAM locations ensures an unambiguous start.

#### Safety Features.

A watchdog timer is used to ensure that key parts of the programme are being executed at a satisfactory rate. A second check detects any accidentally attempted colour change from green to red. These safety features are further enhanced by the complete reassessment of the state of the intersection 4 times per second.

The final level of protection is provided by hard wired conflicting green lock-out. Intersection Description or Traffic Strategy.

Provision is made in the software for the traffic engineer to present a detailed description of the intersection to the controller without programming knowledge. This description determines the manner in which the following facilities are utilised:

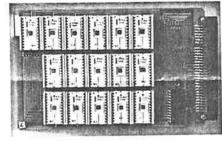
4 phases (extendable to 7 by specifying time switch sharing)

12 3 colour vehicle aspect groups. 4 pedestrian movements. 16 detector inputs.

12 presence timers.

A general table establishes the common colour sequences, special conditions, indexable special conditions and sequence timers.

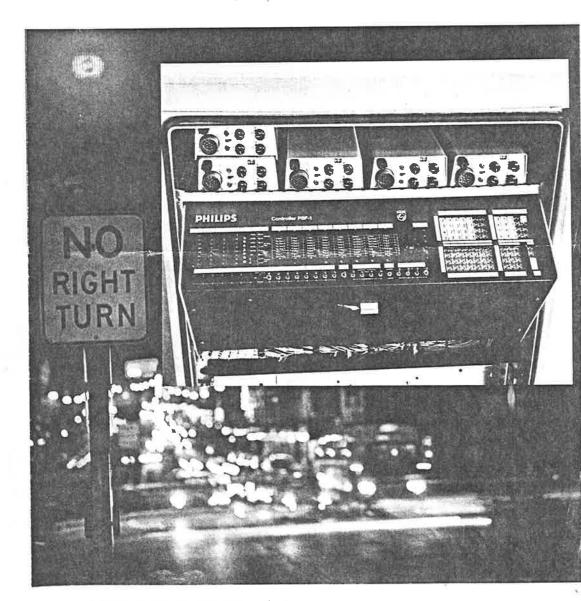
Phasing details are described with respect to the total vehicle aspects used, total phases used, aspects nominated as special movements, prohibited phase sequences and time switch sharing.


Pedestrian movements can be described in respect of phases in which they may be introduced, phases in conflict with pedestrian movements, pedestrian introduction/reintroduction requirements, automatic introduction requirements, terminations and flags for pedestrian overlap.

In the case of traffic actuated strategy, the following instructions may be added to the intersection description:

- Correlation of detectors associated with presence timers, phases, aspects and use of variable initial oreen.
- Specification of conditional detector functions.
- Maximum length of detection signal.
- Headway time range of 100 m.sec. or 200 m.sec.
- Identification of phases with maximum reversion feature.
- Use of maximum variable initial green in the event of maximum reversion.
- Linking instructions.

Each aspect may have a table defining 4 special conditions from an assortment of 80. If all stated conditions are fulfilled, the aspect colour is controlled by the sequence timer and the 4 colour sequences stated in the table.


Provision is also made to define pedestrian movement overlaps between phases when required.



Semiconductor Memory Card – This card, which is illustrative of the size of all logic cards which the controller, measures 111 mm x178 mm and carries the 4,000 word instruction program necessary for control of all intersections. Each of the 16 semi conductor "chips" carries 2048 bits of information permanently implanted by voltage charge.

# Philips Traffic Controller Type PSF1

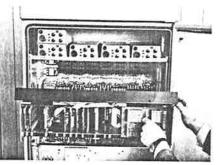
a joint development project with the Department of Motor Transport N.S.W.



# Philips Universal Traffic Controller Type PSF1

The PSF1 Traffic Controller is the result of an eighteen months R. & D. project undertaken for the N.S.W. Department of Motor Transport to develop a universal controller capable of fulfilling the exacting requirements of the Department.

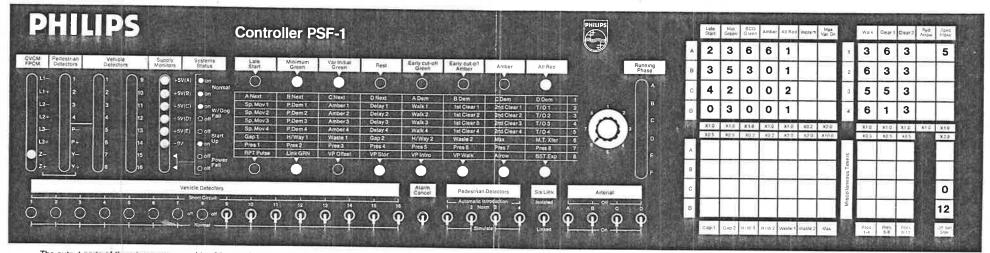
The operational logic, consisting of an 8 bit microprocessor, carries out all logical functions, relates detector inputs and signal lantern outputs including all signal timing, phase demand storage, monitoring and fail-safe override. The instruction description is introduced to the operational logic from look-up tables stored in nonvolatile semiconductor memory and the traffic engineering parameters stored in binary coded switches.


Until now, traffic enigineering strategies have been limited by the capabilities of the intersection controller. By designing a microcomputer and adapting it to traffic control, the Philips Systems Engineering Centre has removed these limitations, thus making it possible to provide traffic strategies better suited to the needs of both the motorist and the pedestrian.

A moulded fibreglass housing of reduced size and with single door access allows the controller to be mounted against the building alignment, thus reducing street obstruction.

This new controller, whilst comparable in manufacturing costs with existing types of equipment, promises substantial savings in installation and maintenance cost.








Above Left – After removing the input/output plugs from the rear of the assembly, the complete controller may be removed by simply lifting away from the pivot slots. The field removal operation can be completed in less than one (1) minute,

Above Right – With the control module in the third (90') position, the front panel may be hinged upwards for access to the plug-in electronic circuit cards. The equipment may be fully operational whilst in this position.

Left - The grey fibreglass cabinet measuring 130 cm x 70 cm x 40 cm is designed to provide a sim, low profile appearance when installed at an intersection. The single door access allows the equipment to be installed at the building or fence alignment, thus improving the kerbside view. The cabinet door is fitted with two locks so that only authorised personnel may have access to the equipment.



The output ports of the micro-processor drive 22 control panel LED indicators displaying 78 software parameters such as phase sequence steps, the current phase, next phase, phase demands and programme timer state. Additionally, 40 LED's provide continuous monitoring of the hardware including power supply. Ninety-two 4 bit time switch plugs are provided on the right hand \_ide of the panel to set-up the intersection strategy.