EXAMPLES IN THE SYMBOLIC CALCULUS FOR MEASURES

BY

FEDWIN RONALD COLEMAN, B.A.(HONS.), M.A.

A thesis submitted in accordance with
the requirements of the

Degree of Master of Science.

Department of Pure Mathematics,
Universify of Adelaide,
South Australia.

June, 198L4.

Q;fw&m olool - / g - S




CONTENTS

TITLE PAGE

CONTENTS ) (1)
-SUMMARY (ii)

STATEMENT (iii)

ACKNOWLEDG EMENT | (iv)

PART 1 1.

PART 2 104

PART 3 ' 31.



SUMMARY

The work is a contribution to attempts to frame converses
to the generalized Wiener-Levy theorem, that (essentially) only
real-analytic functions operate on the Gelfand transforms of
measures. Methods have been developed by William Moran to
exploit analytic structure in the maximal ideal space of the
measure algebra of a locally compact abelian group to establish
results of the kind wanted. These methods are employed to find
measures on any locally compact abelian group on which only
analytic functions operate. These measures arise from Bernoulli

convolutions.

The extensive machinery necessary is firsf developed in
part 2, after a detailed description of the problem and its
context in part 1; in part 3 the three special c;ées of the
circle group, the groups of\*p—adic integers, and infinite
products of finite abelian groups are treated in detail. In
the third case it 1s necessary to distinguish the case where -
the orders of the groups in the product are bounded. Finally a
general statement for all locally compact abelian groups is

deduced.
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1.1

THE PROBLEM : THE FUNCTIONS THAT OPERATE ON FOURTIER TRANSFORMS

The questions we consider are of this form: what conditions
ensure that a function F applied to any transform in a
set A" always yields a transform in set B"? Ve restrict

our attention to measures, so we are asking when

A%,BY € M(G)" = (Vi € A7)(3V e B):F(U(Y)) = O(y) vy
We say that F operates from A~ to B” if this is so;
when A” = B we say F operates in A".

The questions of the form indicated may be thought of as

seeking converses to the Wiener-Lévy theorem and its generalisations:

Generalised Wiener-Lévy Theorem

Every real-entire function operates in’  M(G)";

every real-analytic function operates in 13(G)”".

We seek conditions on F and/or sets A”,B” which entail
that F has an analytic property such as being holomorph{c

in some disc, or real-analytic in some regicn, or entire or



1.2

SUFFICIENT CONDITTONS

The first result of the kind considered was the

Theorem of Wiener (1932) [WIENER, TT, lemma IIe]

Hh

If £ e L'(T) has absolutely convergent Fourier series, and
is never zero, 1/f also has ACFS.

This was almost immediately extended by the

Theorem of Lévy (1934) [LEVY, SCA, théoreme V]

Si y = f(x) est reﬁresentable par une série F [i.e. has

ACFS 1, et §i z = F(y) est une fonction holomorphe

pour -toute les valeurs de y prises par f(x) pour les valeurs
réelleé de x, la fonction F[f(x)] est répresentable par

wme série F.

The following further extensions are proved, e.g. in [FAG, p. 133]
by essentially the techniques of Wiener and Levy. The theory

of Banach algebras could also be used LAC].

Generalised Theorem of Wiener and Lévy (GWL) [RUDIN, FAG, p. 133]

1. If F 1is real-entire then F operates in M(G)".

2. If F is real-analytic in some open set about 0 and
F(0) = 0, and G is compact, then F operates in I3(G)",

3. If F is real-analytic in some open set E < C, f € L¥(G)
and (f(I))” ¢ E, then F o f €L¥G)". (For G not discrete,
we need F(0) = 0.) ,

A number of variations are available, for example:

Theorem of Katznelson

If B 1is a regular semisimple self-adjoint Banach algebra with
unit and f is a’'continuous function on A(B) such that in an
open set around each mp € A(B), f can be written

as  F(%), where F(z) = F(&+in) is real-analytic
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in & and 1N in a neighbourhood of §(mg), then f = B™.
[Katznelson , IHA, p. 236]

The problems of the symbolic calculus for measures concern

identifying necesecary conditions on functions operating from

one set of transforms to another.
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A%

SOME NECESSARY CONDITIONS

There are global results, such as the converse of the GWL:

Theorem of Helson, Kahane, Katznelson and Rudin [RUDIN, FAG, §6.9]

1. If F operates in M(G)" and G is not discrete,
then F extends to a real-entire function.

2. If F operates in L¥G)" and G -‘is compact, then
F is real—analxtic in some open set about O.

3. If F operates in L*(G)", G 1is not compact and E
is a closed convex subset of C, then F 1is real-
analytic on E (not just on E°%).

Theorem of Varopoulos [VAROPOULOS, 1965 ]

If F defined on [-1,1] operates in My(G)" (where G is compact
and infinite), then F agrees with an entire function in
some open set about O.

Theorem of Herz and Rider [HERZ 1963; RIDER 1971]

If F operates in PD(I') (for infinite T not a finite

group x a group of expohent 2) then

m—n

F(z) = Xah@z z z € D(I')°

with a 2 0 and Ea < o,
mn * nm

Theorem of Moran (1) [MORAN, ICSM, p. 40T]

If F operates from PD(T) to B(l) = M(G)" for T not
"exceptional, then F(z) = Eamnzmzn, z « D(T)°
with Jla | <

Moran [ICSM1, 41h4] gives the counterexample of

P ooz, ~ 2))
n=0

Il

where ¢ is non-discrete with no perfect Kronecker or K; set

p > 2, with finite exponent p. Graham [ECHA, 279] also shows



Flz) = (2 - Bz - 2)"' for B e T of infinite order

to operate from PD(I') to B(I') for exceptional G.

(I' is not "exceptional” if infinite and either has no compact
open subgroups of exponent 2 or else has a compact open

subgroup H s.t. G/H has elements of infinite order. )

In contrast to these global results, in the individual
symbolic calculus we investigate which functions can
operate on specifi¢ trensforms. The idea is to identify
"difficult" measures which force analytic properties onto
any function operating on them. Typical results include

Theorem of Katznelson [KATZNELSON, IHA, p. 248]

(A) There is a measure kK on R with real 2, of norm
< 2, containing evefy polyromial with rational
coefficients of norm < 1; for this K

(B) If F oK is a transform of a measure £hen F is
analytic at 0; ;f F o (ck) € M(R)" for all ¢, F

is entire.

the

Theorem of Moran (2) [MORAN, ICSMLl, p. L401]

Let Y be a continuous probability measure on a Kronecker

set in T; dif F 1is continuous on the closed unit disc and operates
m-n

) = <

on U then F Zanz Z , Xlahl ®©

and the

Theorem of Kaufman L[SCBC]

The Bernoulli convolution Uy constructed in his paper has
the property: any function operating on uy 1s analytic

in the unit disec.



1.4 RESULT OF THIS WORK

We establish the following main result.

1.4.1 For any nondiscrete LCA group G there is a class of
jnfinite convolution probability measures on which a
continuous function on [-1,1] can only operate if
it has the form

F(x) = ) bnxn, ) |bn|<oo.
=0

n



MIETHODS USED

The results use the methods of Moran [ICSM2]. The
characteristic of this approach is the exploitation of
analytic structure in A(M(G)). The key ideas are
these:

(1) if F o i(y) = S(y) yerT

then we also have, if we assume or show F continuous,

that

F({i(z)) = 9(z)

for every ¢ €I, the closure of T in AM(G).

(2) for the measures of interest, there are generalised
characters 7 €I such that Cu is ¢ where ¢ 1is any

constant in the interval [-1,1].

(3) using these generalised characteré it.is shown via Choquet's
theorem that a functiéﬁ opgrating on U must be a convex combina@ion
of functions of the form .£ ,» t =2 0.

(k) Finally one investigates which values of t are

actually possible.
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ORGANISATION OF THE WORK

In part 2, the standard terminolcogy, machinery and needed

facts frow the clasgssical theories of LCA groups, the

Fourier transform, measures, complex functions and Banach
algebras are set out. The aims of this exposition are to
establish a consistent notation and to make the work

conceptually self-contained as far as practical.

Also in part 2 relevant elements of the more recent

"eonvolution algebra" theory of the maximal ideal space of

M(G) for LCA groups G are set out. The basis:of this is the
representation of AMG a space of generalised characters in
which a number of operations may be defined, namely multiplication
z.n, multiplication by measures .U, conjugation Tz, absolute
value |§|, polar decomposition QO, exponentiation Cz, and
adjoint E. Exponentiation is particularly important for us
because the combination of continuous operating function and
measure U Tfor which there are generalised characters ¢ with °°
constant 1 coordinate Qu enable us to extend the operation
of Y to the closure I of T in AMG in such a way ;hat
the analytic properties of F may be proved.

In part 3 we define the class of measures U to be investigated
and establish the necessary facts about c(u), thé set of
constants in I . Generalisation of results of Moran in [ICSMZ]
enable us then to establish oﬁr results about infinite

convolutions.
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PART TWO : THE CONVOLUTION ALGERRA M(G) AND ITS DUAL B(T')

2.1 ILCA GROUPS

2.1.1 LCA GROUPS AND THFIR DUALS

2.1.2 STRUCTURE THEOREMS

2.2 BANACH ALGEBRAS

2.2.1 DEFINITION, EXAMPLES
2.2.2 GELFAND REPRESENTATION
2.2.3 SPECTRUM AND THE CAUCHY FORMULA

-

2.3 MEASURE ALGEBRAS

2.3.1 MEASURES
2.3.2 THE ALGEBRA M(G)

2.3.3 CHOQUET'S THEOREM

~

2.4 FOURIER TRANSFORMS

2.4.1 B(I'), THE TRANSFORMS OF M(G)

2.4.2 TRANSFORMS ON SUBGROUPS AND QUOTIENTS

2.5 M(G) AS A SPACE OF GENERALIZED CHARACTERS

2.5.1 COMPLEX HOMOMORPHISMS AS GENERALIZED CHARACTERS
2.5.2 CALCULUS OF GENERALIZED CHARACTERS
2.5.3 CONVERGENCE OF GENERALIZED CHARACTERS

rd

A Note cn References

I have not given explicit references for every item in this

chapter; it is all standard material and any item will be

found in RUDIN [RCAJ1,[FAG], KATZNELSON [IHA], BROWN and MORAN [BMA],

GRAHAM and McCE. HEE [ECHAJ, or GELFAND, RAIKOV and SHILOV [CNRI.
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2.1 LCA GROUPS

2.1.1 LCA GROUPS AND THEIR DUALS

2.1.1.1 LCA groups

A locally compact abelian group G (LCA group) is an abelian

group which is also a locally compact Hausdorff space such that
(x5 W x+y and x> -X

are continuous.

(DIGRESSION ON NOTATION

I follow the usual convention of referring to a complicated
object by a simple ﬁame, as G, in keeping with the remarks of
RUDIN [ RCA, 18] which end
it is a safe bet that very few mathematicians think of the real
field as an ordered gquadruple.")
We are interested in théseAgroups:
Z, the integers uﬁder cddition;
7, = 7/kZ, integers under addition modulo k;
R, +the real numbers under addition; B
? = R/Z, the circle group of complex numbers of norm 1;
(R and % have the usual topology, Z and T the usual
induced quotient topology.)
6;, the group off p-adic integers; and
Z(pw), the group of all p-roots of unity.
The 1astltwo groups and their topology are described in 2.1.1.3

below.

2.1.1.2 Character group

n

A character Y of group G 1is a group homcomorphism to T

X : G T
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i.e. x(g1g2) = X(g1)x(g2) g182 < G.

The set of all continuous characters under the operation defined

by

X1 . X2 (g) = xa(g) . x2(g)

is a topological group called the dual group of G, written T.

The Pontryagin duclity theorem shows that the natural topology

on I' is derived from that on G 1in such a way that the dual

of T defined in the same way is G. In view of this result
it is standard to write X(g) more neutrally as (g,x), and

with this notation the topologies of G and T are based

respectively on the sets of translates of

N(K,r) = {y «["|(g,y) e U, g < K}
and
M(c,r) = {g  ¢[(g,¥) e U, YyecC}
where |
U = {z « c||1-z]| < r}

and K and C range over compact subsets of
G and T and r 2 0.

[s o]
2.1.1.3 A, and Z(p )

Each of T and 7 is the dual of the other, while R 1is its
own dual as is each of the discrete groups Zk' (Here we
make the standard identifications, for example,of =z € Z and

the continuous character of T given by

t » exp 2mizt.)
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For each prime p, the groups Ap and Z(pm) are defined as

follows:

[oe]

A  is the set of all sequences (x )
Y n n=0

x € {0,1,2,...,p-1} =1
n P

under addition defined inductively thus:
let (xh),(yn) € Ap and suppose

x #0 but x =0 n <m
my n

y #0 but y 0 1n < ng

ng

put po = min(mg,ng) and 3z 0 for n < pp.

Write X + =z +t .

PO yfo P Po P
where Z €T, t =0 or 1.

P P PO
Then assumin Z Z . b2 and t t e b have been

g po, p0+13 b k p09 p0+1’ ’_k :

defined we write

+ + ] + .

Xk+1 yk+1 tk Zk+1 JCk+1 p
with =z €7 and t© =0 or 1.
k+1 p k+1

This defines (zn) by induction on n as the sum of (xh) and
(yh). The zero for this operation is the all zero sequence and
A.p is easily seen to be an abelian group under it, and & compact

group under the topology induced by the metric

al(x),(y,)) = 2™

where m is the least integer with x # ¥,
The dual group of A turns out to be the subgroupr of T of

p-power roots of unity
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n

P
z(pm) = {t « T{t =1 for some n € %}

(under the subgroup topology).
(Two asides. (1) Multiplication of p-adic integers, or numbers,
is readily defined but we do not use it. (2) These definitions
are easily generalised to the a-adic intggers él as in

HEWITT and ROSS [ AHA 1, 108ff, 402] with dual

)IQ i, r S 7"}
a

(I R

7(a) = {exp 2ﬂi(a

and most of what we prove about Ap could be carried over with
little change. But there is no gain in our main result, so we

eschew pointless generality.)

2.1.1.4 Infinite products of discrete groups

th, for any n > 0, n € Z, 1is of course both compact and

- discrete, being finite. The topological product of countably

many such groups, where n may vary with k

k
0.
Il Lm
k=1
however is a compact abelian group (under coordinate-wise
co
addition) whose dual is the weak product 1 *th, that is, the
- k=1
subgroup of elements with only finitely many nonzero components,

under the discrete topology. (cf RUDIN [FAG, 37]).

2.1.1.5 The Bchr compactification

Any LCA group G can be embedded as a dense subgroup of a
compact abelian group G thus: let T %be the dual of G,
Td be I with the discrete topology, G the dual of Td.

The map B : ¢+~ G defined by

(2,Y) (v,B(g)) g €G, Y.€ ?
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is & continuous isomorphism of G onto a dense subgroup B(G)
of G {vut BG is not a locally compact subset of @). G TDbeing
the group of continuous characters on I, G is the group of all

characters. (cf. RUDIN [ FAG, 311 ).

2.1.2 STRUCTURE THEOREMS

2.1.2.1 The principal structure theorem

Any LCA group G has an open subgroup G; which is the direct

sum of a compact group H and a Fuclidean space Rn, n = 0.

(RUDIN [ FAG, hoff] ).’

This tﬁeorem will subsequently be used to reduce our problem to
the compact case. In connection with this reduction we shall

need these concepts:

the order of an element g is the least positive integer n
so'that ng = 0, or infinity; a group is torsion if every
element has finite order; a group is divis?ble if for every

g e G and n # 0, n € Z, there is at least one h s.t. nh = g.

2.1.2.2 Infinite discrete torsion groups

Any infinite discrete torsion group has a subgroup isomorphic to

(o]
(o 0]
Z(p ), or one isomorphic to a weak product I *th.
k=1

2.1.2.3 Theoren

Let P be the set of all primes. For all p € P, let o Dbe
: P

an arbitrary cardinal, possibly 0, let Ip be an arbitrary

index class, possibly empty, and let & be an arbitrary positive

integer for each i €I . Let n be a cardinal that is 0 or 2"

-

7 for an infinite cardinal m. For all p eP 1let bp be a
cardinsl not exceeding n such that bp is finite or has the
form 2°P for an infinite cardinal e £ m. Every compact
Abelian group is algebraically isomorphic with a group

T w.bp* n

AP x T 2Z(p )l x T 2(p7)° xgq' [HEWITT & ROSS,

p €P P i€lp p EP
AHA 1, L1h]
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BANACH ALGEBRAS

2.2.1 DEFINITION, EXAMPLES

2.2.1.1 Banach algebras

A Banach space X 1is complex normed vector space, complete in
the norm metric. (A norm is a map Il -fl:X > [0,®) s.t.

Hx+yll < il + llyll, loxll = |ul“x”, Ixl =0e x= 0 for any
x,y € X and a € C.)

A Banach algebra A 1is a Banach space in which a multiplication

is defined making it-also an algebra and so that
Txyll < =i .0yl X,y € X .

(Note: we shall assume A is commutative (xy = yx) and
unital (Qe:ex = xe = x) since this is so for all examples of
interest to us.)

2.2.1.2 Examples

The simplest: example is‘_C under 1.1. More interesting is
¢(X), the algebra of all continuous complex-valued functions
on a compact Hausdorff space X under pointwise addition and

multiplication and the sup norm
hell = sup | £(x)|
xeX
The examples we are concerned with require convolution as
multiplication and will be given below.

2.2.1.3 Quotient algebras

"For any ideal I in a Banach algebra A, a quotient algebra

A/I is defined by the natural multiplication

(x+I)(y+I) = xy + I
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and the quotient norm

[x+Ill = inf le+yllA .
y€l

GELFAND REPRESENTATTON

2.2.2.1 Maximal ideal space

We denote by A(A) the set of complex homomorphisms of a Banach
algebra A, i.e. the multiplicative linear functionals from A
to C. In view of the following Gelfand theory, it is called
the maximal ideal space of A.
(1) for any maximal ideal I of A, the canonical map

h:A > A/T is in A(A), for A/I is C [Gelfand-Mazur theorem].
(2) for any h € A(A), the kernel of h is a maximal ideal.
(3) x €A has a multiplicative inverée < h(x) =0

for no h € A(A);
xy = x+y has a solution y & h(x) =1

~

T for no h = A(A).
(4) any h e A(A) is bougded with norm 1, hence continuous.
(5) The Gelfand transform is the map x + X from A to A(A)
given by ’
R(h) = n(x) h € A(A).
Under the weak topology determined by the sét of all X,
A(A) is a locally compact Hausdorff space, in }act a

subspace of Cg(A(A)), the bounded continuous functions

from A(A) to C vanishing at o,

7 (6) 1In fact the Gelfand transform is a homomorphism mapping A

to a subalgebra of Co(A(A)), for
() (n) = hixy) = h{x)h(y) = 2(h).§(h)
for all x,y €A, h e A(A)

and so on. Notice that ||5E||oo < Izl  since Hnl < 1.
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2.2.3 THE SPECTRUM AND THE CAUCHY I'ORMULA

2.2.3.1 Spectrum

For an element x € A, the specirum of X, o(x)s is the set of
A eC for which x - A (i.e. x - Xe) 1is not invertible.

The spectral radius formula is contained in the theorem of

Gelfand that

p(x) = sup IAI = 1lim Hx?”lln
AE0( x) n -0

for any x € A. ;
In fact ofx) = {ﬁ(h)lh e A(A)} and so we also have p(x) = .

2.2.3.2 Cauchy formula

If A is a semisimple Banach algebré, (i.e. the intersection of
all maximal ideals is zero), and F is a function analytic in a
region U of C containing o(x) for some x € A, and if Y
is any closed rectifiable curve in U enclosing o(x) with
index 1 w.r.t. X(h) for all h e A(A) and O for any point

outside U, then

F(x) = _—T'J F(z) dz A
Y

is a well-~defined element in A not depending on Y such that

F(%)(n) = F(X(n)) for each L € A(A).

2.2.3.3 Wiener-Levy theorem

For the algebra A{T) of functions on T with absolutely
convergent Fourier series
(i.e.  £(t) s.t.  f£(t) = JE(5)e’"
with J|8(3)[< > end  $(3) = J et r(v)at
as discussed in 2.4 below) '

the preceding result specializes to the
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WIENER-LEVY THEOREM

If F is a function analytic on an open set containing the

range of f for f € A(T), +then

g(t) = F(r(t))

is also in A(T).

That is, analytic functions operate in A(T).
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2.3 MBEASURE ALGEBRAS

2.3.1 MEASURES

2.3.1.1 Definitions

(We only discuss measures on LCA groups, but the concepts in this

section apply to any locally compact Hausdorff space.)

The Borel sets B of G are those in the smallest family of

subsets of G .containing the closed subsets, and closed under

complementation and countable union.

A megsure on G is a (set) function

B :B-~>cC

from the Borel sets to C which is

(a)

(c)

M(G)

countably additive, 1i.e.

WE) =) u(E:) for any countable partition {Eh} of E
for E l B; 4 I E i

regular, that is .

[ (E) = sup |u] () = inf|u|(V)
K

where K ranges over compact subsets of E,
and V ranges over open supersets of E
and [u|(E) = sup } |u(E )|

(the sup being taan over all Borel partitions of E) is

the total variation of 1 which is also a countably additive
sep function on B; and

finite, that is
Il = fuf(x) < .

is the set of all measures on G. We assume the standard

theory of Lebesgue integration with respect to measures. Ll(u)
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is the space of p-integrabie functions, etc. Occasionally we
refer to "positive measures": these are not necessarily in M(G)
in having range [0, .

2.3.1.2 Support, etc.

For any E € B,  the restriction of u to E, Wy, » is defined

by
u (B) = u(s "N E) for each B € B.

Iff Y=y U is concentrated on E. The support of u,

-
supp(u),A is the intepsection of all closed B € B on which p is
concentrated. N

Two measures are mutually singular, Y L |y, iff they are
concentrated on disjoint sets. W3 is absolutely continuous with
respect to a positive measu?e Hay U1 << U2, iff

2(E) = 0 ® 1 (E) =0 for- E « B. A measure U is discrete
iff supp ¥ is countable , continuous iff every countable E € B

has u(E) = 0.

2.3.1.3 Decompositions

Every u € M(G) has a unique Jordan decomposition

B =31 - M2 + ips - ipw

with p 20 (i.e. ui(E) >0, E e B), W M(G), i=1,2,3,k

and U3 1 M2, U3z L Uy.

Every u € M(G) has a unique decomposition
T !

with Yy discrete and 2% continuous.
Every 1 € M(G) has a unique Lebesgue decomposition with respect

to any positive measure m

W=
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with R << m and WL om. l

~

2.3.1.0 @i {

There is an involution on M(G) w > H given by H(E) = n(-E)

for each Borel E. When §W =}, U is called Hermitian, and

the Fourier-Stieltjes (not Gelfand) transform is real-valued.

2.3.1.5 M(G) is a Banach space

That M(G) is a Banach space follows from the Riesz Representation
Theorem (RRT):
for any bounded linear functional (BLF) /\ on Co(G) there is

a unique Y € M(G) s.t.

Af = J f dau f e Co(G)
G
with sup |Af]| = Iyl
) s

Thus M(G) is the dual of Co(G). This theorem is the converse

of the simple observation that
> J £ du
G

is a BLF for any u € M(G).
Another important converse is the Radon-Nikodym Theorem: d
corresponding to W in the Lebesgue decomposition of | w.r.t.

m is f E\_l(m) s.t.

-ua(E) f du Ee€B

E

and (T [£lam = £l .

G

-~ This is the converse of the observation that for £ € L (m),

wWE) = J f dm
E

defines a measure U << m.
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2.3.2 TEE ALCEBRA M(G)

2.3.2.1 Convolution
The addition and scalar multiplication of measures entailed by

the RRT are the obvious ones:
(WA (E) = w(E) + AM(E), (cu)(E) = c.u(E)
with the norm

Il = Juf(c)

as above. To make M(G) a Banach algebra we need a suitable
"myltiplication" of measures and we introduce convolution for

this, via product measures: define

u x A (ExF) = u(E).A(F)

for each "rectangle" E X F. E,F Borel.

There is a unique regular extension_of tbis set function to a measure on
G X G we call the product U X A. Then the convolution of U

and A, U % A, 1is defiﬁed as the unique measure guaranteed by .

the RRT s.t.

[ £ duxd = JI f(t+t)au(t)ar(t)
for f € Co(G).

This is equivalent to

uxA(E)

J w(E-1)da(T)

px A{(x,y) e Gzlx—y e E}) .

~and uxA(E)

Convolution is comnmutative and associative, the unit mass at

zero, 6(0), is a unit and thus M(G) is a Banach algebra.
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2.3.2.2 Md(G) etc.

The discrete measures in M(G), Md(G), form a subalgebra of

M({G) while the continuous form an ideal. The measures absolutely
continuous with respect to Lebesgue measure form an ideal isomorphic
to L'(G). An L-subalgebra of M(G) is a subalgebra which is closed
(w.r.t. the total variation norm) and contains | whenever it contains
Vv and P << v, U e MG).

CHOQUET'S THEOREM

This 1is a very generﬁl result we shall appeal to at a crucial

point in the argument.

2.3.3.1 Representing measures

If X 1is a nonempty convex compact subset of a locally éonvex
topological vector space X, and Y 1s a probability measure on X,
then x € X 1is represented by 1y if

f(x) = IX f du fdr evéry continuous linear
functional f on E.

2.3.3.2 The theorem of Choguet

If X is a2 metrizable compact convex subset of a locally convex
space E and x € X, then there is a probability measure u
on X which represents x and is concentrated on the extreme

points of X.
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TRANSFORMS OF M(G)

2,h.1.1 Haar measure

On any LCA group G there is a nontrivial translation-invariant

positive measure

m, that is s.t.

mn(E+x) = nE

for each x € G and Borel E, E+x = {atx|a € E}. This measure,

called the Haar measure, is unique up to a positive constant

multiplier. The standard normalisation is m(G) = 1. for compact

G, m({x}) =1, x -G for discrete G (except when G is finite).

We use J f(x)dx +to mean integration w.r.t. Haar measure.
G i

2.k,
For

M(G)

The

tran

A

1.2 .f

each Yy e T there is a nonzero complex homomorphism of

defined by

function {1 4

sform of u.

T ily)
- J (~,y)an(x).
G

efined thus on I' is the Fourier-Stieltjes

The set {ﬁ|u e M(G)} is called B(I'). Absolutely continuous

P (w.r.t. Haar measure) correspond to{ e L'(G), and the set

of

i (i.e. f)

for these is called A(T). The characters T

exhaust the complex homomorphisms of L'(G), but not of M(G);

of

Y in general

,% is also the Gelfand transform of 7Y, but the Gelfand transform

extends the Fourier-Stieltjes transform.

2.4.1.3 Eberlein's criterion

This is a test for membership of B(I'): ¢ € B(T') and ¢l < A

< ¢

on

is continuou

G of the form

s and for every trigonometric polynomial f
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The Bochner theorem [FAG, 197 is another such criterion, but
we shall not use it.

TRANSFORMS 0} SUBGROUPS AND QUOTIENT GROUPS

We need to be able to "1lift" transforms from subgroups or
quotient groups.

2.4.2.1 The annihilator

If H is a closed subgroup of LCA G, the annihilator of H,
H', is the set of y T s.t. (h,y) =1 for all h e H.
Triviall&, HS  is thé dual group of G/H, while T/Hl is the
dual group of H; H 1is the annihilator of Hl and the
continuous characters on H are precisely the restrictions of
those on G. (c.f. RUDIN [ FAG, 35]).

2.h.2.2 Two theorems

(1) p e M(G) is concentrated on H, a'qlosed subgroup of G,
< {i is constant éﬁ cosets of HT.

(2) The functions in B(Hl) are precisely the restrictions
to HY of the functions in B(T). (c.f. RUDIN [ FAG, 53]).

(The latter result is proved using the canonical homomorphism

®: G > G/H

to induce a homomorphism
™ : M(G) > M(G/H) via

£ > j £(0(x) du(x)
G

for f € Cp(G/H) and the RRT.)
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2.5 THE MAXIMAT, IDEAT, SPACE M(G) AS A SPACE OF GENERALIZED CHARACTERS

2.5.1 COMPLEX HOMOMORPHISMS AS GENERALIZED CHARACTERS

2.5.1.1 Generalized characters

For some Banach algebras, A, the set of complex homomorphisms,
that is the space of maximal ideals, is simply identified.

For example, A(L'(G)) = T. For M(G), however, the maximal
jdeal space is considerably more complicated. "Very curious"
homomorphisms can be exhibited (c.f. HEWITT and KAKUTANI [196L4, p 489] );
I' is only a small pért of AM(G)).

Nevertheless, analytic structure in A(M(G)) 1is shoWn to exist
through its represe;tation as a space of generalized characters;
doing so, we shall find that the closure of T in A includes
homomorphisms sufficient for our purposes.

The (slightly modified) theorem of SREIDER is that each complex

homomorphism of an L-subalgebra N of 'M(G), corresponds to

a generalized character of N, that is an element

x=(x,) e 1 L (u)

HeN
such that
GC1 <<V :>Xu = e, (0 a.e.)
GC2 Xu*V(X+y) = Xp(X)-Xv(Y) (uxv a.e.)
GC3 sup{"xuﬂwlu €N} >0.

Each such generalized character produces a complex homomorphism

on N by

~n

u +—J X, au = () = fi(x)

and every homomorphism arises like this.
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The Gelfand topology on A(N) coincides with the product

(o]
topology derived from the o(L (u), L'(u)) topology on each
factor.

CALCULUS OF GENERALIZED CHARACTERS

2.5.2.1 Operations in A(N)

A number of useful operations can be defined in A(N) in
virtue of the Sreider representation:

(o) for x,& e A(N), x.& 1is defined by

(x-8)), = x,-&, Men .

(B) for X € A(N),_u‘e N we define X.i as the element of
N absolutely continuous with respect to 1 whose Radon-
Nikodym derivative is XU'

(C) +the conjugate X of ¥ is given by

(x), = (x,,) - M e N.

.

(D) |x|, the absolute value of ¥, by

x|, = lxul u e N.

M

() x°, the polar part of ¥, by

X&(X) XU(X)/IXU(X)I it x,(x) f 0

0 otherwise x € G.

(F) Calling ¥ positive if Xy >0 ueNlN, wedefine X for

z € C, Re(z) > 0 by

(X )u = (xu) u e N.

(G) TFinally, if N is self-adjoint, i.e. Y e N =l €N

we define ¥ by p(yx) = u(x), i.e.

Xu(x) = X -x)  peN, xe€G.



29.

(The consistency conditions GC1-3 are readily verified for all

these objects.) Obviously,

x-x = Ix1%s x = Ixl.x% IxX°1% = [x°],

and XX is symmetric for any ¥, that is fixed under

2.5.3 CONVERGENCE OF GENERALIZED CHARACTERS

2.5.3.1 The closure of I' on A(N)

Naturally T < A(M(G)); we are particularly interested in T,
the closure of I' in. A(M(G)) %because the property of a

continuous operating function F. that

F(A(Y)) = V(y) for y eT

carries over in view of the continuity of {i and Vv to any

xeT
P(R()) = (x).

Actually in the present work we are only interested in very
simple ¥ € I, namely those for which Xu is a constant ~
function ¢ for the u we investigate. We shall need to

determine
c{u) = {c eclgx eI s.t. X, = c}

and below we give a convergence criterion of Johnson's which

applies for the U we consider.

" 2.5.3.2 Johnson's criterion [JOHNSON 1968, p. 291]

Suppose that Y is a measure on G given as an ‘nfinite

convolution of measures with finite support (this is the kind of
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measure we are concerned with below) and let S be the (not
necessarily closed) countable subgroup generated by the union
of those supports.

Then: if there is a net X5 in G such that ﬁ(Xu) -+ a

and Xa(s) +1 for all s €8, then a € C{u).
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PART 3 : FUNCTIONS THAT OPERATE ON CERTATN BERNOULLI CONVOLUTIONS

3.1 MEASURES DISCUSSED BELOW

3.1.1 THE CLASSES BT, Béb’ Brreo, Blﬂk, Bzﬁk

3.1.2 CONVERGENCE OF MEASURES DISCUSSED

3.2 OUTLINE OF THE ARGUMENT

3.3 C(y) FOR THE MEASURES DISCUSSED

3.h APPLYINC CHOQUET'S THEOREM

3.5 G=T

3.6 G = Ap

3.7 6= I 7

3.8  MAIN RESULT
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THE CLASSES BT, BAp, Biee, BTy s Bam, .

3.1.1.1 Nature of the measures

Applying the structure theorems of 2.1.2 for LCA groups will enable
us to direct our attention mainly at three kinds of group:

co
T, A, and I Z,nj > W € Z.

i=1

For the third class we shall have to treat specially the
case where ng < M for all j. Otherwise, we obtain
méasures forcing analyticity on any operating function from

Bernoulli convolutions, that is, measures of the form

* 8

u = %(6(g ) + 8(-g ))

k=1
for sequences (gk) c G satisfying suitable conditions
(stated below). In the infinite product bounded case,

we introduce more complicated measures

with
b= 6(0) + (1-a )6(1 ) + B(-1 )1
vhere 1 = (0,0,...,1,0,0,...) has 1 in the rB factor

as its only nonzero component. {ai} is chosen dense  in [-1,1].

3.1.1.2 Conditions on (g, )

The constraints imposed on (gk) are as follows.

g = (nlnz...nk)"1

where n € Z, n 22, and supn = %,
k k X k
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g =P
where n € 7. n =2 2, su _ —wod 5 ‘
N > D s kpﬂnk n_.) and n > n _  for all k
o
When G = 1 an, SEP n = o,
k=1

g = (0,0,...o,tk ,0...)

where tk is the only nonzero coordinate and

sup (order t, ) = o .,
. Kk

Mesdsures of the kind indicated on T form the class BT;
oo

those on 4, , B those on k{i an, SBP n =, Breog
the class BTy are those formed as in Bm® but with n3=k

for each Jj; and the class B,7,, those measures of the

form =Y indicated in 3.1.1.1.

3.1.1.3 Convergence of the infinite convolutions

Criteris for convergence are provided by Pakshirajan's
generalisation of Kolmogorov's three series theorem [ 19637 .
Defining X, as a random variable on G with equal

chances of taking the values g, and —€, » the requirements

are the convergence of

[s 0]
(1) ) Plefx (0) ¢m),
k=1
where N 1is an arbitrary but fixed compact

neighbourhood of O.
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~
n
—
Il 0~ 8

=

E log x(X;) for any X €T

8h‘

(3) var log X(X ) for any X eT.

1

N~y

k

Since for our infinite product groups the infinite
convolutions of measures are merely infinite product measures,
we need only to verify these conditions for BT, BAb’

For p € BT, the series (1) has only finitely many nonzero
terms and obviously converges; all terms of series (2) are
zero since our Y are symmetric; while if ¥x(x) = exp 2micx
var‘log x(X ) = —éﬂzgkzcz so that the criterion is ngz <-W,
which our condition obviously ensures.

When G = Ap, the first and second series converge as for

T, while var log x(Xk) =0 for k sufficiently large,
since x(x) = exp 2miep x snd g - ®, so that the third

series converges too.
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OUTLINE OF THE ARGUMENT

The basic idea (Moran's) is to invoke Choquet's theorem.

To do so, it is necessary to show that extreme points in
the set of operating functions KU on a given measure U
of the class discussed must be functions of the form xt, t
a nonnegative integer. Choquet's the&rem then produces the
desired conclusioh. By using the machinery of generalized

characters we are able to show that an extreme point must

be of the form -xt, t € R, t 2 0. But to fix t more

precisely we treat each kind of group separately. This

is done in sections 3.5-3.7. In section 3.3 which follows,
we identify C(u) for the measures of interest. Then in

section 3.b we show how this knowledge can be applied to

. R ~ t
give extreme points of K as X . Then we turn to the

(o] m
T T . = oo. nd I .
our cases s & s k=1znﬁs sgp n ; an n Z

J
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C(31) FOR THE MEASURES. DISCUSSED

LEMMA

For W € BT, BAp or Bme, ¢(u) 2 [-1,1], while for

W e BT , c(u) < [mu,l] where

Proof
We adapt the method of Brown and Moran [BMA, 831. 1In each
case we can define an auxiliary measure Vv on R

with the following properties

(1) v is not a point measure, in fact is continuous.

(2) vl = 1.

(3) V(8) € c(n) for any 6 e (0,%).

(&) 3(0) = 1.

Now since ©V is positive-definite, by the formula 32.L4(v)

of Hewitt and Ross [AHA II p. 2551,
[5Gy )0(x)0(y) |2 < [-]0(x"1) ] 2202- [D(y) | 32

so that were ls(y)l = 1 throughout (0,%) we would find
|0(x)| = 1 everywhere and Vv a point measure. So there
isa 06 € (0,%) with v(8) = r <1 and so by the continuity
of V, (r,1] c c(u). If we show m, e Cc(u)  then the
required result will follow from the closure of c(p)

under ordinary multipiication.
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Proof that C(u) g [-1,1] for 1y < BA

n nx Nk
p= * %68(p )+ 8(-p )] (1)
k=1
where .
n €Z and srp(nkfnkéi) = (2)
for k=1,2,3,... choose k(j) so that
- = 5
ki) T k-1 7Y (3)
and define
. k(i) Rp—Dg(j D =Dk (]
vo= % ysp ) ws(p R )

Voo k=x(i ~1) +1

as a measure on R. In fact % is a positive measure on
[-1,1] with H% |l = 1.

Obviously there is a subsequence of f% } with a o(M(R),C(R))
iimit, say V, and we can assume without loss of generality
that v > v. DNote that Vv # 8§(0). .

Now let 0 e (0,%) and for j=1,2,3,... choose

~ i) k(i —
Qj = % l.p (i) k(i-1) % eN

so that % -0 .

Consider the sequence ¥  of characters on A correspondin
2 . ponding

to

“Ng(j) ~1  TMk(j-1)
o p =K P .

For each p <€ A,

¢ k(i)

A

PU(D
=<
v
I

exp emi %

~1 "0k (j-—-
exp 27i rf K% hs) (-0

-1 ~ng(j~ N
(exp 2mi % D g l))p

> 1 as J—)-co

so this is true for all 4 € D.
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[o.a]
A n,. _n .
Now u(& Y= I cos 21 8, kp k()
k=1 !
~ k(i) P
while v, (8 ) = il cos 2m B p kTR
et k=k(j—1)+1 !
k(]'_l) ni;—n ¢
A ~ - ~ _ - k k(.l) |
s0 Ivj(ej)—u(& ) l% 6, |. |1 k?{ cos 2m 6. p |
A k(j"‘l) -1 ni —n i
< Iv,(6,)|.|l - cos 2m K. p k™Tk( 1)|
i o1 i
> 0 as j >

since the product certainly exceeds the
-1

\k(j—l)th partial product of 5111; ki
}

which converges to 1.

Since Bj > 0, exp 2mi % X converges : ;. on

[-1,1] to exp 2mi 6x, as j—aw

A

19, (8,)-0(8) | < [3, (8,)-5, (0)] + [V (6)~3(0)]

< “sup lexp 2m 6 x-exp 2mi 6x| + |Gi(e)-3(6)|
-1 <1 ! o )

-0 as Jj > .

-

A~ ~ ' A
So- u(& ) > Vv(8) so by Johnson's criterion Vv(6) e C(u).
A similar treatment of G = T is given by Brown and Moran
[BMA]. Simple versions could be given for Bme and B,m ,

though obvious direct arguments suffice anyway.
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3.4 APPLYTING CHOQUET'S THEOREM

What makes possible a fruitful application of Choquet's
theorem for the measures in question is this result,
adapted from Moran [ISCM2 p. 61].

3.4.1 LEMMA

Let U be a hermitian probability measure on G and
suppose C(y) = [ mu,l]. If F is continuous on [-1,1]
and operates on 1 with F oy = v then there exists a
bounded holomorphic function F on the slit disc

Us = {|z] < 1}\(—w,mu) such that

Fl,. = » F <
F|(0’l) F and IFl_ <l

~

and f operates on ui with F o uy = @.

Proof

2—l‘h
Choose £ I  so that (Em)u = e ) anq meke £ = 0
(by replacing (Em), by (€m+l'£m+l) if need be). For

z € US, 1let

952) = G(E;mlogz).

Then sup IGh(Z)l < Il
7z €US

So (Gm) is a normal family of holomorphic functions on
US. Let x be exp(-p2 ') with p and q positive

integers. For m = q

m. q
¢ (x) =9(&% ) =FE" )

m m

m—q m—q

since Eiz e I”. But ﬁ(giz ) = x

so that Gm(x) F(x).

So  1lim G (x) = F(x) for all x € (0,1) of the form

m—>oo

stated. Therefore by Vitali's theorem, Gm converges
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uniformly on compact =zubsets of US to a bounded holcmorphic

G on US. Clearly G coincides with F on (0,1).

Now F o fi(Eie(y)) = O(Eje(y)) for k=1,2,3,... and Y
R R 2%y
for which u(y) = u(e(y)) e [0,1] . ( e(y) = ¢ )

For each such Y,
z > F o (& (e(y)) and z > V(& ely))

are bounded, hc%omorphic on the right half plane coinciding
on the positive integers, so by Carlson's theorem they
coincide everyyhere.
o 0
Now let 2z - 0 along the real axis. Then Ei > &, where
0 0 ,
(El)u =1 W a.e. and (El)v may take both the values
0

0 and 1. Let w= (gl)v.v.

Then

1im F o 1(& ely))
t 20

F o fi(e(y))

A t ~
= 1im V(& e(y)) = wle(y)).
t 0
Thus ﬁ operates on Y and ﬁ O U=w= (Eg)v.v.

O

PREPARATICN FOR THE APPLICATION OF CHOQUET'S THEOREM

Let 6 = {YIﬁ(Y) # 0,1}, B(6) be the restrictions of
the transforms B(I') under the quotient space norm.
Let KU be the set of all functions F continuous on

( mu,O) u (0,1) which operate on |, under the topology

of uniform convergence on compact subsets of ( mu,O) v (0,1),

and |IF o uIIB(e) < 1.
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Lemma
Ku is a compact, convex set.

Proof

v
(@)

(a) Convexity. If oy+0p =1, 03 2 0, 0Oy and F;

and F, operate on U1 then

(G1F1+Q2F2)(ﬁ(Y)) QlFl(ﬁ(Y))+@2F2(ﬁ(Y))

algl(Y)+a232(Y)

]

I

(a1 vitoava ) (y) .

So that oF;+a;F2 also operates, and I[F o ﬁ"B(G) < o1+0s =

(b) Compactness. It is enough to show that any sequence
(F;) of elements of KU has a convergent subsequence,
since the topology of 'Ku is metrizable.

Each F_ extends (uniquely) to a holomorphic ﬁn on US
and Sup{lf;(z)| 1z €US, n= 1,2;...}'s I vl so that
(fn) is a normal fémily and has a convergent subsequence.

Restricting to [ m ,1] we obtain a continuous F such

U
that Fn, > F uniformly on compact sets. For each 1n we
have V sst. F opu=v |, and vl <1+ 5
n n n'Q n n

Then for some subsequence \;,ﬁ-v in the weak topology and

Foifl= Gle while IF o y<IVi <1 so F ek,

B(6
Next we characterise the extreme points as functions of the
form Cxt, C e E; t 2 0. Most of the rest of the work
after that concerns specifying possible values of t.

LEMMA (Moran)

Let F Dbe an extreme point of KU with F o ﬁ =9V, If

gEel” &£20 and Eu is a nonzero constant, then &

is constant almost everywhere.

1.
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Corollary
t }
F(x) = Cx where Cef, t20 and x < [ mu,l].

Proof

Let Eu =g, a= (log B);1 and assume Ev not constant
a.e. We show that F cannot be an extreme point by
exhibiting it as a nontrivial convex combination of two
functions in Kﬁ. Specifically, let C € (0,1) be s.t.
both

Ay = {t]g (t) <c} and A = {t]g (t) = c}

have positive lv| measure, 0, . Define

d log z

() =opt [, 5,0) av(t)

i
for i=1,2, 2z € US.

These are clearly both defined and holomorphic on US. Now

if T were an extreme point, vl =1 so oaj+az = 1 and

o Hy + azﬂé =F,

the holomorphic extension of F to US guaranteed by
Lemma 3.4.1. We conclude the proof by showing H% operates

on Y, i=1,2. In fact

B oo nlg =79 |4 i=1,2,

where V, (B) = u;l \)(Ai n B) for Borel sets B.

To show this, fix Y € 6 and consider

oy (ROY.E™)) + 2B (A(y.E™)) = F(u(y.E™))

= G(Y-Em) = UIGI(Y-gm) + stz(Y-gm)

(The first equality holds by the continuity of H  and i
: 1
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since £ eI .)

Now we may replace m by a complex =z, Re(z) >0 to
obtain two bounded holomorphic functions

E (R(Y.E)) + cHa (Y. ")) and aadi(v.E) + 02Vz(v.E")
which coincide on the positive integers. So by Carlson's

theorem they coincide. So for Re(z) = 0
oy (B (Y€ )01 (¥. &) = —az (H(U(y.E )02 (v.E")) .

Now let 2z = Re(z) -+« and consider LHS. Comparing with

¢ - (C as above),

[c™ oy (Hy (Y. & ))-V1(y.E" )|

™ fee, 00 ot Y g (0)f an )]

1A

fleye)® 1or BV Ly BBl au, ()

which - 0 as x = ® because Vi 1is concentrated on Aj

where ,Ev(t) < C. So the RHS of the equation tends to zero

Im(z) as x - . This can only happen

uniformly in ¥

if - Ha (U(y.8))

i

V2(y.E2) for all =z with Re(z) >0,

for the following reason:

a1 1
(E og U(Y)__

v Y).v2 © and define

Let A be the measure
o(t) = log (&,(t)/C).
Then ¢ is Vz-measurable and maps the set Az (on which

+
Vv, © is concentrated) into R . Let p be the measure on

R+ induced by ¢ from A s0
j £ o ¢(t)ar(s) = J f(t)ap(t),

for f e ¢(RY). Then
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I(r d log ﬁ(Y)_Y)(Eﬁﬂiﬁgzdvz(t) = Jethp(t).

Since supp p is compact L(z) = Jethp(t) is entire, and
since supp p < [0,®), L(zk) is unbounded only for sequences

with Re(zk) + ®, On the other hand
L(z) = C_xdsz(U(Y-Ez))-02(Y~Ez) -0

as Re(z) - © from the above argument, so by Liouville's
theorem L = O.-
so B (W(y.€)) =79 (v.€) for Re(z) >0, i=1,2.

Letting 2z =+ 0- along the real axis we obtain
Ho (H(Y)) = Va(y) and so Hi(u(y)) = V,(v).

So we have & =B, € =0 say. Then for any positive

integer n,
F(g") =3(&") = 6"V(e(0)) = co”

So by Carlson's theorem we may substitute z for n

(Re(z) > 0). Letting z =4d ~ log x we get

Z

F(x) = 7(8°) = c8 = ox

where t = da ' log © 2 0 (since E.Z 0). 0

In the next 3 sections we investigate what wvalues of t

are actually possible, the aim being to exclude non-integers.
This turns out to be possible for u € BT, BA}’ By, Bzﬂk

but not B1ﬂk.
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3.5 G=17
3.5.1 THEOREM

If p e BT and F is a continuous function in L[-1,1] which

operates on Y, then

(o]
F(x) = )} bx  with ] [p|<e
n=0

n=0

for x e [-1,1] .

Proof
It is proved below that l’zlt can only operate on u if

t € 2% ; so by Choquét's theorem any even

continuous function on L-1,1] which operates on u has the

form

©

o .
F(x) = § b _x" Lolb, | <o
n=0 . N n=0

e,

Now if G 1is an odd continuous function on [-1,1] operating

on \,
x =+ xG(x)

is even and soO

8

¢{x) = t)2n+1X ’
n=1 n

[oo]
2n+t1 }*
Finally since X(F(x)+F(-x)) and %(F(x)-F(-x)) are even and
odd respectively, the theorem will follow from the demonstration

that F(-x) operates on u if TF(x) does:

Let & €I have g, = -1
Then F(-0(y)) = F(I(E.e(y))
= V(E.e(y))
= (£,-v)7(y) Y. €T

so that F(-x) does indeed operate.
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3.5.2 LEMMA
If u € BT lxlt only operates on U if t € 2Z.
1 has the form
p= ¥ 3(8(-ah) + 8(a))
n=1
where d; = P1+P2 «-+ Dy
with p, a sequence of integers = o,

Suppose |xlt does operate for some t ¢ 27 so that

[o0]
~ = -1
v(n) = II lcOs 2ﬂm% ! mez

j=1
is the transform of some probability measure V on T. We
show that no such V exisfs by showing its norm exceeds all
bounds. There are 9 steps: the basic idea is to construct
suitable approximating polynomials Qh,s' of large norm by
multiplying together pol&nomials of norm exceeding a constant
greater than one approximating to each convolution factor.
We argue as follows:-
1. Let f(x) = |cos 2mx|', and fix N =d_ so that

0

Tl > 1+ 158/16.

i | <N

2. Defime u  so that lull > 1+ 76/8, [u[(4)>1+76/8.
(An= Evda ,NAD ] A ﬂnrv: })

3. Define P so that JPn(dh_iu)dun(u) >1+ 38/4 for n = ng.

* r 2
k., Show that JP;(dh-1u)P;+1(dnu)dun Mo, (1L + &/2) for n > ng ,
Using

5. ([, (a,_, twrvday, ) e, (a

n_lu)dpn(u»qus n-> oo,



n+s
6. Define Q _(x) = 1 P (4

. 1 n,s n """ Fn+s
j=n

w =, ¥... %y and show JQh’s(u)dTn,s(u) > (1 + §/2)

for s €7, sz21 if n 1is sufficiently large.

7. Show JG;’s(u)du;+s(u) = JG;’s(u)dTms(u)a supl @, p(ry <= -

oo w
8. sShow inf{ T |cos 2Wm§;1|t : Q" (m) #0}>1 as n~>e.
m i=n+s +1 ’

9. Using T and 8, show Ml > |Q  (u)av(u) = (1 + 8/2)° - 1
n, s

for n sufficiently large.

3.5.2.1° J |f(n)| > 1 + 158/16
|n|_<_N .

Let f(x) = |cos 2ﬂxlt. f e A(T), since f is of bounded
variation and in Lip(T) (ecf. Zygmund [TS, 1 p 241]),
IO < | (1)
j€Z
Since cos is even, £(-3) = £(3), so
bo£(3) = £(0) =1 (2)

jeZ
whereas explicit computations show that f(j) < O for some values of j.

27 i 1 N 27 ] . t
JTe i coswal dx QJy e TT”xlc052Trx| dx it J 2%
: Y

ol (t+1) ) : ]
FT(1+3/2)T(t—372) LIT> 138, #19a]

(o] K
<0 if t-j/2 € U (-2k+1,-2k).
k=0

Thus precisely when t ¢ 27 there are J for which £(j) < 0
such as =~[t/2] - 1.

, 8o el YOIRG)] =1+ 6§ > 1. (3)

T) ~

Select mne and N = dp, so that

| %_ |£(3)] = 1 + 156/16. (4)
j

<N

1

- ~1 - =1
Mt;%=[w%,mh]mgm%}..



Define uh on gp{d;l } -b}/'

p{ka'} = ) flk+jd ) k=1,2,....,d
je Z

Then ﬁ (k) = |cos 2ﬂkd—1|t.

n n

3.5.2.2 [[ufl >1+76/8 ana | [(4)>1+78/8

We assume from now on that n is such that dn > 2N.

Then
il = ) lnleg}]
gegp {d
. dq A
= ) 1) £
k=1 je€z
= JIE(x) + [ F(erja)]
k j€z
ito
> ] RG] =1 F Flerga D
k jez
3 j#o
> 1 + 158/16 - &§/16 =1 + 78/8
since Pl Y fega)| = ] 18] < 8/16.
k jto li|>N
And similarly
e )= § [80) + 8G+a) + ... |
HES
> AX IF(5)] - ) |f(j+dh) + ...
li|<N S
> 1 + 1568/16 - &§/16 = 1 + 76/8 .

Thus
hu > 1+ 76/8 and |u [(A)) > 1+ 78/8 .

L8.
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3.5.2.3 'JPn(dh_lu)dpn(u) > 1+ 38/

(In what follows [x] denctes the integer part of x,

{x} = x - [x].)

Select a trigonometric polynomial

P(x) = } a, exp 2mikx (8)
| k| <k ‘

on T with IIPl_=1" and
JP(x)duno(x) > 1 + 36/h (9)

This is possible because Hunoﬂ >1 + 38/4  and the trigonometric

polynomials are demsein  Co(T). For each n 2 ng s.t.

1

dhd;_l > 2N, let
I e -
P (x) = : exp 2mik [ ] x . (10)
L | k| <k * Ndhﬁi
Then we also have
JPn(dh_lu)dun(u) >1 + 8/2 (11)
for
[r, (@, wan, ) - [ptadan, (w (12)

d
[ n -1 -
ak[f(dh_llNd kd *) - f(kdno)J ‘

n—

n
t~1

k| <k

Now the difference between the two arguments of f 1is

— | -1 1 1

=kd d [@dda N-{ada nN}-4d  N]
n—1 n n n-—-1 n n-—1 n n-—1
-1 -1
= k(a _ a° ){a_a " wn} . (13)

Since |k| € X (fixed) and {a} € [0,1), the difference can
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be made as small as desired if n is made large enough.
! . R
Therefore Dy the uniform continuity of f, so can the

difference between the two integrals (13).

; (dnu)dun*}.l“-1 (u) > (1 + 8/2)2

n+

3.5.2.4 JPn(dh_lu)P

The integral in question is

oy
1}

P (da  (utv))P
[,

n n+1

(@ (utv))dan (w)ay , (v)

(v)

i

J[JPn (dn—l (u+V))‘dLln (u+v)]Pn+l (dnv)dpn+1

since due3% for ye gp{dgl}

and Pn is 1~ periodic for all n

> J I(V)Pn+1(dhv)dun+1(v) - 6/8, I(v) being the inner integral
A
n+1

i .
since |J | < Ian- l(An:l) < &8/8 . (Amoompkmad’ d,}A.m)|
n+1 ’ ¥

. Using the fact that |I(v) - JP(dn_ u)dun(u)l +0 as n >

1

(3.5.2.5 below), we see for n large enough

J > (1 + 38/k) j P;+l(dhv)dun+1(v) - &§/8

A

n+1

> (1 + 38/4)(1 + 58/8) - 6/8 wusing 3.5.2.2 and 3.5.2.3

> (1 + 8§/2)% .

n

&SiLS(ﬂv)—JP(%_“ﬂm%hﬂ)+o as n >

To show this, consider the difference

[[e2, (@, o) - B, (o, w)lay, ()|

d d
. IJ[lklzsxak(exp(2ﬂikdn_l [[ﬁd‘fj (v ))-explerise, ] )30, (0]

n-—1



d‘ N
< J( ) Ianlexp(Qﬂikd,n_1 &EFE—%-V - 1|)d|pn|(u)

‘|.k|SK n-—1-
d
<yl § la ||enika 2 dgal
- n lle‘(K n n—-1 |Nd . n+1
—~ ’ n-—-—
B L a1 .
where v o= th+1’ IJI <N

since |eie -1] = o] .

Since Ijl £ N, each‘'term involving j is less than

d
n -1
emkd [Nd ]Ndn“
- on-—1

orkd N4 i il
e e G W

n—1
= o1k % oTKN Shoy { S|
dn +1 dn +1 Ndn -1 I

and each of these terms is'arbitrarily small for n sufficiently
large.

3.5.2.6 JQD J(wat,  (u) > (1 + s/2)

Define
n+s
Q. , ()= T B(g v
j=nmn
and
= * *
Tn,s un e un+s
= * *
w py¥uL*.. uo-
Then I= jG%Is(u)dTn’s(u)
= 3 * *
J(JPndn—l (LH'V)dUn (u))Qn+1, 5 —1 (V)dpn-l—l e 1'ln+s (V)

since % wvez for jzn.

As in 3.5.2.5, Jpn(dn_1 (u+v)dun(u) > JPn (dnulu)dpn(u)

SO
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Fh g = 6/2)JAh+SQ"+1,S_1(V)dun+1*...*dﬂn+s(V) - e
> (1 + 8/2)(1 + &8/2)° " - §/8
> (1 + 8§/2)

by induction on s 2z 1, for n sufficiently large.

3.5.2.7 JQH Wnvs ~ JQ e T, o0 Sl My <

These are so because

—
3]
=3
=
1

JJQh S(u+v)dwn_l(u)d'fn s(v)

I

Jo,., Gtfaas, , Gaar, , o0

. -1
since ® _  concentrates on .g;p{d_n 1} R
.0 =1 . o
and Q _ is d _ - periodic, because

, 8

N divides dh'
= fa,,, v, , )
(Jld% =1 for all j since f is odd).

~

Furthermore ”Qh,s"A(T) = 7 Q (m) is the sum of the absolute

m n, s

values of the coefficients of Q,n : which for fixed s is

?

certainly smaller than (2K+1)S[max ak]s < o, independent of n.
k €K

Finally "G% s"m < 1 since each factor of Q is so bounded.

3.5.2.8 inf { 1 |cos 2ﬂmd;1|t|QA s(m) #0}+>1 as n->eo
s n,

j=n+s+1

To establish this it is enough to show that for any given J,

"if n 1is large enough

o0 [s2] .
I |cos 2ﬂmd;1|‘ > 1 |cos 2m.2”

j=n+s+1 i=]

since the R.H.S. can be made arbitrarily-near 1 1if J 1is big
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enough.

To do so, consider the largest possible value of m:

dh—l]

l- n -| [ n+s ]
Ndn_ J 4 dn—lKlNd —J + ... F dn+s_1K Ta

2 T | n+s -1

o]

n-—2

=1
< (s+1)KN 4
n+

s

(o]

So the first factor of T |cos emmd ' |" is at least
j=n+s +1 )
=1 — -J
cos 2m(s+1)KN "d @ ' It which is larger than |cos 2m2 lt,

n+s n+s+1

no matter how large ~J, if n 1is large enough. And subsequent
factors are larger than corresponding factors of H<|cos 212 Jl
. . ji=3

since % >2 for all j. (We assume n large enough that all

arguments are smaller than 21m. )

3.5.2.9 IQh s(u)dv(u) > (1 + 6/2)s -1

For JQh s(u)d\)(u)

) Q; s(m)( I |cos 2ﬂmd;l|t)
m ’ ji=1

v

@ (T |cos 2ma™|* (1-¢))

n,s
m ’ ji=1

for any small €, by 3.5.2.8

nts
= 2 Q~ (m) I |cos 2ﬂmq;1|t - € z Q;’s(m)
m j=1 m
n+s
) Q  (m) I |cos 2ma™'|" -1
m » 8 i=1

v

if € is chosen smaller than

=1 . :
(SBP”Qh,s”A(T)) as it may from 3.5.2.7,
so for sufficiently large n,
[V~ jG%’s(u)dv(u) > JQh’s(u)duh+s(u) -1, by the above

> (1 + 68/2)° -1, from 3.5.2.6

for any s € Z,. s > O
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so that no such Vv exists.

This argument is a revision and expansion of that given in
Moran [ICSM2, p. 211 in which it appears that the same
trigonometric polynomial is invoked for each n at

3.5.2.3 (10). This seems difficult to secure.
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3.6 G=A

3.6.1 THECREM

If u e BA% and F is a continuous function on [-1,1] which

operates on Y, then

[ee] R oo_
F(x) = ) b ¥ with Yoo | <o
i=o ' i=o

for x e [-1,1].

Proof
The ogly change needed to the proof 3.5.1 is to replace the
lemma 3.5.2 with thé corresponding result for Ap proved

below, lemma 3.6.2. I becomes Z(pm) rather than 7 but

that does not affect the argument.
3.6.2 LEMMA
t . C
If u e BAb’ |x| operates on u only if t'e 2Z.

Proof

The argument is like that for T but some details are different.

¥ has the form
s e
p= % B(8(-p™) + 8(p%))

where (e,) 1is a sequence of integers such that su‘p(en;en ) = o

n

-1

and e > e for all n.
n n-—1

Suppose- let operates on WY for some 1t ¢ 27, so0 that

—Mi t

[i(mp™) |
o
II Icos 2’rrmpeJ
j=1

)

V(mp

—Ll It

—M co
for mp € Z(p )
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is the transform of some probability measure v on Ap . We
show that Vv does not exist by showing its norm exceeds all

bounds, through nine steps:

€n

1. Let f(x) = Icos 2'rrx|t and fix N =p ™ so0 that

Y oO|8(3)] =1+ 158/16
[i|sN

2. Define Y  so that llunll >1 + 78/8 and
(V) > 1+ 78/8 nzmng

3. Define Pn so that JPn(p—e“_lu)dun(u) > 1 + 368/4,

for all sufficiently large n;

n+l v

k. Show JPn (p- ™ tu)p (p_e"l.l)dun*un)rl (W) > (1 + &/2)2,
for all sufficiently large n,

Using
5. ([By0 (57 Gy, () - [r,,, G70vIan,, () > o,

as n > «©

n+s

6. Define Q _(x)= IF (p Si-1x), T = ¥y ¥, ¥y -

n, n,s n n+1 n+s
ji=n

and show JQn . (u)dTns (w) > (1 + 5/2)s ’

s € .2 for all sufficiently large n;

T. Show silllpHQn’s||A(4< < o g

n—1 % _
8. show inf { I |[cos 2mmp
(m, M) j=1

e-

J-—Ih It . M

: Q:'S (mp ) # 0}

-1 as n > ®

and
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9. using 7 and 8 show

R/ JQh S(u)d\)(u) > (1 + §/2) -1

for all sufficiently large n.

(The sense of "sufficiently large n'" is made precise in

the detailed argument to follow.)

3.6.2.1 ¥ |F(3)F> 1+ 158/16
lil<N ‘

f is still the same function as in 3.5.2.1 in A(T), so

change is required except to ensure N = pe"O. Let

v ={jp™[j = -N,-N1,...,N-1,N} ¢ .

3.6.2.2 Hull > 1+ 78/8 and Ju [(V ) > 1+ 76/8

Define u  on pe"Ab by

-~

%{qﬁq f(z) for all z € Z .

Notice that

M )

ﬁn(mp Jexp 2Wimup—Mdun(u)

) exp(2ﬂimzpe"_M)un{zpe"}

z €Z
. e, —M\ A
= ) exp(2mimzp " )f(z)
z€ Z
—M —M it
= flmp™ ") = |cos 2ﬂmpe" .

Assume pe“ > 2N

Tl {zp™}

zeZ

M

Y 1£(z)] =1+ 8>1 + 78/8

z€Z
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while

lw [(v)= ] |8 >2+156/16 > 1 + 78/8
lil<N

Iu [(v') < 6/8 .

3.6.2.3 JPH (p‘e"-fu)dun(u) > 1 + 38/b

Choose a trigonometric polynomial on AlJ

A p)\"l -A B
P(x) = ) } ay . exp 2miTp "x
A=1 T=0 >

so that fIPl_ =1 and ay =0 if (-v:,p)‘) # 1 and

>

_x)

Tf(’[pe;‘o = JP(u)dUno(u) > 1 + 36/)4 3

) a
A,T A,
(This way of writing P(x) is useful in 3.6.2.8 below.)

Now for all n such that e - e > A - e define
n n-1 g

—)‘_en +en +eﬁb

Pn(x) = AZT aA;T‘exp 2miTXp

so that we have

_ e
[t () = 1 ey L, (7

— €n -\
= }\Z a)\,Tf(TP 0 )
T
= JP(u)dunoﬁu)
so that JP;(p_e“"lu)dun(u) > 1 + 368/4 too.

3.6.2.4 Jpn(p'en—lu)p (p~%w)ap *u  (u) > (1 + 8/2)?

n+1

The integral in guestion is
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(v)

_e"“‘(u+V))P;+

o
I
—
=*'U
=)

(»™ (utv))au_ (u)an

1 nti

1
= [([p,0y B e, (1), (57

n+1

tu)ap (u)

since for u e pe“Ab

e
., VED "*‘Ab, we have

P (p~ ™1 (utv))

El

ng ten_1 —€q

P(p p n-1 (abn4ppSatt))

P(ape"o +bpen0 ~€n +en+1 )

€no S _ _ 3 s n s e
P(ap ™ ) since e~ -e > A en, and P is p -periodic

~€h—1

=P (p u)

n
So J > JV I(u)Pn(p—e"‘lu)dun(u) - 6/8, 1I(u) being the inner integral:
n -
since IJV'I < lunl (V;) < 8/8 .
n .

So using the fact proved in 3.6.2.5 below that

~€n
1 - [r,,, 6™y, () +0 e 0o,

we Ss¢e

3> @ 3|, 6T ua, () - 878

> (1 + 38/k)(1 + 56/8) - §/8

> (1 + &/2)2.

3.6.2.5 (I(u) - JP (p—e"v)dun+l(v)) +~0 as n -+ ®

n+1

To.see this, consider the difference

n+1

e (™% (wrv))ap  (v) - [P (™% v)an . (v)]
n+1il ntl ntl

~
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©n €ny —-Aten —€n+1 (

= |J ) ay Lexp(2mip” D ut+v))
A -

- exp(ZWip_e“Tpe“O*A+e"—e"f1u)]

A

—>\—e +
n lu

Jy |a}\’T||exp omiTp Mo - l|d|un+1(v)|

A,T
< ““m";\lea).,Tl |tptte ATy

Now since u €V  and so lul < Npe“, the last factor is
uniformly arbitrarily small for n large enough, and the

assertion follows.

3.6.2.6 JQn _(war,  (w) > (1 + 8/2)

Define
nts e]
= T S -1
Q . (w) = I P (p u)
J=n
= * . * *1
Tn,s un 1‘ln-fl tet ’Jn+s
Then

[o,, . twar, ,

(u)

= J[JP,HS (p—en+s -1 (u+v))durl+s (V)]Qn’ a—1 (U-)dTn’ s—1

€ e
because for v € p II*LS[\p and u € p n+s—1Ap,

n+s —1
Q ., (utv) = T P (p 9 -1 (utv)) and
’ B=m -
Pi(P—ej_l(u+v)) =P, (p~% ~1yu) for each j as
in 3.6.2.4
So JQH"S (u)d’[n’s (u) > JV I(u)Qn,s_l dTn,s_l - &§/8

n

> (1 + 38/L)0(1 + 6/2)° " - §/81 - §/8 > (1 + §/2)°

by induction on g, for n large enough, and s 2 2 integral.
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3.6.2.7 SEP“Qh,s"A(éﬂ < o

As in 3.5.2.7,

. ~ =M A . _
e, W= m;MQh,s(mP ) < (p )SLTa§ el <

independently of n.

’ k4

And we still have IIQ,n sl|oo £ 1 since each factor in Qh .

is so bounded.

-

n-—1 . .
3.6.2.8 inf { Il |cos 2mp
m, M i=1 :

A

<,

;M gt : -M
i ‘ s(mP ) # 0} >1as n >

Examining the fregquencies of Q ,» Wwe see that

+...+T$pe“°_>‘s—en+s

. ~M ~-M [S] —}\ - e —>\ —e
Qn s (mp )7{0 <mp =T1p ng 1 n_'_,l.2p ng 2 n+1

and recalling our conditions on ar 3o this equation can only
L]

M, - . i Sy s M- :
be satisfied if (m,p") =1 ana pot (TA TEm+i)  Meen
and so X

l1+e -¢ <M<e + A - e
n o n+s 0
n-1

So the smallest possible product 1 has n-1 factors each at

least
e ~1~¢, |t .
cos 27mpJ l for j <n.
j:oo [ee]
. . e -1—-e |t ] —-j gt
Now if we compare II lcos 2mp n with I Icos on2

j=n-1 i=3
we see that we may make the first factor of the former exceed
that of the latter by making n sufficiently large; thereafter
the corresponding factors of the first prod&ct are larger than
| those of the second since p =2 and & - §_, z 1, and of

course run out after n of them. So since our comparison

product exceeds 1-£ for any given € if J is made large
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enough, it follows that cur assertion is proved.

C3.6.2.9 IVl > (1+8/2) -1

If n is sufficiently large,

> [o, , (wavi)

[+ o]

= 0Q” s(mp_M)( I |cos 2ﬂmpei_M|t)]

(m'M 7 Ci=1
. M n+s e. =Mt & e =Mt
= 3 [Q  (mp ). II |cos 2mmp™i 7| I |cos 2mmp i | ]

(m, M) ’ i=1 j=n+s+1

) M TS Mt

= ) [Q; s(mp_ ) T |cos ommpS T | ]

(m, M) te i=1

since ‘Q; s(mp-M) # 0 only if M < e + A -e

3 nts g

. ~M
so that p% €e7Z for jJ>n+ s and so all

factors after |cos 2ﬂmpe“+s—M ' are 1 for the
terms with Q; s(mpr) £ 0.
E ‘M n+s ) e —M it

> Y [Q (mp ). T Jeos 2mmp? | .(1 - &/suplql )]
LA T . A(T)
(m, M) 3 j=n
for n sufficiently large, by 3.6.2.8 .

M n+s Mt

) [  (wp ) T |cos 2mp™ TT|' 1 - 1
(M 7 j=n

> (1+6/2) -1 by 3.6.2.6

from which we see that v does not exist.

This completes the proof of the lemma. (It is interesting to
observe the complementary way the "early" and the "late" factors
~~in the infinite products are removed in the two cases of T and

Ap.)



63.

o
3.7 G = jl& %q
After T and Ap, the other groups we need to consider
©
are 'EE %U . In some ways these are much simpler (because
infin&te convolutions on them reduce to infinite products),
but our results are a little more complicated. The crucial
question is whether .the 1n; are bounded.
3.7.1 G = - %1 4 % unbcunded

j=1 i

We first develop the required information for a measure on
a single factor.

3.T.1.1 Lemma

Let u=% 8(a) + % 8(-a) on VA .

B, t=20, a#o0.

Hi

A%

For a given t, 1if nk ‘is large enough there are Jj for

wvhich v(j) < 0, so that ||v]||>1 + & for some § > 0 not
depending on n .

Proof

k-1
-1 =
v(j) = 1/k ] exp 2mijsk |cos 2msk .

8§ =0

For a given J and t, as k > ®

1
v(3j) +»j exp 2mixJ|cos 2'nx|t dm (x) this function being
0
Riemann integrable

. onT{(t+1)
2 T(t+j/2)T(4-3/2)

[e¢)]
which is negative if t-j/2 € u (-2r+l,2r).
=0

= B (e.f. 3.5.2.1)

r

since  |[v|l= }Iv(3)|, obviously |[v| > 1+ 8 wheie
j

§ may be chosen as near as desired to IBI.
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Oh.

Theorem

[+ o]
et G= I Zn . unbounded, U € Bre .
j=1 i

Then if F continuous on [-1,1] operates on U,

F(x) = ¥ b x - x € [-1,1]
n=0

L]
with ) b | <.

n=0
Proof
This is a consequéhce of Lemma 3.7.1.1, the unboundedness of

% and the usual arguments: since

0

~ ~t A A t .. :

v=[ul", o |un| = |Iv]l = jlﬂ Il\G‘Is
||v|| is only 1 if t € 2N, since for any other finite
t l"t will not operate on ‘% for sufficiently large

t : : .o A 5
Jj- ©So l°! operates for .t € 2N and the conclusion

follows as before. \'\_

oo
G = ‘H Zk
i=1
oo .
Ir G= 1 %1 » Wwith n bounded then G is a product-
j=1 j .
of groups I Zk and a finite number of factors Zh

ji=1 j
So we look at groups of the first kind.

3.7.2.1 Lemma

Let p=a §(0) + (1-a)l% 6(1) +3% &(-1)]  on 7,
o= |il', ae00,11, t=o0.

Then if a is near enough to 1, V(1) < 0, and
||vl| >1 + 8§ for some fixed & > O.

Proof

\)(l) = E 1t
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k-1 :

] -] . -
Further, §\£i) = 1 X exp2Tisk Ia+(l—a)cos2ﬂsk 1‘t.(l—cosmrk 1s)

(4

s =C
(we only consider a mnear 1)
av(1) _ ) .

and - Y6 >0 at a =1 (since the numerically largest

terms have the smallest multipliers).
So that for a <1 Dbut near to 1, v{l) < 0.
3.7.2.2 Theorem
co
TLet G= 1 Z.> M € BT .

i=t
Then if F continuous on [mu,l] operates on u iff

[20]
r(x) = z' b ox x € [m ,13
hle) L H
[ee]
with ) |b | <@
n=0

Proof

Since {ah} is dense_in. [-1,1] there are infinitely
many factors with. ?i near‘enough to 1 for the Lemma
3.7.2.1 to apply so that II% || >1 + 68 and v can only
exist if t € ZN.

The usual arguments then apply, but now we only have the -
conclusipn for [mu,l] because only that inﬁerval is in

c(u): {u(y) : y €T} is the regular k-gon subset of

the unit disc determined by {exp 2misk ' |s=0,...,k-1}.
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3.8 MAIN RESULT
3.8.1 DEFINITION
We shall. say that u € M(G) has property 7 if F
continuous on [mu,l] only operates on u if
oo o
F(x) = Z bnxn, z Ibnl <o, x e C(p).
n=0 n=0
We have proved that | € BT, u e BAb’ U € BpTZk  and
u € BnZ(®) all have property 7, but that p e ByTZ, does not.
3.8.2 LEMMA "

ILet H be a compact subgroup of G,

mm, ¥ M(c) - M(G/H)

be the isomorphism induced by the canonical homedmorphism
b -+ G/H.

If u € M(G/H) has pfopérty 7, so has Vv =7 'y e M{g).
Proof e

The measure corresponding to u 1is actually determined by

the continuous linear functional

1e) = [oul[ 20 am, (r))au(x)

since the inner integral depends only on the coset X

containing x, for each f € CC(G).

Clearly v(y) = i(y) for vy e (G/H)"

and O(Y) 0 otherwise.

So if F operates on Vv, i.e. F(G(Y))==ATY), v € PD(G)
for all vy € I' with V(Yy) € dom F, then A" restricted to
H- = (G/H)" is a transform, by 1.4.2.3. But this is to

say that F o© ﬁ is a transform and so by hypothesis
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F(x) = z bﬂxn, z lbnl <o for x € C(p).
n=0 n=0

Since C(u) = C(v), we conclude that V has property Z.

3.8.3 LEMMA

Let H be a subgroup of G. If u e M(H) has property 7,
so has U considered as a measure on G.
Proof
Denote Y considered as a measure on G by Vv. Let F
continuous on [mu,l] operate on U. Since VvV is concentrated
on H,r G ié congtaﬁt on cosets of .Hl; so F o 0 being a
transform entails F o ﬁ is a transform in B(HA), by Eberlein's
criterion, and so by hypothesis
- o

F(x)= J bx" with J |p|<e xecu)=c)

n=o0 . n=0

so VvV has property Z.

3.8.4 LEMMA ; .
M(R) has measures with property Z.
Proof
Let 1 be a measure of the class BT.
Consider Y as a measure on R, di.e. U € M(R). I F
operates on U as a measure on R, so that F o ﬁ =V e M (R),
then we apply Eberlein's criterion 2.4.1.3 to see that
Glz e M (T) so that F operates on | as a member of

;7 M(T), so F is } b x, zltml < o and U has property

Z for R too.
Eberlein's criterion applies thus:
since Vv € M~ (R), by the criterion if‘_}|0|l < A then Y

is continuous on R and
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|5 o Gox ) = allell, )
i=1

n
for every trigonometric polynomial f = z % % on R. Obviously
i=1
then (1) holds for every trigonometric polynomial on 2, and

P
v 1is continuous on Z since every function is so applying

the criterion again v e B(zZ) = M™(T).

MATN THEOREM

For any non-discrete LCA group G there is a class of
measures with property Z.

Proof

The two lemmas preceding reduce the problem to finding a
subgroup of G (lemma 3.8.2) or of ' (lemma 3.8.1 and
duality) on which suitable infinite convolutions with property
Z can be defined.

The structure theorem for LCA groups reduces the problem

to compact abelian groups since any LCA G‘= R" x F with

n > 0 succumbs to the‘lemmas (T =R/Z). If G is compact,
either T has elements of infinite order, or not. In the
former case [' has a subgroup Z and lemma 2 applies, if

G 1is torsion, [' either has a nontrivial divisible subgroup,
or not. If not, [I' has as subgroup a weak product

co

@ Z} Zﬁ% ) (FUcHS [II, 651]) so 3.7 assures us of suitable
j=1 .
U; whereas if @' has a nontrivial divisible subgroup, being
torsion and abelian it must contain a subgroup isomorphic to

Z(pm) for some prime p, and so G has a quotient

isomorphic to Ap and 2.6 completes the proof.
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