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S'.]}'ß{ARY

fhe r+ork is a contribution to attempts to frame converses

to the generalized !/iener-Levy theorem, that (essentially) only

real-anafytic functions operate on t}le Gel-farrd transforms of

measures. Methods have been developed, by lliJ-liam Moran to

exploit analytic structure in the maximal ideal- space of the

measure algebra of a local-l¡r compact abelian group to establish

results of the kind r^ranted-. These method.s are employed. to find-

measures on any Ioca1Iy compaet abelian group on which only

analytie functions operate. These measures arise from Bernoul_li

convolutions.

The extensive machinery necessary is first d.evelopeó in

part 2, after a detailed. d.escriptÍon of the problem and. its

context in part 1; in part 3 ttre three special- """"" of the

eirele group, the groups of'p-adic integers, and- infinite

products of finite abelian groups are treated- in d-etail. fn

the third. case it is necessary to d.istinguish the case where .-

the ord.ers of the groups in the prod.uet are bound-ed.. Fi_na11y a

general statement for al-1 1ocalJ-y compact abelian groups is

d.educed..

(¡ i )
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PART ONE : THE PRoBLET'IS CONSTDEREp. RESULTS pTSSUqSEp_ANq

METHODS USED
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L.5 METHODS USÐ HME

).6 ORGANISATION OF THE }TORK
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1.1 THE PROBLEN{ T}M FUNCTIONS THAT OPERATE ON FOURfER TRANSFORMT,S

The cluestions l¡e consider are of this form: what condj-tíons

ensure that a function F applied. to any transfolm in a

set A^ alvays yield.s a transform in set B^? lle restrict

our attention to measrLrest so I.Ie are askirrg vhen

A^,8^ -. lu(G)^ * (Vû. A^)(=î. s^):r'(û(y)) = û(y) Vy

We say.that F operates from A^ to B^ if this.is so;

when A^ = B^ lre say F operates in A^.

The questions of the form ind.icated" may be thought of as

seeking converses to the Wiener-Léwy theorem and. its generalisations:

Gerreralised I¡Iiener-],évv Theorem

EVery reaf-entire function operates in' l¿(C)^;

every real-analybic function operates in É(C)^.

I'le seek conditions on F and/or sets A^,8^ vhich entail

that F has an analytic property sueh as being holonorphíc

in some d.isc, or real-analytic in some regi.on, or entire or
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T.2 SUFF]CiENT CONDITIOI{S

The first result of the kind consioered was the

TÌ:eorem of wiener_ (]gSz) lwrntlrn, TT, ]emma rrel

If f € Lt(T) has absolutely convergent Fourier series, and î

is never zero) I/t al-so has ACFS.

This vas almost immecliately extended- by the

Tneorem of Lévy (fg¡l+) tlÉw, SCA, théoreme Vl

Si y = f (x) 
""t ""p""sentat¡le par une série F [i.e. has

ACFS l, et si z = F(y) est une fonction holomorphe

pour.toute fes valeurs ile y prises par f (x) pour J-es val-eurs

r6eJ1es de x, la fonction Ftf(x) I est répresentable par

wre série F.

he fol-lor+ing furthei extensions are proved-, e.g. in [FAG, p. 133J

!y essential-ly the techniques of l{iener and- Levy. The theory

of Banach algebras couf d af so be used [.AC].

Generafised Theorem of lliener and léw (cm) IRUDIN, FAG, p. 133:l

1. If F is real-entire then I' operates in tU(C)^.

2. If F is real-anaI¡rbic in some open set about 0 and.

F(o) = g, and. G is compact, then F operates in É(c)^.

3. If F is real-analytic in some open set E S C, f . i,r(C)

ana tîtfl)- g E, then F o f e ¡1(G)^. (por c not discrete,

we need F(O) = g. ¡

A number of variations are avaifable, for example:

Theorem of Katznel-son i

If B i-s a regufar semisimple self-ad.joint Banach algebra with

unit and f is a'continuous function on ¡(S) such that in an

open set around each me - A(B), f can be vritten

as tr(î), vhere ¡'(6) = f(i+in) is real-a¡alytic



\.

in Ç and. n in a nejghbourhooC- of î(rn¡,¡, then f e B^.

lKatznelson , fHA, P. 2j61

The problems of the s¡mbol ic calcirlus for measures concern

id.entifying necessary conð,itions on functions operating from

one set of transforms to another.

I
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1.3 SO!ß NECES SARY CO}IDIT'IOTS

There are gl-obal results, such as the converse of the GWL:

Theorem of Helson. Ka.hane. Katznel-son and. Rud.i.n [nUOftl , FAc, s6.g)

1. If I' operates in M(G)^ and G is not discrete,

then I' extend.s to a real-entire function.

2. If F operates in Lt(G)^ and- G is compact, then

F is reaf-analytic in some open set about 0.

3. If F operates in Lt(c)^, G is not eompact and. E

Ís a cfoseil convex subset of C' then F is reaf-

änalytic on E .(not 
just on Eo).

Theorem of Varopoulos [VAlototnos, f96, ]

If F defined on [-1,1] operates in Mo(c)^ (where Ç is compact

ardinfinite), then F agrees with an entire function in

some open set about O.

Theorem of Herz and Rider [unnz 1963; RIDER I?TL]

ff F operates in PD(f) (for infinite I not a finite

group x a group of exponent 2) then

F(z) = l.^o^r^-f z . D(f)o

with

of Moran (1)

If F operates from

ttexceptionaltt, then

a >O and. Ir <æ.
tnn a nln

tuon¡¡1, rcsM, p. 4otl

PD(f ) to B(f ) = M(G)^ for

y(z) = l^--""'i. , z € D(f)o¿'lrm

rrith Il" I < co
ut mn ¡

f not

Moran [rCSul, l+f)+] gives the co'unterexample of
æ

I rn (r,(zp * ;n) )"
n=O

vhere G is non-discrete wíth no perfect Kronecker or Ko set

p > 2, with finite exponent p. Grahem IECHA, 279) a]-so shows
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F(z) = (Z - ßz - ")-t for ß = f of infinite ord-er

to operate from PD(f) to B(f) for exceptional G.

(f is not ttexceptional-tt if infinite and. either has no compact

open subgroups of exponent 2 or el-se has a compact open

subgroup H s.t. G/H has el-ements of infinite ord-er. )

fn contrast to these gJ.obal- results, in the ind-ivid.ual-

s¡rmbolic caÌculus we investigate which functions can

operate on specifiç transforms. fhe idea is to id-entify

t'difficuftil measures which force analytic properties onto

any function operating on them. Tlpical resuLts incl-ud-e

Iheor"em of Katznel-son IKATZNELSON , Tffi, p. 2)+Bl

(a) tlere is a measure K on R with real- Ê, of norn

(n)

3 2, containing every poJ-ynomial- with rational-

coefficients of norm < 1; for this K

If f' o Ê is a transform of a measure then F is

analytic at O; if F. o (cÊ) . U(n)^ for afl- c, F

is entire.

the

Iheorem of Moran (2) [l¡on¡ru , ICSldL, p. hOfl

Let U be a continuous probability measure on a Kronecker

set i-n T; if F is continuous on the cfosed. unit disc and operates

on U then F- Il"" I
<æ

- and the

Theorern of Kaufìran ISCBCI

Tne Bernoul-l-i convolution Uo constructed in his pairer has

r-he property: any function operating on Uo is analytic

r nl-n
lanz z )

in the unit disc.
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1. \ RESULT OF THTS I¡IORK

l{e establish the following main result.

l-.1+.1 For any nond.iscrete LCA gïoup G there ís a cfass of

infinite convolution probabilÍty measures on which a

eontinuous functi-on on [-1r1] can only operate if

it has the form

F(x) = I b I l¡"1.*
n=O

æ

n=O

nx
n
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l_ DS USIÏ)

Thre results use the methods of Moran [ICSM2]. The

characteristic of this approach is the exploitation of

analytie structure in A(M(G) ). The key ideas are

these:

(r) ir poû(v)=S(y) y.r
then we afso have, if we assume or show F conti-nuous,

that

F(û(E)) = 0(q)

for every Ç e T-, the cl-osure of f in AM(G).

(Z) for the measures of interest, there are geneïalised

characters 6 e f- such ïhat Çu is c where c is any

constant 'in the j-nterval [-1r]-1.

(S) using these generalised characters it is shor.m via Choquetf s

theorem that a function operating on U must be a convex combination-

of functions of the form *' , t = O.

(t+) Finally one investigates which val-ues of t are

actually possible.
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L.6 ORGANISATI ON OF THE WORK

fn paz't 2, the standard terminology, machinery anC- need.ed

facts fþorn the classicil theories of LCA groups, the

Fourier transform; ileâ.stìr€s, complex functions and. Banach

e.fgebras are set out. The aims of this exposi+"i-on are to

establish a consi-stent notation and. to make the vork

conceptuaÌly self-contained as far as practical.

A-lso in part 2 refevant elements of the more recent

t'convolution algebrat' theory of the maximal- id-eal space of

M(G) .for LCA groups G are set out. The basis, of this is the

representation of' AMG a space of generalised- characters in

vhich a number of operations may be defined., namely nruJ-tiplication

6.n, muJ-tipJ-1ca1;ion by measures 6.U, conjugation ¿, absolute

vafue 16l, polar d.ecomposition Ç0, exponentiation Ç' , and

adjolnt Ç. Exponentiation is particuJarl-y important for us

because the combination of continuous operating function and

measure U for which there are generalised characters ( with

constant U coordinat. 4i-. enabfe us to extend the operation

of 't to the cfosure f- of I in AÌ4G j-n such a way that

the analytic properties of F may be proved.

fn part 3 we define the class of measures U to be investigated

and establish the necessary facts about C (U), the set of

eonstants in f-. General-isation of resul-ts of Moran in flCSlvl2l

enabl-e us then to establisfr our results about infinite

a' convolutions.

I
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PART TT{O : THE CO}IVOLUTION AI,Gtr]BFA M(G) AND ITS III.IAL B(T)

2.I ],CA GROUPS

2.I.T LCA GROUPS AIID THE]R DUALS

2.I.2 STRUCTIJRE THEOREMS

2.2 BANACH ALGEBRAS

2.2.r

2.2.2

2.2.3

DEFIN]TION, EXAMPLES

GELFAND REPRESENTATION

SPECTRUM AND THE CAUCHY FORMUI,A

2.3.r

2.3.2

2.3.3

2.J },IEASURE ALGEBRAS

MF-ASIIRES

THE ALGEBRA M(G)

CHOQUETIS THEOREM

2.1+ FOUR]ER TRANSFORMS

B(f ), THE TRANSFORIIS oF ì4(c)

TRÁNSFORMS ON SUBGROI,PS AND QUOTTENTS

2.r.r
2.5.2

2.5.3

COMPLEX HOMOMORPHTSMS AS GENXRA],]ZED CHARACTERS

CALCULUS OF GENERALTZED CHARACTERS

CONVERGENCE OF GENERALIZED CHARACTERS

z.l+.r

2.)+.2

2.' M(c AS A SPACE OF GENERAI,IZED CHARACTERS

A Note on References

r have not given explicit references for every item in this

chapter; it is all- stand.ard. material _and 
any item vil-l be

found in RUDIN [RCA:1,[FAG], KATZNELSON [IHA], B;ROI'IN and- lvfoRAN [BMA],

GPJ\IIAM ancl l4cGE- iIEE [ECHA], or GELFA]TD, RAIKOV and. SHfLOV [CNR].
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2.I LCA GEOUPS

2.I.A LC/\ GRO-UPS AND THETR DUALS

2.l.I.I LC-À groups

A XocaLLy cornpaet abeLian g?oup G (i,cA group) is an abeljan

group vhich is also a Iocal1y compact Hausd.orff space such that

(*;y)*x+y and x+-x

are continuous.

( orenussroN QN ¡orqrìqtr

I foì-J-ov the usual convention of referri-ng to a complicated.

object by a sirnpl-" i"or", ." G, in keeping vith the remarks of

RUDXN I RCA, 18] which end

ttit is a safe bet that very fev mathematicians think of the rea.l

fiel-d as an ordered. quadruple. " )

We are interested- in these groups: "

?,, the integu"= lrrrdu" c.dd.ition;

\ = Z/UZ, integers und.er ad.d.ition modu-l-o k;

R, the real- numbers under ad.d.ition i -
g = R/2, the eircle group of complex numbers of norm 1;

(n and Z have the usuaf topology, Zo and. T the usual

induced quotient topology. )

A , the group of p-adic integers; and-
P-

Z(p-), the group of al-l- p-roots of unity.

The last trn'o groups and. their topology are ilescribed. in 2.I.I.3
' belorr.

2.L-l- .2 Character group

A ehanacter X of group G is a group homomorphisn to T

\_
X: G>T
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i.e. X(grgz ) = x(et )x(e, ) grgz - G.

The set of al-l continucus characters under the operation deflnerL

by

Xt xz (e) = xr(e) xz(e)

is a topological group cafled the duaL grottp of G, vritten f

I}ae Pontz,yagin duo.Lity theoz'¿m shows that the natural topology

on I is derived, from that on G in such a hray that the d.ual

of I defined in the same way is G. In view of this result

ít is standard. to vrite X(e) more neutrally as (e,X), and

with this notation tfru topofogies of G ar.ril I are based.

respectiveJ-y on the sets of translates of

N(K,r)={t.f'l(s,y) -f , c€K}
and.

M(C,r) = {s .- cl(s,y) . u¡, y € c}

vhere

U = {ze c[ lr-zl . "]r

and. K and. C

Gandf

2.I.I.3 
^o 

and

range over compact subsets of

and. r>0

z(p-)

Each of T and. Z is the d.ual- of the other, while R is its

ovn dual as is each of the discrete groups \-. (Here we

make the standard id.entifications, for example,of z e' Z and

the continuous character of T gíven by

t Þ exp ZrizL.)
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and. z(p*) are d.efined asFor each prime p¡ the groups A

fol-fows:

p

æ

p
A is the set of all sequences (")

n n=0

x . {0,1,2,...,p-1} = rpn

under ad.d-ition defined, ind.uctively thus:

let

put

Write

where

Then assuming

(xo),(v") = an

x ttm0

, yro +o

ps = min(m0 rng')

and. suppose

but *r, = Q

.but yn = Q

and" z -- O
n

n(mo

n(fro

for n<po

+t
p0

.p

= 0 or 1.

x *vo =zp0 p00

z eI, tPoPPo

^no''no+1""'zk
and. ano ,too *r ,... rtk have been

d,efined. we write

+Xk*r + Yt*r t* =z +k+l t.Dk+1

with z,R+t
€J and t = 0 or 1.k+1

This defines (rn) by ind.uction on n as the surn of (xr, ) and

(V" ). Tlhe zero for this operation is the al-l- zero sequence and.

^- 
is easily seen to be an abefian group under it, and. ¿ compact

'p

group under the topology induced. by the metric

d((x,,),(v,,)) = 2-n'

l¡Ìrere m is the l-east integer with *- I X-.

The dual group of A turns out to be the subgroup of T of

p-pol¡er roots of unity
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n

z(p-)={t=rlto=l for some n€ Zj

(under the subgroup topoloCy).

(l}t'to asídes. (r) uultiplication of p-adic integers, or numbers,

is readify d.efined. but ve d.o noi use it . (Z) ttrese oefinitions

are easil-y generalised to the a-adic integers 
^ 

as in

HE!¡rTr and ROSS IAHA 1, ]-o8ff , \Oe] wj-ih dual-

Z, Te

and. most of vhat ve prove about Âo eou1d. be carrj-ed over vith

little change. But,there is no gain in our main result, so ve

esehew pointless generality. )

2.1.1. )+ fnf inite prod.ucts of discrete srouDs

z(^-) = {exp 2ri(;;fu-) l.t . z+j

%y, for anY ok ¡ 0,

discrete, beiirg finite.

many such groups, 'where

ak - Z, is of course both compact and.

The topological product of countably

trL may vary with k

æ-

n4k
k=1

however is a compact abel-ian group (under coordÍnate-wise

ad.dition) vhose dual- is :bhe ueak produci; f; n\n, that is, the
- k=l

subgroup of efements vith only finitely many nonzero components,

under Lhe discrete topol.ogy, (cf BUDfN [nRC, 371 ).

2.1-.1,., The Bctrr compactificatíon

Any LCA group G can be embed.de.d as a dense subgroup of a

compact abel-ian group G thus: 1et f be the dual of G'

fd- be f with the discrete topology, G the duaf of fd..

Themap ß: G+õ d.efined.b

(g,y) (y,ß(e)) I € G, Y.,.= r
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rr.

is a. con-r,inuous isomorphism of G onto a d.ense subgroup ß(G)

of G (bu*, ßC is not a 1ocal]y conpact subset of õ). G being

the group of continuous characters on l, d is the group of aLL

characters. (cf. RUDIN IFAG, 31] ).

STRUCTURE THEOREMS

2.L.2.I The principal structure theorem

Any LCA group G has an open subgroup G1 vhich is the d'irect

sum of a compact group H and, a Eucfidean space Rt ' n > O.

(nuorn.IFAG, \orr] ).'
This theorem viff subsequently be used to reiluce our'problem to

the compact case. itt connection with this reduction l¡e shaff

need these concepts:

tlne order of an el-ement g is the feast positive integer n

so that ng = O¡ or infinity; a group is torsion if every

elenent has finite order; a group is diuisíbLe if for every

g€G and n10,n.4, thereisatfeastone h s.t. nh=g-

2.A.2.2 Infinite d.iscrete tor saon grouDs

Any infinite discrete torsion group has a subgroup isonorphic to
,@.Z(p ), or one isomorphic to a weak product II I4r

k=1

2.I.2.3 titeglet

Let P be the set of all primes. For al.l- p e P, let oo be

an arbitrary cardinal, possibly 0, l-et I, be an arbitrary

índex class, possibly empty, and- l-et Ti be an arbitrary positive

integer for each i = In . Let n be a card.inal- that is O or 2'n

'' for an infinite cardinaf m. For al-l- p € P ]-et bn be a

cardina.L. not exceeding n such that Oo is finite or has the

form 2'P for an infÍnite card.-Lnal .o ( ¡. Every compact

Abelian group is algebraically isomorphic with a group

iI tt'o
p e-J', p

iI
i€t p

z(p" ) l * ilx z(p- )o 
n'

p €I'
LI]E}/TTT & ROSS,

AHA 1, 4l-)+ i

X , Q^-'
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2.2 B,llIACr'i ALGEBRAS

2.2.I DEFINiTION }IY,AIVFLES

2.2.I.I Banach algebras

A Banaeh space X 1s compl-ex normed. vector space, complete in

the norm metric. (¡. norm is a map ll .ll :X * [ O,-) s.t.

llx+yll <llxll +llyll ,llcxll = lalttxtt , llxll =o<+x= o forany

xry - X and g € C.)

A Banach algebra A is a Banach space in which a multiplication

is defined making it'al-so an algebra and so that

Itxvll < llxll .llyll xrYe X.

(ttote: lre shal-l- assume A is commutative (*y = y*) anC.

unital (3e:ex = xe = x) since this is so for all exarnpfes of

interest to us. )

2.2.I.2 E<ampl_es

The simplest'exampl-e is -C und.er 1.1. More interesting is

C(X), the algebra of aff continuous complex-valued fu¡ctions

on a compact Hausd.orff space X uncter pointvise acldition ancl

mul-tiplication and the suP nonn

llfll supæ lr(*) I

xeX

The exarnples we are concerned vith require convofution as

muJ-tiplication and. wil-l be given belov.

2.2.I.J - Quotient al-gebras

z'For any id-eal I in a Banach algebra A, a quotient algebra

A/I is defined by the naturar rnultipJ-ication

(x+I)(y+r) =xy+I
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and the quotient norm

llx+Ill
f'fr

= j-nf llx+yll n
veI

2.2.2 GELFAND

2. 2.2.1 Maximal ideal s e

Ìfe d.enote by A(A) the set of eonplex homomorphisms cf a Banach

algebra A, i . e . . the ¡rul-tiplicative f inear fúnctionals from A

to C. In vÍerr of the following Gelfand. theory, it is called

t}ne maqimal ideaL spàee of A.

(f ) for any maximal id.eat I of A, the canonical'map

h:A + A/r is-in A(A), for A/r is C lcettand-Mazur theorem].

(Z) for any fr . A(A), the kernel of h is a maximaf idea1.

(3) xeA hasamultiplicative j-nverse eh(x) =O

for no n . A(A);

]qf = x+y has â solution yeh(x) = 1

. for no tr e A(A)..

(\) any tr . A(A) i.s bounded vith norm 1, hence continuous.

(¡) The GeLfand tyansfotm is the map x + î from A to A(A)

given by

î(rr¡ = ¡1*¡ ¡ . Â(A).

Under the veak topology d.etermined. by the set of aff Î,

A(A) is a 1ocaI1y compact llausd.orff space, in fact a

subspace of C0(A(A))' the bounded. continuous functions

from A(A) to C vanishing at co.

/ (6) fn fact the Gelfand transform is a homomorphism mapping A

to a subalgebra of Co(A(A)), for

(tfr)(t) = h(xv) = r'(x)r,(v) = î(ir).i(ir)

for all- x,Y e'-4, n = A(A)

and so on. Notice that llÎll- < llxll since llhll s 1.

ON



1B

2.2.3 THE SPECTRUM Ái\].D .IHE CAUC]TY I.ORMULA

2.2.3.1 Spec tr urn

For an efemen" x e A, i.lne spectz'ron of x! o(x)' is tire set of

l,eC forr,'hich x-À (i.". x-Àe) isnolinvertible.

TLte spectraL radius fonnuLa is contained. in the theorem of

Gelfand. that

P(x) sup
Àeo( x)

lll = lim ll/llt/"
tr -+æ

forany xeA.

rn fact , o(x) = {Î(rr)l¡ = A(A)} and so ve also have p(x) = llîll-.

2.2.3.2 Cauchy forùula

ff A is a semisirnpLe Banach algebra, (1.u. ifru intersection of

al-f maximal ideals is zero), and F is a function anal-ytic in a

reþion U of C containing o(x) for some x - A, ancl if Y

is any cfosed. reetifiable curve in U enclosing o(x) with

index 1 w.r.t. î(h) for all- tr = A(A) ancl. O for any point

outside U, then

z-x
Y

is a wel-f-d.efined- element in A not depending on Y such that

F(Î)(h) = r(Î(h)) for each Ìr e Â(A).

2.2.3.3 Wien er-Lewv theorem

For the algebra ¡(1. ) of functions on T with absoJ-utely

eonvergent Fourier series

(i.". r(t) s.t. r(t) = fî(¡)"ti'

F(x) = #l p(z) 
az

vith I lî(i )1. - an¿ ît¡ I = |.)'r
as discussed in 2.)+ be:-ow)

the preced.ing result special-izes to the

-ijte r(t )¿t



19.

WTEI\TER-LEVY TIIEOREM

If F is a function anafytie on an open set ccntaining the

range of f' for f . A(T), then

e(t) = P(r(t))

is a].so in A(T).

fhat is, analytic functj-ons operate in A(T).

I
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2.3 MNASURE ALGEBRAS

2.3.I I/ßASURES

2.3.1.1 Definiticns

(We only d.iscuss measuïes on LCA groups, but the concepts in this

section apply to any J-oca11y compact Hausdorff space.)

Ihe BoreL sets I of G are those in the smal-l-est fanity of

subsets of G containing the closed subsets, and cl-osed urtd,er

eomplementation and. countabfe union.

A meastu,e on G is à (set) firnction

U:ß+C

from the Borel sets to C l¡hich is

(") countabLy additiue, i.e.

U(n) = 
| 

utn; ) tor any countable partition {n" } of E

for Eeß;

(¡) reguLot, that is

lul(n) = sup lul(rcl = influlfvl

(")

K

where K ranges over compact subsets of E,

and. V ranges over open supersets of E

and lul(el = sup I lu(n" ) I

(tne sup being t"f.""n over a1l Borel partitions of E) ís

t}:e totaL uarLation of U vhich :'-s al-so a countably additive

set function on 8; and

fínite, that is

llull =lul(x)'-.
M(G) is the set of aff measures on G. I,Ie assume the standard

theory of Lebesgue integration with resp.gct to measures. tt(U)
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is the space of p-in-begrabìe funci;ions, etc. Occasionaliy ve

refer to rrpositive measurest!: these are not necessarily in M(G)

in having range [ 0r-] .

2.3.I.2 Support , e-bc .

For any E e ß, ,the restrietion of U to E, !n, is d-efined-

by

uE(B)=u(B nE) foreach BeB.

Iff ìr = Uu, Þ is eoncentrated on E. The suppont of U,

supp(U),, is the j-nter.section of al-l- cl-osed B e ß on vhich U is

concentratecl .

fvo neasures are rrutualLy singuLan, Ur a Uz, iff they are

concentrated. on disjoint sets. Ur ís absoLutelt, eontì,nuous vitln

rebpect to a positive measure 1gz, Ur << Uz¡ iff

uz(n) = o + Ur(E) =,0 for E e ß. .A measure y is discrete

iff supp U is coultabl-e , continuous ifî every countabl-e E e B

has U(E) = O.

2.3.I.3 Deeompositions

Every U e M(G) has a unique Joz,dnn deeonrposítion

Þ=Èr-Uz+ipg-iU,*

vith

and

Every

U, >O (i.e. Ui(E)>0, E=B), 4.¡,t(G), i=1,2,3,1+

1]l 1 Uz, U¡ r Uq.

U - M(G) has a unique decomposition

!=!¿*þ"

vith Ud discrete and. Uc continuous.

Tr'very u e M(G) has a unique Lebesgue decomposition,¡il.h respeet

to any positive measure m

u=4 *I"
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\^rith Ua (( m and. 4 I m.

2.3.1.t+ É

'Ihere is an invo.lution on M(G) U -+ ù given by ù(U) = il-ET

for each Borel- E. llhen ü = û, U is calfed Hermitian, and-

the Fourier-StieJ-tjes (not Gelfand) trarrsform is real-valued..

2.3.L.5 G is a Banach ce

That M(G) is a Banach space fofl-ovs from the Ríesz Representation

Theorem (nnr):

for any bounded l-inear functional (gi,I') r\ on Co(G) there is

aunique U-M(G) à.t.

r = co(G)

with sup lnrl = llull

tlfll<r

Thus M(G) is the dual of Co(G). This theorem is the converse

of the sinple observation that

f"tuuAf=

f-> fdu
G

i.s a BLF for anY U . M(G).

Another inportant conyeïse is the Radon-Nikodym Theoz'em:

correspond"ing to Ua in the Lebesgue decornposition of U v.r.t

m is 1' = ¡- 
I (n) s.t.

u"(E) = 
|.)E

fdu EeB

and llu"ll = lrlaln = llfll r
G

r" Tnis is the converse of the observation that for f € LI (m),

u(n) =

d.efines a measure u (( m.

E

fdm
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D?C TI]E ALCEBRA I{(G)

2.3 .2.L Convol-ution

The ad.dition and scafar muf+.ipl.ication of measures entail.ed by

the RRT are the obvious ones:

(u+À)(u) = u(E) + À(E), ("u)(E) = c.u(E)

with the norm

" 
u" = lultcl

as above. To make M(C) a Banach aÌgebra we need a suitable

ttmultiplicationtt of measures and ve introduce eontsoLution for

this, vl.a produet màasunes: define

u x À (nx¡') = u(E).À(F)

for each ttrectanglett E x F ErF Borel-.

There j-s a unique regufar extension of this set function to a measure on

G x G we caff the product U x À. Then t]ne eonuoLution of U

and. À, U x l, is d.efined as the unique measure guaranteed. by

the RRT s.t.

J 
r uu.^ = JJ 

tft-t)¿u(t)¿À(t)

for f e Co(c).

This j-s equivalent to

uxÀ(n) = u (E-t )a¡. ( t )

1'and. pxÀ(n) = U x À({(x,y) = G'lx-y e E})

Convolrrtion is corrunutative ancl associative, the unit nass at

zero) ð(O), is a unit and. thus M(G) is a Banach algebra.
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2l+

2.3.2.2 Md(G) etc.

The d.iscrete measures in I{(G), Md(G), forni a subalgetrra of

I{(G) while the continuous form an ideal-. The measures absolutety

continuous vith respect to Lebesgue measure form an id.eal isomorphic

to f,r (C). An L-subaLgebea of li(C) is a subalgebr:a vhich is cfosed

(r.r.r.t. the total variation norm) and contains U .whenever it contains

v and u << v, ìl € M(c) .

CHOQUETIS THEOREM

This is a very general- resul-t we shall- appeal to at a crucial

poini in the argument.

2.3.3.1 Representii.g t.u.su"*s

If X is a nonempty convex compact subset of a locaIIy convex

topological vector space E, and U is a probabiÌity measure on X

then x eX i-sz,epresentedby U if

f(x) = [. t uU for every continuous finear

fu¡rctionaf f on E. :.

2.3.3.2 fhe theorem of Choquet

If X is a metrizable compact convex subset of a l-ocally ccnvex

space E and. X € Xr then there is a probabili.ty measure U

on X which represents x and is concentrated on the extreme

points of X.
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2.1+ FOI]RTER TRANSFOTìMS

2.1+.T B(f ) . îHE FOURIER TRANSFOR}'IS OF M( G)

2.\.IJ Haar measure

On an¡' LCA group G there is a ncntrivial translatíon-ínuariartt

positive measure m, that is s.t.

m(E+x) = *¡

for each x e G and. Borel E, E*x = {a+xla. E}. This measure,

call-ed the Haar measure, is unique up to a positive constant

multiplier. The standard. normal-isation is m(C) = 1, for compact

G, n({x}) = t, x e'G for discrete G (except when G is finite).
(

l,Ie use I f (x)Ax to mean integration Ì.¡.r.t. Haar measuÍe.
)c

2.)+.I.2 L
For each y - f there i" u. ,ronrero complex homomorphisrn of

M(G) d.efined- by

" u. * û(v)

fot-",r)au(x)'

The fu¡ction û defined. thus on f is i-lne Fouriez'-StieLties

transform of U.

The set {ûlU - U(C)} is cafled B(I'). Absolutel-y contiru-ous

U (w.r.t. Haar measuïe) correspond to{ . lt(G), and the set

of û (i.", î) for these is calfed A(f). Tlte characters f

exhaust the complex homomorphisrns of lt(C), but not of ¡¿(C);

î is also the Gelfand. transform of Y, but the Gelfand. transform

of U in general extend.s the Fourier-Stj-eltjes transform.

2.\ .I.3 E'berf e j-nr s criterion

This is a test for membership of B(f):4 - B(f ) and ll 0ll < A

ç> <þ j-s continuous and. for every trigonometric polynomial f

on G of the form
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f (x) = I ", 
(*,y, ),

i =1

i i ci ô(r, )l < allill-.,, 
=,

'Ihe Bochner theorem LFAG, f9] is another such criterion, but

2.14

we sha1l not use it.

.2 TRANSFORMS O}I SUBGROUPS AND OUOTTE}IT GROUPS

We need to be abfe to t'fiftt' transforms fr:om subgroups or

quotient groups

2.1+.2.L The annihilator

ff H is a cfosed. sgbgroup of LCA G, the annihilator of H,

IH', isthesetof y€f s.t. (rrrY)=1 forall heH.

Trivially, Ht is tire dual group of G/H, while T/Hr is the

dual group of H; H is the annihilator of Hl and the

continuous characters on H are precisely the restrictions of

those on c. (c.f. RUDIN IFAG, 351 ).

2.\ .2.2 Two theorems

(r) u = M(G) is concentrated- on H, a closed. subgroup of G,

+ û is constant on cosets of Hf.

(Z) The functions in B(Hr) are precisely the restrictions

to Hr of the functions in B(l). (c.f. RUDIN IFAG, 531 ).

(ttre tatter resuft is proved using the canonical homomorphism

Q: c -> c/H

to ind.uce a homomorphism

,T : M(G) * tvl(c/u) vaa

f-> r(ç(x) )¿u(")
G

Í'or f eCo(c/u) and.theRRT.)
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2.r._-_r-FE_MA.Lr_gqL*Lols!_q,l)4çE_*ulq) AS A SPACE OF GENEEALIZED CHARACTERS

2.5.r COMPI,EX HOI,{OMOFPHISMS AS GT]NERÀLIZED CILARATTEF.S

2.5 .1.1 Genere.lizecl characters

For some Banach algebras, A, the set of complex homomorphisms'

that is the space of maximal- ideal-s, is simply id.entified..

For example, A(Ll(G)) = f. For M(G), however, the maximal

id.eal- space is considerably more compl-icated. ttVery curious"

homomorphisms can be exhibited, (c.f . HEWfTT and KAKUTAI\I [ryel+, p )+B9i );

f is onl.y a small- pàrt or A(M(c)).

Nevertheless, analytic structure in A(M(G)) ls shornm to exist

through its repre""rra"aron as a space of generalized. chayactez's;

d.oing so, trre shall- find- that the closure of f in 
^ 

includes

homomorphisms sufficient for our purposes.

fne (slight]-y rnoclified.) theorem of SREIDER is that each complex

homomorphism of an L-subalgebra N of M(G), corresponds to

a generalized. character of N, that is an element

X= (Xu) = II
' u4{

r,-( u )

such that

GC1

GC2

cc3

u << v =Xu = Xu

xu*u("+v) = Xu(x) .xu(v)

sup{llxuil-lueN}>o

(u a.e.)

(u"v a. e

Ea.ch such generalized character produces a complex homomorphism

onNby

u*fXuuu=x(.s)=û(x)

and- e.¿ery homomorphism arises fike this.
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The Gelfand. topotogj¡ oiÌ 
^(N) 

eoincid,es vi'Uh tire procluc-'u

topology d-erived. from the o(f-(U), lt (u)) topol-ogy on each

factor.

2.5.2 CALCULUS OF GENERALIZND CHANACTERS

2.r.2.1 Operations in A(N)

A nurnber of usefu-l- operations can be d.efined. in 
^(N) 

in

virtue of the Sreid.er representation:

(n) for X,E. ¡(tu), X.E is defined- by

(x.E)u = Xu.Eu U€N.

(s)

(c)

(r) lxl,

for X . A(N),-Þ e N we d.efi-ne X.u as the elenent of

N absolutel-y continuous with respect to U whose Radon-

Nikodym derivative is XU.

the conjugate X of X is given by

ueN.(x)u = (Ç)

the absolute value of X, by

lxlu= lxul ueN'

(n) Xo, the polar part of X, by

xi(x) =' Xu(x)/ lxu(*)l ir xu(x) I o

=Q otherwise xeG.

(f') Call-ing X positive if XU = O U € Nr ve define X"

z e C, dle(z) > O by

for

(x')u=(xu)" ueN.

is seLf-ad;ioint, i.ê. U e N =û = N(C) Finat].y, if N

ve define X by ù X( (u X

iu(x) = \G-I

1.e

lieNrxeG.
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DO

(The consjstency con,1itj.ons GC:1"-3 are readil¡r .,'erified- for afl

these obj ec+"s . ) Obviousl-y,

x.l = lxl', x = lxl .xo, lxo l' = lxo I ,

and Xi is syrnmetric for any X, that is fixed und-er

2.5.=.t The closure of f on A(N)

Naturally f . A(M(G)); we are particuÌarJ-y interested j-n f-

the cl-osure of f in. ¡(u(C)) because the property-of a

contt)nuot,rs operatin! functicn F that

e(û(v) ) = î(v) for Yef

carries over in view of the continuity of û

XeI- :

r(û(x) ) = î(x).

Aetuall-y in the present vork we are onl:¡ interested in very

simple X = f-, narnely those for which XU is a constant

function c for the U ve investigate. We =fr"ff need to

determine

C(u) = {c . CluX - f- s.t. \ = g}

and. hel-ow we give a convergence criterion of Johnsonrs which

appl-íes for the U we consj-d.er.

,t 2.5.3.2 Johnson t s cri-terion [,roHusolv t)68, p. 29Lf

Suppose that U is a measure on G given as an infiníte

convolution of measìlres with finite suppori (ttris is the kind of

CON\TERGENCE OF GENERALTZED CHARACTERS

and- 0 to any



measure ve are concerned with belov) and l-et S be the

necessarily closed) countable sub¿5roup generateC by the

of those supports.

30.

(not

union

Then:

and. Y"cl

if there is a net Xr in G^ such that

(")*l foraff s€S, then aeC(u).

û(xo) * "
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PART-j : FUNCT]ONS THAT OPT;RATE ON CERTAIN BMNOULLI CONVOLUT]ONS

3.1 MEASI.IRES DISCUSSÐ BEI,OI^I

3.1.1

3.a.2

THE CLASSES BT, BAp , BrT-, BrlT*, Bzl'u

CONUERGENCE OF MEASURES DISCUSSED

3.2 OUTLTNE OF THE ARGUMENT

3.3 C( u) FOR THE MEASURES DTSCUSSED

3. ¡+ APPLYING IS THEOREM

3.' G=T

3.6 c=q

3.T Ç= ; 4
j =1

3.8 MAI}I RESULT
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a 1 TI]E }.,IEASURES DTSCUSSED BXLO\^I

3.1.1- THE CLASSES BT, BA BlIæ, BrTl'k , BzTr .
p

3 .1.1.1 Nature of the measures

AppJ-ying the structure theolems of 2.I.2 for LCA groups l¡il-l enabl-e

us to d.irect our attention mainly at three kinds of group:'

T, Ao and II h,t e./'.
j =r

For the third. cfass we shalf have to treat specially the

case 'vrhere rt < M for afl j. Otherwise, ve obtain
J

rå"=rrt"" forcing analyticity on any operating function from

BernouLli conoLutions, IJnat is, measures of the form

æ

u= * %(ô(q) + ô(-ck))

for sequences (+ ) ç G satisfying suitable conditions

(stated. bel-ow). In the infinite product .bounded 
case'

we introdrlce more compJ-icateil measures

k= I

u- u,

vith

vhere f. = (0rOr...rfr0rOr...)

as its only nonzero component. {

æ
g

¡=l

4 = a. ô(o) + (r-a, )L%6(. f, ) * ]-d(-\ )l
has 1 in the r th

a
I

Ì is chosen d-ense

factor

in [-1,IJ.

3.L.I.2 Conditions on (ek )

The constraints imposed on (q. ) are as foffovs.

llhen G = T,

q. = (rrrr...tu )-t

vhere DL . Z, \k 2 2, and 
în 

t* = -.
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hrhen G = \,
nk

q.=P
vhere trt Zrny22,€

k=1

sup (order t* )

sup(no-rk_-r.) = - and n*
k

n for all k.k-l
co

When Ç = iI Çu, =FP tn
æ

tök (0,0,. ..ortr ,0.. .)

r,¡here t* is the onl-y nonzero coordinate and.

=Co
k

Iühen Ç = II \, ,k

nr

r=l
oÞk (0,...0rtk,O,...,o)

Ivleasures of the kind. ind-icated on T

those on q, B4; those on ; 7n*,
k=1

form the class BT;

s¡p nk = æ, BTIoo;

the class BrIrr ale those formed as in Bn- but with .j =k

for each j; and the cl-ass B2îI¡: those measures of the

form t(Ur ind.icated- in 3.1.1.1.

3. i.1.3 Conversence of the infinite convofutions

Criteria for con.¡ergence are provid,ed. by Pakshirajanrs

generalisation of Kolmogorovts three series theorem I l-g6ll

Defining Xk as a ranilom variable on

chances of taking the vafues gk and.

are the conr./ereience of
@

(t) [ r(olxu (or) É u),
k=l

G with equal

-Q: the requirements

lrhere N is an arbitrary but fj-xed compact

neighbourhood of 0.
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æ

(z) I
k=1

E l-og X(x" ) for any X e f

(s) i var log x(x* ) ror any X = f.
k-- I

Since for our jnfinite prod.uet groups the infinite

, convolutions of measures are merely infinite product measures'

we neecl onl-y to verify these conditions for BT' tsAp .

For U € BT, the series (1) has only finiteJ-y many nonzeïo

terms and obviogsly converges; alJ. terms of series (e) are

zero since our U are s)rumetric; l¡hile if X(x) = exp 2ricx

var log X(\) =. -rr'+'"' so that the criterion is Jur.' .1,

which our cond.ition obviousÌy ensures.

I,lhen G = \ , the first and- second. series eònverge as for

T, while var log X(X*) = O for k sufficiently J-arge,

since X(x) = exp 2niep-Lx and % * -' so that the third

series converges too.
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-1 .¿ OUTL]NE OF TIIE ARGU}IENT

Lhe basic idea (Moran'ts) is to invoke Chocluetts theorem.

Tb do so, it is necessary to show that extreme points j-n

the set of opera'bing functions OU on a given measure U

of the cfass discussed. must be functions of the form xt , t

a nonnegative integer. Choquetrs theorem then produces the

desired conclusioir. By using the machinery of generalized

characters lre aïe abl-e to show that an extreme point must
-t

be of the form x' , t € R' t > 0. But to fix t more

precisel-y r"¡e treat each kind of group separateÌy. This

is done in sections 3.r-3.7. In section 3.3 which follovs,

ve identj-fy C(U) for the measures of interes',. fhen in

section 3.\ we show how this knowleclge can be appJ-ied- to
t

Then ve turn tc¡ the
m

uln t* = oo.
t and II

j --1
\

k=r

give extreme points ol

four cases T, 4 , Tl 7,

K
u

asx

li.lt'
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2 3 C(u) FoR Ti{E }4EASURES, ÐTSCUSSED

3.3.1 LEIVMA

For ¡t e BT, BA
p

U . BzTL, c(u) S tru

B'rrÒr c(u) > [-]-,Ì1, vhile for

,11 where

ri .-k
mu = cos ç t-i-f .

OI,

Proof

We ad-apt the method of Brom and Moran [BMA, B3]. In each

case we can d.efine an auxiliary measure v on R

with the follovinþ properties

(r) v is not a point measure, in fact is continuous.

_l

- _L.(z)

(3)

(l+)

llvll

î(e) . c(Þ) for any 0 . (o,rr).

î10¡ = 1.

Now since 0 is positive-d.efinite, by tÍie formula 32.1+(v)

of Hewitt and Ross [affA ff p. 2rrf ,

lî(w)-î(")î(v) l' = tr-lì(x-1) ll'ztr-lì(v)lt'

so that r¡ere lî(v) I = f throughout (O,a-r)' ve would find

l0(")l = r ever¡rwhere and. v a point measure. So there

is a 0 e (6,L") with î10¡ = r < f and so by the continuity

of û, (r,lJ q C(u). rf we show rrru e c(p) then the

required- result will- foll-or,¡ from the closure of C(U)

u¡rder ord-inary muÌtipiication.
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Proof that C (U ) ç ['.f ,1 ] f or U eBA
p

(r)

(2)

(s)

n k-nk( j )
n L-"L( j )t-'[6 (p ) + ô(-p )l

In fact uJ is a posítive ¡neasure on

k( j )
v.=*t t=r(j -r) +r

as a measure on R

+nk(j ) -nk(j -r).p

so that 0. + Q
t

Consider the sequence 4
to

o. o "*<¡l = K-t-t

For each p" g A,

ap" ,t t = exp Ztti- 0, p"--tu( j )

= exp 2rri p" K;
t

= (exo Zri K-r
i

+1 as

so this is true for afl d e D.

æ

U= t(

k-- I
%to1o"k) + 6(-p"n)l

vhere ,

.* e. l, and. "ln(ru-trx:_t) = -

for k = f ,2r3,... choose k(J) so ihat

t*(¡ 
)

t*(¡)-, > j

and. d.efine

[-1,]-l with llv, ll = r.

obviously there is a subsequence of {v, } r'ith a o(u(n),C(n))

ii-.itr sây v, and rr¡e can assume without loss of generali-by

that v, +v. Note that v l ô(o).
t

Nov fet 0 . (OrLr)' and foi j=I,Zr3r... choose

I
0.

J
K
t

K.
J

eN

of characters on A correspondi-ng
p

I -"k( j -1 )p

r -nk(j -l)p

-nk(j -1)p )n"

j -+-



Nov

while

SO

Since

[-1, f]

(\)=

(e.
t

u

v.
J

nk -tk(i )pp

cos 2t 0. n"*-n*t"

3B

tL-tt( j )p

nk-nk( j -1 )p

t, on

0.
J

lî, to l-ût4 I I = 11 e, l.lr -
k(j -l)

I
k= 1

cos 2n 0.
J

K.
t

+o as j -)-

since the product certainly exceed.s the
-1

,k( j-r)ttt partiar produet of sin ki

\
which converges to l-.

k( j -1)
I cos 2r

k=1

-t

e.
J

-¡ 0, exp 2ni 0. x converges

to exp 2ni 0x, a,S j* *

So

+0 as j +-.

so i{x, I * î(o) 
"o 

bv Johnson'!s criterion f;tel ' c(u).

A simi]-ar -r,ïeatment of G = T is given by Bro"¡'n and. Moran

[BMA]. Sirnple versions coufd be given for Broo and. BzlT.- ," k'

though obvious direct arguments suffÍce anJnlay.

lî, to, ¡-Sqo) I <

= _;î:, lu*p 2ni 0, x-exp 2ni oxl + lî,, tOl-îtel I

I

l'
i

I

i

I
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3.h APPLYTNG CIÌOOUETIS THEOREM

What makes possible a fruitful appJ-ication cf Choque.t I s

theorem for the measures in ques-uion is this resuJ-t,

adapted from Moran IISCUZ p. 6).

3.l+.1 LEMMA

Let U be a hermitian probabil-ity rneasure on G and

suppose C(u) t I m..rlJ. If F is continuous on [-t,t]u'
and operates on U with p o û = î then there exists a

bounded holomorihic function ñ on the slit d.isc

US= {lrl . t}\(--,mp) such that

(o,r) = p and llñl < llvll

and. ñ operates on U r.¡ith

Proof

ñ
co

-^^FoP=trt.

-¡f r

Choose E . f-
nt

(by replacing

z e US, let

Then sup
z eUS

So

US

s t-nc e -p2
nt

so that

(E )m
by

.-2(E) =e.- andmake E >0-nr p nr

(E - .E - ) if need be). For' -ilr+ I -r¡r+ I '

c^(z) = ît#tocz,

integers.

(G",) is a normal family of hol,omorphic functions on

Let xbe

For

, {.exp(-p2 ') r¡ith p and q. positive

m>q

lc",(r) I
< llvll

c*(x) = î{e'",'"'-o

nl-q

m-q

= F(û(s:: ) )

nr-o

û(En' )= x

so that G

e f-. But

= F(x).
m

So lin G = F(x) for a1.l- x € (O,f ) of the form
tìl

(")

(")
nt-+æ

stated. Therefore by Vjtalirs theorem, Gn, convcr€les



uniforrnì-y cn compact subsets of LIS tc a bounded. hcrlcmorphic

G on US. ClearJ-y G coincides wÍth F otì (O,f ).

,

ho.

¿r.nd. y2 3

. zqLt' .(.U) -' )

For each such Y,

z+Foûld;("(v)) z * û({,"(v))and.

are bounded., hclomorphic on the light half plane coinciding

on the positive integers, so by Carfsonrs theorem they

coincid.e ".r""¡¿tt""".
Now let z'> O along the real axis. Then f, * gi where

(gr)i = I p a.e. and (EI)- mav take both the vafues
0O and. 1. Let u) = ( a

t ->o

t+o

I

Then
ñ o û(e(y)) = r-im e o û(Ei"(v))

= rim ûte'r"(r)) = ô(e(y) ).

Thus

tr

3.1+.2 PREPARATT CN FOR THE APPLTCATION OF CHOQ,UET I S THEOREI4

Let 0 = {ylûf Vl I o,tr}, B(0) be the restrictions of

the transforms B(f ) uniler the quotient space norm.

Let K be the set of alL functions F continuous on
u

( m..,0) u (O,f) which operate on U, und.er the topology
p

of uniform converÉ5ence on compact subsets of ( mU,O) u (o,t),

and llr o ûlB(o) < 1.

ñ operateson u and ñou=û)=(ellu.v.



3.1+.3

\r.

Ler¡una

OU j-s a cornpact, eonvex set .

ryeef
(") Convexity. If o1*cl2 = 1, ol > 0, oz ) 0, and- F¡

and- F2 operate on U then

(cx,1F1+o2F, ) (û(v) ) = ar¡'r (ûtvl )+*2F2tûtVI I

= or îr (y )+orîz (y )

' = (o1v1+o.2vz )^(y)

So that crrFl+ozF) also operates, and ll¡ o ûltB(0) < or*Gz = 1.

(t) Compactness. It is enough to show that any sequence

(F" ) of el-ements of *U has a convergent subsequence'

since the topology of OU is metrizable.

Each F
n

extends (uniquely) to a hoJ-omorphic F' on US

and. sup{ 14 (z ) [
e US¡ n = 1,2"...Ì < llvll so thatz

(ñ ) is a nornal- family and h,as a convergent subsequence.

Restricting to I m'rll we obtain a continuous F such

that Fr,, + F uniform'ìy on conpact sets. For each ñ \"1'e

r ^ ^ r * I,Ìrave V' s.t. F' o U = vo lg and llv'll < 1 n

Then for some subsequence vnr -> v in the weak topology and

Foû-ûlg whil-e llFoûltB(o¡<llvll <1so t-ou.

Next ve characterise the extreme points as functions of the

form C"t, C e 0, t - O. Most of the rest of the vork

after that concerns specifying possible values of t.

LEI'MA (l¡oran )

Let F be an extreme point of K.. vith F o fi = $
u

E . f- q > 0 and l-. is a nonzerg constant, then-u

is constant almost ever¡rwhere.

a



\2.

Coro}]-aTlL

F(x)=grJ .¡here CelX, t2O and- xol n,rrlJ'

Iro-9I

Let 8,, = ß, d. - (rog ß)-t and assumt 6v not constant
F

a.e. We show that F cannot be an exireme point by

exhibiting it as a nontrivial convex combination of tvo

functions in K
u

Specifically, let C e (O,i) be s.t.

both

Ar = {tlqr(t). c} and A2 = {tleu{t) > c}

have positive lul measure, oi ' Define

{ (z) = ort fo, Eu(t)d 
tos 'z av(t)

for i=I ,2, z e US.

These are clearly both defined and hol-omorphic on us. Nov

if F r.rere an "*t".t" 
point, llvll . 1. so o'1+o'2 = 1 and-

C[1H1 +gzflz=F,

the holomorphic extension of F to US guaranteed by-

Lenma 3.\.f . We conclud-e the proof by showing E operates

on U, í=I ,2. In fact

r,¡here

To shov this, fix Y - 0

v, (s) = o-t v(4,

: 
-1 ^^ L-L t.)

U

for Borel sets B

and. consider

0
H, ou v.

I

nB)

arHr (û(y.8"')) + crzuztû(v.d')) = ñtûlv.ã"'))

= î(y.8"') = srîr(y.6"') * crrîr(y.6"')

(The flrst equatity holds by the continuity of Il and ûI



\3.

since [^ . f-. )

Nor,¡ r,¡e may replace m by a cortplex z' ne(z) > 0 to

obtain two bound,er1 holomorphic functions

srur(û(r.d ll + o2H2(û(v.q" )) and orî,(y.E ) * ozûr(y.d )

which coj-ncid.e on the positive integers. So by Carlsonrs

theorem they coincide. So for ne(z) > O

Nov let

ð(c
z = Re(z) -> - and consid.er LHS. Comparing with

as above )',

lc-*o' (n' (û(y.E' ) )-î' (Y.d ) ) I

-*,1 ^
= c-* lJ teujt,d I oe u(Y) -Y)Eu(t' ¡t avr (t ) |

= rtlertt,'-' 
"' û<vr -rl (E''ál))' ¿vr(t)

which + O as * I - because vr is concentrated on Al

vhere Eu(t) < C. So the RHS of the equai;ion tend-s to zero

uniformly in y = Im(z) as x + æ. This can only happen

if l{ztû(v.{ )) = îr(v.E" ) for all z with ne(z) >-0,

for the folloving reason:

Let À be the measure (

q(t) = foe (Eu(t)/c).

6uu 
t ot u(Y) -.¡).vz ' and define

lz
+

R

Then O is v2-measurabfe and maps the set Az (on vhrjch

is concentrated.) into R+. Let p be the measure on

induced by 0 from À so

f o O(t)aÀ(t) =

If e c(n' ).for Then

f (t )dp(t ) ,



U+.

I,ruo '"' 
û<vl -r,1Evlt),'dvz(t) = I" 'up(t).

Since sì-rpp p is compa.et L(z) = f
)
.'t ap 1t ¡ is entir:e, and

since supp p g [Or-), L(r*) i" unbound.ed. only for sequences

with Re(z* ) -t -. 0n the other hand.

L(z) = c-*ozHztû(y.E'))-îr(r.( ) * o

as Re(z) + - from the above argument, so by Liouvil-fets

theorem L = 0.-

So u, (û(v.t ll =. Q rv.f I for ne(z) > O, i=Ir2.

Letting z -> O ' along the real axis we obtain

riz(û(v)) = î, (v) and. so H, (û(v) ) = $, (v) .

So l¡e have Eur= ß, 6ur= 9 say. fhen for any positive

integer n,

ñ(g") ='î(d)= o"î(e(o)) = co"

So by Carlsonrs theorem lre may substitute z for

(He(z) > o). Letting z = d-l 1og x we get

n

F(x)=iCg"l=c0'=cxt

where t=d-tto*O>O (since q>o). D

In the next 3 sections we investigate vhat values of t

are actualJ-y possible, the aim being to excl-ucle non-integers.

This turns out to be possible for U € BT, BÂo , B,"t*, Bztt*

but not BrTr.



l+5.

-ñ_L

3.5.L TIIEOREy

If U e BT and F is a con.binuous function irr [-1r1] r,¡hich

operates on þ, then

vith
n=O n=0

for x€[-1,1].

Proof
¡ rtIt is proved. bel-ow that l"l- can onÌy operate on U if

t e 2Z , so by Cho-quetrs theorem any even

continuous function on [-1,1] which operates on U has the

form

æ

F(x) = I

æ

n=l

I l¡"1'-¡lbx
n

æ

co

D=0

óoo

F(x)= I Or'*" I lbr,, l.-
n=O n= 0

Now if G ís a;n odd continuous fu¡ction on [-1'1-]

on It

x + xG(x)

is even and- so

operating

G(x) = f br,,*, I lor"*rl.-.2n +l
x ,

Final]y since t-.(p(x)+r(-x) ) and- t-.(r(x)-r(-x) ) are even ancl

odd. respectively, the theorem wifl foflow from the demonstration

that r(-x) operates on u if ¡'(x) d-oes:

,/' Let E . f- have EU = -t.

rhen F(îû(y)) = r(û(q.e(y))

= î(8."(v))

= (6r.v)^(.f) -y.I

so that F(-x) does indeed oPerate.



3.r.2 LEI,MA

If UCrBT

Proof

U has the form

n

\. Show that

u sing

%(ô(-d-I ) + ô(¿-'))

l+6.

l"lt onJ-y operates on U if I e 22.

æ
U= l(

n=l
n

> 1 + 76/8,

n

where dn = Pr.Pz .... .Pn

with D

Suppose 
I

a sequence of integers -> æ.

,t
x f 

' d.oes operate for some L + 2Z

90

I
j =r

î(') =
, -t,t
l cos 2nnd. 

I

so that

meZ

is the transform of some probability neasure V on T. We

show that no such v exists by showing its norm exceed.s all-

bound.s. There are p steps¡ the basic idea is to construct

suitable approxírnati-ng pol-ynomial-s Q., , of J-arge norm by

muJ-tiplying togeth.t potynomiafs of norm exceed.ing a constant

greater than one approximatíng to each convol-ution factor.

I{e argue as foffows: -

1. Let f (x) = l"os 2nxlt , and. fix t = urro so that

i lît;ll>1+Lr6/r6.
l¡ l<¡¡

2. Define U' so that u'n

3 Define P so that Po (d,,_r u)du,, (n) > 1 + 3ô/\ for n ) ns.

J"",u"-ro)Pn*r(u,,u)du,,*þn*, 
> (t + 6/Ð2

5 (ft" ,d,,-, (u+v))ap" (u) 'J". (u,,-, u)du,, (')ro ." n -+ oo .

for n2n6,



n+s
(*) = ll

J =¡'r

b. Define %,, Pr, (dr, 
-, 

t ) '
Tñ, s

= un*"'nun*, '

ûr = þt*. . .nÉr, and shcv ln (u.)¿r (,r) >(r+o/z)'
J r, r Dr s

for seZt s21 if n issufficientl-yJ-arge.

\7.

Q^ (t) loÌ+t as n+co.û, s

T . Shor¡
J*.,, 

(n)do,,n, (.r) = fn",, 
(u)a'r*r(,r), 

"nrnllQ,,,.lla(r) 
< co .

æ

8. show inf { IT I cos 2rmd..
Irlr j =n+s +1

Using J and 8, shov llvll >

for n suffic j-ent-ly large.

3.5.2.r , lît") I t r + r16/16
n 3{

¡ lî{;)l < oo

. iez

Since cos is even, î(-i) = î(¡),

|'n (u)¿v(u) > (r + ô/e)'
J t' s

t

9 -1

Let f(x) = lcos Zn*lt. f € A(T), since f is of bounded

variation and in i,ip(f) (cf. Zygrnund. LTS, 1 p 2\1l),

(r)

SO

I îtj)=î(o)=r (z)
iez

whereas explicit computations show that î(j ) < O for some values of J.

L.'ntj" lcos2rxlt* = r(' u'n':" lco"2nxl' dr. if i . zz
JT I I J-y,

fhus precisely when

such as -lt/21 - L.

- _ 2nf(t+r)= Vryffip¡ [rr, l3B, #l9a]

< o if r-j/z - i (-2k+1,-2k).
k=0

t Ê 2Z there are j for which î(¡ ) . o

So llfli n¡.1 = ¡ lî{i)l =1+ô>1.ä\ r/ j €Z
(3)

Sefect rìo and ¡ = dno so tha'c

¡îr;)l = r + 156/1.6.
li SN

Let An = t-Nd;t,rui't1¡ì gp{a"-l}

(l+)



Def ine Ui, cp{d-1} ¡v

u {r¿-t}Itn I î(r.*¡a', )

on

)+8.

lr2,. d (5)k
i€z

Then un
(r) lcos 2nkdlr lt

3.r.2.2 ll u^ll >t+TôlB and lu"l{4.)>r+7ôlB

lJe assr.me from now on that n is such that d. > 2N

Then

n

(6)

ll u" ll lu{s} |I
{ Ìdgeg p -ln

dn

I
k=1 j ez

ri î(r.+¡a" ) |

flîrrI
k

> i (¡îrr)l
k

+
jez
jfo

II
iez
j tÊo

î{r.*¡a" )l = 
f, I,

[ îçx+¡a" ) |

N

î{r.+¡a" ) l)

¡ît;)l . o/re.

t+l-16/:..6-6/16 r + TôlB

st_nce

And. similarJ-y

TI Ir j f o

lu^ l(1" ) ¡ît;) + î1¡+a, )I.l¡ 
l<N

+
I

I
l<N

lî(; ) I i
l<N

f J +d +)
l¡ l¡

n

r + fôl8

> 1 + r::6/16 6/t6=r+76/8

Thus

llu^ll > r + TôlB ana lu" l(ir" ) (r)



3.5"2 .3 P (d -u)d',! (',r) t l + ¡ô/l+n n-l n

P(x)du (x)>r+:6/l+

\g

(B )

(s)

and the trigonometric

n à ns s.t.

t
)

(In r^¡hat fol-l.ovs [x] denctes the integer palt of x'

{x} = x - t-xl.)

Sel-ect a trigonometric polynomial

P(x) = I "u exp 2tikx
Irl<rc

on T vith lllll-=1'and.

n0

This is possible because

polynomials are d.ense in

d d-r > 2N. l-etn n-l

llu ll > 1+ 3ô/)+'n0

Co(T). For each

I
Irl<x

P(x) = % exp 2nik
n

Then v¡e also have

for

x. (ro)

(rr )

(rz)

(r¡ )

þ",u"-rt)dt',,,(,,) 
> t+ 6/2

Ir",u"-, 
u)du,, (..r) - fr(,-.)au'o 

(,,)

I
l<x

_I
kd. kd

n

a* [r( d.
Nd.n-l

I ou-') - r(xa-r)l
lnno

I
L

d
n

lx
n-l

-1
fl9

l{ow the difference betr¿een the tr¿o argunents of f is

d
d

Ndn-l

n

n-l n

I
J-1

=kd d-
t[¿ ¿-' N - {a ¿-t trt} - a a-t_ u]

n n-l n n-l n n-l

=k( d - d-t ){a a-t. n}
n-I n n n-t

Since lxl < K (rixed) and {a} =.Lo,r), the difference can



50.

be made as small- as desired if n js nad.e large enough.

ITherefore þy thc uniform con+'inui'cy of f , so can the

difference tretveen the two integrals (13).

3.' .2.\ Pr, (dn_r r)p.,*, (d'u)apr,r*ur,*, (,r) > 0 + a/Ð2

Tlie integral in question is

.J-

f^

fJ"" ,u^-, (u+v))p,,*r (d,, (u+v))du^ (")du"*, (v)

dnu e Z for ¡1 . gp{ao-r}

Itft" (u,,-, (u+v))ä¡rn (u+v)1e,,*, (u,,t)au,,*, (rr)

n+l

l(v)r,,*, (d,rv)dp,,*, (v) - ô/g , I(-n) being the inner integral

r

J - I = lu"*, l(A"í, ) < o/g (a!,"¡*vutt* 4A*'),

slnce

and. P is 1- periodic for al-1 n
n

s]-nce
An+l

Using the fact that lr(v) -

ß.>.2.5 belor¡), we see for
"(d,,_, 

u)du,, (") I * o

n large enough

as n->ó

J>(1 +3ô/l+)
A

Pr,*, (dnt)durr*, (v) - o7a

> (l- + 3ô/)+)(r + ¡ôl8) - ô/B using 3.5.2.2 and 3.r.z.3

n+ I

3.r.2.5 (I(") - P (d _ u)¿u (u)) * on n-l n

To sho'¿ this, consider the difference

¡p- (d- , (u+v)) - F- (d- , u)l¿u- (.tr) 
In n-t n n-l n

as n-tæ

.,.'n 
(exp(2rikd,,-, [tuÏ (u+v))-"*p(2rikan-, [#] u))rdìr^ (u) 

IllL II rl



,I

= ,[,,rå,.1* lu*p(2nikd,, , hdiJv - 1l)¿lu" l(,,)

= ¡¡un" 
,ul=o 

l'" I lenÛ..,'-, h.5 ¡d.-." I

where v=i%'i,, l¡l=rv

since l"' o - rl s lo I

Since l¡ I = ft, each'term invoJ-ving j is l-ess than

2îKd,,-, t#]*u^-1,

¡

-, /= 2rKd n¿ '|
_ n-l n+1\

d
n

Ndn-l

dd,d.
= 2rK --I- - 2TKN n-l J n

-".' d- L"¡r¡r d I m¿n+l n+l ' njl

l.
I

aqd. each of these terms is arbitrarily small- for n sufficiently

large.

3.r.2.6 A (u)¿t _ (") > (r + ô/z)
D¡ S T, S

Define
n+s

n
j=n

and.

T
f,r 8

= U t(...*Un n+s

û)
n = url(u2x...*Ìr,, .

Jn"
(u )¿t (,, )

sance

Pj (dj _r u)

f 
,ft"d,,-, (u+v)¿u^ (-.r))e,,*r,, 

-, 
(t)dþ,,.,-r *...*Þ,,*, (v)

a (u)=
f r I

Then l--
,s trr S

d¡U. Z for j > n

As in 3.r.2.r, P (a _ ..)¿u (u)
n n-l n

so

P (d - (u+v)¿u (u) *
n n-l n
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Ir > (1 + ô/2) lÂ Q,,*r,. -r 
(v)du,,+r n...*¿It,,*, (t) - ô/B

J n+s

> (r + 6/2)(r + ô/e)'-t - ô/8

> (t + ô/2)-

by induction on

3.' .2.7

These are so because

for n sufficiently large.

Qr,, , aar,, . ; supll Qn, . ll o T)

s21

fL <æ

a (u+v)¿t¡ - (u)¿r (")
1, s n-l D, S

Furtherm<-rre

a (v)(
f ¡ s

û)n-l

llQ,,, , llr(r) =

slnce

ldr¡ - (u))¿t (")
n-l n, s

concentrates on gp{a"], }

-ìand O is d. ' - periodic. because-' -ñr s n-l

N d.ivides d.

fn",, 
(v)atn,, (r)

lduj = I for aff j since î is odd.).

t

independent of

is so bounded.

i
nì

aD¡ S

(^) is the sum of the absólute

values of the coefficients of Q.,, vhich for fixed s is

certainly smaffer than
, .s _ -s(2K+1 ) lmax auJ ( -,

keK

since each factor of A

n

Finally ll Qr,, , ll - < t

3.5.2.8 inf { i
s j =n15 *l

lcos 2nnd--t lt lel,, (m) / o] + t as n -' æ

To establish this it is enough to shov that for any given J,

/' if n is l-arge enough

I lcos
j =n+s +l

t
2trmd.

t
cos 2tt.2

oo

I
:J

-t

I

since the R.H.S. can be nade arbitrarj.ly--near I if J is big



enough.

To do so, consider the largest possibl.e vafue clf

< (s+l)KN- d.
n+s

u,-,ulñH] * u^-, -l#;] . . . . + dn+s 
-1

if e is ehosen smalfer than

53

is at feast

Q^ (m)r¡ s

as it may from 3.5.2.7,

by the above

m

So the first factor of ;r
j =n+s +1

cos 2nmd.
,

lcos zn(s+l)KN td,r*, 
do-*tr*, lt which is larger than lcos 2n2-' lt ,

no matter hov large - J, if n is large enough. And subsequent

factors ,are larger than correspond.ing factors of , Ï, l"o" zttz-i lt
J =J

since d.. > 2 for irll j . (We assume n large enough that afl
¡

argurnents are small-er than 2r.)

3.'.2.g Q,,,, (u)av(u) > (t + 6/2)' -1

For Q,,, (u)av(u)

n+s

= ,,1, 
a;, (m)("II" lcos 2nmd'--t lt (t-t))

for any smalf e, by 3. 5 .2.8

= 
L 

n;,,

= I n;"

t'lt i I

j =L
cos 2rnud.

J

2umð,-
J

n l's
(r) äl

j =l
n+s

(m) II 
I

j --1

-'l
= I q,. co" 2'nmd-r lt - 1

so for sufficiently large n,

fn,,, 
(u)av(u) = In",. 

(')ur,,*, (u) - r,

(supllQ,,, , llr(r))

> (t + 6/2)' - 1,

for any

frorÍr 3.r.2.6

s€Z¡.s>0

llvll >
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so tha-r, no such V exists.

This argumerrt is a revision and. expansion of that given in

Moran [tCSUe, p. 2]-l in r¿hich it appears that tine same

trigoriometric polynomial- is invoked for each n at

3.r.2.3 (fO). This seems d.ifficult to secure.



3.6 G=A

3.6.1 THEOREM

3.6.2 LE¡¿vlA

If U . BAn and. F is a continuous firnc'bion on [-1'1] vhich

operates on U, then

,r.

sup(e-e -)=*- n n-r

F(x) =

@

I ¡*j
=O

æ

I lo, l<øwith
j=o

for x e [-1,1].

Proof

The only change needed. to the proof 3.r.L is to replace the

lerma 3.5.2 vith thL corresponding result for An proved-

belov, lemma 3.6.2. I becomes z(p*) rather than Z but

that does not affect the argr::nent. :

If U.B^e, I

Proof

vhere ("" )

and. e )e
n-l

rt
xf ' operates on U only if t'e 22.

The argument is l-ike that for T but some detaifs are different.

U has the form

co

Þ = ol, ,.(ô(-pe") + ô(p""))

i-s a sequence of i-ntegers such that

for af]. n.
n

n

Suppose l"lt operates on u for some t # 22, so lhat

î1^p-t'¡ = lû('p-"¡ ¡'
æ

= II leos zrmrpej -ì¡ lt
j =r

forunp n' t z(P-)
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is the transform of some probability measure v on Ae . I'le

show that v does not exist by shoving its norm exceeds aLl

bounds, through nine steps:

1. Let f(x) = lcos 2nx[t and fix N = peno so that

3 Define P so that
n

¡ît;)l = r + rs6/1,6

as n+@ i

I
l<N

)

l¡

2. Define Þo so that llU,,ll > 1 + 7ô/B and.

lu"f(v")>r+76/8 nàn9;

Je"tn-q-ru)dun(',r) 
> 1+ 3ô/\,

for al-f sufficiently large n;

l+. Show
J"" 

{n-""' ru)P,,*, (!-"',r)du,,*u,,*, (u) > (t + ö/z)2,

for al-l sufficiently J-arge ni

u sing

i. ,fr"., (n-* (u+v))dtr,,,r ("1 - f"^,, 
(p-%v)du,,*, (v)) * o,

n+s
6. Define Q- - (x) = .I P, (n'-ei -rx),

Dt 3 
J =n

= U *U åÇ...|çU -
'n 'n+l 'n+sT

trr S

and show |'n (u)¿t (,r) > (r * ô/2)' ,
J Î,s r,s

s e .7. for al]- sufficientl-y large n;,

8

T show =lnllan,, "o,q. 
< æ ;

n-l '.

Show inf { ]I lcos 2nrnp-ê¡ -I\r lt , Qi,* (rr-M) I o]
('n, IÐ j =r

+1 aS n+æ j

and
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9. using J and. B show

llvll > rd
tr¡ s

(u)av(u) >(t+ô/2)'-l-

for all sufficiently large n

(Ttre sense of "sufficientÌy large' nrris made precise in

the detaiJ.ed- argument to fol-Iow. )

3.6.2.r I lî(i)l- > L + r16/16
l¡ l<N

f is stil-I the same fu¡rction as in 3.r.2.I in A(T),

change is requi,red. except to ensr:re N = ptto . Let

Vo = {jp"" lJ = -n,-N+l,...,N-l,N} -. Ao

3,6.2.2 lluoll >1+76/8 and lu"l{v")>r+Tô/B

Define Un

so no

on byohÀ'p

urr{zpe"} = î(r) fora11 zeZ.

Notice that

û" (*n-t) = j.*n 2tirup-Ùidun (u)

I .*p( zrimzpen-nt)u,, {"pu" }
z e.Z

ze.Z

I .*p(2rimzpe'-")î(")
ze.

''' A""rr . ptt > 2N

= f (mpe'-*') = lcos 2nnpen-lvllt

I lu" {zPe" 11

i lî(r)l =1*ô>1.+Tô/B

lur'l

zeZ
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whii-c

n

SO

3.6.2.3

u l(v ) ='n lî(¡)l t r + ri6/r6 > r + Tô/8I
l<Nl.¡

lu"l(vj) < 6/8

rn(r-%-ru)du,,(u) > 1+ 36/\

Choose a trigonometric polynomiaÏ on Ao

so that llPll =lco

À T

(ruis vay of writing P(x)

Now for a1I n such that

so that ve have

so that

a.ÀrT rr,pÀ) I r

P(x) = î
Èt

and.

T-p -J-
I

T=o

=Q if

I
ÀrT

a

a- exo 2ni
ÀrT

-À'Tpx

,f(tP
eoo -À

too.

and-

Je(rr)au,ro(,r) 
> 1+ 3ô/\*À,.r(rpeno -^) =

is usefu-l- in 3.6.2.8 bel-ow. )

e -e >^-e definen n-l n0

rr, (x) = 

^Ì, 
"^,- _:*n 

2tiTxp-À-ê"*è"-r {eoo

Je" 
tn-%-r u)dþ,, (,r) = *À,rû,, (-p-À-u" +eno 

)

= 

^1. 
"À,.f{.p"'.p-À-e"+e'o )

I )
À

TÀ

Je(,r)au'o 
(,')

J"" 
tr-%-r u)dþn (,r) > 1 + 3ô/lt

3.6.2.4 pr. {p-""-t *)Po*, (n-t"u)dþ,, *þr,n, (.l) > (t + t/z)2

l

I

The integral ín question is
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J=

we see

So J>

JJ"^ 
f n-t"-r (u+v) )P,,* r (p-t'(u+v) )au" (,r)du,,*, (v)

f 
,j""., (n-t'(u+v) )ur,,*, (v))r,. (p-"n-'u)ap" (u)

since for u = p%An, t . pentt An ,

Pr, (p-""-l (u+v) )

+0 aS n*-,

l¡e have

- ô/8

= p(peng *ên-t -"rp-"n-t (abe"+lpe"*r ; ¡

= p(ape'o +bpeno -%+Q'+r 
¡

= P(apelo ) since ên+l -e n
>^_eno .^and. P is p---perÍod.ic

= Pr, (p-""-t 
")

r(u)r,,(p-%-lu)du,,(") - ô/B, r(u) being the inner integralrVn

s]-nce

(r(rr)

n
rfv'l lu" I (vj ) 6/B

So uslng the fact proved- in 3.6.2.> below that

f""., 
(p-qv)du,,*, (v) )

r
J > (r + sô/l+).lu"% (p-""-tu)ap,, (u)

(r + ¡ô/l+)(r + 5ôl8) - ô/B

(t + 6/z)2.

3.6.2.5 ( r(,r) - Pr,*, (p-tt v)dþrr*, (v) )

To, see this, consider the d.ifference

+0 AS n->æ

I

I

l

l,

l'
I

i

I

I
I

I
t.

lJr"., (n-"'(u+v) )ur,,*, (v) - Jr,.., 
(p-"".r)¿u"*, (t) 

I



I exp ( 2rip-e^ p
erro -À+er, -ên + I (u+v) )

6o

the l-ast factor is

"À ra

Now since r . V' ancl so

I J^f.

- exp(2nip-e" rpetg 
*À+e" -ettI u) ]

= f^lr l"^,, l lu*p 2rirpen' -À-""*ru - 1lalu"*, (rr) 
|

< ll un.,,'of. l.^,, I I.pt'o -¡-e'*r uI

l"l ( Np"',

uniformJ.y arbitrarily sma11 for n large enough, and. the

assertion fo]-]-ows. -

3.6-2.6 an
(u)¿t

sn ..(u)>(r+o/z)'
Define

n+s
I

J =n

Trr s
= U *U l(...*U

'n 'n*l 'n+s

Then

a (..l)=
f,r s

a. (u)¿t (,r)
1, S D, S

P. (p-I -r.,t¡

= JtJ"^.- 1n-en+s-r (¿+v))uu,,*. (v)lQ^,.-, (u)d'r,,, s-r (u)

because for

a - (u+v) =n, s -r

(.r ) dT
Dr s

w e pen+s ¡ and u e pet+t -¡ O'p-p
n+s -l

e, (n-ei -r (¿+v)) 
_andt =n

P, (r-el -r (¡+v) ) = P¡ (p-u¡ -t rr) foreach.j as

in 3. 6 .z.l+

So
Jn, ,s

(
(n) t 

Jv" 
r(u)Q,,, 

s -r 
drn, 

s -r - 6/8

, (r * 36/)+)t(1 + ô/2)'-t - ô/Bl - ô/B > (r + ô/2)'

by induction on s: for n large enough, and s 2 2 integral.
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3.6.2.1 s;rnll Q", , lla(4) <co

As in 3.i.2.7 ,

lla ll
Dr S

I
n¡ I\r

ind.epend,ently of n

And. ve stil-l- have llQ,r, , ll-

e^,, (*p-o') . (nAì'tî]; 
".,^r- <co

< 1 since each factor in af,r 3

is so bounded.

3.6.2.8 lcos 2nmp-ej -Mlt, Qî,, (rp-*) I o] + t as n + oo

Examining the frequêncies of Q.,. , ve see that

ei, , (rn-M)lo o mp-M=Trpe'o -À1-to+T2p€'o -Àz-e"*l +. . .+r, p%o -4 -en+s

n-l
inf {. Ii_
n¡ IVr J =r

and. recalling our conditj-ons on

be satisfied- if (*,p"t) = 1 and

and. so

.ar^, this equation can only

p-"(-\-er,+j) = p-*-%o

1+e -e <M< +Â-ee
n+sn rìg

So the smallest possible prod.uct

least

rlq

has n-1 factors each at
n-l

II
j =r

lcos 2rpej -1 -en lt ro" j <

j=æ æ

Now if we comJaïe n lcos 2npel -r-en lt r¡ith II lco" zne-i lt
j =n-r i =J

lre see that ve may make the fi st factor of th former exceed-

.,,- thal., of the latter by making n sufficiently J-arge; thereafter

the corresponding factcrs of the first proaùct are larger than

those of the seconcl since p > 2 and. "j - ej ., 2 1, and of

course run ou aftel n of th m. So si¡ce our comparison

product exceed-s 1--E for any 'given e if J j.s macle large
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enough, it foLlor¿s that cur assertion is proved..

3.6.2.g ll vll > (r+ô/z )' - 1

If n is sufficientl-y l-arge,

llvll > A (u)av(u)
T¡ S

æ

= I tÇ. {.r,-"t){ II [cos 2nnpti -"¡t )]
(nl lif) j =r

n+s

= I tai. 
" 
(*n-"). il lcos 2nurp", -*lt .

(t¡t"D j=r

æ

I
j =ó+s +r

lcos 2rmrp"¡ -ntl' l

n+s

= I Laî.. (*n-*) tt lcos 2nnp9 -"lt ]
( 

"t, 
[Ð j =r

' ^^ ' -")los]-nce -qn,s \mp

ê, -Mso that p-r e. Z for

onlyif M=.n*, *Ä-eno

j>n+s andsoall

are 1 for thefactors after lcos 2rinpe"+' -Mll

terms with Q^ (orp-*) I o.
f,r s

' n+s

= , I ta;.. (rn-t). I lcos 2nmpej -Mlt.(r - e/supllaJlA(T))]
(nt, trÐ j =n

for n sufficiently large, by 3 .6.2.8

= I ta;.. (rp-") n lcos 2nrnptj -"lt I - 1
(¡qlvD j=n

> (r+ô/e)' - 1 by 3.6.2.6

from vhich we see that v does not exist.

ftris compfetes the proof of the 1emma. (ft i-s interesting to

observe .the complementary vay the I'early" and the "fatet' factors

7. in the infinite prod.ucts are removed in the tr^ro cases of T and

¡,.)p
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æ

3"7 Ç= IT Z
nj =t

After T and A_ , the <.rther grorrps r¡re need. to consicier
coP

are II Z In some ln€ys these ere rruch simpl-er (because
j =t 

nj

infinite convolutions on them reduce to infinite products),

but our results are a littl-e more corlpl-icated.. The crucial

question is whether ,the q are bouniled.

G_ ]I Z
nj =r

We first d"evelop the required information for a measure oll

3.7 .1 n.
I

unbounded.

a single factor.

3. T.f .1 Leruna

Let t=%ô(a)+%6(-a) ot,
'no 

t

t
uv b > 0, a# o

For a given t,

vhich v(j) < O,

depending on tk

Procf

if rk 'is large enough th.ere are j for

sothat ll þll tr+ô forsomeô>o not

k-1
v(j) = r/t I .*p 2nijsk-r lcos 2nsk

For a given i

s =O

and t) as k -+co

I
)

exp 2nixJ lcos enxlt

I

v(i) *

_ _ 2nf(t+r) .__
zt f (t+¡ /z)r(ïi/2)

r¡hich is negative if t-j/Z e u (-2r+l- ,2r).
r =0

since llrll = |lv(;)1, obviously
i

d.m (x) tnis function being

Rienann integrable

0 (c.f . 3.5.2.L)

ll ,ll >r+ô where

ô may be chosen as near as d,esired to lel.
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TYreorem
æ

Let Ç= n
j =l

Then if F
^nr, 

tj u.nbound.ed.,

continuous on [-l,I]

þeBn-.

operates on U,

xe[-f,f]F(x) = I x
æ

n=0
b

n

n

v=

with I l¡^1.-
n=O

Proof

This is a consequence of Lemma 3.7.1.1, the unboundedness of

n. and the usual arguments: since
,

v u
t

lû" l' + ll ,tl ql v, ll ,

æ

ÏT

j =r
n

ll "ll
t l.l'

3.7.2 G - 1I
j =r

is only l- if t e 2N, since for any other finite

will not operate on tj for sufficietrtly J-arge

and. the conclusionj. So l'lt opeiatesfòr.te2N

foll-ows as before. '
æ

z
k

æ

If Ç= lI Zn.j=t 
oo,

of groups II
j =r

Ttren if

ae[0.r]-1, t>0.

a is near enough to l- , v(1) < o, and-

ô > 0.

d
lJ
k

with n bound.ed then G is a product"
t

and- a finite mrmber of factor= Zn. .

J

on zx'

So we fook at groups of the first kind.

3.7.2,L Lemma

Let U = a 6(o) + (r-a)t% ô(1) +'a ô(-l)l

[û1"v

ll "ll 
)1+ô forsomefixed.

Proof
k-l

s =O

v(f ) = I ""p 2nlsr,-l la + (r-") cos 2nsk

nov at a = 1, v(1) = O.

-t



ffurther,

6r.
k-l

= t I exp2risk-t lu.+1l-a)cos2tsk-t lt . (r-"os2nk-l s )
s =C

and

(we only consider a near 1)

> O at a = l- (since the numerically largest"ðl{Ð
ða

terms have the smallest multipl-iers ).

So that for a < I but near to f, v(f) < O.

3.7.2.2

l,et Q =

Then if

Theorem

\, U - Bzfrr'

contirluous on [m ,fl operates on U iff

@

l
j =t
F

u

@

F(x) = I x . lmrrlìn
b x

n
ñ=o

ó
vith I I b <oo

n=O

) is dense in [-1,1] there are infinitely

n

Pr_oof

Since {an

many factors with a. rrear enough to '1-

rl
for the Lemma

3.7.2.1 to apply so tùat

existif teZl{.

¡l v, ll > r- + 6 and. v ean only

The usual arguments then apply, but now ve only have the -

concfusion for [rnrrlJ because only 'bhat interva]- is in

c(u), tûtv) : Y € fÌ- is the regular k-gon subset of

tbe unit d.isc determined. by {exp 2nisk-l ls=0,...,k-f }.



B u¡,rw RESULT

3.8.1 DEFrNrrroN

66

Z, so has ,,, = ,r-ty " U(G).

I,Ie shal-l- say that

continuous on [m
u

æ

u € M(G) høs ptoperty 7, if F

,1-l only operates on U if

oo

F(x) = I o-*n, I l¡"1(-, x.c(u).
n=O

IT

be the isomorphism induced by the eanonical- homeomorphisn

n=O

We have proved. that' U € BT, U . BAo, U e Bzn¿k an¿

þ e BnZ(-) al-l- have properly Z, but that p e BITZI d.oes not.

3.8 .2 LEt/r4A

Let H be a compact subgroup of G,

' mlr M(c) + u(c/tt)

G -> G/H.

rf u € M(G/H) has property

Proof

The measure correspond-ing to U is actual-ly d.etermined by

the continuous l-inear functional-

r(r) = f*rn,Jn r(x+Y)a"ç(v))¿u(x)

since the inner integral- d.epend.s only on the coset X

containing x, for each f - C" (G).

CtearÌy î(v) = û(V) for y € (c/H)

and î(y) =O otherwise.

So if F operates on v, i.e. F(î(y) ) = À"(y), y . pD(c)

for afl- Y e f with î(V) e dom Fr then À^ restricted to

Hl = (C/H)^ is a transform, by 1,)+.2.3. But tliis is to

say that f o û is a transfo¡'m and. so''by hypothesis



F(x)= I q,*", I I I . - for x . c(u).
æ

n=0

æ

n=O
b

6l .

v. Let F

V i-s concentrated

¡'oì beinga

B(H^), by Eberleinrs

n

Since C(U) = C(v), ve concl-ud.e that v Ìias property Z

3.8.3 LENMA

3.8.h LEtvfluA

Let H be a subgroup of G. If U - M(H) has propert¡r Z,

so has U considered as a measure on G.

Proof

Denote U considerecl as a measure on G by

contínuous on [mU,11 operate on U. Slnce

on H, î is constant on cosets of Hr; so

+uïansform entails F o û is a transform in

criterion, and. so by hypothesis

F(x) = I t''n
n

X with
æ

n=O
I l¡"1 <æ xec(u) =c(v)

n=O

î1" 'u^(r)

M(R) has measures vith property Z

Proof

Let U be a rneasur'e of the cfass tsT.

Consider U as a measure on R, i.e. U . M(R). If' F

operates on U as a neasure on R, so that f o û = î.M^(R),

then we appfy Eberl-einrs criterion 2.l+.f .: to see that

so v has property Z.

so that F operates on tÌ a.s a member of

F is I o" X', Il¡, I . - and u has property

too.

/' M(T) , so

ZlorR

Eberf einrs criterion appJ-ies thus:

since î . u^(n), by the criterion if ll î ll < A then i
is con'r,inuous on R and
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n

¡
cj (x,yj )l = nll rll - (r)

3.8.5

for every trigonometric polynomial- f = i ", " 
on R. Obviously

j='r t J

then (1) nofAs for every trigonometric polynomia.l on Z, and.

G is continuous on Z since eveïty function is so appÌying

the criterion again î. e(z) = Ì'f^(T).

MÁTN TIIEORB4

For any non-discrete LCA group G there is a cfass of

measures with property Z.

Froof

TIre two l-emmas pr-eceding red.uce the problem to find.ing a

subgroup of G (lern¡ra 3.8.2) or of f (lemma 3.8.1 and-

duality) cn which suitabl-e infinite convol-utions with property

Z can be d.efined

The structure theoren for LCA groups red-uces the probJ-em

to eompact abefian groups since any LCA G = Rt x F r^r-ith

n > O succu¡nbs to the l-emmas (T = R/Z). ff G is compact,

either I has el-ements of infinite ord-er, or not. fn the

for¡ler case I has a subgroup Z and lemma 2 applies, if

G is torsion, f either has a nontrivial d-ivisib-l-e subgroup,

or not. If not, f has as subgroup a rrreak prod.uct

@ I z(n= ) (¡'ucHs [ll, 6r]) so 3.7 assures us of suitabt-e
i =l t

U; vhereas if l- has a nontrj-via.l divisible subgroup, being

torsion and a.bel-ian it must contain a subgroup isomorphic to

Z(p*) for some prime p, anil so G has a quotì-ent

isonrorphic to L, ancJ- 2.6 ccrnpletes the proof .

I



6g

BTBLTOGRAPIÌY

ARIINS , R. and CALDERON, A. P. L}glrl
ItAualytic functions of several Banach al-gebra el-ements.rr

Ann. Math. 6Z(tg¡>), pp. 2d+-2I6.

BADE, W.G. and CURTIS, P. tl960l
I'Wedderburn d.ecomposition of commutatj-ve Banach al-gebras. tl

Amer. J. Math. 82(1960), pp. 8:r-866.

BROI^IN, G. irgtEl

"tUo(C.).has a s¡rmmetric maximal id-eal- off the Silov bound.ary."

Proc . Lond. 'Math. Soc . 3) , 27 ( rgl¡ ) , pp. h8\-lO)+ .

BROWN, c. ltgl>l

"Riesz prod.ucts anil generalised. characters. I'

Proc. Lond. Math. Soc. (¡), 39G9Tr), pp.2OT-238.

BRO'hnï, G. and MORAN, lI. tlgTrl
t'On the Sifov boundary of a measure algebra.rt

Bul-l-. London Math. Soc. 3(1971), pp. Ig1-zo,

BROWN, G. and. MORAN, W. tfglEl
ttCoin-tossing and pol/ers of singular measures. " 

-

Math. Proc. Camb. Phil. Soc. T7O9ß), pp. ¡\g-:6\.

BROI^IN, c. and MORANT W. l\97\l Í-BMAI

t'Bernoulf i measure algebras. "

Acta Mathernatica ß2(l-971+), pp. TT-IO9.

BROI,/N, G. and. MORAN, W. l-fglgl
M,^à"'y'-'¿.CIlge"+t-

,,' I'Analytic discs in the t {.t the measure a.lgebra.t'

Pac. J. Math. 75Í9'i8), pp. )+>->1 
"

BROMWICH, T.J. An intyoduction to the theory of infinite series. tilSl
(ZnA e¿. ) London, 1926



70.

mI,.IARDS, R.E. ltg>gf
tton discreie measures. tt

T¡ans. Arner. Math. Soc . 93 (1959 ) .

FU'CHS, L. fnfinite abeLian groups. (2 vols. ) t{ew York t-9T0,1973. [IAc]

GELFAND, RAIKOV and SHILOV Cornnutatiue noy:med nings.

New York , l_9614. ICNRI

GRöBNER, \,¡. and HOFREfTER, W. fntegraltafel, v II. Vienna, 196I. tITl

GRAIIAM, C. C. and McGE Hntr, O. C. lt97 ,o1 IECILA]

Essays on contmtl;atipe harmonic onalysis. New York, 1979.

HERZ, C.S. lrgæl
rfFonctions op6rants sur l-es fonctions d,éfinits-positives. tl

Ann. Inst. Fourier (Grenobte) f¡(rg6:), Irasc. t, pp. Ì61-l_80.

HEIÀITTT, E. and. KAKUTANI, S. tI96\]
t'Some multiplicatj-ve linear fu¡ctionaLs on. .M(G). "

Ann. of Math. 79(196+), pp. 
.l+Bg-¡o¡.

HEWTTT, E. and ZUCKERMAN, H.S. 11966l
alae¿t"nl¿, 'n^x^ry^*ttsingular measures with l{onuo1ition squares. r'

A
Proc. Camb. Phil. Soc. 6p-(t966), pp. 399-L+2O.

HEWfTl, E. and ROSS, K. Abstxac'b harmonic anaLysis. Berlini 1963. [AHAI

JOHNSON, B.E. 11967)

t'S¡rmmetric maximal id.eaf s in U(C). t'

PAMS 18 (tg6l ) , pp. 1O4O-10)+l+ .

JOHNSON, B.E. trg6gl

'/ "The Sil-ov boundary of lvi(c). "

Thans. Amer. Math. Soc. t3)+(rg68), pp. 289-296.

KAHANE, J. P. R . Seri,es de Fouriez, absoLwnent conuergentes. Berl-in , L9T O.

KATZNELSON, Y. fn-bz,oduction to harmoníc anaLysís. New York, L976. [IHAI



7r.

KAUI-MAN, R. trg6Bl LscBC.l

t'On the syrnbolic calcufus of Bernoull-i convol-utions.tr

rsr . J. N{ath. 6(tg6ï ) , pp. 30-35 .

KAUFMAN, R. t1968]

ttsome measures deter:nined by rrappings of the cantor set.t'

ColJ-oq. Math. 19(1968), pp, 7T-83

KAUFMAN, R. IT96TI

t'l'he spectrum of an infinite product measure.t'

Stud.ia Math. 29¡967), pp. 59-62,

LEVr,' P. t1g3\l
t'Sur l-a convergence absol-ue des séries de Fourier.rt

Compositio Math. f(fg])+), pp. l--l'\

LIN) C. and SAEKI, S. lf976l

, ttBernoul-l-i convol-utions .in LCA groups.I'

Studia Math. 58(19'(6), pp . r65-t.TT

Mfl,A, J.1.. lrg6gl
t'Sur certains ensembl-es exceptionel-s en analyse d.e Fourier.r'

Ann. fnst. Fourier (Grenobl-e) f8(rgeg), pp. 33-70. -

MoRAN, W. lrg7r, IgTgl

t'lndividuat s¡rurbolic cafcufus for measures f .tl []CSMfl

Proc. Lond. Math. Soc. 3l_(tgl>), pp. SB5-Llt.

t'fnd-ividual synbolic calcul-us for measures II .rr []CSM2 l

Proc. Lond. Math. Soc. 3B(r979), pp. \Br-\9r.

PAKSHTRAJAN, R.P. lrgæf
t'An a.nafogue of Kolmogorov's 3 series theorem for abstract

random variables.t?

Pacific J. Math. (tg6Z), pp. 6Sg-61+6.



T2

PHELPS, R. Lectuz'es on Choquetts Ttteorem. Princeton, 1966. ILCTI

RTDER, D. t19711

t'Functions which operate on pointwise-definite functions. "

Proc. Camb. Phil. Soc. 6g(l-gll), pp, Bl-gl.

RUDIN, ll. Fou:rLer anaLysís on groups, Nel¡ York, 1962. IFAGI

RUDfN, W. ReaL and contpLeæ anaLgsis. New York, f97l+. [RCAI

TAYLOR, J.L. 1196r)

ttfhe structure of ,convofution measure algebras.tt

TAMS l-I9Gg6>),, pp. Lro-I66.

VAROPOULOS, N. 11965l,

"T}re functions that operate on Bo(f) of a discrete group f.

Butl.. Soc. Math. France %(L965), pp. 3Of-32I.

IíTENER, N. IIg3ù tT.T]

t'Tauberian theorems. r!

Ann. Math. 33(1932), pp. t--100.

}ÍTLLTAMSON, J.H. tl958l
ttA theorem on aÌgebras of measures on topological groups. t'

Proc. Edin. Math. Soc. rL(I958/9), pp. 19r-206

ZYGMLIND, A. ltigonometrieaL series L12. Cambridge University

Press, 1959. tTSl

lt




