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SUMMARY

Mixtures at 25°C of N, N-dimethylformamide (DMF) and water have been the solvents
for 13 conductance runs involving the solutes CsCl, KC1 and KNCS. The table below
summarizes the solutions and solvent compositions for which limiting equivalent

conductances have been determined.

Limiting equivalent conductances performed in DMF/water solvents at 25°C in this
research

Mole per cent DMF
Salt 0 9 30 S50 75
CsCl L e e ® °
KCl1 L ®
KNCS ° o °

A flaskcell has been designed to facilitate mixing during a run. The limiting equivalent
conductances have been evaluated with the full Fuoss-Hsia conductivity equ.ation. The
Robinson-Stokes equation, used for the estimation of limiting equivalent conductance, is
shown to give very similar values to those given by the Fuoss-Hsia equation. Also
presented are the corresponding values of the parameters a (the ion-size parameter) and
K, (the association constant). The values obtained for K, are small. Plots of log X, (KC1)
against reciprocal of dielectric constant and against the logarithm of water concentration
show maxima. In the latter case, some evidence is presented that this indicates the
participation of both water and DMF in the formation of ion-pairs in DMF/water mixtures.
The autogenic rising boundary method has been used to determine, in DMF/water
solvents at 25°C, the limiting cationic transport numbers of KNCS in mixtures containing
0.5 and 0.75 mole fraction of DMF. Within experimental error, no concentration depend-
ence of transport number has been detected in the former solutions; in 0.75 mole fraction
of DMF, slight concentration dependence has been observed. In the latter solvent, correct-
ions for ionic association are within the experimental error. Limiting ionic equivalent
conductances derived from the above transport numbers and conductances are presented.
The corresponding Stokes radii have been calculated. Plots against 100/D of the Stokes
radii of K+, Cr, Cst and NCS™ are presented for complete range of DMF/water solvents
at 25°C. The data obtained in this research for K™ and CI” confirm the suspected shape,
in DMF-rich regions of the existing plots for these ions. The shape of the Stokes radius
plot for Cs* resembles that of K. R@g+ values calculated from the slope and from the

intercept are anomalous. The plot for NCS~, although limited to four points, exhibits a



similar shape to the plot for CI". Tentative Rf\IoCS' values have been calculated.

A search for correlations between solute and solvent properties in DMF/water mixtures
has been conducted. Densities, ionic equivalent conductances, viscosities and excess volumes
of mixing have been plotted against solvent composition. Free volumes of the solvent
mixtures have been calculated and used as the abscissae for plots of ionic conductances,
viscosities and Walden Products. No simple correlations have been observed. However, the
plot of viscosity, against solvent composition provides evidence for the existence of at
least one DMF-water complex. The ‘hard sphere’ volume of this complex has been
estimated by two methods and a molecular formula has been proposed.

A published theory which attempts to explain variations in Walden Product with
solvent composition has been described and tested. Data for CI” in DMF/water mixtures

at 25°C indicate that the theory does not hold in this system.
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GLOSSARY OF PRINCIPAL SYMBOLS

The following symbols are applicable throughout this thesis. Other symbols have

meanings applicable only to the chapter in which they appear.

a The distance of closest approach of ions.

B The coefficient of the jon-size term in Debye-Hiickel theory.

B, The coefficient of the relaxation term in the Robinson-Stokes conductivity
equation.

B, The coefficient of the electrophoretic term in the Robinson-Stokes conductivity
equation,

C Concentration of solution in mol dm™3.

D Dielectric constant.

e The protonic charge.

exp The exponent, e.

F The Faraday constant.
f The mean rational activity coefficient.
K, The association constant in conductance theory.

k The Boltzmann constant.

log Logarithms to base 10.

In Logarithms to base e.
N The Avogadro constant.
N Normality, equivalents per dm? of solution.

T Absolute temperature.
Iy Cationic transport number.

2,2z, Algebraic valencies of cation and anion respectively.

't The fraction of solute existing as non-associated ions.
n Viscosity of solvent.
K In Debye-Hiickel theory, the ‘reciprocal length’ of the ionic atmosphere,

proportional to the square root of ionic strength; in Chapter 4, the specific
conductance.

A The equivalent conductance of an electrolyte.
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ax

The equivalent conductances of the cation and anion respectively.
Summation.

The standard error of fit of the data to an empirical or theoretical equation.
The standard error of the coefficient x.

Resistance as ohm.



GENERAL INTRODUCTION

In the study of electrolyte solutions, Walden’s Rule! has long been used as an approx-
imate guide to the inter-relationship between the two important parameters X° and 7. The
rule is based on the assumption that dissolved ions moving in a solvent are adequately
modelled by spheres moving in a continuum for which Stokes Law? applies. In 1959, Fuoss?
proposed that ion-solvent interactions resulted in an increase in the local viscosity of an
ion. This led to a new expression for the Stokes radius of an ion, incorporating dependence

upon the dielectric constant, D.
R, = R>™ + S/D

R7° is the Stokes radius of the ion in a solvent of infinite dielectric constant and S is a
constant related to the magnitude of ion-solvent interactions. Later Boyd*: 5 and
Zwanzig® 7 provided theoretical confirmation of Fuoss’ arguments and derived an
expression S showing that it was related to the dielectric relaxation time of the solvent
and also contained a term le‘” Consequently the Fuoss-Boyd-Zwanzig (FBZ) equation
above provides for estimates of the quantity Rl‘?°, both from the slope S, and from the
intercept of a plot of R; against D71,

Fuoss and co-workers® have used the intercept method extensively for 1-1 electrolytes
in dioxane/water mixtures. In many of these cases R; shows linear or near-linear plots
against D! and the values of R§’° obtained from the intercept have been realistic although
generally smaller than the respective crystal radii. However with some of the alkali halides
such as LiCl and NaCl , minima occur in the plots of R; at fairly high values of dielectric
constant, indicating deviations from FBZ theory. An important assumption of the Fuoss
School was that transport numbers are independent of solvent composition. James!? on
the other hand, working with KCI and KBr in mixtures with water of N, N-dimethylforma-
mide (DMF), showed that transport numbers were solvent-dependent.

DMF is a polar liquid with a moderately high dielectric constant compared to dioxane.
Its mixtures with water therefore produce only a comparatively narrow range of dielectric
constants but offer fairly extensive opportunities for solvent-solvent and ion-solvent
interactions. As such, DMF/water mixtures constitute solvents whose properties contrast
markedly with those of dioxane/water, thereby providing a suitable different medium in
which to test the FBZ theory.

James!2 also determined limiting ionic equivalent conductances for KCl and KBr and
thus calculated the respective Stokes radii. His plot of R+ against D~ was linear for most

of the range of D, but showed a minimum (as in the cases of LiCl and NaCl in dioxane/
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water) at a fairly high value of dielectric constant. A more serious challenge to FBZ theory
comes from the contradictory and anomalous values of R obtained from the slopes and
the intercepts of the R; vs. D™ plots. A not unrealistic value of Rl?° is given by the slope,
but the intercept gives a substantially negative value.

This research extends James’” work with alkali halides in DMF/water solvents.

In the first instance the range of solvent composition has been extended from a DMF
mole fraction of 0.496 to 0.75. The determination of the limiting equivalent conductance
of KCl and the limiting cationic transport number of KNCS in 0.75 mole fraction DMF
fills a gap between the data of James at 0.496 mole fraction of DMF and the data of
Ames and Sears'? and Prue and Sherrington!* in pure DMF. This work confirms the
shapes of the Stokes radius plots for K™ and CI™ in this region.

A major portion of this research has been directed towards ascertaining whether the
Stokes radius 1}10t for Cs‘+, like that of K+, gives results which conflict with the predictions
of the FBZ theory. Presented in Chapter S are results which indicate this to be so, leading
to the view that the sphere-in-continuum model, upon which the FBZ theory is based, is
too simple to explain the observed changes in conductance with solvent composition. Recent
papers by members of the Fuoss School’~ 11 working in isodielectric mixtures subscribe
to this view also.

Chapter 1 of this thesis presents an account of the modern theory of conductance as
embodied in the Fuoss-Hsia conductivity equationl® This three-parameter equation has
been used in this research to calculate the limiting equivalent conductance, the ion-size
parameter @ and the association constant K. Chapter 2 describes experimental methodology
for the measurement of equivalent conductance. Results of these measurements for KCl,
CsCl and KNCS in DMF /water mixtures at 25°C are presented in Chapter 3 together with
the respective values of @ and K, . The presented value of the limiting equivalent conduct-
ance of KNCS in water appears to be the first such value presented in the last 45 years,
The reported limiting equivalent conductance of CsCl leads to a limiting equivalent
conductance for Cs which is near the top of a puzzlingly wide range of values for this
ion, as provided by nine literature reports. Although not of major concern in this thesis,
the change with solvent composition of K, for KCI and for CsCl has been discussed in
Chapter 3. Some evidence is presented for the participation of both water and DMF
molecules in the process of ion-pair formation of KCl,

In Chapter 4 are described practical aspects of the determination of limiting cationic
transport numbers using the autogenic rising boundary method. Values of this parameter

for KNCS in DMF/water mixtures containing 0.5 and 0.75 mole fraction of DMF are
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reported, together with limiting equivalent conductances of K+, NCS~, Cst and CI” derived
therefrom. This chapter also discusses interpolation procedures which have been used to
obtain limiting equivalent conductances of CI” at the chosen solvent compositions.

In addition to a discussion of the FBZ theory and tes.ts of it, Chapter 5 contains a
report of a search for correlations between solute and solvent parameters in DMF/water
mixtures. Plots of density, ionic equivalent conductance, viscosity and excess volume
of mixing against solvent composition are presented. Following a suggestion by James and
Fuoss!?, free volumes of the solvents were calculated and correlations were sought with
conductance, viscosity and Walden Product. No simple correlations were apparent but
results of the investigations of changes in viscosity led to evidence for the existence of one
or more DMF-water complexes whose likely formulae have been proposed.

The chapter and the thesis concludes with the discussion and testing of a theoretical
paper by Hemmes.’ This paper indicates the complexities in the variation of the Walden
Product likely to arise as a result of solvation of dissolved species by each of the

components of a mixed solvent.
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Chapter 1
CONDUCTANCE — THEORY

1.1 Introduction—The importance of the Debye-Hiickel theory

Since the earliest days of electrochemical research, it has been known that the
equivalent conductance of electrolyte solutions decreases with increasing concentration.
Clearly interactions between charges on the ions in solution must be a primary cause of
these observations. In 1923 Debye and Hiickel provided a means of explaining these
interactions with a theory which described the distribution of charges around an ion in
solution.

The model used to develop this theory involves treating an electrolyte solution as a
single reference ion j, standing alone in an ionic ‘atmosphere’ of opposite sign. This
atmosphere comprises a continuum dielectric (representing the solvent molecules) which
possesses a net charge density contributed by all ions in the solution except the reference
ion.! Debye and Hiickel used this model to develop an expression for the electrical
potential Wj, at a point in the solution in terms of concentration, ionic charges and

solvent properties. The expression obtained for x//]- is

. = 25 . explaa) | exp(-xr)
! D (1+ka) r (1.1

where a is the distance of closest approach of the ions, assumed the same for all pairs of

ions. k, formally known as the Debye-Hiickel reciprocal length, is given by

47e? Znizl.2

2 —— e — — — — —
. DkT (1.2)

Equation 1.2, defining k, can be rewritten in terms of concentration of ions,

2 = 41N 372

10000k 17 (1.3)
or in terms of ionic strength
_[_8me?N 17
. [IOOODkT] 4l (1.4)
Thus Kk = B\/I (1.5)
where B =[ 871e? N ] Y2
1000 DET (1.6)



The k function is a useful parameter of the ionic atmosphere. It can be shown? that at a
distance r = k™! from the surface of the reference ion, the charge contained in a spherical
shell of thickness dr reaches a maximum. k™!, having dimensions of length is thus known
as the ‘thickness’ of the ionic atmosphere.

Ever since the publication of the Debye-Hiickel theory, workers in the field have leaned
heavily on it in developing an understanding of the interactions of ionic charges in
solution. Two major effects of this interaction are the electrophoretic effect and the
time of relaxation effect. In each case, development of satisfactory theoretical expressions
for these effects depended upon the use or adaptation of the Debye-Huckel expression for

the potential,

1.2 The electrophoretic effect

An externally applied electric field acts both on a given j ion in solution and on its
ionic atmosphere. These two entities, the j ion and its atmosphere, are of opposite charge
and tend to move in opposite directions in the field. The moving j ion therefore
experiences an increased viscous retardation arising from the contrary motion or
‘counterflow’® of the solvent molecules of the ionic atmosphere.

The term electrophoresis applies to the migration of fairly large entities (10—1000043)
in an electric field; the ionic atmosphere can be considered such an entity—it has a
‘thickness’ (k') of about 100A for a 1-1 electrolyte of concentration 1073 mol dm™ .4
The motion of the ionic atmosphere contrary to that of the j ion is therefore known as
the electrophoretic effect and the viscous retarding force it causes is the electrophoretic
force. Clearly the effect is concentration dependent.

A thorough mathematical treatment of electrophoresis has been made by Onsager and
Fuoss® and adapted by Robinson and StokesS The approach to the treatment was to
assume spherical symmetry in the ionic atmosphere and to apply the Debye-Hiickel
expression for the potential 11/]-, and the classical Stokes eqﬁation relating the velocity of
a particle moving in a viscous medium to the viscous retarding frictional force given by

equation 1.7.
v = F/6mqr .7

The resulting expression for the electrophoretic effect AA,, on the equivalent

conductance is



¢ 6mnN e 1+xa (1.8)

1.3 The relaxation effect

In the absence of an external force the ionic atmosphere of a reference ion j is
symmetrical and the centre of charge of the atmosphere coincides with that of the
j ion. When an external electric field of intensity X is applied to the solution the j ion
moves, but, because of frictional resistance, the ionic atmosphere takes a finite time to
relax and reform in response to this movement. During this time the ion j has moved on
and further relaxation and reformation of the atmosphere must occur. The overall
result is that the moving ion possesses a lagging asymmetric ionic atmosphere which can
be viewed as egg-shaped.” Consequently the two centres of charge are permanently non-
coincident and the resulting electrostatic force (taken as the relaxation field, AX,
opposite to the applied field X) causes a retardation of the ion. This retardation is
known as the relaxation effect, given by AX/X. Like the electrophoretic effect, it is
concentration dependent.

Debye and Hiickel® made the first theoretical approach to explaining this phenomenon
but a n%ore successful result? was obtained by Onsager.!® The latter simplified the
Debye-Hiickel expression for the potential by assuming, for very dilute solutions, that

I+ka = 1. In essence this assumes ions to be point charges and converts equation 1.1 to

¥, = %€ exp(-xr)
] D r (1.9)

Using this expression Onsager obtained

AX _ zyz,€? qK
X 3DkT Tr/g (1.10)

where ¢ is a function of ionic charges and conductances which simplifies to % for 1-1

electrolytes. Thus

AX _ z,2,€? L
X 6DkT 1+\/0.5 (1.11)




1.4 The combined influence of electrophoresis and relaxation

The combined influence of the electrophoretic and relaxation effects upon the
conductance can be expressed in the equation

A = (N°-AA) (1+AX
( bl (1.12)

The above expression for AX/X (equation 1.11) and an expression for AA, (equation 1.8

3

simplified by taking 1+ka = 1) can be substituted in equation 1.12. If the cross-term

AX& . AA, is neglected we obtain
A=N_ e Ak F(lzy 1z, e
6DkT (1+,/0.5) 6mN (1.13)
relaxation term electrophoretic term

It can be seen that this equation takes the form

A=A -B,N+B,)/C (1.14)
where B, and B, are related to properties of the solvent. For a given solvent

A = A’ — constant.,/C - (1.15

which is a statement of the Onsager limiting law. It provides theoretical justification for

the empirically derived Kohlrausch relationship
A=N-S5/C (1.16)

published about a century ago.l1

It should be noted that the Onsager equation (1.15) is the tangent to the conductance
curve at zero concentration rather than an equation for the conductance curve itself.

Falkenhagen and co-workers!? retained the (1+ka) term in the denominator of the
expression for ;l/j and hence in the denominator of the relaxation effect expression
(equation 1.11). In this way they accounted for the effects of finite ion size which the
Onsager approach did not, and this modification made possible an increase in the range
of validity of the theory. The analogous equation to 1.13 (which applies to 1-1
electrolytes) then becomes

A= A_ lzlzzfez . N\ _ F"’(Iz1 |+|Zzl) K
6DKT  (1+/0.5) 6mnN T+ra (1.17)
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Robinson and Stokes!? have rearranged this equation in the form

Ao = A+ (BIA+BZ)\/C
1+(Ba-B, )\/C (1.18)

B, and B, are quoted in equation 1.14 in relation to 1.13. B is given by equation 1.5.
Equation 1.18, known familiarly as the Robinson-Stokes equation, has been used in

this research to obtain approximate values of A° from A and concentration data.

1.5 The Fuoss-Onsager Equations

For 25 years after the Onsager paper on the relaxation effect!® there was no major
progress in developing the theory of this effect. This fact is an indication, perhaps, of the
mathematical difficulty in the computation of AX. Contributions from a number of
workers in the early 1950’s were capped by a most comprehensive treatment of
conductance by Fuoss and Onsager.}® Using a model of rigid charged spheres in a
hydrodynamic and electrostatic continuum and retaining higher terms in the equations
of continuity and motion!® they obtained a conductance function for unassociated

electrolytes. This function was!’

a cumbersome combination of algebraic and tran-
scendental terms for which calculations (without the electronic computers of later years)
would .be unduly lengthy. Simplification was achieved!® by selective retention of terms
arising from the integration of the differential equations which describe the relaxation
field. Only linear or lower terms in concentration were retained; all terms of order CE’/2

were dropped. The resulting linearized equation had the form
A = A= SC” + E'CInC + J(@)C (1.19)

The coefficient S, correspondihg to the S of the Onsager limiting law, is a function of A%,
Likewise E’ depends on A° and is determined by theory. J explicitly depends on the
centre to centre distance at contact of spheres representing the ions. The Fuoss-Onsager
equation is thus a two parameter equation, embracing the arbitrary constants A° and a.

Because of the simplification procedure, the range of application of the linearized
equation was restricted to concentrations where ka < 0.1 or about 0.01IN for 1-1 salts in
water,

A little later Fuoss extended this equation to the case of associated electrolytes.!?
Making the ad h'oc20 hypothesis that ion pairs in contact would not contribute to (dc)

transport of charge, Fuoss obtained

A = N —SCYy"2+ E' CyinCy+JCy—K jexf*A (1.20)
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where 1-+ is the fraction of salt associated as ion-pairs and is related to the association

constant by the mass action equation
I-y= K,Cy*f? (1.21)

Equation 1.20 is a 3 parameter equation (A, a0, K, ) which satisfactorily reproduced
A - C data for dielectric constants greater than 10, provided still that concentratinns

were chosen such that kg<<0.1.

1.6 The ‘1965’ Fuoss-Onsager Equation

A series of five papers by Fuoss and Onsager re-investigated the equations which
led to equation 1.19. The ad hoc character of the generalization of equation 1.19 to 1.20
needed examination. Fuoss and Onsager felt that if ion association were a consequence
of Coulomb forces only, then the corresponding decrease in A with increasing C should
be predictable from the equations of continuity, equations of motion and the Poisson
equation. A second motive for the re-investigation was the observation that a values
calculated from J(@) systematically increased for a given electrolyte as D decreased.
There were two possible explanations for this relationship. Either it occurred as a result
of mathematical approximations made in deriving equation 1.19, or the model of the
system was inadequate. The two mathematical approximations made were the dropping
of all terms in Cah and the approximation of the Boltzmann expression in the equation
of continuity to the first three terms of the series.

When the higher terms of the Boltzmann expression were retained explicitly, terms
emerged in the expression for the relaxation field?! which possessed the form of the K 9
parameter which had appeared in the 1957 equation (equation 1.19). This meant that
association of ions arose from the fundamental equations rather than in the arbitrary
manner adopted earlier by Fuoss and Onsager. Combining the new expression for the
relaxation field with an electrophoretic term which had also been re-investigated?2

incorporating higher terms, Fuoss, Onsager and Skinner?! published the equation
A = N-SC”+E'Cint? + LC - ANCf? (1.22)

where 72 = 6E 1/C and £ 1/ is a function of solvent properties and A and L are constants.
In the same paper the equation was generalized, incorporating ionic association. The

coefficient A closely approximated to X, and the generalized form became

A = N-SC”y" + E'CyIn(6ECy)+LCy - K, Cvf2 A (1.23)
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This became known as the ‘1965’ equation. Equation 1.22 reproduces conductance data
for 1-1 electrolytes in solvents of higher dielectric constant. Equation 1.23 is required for
conductance data of 1-1 electrolytes when D is small enough to stablilize ion-pairs in
contact. The two equations confirmed the 1957 conductance equation and established that
the ion association term arose directly from application of the equations of continuity,
equations of motion and the Poisson equation, i.e. from first principles.

Contact distances calculated from the application of precise data to these equations
still showed an increase with decreasing D. It therefore was proposed by Fuoss and
Onsager that the source of this variation lay not in the original mathematical approx-
imations involved in solving the differential equations—rather it lay in the inadequacy
of the sphere-in-continuum model upon which the theory was based.

Fuoss, Onsager and Skinner noted that a C h term arising from the ‘explicit product’
gave only marginal improvement to their equations. They decided to neglect this term
and allow 4 and L to absorb any errors arising and therefore to restrict the range of
application of the equations to concentrations where the Ca/2 contribution was

negligible. In summary, the Fuoss-Onsager equations may be presented together.

A = AN-SC”+ECIog C+JC (1.19)
A = N-SC%y% + ECylogCy + JCy — K, CYf?A (1.20)
A = N-SC¥+E Cnr*+ LC - AN Cf2 (1.22)
A = KN-8C%y"+ E'Cyin(6E\Cy ) + LCy= K,Cyf?A (1.23)

Equations 1.20 and 1.23 are identical as equations of concentration. 1.20 and 1.23 both
have 1.22 as a limit for v near unity. For f2=1 (or K, =0) 1.22 approaches 1.19.
When D is large and/or the salt has large ions, equations 1.19 and 1.23 are indistinguish-

able.

1.7 The Fuoss-Hsia Equation

The linearized Fuoss-Onsager equation (1.19) for unassociated salts, which becomes
A= K-S+ ECnC+Ic-K,NC (124)

for slightly associated salts was tested by Fuoss and Hsia?? with data in which the
concentration of salt exceeded the limit of applicability (about 0.01N for 1-1
electrolytes in water) set previously by Fuoss and Onsager as a result of the math-

ematical approximations referred to earlier. They found that A° and J values depend
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upon concentration and diagnosed, not unexpectedly, that the functional form of
equation 1.19 was incorrect for C>0.01N in water. They showed that data of high

24,25

precision and involving concentrations up to about 0.10N could be reproduced

within experimental error by a semi-empirical equation of the form
A = N —SC%+EClogC+AC+BC P (1.25)

They were thus encouraged to repeat the integrations which led to equation 1.19,
retaining all C *h terms. This led to a complicated function too complex for desk
calculators but which could be handled by an electronic computer.2> Their theoretical
conductance function had a range of applicability such that ka<0.5 (which corresponds
to concentrations less than about 0.25mol dm™ for a 1-1 electrolyte in water).

Fuoss and Hsia pointed out that the symbolic expression for the conductance function

is
A = 7(A°—AA8)(1+_4XL) (1+3%)) (1.26)

where ¢ is the volume fraction of one species of ion. The term (1+3¢/2) is incorporated to
account for the reduction in mobility of ions caused by the obstruction effect.?6 This
effect becomes apparent in the more concentrated solutions of the ranges to which the
Fuoss-Hsia equation may be applied. In such solutions the volume of solute is no longer

a negligible fraction of the total volume and the necessity for migrating cations and
anions to detour around each other contributes to a net retardation of each ion. For the
lower range of concentrations (0.00IN to 0.01N) used in this research the obstruction
effect is negligible.

Fuoss and Hsia?3 have written a computer program designed to analyse a set of data
points (Cj, Aj) according to their conductance equation in order to evaluate the para-
meters A%, K 4 and a. A similar program based on this equation and devised by Kay?” and
used in adapted form? in the determination of these three parameters in the present
research. The adapted program does not modify the Fuoss-Hsia equation, it retains a

C‘af2 term.

1.8 A new conductance equation

Recently conductance data have been processed by Renard and Justice?® using a new
conductance equation. This equation, developed by Fuoss, incorporates the Chen

electrophoretic effect®® but details of this effect and the related equation have not yet
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been published. The new equation gives values of A® virtually identical with those

obtained from the Fuoss-Hsia equation.

1.9 The concentration dependence of transport numbers

Transport (or transference) numbers are essentially ratios of conductances. The limiting
transport number ¢?, of an ion is simply related to the limiting ionic conductance, )\‘l? and

the limiting equivalent conductance, Ay by the relation

A
p = - (1.27)

Because of this, transport numbers usually exhibit a smaller concentration dependence

than do conductances themselves. The extent of concentration dependence is related to

the difference between the transport number and the value 0.5. For example, Robinson

and Stokes3! have observed that for non-associated 1-1 electrolytes the form of

concentration dependence of the cationic transport number is as follows.

* If the transport number is near 0.5, scarcely any concentration depence applies.
x% If the transport number is less than 0.5, it decreases further with increasing

concentration.

4% When the transport number is greater than 0.5, it increases further with increasing
concentration.

Such observations are readily explained by the theory of conductance already outlined in

this chapter. Equation 1.12 can be restated for a particular ion in the form
A= (7\°—A7\e)(1+AX/X) (1.12a)

where AN, and AX/X are the expressions for the electrophoretic and relaxation effects
applied to i ions only.

For symmetrical electrolytes the respective values of AN, and AX/X are the same for
both cation and anion. Application of equation 1.12a to equation 1.27 thus leads, with
cancellation of relaxation terms, to

" A2+ AN,
E A +2AN, (1.28)

A}, is obtained from the single ion form of equation 1.8.

N : K
an, =_- _F_. LA
Ae 6N | % THa (1.8a)

Substition for AM, in equation 1.28 and application to 1-1 electrolytes®? leads to
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_ N, +%By/C/(1+ka)
I A= By/Cl(1+ka) (1.29)

This equation has been rearranged33:3* in the useful form

o = 05-1)B/C
i T (T4 BayJON (1.30)

This form of equation 1.29 provides a precise statement for the concentration dependence
of transport numbers which theoretically justifies observations (a), (b), (c) outlined above.
Tests of equation 1.2933 give a high degree of agreement between observed and calculated
values. Accordingly, equation 1.30 has been used in this research to evaluate limiting

transport numbers from transport numbers determined at a range of finite concentrations.
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Chapter 2
CONDUCTANCE-EXPERIMENTAL

2.1 Introduction

The conductance of electrolyte solutions may be very precisely determined. In this
research, a precision as good as, or better than 0.01% has been sought. Accordingly steps
were taken in this research to ensure that the chemicals, apparatus, equipment and
associated techniques were capable of yielding such a precision.. As will be seen in detail
during this chapter, attention has been given to all factors likely to influence the precision
of the measurements. Such factors include the purity of chemicals, cleanliness of glass-

ware, accuracy of temperature control and the adequacy of technique.

2.2 Materials

Conductance water

Deionized water obtained from the bulk laboratory supply was distilled into, and
stored in, a plastic container. Distillate collected in the early stages of the distillation
was discarded — only water which had a specific conductance equivalent to the range
1.1-1.5 x 107% ohm™ cm™ at 25°C was collected for use. Only freshly distilled

conductance water was used.

Potassium chloride

Samples of this salt were originally purified by James.! Analytical reagent grade salt
had been twice recrystallized from conductance water and dried successively in an air
oven and a vacuum oven. It was then fused in a platinum crucible. The solid, broken
into small lumps, was stored over silica gel in a desiccator. The salt was considered by
James to be of high purity. Cell constants determined using aqueous solutions of his
sample were in very close agreement with values obtained for the same cells used by

other workers in this department, using different samples of purified potassium chloride.

Caesium chloride

Mulcahy? had purified this salt by recrystallizing it three times from doubly distilled
water then drying in a vacuum oven. A sample submitted to AMDL" (now AMDEL) for
analysis by flame photometry had shown impurities as Na(18 ppm), K(1 ppm),
Rb(40 ppm) and Li(less than 1 ppm).

* Australian Mineral Development Laboratories, Glenunga, South Australia.
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Potassium thiocyanate

Analar grade BDH" potassium thiocyanate was crystallized from conductance water,
washed with a small quantity of chilled conductance water then dried in a vacuum oven

at 60 - 80°C for about 12 hours. The crystals were stored in a vacuum desiccator

Molecular sieves

BDH molecular sieves, type 3A, were used in pellet form to dehydrate dimethylform-
amide (DMF) prior to the final distillation of this liquid.

The sieves were washed several times with demineralized water prior to lise, then dried
in a stream of dry nitrogen in an oven at 250 - 300°C. Regeneration of the sieves after

use was achieved by a similar procedure.

DMF

The following procedures for purification was recommended by James after investiga-
tion and trial of a variety of procedures.?> He reported that the method adopted produced
DMF with a water content between 0.0003 mol dm™ and 0.001 mol dm™ as measured
by the Karl Fischer technique.

DMF from the store was treated with anhydrous copper sulphate. This removed much
of the water present (originally about 0.01 mol dm™) and also complexed amiﬂes
formed by the hydrolysis of DMF. After standing with intermittent shaking for not less
than a week, the DMF mixture was fractionally distilled at a pressure of between 5 and
10mm mercury, discarding the first 50 cm® and the last 100 cm? of distillate for each
initial cubic decimetre. The middle cut was dried further by storage over pre-dried type
3A molecular sieves for at least 2 days. Immediately prior to use, the DMF was aga1:n
fractionally distilled. The physical conditions and the rejection of fractions of distillate
were the same as in the first distillation.

DMF purified by this procedure had a specific conductance in the range

1.0-3.0x 107 ohm™ cm™.

2.3 The cleaning of glassware

Flasks, flaskcells and beakers which were used to contain samples of purified DMF,
conductance water or DMF/water solvents were cleaned by a routine procedure.
Initially the internal walls of the vessel were treated with chromic acid to remove grease.
Then followed at least six rinses and an ovérnight ‘soaking’ with demineralized water.

Having been steamed for at least 30 minutes, the vessel was rinsed with conductance

*BDH Chemicals Ltd., Poole, England.
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water and dried in an air oven. Subsequent to initial usage, the chromic acid and

steaming steps were normally omitted from the cleaning procedure, Weight burettes

could not be steamed but underwent the remainder of the cleaning procedure.

2.4 Weighing procedures

Preliminaries

Prior to weighing, the outer surfaces of all vessels were wiped with a clean cloth
followed by clean chamois leather. Any adhering material was thus removed. The
handling of vessels was carried out either by using stainless steel forceps tipped with
polythene (normally for empty flasks or for weighing bottles), or by clean chamois
leather fingerstalls. Flasks and weighing bottles were always weighed with a small
watch-glass covering the mouth of the vessel.

In all cases except where otherwise noted, masses were always determined by first

allowing thermal equilibration to occur.
Potassium chloride and caesium chloride

A Mettler B6C200 balance was used to weigh a sample of the salt in a weighing
bottle. This balance permitted estimation of mass to 107 gram. At the same time the
mass of an empty flask was obtained on a Mettler B5C1000 balance; this balance gave
estimations of mass to 107 gram.

The salt was quantitatively transferred from the bottle to the flask and each vessel was
then reweighed. The weight of solid transferred was taken as the change in the weight
of the weighing bottle (plus contents) following transference of the salt. As a check the
change in weight exhibited by the flask was also noted.

Potassium thiocyanate

Because of its hygroscopic/deliquescent nature, this salt was weighed under conditions
designed to minimize absorption of atmospheric water vapour.

The weighing bottle containing a weighed sample of the salt was transferred (with
watchglass) to a vacuum oven set at 80°C and left for approximately one hour. The
vessel was then transferred to a vacuum desiccator to cool over silica gel. Thereafter the
bottle was quickly reweighed on the Mettler B6C200 and the solid transferred to a
weighed flask without delay. As soon as possible the bottle was again weighed to obtain
the mass of potassium thiocyanate transferred to the flask. After the weight of the flask
and its contents had been noted, solvent was quickly added to the flask. Dissolution of

salt was ensured by thorough, careful swirling of the flask’s contents.
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Liquids, mixed solvents and solutions

Pure liquids were weighed in a flask on the Mettler BSC1000 if the total mass to be
measured was less than 1 kg (the capacity of this balance). When the mass exceeded this
value the Stanton H.D.2 beam balance was used, employing the method of swings.*

The balance masses were calibrated on the Mettler B5C1000. Beam eITors, were
evaluated for 500g and 1000g by Gauss’ method of double weighing? and were found

to be - 0.0203% of the mass of the tare for 1000g mass. Brass masses were handled either
with brass forceps or chamois leather fingerstalls.

The preparation of mixed solvents from DMF and water is characterized by the
evolution of heat of mixing. In such preparations it was essential to allow the mixture
to thermally equilibrate with the balance room before reweighing.

While potassium thiocyanate dissolved readily in all solvents used, the chlorides of
potassium and caesium dissolved only with difficulty in solvents containing 0.5 mole
fraction of DMF or more. In such cases a magnetic stirrer-bar coated with teflon was
carefully inserted into the mixture after all weighing was completed. The flask, sealed
with a teflon-sleeved ground-glass stopper, was placed on a magnetic stirrer for

overnight mixing. Stirring was continued next day if necessary.

Buoyancy corrections
All solutions and solvents were prepared by weight and air buoyancy corrections were

applied as indicated by Vogel.®

Solution densities

The density of moderately dilute solutions can be approximated by the relation

d

solution

= dy + WAd

where d,is the density of pure solvent, Wp is the weight percentage of solute in the
solution and Ad is the charge in density of solution per unit weight per cent. For aqueous
KCland CsCl, d ..., could be calculated since all variables in the above equation were
known. However, for solutions of these salts in DMF/water solvents Ad is not known. In
such cases Ad was taken as that pertaining to an aqueous solution of the salt. Errors
incorporated in this assumption are extrapolated out when extrapolations to infinite

dilution are made in the calculation of A°.
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2.5 Conductance measurements
2.5.1 Temperature control and measurement

The oil thermostat was regulated by a mercury-toluene regulator linked to a

heating coil activated by a thyratron control unit. Temperature control to
£0.003°C or better, was achieved. Temperature was m;easured by a bomb calorimeter
type thermometer which was graduated in 0.01 degree. Estimations to 0.001 degree
were achieved with a magnifier. The thermometer had been calibrated against a platinum

resistance thermometer by various members of this department.

2.5.2 Measurement of resistance — apparatus

Resistances were measured with a Leeds-Northrup model of a Jones-Dike bridge
according to procedures outlined by Dike.6

Incorporated into the circuit were an oscillator, tunable amplifier and a cathode-ray
oscilloscope as detector, all linked by shielded cables connected to a common earth.
The bridge was isolated from the oscillator and the detector by transformers, thus
permitting proper functioning of the Wagner earth. The oscillator output was held at
0.4 volt to avoid heating the solution between the electrodes of the flaskcell. The
sensitivity of the combined apparatus varied from about 1 part in 10° at resistances

above 5k2 to about 1 part in 10% (or better) below 3k and down to 40082.

2.5.3 Frequency dependence of resistance

The resistance of the flaskcells varied linearly with the reciprocal of frequency over
the range 1.5kHz to SkHz. Above the latter frequently the resistance behaviour of the
flaskcells varied according to the magnitude of the resistance being measured. In the case
of cell resistances lower than about 8k£2, resistance tended to increase with increasing
frequency beyond 5kHz and this tendency became less marked as the cell resistance
became smaller. With fairly dilute solutions (or with solvents) whose cell resistance
exceeded about 8kS2, the resistance behaviour at frequencies greater than 5kHz was to
decrease markedly as frequency increased. Plots of resistance against reciprocal of
frequency typical of a conductance run in cell H are shown in Figure 2.1.

Solvent resistances were measured in the flaskcells using two 10k resistances
tapped from the bridge and connected as 20k$2 parallel with the flaskcell as recommended
by Dike.® The same two resistors were always used for solvent resistance measurements
since their frequency dependence had been measured and this knowledge was used to
apply corrections to the bridge readings. Similarly, frequency dependence corrections
were applied to the single 10kS2 resistor used for measuring resistances exceeding 10k£2.

Corrections were also applied for the resistance of the cell leads.
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'The procedure adopted for the determination of each cell resistance was to plot
measured resistance against reciprocal frequency and to extrapolate the linear portion of
the plot to infinite frequency. The intercept at this frequency was taken to be the
frequency independent resistance, that is the true ohmic resistance. The application of
such procedures which ignore deviations from linearity has been justified by James’ and
Robinson and Stokes® and used by Hawes and Kaye® between 0.5 and 6kHz.

The value of the frequency independent resistance was subsequently used in the
calculation of the equivalent conductance of the solution as indicated in section 2.5.5,

a solvent correction being applied in each case.

2.5.4 Conductance flaskcells

Flaskcells G2 (cell constant 5.745;) and H (cell constant 0.67485) were designed
by the author to facilitate the mixing and agitating of flaskcell contents during a
conductance run. Efficient mixing is achieved by physical manipulation of the flask —
no electrical stirring is required.

The construction of flaskcell H is illustrated in Figure 2.2. The main feature of the
construction is the connection of the cell to the flask by two glass tubes. With two possible
avenues of exit or entry by liquid or air, the cell can be readily flushed. Further, by
appropriate tilting of the flask a large air bubble may be trapped in the cell then allowed
to escape into the flask, causing vigorous mixing as it passes through the liquid. Excessive
tilting of the flask is to be avoided, otherwise wetting of the teflon stopper may occur,
possibly incorporéting errors into subsequent measurements. This precaution is to be
followed especially when the volume of liquid contained in the flask cell approaches
420 cm?, the upper limit of effective mixing.

Platinum plate electrodes sealed into cell chamber were very lightly platinized
to reduce the frequency dependence of the resistance of the cell. Excessive platinizing
was avoided in order to prevent both adsorption of ionic or organic species from solution
and the possible catalytic decomposition of the organic component of the solvent

Flaskcell G2 was used to determine only one limiting equivalent conductance, cell H
being used for all other such determinations.

The cell constants of the flaskcells were each determined by at least one conductance
run with aqueous potassium chloride in the manner outlined in section 2.5.5. It was
observed that the cell constant exhibited a ‘level effect’, probably due to the nature of
the construction of the flaskcell. Two pathways for the passage of current are available
in this flaskcell. Of these, the less direct pathway (via the solution in the flask proper)

appears to exhibit a decrease in resistance, up to a limit, with increasing depth of liquid.



FIGURE 2.2 Flaskcell H
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Conductance runs were performed with a minimum of 320 cm? of solution in the
flaskcell, thus avoiding any possible variation of the cell constant. Data for the cell

constant determinations are given in Table 2.1.

Table 2.1 Cell constant determinations

Flaskcell H Flaskcell G2

Cumulative Cell Cumulative Cell
Volume (cm?) Constant Volume (cm®) Constant
286 0.675157 320 5.74560
296 0.674971 341 5.74620
306 0.674930 350 5.74596
316 0.674916 363 5.74556
337 0.674833 376 5.74515
358 0.674851

371 0.674815

Cell constant Cell constant

taken as 0.67485 taken as 5.7456

2.5.5 Procedure for a conductance run at 25°cC

The flaskcell, containing a known weight of solvent, was placed in the oil thermostat
to thermally equilibrate. The flaskcell was stoppered with a tapered teflon stopper to
minimize adherence of solvent condensate. When a steady resistance value at a particular
frequency was noted, the flaskcell was removed dnd thoroughly agitated, then replaced
in the thermostat to re-equilibrate. A single repetition of this agitation procedure was
generally sufficient to remove the Soret effect.’® The resistance of the cell was measured
with 20kS2 resistors in parallel at the frequencies 1.5,2,3,5, 10kHz. These data together
with appropriate corrections mentioned earlier, were used to determine the specific
conductance of the solvent, a parameter both indicative of the quality of the solvent
and necessary as a correction to be applied to conductances of the electrolyte solutions
studied.

A stock solution, containing a known concentration of salt in the above solvent,
was carefully added to the flaskcell from a tared weight burette handled with chamois
leather fingerstalls. Usually the volume added was between 10 and 20 cm3. The weight
of added stock was obtained by difference on the Mettler B6200 balance. The flaskcell
was now removed from the thermostat, its contents thoroughly mixed and then allowed
to equilibrate with the thermostat. The Soret effect was removed, as above, by two
more agitations of the equilibrated flask and the checking of resistance until successive
readings were equal. The resistance of the cell was then measured at the same frequencies

as indicated above for the solvent. The conductance run was continued by adding more
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stock solution and repeating the above procedure.

Resistance data was plotted against reciprocal of frequency, as previously outlined,
to obtain the resistance at infinite frequency for each concentration of the salt. A set
of raw data, involving weights of added stock solution together with the corresponding
resistance of flaskcell solution at infinite frequency, was thus generated. This raw data
together with information including data for corrections for buoyancy, solution density,
solvent and leads resistance, was used as input data for a computer program ‘C and A
from raw data’ constructed!! for use on a Hewlett-Packard 9820A Model 20 calculator.
Output from this program provided the respective concentrations and equivalent conduc-
tances following each addition of stock. This information was in turn used as input data
(together with appropriate values of the coefficients B, B; and B, (equations 1.6, 1.14)
and an estimate of )'in a program!! entitled ‘Robinson and Stokes calculation of
Lambda 0°, This program employs the Robinson-Stokes equation (1.18) to give
estimations of the limiting equivalent conductance from each set of concentration/A
data supplied to it. From this output a plot of ‘Robinson-Stokes A’ against concentration
was made and extrapolated to zero concentration. This gave a good estimate of ‘true’
A° which is one of the input data for the program UNASS and LOAOKA which compute
A® and a, (LOAOKA also computes K 4) using the Fuoss-Hsia conductance equation.
Table 2.2 compares some values of A° obtained by the Robinson-Stokes procedure and
the Fuoss-Hsia equation. The difference in A° obtained by the two methods is given by

AN = N (F-H)= X’ (R-S).

Table 2.2 Comparison of estimates of A°

DMF
Salt mole % N (F-H) N(R-S) AN
CsCl 0 153.670 153.65 +0.02
CsCl 9 81.906 81.86 +0.04
CsCl 30 . 44364 44.30 +0.064
CsCl 50 45.689 45.55 +0.139
CsCl 75 62.176 62.10 +0.076
KNCS 0 139.987 139.95 +0.037
KNCS 50 48.295 4825 +0.045
KNCS 75 66.786 66.65 +0.131

This remarkably good agreement suggests that workers interested only in the A°
values of solutions of moderately high dieléctric constant may save computing time
and lose little in accuracy were they to restrict their calculations to those of the

comparatively simple Robinson-Stokes procedure.
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Chapter 3
CONDUCTANCE — RESULTS AND DISCUSSION

3.1 Introduction

The conductances of solutions of CsCl, KNCS and KCl in various DMF/water solvent
mixtures have been measured at 25°C. The maximum proportion of DMF was 0.75 mole
fraction and the upper limit of concentrations used was 0.016 mol dm™.

This upper limit of concentration resulted from the design of the flaskcell (Chapter 2).
The design was aimed at ease and effectiveness of mixing. However, the level effect,
inherent in the design and operative up to a total solution volume of about 320cm?,
reduced the maximum possible added volume of stock to about 100cm?. This limitation
resulted in most runs covering the range 0.001-0.01 mol dm™.

In applying the Fuoss-Hsia equation to a set of data, the computer program LOAOKA
evaluated the three parameters A°, 2 and K (, simultaneously, using a method of successive

approximations. These were aimed at minimising the quantity o2 in the expression
(n-3)o? = Z(A e Aobs)2 3.1

where n is the number of data points. (In the program UNASS, used for the non-associated
case, K, is assumed to be zero and the program computes only A° and a). In the evaluation
of the activity coefficient fi, needed for the calculation of K, , the extended form of the
Debye-Hiickel theory, given by

Infy = — 1z171€?2  «
2DkT 1+ ka 3.2)

has been used rather than the limiting law used by Fuoss.] The value of a used in this
expression was allowed to converge during the successive approximation procédure to
the value required by other terms in the conductance equation.

Values obtained in this research for A%, ¢ and K ', are displayed in Table 3.1. Raw data

for each run are to be found in Appendix 3.1.

3.2 Results for A°

It can be seen that the standard error of fit of the data to the conductance equation
is generally about 0.01%. Uncertainties in A° are mainly in the range 0.01-0.02% giving

a satisfactory degree of precision. In Chapters 4 and 5 the A® values will be used to obtain



Table 3.1 A°, a and K, for KCI, KNCS and CsCl in DMF/water mixtures at 25°C

; DMF
Salt mole fraction  C,, .. N +g/A° a +og K, toK, o
CsCl 0 0.010 153.68, 0.022 3.208 0.022 0.0 0.0 0.008
0 0.010 153.629 0.015 2.852 0.015 0.0 0.0 0.006
9 0.012 81906 0.015 6.479 0.746 1.581 0.180 0.006
30 0011 44391 0.025 7.42 24, 4.9 1.0 0.013
50 0.012 45689 0.012 9.506 0.454 11.471 0.174 0.007
75 0010 62.176  0.005 2.650 0.035 12.757 0.137 0.002
KNCS 0 0.010 139987 0.023 3.786 0.023 0.0 0.0 0.008
50 0011 48295 0.004 8410 0.166 2.804 0.086 0.003 -
50 0.012 48.284 0.004 8.508 0.137 2.840 0.066 0.002
75 0.010 66.786 0.005 9.374 0.110 6.554 0.082 0.002
KC1 30 0.012 44,600 0.036 6.779 1.796 3.214 0.802 0.005
75 0.016 59615 0.003 2.231 0.013 3.366 0.061 0.002

I£
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values of X’ and Stokes radius with a view to discussing the variation of these parameters
with solvent properties. However, two particular A’ values may be discussed here.

There appear to be no recent reports in the literature of the value of A°(KNCS) in water
at 25°C. Washburn? presents conductances first published in 1912. In 1930 Garb and
Hiasko® published values of the ‘coefficient of conductance’ at three concentrations in
the range 0.002 - 0.05N. Their value of A°, apparently based on an estimate of the degree
of dissociation of KNCS in water,was 142.98. Surprisingly no A° determinations for this
system using a modern conductance equaﬁon appear to have been made, although values
for A°(KNCS) in a number of organic solvents have been published. No valid comparison
with the result presented on Table 3.1 can therefore be made.

In the case of A°(CsCl) in water at 25°C, application of N = 76.35% to the mean of
the values presented gives 7\°CS+ = 77.31. This provides an interesting comparison with a

number of literature values, displayed on Table 3.2.

Table 3.2 7\°Cs+ values in water at 25°C

Salt 7\°,CS+T Author Reference

CsCl . 77.26 Voisinet 5
76.46 Justice and Fuoss 6
76.92 Accascina and Goffredi 7
76.70 Treiner, Justice and Fuoss 8
76.91%* Renard and Justice 9
77.31%* this research

CsBr 76.77 Treiner, Justice and Fuoss 8
77.23% Hsia and Fuoss 10

Csl 77.20 Lind and Fuoss 11
77.33% Hsia and Fuoss 10

*Calculated from the difference between values of the published A° and X found
in reference 4.

1 Units ohm™ cm™ eq”™* used throughout this thesis.
Even allowing for slight differences due to both experimental error and calculation
procedures for A°, the substantial variations in the tabulated values of N+ are

perplexing in a field of research acknowledged for its precision.

3.3 Results fora and X 9

Although A° is the quantity of main interest, some comment is necessary on the
values obtained for the interdependent parametersa and K (,- On Table 3.1 the
uncertainties presented fora and K, are typically 1-3% and 1-5% respectively, but

reaching 20% for K, and even higher for a. In view of the satisfactory precision of the



A° values, these uncertainties reflect the lack of sensitivity of the o function (equation
3.1) to the effect of only slight degrees of ionic association (1-7) arising from the
combination of fairly low concentrations and small values of X 4 brevailing in these
systems,

It is clear from Table 3.1 that a, the distance of closest approach of ions in solution,
varies with solvent composition. Since the model upon which the conductance equation
is based assumes that @ is constant for a given salt, these results cast some doubt on the
model and upon the significance of these association constants, K 41 » to which ¢ is related.

The tabulated values of K 9 for KCl may be discussed in relation to the results of
James!? for KCl and KBr in DMF /water solvents containing up to 0.496 mole fraction
of DMF. Although the variation in K 4 With solvent composition is small (a range similar
to that for CsCl) it is of interest to note that for both KCl and KBr James’ data gave
linear plots of log K, against 100/D, supporting the Denison-Ramsey-Fuoss theory13 14
of ion-pair formation. Further, the James data also indicated that log K, is a linear
function of log CHzO where CH:O is the concentration of water (mol dm™) in a mixed
solvent. According to Quist and Marshalil5: 16 such a result occurs when water alone is
involved in solvation changes during ion-pair formation. However when James’ data is
combin.ed with the data obtained in this research for KCl in DMF /water solvent contain-
ing 0.75 mole fraction, the resulting plots suggest that log K 4 1s linear in neither 100/D
nor log CHzo rather, a maximum appears in each plot (Table 3.3 and figures 3.1 and 3.2).
The limited data for CsCl (Table 3.4) similarly suggests non-linear plots (figures 3.1 and
3.2) and the likelihood of a maximum therein.

In an attempt to rationalize these observations, the proposals of Quist and Marshall!6
concerning selective solvation in non-aqueous solvents has been applied to the KCl/DMF/
water system.

If it is assumed that both H,O and DMF are involved in solvation changes during ion-

pair formation it is possible to write
+ - =
K(solv) + Cl(solv) = KCl(solv) + pHO + qDMF (3.3)

for which the ‘complete’ constant K3 is given by

K = Ay Cigsolyy - (aHzo)p' (apyp?

+ . aCl- '
(solv) (solv) & -4)



Table 3.3 Properties of DMF/water solvents and values of log K, for KCl at 25°C

Mole %

DMF K, log K, 100/D log Cy,0
0.0 0.79, -0.101 1273 1.74
6.005 1.00 0.0048 1339 1.64

13.49 1.70 0.229 1.443 1.53

26.94 3.75 0.574 1.650 134

30.00 3.25¢ 0.512 1.706 1.30

35.06 5.00 0.699 1.783 1.24

49.63 9.58 0.988 2.008 0.60,

75.00 3.37¢ 0.527 2388 1.04

a. presented on Table 3.1

Table 3.4 Properties of DMF /water solvents and values of log K, for CsCl at 25°C

Mole %
a
DMF K, log K , 100/D  Iog Cy,0
9 1.58 0.199 1.37 1.60
30 4.78 0.679 1.70 1.30
50 11.47 1.06 201 1.03
75 12.76 1.11 239 0.604

a. presented on Table 3.1
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FIGURE 3.1 The dependence of log K, upon the recnprocal of the dielectric constant of
DMF /water mixtures at 25°C

© KC(l, data of James
® KC(l, this research

& CsCl, this research

Note: Typical errors for the K, values used are discussed in section 3.3,
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FIGURE 3.2 The dependence of log K, upon log Cy;  in DMF /water mixtures at 25°C.

© KC(l, data of James
@® K(l, this research
A CsCl, this research

%X KCl, derived equation

Note: Typical errors for the K, values used are discussed in section 3.3.’
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or Ky = K, . (ay,)P . (apyp)? (3.5)

where K, is the conventional association constant and K/;’ is independent of solvent
composition. Applying logarithms to equation 3.5 and assuming that activities of solvent

components of the mixture are given by concentrations, we obtain
logK, = logK§ —plog Chyo = 9108 Cpyp (3.6)

The shape of a plot of log K, vs. log CH20 will depend upon the sign and magnitude of
both p and q.

In order to test equation 3.5 the logarithmic data on Table 3.3 was analysed with a
multiple linear regression program whose output included values of Kj , p and g which
fitted the data. The results were log Kz =-,1.42,p=-0.352,q9=-1.70, values whose
order of magnitude appears reasonable. However, the negative sign of p and ¢ implies
that the ion-pair is more solvated than the separate ions. From a qualitative or intuitive
viewpoint such a situation seems improbable. As a check on the computer result, values
of log K, given by equation 3.6a were calculated for the values of log CH20 and log C,

DMF
given on Table 3.3.

logK, = -1.42 + 0.352 logCH20+ 1.70 log Cpyyig (3.6a)

The results of these calculations are plotted on Figure 3.2, showing that the general form
of the original plot is retained by the derived data. However the lack of data at lower
Ch,o values has tended to bias the values of p and g and hence the shape of the derived
plot in this region. Clearly if firmer inferences are to be drawn concerning the application
of the proposals of Quist and Marshall to this system, more data points are needed
especially in the DMF-rich solvent mixtures. In any case, caution would be needed in the
making of such inferences because of the uncertainties inherent in a system whose X o

values are small and the precision of which is lower than might be desirable.
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Chapter 4
TRANSPORT NUMBERS

4.1 Introduction

The theory of the concentration dependence of transport (or transference) numbers
has been discussed in Chapter 1. For other matters relating to the theory and determina-
tion of transport numbers the reader is referred to the literature!»%3, Spiro3 having
published a very comprehensive coverage of the topic.

In the present research attention has been given to the determination of the cationic
transport number of potassium thiocyanate in DMF-rich compositions (0.5 and 0.75
mole fraction) of the mixed solvent DMF/water. The ultimate objective of these
determinations was to obtain the limiting equivalent conductances of the ions K*, CI-
and Cs* in these solvents. This follows the work of James* who determined the cationic
transport number of potassium chloride in DMF/water solvents containing up to about
0.5 mole fraction of DMF. James used the modified Hittorf method of Steel and
Stokes, 5.6

Difficulties arise when this method is applied to potassium halides in DMF-rich
compositions of such solvents. The silver halides used on the reversible silver/silver halide
electrodes dissolve readily, forming silver halide complex ions. Such complexes contribute
to the transport of electric current. Thus what is measured is the transfer of ion-consti-
tuents? rather than the transfer of simple individual ions. Potassium thiocyanate was
the only readily available alternative salt which was sufficiently soluble in the above
solvents. However silver thiocyanate, like the silver halides, is also unsuitable for use on
an electrode since it dissolves in the solutions of potassium thiocyanate forming soluble
silver complex anions. The use of another alternative, silver electrodes and silver nitrate
solutions, was unfavourably reviewed by James?® who found that such solutions were
unstable even when stored in the dark, precipitating solid material (probably silver
oxide) after 24 hours. Consequently the modified Hittorf method was judged
unsuitable for the determinations envisaged and the autogenic rising boundary method,?
using a cadmium anode, was adopted.

In this procedure Cd2* ions from the anode enter the solution (in this research, of
I-1 electrolyte) to form a sharp boundary with the faster moving univalent cations
M*. The cathode used was silver gauze. Cathodic reduction in the systems studied
involved formation of gaseous and alkaline products. However, the design of the cell in
the vicinity of the cathode (compartment F) precluded mixing of these products with
solution in the tube M. This was shown to be so in a dummy run in which phenolphthal-

ein was added to the solution in compartments F and G prior to switching on the current.
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During this run the solution in compartment F gradually acquired the characteristic red
colour of phenolphthalein in alkaline solution but at no stage did this colour appear in
compartment G. This result indicated that the cathode reactions could not affect the
transport number measurements,

KNCS was selected as solute in the chosen solvents because of its ready solubility and
ability to form fairly sharp boundaries. KCl and CsCl, of much lower solubility, appeared
not to form detectable boundaries.

In principle the procedure of the moving boundary method is to measure the volume
traversed by the boundary when a known quantity of electricity has passed through the
cell. In practice the procedure is to measure the time taken by the boundary to traverse
a fixed known volume of tubing under the influence of a measured amount of current,
The transport number is then given® by

th = VCF

obs iT 4.1)
where V is the measured volume (cm?), i is the average current (mA), T is the time taken
(second), and C is concentration of solution (mol dm™).

A correction for the solvent conductance may be applied as indicated by equation 4.2.8

— 4+
t+ - tobs (1+ Ksolvent/Ksolute) (4-2)

A correction for the volume changes associated with the dissolution of the cadmium

anode may be applied® by use of the equation

t, = th -CAV - (4.3)

obs

where, for KNCS solutions, AV in litres per Faraday is given® by

V and V are molar and partial molar volumes respectively. However, data for Cd(NCS),

are not available and the volume correction for KNCS cannot be calculated. An estimate of
the likely magnitude of this correction at 0.04 mol dm™ KNCS was made by calculating
AV for KCI° at this concentration and assuming that the corrections for these two salts

were similar. The calculation gave CAV = -0.0002,. Since the uncertainty of the
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cationic transport number of KNCS in 0.75 mole fraction DMF/water solution is about
+0.0010 in this research (section 4.5.2) the assumption that the volume corrections for

KNCS solutions are within experimental error and can be omitted, appears to be justified.

4.2 Materials

Solutes, solvents and solutions used in the transport number measurements were

purified and/or prepared as indicated in Chapter 2.

4.3 Apparatus and equipment

4.3.1 Thermostat bath

The thermostat bath had glass viewing panels at front and back. The thermostatic
fluid was demineralized water whose temperature was held at 25°C “+ 0.005 by a mercury-
toluene regulator connected to a heating element activated by a thyratron control unit.
The control so achieved far exceeded that necessary for transport work where transport
numbers exhibit changes of the order of 0.1% per C. degrees.

The stirrer motor was positioned so that the blades at the end of the drive shaft
created . maximum turbulence near the heater. The temperature of the thermostat was
measured by a bomb calorimeter type thermometer similar to that described in

Chapter 2.

4.3.2 The autogenic moving boundary cell

The simple cell design chosen resembles a design recommended by Spiro.!® This is
illustrated in figure 4.1.

M is a 30cm length of precision-bore pyrex capillary tubing of internal diameter 3 mm.
Calibration marks 1,2,3,4, approximately 5 cm apart are ceramic decals (transfers) delinea-
ting calibrated sections 1,2,3 as shown. Ground glass socket C is size B7 into which the
carefully turned and lapped cadmium anode El fits snugly. A light smearing of stopcock
grease produced a leak-free fit when E1 is firmly placed in position. Sockets A and B
are size B14. A is used for access to the tube M for filling and emptying and is stoppered
when the tube is in use. E2 is the cathode assembly comprising a roll of silver gauze (the
cathode proper) welded to medium gauge platinum wire which is itself sealed into the
glass tubing. The B14 groundglass cone of E2 is slotted to permit the escape of gas
generated at the cathode when the cell is functioning with E2 in position in compartment F.,

With El in position, polythene gas tubing covers the lead from the positive terminal of
the constant current supply; the end of the tlubing is forced over the ridge of socket C thus

ensuring a tight fit and providing complete electrical insulation of both the lead and the
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FIGURE 4.1 The autogenic moving boundary cell.
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anode from the thermostat water.

The cell is firmly fixed on a vertical cradle mounted centrally on a metal box-frame.
This frame in turn is clamped to a horizontal frame resting on a three point mounting on
top of the thermostat bath. The position of the cell was checked, adjusted and rechecked
for verticality using an accurate engineer’s level. The metal box-frame was always returned

to the same position on the horizontal frame if removal was necessary.

4.3.3 The supply and measurement of current

A ‘constant’ current supply unit, manufactured in the Electronics Workshop of this
department, was used to provide currents up to 0.5 milliamp. Such currents were
supplied at a potential of about 550 volts. Consequently a safety rule was laid down that
adjustments to apparatus in the vicinity of the cell or the power supply would only be
made when the mains supply was disconnected.

The amount of current passing through the cell was determined by measuring the
potential difference across one of a set of calibrated resistors of between 1k £ and 100k&.
The resistors were incorporated into the circuit between the earthed positive terminal of
the supply and the anode. This arrangement avoided errors caused by any leakage of
current from cathode to earth via the thermostat bath. The potential across the resistors
was mevasured with a Doran® dc potentiometer which was capable of a precision of better
than 0.01%. This instrument had previously been calibrated by James!! against a certified
Cambridge potentiometer type 44248.

During a run this potential was measured and recorded at intervals usually of about 5
minutes. The performance of the constant current supply can be gauged from a typical
plot shown in figure 4.2.

An estimation of the mean potential difference for each section of the run was made
either from a plot of the potential or by an integrating program for the Hewlett-Packard
9820A Model 20 calculator. Corresponding currents were obtained by the application of

Ohm’s law.

4.3.4 Cathetometer

The cathetometer, used for viewing the boundary, stood on a rigid steel table which was
bolted to the floor in front of the thermostat in such a position that the telescope objective
lens was approx'imately 30 c¢cm from the front window of the thermostat or about 45 cm

from the m.b. tube. This permitted the telescope to focus on the tube. The depth of

*Doran Instrument Co. Ltd. Stroud. Glos. England.
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field of this optical system was such that, once a clear focus on a calibration mark had been
achieved, the image of the boundary could also be clearly seen without further adjustment.

Care was taken to ensure that the optical axis of the telescope was horizontal. This
was accomplished with the aid of an engineer’s level, guaranteed true.

The verticality of the cathetometer pillar was then established using the horizontality of
the telescope as a criterion. This involved applying the principle that rotation about a truly
vertical pillar would not affect the levelling bubble mounted on a truly horizontal telescope.

Once the pillar had been established in a vertical position the verticality of the m.b. tube
could be checked by viewing the tube while the telescope was racked up or down on the
pillar. Verticality of the tube in a vertical plane at right angles to the optical axis of the
telescope could not be checked in this manner.

4.3.5 Timers

Two timers were used during a run, one being started simultaneously with the stopping of
the other as the moving boundary passed a calibration mark on the tube. In a normal run
four such marks were passed. Both timers were built in the Electronics Workshop of this
department. One timer, had E1T counting tubes incorporated into its design. The second
timer, using integrated circuitry with semiconductors for counting and display, was used
in conjunction with a 60 watt 250mA filter to reduce its susceptibility to ‘spikes’ from
the mains supply.

Each timer was calibrated against a Schlumberger Model FH2524 Universal Counter.

4.3.6 Apparatus for enhancing the visibility of the boundary

Moving boundaries may often be detected optically by virtue of a difference in the
refractive index of the solutions in the vicinity of the boundary. Detection of a boundary
is therefore enhanced by light passing through the boundary region towards the viewer. In
this research light was shone on the m.b. tube through the rear window of the thermostat
bath using a lamp mounted on a carriage which ran smoothly over a pair of vertical runners
fixed firmly to the bench behind the bath. The arrangement described has been suggested
by Spiro.? The vertical position of the lamp could be adjusted by means of a pulley system
controlled at the bench front by a thread-and-screw assembly. The lamp itself was mounted
inside a blackened lampcover which was horizontally slotted to produce a rectangular
opening about 10 cm long and 5 mm high. Filter paper fitted inside and behind the
opening produced uniform band of diffused light. A vertical cylindrical glass tube 10 cm
wide and 36 c¢m high and filled with demineralized water was placed between the lamp
and the rear window of the thermostat. This acted as a cylindrical lens which improved

the visibility of the boundary and reduced the dark appearance of the inside walls of the
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m.b. tube.

Viewed through the telescope, the boundary tube could be seen outlined against the
narrow horizontal band of light produced by the lamp. The boundary itself only becomes
visible when its image is seen as being close to either of the horizontal edges of the band
of light. When viewed near the lower edge, the boundar;/ is seen as a bright line; by suitable
adjustment of the vertical position of the lamp the boundary can be seen as a dark line near
the upper edge of the band of light. The dark line image of the boundary was preferred as
being more easily detectable and more suitable for the timing technique outlined later in

section 4.4.2.

4.4 Practical aspects of the transport number determinations
4.4.1 Some procedures in preparing for a run

The m.b. apparatus was cleaned in the first instance by treatment with chromic acid
followed by rinsing and soaking with demineralized water in a manner similar to that used
for conductance glassware. Thereafter chromic acid was not used. The normal preparation
of the tube involved filling, flushing and emptying it at least six times using the test
solution. This was achieved with the aid of syringes fitted with long stainless steel capillaries.

To avoid the formation of air bubbles the test solution was de-gassed just prior to the
final filling of the m.b. tube. The apparatus, stoppered at A and with electrode E2 in place,
was allowed to equilibrate with the thermostat bath. A visual check for bubbles was then
made using the telescope of the cathetometer. A check on the verticality of the catheto-
meter pillar and the m.b. tube could be made at the same time. .

The telescope was adjusted so that sharp images both of the cross-hairs and a selected
calibration mark exhibited a minimum of parallalax. This was to ensure that a minimum
of parallalax error would occur when the image of the moving boundary appeared to
coincide with that of the cross-hairs. That such a minimum was achieved was checked when
the boundary appeared. Thereafter the focus of the telescope was retained in this position

for the duration of the run.
4.4.2 Timing technique
The timing of the passage of the boundary from one calibration mark to the next

involved two important techniques. These were

*  Positioning the cross-hairs of the telescope accurately in relation to each calibration

mark.
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This was achieved by ensuring that the top edge of the image of the calibration mark

coincided with the point of intersection of the bottom edges of the image of the cross-hairs.

**  Judging consistently the instant of commencement or completion of a time

measurement.

As the moving boundary approached one of these points in time, the triangle of light
formed by the intersection of images of the boundary and cross-hairs gradually dwindled
to a single tiny spot of light.

At the instant of disappearance of this spot the timer switch was pressed.

Judgement of this moment was enhanced by adjusting the position of the lamp to

produce maximum darkness in the image of the boundary.

4.4.3 Specific conductance of solvent and solution

During the transport run the resistance of the solvent was monitored ir a solvent cell
or a flask cell thermostatted in an oil bath at 25°C. In most cases slight hydrolysis of the
DMF caused a increase in the specific conductance of the solvent for the duration of the
run. A typical example of this change was from 3.3 x 1077 ohm™ cm™ to 3.6 x 1077
ohm™ ¢cm™.

The resistance of the solution was measured in a thermostatted dip-cell to give the
specific conductance of the solution under study.

The ratio of the two specific conductances was then available for the calculation of the
solvent correction (equation 4.2). This factor had typical values in the range 1.0002 to

1.0016.

4.4.4 Calibration of the cell

The literature contains accurate values of the cationic transport number of KCl in water
over the range 0.001 ~ 1.0 mol dm™. Accordingly the three volumes delineated by
calibration marks 1, 2, 3 and 4 on the tube M were calibrated using the convenient
concentration 0.1 mol dm™ of KCl in water, for which ¢, = 0.4899.12 This data can be
used in equation 4.1 to evaluate the volume of the relevant section of the tube, subject to
the correction applied by equation 4.2. In one of the four runs a higher current gave the
same results within experimental error, thus indicating an absence of current dependence
in the system. The results of these calibrations are shown on Table 4.1.

A useful check was afforded by the measurement of physical dimensions of the

cylindrical volumes between adjacent marks. The internal radius of the tube was evaluated



Table 4.1 Calibrations of moving boundary tube

(a) Electrical method (at 25°C) (using aqueous KCI, 0.1 0089; mol dm™3)

Section 1 Section 2 Section 3

ave. current  time volume ave, current  time volume ave. current  time volume

Run No., (mA) (sec) (em®) (mA) (sec) (cm®) (mA) (sec) (em®)
1 3.0488 22979 0.3525¢ 3.0480 22939 0.3518; 3.0475 2248.3  0.3448,
2 3.0454 2294.7 03516, 3.0450 22959 0.3518, 3.0445 22455 0.3440,
3 3.0452 2300.8 0.3525¢ 3,0452 22980 0.35214 3.0452 2250.3  0.3448,
4 4.0473 17315 0.3526, 4.0473 1730.7 0.3525, 40473 1690.2 0.34424
mean 0.3523, mean 0.3520, mean 0.34444

(b) Physical method : dimensions of cylindrical volume

Internal radius (mm)
Length (cm)

Volume (cm®)

Section 1

1.5006
4.982
0.3524

Section 2
1.5006
4.969
0.3516

Section 3
1.5024
4.863
0.3449

6%
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by using a travelling microscope to measure the length of a column of mercury of known
volume, applying a correction for assumed hemispherical ends of the column. The distance
between adjacent calibration marks was measured with the cathetometer. Volumes
calculated from this data are shown on Table 4.1. The values obtained give fairly good
agreement with the electrical calibrations but because the physical measurements are of

lower precision, the volumes obtained are not included in the final calibration values.

4.4.5 Concentration dependence

In chapter 1 reference was made to the concentration dependence of transport numbers.

This dependence was summarized by the equation

‘o, 4 (05-4)B/C
I 7 (1+Bay/JON (1.30)

Because of imperfections in the theory, values of the apparent limiting transport number
tlp/ show a small concentration dependence rather than a constant value. Consequently the
‘true’ limiting transport number tlp must be obtained by evaluating tlp/ over a range of
concentrations and then extrapolating to infinite dilution. (This procedure is analogous

to the Robinson-Stokes procedure for the evaluation of A%, outlined in Chapter 2). In the

current research tf,’_ has been so obtained.

4.4.6 Allowing for ionic association

During the computation of A? values for KNCS in the DMF-rich solvents, out-put
from PROGRAM LOAOKA showed that, at the concentrations used, 2- 10% ionic -
association occurred. (This was expected in view of the lower dielectric constants
imvolved). Allowance for the effects of inter-ionic attractions were therefore necessary and

were accomplished by application of the mass action law to the equilibrium

/K
Kt NCS™ \L— 4 gt 4 NCS-
KA
This gives
1 - yC f4?
K, 17 Tines (4.5)

where 7 is the percentage of salt existing as discrete ions, f is the mean ionic activity

coefficient and fxncs 18 the activity coefficient of the ion pair. Taking Jxncs= 1 we have

1 - yC fa?

K, Ty (4.6)
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The value of K 4 Was available in the output data of PROGRAM LOAOKA. f+ can be

obtained from the Debye-Hiuickel expression

log fx = ~ ANVC
/)

[+Ba/C _ “.7

A= 1.8246;;2106 and B =50.29 xl/l 08
(DdT) ohH”

The value of a was obtained from the output of PROGRAM LOAOKA.

where

Substitution for f+, K,, 4 and C in equation 4.6 leads to a quadratic equation in .
Solving for v permits the calculation of the value of yC, the fraction of the concentration
actually present as discrete ions. The value of yC was then substituted in equation 1.30

in place of the analystical concentration C, and a new value of tIP/Was determined.

4.4.7 Current dependence

Spirol? has warned against assuming independence of current in transport work. This
warning has been heeded in the present research. For example, calibration of the cell with
KCl at a concentration of 0.1 mol dm™ was performed with two different currents.

In the DMF/water solvents studied, the choice of current magnitude was limited by the
observation that, for a given concentration, a solution tended to exhibit a characteristic
optimum current for the formation of a sharp boundary. Currents in excess of the optimum
gave curved, less dark boundaries; currents less than the optimum gave more diffuse
boundaries. In either case precision suffered. As a result, variation of the current at a given
concentration was not studied. However since the ‘optimum’ current changed with |
concentration, a range of currents has been used in the determination of tg_ for a given

solvent. This can be observed in Tables 4.2 and 4.3.

4.5 Results and discussion

4.5.1 t2(KNCS)in 0.5 mole fraction DMF/water

Table 4.2 displays results for two concentrations of the salf.
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Table 4.2 Cationic transport numbers of KNCS in 0.5 mole fraction DMF/water solvent

at 25°C
Solution Average
Cx 10* volume current Time )
(mol dm™) (¢m?) (mA) (second) ty 1
1.9741 1.0489 0.30464 140429 0.4689 04712
39157 1.0489 0.44340 191414 0.4681 0.470912

a. For the more concentrated solution 7y was found to be 94.3%. Substitution of the value of YC
for that of C in equation 1.30 had no effect on the calculated value of r,9 R

The solution volume indicated represents the passage of the boundary from mark 1 to
mark 4 on the tube. Times at which the boundary passed marks 2 and 3 were also noted
so that three separate estimations of £; could be made (see Appendix 4.1). These
estimations showed a precision of about 0.1%, suggesting that such a precision also
applies to the overall run. (The main source of error in the determination appears to
occur in the timing technique where the uncertainty was about £4 seconds, arising from
a difficulty in ascertaining the disappearance of the spot of light, a technique discussed in
section 4.4.2). Since the two values of t_?_/ are within this experimental error, no concen-
tration dependence can be inferred. Accordingly the value of t_?_ is taken as the mean of
the t_?_/ values. This means that the most precise value which can be taken is z‘_?, =0.4710
+0.0005.

The determination of t_?_ (KNCS) in this solvent provided a check on technique through
X)K* . The mean value of A°(KNCS) (Chapter 3) was determined as 48.289 £0.005 which
leads to X, =22.7,.7J ames® used a modified Hittorf method to obtain t_?_(KCl) in a range
of DMF/water solvents including one containing 20% water (0.496 mole fraction DMF).
He subsequently obtained 2%+ = 22.64 for this solvent. Interpolation, at 0.5 mole fraction,
of the }‘%{" values presented by James gave )‘OK" =22.7,. Since the evaluation of the two
X%, values involved determinations of a total of four fundamental parameters (two each of
t_?_ and A%), each with its own indeterminate errors, the agreement can be regarded as very

satisfactory.

4.5.2 19 in 0.75 mole fraction DMF[water

The work of James with KCl and KBr'4 in DMF/water solvents was confined to the
range 0-0.496 mole fraction of DMF. Prue.and Sherrington!S found t_?_ for KNCS in
pure DMF, but no other data appears to be available between 0.5 and 1.0 mole fraction
of DMF in the aqueous mixtures. The value of t_‘,’_ in 0.75 mole fraction DMF has therefore

been determined. This permits calculation of X° for K, Cst, CI~and NCS~ from
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conductance data obtained in this research, and also provides an additional point in the
plots of Stokes radius vs. 100/D for these ions.

Table 4.3 summarizes the results of five runs at four concentrations of KNCS in 0.75
mole fraction DMF. Precision obtaining in these determinations of £, is inferior to that
obtained in 0.5 mole fraction DMF, about 0.25% or bett'er, being achieved.

Table 4.4 presents three sets of values of t_?_/ obtained from the r, data using either the
analytical concentration C, or yC for the concentration terms in equation 1.30. The
effect of the choice of @ value on tf_’ can be seen. The value a = 9.37 was obtained during
the computation of A® for KNCS by PROGRAM LOAOKA. Values of tf_/ obtained using
this value of a produced a positive slope when plotted against concentration (Figure 4.3).
The use of @ = 12.0 reduced the slope without changing its sign.

Extrapolation of these data to infinite dilution to give t_?_ was achieved by the use of a
least square program. Results appear on Table 4.5. It is clear that the choice of a has at
least a 0.1% effect in this instance, upon the result of the extrapolation, but the use of
vC or C in the concentration terms of equation 1.30 makes little difference to the value
of t_?_ obtained. Such differences are within experimental error.

The value t_?_ =0.3973 £0.0010 is taken as the limiting cationic transport number of

KNCS in 0.75 mole fraction DMF/water at 25°C.

4.6 Transport numbers and ionic conductances

One of the principal practical applications of a limiting transport number is its use in
splitting limiting equivalent conductances of strong electrolytes into their respective'
limiting ionic conductances, assuming that the transport number used (always that of the
ion-contituent) is numerically equal to ionic transport number. Once a transport number
for a given ion is known, the limiting ionic conductances of any number of ions in the
same solvent can be calculated from the appropriate limiting conductances of electrolytes.

Table 4.6 illustrates this point for three salts used in this research.

Table 4.6 Limiting ionic equivalent conductances in 0.75 mole fraction DMF/water
solvent at 25°C derived from limiting equivalent conductances and t_?_(KNCS) =

0.397,
Salt Al X, N\
KNCS 66.78¢ 26.55 40.24
KCl 59.615 33.0,

CsCl 62.17, 29.0
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Table 4.3 Cationic Transport Numbers of KNCS in 0.75 mole fraction DMF/water solvent

at 25°C
Solution Average

Cx 10 volume current Time

(moldm™) (cm3) (mA) (sec) B
0.9989 1.0489 0.19671 13151.9 0.3908
1.0754 0.3523, 0.20164 4650.6 0.3906
2.1790 1.0489 0.29714 19032.6 0.3903
3.1484 1.0489 0.39933 20482.8 0.3897
39318 0.69655 0.49324 13760.6 0.3893

Table 4.4 Apparent Limiting Cationic Transport Numbers of KNCS in 0.75 mole fraction
DMF/water at 25°C according to the values of @ and the nature of the concen-
tration term used in the calculation

Apparent Limiting Cationic Transport Numbers

concentration =C concentration =vyC
Cx 107
(moldm™) v t, a=9.37 a=9.37 a=12.0
0.9989 0.960 0.3908 0.3982 0.3981 0.3976
1.0754 0958 0.3906 0.3982 0.3980 0.3975
2.1790 0.930 0.3903 0.3999 0.3997 0.3988
3.1484 0.908 0.3897 0.4005 0.4001 0.3991
39318 0.893 0.3893 0.4009 0.4005 0.3993

Table 4.5 Limiting Cationic Transport Numbers of KNCS in 0.75 mole fraction DMF/
waterat 25°C. Comparison of values obtained by a least square program

concentration S. Error S. Error for

term used a (x 10%) £ (x 10%) )

C 9.37 3.48 3.44 03974
1C 9.37 3.58 3.54 0.3973

YC 12.0 3.05 3.02 0.3970
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FIGURE 4.3 Values of t_?_. for KNCS in 0.75 mole fraction DMF /water mixtures at 25°C.

X a =9.37; no correction for ionic association
® a =9.37; corrected for ionic association

@ g =12.0; corrected for ionic association
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Table 4.7 indicates the two X’ values derived from t_?_ obtained in 0.5 mole fraction

DMF/water solvent for KNCS solutions.

Table 4.7 Limiting ionic equivalent conductances in 0.5 mole fraction DMF/water solvent
at 25°C derived from A° (KNCS) = 48.289 and t_‘l’_(KNCS) =0.4715

K+ Xnes-
227, 255,

The values of )‘OCI' in 0.09, 0.3, and 0.5 mole fraction DMF/water solvents have been
obtained by interpolations of the available data, thus permitting the calculation of }‘OC o+
from the A° values obtained for CsCl. The interpolations were performed in several ways.
The simplest method used was to interpolate on a direct plot of 7\°Cl- against cither weight
percent of water or mole fraction of DMF. Another approach involved the evaluation of a

deviation function of the form
fo) = 7\°Cl- — b (mole fraction -0.35)?

where b is a convenient arbitrary constant chosen so that the range of values of f(\) was
no more than two \ units. Such a narrow range of values increased the precision with which
f(A), and hence }‘OCI" could be interpolated, either by computer or by graphical methods.
The results of all interpolations were averaged. Table 4.8 displays the values of X’ for CI”

and Cs' over the range of DMF/water solvents from 0~1.0 mole fraction DMF.

Table 4.8 Limiting ionic equivalent conductances of CI” and Cstin DMF/water mixed
solvents at 25°C

mole fraction

0 0 (]
DMF A RCI’ X cs*
0.0 153.65, 76.352 77.3,
0.09 81.90, 392, P 42.6,
0.30 4439, 213, 2 2304
0.50 45.68, 21,2 235,
0.75 62.17¢ 33.0, ¢ 290,
1.00 - 551 4 3454
a. Robinson and Stokes, reference 16.
b. Interpolated value, data from a, ¢, d and reference 14,
c. this research, via )\OK+ and A° Xan.
d. Prue and Sherrington, reference 15.

The interpolated value for )\OCI‘ in 0.3 mole fraction DMF leads to )‘OK‘“ =23.24, obtained
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from the determined value of A° for KCl in this solvent, thus providing an additional data
point to the range of N+ values determined by J ames® Application of the literature
valuel® of 73.5, for )‘OKJ' in pure water led to the value AONCS" = 66.49 when applied to
the determined value of A° (KNCS) for that solvent.

The values of X presented on Table 4.8 clearly indicate a substantial dependence upon
solvent composition. It is clear also that such a dependence must be due to ion-solvent
interactions rather than ion-ion interactions since, at infinite dilution (a condition pertain-
ing to the definition of X°) interactions between ions cease to exist.

In the next chapter the 2 values presented above will provide key data both for the

calculation of Stokes radii and for a discussion of ion-solvent interactions,
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Chapter 5
IONIC CONDUCTANCE AND SOLVENT PROPERTIES IN DMF/WATER MIXTURES

5.1 The development of the Fuoss-Boyd-Zwanzig theory

The velocity of a rigid spherical particle moving in an ideal hydrodynamic continuum

was shown by G.G. Stokes! to obey the relation
v = Fl6nnyr (1.7

where r is the radius of the sphere and F the force acting on it. This relation has long been
the basis for the construction or discussion of models for the behaviour of ions in real
solutions.

When an ion is treated as a rigid charged sphere moving in a continuum solvent, the
application of Stokes’ Law leads to an expression relating the limiting ionic conductance

and the viscosity of the solvent.

X = |z |F?/6mmRN (5.1)

" When R;, the Stokes radius of the ion, is expressed in Angstrom units, equation 5.1 becomes,

for a univalent ion,
R, = 0.8194/)\?17 (5.2)

Since in this model R; is constant, the product A%, known as the Walden Product, is also
constant. Hence, according to the model, any observed differences in 7\? for a given ion in
different solvents must be attributable to differences in the viscosity of the respective
solvents.

In practice only a few solutions obey Walden’s Rule. Examples? include large ions such
as those of tetraethyl ammonium picrate in a variety of solvents. The failure of most other
electrolyte solutions to obey this rule has been attributed to a number of possible causes
including the solvation of ions® # 3 leading to a variation in the size of a given cation
from solvent to solvent. Another suggested cause of the failure of Walden’s Rule has been
the non-constancy of the magnitude of the viscous frictional coefficient. Thus Robinson
and Stokes® have suggested that, although the Stokes equation may be of the correct
form, the numerical coefficient may not be 67. They have proposed a correction procedure
based upon a knowledge of the mobilities of the tetra-substituted ammonium ions. Another
suggestion’ for refinement of the rule centred on the viscosity term itself, proposing that

the Walden relationship is better represented as

XnP = constant | (5.3)
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where p is an arbitrary constant, devoid of theoretical meaning. However, for aqueous-
nonelectrolyte solutions the index p has been shown’ to vary both with the nature of the
ion and with the nonelectrolyte component,

Fuoss? in observing the dependence of the Walden product upon the dielectric constant
of the solvent, proposed that electrostatic forces between ions and dipolar solvent molecules
contributed to an increase in the solvent viscosity in the vicinity of each ion. The ions were
thus subject to a greater retardation than that due to the bulk viscosity alone. This
proposal led to a modified form of equation 5.1

0 - |z,|F 2
i 6mNn (R + S/D) (5.4)

where S is an empirical constant. The dependence of the Stokes radius upon dielectric

constant could thus be written as
R'. = Rl?° +S/D (5.5)

where Rl?° is the hydrodynamic radius of an ion in a hypothetical solvent of infinite
dielectric constant, a solvent in which all electrostatic forces are zero.8 A plot of Stokes
radius against 1/D should be a straight line of slope .S and intercept R‘l’° The plots
presented by Fuoss in support of this proposal were indeed mostly linear; non-linear
sections of plots for polar-polar mixed solvent systems were explained in terms of the
rate of hydrogen bonding in the hydrodynamics near an ion.

d% 10 11, 1Z° eyaluated the coefficient S theoretically and found

Later Boy and Zwanzig
that it was related both to the dielectric relaxation time, I', of the solvent, and to the
viscosity.

Ie? . D-Doo
6m(R°)’ 2D +1 (5.6)

Doo is the high frequency dielectric constant. If Deo is assumed to be much less than D

and D much greater than unity!2, S is given by

I'e?
320n(R™)° (5.7)

Since R‘l’° for a given ion is constant by definition, S should be proportional to the

ratio I'/n

S = constant. T'[n (5.8)
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A theoretical equation by Debyel3 showed that I' was proportional to 1 and to the cube
of r, the radius of an orientable particle. Dannhauser and Johari'* observed direct
proportionality between I" and 7 even in associated liquids such as water for which Debye’s
equation should be inapplicable. The theory of Fuoss, Boyd and Zwanzig (FBZ) thus
developed gives

R. = R© + constant. ' =1
i~ 5T TR®Reyn D (5.9)

where the coefficient of the 13 term is .S, a measure of ion-solvent-dipole interaction.

If I'/n is independent of D

R. = R® + constant’ o

i i (Ri°°)3 D (5.10)
Thus the predicted linear plot of Stokes radius against 1/D should provide a value of

R?* either from the intercept or from the slope of the line.

5.2 Tests of the FBZ theory

Early tests® of the FBZ t.heory proved to be encouraging without being completely
satisfactory. More recent work, including some by the author and another?? in this
department, has shown that the theory has serious inadequacies, these residing largely in the
dependence of the theory upon too simple a model for an electrolyte solution. Outlined
below is an examination of the results of a number of workers.

Fuoss and co-workersl>-

19 have evaluated R; for alkali halides in dioxane/water
solvents. In a number of cases, notably LiCl, NaCl and KCl, a plot of R, against 100/D
shows a small minimum at fairly high values of D. For lower values of D (less than about
30) the plots tend to be linear. By extrapolating these linear sections of the plots, values
of Rf° were obtained which, almost without exception, were smaller than the respective
lattice radii.

James?0 extended these studies by examining the Stokes radius of K+, CI" and Br™ in
DMF/water mixtures over the range 0-100% DMF. As indicated in Chapter 4, part of
this research complements James’ work, providing X° values and hence Ri for KT and CI”
in 0.75 mole fraction DMF /water solvent. All the conductance data in DMF/water, unlike
that of the Fuoss school mentioned above, are based on the determination of transport
numbers in each solvent, thus avoiding the assumption that transport numbers are

independent of solvent composition. Data for K* and CI" is presented on Table 5.1. Plots

of the corresponding Stokes radii are to be found on Figure 5.1.



Table 5.1 Ionic equivalent conductances and Stokes radii of Kt and CI” in DMF/water mixtures at 25°C

DMF
mole % D 100/D n(cP)? Net R,(A) Xor Rer(A)
0 78.54 1273 0.8903 73155 125, 76.35 1.205
5.80 748 1337 1.40 49.64 1.176 - -
6.01 747 1339 142, - - 473, 121
13.52 69.3 1.443 2015 34.2, 1187 31.6, 1.284
26.99 60.6 1.650 2.50, 243, 1344 219 149,
30.00 58.8 1700 248, 23.2,° 1414 213,° 1415
35.11 56.1 1.783 239, 22.0 156 209 1635
49.62 498 2.008 187, 226, 192, 220, 1.98,
75.00 4138 2.388 1.14 26.5,% 2.695 33.0, 2.16
100.00 367 2.724 0.801, 308 © 33; 55.1 1.87

a. This research, presented in Chapter 4.

b.Interpolated value, presented in Chapter 4.
¢. Data of Prue and Sherrington, Trans, Faraday Soc., 57, 1795, (1961).

d. Obtained or interpolated from data on page 131 of reference 20, presented in Appendix 2.1.

a9
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FIGURE 5.1 The dependence of the Stokes radius of K* and CI” upon reciprocal of dielectric constant of
DMF /water mixtures at 25°C.
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A comparison of the R plot with those for alkali halides in dioxane/water mentioned
above provides both similarities and marked differences. Similarities occur in that a small
minimum occurs at fairly high D (in DMF/water 100/D = 1.4) while the remainder of the :
plot (100/D values from 1.6 to 2.7) is nearly linear. However the significant divergence from
FBZ theory (evident in the appearance of the minimum in the R plot) becomes even more
serious when values of RY” are determined from the curve. The slope of the near-linear
section gives RS = 1.3 A (approximately the crystal radius) but the intercept gives the
unreal value of -1.8 A. The FBZ theory is further challenged by the existence of a well-
defined maximum in the plot for CI7, occurring at 100/D = 2.4 or thereabouts. Further,
the intercept of the linear section of the plot gives a stightly negative value of Stokes
radius although from the slope R = 1.4A.

A considerable part of this research was devoted to obtaining a Stokes radius plot
(vs 100/D) for Cs' in order to make a comparison with that for Kt outlined above. Results
are presented on Table 5.2; also included are results for NCS™ at four solvent compositions.
The Stokes radius plots are displayed on Figure 5.2.

A number of similarities to the respective plots on Figure 5.1 can be observed. The
cation plots both have a minimum near 100/D = 1.4 as well as near-linear sections for
100/D>1.65. These plots both give anomalous values for R} obtained from the intercept—
Cst giving -1.18 A. From the slope of the linear section, the plot for Cst yields R =1.424,
a size somewhat less than the crystal radius.

The anion plots are also similar in that maxima occur near 100/D = 2.4, although the
curve for NCS™ is flatter. The available points for this ion suggest a near-linear section for
100/D<2.0 and a tentative extrapolation of this section indicates R’ near 0.8 A.
Tentatively, the slope indicates a value for R%° of about 4.6 A.

In other mixed solvents such as methanol/water and ethanol/water, anomalous results
for Rf(K"') are also found?® — negative values are yielded by the intercepts but the slopes
give positive values.

Such inconsistent and anomalous results as have been described constitute a serious
challenge to the assumptions of the FBZ theory and to the sphere-in-continuum model
upon which the theory is based. One source of inconsistency may lie in the assumption
that I'/n is constant. Values of I" and corresponding values of i for a series of dioxane/
water solvents, as cited by Atkinson and Mori?!, indicate a two-fold variation in I'/n over
the range 0-95.15% dioxane. Few values of T" are available for other mixed solvents.

A general conclusion to be drawn from the evidence presented is that a model based on
the sphere-in-continuum is too simple to represent the conductance behaviour of

5,22

electrolyte solutions. This conclusion is supported by a number of workers including



Table 5.2 Ionic equivalent conductances? and Stokes radii of Cs* and NCS™ in DMF/water mixtures at 25°C

DMF
mole % D 100/D nfePf Xt RestB) Nyes Rycs(A)
0 7854 1273 0.8903 7731 1.19 66.49 1384
9 727, 1374 167 426, 114 - -
30 58.6 1706 2.48, 23.0 142 - -
50 49,6 201, 185, 235, 1.87 255, 172
75 4138, 2.38, 1.14 29.0 2.45, 4026 177,
100 36.71 212, 0.801, 345°P 2.96 60.5 © 1.69

X values, except those for pure DMF were presented in Chapter 4,

. Data from reference 24.

Derived from data from reference 23 and reference 24.

. Values obtained or interpolated from data on page 131 of reference 20, presented in Appendix 2.1.

~
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FIGURE 5.2 The dependence of the Stokes radius of Cstand NCS~ upon reciprocal of dielectric constant
of DMF /water mixtures at 25°C.,
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Fuoss himself. It seems very likely that the relation between conductance and solvent
composition is a function of a number of parameters, especially those related to individual
properties of the ions and molecules themselves.> An examination of the variation of a
number of such parameters in DMF/water mixtures comprises the main thrust of the next

section.

5.3 Solute and solvent properties in DMF /water solutions—a search for correlations

5.3.1 Densities and solvent composition

Densities of DMF/water mixtures have been measured by James?® (Appendix 2.1 ). A
plot of these data appears on Figure 5.3. It is interesting to note that the density remains
nearly constant over the range 0-caz0.2 mole fraction of DMF (the top of this range being
one in which four water molecules are present for each molecule of DMF). If, for the sake
of discussion, the density is assumed to be constant in this range, the volume occupied in
the liquid structure by unit mass of DMF is the same as that occupied by unit mass of
water. Given that the respective molar masses of DMF and water are 73g and 18g respect-
ively it follows that 1/73 mole of DMF occupies the same volume as 1/18 mole of water
in this region of interest. This means that one molecule of DMF occupies the same volume
in the liquid structure as four molecules of water.

Given that liquid water has a more open structure than DMF, this simple calculation
provides qualitative evidence for the observed decrease in conductance with increasing
proportions of DMF in DMF/water mixtures and foreshadows discussion of solvent free

volumes in section 5.3.4.

5.3.2 Ionic conductance, viscosity and solvent composition

James?? | seeking a correlation between conductance and solvent properties, plotted
N’K+ , 1 and the excess volume of mixing AVE/ against solvent composition. His data for
R‘él-, }\% ~ and the data of this research for }‘OCs* have been similarly plotted. The X
plots for the anions are similar, but differ somewhat in shape from those if the cations in
the DMF-rich region. However each X’ plot has a minimum at a mole fraction of about 0.35.
Plots typified by )‘OCS* and }‘OCI' appear on Figure 5.4 together with that of solvent
viscosity. The latter plot has a maximum at a DMF mole fraction of about 0.27. A
significant correlation between X and n does not therefore appear to occur. (It is
interesting, however, to note that 7 is linea; up to about 0.15 mole fraction of DMF in

water. This will be discussed in section 5.4).
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5.3.3 Ionic conductance and excess volume of mixing

A correlation does appear to exist between X’ values and those of the excess volume of
mixing (AVE/) of the solvent. The plot of AVE/ vs. mole fraction of DMF (Figure 5.4) shows
a minimum at the same solvent composition as each of the X% plots, but the shape of the
AVE/ plot more closely resembles that of the X’ plot for the anions. Values of AV (units
cm?® mol™) were calculated 25 from interpolations of density data?? (Appendix 2.1) for
the mixed solvents. Since, in attempting to find correlations between conductances and
excess volumes of mixing, interest centres upon distances travelled by an ion rather than
upon the molecules it meets, excess volumes of mixing were recalculated as AVE/, the
fractional change in the volume considered. Equation 5.11 indicates the relationship between

AVy; and AV,
/ .
AV, = AV, . dy, [ (x M, +x,M,) é.1D)
X, , X, are mole fractions, M, , M, are molar masses (as gram) and d,, the density of the

mixed solvent as g cm™. The values obtained for AVE/ are shown on Table 5.3.

Table 5.3 Excess volume of mixing for DMF/water mixtures at 25°C

DMF

mole % Density® 1000 AV,
0 099704 0
9 0.99679 -15.863
30 099113 29607
50 0.97603 ~23.149
75 0.95795 -10.785
100 0.94389 0

a, Densities of mixed solvents are interpolated values

/
The apparent correlation between X and AVf was investigated by preparing plots of
/ /
20 vs. AVg and 7 vs. AVp . These revealed no apparent correlations—in the former

plot the curve was a loop, in the latter the plot was horizontally paraboloid.

5.3.4 Free volumes of the solvents

26,27 relating to the process of conductance in water involve

The proposals of Samoilov
the temporary occupancy of suitable interstitial sites in the water structure by the ions
during their progress through the liquid. Since the electrical conductivity of electrolytes
in DMF/water solvents falls off markedly in the water-rich region, it appears that

Samoilov’s proposals could be used to explain the conductance behaviour in DMF/water
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in terms of a reduction in the number of suitable sites in the water structure resulting
from the presence of DMF molecules. Further, it may be possible to use the same kind of
approach when attempting to explain the conductance behaviour of electrolytes in the
DMPF-rich mixtures by proposing that the ions travel via interstitial sites in the DMF
structure. Since the availability of interstitial sites suitable for ionic migration could be
related to the free volume of the liquid, the free volumes of the DMF/water mixtures were
calculated with a view to seeking correlations with conductance and other properties of
the system.

The free volume, ©, of a liquid is taken to be that fraction of the bulk volume
represented by the sum of the volumes of the voids between the molecules of the liquid.
In the case of closest packing of hard spheres, 74% of the bulk volume is occupied by the
spheres. The interstitial or ‘free’ volume in tﬁis case is 26% of the bulk volume. For a

pure liquid, © can thus be defined as
®=(V°—Nvm)/V° (5.12)

where V© is molar volume and ¥, is the volume of a discrete molecule. The quantity »,,
can be thought of as the ‘hard sphere’ volume of a single molecule. In the example of
closest packing above, ® = 0.26.

Assarsson and Eirich?® claim that for dimethylacetamide, the free volume is about 30%,
that is, ® = 0.30. Calculations made in this research (and discussed later in this section)
indicate that ® for DMF is of similar magnitude, but for water this value is nearly

doubled.

Free volumes of pure water and pure DMF calculated from volumes of discrete molecules

The volume of a single water molecule was calculated from the b-factor in the van der
Waals equation of state for gases. This factor represents a volume equal to four times the
volume of the molecules themselves (the ‘hard-sphere’ volume),

For water?® b = 30.49 cm® mol™ and hence the volume of the water molecule, per se,
is 7.62 cm® mol™ . The molar volume of water at 25°C is 18.07 cm® mol™ and the free
volume © is thus 0.58.

A satisfactory check on this figure is available through the reasoning of Bernal and Fowler.*®
From estimations of the intermolecular separation of water molecules and hence the
‘molecular radius’ in ice I, they reasoned that close-packing of water molecules would
yield a density of 1.84g cm™ . Allowing 26% of the volume as void space, 1.84¢g of close-

packed water have a ‘hard-sphere’ volume of 0.74 cm?. Since 1.84g of real water at 25°C
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occupies close to 1.84 cm?, the free volume calculation gives © = 0.60.

Since a search of the literature did not yield any data from which the volume of an
individual DMF molecule might be calculated, an estimation of its volume was made using
a scale molecular model.* One particular conformation of the model was approximately
discoid in shape, having a fairly uniform thickness measured as 3.25A. The ‘profile’ of the
discoid had an area measured as 28.3A?, leading to a volume calculated as very close to
92A3. This volume corresponds to 55., cm® mol™ . The molar volume of liquid DMF at
25°Cis 77.4 cm?®, hence © = 0.28,.

This result compares satisfactorily with © values of 0.29, for trimethylamine—obtained

from the van der Waals b-factor?® —and about 0.33 for dimethylacetamide.?8

Free volumes of DMF/water mixtures

When a mixed solvent such as DMF/water is formed, the change in volume, AVg,
results from a loss of free volume by each of the liquids. This loss arises from the occupancy
of some of the free volume of one liquid by molecules of the other liquid, and vice versa.

Vf , the free volume per mole of mixture is given by

V, = ©,V;+0,V;+ AV, (5.13)

f

where V =xM/d°, d° being the density of a pure liquid. The free volume ©,, of the

mixture is thus given by

012 = (O, Vi + @, VL + AV )dy, [ (x My +x,M,) (5.14)
or

v /
©,, = [(@1V1+@2V2)d12 [ (s M, +x2M2)] + AV, (5.15)

The results of calculations of the free volumes of the DMF/water solvents prepared in
this research are presented on Table 5.4 and are plotted on Figure 5.5.
The simple shape of this plot does not suggest correlations with known plots of solvent

and solute properties vs. mole fraction.

*Framework Molecular Model Kit, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
U.S.A.
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Table 5.4 Free volumes of DMF/water mixtures at 25°C

DMF
mole % 1030,
0 578.0
9 482.7
30 3699
50 3252
75 298.7
100 285.0

5.3.5 Variation of solute and solvent properties with free volume of solvent

Figure 5.6 depicts typical plots of X, n and Walden Product against free volume. The

data is summarized on Table 5.5.

Table 5.5 Properties of solute and solvent in DMF/water mixtures at 25°C

DMF
mole % 10°0,, 10*n XJCI' 107 n7\°CI- }‘OCS’* 102 n7\°Cs+
0 578 0.8903 76.35 0.6794 77.34 0.6884
9 483 1.677, 392 0.6595 42.6, 0.714,
30 370 2.489, 21.3; 0.530, 23.04 0.574;
50 325 1.8564 22.1, 04114 23.5, 0.436,
75 299 1.145, 33.0¢ 0.379, 29.0, 0.333,
100 285 0.801, 55.1 0441, 34.5 0.2764

No simple correlation of the plotted parameters with free volume is evident although
a portion of each of the 7\°CS+17 and 7 plots is linear between ©,, values of 0.285 and
about 0.335 (equivalent to the considerable DMF mole fraction range 1.0 - ¢z 0.45 ). The
linearity of the viscosity plot was checked by calculating additional data points using
interpolated data for densities and viscosities from the data of James (Appendix 2.1).

The failure of the limiting ionic equivalent conductances to exhibit a linear relationship
with ©,, indicates that, if Samoilov’s model for the conductance process is accepted, the
number of suitable interstitial sites in the structure of the liquid is not related to the free
volume in a simple way. Conversely, it may be that Samoilov’s model is too simple to

explain such a complex process as ionic conductance in a mixed solvent.

5.4 Solvent-solvent interactions in DMF/wz-lter mixtures

The change in viscosity of DMF /water mixtures with solvent properties remains of
interest. This research has shown that over different but not insignificant ranges of

composition, the viscosity has varied linearly with mole fraction of DMF (0 -¢z0.15 mole
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fraction DMF) and linearly with free volume in DMF-rich solvents in a range equivalent to
1.0 = ca 0.45 mole fraction. The latter relationship may arise because water added to DMF
may enhance both the structure and hence the volume of the liquid through hydrogen
bonding thus increasing the frictional resistance exerted by the solvent particles upon each
other.

The change of viscosity of DMF/water mixtures with solvent composition has been
investigated more fully in this research.

Assarsson and Eirich?® have examined the viscosity of a number of amide/water mixtures.
They have remarked on the occurrence of viscosity maxima at definite integral mole
fractions of the amides, suggesting complex formation by bonding between the peptide
dipole and water. In the case of DMF/water, the maximum occurs at a DMF mole fraction
of about 0.27 (Figure 5.4) suggesting a complex with the formula DMF(H;0), rather than
DMF(H,0),, as implied by Assarsson and FEirich.

The possibility of the existence of DMF/water complexes was investigated in this
research by applying the Einstein relation (equation 5.17) which holds for large solute

particles at low concentrations.

el = 1+ 2.5¢ (5.16)

Nyel 18 Nsolven t/nwater and ¢ is the volume fraction occupied by the solute particles.
When ¢ is expressed in terms of the molar volume V and concentration C of complex,

equation 5.16 becomes
N,y = 1+ 25VC (5.17)

The slope of the plot of Myl 28aINst C gives a value for v directly—this system .had
V=96.0 cm® from a plot (using interpolated values of ), shown in Figure 5.7. As can
be seen, the Nye; Plot remained linear up to a concentration of about 0.5 mol dm™ (about
0.01 mole fraction of DMF). This concentration exceeds the limits beyond which the
Einstein relation could reasonably be expected to hold. The extent of the linearity of the
plot, together with the feasible values obtained for the molar volume constitute good
evidence for the existence of a DMF/water complex.

The formula of the complex was investigated. An estimation of the volumes of the
possible complexes DMF(H,0), and DMF(H,0); using scale models (Section 5.3.4), gave
91 and 109 cm?® mol™ respectively. The volume obtained from the graphical application
of equation 5.17 lies between these values. Accordingly, and in view of the imprecisions

inherent in the volume estimations involving models, no firm conclusions can be drawn
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frcm the results of this investigation. At least three possibilities exist—

*  The complex exists entirely as DMF(H,0),.

Molar volume estimates tend to support this possibility.

**  The complex exists only as DMF(H,0), leaving some DMF uncomplexed. ( This

means that the equilibrium constant for formation of complex is small),

In this possibility, the molar volume of the molecules of the complex as obtained from
the graph is a weighted average of the volumes of the DMF(H20); complex and
unhydrated DMF molecules. The proportion of free DMF molecules has been estimated

at about 24% in this case.

¥*%*  Both DMF(H,0), and DMF(H,0); form, all DMF being complexed.

Here the molar volume of the complex obtained graphically is the weighted average of
the molar volumes of the two possible complexes. Calculations indicate possible

proportions as 72% DMF(H:20), and 28% DMF(H20);.

Whatever the formula of the complex, the evidence suggests that it tends to increase the
viscosity of the solvent in water-rich compositions of the solvent. The dependence of
viscosity upon free volume in DMF-rich compositions of solvent has already been
discussed, the evidence here suggesting that water enhances the structure of the solvent.
Combining the implications in the two regions of solvent composition it is clear a number
of factors related to the solvent’s structure must contribute to the magnitude of the
equivalent conductance of an ion. These factors, including complexation and the bulk
structure of liquid, appear to be related in a complicated, and as yet unknown way. The
explanation of changes in equivalent conductance is made yet more difficult by the effects

of ion-solvent interactions, as discussed in the following section.

5.5 The effect of chemical equilibrium between mixed solvent species and solute ions
upon the value of the Walden Product

Hemmes3! has illustrated mathematically how chemical equilibrium between solute ions
and the molecules of a mixed solvent can lead to a highly complex variation of the
Walden Product with changing solvent composition. In the simplest case, the ion M forms
the solvated species MA,, in pure solvent A, where 7 is constant, When solvent B is added

to the mixture its molecules enter into chemical equilibrium with MA,,.
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MA, + B= MA B +A

W

Assuming the Walden product, k; = Xjn for each of the above ions to be constant,

Hemmes obtained the relation

X = Ky (kyp K=Ky ) xy
T+ (K-1) x, (5.18)
where ky,, kyp are the Walden products of MA, and MA, B respectively, x is the mole

fraction of B and K is the equilibrium constant in mole fraction units. N’ is the apparent
limiting ionic conductance of M. This equation predicts that X°n will vary with Xg despite
the fact that both species obey the Walden Rule; only for the special case k; = kyy will
21 be independent of composition. The complexity of the expression for X7 increases if

B is a bidentate ligand or if more than one molecule of B reacts to produce more than one

product. In the latter case, Hemmes obtained

P = ky + (kyp Ki=ky) xB+kMB2K1 2 Xy
[+ (K, - Dxg+ K, K, x2 (5.19)

where K, K, are equilibrium constants for the successive replacement of A molecules in

MA,, by B molecules; kMBzis the Walden product for the ion MA,_, B, .

If the derivative with respect to x of the right side of equation 5.19 is set to zero,

solutions for x, are found to satisfy the equation

B

-Q+(Q*- 4RS)"

xXg = :
2R (5.20)

where Q, R, § are each functions of at least three of K, K3, ky, kyp and kMB2: This
means that X°n shows a maximum or minimum for any mole fraction of B which satisfies
equation 5.20. Clearly if the other ion of the solute also takes part in reactions with the
solvent, the Walden product A°n will be a highly complex function of composition. It is
of interest to note that the Walden products for CsCl (this research) and KCl in DMF/
water mixtures both exhibit a maximum and a minimum (Figure 5.8).

Hemmes’ theory was put to the test using the available data for C1~ in DMF/water
mixtures (Table 5.1).  Using the method of simultaneous equations, several values of
K, ky and ky, were obtained for sets of three data points applied to equation 5.18. Since
the results were inconsistent and anomaloﬁs (some negative K values), the more complex
equation (5.19) was investigated. In this case computer programs were applied to the data

to estimate the five ‘constants’ K, K, ky, kyp and kMBz by the method of least squares
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and also by the solution of simultaneous equations. Both methods gave similar but
anomalous values for the equilibrium constants K; and K, (about -1 and -2 respectively).
In consequence it must be concluded that Hemmes theory does not apply in this system.
Evidently the Walden Products of the respective solvated species do not remain constant.

Hemmes’ paper, and the material presented in section 5.4, provide good examples of
the kind of complexities which workers in this field must expect to incorporate into an

adequate model for ion-solvent interactions.
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Appendix 1.1 CONDUCTIVITY PROGRAMS LOAOKA AND UNASS

These programs use procedures outlined in Chapter 3 to compute A°, ¢ and K ¢
(LOAOKA) or A° and a (UNASS) from input values of A and C. As many systems as
desired may be processed in each computer run, but the last card of the final system

must be followed by a blank card.

PROGRAM LOAOKA

1 Sub-routines
SUBG2, SUBQC and SUBENE

2 Input data

Card 1
FORMAT 102 — system identification — any combination of alphabetic or
nuwmeric characters up to 78 columns may be used.

Card 2
FORMAT 101 — the card is punched with the specific conductance of the solvent.
Card 3
FORMAT 104 — the symbols have the following meanings.
N = number of data points
D = solvent dielectric constant
ETA = solvent viscosity in poise
T = absolute temperature
QK = estimate of A°
AR = estimate of ion sizein A
PKV = estimate of association constant
Cards 4 > N+4

FORMAT 106 — each card is punched with a value of C given at Cx 10#, and its
corresponding A value.

Card N+5
The last card of the final system being processed in the run is a blank. All preceding
systems have N+4 cards. '

3 Output
The principal output of LOAOKA is as follows:

A°, its standard error 0A°, @, 0a, K, 6K, o (the standard error of the fit of the
experimental A and C values to the Fuoss-Hsia equation) and A (the deviation
between the experimental A and that computed from the F-H equation) for each
A-C point.

A2



Appendix 1.1 continued

PROGRAM UNASS

1 Sub-routines
SUBQC and SUBENE

2 Input data
Card 1, 2, 3...N+3, N+4 correspond to cards 1, 3, 4 . . . N+4, N+5 used in
LOAOKA. PKYV in card 2 is ignored.

3 Output ,
A°, g/A°, a, 0a, 8A and 0.

A listing of these programs is presented on the following pages.

A3
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PROGRAM LOAOKA(INPJT ouTPUT)

Ceess PROGRAM ADAPTED FROM R,L.KAY2S FUOSS HSIA PROGRAM BY C.JAMES
C MINOR MODIFICATIONS BRY G.CHITTLEBCROUGH

Ceoeses PROGRAM ITERATES FOR LAMDA 0 o A ZERO o+ % ASSOCIATION CONST.
Cesoee PROGRAM TREATS DATA FOR ASSOCIATED CASE ONLY###R#sausuiinssids

COMMON C{(30)+Q(30)+G2(30)9sCG(30)+sF2(30)9sVF(30)sFM(30)sBC"M(30)
10C(20) «QL (30) sFMI(30) 98CFMI(30)+QCI{(30)+QCP(30)+TDT(30)923(30),
2DLO(30) 9SADL(30) #SG(30) sPKN(30) +DQAA(30) o WT(30) sR(30) sBARY(3ID) »
3INEN(30) «AP(30) «DK(30) »
4D 9BAeQZ e FKAPSALPHAWBETASEL9E29J

100 PRINT 1¢
10 FORMAT (1HD)

& FIRST DATA CARD GIVES SYSTEM IDENTIFICATION
READ 102
102 FORMAT (78H
1 )

c SECOND CARD GIVES KSP OF SOLVENT

READ 101+SPK
101 FORMAT(F10.2)

READI049NgDyETA,ToOK4AR,PKYV

144



104

210
211

124

41
112

85
106
719
717

718

- -

PROGRAM LOAOKA CONTINUED

S Em e - ——

FORMAT (154F11.045F10.0)
IF(N.,EQ,0) GO TO 700

PRINT 211 '
FORMAT (1409%*ASSOCIATED ELECTROLYTE®)
PRINT124

FORMAT (140)

PRINT 102

PRINT124

PRINT 41sSPK

FORMAT (14H SOLVENT KSP=FS5.2¢34E=6)

PRINT1129DsETA,QKsPKVsTeAR

FORMAT(22H DIFLECTRIC CONSTANT=F8.2+11H VISCOSITY=F10.65124 INITI
1AL Q7Z=FB8.39/422H INITIAL ASSOCN CONST=F8.3513H TEMPERATURE=FB.2+12
2H INITIAL AA=FR.3/)

READ1I0S5s (C(J) 90 {(J) eJ=1sN)
FORMAT (2F10.0)

PRINTT719

FORMAT (1+40+%* INPUT DATA%)
PRINT717

FORMAT (14 3X9s7H10000 Cs6Xe1HQs/)
PRINT7189(C(J)sQ(J)eJ=1eN)
FORMAT(F11.45F10.3)

PRINT124

(34
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PROGRAM LOAOKA CONTINUED

Q0=280.195/D
C BEGIN COMPUTATION HERE

640 FLON=N
DT=0#T
SQRDT=SQRT (DT)
ALPHA=820400./ (SQRDT#DT)
BETA=82.501/(ETA®SQRDT)
E1=2.9422E12/ (DT##3) ,
E2=20.43329E87 ((DT#*DT) *ETA)
TA=SQRT (5.0%F 1)
FKAP=50,294/SQRDT

641 QZ1=0K
NX=0
M1=0
AA=AR

650 NX=NX+1
IF (PKV)652+649,651

652 DO 653 J=1sN
G2(J)=1.0
CO(JI=C(I) #1.0FE~4

653 CONTINUE
G0 TO 610

649 PKY=0.1

651 DO 200 J=1sN

200 CALL SUBG2 (TAsPKVeM1+SQRDT,QQ)
IF (M1-10)610+6105196

4



196
197

610

504

513
111

520

- e e S O D O O N o 0RO E D R

PROGRAM LOAOKA CONTINUED

e -

PRINT 197
FORMAT (356HNO CONVERGENCE IN Gl AFTER 10 CYCLES)
GO T0 100

M=0

M2=0

QZ=0aK

Al=AA

AP=1.,005#AA

M=M+1

CYC=M

IF(M=10) 52045139513
PRINT111

FORMAT (1409+#NO CONVERGENCE AFTER 10 CYCLES*®)
GO TO 100

DO 33 J=1,N

CALL SUBAC

FMI(J)=FI (D)

RCFMI (J)=BCFM(J)

QCI(J)=QC(J)

AA=AP

CALL SUBQC

QCP (J) =QC(J) :
TDT(J)=0(J) +6G2 (J) #BCFMI(J) =62 (J) #FMI(J)#*Q2Z

LY
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PROGRAM LOAOKA CONTINUED

DO(J)=(200.0/AT) ¥ (QCP () =QCI ()
AA=A1

QZ=1.005%#QZ

CALL SuBQcC

QL (J)=QC(J)

QZ=072/1.005

DRA(J) =(200.0/QZ)#(QL (J)=QCI (J))
PKV=1,005%PKV

CALL SUBG2 (TAsPKVsM1+SQRDT.QQ)
IF (M1-10)32+324+196

CALL SURQC

QP (J)y=QC ()

PKV=PKV/1.005
DK(J)=(200.0/PKV)*(QP(J)=QCI(J))
SUM11=0.0

SUM12=0.0

SUM13=0.0

SUM14=0,0

SUM22=0.0

SUM23=0.0

SUM24=0.0

SUM33=0.0

SUM34=0.0

D0 50 J=14N

SUM11=SUM11+DQQ (J)*DAA (J)
SUM]12=SUM12+DQQ (J) #*DQ(J)

8V



50

118

3290

PROGRAM LOAOKA CONTINUED

- S e D e TS S S e

SUM13=5uM13+DQQ(J) #DK (J)

SUMY4=SU414+DAQ (N #TDT (J)

SUM22=5UM22+DQ (J) #DQ (J)

SUM23=SUMY23+DQ (J) *DK (J)

SUM24=5UM24+DQ (N *TDT ()

SUM33=SUM33+DK (J) #DK(J)

SUM34=SUM34+DK (N #TDT )

DET=SUM]1# (SUMP2#SUM33-SUM23#SUM23) =SUM12# (SUM12#¥SUM33-SIM13#SUM23
1) +SUMI3# (SUM12#SUM23=-SUM13#SUM22)

DETQ=SUM] 4% (SUM22#SUM33-SUMR3#SUM23) =SUM] 2% (SUM24#SUM33~-5UM23%SUM3
14) +SUM1 3% (SUM23#SUMPR4=-5UM22#SUM34)
DETA:SUMII*(SUMZQ*SUM33-SUW23*SUM342-SUM14*(SUMIE*SUM33~5UM13*SUW2
13) +SUM1 3% (SUM12¥SUM34-SUM13%#SUM24)
DETK:SUMII*(SUM??*SUM34—SUW23*SUM24)-SUMIZ*(SUMIZ*SUM34-3UMI3*SUM2
14) +SUMIGH* (SUM12¥%SUM23=-5UM13%#5UM22)

DQZ=DETQ/DET

QZ=Q7+DQ7Z

DLA=DETA/DET

AA=AA+DLA

DLK=DETK/DET

PKVY=PKV+DLK

PRINT118+CYCeDLASDRZ+DLK

FORMAT(10H AT CYCLE F2.0412H DELTA AA =F7.4912H DELTA 32 =FT7.4,1
13H DELTA PKV =F10.4!

IF(PKV)320+320,32]

PKY=(PXv-DLK) /2.0

6V
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PROGRAM LOAOKA CONTINUED

PRINT119

FORMAT(10Xs23HPKY NEGATIVE TRY PKy/2)
DO 702 J=14N '

CALL SUBG2 (TA+PKVsM13sSQRDTLQQ)
IF(M1=-10)703+,7034196

IF(AA) 32943295330

AA=(AA=DLA) /2.0

PRINT120 ‘

FORMAT(20Xs21HAA NEGATIVE TRY AA/2)
GO TO 504

TSA=aBS (DLAZAA)
IF(TSA=-0.0001)33193319332

GO TO 504

B=560.377(D%AA)

FBJ=EXP (B)/ (B®#3)
PKCON=(2.523E=3)#(AA##3) #EXP(B)
SMSQ = 0.

SMDL=0 . 0

DO 701 J=1eN

CALL SuUBQJC

DLA(J) =QC(J)=Q(J)
SMDL=SMDL+DLQ(J)

SQDL (J) = DLQ(J)##2

orv



701 SMSQ = SvSQ + SQDL (J)
REAL = N
QUOT=SMSQA/ (REAL-3.0)
SIGMA = SQRT (QUOT)
SG(NX) =SIGMA
Al1=ABS (SUMI11)
612=A8S (SUM12)
A13=ABS (SUM13)
A22=ABS (SUM22)
A23=ABS (SUM23)
A33=ABS (SUM33)
SGQR=SIGMA#SQRT ((A22%A33-A23%*A23)/0ET)
SGA=SIGMA*SQRT ((A11#A33-A13%A13)/DET)
SGK=SIGMA#SQRT ((A11#A22-A12#A12)/DET)
S=ALPHA®*J7+BETA
F=F12Q7-22
PRINT124
581 PRINT116+¢8+FRJsPKCON
116 FORMAT (11H BJERRUM-B=F10.,3+10H WITH FBJ=F12.3511H AND PKION=F12.3)
PRINT117+ALPHAWBETA9SIE19E20E
117 FORMAT(8A ALPHA=F7.495HBETA=F74293H S=F7.2s4H E1=F6.3+s44 FP2=FHe2y
13H F=F7.2)
PRINT124
PRINT126
126 FORMAT (140s6X 9 C* 912X ¥CO% 911X o #GAMMA® 44X e #ACT SQU#*a5Xs#* 3 FXPT# 46X
24#Q CALC*26Xs#Q DASH®)

Iy
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114

123

5000

125

700
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PROGRAM LOAOKA CONTINUED

PRINTI27s(C(J)aCG(J)sG2(J)sF2(J)sQ(J)5QC(J)4DLA(I) 4J=14N)

FORMAT (1XsF11leb9lXoF1la09a4XoFT,504XeFTeS94XoFBobotXoFBalolxosFBa4)
PRINT124

PRINT1164407Z9SG0sAAsSGASPKYVSGK

FORMAT (27H MINIMIZING VALUES ARE QZ =F10.394H PM F5.3,9H AND AA =F

17e304H PY F5.34/9/517Xs10H AND PKV =F10.3s4H PM FR,3)

PRINT124

PRINT123+sSIGMA.SMDL

FORMAT (25H STANDARD DEVIATION =F6,3518H WITH SUM=DELTAS =F6.3)
PRINT1?24

PRINTS000,Q0

FORMAT (140 (#BJFRRUM CRIT DIST=#43E14.7)

PRINT1?24

PRINT125
FORMAT (oSt tratatratat it apitapaaosdototasaoattaddtathiass)

GO TO 100

CONT INUE
END

ZIv
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PROGRAM UNASS(INPUT,0UTPUT)

YR TP ov wr R 00 o AN e I gn YR A @p SR TD UR W A N TR W W - - -

Ceese FUOSS HSIA EQUATION ReL. KAYS PROGRAM FOR THE NON ASSOCIATED CASE
COMMON C(30) +Q(30)»G2(30)sCG(30)+F2(30)sVF(30)sFM(30)4BCFM(30),
lQC(30)9OL(30)9FMI(30)9BCFMI(30)QQCI(30)90CP(30)yTDT(30)9)Q(30)9
ZDLQ(30)QSQDL(30),SG(30)QPKN(30),DQQ(30)9WT(30)9P(30)QBAR*(30)9
ADEN(30) s QP (30) +DK(30) s
4D AAs Q7 s FKAP s ALPHASBETASEL1 9E29J
100 PRINT1O
10 FORMAT (1H1)
PRINT 213
213 FORMAT (1409 *NONASSOCIATED ELECTROLYTE#®)
READ 102
PRINT 102
102 FORMAT (78H
1 )
PRINT124
124 FORMAT (1HO0)
READ104sNsDsETAsTeQKeARsPKY
104 FORMAT(IS5¢F11.095F10.0)
IF(N,EQ.0) GO TO 700
PKV=0.0
PRINTT19
719 FORMAT(1H0s® INPUT DATA®)
PRINT124
PRINT112+DsETA+QKePKVsTsAR :
112 FORMAT(22H DIELECTRIC. CONSTANT=FB8.2+11H VISCOSITY=F10.6912H INITI
1AL QZ=F8.39/922H INITIAL ASSOCN CONST=F8.3913H TEMPERATURE=FB8.2+12

EIV
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106

717
718

640

1000

1653

1650

PROGRAM UNASS CONTINUED

------ - wm oS oL ED ab W Gn gp TR @ S ab @B an T o

2H INITIAL AA=F8.3/)

READ106s (C(J) 9Q(J) 9J=1oN)

FORMAT (2F10.0) '

PRINT717 ,

FORMAT (1H 3Xe7H10000 Coe6X91HQe/)
PRINT7184(C(J)sQ(J) 9J=14N)
FORMAT (F11+49F10.3)

FLON=N

DT=D#T

SQRDT=SQRT(DT)
ALPHA=820400./ (SQRDT*DT)
BETA=82.501/(ETA®#SQRDT)
E1=2.9422E12/(DT##3)
£2=0.43329€E87 ((DT#DT)*ETA)
TA=SQRT (6.0%E1)
FKAP=50.294/SQRDT

QZ1=QK

NX=0

DO 1653 J=1HN

G2{J)=1.0

CGLN=C(NH *1.0E~4

AA=AR

NX=NX+1

M=0

QZ=QK

1404



1504

1513
111

1520

1033
1003

Al=AA

AP=1.005%AA

M=Ms+1

CYC=M

IF(M=10)1520+152041513

PRINT111

FORMAT (1H0s#NO CONVERGENCE AFTER TEN CYCLES#)
GO TO 100

DO 1033 J=1,N
CALL SUBAC

FMI (J) =F4(J)

BCFMI (J) =BCFM(J)

QCI (J)=QC(J)

AA=AP

CALL SUBAC

QCP(J)=0C(J)

TDT (J) =0 (J) +62 (J) #*BCFMI (J) =62 (J) #FMI (J) #QZ
DQ(J)=(200.0/AT) # (QCP(J)=QCI (J))

AA=AT

0Z=1.005%QZ

CALL SUBQC

QL (I =2Cc (L}

0Z=Q07/1.005
DAQ(J)=(200.0/QZ) % (QL(J)=QCI (J))

SUM11=0.0

SV
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121
1329
120

1330

PROGRAM UNASS CONTINUED

- e S e

SUMi2=0.0

SUM13=0.0

SUM22=0,0

SUM23=0.0

DO 1050 J=1.N
SUM11=SUM11+DQQ(J)*#DAA(J)
SUM12=5UM12+DQQ (J)#DQ ()
SUM13=5UM13+DQQ (N #TDT (N
SUM22=5SUM22+DQ (J) #DQ (J)
SUM23=5UM23+DQ(J)#TDT (J)
DET=SUM11#SUM22-SUM12%5SUM]12
DETQ=SUM13#SUM22-SUM12#SUM23
DETA=SUM]11¥#SUMZ23-SUM12%#SUM13
DQZ=DETQ/DET

QZ=QZ+DQZ

DLA=DETA/DET

AA=AA+DLA
PRINT121sCYCsDLASDQZ

FORMAT (10H AT CYCLE F2.0912H DELTA AA =FT7.4,12H
1F(AA)132991329+1330
AA=(AA=-DLA) /2.0

PRINT120

FORMAT (140 *# AA NEGITIVE TRY AA/2%)
GO TO 1504

TSA=ABS (DLAZAA)

IF(TSA=-0. 0001)13319133191132

DELTA 3Z =F7.4)

91V
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1331
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PROGRAM UNASS CONTINUED

- S S S S S

GO 70 1504

B=560.377(D#AA)
FBJ=EXP(B)/(B##3)
PKCON=(2.523E~3)# (AA®#3) #EXP (B)
SMSQ=0,.0

SMDL=0 e 0

DO 1701 J=1,N

CALL sSuBQcC

DLQ(J) =QC(J) =-Q(J) .
SMDL=SMDL+DLQ (J)

SQADL (J)=DLQ(J) #%2
SMSQ=SMSQ+SQDL (J)
REAL=N
QUOT=SMSQ/(REAL=2.0)
SIGMA=SQRT (QUOT)
SG(NX)=SIGMA
Al11=ABS(S5UM11)
A22=ABS(5UM22)
SGR=SIGMA#SQRT (A11/DET)
SGA=SIGMA#*SQRT (A11/DET)
SzALPHA®QJIZ+BETA
E=E1%#QZ-E2

PRINT124
PRINT116+89FBJsPKCON

LIV



PROGRAM UNASS CONTINUED

116 FORMAT(11H BJERRUM=B=F10.6910H WITH FBJU=F12.5s11H AND PKCON=F12.5)
PRINT117+ALPHASBETA9S9EL1+E2HE

117 FORMAT(7H ALPHA F9.S5,SHBETA F9.543H S F9sbss4H E1 FIebsaH E? FQoby
13H E=F9.4)
PRINT124
PRINT129

129 FORMAT(1HO94X9s#Cte6Xs*EXP. LAMBDA®*,6Xs2LAMBDA CALC#*56X,*L_AMBDA DAS
1H#*)
PRINT1305(C(J)9Q(J)sQC{I)oDLA(I) 9J=1oN)

130 FORMAT(1X9F10e494XsF1l0e494XsFl0ebs4XeFl0.4)
PRINT128Bs0Z+5GQsAAsSGA

128 FORMAT (140s*MINIMIZING VALUES ARE QZ #9F10e392X9¥PUH,F5,3,2X9¥AND
1ARaF7e302Xe¥PM=43F5,3)
PRINT123+SIGMA,SMDL

123 FORMAT(140s%STANDARD DEVIATION #9F6.3+2X9#WITH SUM OF DELTAS *#,F
16.3)
PRINT125

125 FORMAT (140 (#* CHOCKS AWAY CHAPS ALL OVER RED ROVER#)

GO TO 100
700 CONTINUE
END

8LV
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198

199
203
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SURROUTINE SURG2 (TAsPKVaM14SQRDT,QQ)

PR ——————— e T R R R Rt

UBROUTINE TO COMPUTE GAMMA,GIVEN ASSOCN CONST
. FUOSSHACCASCINASELECTROLYTIC CONDUCTANCEs INTERSCIENCE,1959 P.92-3

COMMON C(30)90(30)962(30)9CG(30)$F2(30)9VF(30)9FW(30)9BC?M(30)9
1QC(30)9QL(3O)’FMI(30)9BCFMI(30)90CI(30)99CP(30)9TDT(30)9)3(30)9
2DLQ(30)9SODL(3O)QSS(30)9DKV(30)9DQQ(30)9WT(30)’R(30)QBARW(?0)9 Yo
IDEN(30) 4P (30) «DK(30) »
4D 9 AASNZ s FKAP s ALPHASBETACEL9E2y J

CK=CtNH *1.0E-4
TAU=TA#SART (CK)
G1=1.0

M1=0

MI=M1+1
IF(M1-10)2034203+199
RETIRN

SRG=SQRT (6G1)
TOP=(4.,20132E6)/ (SQRDT##3)
ROT=(50.294) /7 (SQRDT)
SRC=SART (CK)

F2(J)=(TOP#SRC*SRG) /(1.0+(30T*AA#SRC#*SRG))
F2(J)=EX2(=2.0%F2()))

VAR=PKVH®#CK#F2(.)) :
IF(VBAR=0,03) 204+205+205

61V



204

205
206

202

201

- -

SUBROUTINE SUBG2 CONTINUED

R S St S W e e -

62(J)=1.0=-VAR+2. 0% (VAR#%D) =5, 0# (VAR##3)
GO TO 205

G2(J)=(SART (1.0+4.0%VAR)=140)/(2.0%VAR)
TESTG=ARS (G1-G2(J))

IF{TESTG-0.00005) 2019202202

61=62(J)

GO TO 1989

CG(J)=CK*G2(J)

RET!IRN

END

ocv
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c SUBROUTINE 7O CALC. EQUIV. COND.

COMMON C(30)4Q(30)+62(30)+CG(30)sF2(30)9VF(30)sFM(30)+BC Y (30),
10C(30) +QL(30) sFMI(30) 9BCFMI(30)sQCI(30)9QCP(30)+TDT(30)930(30)5,
2DLQ(30) +SOOL(30) 9SG (30) s PKN(30) +DAQ(30) sWT (30) sR(30) +BARM(3IN) »
3NEN(30) 9P (30) +DK(30)
4D AA9QZ s FKAP S ALPHASRETAIEL9ER2s J

B=560.,37/(D*AA)

CR=CG ()

.SQRC=SQRT (CR)
Y=FKAP#AA®SQRC
SVF=0.000473%#CR#* (AA#3)
VE(J)=1.0+SVF

W=0.7071

X=Y

CALL SJUBZNE(XeENE)
TZ=FNE

P1l=]1,0+X+0e5%X#X
P2=1.0+WEX+0.25%*X#X
P3=1c0+WEX+0,1667#X%X
P4=2,0#P2%{].0+X)*(1.0+X)
PS5S=2.0%pP3%P4
PE=0.4575/(P4¥P3)
X=(1.0+W) %Y

CALL SUREZNE (XsFENE)

Ly
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SURROUTINE SUBQC CONTINUED

- ———— -

T1=ENE

X=(204W) %Y

CALL SURZENE (XsENE)

T2=ENE

X=X/2.7071
TRI=(7.0#T2+P1#T1=4,0%P1#P2%*TZ)/ (4.0%P4)
XSQ=X*#X
PM2=-0,0/4+0+940%W/2.0¢(=T7e0/120+7«0*W/30)%X+(1.0/2440+7.0%W/]2.
10) #XS0

BF 23=P4P/P5

ALB=B,0%3F23+2,0/P4+P6
TOP=1,0+(9.0%W/8,0+0,5)#X+(W+1,0/24. 0)*XSQ
B0T=P2#P3#(1,0+X)

RATIC=T0D?2/30T

RM1=4,0%4TI0

BM2= (4.0%(1¢0+0e75%¥X))/(P3#(1,0+X))
ALGY={16e0+6e0%W+(Ta0+100%W)#X+(3.0+4,0%W)*XSQ)/(48.0%P2#(1.0+X)#
1(1 0+X))
TF2==R.08ALOV=4.0%#TR1+4.0/(3,0#B#P2#(1,04+X))
TFl==4.0%TR]1-AL8+BM]1/B+R12/ (R#3)=2,0/ (B##3)
FNEG==AL OHA#SQRC+F 1 #CR*TF1-E2#CR¥TF2/Q27
FM(J)=(1.0+FNEG) /VF (J)
RCFM(J)=3ETA#SARCHFM(J)/(1.0+Y)

QC (N = (G2 (NI #(QZHFM(J)=3CFM(J))

RETURN

FND
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SURROUTINE SURENE (XsENE)

C SUBROUTINE FOR CALCN OF NFEG.EXPONENTIAL INTEGRALS

Ceoses FUOSSEACCASCINAGELECTROLYTIC CONDUCTANCE,INTERSCISNCE,1359

Ceeane PAGES 150 TO 153
CON==ALO5(X)=0,57722
FN= 0.0
FAC = 1.0
TOT =0.0
QND = -100

30 FN=FN+1.0
FAC = FACH*FN
QNP = -]DO*X*QNP
FNTH = QNP/(FN*FAC)
TOT=TOT+NTH
TRM=ABS ((1.0E4)%*FNTH)
ABT=ABRS (T0T)
IF (2BT=-TRM) 30+30+490
40 FENG=CON+TOT
C§§§§¢%****ﬁ*%%%§§******§***ﬁ***§*#*ﬂ**#%##*ﬁ#”ﬁé%**#%*#***4#§§*%§**§***
Ceness WHEN USED WITH PROGRAM PITTSVZ THE CARD IMMEDIATELY BE.O.
ENE=ENG#ZXP  (X)
Ceeess MUST 3F REMOVED FROM THIS ROUTINE
C#ﬁ*%*ﬂ**%**%**%****%***#*ﬁ**%*********ﬁ****ﬁ*********%%ﬁ*%**ﬁ“#**ﬂ****#
RETURN
END
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Appendix 2,1 Viscosity and Density of DMF/water mixtures at 25°C

DMF Density Viscosity
mole % gem™ cP
0.0 0.99704, 0.890,
2.361 0.99622, 1.098,
5.804 0.99637; 14014
6.005 0.99639, 1.419,
10.068 0.99690¢ 1.7644
13.493 0.997004 2.014,
14.094 099698, 2.057,4
18.698 0.99630, 2.3134
26.042 099340, 2.5004
26935 0.99291, 2.501,
35.056 0.98770, 2.393g
49.629 097632, 1.873;
61.949 096681 -
64.670 096478, 1.372¢
83.450 095289 -

100.00 0.94389, 0.801;,
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Appendix 3.1 The concentration dependence of A for KC1, CsCl and KNCS in DMF/water
mixtures at 25°C

Cx10* A 8Ax 10°

KClin 0.30 mole fraction DMF

48.046 41.744 2
62.077 41.383 -4
75.412 41.070 . 2
88.406 40.806 -3
105.051 40.486 5
120.557 40.229 3

KClin 0.75 mole fraction DMF

12.132 55.791 -0.4
22501 54.355 -1
31.774 53341 1
40520 52.522 2
46 .400 52.028 0.5
54.264 51.417 0.7
61.262 50919 -3
161.897 45.939 0

CsCl in pure water, Run 1

11.280 150473 9
25.235 148.964. 11
42.067 147.652 0
73.017 145.892 0
101.654 144.633 2
CsClin pure water, Run 2
16.344 149.770 7
33.278 148.208 -10
44.822 147.373 -1
59.654 146471 2
70.406 145.899 1
81.735 145.349 1
99.563 144.572 0
CsCl in 0.09 mole fraction DMF
23377 79.280 2
44 325 78.338 -3
69.158 77.503 -4
91.325 76.881 8
107 429 76.498 -1

121.554 76.184 -3
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Appendix 3.1 continued

Cx 10* A SAx 10P

CsCl in 0.30 mole fraction DMF, Run 1

13.246 42.825 4
33.706 41.854 -9
58.923 41.005 3
81.979 40.398 8
105.554 39.892 -6

CsCl in 0.30 mole fraction DMF, Run 2

12.662 42.803 9
23.522 42.248 -15
43.106 41.464 5
79.942 40.422 5
106.116 39.845 -3

CsClin 0.5 mole fraction DMF

9.928 43.666 6
22.842 42.569 -9
40.112 41.495 -4
54.098 40.790 2
70.819 40.065 8
94.664 39.192 0

116.241 38.501 -3

CsClin 0,75 mole fraction DMF

13.862 57.484 -2
23.289 55.942 1
32.698 54.694 3
43.157 53.519 1
55.192 52.351 -1
70.035 51.105 -3
85.783 49950 -1
101.493 48.929 2
KNCS in pure water
11.450 136.926 13
29.115 135.224 -4
39.571 134.498 -8
49212 133.925 -9
60.005 133.360 - -1
73.753 132.725 2
87.472 132.163 1

100.478 131.681 6
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Appendix 3.1 continued

Cx10° A SAx 10°

KNCS in 0.50 mole fraction DMF, Run 1

11.272 46.420 -3
26.291 45.535 5
'40.442 44975 -1
57.440 44.446 0
73.995 44.027 -1
86.591 43.748 -1
99.098 43.498 -1
114.755 43212 2

KNCS in 0.5 mole fraction DMF, Run 2

11.765 46.370 1
27.311 45.490 -4
41.642 44924 2
53.742 44.546 0
80.660 43.869 1
105.631 43.370 0
118.236 43.149 -1

KNCS in 0,75 mole fraction DMF

13.041 63.137 2
27.565 61.661 -3
42.115 60615 -1
59.446 59.643 0
72.127 59.045 2
86.225 58.461 1
98.599 58.002 -2
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Appendix 4.1 Cationic Transport Numbers of KNCS in DMF/water solvents at 25°C

C Solvent Tube Ave. Current Time
mol dm™ correction section mA sec (0

In 0.75 mole fraction DMF

0.009989 1.0001 1 0.1996, 4364.8 0.3897;
2 0.19624 44214 03911,
3 0.1942, 4365.7 0.3915,
0.010754 1.0017 1 0.2016, 4650.6 0.3905,
0.021790 1.0009 1 0.2994, 6354.4 0.3897,
2 0.2967, 6403.8 0.3898,
3 0.2952, 62744 0.3912,
0.031484 1.0004 1 0.4010, 68574 0.3892,
2 0.3986,4 6900.2 0.3889,
3 0.3982, 6725.3 0.3908,
0.039318 1.0002 2 0.4931, 6961.1 0.3890,
3 0.4933, 6799.5 0.3896,
In 0.50 mole fraction DMF
0.019741 1.0041 1 0.3062, 4695 .4 0.4687,
2 0.3046, 4716.2 0.4687,4
3 0.3031, 46313 0.4693,
0.039156 1.0025 1 0.4447, 6411.5 0.4679,
2 0.4431, 6434.7 0.4676,

3 0.4422; 6295.2 0.4686,






