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SUMMARY

Mixtures at25"C of N, N-dimethylformamide (DMF) and water have been the solvents

for 13 conductance runs involving the solutes CsCl, KCI and KNCS. The table below

summarizes the solutions and solvent compositions for which limíting equivalent

conductances have been determined.

Limitine equivalent conductances performed in DMF/water solvents at 25"C in this
research

Moleper cent DMF

Salt 09305475
CsCl
KCI
KNCS

3

A flaskcell has been designed to facilitate mixing during a run. The limiting equivalent

conductances have been evaluated with the full Fuoss-Hsia conductivity equ ation. The

Robinson-Stokes equation, used for the estimation of limiting equivalent conductance, is

shown to give very similar values to those given by the Fuoss-Hsia equation. Also

presented are the corresponcling values of the parameters a (the ion-size parameter) and

Ko $he association constant). The values obtained for Ko are small. Plots of log K'(KCÐ

against reciprocal of dielectric condtant and against the logarithm of water concentration

show maxima. In the latter case, some evidence is presented that this indicates the

participation of both water and DMF in the formation of ion-pairs in DMF/rvater mixtures

The autogenic rising boundary method has been used to determine, in DMF/water

solvents at 25"C, the limiting cationic transport numbers of KNCS in mixtures containing

0.5 and 0.75 mole fraction of DMF. Within experimental error, no concentration depend-

ence of transport number has been detected in the fo¡mer solutions; in 0.75 mole fraction

of DMF, slight concentrati,x dependence has been observed. In the latte¡ solvent, correct-

ions for ionic association are within the experimental error. Limiting ionic equivalent

conductances derived from the above transport numbers and conductances are presented.

The corresponding Stokes radii have been calculated. Plots against l0OlD of the Stokes

radii of K+, Cl-, Cs* and NCS- are presented for complete range of DMFiwater solvents

at25"C.The data obtained in this research for K+ and Cl- conf,rrm the suspected shape,

in DIüF-rich regions of the existing plots for these ions. The shape of the Stokes radius

plot for Cs* resembles that of f+. R[r* values calculated from the slope and from the

intercept are anomalous. The plot for NCS-, although lirnited to four points, exhibits a
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similar shape to the plot for Cl-. Tentative Rffiçg- values have been calculated.

A search for correlations between solute and solvent properties in DMF/water mixtures

has been conducted. Densities, ionic equivalent conductances, viscosities and excess volumes

of rnixing have been plotted against solvent composition. Free volumes of the solvent

mixtures have been calculated and used as the abscissae for plots of ionic condttctances,

viscosities and Walden Products. No simple cor¡elations have been observed. However, the

plot of viscosity, against solvent composition provides evidence for the existence of at

least one DMF-water complex. The 'hard sphere' volume of this complex has been

estfunated by two methods and a molecula¡ formula has been proposed.

A published theory which attempts to explain variations in Walden Product with

solvent composition has been described and tested. Data for Cl- in DMF/water mixtures

at25"C indicate that the theory does not hold in this system.
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GLOSSARY OF PRINCIPAL SYMBOLS

The following symbols are applicable throughout this thesis. Other symbols have

meanings applicable only to the chapter in which they appear.

The distance of closest approach of ions.

The coefficient of the ion-size term in Debye-Hückel theory.

The coefficient of the relaxation term in the Robinson-stokes conductivity

equation.

The coefficient of the electrophoretic term in the Robinson.Stokes conductivity

equation.

Concentration of solution in mol dm-3.

Dielectric constant.

The protonic charge.

The exponent,e.

The Faraday constant.

The mean rational activity coefficient.

The association constant in conductance theory.

The Boltzmann constant.

Logarithms to base 10.

Logarithms to base e.

The Avogadro constant.

Normality, equivalents per dm3 of solution.

Absolute temperature.

Cationic transport number.

Algebraic valencies of cation and anion respectively.

The fraction of solute existing as non-associated ions.

Viscosity of solvent.

In Debye-Hückel theory, the 'reciprocal length' of the ionic atmosphere,

proportional to the square root of ionic strength; in Chapter 4, the specific

conductance.

The equivalent conductance of an electrolyte.
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The equivalent conductances of the cation and anion respectively.

Summation.

The standard error of fit of the data to an empirical or theoretical equation

The standard error of the coefficient x.

Resistance as ohm.
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I
GENERAL INTRODUCTION

In the study of electrolyte solutions, Walden's Rulel has long been used as an approx-

imate guide to the inter-relationship between the two important parameters À0 and 4. The

rule is based on the assumption that dissolved ions moving in a solvent are adequately

modelled by spheres moving in a continuum for which Stokes Law2 applies. In 1959, Fuoss3

proposed that ion-solvent interactions resulted in an increase in the local viscosity of an

ion. Tlús led to a new expression for the Stokes ¡adius of an ion, incorporating dependence

upon the dielectric constant, D.

Ri=Àr-+SlD

Rio is the Stokes radius of the ion in a solvent of infinite dielectric constant and ,S is a

constant related to the magnitude of ion-solvent interactions. Later Boyd4, 5 and

Zwanzig6' 7 provided theoretical confrmation of Fuoss' arguments and derived an

expression ,S showing that it was related to the dielectric relaxation time of the solvent

and also contai¡ed a term hRi-.Consequently the Fuoss-Boyd-Zwanzig (FBZ) equation

above provides for estimates of the quantity R¡*, both from the slope S, and from the

intercept of a plot of -R¡ against D-r .

Fuoss and co-workerss have used the intercept method extensively for I - I electrolytes

in dioxane/wate¡ mixtures. In many of these cases R¿ shows linear or nea¡-linear plots

against D-r and the values of Ri obtained from the intercept have been realistic although

generally smaller than the respective crystal radü. However with some of the alkali halicles

zuch as LiCl and NaCl , minima occur in the plots of R¡ at fairly high values of dielectric

constant, indicating deviations from FBZ theory. An important assumption of the Fuoss

School was that transport numbers are independent of solvent composition. Jamesl2 on

the other hand, working with KCI and KBr in mixtures with water of N, N-dimethylforma-

mide (DMF), shorved that transport numbers were solvent-dependent.

DMF is a polar liquid with a moderately high clielectric constant compared to dioxane.

Its mixtures rvith wate¡ therefore produce only a comparatively narrow range of dielectric

constants but offer fairly extensive opportunities for solvent-solvent and ion-solvent

interactions. As such, DMF/water mixtures constitute solvents whose properties cont¡ast

markedly with those of dioxane fwater, thereby providing a suitable different medium in

which to test the FBZ theory.

James12 also determined limiting ionic equivalent conductances for KCI and KBr and

thus calculated the respective Stokes radii. His plot of Rç+ against D-r was linear for most

of the range of Ð, but showed a minimum (as in the cases of LiCl and NaCl in dioxane/
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water) at a fairly liigh value of dielectric constant. A more serious challenge to FBZ theory

comes from the contradictory and anomalous values of Ri obtained from the slopes and

the intercepts of the R¡ rs. D-l plots. A not unrealistic value of Rf is given by the slope,

but the intercept gives a substantially negative value.

This research extends James' work with alkali halides in DMF/water solvents.

In the first instance the range of solvent composition has been extended from a DMF

mole fraction of 0.496 to 0.75. The determination of the limiting equivalent conductance

of KCI and the limiting cationic transport number of KNCS in 0.75 mole fraction DMF

fills a gap between the data of James at O.496 mole fraction of DMF and the data of

Ames and Sea¡sl3 and Prue and Sherringtonl4 in pure DMF. This work conf,rrms the

shapes of the Stokes radius plots for K* and Cl- in this region.

A major portion of this research has been directed towards ascertaining whether the

Stokes radius plot for Cs+, like that of K+, gives results which conflict with the predictions

of the FBZ theory. Presented in Chapter 5 are results which indicate this to be so, leading

to the view that the sphere-in-continuum model, upon which theFBZ theory is based, is

too simple to explain the observed changes in conductance with solvent compositirtn. Recent

papers by members of the Fuoss Schoolg- 11 working in isodielectric mixtures subscribe

to this view also.

Chapter I of this thesis presents an account of the modern theory of conductance as

embodied in the Fuoss-Hsia conductivity equation.ls Thir three-parameter equation has

been used in tlús research to calculate the limiting equivalent conductance, the ion-size

parameter a and the association constant Ko. Chapter 2 describes experimental methodology

for the measurement of equivalent conductance. Results of these measurements for KCl,

CsCl and KNCS in DMF/water mixtures at 25" C are presented in Chapter 3 together with

the respective values of ¿ and Kn. The presented value of the limiting equivalent conduct-

ance of KNCS in water appeils to be the first such value presented in the last 45 years.

The reported limiting equivalent conductance of CsCl leads to a limiting equivalent

conductance for Cs+ which is near the top of a puzzhngly wide range of values for this

ion, as provided by nine literature reports. Although not of major concern in this thesis,

the change with solvent composition of Ko for KCI and for CsCl has been discussed in

Chapter 3. Some evidence is presented for the participation of both water and DMF

molecules in the process of ion-pair formation of KCl.

In Chapter 4 are described practical aspects of the determination of limiting cationic

transport numbers using the autogenic rising boundary method. Values of this parameter

for KNCS in DMF/water mixtures containing 0.5 and 0.75 mole fraction of DMF are
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reported, together with limiting equivalent conductances of K+, NCS-, Cs+ and Cl- derived

therefrom. This chapter also discusses interpolation procedures which have been used to
obtain limiting equivalent conductances of Cl- at the chosen solvent compositions.

In addition to a discussion of tlneFBZ theory and tests of it, Chapter 5 contains a

report of a search for correlations between solute and solvent parameters in DMF/water

mixtures. Piots of density, ionic equivalent conductance, viscosity and excess volume

of mixing against solvent composition are presented. Following a suggestion by James and

Fuosslo, free volumes of the solvents were calculated and correlations were sought with
conductance, viscosity and Walden Product. No simple correlations were apparent but

results of the investigations of changes in viscosity led to evidence for the existence of one

or more DMF-water complexes whose likely formulae have been proposed.

The chapter and the thesis concludes with the discussion and testing of a theoretical

paper by Hemmes.6 Tlús paper indicates the complexities in the variation of the Walden

Product likely to arise as a result of solvation of dissolved species by each of the

components of a mixed solvent.
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Chapter 1

CONDUCTANCE _ TIIEOR.Y

1.1 Introduction-The importance of the Debye-Hückel theory

Since the earliest days of electrochemical research, it has been known that the

equivalent conductance of electrolyte solutions decreases with increasing concentration.

Clearly interactions between charges on the ions in solution must be a primary cause of

these observations. In 1923 Debye and Hückel provided a means of explaining these

interactions rvith a theory which described the distribution of charges around an ion in

solution.

The model used to develop this theory involves treating an electrolyte solution as a

single reference ion i, standing alone in an ionic 'atmosphere' of opposite sign. This

atmosphere comprises a continuum dielectric (representing the solvent molecules) which

possesses a net charge density contributed by all ions in the solution except the reference

ion.l Debye and Hückel used this model to develop an expression for the elect¡ical

potential ú¡, at a point in the solution in terms of concentration, ionic charges and

solvent properties. The expression obtained for r/¡ is

(l.l)

where a is the distance of closest approach of the ions, assumed the same for all pairs of

ions. K, formally known as the Debye-Häckel reciprocal length, is given by

,1,. = 
zi€ . exp(tca) . exp(-rcr)Yi T' -(Fø r

4ne2Zn.z?
= 

,l

DKT

Equation 1.2, dehning K, caî be rewritten in terms of concentration of ions,

K2 = 4ne2N .Zc,z?'Ù looo onr I t

or in terms of ionic strength

. =[#ffio-*r]* '/'
K = B\/I

K2

flhus

(r.2)

(1.3)

(1.4)

(l.s)

where B
Yz

( 1.6)
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The rc function is a useful parameter of the ionic atmosphere. It can be shown2 that at a

distance r = K-r from the surface of the reference ion, the charge contained in a spherical

shell of thickness dr reaches a maximum. K-r , having dimensions of length is thus known

as the 'thickness' of the ionic atmosphere.

Ever since the publication of the Debye-Hückel theory, workers in the field have leaned

heavily on it in developing an understanding of the interactions of ionic charges in

solntion. Two major effects of this inte¡action are the electrophoretic effect and the

time of relaxation effect.In each case, development of satisfactory theoretical expressions

for these effects depended upon the use or adaptation of the Debye-Hückel expression for

the potential.

1.2 The electrophotetic effect

An externally applied electric field acts both on a given i ion in solution and on its

ionic atmosphere. These two entities, the i ion and its atmosphere, are of opposite charge

and tend to move in opposite directions in the field. The moving i ion therefore

experiences an increased viscous retardation arising from the contrary motion or

'counterflow'3 of the solvent molecules of the ionic atmosphere.

The term electrophoresrs applies to the migration of fairly large entities (10-10000Å)

in an electric freld; the ionic atmosphere can be considered such an entity-it has a

'thickness' (rc-l) of about 100Ä for a 1-l electrolyte of concentration 10-3mol dm*3.4

The motion of the ionic atmosphere contrary to that of the i ion is therefore known as

the electrophoretic effect and the viscous retarding force it causes isthe electrophoretic

force. Clearly the effect is concentration dependent.

A thorough mathematical treatment of electrophoresis has been made by Onsager and

FuosJ and adapted by Robinson and Stokes.6 The approach to the treatment was to

assume spherical symmetry in the ionic atmosphere and to apply the Debye-Hückel

expression for the potential ú¡, and the classical Stokes equation relating the velocity of

a particle moving in a viscous medium to the viscous retarding frictional force given by

equation 1.7.

v = Fl6¡qr (r.7)

The resulting expression for the electrophoretic effect AÂ", on the equivalent

conductance is



I

K

I+xn (1.8)

1.3 The relaxation effect

In the absence of an external force the ionic atmosphere of a reference ion i is

symmetrical and the centre of charge of the atmosphere coincides with that of the

i ion. When an external electric field of intensity X is applied to the solution the i ion

moves, but, because of frictional resistance, the ionic atmosphere takes a finite time to

relax and reform in response to this movelnent. During this time the ion i has moved on

and further relaxation and refonnation of the atmosphere must occur. The overall

result is that the moving ion possesses a lagging asymmetric ionic atmosphere which can

be viewed as egg-shapedÍ Consequently the two centres of charge are perïnanently non-

coincident and the resulting electrostatic force (taken as the relaxation field, AX,

opposite to the applied fielcl X) causes a retarclation of the ion. This retardation is

known as the relaxation effect, given by AX/X. Like the electrophoretic effect, it is

concentration dependent.

Debye and Hückelsmade the first theoretical approach to explaining this phenomenon

but a more successful result9 was obtainecl by Onsager.lo The latter simplified the

Debye-Hückel expression for the potential by assuming, for very dilute solutions, that

lry4 = I . In essence this assumes ions to be point charges and converts equation 1. I to

A4 =-dit'(tz1t+tz't¡

z.et¡=b

Using this expression Onsager obtained

exp(-rcr)

zrz"e2
SDET

(1.e)

(r.10)
AXT

AXT

qK
r*t/q

where q is a function of ionic charges and conductances which simplifies to r/zfor l-l
electrolytes. Thus

Z 1 Z2€2 K

6DKT 1+v0.s (1.11)
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1.4 The combined influence of electrophoresis and relaxation

The combined iufluence of the electrophoretic and relaxation effects upon the

conductance can be expressed in the equation

z\ = (Âo- aq) (1++)
(r.12)

The above expression for ÁX/X (equation l.l I ) and an expression for AÂ, (eeuation I .8,

simplified by taking l+¡¡a = 1) can be substituted in equation l.12.If the c¡oss-te¡m

{ìL *, is neglected we obtain

Â=Ào-lzrzzle2
6DKT

F2 +lz
6zr4N

electrophoretic termrelaxation term

K

T+,<n

(l .13)

(1. l 6)

It can be seen that this equation takes the form

r\ = .¿19 -(BtN+B2VC (1.14)

where B1 and B2 are related to properties of the solvent. For a given solvent

r\=.¿f-constant.t/C (l.rs)

which is a statement of the Onsager limiting law. lt provides theoretical justification for

the ernp irically d erived Kohlrau s ch rela tio nship

r\=Âo-Sr/C

publishod about a century ago.ll

It should be noted that the Onsager equation (1.15) is the tangent to the conductance

curve at zero concentration rather than an equation for the conductance curve itself.

Falkenhagen and co-workersl2 retained the (1+rcø) term in the denominator of the

expression for rlt¡ and hence in the denominator of the relaxation effect expression

(equation I.l l). In this way they accounted for the effects of finite ion size which the

Onsager approach did not, and this modification made possible an increase in the range

of validity of the theory. The analogous equation to 1. l3 (which applies to I -l
electrolytes) then becomes

_ F'( lztl+lzzl)
6ø4N

¡o¡\ = Âo- (1iv0:s) (1.17)



Robinson and Stokesl3 have reananged this equation in the form

10

(r .1 8)

Bt and B2 are quoted in equation I . l4 in relation to I . 13. B is given by equation I .5.

Equation I .18, known familiarly as the Robinson-Stokes equation, has been usecl in

this research to obtain approximate values of ,,f from ¡\ and concentration data.

1.5 The Fuoss-Onsager F4uations

For 25 years after the Onsager paper on the relaxation effectlo there was no major

progress in developing the theory of this effect. This fact is an indication, perhaps, of the

mathematical difficulty in the computation of AX.la Contributions from a number of

workers in the early 1950's were capped by a most comprehensive treatment of

conductance by Fuoss and Onsager.ls Using a model of rigid charged spheres in a

hydrodynamic and electrostatic continuum and retaining higher terms in the equations

of continuity and motionl6 they obtained a conductance function for unassociated

electrolytes. This function was17 a cumbersome combination of algebraic and tran-

scendental terms for which calculations (without the electronic computers of later years)

would be unduly lengthy. Simplification was achievedl8 by selective retention of terms

arising from the integration of the differential equations which describe the relaxation

field. Only linear or lower terms in concentration were retained; all terms of order C%

were dropped. The resulting linearized equation had the form

À = Âo - sC/" + E/ ctnc + J(a)c (1.1e)

The coefficient ^S, 
corresponding to the ,S of the Onsager limiting law, is a function of Ao.

Likewise El depends on z\o and is determined by theory. .,I explicitly depends on the

centre to centre distance at contact of spheres representing the ions. The Fuoss-Onsager

equation is thus a two parameter equation, embracing the arbitrary constants N anda.

Because of the simplification procedure, the range of application of the linea¡ized

equation was restricted to concentrations where rcø ( 0.1 or about 0.0lN for l-l salts in

water.

A little later Fuoss extended this equation to the case of associated electrolytes.l9

Making the ad hoc2o hypothesis that ion pairs in contact would not contribute to (dc)

transport of charge, Fuoss obtained

Â = r\o - gçr/zrlz + El c1rncY +JCv -Kocú2 L (1.20)
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where l-7 is the fraction of salt associated as ion-pairs and is lelated to the association

constant by the mass action equation

l-r = KoCf f' (1.2t)

Equation 1 .20 is a 3 parameter equation (Ao, ao, KA) which satisfactorily reproduced

L- C data for dielectric constants greater than 10, provided still that concentrati,)ns

were chosen such that rcø(O.1.

1.6 The'1965' Fuoss-Oxrsager Equation

A series of five papers by Fuoss and Onsager re-investigated the equations which

led to equation 1.19. The ød hoc character of the generalization of equation l.l9 to l.2O

needed examination. Fuoss and Onsager felt that if ion association were a consequence

of Coulomb forces only, then the corresponding decrease in z\ with increasing C should

be predictable from the equations of continuity, equations of motion and the Poisson

equation. A second motíve for the re-investigation was the observation that ¿ values

calculated from "I(a) systematically increased for a given electrolyte as D decreased.

There were two possible explanations for this relationship. Either it occurred as a result

óf mathematical approximations made in deriving equation 1 .19, or the model of the

system was inadequate. The two mathematical approximations made were the dropping

of all terms in C'h and the approximation of the Boltzmann expression in the equation

of continuity to the first three terms of the series.

When the higher terms of the Boltzmann expression were retained explicitly, terms

emerged in the expression for the relaxation field2l which possessed the form of the Ko

parameter which had appeared in the 1957 equation (equation 1.19). This meant that

association of ions arose from the fundamental equations rather than in the arbitrary

manner adopted earlier by Fuoss and Onsager. Combining the new expression for the

relaxation field with an electrophoretic term which had also been re-investigatedz2

incorporating higher terms, Fuoss, Onsager and Skinnell published the equation

À = ¡\o-^SC% + E'Clnr2 + LC -ALoCf 0.22)

where 12 = 6EttC and El is a function of solvent properties and, A and L are constants.

In the same paper the equation was generalized, incorporating ionic association. The

coefficient.4 closely approximated to Ko and the generalized form became

^ 
= t9-,S c%t% + Elc'ytn(6nlcy¡+ tcy - Koc1f2 tt (r.23)
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This became known as the '1965' equation. Equation 1.22 reproduces conductance data

for 1-1 electrolytes in solvents of higher dielectric constant. Equation 1.23 is required for
conductance data of l-l electrolytes when D is small enough to stablilize ion-pairs in

contact. The two equations confi¡med the 1957 conductance equation and established that

the ion association tenn a¡ose directly from application of the equations of continuity,

equations of motion and the Poisson equation, i.e. from fîrst principles.

Contact distances calculated from the application of precise data to these equations

still showed an increase with decreasing D. It therefore was proposed by Fuoss and

Onsager that the source of this variation lay not in the original mathematical approx-

imations involved in solving the differential equations-rather it lay in the inadequacy

of the sphere-in-continuum model upon which the theory was based.

Fuoss, Onsager and Skinner noted that a Ctl' t"r^ arising f¡om the 'explicit product'

gave only marginal improvement to their equations. They decided to neglect this term

arrd allow A and Z to absorb any errors arising and therefore to restrict the range of

application of the equations to concentrations where the C3h contribution was

negligible. In summary, the FuossÐnsager equations may be presented together.

/t = ¡P-.sc lt + gb bg c + JC

Â - 
^o- 

SC%t/' +nblbgCT + JCy - KoCTf2tt

A - ¡o- sc% + E' clnr,+ LC - ALo cf2

Â = 
^o- 

sc%t/, + E' cttn6|!Ø¡ + LCy- KocTfz lt

(l.l e)

(1.20)

(r.22)

(t.23)

Equations 1.20 and 1,23 are identical as equations of concentration. 1.20 and, 1.23 both

have 1.22 as a limit forT near unity. For f2 = 
I (or KA = 0) 1.22 approaches 1.19.

Wren D is large andf or the salt has large ions, equations 1.19 and 1.23 are indistinguish-

able.

1.7 The Fuoss-Hsia Equation

The linearized Fuoss{nsager equation (1.19) for unassociated salts, which becomes

À = Ao - sC/" + Elctnc + JC- KAL' c 0.24)

for slightly associated salts was tested by Fuoss and Hsia23 with data in which the

concentration of salt exceeded the limit of applicability (about 0.01N for l-l
electrolytes in water) set previously by Fuoss and Onsager as a result of the math-

ematical approximations refered to earlier. They found that Ào and J values depend



upon concentration ancl diagnosed, not ttnexpectedly, that the functional form of
equation I . I 9 was incorrect for C)0.0 lN in water. They showed that data of high

precisionu'x u+d involving concentrations up to about 0.10N could be reproduced

within experimental er¡or by a semi-empirical equation of the form

r\ = Âo -SC/r+ECtogC+AC+BCtl, (1.2s)

They were thus encouraged to repeat the integrations which led to equation 1.19,
?,

retaining allC-12 terms. This led to a complicated function too complex for desk

calculators but which could be handled by an electronic computer.23 Their theoretical

conductance function had a range of applicability such that xn1}.5 (which corresponds

to concentrations less than about 0.25mol dm-3 for a l-1 electrolyte in water).

Fuoss and Hsia pointed out that the symbolic expression for the conductance function

is

^ 
= ?(Âo-a^e) (l++) G#Ó¿)

13

(1.26)

where @ is the volume fraction of one species of ion. The term 0#Ô¡"¡ is incorporated to

accounf fo¡ the reduction in mobility of ions caused by the obstruction effect.26 Tl.fs

effect becomes apparent in the more concentrated solutions of the ranges to which the

Fuoss-Hsia equation may be applied. In such solutions the volume of solute is no longer

a negligible fraction of the total volume and the necessity for migrating cations and

anions to detour around each other contributes to a net retardation of each ion. For the

lower range of concentrations (0,00IN to 0.01N) used in this ¡esearch the obst¡uction

effect is negligible.

Fuoss and Hsia23 have written a computer program designed to analyse a set of data

points (Cj, Lì according to thei¡ conductance equation in order to evaluate the para-

meters /\o , K¿. and a. A similar program based on this equation and devised by Kay27 and

used in adapted formæ in the determination of these three parameters in the present

research. The adapted program does not modify the Fuoss-Hsia equation, it retains a

cth ær .

1.8 A new conductance equation

Recently conductance data have been processed by Renard and Justice29 using a new

conductance equation. This equation, developed by Fuoss, incorporates the Chen

electrophoretic effect3o but details of this effect and the related equation have not yet
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been published. The new equation gives values of Ào virtually identical with those

obtained from the Fuoss-Hsia equation.

1.9 The concentratiou dependence of transport numbers

Transport (or transference) numbers are essentially rátio, of conductances. The limiting

transport number f,9, of an ion is simply related to the limiting ionic conductance, Àt and

the limiting equivalent conductance, Âs by the relation

¿o-Àrri = É (1.27)

Because of this, transport numbers usually exhibit a smaller concentration dependence

than do conductances themselves. The extent of concentration dependence is related to

the difference between the transport number and the value 0.5. For example, Robinson

and Stokes3l have observed that for non-associated 1-l electrolytes the form of

concentration dependence of the cationic transport number is as follows.

* If the transport number is near 0.5, Scarcely any concentration depence applies.

** If the transport number is less than 0.5, it decreases further with increasing

concentration.

*{..* When the transport number is greater than 0.5, it increases further with increasing

concentration.

Such observations are readily explained by the theory of conductance already outlined in

this chapter. Equation l.I2 can be restated for a particular ion in the form

)\, = (Ào - aì.") (l + ax/x) (1.r2a\

where AÀ, and AX/X are the expressions fo¡ the electrophoretic and relaxation effects

appliecl to i ions only.

For symmetrical electrolytes the respective values of AÀ, and AX/X are the same for

both cation and anion. Application of equation l.l2a to equation I .27 thus leads, with

cancellation of relaxation terms, to

¿ _ À?+AÀ¿

' 
^r 

+2&l\e (1.28)

AÀ" is obtained from the single ion form of eqr.ration 1.8.

AÀ, =-# 
1,4 h

Substition for Aì." in equation 1.28 and application to l-l electrolytes32 leads to

(1.8a)
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(1.2e)
_ Àl * /2821/ClQ+rca)

N - B2\/cl(+ rca)

This equation has been rearranged33' v in the useful form

t9t = t.+(o'5 - tí) B2\/c-t -t (l + Ba\/C)Lo

This form of equation 1.29 provides a precise statement for the concentration tlependence

of transport numbers which theoretically justifies observations (a), (b), (c) outlinecl above.

Tests of equation 1.2935 give a high degree of agreement between observed and calculated

values. Accordingly, equation 1.30 has been used in this research to evaluate limiting

transport nttmbers from transport numbers determined at a range of finite concentrations.
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Chapter 2

CONDUCTANCE_EXPERIMENTAL

2.1 Introduction

The conductance of electrolyte solutions may be very precisely determined. In this

research, a precision as good as, or better than O.0l% has been sought. Accordingly steps

were taken in this research to ensure that the chemicals, apparatus, equipment and

associated techniques were capable of yielding such a precision. As will be seen in detail

during this chapter, attention has been given to all factors likely to influence the precision

of the measurements. Such factors inclucle the purity of chemicals, cleanliness of glass-

rrvare, accuracy of temperature control and the adequacy of technique.

2.2 Materials

Conductance water

Deionized water obtained from the bulk laboratory supply was distilled into, and

stored in, a plastic container. Distillate collected in the early stages of the distillation

was discarded ' only water which had a specific conductance equivalent to the range

l.l - 1.5 x 10-6 ohm-l cm-l at 25oC was collected for use. Only freshly distilled

conductance water was used.

Potassíum chloride

Samples of this salt were originally purified by James.l Analytical reagent grade salt

had been twice recrystallized from conductance water and dried successively in an air

oven and a vacuum oven. It was then fused in a platinum crucible. The solid, b¡oken

into small lumps, was stored over silica gel in a desiccator. The salt was considerecl by

James to be of high purity. Cell constants determined using aqueous solutions of his

sample were in very close agreement with values obtained for the same cells used by

other workers in this department, using different samples of purified potassium chloride.

&esium chloride

Mulcahy2 had purified this salt by recrystallizing it tfuee times from doubly distilled

water then drying in a vacuum oven. A sample submitted to AMDL* (now AMDEL) for

analysis by flame photometry had shown impurities as Na(l8 ppm), K(l ppm),

Rb(40 ppm) and Li(less than I ppm).

*Australian 
Mineral Development Laboratories, Glenunga, South Australia.
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Po tassiunt thio cyanat e

Analar grade BDH* potassinm thiocyanate was cryst albzed from conductance water,

washed with a small quantity of chilled conductance water then dried in a vacuurn oven

at 60 - 80oC for about l2 hours. The crystals wele sto¡ed in a vacuun desiccator

Molecular sieves

BDH molecular sieves, type 34, were used in pellet form to dehydrate dimethylform-

amide (DMF) prior to the final distillation of this liquid.

The sieves were washed several times with demineralized water prior to use, then dried

in a stream of dry nitrogen in an oven at 250 - 300"C. Regeneration of the sieves after

use was achieved by a similar procedure.

DMF

The following procedures for purification was recommended by James after investiga-

tion and trial of a variety of procedures.3 He reported that the method adopted produced

DMF with a water content between 0.0003 mol dm-3 and 0.001 mol dm-3 as measured

by the Karl Fischer technique.

DMF from the store rvas treated with anhydrous copper sulphate. This removed much

of the water present (o¡iginatly about 0.01 mol dm-3 ) and also complexed amines

formed by the hydrolysis of DMF. After standing with intermittent shaking for not less

than a week, the DMF mixture was fractionally distilled at a pressure of between 5 and

lOmm mercury, discarding the fi¡st 50 cm3 and the last 100 cm3 of distillate for each

initial cubic decimetre. The middle cut was Cried further by storage over pre-dried type

3A molecular sieves for at least 2 days. Immediately prior to use, the DMF was again

fractionally distilled. The physical conditions and the rejection of fractions of distillate

were the same as in the fust distillation.

DMF purified by this proceclure had a specific conductance in the range

1.0 - 3.0 x 10r ohm-r cm-l.

2.3 The cleaning of glassware

Flasks, flaskcells and beake¡s which were used to contain samples of purified Di\{F,

conductance water or DMF/wate¡ solvents were cleaned by a routine procedure.

Initially the internal walls of the vessel were treated with chromic acid to remove grease.

Then followed at least six rinses and an overnight 'soaking' with demin eralized,water.

Having been steamed fo¡ at least 30 minutes, the vessel was rinsed with conductance

*BDH 
Chemicals Ltd., Poole, England.
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water and dried in an air oven. Subsequent to initial usage, the chromic acid and

steaming steps were normally omitted frorn the cleaning procedure. Weight burettes

could not be steamed but underwent the remainder of the cleaning procedure.

2.4 Weighing procedures

heliminaries

Prior to weighing, tlle outer surfaces of all vessels were wiped with a clean cloth

followed by clean chamois leather. Any adhering material was thus removed. The

handling of vessels was carried out either by using stainless steel forceps tippetl with

polythene (normally for empty flasks or for weighing bottles), or by clean chamois

leather fingerstalls. Flasks and weighing bottles were always weighed with a small

watch-glass covering the mouth of the vessel.

In all cases except where otherwise noted, masses were always determined by first

allowing thermal equilibration to occur.

Potassium chloríde and caesium chloride

A Mettler 86C200 balance was used to weigh a sample of the salt in a weighing

bottle. Thisbalancepermittedestimationof massto l0-s gram. Atthesametimethe

mass of an empty flask was obtained on a Mettler 85C1000 balance; this balance gave

estimations of mass to l0-a gram.

The salt was quantitatively transferred from the bottle to the flask and each vessel was

then reweighed. The weight of solid transferred was taken as the change in the weight

of the weighing bottle (plus contents) following transference of the salt. As a check the

change in weight exhibited by the flask was also noted.

Potassium thiocyanate

Because of its hygroscopic/deliquescent nature, this salt was weighed under conditions

designed to minimize absorption of atmospheric water vapour.

The weighing bottle containing a weighed sample of the salt was transferred (with

watchglass) to a v¿cuum oven set at 80oC and left for approximately one hour. The

vessel was then t¡ansferred to a vacuum desiccator to cool over silica gel. Thereafter the

bottle was quickly reweighed on the Mettler 86C200 and the solid transferred to a

weighed flask without delay. As soon as possible the bottle was again weighed to obtain

the mass of potassium thiocyanate t¡ansferred to the flask. After the weight of the flask

and its contents had been noted, solvent was quickly added to the flask. Dissolution of

salt was ensured by thorough, careful swirling of the flask's contents.



21

Liquids, ntixed solvents and solutions

Pure liquids were weighed in a flask on the Mettler BsC 1000 if the total mass to be

measured was less than I kg (the capacity of this balance). When the mass exceeded tlús

value the Stanton H.D.z beam balance was used, employing the method of swings.a

The balance masses were calibrated on the Mettler BsClb00. Beam erïors, were

evalttated for 5009 and 10009 by Gauss'method of double weighinga and were found

to be - 0.0203% of the mass of the tare for 10009 mass. Brass masses were handled either

with brass forceps or chamois leather fingerstalls.

The preparation of mixed solvents from DMF and water is characterized by the

evolution of heat of mixing. In such preparations it was essential to allow the mixture
to thermally equilibrate with the balance room before reweighing.

While potassium thiocyanate dissolved readily in all solvents used, the chlorides of
potassium and caesium dissolved only with difficulty in solvents containing 0.5 rrrcrie

fraction of DMF or more. In such cases a magnetic stirrer-bar coated with teflon was

carefully inserted into the mixture after all weiglúng was completed. The flask, sealed

with a teflon-sleeved ground-glass stopper, was placed on a magnetic stirrer for
overnight mixing. Stirring was continued next day if necessary.

Buoyancy coruections

All solutions and solvents we¡e prepared by weight and air buoyancy corrections were

applied as indicated by Vogel.s

Solutíon densilies

The density of mode¡ately dilute solutions can be approximated by the relation

+
^d

where dois the density of pure solvent, I4o is the weight percentage of solute in the

solution and Ld is the charge in density of solution per unit weight per cent. For aqueous

KCI and CsCl, drotutio, could be c¿lculated since all variables in the above equation were

known. However, for solutions of these salts in DMF/water solvents Âd is not known. In
such cases Âd was taken as that pertaining to an aqueous solution of the salt. Errors

incorporated in this assumption are extrapolated out when extrapolations to infinite

dilution a¡e made in the calculation of i9.

d*trtion Wpdo
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2.5 Conductance measurements

2.5.1 Temperature control and measurement

The oil thermostat was regulated by a mercnry-toluene regulator linked to a

heating coil activated by a thyratron control unit. Temperature control to

10.003"C or better, was achieved. Temperature was measured by a bomb calorimeter

type thermometer which was graduated in 0.01 degree. Estimations to 0.001 degree

were achieved with a magnifier. The thermometer had been calibrated against a platinum

resistance thermometer by various members of this department.

2.5.2 Measurement of resistance - appdrøtus

Resistances were measured with a Leeds-Northrup model of a Jones-Dike bridge

according to procedures outlined by Dike.6

Incorporated into the circuit were an oscillator, tunable amplifier and a cathocle-ray

oscilloscope as detector, all linked by shielded cables connected to a common earth.

The bridge was isolated from the oscillator and the detector by transformers, thus

permitting proper functioning of the Wagner earth. The oscillator output was held at

0.4 volt to avoid heating the solution between the electrodes of the flaskcell. The

sensitivity of the combined apparatus varied from about I part in l0s at resistances

above 5k$l to about I part in 106 (or better) below 3kSl and down to 400Q.

2.5.3 Frequency dependence of resistance

The resistance of the flaskcells varied linearly with the reciprocal of frequency over

the range l.5kHz to 5kHz. Above the latter frequently the resistance behaviour of the

flaskcells va¡ied according to the magnitude of the resistance being measured. In the case

of cell resistances lower than about 8kS2, resistance tended to increase with increasing

frequency beyond 5kHz and this tendency became less marked as the cell resistance

became smaller. With fairly dilute solutions (or with solvents) whose cell resistance

exceeded about 8kfl, the resistance behaviour at frequencies greater than 5kHz was to

decrease markedly as frequency increased. Plots of resistance against reciprocal of

frequency typical of a conductance run in cell H are shown in Figure 2.1.

Solvent resistances were measured in the flaskcells using two lOkO resistances

tapped f¡om the bridge and connected as 20kS¿ parallel with the flaskcell as recommended

by Dike.6 The same two resistors were always used fo¡ solvent resistance measurements

since their frequency dependence had been'measured and this knowledge was used to

apply corrections to the bridge readings. Similarly, frequency dependence corrections

were applied to the single l0kf,l resistor used for measuring resistances exceeding 1OkS¿.

Corrections were also applied for the resistance of the cell leads.
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FIGURE 2.1 Frequency dependence of flaskcell H at various resistances.
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'fhe procedure adopted for the determination of each cell resistance was to plot

measured resistance against reciprocal frequency and to extrapolate the linear portion of

the plot to inhnite frequency. The intercept at this frequency was taken to be the

frequency independent resistance, that is the trtte ohmic resistance. The application of

such procedures which ignore deviations from linearity has been justified by JamesT and

Robinson and Stokess and used by Hawes and Kayee between 0.5 and 6WIz.

The value of the frequency independent resistance was subsequently used in the

calculation of the equivalent conductance of the solution as indicated in section 2.5.5 ,

a solvent correction being applied in each case.

2.5.4 Conductance flaskcells

Flaskcells G2 (cell constant 5.745s) and H (cell constantO.6748t) were designed

by the author to facilitate the mixing and agitating of flaskcell contents during a

conductance run. Effîcient mixing is achieved by physical manipulation of the flask -
no electrical stirring is required.

The construction of flaskcell H is illustrated in Figure 2.2. The main feature of the

construction is the connection of the cell to the flask by two glass tubes. With two possible

avenues of exit or entry by liquid or ait, the cell can be readily flushed. Further, by

appropriate tilting of the flask a large air bubble may be trapped in the cell then allowed

to escape into the flask, causing vigorous mixiirg as it passes through the liquid. Excessive

tilting of the flask is to be avoided, otherwise wetting of the teflon stopper may occur,

possibly incorporating effors into subsequent measurements. This precaution is to be

followed especially when the volume of liquid contained in the flask cell approaches

420 cm3, the upper limit of effective mixing.

Platinum plate electrodes sealed into cell chamber were very lightly platinized

to reduce the frequency dependence of the ¡esistance of the cell. Excessive platinizing

was avoided in order to prevent both adsorption of ionic or organic species from solution

and the possible catalytic decomposition of the organic component of the solvent

Flaskcell G2 was used to determine only one limiting equivalent conductance, cell H

being used for all other such determinations.

The cell constants of the flaskcells were each determined by at least one conductance

run with aqueous potassium chloride in the manner outlined in section 2.5.5. It was

observed that the cell constant exhibited a 'level effect', probably due to the nature of

the construction of the flaskcell. Two pathways for the passage of current are available

in this flaskcell. Of these, the less direct pathway (via the solution in the flask proper)

appears to exhibit a decrease in resistance, up to a limit, with increasing depth of liquid.



FIGURE 2.2 Flaskcell H
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Conductance runs were performed with a minimunt ,of 320 cm3 of soltttion in the

flaskcell, thus avoiding any possible variation of the cell constant. Data for the cell

constant determinations are given in Table 2.1.

Table 2.1 Cell constant determinations

Flaskcell H Flaskcell G2

Curnulitive
Vohane (cnx)

Cell
Constant

Cumulative
Volume (cm?'¡

Cell
Constant

320
341
350
363
376

286
296
306
3t6
337
358
371

0.675rs7
0.674971
o.6'Ì4930
0.674916
0.674833
0.67485r
0.67481s

5.74560
5;74620
5.74596
s34556
5.74515

CelI constant
taken as

Cell constant
taken as 5.t4560.67485

2.5.5 hocedure for a condttctance run at 25" C

The flaskcell, containing a known weight of solvent, was placed in the oil thermostat

to thermally equilibrate. The flaskcell was stoppered with a tapered teflon stopper to

minimize adherence of solvent condensate. When a steady resistance value at a particular

freqnency was noted, the flaskcell was removed dnd thoroughly agitated, then replaced

in ttre thermostat to re-equilibrate. A single repetition of this agitation procedure was

generally sufficient to remove the Soret effect.lo The resistance of the cell was measured

with 20kO resistors in parallel at the frequencies I .5 ,2,3 ,5 , I OkHz. These data together

with appropriate corrections mentioned earlier, were used to determine the specific

conductance of the solvent, a paramete¡ both indicative of the quality of the solvent

and ¡recessary as a correction to be applied to conductances of the electrolyte solutions

studied.

A stock solution, containing a known concentration of salt in the above solvent,

was carefully added to the flaskcell from a tared weight burette handled with chamois

leather fingerstalls. Usually the volume added was between l0 and 20 cm3. The weight

of added stock was obtained by difference on the Mettler 86200 balance. The flaskcell

was now rernoved from the thermostat, its contents thoroughly mixed and then allowed

to equilibrate with the thermostat. The Soret effect was removed, as above, by two

more agitations of the equilibrated flask and the checking of resistance until successive

readings were equal. The resistance of the cell was then measured at the same frequencies

as indicated above for the solvent. The conductance run was continued by adding more
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stock solution and repeating the above procedure.

Resistance data was plotted against reciprocal of frequency, as previously outlined,

to obtain the resistance at infinite frequency for each concentration of the salt. A set

of raw data, involving weights of added stock solution together with the coresponding

resistance of flaskcell solution at infinite freqttency, was thtts generated. This raw data

together with information including data for corrections for buoyancy, solution density,

solvent and leads resistance, was used as input data for a computer prog¡am 'C and 11,

from raw data' constructedrl for use on a Hewlett-Packard 9820A Model 20 calculator.

Output from this prcgram provided the respective concentrations ancl equivalent conduc-

tances following each addition of stock. This information was in turn used as input data

(together with appropriate values of the coefficients B, B t and 82 (equations 1.6,1.14)

and an estimate of a)'in a programll entitled 'Robinson and Stokes calculation of

Lambda 0'. This program employs the Robinson-Stokes equation (1.18) to give

estimations of the limiting equivalent conductance from each set of concentration/Â

data supplied to it. From this output a plot of 'Robinson-stokes Ao' against concentration

was made and extrapolated to zero concentration. This gave a good estimate of 'ttue'

lP which is one of the input data for the program UNASS and LOAOKA which compute

.Ao and ¿, (LOAOKA also co:nputes K, ) using the Fuoss-Hsia conductance equation.

Table 2.2 compares some values of .¡f obtainecl by the Robinson-stokes procedure and

the Fuoss-Hsia equation. The difference in A0 obtained by the two methods is given by

AÂ0 = N (p-rÐ- ¡9 (n-Ð.

Table 2.2 Comparison of estimates of ,¿\o

Salt
DMF
mole%

^o(F-IÐ ^o(R-.S) ^N
CsCl

CsCl
CsCl

CsCl
CsCl

KNCS
KNCS
KNCS

r53.670
81.906
44364
45.689
62.176

139.98?
48.295
66.786

153.65
81.86
44.30
45.55
62.t0

t39.9s
48.25
66.6s

+0.02
+0.04
+0.064
+0.139
+0.076
+0.037
+0.045
+0.131

0
9

30
50
75
0

50
75

This remarkably good agreement suggests that workers interested orfy in the Æ

values of solutions of moderately high dieléctric constant may save computing time

and lose little in accuracy were they to restrict their calculations to those of the

comparatively sim ple Robinson-S tokes pro cedure.
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Chapter 3

CONDUCTANCE _ RESULTS AND DISCUSSION

3.1 Introduction

The conductances of solutions of CsCl, KNCS and KCI in various DMF/water solvent

mixtures have been measured at25"C. The maximum proportion of DMF was 0.75 mole

fraction and the upper limit of concentrations used was 0.016 mol dm-3.

This upper limit of concentration resulted from the design of the flaskcell (Chapter 2).

The design was aimed at ease and effectiveness of mixing. However, the level effect,

inherent in the design and operative up to a total solution volume of about 320cm3 ,

reduced the maximum possible added volume of stock to about l00cm3. This limitation

resulted in most runs covering the range 0.001-0.01 mol dm-3.

In applying the Fuoss-Hsia equation to a set of data, the computer program LOAOKA

evaluated the three parameters z\0, a and K, simultaneously, using a method of successive

approximations. These were aimed at minimising the quantity o2 in the expression

(n-3)o2 = Z(Lrotc- Lot)" (3.1)

where n is the number of data points. (In the program UNASS, used for the non-associated

case, Ko is assumed to be zero and the program computes only Ao and a).In the evaluation

of the activity coeff,rcient f1, needed for the calculation of Ko, the extended form of thr:

Debye-Hückel theory, given by

r-r,=-lzrz2le2 Kr'r= 
2Dkr ' 

L+ * ß.2)

has been used rather than the limiting law used by Fuoss.l The value of ø used in this

expression was allowed to converge during the successive approximation procedure to

the value required by other terms in the concluctance equation.

Values obtained in this research for,N, a and Knare displayed in Table 3.1. Raw data

for each run are to be found in Appendix 3.1.

3.2 Results for Âo

It can be seen that the standard error of fit of the data to the conductance equation

is generally about O.Ol%. Uncertainties in r\o are mainly in the range 0.01-0.02% giving

a satisfactory degree of precision. In Chapters 4 and 5 the z\0 values will be used to obtain



Table 3.1 
^0, 

a and Knfor KCl, KNCS and CsCl in DMF/water mixtures at25"C

Salt

CsCl

KNCS

t53.682
153.629
81.906
44.39r
4l.6Be
62.176

t39.98'.1
48.295
48.284
66:786

44.600
s9.615

0.o22
0.015
0.015
0.025
0.012
0.005

0.o23
0.004
0.004
0.005

0.036
0.003

0.022
0.015
0.746
2.4t
0.454
0.035

0.023
0.166
0.t37
0.110

1.t96
0.013

0.0
0.0
1.581
4.9

tr.47l
12.75'l

0.0
0.0
0.180
1.0
0.174
0.137

0.802
0.061

DMF
mole fraction C**

0.010
0.010
0.012
0.011
0.012
0.010

^o 
to^o ø

3.208
2.852
6.479
7.42
9.506
2.650

3.786
8.410
8.508
9.374

6.779
2.23t

!oKo o

0.008
0.006
0.006
0.013
0.007
0.002

0.005
0.002

KAtoa

0
0
9

30
50

75

0
50
50

75

0.010
0.011
o.or2
0.010

0.0
0.086
0.066
0.082

0.008
0.003
0.002
0.002

0.0
2804
2.840
6.554

3.214
3.366

KCI 30
7s

0.012
0.016

tqJ
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values of Ào and Stokes radius with a view to discussing the variation of these parameters

with solvent properties. However, two particular r\0 values may be discussed here.

There appeil to be no recent reports in the literature of the valne of n0 (fNCS) in water

at25"C. Washburn2 presents conductances first published in 19l2.In 1930 Garb and

Hlasko3 published values of the 'coefficient of conductance' at three concentrations in

the range 0.002 - 0.05N. Their value of N, apparently based on an estimate of the degree

of dissociation of KNCS in water,w as 142.98. Surprisingly no r\o detenninations for this

system ttsing a modern conductance equation appear to have been made, although values

for N (KNCS) in a number of organic solvents have been published. No valid comparison

with the result presented on Table 3.1 can therefore be made.

In the case of Âo(CsCl) in water at25"C, application of Àoç¿- = 76.354 to the mean of

the values presented gives Àogr+ = 77.31. This provides an interesting comparison with a

number of literature values, displayed on Table 3.2.

Table 3.2 À0¿'r+ values in water at25oC

Salt )\o's+t Author

CsCl 77.26
76.46
'Ì6.92
76.70
76.91*
77.3I*

76.77
77.23*

77.20
77.33*

*Calculated from the difference between values ofthe published Âo and tro- found
in reference 4"

tUnits ohm-l "-a "dl useä throughout this thesis.

Even allowing for slight differences due to both experimental er¡or and calculation

procedures for lP, the substantial variations in the tabulated values of À065+ are

perplexing in a field of research acknowledged for its precision.

3.3 Results for a and Ko

Although ¡\o is the quantity of main interest, some comment is necessary on the

values obtained for the interdependent parameters ¿ and Ko. On Table 3.1 the

uncertainties presented for a and Ko are typically I -3% and I - 5% respectively, but

reaching 2O% for Ko and even higher for ¿. In view of the satisfactory precision of the

Reference

Voisinet
Justice and Fuoss

Accascina and Goflredi
Treiner, Justice and Fuoss
Rena¡d and Justice
this research

Treiner, Justìce and Fuoss

Hsia and Fuoss

Lind and Fuoss

Hsia and Fuoss

5

6
7
8

9

CsBr 8
l0
ll
10

CsI
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Â0 values, tl-Lese uncertainties reflect the lack of sensitivity of the o function (equation

3.1) to the effect of only slight degrees of ionic association (l-y) arising from the

combination of fairly low concentrations and small valnes of K, prevailing in these

systems.

It is clear from Table 3. I that a, the distance of closest approach of ions in solution,

varies with solvent composition. Since the model upon which the conductance equation

is based assumes that a is constant for a given salt, these results cast some doubt on the

model and upon the significance of these association constants, Ko,to which ø is related,

The tabulated valtles of Ko for KCI may be discussed in relation to the results of
Jamesl2 for KCI and KBr in DMF/water solvents containing up to o.496mole fraction
of DMF. Although the variationin Ko with solvent composition is srnall (a range similar
to that for CsCl) it is of inte¡est to note that for both KCI and KBr James' data gave

linear plots of log Ko against lOOlD, supporting the Denison-Ramsey-Fuoss theory13, 14

of ion-pair formation. Further, the James data also indicated that log Ko is alinear

function of 1og C"ro wher" Curo is the concentration of water (mol dm-: ) in a mixed
solvent. According to Quist and Marshallls' 16, such a result occurs when water alone is

involved in solvation changes during ion-pair formation. However when James, data is

combined with the data obtained in this research for KCI in DMF/water solvent contain-
ing 0.75 mole fraction, the resulting plots suggest that log Kn is linea¡ in neither IOOID

nor log Cr"o rather, a maximum appears in each plot (Table 3.3 and figures 3.1 and,3.2).

The limited data for Cs Cl (Tabl e 3 .4) similarly suggests non-linear plots (figures 3. I and

3.2) and the likelihood of a maximum therein.

In an attempt to rationalize these observations, the proposals of euist and Marshalll6

concerning selective solvation in non-aqueous solvents has been applied to the KCI/DMF/
wate¡ system.

If it is assumed that both H2O and DMF are involved in solvation changes during ion-
pair formation it is possible to write

Kftonl+ Cll.orul+ KCl(rotu)t p12o+ qDMF

for which the 'complete' constant rÇ is given by

(3.3)

= 
4Kc(rotÐ ' @rro)P ' (oouÐQ4

%Trorul ' dcliror')
(3.4)
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Table 3.3 Properties of DMF/water solvents and values of log Ko for KCI at 25oC

Mole%
DMF KA log Kn l00lD log Cg^g

0.0
6.00s

t3.49
26.94
30.00
35.06
49.63
75.00

o.792
1.00
t:to
335
325ø
5.00
9.58
3374

-0.101
0.0048
0.229
0.574
0.5t2
0.699
0.988
0.527

1273
1339
r.443
1.650

7.706
t:783
2.008
2388

1.74

r.64
l.s3
t34
130
r.24
0.606
1.04

ø. presented on Table 3.1

Table 3.4 Properties of DMF/water solvents and values of log Kn for CsCl at 25"C

MoIe%
DMF K;t los K.e 1001D los CH.,o

9
30
50
75

1.58
4.78

tL.47
12.76

0.199
0.679
1.06
t.1l

r37
tJ0
2.Ot
239

1.60
130
103
0.606

ø presented on Table 3.1
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or P^ = KA @nro)P (oouìQ (3.5)

wlrere Ko is the conventional association constant and K) is independent of solvent

composition. Applying logarithms to equation 3.5 and assuming that activities of solvent

components of the mixture are given by concentrations, we obtain

logKo = loeÇ - plogCrro - qlogC r*, (3.6)

The shape of a plot of log Ko vs" log C ."ro will depend upon the sign and magnitude of

both p and q.

In order to test equation 3.5 the logarithmic data on Table 3.3 was analysed with a

multiple linear regression program whose output includecl values of K)" p and q which

fittedthedata.TheresultswerelogK)=-.t.42,p=-0.352,q=-l.T0,valueswhose

order of magnitude appears reasonable. However, the negative sign of p and q implies

that the ion-pair is more solvated than the separate ions. From a qualitative or intuitive

viewpoint such a situation seems improbable. As a check on the computer result, values

of log K, given by equation 3.6a were calculated for the values of log C 

"ro 
and log Cor.

given on Table 3.3.

logKo = -1.42 + 0.352 loECno+ 1.70logCo"u (3.6a)

The results of these calculations are plotted on Figure 3.2, showing that the general form

of the original plot is retained by the derived data. However the lack of data at lower

C"ro values has tended to bias the values of p and q and hence the shape of the derived

plot in this region. Clearly if firmer inferences are to be drawn concerning the application

of the proposals of Quist and Marshall to this system, more data points are needed

especially in the DMF-rich solvent mixtures. In any case, caution would be needed in the

making of such inferences because of the uncertainties inherent in a system whose K,

values are small and the precision of which is lower than might be desirable.
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Chapter 4
TRANSPORT NUMBERS

4.1 Introduction

The theory of the concentration dependence of transport (or transference) numbers

has been discussed in Chapter 1. For other matters relating to the theory and cletermina-

tion of transport numbers the reacler is referrBd to the literaturer'2,3, Spiros having

published a very comprehensive coverage of the topic.

In the present research attention has been given to the determination of the cationic

transport number of potassium thiocyanate in DMF-rich compositions (0.5 and 0.75

mole fraction) of the mixed solvent DMF/water. The ultimate objective of these

determinations was to obtain the limiting equivalent conductances of the ions K+, Cl-

and Cs+ in these solvents. This follows the work of Jamesa who determined the catiorúc

transport number of potassium chloride in DMF/water solvents containing up to about

0.5 mole fraction of DMF. James used the modified Hittorf method of Steel and

Stokes. s'e

Difficulties arise when this method is applied to potassium halides in DMF-rich

compositions of such solvents. The silver halides used on the reversible silver/silver halide

electrodes dissolve readily, forming silver halicle complex ions. Such complexes contribute

to the transport of electric current. Thus what is measured is the transfer of ion-consti-

tuentsT rather than the transfer of simple individual ions. Potassium thiocyanate was

the only readily available alternative salt which was sufficiently soluble in the above

solvents. However silver thiocyanate,like the silver halides, is also unsuitable for use on

an elect¡ode since it dissolves in the solutions of potassium thiocyanate forming soluble

silver complex anions. The use of another alternative, silver electrodes and silvpr nitrate

solutions, was unfavourably reviewed by Jamesa who found that such solutions were

unstable even when stored in the dark, precipitating solid material (probably silver

oxide) after 24 hours. Consequently the modified Hittorf method was judged

unsuitable for the determinations envisaged and the autogenic rising boundary method,s

using a cadmium anode, was adopted.

In this procedure Cd2* ions from the anode enter the solution (in this research, of
l-1 electrolyte) to form a sharp boundary with the faster moving univalent cations

M+. The cathode used was silver gauze. Cathodic reduction in the systems studied

involved formation of gaseous and alkaline products. However, the design of the cell in
the vicinity of the cathode (compartment F) precluded mixing of these products with
solution in the tube M. This was shown to be so in a dummy run in which phenolphthal-

ein was added to the solution in compartments F and G prior to switching on the current.
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During this run the solution in compartment F gradually acquired the characteristic red

colour of phenolphthalein in alkaline solution but at no stage did this colour appear in

compartment G. This result indicated that the cathode reactions could not affect the

transport number measurements,

KNCS was selected as solute in the chosen solvents because of its ready solubility a¡d
ability to form fairly sharp boundaries. KCI and CsCl, of much lower solubility, appeared

not to form detectable boundaries.

In principle the procedure of the moving boundary method is to measure the volume

traversed by the boundary when a known quantity of electricity has passed through the

cell. In practice the procedure is to measure the time taken by the boundary to trave¡se

a fixed known volume of tubing under the influence of a measured amount of current.

The transport number is then givenS by

,:,, VCß
(4.1)iT

where Z is the measured volume (cmt), i is the average current (mA), T is the time taken
(second), and C is concentration of solution (mol dm-3).

A correction for the solvent conductance may be applied as indicated by equation 4.2.8

t* = tr(l* KrorrrntlKrorrt") G.2)

A correction for the volume changes associated with the dissolution of the cadmium

anode may be applieds by use of the equation

t+ [u,-cdv (4.3)

where, for KNCS solutions, AV n litres per Faraday is givenS by

AV = '/, Vro¡*"r¡r- t+Vxucs- YzVcafg G.4)

V and, Z are molar and partial molar volumes respectively. However, data for Cd(NCS)2

are not available and the volume correction for KNCS cannot be calculated. An estimate of
the likely magnitude ol this correction at O.O4 mol dm-3 KNCS was made by calculating

AV for KCl9 at tlús concentration and assuming that the conections for these two salts

were similar. The calculation gave c az = -0.0002r. since the uncertainty of the
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cationic transport number of KNCS in 0.75 mole fraction DMF/water solution is about

t0.0010 in this research (section 4.5 .2) the assumption that the volume corrections for

KNCS solutions are within experimental error and can be omitted, appears to be justified.

4.2 Materials

Solutes, solvents and solutions used in the transport number measurements were

purified and/or prepared as indicated in Chapter 2.

4.3 Apparatus and equipment

4.3.1 Thermostat bath

The thermostat bath had glass viewing panels at front and back. The thermostatic

fluid was demineralized water whose temperature was held at25"C t 0.005 by a mercury-

toluene regulator connected to a heating element activated by a thyratron control unit.

The control so achieved far exceeded that necessary for transport work where transport

numbers exhibit changes of the order of 0.1% per C. degrees.

The stirrer motor was positioned so that the blades at the end of the drive shaft

created-maximum furbulence near the heater. The temperature of the thermostat was

measured by a bomb calorimeter type thermometer similar to that described in

Chapter 2.

4.3.2 The autogenic moving boundary cell

The simple cell design chosen resembles a design recommended by Spiro.ro This is

illustrated in figure 4.1.

M is a 30cm length of precision-bore pyrex capillary tubing of inte¡nal diameter 3 mm.

Calib¡ation marks 1,2,3,4, approximately 5 cm apart are ceramic decals (transfers) delinea-

ting calibrated sections I,2,3 as shown. Ground glass socket C is size 87 into which the

carefully turned and lapped cadmium anode El fits snugly. A light smearing of stopcock

g¡ease produced a leak-free fit when El is firmly placed in position. Sockets A and B

are size B 14. A is used for access to the tube M for filling and emptying and is stopperecl

when the tube is in use. E2 is the cathode assembly comprising a roll of silver gauze (the

cathode proper) welded to mediurn gauge platinum wire which is itself sealed into the

glass tubing. The B l4 groundglass cone of E2 is slotted to permit the escape of gas

generated at the cathode when the cell is functioning with E2 in position in compartment F,

With El in position, polythene gas tubing,covers the lead from the positive tenninal of

the constant current supply; the end of the tubing is fo¡ced over the ridge of socket C thus

ensuring a tight fit and providing complete electrical insulation of both the lead and the
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FIGURE 4.1 The autogenic moving boundary cell.



44

ancde from the thermostat water.

The cell is firmly fixed on a vertical cradle mounted centrally on a metal box-frame.

This frame in turn is clamped to a horizontal frame resting ott a three point mounting on

top of the thermostat bath. The position of the cell was checked, adjusted and rechecked

for verticality using an accurate engineer's level. The metal box-frame was always returned

to the same position o11 the horizontal frame if removal was necessafy.

4.3.3 The sttpply and measurenrcnt of current

A 'constant' current supply unit, manufactured in the Electronics Workshop of this

department, was used to provide currents up to 0.5 milliamp. Such currents were

supplied at a potential of about 550 volts. Consequently a safety rule was laid down that

adjustments to apparatus in tlie vicinity of the cell or the power supply would only be

made when the mains supply was disconttected.

The amount of current passing through the cell was determined by measuring the

potential difference across one of a set of calibrated resistors of between lk O and l00k0.

The resistors were incorporated into the circuit between the earthed positive terminal of

the supply and the anode. This arrangement avoided elrors caused by any leakage of

current from cathode to earth via the thermostat bath. The potential across the resistors

was measured with a Doran* dc potentiometer which was capable of a precision of better

thanO.Ol%. This instrument had previously been calibrated by Jamesrr against a certified

Cambridge potentiometer type 44248.

During a run this potential was measured and recorded at intervals usually of about 5

minutes. The performance of the constant current supply can be gauged from a typical

plot shown in figure 4.2.

An estimation of the mean potential difference for each section of the mn was made

either from a plot of the potential or by an integrating program for the Hewlett-Packard

98204 Model 20 calculator. Corresponding currents were obtained by the application of

Ohm's law.

4.3.4 Cathetometer

The cathetometer, used for viewing the boundary, stood on a rigid steel table which was

bolted to the floor in front of the thermostat in such a position that the telescope objective

lens was approximately 30 cm from the front window of the thermostat or about 45 cm

from the m.b. tube. This permitted the telescope to focus on the tube. The depth of

*Do.un Instrument Co. Ltd. Stroud. Glos. England.
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field of this optical system was such that, once a clear focus on a calibration mark had been

achieved, the image of the boundary could also be clearly seen without further adjustment.

Care was taken to ensllre that the optical axis of the telescope was horiz ont¿I. This

was accomplished with the aid of an engineer's level, guaranteed tnte.

The verticality of the cathetometer pillar was then established using the horizontality of

the telescope as a criterion. This involved applying the principle that rotation about a truly

vertical pillar would not affect the levelling bubble mounted on a truly horizontal telescope.

Once the pillar had been establisired in a vertical position the verticality of the m.b. tube

could be checked by viewing the tube while the telescope was racked up or down on the

pillar. Verticality of the tube in a vertical plane at right angles to the optical axis of the

telescope could not be checked in this maltlÌer.

4.3.5 Timers

Two timers were used during a run, one being started simultaneously with the stopping of

the other as the moving boundary passed a calibration mark on the tube. In a normal run

f,our such marks were passed. Both timers were built in the Electronics Workshop of this

department. One timer, had EIT counting tubes incorporated into its design. The second

timer, using integrated circuitry with semiconductors for counting and display, was used

in conjunction with a 60 watt 250m4 filter to reduce its susceptibility to 'spikes' from

the mains supply.

Each timer was calibrated against a Schlumberger Model FH2524 Universal Counter.

4.3.6 Apparatus for enhancing the vísibility of the boundary

Moving boundaries may often be detected optically by virtue of a difference in the

refractive index of the solutions in the vicinity of the boundary. Detection of a boundary

is therefore enhanced by light passing through the boundary region towards the viewer. In

this research light was shone on the m.b. tube through the rear window of the thermostat

bath using a lamp nounted on a carriage which ran smoothly over a pair of vertical runne¡s

hxed firmly to the bench behind the bath. The arrangement described has been suggested

by Spiro.s The vertical position of the larnp could be adjusted by means of a pulley system

controlled at the bench front by a thread-and-screw assembly. The lamp itself was mounted

inside a blackened lampcover which was horizontally slotted to produce a rectangular

opening about l0 cm long and 5 mm high. Filter paper fitted inside and behind the

opening produced uniform band of diffused light. A vertical cylindrical glas tube l0 cm

wide ancl 36 cm high and filled with demineralized lvater was placecl between the lamp

and the rear window of the the¡mostat. This acted as a cylindrical lens which improved

the visibility of the boundary and reduced the dark appearance of the inside walls of the
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m.b. tube.

Viewed through the telescope, the boundary tube could be seen outlined against the

narrow horizontal band of light produced by the lamp. The boundary itself only becomes

visible wheu its image is seen as being close to either of the horizontal edges of the band

of light. When viewed near the lower edge, the UounOary is seen as a bright line; by suitable

adjustment of the vertical position of the lamp the boundary can be seelÌ as a dark line nea¡

the upper eclge of the bancl of light. The dalk line image of the boundary was preferred as

being more easily detectable and more suitable for the timing technique outlined later in

section 4.4.2.

4.4 Practical aspects of the transport number determinations

4.4.1 Some procedures Ìn preparing for a run

The m.b. apparatus was cleaned in the first instance by treatment with chromic acid

followed by rinsing and soaking with deminerulized water in a manner similar to that used

for conductance glassware. Thereafter chromic acid was not used. The normal preparation

of the tube involved filling, flushing and emptying it at least six times using the test

solution. This was achieved with the aid of syringes fitted with long stainless steel capillaries.

To avoid the formation of air bubbles the test solution was de-gassed just prior to the

final filling of the m.b. tube. The apparatus, stoppered at A and with electrod.eL7 in place,

was allowecl to equilibrate with the thermostat bath. A visual check for bubbles was then

made using the telescope of tire cathetometer. A check on the verticality of the catheto-

meter pillar and the m.b. tube could be made at the same time.

The telescope was adjusted so that sharp images both of the cross-hairs and a selected

calibration mark exhibited a minimum of parallalax. This was to ensure that a minimum

of parallalax elro¡ would occur when the image of the moving boundary appeared to

coincide with that of the cross-hairs. That such a minimum was achieved was checked when

the boundary appeared. Thereafter the focus of the telescope was retained in this position

for the duration of the run.

4.4.2 Timing technique

The timing of the passage of the boundary from one calibration mark to the next

involved tlvo important techniques. These we¡e

Positioning the cross-hairs of the telescope accurøtely in relation to each calibration

mark.

*
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This was achieved by ensuring that the top edge of the image of the calibration mark

coincided with the point of intersection of the bottom edges of the image of the cross-hairs.

*{r Judgircg consistently the instunt of commencement or completíon of a time

measurement.

As the moving boundary approached one of these points in time, the triangle of light

formed by the intersection of images of the boundary and cross-hairs gradually dwindled

to a single tiny spot of light.

At the instant of disappearance of this spot the timer switch was pressed.

Judgement of this moment was enhanced by adjusting the position of the lamp to

produce maximum darkness in the image of the boundary.

4.4.3 Specifíc conductance of solvent and solution

During the transport nrn the resistance of the solvent was monitored in a solvent cell

or a flask cell thennostatted in an oil bath at 25"C.In most cases slight hydrolysis of the

DMF caused a increase in the specific conductance of the solvent for the duration of the

run. A typical example of this change was from 3.3 x l0-? ohm-r cm-l to 3.6 x 10-7

-tohm ' cm '.
The resistance of the solution was measured in a thermostatted dip-cell to give the

specific conductance of the solution under study.

The ratio of the two specific conductances was then available for the calculation of the

solvent correction (equation 4.2). This factor had typical values in the range 1.0002 to

1.0016.

4.4.4 Calibration of the cell

The literature contains accurate values of the cationic transport number of KCI in water

over the range 0.001 - 1.0 mol dm-3. Accordingly the three volumes delineated by

calibration ¡narks 1,2,3 and 4 on the tube M were calibrated using the convenient

concentration 0.1 mol dm-3 of KCI in water, for which t+= 0.4899.12 This data can be

used in equation 4.1 to evaluate the volume of the relevant section of the tube, subject to

the correction applied by equation 4.2.In one of the four runs a higher current gave the

same results within experimental error, thus indicating an absence of current dependence

in the system. The results of these calibrations are shown on Table 4.1.

A useful check was afforded by the measlrrement of physical dimensions of the

cylindrical volumes between adjacent marks. The internal radius of the tube was evaluated



Table 4.1 Calibrations of moving boundary tube

h) Electrical method (at 25" O (using aqueous KCl, 0,100B9rmol dm-3 )

Section I Section 2

I
)

J

4

RunNo.
ave. current
(mA)

tíme
(sec )

229'1.9

2294.7

2300.8

r''Ì31.5

volume
("*')
0.35256

0.3516?

0.3525s

0.35261

Section I
1.s006

4.982

0.3524

ave. current
(mA)

3.0480

3.0450

3.04s2

4.0473

time
(sec)

2293.9

2295.9

2298.0

1730.7

volume
(r*t)

Section 2

1.5006

4969

0.3516

ave. current
(mA)

3.047s

3.0445

3.0452

4.0473

Section 3

time
(sec)

2248.3

2245.5

2250.3

1690.2

volume
(crnt )

0.34480

0.34404

o.34484

0.3442s

Section 3

r.5024

4.863

0.3449

3.0488

3.0454

3.0452

4.0473

Internol radius (mm)

Lengh (cm)

Votume (cm3)

0.3518s

0.3518o

0.35216

0.35250

mean 0.35207mean 0.35237

(b) Physìcal method : dimensions of cylindrical volume

meøn 0.34449

s.\o
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by using a travelling microscope to measure the length of a column of mercury of known

volume, applying a correction for assumed hemispherical ends of the column. The distance

between adjacent calibration marks was measured with the cathetometer. Volumes

calculated from this data are shown on Table 4.1 . The values obtained give fairly goorÍ

agreement with the electrical calibrations but because the physical measurements are of
lower precision, the volumes obtained are not included in the fînal calibration values.

4.4.5 Concentrationdependence

In chapter I reference was made to the concentration dependence of transport numbers.

This clependence was sumlnarÌzed by the equation

to/=¡+(O.s-fi)ß"JC'i ni -O-nA;Jclæ (1.30)

Because of imperfections in the theory, values of the apparent limiting transport number

49' ,ho* a small concentration dependence rather than a constant value. Consequenily the

'true' limiting transport number t9 *urt be obtained by evaluati ng tf' over a range of

concentrations and then extrapolating to infinite dilution. (This procedure is analogous

to the Robinson-Stokes procedure fo¡ the evaluation of -40, outlined in Chapter 2). In the

current ¡esea¡ch rf tras been so obtained.

4.4.6 Allowing for ionic association

During the computation of Âo values for KNCS in the DMF-rich solvents, out-put

from PROGRAM LOAOKA showed that, at the concentrations used, 2- lO% ionic

association occurred. (This was expected in view of the lower dielectric constants

involved). Allowance for the effects of inter-ionic attractions were therefore necessary and

were accomplished by application of the mass action law to the equilibrium

r+Ncs-
t{o
KA

K+ + Ncs-

This gives

KA
ts_l-7

fx"ffi;
I

I

4

(4.s)

where 7 is the percentage of salt existing as discrete ions, /a is the mean ionic activity

coefficient and frcvcs is the activity coefficient of the ion pair. Taking /^a, = I we have

^fc
T-'r . fx"

(4.6)



The value of K, was available in the output data of PROGRAM LOAOKA. ft can be

obtained from the Debye-Hückel expression

5t

(4.7)
roeft = -4#-

where A-- 1.8246 x 106 and
(Dr)

th 3=50.29x108
@h'/'

The value of ¿ was obtained from the output of PROGRAM LOAOKA.

Substitution for ft, Ko, a and C in equation 4.6 leads to a quadratic equation in 7.

Solving for 7 permits the calculation of thr¡ value of 7C, the fraction of the concentration

actually present as discrete ions. The value of 7C was then substituted in equation l.30

in place of the analystical concentration C, and a new value of /r9'*ur determined.

4.4.7 Current dependence

Spirol3 has warned against assuming independence of cur¡ent in transport work. This

warning has been heeded in the present research. For example, caliblation of the cell with

KCI at a concentration of 0.1 mol dm-3 was performed with two different currents.

In th¿ DMF/water solvents studied, the choice of current magnitucle was limited by the

observation that, for a given concentration, a solution tended to exhibit a characteristic

optimum current for the formation of a sharp boundary. Currents in excess of the optimum

gave curved, less dark boundaries; currents less than the optimum gave more diffuse

boundaries. In either case precision suffered. As a result, variation of the current at a given

concentration was not studied. However since the 'optimum' current changed with

concentration, a range of currents has been used in the determination of r$ for a given

solvent. This can be observed in Tables 4.2 and 4.3.

4.5 Results and discussion

4.5.1 tl( XwCSI in 0.5 mole fraction DMFfwater

Table 4.2 displays results for two concentrations of the salt.
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Table 4.2 Cationic transport numbers of KNCS in 0.5 mole fraction DMFiwater solvent
at25"C

Cx 102
(motdm-ï)

Solution
volunze
(r*t )

Average

cuffent
(mA)

Time
(second) t+ ,1'

ts74t
3.91s'7

0.4712
0.4709 a

a. ForthemoreconcentratedsolutionTwasfoundtobe94,3%. SubstitutionofthevalueofTC
fo¡ that ofC in equation 1.30 had no effect on the calculated value of 19'.

The solution volume indicated represents the passage of the boundary from mark 1 to

mark 4 on the tube. Times at which the boundary passed marks 2 and 3 were also uoted

so that three separate estimations of f.. could be made (see Appendix 4.1 ). These

estimations showed a precision of about O.l%, suggesting that such a precision also

applies to the ove¡all run. (The main source of error in the determination appears to

occur in the timing technique where the uncertainty was about +4 seconds, arising from

a difficulty in ascertaining the disappearance of the spot of light, a technique discussed in

section 4.4.2). Since the two values of tl/are within this experimental error, no concen-

tration dependence can be inferred. Accordingly the value of r$ is taken as the mean of

the rf./ values. This means that the most precise value which can be taken is rf = 0.47I0

r0.0005.

The determination of rl6NCS) in this solvent provided a check on technique through

Àof* .The mean value of ,,"0(KNCS) (Chapter 3) was determined as 48.289 10.005 which

leads to Àþ = 22.7 4. James4 used a modified Hittorf method to obtain rf.ffCtl in a range

of DMF/water solvents including one containing2O% water (0.496 mole fraction DMF).

He subsequently obtain.d NK.' =22.6g for this solvent. Interpolation, at 0.5 mole fraction,

of the Àtç* values presented by James gave Àog* = 22.7 o. Since the evaluation of the two

tro.. values involved determinations of a total of four fundamental parameters (two each of

rl *d Âo), each with its own indeterminate errors, the agreement can be regarded as very

satisfactory.

4.5.2 tl tn 0.75 mole fraction DMFlwater

The work of James with KCI and KBrla in DMF/water solventriwas confined to the

range 0- 0.496 mole fraction of DMF. Prue.and Sherringtonls found rf for KNCS in

pure DMF, but no other data appears to be available between 0.5 and 1.0 mole fraction

of DMF in the aqueous mixtures. The value of rf in 0.75 mole fraction DMF has therefore

been determined. This permits calculation of Ào for K+, Cs+, Cl- and NCS- from

1.0489 0.30464 14042.9 0.4689
1.0489 0.44340 19141.4 0.4681
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conductance data obtained in this reseatch, ancl also provides an additional point in the

plots of Stokes radius vs. lO0lD for these ions.

Table 4.3 summarizes the results of five runs at four concentrations of KNCS in 0.75

mole fraction DMF. Precision obtaining in these determinations of /n is inferior to that

obtained in 0.5 mole fraction DMF, about 0.25%or better, being achieved.

Table 4.4 presents three sets of values of rl'obtained from the \ data using either th,-'

analytical concentration f, or "f C fot the concentratíon terms in equation 1.30. The

effect of the choice of ø value on tl' can be seen. The value ø = 9.37 was obtained during

the computation of A0 for KNCS by PROGRAM LOAOKA. Values of r!/ obtained using

this value of ø produced a positive slope when plotted against concentration (Figure 4.3).

The use of a = 12.0 reduced the slope without changing its sign.

Extrapolation of these data to infinite dilution to give tf. was achieved by the use of a

least square prcgram. Results appeff on Table 4.5. It is clear that the choice of ¿ has at

least a O.l% effect in this instance, upon the result of the extrapolation, but the use of

7C or C in the concentration terms of equation 1.30 makes little difference to the value

of rf obtained. Such differences are within experirnental error.

lfre value tl= O.3glZ 10.0010 is taken as the limiting cationic transport number of

KNCS in 0.75 mole fraction DMF/water at 25"C.

4.6 Trans¡rort numbers and ionic conductances

One of the principal practical applications of a limiting transport number is its use in

splitting limiting equivalent conductances of strong electrolytes into their respective

limiting ionic conductances, assuming that the transport number used (always that of the

ion-contituent) is numerically equal to ionic transport number. Once a transport number

for a given ion is known, the limiting ionic conductances of any number of ions in the

same solvent can be calculated from the appropriate limiting conductances of electrolytes.

Table 4.6 illustrates this point for three salts used in this research.

Table 4.6 Limiting ionic equivalent conductances in 0.75 mole fraction DMF/water
solvent at25"C derived from limiting equivalent conductances and rf.{fNCS) =

0.397 3

Søtt 
^o 

Ài Ii

KNCS
KCt
CsCl

66.786
59.615
62.17 6

26st

29.0s

40.26

33.0e
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Table 4.3 Cationic Transport Numbers of KNCS in 0.75 mole fraction DMF/water solvent
at25"C

Cx 102
(moldm-3)

Solution
volume
(cmt)

Average
cufrent
(mA)

Time
(sec) t+

0.9989
1.0754
2.1790
3.t484
3.9318

1.0489

0.35237
1.0489

1.0489
0.6965s

o.t967 t
0.20164
0.29',714

0.39933
0.49324

131s1.9
4650.6

t9032.6
20482.8
13760.6

0.3908
0.3906
0.3903
0.3897
0.3893

Table 4.4 Apparent Limiting Cationic Transport Numbers of KNCS in 0.75 mole f¡action
DMF/wate r at 25" C according to the values of a and the nature of the concen-
tration term used in the calculation

Apparent Limiting Cationic Transport Numbers

concentration = C concentration = IC
Cx 102
(moldm-!) ^t t+ ø = 9.37 ø = 9.37 a = 12.0

0.9989
1.0754
2.1790
3.1484
3.9318

0.960
0.958
0.930
0.908
0.893

0.3908
0.3906
03903
0.3897
0.3893

o.3982
o.3982
0.3999
0.4005
0.4009

0.3981
0.3980
0.3997
0.4001
0.400s

0.3976
0.3975
0.3988
0.3991
o.3993

Table 4.5 Limiting Cationic Transport Numbe¡s of KNCS in 0.75 mole fraction DMFI
w ater at21eeteomparison o Êvalues

concentratíon
term used

S. Enor
(x 104)

S. Error for
t: þ 104)a tÎ

C
'tc
"tc

9.37
9.37

t2.o

3.48 3.44
3.54
3.02

3.58
0.3974
0.3973
0.39703.0s
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FIGURE 4.3 Values ot rÏ' for KNCS in 0.75 mole fraction DMF/water mixtures at 25"C.

x a = 9.37; no correction for ionic association

@ a = 9.37; corrected for ionic association

(O a = l2.Oi conected for ionic association

'-¡tq,



56

Table 4.7 indicates the two Ào values derived from rf. obtained in 0.5 mole fraction

DMF/water solvent for KNCS solutions.

Table 4.7 Limiting ionic equivalent conductances in 0.5 mole fraction DMF/water solvent

at 25"C derived from lP (KNCS) = 48.289 anO r${rNCS) = 0.4715

Nr* Àhcs-

22.7 7 25.52

The values of Iþ¡ in 0.09, 0.3, and 0.5 mole fraction DMF/water solvents have been

obtained by interpolations of the available data, thus permitting the calculation of trþr+

from the Âr values obtained for CsCl. Jhe interpolations were petformed in several ways.

The simplest method used was to interpolate on a direct plot of Àþ1- a8ainst either weight

percent of water o¡ mole fraction of DMF. Another approach involved the evaluation of.a

deviati,on function of the form

fOr) = ÀtCr - ä (mole fraction -0'35)2

where ó is a convenient a¡bitrary constant chosen so that the range of values of f (À) was

no more than two À units. Such a narow range of values increased the precision with wlúch

f(À), and hence Àþ1-, could be interpolated, either by computer or by graphical methods.

The results of all interpolations were averaged. Table 4.8 displays the values of À0 for Cl-

and Cst over the range of DMF/water solvents from 0- 1.0 mole fraction DMF.

Table 4.8 Limiting ionic equivalent conductances of Cl- and Cs* in DMF/water mixed
solvents at 25oC

mole fractian
DMF rh- ro*+

^0
0.0
0.09
0.30
0.50
o;t5
lo0

t53.657
81.906
44.39r
45.68s
62.17 6

7635 a

39.2s
21.3r
22.17
33.0e
55.1

77.3r
42.62

23.08
23.52
29.0s
34.5

b
b
b
c

d d

a. Robinson and Stokes, refe¡ence 16.

b. Interpolated value, data f¡om a, c, d and refe¡ence 14

c. this research, via À0*+ an¿ rf ßCt).
d. Prue and Sherrington, reference 15.

The interpolated value for Àþ¡ in 0.3 mole fraction DMF leads to fþ = 23.2;, obtained
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from the determined value of r\o for I(Cl in this solvent, thus providing an aclditional data

point to the range of Ào*+ values determihed by Jamesl Application of the literature

valuel6 of 73.5s for Àþ in pure water led to the value À\CS- = 66.49 when applied to

the determined value of lp (KNCS) for that solvent.

The values of À0 presented on Table 4.8 clearly indicate a substantial dependence upon

solvent composition. It is clear also that such a dependence must be due to ion-solvent

interactions rather than ion-ion interactions since, at inf,rnite dilution (a condition pertain-

ing to the definition of À0 ) interactions between ions cease to exist.

In the next chapter the Ào values presented above will provide key data both for the

calculation of Stokes radü and for a cliscussion of ion-solvent interactions.
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Chapter 5

IONIC CONDUCTANCE AND SOLVENT PROPERTIES IN DMF/WATER MTXTURES

5.1 The development of the Fuoss-Boyd-Zwanzigtheory

The velocity of a rigid spherical particle moving in an ideal hydrodynamic continuum

was shown by G.G. Stokesl to obey the ¡elation

v = Flírqr (t.7)

where r is the radius of the sphere and,F the force acting on it. This relation has long been

the basis for the construction or discussion of models for the behaviour of ions in real

solutions.

When an ion is treated as a rigid charged sphere moving in a continuum solvent, the

application of Stokes'Law leads to an expression relating the limiting ionic conductance

and the viscosity of the solvent.

rî lz,lE2 l6nnR,N (s.l )

When R¿, the Stokes radius of the ion, is expressed in Angstrom units, equation 5.1 becomes,

for a univalent ion,

4 = o.stg4lttln (s.2)

Since in this model R¡ is constant, the product Àt , known as the Walden Product, is also

constant. Hence, according to the model, any observed differences in 49 for a given ion in

different solvents must be attributable to differences in the viscosity of the respective

solvents.

In practice only a few solutions obey Walden's Rule. Examples2 include large ions such

as those of tetraethyl ammonium picrate in a variety of solvents. The failure of most other

electrolyte solutions to obey this rule has been attributed to a number of possible causes

including the solvation of ions3, a, s leading to a variation in the size of a given cation

from solvent to solvent. Another suggested cause of the failure of Walclen's Rule has been

the non-constancy of the magnitude of the viscous frictional coefficient. Thus Robinson

and Stokes6 have suggested that, although the Stokes equation may be of the correct

fotm, the numerical coefficient may not be 6zr. They have proposed a co¡rection procedure

based upon a knowledge of the mobilities of the tetra-substituted ammonium ions. Another

suggestionT for refinement of the rule centred on the viscosity term itself, ploposing that

the Walden relationship is bette¡ represented as

ÀlaP = constant (s.3)
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where p is an arbitrary constant, clevoid cf theoretical meaning. However, for aqueous-

nonelectrolyte solutions the index p has been shownT to vary both with the nature of tlie

ion and with the nonelectrolyte component.

Fuossf in observing the dependence of the Walden product upon the dielectric constant

of the solvent, proposed that electrostatic forces between ions and dipolar solvent molecules

contributed to an increase in the solvent viscosity in the vicinity of each ion. The ions were

thus subject to a greater retardation than that due to the bulk viscosity alone. This

proposal led to a modified form of equation 5.1

T9
¿

= lz rlF2
6nN4 (Rrc'+ S/D )

where .S is an empirical constant. The dependence of the Stokes radius upon dielectric

constant could thus be written as

R¡ = R,F+SlD (s.s)

where Ri is the hydrodynamic radius of an ion in a hypothetical solvent of infinite

dielectric constant, a solvent in which all electrostatic forces are zero.8 A plot of Stokes

¡adius against l/D should be a straight line of slope,l and intercept Àf. The plots

presented by Fuoss in support of this proposal were indeed mostly linear; non-linear

sections of plots for polar-polar mixed solvent systems were explained in terms of the

¡ate of hydrogen bonding in the hydrodynamics near an ion.

Later Boydg' 10 and Zwanzigrr, 12: evaluated the coefficient S theoretically and found

that it was related both to the dielectric relaxation time, l, of the solvent, and to the

viscosity.

$= le2 D-D*
2D+l (s.6)

D- is the high frequency dielectric constant. If Dæ is assumed to be much less than D

and D much greater than unityl2, .S is given by

(s.4)

(s.7)

Since.Ri for a given ion is constant by def,rnition, 
^S 

should be proportional to the

ratio Un

S -- constant.lln (s.8)
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A theoretical equation by Debyel3 showed that I was proportional to 4 and to the cube

of r, the radius of an orientable particle. Dannhauser and Joharila observed direct

proportionality between I and q even in associated liquids such as water for which Debye's

equation should be inapplicable. The theory of Fuoss, Boyd and Zwanzig (FBZ) thus

developed gives

R,=Rf+ constant
(R,9")3 4

I I
D (s.l¡

where the coefficient of the !. term is S, a measure of ion-solvent-dipole interaction.
D

If Uri is independent of D

R.=R9o+t,
constant

(R,9")'
I
D (s.10)

Thus the predicted linear plot of Stokes radius against l/D should provide a value of

rR¡- either from the intercept or from the slope of the line.

5.2 Tests of the FBZ theory

Early testss of the FBZ theory proved to be encouraging without being completely

satisfactory. More recent work, including some by the author and another2o in this

department, has shown that the theory has serious inadequacies, these residing largely in the

dependence of the theory upon too simple a model for an electrolyte solution. Outlined

below is an examination of the results of a number of workers.

Fuoss and co-workersls- 19 have evaluated R¿ for alkali halides in dioxane/water

solvents. In a .number of cases, notably LiCl, NaCl and KCl, a plot of Ra against lO}lD

shows a small minimum at fairly high values of D. For lower values of D (less than about

30) the plots tend to be linear. By extrapolating these linear sections of the plots, values

of Rri were obtained which, almost without exception, were smaller than the respective

lattice radii.

James2o extended these studies by examining the Stokes radius of K+, Cl- and Bf in
DMF/water mixtures over the range 0- 100% DMF. As indicated in Chapter 4, part of

this research complements James' wo.rk, providing tro values and hence R¡ for K+ and Cl-

in 0.75 mole fraction DMF/water solvent. All the conductance data in DMF/water, unlike

that of the Fuoss school mentioned above, are based on the determination of transport

numbers in each solvent, thus avoiding the assumption that transport numbers are

independent of solvent composition. Data for K+ and Cl- is presented on Table 5.I . Plots

of the corresponding Stokes radü are to be found on Figure 5.1.



Table 5.1 lonic equivalent conductances and Stokes radii of K+ and Cl- in DMF/water mixtures at25"C

DMF
mole%

0
s.80
6.01

13.52

26.99
30.00
35.11
49.62

75.00
100.00

78.54
74.8
74.7
69.3
60.6
58.8
56.1
49.8
4r.8
36.7

1.273
t.33',7

1.339
1.443
1.650
1.700
1.783

2.008
2.388
2.724

0.8903
r.442
7.42o
2.01s
2.502
2.48s
2.394
L.87 4
1.14s

0.8012

73.5o
49.6e

34.27

24.30
23.2s4
22.0
22.6s
26.514
30.g c

1252
1.176

1.t87
r.348
1.413
l.s6
t.921
2.69s
3.3s

47.33

31.61
21.96,
21sro
20.9
22.O3

33.0e
55.1 c

r.2ls
1.284
1.49 |
t.4ls
1.638

1.984
2.t6
1.87

D 1001D n (cP)d À'/(. R+(Ã) Àtcr RC7(L)

76.35 l.2os

a. This reæa¡ch, presented in Chapter 4.

b.Interpolated value, presented in Chapter 4.

c. Data of Prue and Sherrington, Trans. Faraday Soc.,57, 1795, (1961).

d. Obtained or interpolated from data on Page 131 of reference 20, presented in Appendix 2.1.

o\\)
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FIGURE 5.1 T¡e dependence of the Stokes radius of K+ and Cll upon reciprocal of dielectric constant of

DMF/water mixtures at 25" C.
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A comparison of the Ra plot with those for alkali halides in dioxane/water mentioned

above provides both similarities and marked differences. Similarities occur in that a small

minimum occìrrs at fairly high D (in DMFiwate¡ 100/D + 1.4) while the remainder of the ,

plot (100/D values from I .6 to 2.7) is nearly linear. However the significant divergence from

FBZ theory (evident in the appearance of the minimum in the R-.,. plot) becomes even more

serious when values of Rf are determined from the cuwe. The slope of the near-linear

section gives Rf = 1.3 .Ä. (approximately the crystal radius) but the intercept gives the

unreal value of - 1.8,4.. The FBZ theory is further chalienged by the existence of a well-

defined maximum in the plot for Cl-, occurring at 100/D = 2.4 or thereabouts. Further,

the intercept of the lùrear section of the plot gives a slightly negative value of Stokes

radius although from the slope Rl = 1.4Ã'.

A considerable part of this research was devoted to obtaining a Stokes radius plot

(ys 100/D) for Cst in order to make a comparison with that for K+ outlined above. Results

are presented on Table 5.2; also included are results for NCS- at four solvent compositions.

The Stokes radius plots are displayed on Figure 5.2.

A number of similarities to the respective plots on Figure 5.1 can be observed. The

cation plots both have a minimum near 100/D = 1.4 as well as near-linear sections for

100/D> 1.65. These plots both give anomalous values forRi obtained from the intercept-

Cs+ giving - I .18,Â.. From the slope of the linear section, the plot for Cs* yields Rî = I.42A,

a size somewhat less than the crystal radius.

The anion plots are also simila¡ in that maxima occur near 100/D = 2.4, although the

curve for NCS- is flatter. The available points for this ion suggest a near-linear section for

IOOID<2.O and a tentative extrapolation of this section indicates,R] near 0.8Ä..

Tentatively, the slope indicates a value forRl of about 4.6Ã'.

In other mixed solvents such as methanol/water and ethanol/water, anolnalous results

for Rf (K+) a¡e also founcl2o - negative values are yielded by the intercepts but the slopes

give positive values.

Such inconsistent and anomalous results as have been described constifute a serious

challenge to the assumptions of the FBZ theory and to the sphere-in-continuum model

upon which the theory is based. One source of inconsistency may lie in the assumption

that I ln is constant. Values of I and corresponding values of 4 for a series of dioxane/

water solvents, as cited by Atkinson and Mori2l, indicate a two-fold variation in l/4 over

the range 0-95-15% dioxane. Few values of I are available for other mixed solvents.

A general conclusion to be drawn trom the evidence presented is that a model based on

the sphere-in-continuum is too simple to represent the conductance behaviour of

electrolyte solutions. This conclusion is supported by a number of workerss' 22 including



Table 5.2 Ionic equivalent conductancesâ and Stokes radü of Cst and NCS- in DMF/water mixtures at 25"C

DMF
mole%

0

9
30
50
75

100

78.54
72.71
58.6
49.66
41.81
36.71

1273
1.374
r.706
2.0t4
2.388
2.724

0.8903
r.671
2.48s
1.857

r.146
0.8012

77.3r
42.62

23.08
23.52
29.0"
34.5"b

l.191
1.146
1.426
1.876
2.45s
2.96

25.52
40.26
60.5 c

1.72s
t;t7 7

r.69

D 1001D nkpf rocs+ Rcs+(N rhc,r RNCS-Ã)

66.49 1.384

a. l0 values, except those for pure DMF were preænted in Chapter 4.

b. Data from reference 24.

c, Derived from data from ¡efe¡ence 23 and ¡efe¡enæZ4.

d. Values obtained or interpolated from data on p age 131 of ¡eference 20, presented in Appenttix 2.1.

a\(â
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FIGURE 5.2 The dependence of the Stokes radius of Cs+ and NCS- upon reciprocal of dielectric constant
of DMF/water mixtures at 25oC.
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Fuoss himself. It seems very likely that the relation betlveen conclttctance and solvent

composition is a function of a number of parameters, especially those related to individual

properties of the ions and molecules themselves.S An examination of the variation of a

number of such parameters in DMF/water mixtures comprises the main thrust of the next

section.

5.3 Solute and solvent properties in DMF/water solutions-a search for correlations

5.3.1 Densities and solvent composition

Densities of DMF/water mixtures have been measured by James20 (Appendix 2.I ). A

plot of these data appears on Figure 5.3. It is interesting to note that the density remains

nearly constant over the range )-cao.2 mole fraction of DMF (the top of this range being

one in which four wate¡ molecules are present for each molecule of DMF). If, for the sake

of discussion, the density is assumed to be constant in this range, the volume occupied in

the liquid structure by unit mass of DMF is the same as that occupied by unit mass of

water. Given that the respective molar masses of DMF and water are 7 39 and 18g respect-

ively it follows that I 17 3 mole of DMF occupies the same volume as 1/ I 8 mole of water

in this region of interest. Tlús means that one molecule of DMF occupies the same volume

in the liquid structure as four molecules of wate¡.

Given that liquid water has a more open structure than DMF, this simple calculation

provides qualitative evidence for the observed decrease in conductance with increasing

proportions of DMF in DMF/water mixtures and foreshadows discussion of solvent free

volumes in section 5.3.4.

5.3.2 Ionic conductance, viscosity and solvent composition

James2o, seeking a correlation between conductarce and solvent properties, plotted

Itþ, n and the excess volume of mixing AY¡l agalnst solvent composition. His data for

Àbf-, Àåf and the data of this research for Àþr+ have been similarly plotted. The Ào

plots for the anions are similar, but differ somewhat in shape from those if the cations in

the DMF-rich region. However each Ào plot has a minimum at a mole fraction of about 0.35.

Plots typified bV troçr+ and Àþ1- appear on Figure 5.4 together with that of solvent

viscosity. The latter plot has a maximum at a DMF mole fraction of about 0.27. A

significant correlation between Ào and 4 does not therefore appear to occur. (It is

interesting, however, to note that 4 is linear up to about 0.15 mole fraction of DMF in

water. This will be discussed in section 5.4).
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5.3.3 lorzic conductance and excess volume of mixing

A correlation does appear to exist between Ào values and those of the excess volume of
//

mixing (AV¿ ) of the solvent. The plot of AV¿ vs. mole fraction of DMF (Figure 5.4) shows

a minimum at the same solvent composition as each of the Ào plots, but the shape of the

AV¿ nlot rnore closely resembles that of the Ào plot fo¡ the anions. Values of AV¿ (units

cm3 mol-r) were calculated2' from interpolations of density data22 (Appendix 2.1 ) for

the mixed solvents. Since, in attempting to find correlations between conductances and

excess volumes of mixing, interest centres upon distances travelled by an ion rather than

upon the molecules it meets, excess volumes of mixing were recalculated as AV¿1, ttre

fractional change in the volume considered. Equation 5.1 1 indicates the relationship between

AY¿ and AYB.

I
AY¿ = AV, . dr" l(xrMtÍxzMz) (S.tt)

xt, x2 are mole fractions, Mt, Mz are molar masses (as gram) and d' the density of the

mixed solvent as g cm-3. The values obtained for AVI are shown on Table 5.3.

Table 5.3 Excess volume of mixing for DMF/water mixtures at 25"C

DMF
mole% Densitya 1000 Av;

0
9

30

50
75

00

o.99704
0.99679
0.99113
0.97603
o.9579s
o.94389

0

-15.863
-29.607
-23.149
-r0.78s

0

a. Densities of mixed solvents are interpolated values

The apparent cor¡elation between Ào and AV¿l was investigated by preparing plots of

I0 rrs. AV¿land À04 vs. AVli.These revealed no apparent correlations-in the former

plot the curve was a loop, in the latter the plot was horizontally paraboloid.

5.3.4 Free volumes of the solvents

The proposals of S amoilov26 , 27 , relating to the process of conductance in water involve

the temporary occupancy of suitable interstitial sites inthe water structure by the ions

during their progress through the liquid. Since the electrical concluctivity of electrolytes

in DMF/water solvents falls off markedly in the water-rich region, it appears that

Samoilov's proposals could be used to explain the conductance behaviour in DMF/water
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in terms of a reduction in the number of suitable sites in the water structure resulting

from the presence of DMF molecules. Further, it may be possible to use the same kind of

approach when attempting to explain the condnctance behaviour of electrolytes in the

DMF-rich mixtures by proposing that the ions travel via interstitial sites in the DMF

structure. Since the availability of interstitial sites suitable for ionic migration could be

related to the free volume of the liquid, the free volumes of the DMF/water mixtures were

calculated with a view to seeking correlations with conductance and other properties of

the system.

The free volume, @, of a liquid is taken to be that fraction of the bulk volume

represented by the sum of the volumes of the voids between the molecules of the liquid.

In the case of closest packing of hard spheres, 74% of the bulk volume is occupied by the

spheres. The interstitial or 'free' volume in this case is 26% of the bulk volume. For a

pure liquicl, @ can thus be defined as

@ = (\P -Nr,_) /Vo (s.12)

where Vo is molar volume and v^ is the volume of a discrete molecule. The quantity vm

can be thought of as the 'hard sphere'volume of a single molecule. In the example of

closest packing above, @ = O.26.

Assa¡sson and Eirich2E claim that for dimethylacetamide, the free volume is about 30%,

that is, @ = 0.30. Calculations made in this research (and discussed later in this section)

indicate that @ for DMF is of similar magnitude, bnt for water this value is nearly

doubled.

Free volumes of pure water and pure DMF calculøted from volumes of discrete molecules

The volume of a single water molecule was calculated from the b-factor in the van der

Waals equation of state for gases. This factor represents a volume equal to four times the

volume of the molecules themselves (the 'hard-sphere'volume).

For water2e b = 30.49 cm3 mol-l and hence the volume of the water molecule, per se,

ß7.62 cm3 mol-r. The molarvolume of water at25"C is 18.07 cm3 mol-r and the free

volume @ is thus 0.58.

A satisfactory check on this figure is available through the reasoning of Bernal and Fowler.s

From estimations of tlie intermolecular separation of water molecules and hence the

'molecular radius' in ice I, they reasoned that close-packing of water molecules would

yield a density of 1.84g cm-3 . Allowing 26% of the volume as void space, 1.84g of close-

packed water have a 'hard-sphere' volttme of 0.74 cm3 . Since l.g4g of real water at 25"C
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occupies close to 1.84 cm3 , the free volume calculation gives @ = 0.60.

Since a search of the literature did not yield any data from which the volume of an

individual Dlr{F molecule might be calculated, an estimation of its volume was made using

a scale molecular model.* One particular conformation of the model was approximately

discoid in shape, having a fairly uniform thickness measured as 3.25Ä.. The 'profile'of the

discoid had an area measured as 283l^2, leading to a volume calculated as very close to

92N . This volume corresponds to 55.0 cm3 mol-l . The molar volume of liquid DMF at

25"C is 77 .4 cm3, hence @ = 0.28+.

This result compares satisfactorily with @ values of 0.29t for trimethylamine-obtained

from the van der Waals b-faclorze -and about 0.33 for dimethylacetamide.2s

Free volumes of DMFlwater mixtures

When a mixed solvent such as DMF/water is formed, the change in volume, AY6,

results from a loss of free volume by each of the liquids. This loss arises from the occupancy

of some of the free volume of one liquid by molecules of the other liquid , and vice versa.

V¡, the free volume per mole of mixture is given by

V.f = @rVr + @z V2+ AVE (5.13)

where Y = xlllldo , do being the density of a pure liquid. The free volume @12 of the

mixture is thus given by

@n = (@r v + @2v2+ aYs)dn I @tMt+ x2M2) (5.14)

or

@rz = ß@rv, +@zv.¡dn I @tMt +xrM)f + w| (5.15)

The iesults of calculations of the free volumes of the DMF/water solvents prepared in

this research are presented on Table 5.4 and are plotted on Figure 5.5.

The simple shape of this plot does not suggest correlations with known plots of solvent

and solute properties vs. mole fraction.

*Framework Molecular Model Kit, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
U.S.A:
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0
9

30
50

75
100

Table 5.4 Free volumes of DMF/water mixtures at 25oC

DMF
mole% lo3@n

s78.0
482.7
369.9
325.2
298.7
28s.0

5.3.5 Variation of solute and solvent properties with free yolume of solvent

Figure 5.6 depicts typical plots of À0,4 and Walden Product against free volume. The

data is summarized on Table 5.5.

Table 5.5 Properties of solute and solvent in DMF/water mixtures at 25oc

DMF
mole % 103@n l|,n Àtcr I02nñç¡- locr* l}2nlpçr+

0 s78
9 483

30 370
50 325
75 299
100 28s

0.8903
1.677 2

2.4892
1.8568
1.145 7

0.8012

76.35
39.2s
21.3r
22.17
33.0e
55.1

o.679s
0.6595
0.5304
0.41l6
0.379r
o.4414

77.31
42.62
23.08
23.52
29.0s
34.5

0.6883
0.7743
0.574s
0.436t
0.3332
0.2764

No simple correlation of thc plotted parameters with free volume is evident although

a portion of each of the ÀoC.*? and r¡ plots is linear between @12 values of 0.285 and

about 0.335 (equivalent to the considerable DMF mole fraction range l.O -ca0.45). The

linearity of the viscosity plot was checked by calculating addition al d,ata points using

interpolated data for densities and viscosities from the data of James (Appendix 2.1).

The failure of the limiting ionic equivalent conductances to exhibit a linea¡ relationship

with @t2 indicates that, if Samoilov's model for the concluctance process is accepted, the

number of suitable interstitial sites in the structure of the liquid is not related to the free

volume in a simple way. Conversely, it may be that Samoilov's model is too simple to

explain such a complex process as ionic conductance in a mixed solvent.

5.4 Solvent-solvent interactions in DMF/water mixtures

The change in viscosity of DMF/water mixtures with solvent properties remains of
interest. This research has shown that over different but not insignificant ranges of
composition, the viscosity has va¡ied linearly with mole fraction of DMF (O - cao.l5 mole



FIGURE 5.6 Dependence of À0, viscosity and Walden Product upon free volumes of DMF/water mixtures at 25"C
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fraction DMF) and linearly with free volume in DMF-rich solvents in a range equivalent to

l.O - cà 0.45 mole fraction. The latter relationship may arise because water added to DMF

may enhance both the structure and hence the volume of the liquid through hydrogen

bonding thus inc¡easing the frictional resistance exerted by the solvent particles upon each

other.

The change of viscosity of DMF f water mixtures with solvent composition has been

investigated more fully in this research.

Assa¡sson and Eirich2S have examined the viscosity of a number of amide/water mixtures.

They have remarked on the occurrence of viscosity maxima at definite integral mole

fractions of the amides, suggesting complex formation by bonding between the pepticle

dipole and water. In the case of DMF/water, the maximltm occurs at a DMF mole fraction

of about 0.27 (Figure 5.4) suggesting a complex with the formula DMF(H2O)3 rather than

DMF(HzO)2, as implied by Assarsson and Eirich.

The possibility of the existence of DMF/wate¡ complexes was investigated in this

research by applying the Einstein relation (equation 5.17) which holds for large solute

particles at low concentrations.

Qret= l+2.5þ (s.16)

\¡.r¡is nry¡y¿n¡lnpater and @ is the volume fraction occupied by the solute particles.

When @ is expressed in terms of the molar volume V and concentration C of complex,

equation 5.16 becomes

er"t= l+2.5VC (5.12)

The slope of the plot of eyr¡ against C gives a value for V directly-this system had

V= 96.0 cm3 f¡om a plot (using interpolated values of q), shown in Figure 5.7. As can

be seen, ttne qrr¡ plot remained linear up to a concentration of about 0.5 mol dm-3 (about

0.01 mole fraction of DMF). This concentration exceeds the limits beyoncl which the

Einstein relation could reasonably be expected to hold. The extent of the linearity of the

plot, together with the feasible values obtained for the molar volume constitute good

evidence fo¡ the existence of a DMF/water complex.

The forrnula of the complex was investigated. An estimation of the volumes of the

possible complexes DMF(FI2O) 2 and DMF(H2O)3 using scale models (Section 5.3.4), gave

91 and lO9 cm3 mol-l respectively. The volume obtained from the graphical application

of equation 5.17 lies between these values. Accordingly, and in view of the imprecisions

inherent in the volurne estimations involving models, no firm conclusions can be drawn
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frcm the results of this investigation. At least three possibilities exist-

The complex exÌsts entirely as DMF(HzO)2.

Molar volume estimates tend to support this possibility.

{< {. The complex exists only as DMF(H2))3 leaving some DMF uncomplexed.(Thß

means that the equilibrittm constant for formation of complex is small).

In this possibility, the molar volume of the molecules of the complex as obtained from

the graph is a weighted average of the volumes of the DMF(H2O)3 complex and

unhydrated DMF molecules. The proportion of free DMF molecules has been estimated

at about 24% Ír this case.

*** Both DMF(HzO)z and DMF(HzO)3 form, all DMF being complexed.

Here the molar volume of the complex obtained graphically is the weighted average of

the molar volumes of the two possible complexes. Calculations indicate possible

proportions as 72%DMF(H2O)2 and 28% DMF(HzO)¡.

Whatever the formula of the complex, the evidence suggests that it tends to increase the

viscosity of the solvent in water-rich compositions of the solvent. The dependence of

viscosity upon free volume in DMF-rich compositions of solvent has already been

discussed, the evidence here suggesting that water enhances the structure of the solvent.

Combining the implications in the two regions of solvent composition it is clear a number

of factors related to the solvent's structure must contribute to the magnitude of the

equivalent conductance of an ion. These factors, including complexation and the bulk

structure of liquid, appear to be related in a complicated, and as yet unknown way. The

explanation of changes in equivalent conductance is made yet more difficult by the effects

of ion-solvent interactioni, as discussed in the following section.

5.5 The effect of chemical equilibrium between mixed solvent species and solute ions
upon the value of the Walden Product

Hemmes3l has illustrated mathematically how chemical equilibrium between solute ions

and the molecules of a mixed solvent can lead to a highl¡i complex variation of the

lilalden Product with changing solvent composition. In thc simplest case, the ion h[ forms

the solvated species MAn in pure solvent A, where n is constant. When solvent B is added

to the mixture its molecules enter into chemical equilibrium with MAn.

tq
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MAr+B+MAr_rB+A

Assuming the Walclen product, k¡ = À1.4 for each of the above ions to be constant,

Hemmes obtained the relation

(s.l 8)

where k* k*u are the Walden products of MAn and MArr_rB respectively, xu is the mole

fraction of B and K is the equilibrium constant in mole fraction units. À0 is the apparent

limiting ionic conductance of M. This equation predicts that À04 will vary with xu clespite

the fact that both species obey the Walden Rule; only for the special case k* = kro will

Ñ4 be independent of composition. The complexity of the expression for Ñ4 increases if
B is a bidentate ligand or if more than one molecule of B reacts to produce more than one

product. In the latter case, Hemmes obtained

--o- - kr"r + (krr,rs Kr- kM) x"+ k*o"KrK2x2"
,\ .I

(s.1 e)

where Kt, Kz are equilibrium constants for the successive replacement of A molecules in

MA, by B molecules; k"rris the Walden product for the ion MAn_, B, .

If the derivative with respect to xu of the right side of equation 5.1 9 is set to zero,

solutions for x, are found to satisfy the equation

Y = -gt(Q2-4RS¡/z
" 2R (5.20)

where Q, R, S are each functions of at least three of Kt, Kr, k*, k*o and k*"r. This

means that f,oa shows a maximum or minimum for any mole fraction of B which satisfies

equation 5.20. Clearly if the other ion of the solute also takes part in reactions with the

solvent, the Walden product À04 will be a highly complex function of composition. It is

of interest to note that the Walden products for CsCl (this research) and KCI in DMF/

water mixtures both exhibit a maximum and a minimum (Figure 5.8).

Hemmes' theory was put to the test using the available data fo¡ Cl- in DMF/water

mixtures (Table 5. I ). Using the method of simultaneous equations, several values of

K, k* and kru were obtained for sets of three data points applied to equation 5.18. Since

the results were inconsistent and anomalous (some negative K values), the more complex

equation (5.19) was investigated. In this case computer programs were applied to the data

to estimate the five'constants' Kt,Kz,k*,k*" and kru, by the method of least squares
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and also by the solution of simultaneous equations. Both methods gave similar but

anomalous values for the equilibrium constants K1 and K, (about - I and -2 respectively).

In consequence it must be conclucled that Hemmes theory does not apply in this system.

Evidently the Walden Products of the respective solvated species do not remain constant.

Hemmes' paper! and the tnaterial presented in section 5.4, provide good examples of
the kind of complexities which workers in this field must expect to incorporate into an

adequate model fo¡ ion-solvent interactions.
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Appendix 1.1 CONDUCTIVITY PROGRAMS LOAOKA AND UNASS

These programs use procedures outlined in Chapter 3 to compute l:ro , a and Kn

(LOAOKA) or ,N and ø (UNASS) from input values of r\ and C. As many systems as

desired may be processed in each computer run, but the last card of the final system

must be followed by a blank card.

PROGRAM LOAOKA

I Sub-routines
SUBG2, SUBQC and SUBENE

2 Input data

Card I
FORMAT lO2 - system identification - any combination of alphabetic or
numeric cha¡acters up to 78 columns may be used.

Cørd 2
FORMAT l0l - the card is punched with the specific conductance of the solvent.

Card 3
FORMAT 104 - the symbols have the following meanings.

N = number of data points
D = solvent dielectric constant
ETA = solvent viscosity in poise
T = absolute temperature

QK = estimate of ^Ao

AR = estimate of ion size in Â
PKV = estimate of association constant

C,ards 4 + N+4
FORMAT 106 - each card is punched with a value of C given at C x l0a, and its
corresponding r\ value.

Card N+5
The last card of the final system being processed in the run is a blank. All preceding

systems have N+4 cards.

3 Output
The principal output of LOAOKA is as follows:

Ào, its standard error or\0, a, oct, Ko, oKo, o (the standard error of the fit of the
experimental Â, and C values to the Fuoss-Flsia equation) and ôÂ (the deviation
between the experimental À and that computed from the F-H equation) for each

Â-Cpoint.
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Appendix l.l continued

PROGRAM IJNASS

I Sub-routines
SUBQC and SUBENE

2 Input data
Card 1,2,3 . ..N+3, Nt4 correspond to cards 1,3,4,
LOAOKA. PKV in card 2 is ignored.

3 Output
.Ao, oÂo, ü, oa, ôÂ and o.

. N+4, N+5 used in

A listing of these programs is presented on the following pages.



C....

C... r.
C....

PRoGRAq L0AoKA ( INPUTTOUTDUT)

PROGRAV ADAPTED FRCM R.L.KAYIS FUOSS HSIA PROGRAM BY C.JAMES
MINoR TT40DIFICATI0NS By G.CT.lITTLEBCR0UGH

PROGRAM ITERATES FOR LAüDA O ' A ZERO T $ ASSOCIATION C]NST'
PROGRA\,1 TREATS DATA F0R A SS0C I ATED CASE ohlLY+noÞ'r!*f f s*+Þ*n#r$11*

COMMON C(30) rQ(30) rG2(30) rCG(30) rF2(30) rVF(30) çF\4(30) rBCtV(30).
l0C(30) ç01-(30) rFMI (30) rBCËMI (30) ç0CI (30) rQCP(30) ¡ÏOlt30) t)0(30) r

2DL0(30) rsoDL(30) rsG(30) rÞK\(30) rDQo(30) rþlT(30) rR(30) rBAR*',|(.ì0) r
3DEN(30) ç3P(30) rDK(30) I
4D r AA r0Z ç trKAP r ALPHA rBETA ç El ¡E?¡ J

PRIt'JT I0
trORMAT (

FIRST DATA CARf) GTVES SYSTEM IDENTIFICATION
REA!) 102

T O2 FORMAT ( 78H
l)

c sEcoND CARD GÍVES KSP OF SOLVENT
READ l0l rSPK

IOI trORMAT (FIO.2)

READI 04r \r Dr ETA I Tt 0Kt ARt PKV

I00
t0 lHl )

c

I
À,



2t0
2tl
124

PROGRAU LOAOKA CONTINUED

104 FORMAT (I5rFl 1.0r5F10.0)
IF (N.E0.0 ) G0 To 700

PRItlT 2lI
FORMAT ( T {O I+ASSOCIATED ELECTROLYTEII)
PRIt.'lTl24
FORMAT(I{O)

PRIr!f 102
PRINTlU4
PRI¡lT 4l rSPK

4l FORMAT ( I âH S0LVENT KSP-F5.2 r 3llE-6 )

PRINTI l2çDTETATQKT PKVr T r AR
II2 FORMAT(22H DIFLECTRIC COI.ISTANT=F8.2rIIH VISCOSITY=FIO.6¡I?H INITI

IAL OZ=rB .3c/ ç22H INITIAL ASS0CN C0NST=F8.3rl3H TEMoERATUìE=F8.?¡l?
?H INITIAL AÀ=F8.3/)

85 READt0Sr (C(J) r0(J¡ ¡J=l ¡l!)
IO6 FORMAT (2FIO.O)

PRT¡IT7I9
719 F0Rt'tAT ( I {0r+ INPUT DATA{1}

PRINTTIT
717 FORMAT (1 :'l 3Xç7H10000 Cr6XrlHQç /)

PRlNTTlEç (C(J) 
'O(J) rJ=IrN)

718 FORMAT (Fl l.4rFl0.3)
PRINTI24

\q



PROGRA!,I LOAOKA CONTINUED

Q0=290. I g5lD
C BEGIN COM9UTATION HERE

640 FLON=N
DT =D+T
SQRDT=SORT (DT)
ALPHA=82040 0 . / 1 SORDT'IDT )

BETA=82. 5O I/ ( ETAITSORDT'
El=2.94?2EI?/ (DT**3)
EZ=o.43329E8/ ( (DT+DT) nETA)
TA=S0RT (5.0nFl )

FKAP=50.294,/SQRDT
641 8ZI=0K

NX=0
Ml=0
AA=AR

ó50 NX=NX+l
1F (PKVl65?ç649 r65l

652 D0 653 J=l rN
G2(J)=1.0
CG(J)=C(J)nl.0E-4

653 CONTINUE
Go T0 ót0

649 PKV-0. I
651 D0 200 J=lrN
200 CALL SUB92 (TAçPKVçHITSQRDTTQQ)

IF(Mt-10)610r610r196

\
a\



PROGRAf,l LOAOKA CONT I NUED

I96 PRTNT T97
I97 FORMAT (3óHNO CONVERGENCE IN GT AFTER IO CYCLES)

G0 T0 t00

610 r¡l=0

M2=0
QZ=0K

504 AI=AA
AP=¡ .005rlAA
M=M+l
CYC=M
IF (M-I0) 520r513r513

5I3 PRÏNTI I I
llt FORMAT(1{0r#N0 CONVERGENeE AFTER

G0 T0 t00
I O CYCLESJ1 )

5?A D0 33 J=lçN
CALL SUBIC
FMI(J)=Fvl(J)
BCFMI ( J) =BCFM (J)
0CI (J) =0C (J)
A A=AP
CALL SUBOC
0CP ( J) =AC ( J)
TDT (J) =0(J) +G2 (J),nBCFMI (J) -G?(J) !,FMI (J)nOZ

!

'-----..:-.---



-------Ò ----------------
PROGRAI,I LOAOKA CONT I NUED

D0 (J) = (200.0 /AIll¡ (OCP (J) -0CI (J) )

AA=A I
0Z=l .005nQZ
CALL St,B OC

QL (J) =QC (J)
87=Q7/I.005
000(J) =¡200. o/oz¡+10L(Jt-0cI (J) )

PKV=I.005*PKV
CALL SUB32 (TAçPKVTMI TSORDTç8Q)
IF(Ml-10132ç32r196

3? CALL SUBOC
0P(J)=QC(J)
PKV=PKVl1 .005

33 DK (J) = (200.0 /PKV)+ (8P (J) -QCI (J) )

3 SUMII=0.0
SUÞ11 ?=0.0
SUMI3=0"0
SUMl4=0,0
SUM22=0.0
SUM?3=0.0
SUMZ4=0,0
SUM33=0.0
SUM34=0.0
D0 5o J=1rN
SUMl l=SU{l I +DQO (J) lrD00 (J)
SUMI?=StJ\412+DO0 (J) +DO (J)

\
Oo



PROGRA q LOAOKA COT'JT I NUED

SUMI3=SU\413+DQ6 ( J) tÊDK ( J)
sur'1I4=stJ.1I4+000 (J) *'TDT (J)
SU!'422=SU\422+D0 (J) nDQ (J)
SUM23=SU\423+DQ (J) r10K (J)
SU[124=Sl.Jvl24+DQ (J) nTf)T (J)
SUM33=SU\,t33+DK (J¡ +¡K (J)

50 SUt434=Sl.J\434+DK (J) nTDT (J)
DET=SU\4lIn(Sl.JM22nSUM33-SrJM23"5UM23)-SUMl2*'(SUMl2*SUll33-SJf'i.l3ç¡SUM23

I ) +St'|\"ll 3+ ( SUMl 2+SUM23-SUM I 3ÌtSUt'4?21
DETQ=gUM14* (SUr"t22+5UM33-SUV23+SUM23) -SUMl2ìt (SU\'t24+åSul33-sur'423l1 Su143

l4) +suMt 3Þ ( SUM23rf StJrvl24-sL,u22r¡suv34)
DETA=SUMllrf(SUlr124råsUM33-SUvl23rfSul'134ì-sUMl4*(SUrvtl2+Suf'|33-su¡',tì3nsu142

I 3 ) + S Uþl t 3 Þ ( S U ¡'1 t 2+' SU l'l 3 4- SU \'l I 3 r¡ S U \'l 24 )
DETK=S Jt,t l I n ( SUM22rlSUþt34-SU \423t¡ SU1124 ) -SUM t 2{t ( SU''',l l 2râsul'',i34- suu l 3{tsur'12

I 4 ) + SUl,l t 4 É ( su \4 I 2* su q 2 3- su''t I 3tl su \4 2 2 )

DQZ =DE TQ /DET
0Z=QZ+DQZ
DLA=DETA /DET
AA=AA+lLq
DLK=DETK/DET
p6y=PKV+ )LK
PRINTI I 8ç CYC rDLA tÐ02 rDLK

llS FORMAT(l0H AT CYCLT F?.0rI2H DELTA AA =17.4çl2H DELTA 1Z =F7.4rl
l3H DELTA PKV =F 10.4!
lF (PKV) 320r320r32]'

320 PKV= ( P(V-DLK, /7 "0

\c)



tl9
321
10?

703
329

120

330

332

PROGRA I,I LOAOKA CONT I NUED

PRTNTI I9
FORMAT(I OXI23HPKV I\.IEGATIVE TRY PKV/21
D0 7fi2 J=lrN
CALL Sr,B32 ¡1¡'PKVTMITSQRDTTQQ)
IF(Ml-10)703r703rI96
IF (AÂ) 3?9¡329 r330
AA= (AA-DLAI /2.0
PRINTI2O
F0Rl'4AT (20Xr2lHAA NEGATIVE TRy A^/21
G0 TC 504
TSA=ABS (DLA/AA)
IF (TSA-0. 000 I ) 331 r33l r332
G0 T0 504

331 B=5ó0.37l (DnAA)
FBJ=EXP (B) / (B*n3)
PKCON= ( ?.523É-3) n ( AA#rå3) ðEXP (B)
SMSQ = O.
5MDL=0.0
DO 70I J=lrN
CALL SUBsC
DLATJ)=0C(J)-8(J)
SMDL=S\,lDL+DL0 ( J )
SQDL (J) = DLO{J)+rå2

\
s



PROGRAU LOAOKA CONTINUED

7O ]. SMSO '- S\4SQ + SQDL ( J )

REAL = N

0U0T=S \'lS 0/ ( tìEAL-3. 0 )

SIGMA = S0RT (0U0T)
sG (Nx ) =SIGMA
Al 1=ÂBS (SUMI I )

q!/=ABS (SUMl2)
Al3=ABS (SUMl3)
422=ABS (SUM22)
423=ABS (SUM23)
433=ABS ( SUl"l33 )- sGQ=Si3MAJTSQRT ( (A22r¡A33-A23rlA23)/DET)
SGa=5IGMA'*SORT ( (ÂI trlA33-Al3ìsAl3) /DET)
sGK-SI3l'{Arf SORT ( (Al I *A??-Al?llAl?l /DF_Tl
S=ALPHA'i3Z+ßETA
E=E I +Q7.'12
ÞFìINTlZ4

5gl PRIhlTl t6çP,TFBJTPKC0N
1t6 FORMAT(lIH BJERRI.-lM-B=Fl0.3rl0H l,{ITH FBJ=7l2.3rlIH AND PK3Ct't=F12.3)

PRINTI l7r ALPHA.BETAçS; El rE2r E

ll7 FoRMÂT (8-l ALPHA=F7.4ç5HBETA=F7.2ç3H S=F7.?-ç4H El=i6.3r4{ l?=F6.?ç
13H i=F7.?-l
PRINTI24
PRIN]TT26

126 FORMAT(ll0róXr+Cfrl2XrËCG+rllXr+GAl,414A{'r4Xr*ACT SQUnr5Xçsl rXpT+róX
2 r äQ CAtC* r 6X r ë0 DASHð )

\
It



PROGRA\,I LOAOKÂ CONT I NUED

PRINTI2Tç(6(J) rCG(Jl ¡G?-(J) e¡2(J) rQ(J) rOC(J) rDLS(J) tJ-lrN)
l?1 FORMAT(lXrFll.6r4XrFìl.9r4XtF7,5ç4X,¡tr7.5ç4XeF8.4r4XrF8.4r4X'F8'4)

PRINTI24
PR INT I l4r 0Zr SGor AA çSGA rP(V r SGK

ll4 F0Rr',!AT(27H MINIMIZING VALUTS ARE oZ =Fl0.3r4H PM F5.3r9H AN0 AA =f
17.3ç4H P\4 F5r3 "/ ¡/ ç lTXr l0H AND PKV =Fl0.3r4H PU F8.3)
PRINTI24
PRINTI23ISIGMAçSMI)L

t23 FORMAT(25H STANDARf) DEVIATI0N =F6.3rl8H rIITH S.JM-DELTAS =F6.3)
PRINTI24
PRINT5000rQ0

5000 F0RMAT ¡I0 (nBJFRRUV CRlf DIST=nrEl4.7)
PRIÈ''1T124
PRINTl25

l?5 F0RMAT (55Hrân+#+n++Þìf ++tl rrlttl+n+rf++lttf râ*$r$+l++Jf r.iJ+{1J¡ìrÕJt*{11¡Þlålt{tl+ltsrfn#$11rtnlr)

G0 T0 100

700 C0NTIN'JE
ENt:)

L
NJ,



pRoGRAr.t UNASS ( INPUT,OUTPUT )

!tt--t-----t---------_-----

ò.... FUOSS HSIA EOUATION R.L. KAYS PRoGRAM FoR THE NON ASSoCIqTFD CASE

COMMON C(30) rQ(30) rG2(30) rCG(30) rF2(30) rVF(30) rFf'l(30) rBCtrr4 (30) r
l0c(30) r0L(30) rFMI (30) TBCFHI (30) rQCI (30) rQCP(30) rTDT(30) r)0t30) I
ZDLO(30) rSODL(30) rSG(30) rPKN(30) rDoC(30) r,r,T(30) rP(30) rBAR¡l(30) r
3DEN(30) t8P(30) rDK(30) I
4Dr AA r0Z r trKAP r ALPHATBETAT El ç1_2¡ J

t00 PRINTt0
IO FORMAT(IHI)

PRINT 2I3
213 FoRMAT ( l!.t0riNoNASSoCIATED ELECTRoLYTETt

READ I O2
PRINT IO2

I02 FORMAT (78H
l)

PR INT T ?4
I?4 FORMAT ( I HO )

READI 04r \r D¡ETA rTr0Kr ARTPKV
104 FORMAT ( I5rFl 1.0r5F10.0)

IF(N.E0.0) G0 To 700
PKV=O. 0
PRINTTIg

719 FORMAT ( lrtOr+ INPUT DATAIt)
PRINTl24
PRINTI I 2rDrETArQKr PKVTTT AR

llZ FORMAT e?H DIELECTRIC CONSTANT=F8.2rIlH VISCOSITY=F10.ótl2H INIITI
lÂL 0Z=FB .3s/ç2?H INITIAL ASSOCN CONST=F8.3rl3H TEHPERATUIE=F8'2çl?

'\
qr
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PROGRAU UNASS CONTINUED

ZH'INITIAL AA=F8.3/)
85 READI06T (C (J) rO (J) rJ=l rN)

106 FoRHAT (2F10.0)
PRINTTIT

717 F0RMAT(lH 3xr7H10000 Cr6XrlHSç/)
PRINTTlgr (C ( J) ;Q (J¡ rJ=l' ;N)

718 FORMAT (Fl l.4rFl0.3)
640

I 000

I ó53

I 650

FL0N=N
DT=DçT
S0RDT=SQRT ( DT )
ALPHA=8?040 0. / ( SQRDTTIDT )

BETA=8?. 5Ol / ( ETAÍS0RDT )

E I =2 .g 42?El?/ lDTrl+3 )

E2=0.43329E8/ ( (DT{ÍDT) nETA)
TA=S8RT ( 6.0rtEl )

FKAP=50.294lSORDT
QZ I =0K
NX=Q
DO 1653 J=lrN
G2(J)=1.0
CG(J)=C(J)nl.0E-4
AA=AR
NX=NX+ I
M=0
0Z=OK

Þ.
À.
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PRoGRAI,| UNASS CoNTINUED

1504 A.I=AA
AP=1.005ÞAA
M=M+l
CYC=M
IF (M-10 ) 1520r 1520r t5l3

I513 PRINTI I I
tll FORMATqH0T+N0 CONVERGENCE AFTER TEN CYCLESi)

G0 T0 100

1520 D0 1033 J=lrN
CALL SUBOC
FMI(J)=F¡1 (J)
ECFMI (J) =BCFM (J)
OCI (J) =QC (JÌ
AA=AP
CALL SUBOC
0CP ( Jl =0C ( J)
TDT (J) =o (J) +$2 (J) *BCFMI lJ) -G2 (J) nFMI (Jl r+82

D0 ( J) = (200.0/AI ) $ (OCP ( J) -OCI (J) )
AA=A I
0Z=l.005nQZ
CALL SUBOC
0L(J)=QC(J)
Q7=Q7/ 1.005

1033 000(J) =(200.0/AZ¡+¡OL(J)-QCI (J) )

1003 SUMII=0.0

\\
(/¡



I 0s0

t?l
I 329

l?0

I 330

PROGRAI'I UNASS CONTINUED

SUM12=0.0
SUM13=0.0
SUM22=0,0
SUM23=0.0
D0 1050 J=lrN
SUMI I=SU{l I +DOQ (J) sD88 (J)
SUMI2=SU¡112+DQQ (J) ÌlD0 (J)
SUM¡3=SUvll3+D0O (J) rITDT (J)
SUM22=SUï?2+DO ( J) rlDQ ( J)
SUM23=SUY23+DO (J) nTDT (J)
DE T=SU M I I ttSUM|?-SUM I 2rlSUi4 I 2
gf TQ=SUM l3'rSUM?2-SUM l2nSUM23
DETA=SUM I I ItSUM23-St,M I 2nSUM I 3
DQZ=DET0 /OEI
0Z=82 + DQZ
DLA=DETA/DET
AA=AA+DLA
PR IIJT I 2 I çCYC ç DLA rDQZ
FORF.IAT(10H AT CYCLE F2.0rI?H DELTA AA =F7.4çl2H
IF(AA)1329rI3?9ç1330
AA= ( AA-Dt-A, /?.0
PRINTI20
FORMAT(lH0r* AA NEGITIVE TRY AA/2+l
G0 T0 1504
TSA=ABS ( DLA/AA )

IF (TSA-0.0001 ) l33l rl33I I 1332

DELTA ?Z =F7 "41

b.
o\



c
c

- ----- ------ - ------- - --
PROGRAIq UNASS CONTINUED

1332 Go TO t504

I 331 8=560 .37 / ( D{lAA }

FBJ=EXPl}l / (Blt$3,
PKCoN= l?.5?3E-3 ) {t ( AAr}r13) ðEXP (B )
SMSQ=0.0
SMDL=0.0
D0 t70l J=lrN
CALL SUBOC
DL0(J) =QC(J)-0(J)
SMDL=SHDL.DLQ (J)
SODL ( J) =DLQ ( J, +tt2
SMSQ=SMS0+SQDL (J)
REAL=N
QUOT=St¡lSC/ ( REAL-?. 0 I
S I GI4A=SORT ( OUOT 

'sG (NX) =SIGMA
All=AB5(SU¡,lll,
422=ABS ( SUM22 )

SGO=S I GtIA+SQRT ( A I I lDET I
sGA=sI GMAnSQRT ( A I I /DET )
S=AL pH Ar+ eZ +BETA
E=E I tt02-Ez
PRINTI24
PRINTI l6rB;FBJTPKCON

l70l
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PROGRAIi UNASS CoNTINUED

tl6 FORMAT(tlH BJERRUM-B=FI0.6rl0H |{ITH FBJ=Fl2.5rllH AND PKC0|l1-F12.5)
PRINTI l?r ALPHA rBETA ç Sr El rEZr E

II7 FORMAT(7H ALPHA F9.5'SHBETA F9.5r3H S F9.4ç4H EI F9'414H E? F9'4C
l3H E=F9.4)
PRINTIE4
PRINTI29

l2g FoRMAT ( l H0 r4X r*Csr 6X r+EXp. LAMBDA# ç óXrëLAMBDA CALCn r 6Xr+t-ÊMBDA DAS

IHìI)
PRINTI30T (C(J) r0(J) rOC(J) rDLO(J) rJ=lrN)

t30 FORMAT ( I X r F 10.4 ç4XsF 10. 4ç4Xr Fl0 '4;4\rFl0 '4)
PR I NT I 28 r QZ r SGOr AA rSGA

lAg FORMAT(lH0r+MINIMIZING VALUES ARE 0Z *¡Fl0.3r2XrlP{rrF5.3t?Xr*AND
I A+çF7. 3r 2X r*PM+rF5.3)

PRINTI23TSIGMArSMDL
t23 FORMATut0TnSTANDAR0 DEVIATI0N *rF6.3ç?XTTt{ITH SUq 0F D=LTAs $rF

ló,3)
PRIh¡TI25

I25 FORMAT ( tFto (n CHOCKS AI{AY CHAPS ALL oVER RED ROVERi)

G0 T0 t00
7OO CONTINUE

END

\
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SUBPOUTI\E SUBG2 (TA'PKVçMI ISQRDTIQO)

C SIJBROIJTI\E TO COI'4PIJTE GAMMA'GIVEN ASSOCN CCNST

C. . . . . FTJOSSSAOCASCIIiA TELECTROLYT I C COI',IDUCTANCE T INtERSCI ENCE T I ?59 P .92-3

coMMoN C(30) rQ(30) rG2(30) rCG(30) rF2(30) rVF(30) rF\4(30) rBC'\il (30) ç

l0C(:ì0) r0L(30) rFMI (30) TBCFMI (30) r0CI (30);îCP(30) rTOlt30) r)Q(30) I
ZDLç(30) rSODL(3Q) rSG(30) rDK\(30) rDQ0(30) rtJT(30) çR(30) rBAR'4(10) r
3DEN(30) rOP(30) çDK(30) I
4D r AA.0Z ç rKAP ç ALPHA TFJETA r E I rE2r J

CK=C(J)ì'1.0F-4
TArl=TA*SIRT (CK )

Gl=1.0
Ml=0

198 Vl=M!+|
I F ( l.'tl-1 0 ) 203 ç?03ç I 99

I99 RETI.'RN
203 SRG=SORT (Gl)

TOP= (4.20 i 3?E6 ) / (S0RDTnn3 )

B0T= 150.?--94) / ( S0RDT )

5Pç=SQRT ( CK )

F? (J) = (TCPÞSRC*SRGI / ( I.0+ ( a0T{rAAl*SRCTSSRG) )

F2 ( J) =iX) l-?. 0rtFZ ( J) )

VAR=PKVn'CK*F2 (.r)
IF (VAR-0.03) ?04ç205:205

)r

!
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204

?05
?06

?a2

201

SURROLJT I \E SU8ß2 CCI{T I NIIJED

G? (J) =1.0-VAR+2.0{'(VAR+'r+?l'5.0rs ( VARrf *'3)
G0 T0 7_05

3? (J) = ( SSPT ( I .0+4.0ìtVAP) -1.01 / ( 2.C{rvAR)
TËSTG=ABS (Gt-G2 (J) )

IF (T5STG-0' 0000S) 201r20?ç7-0?
Gl=G? ( J)
G0 T0 t99
CG(J)=CK*G2(J)
R¿TllRN
END

\
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SUBROUTT NE SUBOC

C SUBROUTINE TO CALC. EQUIV. CCI{D.

cor,{MoN c(30) rQ(301 çG?(30) rcG(30t çF?(30) rVF(30) rF$t:O) rBC.\4(30) r
t0c(30) r0r-(30) rFi'1I (30) TBCFMI (30) r0cI (30) rocP(30) rTDT(30) rl0(30) I
2DL0(30) rSoDL(30) rSG(30) rPK\(30) rD00(30) rt'JT(30) rR(30) rBAR'l(10) r
3DEñJ (30) r0P(30) rDK(30) r
4D ç AA I 0Z I rKAp I ALPHA rtìETA r EI çEZt J

B=560.37l ( D'¡¡AA)
CR=CG ( J )

SQRC=S'JRï ( CR )

Y=FK AP;-A A',$S0RC

SVF=0. 00 0473+CR+ ( AAnn3 )

VF(.J)=1.0+SVF
l¡J=0.7071
X=Y
CALL SJR:Ni (XTENE)
TZ=FNE
P I = I . 0 + X + 0 . 5 r¡'X # X
P2=l.0+hl+X+0.25nX+X
P3= I " 0 +þlr'X +0, I 667*X+X
p4=2. 0ånp?,* ll. 0+X ) + ( I . 0+X )

?5=2.0r¡P3*?4
P6=0 .4515/ (P4*P3l
X=(1.0+hl)*Y
CALL S'JB:NE(XTFNE)

\J
L{



SUBR0UI I \E SUB0C C0NT I f,lUED

T I =FNE
X= ( 2.0 +ld ) +Y

CALL SJBiNE(XIENE)
ï2=Et\E
X=X,/?-.70 7l
TR I = ( 7.0 ÞT2* P I ttT I -4.0*P l*P¿#TZl / ( 4.0r1P4l
XSll=X*X
pM2=-9 .A/4.0+9.0+W /?-"0+ ( -7 .Q/lz-.0+7 .0+d/ 3.0 ) nX+ ( I.0/?4.0+7.0+W /l?.

l0)lrxso
BFZ3=p\4p/p5
.4L 8=$ . 0+? 3F ?3 +2. 0 /P 4+P6
TOP-l .0+ (9.0rs$/8.0 +0,5 ) +X+ (W+ 1.0 /24.0 ) rf XSQ

B0T=pZÞp3#11.Q+X)
RAT I 0=T0) /BOT
BM I =4.0i.?AT I0
BM2= (4.0+(1.0+0.75JtXl I /(P3n(1.0+X) )

ALGV= ( 16.0+6.0.rr'l,J+ ( 7.0+10.0*il/) +X+ (3.0+4.0sïJ) rrXS0) / (48.0rfPZr¡ 11.S+X ) #

l(1.0+X))
TF2=-a.0äALGV-4. 0+$TRl+ 4.0/ (3.0ËBr'P2+ ( l. g+X ) )

TF l=-4. 0 I'lRl-At-8+BVl /B+8\^2/ ( B+t?) -2"0/ ( Bit+t3)
FNEG=- AL rH A#SOeC + f I *ÇR "åT F I -F z+CRrâ r F ? / Q7
Fl*4 tJ) = ( J . ¡+FNfGl /Vî tJl
BCFM lJ) =3f TAà'SORCitF14 (J¡ 711. ¡+Y)
oc (J) = (G? (J) ) r. (QZr+F!4 (J) _3CFþ4 (J) )

RE TTJRN

END

N\)
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SUBROUTI \E SUBENE ( XIENE)

C SUBROI'TI\F FOR CALCN OF NFG.EXPO{ENTIAL INIEGRALS

C. . . . . FUOSS$ACCASC iNA' ELECTROLYTI C CONDUCTANCtT INTERSCI fNCEr I 95q
c..... PaGES 150 T0 153

c0N--AL0:i ( x ) -0 .511 2?_

FN= 0"0
FAC = 1.0
T0T =0"0
pl.Jp = _1.0

30 trN=FN+ 1.0
FAC = lî'CIFN
0NP = -l .0üX#Ql'lP
FNTH = 0\P/(FN'ÉFAC)
T0T=T0T+ cNTH
TRf.l=ÀBS ( (1.0E4)+FNTH)
ABT=[B$ ( T0T )

IF (aBT-ïR\4) 30ç30r40
40 ENG=CO\+T0T

CifÌ-{$lå*i:-{.Ji+!rillÞ{3Ìt++Jtráltl+lå*.1¡+Sl?{+lÍltllltl¡l$-tltl+lt'lllttll${r{r+¡ölfl$lilS{11¡lt1111çltlt.lålt{¡llif*Jtl$ltl$Ëlt{tltlt
C..... r¡lnENl ùS:D ,lITH PR0GRA|''f PITTSVZ THE CAqD IMMEDIATfTV BE-O,.r

ENE=EN3'r$:XÞ ( X )

C. O .. ' MI.JST 3T REÞTOVFD FROI.l TH I S ROUT I NE

cttl¡J+Ë+âtÞ+rli{-i?.trt¡Jti.{'ttll{'n+{!+Jr+r+rË.niåltälrlrtÍl$lftll+râ{-nl}tlrálrlfãltlt+åJtl¡ls.nl?Jrl?liç*ltlt Þ++.nltltrã{llt.lt

RE TTJRN

END
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Appendix 2.1 Viscosity and Density of DMF/water mixtures at 25"C

DMF
mole%

Density
gcm"

Vìscosity
cP

0.0
2.361
5.804
6.00s

10.068
t3.493
14.094
18.698
26.O42

26.935
35.056
49.629
61.949
64.670
83.450

100.00

0.997044
0.99622?
0.99637 |
0.996392
0.996906
4997006
0.996984
0.996300
o99340r
0.99291s
0.987704
0.976320
0.966816
0.964781
0.952896
0.94389o

0.89O3

1.0987
1.401s
t.4l9e
I;t64s
2.0147
2.057 |
2.3t38
2.5006
25011
2.3938
1.8738

t.3726

0.8012
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Appendix 3.1 The concentration dependence of ¡\ for KCl, CsCl and KNCS in DMF/water
mixtures at 25"C

CxlÚ
^

õltx 103

KCI in 0.30 mole fraction DMF

48.046 41.744
62.Vt7 41.383
75.4t2 41.070
88.406 40.806

105.051 40.486
t20.557 40.229

I

I

i

I

I

I

KCI tn 0.75 mole fractlon DMF

t2.I32 55.79t
22501 54.355
3t:t74 53 341
40520 52.s22
46.Æ0 52.028
54264 5t.417
6t.262 50.919

t6tß97 45.939

.,

-4
2

-3
5

3

9
11

0
0
2

-0.4
-l
I
2
0.5
0.7

0

CsCl tn pure water, Run I
11.280 150.473
25235 t48.964'
42167 t47.652
73ß17 145.892

tot.654 144.633

CsCl in pure water, Run 2

t6.344 149.770
33278 148.208
44.822 147.373
59.654 146.471
70.N6 14s.899
8L335 145.349
99.563 144.572

7

-10
-l
2
I
I
0

CsCI ín 0.09 mole fractiott DMF

23377 79.280 2
44.325 78.338 -3
69.158 77.503 -4
9t.325 76.881 8

107.429 '.16.498 -1
t21.554 76.t84 -3

i

I

I
J

I
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Appendix 3.1 continued

Cx l|a /\ 61tx 1Ú

CsCl in 0.30 mole fraction DMF, Run I
13.246 42.825 4
33.706 41.854 -9
58.923 41.005 3
81.979 40.398 I

105.554 39.892 -6

CsClin 0.30 mole fmctionDMF, Run 2

t2.662 42803 9
23.522 42.248 -15
43.106 41.464 5

79.942 40.422 5

106.116 39.845 -3

CsCl in 0.5 mole fractbn DMF

9.928 43.666
22.842 42.569
Q.tt2 4t.49s
54.098 40.790
70.819 40.065
94.664 39.192

ll624t 38.s01

6

-9
-4
2
8

0
-3

CsCl in 0.75 mole frøction DMF

t3 ß62 57 .484
23.289 55.942
32.698 54.694
43.157 53.519
55.192 52.35t
70.035 51.105
85J83 49.950

101.493 48.929

-2
I
3

I
-l

-1
2
1

6

-3

l3

-1
2

-4
-8
-9

KNCS in pure water

I1.450
29.115
39.571
49.212
60.005
73.7s3
87.472

100.478

t36.926
135.224
t34.498
133.925
t33.360
132.725
132.t63
131.681
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Appendix 3.1 continued

CxI|a
^

õ4vx lf

KNCS in 0.50 mole frøction DMF, Run l
1r.272 46.42ß -3
26.29t 45.s35 5

40.42 4.975 -l
57.440 4.446 0
73.995 4.027 ,1
86.s91 43.748 - I
99.098 43.498 -1

t14.755 43.212 2

I(MC,S ín 0.5 mole fraction DMF, Run 2

tt.76s
27.31r
4r.u2
53.742
80.660

los.63l
1t8236

46.370
45.490
4924
44.546
43.869
43.370
43.149

I

KMCS in 0.75 mole fraction DMF

13.041 63.137
27.565 6r.661
42.1t5 60.615
59.446 59.643
72.127 59.045
86.225 58.461
98.s99 s8.002

-4
2
0
I
0

-l

-t
0
.,

I
-2

.,

-3
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Appendix 4.1 Cationic Transport Numbers of KNCS in DMF/water solyents at25"C

C Solvent Tube Ave. Cunent Time
mol dm-t correctiott sectton nA sec t+

In 0.75 mole frøctíon DMF

0.009989 1.000r

o.010754

0.o2t790

1.0017

1.0009

0.t9966
o.t962s
0.19426

0.20164

0.29943
0.29674
0.29527

0.4010e
0.39863
0.39822

o.493ts
0.49330

4364.8
4421.4
436s.t

4650.6

6354.4
6403.8
6274.4

0.3897s
0.391lo
0.39rs2

0.3905?

0.38970
0.3898?

0.39t27

0.3892s
0.38893
0.39084

0.38904
0.38962

0.4687 x
0.4687 s

0.4693s

0.4679s
o.46767
0.46864

1

2

3

I

I
1

3

I
2

3

2

3

0.031484 1.0004

0.039318 1.0002

In 050 mole ftactio;n DMF

o.ol974t 1.0041

0.039156 1.002s

1

)
3

I
2
3

o.3062r
0.30460
0.30310

0.4447s
0.44312
0.4422s

68s7.4
6900.2
6',t2s.3

696r.1
6799.s

469s.4
47t6.2
46313

6411.5
6434.7
629s.2




