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Abstract

The composition and structure of matter has excited scientific thought for mil-
lennia. One of the highlights of the previous century was the development of
the theories of quantum chromodynamics (QCD) and quantum electrodynamics
(QED), which reveal an even deeper layer of structure than the atom and the
nucleon.

We use the non-perturbative method of lattice QCD+QED to make precision
estimates of the masses and mass splittings of the light ground state hadron spec-
trum, including pseudoscalar mesons, octet baryons and decuplet baryons. We
replicate this same analysis for ground state charmed hadrons. In these studies
the QED component is necessary for two reasons. Firstly, it is necessary when
attempting to obtain mass results with sub-percent precision. While secondly, it
is essential in determining mass splittings between hadrons, QED is a substan-
tial component of the mass splittings within an isospin multiplet, such as the ∆
baryons. Our findings provide new insight into these splittings by separating the
contributions arising from strong and electromagnetic effects.

We use lattice QCD+QED to determine the flavour-neutral pseudoscalar meson
masses, which incorporate disconnected quark line diagrams. We provide estimates
of the absolute mass and mass splitting of the lowest two states, near a point of
quark mass degeneracy. We show that QED plays an important role in the flavour
composition of states around points of approximate quark mass degeneracy, which
is important at the physical quark mass and charge.
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CHAPTER 1

Introduction

The composition and structure of matter has excited scientific thought for millen-
nia, and obtaining an understanding of its composition allows us to understand and
predict the world around us. Matter is composed of atoms, including atomic ele-
ments such as hydrogen and helium. Atoms are composed of a positively charged
nucleus, with electromagnetically bound electrons surrounding it. Most of the
mass of an atom is located within the dense, positively charged atomic nucleus,
which is known to be a bound state of protons and neutrons, collectively referred
to as “nucleons”.

Nuclei with more than one nucleon are bound by a very strong force, called
the strong force. The strong force binding the atomic nuclei is understood using
Quantum Chromodynamics (QCD).

Quantum Chromodyanamics is the quantum field theory which describes (to a
great extent) the behaviour of quarks. Quarks are not observed as single particles,
rather they appear as constituents of baryons (three quark bound states qqq) and
mesons (quark anti-quark bound states qq̄). Nucleons (the proton and neutron)
are included in the set of baryons, and are the lightest three-quark bound states.

As there is no formal solution to QCD it is difficult to produce predictions of
quantities, such as hadron masses. Worse, due to its strong coupling nature at low
energies, perturbation theory can not be applied. The only known way to directly
probe the observables of QCD at low energies is numerically, which involves direct
calculation of the fields at a discrete and finite number of space-time points. This
technique is called lattice gauge theory, and can be applied to gauge theories such
as QCD.

In this work we determine estimates for the mass splittings between the lowest
energy mesons and baryons, as well as mass splittings between hadrons that contain

1



Chapter 1. Introduction 2

at least one charm quark, called charmed hadrons. A novel aspect of this study is
that we determine mass splittings due to isospin violation, incorporating important
Quantum Electrodynamic (QED) effects.

Isospin is the approximate symmetry that makes the nucleons and other isospin
multiplets almost degenerate in mass. Though the total mass of baryons and
mesons are known to be generated primarily through QCD, Quantum Electro-
dynamics (QED) becomes important below the 1% level. When calculating the
isospin violating mass splittings, the QED components are comparable to the
strong QCD components. To determine these splittings we employ lattice QCD
while also including Quantum Electrodynamics (QED) on the lattice. This is
called lattice QCD+QED.

Isospin violation is relevant to a range of physical phenomena, including the
flavour decomposition of nucleon structure [1, 2, 3, 4]; tests of neutrino-nucleus
interactions [5, 6]; precision constraints on CKM [7, 8] matrix elements from
leptonic [9, 10] and semi-leptonic [11] decay rates; and quark mass parameters
[12, 13, 14, 15].

I begin this thesis by describing the quantum field theories of interest, Quantum
Chromodynamics and Quantum Electrodynamics in chapter 21. In this chapter I
describe how QCD and QED are related and define these theories in terms of the
path integral partition function. I also describe SU(3) flavour symmetry and why
it is important.

Due to the difficulties in producing solutions from the QCD partition function,
and the requirement for regularisation and renormalisation of the field theory we
use lattice gauge theory in this thesis to produce estimates of observables. Lattice
gauge theory is an numerical approximate method to calculate observables for
gauge field theories. In chapter 3 I describe what lattice gauge theory is, how it
can be applied to gauge theories with fermions (quarks) and how to determine
hadron masses from this discretised field theory. I approach the subject more
generally so that it can be applied to either QCD or QED, or both.

It is significantly more time efficient to calculate observables on the lattice with
large quark masses than it is to calculate them with small quark masses. This is
related to how difficult it is to invert the fermion matrix. In our analysis we use
larger than physical quark masses, and using the information obtained at this
point in parameter space, we extrapolate our observables to the physical quark
mass point. In chapter 4 I describe the methodology for choosing the point in
parameter space that we use, called the SU(3) point, how we determine this point

1I cover some more fundamental topics in the appendix. I start with the concept of minimisa-
tion as applied to physical phenomena and quantum mechanics in appendix A. I then give a very
quick introduction to quantum field theory in appendix B and extend the application of field
theory to fermions in appendix C. Finally I introduce the concept of a Yang-Mills type gauge
field theory in appendix D.
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and the analytic expansions that we use to extrapolate from this point to the
physical point.

The first chapter of new research in this thesis, chapter 5, presents results for
the mass splittings between isospin multiplets of the octet and decuplet baryons
including QED. I describe lattice particulars such as quark masses and the ac-
tion, describe the fitting procedure for the extrapolation and discuss results of the
analysis.

I produce a similar analysis for charmed hadrons in chapter 6, producing results
for the mass splittings for isospin multiplets as well as hyperfine splittings. In this
chapter we also examine the discrepancy of the experimental results of the SE-
LEX collaboration[16] and LHCb[17] and discuss ways to make these observations
compatible.

In the last chapter of new research, chapter 7, we investigate the composition of
the π0–η–η′ system near a point of exact SU(3) symmetry. Through this analysis
we determine the π0–η mass splitting generated by electromagnetic isospin viola-
tion. We study the state composition around this SU(3) point and try to relate
this to the behaviour of the mass splitting near the physical quark mass point.

Finally, I conclude this thesis with a summary of our results and outlook to
future research in chapter 8.



CHAPTER 2

Quantum Electrodynamics and Chromodynamics

Our goal in this chapter is to introduce the two field theories important to the
research in this thesis; Quantum Electrodynamics (QED) and Quantum Chro-
modynamics (QCD). The two theories are Yang-Mills type gauge theories, where
QED has a U(1) gauge symmetry, while QCD has a SU(3) gauge symmetry.

We can show that the two theories produce the same kind of force; in section 2.1
I will show that (in the classical limit) the forces produced by the Yang-Mills type
field theories, specifically QCD and QED, are the simplest forces that can exist
in a special relativistic theory. To achieve this, I derive the general form for
a field strength tensor using special relativity and some assumptions about the
force that will be produced, and show this field strength tensor to be of the same
form as the Yang-Mills field strength tensor. In section 2.2 I give a summary of
electrodynamics and QED, producing the partition function and Feynman rules
for QED.

In section 2.3, because there is no classical theory of QCD, I give a historical
account of the development of the theory through the progressively more compli-
cated experiments performed to probe the structure of the nucleus of atoms. I
then use the hadron spectrum to motivate the introduction of the colour quantum
number. The quantum number is recognised as colour charge once the SU(3) local
gauge invariance is postulated. In section 2.3.3 I outline the specifics of QCD, and
include the partition function and Feynman rules for the theory.

In section 2.4 I explain how SU(3) flavour symmetry presents itself in the
hadron spectrum, and explain what causes this symmetry. I then motivate this
explanation by using SU(3) flavour symmetry in the quark masses to reproduce
the grouping seen in the hadron spectrum. In section 2.4.1 I provide some context
to the allocation of quark flavours to hadron states.

4



5 §2.1. Forces in special relativity

2.1 Forces in special relativity

To properly understand the electromagnetic forces we need to understand how the
concept of force fits into special relativity. We will begin with a definition of force.
We define 4-force as,

F =
d

dτ
P =

d

dτ
(m0U) = m0A+

dm0

dτ
U (2.1)

for 4-momentum P , acceleration A, velocity U , rest mass m0 and proper time τ .
This satisfies our general requirements; P remains constant if there is no applied
force. If the rest mass does not change this reduces to something that looks like
the Newtonian force law, F = m0A. Applying the time derivative directly to the
momentum vector,

F = γ
d

dt
(mc, ~p) = γ(u)

(
1

c

dE

dt
, ~f

)
. (2.2)

There are two important facts that we need to know before we begin to con-
struct the simplest Lorentz covariant force, which we will show is the type of force
that appears in QCD and QED. Firstly, the product,

F · U = c2dm0

dτ
= γ2(u)

(
dE

dt
− ~f · ~u

)
, (2.3)

shows that forces that do not increase the particles rest mass, called pure forces,
are space-like, hence F ·U = 0. Conversely, heat-like forces (forces that increase the
rest mass) are not space-like. Secondly, by considering the Lorentz transformation
equation for forces,

f ′b =
fb − vQ/c2

1− ubv/c2
, (2.4)

f ′o =
fo

γ(v)(1− ubv/c2)
, (2.5)

Q′ =
Q− vfb

1− ubv/c2
, (2.6)

where fb is the force in the boost direction, fo represents the transformation for
the other two space directions orthogonal to ub and Q = dE

dt
. Hence any force that

is independent of velocity in one frame, has velocity dependence in every other
frame.

The simplest conceivable Lorentz covariant force will be F µ = EµνUν (if it
exists) for some Lorentz tensor E. We also require that the force is pure, so
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there is no frame in which it simply increases the rest mass, F · U = 0. This
requirement leads to EµνU

µUν = 0, for arbitrary velocity vector U , indicating E
is antisymmetric, Eµν = −Eνµ. The force may or may not act on every type of
matter, so we associate a property called charge to those particles or waves which
the force acts on. The charge on particles could be binary, discrete or continuous;
however the force must scale with the amount of charge. We change our force
equation to reflect this F µ = EµνJν , with new symbol Jν = qUν called current.

The tensor E has different values at different space-time points, and so it can
be considered a force field. As we have not specified the source of the force field,
the distribution of E in space-time is yet to be defined. Conceivably the charges
themselves could produce the field, this is the case with known forces such as
gravity and electromagnetism. If this was the case we would expect ∂µEµν ∝ Jν .
Automatically, by the antisymmetric property of E, ∂νJν = 0, current is conserved.
As current is conserved, J has only three independent components, and the same
is true for E.

We can write Eµν = Kµν(Φ) for some function K only dependent on 4-vector
Φ ∝ J . As ∂E ∝ J , we should be able to write E as a product of a 4-vector and Φ.
We only have two distinct 4-vectors from which we could construct E, J ∝ Φ and ∂.
However if we assume the elements of Φ are scalar numbers, Eµν = JµΦν−JνΦµ =
0 because J and Φ commute. E can only be Eµν = ∂µΦν − ∂νΦµ. Hence E can be
written in terms of a four potential Φ, where ∂µ(∂µΦν − ∂νΦµ) = aJν . E satisfies
the gauge condition Φµ → Φµ + ∂µα(x) for some arbitrary scalar field α, which
shows that Φ only has three degrees of freedom.

Conversely, if we do not assume the elements of Φ commute, then the more
general expression for E is given by all relevant antisymmetric two index tensors
Eµν = a(∂µΦν−∂νΦµ)+b[Φµ,Φν ] for constants a and b, which is the same form as
the Yang-Mills field strength tensor. With appropriate choice of constants this field
strength tensor satisfies the Yang-Mills gauge condition (for details see appendix
D).

2.2 Electrodynamics

Maxwell’s equations which describe the electromagnetic force fields ~E and ~B can
be written in the form [18]

∂µF
µν = Jν , (2.7)

for current vector J = (cρ,~j) = ρU , velocity vector U = γ(c, ~u), electromagnetic

potential A = (cV, ~A) and field strength tensor Fµν = ∂µAν − ∂νAµ. By definition
of the Lorentz transformation, Maxwell’s equations are Lorentz invariant. As the
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equation is Lorentz invariant, and ∂ and U are covariant, we then expect all indices
to transform covariantly – hence A is a Lorentz vector. Notice, seemingly we can
only get two of Maxwell’s equations from the above equation, however the last
two Maxwell equations (which can be written as 1

2
∂αεαβµνF

µν = 0) simply enforce
the condition that Fµν can be written in terms of a potential Aµ. Hence all four
equations are included in the above definition when Fµν is written in terms of
a potential A. As F µν is antisymmetric by definition, Maxwell’s equations also
imply ∂µ∂νF

µν = 0 as the bottom indices are symmetric. Hence ∂J = 0, which
states charge is conserved locally. One Lagrangian that produces these equations of
motion is L = −1

4
FµνF

µν . Note that because the indices of Fµν are anti-symmetric
under interchange, it is invariant under the transformation Aµ → Aµ + ∂µα for
some scalar field α. Hence, electromagnetism is a Yang-Mills type gauge theory.

2.2.1 QED

Quantum electrodynamics or QED is a Yang-Mills type gauge field theory where
charged fermions ψ(x) interact via gauge fields Aµ(x). The gauge transformation
is

Aµ → Aµ + ∂µα (2.8)

for scalar field α, which is the linearisation of the unitary group U(1), U = eiα(x)

for α(x) ∈ R. Here the generator can be represented by T = 1. The Lagrangian
for QED can be written as

LQED = ψ̄(x)( /D +m)ψ(x) +
1

4
tr (F µνFµν) , (2.9)

where F µν = ∂µAν(x) − ∂νAµ(x), slash notation and the covariant derivative are
defined in appendix C and D. As the gauge group U is single dimensional, it
is abelian and the resulting gauge field is as well [Aµ(x), Aν(x)] = 0, for µ, ν ∈
{0, 1, 2, 3}.

The partition function is given by

Z =

∫
Dψ̄DψDAei

∫
d4xLQED+ i

2ξ

∫
d4x(∂A)2

, (2.10)

where we have included the gauge fixing term1. The Feynman rules for this theory
in the Feynman gauge ξ = 1 are,

1More detail on the gauge fixing term can be found in appendix D.



Chapter 2. Quantum Electrodynamics and Chromodynamics 8

ieγµ =

Aµ

∫
d4p

(2π)4

ie−ip(x−y)

/p−m+ iε
=

p
∫

d4q

(2π)4

−igµνe−iq(x−y)

q2 + iε
=

q

2.3 Hadrons and the Strong Force

Thompson’s discovery of the electron in 1897 raised the question of where and how
positive charge and mass were distributed inside an atom, as atoms were known
to be both heavy and charge neutral. Rutherford’s research team found that α-
particles would scatter elastically from gold foil, which suggested the existence of a
heavy positive charge centre and this heavy charge centre was named the nucleus.
High energy elastic scattering experiments using electrons later showed that the
nucleus did not act like a point object and diffraction effects due to its finite extent
were detected. Inelastic scattering also showed the existence of excited states [19].
The finite extent and excited states of the nucleus are both evidence for a nucleus
made of constituents.

The lightest atom discovered, hydrogen has a single electron and its nucleus
was named the proton. Over a long period it was thought these protons might
be the building blocks for atoms. The force that bound them was thought to be
very strong because when building the atomic spectrum, the nucleus was made of
increasing numbers of protons with positive electric charge. It was also thought to
be of short range because such a force had not previously been detected and seemed
to only act in the compact radius of the nucleus. For atoms with increasing proton
number, the atomic mass seemed to increase, but not directly with proton mass.
In 1932 Chadwick discovered the neutron, which was neutrally charged and had
almost the same mass as the proton. This discovery solved the mass discrepancy; to
good approximation atomic masses could be predicted using protons and neutrons
as constituents [19].

In a cosmic ray experiment in 1947, the kaon was discovered. By the end of the
1950’s, many strange particles had been found both mesons and baryons. By the
early 1960’s the light hadron spectrum was on its way to complete discovery. Inter-
estingly the hadrons seemed to fit into distinct mass and spin groups. Gell-Mann
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arranged the particles in these mass and spin groups in terms of the charge and
strangeness. This arrangement was called the Eightfold Way. The arrangement of
particles is shown in Fig. 2.1 and Fig. 2.2.

Q = 1

Q = 0Q = −1

S = 1

S = 0

S = −1

π+

K+K0

π−

K− K̄0

η′η

π0

(a)

Q = 1

Q = 0Q = −1

S = 1

S = 0

S = −1

ρ+

K∗+K∗0

ρ−

K∗− K̄∗0

φω
ρ0

(b)

Figure 2.1: S indicates the strangeness of the particles. (a) Spin zero, negative
parity, positive charge conjugation, JP = 0− hadrons, called pseudoscalar mesons.
The central mesons have positive charge conjugation. (b) Spin one, negative parity,
negative charge conjugation, JP = 1− hadrons, called vector mesons. The central
mesons have negative charge conjugation.

Q = 1

Q = 0Q = −1

S = 0

S = −1

S = −2

Σ+

pn

Σ−

Ξ− Ξ0

Σ0

Λ0

(a)

Q = 2

Q = 1

Q = 0

Q = −1

S = 0

S = −1

S = −2

S = −3

Σ0 Σ+

∆+∆0

Σ−

Ξ− Ξ0

∆++∆−

Ω−

(b)

Figure 2.2: (a) Spin 1
2

positive parity, JP = 1
2

+
hadrons, called octet baryons. (b)

Spin 3
2

positive parity, JP = 3
2

+
hadrons, called decuplet baryons. S indicates the

strangeness of the particles.

Electron scattering experiments by Hofstadter in 1963 revealed that the proton
had an exponential electromagnetic charge distribution with a root mean square
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radius of approximately 0.8 fm. Both the proton and neutron had a magnetic mo-
ment distribution, and these decay with the same curve as the charge distribution
when appropriately scaled. The shape of the distributions suggested that both of
these particles had spatial extent, in the same way as the atom and the nucleus
had shown to [19]. Further inelastic scattering studies showed that states inside
the nucleons could be excited [19].

2.3.1 Asymptotic Freedom

The first proton-proton scattering experiments at high energy, above 10 GeV in the
centre of mass frame, showed unexpected results. The protons were broken apart
into other hadronic matter, mostly pions, but these hadron jets were produced
collinear with the collision axis. It was puzzling because the strong force, which
people believed to hold the nucleus together, was predicted to be strong and to
bind positively charged protons; however, because two hadrons had only a weak
interaction, at high relative momentum the proton seemed to behave like a cloud
of loosely bound constituents [20].

Further analysis of the proton occurred in the late 1960’s at SLAC. In this
new experiment 20 GeV electrons were scattered off a hydrogen target and the
scattering rate was measured for large deflection angles, called hard scattering
[20]. Based on the previous experiment, it was expected that the quarks would
again seem to be weakly interacting, resulting in low hard scattering rates. Instead
a substantial rate for hard scattering was detected, comparable to if the proton was
modeled as a fundamental particle, with the exception that the proton was rarely
observed in the final state. The scattering was still mostly deep inelastic, producing
a large number of hadrons [20]. This observation suggested the existence of discrete
scattering centres within the proton, and the distribution of the scattering electrons
exhibited a phenomenon called scale invariance, suggesting the hard scattering
centres had no internal structure, and hence were ‘pointlike’ [21, 22, 23, 24].

The theory proposed by Feynman and Bjorken to explain this discrepancy is
called the parton model, in which the proton is assumed to be a loosely bound
collection of constituents called partons. These include fermion constituents carry-
ing electric charge, what we now call quarks, and electrically neutral components,
which we now call gluons. It was assumed that these constituents were incapable
of large momentum exchange through the strong interaction [20]. They can how-
ever have large momentum transfer through the electromagnetic interaction. For
instance, an electron can knock a quark from a proton. This quark then softly
interacts with the remaining parts of the proton pulling the shattered pieces of
the proton in the same direction, to produce a hadron jet in the direction of the
displaced quark.

The weakness in the strong force at short distances and high energies is called
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asymptotic freedom. All field theory couplings change at different length scales.
In the case of QED, the coupling gets stronger at close distances. The theory
for the strong force needed to be of a type that gets weaker at close distances.
When Bjorken scaling was discovered, there were no known asymptotically free
field theories in four dimensions. It was later shown in the early 1970s that non-
abelian gauge theories exhibit asymptotic freedom, and were shown to be the only
type of theory that had the property in four dimensions [20].

2.3.2 The Quark Model

In 1963, Gell-Mann and Zweig proposed the quark model, which explained the
spectrum of strongly interacting particles called hadrons in terms of constituents
called quarks [20]. Due to the approximate SU(3) flavour symmetry (which I
will talk more about in section 2.4), the lightest bound states in the hadron mass
spectrum can be nicely described by quantum numbers of isospin and strangeness2,
and form recognisable groupings in terms of their masses. Gell-Mann recognised
the hadron spectrum matched the irreducible representations of the SU(3) (flavour
symmetry) if bound states were assumed to be of the form q̄q and qqq, for quarks
q and anti-quarks q̄. Some diagrams of these groupings of particles are shown in
Fig. 2.1 and Fig. 2.2.

Mesons were classified as quark–antiquark bound states. The quantum num-
bers of the real meson states agree with this description, as the lightest mesons
come in spin-0 and spin-1 states of odd parity [20]. Baryons were classified as
three quark bound states. To obtain the correct number of known baryons and
mesons and the correct electric charges, Gell-Mann assumed three types of quarks
up (u), down (d) and strange (s), with charges +2/3,−1/3,−1/3 respectively.
These types are called quark flavours; quark flavours charm (c), bottom (b) and
top (t) were later discovered with charges +2/3,−1/3,+2/3, respectively.

Despite phenomenological success in predicting the existence of unknown par-
ticles and its ability to satisfy the approximate flavour symmetries found in the
known hadron spectrum, the spectrum of baryons required that the quarks be
symmetric under interchange of quark spin and flavour quantum numbers [20].
However, quarks must also have spin 1/2, and so obey Fermi-Dirac statistics to
ensure matter does not collapse; they cannot exist in the same state as an identical
quark. The issue is most easily observed in the ∆++ bound state, supposedly uuu
with spin +3/2, and symmetric under interchange.

This led to the introduction of an unobserved quantum number called colour,
in which baryons were antisymmetric. Even if a baryon is symmetric in spin and

2 It was later found that isospin denotes the number of up quarks and strangeness denotes
the number of strange quarks. The remaining quarks are assumed to be down quarks unless
otherwise indicated.
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flavour, it still has an antisymmetric wave function; which requires the existence
of at least three colours3. The modification to include colour in the wave function
is simply εijkqiqjqk, for colours i, j, k ∈ {1, 2, 3}.

It follows directly that the quarks transform under group S3, a discrete permu-
tation of colours, without affecting the spin-flavour wave function. However, this
can be generalised to a continuous SU(3) invariance of the quark colour without
relaxing our requirements; we still require the quark colours at the same point in
space-time to transform together and to be in orthogonal directions. Hence for a
colour transformation U ∈ SU(3), a baryon transforms as εijkqi(x)qj(x)qk(x) →
εijkUii′Ujj′Ukk′qi′(x)qj′(x)qk′(x) = det(U)εijkqi(x)qj(x)qk(x) = εijkqi(x)qj(x)qk(x),
as det(U) = 1 [20].

Furthermore, there is no reason to believe that the colours of quarks at all
points in the Universe transform together, though it is clear that the colour of
quark fields at the same space-time point seem to. For now, consider the colour
degree of freedom to be a local SU(3) gauge freedom; this assumption is only
validated by the experimental success of the QCD theory. Using this local gauge
symmetry, we can create a field theory using the Yang-Mills formalism. In this
field theory (QCD), colour turns out to be a type of charge which only quarks
posses. Note, the gauge freedom does not generate any forces but the presence
of a gauge freedom eliminates many possible terms in the potential and requires
a gauge field to ensure the kinetic terms are invariant. The existence of a gauge
freedom suggests the existence of a force.

The existence of baryons and mesons as colour neutral objects is not a fun-
damental property of the theory, but it emerges in QCD due to the increasing
strength of the coupling constant at low energies. The property is called con-
finement. With three colours the simplest colour neutrals are of the form q̄iqj,
εijkqiqjqk and εijkq̄iq̄j q̄k. In the physical world these are the only types we have
found and are called meson, baryons and antibaryons respectively.

2.3.3 QCD

Quantum chromodynamics or QCD is a Yang-Mills type gauge field theory where
colour charged fermions ψa(x), with colour index a ∈ {1, 2, 3}, interact via gauge
fields Aµ(x). The gauge transformation is

Aµ → UAµU
† − i(∂µU)U † = UAµU

† + iU∂µU
† (2.11)

where U ∈ SU(3) and is generated by U = eiT
aθa where θa(x) ∈ R. Here the

generators T a, a ∈ {1, ..., 8} can be represented by the Gell-Mann matrices. The

3Prior to the development of colour the quark model could be used to calculate π0 → 2γ.
The amplitude was a factor of three too small, which suggests there are only three colours [25].
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transformation can be linearised to, Aµ → Aµ + iθa[T a, Aµ] + ∂µθ
aT a. The La-

grangian for QCD can be written as

LQCD =
∑

a,f

ψ̄fa (x)( /D +mf )ψ
f
a (x) +

1

4
tr (F µνFµν) , (2.12)

for colours a ∈ {1, 2, 3} and flavours f ∈ {u, d, s, c, b, t} where F µν = ∂µAν(x) −
∂νAµ(x)− i[Aµ, Aν ].

The partition function is given by

Z =

∫
Dψ̄DψDAei

∫
d4xLQCD+iSghost(c

†,c)− i
2ξ

∫
d4x tr[(∂A)2], (2.13)

where we have included the gauge fixing term as defined in appendix D. The
Feynman rules for this theory in the Feynman gauge ξ = 1 are,

∫
d4p

(2π)4

ie−ip(x−y)

/p−m+ iε
=

p
∫

d4q

(2π)4

−igµνe−iq(x−y)

q2 + iε
=

q

igγµT a =

aaµ

(q − k)µgαν + (p− q)νgαµ + (k − p)αgνµ =

q

p
k

−ig2[fabef cde(gµρgνσ − gµσgνρ)
+facef bde(gµνgρσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)] =

aaµabν

acρ adσ
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∫
d4q

(2π)4

iδab

q2
= ca c†b

q

−gfabcpµ =
p

abµ

c†a cc

2.4 SU(3) Flavour Symmetry

Approximate flavour symmetries have been observed in hadronic bound states
since the discovery of the fundamental building blocks of atoms, the proton and
the neutron. The symmetry is observed in the closeness of the masses of the proton
(938.27 MeV) and neutron (939.57 MeV). Conservation of baryon number and the
low mass of the proton make it a stable bound state. The neutron decays to a
proton via beta decay, however due to the closeness of their masses, a free neutron
has a very long mean lifetime of approximately 15 min. This long decay lifetime
and the approximate degeneracy of mass with the proton allows the neutron to
form stable bound states with the proton, to form a nucleus. The existence of the
neutron is essential in the nuclear stability of nuclei of higher atomic number, and
even low atomic number elements have an equal number of protons and neutrons as
ground states. Such a configuration is only possible because the binding energy of
the nucleus is higher than the proton-neutron mass difference. The mass difference
is so small, the electromagnetic effects inside the nucleus result in neutron stability;
consider the stability of deuterium nucleus4.

The symmetry between the proton and neutron, called isospin symmetry, is the
result of the quark masses of the up and down quarks being almost degenerate,
where the proton is a bound state of quarks uud and the neutron a bound state
of quarks ddu. The observation of the mass symmetry between the proton and
neutron and other isospin symmetries, as between the differently charged π, ∆, Σ
and Ξ, were key motivators in the construction of the quark model.

The small mass of the u, d and s quarks create an approximate symmetry in
the hadron mass spectrum, called SU(3) flavour symmetry or SU(3)F , which is
similar to isopsin symmetry. SU(3) flavour symmetry is an approximate symmetry
found in the QCD Lagrangian for the lightest quark flavours u, d, s. These quarks

4 Assume the nucleus is a collection of two types of fermions, protons and neutrons, in a
potential well. The Fermi exclusion principle and QCD can account for a great deal of the
neutron stability. However in the cases where there is an odd number of protons and an odd
number of neutrons, neutron stability (especially in the deuteron case) can only be described by
electromagnetic effects.
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have much lower masses than the other quarks with u and d having masses less
than 10 MeV and s having a mass of less than 100 MeV at probing energies typical
to hadrons. The close grouping of the lightest hadron masses is an expression of
these flavour symmetries in the QCD Lagrangian. Though isospin is the closest to
being realised, there are other discrete symmetries that are possible. When d and
s quarks are similar in mass, the symmetry is called U-spin, while when u and s
quarks are similar it is called V-spin.

The concept behind flavour symmetry is simple; we assume that the quark
masses and charges for the lightest three flavours are the same. Then the flavour
symmetry is exact and the flavour quantum number for the lightest flavours u, d, s
transform under an SU(3) global (flavour) symmetry. I will explain how this works
and show that the hadrons form neatly into separate groups, which correspond to
the physical spectrum.

The flavours of quarks q transform under the fundamental (or defining) rep-
resentation, ψi → ψ′i → U i

jψ
j, where U ∈ SU(3)F and ψ is a vector of quark

flavours. Anti-quarks, which are members of the dual space, transform under the
conjugate to the fundamental representation ψ∗i → (U i

j )∗ψ∗j = U †
i
j ψ
∗j. The gen-

erators for the conjugate representation are the complex conjugate of the original
Lie algebra. We can define ψj with a lower index to represent these dual space vec-

tors, hence ∗ lowers indices so that ψi → ψ′i = U †
j
iψj. By taking the tensor product

of vector spaces, we can obtain tensors of the form ψik...jm... ∈ Vi ⊗ Vk...V̄j ⊗ V̄m...
which transform like

ψik...jm... → U i
lU

k
s ...U

†n
jU
†o
m...ψ

ls...
no.... (2.14)

For simplicity consider a tensor of the form ψij ∈ 3 ⊗ 3̄, where 3 is the vec-
tor space associated with the fundamental representation of SU(3) and 3̄ is its
conjugate. The tensor corresponds to a meson in SU(3) flavour symmetric QCD.
This tensor can be broken down into a part that does not transform, it trans-
forms under the 1-dimensional representation of the group SU(3), and a remaining
8-dimensional part

ψij → U i
lU
†k
jψ

l
k = δijψ

k
k + U i

lU
†k
jψ

l
k |k 6=l. (2.15)

The first part is called a fixed point set, and members of the fixed point set partition
the space 3⊗3̄ because the fixed points remain the same under the transformation.
This set has dimension 1. The second part forms a class of orbits under the group
action; the class of orbits also partition the space, and has dimension 8. For
module XG of group G and x, y ∈ XG, an orbit forms an equivalence class, x ∼ y
if ∃g ∈ G such that gx = y, while fixed point sets form an equivalence class x ∼ y
if Gx = x and Gy = y.
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If the orbits ∪{0} and fixed point set form subspaces then it is possible to block
diagonalise the group transformation by changing basis ψ → Pψ and U → PUP−1.
SU(N) has a special property, if we separate the tensor product space into fixed
point, symmetric and anti-symmetric parts, only these sets are both subspaces
and orbits ∪{0} and hence they transform under irreducible representations of the
group SU(N). These are called invariant subspaces. Hence the decomposition in
Eq. (2.15) forms invariant subspaces.

If we call the fixed point set 1 and the class of orbits ∪{0} 8 then we can
represent the tensor product of vector spaces (which corresponds to a meson in
the quark model) as a direct sum of invariant subspaces 3 ⊗ 3̄ = 1 ⊕ 8. This
suggests that in the SU(3) limit, there are eight mesons that transform together
and will follow the same mass trajectory, while the singlet (η′) does not necessary
follow that same trajectory.

It is relatively easy to show that if a tensor is symmetric or anti-symmetric that
it remains symmetric or anti-symmetric under the group transformation. Consider
the tensor T ij ∈ N⊗N with symmetric part Sij = 1

2
(T ij + T ji). Under the group

transformation Sij → S ′ij = U ikU jlSkl = U ikU jlSlk = S ′ji. Similarly for anti-
symmetric part Aij = 1

2
(T ij − T ji), Aij → A′ij = U ikU jlAkl = −U ikU jlAlk =

−A′ji. For fixed point elements, as they don’t transform, they remain part of this
subspace. It is more difficult to show that the groups can not be broken down any
further and are hence irreducible.

It is not immediately clear how the subspace 8 transforms under the group
operation, however as 1,8 are invariant subspaces of the tensor, we must be able
to block diagonalise the group representation into a 1-dimensional representation
of SU(3) G1 and an 8-dimensional representation of SU(3) G8. It follows that
G8 is an irreducible representation of SU(3). This representation is coincidently
isomorphic to the regular (or adjoint) representation, which is an 8-dimensional
representation constructed from the structure constants of the Lie algebra. It is
generally true that subspaces of the same dimension transform under isomorphic
representations of SU(N).

Apart from representations of the same dimension, other group representations
are isomorphic to each other as a result of the condition det(U) = 1. For SU(N)
this is equivalent to,

εi1i2...iNU
i1
j1
U i2

j2
...U iN

jN
= εj1j2...jN (2.16)

noting that N in the identity is the dimension of the fundamental representation.
By pre-multiplying by U † we can show that,

εi1i2...iNU
i2
j2
...U iN

jN
= U †

j1
i1
εj1j2...jN . (2.17)

By repeatedly multiplying by U † we achieve (N − 1)/2 identities for the group
operation.
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For SU(3) tensors, εijkψ
jk transforms like ψi, meaning the anti-symmetric part

of ψij transform like the conjugate ψk. One can also use the original definition
to say that the anti-symmetric part of T ijk transforms as 1. Using this idea we
can show how that flavour symmetric baryons form invariant subspaces under the
group operation.

In the quark model a baryon is of the form, qqq and corresponds to the ten-
sor product of spaces 3⊗ 3⊗ 3 = T ijk. With the notation {ij} indicating anti-
commuting indices and [ij] indicating commuting indices, we break the tensor
down into anti-symmetric and symmetric parts,

T ijk = T {ijk} + T {[ij]k} + T [{ij}k] + T [ijk]. (2.18)

These tensors transform under 1 ⊕ 8 ⊕ 8 ⊕ 10 dimensional representations of
SU(3). Hence we can write the tensor product of vector spaces as the direct sum
of invariant subspaces 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10. These subspaces transform
under irreducible representations of SU(3). Note that there are two 8 dimensional
subspaces, however due to the closeness in energies and quantum numbers, the
physical octet baryon states are formed as superpositions of the corresponding
pairs in the two baryon octets. This results in one observable baryon octet. For
further discussion refer to Ref. [24].

In the SU(3) limit, the baryons that correspond to each invariant subspace will
follow the same mass trajectory. Interestingly, the symmetry properties of the
flavour wave functions separate the baryons into the different groups of hyperfine
splittings. This is as expected as the total wave function must be antisymmetric.

2.4.1 Flavour Basis

The quark model originated from the spectrum displayed by the light mesons
and baryons, and so it is not difficult to understand that the basis we use in the
quark model also describes many of the bound states we find in the vacuum. This
basis is called the flavour basis. For example, the proton and the neutron are
spin 1/2 with flavour composition uud and udd respectively, while the pseudosclar
meson spectrum can be written as ud̄, us̄, ds̄ for π+, K+ and K0, with their
antiparticles being conjugates of these states. Quark flavour describes these states
well because flavour is conserved in both electromagnetic and strong interactions.
If we include weak interactions, flavour is not necessarily conserved, but the states
do approximate the flavour basis states due to the weakness of the weak force. In
situations where the strong and electromagnetic forces mix the flavour diagonal
states, the flavour basis will not describe the physical states, this is the case with
π0, η and η′.

We group particles by flavour because they appeared in the mass spectrum in
that way. Perhaps not surprisingly then, as the breaking of the quark symmetry
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is by flavour, states that transform under irreducible representations of SU(N) de-
scribe the mass spectrum well. For instance determining the invariant subspaces
under SU(3) (flavour) provides the possible baryon states grouped by mass. Sim-
ilarly SU(4) flavour invariant subspaces group particles by mass when the charm
quark is included. This is not dependent on the strength of the SU(N) symmetry
in the spectrum, it is simply a reflection of the fact that hadron states can be
grouped and identified by flavour.



CHAPTER 3

Lattice Gauge Theory

In field theory we normally can not produce an exact solution to the interacting
theory. We can use the solution to the free theory and an infinite series in the
potential to produce an exact solution. However this ‘perturbative’ approach im-
plicitly suggests that we can stop calculating terms at some point, truncate the
expansion, and achieve a reasonable approximation to the true result. This is not
always true. A prime example is the strong coupling theory of QCD at low energy
scales.

Regularisation is a technique for changing integrals which give infinite answers
into integrals which give finite answers. Regularisation becomes essential when
doing field theory because the integrals we try to calculate do not always result
in finite answers. These infinities occur because we assume things about the field
theory which may not be true. Often we assume the theory is correct up to infinite
momentum and over infinite space-time; at the very least this assumption has not
been proved by experiment. Alternatively, we may assume all quantities must be
finite, however this is only true for observable quantities. In the worst case, the
appearance of infinities indicate that our theory may not be valid at some energy
scale. When infinities arise, we need to apply a cut-off to the momentum and
region we integrate over. When cut-offs are introduced the quantities we produce
will, in general, be cut-off dependent as a result.

Certain theories, called renormalisable theories, can be made to always produce
a cut-off independent result for observables, and the quantum field theories we
will be working with, QCD and QED, are both renormalisable. The process of
renormalisation is not unlike setting a boundary condition on an integral. In
this case certain quantities are fixed by experimental values, and we enforce these
conditions on the quantum field theory using Lagrangian parameters called counter

19
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terms. In the limit of infinite cut-off energy the quantities calculated should remain
finite [20]. It is necessary to renormalise if we wish to use physical (observable)
parameters such as the mass or charge within our Lagrangian, and to remove
cut-off dependence.

All of these issues can be effectively mitigated using lattice gauge theory. This
formulation of a gauge field theory discretises space-time and only considers a finite
(discrete) slice of space-time, hence the integrals are regulated. In lattice gauge
theory, when we set the scale, we renormalise the theory. The quantities calcu-
lated using lattice gauge theory are dimensionless and the scale for the calculation
can be set by fixing one, or a few, output values to a physical quantity. Strong
coupling theories become tractable because lattice gauge theory is not a pertur-
bative method. At no point do we assume the free theory closely approximates
the true theory, and the full path integral is calculated, though only at a finite
number of points. Non-abelian gauge theories are tractable, though add additional
complication as the topology of the gauge field in space-time is non-trivial.

In section 3.1 I explain why discretising space-time is a reasonable thing to
do and introduce the action that is used for QCD and QED. In section 3.2 I
explain how changing the action to be in terms of Euclidean space-time allows us
to prioritise paths based on importance. This form is required if we wish to use
importance sampling techniques like Monte-Carlo. In section 3.3 I describe how
space-time is discretised in lattice gauge theory.

In section 3.4 I determine the quark action in discrete form to produce Wilson
fermions and introduce the notion of a link variable. The hopping parameter and
clover improvement to the quark action are explained. In section 3.5 I develop the
discretised form of the gauge field kinetic term F µνFµν .

In section 3.6 I explain how to calculate observables on the lattice using Monte-
Carlo sampling. In section 3.7 I describe how to calculate hadron 2-point corre-
lation functions. In section 3.8 I explain how masses can be extracted from the
hadron 2-point correlation functions. Note in the following if facts are not refer-
enced they have been obtained from standard text books on lattice QCD, such as
[26, 27].

3.1 Lattice gauge theory

The path integral formalism and field theory are based on observations of the
universe; particles and waves take all possible paths, some particles are identical
and that when left undisturbed they satisfy the Klein Gordon (KG) equation.
However these observations were made with finite resolution. To deduce these
things, we did not look at all the continuously infinite points in a section of space-
time, rather we sampled space-time within our own ability to resolve space-time.
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The beauty of the continuum is that we can always look smaller, but as observers,
ultimately we look at a finite set of points. Essentially we have been doing what
lattice gauge theory sets out to do; sample continuous space-time at finite points
to determine what is happening.

We need to sample space-time at a frequency above the highest modes we
would expect to be relevant to the system, and this essentially regularises our
theory, setting a momentum cut-off. Indeed, a momentum cut-off was implicit in
our initial observations. We then renormalise by setting the scale of the lattice
using known observables, with the knowledge that observables of a renormalisable
theory are cut-off independent. However, because we are generating the fields from
discretised space-time there is an error in our observation of the field and in the
construction of the field.

When we generate the field theory from a finite set of points, there are artefacts
of the discretisation. These artefacts can either be partially or completely removed,
or they scale with the lattice spacing, allowing for an estimate within some preci-
sion. By choosing a lattice spacing, we are limiting the maximum energy, or mode
frequency. This maximum energy needs to be higher than the physics of interest.
We also only sample a finite number of points, which puts a lower bound on our
allowed frequencies as well. This lower bound can again be related to the lattice
spacing and introduces its own discretisation errors when generating fields.

We will implement lattice discretisation on the Yang-Mills theory with fermions
as we will use this later for lattice QCD and QED. The action is,

S = −1

4

∫
d4xF µνFµν +

∫
d4xψ̄(iγµDµ −m0)ψ, (3.1)

with covariant derivative Dµ = ∂µ + ig0Aµ and Fµν = ∂µAν − ∂νAµ + ig0[Aµ, Aν ].
The partition function is then,

Z =

∫
DADψ̄DψeiS+i

∫
d4xJµAµ+i

∫
d4x(η̄ψ+ψ̄η). (3.2)

Refer to chapter C for detail on the source fields Jµ.

3.2 Euclidean Space-Time

In its current form, the partition function weights all paths equally and from
summing all the paths we can determine the probability amplitude at a given
point. From looking at the partition function it is not clear which paths will be
the most important for obtaining an estimate of Z. With a little knowledge of
classical systems we can say that the classical path is the path that minimises the
action S, hence paths close to this minimum tend to be the most important for
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producing an estimate. If instead the paths were weighted by importance, we could
select a random ensemble weighted by this importance to achieve an estimate of
Z. This technique is called importance sampling, and we consider it in more detail
in section 3.6.

It turns out this form can be achieved, with weights e−S, through a Wick
rotation to imaginary time to produce a Euclidean metric. We can obtain this
shift by factoring out i in the zeroth component of the Lorentz vectors x0 = −ix4

and ∂0 = +i∂4. As a result we no longer require the notation of up and down
indices. This also results in an overall factor of i in the action. We use γ matrices
that satisfy {γEµ , γEν } = δµν (where E stands for Euclidean), as we now need them

to produce a Euclidean metric when pre-multiplying the Dirac equation by i~/∂.
One prescription for doing this is γE4 = γ0 and γEi = −iγi for i ∈ {1, 2, 3}. We
now have,

S = −i1
4

∫
d4xFµνFµν − i

∫
d4xψ̄(γEµDµ +m0)ψ = −i

∫
d4xLeucl = −iSeucl

(3.3)

and it is equivalent to our original action.

3.3 Discretisation

The discretisation of Euclidean space-time is achieved by the creation of a four-
dimensional hypercubic lattice. Each node in this lattice has links to 8 other nodes,
none of which can be directly connected to each other. As the lattice is hypercubic,
each link length is of a fixed lattice spacing a, and hence the locations within this
lattice can be described using a vector n ∈ Z4, and the coordinates are defined as
xµ = anµ.

The lattice is set to be a finite size so that it is some connected subset of Z4.
The node locations are associated with a field value, which is the value of the
(fermion or quark) field at that location. The gauge fields however are associated
with any two given nodes, and hence reside on the links between nodes.

The sides and edges of this lattice can have various boundary conditions, such
as fixed, symmetric and anti-symmetric. Fixed boundary conditions specify that
the node value at a point outside the lattice has a fixed value (usually zero), where
as anti-symmetric boundary conditions specify that the node outside the boundary
has the negative value of the node on the opposite face or edge, likewise with links.

When calculating field amplitudes on the lattice, integrals are replaced with
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sums and derivatives are replaced with finite differences,

∫
f(x)d4x→ a4

∑

n

f(xn),

∂µf(x)→ 1

2a
(f(x+ aµ)− f(x− aµ)).

3.4 Quark Action

Our N component fermion fields transform under the gauge group G as ψ(n) →
G(n)ψ(n) and ψ̄(n) → ψ̄(n)G−1(n) for lattice site n. The discretised version of
the fermion part of the action can be written as,

SF = (M + 4r)
∑

n

ψ̄(n)ψ(n)

− 1

2

∑

n,µ

[ψ̄(n)(r − γµ)ψ(n+ µ̂) + ψ̄(n+ µ̂)(r + γµ)ψ(n)] (3.4)

with Wilson parameter r, and is called the free Wilson fermion action. It takes
this form because of the fermion doubling problem and the need for a symmetric
derivative, details can be found in standard text books.

Something new in this action is two fields at different points multiplied by
each other. In continuum field theory the points are quite distinct and transform
separately, and generally comparing two points does not make sense, except by
derivative. However the need for it in the discrete version of field theory is ap-
parent. To ensure the result of the multiplication is properly defined despite local
gauge freedom, we must insist that we parallel transport the fermion field from
one tangent space to another. To do this we add a term between them which
transforms oppositely to the two fields called a link variable,

U(x, y) = eig0

∫ y
x dxµAµ(x) (3.5)

where U(x, y)→ G(x)U(x, y)G−1(y). So we correct our fermion action to instead
be,

S
(W )
F = (M + 4r)

∑

n

ψ̄(n)ψ(n)

− 1

2

∑

n,µ

[ψ̄(n)(r − γµ)U(n, n+ µ̂)ψ(n+ µ̂) + ψ̄(n+ µ̂)(r + γµ)U †(n, n+ µ̂)ψ(n)]

(3.6)
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which is called the Wilson action. In the continuum limit as the lattice spacing
a → 0, these link variables U(n, n + µ̂) = 1 + ig0aAµ(n) + O(a2), and so we
reproduce our covariant derivative Dµ.

For convenience the fermion action is typically rewritten in terms of the hopping
parameter κ,

S
(W )
F =

1

2κ

∑

n,m

ψ̄(n)Knm[U ]ψ(m), (3.7)

where κ = 1
8r+2M0

. The fermion matrix Knm[U ] is defined by our previous expres-

sion for S
(W )
F , however it can be written explicitly as,

Knm[U ] = δnmI− κ
∑

µ>0

[(r − γµ)Uµ(n)δn+µ̂,m + (r + γµ)U †µ(n− µ̂)δn−µ̂,m]. (3.8)

If we change variables to ψ →
√

2κψ, the correlation functions are invariant under
the change. The path integral now yields the original correlation functions mul-
tiplied by (1/2κ)N . The hopping parameter κ can be used to set the mass of the
quark fields. When r = 1, the quark mass is defined as,

mq =
1

2

(
1

κq
− 1

κc

)
(3.9)

where κq is the value of κ assigned to a quark q and κc is the value of κ when the
flavour-neutral pseudoscalar meson mass is zero Mqq̄ = 0.

The action given by Eq. (3.6) is only correct to O(a), however it can be im-
proved systematically. In this work we use clover improvement, which removes
discretisation errors in the derivative to O(a2). The improved action is,

S
(C)
F = S

(W )
F + cswa

5
∑

n∈Λ

∑

µ<ν

ψ̄(n)
1

2
σµνF̂µν(n)ψ(n), (3.10)

where the coefficient csw is referred to as the Sheikholeslami-Wohlert (or clover)
coefficient [28]. It is calculated non-perturbatively [29]. Though not unique, a
convenient choice for F̂µν is,

F̂µν(n) =
−i
8a2

[Qµν(n)−Qνµ(n)], (3.11)

where Qµν(n) is the sum of plaquettes Uµν(n) (defined in Eq. (3.12), often referred
to as the clover term. The clover action employed in this work is called SLiNC
and is a small modification where U in Eq. (3.10) are replaced with stout-smeared
gauge links [30]. Details can be found in Ref. [31].
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3.5 Gluon Action

Our goal now is to find a discrete analogy to Fµν which in the continuum limit
results in the Yang-Mills field strength tensor. To this end the plaquette is defined
as,

Uµν(n) = U(n, n+ µ̂)U(n+ µ̂, n+ µ̂+ ν̂)U †(n+ µ̂, n+ µ̂+ ν̂)U †(n, n+ ν̂).
(3.12)

for µ, ν ∈ {1, ..., 4}, such that µ 6= ν. By using the identity eAeB = eA+B+ 1
2

[A,B]+...

for matrices A,B, we find

Uµν(n) = eia
2Fµν+O(a3) (3.13)

with Fµν = 1
a
[(Aν(n+ µ̂)−Aν(n))− (Aµ(n+ ν̂)−Aµ(n))] + ig0[Aν(n), Aµ(n)] and

Re tr[eia
2Fµν+O(a3)] = Re tr[1 + ia2Fµν −

1

2
a4FµνFµν +O(a5)]

= tr[1]− 1

2
a4tr [FµνFµν ] +O(a6). (3.14)

So we define the discretised Yang-Mills action as,

S
(W )
G =

1

g2
0

∑

n,µ>ν

tr[1− 1

2
(Uµν(n) + U †µν(n))], (3.15)

where we have summed over all plaquettes on the lattice. This is called the Wilson
gauge action.

As seen from Eq. (3.14), this action is only correct to O(a2). The continuum
correction to the lattice result can be systematically reduced by including addi-
tional terms in the action which converge to zero as we take the limit of zero
lattice spacing. The improvement method used in this research is called Symanzik
improvement. This method includes the use of larger rectangles of Wilson loops,
of dimension 1 × 2 to reduce the error in the action and details can be found in
Ref. [32].
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3.6 Calculating Path Integrals on the Lattice

The full discretised partition function is now,

Z(η, η̄) =

∫
DUDψDψ̄ exp

(
−Seucl − a4

∑

n

[η̄nψn + ψ̄nηn]

)
(3.16)

=

∫
DUDψDψ̄ exp

(
−SF − a4

∑

n

[η̄nψn + ψ̄nηn]

)
exp(−SG) (3.17)

=

∫
DU det(K) exp (−SG − Sη) , (3.18)

where K is the fermion matrix defined in Eq. (3.8), the determinant was obtained
using Grassmann field identities, Sη = a8

∑
m

∑
n η̄(n)K−1

nmη(m) and
∫
DU is the

path integral over the gauge links. Note here the short hand, ηn = η(n) and ψn =
ψ(n). When doing field theory we use vacuum expectation values to determine
certain observable quantities, which we will talk more about in section 3.7 and
section 3.8. These vacuum expectation values take the form,

〈
Ω
∣∣O[U, ψ, ψ̄]

∣∣Ω
〉

=
1

Z

∫
DUDψDψ̄ O[U, ψ, ψ̄] exp(−Seucl). (3.19)

The action can be combined by defining, S ′G = exp(−SG + log[det(K[U ])]).
Hence we must solve,

〈
Ω
∣∣O[U, ψ, ψ̄]

∣∣Ω
〉

=
1

Z

∫
DU O

[
U,

∂

∂η
,
∂

∂η̄

]
exp (−S ′G[U ]− Sη) . (3.20)

However this is just the weighted average of the operator O. If we can produce
vacuum configurations of the gauge fields which are distributed with probability
P ∝ exp(−Seucl), then the weighted average would be just the average of the
operator evaluated over this set of gauge fields,

〈
Ω
∣∣O[U, ψ, ψ̄]

∣∣Ω
〉
≈ 1

N

N∑

n=1

O[Un], (3.21)

for gauge configuration n. This technique is called Monte-Carlo sampling.
The simplest way to explain the Monte-Carlo sampling is to use an example.

Suppose we wish to calculate the integral I =
∫ 1

0
f(x)dx, where f(x) = x2. The

domain of the function f(x) is defined as [0, 1], an so the range of the function
is [0, 1]. Choose a point randomly in the interval x × y : [0, 1] × [0, 1] and call it
(x1, y1), where the total area is Atotal = 1. Determine if y1 is greater than or less
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Figure 3.1: Function f(x) = x2 on domain [0, 1].

than f(x1). If it is less than f(x1) add one to a count of points Nbelow, otherwise
do nothing. If we repeat this N times, the estimate of the area under f(x) = x2

is given by I ≈ Nbelow
N

Atotal. The estimate gets better the larger the number of
samples N . This technique works because the probability for having a point occur
below the function value is given by P = Abelow/Atotal for areas A. By choosing our
samples randomly in [0, 1] × [0, 1], they are are distributed (below or not below)
with that probability, so Nbelow

N
→ P as N →∞.

Similarly, we could have applied the non-weighted tactic to the vacuum expec-
tation value, by choosing a random gauge field and integrating over it by applying
Eq. (3.20) directly. In this case the gauge fields are chosen with equal probability.
This is still Monte-Carlo, however it is not really importance sampling, all values
are equally weighted in importance. The convergence of unweighted Monte-Carlo
can be very slow, and it is very slow when doing lattice gauge theory.

In the integral example above (I =
∫ b
a
dx x2) each x sample was weighted

with equal probability 1/(b − a). Consider instead, if we separated the integral

into two parts
∫ b
a
dx x · x. Choose the x location of our random sample with the

probability distribution P (x) = x
C

where C =
∫ b
a
dx x and call it x1, and choose the

y component randomly between 0 and 1 and call in y1. Notice, I = C
∫ b
a
dx x·P (x).

Add a count to Nbelow if the value of y1 is below g(x1) = x1, otherwise do nothing.
The now weighted average of the samples produces the estimate for the integral∫ b
a
dx x2 as in the first example.

To apply importance sampling to lattice gauge theory, we have taken advantage
of the Euclidean time formulation of the theory. When calculating quantities in
lattice gauge theory, the sample is the vacuum expectation value of the operator
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calculated on a gauge configuration. The gauge configurations are distributed
P ∝ exp(−Seucl) hence so are the samples. An estimate of the vacuum expectation
is just the average of all samples. Note that lower values of S are preferred in
the distribution, and hence any algorithm that implements Monte-Carlo while
weighting the samples with P ∝ exp(−Seucl) is applying importance sampling.

Quark two point functions are often part of the calculation of operator expecta-
tion values on the lattice, so for demonstration purposes, we will show how Monte-
Carlo sampling can be applied to calculate the expectation value of these two point
functions. The operator takes the form, O = T{ψ̄(x)ψ(y)} for quark fields ψ, by

applying the prescription for the operator in Eq. (3.20), O = T
{

∂
∂η̄(y)

∂
∂η(x)

}
. The

solution to the equation is obtained when the generating fields are set to zero,

〈
Ω
∣∣T{ψ̄(x)ψ(y)}

∣∣Ω
〉

=
1

Z

∫
DU K−1(y − x) exp(−S ′G) (3.22)

≈ 1

N

N∑

n=1

K−1(y − x)[Un] (3.23)

where K−1[Un] is the quark fermion propagator calculated on gauge configuration
n. Note that this particular quantity

〈
Ω
∣∣T{ψ̄(x)ψ(y)}

∣∣Ω
〉

is zero when calculated
on gauge configurations that do not have a fixed gauge. The expectation value
of quark propagators (by themselves) are not considered in this work, however
many quantities that are calculated on the lattice require the calculation of quark
propagators, which we explore in the next section, section 3.7.

3.7 Hadron Operators

The masses of hadrons are extracted from the large Euclidean time behaviour of
the correlation functions for zero momentum operators. The correlation function
C(t) = 〈P 〉 for a given operator P is the amplitude for the state P to exist for time
t. If, for instance, the initial state is created at time ti and the state is destroyed
at time tf then t = tf − ti. In terms of creation and annihilation of mesons for
instance, P = Oab(tf )O

†
ab(ti) where Oab(τ) = q̄a(τ)Γqb(τ) for quark flavours a, b.

In quantum field theory the hadronic 2-point correlation function is written as,

C(~p, t) =
∑

~x,~y

e−i~p·(~y−~x)
〈
Ω
∣∣T{O(y)O†(x)}

∣∣Ω
〉

(3.24)

=
∑

~x,~y

e−i~p·(~y−~x) lim
T→∞

∫
Dψ̄DψDA O(y)O†(x) exp

[
−
∫ T
−T d

4xLeucl
]

∫
Dψ̄DψDA exp

[
−
∫ T
−T d

4xLeucl
] .

(3.25)
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When determining hadron masses, we first write down correlation functions in
terms of hadron creation and annihilation operators called interpolators. Interpo-
lators employed in this work are composed of quark fields and Γ matrices. The
interpolating field has some overlap with many hadrons which share the same
quantum numbers. Something like a hadron propagator is produced by contract-
ing creation and annihilation interpolators. Contracting an interpolator involves
Wick contracting the constituent quark fields. This produces a correlation func-
tion which is written in terms of Γ matrices and quark propagators. We provide
an example of this below considering the π+.

We wish to construct a correlation function that will produce the hadron mass
we wish to study, so we need to know how to construct a relevant interpolator. An
initial requirement for a hadron interpolator is gauge invariance, the interpolator
must be a colour singlet. To match onto a particular state we desire that the
interpolator must have the correct spin, charge conjugation and parity properties
JPC .1It also needs the correct quark structure q̄q for mesons and qqq for baryons.

The interpolators correspond to hadrons of the corresponding spin, charge and
party JPC . Consider, for example SU(3) flavour multiplets of the pseudoscalar
mesons, vector mesons, octet baryons and decuplet baryons. For mesons, O(x) =
q̄1(x)Γq2(x), with quark fields q1, q2. A flavour can be associated with a quark field
with certain quark mass and charge, which allows us to associate an interpolator
with each element in a hadron multiplet. For instance, we can create a independent
set of interpolators for the eight pseudoscalar mesons. For π+ the correlation
function is,

C(~p, t) =
∑

~x,~y

e−i~p(~y−~x)
〈

Ω
∣∣∣T{Oπ+(y)O†π+(x)}

∣∣∣Ω
〉

(3.26)

= −
∑

~x,~y

e−i~p(~y−~x)
〈
Ω
∣∣T{d̄γ5u(y)ūγ5d(x)}

∣∣Ω
〉
. (3.27)

By performing Wick contractions between quark fields we produce quark propa-
gators. The contractions only occur between quarks of the same flavour,

C(~p, t) ≈ 1

N

N∑

n=1

∑

~x,~y

e−i~p(~y−~x) − tr[γ5K
−1
u (x− y)γ5K

−1
d (y − x)][Un]. (3.28)

K−1
u , K−1

d are the fermion propagators of quark flavours u, d respectively, and Un is
the gauge configuration. The Γ matrices which correspond to each type of meson
are show in Tab. 3.1.

1Note spin is not a well defined quantity on the lattice due to lack of spherical symmetry,
however the wave functions of the different spin states have certain symmetries, and emerge as
definite spin states in the continuum limit.
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To calculate this correlation function on the lattice, we calculate the propaga-
tors on each lattice configuration Un. The correlator from each configuration is
summed to produce an estimate for the correlation function, as shown in Eq. (3.28).

Baryon interpolators are of the form

O(x) = εabc(qa1
T (x)CΓ1q

b
2(x))Γ2q

c
3(x) (3.29)

Ō(x) = εabc(q̄a1(x)CΓ̄1q̄
bT
2 (x))q̄c3(x)Γ̄2, (3.30)

here qi are quark fields, C is the charge conjugation operator and Γ̄ = γ0Γ†γ0. The
fields within the brackets are paired and if (Γ1,Γ2) = (γ5, I) then this component
of the interpolator has spin-0, while the remainder of the interpolator has spin-1

2
.

This choice of Γ matrices produces interpolators for octet baryons. To produce
interpolators for spin-3

2
baryons, we instead choose (Γ1,Γ2) = (γi, I) so that the

part in brackets has spin-1, giving a total spin of 3
2
. There is asymmetry in this

spin-3
2

interpolator as two of the quarks are paired, this is overcome by using three
operators added together,

O(x) =
1√
3

[
εabc(qa1

T (x)Cγiq
b
2(x))qc3(x)

+ εabc(qa3
T (x)Cγiq

b
2(x))qc1(x)

+εabc(qa3
T (x)Cγiq

b
1(x))qc2(x)

]
(3.31)

3.8 Extracting Hadron Mass

The lowest energy hadron which has quantum numbers associated with the inter-
polator is extracted at the large Euclidean time limit of the correlation function.
Consider,

C(~p, t) =
∑

~x,~y

e−i~p(~y−~x)
〈
Ω
∣∣T{O(y)Ō(x)}

∣∣Ω
〉

(3.32)

we can insert a complete set of energy states 2I =
∑

α,p,s |α, p, s〉 〈α, p, s|, with
hadron label α, momentum p and spin (helicity on the lattice) s ,

C(~p, t) =
∑

~x,~y

∑

α,p′,s

e−i~p(~y−~x) 〈Ω |O(y)|α, p′, s〉
〈
α, p′, s

∣∣Ō(x)
∣∣Ω
〉
, (3.33)

α represents all eigenstates with the correct quantum numbers for the interpo-
lator, this includes excited states and multi-hadron states. The operator can be

2The set of states is finite instead of uncountably infinite because the scattering states have
quantised momentum inside the lattice.
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State JPC Γ Particles
Scalar 0++ I, γ4 f0, a0, K

∗
0 , ...

Pseudoscalar 0−+ γ5, γ4γ5 π±, π0, η,K±, K0, ...
Vector 1−− γi, γ4γi ρ±, ρ0, ω,K∗, φ, ...
Axial vector 1++ γiγ5 a1, f1, ...
Axial vector 1+− γiγj h1, b1, ...

Table 3.1: A list of Γ matrices used in hadron interpolators.

decomposed using the translation operator,

O(x) = eHtf e−i
~P ·~xO(0)e−Htf e+i ~P ·~x. (3.34)

Inserting a complete set of states into the correlation function, and noting that
the vacuum has zero energy and momentum,

C(~p, t) =
∑

~x,~y

∑

α,p′,s

e−i~p(~y−~x)
〈

Ω
∣∣∣eHtf e−i ~P ·~yO(0)e−Htf e+i ~P ·~y

∣∣∣α, p′, s
〉

〈
α, ~p′, s

∣∣∣e−i ~P ·~xeHtiŌ(0)e−H(−ti)e+i ~P ·~x
∣∣∣Ω
〉

=
∑

~x,~y

∑

α,p′,s

e−i(~p−
~p′)(~y−~x) 〈Ω |O(0)|α, p′, s〉 e−Eα(~p′)(tf−ti)

〈
α, p′, s

∣∣Ō(0)
∣∣Ω
〉

=
∑

α,s

e−Eα(~p)(tf−ti) 〈Ω |O(0)|α, p, s〉
〈
α, p, s

∣∣Ō(0)
∣∣Ω
〉

(3.35)

To achieve the last line
∑

~x,~y e
i(~p−~p′)(~y−~x) = δ(~p − ~p′). In the limit of large time

(tf − ti)→∞,

C(~p, t) = lim
tf−ti→∞

e−Eα(~p)(tf−ti) 〈Ω |O(0)|α, p, s〉
〈
α, p, s

∣∣Ō(0)
∣∣Ω
〉

(3.36)

The hadron mass is obtained for the case ~p = 0 and α now represents the lowest
energy state.

When doing calculations on the lattice we create a state at a point, but this
state can propagate both forward and backward in time; the particle correlates
with points that are forward in time, but also with points that are at earlier times.
The reverse time propagating state is the state obtained after applying the time
reversal operator τ . The state obtained for mesons is the exact anti-particle, while
for baryons it is the anti-particle but with wrong (opposite) parity, which has a
different ground state energy than the forward propagating particle with correct
parity.

As the spatial and temporal extent of our lattice is finite, the correlation ampli-
tude of the forward propagating states can coincide with the correlation amplitude
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of the reverse propagating states. The degree to which this effects the energy state
we are trying to measure is dependent on how quickly the correlation function
decays below numerical noise.

For meson states we expect to have both a forward and backward propagating
state contributing at a single time point. With anti-periodic boundary conditions
we expect the form e−E0(~p)(t−ti) + τΓ1τΓ2e

−E0(~p)(T−(t−ti)) for mesons, where T is the
lattice extent in the time direction and τΓ are ±1 dependent on the Γ factors inside
the interpolators. For baryons the effect is very minor because the state has higher
energy, and so the correlation function decays below noise quickly.

Effective mass is defined in terms of correlation function C(t) as,

Meff (t) = −log

(
C(t+ 1)

C(t)

)
, (3.37)

which obtains the ground state energy as a plateau when the correlation amplitudes
of higher energy states decay below noise. Fits to the effective mass are obtained
by fitting the correlation function with the expected form for each type of particle
(meson or baryon) in a region which is considered to be free of excited state
contamination (at the point of plateau). The parameters of the fit are used to
determine the effective mass.



CHAPTER 4

Extrapolating to the Physical Point

Though lattice methods have improved and computers are much faster than 30
years ago, there are often limitations on how large the lattice can be and how close
to the physical point the quark masses are; which means after a lattice calculation
some extrapolation of observables to the physical point may be required. To do
this extrapolation I describe an observable in terms of a Taylor expansion. The
observable we are concerned with in this thesis is hadron mass and we create
a Taylor expansion in terms of quark mass and charge. To create the Taylor
expansions we need to understand which properties of the quarks are important,
and also enforce symmetries to make fitting easier and extrapolation more accurate.

Quarks play two different roles in the mass of a hadron. Hadrons are formed
from bound states of quarks, interacting (primarily) via QCD. Quarks also play a
role in renormalising gluons, the gauge bosons of QCD. We differentiate between
these quarks, calling quarks inside the hadron valence quarks and quarks that
renormalise the gluons sea quarks. The valence quarks of a hadron correspond
to the quark model prescription, for instance π+ is made of ud̄ quarks, and only
these flavours of valence quark contribute to the mass of the π+. However, all sea
quark flavours contribute to the mass of a hadron as the charge that gluons see
is colour; QCD can not tell the difference between different flavours. Note also,
QCD can not act on the flavours of the quarks, which is why flavour is preserved
by QCD. A similar argument can be made for QED; the electric charges of the
valence quarks contribute to the mass of the particle, but the charges of all the sea
quark flavours contribute to the hadron mass. Even though at the physical point
the valence and sea quarks are the same particles, their action on hadron mass is
different and their symmetries are different and so we will treat them separately.

The point of expansion for the Taylor series is taken to be an SU(3) symmetric

33
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point, which is a point where all quarks have equal mass and equal charge. We
choose an SU(3) symmetric point because the light flavours (u, d, s) in the QCD
Lagrangian have an approximate SU(3) flavour symmetry, which is evident in the
hadron spectrum and a key component in the discovery of QCD as we discussed
previously. If we can choose the SU(3) flavour symmetry point closest to the
physical configuration then the SU(3) flavour symmetry makes such an expansion
highly effective at producing reliable predictions. This is because we know the
extrapolation distance is small.

This closest SU(3) point is given by the conditions m̄ = (m∗u +m∗d +m∗s)/3 and
mu = md = ms = m̄, where m̄ is the average of the physical quark masses1. Using
these definitions, the physical point point lies along the line δmu + δmd + δms = 0
from the symmetric point, where here δmq = mq − m̄. A simplified path to this
point with mu = md = ml is shown in Fig. 4.1 and a diagram showing masses of
all three flavours is shown in Fig. 4.2.

Another advantage of choosing this point is that the sum of the quark masses
remains the same along this path. Hence singlet quantities, which are flavour-
neutral objects, remain unchanged to first order along the path. An example of
a flavour singlet is the sum of light quark masses (mu +md +ms), another is the
pseudoscalar meson singlet X2

π = 1
6
(M2

K+ + M2
K0 + M2

π+ + M2
π− + M2

K̄0 + M2
K−).

The invariance of singlets is due to the definition of δmu + δmd + δms = 0.

(m∗l ,m
∗
s)

(m̄, m̄)

ml = ms

ml0

m
s

Figure 4.1: The transition from the SU(3) symmetric line to the physical point.
The physical point is indicated by the red star. Extrapolation path is shown by
the red line. SU(3) symmetric points are along the dotted line, and the SU(3)
symmetric point we use is at the intersection of the red and dashed line. In this
case we have made the simplification that mu = md = ml, to make the plot two
dimensional.

1The ∗ superscript is used to denote the physical value.
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0 20 40 60 80

msm̄md

mu MeV

Figure 4.2: The transition from the SU(3) symmetric line to the physical point.
The red, blue and orange vectors show the change in the up, down and strange
quark masses (respectively) from the SU(3) symmetric point to the physical point.
The length of the red plus the blue vector is the same as the length of the orange
vector. The vectors sum to zero. Note the quark masses shown in the diagram are
approximate and the values change with scale.

At the SU(3) flavour point all hadrons of an irreducible representation have the
same mass. If we expand around an SU(3) point, the SU(3) symmetry is broken,
however the masses of particles of the same irreducible representation still satisfy
S3 symmetry. We use the permutation symmetries S3 of quark flavours around an
SU(3) symmetric point to put constraints on the coefficients of the hadron mass
expansion. We will show that the coefficients of an expansion about an SU(3)
flavour symmetry point are the same for all hadrons that transform within an
irreducible representation of SU(3) flavour.

In applying symmetries to the Taylor expansion, we reduce the number of co-
efficients. This allows us to more reliably obtain information from the lattice data
by excluding noise in the lattice result (by excluding degrees of freedom). Addi-
tionally, extracting information from the lattice becomes easier as less coefficients
need to be solved for.

In section 4.1 I define what a singlet quantity is and explain why it is invariant
along the path δmu + δmd + δms = 0. I give several examples of hadron mass
polynomials that are singlets. As any hadron mass can only be dependent on
quark mass polynomials with the same symmetries, in section 4.2 I explore the
transformation properties of quark mass polynomials. It is possible to show [33]
that these polynomials can be produced to have exact S3 symmetries, but in general
mixed SU(3) symmetries. In section 4.3 I determine hadron mass polynomials
that have exact SU(3) symmetries, and (using results from section 4.2) am able
to determine an estimate of the magnitude of each order of δmq in the octet and
decuplet baryon quark mass expansions. The decrease in magnitude at each order
of δmq suggests these Taylor series converge.

In section 4.4 I use the hadron mass spectrum to show the valence quark terms
in the Taylor expansion can only depend on the quark constituents of the hadron.
We then determine the quark mass and charge expansion for pseudoscalar mesons,
octet baryons and decuplet baryons respectively using the constraints obtained
from the spectrum transforming under S3. In section 4.5 I use permutation sym-
metry and QCD flavour blindness to show the sea quark contributions to the masses
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occur in the Taylor expansion as flavour singlets. We then determine the sea quark
mass and charge expansions using S3 symmetry arguments, and produce the full
expansion with both sea and valence quarks included. In section 4.6 I describe
how to determine where the closest symmetric point is, which is the one we ex-
pand about in this work, in terms of quark mass and charge (mu,md,ms, eu, ed, es).
I explain how the analysis is improved by incorporating the Dashen scheme, and
describe this scheme in detail.

4.1 Singlet Quantities

A flavour singlet is a quantity that is invariant under the S3 permutation group
acting on the light flavours {u, d, s}. One of the main advantages of remaining on
the δmu+δmd+δms = 0 line to the physical point is that flavour singlet quantities,
Xs, do not change much over this path. Consider Xs at the point (m̄, m̄, m̄). As
the flavours are indistinguishable in every way we expect that,

∂Xs

∂mu

=
∂Xs

∂md

=
∂Xs

∂ms

. (4.1)

Hence Xs = M0 +c1(mu+md+ms)+O(m2). Along the line δmu+δmd+δms = 0,

∆Xs =
∂Xs

∂m
(δmu + δmd + δms) +O(m2) = 0 +O(m2). (4.2)

It is possible to construct various approximate singlet (flavour S3 invariant)
quantities using hadron masses. Some singlet quantities constructed from hadron
masses are shown in Tab. 4.1.

Pseudoscalar2 X2
π = 1

6
(M2

K+ +M2
K0 +M2

π+ +M2
π− +M2

K̄0 +M2
K−)

meson X2
η8

= 1
2
(M2

π0 +M2
η8

)

Vector Xρ = 1
6
(MK∗+ +MK∗+ +Mρ+ +Mρ− +MK̄∗

0 +MK∗−)
meson Xφ8 = 1

2
(Mρ0 +Mφ8)

Octet XN = 1
6
(Mp +Mn +MΣ+ +MΣ− +MΞ0 +MΞ−)

baryon XΛ = 1
2
(MΛ +MΣ0)

Decuplet X∆ = 1
3
(M∆++ +M∆− +MΩ−)

baryon XΞ∗ = 1
6
(M∆+ +M∆0 +MΣ∗+ +MΣ∗− +MΞ∗0 +MΞ∗−)

XΣ∗ = MΣ∗0

Table 4.1: List of flavour singlet quantities composed of hadron masses.

2We typically analyse pseudoscalar mesons in terms of their mass squared because it is pro-
portional to the quark mass.
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§4.2. Transformation Properties of Quark Mass

Polynomials

Figure 4.3: SU(3) flavour singlets as a function of pion mass. The dashed vertical
line is at the physical quark mass. Filled points are from 323 × 64 lattice data
while open points are from 243× 48 lattice data. The horizontal lines are constant
fits to the data points. This figure was taken from [33].

Ref. [33] showed using lattice QCD data that singlet quantities along the path
δmu + δmd + δms = 0 from the symmetric point remain (within errors) constant,
as shown in Fig. 4.3.

4.2 Transformation Properties of Quark Mass

Polynomials

The Taylor expansion for a quantity with certain symmetries will only depend
on polynomials with these same symmetries. Quark mass polynomials and simi-
larly quark charge polynomials can be designated transformation properties under
the flavour permutation group S3 and SU(3) flavour. The full set of polynomial
combinations at any order can always be arranged to have distinct transformation
symmetries under S3, however this is not true for transformation symmetries of
SU(3) [33]. In this section we will determine these transformation properties, to
later associate these terms with hadron masses.

Consider the quark mass parameters (mu,md,ms), for the purposes of allocat-
ing symmetries to polynomials, we work in the following basis. Our expansion
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point is defined as (m0,m0,m0), m̄q = (mu +md +ms)/3 (not the physical quark
masses) and δmu, δmd, δms, where δmq = mq−m̄. Note that δmu+δmd+δms = 0.
The polynomials up to O(m3) are shown in Tab. 4.2, and full details of how these
are obtained are given in [33].

I will demonstrate this division into invariant subspaces for the first order,
because it is easy to show without sophisticated group theory techniques. Within
the QCD Lagrangian, the mass term is written as q̄aMabqb for light quarks q with
flavours a, b ∈ {u, d, s}. Under SU(3) flavour symmetry, q is a vector space 3 which
transforms under the fundamental representation of SU(3), while q̄ transforms like
the conjugate space. This means that M is an element of the product space 3⊗ 3̄.
The product space has two invariant subspaces, one composed of fixed points and
one composed of orbits that transform like the 8-dimensional representation of
SU(3), 3⊗ 3̄ = 1⊕ 8. We can break M down into basis vectors of these spaces,

M =



mu 0 0
0 md 0
0 0 ms


 (4.3)

= m̄




1 0 0
0 1 0
0 0 1


+



δmu 0 0

0 δmd 0
0 0 δms



∣∣∣∣∣∣
δmu+δmd+δms=0

(4.4)

= m̄




1 0 0
0 1 0
0 0 1


+

1

2
(δmu − δmd)




1 0 0
0 −1 0
0 0 0




+
1

6
(−δmu − δmd + 2δms)



−1 0 0
0 −1 0
0 0 2


 (4.5)

As the group action on M is UMU †, any matrix proportional to the identity is
invariant. The remaining matrices are traceless as a result, and any two matrices
that are diagonal, orthogonal to each other and traceless will work as basis vectors
for this invariant space. Note that the above can be reduced to the same polynomial
as in the table by 2δms − δmu − δmd = 3δms.

4.3 Transformation Properties of Hadron Mass

Polynomials

Typically a hadron mass will have distinct permutation symmetries under quark
flavours, but not under SU(3). Hence it is only permutation symmetries that
are needed when generating these expansions. It is however possible to generate
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Polynomial S3 SU(3)

1 X A1 1

(m̄−m0) A1 1
(δms) X E+ 8

(δmu − δmd) X E− 8

(m̄−m0)2 A1 1
(m̄−m0)δms E+ 1

(m̄−m0)(δmu − δmd) E− 1
δm2

u + δm2
d + δm2

s X A1 1, 27
δm2

s − (δmu − δmd)
2 X E+ 8, 27

δms(δmu − δmd) X E− 8, 27

(m̄−m0)3 A1 1
(m̄−m0)2δms E+ 8

(m̄−m0)2(δmu − δmd) E− 8
(m̄−m0)(δm2

u + δm2
d + δm2

s) A1 1, 27
(m̄−m0)[3δm2

s − (δmu − δmd)
2] E+ 8, 27

(m̄−m0)δms(δmd − δmu) E− 8, 27
δmuδmdδms X A1 1, 27, 64

δms(δm
2
u + δm2

d + δm2
s) X E+ 8,27,64

(δmu − δmd)(δm
2
u + δm2

d + δm2
s) X E− 8,27,64

(δms − δmu)(δms − δmd)(δmu − δmd) X A2 10, 10

Table 4.2: All quark-mass polynomials up to O(m3
q), classified by symmetry prop-

erties. The tick (X) indicates polynomials relevant for m̄ = m0, which is along the
path δmu + δmd + δms = 0 from the physical point. This table was taken directly
from [33].

hadron mass combinations which have distinct SU(3) transformation properties.
These can be used to give an indication of how well the Taylor expansion is con-
verging, as they can be related to a certain order of δmq in the expansion. Ref.
[33] showed that each additional order of δmq was smaller than the previous order
by about a factor of 10. In this section we will explain briefly the methodology of
producing quantities of a pure irreducible representation of SU(3), and tabulate
them for reference. We will show that the magnitude of these quantities decreases
depending on the SU(3) transformation properties, and discuss the advantages of
using our chosen path of δmu + δmd + δms = 0.

If we consider the hadrons to be fields, then inside a hadron Lagrangian the
mass term looks like h̄Mh. The hadron mass matrix transforms like hh̄ under
SU(3) flavour symmetry. Considering the hadron multiplets, the decuplet mass
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∆− ∆0 ∆+ ∆++ Σ∗− Σ∗0 Σ∗+ Ξ∗− Ξ∗0 Ω− S3 SU(3)
1 1 1 1 1 1 1 1 1 1 A1 1
-1 -1 -1 -1 0 0 0 1 1 2 E+ 8
-3 -1 1 3 -2 0 2 -1 1 0 E− 8
3 -1 -1 3 -1 -3 -1 -1 -1 3 A1 27
-3 7 7 -3 -5 0 -5 -2 -2 6 E+ 27
-3 -1 1 3 3 0 -3 4 -4 0 E− 27
2 -3 -3 2 -3 12 -3 -3 -3 2 A1 64
-1 0 0 -1 3 0 3 -3 -3 2 E+ 64
-1 2 -2 1 1 0 -1 -1 1 0 E− 64
0 -1 1 0 1 0 -1 -1 1 0 A1 64

Table 4.3: Decuplet mass matrix, decomposed into basis vectors which transform
under irreducible representations. This table is taken from [33].

matrix transforms like 10 ⊗ 10, pseudoscalar mesons like 8 ⊗ 8 and the octet
baryons like 8 ⊗ 8. The mass matrix (when we ignore mixing) is diagonal, and
we can form an orthogonal basis for the space of diagonal vectors. This basis can
be chosen to be vectors that transform under a single irreducible representation of
SU(3). These vectors form a basis for the invariant subspaces. The basis vectors
for the decuplet baryons are shown in Tab. 4.3. The details of how they were
decomposed can be found in [33], together with similar tables for the baryon octet
and pseudoscalar meson.

If we input physical masses of the hadrons into the hadron mass polynomials
shown in Tab. 4.3 we are able to determine how important each order in the
expansion is given that all but the singlet are zero at an SU(3) point. We quote
the result given by [33], simplified to exact isospin symmetry,

4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ = 13.82 GeV ∈ 1 ∝ δm0

−2M∆ +MΞ∗ +MΩ = 0.742 GeV ∈ 8 ∝ δm1

4M∆ − 5MΣ∗ − 2MΞ∗ + 3MΩ = −0.044 GeV ∈ 27 ∝ δm2

−M∆ + 3MΣ∗ − 3MΞ∗ +MΩ = −0.006 GeV ∈ 64 ∝ δm3.

Along a path δmu+δmd+δms = 0 from the physical point, we would expect good
convergence of the Taylor expansion for the decuplet baryons from the SU(3) point,
as the importance of each order of SU(3) breaking parameter δm significantly
decreases. It also indicates we would expect to encompass all effects up to a
precision of approximately 1% provided the Taylor expansion is to second order.

Similar hadron mass polynomials can be constructed for the pseudoscalar mesons
and octet baryons. We need to be a little more careful of which of these hadron
mass polynomials we choose because there is mixing between the Σ0 and Λ in the
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octet baryons and there is mixing between π0, η, η′ in the pseudoscalar mesons.
Furthermore, the flavour-neutral pseudoscalar mesons also have disconnected quark
line contributions and all meson mass polynomials above the singlet require knowl-
edge of the connected part of η. This means we cannot make a prediction on the
convergence of the pseudoscalar Taylor expansion using the physical meson masses,
so we do not include these mass polynomials here. The polynomials which help us
predict the convergence of the octet baryon are shown below,

Mn +Mp +MΣ+ +MΣ−

+MΣ0 +MΛ +MΞ− +MΞ0 = 9.209 GeV ∈ 1 ∝ δm0

−Mn −Mp +MΞ− +MΞ0 = 0.758 GeV ∈ 8 ∝ δm

Mn +Mp +MΣ+ +MΣ−

−3MΣ0 − 3MΛ +MΞ− +MΞ0 = −0.024 GeV ∈ 27 ∝ δm2

Mn −Mp +MΣ+

−MΣ− +MΞ− −MΞ0 = 0.000071 GeV ∈ 10 ∝ δm3.

Again we see that the magnitude of each additional order in δm is reduced signifi-
cantly, which suggest we would see good convergence of the Taylor expansion. We
would expect the Taylor polynomial to encompass all effects up to a precision of
0.01% for the octet baryons, if we include all polynomials up to second order.

4.4 Valence quark expansion about an SU(3) point

It is possible to generate Taylor expansions in terms of quark mass and charge
using the hadron mass basis vectors shown in Tab. 4.3, by solving the linear system.
However, it is more intuitive to apply constraints using permutation symmetries S3

to the expansions directly, and it does not require more than basic group theory
knowledge. It also has the benefit of generating the expansion to all orders in
quark mass and charge.

We will assume the function that describes hadron masses is analytic and con-
fine ourselves to QCD and mesons for the moment, with sea quark masses held
fixed. Under these conditions, the mass of a non-diagonal flavour meson in pure
QCD3is only a function of its valence quark masses,

Mab̄ = M(δµa, δµb) = Mab
0 +

N∑

i=1

caiδµ
i
a +

N∑

i=1

cbiδµ
i
b +

N∑

i=1

N∑

j=1

βijδµ
i
aδµ

j
b (4.6)

3‘Pure QCD’ here and elsewhere in the thesis means QCD without QED.
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where a, b are the quark flavours and δµa
4is the change in valence quark mass for

flavour a, δµa = ma − ma
0. Mab̄ is the mass of a meson composed of quark of

flavour a and anti-quark of flavour b. The limit to the sum N , can be as large
as required to produce a desired accuracy. The expression is simply the definition
of an analytic function of two variables δµa, δµb. If we now consider that we only
have three quark flavours, u, d, s and choose the expansion point for valence quark
masses mu = md = ms = m0 so that δµa = ma −m0, then the mass spectrum of
meson states satisfies an S3 symmetry.

When determining meson masses from a lattice simulation, this means that
the masses satisfy Mab̄ = Mcē = M(δµa, δµb) for a, b, c, e ∈ {u, d, s} for all δµa =
δµc, δµb = δµe. Hence we can simplify the expansion about this point. If the above
is true, then cui = csi = cdi, and βabij = βceij . To see this consider any two fixed
displacements δµ1, δµ2 ∈ R,

Mab̄ = Mab(δµ1, δµ2) = Mab
0 +

N∑

i=1

caiδµ
i
1 +

N∑

i=1

cbiδµ
i
2 +

N∑

i=1

N∑

j=1

βabij δµ
i
1δµ

j
2 =

(4.7)

Mcē = Mce(δµ1, δµ2) = M ce
0 +

N∑

i=1

cciδµ
i
1 +

N∑

i=1

ceiδµ
i
2 +

N∑

i=1

N∑

j=1

βceij δµ
i
1δµ

j
2. (4.8)

First by choosing δµ1 = δµ2 = 0, we see that the constant is shared by all poly-
nomials. Choosing only δµ2 = 0 we can see cai = cci but for a, c ∈ {u, d, s} so
cui = csi = cdi. Setting δµ1, δµ2 to be arbitrary, it then follows that βabij = βceij ,
hence also βabij = βbaij = βabji . So the new expansion is,

M(δµa, δµb) = M0 +
N∑

i=1

ci(δµ
i
a + δµib) +

N∑

i=1

i∑

j=1

βij(δµ
i
aδµ

j
b + δµibδµ

j
a). (4.9)

It is essential that the expansion be about a point mu = md = ms or the quarks
can not be considered indistinguishable and the spectrum will not satisfy S3.

Using the same arguments we can produce an expression for spin 3/2 baryons.

4 When the valence and sea quark masses are the same we simply use m while when the
valence quark masses are different from the sea quarks, the sea quarks take the symbol m and
valence quarks take the symbol µ.
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Baryons are dependent on 3 quark masses and satisfy S3 at a point mu = md = ms,

M(δµa, δµb, δµc) = M0 +
N∑

i=1

αi(δµ
i
a + δµib + δµic)

+
N∑

i=1

i∑

j=1

γij(δµ
i
aδµ

j
b + δµjaδµ

i
b + δµiaδµ

j
c + δµjaδµ

i
c + δµibδµ

j
c + δµjbδµ

i
c)

+
N∑

i=1

i∑

j=1

j∑

k=1

γijk(δµ
i
aδµ

j
bδµ

k
c + δµiaδµ

k
bδµ

j
c + δµjaδµ

i
bδµ

k
c

+ δµjaδµ
k
bδµ

i
c + δµkaδµ

i
bδµ

j
c + δµkaδµ

j
bδµ

i
c). (4.10)

The spin 1/2 baryons are a little different. The masses satisfy an S3 symmetry
at a point mu = md = ms but only in the two quarks that are paired by spin. For
instance Ma↑a↓b↑ 6= Ma↑b↓a↑ , the later state being a higher energy hyperfine state.
Hence we can write the expansion as,

M(δµ↑a, δµ
↑
b , δµ

↓
c) =

N∑

i=0

i∑

j=0

N∑

k=0

γijk(δµ
i
aδµ

j
b + δµjaδµ

i
b)δµ

k
c . (4.11)

4.4.1 QCD+QED

We begin as with the QCD case, assume that the function describing the meson
mass is analytic, with sea quark masses held fixed, and restrict our selves to non-
diagonal flavour mesons. The analytic expansion for the mass is given by,

Mab̄ =
N∑

i=0

N∑

j=0

N∑

k=0

N∑

m=0

βabijkmδµ
i
aδµ

j
bδe

k
aδe

m
b (4.12)

where a, b are the quark flavours and δµa is the change in valence quark mass
for flavour a, and δea is the change in valence quark electric charge of flavour a.
Mab̄ is the mass of a meson composed of quark of flavour a and anti-quark of
flavour b. Now as before let’s choose a point mu = md = ms and eu = ed = es.
The spectrum generated about this point from a lattice calculation will satisfy
the symmetry Mab̄ = Mcē = M(δµa, δµb, δea, δeb) for a, b, c, f ∈ {u, d, s} for all
δµa = δµc, δµb = δµf , δea = δec, δeb = δef . Defining δµ1, δµ2, δe1, δe2 ∈ R,

Mab̄ = M(δµ1, δµ2, δe1, δe2) =
N∑

i=0

N∑

j=0

N∑

k=0

N∑

m=0

βabijkmδµ
i
1δµ

j
2δe

k
1δe

m
2 = (4.13)

Mcē = M(δµ1, δµ2, δe1, δe2) =
N∑

i=0

N∑

j=0

N∑

k=0

N∑

m=0

βceijkmδµ
i
1δµ

j
2δe

k
1δe

m
2 . (4.14)
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As before we must require that βabijkm = βceijkm hence also βabijkm = βbaijkm, so the
expression is simplified to,

Mab̄ = M(δµa, δµb, δea, δeb)

=
N∑

i=0

i∑

j=0

N∑

k=0

k∑

m=0

βijkm(δµiaδµ
j
bδe

k
a(−δeb)m + δµjaδµ

i
bδe

m
a (−δeb)k). (4.15)

In this case a further simplification can be made. If the point of expansion is about
eu = ed = es = 0, then from the lattice we know that we will get M(0, 0, 0, δe1) =
M(0, 0, δe1, 0) for δe1 ∈ R. The two particles have opposite charges but the same
mass, we conclude the polynomial of charge must be even. Hence we require that
all the odd terms in the charge expansion be dropped. Also we can simplify our
notation to δea = ea,

Mab̄ = M(δµa, δµb, ea, eb)

=
N∑

i=0

i−1∑

j=0

N∑

k=0︸︷︷︸
even

k−1∑

m=0

βijkm(δµi−ja δµjbe
k−m
a (−eb)m + δµjaδµ

i−j
b ema (−eb)k−m).

(4.16)

We can generate a similar expression for the spin 3/2 baryons. Consider
the case where M(δµ1, δµ2, δµ3, e1, e2, e3) = M(δµ1, δµ2, δµ3,−e1,−e2,−e3) which
must be true because positive and negative charge satisfy an S2 symmetry. Once
again we have m+ n+ l = even, and the analytic expansion for the mass is given
by,

Mabc = M(δµa, δµb, δµc, ea, eb, ec)

=
N∑

i=0

i∑

j=0

j∑

k=0

N∑

l=0︸︷︷︸
even

l∑

m=0

min(l−m,m)∑

n=0

γlmnijk

(δµiaδµ
j
bδµ

k
ce
l−m−n
a emb e

n
c + δµiaδµ

k
bδµ

j
ce
l−m−n
a enb e
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Once again the expansion for spin 1/2 baryons is slightly more complicated,
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with an S3 symmetry only in the quarks of paired spin. The expansion is given by,

M(δµ↑a, δµ
↑
b , δµ

↓
c , e
↑
a, e
↑
b , e
↓
c) =

N∑
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i∑
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j
be
l−m−n
a emb + δµjaδµ

i
be
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a e

l−m−n
b )δµkce

n
c . (4.18)

4.5 Sea Quark Expansion

Sea quarks can only contribute to the mass of a hadron through the QCD or
QED interactions, however the gauge bosons of these two forces can not tell the
difference between the flavours. This means that all sea quark flavours contribute
to the mass of a hadron, as shown in Fig. 4.4. At a point of exact SU(3) flavour
symmetry, all the quarks are identical mu = md = ms and eu = ed = es, and so
around this point we expect hadron masses to have S3 flavour symmetry in sea
quark mass and charge.

Figure 4.4: Feynman diagram of renormalisation of gluons by sea quarks. The
diagram is summed over flavour.

We have already produced an expansion that was similar to this. The sea quark
expansion is the same as the spin 3/2 baryon expansion but with the substitutions
δµ → δm a → u, b → d, c → s and the sea quark charges eu, ed, es. Making these
substitutions,

Msea = M(δmu, δmd, δms, eu, ed, es)

=
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Chapter 4. Extrapolating to the Physical Point 46

where Msea is the Taylor expansion of a hadron mass when the valence quark
parameters are fixed. For sea quarks we enforce the condition δmu+δmd+δms = 0,
which removes the first quark mass term, and reduces every odd term, δmn

u +
δmn

d + δmn
s for odd n ∈ Z. It is important that any ensemble of configurations be

generated along the δmu + δmd + δms = 0 to minimise the effect of unphysical sea
quark mass on the hadron masses.

We can construct the full expansion for a hadron mass. To help with notation,
call the valence quark mass expansion Ve and the sea quark mass expansion Se.
The resulting expansion, which includes both sea and valence quark effects, is
simply M(δµa..., ea..., δmu..., eu...) = (Ve)(Se).

4.5.1 Particles with Disconnected Quark Line Contribu-
tions

An expansion can not be written down (in the same way as above) for particles
with disconnected quark line contributions because they do not have a definite
composition of valence quarks. The flavour composition of valence quarks changes
with the valence quark mass. If the composition is known however, this can be
used to determine many of the coefficients. There will still be additional coefficients
in the expansion which depend on the disconnected quark line component to the
mass. We discuss this in more detail in chapter 7.

4.6 Path to the Symmetric Point

The hadron spectrum satisfies an SU(3) flavour symmetry at any point where
mu = md = ms and eu = ed = es. In the introduction we stated that the closest
SU(3) point to the physical point (on the path δmu+δmd+δms = 0) is most ideal
because the extrapolation distance is the smallest. We have explored the advantage
in determining singlet quantities when choosing an SU(3) symmetric point along
the path δmu + δmd + δms = 0 to the physical point. Simply, linear terms in
singlet quantities disappear and all odd terms will be reduced in magnitude. The
reduction in these odd terms results from inevitable cancellation in terms of form
δmn

u + δmn
d + δmn

s for n odd when enforcing the path condition. This becomes
useful for more than one reason, in particular it is useful because it helps us define
where the symmetric point is, as I will explain presently.

The quark masses are dependent on the scale at which we simulate, which is
related to the lattice spacing and hence the QCD coupling coefficient. The quark
mass parameter we can control for Wilson-style fermions is the hopping parameter
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κ, which is related to the quark mass by,

amq =
1

2

(
1

κq
− 1

κc

)
, (4.20)

where κq is the input value and κc is the critical value of κ at which a neutral
pseudoscalar meson mass Mqq̄ = 0.

As singlet quantities (refer to Tab. 4.1) remain constant along the chosen path,

we would expect (for lattice spacing a) a2X2
π

(aXN )2 to be approximately equal to the

physical ratio X2
π

(XN )2

∣∣∣
∗

at the κ value that corresponds to the SU(3) point. Note

that the equality between XS and X∗S is only true to first order, however the
second order correction in the ratio is reduced. If we define X2

π = X2
π
∗
(1 + ∆π)

and X2
N = X2

N
∗
(1 + ∆N) then,

X2
π

X2
N

=
X2
π
∗
(1 + ∆π)

X2
N
∗
(1 + ∆N)

(4.21)

≈ X2
π
∗

X2
N
∗ (1 + ∆π)(1−∆N), (4.22)

≈ X2
π
∗

X2
N
∗ (1 + ∆π −∆N) (4.23)

where ∆π and ∆N are the corrections to X2
π and X2

N respectively. We achieve
reduction in error if ∆π and ∆N have the same sign, which is a reasonable as-
sumption as they depend on quark mass in a similar way. We can also check all
ratios of X2

π to other singlets S = N,∆, ρ and compare to the physical ratio. Using
these ratios we can obtain the location of the SU(3) symmetric point in terms of
κ to reasonable accuracy. Some of these ratios for pure QCD are show in Fig. 4.5

as a function of M2
π/X

2
π. At this point, using ratios like a = a2X2

π

aXN

XN
X2
π

∣∣∣
∗
, we can

obtain the lattice spacing a.
Though the above procedure to determine the SU(3) symmetric point seems

clear, it becomes more complicated when we introduce QED. In the pure QCD
case, at the SU(3) symmetric point,

X2
π = M2

uū = M2
dd̄ = M2

ss̄ = X2
π
∗

(4.24)

In the QCD case, all quark flavours share the same κc and hence (by Eq. (4.20)
and Eq. (4.24)) the same κ at the symmetric point, κsym. So we can use Eq. (4.24)
to define the symmetric point κsym in pure QCD, and we call this definition the
QCD scheme.

When we include QED we do not normally set the charges to be the same,
rather we set them to their physical values5. This results in the κc value being
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Figure 4.5: SU(3) flavour singlet ratios as a function of pion mass. The dashed
vertical line is at the physical quark mass, the dotted line is at the SU(3) symmetric
point. Filled points are from 323 × 64 lattice data while open points are from
243×48 lattice data. The horizontal lines are constant fits to the data points. The
red star represents the value of the ratio at the physical quark mass. This figure
was taken from [33].

different for quarks of different charge, hence it becomes unclear how we should
define the symmetric point for each flavour.

Suppose we define the SU(3) symmetric point as the point in quark coordinates
(mu,md,ms, eu, ed, es) where the neutral mesons satisfy M2

uū = M2
dd̄

= M2
ss̄ =

M2
nn̄ = X∗π

2, the same as the QCD definition (the QCD scheme). The n quark is
a quark with no charge. The definition is palatable because Xπ ≈ X∗π, provided
δmu+δmd+δms = 0 and δ(e2

u)+δ(e2
d)+δ(e2

s) = 0. When we include charges, and
don’t choose eu = ed = es = en as the point to expand about (for instance choose
the physical charges) if mu = md = ms

6then Mud̄ 6= Muū 6= Mdd̄ by definition.
If the charges are unequal, then the hadron mass symmetry is broken at any

point we could reasonably define as a point of quark mass degeneracy 7. In this
case we would not expect the spectrum to satisfy an S3 symmetry. By applying
Eq. (4.24), we have in fact forced the condition mu 6= md = ms 6= mn. The S3

5In our research we set αQED = e2

4π ≈ 10α∗QED and charges to 2/3,−1/3/,−1/3 in units of
electric charge for flavours u, d, s respectively.

6As the charges renormalise the quark masses this becomes difficult to define in terms of
hadron mass. However as electromagnetic effects are small, we might consider that these masses
are very close to the values for pure QCD.
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symmetries fail around such a point, hence the above analytic expansions are not
valid for this point.

Doing the extrapolation in this way enforces the assumption that QED effects
are negligible, however it is typically these effects we wish to study when doing
lattice QCD+QED. Often the results of this type of analysis will not be too far
from correct because QED is a small effect, and it is only completely removed at
the SU(3) point.

4.6.1 Dashen Scheme

It is however possible to find a better definition (more compatible with the quark
definitions we have used in our Taylor expansions) of the SU(3) point in QCD+QED
using the information we already have. We wish to make a quark mass defi-
nition so that, as we turn on electric charge the value of the quark masses we
use in the expansion does not change. We redefine the expansion point to be
mu = md = ms = mn = m̄, where m̄ is defined so that M2

nn̄ = X2
π
∗
. We are

expanding around mu = md = ms = mn = m̄, eu = ed = es = 0. Hence the above
analytic expansions are valid. The above definition states the QCD parts of the
neutral meson masses, {Mqq̄}QCD for q ∈ {u, d, s} at the symmetric point must be
equal, and this QCD part is given by the mass of the neutral meson of the neutral
quark Mnn̄.

Another issue is that the masses of the flavour diagonal mesons do not have
the same slope with respect to 1

κ
because of the differently charged quarks. This

means a change in δmu does not produce the same change in the hadron mass Mq̄q

as a change in δmd, and is a result of electric charge renormalisation of the quark
masses and hadron. The issue is shown diagrammatically in Fig. 4.6.

We can scale the values of δmq so that these changes are symmetric in flavour,
which is essential if we are to use the expansions above. This is achieved by defining
a scaling factor Zq

m so that the flavour diagonal mesons have the same slope in 1
κ
.

If we define κsymq as the point whenM2
qq̄ = X2

π
∗

for quark flavour q ∈ {u, d, n}8(the
QCD scheme) and κcq as the point when M2

qq̄ = 0. The symmetric point quark mass

7This is a slightly false statement. There are two limiting cases and the truth lies somewhere
in between. If we assume all of the mass generated from charge in the hadron is from charge
renormalisation of quark mass, then any charges can be used and the symmetric point is obtained
from the QCD scheme definition. However such an assumption is flawed because it removes the
possibility of the quarks interacting electromagnetically with each other, and generating mass in
that way. The other limiting case is to assume no renormalisation of quark mass, and attribute
all mass gained to electromagnetic effects at a hadron level. The difficulty is that the true case
is somewhere in between. Ultimately this is a question of how quark mass is defined when QED
is included. The Dashen scheme (discussed below) is a compromise between these two limiting
cases.
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Figure 4.6: Sketch illustrating the dependence of flavour diagonal pseudoscalar
meson masses on quark mass. Electric charge renormalisation of the quark masses
has effected this dependence making the slopes different [34].

in the QCD scheme is, (using the quark mass definition)

amsym
q =

1

2

(
1

κsymq
− 1

κcq

)
. (4.25)

The correction of the slope of each charged δmq is simply,

Zq
m =

msym
n

msym
q

(4.26)

for q ∈ {u, d, n}. When applying these scaling factors to the quark masses mq

and mass differences δmq, δµq from the QCD scheme, we achieve a new scheme
called the Dashen scheme [34]. Note, the Dashen scheme includes as part of its
definition a common symmetric point where msym

n = Zq
mm

sym
q = m̄ is defined so

that M2
nn̄ = X2

π
∗
.

Ref. [34] showed there is significant improvement in fitting lattice QCD+QED
mass spectra with the Dashen scheme against using the QCD scheme. The two
spectrum plots from [34] are shown in Fig. 4.7, and demonstrate that it may be
impossible to fit the data points by analytic functions if the incorrect scheme is
used.

8Note κsymd = κsyms and κcd = κcs.
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(a) (b)

Figure 4.7: Pseudoscalar mesons π+ (red), uū (blue) and dd̄ (black). Both plots
use the same data points however (a) is in the QCD scheme and (b) is in the
Dashen scheme. We can see that the kink in the red points of (a), which can not
be fit by regression (or a function), is removed by correctly setting the expansion
point to the Dashen scheme. These plots were obtained from [34].

An important caveat about the Dashen scheme and schemes that separate QCD
and QED components; the division we have made in the expansion coefficients
based on QCD and QED components breaks down as we move away from the
symmetric point because the division is scale dependent. This also means the
expansion coefficients are scale dependent.

4.6.2 Improving the Dashen Scheme

The other small flaw in the Dashen scheme is that we set the mass of the neutral
meson of the neutral quark equal to X∗π; however X∗π was calculated using the
masses of charged mesons. We should have instead made the equality MQCD

qq̄ =
X∗π

QCD. To explore this idea, consider that at the physical point we can write an
expansion for X2

π,

X2
π = X2

0 + ai(δµa + δµb + δµc) + bi(e
2
a + e2

b + e2
c) + ... (4.27)

to leading order. Notice this is not the general expansion. As X2
π = 1

3
(M2

ud̄
+

M2
ds̄ +M2

sū), X
2
π is invariant under the S3 symmetry around any expansion point.

Here again we have chosen the e = 0 point to expand about, to preserve the mass
symmetry about charge. So remaining along δµu + δµd + δµs = 0 will remove the
first term, and δ(e2

a) + δ(e2
b) + δ(e2

c) = 0 will keep the charge term constant, hence
it can be ignored. Hence X2

π
∗

remains constant to leading order along the line. If
we were to ignore the constraints on charges, then one could choose any charge
values and that will not keep singlets approximately constant.
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The intersection of this path with the mu = md = ms and eu = ed = es path is
exactly the point we want. If we knew the physical mass and charges of the quarks
it would simply be (mu + md + ms)/3 = m̄ and (e2

u + e2
d + e2

s)/3 = ē2 = 2/9. We
don’t know the masses but we do know the charges. Hence we can use the relation
X2
π
∗ ≈ X2

π and eu = ed = es = ē =
√

2/3 to determine the quark masses at the
SU(3) point. That is X2

π
∗

= M2
oō where the o quark has charge ē. Now the e2 term

in both analytic expansions is the same. We call this scheme the improved Dashen
scheme. This definition is equivalent to {X2

π}QCD = M2
nn̄.

If we want to apply this idea for a lattice with αQED = 10α∗QED, then as
X2
π ∝ αQEDe

2 we need a charge which is e2/10. Calculating what the symmetric

point e2 should be, 9e2 = 12+12+22

3×10
= 1/5 so e =

√
1/5

3
. Hence M2

oō = 4
5
M2

nn̄ +
1
5
M2

dd̄
. Finding the symmetric point using this scheme is shown diagrammatically

in Fig. 4.8. Because the squared meson mass is linear in quark mass, our improved
Dashen relation is simply m̄ = 4

5
msym
nn̄ + 1

5
msym

dd̄
, where msym

qq̄ is defined at the

point M2
qq̄ = X2

π
∗
. Similarly the scaling factors can be modified to implement this

scheme,

Zq
m =

4
5
msym
nn̄ + 1

5
msym

dd̄

msym
q

. (4.28)
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Figure 4.8: Neutral pseudoscalar mesons as a function of 1/κ. Using the simple
arguments and no additional data we can account for the fact the X2

π
∗

includes
charges by defining the symmetric point to be the quark mass when M2

oō = X2
π
∗
.

Note here that this only moves the position of the SU(3) symmetric point
along the SU(3) line, and any changes in scaling factors are absorbed when we fit
coefficients. Now that we understand what the electromagnetic correction to the
Dashen scheme is, we can see that it is typically small, and so ignoring this term
does not effect the solution greatly.



CHAPTER 5

Light Hadron Spectrum from Lattice

QCD+QED

Isospin symmetry is satisfied within the hadron mass spectrum to remarkable
accuracy. We observe the strength of the symmetry in the approximate mass
degeneracy of isospin multiplets; in most cases isospin symmetry is obeyed to
better than ∼ 1%[2]. Isospin violation is relevant to a range of physical phenom-
ena, including the flavour decomposition of nucleon structure [1, 2, 3, 4]; tests of
neutrino-nucleus interactions [5, 6]; precision constraints on CKM [7, 8] matrix
elements from leptonic [9, 10] and semi-leptonic [11] decay rates; and quark mass
parameters [12, 13, 14, 15]. In recent years these motivations have prompted ex-
tensive effort to introduce electromagnetic effects in numerical lattice QCD studies
— building upon the pioneering work of Duncan, Eichten and Thacker [35].

In the present work, we perform simulations in dynamically-coupled QCD+QED
[36, 34], where the electric charges of sea-quark loops are included in the fermion
determinant. In this work, the hadron spectrum calculations are performed across
323 × 64 and 483 × 96 lattices with up to three distinct sea quark mass combi-
nations. Starting from an SU(3) symmetric point inspired by Dashen’s relation
[37], we use a flavour symmetry breaking expansion [34] to extrapolate to the
physical quark masses and interpolate to the physical QED coupling — where our
underlying gauge ensembles use an unphysically-large αQED ∼ 0.1 to enhance the
signal strength in the electromagnetic effects. Partially-quenched correlators are
employed to more accurately determine flavour symmetry breaking coefficients in
these expansions. In addition to providing isospin splittings among the decuplet
multiplets, we also present updated results for the octet baryons [36].

We begin this chapter, in section 5.1 and section 5.2, by describing some lattice
specifics including the action and lattice interpolators we used. We then discuss the

53



Chapter 5. Light Hadron Spectrum from Lattice QCD+QED 54

finite volume corrections and the use of QEDL for toroidal topologies in section 5.3.
In section 5.4 we detail the analytic expansions we used to fit the lattice data
points, then describe the fitting procedure in section 5.5.

We conclude the chapter by presenting results and discussion in section 5.6.
We present the mass splittings of the isospin multiplets of the octet and decuplet
baryons as well as a breakdown of the electromagnetic and strong QCD compo-
nents of these isospin violating mass splittings. We provide the first direct lattice
calculation of the ∆− mass. The results are summarised in section 5.7.

5.1 Lattice details

The QCD+QED action we are using in this study is given by

S = SG + SA + SuF + SdF + SsF , (5.1)

where SG is the tree-level Symanzik improved SU(3) gauge action; SA is the non-
compact U(1) gauge action of the photon; and SqF is the fermion action for each
flavour, q. The photon action is,

SA =
1

2e2

∑

x,µ<ν

(Aµ(x) + Aν(x+ µ)− Aµ(x+ ν)− Aν(x))2. (5.2)

For the fermion action we emply the non-perturbatively O(a)-improved SLiNC
action [31],

SqF =
∑

x

{
1

2

∑

µ

[
q̄(x)(γµ − 1)e−ieqAµ(x)Ũµ(x)q(x+ µ̂)

−q̄(x)(γµ + 1)eieqAµ(x)Ũ †µ(x− µ̂)q(x− µ̂)
]

+
1

2κq
q̄(x)q(x)− 1

4
cSW

∑

µν

q̄(x)σµνFµνq(x)

}
(5.3)

where Ũµ is a single iterated mild stout smeared link. This is a small modification
to the standard clover action defined in Eq. (3.10). The clover coefficient cSW
has been computed non-perturbatively for pure QCD, we do not include the QED
clover term.

Simulations are carried out on lattice volumes of size 323 × 64 and 483 × 96.
The sea quark κ values are shown in Tab. 5.1 and charges of eu = +2/3, ed =
es = −1/3, in units of electron charge. The strong coupling was chosen to be β =
5.50 and the electromagnetic coupling was chosen to be e2 = 1.25, approximately
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ten times greater than physical. These choices lead to a lattice spacing of a =
0.068(1)fm [34]. Further details can be found in [34] and [36].

In order to better constrain the (a priori) unknown coefficients in the flavour-
breaking expansions, we employ partially-quenched valence quarks corresponding
to neutral pseudoscalar meson masses in the range 225 MeV . mq̄q . 765 MeV
and valence quark charges ea,b = 0,−1/3,+2/3.

# β e2 V κu, + 2/3 κd, − 1/3 κs, − 1/3
1 5.50 1.25 323 × 64 0.124362 0.121713 0.121713
2 5.50 1.25 323 × 64 0.124440 0.121676 0.121676
3 5.50 1.25 323 × 64 0.124508 0.121821 0.121466
4 5.50 1.25 483 × 96 0.124362 0.121713 0.121713
5 5.50 1.25 483 × 96 0.124440 0.121676 0.121676

Table 5.1: Summary of lattice details.

Further details can be found in [38] and [36].

5.2 Lattice Interpolators

Hadron masses are computed from two-point correlation functions using conven-
tional techniques, as described in section 3.8. In particular, for baryons we con-
struct zero-momentum two-point functions as

C(t) =
∑

~x

Tr Γ〈T
(
χ(~x, t)χ̄(0)

)
〉 , (5.4)

for some choice of baryon spin projection matrix, Γ, for example for spin-averaged,
Γ = (1 + γ4)/2. For octet baryons, we employ the interpolating operator in terms
of a doubly-represented quark of flavour, q1, and a singly-represented quark of
flavour, q2

χ(~x, t) = εabc
(
qaT1 (~x, t)Cγ5 q

b
2(~x, t)

)
qc1(~x, t) , (5.5)

where a, b, c are colour labels. In the following, given the partially quenched nature
of our simulations, we distinguish flavour by the electric charge carried by a quark
rather than its mass. For example, when the combination uud occurs in the
following discussion, this refers to an octet baryon where its doubly-represented
quark has charge +2/3 while the singly-represented quark has charge −1/3. For
decuplet baryons we choose an explicit spin-projection for the scalar di-quark of
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the interpolating operator that contains doubly- and singly-represented quarks

χ(~x, t) =
1√
3
εabc
[
2
(
qaT1 (~x, t)Cγ− q

b
2(~x, t)

)
qc1(~x, t)

+
(
qaT1 (~x, t)Cγ− q

b
1(~x, t)

)
qc2(~x, t)

]
, (5.6)

where γ− = (γ2 + iγ1)/2.

5.3 Finite Volume Corrections

The observables which we wish to calculate are at physical quark mass, in continu-
ous space-time and in an infinite volume. However when doing a lattice calculation
none of these are achieved exactly. By applying effective field theory, estimates
of the contribution of these effects on the observable can be calculated and the
observable can be corrected.

A consideration when including QED on a lattice is the contribution from con-
stant electromagnetic background fields (or photon zero modes) to the observable.
If the average background field in each time slice is non-zero, observables may
be altered and hence does not reflect the infinite volume case (where the average
background field will be zero over all space). To account for this, we employ the
so-called QEDL formulation [39], which is QED defined in space dimensions with
toroidal topology R × T3, and remove the zero mode of the photon field on each
time slice for the valence quarks.

Additionally, the periodic boundary conditions modify the energy of the state
due to its finite extent. In the present work we consider the leading finite vol-
ume (FV) corrections associated with the electromagnetic interaction. Strong
interaction FV effects are expected to be subdominant as they are exponentially
suppressed by exp(−mπL), whereas electromagnetic FV effects are power law sup-
pressed O(1/L). At the current volume the electromagnetic FV effects are of the
order 1% of the total particle energy. Though it can be a considerable component
in the mass splitting of a particle.

The FV correction can be estimated by calculating the difference in electro-
magnetic contribution to the mass when using QED compared to QEDL. The
equation used to correct the state energy is [39, 40, 41, 42],

Mcorr = Mlat

[
1 +

q2αlatk

2MlatL

(
1 +

2

MlatL

)]
, (5.7)

where k = 2.837297, αlat is the fine structure constant on the lattice, q is the
electric charge of the particle and L is the spatial lattice length. Here we have
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Figure 5.1: Finite volume correction on the lattice quantity Mp−n at the symmetric
point. Points are from the 323 × 64 and 483 × 96 lattice ensembles respectively,
and the curves extrapolate to infinite volume using Eq. (5.7).
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Figure 5.2: Finite volume correction on the lattice quantity M∆+−∆0 at the sym-
metric point. Points are from the 323 × 64 and 483 × 96 lattice ensembles respec-
tively, and the curves extrapolate to infinite volume using Eq. (5.7).
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included FV corrections to the mass up to (and including) NLO calculated in
QEDL at zero momentum.

As the QCD finite volume effects on similar mass hadrons will be the same, any
mass differences will only be sensitive to QED finite volume effects. In Fig. 5.1 and
Fig. 5.2 we present results for proton-neutron mass difference and the ∆+–∆0 mass
difference at the SU(3) symmetric point on two different volumes (∼ 2.2, 3.3 fm).
The curves show the extrapolation of the points to infinite volume using Eq. (5.7).
We see that within two standard deviations that the two volumes are in agreement.
For nucleon and decuplet mass splittings, we are unable to distinguish between
statistical and residual finite volume errors, hence we consider the finite volume
errors to be under control.

5.4 Mass Expansions

By exploiting the properties of the mass spectrum of pseudoscalar mesons and
light baryons around points of exact SU(3) flavour {u, d, s} symmetry we are able
to reduce significantly the number of coefficients required in an extrapolation to
the physical point. To further simplify the expansion, we choose the SU(3) point
closest to the physical point, which lies along the line δmu+δmd+δms = 0 from the
physical point. Terms in the analytic expansion proportional to (δmu+δmd+δms)
are set to zero. Additionally, singlet quantities along this line remain constant to
first order. This allows us to use the singlet quantity X2

π = 1
6
(M2

K+ +M2
K0 +M2

π+ +
M2

π− +M2
K̄0 +M2

K−) to determine the quark mass coordinates of this SU(3) point.
The SU(3) point is determined in terms of κ values for each quark of different
charge {u, d = s} and can be determined for a fictitious quark with zero charge n.
For the details refer to chapter 4.

In this section we present these reduced analytic expansions for hadron masses
in terms of their variables. The mass expansion for the pseudoscalar mesons is



59 §5.4. Mass Expansions

given by,

M2(ab̄) = M2
0 + α(δµa + δµb) + β1(δµ2

a + δµ2
b)

+ β2δµaδµb + βEM1 (e2
a + e2

b) + βEM2 (eaeb)

+ γEM1 (e2
aδµa + e2

bδµb) + γEM2 (eaeb)(δµa + δµb)

+ γEM3 (e2
bδµa + e2

aδµb)

+ c1(δmu + δmd + δms)

+ c2(δm2
u + δm2

d + δm2
s − (δmuδmd + δmuδms + δmdδms))

+ c3(δmu + δmd + δms)
2 + c4(e2

uδmu + e2
dδmd + e2

sδms)

+ cEM1 (e2
u + e2

d + e2
s) + cEM2 (eued + eues + edes)

+ cEM3 (e2
u + e2

d + e2
s)(δµa + δµb) +O(δµ3, e4). (5.8)

In this expansion, the valence quark charges are indicated by ea,b and the sea
quark charges by eu,d,s. δµ denotes a valence quark mass variation from the SU(3)
symmetric point, whereas δm describes the variation of the underlying sea quark
masses from the SU(3) symmetric point. These quark mass variations are evaluated
in the Dashen scheme [34], where the distance of the symmetric point to the
chiral limit msym

q is defined to be independent of the quark charge, as discussed in
section 4.6.

Given that our framework is to approach the physical point along a trajectory
that holds the singlet quark mass approximately constant, we can neglect the c1

and c3 terms. Furthermore, the span of our sea quark masses are unable to provide
any meaningful constraint on terms involving the sea masses. In particular, we
neglect c2 as O(δm2) and c4 as O(αδm). The cEM terms could be determined with
simulations at different values of the QED gauge coupling, however in our present
study these terms are simply absorbed into a redefinition of the relevant expansion
parameters.

At the same order of the expansion, we write the expressions for the octet
baryons:

M(aab) = M0 + α1(2δµa + δµb) + α2δµa

+ β1(2δµ2
a + δµ2

b) + β2(δµ2
a + 2δµaδµb) + β3(δµ2

a)

+ βEM1 (2e2
a + e2

b) + βEM2 (e2
a + 2eaeb) + βEM3 (e2

a)

+ γEM1 (2e2
aδµa + e2

bδµb)

+ γEM2 (2δµaea(ea + eb) + 2δµbebea))

+ γEM3 (2δµaeaeb + δµbe
2
a)

+ γEM4 (2δµa(e
2
a + e2

b) + 2δµbe
2
a)

+ γEM5 δµae
2
a + γEM6 δµaeaeb (5.9)
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and the decuplet baryons:

M(abc) = M0 + α1(δµa + δµb + δµc)

+ β1(δµ2
a + δµ2

b + δµ2
c) + β2(δµaδµb + δµaδµc + δµbδµc)

+ βEM1 (e2
a + e2

b + e2
c) + βEM2 (eaeb + eaec + ebec)

+ γEM1 (e2
aδµa + e2

bδµb + e2
cδµc)

+ γEM2 (δµaea(eb + ec) + δµbeb(ea + ec) + δµcec(ea + eb))

+ γEM3 (δµaebec + δµbeaec + δµceaeb)

+ γEM4 (δµa(e
2
b + e2

c) + δµb(e
2
a + e2

c) + δµc(e
2
a + e2

b)) (5.10)

As argued above, we have already dropped the terms involving the sea quark
masses and charges.

5.5 Fitting procedure

To use these expressions we must first determine the symmetric point (in the
Dashen scheme definition), as described in chapter 4. The symmetric point can
be determined from the neutral pseudoscalar meson masses obtained at various
values of the hopping parameter. A graph of the fits to the neutral pseudoscalar
meson masses is shown in Fig. 5.3. The intercept with the horizontal axis provides
a value for κca for each quark flavour a, while the symmetric point (in the QCD
scheme) κsyma is defined as the κa value when M2

aā = X2
π
∗
.

The change in valence quark mass of flavour a (in the QCD scheme) is defined

as δµQa = 1
2

(
1
κa
− 1

κsyma

)
. The δµQa are then scaled using the scaling factors Za

m as

defined in Eq. (4.26) to produce the Dashen scheme definition of δµ,

δµDa = Za
mδµ

Q. (5.11)

In most of this thesis the Dashen scheme is assumed and so we do not include the D
superscript. More discussion on the Dashen scheme can be found in section 4.6.1.

We can now plot the meson mass spectrum against the Dashen scheme δµ, as
shown in Fig. 5.5, and fit expansion Eq. (5.8) to these points. The fit is shown
using black crosses in the figure.

Once the symmetric and critical points are determined from the meson spec-
trum, we can also produce mass spectra for the octet and decuplet baryons. These
spectra can be fit using Eq. (5.9) and Eq. (5.10) respectively. Plots of the spectra
and the fits are shown in Fig. 5.6 and Fig. 5.7. The coefficient values of both
mesons and baryons are shown in Tab. 5.2.
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Figure 5.3: The flavour-neutral meson masses for each flavour u, d, n as a function
of hopping parameter κ. n is a electrically neutral quark, while u and d have
charges +2/3 and −1/3 with αQED ≈ 10α∗QED.

As we work with, αlatQED = 1.25
4π
≈ 10α∗QED we correct all coefficients which relate

polynomials with charges, by scaling (dividing) them by a factor of

ZQED =
Z3α

lat
QED

α∗QED
(5.12)

per factor of e2, where Z3 = 0.9 is the charge renormalisation factor[43]. The
corrected values are the numbers tabulated.

We have also included in Tab. 5.2 the correlated and uncorrelated χ2/DOF .
The χ2 is the cost function we minimise on to produce the fit parameters. In the
uncorrelated case, χ2 is the Euclidean distance squared between the fit estimate
and the data point weighted by the inverse of the variance of the data point. The
full χ2 is the sum of all of these weighted Euclidean distances.

Another metric for determining the minimum considers the correlations be-
tween the distinct data points. In our case we use a boot strap method to obtain
estimates of errors on all parameters, and so the correlated χ2

corr take into account
how the data points change together on each boot strap. To be clear, though we
did minimise the χ2

corr to produce a set of parameters, the uncorrelated χ2 pa-
rameters appear in the table. The correlated χ2

corr is only included here to give
additional information on whether we have over or under parameterised our model.
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The correlated χ2
corr values are greater than one, which suggests that (in some

aspect) we have under parameterised our model. This is possibly due to excluding
sea quark parameters while including different gauge ensembles 4 and 5. In the
correlated χ2

corr case the fit did not place the fit points as close to the data points,
however the fit did seem successful and approached the parameters displayed in
Tab. 5.2.

The errors on the parameters in Tab. 5.2 are determined from conducting
the uncorrelated fit for each bootstrap ensemble and then taking the standard
deviation. We also provide normalised correlation matrices for the parameters of
the fit on each set of particles (pseudoscalar meson, octet and decuplet) in Fig. 5.4.

We can see from the covariance matrices that certain parameters are typically
not determined well by the data set. For instance the data set is very linear, and
so it is difficult to determine coefficients that are proportional to (δµ)2. As such,
there is high correlation between the αi coefficients and the βi coefficients.

The cross correlations tend to form two groups, terms with electromagnetic
effects and terms without. There parameter covariance is lowest for the pseu-
doscalar mesons, then the octet and finally the decuplet. Given that the decuplet
masses are the least constrained it could indicate that uncertainty in the data
points allows for the changes in the data to be fit using different combinations
of parameters. Including heavier quark masses could be a cheap (computational
time) way of resolving the quadratic terms better, which may reduce uncertainty
overall.

Once the coefficients of the meson spectrum are determined, but before we
determine the physical point, we re-adjust the value of κc for each flavour u, d, n
to align with the horizontal axis intercept of Eq. (5.8). This does not move the
symmetric point, but puts it in terms of the intercept of the meson expansion,
which is necessary when we determine physical quark masses. The expansions can
now be used to determine an estimate for the physical quark mass parameters and
the lattice spacing. This is achieved by determining the δµq = δmq for q ∈ {u, d, s}
and lattice spacing a that achieve the physical meson masses π+, K0 and K+

masses using Eq. (5.8). Note we can use an estimate of the lattice spacing as the

starting position of the algorithm using ratios like a = a2X2
π

aXN

X∗n
X2
π
∗ . This value of

lattice spacing does not change much during minimisation.

The results of the minimisation are given in Tab. 5.3 for the 483 × 96 volume.
We note that we are only required to provide three physical inputs to determine
the four unknown parameters as we have the additional constraints built into our
simulations that δmu+ δmd+ δms = 0. Using the parameters given in Tab. 5.3 for
the 483 × 96 volume, we are able to provide a prediction for the π0 mass, which is

1Correlated χ2 is not used to determine parameters, but is included for reference to provide
a guide to whether our method is over or under parameterised.
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Figure 5.4: Correlation matrices of the parameters in the fitting model. The label
names along the left hand side are also valid along the top. The matrices are
colour coded to guide the eye. Red is close to -1, green is close to 1 and the colour
scales through to white at 0. (a), (b) and (c) show the correlation matrix for the
pseudoscalar mesons, octet baryons and decuplet baryons respectively.
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Figure 5.5: The mass spectrum of the pseudoscalar mesons in lattice units as a
function of the displacement of the quark masses from the symmetric point value.
The black crosses show what the expansion predicts. The circles are ensemble 4
and the triangles are ensemble 5. The red and blue vertical lines are the position
of the π+ and the ss̄ mesons at physical quark mass.
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Figure 5.6: The mass spectrum of the octet baryons in lattice units as a function
of the displacement of the quark masses from the symmetric point value. The
black crosses show what the expansion predicts. The circles are ensemble 4 and
the triangles are ensemble 5. The red, green and blue vertical lines are the position
of the proton, neutron and sss octet baryons at physical quark mass.
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Figure 5.7: The mass spectrum of the decuplet baryons in lattice units as a function
of the displacement of the quark masses from the symmetric point value. The
black crosses show what the expansion predicts. The circles are ensemble 4 and
the triangles are ensemble 5. The red and blue vertical lines are the position of
the ∆++ and Ω physical quark mass.
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Meson Octet Decuplet

M0 0.020504 (66) 0.3944 (24) 0.494 (11)
α1 1.1703 (47) 3.32 (11) 1.73 (40)
α2 – -1.71 (23) –
β1 -0.17 (22) -20.7 (40) 1.0 (135)
β2 1.51 (12) -14.2 (13) -2.9 (45)
β3 – 38.0 (11) –
βEM1 0.0001975 (47) 0.00083 (17) 0.00064 (53)
βEM2 -0.0005222 (37) 0.001032 (55) 0.00042 (18)
βEM3 – -0.00022 (33) –
γEM1 0.00435 (26) -0.0041 (44) 0.012 (17)
γEM2 -0.00899 (13) 0.0014 (11) 0.003 (5)
γEM3 0.00526 (21) -0.0063 (54) 0.0092 (61)
γEM4 – 0.0014 (27) -0.00011 (70)
γEM5 – 0.008 (11) –
γEM6 – 0.016 (12) –

χ2 183.74 47.12 20.35
DOF 105 112 118

χ2/DOF 1.75 0.42 0.172
χ2
corr/DOF

1 26.48 7.41 7.03

Table 5.2: Coefficients obtained from fitting the mass spectrum of the various
particle types.
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shown in Tab. 5.4 in the form of a mass splitting from the π+. Note in this analysis
we have ignored disconnected quark line terms and a more detailed analysis of the
neutral flavour pseudoscalars is left for chapter 7. The result from the present
work is in agreement with that from [34], however we note the improved statistical
precision of the current work due to the inclusion of the additional ensembles away
from the SU(3) symmetric point.

aδmu aδmd aδms a−1/GeV
-0.008166 (6) -0.00754 (1) 0.01571 (1) 2.881 (6)

Table 5.3: Bare quark mass parameters at the physical point and the inverse lattice
spacing using the Dashen scheme

Using the physical quark mass parameters and lattice spacing obtained by
minimisation, we are able to produce an estimate of octet and decuplet baryon
masses at the physical point. We achieve this by inserting the physical quark
mass parameters (Tab. 5.3), charges and coefficients (Tab. 5.2) into Eq. (5.9) and
Eq. (5.10). The lattice spacing is used to put the masses obtained into physical
units of MeV.

5.6 Results

5.6.1 Octet Baryons

Using the above extrapolation procedure, we produce estimates of the splittings
among the baryon octet, shown in Tab. 5.4. The table includes a total splitting as
well as a breakdown of the QCD and QED components separately. The first un-
certainty in the mass splittings is statistical, while the second provides an estimate
of the systematic error. We note that since our simulations are performed at only
a single value of the lattice spacing, no continuum extrapolation is possible. The
electromagnetic splitting between the proton and neutron has seen considerable
attention in recent years. Our result for the electromagnetic component to the
proton-neutron mass difference agrees well with the dispersive analysis given by
[44], δMγ|p−n = 1.30(03)(47) and has good agreement with the lattice study by
BMW collaboration [45] δMγ|p−n = 1.59(46). The octet results of the present
study are generally compatible with both phenomenological estimates [46] and
the BMW lattice results [40], however these two studies agree with each other far
better than with the present work.

Fig. 5.8 shows the composition of the splittings in terms of strong isospin break-
ing effects and electromagnetic effects graphically and allows us to compare our
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π+ − π0 n− p Σ− − Σ+ Ξ− − Ξ0

QED — -1.53(25)(50) -0.29(24)(10) 1.19(15)(20)
QCD — 2.79(67)(40) 8.58(72)(70) 5.79(28)(80)
Total 5.86(14)(40) 1.27(75)(50) 8.29(77)(25) 6.95(25)(90)

Experiment 4.59 1.30 8.08 6.85

Table 5.4: Predicted mass splittings for π+ and octet baryons in the Dashen
scheme. Results from fitting 483 × 96 lattice data. π0 assumed to be the state
(uū − dd̄)/

√
2. All values quoted in MeV. The first error is statistical, while

the second error is an estimate of the systematic error, which is obtained by the
difference in the 323 × 64 results to those of the 483 × 96.

p n Σ+

This work 939(14)(56) 940(14)(56) 1165(11)(23)

Experiment 938.3 939.6 1189.4

Σ− Ξ0 Ξ−

This work 1173(10)(23) 1276(6)(19) 1283(6)(19)

Experiment 1197.5 1314.8 1321.7

Table 5.5: Predicted masses from the 483 × 96 ensembles for the octet baryons.
All values quoted in MeV. The first error is statistical, while the second error is an
estimate of the systematic error, which is obtained by the difference in the 323×64
results to those of the 483 × 96.

results with BMW estimates found in [40]. The lines in Fig. 5.8 represent a con-
straint placed by the experimentally observed mass splittings. A direct comparison
for the QED component of the Σ in [40] is not possible since this is taken as input
for the BMW analysis. Our results for both volumes show good agreement with the
experimental constraints, but there is perhaps some discrepancy with the BMW
collaboration over the correct ratio of forces in the n − p splitting. Additionally,
the assumption that the Σ− − Σ+ has zero electromagnetic contribution may not
be accurate, however we are unable to resolve this within our statistical errors.

Fig. 5.9 shows the predicted mass splittings between the octet baryons for both
lattice volumes. We can see on this plot that both volumes agree with each other
within statistical errors, and with experiment. In this figure the precision on the
splittings is higher due to a large degree of correlation in the mass determinations.

A table of the masses of the octet baryons in given in Tab. 5.5. The 483 × 96
show remarkable agreement with the nucleon physical masses (with significant
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Figure 5.8: A break down of the octet splittings in terms of EM and isospin
breaking effects. The BMW lattice points are from [40]. The lines represent a
constraint placed by the experimentally observed mass splittings.

statistical error), but with decreasing accuracy for Σ and Ξ. Note that the sys-
tematic error is determined by the difference between the 483 × 96 and those of
the 323 × 64. The 323 × 64, which are not tabulated, were systematically heavier
than the 483 × 96 results. The uncertainty in the scale is approximately 2%, and
most likely contributes to this difference. We do not expect these systematics to
effect the isospin mass splittings of the states. These results provide an update
of previous work by QCDSF [36], which was based on a single set of sea quark
masses, ensembles 1 and 4.

5.6.2 Decuplet Baryons

For the decuplet baryons, we perform an extrapolation to the physical point based
on the polynomial expansion about the SU(3) symmetric point. No attempt has
been made in the present work to incorporate the effects of the resonant nature
of the decuplet baryons at the physical quark masses — which necessarily lead to
branch point singularities in the quark mass extrapolation [47, 48].

The absolute masses of the decuplet baryons at the physical quark mass are tab-
ulated in Tab. 5.6. The absolute masses themselves do not compare so favourably
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Figure 5.9: Octet mass splittings. This includes EM effects. The black crosses are
experimental data. The coloured points are estimates generated from our lattice
analysis.

with experimental determinations, however within the quoted uncertainties we
observe that the absolute masses at the physical point are compatible with the
experimental masses.

Nevertheless, it is possible that there is a systematic uncertainty that is causing
an underestimate of the SU(3) breaking between these states. This systematic
could be due to the fact that our simulations are performed at and around the
SU(3) symmetric point where the ∆ and Σ∗ states are stable three quark states.
However, in the physical system the ∆ and Σ∗ states are unstable and decay,
e.g. to ∆ → π + N , where the net mass of the π + N system is significantly
lower than the three quark state. The opening of these decay channels is certainly
anticipated to affect the extrapolation to the physical point [47]. We possibly see
the emergence of this feature in Fig. 5.7 by the difference between the two lattice
ensembles 4 and 5 at lighter valence quark mass. Ensemble 4 is at the SU(3) point,
while ensemble 5 has u, d quarks lighter than the SU(3) point. We do not expect
the threshold effects to have a strong influence on the mass splitting generated by
isospin symmetry violation.

Some selected splittings of phenomenological interest are tabulated in Tab. 5.7.
The combination ∆+ + +∆− − (∆+ + ∆0) eliminates the leading order strong
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∆++ ∆+ ∆0 ∆−

This work 1304(59)(6) 1306(58)(6) 1308(57)(6) 1311(56)(6)

Cutkosky [49] 1231.43 1230.95 1233.40 1235.68

Σ∗+ Σ∗0 Σ∗−

This work 1425(38)(8) 1427(38)(8) 1431(37)(8)

Experiment 1382.8 1383.7 1387.2

Ξ∗0 Ξ∗− Ω

This work 1542(26)(9) 1546(25)(9) 1656(21)(8)

Experiment 1531.78 1535.2 1672.45

Table 5.6: Predicted masses from the 483×96 ensembles for the decuplet baryons.
All values quoted in MeV. The first error is statistical, while the second error is an
estimate of the systematic error, which is obtained by the difference in the 323×64
results to those of the 483 × 96.
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Figure 5.10: Decuplet mass splittings with the average isospin multiplet mass
subtracted. The black crosses are experimental data, and for the ∆ baryons, a
fit to experimental data. The coloured points are estimates generated from our
lattice analysis.
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∆++ + ∆− −∆+ −∆0 ∆0 −∆++ ∆− −∆++ + 1
3

(
∆0 −∆+

)

QED 1.7(14)(10) -2.5(20)(13) -2.7(26)(20)
QCD -0.006(11)(6) 6.3(24)(5) 10.5(40)(10)
Total 1.7 (14)(10) 3.8(31)(5) 7.8(46)(5)

Cutkosky [49] 2.84–3.55 0.81–1.53 4.31–4.92
Exp./Pheno. — 2.86(30) [50] 4.6(2) [51]

Σ∗+ + Σ∗− − 2Σ∗0 Σ∗− − Σ∗+ Ξ∗− − Ξ∗0

QED 1.5(7)(1) -0.8(11)(7) 0.61(51)(60)
QCD -0.0032(56)(30) 6.1(22)(2) 2.92(98)(1)
Total 1.5(7)(1) 5.3(23)(10) 3.54(98)(8)

Cutkosky [49] 1.42 4.56 3.09
PDG [52] 2.6(21) 4.4(6) 3.2(6)

Table 5.7: Mass splittings for decuplet baryons. All values quoted in MeV. The
first error is statistical, while the second error is an estimate of the systematic
error, which is obtained by the difference in the 323 × 64 results to those of the
483 × 96.
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Figure 5.11: QCD and QED components of the decuplet mass splittings with the
average isospin multiplet mass subtracted, for the 483 × 96 ensembles. The error
bars represent symmetric statistical errors on the central value.
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isospin violation, and hence isolates QED effects. The difference ∆0 − ∆++ has
been reported by the PDG [53]. ∆− −∆++ + 1

3
(∆0 −∆+) can be determined by

considering the difference between π− and π+ cross sections on deuteron targets
as found in [51]. The Σ∗+ + Σ∗−− 2Σ∗0 combination removes leading order strong
ispspin breaking components, giving a good estimate of electromagnetic effects.
Here we’ve separated the mixed terms (γEM) into either QCD isospin breaking
(δmu− δmd) or QED isospin breaking (eu− ed) and added them to the pure QCD
or QED parts respectively. The Σ∗ and Ξ∗ splittings are both experimentally
observed. Our results agree with the experimental results, typically within one
standard deviation.

Fig. 5.10 shows the mass splittings at the physical quark mass for all decuplet
baryons on both volumes. The mass splitting within each isospin multiplet is given
as the difference of each mass from the average of its respective isospin multiplet.
For the Σ∗ and Ξ∗ experimental values are available for us to compare with directly,
these are shown in black crosses. The ∆ baryons only have some values obtained
experimentally, we are only able to compare to a fit of the data [54]. The ∆− is not
reported experimentally because it is difficult to study π−–n scattering. Our lattice
results agree with the experimental values. While the magnitude of the decuplet
baryon masses were overestimated, possibly due to the resonance structure of the
baryons, the splittings seem generally unaffected. In Fig. 5.11 we see how the
splittings are generated from the QCD and QED parts of the particle mass. It is
clear from this that there is significant uncertainty in the QED components, and
obtaining greater precision in QED will be the focus of future studies.

5.7 Summary

We were able to produce estimates including both QCD and QED interactions
for the octet and decuplet mass spectrum splittings. The estimates we produced
agreed with experiment where it was available, and provided further insight where
experimental data was not available.

In particular new insight was obtained in the break down of QCD and QED
components in the octet spectrum splittings. The value of the updated total
splitting (built on previous work by QCDSF [36]) agreed with experiment, and
the predictions for the absolute value of the physical octet masses were within two
standard deviations of the experimental values.

Similarly for the decuplet baryons we were able to produce estimates for the
splittings using QCD+QED, and the first direct estimate for the ∆−. Where ex-
perimental data was available our estimates agreed within two standard deviations.
A breakdown of the splitting in terms of strong and electromagnetic components
was included for the decuplet. It revealed that the QED components are a major
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source of uncertainty in the splittings.



CHAPTER 6

Charmed Hadron Spectrum from Lattice

QCD+QED

In the past 15 years interest in the charmed baryon spectrum has increased. This
increase was triggered by the first observation of the doubly charmed baryons
Ξ++
cc (3460),Ξ+

cc(3443),Ξ+
cc(3520),Ξ++

cc (3541),Ξ++
cc (3780) by SELEX [16]. The Ξ+

cc(3520)
result was later confirmed by SELEX [55], however other experimental groups in-
cluding BaBar [56] , Belle [57] and LHCb [58], were unable to detect Ξ+

cc(3520) or
the other states. The observations have not been excluded because the production
environments are different in each experiment [17].

If the states exist and have been properly identified, presumably the lower
energy states are spin JP = 1

2

+
and higher states are JP = 3

2

+
, this would lead

to either electromagnetic charge splittings of ∼ 20 MeV or strong isospin breaking
effects of ∼ 60 MeV, both of which (from a theoretical standpoint) are unlikely.
These splittings are some of the quantities we produce estimates for in our work
using lattice QCD+QED. More recently a Ξ++

cc (3621) baryon has been detected
and confirmed by LHCb [17], with unknown spin. However it is not clear if this
observation is compatible with the SELEX observation of the Ξ+

cc(3520).
Theoretical calculations including lattice QCD calculations [59], [60], [61],

[62],[63] have predicted the Ξ+
cc mass to be 100 − 200 MeV heavier than the ex-

perimental result Ξ+
cc(3520), with only ETMC producing the single estimate that

agrees [64]. In this study we produce estimates for the mass splittings within the
charmed multiplets using lattice QCD+QED. We also produce some estimates of
mass splittings between different spin states and provide absolute mass values for
the spectrum.

As the naming convention for the charmed baryons is a little confusing we
have tabulated them in Tab. 6.1. The particles are arranged in columns of singly
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cc
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+
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+
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′

Ξ+
c

Σ+
c

Λ+
c

Ξ0
c
′

Ξ0
c

Σ++
cΣ0

c

Ω0
c

Ω+
cc

Ξ++
ccΞ+

cc

Table 6.1: The charmed baryon spectrum.

and doubly charmed baryons. Baryons on the top line of each diagram have
zero strangeness, with the number of strange quarks increasing by one on each
level below. Maximal isospin states are on the right of each row, with isospin
decreasing by one from right to left. From this table we study all particles except
the symmetric wave function spin 1

2
triplet. We also study D mesons, which are

not included in the table. These are singly charmed mesons with the other quark
being either u, d or s.

Our approach is much the same as in chapter 5. We construct SU(3) flavour
breaking expansions within hadron multiplets that transform under irreducible
representations of SU(3). The coefficients in the flavour breaking expansions are
dependent on the number of charm quarks within the hadron. This allows us to
use just the physical charm quark, and no extrapolation of the charm quark to
its physical mass is necessary. The physical charm quark is tuned to produce the
physical ηcc̄ mass, and when we tune we use the physical charm charge. The charm
quark does not play a significant role as a sea quark [65, 63], and we do not include
it in the sea. In this way we can consider the charm to be partially quenched.

The lattice specifics and finite volume corrections are the same as in the pre-
vious analysis (section 5.1 and section 5.3) and so I will not repeat it here. The
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exception is that only a subset of ensembles are used. The lattices used are shown
in Tab. 6.2.

# β e2 V κu, + 2/3 κd, − 1/3 κs, − 1/3
1 5.50 1.25 323 × 64 0.124362 0.121713 0.121713
2 5.50 1.25 483 × 96 0.124362 0.121713 0.121713

Table 6.2: Summary of lattice details

This chapter is organised as follows. In section 6.1 I describe the interpolators
used for the charmed hadrons. In section 6.2 we discuss the mass expansions we
use to fit to the lattice data. In section 6.3 we discuss how the charm quark was
implemented on the lattice, including the determination of its mass and charge. In
section 6.4 we discuss how the mass spectra from the lattice were fit using the mass
expansions, the procedure is similar to that used in the light hadron spectrum. The
differences in procedure are highlighted. In section 6.5 we present the results of
the analysis including determination of isospin violating splittings using lattice
QCD+QED. Finally, I summarise the results of the chapter in section 6.6.

6.1 Lattice Interpolators

Hadron masses are computed from two-point correlation functions using conven-
tional techniques, as described in section 3.8. In particular, for baryons we con-
struct zero-momentum two-point functions as

C(t) =
∑

~x

Tr Γ〈T
(
χ(~x, t)χ̄(0)

)
〉 , (6.1)

for some choice of baryon spin projection matrix, Γ. As the interpolators for spin 1
2

baryons are more complicated in charm sector we have tabulated them in Tab. 6.3.

For spin 3
2

+
baryons we choose an interpolating operator symmetric in spin

that contains quarks q1 ∈ {n, d, u, c}, q2 = c and q3 ∈ {n, d, u}

χ(~x, t) =
1√
3
εabc
[(
qaT1 (~x, t)Cγ− q

b
2(~x, t)

)
qc3(~x, t)

+
(
qaT2 (~x, t)Cγ− q

b
3(~x, t)

)
qc1(~x, t)

+
(
qaT3 (~x, t)Cγ− q

b
1(~x, t)

)
qc2(~x, t)

]
, (6.2)

where γ− = (γ2 + iγ1)/2.
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baryon wave function

Σc(ll
′c) 1√

2
ε[(l′TCγ5c)l + lTCγ5c)l

′]

Ξ′c(lsc)
1√
2
ε[(sTCγ5c)l + lTCγ5c)s]

Ωc(ssc) ε[(sTCγ5c)l + lTCγ5c)s]

Λc(ll
′c) 1√

6
ε[2(lTCγ5l

′)c+ (lTCγ5c)l
′ − (l′TCγ5c)l]

Ξc(lsc)
1√
6
ε[2(lTCγ5s)c+ (lTCγ5c)s− (sTCγ5c)l]

Ξc(ccl) ε(cTCγ5l)c
Ωc(ccs) ε(cTCγ5s)c

Table 6.3: Spin +1
2

charmed hadron interpolators, l, l′ ∈ {u, d, n}. Though the s
quark is degenerate with the d quark on the lattice, we include it to show the wave
functions of Ξ and Ω.

QCD and QED are flavour blind, and the masses of the quarks change for
the different ensembles, and within an ensemble as we partially quench. So, in
the following we distinguish flavour by the electric charge. The +0.632/3 charged
quark is identified as a charm quark, this charge choice is explained in more detail
in section 6.3. The other quarks can be determined by the charge 0,−1/3,+2/3
for n, d, u respectively.

6.2 Mass expansions

We could use the same strategy to extrapolate as in the previous chapter, only in
this case expand around an SU(4) point. Points on the SU(4) trajectory are defined
by (mu +md +ms +mc)

lat = (mu +md +ms +mc)
phys, and the SU(4) symmetric

point occurs when all lattice quark masses are equal. The SU(4) symmetric point,
lying along δmu+δmd+δms+δmc = 0 from the physical point has an extrapolation
distance which is larger for all quarks, when compared with its SU(3) counterpart.

We could instead define δµc from the light quark (u, d, s) SU(3) point, which
maintains the X2

π = 1
3
(M2

K0 + M2
K+ + M2

π+) constant property. In this case we
would extrapolate along the (mu + md + ms)

lat = (mu + md + ms)
phys path. As

we typically only consider the light quarks {u, d, s} to be important in the QCD
vacuum, it also keeps the properties of the vacuum constant to first order during
the extrapolation. From this expansion point, the extrapolation to the light quarks
is easier at the expense of the charm, which is easier to generate. This idea has
been explored in pure QCD [66].

As the extrapolation distance is higher when extrapolating from the SU(4)
point and the SU(3) point, both of these methods require higher order expansions
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Figure 6.1: The transition from the SU(4) symmetric line to the physical point.
The vertical axis represents the light quark masses ml = mu = md = ms. The
physical point is indicated by the red star. Extrapolation path for an SU(4) ex-
pansion is shown in blue, while an expansion from the SU(3) point is shown in
orange. SU(4) symmetric points are along the dotted line, and the SU(3) and
SU(4) symmetric points we use are at the intersection of (respectively) the orange
and blue lines with dashed line. The fixed charm expansion point corresponds to
the red star (physical point).

and hence more coefficients. Furthermore, because we can simulate at the phys-
ical charm mass, it is perhaps excessive to attempt an SU(4) or modified SU(3)
extrapolation.

A safer route is to construct separate parameterisations for the different SU(3)
irreducible representations shown in Tab. 6.1, in terms of spin and charm. The
coefficients will then depend on how many charm quarks we include in the hadrons
we fit with the expansion. The charm is fixed to the physical charm mass. This
fixed charm approach is what we have chosen for our current work. The paths
we’ve discussed are shown graphically in Fig. 6.1. In this diagram the physical
point (red star) corresponds to the fixed charm approach while the blue and orange
lines correspond to SU(4) and SU(3) expansions respectively.

There are several advantages to the fixed charm approach. Firstly, we know
that the spectrum will satisfy the expansion symmetries in u, d, s flavours in a
similar way as in chapter 5 and will be primarily linear. We would not expect the
charmed extrapolation to behave as linearly as the light spectrum, because SU(4)
flavour symmetry is not a good approximation, hence there is significantly more
uncertainty in the order of expansion required for a combined fit.

Another advantage of the fixed charm approach is the charm quark can be
simulated easily at its physical point and so we do not have to provide intermediate
charm quark values; we have to produce and analyse less data. If we were to
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attempt an SU(4) or similar combined fit with charm extrapolation we would need
data on how the spectrum changes on its way to the charm physical value.

A disadvantage of the fixed charm approach is that we can no longer fit all the
particles together. We require more quark propagators to obtain the same level of
accuracy on the coefficients in each charm expansion. However, because we only
need to extrapolate a small distance, less coefficients are required. Additionally,
parameters can be excluded due to the δµc = 0 condition and the charms static
presence in the expansion, which is addressed presently.

The charmed meson expansion is slightly different from the one given for the
S3 symmetric quarks, Eq. (5.8). We will not assume that the charm quark satisfies
the symmetry, but also we will set δµc = 0 as we are already at the charm physical
point. The expansion is given by,

M2(ac̄) = M2
0 + α(δµa) + β1(δµ2

a) + βEM1 (e2
a + e2

c) + βEM2 eaec

+ γEM1 (e2
aδµa) + γEM2 δµaeaec. (6.3)

Where here the c represents the charm quark, while a ∈ {u, d, n}. The γEM3

coefficient is excluded because e2
cδµa looks just like δµa. β2 is not written because

δµcδµa = 0. We have not written the sea quark parameters either, in this analysis
because we are only using one ensemble for each volume.

As the charm quark is the non-symmetric quark in the spin 1
2

wave function
and because ec is unchanging and δµc = 0, the S3 breaking terms are absorbed
into other terms. This reduces the singly charmed spin 1

2
expansion to the same

form as the spin 3
2
. At the same order of the expansion as Eq. (6.3), we write the

expressions for the spin 1
2

and spin 3
2

singly charmed baryons:

M(abc) = M0 + α1(δµa + δµb) + β1(δµ2
a + δµ2

b) + β2(δµaδµb)

+ βEM1 (e2
a + e2

b + e2
c) + βEM2 (eaeb + ecea + eceb) + βEM3 (ea + eb)ec

+ γEM1 (e2
aδµa + e2

bδµb) + γEM2 (δµaea(eb + ec) + δµbeb(ea + ec))

+ γEM3 (δµaebec + δµbeaec) + γEM4 (δµa(e
2
b + e2

c) + δµb(e
2
a + e2

c))

+ γEM5 (δµaea + δµbeb)ec. (6.4)

The additional terms βEM3 and γEM5 are included because the mass of the particle is
not considered to respond in the same way to changes in charm quark parameters.
This is because we expand around the physical charm point, where the charm
quark is not considered symmetric with the other quarks.

For doubly charmed baryons the expansion simplifies in a similar way to the
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meson expansion,

M(acc) = M0 + α1(δµa) + β1(δµ2
a)

+ βEM1 (e2
a + 2e2

c) + βEM2 (2eaec + e2
c) + γEM1 (e2

aδµa)

+ γEM2 δµaea(2ec), (6.5)

β2, γEM3 and γEM4 coefficients have been absorbed into other coefficients.

6.3 Charm quark implementation

The lattice spacing of our lattice provides a maximum cut-off energy for propa-
gating modes. Higher energy static particles can still be implemented, however
these particles do not propagate in the same way. The charm quark has a mass of
approximately ∼ 1.3 GeV, which is less than half our lattice spacing ∼ 2.8 GeV.
This means the charm quark can be implemented in a similar way to the light
quarks, and no special action is required. The charm quark kinetic energy is lim-
ited to ∼ 100 MeV, and given we study the zero momentum charmed baryons, we
do not expect states with above 100 MeV energy difference to significantly con-
tribute. The charmed quark mass was tuned to reproduce the physical ηcc̄ mass.
To ensure this mass was determined correctly, the physical charm charge was used.
To obtain this charge the charm quark charge was scaled by 1/

√
10 to counter the

greater than physical αQED. The charge used was +0.632/3. The ηcc̄ has mass
(aM∗

cc̄)
2 = 1.0522 in lattice units, and we use the κ value corresponding to this

number in Fig. 6.2 which we obtain from fitting the points, κc = 0.113026.
In treating the charm quark in this way we have accurately obtained the κ

value, but we have reduced its charge to the physical value. It is conceivable that
this may effect the precision of the charge splittings. The charge distribution will
be different than the real hadrons, with interactions being typically weaker. Due
to the extrapolation method we use, we do not suspect this has had a significant
effect. Though it would be interesting to see how the results would change if
we had applied a different strategy. We will explain some different strategies to
address this problem, and then explain why our extrapolation method is resistant
to these effects.

Firstly, we could sacrifice some accuracy in determining the κ value by deter-
mining the ηcc̄ with unphysical charm charge of +2/3 and αQED ≈ 10α∗QED. The
κ value obtained is then compatible with the higher charge quark, and we can use
the higher charge when partially quenching. Using this approach, total mass of
the charmed hadrons would be slightly incorrect, however we would have the ad-
ditional resolution on the QED effects. Secondly, we could use a more complicated
approach, which provides the best of both cases. Produce cc̄ plot for +0.632/3
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Figure 6.2: The pseudoscalar cc̄ meson mass as a function of 1
κ
.

and determine mc for the physical charge 0.632/3, then use this quark mass in the
+2/3 charged case.

The method we use to extrapolate to the physical point provides a different
expansion for each sector of charm quark in a hadron. With the current method for
determining quark masses, the fitting algorithm still has access to the high charge
region through highly charged quarks u, d. For each charm sector, the fitting
algorithm sees the same changes in charge irrespective of the charmed charge,
because the level of charm does not change within each set fit. The total charge
of the hadrons is of course lower, and this may lead to some lack of sensitivity to
QED effects.

If we were to fit all charm sectors of charm together using flavour breaking
expansions about an SU(4) or SU(3) point (expansions including the charm quark),
such an analysis would be sensitive to the charm charge. However, we do not use
either of these extrapolation methods in this work.

One of the mysteries we are trying to solve involves the absolute masses as
well as the splittings of the two different spin types Ξ++

cc and Ξ+
cc, and our current

method is best suited for this because we have obtained the most accurate estimate
of κ for the charm quark possible, while not effecting the splittings.

Treating the charm quark as we have does not introduce additional difficulty
when determining the coefficients of the expansions. The hadrons in the spectrum
we produce from the lattice are not the real hadrons, rather they are points in
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Figure 6.3: The mass spectrum of the D mesons in lattice units as a function of the
displacement of the quark masses from the symmetric point value in the Dashen
Scheme. The black crosses show what the expansion predicts.

parameter space which we use to fit the coefficients of our expansion. This is why
it is acceptable to use an unphysical αQED at all. While fitting the expansion
coefficients, we use the charge +0.632/3 for the charm quark, however once the
coefficients are determined we wish to make contact with the physical charm par-
ticle, and once the electromagnetic coefficients are corrected for αQED this charge
is +2/3.

6.4 Fitting procedure

The quark masses at the physical point are determined using un-charmed mesons,
the values are in Tab. 5.3 and the method is as described in section 5.5. Once
these are determined we can plot the charmed mass spectrum against the Dashen
scheme δµ. Fig. 6.3 and Fig. 6.4 show the lattice mass spectrum for the singly
charmed pseudoscalar meson spectrum and spin 1

2

+
Λc and Ξc baryon spectrum.

Fig. 6.5 and Fig. 6.6 show the singly and doubly charmed the spin 1
2

+
Σc, Ξc and

Ξcc baryon spectrum. Fig. 6.7 and Fig. 6.8 show the spin 3
2

+
Σc, Ξc and Ξcc baryons

spectrum.
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Figure 6.4: The mass spectrum of the spin 1
2

+
singly charmed Λc and Ξc baryons

in lattice units as a function of the displacement of the quark masses from the
symmetric point value in the Dashen scheme. The black crosses show what the
expansion predicts.
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Figure 6.5: The mass spectrum of the spin 1
2

+
singly charmed Σc,Ξc and Ωc

baryons in lattice units as a function of the displacement of the quark masses from
the symmetric point value in the Dashen scheme.

D meson Λc,Ξc Σc,Ξ
′
c,Ωc Ξcc,Ωcc Σ∗c ,Ξ

∗
c ,Ω

∗
c Ξ∗cc,Ω

∗
cc

J 0 1
2

1
2

1
2

3
2

3
2

M0 0.4123(16) 0.8176(41) 0.8570(36) 1.2247(22) 0.8926(63) 1.2497(44)
α 1.8(13) 2.30(24) 1.51(18) 1.62(15) 1.37(29) 1.69(29)
β1 4.5(53) -8.1(83) 6.8(61) -1.3(60) 5.0(10) -9(12)
β2 – -10.5(40) -0.7(22) – 1.8(48) –
βEM1 0.000965(71) 0.00061(27)) 0.00037(17) 0.000777(81) 0.00024(34) 0.00096(14)
βEM2 -0.00067(42) 0.00057(30)) 0.00041(20) 0.00012(18) -0.00019(38) 0.0005(47)
βEM3 – 0.00036(14) 0.0002(11) – 0.00059(22) –
γEM1 0.0065(16) -0.0082(78)) 0.0085(53) -0.0007(30) 0.004(10) -0.0031(51)
γEM2 0.0081(77) 0.0018(47) 0.0063(30) 0.0116(65) 0.0094(63) -0.002(15)
γEM3 – -0.048(15) -0.019(10) – -0.015(27) –
γEM4 – 0.0114(93) 0.0133(63) – 0.027(12) –
γEM5 – 0.0082(27) 0.0012(26) – 0.0093(47) –

χ2 0.00409 5.65 2.80 0.00234 5.49 0.00768
DOF 11 69 69 2 69 2

χ2/DOF 0.000372 0.0819 0.0417 0.00117 0.0796 0.00384
χ2
corr/DOF

1 84.01 8.94 9.07 149.91 3.54 52.00

Table 6.4: Coefficients obtained from fitting the mass spectrum of the various
particle types.
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Figure 6.6: The mass spectrum of the spin 1
2

+
Ξcc and Ωcc baryons in lattice units

as a function of the displacement of the quark masses from the symmetric point
value. The black crosses show what the expansion predicts.

Using the expansion Eq. (6.3) we can fit to the charmed meson spectrum. The
black crosses show our estimates for these masses using the symmetry breaking
expansion. We can repeat this for the baryons using Eq. (6.4) to the singly-charmed
spectra and Eq. (6.5) fit the doubly-charmed spectra. The coefficients obtained
from these fits are tabulated in Tab. 6.4. The electromagnetic coefficients have
been corrected for unphysical αQED using Eq. (5.12). Using the physical quark
masses determined from Tab. 5.3, we can then produce estimates for the physical
hadron masses.

We have also included in Tab. 6.4 the correlated and uncorrelated χ2/DOF .
As discussed in section 5.5, the χ2 is the cost function we minimise on to produce
the fit parameters. We may choose to consider the correlations between the data
points or minimise excluding these correlations. To be clear, we did not use the
correlated χ2

corr to produce the parameters, it is only included here to give addi-
tional information on whether we have over or under parameterised our model.

As the correlated χ2
corr values are greater than one, it suggests that (in some

respect) we have under parameterised our model. However, in this case, excluding

1Correlated χ2 is not used to determine parameters, but is included for reference to provide
a guide to whether our method is over or under parameterised.
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Figure 6.7: The mass spectrum of the spin 3
2

+
singly charmed Σc,Ξc and Ωc

baryons in lattice units as a function of the displacement of the quark masses from
the symmetric point value.
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Figure 6.8: The mass spectrum of the spin 3
2

+
Ξcc and Ωcc baryons in lattice units

as a function of the displacement of the quark masses from the symmetric point
value. The black crosses show what the expansion predicts.

M0

α
β1

βEM1

βEM2

γEM1

γEM2

Figure 6.9: Correlation matrix of the parameters in the fitting model for the D
mesons. The label names along the left hand side are also valid along the top. The
matrices are colour coded to guide the eye. Red is close to -1, green is close to 1
and the colour scales through to white at 0.
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Figure 6.10: Correlation matrix of the parameters in the fitting model for the
JP = 1

2

+
Λc,Ξc baryons. The label names along the left hand side are also valid

along the top. The matrices are colour coded to guide the eye. Red is close to -1,
green is close to 1 and the colour scales through to white at 0.
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Figure 6.11: Correlation matrix of the parameters in the fitting model for the
JP = 1

2

+
Σc,Ξ

′
c,Ωc baryons. The label names along the left hand side are also

valid along the top. The matrices are colour coded to guide the eye. Red is close
to -1, green is close to 1 and the colour scales through to white at 0.
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γEM3

γEM4
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Figure 6.12: Correlation matrix of the parameters in the fitting model JP = 3
2

+

Σ∗c ,Ξ
∗
c ,Ω

∗
c baryons. The label names along the left hand side are also valid along

the top. The matrices are colour coded to guide the eye. Red is close to -1, green
is close to 1 and the colour scales through to white at 0.
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γEM2

Figure 6.13: Correlation matrix of the parameters in the fitting model JP = 1
2

+

Ξcc,Ωcc baryons. The label names along the left hand side are also valid along the
top. The matrices are colour coded to guide the eye. Red is close to -1, green is
close to 1 and the colour scales through to white at 0.
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β1

βEM1

βEM2
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γEM2

Figure 6.14: Correlation matrix of the parameters in the fitting model of the
JP = 3

2

+
Ξ∗cc,Ω

∗
cc baryons. The label names along the left hand side are also valid

along the top. The matrices are colour coded to guide the eye. Red is close to -1,
green is close to 1 and the colour scales through to white at 0.

the D mesons, none of the fits seemed to converge to the points. I think the
main issue is that, because correlations between the points were included, the
significance of changes in points as a result of a change in independent variable
(charge for instance) was reduced in value when using the correlated metric. This
lead to the fitting algorithm not finding the correct minimum because it did not
have enough unique data points. Given that the fit did not converge, the validity
of the χ2

corr/DOF as a measure of the goodness of fit is reduced. To remedy this in
the future we may need to use less correlated data points, or consider an SU(4) or
modified SU(3) extrapolation2to better constrain the parameters in the correlated
case .

The errors on the parameters in Tab. 6.4 are determined from conducting the
fit for each bootstrap ensemble and then taking the standard deviation. We also
provide normalised correlation matrices for the parameters of the functions fit to
the particle mass spectra of the D mesons (Fig. 6.9), Λc,Ξc (Fig. 6.10), Σc,Ξ

′
c,Ωc

(Fig. 6.11), Σ∗c ,Ξ
∗
c ,Ω

∗
c (Fig. 6.12) , Ξcc,Ωcc (Fig. 6.13), Ξ∗cc,Ω

∗
cc (Fig. 6.14).

We can see from the correlation matrices that certain parameters are typically
not determined well by the data set. For instance the data set is very linear, and
so it is difficult to determine coefficients that are proportional to (δµ)2. As such,
there is high correlation between the α coefficient and the βi coefficients.

The cross correlations tend to form two groups, terms with electromagnetic
effects and terms without. Providing data that the fitting algorithm can break
down into parameters easily reduces the uncertainty on the value of the parameter.
The only way to improve the fit is to obtain data that allows one to distinguish
between the different degrees of freedom, alternatively one could reduce the degrees
of freedom. In the future the analysis could be optimised to reduce covariance in
the parameters.

2As discussed in section 6.2.
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6.5 Results

Having determined expansion coefficients and the physical quark mass parameters,
we can then obtain estimates of the charmed hadron spectrum at the physical
point. The masses of the charmed particles are tabulated in Tab. 6.5. The first
uncertainty in the mass splitting is statistical, while the second provides an esti-
mate of the systematic uncertainties, which are obtained by the mass difference
of the 483 × 96 results compared with the 323 × 64. The central value is obtained
from the larger volume. We note that since our simulations are performed at only
a single value of the lattice spacing, no continuum extrapolation is possible. In
the literature these effects seem to be below statistical and systematic errors. Col-
laborations which include continuum extrapolation [67, 62, 63] and those that do
not, have results that tend to agree [60], which suggests to us that this correction
will have only a minor impact on the absolute value. The effect of continuum ex-
trapolation on isospin splittings is mostly unknown because previous studies that
include continuum extrapolation have had difficulty resolving isospin splittings
[67, 61].

We can see in Tab. 6.5 that our results agree with experiment within one
standard deviation when both systematic and statistical error is taken into account.
A portion of this systematic uncertainty can be attributed to uncertainty in the
scale, which is approximately 2%. For the doubly charmed particles we have not
tabulated the experimental values because the states proposed by SELEX [16] and
the LHCb [17] do not have a spin associated with them. We suggest from our

results that the SELEX value Ξ+
cc(3520) fits well with the Ξ+

cc J
P = 1

2

+
while the

LHCb estimate Ξ++
cc (3621) is closest to Ξ++

cc
∗
JP = 3

2

+
. We suspect that our results

tabulated in Tab. 6.5 for the 483 × 96 volume are systematically low because the
323×64 values were all higher than their 483×96 counterparts, and this is reflected
in the second error on the values. Additionally, the centre values of the 483 × 96
are low compared to other collaborations [59], [60], [61], [62],[63], while the centre
values of the 323×96 closely agree with those collaborations. Hence, the systematic
errors give an indication of how our values compare to other collaborations.

The splitting of the charmed hadron masses is shown in Fig. 6.15. We see in
this figure that after removing the average mass, the splitting between the different
charmed SU(3) multiplets is statistically consistent with the experimental values,
where there are experimental estimates. With the exception of the Ξ∗cc − Ω∗cc, the
two volumes agree on predictions within one standard deviation which is what
should be expected if the finite volume effects are under control. Considering
statistical errors only, the Ξ∗cc − Ω∗cc splittings of the two volumes do not seem to
agree, even within two standard deviations.

The splitting of the isospin multiplets is shown in Fig. 6.16, with the average
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Figure 6.15: Charmed hadron mass splitting with the average mass within each
SU(3) multiplet subtracted. The black crosses are experimental data. The coloured
points are estimates generated from our lattice analysis.

of the isospin multiplet subtracted. We see agreement between the 323 × 64 and
483 × 96 for all but the Ξcc of both spin types, and only in the spin 1

2
case is the

disagreement statistically significant. Where experimental values are provided, the
lattice analysis agrees well. The issues arise when QED effects become significant.

In Fig. 6.17 we show the strong isospin and charge splitting from the average
of isospin multiplets. QCD effects typically dominate these splittings, with QED
only playing a significant role when +2 charge particles are involved. The statisti-
cal error on the QED effects is quite high, and increasing the accuracy of the QED
splittings will be the subject of future work. In any case there are no signs of unex-
pectedly large QCD isospin or charge splittings. We see no evidence of exceptional
QCD isospin (∼ 60 MeV) or charge (∼ 20 MeV) generated splittings, and so if the
other resonances detected by SELEX exist, Ξ++

cc (3460),Ξ+
cc(3443),Ξ++

cc (3541),Ξ++
cc (3780),
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we do not suspect they are ground-state positive-parity charmed baryons.
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Figure 6.16: Charmed hadron mass splitting with the average mass within each
isospin multiplet subtracted. The black crosses are experimental data. The
coloured points are estimates generated from our lattice analysis.

Lastly, in Tab. 6.6 we show various hyperfine mass splittings. The values
that are displayed are for the 483 × 96 volume. These values were systematically
lower than the 323 × 64, the second error (which is an estimate of the systematic
error) represents this uncertainty. The first value in the table is the mass splitting

between the JP = 3
2

+
and the JP = 1

2

+
Ξ++
cc and is consistent with the mass

splitting between the measurements given by SELEX and LHCb ∼ 100 MeV. This
value and the other values are compared with Brown [62] and experiment. We see
good agreement with experiment when both systematic and statistical errors are
included, and reasonable agreement with Brown.
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Figure 6.17: QCD and QED components of the charmed baryon mass splittings
with the average mass within each isospin multiplet subtracted, for the 483 × 96
ensemble. The error bars represent symmetric statistical errors on the centre
values.

6.6 Summary

We produced estimates for the masses and mass splittings of the lowest lying
charmed baryons states using Lattice QCD+QED. This included estimates for the
full spectrum’s absolute mass, as well as more accurate estimates of the splittings
between the SU(3) and isospin multiplets and hyperfine splittings. We also include
a breakdown of the isospin splittings in terms of QCD and QED components.
These estimates agreed with experiment where experiment was available.

In terms of the mass spectrum we calculated, the Ξcc found by LHCb [17] is

closest to Ξcc with JP = 3
2

+
, while the particle confirmed by SELEX [16] was
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closest to the Ξcc with JP = 1
2

+
. This picture was constructed from considering

quantum numbers, approximate mass and approximate hyperfine splitting within
our errors. We did not find evidence for the other states found by SELEX. In
particular the strong and electromagnetic isospin splittings were of a similar order
to lower mass particles ∼ 1− 6 MeV.



Chapter 6. Charmed Hadron Spectrum from Lattice QCD+QED 98

JPC = 0−+ D0 D± D±s

This work 1819.0(63)(30) 1821.9(61)(30) 1916.8(46)(30)
Experiment 1864.83 1869.58 1968.27

JP = 1
2

+
Λc Ξ0

c Ξ±c

This work 2250(23)(30) 2404(12)(30) 2408(12)(30)
Experiment 2286.46(14) 2467.93(40) 2470.85(4)

1
2

+
Σ++
c Σ+

c Σ0
c

This work 2405(18)(30) 2405(18)(30) 2407(10)(30)
Experiment 2453.97(14) 2452.9(4) 2453.75(14)

1
2

+
Ξ+
c
′

Ξ0
c
′

Ω0
c

This work 2510(10)(40) 2512(10)(40) 2617(69)(40)
Experiment 2575.7(30) 2577.9(29) 2695.2(17)

3
2

+
Σ++
c
∗

Σ+
c
∗

Σ0
c
∗

This work 2511(32)(40) 2513(31)(40) 2515(31)(40)
Experiment 2518.41(21) 2517.5(23) 2518.48(20)

3
2

+
Ξ+
c
∗

Ξ0
c
∗

Ω0
c
∗

This work 2607(18)(40) 2609(17)(40) 2706(12)(40)
Experiment 2645.9(5) 2645.9(5) 2765.9(20)

1
2

+
Ξ++
cc Ξ+

cc Ω+
cc

This work 3495(10)(100) 3497(10)(100) 3604(7)(100)
Alexandrou[61] 3606(11)(8) 3606(11)(8) 3711(5)(30)

3
2

+
Ξ++
cc
∗

Ξ+
cc
∗

Ω+
cc
∗

This work 3566(10)(120) 3567(10)(120) 3675(11)(120)
Alexandrou[61] 3682(10)(26) 3682(10)(26) 3770(6)(30)

Table 6.5: Predicted masses for D mesons and singly and doubly charmed baryons
in MeV obtained from the 483 × 96 ensemble. The first error is statistical, while
the second error is an estimate of the systematic error, which is obtained by the
difference in the 323 × 64 results to those of the 483 × 96.
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This work Brown [62] Experiment

Ξ++
cc
∗ − Ξ++

cc 71(16)(30) 82.8(72)(58) −−
Ξ+
c
∗ − Ξ+

c
′

97(17)(10) 73.7(50)(87) 69.1(22)

Ξ+
c
′ − Ξ+

c 106(9)(30) 140(16)(38) 107.9(22)
Σ++
c
∗ − Σ++

c 108(23)(9) 78(7)(11) 64.53(43)
Σ++
c − Λ+

c 155(19)(2) 219(36)(43) 167.33(18)

Table 6.6: The hyperfine mass splittings. Values quoted in MeV. The first error is
statistical, while the second error is an estimate of the systematic error, which is
obtained by the difference in the 323 × 64 results to those of the 483 × 96.



CHAPTER 7

Flavour-neutral pseudoscalar mesons using

Lattice QCD+QED

In this work, we explore the spectrum of the flavour-neutral pseudoscalar mesons
on dynamical QCD+QED lattices. To reduce the statistical noise associated with
annihilation diagrams we utilise exact colour and spin dilution with a spatial in-
terlacing for our Z2 noise sources. While modern calculations using lattice QCD
give accurate estimates of the η–η′ splitting, we make first estimates of the contri-
bution of electromagnetic effects in the π0–η splitting. We will also consider the
state composition of the π0, η and η′ around points of exact degeneracy (the SU(3)
point) in an attempt to predict state behaviour near the physical point.

Recent work studying the mass and flavour composition of flavour-neutral pseu-
doscalar mesons on the lattice include Refs. [68, 69, 70, 71, 72, 73, 74, 75, 76],
all of which are 2+1 or 2+1+1 flavour analysis in pure QCD (no QED). In this
simpler case more recent papers obtain very reliable estimates of the η′ mass, state
composition of the η, η′ system, and hence good estimates of mixing angle between
the η and η′.

An essential difficulty in determining the η′ mass originates from the axial
current anomaly, which I discuss in section 7.1. The anomaly generates mass
through topological charge density, and the η′ couples to the charge density through
disconnected quark loop diagrams. A key feature of all of the above analysis is the
need to calculate the contribution of these disconnected quark loop diagrams, and
diagonalise the correlation functions from a flavour basis into the energy eigenstate
basis of the π0, η, η′ system.

To determine the disconnected quark loop diagrams, one must calculate either
the all-to-all propagator, which is very computationally expensive, or (alterna-
tively) obtain an estimate of the self-to-self components of the propagator. The

100
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Figure 7.1: Effective mass plot of the η and η′ from [70].

latter is the tact used in most of the above analyses. The self-to-self components
are calculated using noisy sources.

The results of a very nice analysis by Ref. [70] are show in Fig. 7.1 from which
they calculated an effective mass of the η′ of approximately 900 MeV and an η mass
of approximately 600 MeV at a pion mass of 396 MeV. They gave an estimate of
the mixing angle of the η and η′ of 42(1)◦1(light-strange angle). A more recent
study by [74] produced similar results, the effective mass plot is show in Fig. 7.2.
They give an estimate of the η′ mass of 878(35) MeV and the η mass of 504(7) MeV
at a pion mass of 282 MeV.

This chapter is organised as follows. In section 7.1 I explain some of the
important background regarding flavour-neutral pseudoscalar mesons. I explain
why the η′ in particular has been of interest to the physics community for so long,
and describe some ideas that have been presented as to how and why disconnected
quark line contributions generate significant mass in the η′. In section 7.2 I show
how disconnected quark line contributions occur in the correlation functions for
flavour-neutral pseudoscalar mesons. I then formalise this in a flavour diagonal
basis.

In section 7.3 I explain the difficulties in calculating disconnected quark line
contributions, and how this relates to self-to-self propagator elements. I then
describe how noisy sources can be used to improve calculations of the self-to-self
components of the quark propagators. In section 7.4 and section 7.5 I describe the
two methods we explored to increase dilution of the noisy sources, interlacing and

1The mixing angle is a useful parameter in the two state system. In our analysis, however,
the state vectors sit on the surface of a sphere rather than a circle, and hence the interpretation
using angles is not as useful.
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Figure 7.2: Effective mass plot of the η and η′ from [74].

hadamard vectors. These both reduce the error associated with calculation of the
self-to-self propagator. In section 7.6 I describe the specifics concerning the lattice
configurations. I explain why we selected certain quark dynamical mass points;
these points were chosen to determine the electromagnetic splitting of the π0 and
η masses. I also explain how the signal of the (difficult to calculate) disconnected
quark line components was improved in our analysis.

In section 7.7 I present results from our analysis, including effective mass plots
of the π0–η–η′ system, mass splittings of the two lowest states and determination
of the QED part of this splitting under the Dashen scheme definition near the
SU(3) symmetric point.

We more generally explore the state composition under symmetry breaking.
We show that the quark flavour diagonal basis, Mqq̄ (connected quark line compo-
nents only) is a useful way to measure symmetry breaking in hadronic QCD+QED
systems that have symmetries broken in both charge and quark mass. Lastly, we
use the analysis on these ensembles to predict the state changing behaviour of the
π0–η system near the isospin point, when the strange quark mass is held fixed
δms = 0, but the u, d quark masses vary and satisfy δmu = −δmd. Finally, I
summarise our results in section 7.8.

7.1 The U(1) Problem

The pseudoscalar mesons are the lightest observed hadrons within the QCD mass
spectrum. These mesons are significantly lighter than the spin one vector mesons;
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for example the π+ is approximately 600 MeV lighter than the ρ+, but both have
the same quark content. The mass splitting is not typically this large for a change
in spin. The lightness of these mesons is believed to occur because the pseudoscalar
mesons are approximate Goldstone bosons. I will explain what this means.

In the zero mass limit of the three lightest quark flavours, the QCD Lagrangian
is invariant under global SU(3) flavour symmetries of quark fermion fields. The
QCD Lagrangian is invariant under the transformation ψ → eiT

aεaψ, for Gell-
Mann matrices T a and index a ∈ (1, 2...8). This symmetry remains when the
quark masses are equal but non-zero. The corresponding conserved current is
called the vector current,

V a
µ = ψ̄γµT

aψ. (7.1)

The massless QCD Lagrangian is also invariant under the transformation ψ →
eiγ5Taεaψ. This symmetry only exists in the massless limit mq → 0, as the term
mψ̄ψ → mψ̄ψ−2imεa(ψ̄γ5T

aψ) is not invariant. The conserved current associated
with this symmetry is called the axial-vector current,

Aaµ = ψ̄γµγ5T
aψ. (7.2)

If these axial-vector symmetry is spontaneously broken at the quantum level
in this zero quark mass limit, it implies the existence of eight massless bosons,
called Goldstone bosons. As we move away from the zero quark mass limit these
Goldstone bosons obtain mass proportional to the quark mass (M2

qq̄ ∝ mq). The
approximate conservation of these currents is observed in their divergences,

∂µV
µ
a = iψ̄ [M,Ta]ψ (7.3)

∂µA
µ
a = iψ̄γ5 {Ta,M}ψ, (7.4)

for diagonal quark mass matrix M = diag
(
mu md ms

)
. The pseudoscalar

mesons are believed to be these approximate Goldstone bosons.
There are two additional symmetries of the massless QCD Lagrangian. The

first is the U(1)V symmetry corresponding to the transformation ψ → eiεψ, which
remains even if quark masses are non-zero and not equal. The conserved current
is,

V 0
µ = ψ̄γµψ. (7.5)

This current is associated with baryon number conservation, and the symmetry
exists irrespective of the quark mass values. The divergence of this current is,
∂µV

µ
0 = 0. The second is the U(1)A symmetry corresponding to the transformation

ψ → eiγ5εψ with conserved current,

A0
µ = ψ̄γ5γµψ. (7.6)
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which is only conserved in the m → 0 limit. A0
µ current should be associated

with either a conserved quantum number or an extra Goldstone boson. In nature,
however, we do not observe either U(1)A quantum number or an extra Goldstone
boson, and this is called the “U(1) problem”. The lightest SU(3) singlet pseu-
doscalar is the η′ which has a mass of almost 1 GeV; too heavy to be a Goldstone
boson. Adler, Bell and Jackiw [77] showed that there is an anomaly associated with
this current. A modern derivation was given by Fujikawa [78, 79]. The divergence
of the U(1)A current is [80],

∂µA0
µ(x) = 2iψ̄(x)γ5Mψ(x) + 2LQ (7.7)

where the first term on the right hand side is associated with the breaking with
respect to quark mass, M is the quark mass matrix, and the second term is the
anomalous term which is non-zero even at quark mass m = 0. Within the anoma-
lous term, L is the number of light quark flavours while Q is called the topological
charge density,

Q =
g2

32π
FαβF γδεαβγδ. (7.8)

g is the gauge field coupling coefficient, F µν is the gauge field strength tensor and
F̃αβ = F γδεαβγδ is the dual field strength tensor.

The topological charge density represents vacuum charge in QCD, which is
not unlike a background electric field in QED. Q is an allowed term in the QCD
lagrangian which is CP violating. This CP violating term can be added to the QCD
Lagrangian using the term 2θQ, for constant θ called the vacuum angle. However a
non-zero vacuum angle has not been detected in QCD, with an experimental upper
bound |θ| < 1.61(51)×10−10 [81] which is determined by the neutron electric dipole
moment [82]. Due to the anomaly in the Aµ0 current the η′ mass does not have to
vanish in the limit quark mass m→ 0.

The anomaly by itself is not enough to explain the large mass difference between
the η′ and the other octet baryons. We would also expect a non-zero matrix element
of the η′ with the vacuum,

〈0 |Q| η′〉 6= 0 (7.9)

however the topological charge density Eq. (7.8) is a total divergence ∂, hence
to finite orders in perturbation theory at zero momentum, the matrix element
vanishes. This indicates it is a non-perturbative effect, but the matrix element
may still be non-zero.

In pure gauge QCD, physical θ dependence is allowed, however it is not allowed
when there is a U(1)A anomaly and the quark masses are zero [83]. Witten argued

1Using neutron electron dipole moment.
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[84] that the η′ meson mass cancels the θ dependence in the Lagrangian in the zero
quark mass limit causing the η′ to gain mass. This leads to the conclusion that
the mass of the η′ is of order O(1/Nc) (Nc being the number of quark colours),
which I will explain following [84, 80].

The pure gauge partition function with θ dependence is,

Z =

∫
DA exp

(
i

∫
d4x Tr

[
−1

4
FµνF

µν + 2θQ

])
. (7.10)

If we take the derivative with respect to θ twice of Z, we produce a two point
function of the topological charge density,

(
∂2Z

∂θ2

)

θ=0

=

(
g2

16π2

)2 ∫
d4y

∫
d4x

〈
T (FF̃ (y)FF̃ (x))

〉
. (7.11)

Consider the function,

U(k) =

∫
d4x eik·x

〈
T (FF̃ (x)FF̃ (0))

〉
. (7.12)

In the 1/Nc expansion formalism g is held constant while the number of colours
is increased, g = g′

√
Nc. The ratio Nf/Nc is kept fixed, where Nf is the number

of quark flavours. In the limit Nc → ∞, then the ratio L/Nc → 0, where L
is the number of light flavours. Each successive quark loop is suppressed by an
extra factor of 1/Nc because each loop of quarks is of order O(Nc) while gluon
interactions are of order O(N2

c ). If a process occurs as a result of a quark loop, it
could have also occurred as a gluon, hence is reduced in magnitude compared to
the pure gauge theory.

Break U(k) down into an expansion in 1/Nc so that U(k) = U0(k) +U1(k) + ...
where U0(k) is the sum of all diagrams without quark loops, U1(k) is the sum of all
diagrams with one quark loop, etc. Suppose θ dependence occurs at leading order.
There are no quark loop effects at this order, but as quarks become massless the
θ dependence needs to disappear at leading order. If one of the mesons is massive
when mq = 0 and the meson has mass squared m2

η′ ∝ 1/Nc then the meson
propagators occur at leading order in the 1/Nc expansion (they occur in U0(k))
which removes any contradiction. With these two assumptions we arrive at,

U0(k) = UYM(k)

(
1 +

L

Nc

λ2
η′

k2 −m2
η′

)

= UYM(k)

(
k2 −m2

η′ +
L
Nc
λ2
η′

k2 −m2
η′

)
(7.13)
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Figure 7.3: Representative values of the ratio of the disconnected amplitude to

the connected amplitude R(t; |Q̄|) =
〈η′(t)η′(0)〉dis
〈η′(t)η′(0)〉con

of the η′ propagator for several

values of |Q̄| at a = 0.14 fm and mπ ≈ 458 MeV on a 123 × 20 lattice. Taken from
[85].

where the coefficient L
Nc
λ2
η′ =

(〈0|FF̃ |η′〉)2

UYM (0)
. When mq = 0 and k = 0 in Eq. (7.13),

U0(k) = 0, hence m2
η′ = λ2

η′
L
Nc

. Veneziano used these ideas to produce an estimate
for the η′ mass away from this ideal limit [80]. Whenmq > 0 we can use the identity
Eq. (7.7) to suggest the η′ gains mass in the same way as the other pseudoscalars,
m2
η′ = m2

NS + λ2
η′

L
Nc

, where mNS is the mass of non-singlet pseudocalars and
increases proportional the quark mass. For the predicted SU(3) quark composition
of the η′, m2

NS ∼ 2
3
m2
K0 + 1

3
m2
π0 at the physical quark masses, where this quark

composition assumes isospin breaking effects to be insignificant and either η–η′

mixing is small or the light quark masses are the same.

Without either experimental or theoretical estimates of these quantities there
is little more we can do to advance this argument, which is why lattice QCD is an
essential tool for studying the η′. Lattice studies of the η′ have produced estimates
for the η′ meson mass and mixing angles with the η [68, 69, 70, 71, 72, 73, 74,
75, 76]. The masses are very close to the physical value of η′ (mη′ ∼ 958 MeV)
in more recent studies. There is also evidence for the η′ mass dependence on
the topological charge Q [85, 86], a plot of this dependence in quenched QCD is
shown in Fig. 7.3. This shows, based on the previous work by Smit [87], that
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yx

Figure 7.4: Disconnected quark line Feynman diagram.

topological charge and disconnected quark line contributions are directly related
Tr(γ5K

−1
q (x, x)) = Q

mq
for quark flavour q and quark mass mq. This topological

charge dependence occurs when performing Wick contractions of flavour-neutral
mesons. Normally these components are not important because they are OZI
suppressed [88, 89, 90]. OZI suppressed means that the QCD gauge coupling is
small when the gluons have high energy, where high energy corresponds to the
mass of mesons. The importance of these disconnected quark line contributions
within the flavour-neutral pseudoscalar mesons, when such contributions should
be OZI suppressed, is explained through Witten’s and Veneziano’s arguments. In
this way the anomaly generates the η′ mass difference through quark—anti-quark
annihilation diagrams, which is in agreement with quark model arguments.

7.2 Quark Annihilation diagrams

Most pseudoscalar mesons can be classified uniquely in terms of their quark con-
tent. However this is more complicated for the flavour diagonal pseudoscalar
mesons π0, η and η′ because they have quark annihilation diagrams, also called
disconnected quark line diagrams (or disconnected contributions), contributing to
their mass. These disconnected quark line diagrams are shown in Fig. 7.4. A
disconnected contribution is a process by which the flavour diagonal meson propa-
gates only via gluon and (or) photon lines; the quark inside the meson propagates
back to its starting point and annihilates. This allows mesons of different flavours
to interact. The disconnected contributions break the S3 symmetry of the meson
states and lead to mixing of states. The composition of the states vary with flavour
symmetry breaking.

Flavour neutral mesons in flavour basis for example πūu = ūγ5u propagate
via quark lines but also via gluons. The correlation function in flavour basis for
flavour-neutral pseudoscalar meson two point functions is,

Cq′;q(~p, t) =
∑

~x,~y

e−i~p(~y−~x)
〈

Ω
∣∣∣T{Oπq̄q(y)O†πq̄′q′ (x)}

∣∣∣Ω
〉

(7.14)

=
∑

~x,~y

e−i~p(~y−~x) 〈Ω |T{q̄γ5q(y)[−q̄′γ5q
′(x)]}|Ω〉 . (7.15)



Chapter 7. Flavour-neutral pseudoscalar mesons using Lattice QCD+QED 108

By performing Wick contractions we produce propagators. The contractions only
occur between quarks of the same flavour but in this case, as the meson is flavour-
neutral, the quark can propagate back to its source,

Cq′;q(~p, t) ≈
1

N

N∑

n=1

∑

~x,~y

e−i~p(~y−~x)
(
δqq′tr[γ5K

−1
q (x− y)γ5K

−1
q (y − x)][Un]

−tr[γ5K
−1
q (y − y)][Un]tr[γ5K

−1
q′ (x− x)][Un]

)
. (7.16)

The components of Cq′;q(0, t) form a correlation matrix C(t) in the flavour basis.
In Eq. (7.16) the first term is the connected part and the second term in the
disconnected part.

With exact SU(3) symmetry, the decomposition of the eigenstates of π0, η
and η′ is known in flavour operator basis Oq = q̄γ5q. We can determine these
eigenstates that appear in the QCD vacuum at the SU(3) point using the fact that
the correlation matrix is proportional to the Hamiltonian of the system C(t) ∝
e−Ht. In flavour basis (considering only light flavours {u, d, s}), the connected and
disconnected parts of the correlation matrix are the same for each flavour. The
correlation matrix in this case takes the form, C(t) = cI+d[1] where I is the 3×3
identity matrix, [1] is a 3 × 3 matrix of ones ‘1’, c is the connected and d is the
disconnected part of the correlation matrix. If we determine eigenvectors of this
matrix at large times2we produce the eigenstates for the π0, η and η′,

π0 =
1√
2

(uū− dd̄)

η =
1√
6

(uū+ dd̄− 2ss̄)

η′ =
1√
3

(uū+ dd̄+ ss̄). (7.17)

However these states are not necessarily energy eigenstates when SU(3) flavour
symmetry is broken (the quark masses and charges are not degenerate).

If there were no disconnected contributions the eigenstates would simply be of
quark composition π0 = uū, η = dd̄ and η′ = ss̄, labelled in mass order assuming
mu < md < ms. Instead each particle is a mixture of these three flavour diagonal
states, as well as existing as propagating photons and gluons. The state compo-
sition at the SU(3) point is considered to be fully mixed in flavour space. At this
SU(3) symmetry point only the η′ has a non-zero disconnected contribution to its
mass and its mass is different from the lowest two states. These lowest states are
energy degenerate, and hence the eigenstates listed above are not unique, rather
any orthogonal linear combination of these two states are possible.

2Note in this special case the states are the same irrespective of the time of diagonalisation.
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We do not know the state composition of the energy eigenstates π0, η, and η′ in
the flavour basis at arbitrary quark mass points, however they can be determined in
a similar way as above by finding the eigenvectors of the flavour basis correlation
matrix at large times. The flavour basis is the practical basis for calculation,
because it is these correlation matrix components we can calculate on the lattice.

We can formalise correlation functions for the energy eigenstates π0, η and η′

in terms of the flavour basis correlation functions. In the limit of large time on
the lattice, only the lowest energy neutral flavour state remains, for instance for
η we find O†η |Ω〉 → |Oη〉3. If we let π, π′ ∈ {π0, η, η′}, then the elements of the
correlation matrix for flavour-neutral mesons π0, η, η′ (which are eigenstates of the
Hamiltonian) are given by,

Cπ′;π(t′ − t0; ~p) =
∑

~x,~y

e−i~p(~y−~x)
〈
Oπ′(y)

∣∣∣e−H(t′−t0)
∣∣∣Oπ(x)

〉
(7.18)

where y = (t′, ~y) and x = (t0, ~x). These elements form a matrix which we call
C(t′ − t0; ~p) and this matrix is diagonal at large times t = t′ − t0. The states
|Oπ〉 are those states that diagonalise the Hamiltonian at large lattice times,
however we do not explicitly know them yet in any basis. Let’s consider only
~p = 0 and implicitly include the sums over the ~x, ~y components into the brackets
|Oπ(t0)〉 =

∣∣∑
~x e

i~p·~xOπ(t0, ~x)
〉
. We want to change this expression into something

that includes the flavour basis correlation matrix, which is a basis we can calculate
correlation functions in. The expression becomes,

Cπ′;π(t) =
〈
Oπ(t′)

∣∣e−Ht
∣∣Oπ′(t0)

〉

=
∑

q,q′

〈Oπ(t′) |Oq(t′)〉
∑

k

〈Oq(t′) |k〉 〈k |Oq′(t0)〉 e−Ekt

︸ ︷︷ ︸
Cq′;q(t)

〈Oq′(t0) |Oπ′(t0)〉

(7.19)

where q, q′ ∈ {u, d, s} and the states k are energy eigenstates. In matrix notation
this becomes,

C(t) = P †







︸ ︷︷ ︸
CO(t)

P. (7.20)

3O†η is defined as the interpolator which produces η as its lowest state.
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The matrix CO(t) is the correlation matrix in the flavour operator basis, where the
elements are given by Cq′;q(t) in Eq. (7.16). The matrices P and P †, diagonalise
CO(t) at large t = t′− t0 to produce C(t). P is composed of the eigenvectors of the
matrix CO(t). Note that each new t0 will give an estimate of C(t) for t = t′ − t0.
The eigenvectors only represent π0, η and η′ at large times and using these states
we can determine the energy of the particles using E = − log (C−1(t)C(t+ δt)) /δt.
By applying this form we assume that the vectors in flavour basis that diagonalise
C(t+ δt) are the same as those that diagonalise C(t). The assumption is valid at
large lattice times, where the state composition of the correlation matrix is static.

7.3 Stochastic Noise sources

Disconnected contributions appear in many quantities of interest within QCD, in-
cluding baryon form factors, axial operators, hadronic coupling constants and of
course masses and states of flavour-neutral mesons. In section 7.2 we showed that
the disconnected quark line components appear from Wick contractions of elements
of the correlation matrix of flavour-neutral mesons. After Wick contracting, the
correlation matrix Eq. (7.16) has terms that look like tr(ΓG(y;x)ΓG(x; y)) which
correspond to quark line connected diagrams, while tr (ΓG(y; y)) tr (ΓG(x;x)) cor-
respond to quark line disconnected diagrams, where G(x; y) is the quark propa-
gator. The propagator G(x; y) is called the all-to-all propagator and contains the
amplitude of the propagation of quarks from any one point to any other point.
The calculation of this object is very computationally expensive if each inversion
of the propagator were to be computed exactly. Additionally, there may be no
advantage in such a calculation, as the estimate of observables is statistical. If the
error in the estimate of G(x; y) is small with respect to statistical errors associated
with the gauge configurations, the estimate is good enough.

A good estimate of observables relating to the connected part of the all-to-all
propagator G(x; y) can be determined from the point to all propagator G(0; y),
as translational invariance allows us to consider only a single source point as a
representation of the full calculation. Note in this calculation there is a lattice
volume worth of information.

A similar tactic can not be employed for the disconnected parts of the propa-
gator, as the result is only G(0; 0), a single point. The statistics on this point are
a volume smaller than that of point-to-all propagator. To get a good estimate on
the disconnected parts we need a great number of statistics to obtain a correlation
amplitude above gauge noise. Hence, we need all, or most of the information that
we can obtain from a gauge configuration. One method that has been used in the
literature to great success is the distillation method [70, 73], which produces an
estimate of the all-to-all propagator in a systematic way. We use a slightly simpler
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method that instead determines all self-to-self propagator components G(y; y).
A different estimation method than the one used for the connected part, is used

to determine G(y; y) components of the propagator. Sources are placed at all, or
many of the lattice sites, these are called wall sources. This estimation method
introduces noise into the calculation of G(y; y). Originally wall source techniques
relied on differences in the gauge configurations to cancel wall source noise in the
propagator components [87, 85]. More recently these errors in the propagator
estimate have been reduced by producing random wall sources (or stochastic noise
sources) and by dilution [91, 92, 93, 94], which are explained in more detail below.

Dilution of the noise source is an important consideration when applying wall
source techniques. Dilution means making some parts of the noise vector zero
and calculating each of the parts separately to reconstruct the full propagator. A
complete dilution results in an exact all-to-all propagator. Noise in the estimate of
the propagator is proportional to the proximity of non-diluted elements. Dilution
in spin, colour and time significantly reduces error, because each of these elements
is related by their spatial location, hence is a nearest neighbour. Typically the
higher the level of dilution the more accurate the estimate of the propagator is,
however more inversions are required. Finding the right balance is dependent on
the problem that one is trying to solve. Using the insights of previous studies of
the pseudoscalar mesons in the literature [92, 93], we will confine our discussion
to Z2 noise only on the spatial components of the lattice ξ(~x), the noise is diluted
in time, spin and colour. Further dilution is applied using interlacing, which will
be explained in more detail in section 7.5.

For a given spatial coordinate ~xi and time slice t, the Z2 noise source vector
is given by ξ(~xi) ∈ {−1,+1}, with equal probability and zero on all other time
slices. The spin and colour components are diluted, hence calculated separately.
The scalar product of an element of a noisy source vector ξ(~x) with another element
ξ(~y) satisfies the following conditions,

ξ(~x)ξ∗(~y) =

{
1 if ~x = ~y
ξ′(~x) ∈ {1,−1} if ~x 6= ~y

(7.21)

where the ∗ denotes the complex conjugate (it does nothing for the real case we
are looking at) and ξ′ is some new noisy vector.

Consider two ordered sets of lattice coordinates X and Y , where in each set
every coordinate appears only once X = (~x1, ~x2, ..., ~xNv), Y = (~y1, ~y2, ..., ~yNv).
Using these ordered sets of coordinates, we can write the product of a noisy source
vector ξ with its conjugate as,

Nv∑

i=1

ξ(~xi)ξ
∗(~yi) =

{
Nv if ~yi = ~xi∀i∑Nv

i=1 ξ
′(~xi) if ~yi 6= ~xi∀i

(7.22)
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for Nv spatial volume and where ξ′ is a new noisy source vector (with the same
properties of the original one) generated from the misaligned product of ξ with
itself.

The value associated with 〈ξ′〉 = 1
Nv

∑Nv
i ξ′(~xi) is binomially distributed about

zero with probability function

P (
Nv∑

i

ξ′(~xi) = ±2k) =
Nv!

(Nv/2 + k)!(Nv/2− k)!
(0.5)Nv , (7.23)

for k ∈ N. The factorials make this probability difficult to calculate, even on a
computer, however if one considers a small volume of Nv = 100, the probability
of k having the lowest 10% of values, meaning k ∈ [−10, 10] is P ≈ 96.5%, if
we increase the volume to Nv = 150 the probability that it is in the lower 10%
of values, k ∈ [−15, 15], is P ≈ 98.9%. As we increase Nv the probability for
ξ′ to be less than a certain percentage of Nv increases. Hence 〈ξ′〉 → 0 as the
volume increases. Large factorials can be accurately estimated using Stirling’s
formula. For the full case, Nv = 243 and k ∈ [−150, 150], where here we satisfy
2k/Nv ≤ 2.18%, the probability is P ≈ 99%. Put into words, the noise is reduced
by a factor of fifty or more, when compared to the signal, in 99% of cases.

Unless a noisy vector is multiplied in the right way, the value of the product
will be binomially distributed about 0. For large volumes, this makes the scalar
product of a noisy vector with its conjugate act (approximately) like a Kronecker-
Delta function.

We can use these sources to obtain the disconnected quark line component.
Noting that

∑

~y

tr [ΓG(t, ~y; t, ~y)] = tr


Γ
∑

~y

G(t, ~y; t, ~y)


 , (7.24)

then it is sufficient to determine only an estimate for the sum of components of
the propagator,

∑
~y G(t, ~y; t, ~y). This sum can be determined approximately using

the below noisy source technique,

∑

~y

G(t, ~y; t, ~y) ≈
∑

~y

1

Nr

Nr∑

r=1

[∑

~x

G(t, ~y; t, ~x)ξr(~x)

]
ξ∗r (~y) (7.25)

=


∑

~y

G(t, ~y; t, ~y)


+

1

Nr

Nr∑

r=1

∑

~y


∑

~x|~x6=~y

G(t, ~y; t, ~x)ξr(~x)ξ∗r (~y)


 (7.26)

≈


∑

~y

G(t, ~y; t, ~y)


+N2

v |G(t, ~y; t, ~x)|︸ ︷︷ ︸
~x6=~y

1

Nr

∑

r

〈ξ′〉r (7.27)
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the bar on the second term of the last line denotes the average of the propagator
elements at time t under the condition ~x 6= ~y. The second term on the last
line gives an estimate of the error in the propagator G(t, ~y; t, ~y). As the value of
G(t, ~x; t, ~y)|~x6=~y is largest for nearest neighbours[95], nearest neighbours contribute
most to the error in our prediction. The multiplication can be represented using
matrices provided there is a prescription for converting the hypercubic lattice to
a one dimensional vector,

∑
~y G(t, ~y; t, ~y) ≈ 1

Nr

∑Nr
r=1 ξ

†
r(~y)×G(t, ~x; t, ~y)× ξr(~x).

Noisy sources can also be used to determine the quark line connected part.
This technique is called the ‘one end trick’. For Dirac matrix K the noisy-source
solution vector φ is defined as Kφ = ξ. Hence the solution vector can be written
as φ(t, ~x; t′) =

∑
~y G(t, ~x; t′, ~y)ξ(~y) which we use to produce an estimate for the

correlation function,

1

Nr

∑

~x,r

φ(t, ~x; t′)rΓφ
†(t′; t, ~x)rΓ̄ =

1

Nr

∑

~x,r,~y,~z

G(x; t′, ~y)ξ(~y)rΓξ
†(~z)rG

†(x; t′, ~z)Γ̄

(7.28)

=


∑

~x,~y

G(x; y)ΓG(y;x)Γ̄


+

1

Nr

∑

~x,r,~y,~z

G(x; t′, ~y)ξ(~y)rΓξ
†(~z)rG

†(x; t′, ~z)Γ̄︸ ︷︷ ︸
~z 6=~y

(7.29)

≈


∑

~x,~y

G(x; y)ΓG(y;x)Γ̄


+N3

v |G(x; t′, ~y)||G(x; t′, ~z)|︸ ︷︷ ︸
~z 6=~y

1

Nr

∑

r

〈ξ′〉r (7.30)

the bar on the second term of the last line denotes the average of the product of
propagator elements under the condition ~z 6= ~y. The second term on the last line
gives an estimate of the error in the quantity G(x; y)ΓG(y;x)Γ̄.

7.4 Improvements using Hadamard vectors

Hadamard vectors allow for incremental improvement of the quark line connected
and disconnected contributions to the correlation function. Though this was not
the method that was used to produce our final results, the Hadamard technique
was explored and we did attempt to implement it. I outline some details here
including the advantages of the technique and difficulties.

We define the set of Nv Hadamard vectors to be orthogonal vectors of length
Nv, defined by v†i ·vj = 0 if i 6= j and v†i ·vi = Nv, where · is the inner product. The
set can be constructed by taking the outer product of Zn roots of unity, where n
is a prime factor of Nv. For instance, if Nv = 24 = 23 · 3, then one representation
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of the Hadamard vectors is,

[
1 1
1 −1

]
⊗
[
1 1
1 −1

]
⊗
[
1 1
1 −1

]
⊗




1 1 1
1 ei2π/3 ei4π/3

1 ei4π/3 ei8π/3




=




1 1 1 1 · · ·
1 −1 1 −1 · · ·
1 1 −1 −1 · · ·
1 −1 −1 1 · · ·
...




=




h0

h1

h2

h3
...




(7.31)

where hi are Hadamard vectors. In fact if Nv = 243, then the first 24 vectors
which we have developed above will be the same, just repeated 242 times to fill
the vector. We label these vectors from the top row down as h0, h1, h2.... There
is no unique way to do this mapping onto a three dimensional lattice. A nice
prescription for mapping these vectors is given by hijk = hi ⊗ hj ⊗ hk, where ⊗
is the outer product. The effect on the G(y, y) propagator when including (for
example) h111 is,

∑

~y

G(~y, ~y) ≈ 1

2

[
ξ†0 ×G× ξ0 + ξ†0 · h†111 ×G× h111 · ξ0

]

= ξ†0




G11 0 G13 · · ·
0 G22 0
G31 0 G33

...


 ξ0 (7.32)

where we have represented the multiplication using matrices. The diagonal com-
ponents are the G(y, y) and the off diagonal components in its column (or row)
are the noise due to G(x, y). If we use the mapping of the outer product to apply
the Hadamard vectors, the above solutions only remove nearest neighbour noise
elements along the (0, 0, 1), (1, 0, 0), (0, 1, 0) and (1, 1, 1) directions, this is in fact
the best we can do with only two Hadamard noise sources. To get full removal of
nearest neighbours we need all eight vectors, hijk with i, j, k ∈ {0, 1}, the same as
the interlacing dilution, which I will speak about in the next section. The inter-
mediate steps in the number of Hadamard vectors add additional noise, so only
when a full set of hadamard vectors are used does the noise cancellation produce
good noise reduction.

The advantage of the Hadamard technique is that it can be applied incremen-
tally to remove the noise and it can be used to remove all nearest neighbours. The
solutions already obtained can be used in the improvement processes. The disad-
vantage is it only achieves the same level of error reduction (or better) as a new
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Figure 7.5: Interlacing dilution applied to the noisy source. The unfilled points
correspond to masked values (set to zero) while the filled points are kept at their
original values.

random source if a certain number and combination of vectors is used. This means
we are required to calculate (for a 243 lattice) 2, 8, 27, 56... propagator inversions
per time-slice per configuration to achieve incremental improvement of the propa-
gator. Typically the time cost of previous calculations is almost nothing compared
with the next order of calculations hence there is only a small time saving in using
them.

7.5 Improvements using Interlacing

The interlacing technique was utilised in producing our results and was chosen
for two reasons. The simplicity of its application and that it was already working
correctly in existing code. I outline the specifics below.

If we aim to calculate the G(y, y) components of the propagator with a noisy
source, our estimate of G(y, y) is corrupted by noise caused by the other all-to-all
components G(x, y) for x 6= y, or if we dilute in time, spin and colour, the nearest
spatial components G(~x, ~y) for ~x 6= ~y. If however we calculate the propagator with
a noisy source where nearest neighbours are set to zero, we rapidly reduce the
error associated with our estimate of G(y, y) because the associated propagator
value at a nearest neighbour point will be zero. The interlacing dilution is shown
graphically in Fig. 7.5.

The error in our estimate for G(y, y) is associated with the average value of
G(~x, ~y) ~x 6= ~y and this will be reduced significantly because the nearest neighbours
have the highest values in G(x, y) x 6= y. An estimate of the error on the discon-
nected component is shown as part of Eq. (7.27). In masking nearest neighbours
we lose the estimate for G(y, y) at that point, so our propagator is incomplete,
however if we calculate the solution multiple times shifting the masking to un-
cover all of the orthogonal components produced by the mask Gi(y, y), we can
fully reconstruct an error reduced propagator G(y, y) =

∑
iGi(y, y), by stitching

the solution together. This technique is called interlacing.
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For a lattice which has spatial dimension divisible by 2, the simplest spatial
interlacing can be constructed using propagator solutions from a masked noisy
source. We will assume time, spin and colour dilution. The masking function for
the source is given by,

P (nx, ny, nz) =

{
1 if (nx, ny, nz) mod 2 = (0, 0, 0)
0 else

The offset vectors for the mask are s = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),
(1,0,1), (0,1,1), (1,1,1)}, Pi = P (~n + ~si). To calculate the orthogonal propagator
components Gi(y, y), we need to calculate the G(y, y) components of the propa-
gator with the source Pi · ξ for random source ξ. Hence we solve Kφi = Pi · ξ
for φi, where K is the Dirac matrix. Then we can produce an estimate by
Gi(y, y) ≈ φi · (Pi · ξ∗). The completed estimate for the G(y, y) components is
just the sum of these orthogonal Gi parts; the sum is done element by element,
preserving the structure of the propagator.

7.6 Lattice details

The action we are using is given in Eq. (5.1). This is a small modification to the
standard clover action defined in Eq. (3.10). The clover coefficient cSW has been
computed non-perturbatively for pure QCD, we do not include the QED clover
term.

Simulations are carried out on a lattice volume of size 243 × 48, with one
noise source per configuration. The sea quarks have κ values shown in Tab. 7.1
and charges of eu = +2/3, ed = es = −1/3. The strong coupling was chosen
to be β = 5.50 and the electromagnetic coupling was chosen to be e2 = 1.25,
ten times greater than physical. These choices lead to a lattice spacing of a =
0.068(1)fm [34]. Further details can be found in [34] and [36]. The pion mass is
∼ 435 MeV.

No electromagnetic finite volume corrections have been applied to the results
of this chapter, as all hadrons have zero net charge. QCD finite volume effects
aren’t considered in this exploratory calculation. Only gauge field stout smearing
has been employed, no source or sink smearing was applied. We chose this because
it is difficult to understand what smearing means when all the spatial elements of
the lattice already have sources on them. Further analysis needs to be undertaken
to ensure a random noisy source makes sense (does what it is supposed to do) after
smearing is applied. We look forward to comparing results to this slightly more
complicated case.
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# # of conf. β e2 V κu, + 2/3 κd, − 1/3 κs, − 1/3
1 2000 5.50 1.25 243 × 48 0.124362 0.121713 0.121713
2 1000 5.50 1.25 243 × 48 0.124374 0.121713 0.121701
3 1000 5.50 1.25 243 × 48 0.124400 0.121713 0.121677

Table 7.1: Summary of lattice details.

7.6.1 Ensemble selection

The chosen κ values provide an insight into the π0–η–η′ system near the SU(3)
symmetric point. Ensemble 1 was tuned to correspond to the SU(3) symmetric
point, where the point was defined as the set of κ which produced, M2

uū = M2
dd̄

=
M2

ss̄ = X2
π (connected quark line only). This was achieved with reasonable accu-

racy, where the M2
uū is actually slightly higher than the X2

π while M2
dd̄

is slightly
below X2

π. Ensemble 1 has exact U-spin symmetry; the d and s quarks are iden-
tical. In this situation we would expect three distinct mass eigenvalues from the
system, with the lowest state having composition π0

U = 1√
2
(dd̄ − ss̄). The differ-

ence in energy between the lowest state (π0
U) and the next highest state (ηU) is

generated by both the quark mass difference between the u and the d, s quarks
and the charge difference. More pragmatically, the mass difference is generated by
the difference in Muū and Mdd̄. If we had obtained the symmetric point using def-
inition M2

uū = M2
dd̄

= M2
ss̄ = X2

π exactly, then there should be no mass difference
between the bottom two states π0 and η.

The κ values of the other two ensembles were chosen to try and determine the
electromagnetic part of the mass difference between these two lowest states. This
mass splitting can be considered the QED component of the anomaly. If we had
achieved the Dashen scheme symmetric point, then ensemble 1 should correspond
to this electomagnetic part, however it isn’t quite at the right point. To obtain an
estimate of this splitting, ensemble 2 and 3 were chosen by reducing the u quark
mass by δmu and increasing the s quark mass by the same amount, δms = −δmu,
while the d quark mass is held fixed, δmd = 0. This ensures we remain on the
δmu + δmd + δms = 0 line. The position of these points are shown in Fig. 7.6.

Assuming the lattice ensembles are at or very close to the symmetric point in
the Dashen definition (refer to section 4.6) we can use this path to get a good
estimate of the π0–η mass splitting generated by the electromagnetic symmetry
breaking. At leading order in SU(3) symmetry breaking, the effective field theory
Lagrangian including only symmetry breaking terms has the form,

LSB = M2
0 tr(φφ) + b1tr(φφ∆m) + cEM4 tr(φφQ2) + cEM5 tr(φQφQ) + cEM6 (tr(φQ))2

(7.33)
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mumd

ms

constant d mass

U-spin

physical point

Figure 7.6: The position of the ensemble quark masses, represented graphically
using δmu + δmd + δms = 0. Ensemble 1 is the circular point at the centre of the
triangle where the U-spin and constant d lines intersect. Ensemble 2 and ensemble
3 are the triangle and square points respectively along the constant d line.
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where ∆m = diag
(
δmu 0 −δmu

)
and Q = diag

(
+2/3 −1/3 −1/3

)
and

φ = φaλa for Gell-Mann matrices λa, and pseudoscalar fields φa for a ∈ {1, 2, ..., 8}.
Under our Dashen scheme definition in chapter 5, M2

uū−M2
dd̄

= 0.0001317(37)
at the symmetric point (δm = 0). In this calculation the coefficients have been
corrected for unphysical αQED using Eq. (5.12), hence on our lattice we should
expect M2

uū −M2
dd̄

= 0.001615(45) at ensemble 1, however we have M2
uū −M2

dd̄
=

0.00243(14), approximately one and a half as large as the Dashen Scheme defi-
nition. Using α = 1.1703(47) from Tab. 5.2, we estimate that the correction of
our simulation point is 4δµu = (0.00243− 0.001615)/1.1703 = 0.0006964 if it was
implemented under the prescription ∆m = diag

(
2δµu −δµu −δµu

)
.

Including this correction in the above Lagrangian Eq. (7.33), the mass terms
of the pseudoscalars can be determined by taking two derivatives with respect to
the fields (one of the particle and one of the anti-particle) which produces,

M2
π+ = M2

0 + b1(δmu + δµu) + cEM4

M2
K+ = M2

0 + b1δµu + cEM4

M2
K0 = M2

0 − b1(δmu + 2δµu)

M2
η± = M2

0 +
2

3
cEM6 ± 2

3

√
3b2

1δm
2
u + 3b1cEM6 δmu + (cEM6 )2

+ δµu(9b2
1δµu + 9b2

1δmu + 6b1cEM6 ) (7.34)

where we have defined K0 to have no electromagnetic component. Along the path
δmd = 0, the Muū = Mss̄ point should correspond to a minimum in the mass curves
of η+ and η−. While the electromagnetic component of the splitting is defined at
a point when δµu = δmu = 0, hence M2

η+
−M2

η− = 4
3
cEM6 .

7.6.2 Improving the signal

Noise in the signal of the π0–η–η′ system primarily originates in the disconnected
component of the correlation function. To obtain an accurate estimate the dis-
connected component we need a significant increase in statistics. This is normally
achieved by determining an estimate for the self-to-self propagator G(x;x), to get
the most out of each configuration. In this study we use noisy Z2 wall sources to
determine this estimate, as wall sources are the fastest method in producing an esti-
mate of G(x;x) and have been proven to be successful [91, 92, 93, 94, 85, 86, 96, 69].
Noisy sources produce only an estimate of the self-to-self propagator G(x;x), and
introduce an error in G(x;x). These errors can be reduced using dilution and in
this study we employ spin, colour and time dilution, as well as a spatial dilution
of the nearest neighbour elements using interlacing, as described above. While
the disconnected part is calculated on each time-slice, the connected part is only
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calculated (using the one-end trick) once per configuration from t = 0 to all other
time-slices. This saves on inversions, as the connected part is not the component
of the analysis that contributes the most noise.

7.7 Results

Once we have obtained estimates for the propagators, we calculate the correlation
functions of the flavour diagonal states, which populate the correlation matrix,
CO(t) of Eq. (7.20). Using the symmetry of the forward and backwards propagating
states in the time dimension we double the statistics of CO(t). We diagonalise
the matrix CO(t)−1CO(t + δt), where δt = 1, to produce C(t)−1C(t + δt)4. The
eigenvectors for the diagonalisation are only determined at a single time, teig and
these vectors are assumed to diagonalise the correlation matrix, CO(t) for all later
time slices. We chose the time teig = 4.5 because it is the latest time where the
η′ state is well resolved. We take the latest time that gives good resolution (to
at least three significant figures) of the state vector, which is approximately the
resolution required to determine the mixing. This choice is a compromise between
noise in the disconnected part and excited state contamination.
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Figure 7.7: Ensemble 1: (a) Effective mass plot of the neutral psuedoscalar mesons.
(b) Effective mass plot of the energy difference between the two lowest states of
the neutral pseudoscalar mesons.

Taking the negative log of this diagonalised matrix C(t)−1C(t+δt), we produce
effective mass plots. The eigenvectors from the diagonalisation, v give the flavour

4Note this defines an effective mass point at t+0.5 when δt = 1.
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Figure 7.8: Ensemble 2: (a) Effective mass plot of the neutral psuedoscalar mesons.
(b) Effective mass plot of the energy difference between the two lowest states of
the neutral pseudoscalar mesons.
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Figure 7.9: Ensemble 3: (a) Effective mass plot of the neutral psuedoscalar mesons.
(b) Effective mass plot of the energy difference between the two lowest states of
the neutral pseudoscalar mesons.

composition of each state. The effective mass plots are shown in Fig. 7.7a, Fig. 7.8a
and Fig. 7.9a showing all three states on each ensemble. We always name the
energy eigenstates in these plots π0, η and η′ in energy order irrespective of the
state composition. We see in the figures that we have not obtained a good estimate
of the η′, but that at the time of diagonalisation teig = 4.5 the states are well
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Figure 7.10: The π0–η system at the symmetric point, fit using Eq. (7.34). The
fit was obtained from mass splittings of the particles using K0 to fix the mass
constant M2

0 . With this in mind, the π0 data points and the K0 points are fixed
to the fitting lines, and the other masses are shifted to ensure the splittings are
properly represented.

resolved. The states are not completely free of excited state contamination at this
time.

As we are at the SU(3) symmetric point, we would expect the connected parts
of the η′ (under the assumption it is a singlet) to add up approximately to the
same number as at the physical point. The anomaly should also be generated in a
similar way to the physical point. Hence, we expect the η′ to have approximately
(within two standard deviations) the physical η′ mass on all three ensembles. Using
the lattice spacing a = 0.068(1) fm, we can determine that our estimates for the
η′ at t = 5.5 are in agreement5with the physical η′ mass (within two standard
deviations) and that the π0 and η are close to the π+ mass of 442 MeV.

The ratio of the two lowest energy states of the diagonalised matrix C(t)−1C(t+
δt) were used to produce an estimate for the mass splitting between these states.
Fig. 7.7b, Fig. 7.8b and Fig. 7.9b show the mass splitting between the lower two
states. The uncertainty on the points is significantly smaller than the for the η′

5Though we admit that the signal is not of sufficient quality to give an estimate of the η′

mass, as a reality check, the result does not seem to be completely erroneous (does not disagrees
with the physical mass).
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in the corresponding figure (a). This is because the π0 and η receive only a small
contribution to their mass from the disconnected term and this partially cancels
when we take the difference of their masses. These mass differences, together with
estimates for π+, K+, K0, are then used to fit the coefficients in Eq. (7.34). The
fit to these points is shown in Fig. 7.10.

In this plot the fit is obtained from the mass splittings while the overall mass
M2

0 in Eq. (7.34) is obtained from the K0 mass. When we plot the data points,
the π0 and K0 have been fixed to their respective fit lines, and the remaining data
points are determined by their mass splittings. This allows us to compare data
points from the different ensembles constructively with each other and the fit.

The dotted vertical lines correspond to the centre of the three regimes on the
plot. The right most dashed line is the point where the Mdd̄ = Mss̄. It corresponds
to the data points of ensemble 1. Here the Muū is heavier than the other flavour
diagonal states. The eigenvectors near this line correspond most closely to U-
spin states. The centre dashed line corresponds to Muū = Mss̄ degeneracy, where
the Mdd̄ is lighter than the other flavour basis states. Near this line, the states
correspond most closely to V-spin, however because the degeneracy is between
two heavier quarks, the lightest state is the ηV = 1√

6
(uū + ss̄ − 2dd̄). This line

corresponds to the minimum, which is located at δmu = −0.0004706, and the
difference between π0 and η at this point is 0.00263(31) in lattice units. The
left most dotted line corresponds to the Muū = Mdd̄ degeneracy, where Mss̄ is
heavier. States near this line most closely correspond to isospin states. The
electromagnetic splitting is determined when δmu = δµu = 0 and is given by

Mη − Mπ0 = 4
3

cEM6

Mη+Mπ0
= 0.554(78) MeV after correcting for unphysical αQED

using Eq. (5.12).

The eigenstates of each of the ensembles are shown in Tab. 7.2 in flavour basis
and in Tab. 7.3 in the three SU(2) symmetry bases, U-spin, V-spin and isospin.
These tables support our interpretation, where most of the states in Tab. 7.3
have a probability of greater than 98% to be as prescribed above. This shows
that the flavour diagonal meson masses Mqq̄ (connected quark line only) can be
useful in determining the state behaviour, and hence are a good measure of flavour
symmetry breaking within the system.

As you can see in Fig. 7.10 the masses of the π0 and η, rather than being
straight lines, turn a corner (called an avoided level crossing) at the Muū = Mss̄

point. This sort of behaviour is only possible for flavour-neutral states because
their flavour composition is not fixed. The change in the mass trajectory of the two
lowest eigenstates corresponds to a reorganisation of state composition. The states
change along our path; the lowest energy state transitions from π0

U = 1√
2
(dd̄− ss̄)

to ηV = 1√
6
(uū+ ss̄− 2dd̄) to π0 = 1√

2
(uū− dd̄). The higher energy state changes

from ηU = 1√
6
(dd̄+ss̄−2uū) to π0

V = 1√
2
(uū−ss̄) to η = 1√

6
(uū+dd̄−2ss̄). Along
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Basis 〈qq̄
∣∣π0
〉2 〈qq̄ |η〉2 〈qq̄ |η′〉2

Ensemble 1 uū 0.000(1) 0.6849(24) 0.3151(24)
dd̄ 0.500(1) 0.1576(12) 0.3424(12)
ss̄ 0.500(1) 0.1576(12) 0.3424(12)

Ensemble 2 uū 0.167(76) 0.537(76) 0.2962(30)
dd̄ 0.646(18) 0.000(18) 0.3540(17)
ss̄ 0.187(62) 0.463(62) 0.3498(19)

Ensemble 3 uū 0.5994(95) 0.1142(84) 0.2864(49)
dd̄ 0.3950(12) 0.2600(12) 0.3448(21)
ss̄ 0.0055(27) 0.6256(54) 0.3688(46)

Table 7.2: The energy eigenstates in the flavour basis. Note that in the top row,
energy eigenstates are labelled π0, η and η′ based solely on their energy not their
state composition, with π0 corresponding to the lowest energy, then η then η′.

our δmd = 0 trajectory, the Muū = Mss̄ point is the closest to SU(3) symmetry. We
know this because at the SU(3) point, the mass difference between the two lowest
states is zero. As the states head towards the SU(3) point the energy difference
between them must reduce. Additionally, we would expect the u and s quark to be
equally present in these two lowest states when Muū = Mss̄, hence the derivative
of the π0 and η masses with respect to δmu along the δmd = 0 path should be zero
at this point.

A similar reorganisation is expected near the physical point, when u and d
quarks are approximately mass degenerate. Consider the trajectory δms = 0,
δmu = −δmd around a point of exact isospin symmetry Muū = Mdd̄

6where Mss̄ �
Muū. At an exact isospin symmetry point, both states have an equal amount of
u and d quark, hence along the path the masses of the π0 and η to leading order
do not change. The exact isospin point corresponds to an extrema in the π0 and
η mass trajectories. With this in mind, the analysis in Fig. 7.10 can be viewed
from a different perspective. This plot can also characterise the δms = 0 path,
as at our starting point (ensemble 1) the d and s quarks are degenerate. Under
this assignment of names, the minimum and turning point in the plot occurs when
Muū = Mdd̄. Though the size of the level repulsion may change, the general shape
remains the same near the physical isospin point.

Near the physical point, as we move away from the exact isospin symmetry, the
reorganisation of states will change the lower state, π0, to have either more u or d
quark component. The higher energy state η will be effected in the opposite way.

6This definition of isospin symmetry is only ’exact’ for the π0–η–η′ system, and not generally
for all hadrons because of the symmetry breaking generated by the charges. Exact isospin
symmetry for all hadrons can only be guarrenteed in the charge degenerate limit.
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Basis, φ 〈φ
∣∣π0
〉2 〈φ |η〉2 〈φ |η′〉2

Ensemble 1 π0
U 1.0000(1) 0.0000(1) 0.0000(1)
ηU 0.0000(1) 0.999623(83) 0.000377(83)
η′U 0.0000(1) 0.000377(83) 0.999623(83)

Ensemble 2 ηV 0.999(23) 0.000(23) 0.000489(84)
π0
V 0.000(23) 0.999(23) 0.00112(20)
η′V 0.00046(23) 0.00114(28) 0.9984(27)

Ensemble 3 π0
T 0.9838(53) 0.0148(53) 0.00136(32)
ηT 0.0145(52) 0.9841(53) 0.00142(42)
η′T 0.00169(42) 0.00108(31) 0.99722(69)

Table 7.3: The energy eigenstates in the exact SU(3) basis Eq. (7.17), where the
basis states are aligned with U-spin, V-spin or isospin “T”. Note that in the top
row, energy eigenstates are labelled π0, η and η′ based solely on their energy not
their state composition, with π0 corresponding to the lowest energy, then η then
η′.

The π0 would have a higher d quark component when Muū > Mdd̄. This would
occur if the quark masses are the same, but the u quark has double the electric
charge of the d quark. In the case Muū < Mdd̄, one would expect the π0 state to
have a slightly higher u quark component. This case applies to the physical point.

7.8 Summary

We were able to determine the energy difference between π0 and η at three points
in quark mass parameter space (ensembles 1,2 and 3) near the SU(3) flavour de-
generate point. We modelled this system using effective field theory to produce
hadron mass expansions in terms of quark mass and charge. By fitting the model
to the lattice data we were able to determine an estimate for the mass difference
generated by electromagnetic isospin violation under the Dashen scheme definition.

Using the eigenvectors near the SU(3) symmetric point and our model we were
able to infer the behaviour of the states at a point close to the physical point,
where isospin is almost an exact symmetry. In this case the state that mixes
most strongly with the heavy η′ state will shift (continuously) from the up quark
dominated state to the down quark dominated state as we move through the quark
mass degenerate point towards the physical point.

We have also explored the nature of SU(3) flavour breaking within this system.
Definitions of flavour degeneracy in terms of purely quark mass and quark charge
begin to become difficult when both are included. It is interesting to note that the
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degeneracy of quark flavours can be measured by the degeneracy of the flavour-
diagonal mesons Mqq̄ (connected quark line only). The masses of the flavour-
diagonal mesons provide a useful definition of the SU(3) flavour symmetry breaking
in QCD+QED.



CHAPTER 8

Conclusion

Isospin violation is an important effect when considering various physical phe-
nomena, some examples include the flavour decomposition of nucleon structure,
neutrino-nucleus interactions, precision constraints on the CKM matrix and quark
masses. In this thesis I described how we used lattice QCD+QED to determine
estimates of the mass splittings generated by isospin violation. The novel aspect of
these studies being the dynamical inclusion of QED on the lattice, and hence the
inclusion of these effects in our estimates. The QED contribution to the masses is
important when determining isospin violating effects.

We presented isospin violating mass splitting for the octet and decuplet baryons.
The estimates were extrapolated to the physical quark mass using a simplified an-
alytic expansion from the SU(3) point. These are the first lattice estimates of
isospin violating effects on the decuplet baryons which include QED dynamically.
We found that the electromagnetic effects are of a similar size to the strong isospin
breaking effects, producing contributions of approximately ∼ 5 MeV. These elec-
tromagnetic contributions play an important role in the mass splitting of isospin
multiplets.

The major uncertainty in the mass splittings of the light hadron spectrum was
from the electromagnetic effects. In future work on the light hadron spectrum,
improved resolution can be obtained by including more points and conducting a
detailed analysis on the effects of quark source smearing to obtain a better signal
on the correlation functions. Improvements in the strong component would most
likely improve the resolution overall, and this can be obtained by the previously
mentioned methods and by having data closer to the physical point. This reduces
the extrapolation distance of the quark masses, reducing uncertainty especially
in the strong components of the mass splittings. It would also be interesting to

127
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perform partially-quenched simulations on a lattice ensemble with quark masses
near the physical point. In this case the sea quark parameters would not have
to be included. The difference between an analysis at the physical point and our
current analysis may reveal short comings in the current analysis.

We determined the isospin violating mass splitting of the charmed baryon spec-
trum including QED. Ours is the first calculation to include QED dynamically.
We found that the electromagnetic effects were comparable to the strong isospin
breaking effects, contributing at a level of ∼ 5 MeV. Another motivation in cal-
culating the isospin violating mass splittings was to investigate the discrepancy
between the SELEX Ξ+

cc(3520) and the LHCb estimate of Ξ++
cc (3621). The mass

difference is quite large if it is to be attributed solely to an isospin violating effect.
We calculated that the isospin violating effects are quite small, on the order of
5 MeV, and so this discrepancy could not be described through isospin violation.
We investigated if the discrepancy could be explained by hyperfine mass splitting.
Our results showed that the discrepancy could be explained in this way within
our uncertainties. One resolution to the discrepancy may be assigning these two
measurements with different spin.

As future work for charmed spectroscopy, the main goal is to reduce the un-
certainty on the electromagnetic components of the isospin violating splittings, as
these are significant. This would involve using more charge types and expanding
the number of data points we fit to. More generally, the fits to the spectra easily
fall within the large error bars, and reducing the uncertainty in the lattice data
would help constrain these fits better. Reducing these uncertainties may involve
improving interpolator overlap by applying the variational method to quark source
smearing, as well as increasing statistics.

Now that we have produced some estimates of what the charge splittings should
be in the charm spectrum using a fairly conservative method, namely the expansion
of the light quark masses about the physical charm point, it would be interesting to
apply a combined fit using SU(3) or SU(4) points. This can very quickly increase
the number of points to fit to, hence constraining fit coefficients, while (however)
adding uncertainty as to the expansion’s convergence.

We studied the neutral flavour pseudoscalar mesons π0, η and η′ near the SU(3)
symmetric point. We determined how large the mass splitting between π0 and η
would be if it was purely generated by QED effects at the SU(3) symmetric point.
More generally we investigated the state changing behaviour of the π0–η–η′ system
near a point of exact degeneracy. We used the knowledge obtained at the SU(3)
point to infer the behaviour of the states at a point close to the physical point.
We also showed that the diagonal flavour meson masses Mqq̄, though purely lattice
constructions, are a useful way to define SU(3) flavour symmetry breaking for
hadronic systems when including both QCD and QED.
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It would be very interesting to extend this work in lattice QCD+QED to include
the vector mesons ρ, ω and φ at the SU(3) point (where they are stable). The
disconnected contributions of the vector mesons are much smaller than that of
the pseudoscalar mesons, which complies with the OZI rule [88, 89, 90] in the
absence of the axial anomaly and seen in the small mixing angles in lattice QCD
[70, 73]. We would need a significant increase in the signal to attempt to extract
the mass eigenstates. One way to do this is to calculate on a larger volume,
so that our determination of the disconnected part is obtained at more points,
and hence higher accuracy. Using larger volumes increases the computation time
significantly, while also improving the efficacy of the noisy source technique. The
strategy for dilution may need to be reconsidered to help reduce the computation
time. Alternative distillation methods and their variants may prove beneficial, for
example Ref. [73].

Our attempt here to understand state changing behaviour in the π0–η–η′ system
only goes so far in increasing our understanding of these states at the physical
point. As the neutral flavour mesons do not have fixed flavour composition as
quark masses change, the most straightforward way to calculate the masses and
flavour composition is at physical quark masses and charges. This is a rather
long term goal, however, as the time required to calculate propagators is already
significant.

In summary, we produced some of the first results to include QED in calcula-
tion of isospin violating mass splittings, considering octet and decuplet baryons,
charmed baryons and neutral flavour pseudoscalar mesons. While these results
have provided a foundation, further work is needed to more precisely isolate these
splittings.
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APPENDIX A

Minimisation in Nature

The processes of change in Nature are observed to centre around paths that min-
imise or maximise certain quantities. Simple examples of this include a ball rolling
down a hill. The process of change seems to be related to a minimisation of poten-
tial energy. The process of change has been more rigorously developed by the likes
of d’Alembert and others to be the result of local forces, which can be captured
in the framework of Lagrangian mechanics. As the processes of change in Nature
seem to follow the predictions from this area of mechanics and are compliant with
relativity, Lagrangian mechanics is useful in predicting the motions of the particles,
which are the subject of this thesis.

In section A.1 I explain how these local forces can be understood in terms of
Legrangian mechanics, through d’Alembert’s principle. In section A.2 after an in-
troduction to vector spaces I introduce the concept of a functional. In section A.3
I derive the Euler-Lagrange equations, which minimise the functional, and show
how this relates to d’Alembert’s principle. This allows us to understand the con-
cept of the action of a system, S. In section A.4 I generalise d’Alembert’s principle
to special relativity. In section A.5 and A.6 I introduce the concept of the path in-
tegral and how it can be used to predict the states of quantum systems. Finally, in
section A.7 I talk about identical particles and how these act as indistinguishable
alternatives, much like the slits in the double slit experiment.

A.1 D’Alembert’s Principle

The workings of nature are most apparent when we consider forces that result
directly in the motion of particles. Certainly, Newton’s theories of motion are
correct in the regime he conceived them. Using their transparency, I will explain
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their connection to Lagrangian mechanics and expand these classical ideas to a
relativistic regime.

The following proof is derived from [97]. A virtual displacement is defined as
a thought experiment that tests the effect of a change in the configuration of a
system. Such a change is instantaneous. Consider a system in equilibrium. Each
particle in this system has a zero net force applied to it, Fi = 0 where the index
denotes a particle label. By applying virtual displacements to the particles we
find we produce no virtual work and so

∑
i Fi · δri = 0. If we separate the forces

into two types, those defined by constraints fi and applied forces F a
i we find,∑

i F
a
i · δri +

∑
i fi · δri = 0. If we restrict the allowable constraints to those that

can do no work (those constraints that act perpendicular to allowed motion), then
we have that the virtual work of applied forces vanish as well,

∑
i F

a
i · δri = 0.

Consider the equation of motion, Fi = ṗi. That is, a force applied to a particle
over time generates a change in the momentum of the particle. Applying this to
our previous analysis, we find

∑

i

(Fa
i − ṗi) · δri = 0 (A.1)

which is called D’Alembert’s principle. The principle is satisfied irrespective of the
coordinate system. In fact, if we can show that the equations decouple, then the
path of each particle can be solved separately. That is (Fa

i − ṗi) · δri = 0 in some
new coordinate system. If we let ri(q1,q2...qn, t) then this change of variables can
be achieved via the following transformation,

δri =
∑

j

∂ri
∂qj

δqj (A.2)

∑

i

Fi · δri =
∑

i,j

Fi ·
∂ri
∂qj

δqj =
∑

j

Qj · δqj. (A.3)

Where Qj are the components of the generalised force. If we assume Newton’s
second law then,

∑

i

ṗi · δri =
∑

i

mir̈i · δri (A.4)

=
∑

i,j

mir̈i ·
∂ri
∂qj

δqj (A.5)

=
∑

i,j

d

dt

(
miṙi ·

∂ri
∂qj

)
δqj −miṙi ·

d

dt

(
∂ri
∂qj

)
δqj (A.6)

=
∑

i,j

d

dt

(
mivi ·

∂ri
∂qj

)
δqj −mivi ·

∂vi
∂qj

δqj (A.7)
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Where vi = dri
dt

=
∑

j
∂ri
∂qj

∂qj
∂t

+ ∂ri
∂t

. Using this definition we also find ∂vi
∂q̇k

= ∂ri
∂qk

.

Hence,

∑

i

ṗi · δri =
∑

i,j

d

dt

(
mivi ·

∂vi
∂q̇j

)
δqj −mivi ·

∂vi
∂qj

δqj (A.8)

=
∑

i,j

d

dt

[
∂

∂q̇j

(
1

2
miv

2
i

)]
δqj −

∂

∂qj

(
1

2
miv

2
i

)
δqj (A.9)

Substituting Eq. (A.3) and Eq. (A.9) into d’Alembert’s principle Eq. (A.1) and
letting T =

∑
i

1
2
mv2

i ,

∑

j

{[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
−Qj

}
δqj = 0. (A.10)

If the constraints are holonomic, meaning they can be put in the form f(r1, r2, r3, ..., t) =
0, then the equations of constraint define a solution space that is a submanifold of
the original solution space. If we choose a basis that spans this submanifold and
use these to parameterise our problem, then the only forces that survive are the
projections of the applied forces onto the subspace, so Qa

i − ṗi = 0, by definition.
As such we can find a parameterisation in which the equations decouple. So the
equation simplifies to,

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
−Qj = 0. (A.11)

If the applied forces are derivable from a scalar potential function V , then Fi =
−∇Vi, so Qj =

∑
j Fi · ∂ri∂qj

= −∑i∇iV · ∂ri∂qj
=
∑

j −∂Vi
∂qj

. So,

[
d

dt

(
∂T

∂q̇j

)
− ∂(T − V )

∂qj

]
= 0. (A.12)

If the potential is not dependent on the first time derivative of the generalised
coordinates V (q1, ..., qn, t) then

[
d

dt

(
∂(T − V )

∂q̇j

)
− ∂(T − V )

∂qj

]
= 0 (A.13)

which can be written in terms of the Lagrangian L = T − V ,

[
d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

]
= 0, (A.14)
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this expression is referred to as Lagrange’s equations.
If not all the forces acting on the system are derivable from a potential, La-

grange’s equations can always be written,

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj (A.15)

where L contains the potential of the conservative forces and Qj represents the
forces not arising from a potential.

A.2 Vector Spaces and Functionals

A vector space is a collection of objects (vectors) along with two operators, addition
and scalar multiplication. A vector space is closed under both of these operations
[98]. Let Rn denote the set of ordered n-tuples (x1, ..., xn) of real numbers. This
set is a vector space over the field R when equipped with operators for addition
and scalar multiplication. The set of continuous functions C([a, b]) on interval
[a, b]→ R is an example of an infinite dimensional vector space [99].

Further topology can be induced on this space by defining a metric, a function
that measures the distance between two vectors, and hence defines neighbourhoods
[99]. A metric space is a set X with a function d : X ×X → [0,∞) such that,

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x) ∀x, y ∈ X,
d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X (triangle inequality).

A metric can automatically define a norm for the space. For finite dimensional
vector spaces, the choice of metric or norm does not effect the topology because
each norm or metric can be related to the others via scalar multiplication [98].
That is, for any two norms || · ||a, || · ||b where ||x||a ≤ ||x||b , ∃n such that ||x||a ≤
||x||b ≤ n||x||a. This is not necessarily the case for infinite dimensional vector
spaces.

An inner product is a function that maps two elements in a vector space to
the field on that space [99]. An inner product space is a set X with a map
〈·, ·〉 : X ×X → R called an inner product, such that,

〈x, x〉 > 0 ∀x ∈ X, x 6= 0,

〈x, y〉 = 〈y, x〉 ∀x, y ∈ X,
〈ax, y〉 = a 〈x, y〉 ∀x, y ∈ X and a ∈ R,

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ∀x, y, z ∈ X.
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An inner product induces a norm || · || on X and hence a metric d and a topology
induced by d [99].

A functional maps elements of a space X to the field defined on that space,
hence for some vector space X, F : X → R [98]. A simple example is the max
function on a vector or function.

Often we wish to find extrema of a functional. It is easy to find the extrema
for simple functionals. However it is more difficult to find extrema for integral
functionals, consider for example the functionals

F{y} =

∫ b

a

y(x)dx

F{y} =

∫ b

a

f(x)y(x)dx

F{y} =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

we will tackle this problem in the next section.

A.3 Euler-Lagrange Equations

Consider the fixed end point problem, where one tries to find a path y(x), x ∈
[x0, x1] that minimises a functional F between two end points (x0, y0) and (x1, y1).
Define the functional F : X → R, F{y} =

∫ x1

x0
f(x, y, dy

dx
), where X is the set of C2

(at least two derivatives exist) continuous functions f : [x0, x1]× [y0, y1]× [ẏ0, ẏ1]→
R on variables x, y, dy

dx
[98]. The implicit function theorem states [100]: suppose f

is a Ck map, 1 ≤ k ≤ ∞ from a neighbourhood of (x0, y0) in Rn×Rm into Rm such
that the derivative of the map y → f(x0, y) is invertible at y0. Write c = f(x0, y0),
then there are open neighbourhoods U of x0 and V of y0 and a Ck map g : U → V
such that for every (x, y) ∈ U × V , we have f(x, y) = c if and only if y = g(x).

As such, in a neighbourhood of (x0, y0), y can be parameterised in terms of
x provided f is suitably well behaved. So the space of possible curves is S =
{y ∈ C2[x0, x1] y(x0) = y0, y(x1) = y1} [98]. Suppose we choose a path in S and
perturb it by a function η ∈ H where H = {η ∈ C2[x0, x1] | η(x0) = 0, η(x1) = 0}.
For some ε > 0 we find the new path to be ŷ(x) = y(x) + εη(x). Applying Taylor’s
theorem,

f(x, ŷ, ˙̂y) = f(x, y, ẏ) + ε

[
η
∂f

∂y
+ η̇

∂f

∂ẏ

]
+O(ε2). (A.16)
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So the functional value changes as,

F{ŷ} − F{y} = ε

∫ x1

x0

[
η
∂f

∂y
+ η̇

∂f

∂ẏ

]
dx+O(ε2) (A.17)

We can define a quantity called the first variation by taking the limit as ε→ 0,

δF (η, y) = lim
ε→0

F{ŷ} − F{y}
ε

=

∫ x1

x0

[
η
∂f

∂y
+ η̇

∂f

∂ẏ

]
dx (A.18)

At local extrema, δF (η, y) = 0, ∀η ∈ H. Integrating by parts on the last term in
Eq. (A.18),

δF (η, y) =

[
η
∂f

∂ẏ

]x1

x0

+

∫ x1

x0

η

[
∂f

∂y
− d

dx

(
∂f

∂ẏ

)]
dx (A.19)

=

∫ x1

x0

η

[
∂f

∂y
− d

dx

(
∂f

∂ẏ

)]
dx (A.20)

The last line is achieved by applying the boundary conditions on η, η(x0) = η(x1) =
0. As η can take any form we wish, and at extrema δF = 0, then at extrema,

[
∂f

∂y
− d

dx

(
∂f

∂ẏ

)]
= 0 (A.21)

which are called the Euler-Lagrange equations [98].
Notice it is in the same form derived for Lagrange’s equations Eq. (A.14), which

started from d’Alembert’s principle. Using the result of this section we can now
define a quantity called the action S for systems studied in section A.1. The action
of a system is a functional given by, S =

∫ t1
t0
Ldt, where L is the Lagrangian of the

system and t is time. Minimisation of this functional allows us to determine the
path a body will take between two points t0 and t1 in parameter space.

The minimisation occurs for a fixed end point problem when the Euler-Lagrange
equations are satisfied. However, the Euler-Lagrange equations can even allow us

to predict one or both of the end points. In the above procedure we set
[
η ∂f
∂ẏ

]x1

x0

= 0

because of the requirements on the end points. However, when the end points are
not fixed but we have an appropriate function f which satisfies ∂f

∂ẏ
= 0, then the

Euler-Lagrange equation can be applied. In the case that one end point is speci-
fied, the solution is uniquely determined, otherwise there may be more than one
solution.

A.4 Special Relativity Generalisation

In proving d’Alembert’s principle we assumed Newtonian mechanics, F = mẍ or
p = mẋ, to be the correct theory describing motion. Though at low relative speeds
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Newtonian mechanics is very accurate, if we wish to correctly describe Nature at
high relative speeds we will need to apply special relativity, and this modifies the
Lagrangian L and hence the action S.

Working with the relativistic definition of momentum p = γmv where γ =
1√

1−v2/c2
. The special relativistic pure force law is,

dp

dt
=
dγ

dt
mv + γm

dv

dt
(A.22)

=
dγ

dv

dv

dt
mv + γm

dv

dt
(A.23)

=
γ3v

c2
mv

dv

dt
+ γm

dv

dt
(A.24)

=

(
γ2v2 + c2

c2

)
γm

dv

dt
(A.25)

=
v2 + c2

c(1 + v2/c2)
γm

dv

dt
(A.26)

= γm
dv

dt
(A.27)

Continuing from section A.1 but replacing from Eq. (A.4) till Eq. (A.10) with
the following will produce a Lagrangian which incorporates the relativistic law
Eq. (A.27),

∑

i

ṗi · δri =
∑

i

γmir̈i · δri (A.28)

=
∑

i,j

γmir̈i ·
∂ri
∂qj

δqj (A.29)

=
∑

i,j

d

dt

(
γmivi ·

∂ri
∂qj

)
δqj − γmivi ·

d

dt

(
∂ri
∂qj

)
δqj (A.30)

=
∑

i,j

d

dt

(
γmivi ·

∂vi
∂q̇j

)
δqj − γmivi ·

∂vi
∂qj

δqj (A.31)

Where again we have used the fact that vi = dri
dt

=
∑

j
∂ri
∂qj

∂qj
∂t

+ ∂ri
∂t

, and hence
∂vi
∂q̇k

= ∂ri
∂qk

. We want to turn this into an expression for relativistic kinetic energy.
To that end notice that,

∫
γmivi

∂vi
∂q̇j

dq̇j =

∫
γmividvi (A.32)

= mc2
√

1− v2
i /c

2 (A.33)
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and so applying this idea to both terms,

∑

i

ṗi · δri =
∑

i,j

d

dt

(
γmivi ·

∂vi
∂q̇j

)
δqj − γmivi ·

∂vi
∂qj

δqj (A.34)

=
∑

i,j

d

dt

[
∂

∂q̇j

(
mc2

√
1− v2

i /c
2

)]
δqj −

∂

∂qj

(
mc2

√
1− v2

i /c
2

)
δqj

(A.35)

=
∑

i,j

d

dt

(
∂Ti
∂q̇j

)
δqj −

∂Ti
∂qj

δqj (A.36)

By following the procedure in section A.1, we obtain the same Euler-Lagrange
equation, except with a different definition of kinetic energy. The remainder of
the proof is given in section A.1; by substituting Eq. (A.3) and Eq. (A.36) into
Eq. (A.1) (d’Alembert’s principle) produces Eq. (A.10), but with T = mc2

√
1− v2

i /c
2.

The proof remains the same from that point onward.
We have only derived this in a particular frame, but if the Lagrangian is a

Lorentz scalar (meaning it is invariant under Lorentz transformations) then the
Lagrangian is valid in any frame. We will find in the proceeding sections that this
is the case for simple particle systems.

A.5 Quantum Mechanics and the Path Integral

How does a particle get from a point q(t1) to point q(t2)? If we consider a classical
particle, the path that the particle follows is the one that minimises the action.
In the quantum case, we do not know with certainty where the particle is, and we
do not know with certainty its momentum. We only know the probability that
a particle will be in a certain place or have a certain momentum, if we know its
wave function. In fact, until we probe at the particle, it does not even exist at a
single point. So a unique path does not exist. You might consider that a particle
fluctuates around a central minimised path, or alternatively that all paths are
possible, though not equally likely.

To explain this further, consider the thought experiment given by Feynman
in [101]. Referring to Fig. A.1, at point A we have a source of electrons, at
point B we have a screen with two holes in it and at point C we have a screen
that detects electrons and tells us when and where they landed. The source fires
single electrons. By running the experiment for a time, we can build a probability
distribution of where the electrons land.

In the case where one path is blocked and the other is open we achieve Fig. A.2a
if the top hole is blocked, or Fig. A.2b if the bottom hole is blocked. These are
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Figure A.1: Double slit thought experiment using an electron [101].
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Figure A.2: Plots (a),(b) and (c) show the sort of distribution we would expect if
electrons experienced diffraction or acted as rays, but the slits did not interfere with
each other [101]. Plot (d) is a pictorial representation of what the real distribution
looks like.

both probability distributions which agree with our classical intuition. However if
both holes are kept open we achieve the interference pattern show in Fig. A.2d.
Notice this is not just the sum of the probabilities of the first two graphs as we
would expect classically. Additionally, suppose I were to put a light source on the
right hand side of the screen B, firing along screen B. If these photons allow enough
resolution to determine if an electron came out of one particular hole or the other,
then (whether we actually measure this or not) the distribution at C will be what
we would expect classically for a double slit experiment. That is, simply the sum
of the probabilities of the two single hole experiments. In this way, if we do not
try to resolve which hole the electron went through, it goes through both holes.

In quantum systems it is not generally true that P = P1 +P2, for probabilities
P , because these two choices are not necessarily independent. The above behaviour
is reminiscent of a double slit experiment with light, which uses the concept of
a wave to make sense of the experimental results. In a similar way, the above
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situation can be described by complex valued probability amplitudes φ, where
P1 = |φ1|2, so that P = |φ1 + φ2|2. More generally, consider a countably infinite
number of slits and partitions, the probability amplitude is K(b, a) =

∑N
i=0 φi,

where φi is the probability amplitude for the ith distinct path to get from a to b.
For an uncountable infinite set of paths, (that is a continuously deformable path)
we have

K(b, a) =
∑

all paths

φ[x(t)] (A.37)

where φ is a functional of the set of paths x(t). In such a scenario the screens and
holes are no longer there, however the particle travels along each conceivable path
[25].

Feynman postulated that the probability amplitude should be φ[x(t)] = AeiS[x(t)]/~,
for some constant A where S is the classical action. In the limit that δS is much
larger than ~, we recover the classical path. Furthermore, no particular path is
preferred, as |eiS/~| = 1. Rather the superposition of amplitudes decides the prob-
ability that a particle be at a certain place; this would suggest that all paths are
taken. These motivations do not prove that this is the correct form of the am-
plitude, however the theory gives accurate predictions in experiments, and so the
choice has been validated.

The path integral is normally written in the following notation,

K(b, a) =

∫ b

a

Dx(t) eiS[x(t)]/~ (A.38)

This amplitude can be split into parts by recognising that S(b, a) = S(b, c)+S(c, a)
for some intermediate point c, provided we integrate over this position,

K(b, a) =

∫

xc

∫ b

a

Dx(t)dxc e
iS(b,c)/~eiS(c,a)/~ (A.39)

=

∫

xc

dxc K(b, c)K(c, a) (A.40)

We can continue this process of subdividing the path integral into smaller time
intervals. Suppose we subdivide it into time intervals of length ε to achieve [101];

K(b, a) =

∫

xN−1

...

∫

x1

dx1dx2...dxN−1 K(b, xN−1)K(xN−1, xN−2)...K(x1, a).

(A.41)

In the limit that ε→ 0 the path integral becomes only the straight paths and the
action is a linear function of the Lagrangian,

K(xi+1, xi) = eiεLi(xi,xi+1,ε)/~. (A.42)
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So the path integral can be written as,

K(b, a) =

∫ b

a

Dx(t) eiS(b,a)/~ (A.43)

= lim
ε→0

∫

xN−1

...

∫

x1

dx1dx2...dxN−1

N−1∏

i=0

eiεLi(xi,xi+1,ε)/~. (A.44)

A.6 Dirac’s Formulation

To further motivate the use of the action as the phase factor in the above ampli-
tudes, I will show that the path integral formalism can be derived directly from
non-relativistic quantum theory starting from

〈
qf
∣∣e−i

∫
Hdt
∣∣ qi
〉
. Furthermore, I

will show that the path integral is not just applicable to determining particle posi-
tions, but can be broadened to generic system states. We will follow the derivation
given in [25].

The notation
〈
qf
∣∣e−i

∫
Hdt
∣∣ qi
〉

denotes the probability of the particle position

ending at qf given an initial position qi after time t has elapsed. Here ei
∫
Ĥdt is the

time evolution operator, Ĥ is the Hamiltonian operator and t is time. To begin
we break the integral into small time segments, say N parts,

〈
qf

∣∣∣e−i
∫
Hdt
∣∣∣ qi
〉

=

(
N−1∏

j=1

∫
dqj

)
〈
qf
∣∣e−iHδt

∣∣ qN−1

〉 〈
qN−1

∣∣e−iHδt
∣∣ qN−2

〉
...
〈
q1

∣∣e−iHδt
∣∣ qi
〉

(A.45)

Consider one of these segments and let Ĥ = p̂2/2m + V (q̂), where p̂ is the
momentum operator and q̂ is the position operator,

〈
qj+1

∣∣e−iHδt
∣∣ qj
〉

=

∫
dp

2π

〈
qj+1

∣∣e−iHδt
∣∣ p
〉
〈p |qj〉 (A.46)

=

∫
dp

2π

〈
qj+1

∣∣e−iHδt
∣∣ p
〉
〈p |qj〉 (A.47)

=

∫
dp

2π
e−i(p

2/2m+V (qj+1))δteip(qj+1−qj) (A.48)

=

(−im
2πδt

) 1
2

eim(qj+1−qj)2/(2δt)−iV (qj+1) (A.49)

=

(−im
2πδt

) 1
2

eimδt[(qj+1−qj)/δt]2/2−iδtV (qj+1). (A.50)
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Substituting back into the main expression,

〈
qf

∣∣∣e−i
∫
Hdt
∣∣∣ qi
〉

=

(
N−1∏

j=1

∫
dqj

)(−im
2πδt

)N
2

e
∑N−1
j=0 imδt[(qj+1−qj)/δt]2/2−iδtV (qj+1)

(A.51)

Going to the continuum limit as δt → 0, [(qj+1 − qj)/δt]2 → q̇2,
∑N−1

j=0 →
∫ T

0
dt

and limN→∞
(−im

2πδt

)N
2

(∏N−1
j=1

∫
dqj

)
→
∫
Dq(t). So the quantity reduces to,

〈
qf

∣∣∣e−i
∫
Hdt
∣∣∣ qi
〉

=

∫
Dq(t)ei

∫ T
0 dtL (A.52)

where L = 1
2
mv2 − V (q), which is the Lagrangian for the non-relativistic system.

Generalising to some initial system state I and final state F ,

〈
F
∣∣∣ei

∫
Hdt
∣∣∣ I
〉

=

∫ ∫
dq1dq2 〈F |q2〉

〈
q2

∣∣∣ei
∫
Hdt
∣∣∣ q1

〉
〈q1 |I〉 (A.53)

=

∫ ∫
dq1dq2Ψ†F (q2)

〈
q2

∣∣∣ei
∫
Hdt
∣∣∣ q1

〉
ΨI(q1). (A.54)

If the initial and final states are the ground state
〈
0
∣∣ei

∫
Hdt
∣∣ 0
〉
, it is conventional

to name the quantity Z [25]. This is called the partition function.

A.7 Identical Particles and Spin Statistics

The idea that two alternatives (paths in our previous case) interfere or are in some
way identical (we could not tell which slit the particle went through) is not isolated
to paths. The same is true for fundamental particles and is reflected in how they
interact with one another.

Consider a thought experiment given by Feynman [101]. Referring to Fig. A.3,
in the centre of momentum frame, at points A and B, a particle enters the exper-
imental set up. We have detectors at 90◦ to the beam axis at C and D.

Consider first that the particles are fundamentally different, say a is an α
particle and b is some other nucleus. Then the probability of 90◦ scattering is
|φAB(1, 2)|2 + |φAB(2, 1)|2 = 2p, where the two probabilities are equal so we have
simplified the notation to simply p. In this case, after the experiment we could
look at the particles and determine which particle went where, and hence by not
influencing directly the experiment conducted we have determined which particle
was which. As such the classical prediction for the probability is upheld.

In the case where both particles were α particles, because they are indistin-
guishable in every way much like in the slits in the double slit experiment, the
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BA

Figure A.3: Two particle scattering with detectors at 90◦ to the beam axis [101].

probability of 90◦ scattering is |φAB(1, 2) + φAB(2, 1)|2 = 4p. If it was possible
to determine which particle was which after the experiment, like in the first case
presented, then we would certainly see the same probability as in case 1. By
virtue of the two particles producing the above statistics, we know that they are
indistinguishable (or interfering) alternatives.

Suppose both particles are electrons with identical spin. In interchanging the
electrons there is a phase shift of 180◦ and so if the electrons are identical, the prob-
ability of 90◦ scattering is |φAB(1, 2) + φAB(2, 1)|2 = 0, φAB(1, 2) = −φAB(2, 1).
Particles which conform to this behaviour are called fermions, and obey Fermi
statistics. Particles for which interchange does not alter the phase are called
bosons and are said to obey Bose statistics [101], as the above α particles do.



APPENDIX B

Field theory

The concept that the most fundamental particles in our universe are in every way
identical leads to odd conclusions. It suggests that an electron at one space-time
point is indistinguishable from every other electron (apart from its location and
momentum). This idea is reconciled by the concept of a field. Perhaps there is a
field on which the electron is an excitation, and this field permeates the entirety
of space-time.

In this chapter we develop the rules by which such a concept must abide. In
section B.1 I introduce the concept of plane waves and show that the wave vector
N is a Lorentz invariant. I then explain that particles satisfy the de Broglie’s
equation, hence act like waves. In section B.2 I explain how these matter waves
satisfy relativistic energy conservation when free of potentials, and write down the
Lagrangian and path integral which governs their motion. I also include the more
general case of a non-free matter waves. In section B.3 I solve the path integral
equation for the free case. In section B.4 I use the free field solution to produce
a perturbative expansion to obtain approximate solutions to the non-free path
integral equation.

B.1 Plane Waves

Consider a series of plane disturbances a wavelength λ apart, progressing in a unit
direction ~n = (l,m, n) at speed u relative to an inertial frame S. The equation of
one such plane in S, where the origin in S is at point t0, x0, y0, z0, is given by

l(x− x0) +m(y − y0) + n(z − z0) = u(t− t0) (B.1)

151
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where the plane coincides with the origin at t = t0. Any of the disturbance
planes can then be described by this same equation with an additional Lλ, L ∈ Z
added to the right-hand side of Eq. (B.1). Hence, define Nµ∆sµ = L, where
N = 1

λ
(u/c, ~n) = ν

(
1
c
, ~n
u

)
. Though inertial observers may not agree on where the

planes reside or even their spacing, they can agree on whether a plane is disturbed
or not; that a set of planes does indeed form a set. They can also tell to which
plane another observer is referring. In other words, inertial observes can tell if
planes are in phase. This means that L is Lorentz invariant, and is often called
the phase of a wave. As ∆s is a Lorentz vector, then we have just shown that N
is as well. We call this vector the wave vector.

At the turn of the 20th century, seeking a way to fix his theory on the black body
spectrum [18], Planck suggested that radiation (a wave) was emitted in quanta,
with energy E = hν. Shortly after, Einstein suggested that radiation was emitted,
travelled and absorbed as quanta, as this explained the photoelectric effect. If we
look at p = (E/c, ~p) and N = ν

(
1
c
, ~n
u

)
, we see that the spatial vectors point in

the same direction (the direction of travel), and if E = hν then perhaps p = hN .
De’Broglie later suggested that this relation can be applied to particles, and this
was confirmed when electron diffraction was observed. It is now called de Broglie’s
equation.

B.2 The Klein-Gordon Equation

For any matter wave, the wave function φ(t, ~x) can be decomposed into plane
waves via Fourier decomposition,

φ(t, ~x) =

∫
d4k a(k)e−ik

µxµ (B.2)

where we define p = ~k. By applying the derivative ∂µ to this decomposition
we can see that the momentum operator must be pµ = i~∂µ. If the matter wave
is free of potentials and complies with special relativity, the wave function must
satisfy the dynamic equation p2 = m2

0c
2, where m0 is the rest mass. This implies

−~2∂µ∂µφ = m2
0c

2φ, which is called the Klein-Gordon equation.

In the classical limit, where the Euler-Lagrange equations specify the motion
of the system, we will require that the dynamics of any free field satisfy the Klein-
Gordon equation, as this is the equation that fits with the classical world around
us. One of the simplest Lagrangians which satisfy this is L = 1

2
~2(∂φ)2− 1

2
m2

0c
2φ2,

and the simplest case of this is where φ is a single component field; that is, one
with a single value at each point in space-time. This is known as the free scalar
field Lagrangian.
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The Lagrangian can be generalised to include potentials V (φ) (which includes
derivatives of φ), L = 1

2
~2(∂φ)2 − 1

2
m2

0c
2φ2 − V (φ) which will not satisfy the

Klein-Gordon equation. Quite generally a single component field would satisfy the
partition function,

Z =

∫
Dφe

i
~
∫
d4x 1

2
~2(∂φ)2−V (φ). (B.3)

Terms in the potential that are of the form J(x)φ(x) act like sources and sinks
– we can see this by applying the Euler-Lagrange equations. The function J(x)
tells us where the sources and sinks are [25]. Likewise, terms that are of the form
Mφ(x)2 act like mass terms. Higher order Knφ(x)n mix the local free fields, and
so act like interactions. Typically, the latter two coefficients do not depend on
position.

B.3 Solving the Free Theory

Exact solutions to Eq. (B.3) have not been found, except in the special case where
L = 1

2
~2(∂φ)2− 1

2
m2c2φ2 +Jφ. From this point on we will be working in Gaussian

units c = ~ = 1 and the rest mass m0 will be written as just m. The partition
function Z is then (integrating by parts),

Z =

∫
Dφei

∫
d4x− 1

2
φ(∂2+m2)φ+Jφ. (B.4)

If we change to the discrete version of the path integral with lattice spacing a, the
integrals become sums which reduces all the multiplications to dot products. For
example,

∫
d4xJ(x)φ(x) → a4

∑
i Jiφi [25]. Partial derivatives are discretised, for

example in one direction ∂φ(ka)→ (1/a)(φk+1−φk) = Mkjφj and so
∫
d4xφi(∂2 +

m2)φ → a4φki(MkiMij + m2Ikj)φj = φt · A · φ, for some four-dimensional double
derivative M2. The exact discretised form of A does not really concern us at this
point because we will revert to the continuum very shortly.

We can diagonalise the matrix A by changing variable φ using a linear trans-
formation; by changing variable again we can complete the square. This allows

us to determine the integral using the identity
∫∞
−∞ dxe

1
2
iax2+iJx =

(
2πi
a

)1/2
e−i

J2

2a .
Details can be found in [25], the solution is given below,

Z =

∫
...

∫
dφ1...dφNe

− 1
2
φ·A·φ+iJ ·φ (B.5)

=

(
(−2π)N

detA

) 1
2

e(1/2)J ·A−1·J . (B.6)
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Shifting back to the continuum,

Z = Ce1/2
∫
d4x

∫
d4yJ(x)D(x−y)J(y), (B.7)

= Z(J = 0)eW (J) (B.8)

where C is an unknown constant that is fixed by the sourceless vacuum, Z(J = 0)
and,

W (J) =
1

2

∫ ∫
d4xd4yJ(x)D(x− y)J(y). (B.9)

Since D(x−y) is the inverse of A, we need to find the solution to −i(∂2+m2)D(x−
y) = δ4(x − y). The function D is called the propagator. Using the fact that
δ4(x− y) =

∫
d4k

(2π)4 e
ik(x−y), the solution to D is,

D(x− y) =

∫
d4k

(2π)4

ieik(x−y)

k2 −m2 + iε
, (B.10)

which can be checked by applying the operator i(∂2 +m2).

B.4 Perturbative Field Theory

Though we can not find an exact solution to

Z =

∫
Dφei

∫
d4x 1

2
(∂φ)2−V (φ) (B.11)

we can find solutions to equations of the form,

Z =

∫
Dφei

∫
d4x− 1

2
φ(∂2+m2)φ+Jφφn. (B.12)

We can approximate the full solution by truncated expansions of the exponential.
Consider for instance,

Z =

∫
Dφei

∫
d4x− 1

2
φ(∂2+m2)φ+Jφ+λφ4

. (B.13)

By expanding the exponential e
∫
d4wλφ4(w) = 1+λ

∫
d4wφ4(w)+λ2

∫
d4w1

∫
d4w2φ

4(w1)φ4(w2)/2+
... we can get closer and closer to the exact solution. We can rewrite this in terms
of derivatives of J so that we can use our solution from before,

Z = eiλ
∫
d4w (−i ∂

∂J(w))
4
∫
Dφei

∫
d4x− 1

2
φ(∂2+m2)φ+Jφ (B.14)

= eiλ
∫
d4w (−i ∂

∂J(w))
4

Z(J = 0)e1/2
∫
d4x

∫
d4yJ(x)D(x−y)J(y). (B.15)
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The first order connected correction is,

∼ iλ

∫
d4w(−i)4

(∫
d4yD(w − y)J(y)

)4

. (B.16)

Note for compactness I’ve used the same variable for the four different integrals
over y. For sources that are delta functions at points yi,

∼ iλ

∫
d4wD(w − yi)4 =

y1y2

y3y4

w
(B.17)

Evaluating the correction,

iλ

∫
d4wD(w − yi)4 = iλ

∫
d4w

(∫
d4ki
(2π)4

ieiki(w−yi)

k2
i −m2 + iε

)4

(B.18)

= iλ

(∫
d4ki
(2π)4

ie−iki(yi)

k2
i −m2 + iε

)4 ∫
d4weiw(k1+k2+k3+k4) (B.19)

= iλ

(∫
d4ki
(2π)4

ie−iki(yi)

k2
i −m2 + iε

)4

(2π)4δ4(k1 + k2 + k3 + k4) (B.20)



APPENDIX C

Fermion fields

In the previous chapter we introduced fundamental constraints that fields must
abide by to be congruent with our understanding of the Universe. We introduced
the concept of matter waves and showed that they must satisfy the energy conser-
vation constrains of the Klein-Gordon (KG) equation. The particles in the previous
chapter however, have no additional structure to produce the exclusion and phase
shift properties shown in experiments with fermions. Though historically not de-
rived to solve this issue, the Dirac equation did solve this issue by happen stance.
Principally additional solutions to the KG equation were sought and Dirac’s idea
was to find solutions that also satisfied the linear energy conservation equation
p̂µaµψ = mcψ for constant Lorentz vector aµ.

In section C.1 we derive the constrains on the coefficients aµ which are necessary
so that the Dirac equation can be satisfied. In section C.2 I show that aµ can be a
true Lorentz vector and enforce the covariance of the Dirac equation to determine
the transformations of the field vectors ψ under a Lorentz transformation. In
section C.3 we derive one possible way to write the Dirac Lagrangian and generalise
it to the non-free case. In section C.4 I derive the general form of the ψ fields.
In section C.5 I provide a solution to removing negative energy solutions in the
ψ field general solution by introducing anti-commuting numbers as coefficients.
The anti-commuting coefficients give the fields the fermionic properties we see in
experiments. In section C.6 we determine the free solution to the fermion partition
function by introducing the concept of Grassmann integration.
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C.1 The Dirac Equation

If one could find a free field ψ which satisfied i~∂µaµψ = mcψ Lorentz covariantly
for some coefficients aµ, not dependent on x, then it could be made to satisfy the
Klein-Gordon equation. Under this constraint,

(i~∂µaµ)(i~∂νaνψ) = −~2∂µaµaν∂
νψ = −~2∂2ψ = m2c2ψ (C.1)

In doing this, the cross terms, for example ∂0a
0∂1a

1ψ, disappear. This means

{aµ, aν} = 2gµνI, (C.2)

where I is the identity. The components of the wave function derivative at a
point in space-time seem to have an anti-commuting structure, and this occurs
at all space-time locations. Note that, since only the derivative and ψ depend on
x, Lorentz covariance would suggest if x transforms like Λ and ψ transforms like
S(Λ) that S−1aµS = Λµ

αa
α. More on this later.

Scalar numbers cannot represent an anti-commuting algebra, but an anti-
commuting algebra can be represented by matrices. Matrices do not form a group
under the anti-commutation bracket {}, because this would include the zero ma-
trix, which has no inverse. They do form a group under matrix multiplication,
which includes all the products of aµ and ±I where each aµ appears only once.

We see from the relation in Eq. (C.2) that the first matrix is self-inverse, but
the other matrices produce −I when multiplied by themselves. Suppose however
that {aµ, aν} = 2δµνI. Given the anti-commuting nature of the group, we see that
(a0a1)2 = −a1a0a0a1 = −I, and so we can easily construct the more complicated
gµν structure if we first find a solution to {aµ, aν} = 2δµνI.

The anti-commuting condition states aµaν = −aνaµ µ 6= ν,

det(aµaν) = det(−aνaµ) = (−1)N det(aν) det(aµ) (C.3)

where N is the dimension of the square matrix aν . We can show the last step is
true because the determinant is the product of the eigenvalues of the matrix. This
shows that N must be an even number, and we already know the dimension must
be greater than 1. Ideally we want the smallest matrix to describe the group, so
let’s start with N = 2. From the relation {aµ, aν} = 2δµνI all of the matrices are
self inverse,

(
a b
c d

)(
a b
c d

)
=

(
a2 + bc b(a+ d)
c(a+ d) bc+ d2

)
=

(
1 0
0 1

)
(C.4)

Hence c = d = 0 or a + d = 0. If c = d = 0 then a2 = 1 and d2 = 1 hence

the possibilities are I and σ1 = ±
(

1 0
0 −1

)
. If a + d = 0 then the possibilities
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are±
(√

1− bc b

c −
√

1− bc

)
. The on diagonal components are proportional to the

matrix σ1 in the first case, but as we want these new matrices to anti-commute with
σ1, the components proportional to σ1 need to be zero. Enforcing this condition,

we produce the matrices σ2 = ±
(

0 1
1 0

)
, σ3 = ±

(
0 i
−i 0

)
. If we fix the signs out

of the front of the matrices, we find that they anti-commute. Unfortunately, there
are only three anti-commuting matrices with dimension N = 2, but we need four
to describe our group.

The next smallest matrix is N = 4. Using what we learned from N = 2 we can
quickly construct four matrices that anti-commute and are self inverse,

±
(
σi 0
0 −σi

)
,±
(

0 I
I 0

)
, i ∈ {1, 2, 3} (C.5)

where we have used block notation. There is more than one way to write four
anti-commuting matrices using block diagonal form, the one above is called the
Weyl representation. Another choice is,

±
(
I 0
0 −I

)
,±
(

0 σi
σi 0

)
, i ∈ {1, 2, 3} (C.6)

called the Dirac representation.
Using these (after fixing the sign) and the identity we can generate a matrix

representation for the entire group. These matrices are called Γ matrices. If we set

a0 =

(
0 I
I 0

)
and ai =

(
0 −σi
σi 0

)
(Weyl representation) we produce the relation

{aµ, aν} = 2gµνI. Alternatively using the Dirac representation, a0 =

(
I 0
0 −I

)

and ai =

(
0 σi
−σi 0

)
produces the same group.

For brevity we often write the Dirac equation as i~/∂ψ = mcψ where /∂ =
aµ∂µ. To write down the simplest Lagrangian we need to know how to produce a
Lorentz invariant out of the fields we have been given. To this end, and for further
understanding of ψ we will explore the structure of these new fields ψ, that satisfy
the Dirac equation.

C.2 Covariance of the Dirac Equation

We assumed from the outset that we could satisfy both a constant coefficient aµ

and Lorentz invariance of the Dirac equation. We now need to show that this is
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not contradicted. In the process we will determine how the ψ vector transforms
under a Lorentz transformation. Using the Lorentz invariant condition, we want
to determine how the field ψ transforms under Lorentz transformations.

i~gµνaµ∂νψ = mcψ (C.7)

i~gµνaµΛν
α∂

αS(Λ)ψ = mcS(Λ)ψ (C.8)

i~S−1(Λ)aµS(Λ)gµνΛ
ν
α∂

αψ = mcψ (C.9)

i~S−1(Λ)aµS(Λ)gµνΛ
ν
α∂

αψ = i~gµνaµ∂νψ (C.10)

Which would imply that,

S−1(Λ)aµS(Λ)gµνΛ
ν
α = aβgβα (C.11)

S−1(Λ)aµS(Λ) = Λµ
βa

β (C.12)

By comparing the expansions of the transformations about the identity it can be
shown that if Λ = exp(− i

2
ωµνM

µν), where M are the generators of the Lorentz
group, then S(Λ) = exp

(
− i

4
ωµνσ

µν
)

where σµν = i
2

[γµ, γν ] is the generator for the
spinor transformation. Note that the coefficients ω are shared. This proof is long
and so I do not include it here. As a solution exists, we have shown that there is
no contradiction. It can also be shown that for boosts,

S(Λ) =
γ0/p+m√

2m(p0 +m)
. (C.13)

This proof is also long and so we will not present it here. Using this transformation
we can boost our solutions of ψ from the rest frame.

C.3 Dirac Lagrangian

In order to create the Lagrangian we need to create a Lorentz scalar from the field
ψ. We will need to use ψ† in some way, because to produce a scalar we need an
element from the dual space of ψ. To find the equation that governs ψ† consider,

i~/∂ψ = mcψ (C.14)

−i~∂µψ†a†µ = mcψ† (C.15)

Using the Dirac representation for the Γ matrices as previously, a0 = a†0 and

a†i =

(
0 −σ†i
σ†i 0

)
. However, σ†i = σi and so a†i = −ai = a0aia0; more generally
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a†µ = a0aµa0. So we can rewrite the ψ† Dirac equation as,

−i~∂µψ†a0aµa0 = mcψ† (C.16)

−i~∂µψ†a0aµ = mcψ†a0 (C.17)

−i~∂µψ̄aµ = mcψ̄ (C.18)

The ψ† field transforms like S†, however looking at the form for S = eiωµνσ
µν

,
S satisfies S†a0 = a0S−1. Hence, we can create a Lorentz scalar by ψ̄ψ. By
making the Lagrangian, L = ψ̄(i/∂ −mc)ψ we produce a Lorentz invariant. The
Lagrangian can be verified using the Euler-Lagrange equations, which produce
the Dirac equation for both fields correctly. This is the simplest Lagrangian that
produces such a result for a free field. The Lagrangian can be generalised to the
non-free case by adding a potential term, L = ψ̄(i/∂ −mc)ψ + V (ψ, ψ̄).

C.4 Four Component Spinors

Let’s look a little closer at the equation we have produced and try to determine
what ψ looks like. The field ψ has four components, but these are not Lorentz
components, the vector is a module of the group of Γ matrices. It is not obvious
from inspection how the four components of the field are related;

i~∂0a0ψ = −i~~∇ · ~aψ +mcψ. (C.19)

To get a better idea we will take the limit ~p = 0, where in this limit ~p = i~~∇. The
Dirac equation reduces to,

i~a0
∂ψ

∂ct
= mcψ (C.20)

If we choose the set of Γ matrices in the Dirac representation, then it is clear
the two upper components decouple from the lower two components, so we write

ψ =

(
η
χ

)
. Hence, we get two uncoupled differential equations,

i~
∂η

∂t
= mc2η, (C.21)

−i~∂χ
∂t

= mc2χ. (C.22)

Solving these equations we produce, η = e−imc
2t/~
(
α
β

)
, χ = eimc

2t/~
(
κ
ν

)
for

constants α, β, κ, ν. This is pretty clearly not Lorentz invariant, as we don’t have
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a product of Lorentz vectors producing the scalar in the exponential; in fact we
only have part of a known scalar k · x. Additionally we are looking for plane wave
solutions for the free Dirac equation. This can be remedied without changing the

result, by replacing the solution with ψ = e−ikx
(
η
0

)
and ψ = eikx

(
0
χ

)
, which are

plane waves.
The solutions seem to fit into two distinct classes. Solutions with eikx seem to

be negative energy solutions (which is a little absurd), while e−ikx have positive
energy solutions. We want to see if we can determine the form of the solution
away from the rest frame. Plane wave solutions (free particle solutions) that are
not restricted to the rest frame will satisfy the Dirac equation. Hence, for positive
energy solutions, (/p − m)u(p, η) = 0 and for negative energy solutions, (−/p −
m)v(p, χ) = 0. However this means that u and v are only functions of momentum,
and there is only one relation involving p which the particles satisfy apart from the
Dirac equation; the Klein-Gordon (KG) equation. These solutions are proportional
to relations which result in the KG equation upon applying the Dirac equation.

These are u(p, η) = C(/p + m)

(
η
0

)
e−ikx and v(p, χ) = C ′(/p − m)

(
0
χ

)
eikx. Of

course, in the ~p = 0 limit the solutions reduce to the rest frame solutions. As such
we can fix the constants,

u(p, η) =
(/p+m0)

E/c+m0c

(
η
0

)
e−ikx (C.23)

v(p, χ) =
(/p−m0c)

E/c−m0c

(
0
χ

)
eikx (C.24)

Where I’ve explicitly written m0 to make it clear this is the rest mass.
The general form of ψ can be written as the sum of plane wave solutions,

ψ(x) =

∫
d4k

(2π)4
[α(p, η)u(p, η) + β(p, χ)v(p, χ)] (C.25)

ψ̄(x) =

∫
d4k

(2π)4

[
α†(p, η)ū(p, η) + β†(p, χ)v̄(p, χ)

]
(C.26)

for coefficients α and β. Since ψ has four components and the vectors η and ξ
are related to the spin vectors of quantum mechanics, these vectors are called four
component spinors.

C.5 Vacuum Energy

What may have set off alarm bells in the above derivation is negative energy
solutions. How can one have negative energy, can this make sense and apply to
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the real world?
To this end let us see if our vacuum energy makes sense. Starting from the

Dirac equation, i~∂0a0ψ = −i~~∇·~aψ+mcψ pre-multiply by ψ̄ to produce a scalar
which is proportional to the vacuum energy. If we set the normalisation ψ†ψ = 1;

H =

∫
d4k

(2π)4
[α†ū+ β†v̄][α(−/p+ γ0p0 +m)u+ β(/p− γ0p0 +m)v]. (C.27)

By using the identity (/p − m)u = 0, then taking the Hermitian conjugate and
commuting the γ0 ū/p = mū, similarly we find that v̄/v = −mv̄. We can also use

the identity ūγµu = pµ

m
ūu, v̄γµv = pµ

m
v̄v. We’ll also take the normalisation ūu = 1

and v̄v = −1, and using the rest frame we show v̄u = ūv = 0 which is a Lorentz
invariant equation. So we find,

H =

∫
d4k

(2π)4
α†αū(−/p+ γ0p0 +m)u+ β†βv̄(/p− γ0p0 +m)v (C.28)

=

∫
d4k

(2π)4

E2(p)

m
(α†(p, η)α(p, η)− β†(p, χ)β(p, χ)). (C.29)

If α(p) or β(p) are non-zero, then we have effectively excited a mode at a
given momentum, with positive or negative energy respectively. The coefficients
α† and β† destroy modes with positive and negative energy. However, the above
Hamiltonian does not make much sense; it does not have a minimum. It says that
I can create as many positive modes as I want, as long as I also create the same
number of negative modes. But the u and v modes work in different spaces, so the
negative modes v do not destroy u, they destroy v̄. It would be better if we only
created positive modes and only destroyed positive modes in the two solutions, as
this makes physical sense. Such a thing could occur if we could change the order
of the negative energy solution, so v̄ came before v. This can be achieved, in a
way, by making {β†, β} = 0, meaning they are anti-commuting numbers. This
abstracts the order of the processes from the physical calculation of the matrix
elements, which we wish to remain the same. Of course, we also have to apply
anti-commutation relations for {α†, α} = 0, because if we were to change the order
of ū and u, the process would be put in terms of negative energy. The Hamiltonian
becomes,

H =

∫
d4k

(2π)4

E2(p)

m
(α†(p, η)α(p, η) + β(p, χ)β†(p, χ)) (C.30)

By interpreting things this way, we must create positive energy before we can
destroy it and we no longer have to worry about negative energy. The anti-
commutation of the field coefficients gives the fields the fermionic property, as
we see in experiments. Our Hamiltonian now has a minimum energy as well.
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C.6 The Path Integral for Dirac Fields

We would like to write down the path integral for Dirac fields like so (setting
c = ~ = 1),

Z =

∫
DψDψ̄ei

∫
d4xψ̄(i/∂−m)ψ−V (ψ,ψ̄) (C.31)

However we have not properly defined what an integral of ψ would mean, given its
anti-commuting coefficients. For such anti-commuting quantities we introduce the
Grassmann algebra. For Grassmann numbers ξ, η, we have the conditions η2 = 0
and ξη = −ηξ. The Taylor series of any function truncates exactly to f(η) =
a + bη for regular numbers a, b. Grassmann integrals obey the rule

∫
dη f(η) =∫

dηf(η + ξ), hence
∫
dηbξ = 0 which only holds if

∫
dηb = 0. The product of

two Grassmann numbers is a normal number, so in general
∫
dηη = 1, where the

choice 1 fixes the normalisation of η [25]. One can consider
∫
dη to represent

the size of the set in the direction η. Two very helpful identities we obtain are∫
dη
∫
dη̄eη̄aη =

∫
dη
∫
dη̄(1 + η̄aη) = a and

∫
dη
∫
dη̄eη̄Aη = detA.

We can now confidently write the partition function with ψ, ψ̄ understood to act
like Grassmann numbers, and the integrals over them to be Grassmann integrals.
For spinor sources η, η̄,

Z(η, η̄) =

∫
DψDψ̄ei

∫
d4xψ̄(i/∂−m)ψ+η̄ψ+ψ̄η (C.32)

If we discretise and set K = −(/∂ + im), and complete the square to get ψ̄Kψ +
iη̄ψ+iψ̄η = (ψ̄+iη̄K−1)K(ψ+iK−1η)+η̄K−1η, then following the same procedure
as for the scalar field we find,

Z(η, η̄) = C ′det(K)e
∫
d4x

∫
d4yη̄(x)(−/∂−im)−1η(y) (C.33)

Then the solution to (−/∂ − im)S(x− y) = δ4(x− y), is simply,

S(x− y) =

∫
d4p

(2π)4

ieip·(x−y)

/p−m+ iε
. (C.34)



APPENDIX D

Yang-Mills Gauge theory

In chapter B and chapter C I outlined what rules quantum fields, which make up
fundamental particles, obey when they are not acted upon by potentials. Using
perturbation theory and the free theory solution, we produced approximate (per-
turbative) solutions for non-zero interacting potentials V . As we will use Quantum
Electrodyanmics (QED) and Quantum Chromodynamics (QCD) to study hadron
bound states, in this chapter I will discuss the interaction terms, or potentials, in
the Lagrangians of these field theories which allow particles with electric charge
(QED) and colour charge (QCD) to interact. I approach this topic in the broad
sense of Yang-Mills theories because QCD and QED have many similarities. Es-
sentially they are the same type of force, except QCD has an SU(3) gauge group
while QED has a U(1) gauge group. I give more detail on these particulars in
chapter 2. In this chapter my goal is to describe what a Yang-Mills type gauge
theory is and derive the partition function for this class of interacting field theories.

In section D.1 I introduce the concepts of a gauge field and determine the
kinetic term for the gauge field which satisfies the gauge symmetry. In section D.2
I state the free action for the Yang-Mills gauge theory, rearrange the terms in
the Lagrangian and attempt to find an integral solution to the partition function.
However, complications arise when attempting to invert to produce the propagator.
In section D.3 the inversion complication is resolved by gauge fixing the theory.
We determine the full partition function and propagators for the gauge field and
ghost propagator.
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D.1 Yang-Mills Non-Abelian Gauge Theory

The gauge principle states that under some transformation, φ → φ′ the action
remains invariant. In such cases, there is not a unique solution for φ but rather
a class of solutions. Furthermore, if we have one of the solutions we can generate
the rest using the transformation.

Suppose for some complex N component scalar field, L = ∂φ†∂φ − m2φ†φ +
V (φ†, φ), the Lagrangian is invariant under some SU(N) transformation U . A
Lagrangian with such a symmetry would always have φ and φ† occurring in pairs in
each potential term. This is called a global symmetry, because the field component
at each space-time point is transformed by the same matrix U .

Yang and Mills proposed a deeper symmetry [20]. Suppose the same N compo-
nent field was invariant under an SU(N) transformation, but possibly a different
element of SU(N) at each point in space-time U(x). This is called a local sym-
metry, as the field can transform independently at each local space-time point x.
For potential terms with no derivative this follows easily, with some constraints.
For derivative terms we get ∂µφ → ∂µ(U(x)φ) = U [∂µφ + (U †∂µU)φ. Hence,
the term (U †∂µU)φ must cancel with some other term in the Lagrangian. To
develop this term, we introduce the concept of a covariant derivative Dµ. It is
defined so that Dµφ(x) → U(x)Dµφ(x) and we can write its form generally as
Dµφ(x) = ∂µφ(x)− iAµ(x)φ(x), where Aµ(x) is called a gauge field. By using the
φ transform we can construct how Aµ transforms: Aµ → UAµU

† − i(∂µU)U † =
UAµU

† + iU∂µU
†.

Before continuing, let us learn a little about the field Aµ. Firstly, the field
Aµ leaves the action invariant under the transformation U = eiθ·T , with T a the
generators of SU(N). We consider the infinitesimal transformation to be sufficient
in describing this transformation, as consecutive applications of this produces any
element in the group. Hence, we are letting U ≈ 1 + iθ · T and,

Aµ → Aµ + iθa[T a, Aµ] + ∂µθ
aT a. (D.1)

There are several interesting facts that we should know about the fields Aµ.
They are N × N matrices. Aµ − A†µ = 0, can be shown to be gauge invariant,
hence we can take Aµ to be Hermitian. The trace of Aµ is gauge invariant, hence
we can set Aµ to be traceless. As T a are also traceless, they span the space hence,
Aµ = aaµT

a. Note, the scalar fields aaµ make up a Lorentz vector. T a are also
orthogonal under the trace operation, Hermitian and self-inverse. The generators
T a satisfy [T a, T b] = ifabcT c, for structure constants fabc. Hence we can write,

Abµ →Abµ + iθaadµ[T a, T d] + ∂µθ
aT a (D.2)

=Abµ − fadcθaadµT c + ∂µθ
aT a. (D.3)
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Right multiplying by T b and taking the trace of both sides produces,

abµ → abµ − fadbθaadµ + ∂µθ
b. (D.4)

The gauge field Aµ is also a field, and hence in free space should also satisfy the
KG equation. However thus far our Lagrangian does not have a kinetic energy term
for the field Aµ which would involve (∂A)2 in some way. We would also desire this
new term to be gauge invariant. This is most easily determined using differential
forms. Let Bµ = iAµ, then B = Bµdx

µ is a 1-form. The gauge transformation in
this notation is,

B → UBU † + UdU †. (D.5)

Note d acts on anything to the right of it in a given term. The quantity we
want is something like the 4-form (dB)2. As such let us look at the 2-form dB
transformation,

dB → UdBU † + dUBU † − UBdU † + dUdU †. (D.6)

It does not transform how we would like, seemingly we only want UdBU † so
that when we square we get something that is at least covariant with the group
transformation. The only other 2-form we can add is B2, which transforms like,

B2 → UB2U † + UBdU † + UdU †UBU † + UdU †UdU †. (D.7)

Noting that UU † = 1 and UdU † = −dUU †, hence

B2 → UB2U † + UBdU † − dUBU † − dUdU †. (D.8)

Now the terms in the B2 transformation cancel many of the terms in the dB
transformation, dB + B2 → U(dB + B2)U †. The square of this transforms in the
same way. Hence, define the Yang-Mills field strength tensor as F = dB +B2. In
more explicit terms

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (D.9)

We can also put this in terms of the scalar component fields abµ by right multiplying
Fµν by T b and taking the trace, F b

µν = ∂µa
b
ν−∂νabµ+fadbaaµa

d
ν . Finally, the kinematic

term we add to the Lagrangian is − 1
2g2 tr (FµνF

µν), for coupling constant g. The
full Yang-Mills Lagrangian is,

L = Dφ†Dφ−m2φ†φ− 1

2g2
tr (FµνF

µν) + V (φ†, φ, ∂µφ
†, ∂µφ,Aµ, ∂A). (D.10)
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D.2 Quantising the Yang-Mills Lagrangian

Let us work with just the gauge field part of the Lagrangian, L = − 1
2g2 tr (FµνF

µν).
In terms of component fields,

S(aa) = −1

4

∫
d4x(∂µa

a
ν − ∂νaaµ)(∂µaνa − ∂νaµa) (D.11)

+ 2g(∂µa
a
ν − ∂νaaµ)fabcaµb a

ν
c + g2fabcfadeabµa

c
νa

µ
da

ν
e . (D.12)

Note the component index in latin letters does not have an up and down index
convention, it has only been placed opposite to the Lorenz index for clarity and
convenience. Also, I have normalised [T a, T b] = 1

2
δab, and redefined A→ gA. The

kinematic term on the first line can be rearranged using integration by parts to
give (dropping the component index for convenience),

S(aa) = −1

4

∫
d4xgµαgνβ(∂µaν∂αaβ − ∂µaν∂βaα − ∂νaµ∂αaβ + ∂νaµ∂βaα) (D.13)

=
1

4

∫
d4xgµαgνβ(aν∂µ∂αaβ − aν∂µ∂βaα − aµ∂ν∂αaβ + aµ∂ν∂βaα) (D.14)

=
1

4

∫
d4x(aν∂µ∂

µaν − aν∂µ∂νaµ − aµ∂ν∂µaν + aµ∂ν∂
νaµ) (D.15)

=
1

2

∫
d4xaν(g

µν∂2 − ∂µ∂ν)aµ (D.16)

Taking the remaining terms as parts of the potential, the partition function is then
given by,

Z =

∫
DAei

∫
d4x 1

2
tr[Aν(∂2gµν−∂µ∂ν)Aν]+V (A) (D.17)

At this point we would normally discretise the path integral and solve the
free theory, which involves inverting the matrix between the two A fields, Qµν =
(∂2gµν−∂µ∂ν). However, applyingQ to the derivative of a scalar field Λ, Qµν∂νΛ(x) =
0. Hence, the null space of the matrix Q is non-trivial and the matrix has no in-
verse.

D.3 Gauge Fixing Yang-Mills

The nature of the gauge fixing problem is surprisingly mundane [25]. The matrix
between the two fields in the partition function, the part we would normally invert
to produce the propagator, has no inverse. This means that the matrix is not
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linearly independent, or rather its null space is not trivial. In other words, if we
were able to parameterise using less dimensions the problem would not have arisen
at all.

As a concrete example, consider the integral
∫∞
−∞ dAe

−A·K·A for A = (a, b) and

K =

(
1 0
0 0

)
. The integral becomes

∫∞
−∞

∫∞
−∞ dadbe

−a2
, which is not finite and

does not make much sense. The problem is fixed by including the delta function
δ(b− ξ). This inclusion does not depend on ξ and gives us a finite answer to the
initial problem we wanted to know, but had posed incorrectly.

In field theory we wish to do this same thing. Suppose we had the integral I =∫
DAeiS(A), where the action S is invariant under some transformation, A→ Ag.

These transformations form a group. Our goal is to transform the coordinates so
that we factor out this freedom (or null space), I =

(∫
Dg
) ∫

DA′eiS(A′), which
will give us a unique solution to the inverse. If the group is compact it will also
give us a finite answer, if it is not then we have separated the infinite part from the
rest of the integral. This factorisation of the group integral will also occur at the
vacuum level, Z(0), and hence in any measurement it will cancel out, rendering the
total answer finite. A good example of this procedure is I =

∫
dxdyeiS(x,y), where

S(x, y) is only a function of x2 + y2. By changing variables I = (
∫
dθ)
∫
drreiS(r)

[25].

Now we are in a position to gauge fix the Yang-Mills Lagrangian. The problem
is clear; there are some additive vector field directions for the fields ab which are
unconstrained but are integrated over. Hence, we have infinite repeats of the same
dynamics; the same integral is repeated with different gauges. To preserve Lorentz
invariance, it is a good idea to work with Lorentz scalars. So that we do not add
any additional fields, our choices are xµ or ∂µ. We know that a free particle has
constant momentum, hence we use ∂µ,

∂ab → ∂ab − fadb∂µ(θaadµ) + ∂2θb. (D.18)

Now at each space-time point we set ∂ab(x)− σb = 0, where σb is some scalar. In
addition we also require −fadb∂µ(θaadµ)+∂2θb = 0, otherwise ∂ab(x) would be able
to gauge transform away from the fixed value σb. We this for each field ab.

In the below demonstration I will factorise the part of the partition function
that integrates over the gauge freedom. Starting with the partition function for
Yang-Mills theory, Z =

∫
DAeiS(A), then multiply by 1,

Z =

∫
DAeiS(A)

∫
Dθ

δ(−fadb∂µ(θaadµ)+∂2θb)

δ(∂ab−σb)∫
Dθ

δ(−fadb∂µ(θaadµ)+∂2θb)

δ(∂ab−σb)

(D.19)
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Rearranging and evaluating the delta functions,

Z =

∫
DAeiS(A)δ(∂ab − σb)

∫
Dθ

δ(−fadb∂µ(θaadµ)+∂2θb)

δ(∂ab−σb)∫
Dθδ(−fadb∂µ(θaadµ) + ∂2θb)

(D.20)

=

∫
DA′eiS(A′)

(∫
Dθ
)

∫
Dθ′

(D.21)

This implies that our gauge is one of an infinite number of gauges. If we only allow
for paths with ∂ab − σb = 0 and −fadb∂µ(θaadµ) + ∂2θb = 0, simply remove

∫
Dθ

from the top line,

Z =

∫
DAeiS(A)δ(∂ab − σb)∫

Dθδ(−fadb∂µ(θaadµ) + ∂2θb)
(D.22)

and the partition function is now gauge fixed.
Looking at the term on the bottom of Eq. (D.22) we can write,−fadb∂µ(θa(x)adµ)+

∂2θb(x) =
∫
d4y

[
−fadb∂µadµ + ∂2δba

]
δ4(x − y)θa(y). Hence, we let Kab(x, y) =[

−fadb∂µadµ + ∂2δba
]
δ4(x − y), so the denominator can be written like

∫
dθKθ =

1
detK

for matrix K. We can use the Grassmann field identity from section C.6 to
rewrite it in terms of an exponential,

det(K) =

∫
DcDc†eiSghost(c

†,c)

Sghost(c
†, c) =

∫
d4x

∫
d4y c†a(x)Kab(x, y)cb(y)

=

∫
d4x c†a(x)∂2ca(x)− c†a(x)∂µ(fabcacµ(x)cb(x)) (D.23)

Faddeev and Popov derived a rigorous procedure which allows one to gauge fix
non-abelian SU(N) gauge fields [20]. To ensure that a gauge fixing condition with
a functional delta produces the correct normalisation, we need to ensure that the
measure is adjusted; not unlike changing variables in normal integration using a
Jacobian. The form of this correction is obtained by generalising the identity in
discrete n-dimensional vectors [20],

1 =

(∏

i

∫
dai

)
δ(n)(~G(~a)) det

(
∂gi
∂aj

)
, (D.24)

In analogy to this identity (though I will not prove it) the continuously infinite
(functional) generalisation is,

1 =

∫
Dα(x)δ(G(A)) det

(
δG(A)

δθ

)
. (D.25)
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The factorised partition function Z becomes,

Z =

∫
DAeiS[A] =

∫
Dθ

∫
DAeiS[A]δ(G(A)) det

(
δG(A)

δθ

)
. (D.26)

If we set the gauge fixing condition G(aa) = ∂µaaµ(x)− ωa(x) = 0, then

δG(A)

δθ
=

1

g
∂µDµ, (D.27)

and so using the Grassmann integral identity from section C.6, the Faddeev-Popov
determinant is,

det

(
1

g
∂µDµ

)
=

∫
DcDc̄exp

[
i

∫
d4xc̄(−∂µDµ)c

]
, (D.28)

=

∫
DcDc̄exp

[
i

∫
d4xLghost

]
, (D.29)

where Lghost = c̄a(−∂2δac − g∂µfabcabµ)cc.
To tie up some loose ends, the gauge transform is a symmetry of the action, and

so we should not force it on our integral. Instead of a δ we can use e
i

2ξ

∫
d4x tr[(∂A)2],

for some real constant ξ – notice ξ can not be zero. We can think of it as the path
integral definition of a delta function, provided we are integrating over A. This
new condition does not strictly enforce the constraint but suppresses solutions that
violate it. The other advantage is that we fix all the fields at the same time when we
use (∂A)2; taking the trace separates out all the component fields. Another way of
arriving at the same conclusions; because we divide by Z(0) for any measurement,

we can change Z by a multiplicative factor. By multiplying Z by
∫
Dσe

i
2ξ

∫
dx tr(σ2),

we allow an infinite number of gauges centred around ∂ab = 0, Gaussian weighted.
Our gauge fixed partition function becomes,

Z =

∫
DADc†DceiS(A)+iSghost(c

†,c)− i
2ξ

∫
d4x tr[(∂A)2] (D.30)

By looking at the final partition function, we can see the additional terms
that we have added are Lagrange multipliers. Once we determine the constraints
∂ab(x)−σb = 0 and−fadb∂µ(θaadµ)+∂2θb = 0, we can then use Lagrange multipliers
to enforce the constraints. The Faddeev-Popov procedure ensures we get a suitable
Lagrange multiplier, but following the procedure is not required; other Lagrange
multipliers are possible.

Finally, we can write the gauge boson propagator as,

Gab
µν =

∫
d4k

(2π)4

−ieixk
k2

[
gµν − (1− ξ)kµkν

k2

]
δab (D.31)
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and the ghost propagator as,

Kab =

∫
d4k

(2π)4

ieixk

k2
δab (D.32)
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