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Abstract

Cancer is a highly prevalent disease that places a significant economic burden upon soci-

ety. Radiotherapy is commonly utilised as a treatment for benign and malignant tumours.

A fundamental challenge in radiotherapy is delivering a sufficient dose of radiation to

eradicate a tumour while minimizing the dose deposited in surrounding healthy tissue.

Excessive radiation damage to these tissues can result in treatment toxicities that may

have adverse effects on patient quality of life.

Proton therapy offers the potential for increased sparing of normal tissue compared with

X-ray therapy, which is more commonly used in radiotherapy. However, the degree of this

sparing can be highly variable between patients. Furthermore, data from Phase III clinical

trials can quickly become outdated due to the long follow-up times that are required to

observe late effects, together with the rapid evolution of technology. The process of

deciding whether to refer a patient for proton therapy can be complex as a result. In

addition, proton therapy is significantly more expensive as a treatment compared with X-

ray therapy. This suggests that patients who are expected to receive the greatest benefit

should be prioritised. Computer models can offer a possible solution to this dilemma, by

predicting the clinical outcome that may be expected as a result of a given treatment.

In this work, a Markov simulation tool was developed which is capable of producing

such predictions and comparing proton and X-ray radiotherapy treatment plans on an

individual patient basis. The radiobiological effect of a given treatment plan is estimated

in terms of the probabilities of tumour control, radiation-induced injuries and radiation-

induced second cancers. These are combined in the Markov model to efficiently estimate

the clinical outcome resulting from a given treatment plan. This outcome is quantified

in terms of the quality adjusted life expectancy (QALE), or number of quality adjusted

life years (QALYs), which is an adjustment of the raw life expectancy to account for the

effect of time spent with injury or disease. The result is a model that uses several input

parameters to produce a single quantitative output, indicative of the relative quality of a

treatment plan.

The predictions of the model can be affected by uncertainties in the radiobiological model

parameters and uncertainties in dose delivery. The latter can arise as a result of changes

in the target volume relative to the radiation field over the course of treatment. A

consideration of these effects was incorporated into the model, as they have the potential

to influence whether a patient is selected to receive proton therapy.



vi

The cost-effectiveness of a treatment is of particular importance in the current resource

limited healthcare environment. The Markov model was developed to include treatment

costs, including treatment of radiation therapy side effects. An application of the model

to a cohort of base of skull chordoma patients revealed that all patients could be treated

with proton therapy cost-effectively due to the potential for sparing of critical structures.

Base of skull chordoma is typically regarded as a standard indication for proton therapy.

In contrast, in a study of a cohort of left-sided breast cancer patients, it was found that

the majority of patients could not be treated cost-effectively with proton therapy. This

was likely due to the cardiac toxicity rate being particularly low with the deep inspiration

breath hold X-ray treatment technique used for the patients in this cohort, resulting in

no significant advantage from proton therapy.

The developed model has the potential to form the basis of a clinically viable patient

selection tool. However, the model requires external validation before being suitable for

clinical implementation. Due to the limited availability of proton therapy, such a model

may prove useful as Australia prepares to begin treating cancer patients with proton

therapy.
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Chapter 1

Introduction

In 2011, cancer was the leading cause of disease burden in Australia [1]. In 2017 it was

estimated that more than 130,000 Australians were diagnosed with cancer, corresponding

to an average of 367 diagnoses per day [1]. It is likely that this will increase given the

ageing population. Therefore, it is important to ensure access to high quality treatments.

There are several treatment options available for cancer, including surgery, radiation

therapy, chemotherapy and immunotherapy.

1.1 Radiation Therapy

Radiation therapy utilises ionising radiation to damage the DNA in tumour cells, hence

facilitating the eradication of the tumour. High energy X-rays are typically used for this

purpose. Radiotherapy treatments can be broadly classified as either external beam ra-

diotherapy or brachytherapy [2]. These differ in the location of the source of radiation

with respect to the target within the patient. External beam radiotherapy involves a

source at a distance from the patient. Brachytherapy involves placing the source within

the patient, or immediately abutting the patient for skin treatments. It has been es-

timated that 48% of Australian cancer patients should receive external beam radiation

therapy at least once during their treatment [3].

1



Chapter 1. Introduction 2

The primary goal of radiotherapy is to deliver a maximum dose of radiation to the tumour

volume, while minimising the dose to surrounding healthy tissue. A major limiting factor

on the maximum dose that can be delivered to the tumour, and consequently the chance

of a successful treatment, is the tolerance of normal tissue. Depending on the magnitude

and location of the radiation dose received by normal tissue, any damage may be sufficient

to result in treatment side effects. These can have a significant impact on the quality of

life of the patient. Therefore, many techniques are employed in radiotherapy clinics to

minimise the amount of radiation received by normal tissue. This is a rapidly evolving

area of research. For example, newer treatment technologies such as intensity modulated

radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) allow an escalated

dose to be delivered to the tumour volume without increasing the dose received by sur-

rounding healthy tissue. The use of charged particles, such as protons or carbon ions,

rather than photons can also yield superior dose distributions in certain cases.

Prior to receiving a course of radiotherapy, a computed tomography (CT) scan of the

patient is normally used by a treatment planner to develop a treatment plan. While

the primary purpose of this is to determine optimal treatment strategy, it also allows

estimates of the dose that would be deposited in the tumour and in normal tissue to be

obtained.

1.2 Proton therapy

With technological advances, IMRT and VMAT have become the most common treatment

modalities in radiation oncology. However, the use of proton therapy has been becoming

increasingly available in recent years. Proton therapy has the advantage of being able

to significantly reduce the radiation dose that is deposited in tissues outside the tumour

volume. Protons have been used for therapeutic purposes since the mid-1950s [4].
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1.2.1 Physics of proton therapy

A description of the basic physics of proton therapy is given by Khan [5]. Proton therapy

involves a beam of high energy protons that have been accelerated using either a cyclotron

or synchrotron. The more favourable dose distribution of proton therapy compared with

photons can be explained by the difference in the way in which protons interact with

matter. The rate of energy loss of a particle per unit path length in a medium is repre-

sented by the stopping power. The dose absorbed in the medium is related to this energy

loss. The stopping power increases as the particle velocity decreases, with the energy loss

reaching a maximum near the end of the particle range. For protons, the sharp increase

in the deposited dose near the end of the particle range is known as the Bragg peak

(Figure 1.2).

The characteristically narrow Bragg peak is not clinically useful for irradiating tumours

which typically have a much larger physical extent. A spread-out Bragg peak (SOBP) can

be obtained through the superposition of several beams of different energies, as depicted

in Figure 1.2. The energy range is chosen such that the range of the particles in the

highest energy beam is sufficient to reach the distal edge of the target volume, and this

is superimposed on beams of decreasing energy. The result is a more uniform dose over

the tumour region compared with a single beam.

A beam delivery system is necessary to spread the narrow beam to the required field

size for treatment. This system can be either of two types: passive scattering or pencil

beam scanning, which are described by Khan [6]. Passive scattering is where the beam is

scattered using thin foils. For these systems, range modulator wheels are utilised to obtain

a range of energies resulting in the SOBP, however the longitudinal width of the SOBP

is also constant across the field which results in larger doses outside of the target volume

(see Figure 1.1). Range compensators are required for the isodose lines to conform to the

distal edge of the target volume. The range compensators and modulators increase the

number of interactions that the beam undergoes outside of the patient, which increases

the neutron contamination.
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Figure 1.1: Comparison of passive scattering and active (pencil beam) scanning beam
delivery systems. Passive scattering systems result in larger doses outside of the target

volume. Source: [7].

Scanning involves scanning the thin pencil beam over the target volume with magnets.

In this system, range modulation is achieved with energy degraders (objects of variable

thickness which are placed in the path of the beam) at the exit of the accelerator or

using variable energy accelerators. The use of pencil beam scanning is becoming more

common, due to the superior dose distributions achievable compared to passive scattering

[8]. In addition, the flexibility of scanning makes it an ideal technique for the delivery

of intensity modulated proton therapy (IMPT). However, a disadvantage is the greater

sensitivity of scanning to organ motion due to respiration. This effect, known as the

interplay effect, can result in the delivery of a suboptimal dose. Techniques have been

developed to reduce this effect, such as the isolayered rescanning approach of Karder et

al. [9] which involves simulating the effect of motion so it can be accounted for.

Figure 1.2 illustrates the superior dose distribution of a proton beam with a SOBP formed

by several proton beams, compared with a single X-ray beam. In contrast to protons,
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photons are attenuated exponentially in matter resulting in an exponential decrease in

deposited dose with depth. The physical dose deposition properties of protons result in a

conformal tumour dose and close to zero exit dose compared with photons. This makes

it possible to increase tumour dose without increasing dose to normal tissue.

Figure 1.2: Percentage depth dose (PDD) for a 210 MeV proton beam (green), and
several proton beams of different energies resulting in a SOBP (blue). The dose deposi-
tion for a photon beam is also shown for comparison (red). Reproduced with permission

from Michael Douglass.

1.2.2 Radiobiology

The relative biological effectiveness (RBE) of any radiation is the ratio of the dose from

250 kV X-rays required to produce a given biological effect to the dose from the radiation

of interest to produce the same biological effect. While there is uncertainty regarding

the RBE of protons, most clinics adopt a value of 1.1 [10]. Therefore, a 10% greater

physical dose from photons is required to produce the same biological effect as for protons.

This value has been determined through extensive studies and serves only as a rough

approximation for all tissues. It can also vary with the depth of the protons, with higher

values in the distal part of the SOBP [11]. The uncertainty in the RBE is particularly
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problematic considering magnitude of the end of range dose [12]. A misplaced Bragg peak

could result in considerable dose to healthy tissue.

Secondary radiation arising from nuclear interactions both inside and outside of the pa-

tient is also an important consideration in the biological effect of protons [13]. For ex-

ample, neutrons that are produced in these interactions can carry energy a significant

distance from the interaction site. These neutrons have a high RBE and neutrons gener-

ated outside of the patient increase the integral dose.

1.2.3 Availability and cost

While proton therapy can potentially offer a superior dose distribution compared with X-

ray therapy, it is also a more expensive form of treatment with limited availability. This

is particularly true in Australia, where there are currently no proton therapy treatment

facilities and patients must be sent overseas for proton therapy (although as of 2018

several facilities were in the early stages of planning).

The cost of proton therapy is typically estimated to be approximately 2.5 times that of

X-ray therapy [14]. However, it is likely that this ratio will decrease over time. Goitein

and Jermann [15] estimated that the ratio could decrease to 1.7. In some situations, it

may be possible to justify the expense of proton therapy if it is anticipated that it will

lead to a lower cost of treating radiation-induced complications than photon radiotherapy.

1.3 Clinical trials of proton therapy

Clinical trials are an important component of research of cancer treatments. An intro-

duction to the concept of clinical trials of ion beam therapy is given by Cox [16]. Clinical

trials in radiation oncology can be classified as follows:

� Phase I: the safety of a new treatment is tested on a small cohort of patients.

� Phase II: the efficacy of the treatment is tested on a larger cohort of patients.
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� Phase III: randomised control trials (RCTs). The efficacy of the newer treatment

is compared with a standard treatment. These trials are considered the “gold

standard” as valid conclusions can be drawn.

While proton therapy can result in a more favourable dose distribution in a patient com-

pared with X-ray therapy, there is uncertainty as to whether this distribution corresponds

to a significant difference in clinical outcome. There is evidence of improved quality of

life and patient reported outcomes for selected cancers after receiving proton treatment

[17]. However, at the end of 2018 no Phase III clinical trials were able to show the benefit

of protons. However, a number were being conducted that are detailed by Mishra et al.

[18].

Concern has been raised regarding the lack of positive Phase III clinical trials of proton

therapy, recommending that they should be required before proton therapy is adopted

as standard treatment [19–22]. However, others have argued that positive Phase III

clinical trials of proton therapy should not be a requirement [23, 24]. For example, Suit

et al. [23] note that if it were not for the larger cost, then proton therapy would be

adopted as a standard treatment. It has been well established that protons can deliver

an equal or more favourable dose distribution compared with X-rays and hence the only

disadvantage of proton therapy is treatment cost. However, Suit et al. [23] and Goitein

and Cox [24] argue that cost-effectiveness alone is insufficient grounds to justify the need

for an RCT, especially when the expensive treatment will also likely produce the better

outcome. Furthermore, in order for a clinical trial to be morally justifiable, there must

be uncertainty regarding the relative benefit of the two arms of the trial [25], also known

as equipoise. An equivalent or superior dose distribution can be expected from proton

therapy compared to X-ray therapy, and hence it is not possible to ethically assign patients

to arms of a trial. In the opinion of Suit et al. [23], resources would be better allocated

to improving proton therapy treatment.

Dahl [26] has also noted that in the past other technologies in radiation oncology such as

cobalt units and IMRT have not required positive Phase III clinical trials to be adopted

as part of routine clinical practice. Instead, cobalt units were adopted based on improved

modelled dose distributions.
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There are other reasons why RCTs may not be suitable for investigating and quantifying

the relative clinical benefit of protons. A significant challenge for Phase III clinical trials is

that the treatment techniques being compared evolve rapidly and can change significantly

over the time period required to conduct clinical trials. Furthermore, some radiation-

induced injuries take several years to develop. For example, heart disease often occurs 5

years after treatment and can occur up to 20 years later [27]. The development of second

malignancies can have a greater latency period. It is not practical to conduct clinical

trials over time periods of this magnitude as once the results are obtained, they will not

be relevant to the current technology.

Enrolment of patients in these trials is another issue, particularly if health insurance is

a limiting factor. Study biases can result if selected groups of patients are not enrolled

in the proton arm of the trial due to lack of insurance coverage. In addition, Glimelius

and Montelius [22] noted that it is possible that proton therapy can benefit more rare

types of cancers which would make it difficult to recruit sufficient members for a trial in

a reasonable time frame.

It is apparent that Phase III clinical trials may not be appropriate for determining whether

the superior dose distribution of proton therapy translates to a clinical benefit. Further-

more, the magnitude of any clinical benefit is likely to be highly variable between patients.

In addition, the limited availability of the treatment suggests that it should be prescribed

preferentially to patients who are expected to receive the greatest benefit compared with

X-ray therapy. The result is oncologists being presented with a challenge when deciding

whether to refer a patient for proton therapy.

1.4 Model-based patient selection for proton therapy

As discussed in Section 1.3, deciding which patients to treat based on the results of

Phase III clinical trials of proton therapy may not be the best approach. An alternative

approach is to use evidence-based mathematical models to provide predictions of clinical

outcomes. The concept of model-based patient selection was proposed by Langendijk et

al. [28]. The approach aims to select patients to receive proton therapy based on the
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predicted clinical outcome relative to the clinical outcome of X-ray therapy. Specifically,

the clinical benefit is estimated in terms of the normal tissue complication probability

(NTCP), that is, the probability of radiation-induced injury. The method was proposed

as a means of introducing proton therapy into the Dutch health care system, in lieu of

evidence in the form of RCTs. The model is discussed in more detail in Section 2.1.1.

The limitations of the approach are that there is no consideration of treatment failure or

of radiation induced secondary malignancies.

1.5 Motivation and thesis structure

1.5.1 Motivation

Compared with X-ray therapy, proton therapy has the potential to reduce radiation treat-

ment complication rates in selected groups of patients. However, it is also significantly

more expensive and has limited availability. Therefore, it is important to identify pa-

tients who are likely to experience an improved clinical outcome if treated with proton

therapy. For the reasons discussed in Section 1.3, randomised clinical trials have not

been conducted until recently. This leads to a more challenging treatment referral pro-

cess. Modelling studies may provide an alternative approach to assessing proton therapy

outcomes. As personalized medicine becomes increasingly important, it is advantageous

to quantify the clinical benefit of proton therapy compared with X-ray therapy on an

individual patient basis.

A proton therapy patient selection model has been developed [28] to address the issue of

the limited availability of the treatment in the Netherlands where it has recently become

available. However, there remains potential for alternative, more refined approaches. The

model does not consider the possibility of treatment failure or the induction of radiation-

induced malignancies. The latter is a particularly important consideration given the

expected difference in integral dose between a proton and photon treatment. Furthermore,

it is important to account for the effect of radiation-induced malignancies on the clinical
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outcome of younger patients, as they have a greater remaining lifetime over which to

develop such a cancer.

While proton therapy was unavailable in Australia at the time of writing (early 2019),

construction of a treatment facility in Adelaide was close to commencement. Facilities

in other cities were also in the early stages of planning. In the coming years, Australia

will continue to face the issue of limited availability of this lifesaving treatment. An

evidence-based proton therapy patient selection model can aid in this respect.

1.5.2 Aims of current work

The aim of the current work was to develop a toolkit with the ability to predict the

clinical outcome of a given radiotherapy treatment on an individual patient basis. This

prediction may then be used to assess the optimal radiotherapy treatment strategy for

an individual patient.

The toolkit is based on a Markov model which is a type of stochastic model. These have

been utilised in radiotherapy to predict patient outcomes and are described in more detail

in Section 2.2. The model input is the dose-volume histogram (DVH) data correspond-

ing to a particular patient’s treatment plans, one for proton therapy and one for X-ray

therapy. This data specifies the amount of radiation the tumour volume and each of the

organs at risk receives. The patient age and gender are also necessary inputs.

For a given treatment plan, radiobiological models are used to determine the probabilities

of tumour control, radiation-induced injuries and radiation-induced second cancers. These

are combined in the Markov model into a single metric which is output by the model,

the quality-adjusted life expectancy (QALE). This is an adjustment of the predicted life

expectancy for the effect of treatment complications and is a more holistic representation

of the treatment outcome than simply the NTCP. The difference in QALE between two

treatment plans (one proton, one photon) provides a quantitative estimate of the relative

benefit a patient can expect if treated with proton therapy.

The intended usage of the model is to select patients to receive proton therapy based on

a comparison of predicted QALEs for their proton and X-ray radiotherapy plans. The
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strength of the toolkit is its ability to combine several competing treatment factors (such

as tumour control and complication risk) into a single metric that is indicative of the

quality of a treatment plan. In addition, the toolkit is able to consider any treatment site

and any number of radiation-induced injuries when determining the QALE. While it was

developed to compare proton therapy with X-ray therapy, the toolkit has the flexibility

to compare any two radiation treatment techniques provided a treatment plan can be

provided for each.

In addition to developing the Markov toolkit to select patients to receive proton therapy,

the aims of the current work were to:

1. Incorporate the effect of treatment and model parameter uncertainties on the output

of the tool;

2. Incorporate an analysis of treatment cost-effectiveness into the tool;

3. Given a cohort of base of skull chordoma patients, determine whether this indication

can be treated with proton therapy cost-effectively; and

4. Investigate which patients, if any, would be selected to receive proton therapy from

a cohort of left-sided breast cancer patients.

1.5.3 Thesis outline

This thesis includes several publications, which form the basis of some chapters. Other

chapters have a conventional format.

Chapter 2 provides a review of patient selection methods in proton therapy, Markov

models and radiobiological models. Necessary background information is also provided.

Chapter 3 outlines the first model that was developed, which is based on a Monte Carlo

simulation. The methodology of the development of the model is presented, along with

a demonstration of the output with an example patient. The publication P1 forms the

basis of this chapter.
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Chapter 4 outlines the second model that was developed, where the solution is calculated

analytically, thus providing the exact solution. This approach also results in a significantly

reduced computation time, while producing results that are equivalent to the first model

(for a sufficiently large number of Monte Carlo iterations).

Chapter 5 details the methodology of including treatment and model parameter uncer-

tainties in the model predictions. These uncertainties can potentially impact whether a

patient is selected for proton therapy. The magnitude of these uncertainties are assessed

and the output is demonstrated with an example patient. The publication P2 forms the

basis of this chapter.

Chapter 6 details the incorporation of treatment cost-effectiveness analysis into the tool.

Cost is often used to justify the need for more expensive treatments. The updated model is

applied in a retrospective study to a cohort of base of skull chordoma patients to determine

the cost-effectiveness of treating this indication with proton therapy. This cancer type is

generally regarded as a standard indication for proton therapy. The publication P3 forms

the basis of this chapter.

Chapter 7 describes the application of the toolkit to a cohort of left-sided breast cancer

patients who had proton plans created retrospectively. Breast cancer is not generally

considered as a standard indication for proton therapy. The aim was to determine which

patients, if any, would be selected for proton therapy. The publication P4 forms the basis

of this chapter.

Chapter 8 provides a conclusion of the thesis with a summary of the outcomes of the

research. Directions for future work are recommended.



Chapter 2

Background and Literature Review

2.1 Decision making in radiation oncology

As discussed in Section 1.3, deciding on the best course of treatment for a cancer patient

can be challenging. This is particularly true due to the limitation of data on the late

effects of newer radiotherapy treatments. In addition, there are a number of factors that

must be considered including treatment availability, quality of life and patient preferences

[29]. While it is possible to assess and compare radiotherapy treatment plans visually, it

is difficult to predict the degree to which a difference in dose distribution will affect the

clinical outcome of a patient in terms of disease-free survival. Decision support systems

based on mathematical models can assist in predicting the most likely patient outcome.

In a review of predictive models in radiation oncology, Lambin et al. [29] discussed

the increasing importance of individualised medicine in the current healthcare landscape.

They noted that an important challenge is quantitatively integrating clinical, imaging and

molecular data, and that many current prediction models lack assessments of robustness,

reproducibility and clinical utility.

An example of a clinical decision support tool was created by Brodin et al. [30] for

radiotherapy plan comparison for Hodgkin lymphoma. Volumetric modulated arc therapy

(VMAT) plans and 3D conformal plans were compared based on the risk of developing

complications. As the disease can be spread through the body, normal tissue complication

13
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probability (NTCP) models were included for multiple sites, weighted based on their

reliability and applicability. Another decision aid has been developed by Smith et al.

[31]. This tool was based on a Bayesian network and a Markov model and was used to

compare different IMRT treatment plans for prostate cancer. In addition to complication

risks, the tumour control probability (TCP) was also considered in this method.

Demand modelling can also inform clinical decision making in radiotherapy as well as

assist in planning of radiotherapy services. An example was described by Delaney et al.

[32], where the proportion of cancer cases eligible for radiotherapy was estimated using

an optimal radiotherapy utilisation tree based on clinical guidelines and epidemiological

data. It was found that in Australia, there were fewer patients who received radiotherapy

than patients who would have received a benefit from the treatment.

2.1.1 Patient selection strategies for proton therapy

The importance of prioritising patients for proton therapy is discussed in Chapter 1.

Ideally, those who will likely receive the most improved clinical outcome if treated with

proton therapy compared with X-ray therapy should be selected. However, quantitatively

defining clinical outcomes can be challenging. In a review of mathematical modelling for

patient selection in proton therapy, Mee et al. [33] summarised a range of models that

have been developed for this purpose. There are a variety of methods employed, including

discrete event simulations, Markov models and NTCP-based models.

The concept of in silico clinical trials proposed by Langendijk et al. [28] has been intro-

duced in Section 1.4. The aim of the approach is to provide evidence-based medicine in

the absence of data from clinical trials. The approach involves generating a photon plan

and a proton plan for a given patient. The dose to critical structures is calculated from

each treatment plan and, together with validated NTCP models (see Section 2.3.2), is

used to predict the likelihood of toxicity after each treatment. Hence, the difference in

the dose distribution is translated to a difference in clinical outcome, as demonstrated in

Figure 2.1 [28]. If the difference in the expected NTCP exceeds a defined threshold, then

the patient is selected to receive proton therapy.
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Figure 2.1: Demonstration of the translation of the difference in dose between a proton
and photon treatment plan to a difference in normal tissue complication probability
(NTCP), in this case xerostomia. Two examples are presented and it is apparent
that the NTCP difference depends on both the dose difference and the dose region.

Source: [28].

Proton therapy treatments began in the Netherlands in 2018 and this approach of patient

selection has been adopted by Dutch health authorities. In addition, patient participation

in follow-up programs is compulsory, which allows the compilation of valuable research

data on patient outcomes after receiving proton therapy. This is particularly important

to facilitate the validation and refinement of the NTCP models.

The question of whether or not proton therapy should be adopted with the absence of

evidence from Phase III clinical trials has been discussed in Section 1.3. If it is adopted

without such supporting evidence, then the risk is investing considerably in a treatment

that may not improve clinical outcomes. Alternatively, if the introduction of proton

therapy is delayed, then patients may receive sub-optimal treatment. Grutters et al. [34]

analysed this trade-off using the method of real options analysis. This approach can assist

in determining whether a treatment should be adopted, or whether a trial is required.
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The optimal design of a trial can also be indicated in terms of sample size and follow-

up time. For the case of proton therapy, the three options are to adopt the treatment

without trial, adopt with a trial, or delay with a trial. Grutters et al. [34] have found

the benefits of conducting trials to be sufficient to outweigh the costs when comparing

proton therapy with stereotactic body radiotherapy in the treatment of stage I non-small

cell lung cancer. Furthermore, they found that the expected net gain of adopting proton

therapy is greater than that of not adopting it.

Langendijk et al. [28] and Widder et al. [35] also proposed that model-based approaches

can be used for designing clinical trials of proton therapy, in addition to selecting patients

to receive the treatment. Sequential prospective observation cohort studies are suggested

as an alternative to traditional randomised control trials. The procedure of these cohort

studies is as follows:

1. A historical control group is created. Each patient treated before protons were

available (and therefore were treated with photons) has a proton plan created ret-

rospectively. The difference in NTCP between each plan is calculated for each

patient. The historical control group consists of the patients that would have been

selected for proton therapy had it been available.

2. The treatment group consists of the patients selected to receive protons once the

treatment is available using the same comparative planning procedure. The only

difference is that the proton treatment plans are created before the treatment is

delivered.

3. The outcomes of the two groups are compared using analysis procedures similar to

those of traditional clinical trials.

The advantage of this approach is that the issue of ethically assigning patients to different

arms of a clinical trial is removed (this issue is discussed in Section 1.3). All patients

receive a proton treatment course if: (i) a proton treatment is available and (ii) they are

expected to experience an improved clinical outcome compared with the photon treat-

ment. Another advantage is that groups with similar characteristics are defined and biases

are removed. If the groups were not defined carefully in this manner, then the treatment
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group would be compared to all patients who did not receive protons. It is likely that

many of these patients would not experience an enhanced clinical outcome from a proton

treatment and this would skew the results. In this case, a positive result would mean

that patients who would experience no benefit from receiving proton therapy would be

selected to do so, while a negative result would mean that eligible patients would not be

selected. However, the disadvantage of designing a clinical trial using this approach is

that selection criteria may change over time, making it more difficult to compare current

cohorts with historical cohorts.

The Proton Priority System developed by Bekelman et al. [36] aims to compare patients

and select those who would likely receive the greatest benefit if treated with proton

therapy. In this system, each patient is assigned a score which is a weighted sum of

7 domains. These include diagnosis, anatomic site, stage, co-morbidities, age, urgency,

and clinical protocol. There are factors in each of these domains that are assigned a

score between 0 and 10. Higher scores are assigned where a greater benefit from proton

therapy is expected. For example, sites including the base of skull and spine are assigned

10 points, while the brain is assigned 5 points. Higher scores are also assigned to younger

patients and more urgent cases. Proton therapy is more likely to benefit patients with

localised cancers rather than metastatic cancer. The scores and weights were decided by

the Proton Priority Oversight and Advisory Board established by the Roberts Proton

Therapy Centre at the University of Pennsylvania. The board consists of oncologists, a

nurse, a patient representative and a medical ethicist. The best available evidence and

expert opinion are utilised in determining scores and weights. The framework also has

the flexibility to evolve as new evidence and experience emerges.

An important principle of the Proton Priority System [36] is equity. Therefore, a patient’s

score should not be affected by sex, race, geography or insurance status. Bekelman et

al. [36] investigated the association between score and receipt of proton therapy with

insurance status, gender, race and geography. It was found that allocation depended

on insurance status. Furthermore, the disadvantage of this approach is that it is more

qualitative than quantitative compared with the approach proposed by Langendijk et al.

[28].
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As an alternative to individualised patient selection for proton therapy, Jakobi et al.

[37] attempted to identify a subgroup of head and neck patients that would receive a

significantly reduced NTCP if treated with proton therapy rather than X-ray therapy. In

their study, patient-specific NTCPs were predicted using proton and photon treatment

plans for each patient. Subgroups were defined based on primary tumour location. This

allowed groups that would experience a greater NTCP reduction to be identified. The

implication is that comparative planning would not be required for all patients in clinics

with more limited resources.

2.1.2 Cost-effectiveness of proton therapy

Health care represents a significant portion of government expenditure in many coun-

tries. This corresponds to an important investment as the burden of disease is costly for

society. Understanding the cost-effectiveness of treatments is vital to ensuring the most

appropriate and efficient allocation of limited resources. Proton therapy has the poten-

tial to improve quality of life and may even be lifesaving for some patients. However,

as discussed in Section 1.2, it has been estimated that proton therapy is 2.5 times more

expensive than X-ray therapy. In many instances, this cost may be justified if quality

of life can be improved, the cost of treating side effects is reduced, or if the patient is

more productive in society as a result of being disease free. Therefore, it is important to

consider cost-effectiveness when selecting patients for proton therapy. Cost-effectiveness

studies typically involve comparing the costs and outcomes or benefits of two treatments.

Verma et al. [38] identified factors that affect the cost-effectiveness of proton therapy.

These include patient age, risk of toxicity, and tumour characteristics. Proton therapy

is likely to be increasingly cost-effective where tumours are located in close proximity to

dose-limiting organs at risk. Alternatively, it may not be cost-effective to treat tumours

that have poor prognoses with proton therapy as it is unlikely that patients will live long

enough to experience lower toxicity, unless potential side effects will impact significantly

on quality of life or mortality risks. Verma et al. [39] concluded proton therapy to be cost-

effective for paediatric brain tumours, selected breast cancers, locoregionally advanced

non-small cell lung cancer and high risk head and neck cancers. However, it was not
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demonstrated that prostate cancer or early stage non-small cell lung cancer can be treated

with proton therapy cost-effectively in the review.

Lundkvist et al. [40–42] investigated the cost-effectiveness of treating various cancers with

proton therapy. They employed a Markov model to estimate patient outcomes, which

are commonly used in cost-effectiveness studies with medical applications (discussed in

more detail in Section 2.2). The findings of this cost-effectiveness research suggest that

proton therapy can be cost-effective and cost-saving if appropriate patients are selected

to receive the treatment. Childhood medulloblastoma may be treated cost-effectively,

particularly as a result of costs associated with hormone replacement therapy and with

lost productivity due to IQ reduction. Lundkvist et al. [41] recommended that only the

cases where there is a higher risk of growth hormone deficiency and IQ loss with X-ray

therapy would be cost-effective proton treatments, highlighting a need for individualised

patient selection strategies.

Mailhot Vega et al. [43] also developed a Markov model to evaluate the cost-effectiveness

of treating childhood brain tumours with proton therapy with regard to risk of growth

hormone deficiency, and of childhood medulloblastoma specifically [44]. Proton therapy

was found to be a cost-effective treatment for medulloblastoma where there were a wide

range of potential toxicities including coronary artery disease, congestive heart failure,

ototoxicity, gonadotropin deficiency, growth hormone deficiency, hypothyroidism, adreno-

corticotropic hormone deficiency, secondary malignancy, relapse and death. In this study,

the risk of growth hormone deficiency was found to be the most influential factor in de-

termining the cost-effectiveness of a proton treatment. It was subsequently concluded

[43] that patients who have the greatest potential for sparing of the hypothalamus with

proton therapy would be the best candidates to receive the treatment in terms of cost-

effectiveness. Proton therapy could also be cost-saving with increased sparing of this

tissue.

While paediatric and brain cancers are typically regarded as standard indications for

proton therapy, this is not the case for breast cancer. Treating left-sided breast cancer

with proton therapy has been found to be cost-effective but only for selected patients

with a high risk of developing cardiac disease [40]. The Markov model developed by
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Mailhot Vega et al. [45] produced similar predictions to Lundkvist et al. [40] in that

proton therapy was found to be cost-effective for patients who had an elevated risk of

cardiac problems. In addition, it was found that patients with these risk factors who

would receive a mean heart dose of greater than 5 Gy when treated with photons could

be treated with proton therapy cost-effectively, and should therefore be prioritised. The

cost-effectiveness of proton therapy may also increase as a wider range of indications are

identified [42].

Ramaekers et al. [46] analysed the cost-effectiveness of treating head and neck cancers

with swallowing sparing photon and proton therapy. Swallowing sparing treatments for

head and neck cancer were compared considering risks of dysphagia (swallowing difficulty)

and xerostomia (reduced saliva production). If equal survival between the two modalities

is assumed, then proton therapy would be cost-effective for selected patients only.

2.1.3 Summary

Decision making in radiation oncology is an important and complex task. Several factors

must be considered, including patient quality of life and treatment cost-effectiveness.

In the absence of data from Phase III clinical trials of proton therapy, model-based

approaches have been proposed to provide evidence as to the most appropriate use of the

treatment. The limitation of the Proton Priority System [36] is that only clinical variables

are included and there is no consideration of patient-specific dosimetry. The patient

selection strategy employed in the Netherlands [28] and the system proposed by Mailhot

Vega et al. [43] are based on a limited number of NTCP models and provide a quantitative

comparison of treatment plans. These models incorporate effects of individual patient

dosimetry and clinical variables. However, there is no consideration of the effects of

treatment failure or radiation-induced cancers on patient quality of life. Furthermore,

cost-effectiveness, which can be important where a treatment has limited availability and

is provided with public funding, is not typically included in patient selection systems

(with the exception of Mailhot Vega et al. [43]). Cost-effectiveness studies have indicated

that selected patients could be treated cost-effectively. However, many of these studies

have relied on cohort-based estimates of toxicity risks and do not consider the dosimetry
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that is unique to the treatment plans of an individual patient. As a result, there remains

potential for more detailed modelling approaches.

In this thesis, models are developed that include the effects of treatment failure and sec-

ond primary cancer induction on patient quality of life, as well as a range of toxicity

risks. These effects are assessed using patient-specific dosimetry and, collectively, facil-

itate a more complete representation of treatment outcomes. Furthermore, treatment

cost-effectiveness is incorporated into this work to allow the potential benefit of a treat-

ment to be evaluated from an economic perspective. This is particularly important in

the context of healthcare delivery, where resources are often limited. As an additional

enhancement, individualised cost-effectiveness predictions are possible, which are based

on the patient-specific dosimetry resulting from a given radiation treatment plan.

2.2 Markov models

A Markov model, or Markov chain, is a type of mathematical model used to model

randomly-varying systems. A theoretical background of these models is provided by

Grimmett and Stirzaker [47]. An important property of Markov models is the memo-

ryless Markov property whereby future events depend on current events only, and are

independent of past history. The variable of time can be either continuous or discrete.

Discrete-time Markov chains are considered here. At each time point, an event may or

may not occur, based on a given probability.

2.2.1 Theoretical background

Let {Xi}i∈N, where N is the set of natural numbers, be a sequence of discrete random

variables that take values from the finite set S, which is known as the state space of the

chain. Each value of S may be thought of as a state of a randomly changing system. If

x0, x1, ..., xn−1, s ∈ S, then the Markov property can be written as:

Pr(Xn = s|X0 = x0, X1 = x1, ..., Xn−1 = xn−1) = Pr(Xn = s|Xn−1 = xn−1), (2.1)
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for all n ≥ 1. The evolution of a chain with time is determined by transition probabilities,

Pr(Xn+1 = j|Xn = i). These are the probabilities of the system transitioning from being

in state i at a given time to state j at the subsequent time point, for i, j ∈ S. A chain is

said to be homogeneous if:

Pr(Xn+1 = j|Xn = i) = Pr(X1 = j|X0 = i), (2.2)

for all n ≥ 0, that is, the probability of transitioning in one step between two given states

is constant with time. If the transition probabilities are time variable, then the chain is

inhomogeneous.

All transition probabilities may be represented by a |S| × |S| matrix, P, where |S| is the

number of Markov states and each (i, j) element of P is defined as

pij = Pr(Xn+1 = j|Xn = i). (2.3)

Each row of the transition matrix must sum to 1. The values of P change at each time

point for an inhomogeneous chain.

2.2.2 Markov models in radiotherapy

Markov models have been applied in the discipline of radiation oncology [48, 49]. They

may be used to approximate disease progression over a period of time, particularly af-

ter a choice of disease management strategy. Decision support systems are often based

on Markov models. The Assessment of New Radiation Oncology Technology and Treat-

ment (ANROTAT) Project [50] (undertaken by the Tasman Radiation Oncology Group

(TROG)) has developed a framework Markov model to aid the assessment of which

new technologies should be funded by Medicare. The Markov model allows the cost-

effectiveness of technologies to be evaluated, and hence technologies are selected based

on their potential to maximise overall societal benefit.

Sonnenberg and Beck [51] provided a detailed description of the theoretical basis of

Markov models applied to medical decision making. At any given time, a patient is
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assumed to exist in one of a finite number of discrete states. Each state in the state

space describes the health status of the patient. For example, if the patient is disease

free, then they are in the Well state. If pneumonia was present, for example, then they

would occupy the Pneumonia state.

The time period of interest is a portion of the patient’s lifetime. The cycle length is the

period of time between consecutive discrete time points. In medical applications, the

cycle length is typically one year. At the end of each cycle, it is possible for the patient to

transition to another health state. Figure 2.2 shows an example of this process. The series

of these transitions can be modelled using a Markov chain. Due to the Markov property,

the probability of the patient transitioning to another state depends only on their current

state and not on the time spent in any previous states. Markov state transition diagrams

are used to represent the possible transitions between states. A simple state transition

diagram is given in Figure 2.3.

The Dead, or Deceased, state is particularly important as it is the absorbing state. The

patient cannot leave this state and this allows the Markov chain to terminate. The

time horizon is the maximum possible value that the time variable can take. The chain

terminates at this point if the absorbing state has not been reached prior. In this work,

a time horizon of 100 years is used.

An example of a Markov model utilised in radiation oncology is the decision aid devel-

oped by Smith et al. [31] (discussed in Section 2.1), which is based on both a Markov

model and Bayesian network. Another example of a Markov model was developed by

Punglia et al. [49] to simulate the progression of ductal carcinoma in situ after radia-

tion therapy. Two treatment strategies, excision and radiotherapy and excision alone,

were evaluated with the model. The analysis considered local recurrence, breast cancer

mortality and mastectomy risks. The model predicted that radiation therapy resulted in

a slight improvement of disease-free and overall survival compared with excision alone.

However, radiation therapy was also associated with higher probability of mastectomy.

This highlights the importance of including patient preferences in decision tools.

Markov models are also often utilised in cost-effectiveness studies (see Section 2.1.2).

Lundkvist et al. [40] developed such a model to assess the cost-effectiveness treating
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Figure 2.2: State transitions made by a person in a Markov chain until the Dead
state is reached in cycle 6. Source: [51].

Figure 2.3: A simple Markov state transition diagram. There are three states repre-
sented by circles. Allowed transitions are represented by arrows. Where an arrow leads
from a state to itself again, a patient is allowed to remain in that state in consecutive
cycles. Note that recovery from disability is not possible in this example. Source: [51].
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Figure 2.4: A simple decision tree diagram. The decision node is found at the centre.
The outcome nodes are found at the end of the branches representing each strategy.

left-sided breast cancer with proton therapy. Ramaekers et al. [46] (introduced in 2.1.2)

also utilised Markov modelling to investigate proton therapy cost-effectiveness for the

treatment of head and neck cancer.

2.2.2.1 Comparison with other prognosis modelling approaches

Decision tree models consist of three components as illustrated by Figure 2.4 [52]: (i) the

decision node which is the point in time when a choice is made between two treatment

strategies; (ii) the decision strategies which correspond to the branches of the tree; and

(iii) the outcome nodes which are the outcomes of the strategies. For the simple tree in

Figure 2.4, it is not possible to specify when events occur, or for events to occur more

than once. While additional trees could be added to outcome nodes to address this, the

result would be an unacceptably high number of branches. Markov models offer a much

more convenient means of tracking the timing of events, which is particularly important

for estimating prognoses [51].

Discrete-event simulations (DES) differ from Markov models in that they are event ori-

ented rather than state oriented [53]. DES can have the advantage of being able to more

simply model patient histories and competing risks [54]. The time between events is not

necessarily constant in DES. Events may be instantaneous and are not mutually exclusive.

The memoryless property of Markov models means that it is not possible to easily include

patient history without significantly increasing the number of Markov states. However,

the disadvantage of DES is that large datasets are often required which may not always

be available.
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2.2.3 Quality of life concept and utilities

A Markov process can be used to model the life expectancy of a patient by counting the

number of cycles that pass before the Deceased state is reached. However, the quality of a

patient’s life may also be of interest, and this is affected by cancer or injuries arising from

treatment complications. The quality-adjusted life expectancy (QALE) is an adjustment

of the raw life expectancy to account for these factors. To calculate the QALE, each state

is assigned a quality of life (QoL) utility (also known as a QoL weight). The QALE is

given by (2.4), where ti is the total number of cycles the patient spends in the ith state,

ui ∈ [0, 1] is the QoL value for the ith state, and n is the total number of possible states.

QALE =
n∑

i=1

tiui. (2.4)

The QALE may also be thought of as the number of quality-adjusted life years (QALYs)

lived until death. The advantage of the model that has been developed in this work is that

the probabilities of tumour control and of developing complications are incorporated into

a single metric, the QALE, which is used to compare treatment plans. By incorporating

both these factors into the analysis, a more informed comparison can be made between

two treatment plans.

The value of the utility depends only on the associated state and not history of health

state occupation. The Well state has u = 1, Dead has u = 0, and the other states

have a value in (0, 1) [55]. A variety of methods may be used to assign utilities to the

remaining states. For example, Kharroubi et al. [56] used Bayesian Markov chain Monte

Carlo methods and clinical data to estimate utilities that describe a patient’s quality of

life. The Bayesian models also provide uncertainty distributions associated with these

values. The utilities estimated were intended for use in cost-effectiveness analyses [56].

Sonnenberg and Beck [51] also noted that it is possible to enhance Markov models using

time-dependent utility values.
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2.2.4 Summary

Markov models provide a framework for modelling disease progression and patient quality

of life. While they have limitations, these models have advantages compared with other

methods that are applied in prognosis modelling. For example, they may prove useful

where data availability is limited. Markov approaches have been utilised for investigating

clinical outcomes of various radiation treatments, including proton therapy. The results

of these investigations highlight the need to select appropriate patients to receive proton

therapy. Therefore, Markov models may also prove useful when implemented as part of

proton therapy patient selection strategies.

2.3 Radiobiological models

Ionising radiation has the potential to cause damage to biological tissue, specifically

through damaging DNA. A variety of mathematical models exist that relate the radiation

dose to a clinical endpoint. Several of these radiobiological models were incorporated into

this work as dose-dependent transition probabilities in the Markov model. The endpoints

considered included tumour control, normal tissue complications and second malignancies

(radiation-induced). The radiobiological models employed to calculate the probabilities

of these endpoints occurring are introduced and discussed in this section.

Other studies have utilised alternative methods to determine Markov transition probabil-

ities. The transition probabilities in the Markov model utilised by Lundkvist et al. [40]

were estimated based on toxicity and mortality rates available in the literature, rather

than based on patient-specific doses. Smith et al. [31] derived transition probabilities

from a Bayesian network.

Radiobiological models have also been used to compare treatment plans directly, without

using them as input to a Markov model. The proton therapy patient selection approach

proposed by Langendijk et al. [28] involved calculating the NTCP using the dose to a

given organ resulting from a treatment plan, along with other clinical variables. The

NTCP resulting from a photon plan is compared with the NTCP expected with a proton
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plan. Hence, the NTCP is used to quantify the clinical outcome. The disadvantage

of this approach is that this quantification does not consider other factors such as the

induction of second cancers. The advantage of Markov models is that several factors may

be combined to give a single metric that can indicate the quality of a plan.

2.3.1 TCP

In this work, the tumour control probability (TCP) is used in the model to determine

whether a radiotherapy treatment is successful. As a result, it is an important parameter

as it determines the state that a patient begins the Markov simulation in (either Well for

a successful treatment or Cancer for an unsuccessful treatment). The TCP is based on

the linear quadratic (LQ) model [57],

S(D) = exp(−αD − βD2), (2.5)

which gives the fractional number of surviving cells after being irradiated by a certain

dose, D, where α and β are the linear and quadratic coefficients of the LQ model, respec-

tively. In general, TCP models assume that the number of surviving tumour cells follows

a Poisson distribution and that a single surviving clonogen (cancerous cell) is required for

tumour regrowth. Hence tumour control corresponds to all cells being killed. The total

TCP is given as a product over the tumour’s volume elements (or voxels) [58, 59]:

TCP =
∏̀

i=1

P (Di)
vi , (2.6)

P (Di) = exp

(
−exp

(
eγ − αDi − β

D2
i

n

))
, (2.7)

where there are a total of ` voxels, with each having a fractional volume (of the total

tumour) vi that receives dose Di as part of a treatment delivered in n fractions. The

parameter γ = D dTCP
dD

is the normalised dose-response gradient evaluated at D = D50,

the treatment dose D at which 50% of tumours are controlled.



Chapter 2. Background and literature review 29

2.3.2 NTCP modelling

The normal tissue complication probability (NTCP) represents the probability of devel-

oping a radiation-induced injury as a result of treatment. NTCP models are also based

on the dose received by volume fractions of a particular organ. Depending on the prop-

erties of a given organ, it may respond as a serial or parallel organ. However, there is a

spectrum of organ behaviour, with purely serial and purely parallel organs representing

opposite ends of the spectrum. The response of a purely parallel organ, the lung for

example, has a greater dependency on the irradiated volume. For example, if a larger

volume is irradiated, then there will be a greater impact on organ function. In contrast,

response of a purely serial organ, the spinal cord for example, has a greater dependency

on the magnitude of the dose rather than the irradiated volume. The functioning of these

organs can be impaired by irradiation of a small volume. Therefore, NTCP models should

incorporate the effect of organ volume dependency.

2.3.2.1 LKB model

The Lyman-Kutcher-Burman (LKB) NTCP formalism is given by ([60], [61])

NTCP =
1√
2π

∫ t

−∞
exp

(−x2
2

)
dx, (2.8)

with t =
Deff − TD50

mTD50

and Deff =

(∑̀

i=1

viD
1
n
i

)n

,

where TD50 is the uniform dose given to the entire organ that results in 50% complication

risk, m is an organ specific parameter that is related to dNTCP
dD

, n is a parameter that

characterises the volume dependence of the organ’s response to radiation, Deff is the

effective dose, and ` is the number of voxels. For a purely parallel organ, n = 1 and for

a purely serial organ, n = 0.

The parameters in the model are complication-specific. Ideally, these are clinically

founded. An advantage of the LKB model is that there are many published parame-

ters for a wide range of endpoints [62–64]. The Quantitative Analysis of Normal Tissue
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Effects in the Clinic (QUANTEC) data is an important resource for these parameters

[65].

However, a limitation of the LKB model is that patient-specific clinical variables such as

disease history and concurrent chemotherapy are not included. These variables can have

have a significant influence on complication rates.

2.3.2.2 Other NTCP models

Other methods of predicting NTCPs exist. The relative seriality model, for example, is

given by:

NTCP =

(
1−

∏̀

i=1

[1− P (Di)
s]vi
)1/s

, (2.9)

where s = 1 for a purely serial organ, s = 0 for a purely parallel organ, Di, vi and `

have the same meaning as for the LKB model, and P (Di) is given by (2.7). The relative

seriality model is very similar in principle to the LKB model; however, the definition of

the parameters varies slightly.

NTCP models have been developed that depend on both dose and clinical variables

(such as tumour stage, patient age and sex, concurrent chemotherapy). Several such

models have been developed in the Netherlands for several endpoints including xerosto-

mia [66, 67], swallowing dysfunction [68] and tube feeding dependency [69]. These have

been developed through the method of logistic regression to identify which variables con-

tributed to the value of the NTCP. Many of these models have been implemented as part

of the proton therapy patient selection system that has been adopted in the Netherlands

[28].

External validation is important to ensure the reliability of these models. This process

involves comparing the predictions of the model with observed outcomes of a treatment

cohort that is independent of the cohort utilised to develop the model. Several NTCP

models exist have been subjected to this rigorous testing process [70–72].
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2.3.3 Second cancer risk

The second primary cancer induction probability (SPCIP) is the probability of developing

a cancer as a result of the treatment radiation. This is distinct from recurrence or

metastasis of the primary treated cancer, which is referred to as secondary cancer in this

work. This is a particularly important consideration for paediatric patients as radiation-

induced cancers can take several years, even decades, to develop [73]. Therefore, it is more

likely that older patients would be less concerned by the threat posed by these cancers,

while younger patients have a longer remaining life-time over which to develop second

cancers. In addition, younger patients have a greater proportion of proliferating cells,

which are more likely to be in a radiosensitive (more susceptible to radiation damage)

stage of the cell cycle [74]. Younger patients are also more likely to be affected by rare

tumours that are typically close to critical structures in the central nervous system [75].

Therefore, proton therapy is often more appropriate for younger patients than photon

treatments. As a consequence, it is important to consider the effect of second cancers on

patient quality of life when selecting patients for proton therapy.

Comparative planning studies have indicated that proton therapy is associated with a sig-

nificantly reduced risk of second cancers. Examples include patients with liver metastases

receiving proton beam radiosurgery or photon beam radiosurgery [76], and medulloblas-

toma patients receiving spinal irradiations with IMPT (lifetime risk of 4%) or IMRT

(lifetime risk of 30%) [77]. The latter could be explained by the greater risk of second

malignancies associated with IMRT compared with conventional X-ray treatments [78],

[79]. In contrast, observations of second malignancy incidences after proton therapy indi-

cate that the treatment is not associated with a significantly increased risk of secondary

malignancies compared with photon therapy [80]. However, these observations were over

a relatively short follow-up period (median 6.7 years) compared with the time periods

over which these cancers can often develop [73].

Malignant transformation of cells is a stochastic process and usually occurs in the lower

dose region whereas cell death (leading to injury) occurs in the higher dose region. There-

fore, radiation that has been scattered during the treatment delivery is more likely to

result in a second cancer due to the lower dose it delivers [73]. While proton therapy
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reduces the integral dose to a patient, thus reducing the probability of cancer induction

[81], the out-of-field doses are not negligible. This further highlights the need to consider

the risk of second cancers when comparing proton and photon therapies [82].

Timlin et al. [83] developed a model to predict malignant induction probabilities for a

given dose to an individual patient, while considering varying responses of different tissue

types. They proposed that their model could be used for comparing radiation treatment

plans, but noted that validation is required to allow meaningful comparisons.

In this work, the SPICP is based on the model of Schneider et al. [84]. Here, the volumes

that receive a given dose are used to calculate the excess absolute risk (EAR) of cancer

induction for each year after exposure. Note that this is a cumulative probability and

differential probabilities were defined for this work as the difference in EAR between

adjacent years. The EAR for a particular organ at a particular time after treatment due

to radiation exposure is given by (2.10) [84]

EARorg(age) =
1

VT

∑̀

i=1

vi(Di)βEARRED(Di)µ(ageX, age). (2.10)

Here, ageX is the age of the patient at the time of treatment (the time of exposure to

radiation), age is the age of the patient after treatment at the year of interest, VT is the

total volume of the organ, βEAR is the initial slope of the dose-response curve, ` is the

total number of voxels, and

µ(ageX, age) = exp
[
γe(ageX − 30) + γa ln

(age
30

)]
, (2.11)

with γe and γa being the age modifying parameters. The EAR model parameters assume

an age at exposure of 30 years and the age modifying parameters account for this. The

function RED(D) is the risk equivalent dose (RED) mechanistic model which accounts

for the effects of cell killing and fractionation,

RED(D) =
e−α

′D

α′R

(
1− 2R +R2eα

′D − (1−R)2e
α′R
1−RD

)
, (2.12)
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where R is the repopulation/repair parameter, α′ is given by

α′ = α + β
D

DT

dT , (2.13)

and DT and dT represent the prescribed dose to the target volume and the corresponding

dose per fraction, respectively.

The advantage of this model is that it combines data from the low dose region (A-bomb

survivors) with data from the higher dose region (Hodgkin’s Disease patients) to produce

a more reliable prediction in dose regions relevant to radiotherapy patients. In addition,

the effect of radiation treatment fractionation (where the treatment dose is delivered in

small, regular fractions) is incorporated. The limitation is the lack of clinical validation,

which can be difficult due to the long follow-up period required.

2.3.4 Summary

Radiobiological models have the power to quantify the complex relationship between radi-

ation dose and biological effect. Several models have been developed to quantify a variety

of endpoints. However, it is not advisable to implement these models clinically without

proper validation, otherwise a large degree of uncertainty exists regarding the accuracy of

their predictions. Radiation-induced malignancies are a particularly important consider-

ation when comparing photon and proton treatments at the level of individual patients.

Validation of these models can be practically challenging due to the long follow-up pe-

riods required. These uncertainties and limitations will be discussed in the publications

that form the body of this thesis.



Chapter 3

Monte Carlo Evaluation

The publication P1 forms the basis of this chapter.

Austin, A.M., Douglass, M.J.J., Nguyen, G.T. & Penfold, SN. A radiobiological Markov

simulation tool for aiding decision making in proton therapy referral. Physica Medica.

2017; 44:72–82.

3.1 Introduction and motivation

In this chapter, the development of the first patient selection model is described. The

distinguishing feature of this model is that it is based on a Monte Carlo simulation. This

preliminary model served as the basis for future patient selection models. However, this

model is complete and is able to predict the clinical outcome of an individual patient

from a given treatment plan.

The aims of this publication were to introduce the toolkit and to demonstrate the output

with an example patient, thus quantitatively determining whether the patient in question

would benefit from proton therapy.

Technical details relating to the development of this model are also presented in this

chapter, along with the results of the model verification. This verification was carried out

to ensure that the model was behaving as expected.

34
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3.2 Statement of contribution

3.2.1 Conception

The idea to use a Markov model as a tool for patient selection for proton therapy was

first conceptualised by Scott Penfold. All authors contributed to the development of ideas

and methods.

3.2.2 Realisation

The writing of the code and analysis was performed by Annabelle Austin, with advice

provided by Scott Penfold, Michael Douglass and Giang Nguyen.

3.2.3 Documentation

This paper was written by Annabelle Austin. Editing was performed by all authors.
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A B S T R A C T

Purpose: Proton therapy can be a highly effective strategy for the treatment of tumours. However, compared
with X-ray therapy it is more expensive and has limited availability. In addition, it is not always clear whether it
will benefit an individual patient more than a course of traditional X-ray therapy. Basing a treatment decision on
outcomes of clinical trials can be difficult due to a shortage of data. Predictive modelling studies are becoming an
attractive alternative to supplement clinical decisions. The aim of the current work is to present a Markov
framework that compares clinical outcomes for proton and X-ray therapy.
Methods: A Markov model has been developed which estimates the radiobiological effect of a given treatment
plan. This radiobiological effect is estimated using the tumour control probability (TCP), normal tissue com-
plication probability (NTCP) and second primary cancer induction probability (SPCIP). These metrics are used as
transition probabilities in the Markov chain. The clinical outcome is quantified by the quality adjusted life
expectancy. To demonstrate functionality, the model was applied to a 6-year-old patient presenting with skull
base chordoma.
Results: The model was successfully developed to compare clinical outcomes for proton and X-ray treatment
plans. For the example patient considered, it was predicted that proton therapy would offer a significant ad-
vantage compared with volumetric modulated arc therapy in terms of survival and mitigating injuries.
Conclusions: The functionality of the model was demonstrated using the example patient. The proposed Markov
method may be a useful tool for deciding on a treatment strategy for individual patients.

1. Introduction

The use of intensity modulated proton therapy (IMPT) for the
treatment of cancer has become increasingly common in recent years.
The primary advantage of IMPT over intensity modulated radiation
therapy with X-rays (IMRT) lies in reduction of integral dose deposited
in the patient while delivering an equivalent dose to the tumour volume
[1,2]. The disadvantage of proton therapy is that it is a more expensive
form of treatment with limited availability.

The issue of limited availability suggests that proton therapy should
be prescribed for those patients who will benefit most when compared
to treatment with conventional X-ray therapy. However, it is often
difficult to base a treatment decision for a given patient on the results of
randomised Phase III clinical trial data comparing novel and standard
treatments. One of the main issues is the long follow-up times required
for these clinical trials in an environment of rapidly evolving

radiotherapy technology, with results potentially becoming obsolete
shortly after they are gathered.

The concept of in silico clinical trials for proton therapy was pro-
posed by Langendijk et al. [3] to address this issue. Langendijk et al. [3]
suggest the use of normal tissue complication probabilities (NTCPs) as a
discriminator for when a patient should receive proton therapy. Using
validated, evidence-based parameters for the calculation of a given
NTCP, a comparison of values for proton therapy and X-ray therapy is
made. If the NTCP is reduced by a certain threshold value in the proton
plan relative to the X-ray plan, the patient is eligible to receive proton
therapy. A key assumption of this model is that the tumour control
probability (TCP) is equal for both treatments and second primary
cancer induction probabilities (SPCIPs) are neglected. Considering the
difference in integral dose one can expect when comparing an X-ray
treatment plan with a proton treatment plan, the latter assumption
warrants further investigation. This is particularly true for paediatric
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cancers where the patient may potentially live for many years after
treatment. A review of the potential use of radiation-induced cancer
risk predictive models was presented by Stokkevaåg et al. [4]. Another
example of work comparing X-ray and proton therapy (specifically
IMRT and spot-scanning proton therapy), based on NTCP modelling
only was presented by Yoshimura et al. [5].

In the current work we propose an in silico clinical trial model which
accounts for NTCP as well as TCP and SPCIP. To achieve this, a Markov
simulation framework was developed which aims to combine the do-
simetric data from all contoured structures to provide an estimate of the
quality adjusted life expectancy (QALE) resulting from a given treat-
ment plan. A Markov model is a type of stochastic model that is com-
monly applied in medical decision making [6–8]. The International
Society for Pharmacoeconomics and Outcomes Research Modelling
Good Research Practices Task Force has prepared a report outlining
best practices for developing and implementing Markov models in
medical applications [9]. The core quantitative output of the Markov
model presented in the current work is the QALE, which is an adjust-
ment of the raw life expectancy to account for the effect of poor health
on the quality of life of the patient. Therefore, estimating the QALE with
a Markov model can allow a quantitative comparison of treatment plans
at the level of clinical outcome. An example of a Markov model applied
to proton therapy was presented by Ramaekers et al. [10], who de-
veloped a tool for comparing proton and photon treatments for head
and neck cancers based on NTCP models. Xerostomia and dysphagia
were the only two toxicities considered which were assumed to be ir-
reversible after the first six months.

The novelty of the Markov framework presented in the current work
lies in the inclusion of a wide range of NTCPs and also the effects of TCP
and SPCIP on a patient’s quality of life. The induction of second cancers
is an important consideration for the younger patients often treated
with proton therapy. Separate NTCPs and SPCIPs were considered for
various organs at risk (OARs) to allow for a more realistic model, by
distinguishing between the effects of different treatment complications.
Several potential toxicities were included in addition to xerostomia and
dysphagia. As a further enhancement of the work of Ramaekers et al.
[10], all transition probabilities are time-variable in the proposed
model.

As a demonstrative test case, the model was used to estimate the
outcomes for a paediatric base of skull chordoma (BOSCh) patient after
receiving an IMPT and a volumetric modulated arc therapy (VMAT)
treatment. BOSCh is a very rare form of bone tumour that is difficult to
treat with radiotherapy due to the proximity of the spinal chord. In
addition, this type of tumour typically affects younger patients who
have a both a heightened sensitivity to radiation-induced cancer and
longer remaining lifetime over which to potentially develop one. Proton
therapy is seen as an advantageous treatment for this disease as it de-
livers a much smaller integral dose to the body compared with IMRT
[11]. The intention of this test was to demonstrate the capabilities of
the model rather than compare the efficacy of IMRT and IMPT for the
treatment of BOSCh.

In summary, the aim of this work was to develop and present a
Markov framework that included TCP and SPCIP in addition to NTCP
models to estimate the clinical outcome of a proton or X-ray treatment
plan on an individual patient basis. The technical details of the model
are presented in Section 2 with a description of the Markov states,
transition probabilities and model verification. The clinical example
and results are described in detail in Section 3 and a discussion and
conclusion is given in Sections 4 and 5.

2. The Markov model

With a discrete-time inhomogeneous (time-dependent) Markov
chain, the response of a patient to a particular treatment is modelled by
approximating the remainder of the patient’s life as a series of transi-
tions between a finite number of discrete states. The patient can occupy

only a single state at a given time. These states describe the health
status of a patient and include Well, Deceased and the Diseased group of
states (Section 2.1). The course of radiation therapy (either proton or
photon) is the strategy that is evaluated by the model and hence re-
presents a one-time intervention at the beginning of the Markov chain.
There are no subsequent interventions (additional treatments for ex-
ample) in this model.

In a Markov chain, the time period of interest (the patient’s lifetime
in this case) is divided into equal increments, or cycles. The cycle length
for this Markov chain was chosen to be one year as this provided
computational efficiency while allowing the Markov chain to have a
large number of cycles. This is particularly important in the context of
radiotherapy where complications can arise several years after treat-
ment. The model assumes that the patient remains in a particular state
for the duration of a cycle. At the end of each cycle, it is possible for the
patient to transition to another state. An important property of a
Markov process is memorylessness, which in this context implies that
the probability of the patient transitioning to another state depends
only on their current state and not on any previous states. The transi-
tion probabilities can vary with time and may be different for distinct
transitions between state pairs. The patient response is quantified by
the QALE, which is the primary metric used to evaluate and compare
treatment plans. Kaplan-Meier plots also provide a useful visual sum-
mary of the clinical outcome. In order to obtain statistical results, the
Markov process is simulated many times with each simulation re-
presenting a member of a hypothetical patient cohort. All tables re-
ferred to in this section can be found in the Appendix.

2.1. Markov states

Fig. 1 shows the Markov states for the simple case where there is
only one OAR being considered. In general however, the model can
consider any number of OARs. Each state is represented by a node in
Fig. 1. In medical applications of Markov models, the Well state cor-
responds to perfect health and the Deceased state represents patient
death. The other states represent various cases of poor health. In this
work, the Diseased group contains states that represent varying num-
bers and forms of diseases arising as a result of treatment. These states
include the cases in which a patient:

• still has their initial primary cancer due to unsuccessful treatment
(Diseased (primary cancer)), represented by the Cancer node

• develops one or more normal tissue complications as a result of
treatment (Diseased (injury)), represented by the Inj node

• develops one or more second primary cancers (SPCs) as a result of
treatment (Diseased (second cancer)), represented by the SPC node

There are also other states representing every possible combination

Fig. 1. The Markov state transition diagram showing the allowed transitions between
states. For simplicity, this describes the case where there is only one injury and one SPC
being considered in the model. “Well” represents perfect health. “Cancer” represents the
situation where the patient still has the initial primary cancer and “Inj” represents an
injury state.
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of the above:

• Diseased (primary cancer and injury), Cancer & Inj node

• Diseased (primary and second cancer), Cancer & SPC node

• Diseased (second cancer and injury), Inj & SPC node

• Diseased (primary and second cancer and injury), Cancer & Inj &
SPC node

The number of Markov states in the Diseased group is a variable
which depends on the number of second primary cancers (SPCs) and
injuries that are being considered in the model. A state exists for every
possible combination of SPCs and injuries that could affect a patient at a
given time. In addition, there is also a state for every possible combi-
nation of SPCs and injuries for the case where the primary cancer re-
mains as a result of unsuccessful treatment. Fig. 1 shows the allowed
transitions between states for the case where there is only one injury
and one SPC being considered. Depending on the value of the TCP, the
patient can begin the Markov process in either the Well state or the
Diseased (primary cancer) state (see Section 2.4.1 for an explanation).
Therefore, once the Markov process has begun, it is not possible to
transition between these two states, as depicted in Fig. 1. Section 2.4
describes how the probabilities of transitioning between these states are
derived.

2.2. Quality adjusted life expectancy

The Deceased state is particularly important as it is the absorbing
state of the Markov model. The patient cannot leave this state, which
allows the Markov process to terminate. The process will also terminate
if the patient reaches 100 years of age. This age represents the time
horizon of the Markov model. It was assigned a value of 100 years due
to the high probability of a patient deceasing before this age. The model
can estimate the life expectancy of a patient by counting the number of
cycles that pass before the Deceased state is reached, which is equiva-
lent to the number of years until death. However, the quality of a pa-
tient’s life is also of interest and this is affected by cancer or injuries
arising from complications from treatment. The quality adjusted life
expectancy (QALE) is an adjustment of the raw life expectancy to ac-
count for these factors. The QALE is the most indicative parameter of
the quality of a patient plan. To calculate the QALE, each state was
assigned a quality of life (QoL) utility. These values represent the
quality of life associated with the state relative to perfect health. By
default, the Well state is assigned the maximum QoL utility of 1 and the
Deceased state is assigned the minimum QoL utility of 0. All other states
were assigned a value within this range (Appendix B). The QALE is
given by

∑=
=

t uQALE ,
i

n

i i
1 (1)

where ti is the total number of cycles the patient spends in state i u, i is
the QoL utility for state i and n is the total number possible states. As
the utilities each have a value on the interval [0,1], the QALE cannot be
greater than the raw life expectancy. The advantage of this model is
that the probabilities of tumour control and of developing complica-
tions are incorporated into a single metric, the QALE, which is used to
evaluate treatment plans. Balancing these two factors leads to a more
effective comparison.

2.3. The Monte Carlo method

In order to accurately model the likely response of a patient to a
course of treatment, it is necessary to employ statistical methods. The
Monte Carlo approach to Markov modelling makes use of random
numbers and repeated sampling from probability distributions to obtain
numerical results.

Initially, a single hypothetical patient, also referred to as a Sim, is
considered in the model with an initial age equal to the patient’s age at
the time of treatment. At the beginning of each cycle, a pseudo-random
number η is generated and compared to the transition probabilities
between different possible states to determine whether a transition will
be made. This process involves considering all allowed transitions from
the current state. For example, it is not possible to transition from a
Diseased (cancer) state to the Well state. All relevant transition prob-
abilities are normalised to yield relative probabilities and then con-
verted to cumulative probabilities, such that the interval [0,1] is divided
into n regions representing the relative magnitude of each probability,

…R R R R[ , , , , ]n1 2 3 , where n is the number of allowed transitions and =R 1n .
If the normalised probability of transitioning to state k is P k( ) for ex-
ample, then +R R[ , ]k k 1 represents the region within the interval [0,1]
corresponding to that transition, where = −+P k R R( ) k k1 . If

< ⩽ +R η Rk k 1 then the Sim moves to state k, where the value of η is
constrained by < ⩽η0 1. The age and state variables are updated and
another cycle occurs. Once this Sim reaches the absorbing Deceased
state, or if the Sim reaches the age of 100, the process terminates and
the QALE (along with other metrics) is stored. This process is repeated
for a large hypothetical cohort of these Sims, with each Sim being an
identical copy of the individual patient under consideration. The re-
lative uncertainty is proportional to N1/ where N is the cohort size. A
large cohort is therefore required to maximise the precision of the re-
sults.

2.4. State transition probabilities

The probabilities of a Sim transitioning between particular states
were derived from radiobiological models. These models all require the
dose-volume data which is the primary input for the Markov model as a
whole. The choice of radiobiological model that is applied depends on
the pair of states between which a transition is being made.

2.4.1. Tumour control probability
The tumour control probability (TCP) is a single probability used in

the model to determine whether the treatment successfully controlled
the tumour. It is an important parameter as it determines the state in
which a Sim begins the Markov simulation, either Well for a successful
treatment or Diseased (primary cancer only) otherwise. If the calculated
TCP is less than a pseudo-random number, then the Sim begins the
Markov process in the Well state. If it is greater than or equal to the
pseudo-random number, then the Sim begins the process in the
Diseased (primary cancer only) state. Once the simulation has begun, it
is not possible for the Sim to transition between these two states.

The TCP is based on the linear quadratic (LQ) model which gives the
fractional number of surviving cells after being irradiated by a certain
dose [12]. In general, TCP models assume that the number of surviving
tumour cells follows a Poisson distribution, and that a single surviving
clonogen (cancerous cell) is required for tumour regrowth. Hence, tu-
mour control corresponds to all clonogenic cells being killed. The total
TCP is given as a product over the tumour’s volume elements (or
voxels):

∏=
=
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where there are a total of M voxels, each having a fractional volume vi
(of the total tumour) that receives dose Di as part of a treatment de-
livered in n fractions n( )frac , and α and β are the linear and quadratic
coefficients of the LQ model, respectively. The parameter γ is the nor-
malised dose-response gradient evaluated at =D D50, the dose at which
50% of tumours are controlled.
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The particular values used for these parameters in the example
patient calculation are listed in Table 4 (Appendix A), along with an
explanation of their derivation. The sources of these parameters as-
sumed 2 Gy fractions, and hence the input dose was converted to the
equivalent dose in 2 Gy fractions (EQD2), with

=
+

+
EQD D2

1

1
,i i

D n
α β

α β

/
/
2
/

i frac

(4)

before being used as Di values to calculate the TCP with (2).

2.4.2. Normal tissue complication probabilities
The normal tissue complication probability (NTCP) represents the

probability of developing an injury as a result of treatment. In this si-
mulation tool, there is a separate NTCP for each injury being con-
sidered. For example, when treating BOSCh, necrosis of the brainstem,
cataracts of the eye lens, and spinal cord myelitis are some of the
possible complications that can arise after the commencement of
radiotherapy. Distinguishing between different injuries is important as
they may have varying effects on a patient’s quality of life. The NTCP
for a particular injury corresponds to a transition to the Diseased state
representing that injury.

The Lyman-Kutcher-Burman NTCP formalism is given by (5) and (6)
[12–14],
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where TD50 is the uniform dose given to the entire organ that results in
50% complication risk, m is an organ-specific parameter that represents
the gradient of the dose-response curve (analogous to γ), and n is a
parameter that characterises the volume dependence of the organ’s
response to radiation. Using the same method outlined in Section 2.4.1,
the Di values were obtained by converting the raw dose values to
equivalent doses in 2 Gy fractions. The NTCP calculation requires
clinically founded organ-specific parameters (listed in Table 5).

Unlike the TCP which is a single number, the NTCP is a time-de-
pendent probability and hence is given by an array of probabilities (one
value for each year after treatment). The all-time NTCP is given by (5).
The NTCP for each year after treatment is calculated based on a normal
distribution. This process involves several steps:

1. A time interval between two years x1 and x2 is selected.
2. The probability density function of the normal distribution is in-

tegrated using the trapezoidal rule,

∫ ∑≈ + + +
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−

f x dx s f x f x s f x ks( ) 1
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(7)

to give the probability of developing an injury in a particular year
between years x1 and x2, where = −s x x N( )/2 1 is the step size, N is the
number of integration steps and the normal density function with
mean μ and standard deviation σ is given by

= − −
f x μ σ

σ π
e( , , ) 1

2
.

x μ
σ

( )
2

2

2
(8)

The parameters μ and σ are estimates of the mean and standard
deviation of time taken after treatment for the particular injury to
develop (listed in Table 6). An important source of these parameters
is the Quantitative Analysis of Normal Tissue Effects in the Clinic
(QUANTEC) data [15]. This is a large and comprehensive review of
available dose-response data for a variety of normal tissue end-
points. An alternative is the publication ALERT – Adverse Late Ef-
fects of Cancer Treatment [16]. Similarly to QUANTEC, it provides a

review of organ specific complications that can arise from treat-
ment, as well as organ specific dose-volume relationships.

3. The probability of developing the injury in a particular year is then
scaled so that the total area beneath the normal distribution over the
remaining possible life time of the patient (the difference between
100 and the initial age of the patient in years) is equal to the all-time
NTCP calculated from (5) for that injury. This calculation is re-
peated for each injury and the result is an NTCP for each possible
injury for each year after treatment. The total all-time NTCPs for
each injury are listed in Table 11.

2.4.3. Second primary cancer induction probabilities
The second primary cancer induction probability (SPCIP) represents

the probability of developing a second primary cancer as a result of
treatment. Similarly to the NTCP, there is a separate SPCIP for each
tissue where an SPC could form, which is used in the Markov model as
the probability of transitioning to a Diseased state representing that
particular SPC. In addition, the SPCIP is a time-dependent probability
and has a different value for each year after treatment.

The excess absolute risk (EAR) of developing a cancer in a particular
organ at a particular time after treatment due to radiation exposure is
given by (9) and was taken as an estimate of the SPCIP [17,18]

∑=EAR age
V

v D β RED D μ ageX age( ) 1 ( ) ( ) ( , ).org

T i
i i EAR i

(9)

Here, ageX is the age of the patient at the time of treatment (the time of
exposure to radiation), age is the age of the patient after treatment at
the year of interest,VT is the total volume of the organ, βEAR is the initial
slope, and μ ageX age( , ) is the modifying function,

= ⎡
⎣

− + ⎛
⎝

⎞
⎠

⎤
⎦

μ ageX age γ ageX γ
age

( , ) exp ( 30) ln
30

,e a (10)

with γe and γa being the age modifying parameters.
Eq. (11) gives the risk equivalent dose (RED) mechanistic model

which accounts for the effects of cell killing and fractionation

=
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′ ′
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where R is the repopulation/repair parameter, ′α is given by

′ = +α α β D
D

d ,i

T
T (12)

and DT and dT represent the prescribed dose to the target volume and
the corresponding dose per fraction, respectively. The values used for
these parameters are listed in Table 7.

The probability of cancer induction for each year after exposure is
given by EARorg. Hence it is necessary to convert the probabilities from
cumulative to differential.

2.4.4. Transitions between diseased states
In reality, it is possible for more than one injury or SPC to affect a

patient at a given time which will in turn affect their quality of life. It is
therefore important to account for this in the model. As mentioned in
Section 2.1, there is a separate Markov state for every possible combi-
nation of injuries and SPCs that can affect a patient at a given time. To
transition between any two states that are within the Diseased group, at
least one of three possible events E must occur:

• development of an SPC, ESPCD,

• development of an NTC, ENTCD,

• recovery from an NTC, ENTCR.

These events were modelled as independent events, and thus it is
possible for more than one injury or SPC to develop in a given cycle. For
example, the probability of developing injury 1 E( )1 and injury 2 E( )2 in
the same cycle is given by
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∩ = ×P E E NTCP NTCP( ) .1 2 1 2 (13)

Note that while it is possible to recover from an injury and develop
another in the same cycle, it is not possible to develop and recover from
a given injury in the same cycle.

Injuries and SPCs also develop independently of whether the tumour
was successfully treated in this model. As a result, the presence or ab-
sence of the initial primary cancer was treated as a constant factor and
was modelled separately to the transitions between the Diseased states.
For example, the probability of transitioning to a Diseased state is the
same regardless of whether the treatment was successful.

2.4.5. Death probabilities
The probabilities of a Sim transitioning to the Deceased state are not

based on radiobiological models. In this model, there are three ways in
which a Sim can transition to the Deceased state:

• Death from the initial primary cancer. This transition probability is
time-dependent with a different probability for each year after

treatment. The complementary probability, the probability of sur-
viving cancer, was calculated before converting to death prob-
ability. It was assumed that cancer survival followed an exponential
distribution. The survival probability was calculated by integrating
the exponential density function,

= ⎧
⎨⎩

⩾
<

−
f x λ λe x

x
( , ) 0,

0 0.
λx

(14)

with a clinically derived decay parameter λ (listed in Table 8). The
function is scaled such that the total time integrated probability of
dying of cancer is equal to the area beneath the curve. The trape-
zoidal rule method as described in Section 2.4.2 was used to in-
tegrate the function between two particular years x1 and x2 to give a
probability of dying from cancer in a particular year.

• Death from injury or second primary cancer. This is also time-de-
pendent and derived using the same method as the primary cancer
death probability. Relevant parameters are listed in Table 8. These
probabilities are distinct from initial primary cancer death

Fig. 2. The CT scan of the patient with the isodose contours for each treatment plan.
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probabilities as the time of injury or second cancer onset is variable.
Therefore, the probability of dying from an injury or second cancer
depends on how long it has been affecting a patient. Implementing
these presents a practical challenge due to the ‘memoryless’ prop-
erty of Markov models where the probability of transitioning to a
particular state only depends on the current state and not on any
previous states. To address this challenge, a different state was used
to represent each of the possible time periods that an injury or
second cancer had been affecting the patient. For example, for a
given injury, there is a separate state for the cases where the injury
had been present for one year, for two years, for three years and so
on. The appropriate death probability was assigned to each of these
states.

• Death from unrelated causes. This probability is based on data from
life tables obtained from the Australian Bureau of Statistics (ABS)
[19]. The life tables give the probability that a person will die for
any given year in their life and hence this is a time-dependent
probability. Including the effect of unrelated death results in a more
realistic estimate for the life expectancy of the patient.

The model has the ability to distinguish between these different
causes of death. Each living state is associated with a probability of
dying from each of the various causes listed above. These probabilities
are added to the list of possible transitions that can be made from that
state. Section 2.3 describes how pseudo-random numbers are used to
determine the new state at the end of a cycle given the state at the
beginning of the cycle.

2.4.6. Recovery probabilities
The possibility of recovery from an injury once developed is in-

cluded in the model. The probability of recovering from a given injury
is calculated from a normal distribution in a similar fashion to the
cancer and injury death probabilities. This normal distribution requires
estimates of the mean and standard deviation of the recovery times,
along with an overall recovery probability.

3. Clinical example

A 6-year-old male presenting with base of skull chordoma was
considered for the purposes of testing the simulation tool. Treatment
plans for the delivery of 78 Gy in 39 fractions to the tumour with IMPT
(Fig. 2a) and with VMAT (Fig. 2b) were retrospectively generated by
using the patient computed tomography (CT) scans and MRI images as
input to the research release of Philips Pinnacle3 (Amsterdam, Neth-
erlands) treatment planning software. The treatment plans underwent
robust optimisation. In each treatment plan for this patient, each cri-
tical structure (healthy tissue) and the target volume corresponding to
the tumour were contoured by a clinician. A differential DVH was
generated for each of these regions. There was also a DVH for the total
volume of normal tissue. The injuries considered are listed in Appendix
A. Several injuries were considered for some structures. The TCPs,
NTCPs and SPCIPs that were calculated for each treatment plan for this
patient are listed in Appendix Tables 10–12, respectively.

3.1. Results

The model predicted the treatment response for a hypothetical co-
hort of patients, with each being a copy of the patient under con-
sideration. The cohort size was chosen to be 5·105, as this gave a stan-
dard error of less than 1%. The model returned the median life
expectancy of all the Sims along with the median QALE. The results for
this clinical example are listed in Table 1. The estimates of the life
expectancy (LE) are equal for both treatments but the QALE is greater
for the IMPT case.

The life expectancy is related to the cause of death. For the cohort
representing this patient, most deaths were not due to the cancer or

treatment. The proportions of the cohort who died as a result of other
causes are listed in Table 2.

The Kaplan-Meier survival curves are given in Fig. 3 where the
standard deviation used to estimate the 95% confidence intervals

SD(1.96 ) was calculated using Greenwood’s formula (15) [20],
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where ̂S j( ) is the survival fraction estimate at year j, yk is the number of
deaths that occurred in year k, and nk is number surviving at year k.

Kaplan-Meier survival curves were also generated for the QALE, and
are given in Fig. 4. A consistent difference in the treatments is apparent.

The proportions of Sims suffering an injury or second cancer are
listed in Table 3. The model predicted that there would be a small
probability of developing a second cancer for both treatments. There is
a larger probability that the patient would suffer a radiation induced
injury if treated with VMAT, most likely due to the proximity of the
tumour to the critical structures.

Table 1
The estimates of the median raw life expectancies (LE) and the median QALEs in years for
each treatment modality.

IMPT VMAT

Raw LE (years) 77.5 77.5
QALE (years) 76.5 74.9

Table 2
The proportions of the hypothetical cohort who died as a result of various causes for each
treatment modality. Injuries were not considered to be life threatening in this example.
Note that the simulation ceases when a Sim reaches 100 years of age.

Cause of death IMPT VMAT

Primary cancer 5.98% 8.21%
Second primary cancer 1.36% 1.55%
Unrelated death 91.5% 89.0%
Reached 100 (did not die during the simulation) 1.31% 1.20%

Fig. 3. Kaplan-Meier raw survival curves. A greater survival rate is predicted for IMPT in
the earlier years after treatment. The raw data has been binned yearly as it has integer
values. The 95% confidence intervals are indicated by shaded areas but are small in
magnitude.
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3.2. Significance testing

A log-rank test [20] was used to determine the statistical sig-
nificance of the results. This test allows a non-parametric two-sample
comparison of survival data, which is appropriate in this case as not all
Sims necessarily reach the Deceased state before they reach an age of
100. The null hypothesis of the log-rank test is that the hazard rate h at
a particular year i is equal for two treatments A and B,

=H i h h( ): Ai Bi0 (16)

where the hazard rate is defined by =h y n/i i i, with yi being the number
of deaths and ni being the number at risk (the number alive at the
beginning of year i). Under the null hypothesis, yi has mean Ei and
variance Vi as given by the hypogeometric distribution,

=
= −

E n n n
V n n n n n n

/
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i Ai di i

i Ai Bi di si i i
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where ndi, nsi and ni are the total number of deaths in year i, the total
number surviving at the end of year i, and total number at risk at the
beginning of year i, respectively, between the two treatments. The log-
rank statistic Z is then defined to be
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By the Central Limit Theorem, under the null hypothesis Z follows a
standard normal distribution. A two-tailed log-rank test was used to
compare the IMPT and VMAT raw Kaplan-Meier survival curves, as well
as the QALE Kaplan-Meier survival curves. A statistically significant
difference (p-value <0.05) between the treatments was detected for both
the raw and quality adjusted survival curves.

4. Discussion

A Markov model that predicts the clinical outcome after radio-
therapy has been developed and tested with two alternative treatment

plans for an example patient. The results of this demonstration suggest
that both the overall survival probability and the quality adjusted
survival would be significantly improved with the use of IMPT rather
than VMAT. This can be explained by the greater TCP associated with
the IMPT plan. In addition, many of the NTCPs associated with the
IMPT plan are an order of magnitude smaller than those associated with
the VMAT plan (Appendix C). Therefore, this patient could expect to
live both longer and with an enhanced quality of life with a reduced
probability of suffering a radiation induced injury or second cancer.
This is particularly true in the later years after treatment.

The strength of this Markov model is that it allows clear visualisa-
tion of the likely patient outcome in terms of not only survival, but also
complication risks. Furthermore, it has the ability to distinguish be-
tween alternative causes of high injury rates. For example, both treat-
ment plans used in the current example could result in complications
related to the parotids due to the elevated dose in this region. These
features could be a valuable aid for a clinician faced with the task of
prescribing an optimal treatment for a tumour. If the treatment plans
used for the demonstration were to be compared using the model of
Langendijk et al. [3] which compares NTCPs only, then the result would
most likely be similar, as the collective NTCP for VMAT was greater
than IMPT. However, the model presented in the current work also
accounts for a difference in TCP between treatment plans (see Table 2).

The presented model has several limitations which may have re-
duced the accuracy of its predictions. The results are predominantly
determined by the TCP, NTCP and SPCIP radiobiological models. While
efforts were made to include clinically founded parameters in these
models and the calculations of other transition probabilities, it was not
always possible to obtain relevant estimates in the literature. In addi-
tion, while the QALE is an important metric estimated by the model, its
value depends strongly on the QoL utilities assigned to each state which
were not clinically founded in all cases. In such instances, estimates
were used (see Appendix B). In other cases, it was not possible to source
entirely appropriate parameters. For example, the probabilities of dying
from a radiation induced brainstem glioma was based on adult patient
data, yet the model was applied to a paediatric patient in this work. It
was also not possible to source a quality of life utility for spinal cord
myelitis, and a utility for spinal stenosis was taken as an approximation.
However, these values are easily modified in a situation were new
studies come to light. Indeed, following the suggestions of Langendijk
et al. [3], the input database of model parameters should be continually
updated with follow-up data acquired as part of a the referral program.
NTCP model and dose uncertainties are known to have a significant
impact on the accuracy of model-based patient selection [21]. These
parameter uncertainties are distinct from the stochastic uncertainty that
has been considered in this work. Future development of this model will
account for the uncertainties associated with the DVH and radio-
biological parameters, allowing for representation of the overall un-
certainties in the final results.

The radiobiological models themselves also have limitations. The
advantage of the Lyman-Kutcher-Burman NTCP formalism is that it is
commonly employed in modelling studies and parameters are therefore
widely available. However, only severe radiation induced injuries were
considered in this work due to the difficulty in finding parameters for
less severe injuries. These types of injuries will be considered in future
applications of the model. The SPCIP was based on the Schneider model
of radiation-induced cancer[17] which has been developed for dose
ranges relevant in radiotherapy. However, that model has limitations.
For example, the dose delivered to the whole body can result from a
variety of dose distributions in the organs.

Another limitation of the model was that the course of the patient’s
disease was greatly simplified. For example, the possibility of metastasis
of the initial primary cancer or second primary cancers was omitted. A
constant quality of life was assumed for these cancer states.
Furthermore, it was assumed that if complete control was achieved,
there was no possibility of recurrence which also represents a deviation

Fig. 4. Kaplan-Meier QALE survival curves. The raw data has been binned yearly. The
95% confidence intervals are indicated by shaded areas but are small in magnitude.

Table 3
The proportion of the cohort that suffered a second cancer or injury.

IMPT VMAT

Proportion suffered injury 1.87% 10.3%
Proportion suffered cancer 5.68% 6.04%
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from reality. These simplifications were made as the treatments used for
the initial primary cancer alone were the subjects of comparison.
Likewise, any treatments for subsequent injuries or second cancers that
would normally be carried out routinely were not considered directly in
the model. However, the effects of disease progression and metastasis
are important factors in determining both life expectancy and quality of
life. For more reliable estimates of these values, disease progression
would need to be considered in future versions of the model.

Proton therapy is known to be a significantly more expensive
treatment compared with X-ray therapy. As a result, cost-effectiveness
can be an important consideration in proton therapy referral. Cost-ef-
fectiveness for left-sided breast cancer has been evaluated by Lundkvist
et al. [22]. Due to the variability of both treatment costs and healthcare
system economics between countries, cost can be a challenging factor to
consider. As such, cost-effectiveness has not been considered in the
presented model. However, it may be considered in future develop-
ments within this framework.

Although the presented model has strengths, its inevitable limita-
tions may reduce its validity. Thorough internal model validation has
been carried out where components of the code where checked for
consistency. However, performing external model validation were
model results are compared with real-world results is a stronger form of
validation [23]. Such analysis will be conducted in future studies to

ensure the reliability of the model predictions.

5. Conclusion

A radiobiological-based Markov model for aiding the decision
making in proton therapy referral has been presented with the cap-
abilities being demonstrated with a test case. The Markov model allows
comparisons to be made between IMPT and X-ray therapy on an in-
dividual patient basis. The model suggests that the BOSCh demonstra-
tion patient considered in this work would likely receive a significant
benefit if treated with IMPT rather than VMAT in terms of a reduced
risk of injury. The accuracy of the model is reliant on the quality of the
input calculation parameters. The concept of in silico clinical trials could
be used to gradually refine the accuracy of the input data over time.
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Appendix A. Model parameters

A.1. Tumour control probability

Several studies have been conducted to determine the 5-year local control rate of chordoma for a given median dose using X-ray or proton
therapy (without chemotherapy) [24–32]. This data was used to plot a TCP curve. D50 was then varied to obtain γ within a 90% confidence interval.
The optimum value was yielded by minimising the width of this confidence interval. The results are listed in Table 4 along with the α β/ value that
was obtained from the literature.

A.2. Normal tissue complication probabilities

The parameters used in the NTCP calculations are listed in Tables 5 and 6.
Some data listed in Table 6 was derived from histogram data of injury incidences. A normal distribution was fitted to the data once plotted and

the best fit mean and standard deviation parameters of the distribution were taken as the estimates listed in Table 6.

Table 4
Parameters used in the tumour control probability (TCP) calculation with (2).

D50 (Gy) α β/ (Gy) α (Gy−1) γ

60.0 2.45 [33] 0.053 2.06

Table 5
Parameters used for the calculation of the all-time NTCP for each injury using the LKB model. Burman et al. was used as the source of the parameters unless otherwise stated.

Tissue α β/ (Gy) Injury/Endpoint n m TD50 (Gy)

Brainstem 2.5 [34] Necrosis 0.16 0.14 65
Spinal cord 0.87 [35] Myelitis 0.05 0.175 66.5
Ear 3.01 Acute serous otitis 0.01 0.15 40

Chronic serous
otitis

0.01 0.095 65

Optic nerves and chiasm 3.01 Blindness 0.25 0.14 65
Parotids 3.01 Xerostomia 0.70 0.18 46
Lens 3.01 Cataract 0.30 0.27 18

1 Assumed as the default 3.0 for late responding tissue.
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A.3. Second primary cancer induction probabilities

The parameters used for the SPCIP calculation are listed in Table 7 [17].

A.4. Death probabilities

The parameters used for the calculation of the death probabilities are listed in Table 8. Where estimates of the mean were given by a source, the
decay parameter λ was assumed to be the inverse. Where estimates of the median m were given, it was assumed =λ mln(2)/ . Estimates do not
assume that any particular treatment is undertaken, although most studies will involve treatment of the patients. The impact on the quality of life of
these treatments is not considered in the Markov model.

Table 6
Estimates of the mean x( ) and standard deviations σ( )x of the time taken for each injury to develop after treatment. Where it was not possible to find an estimate of the standard deviation,
it was assumed to be 6months.

Tissue Injury x (months) σx (months) Source

Brainstem Necrosis 17 6∗ [36]
Spinal cord Myelitis 13.6 3.9 [37]
Ear Acute serous otitis 12∗ 6∗ –

Chronic serous otitis 12∗ 6∗ –
Optic nerves and chiasm Blindness 18 6∗ [16]
Parotids Xerostomia 0.25 6∗ [38]
Lens Cataract 30 6 [16]

∗ Not clinically founded.

Table 7
Parameters used for the calculation of the SPCIP for each year after treatment for each cancer site considered. The same parameters were used for all sites within the brain and central
nervous system.

Tissue βEAR α R γe γa

Brain/CNS 0.70 0.018 0.93 −0.024 2.38
Normal tissue 74 0.089 0.17 −0.024 2.38
Parotids 0.73 0.087 0.23 −0.024 2.38

Table 8
Estimates of the decay parameter, λ, and the total probability of surviving the cancer altogether, Psurvive, that were used to calculate the yearly probabilities of death as a result of cancer.

Tissue λ years−1 Psurvive Source Comments

Base of skull chordoma 0.9617 0.10 [39] Derived from 3 and 5 year survival rates after relapse
Brainstem (glioma) 0.154 0.45 (at five years) [40] Data for adult giloma
Spinal cord 1.39 0.21 [41] Survival after surgery for malignant astrocytoma (the most common spinal cord tumour [42] which are

themselves generally rare).
Ear 1.0∗ 0.61 [43] Carcinoma of external auditory canal and middle ear
Optic nerves and chiasm 0.0526 0.44 [44] Chiasmal glioma only considered
Parotids 0.438 0.45 [45] Overall survival probability including cases where there is and is not local-regional control
Normal tissue 1.0∗ 0.1∗ –

∗ Not clinically founded.
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Appendix B. State QoL utilities

The quality of life utilities applied in the Markov model are listed in Table 9. For Diseased states where there is more than one injury or second
cancer, the assigned utility is a multiplication of the utilities of the states where there is only one of each injury or second cancer.

The states representing the cases of second primary cancers were all assigned a value of 0.8 in accordance with the Eastern Cooperative Oncology
Group (ECOG) performance status [47] as grade 1 (with utility 0.8) gave the most accurate description of these states. With similar reasoning,
injuries were assigned a default value of 0.6.

Appendix C. Calculated transition probabilities

The transition probabilities that were derived from radiobiological models are listed in Tables 10–12.
The SPCIP calculation returns a probability for each year after treatment and these values are used as input for the Markov model. They are listed

here as combined probabilities for each tissue which were calculated by integrating the function that represents the probability of developing a
second cancer for each year after treatment. The combined probabilities are listed in Table 12 for each structure.

Table 9
Estimates for the QoL utilities for states in the Markov model. The states representing a second primary cancer have default utilities of 0.8. Where it was not possible to
find an appropriate QoL utility for a particular injury, a default value of 0.6 was assigned.

State Utility Source Comments

Skull base
chordoma

0.72 [10]

Brainstem necrosis 0.6 Not clinically founded
Spinal cord myelitis 0.7 [46] Utility for spinal stenosis (confined to manual wheelchair) taken as an

approximation for myelitis
Acute serous otitis 0.5 [46]
Chronic serous

otitis
0.7 [46]

Blindness 0.33 [46] Complete blindness
Xerostomia 0.826 [10]
Cataracts 0.6 [46] Advanced lens opacity

Table 10
The values for the TCP that were calculated and used as input for the Markov
model for each treatment modality.

IMPT VMAT

TCP 0.927 0.899

Table 11
The values for the all-time NTCP (combined NTCPs over all years from treatment to the maximum possible age of 100) that were calculated for each injury using
(5) for each treatment modality.

Injury Tissue IMPT VMAT

Brainstem necrosis Brainstem −7.97·10 5 −4.36·10 6

Acute serous otitis Cochlea −1.11·10 5 −1.52·10 6

Chronic serous otitis Cochlea −1.67·10 16 < −10 16

Cataracts Lens −1.08·10 4 −1.86·10 4

Blindness Optic nerves and chiasm −5.20·10 13 −1.03·10 12

Xerostomia Parotids −1.18·10 2 0.10
Spinal cord myelitis Spinal cord −7.14·10 3 −4.81·10 3
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The all-time SPCIP values (combined SPCIPs over all years from treatment to the maximum possible age of
100) that were calculated for each treatment modality.

Tissue IMPT VMAT

Normal tissue −6.66·10 3 −1.43·10 2

Brainstem −1.93·10 2 −1.74·10 2

Cochlea −2.15·10 2 −2.02·10 2

Optic nerves and chiasm −4.68·10 4 −3.53·10 3

Parotids −6.25·10 3 −4.95·10 3

Spinal cord −4.66·10 2 −5.16·10 2
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Chapter 3. Monte Carlo Evaluation 49

3.3 Markov model details

In this section the details of the Markov model are described, with a focus on technical

aspects that were considered too detailed for the publication. The code is written in

the C programming language, which allows for an improved computation time compared

with higher-level programming languages such as Python or MATLAB. The program has

been written in general terms and, as a result, its strength is its ability to consider any

cancer site, with an arbitrary number of treatments and injuries.

The Markov model consists of several phases. These are:

1. Determining the number of Markov states based on the model input,

2. Calculating the transition probabilities using the patient data,

3. Constructing the transition matrix using the transition probabilities,

4. Evaluating the Markov model using a Monte Carlo simulation,

5. Analysing the results.

Each of these stages is explained in more detail in this section.

3.3.1 Determining the number of Markov states

In reality, it is possible for more than one injury (or normal tissue complication (NTC))

or second primary cancer (SPC) to affect a patient at a given time, which will in turn

affect their quality of life. It is therefore important to account for this in the model. To

model this accurately, a Markov state was allocated for every possible combination of

injuries and cancers (including SPCs and the initial primary cancer) that can affect a

patient at a given time. The number of Markov states in the Unwell group is a variable

which depends on the number of second primary cancers (SPCs), N , and of injuries, M ,

that are being considered in the model. Therefore, the total number of states, n, is given

by

n = 2M+N+1 +M +N + 2, (3.1)

where addition of 1 in the exponent represents the initial primary cancer (the presence of

this is independent of the development of injuries and SPCs). It is possible to die from
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each injury and cancer (including the initial primary) as well as background death. The

additional states signified by the sum (M +N + 2) represent the Deceased states. While

it is possible to model death with only one Deceased state, having one for each possible

cause of death allows the cause of death to be tracked by the model.

3.3.2 Transition probability calculation

The transition probabilities in the Markov model can be broadly classified as dose-

dependent and dose-independent. The dose-dependent transition probabilities are cal-

culated using input dose-volume histograms (DVHs) for each organ being considered.

These histograms give the volume of an organ that receives a given dose and hence are

unique to a given patient. The dose-dependent transition probabilities include the tu-

mour control probability (TCP), normal tissue complication probabilities (NTCP) and

second primary cancer induction probabilities (SPCIP). The dose-independent transition

probabilities include death and injury recovery, and are assumed to be representative of

all patients. Another assumption of the Markov model is that it is not possible to recover

from a cancer (including both the initial primary cancer and any second cancers). In this

section, additional details are provided on select groups of transition probabilities.

3.3.2.1 Normal tissue complication probability (NTCP)

The model has the flexibility to incorporate any number of injuries in the analysis. The

NTCP is calculated for each injury and for each potential year after treatment using the

methods described in the publication P1, Section 2.4.2. To complete the construction

of the normal distribution, which has a user-defined mean and standard deviation, the

NTCP for each year is scaled such that the accumulated NTCP from the treatment

time to the time at which the patient is 100 years of age is equal to the all-time NTCP

calculated with the LKB model [60, 61]. This is done by a recursive adjustment of a linear

scaling parameter, as the total response to such a change is non-linear and cannot easily

be determined analytically. At each iteration, the all-time NTCP calculated with the

LKB is compared with the all-time NTCP corresponding to the normal distribution with
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the given mean and standard deviation. Each time point in the distribution is adjusted

at each iteration to achieve closer agreement with the NTCP calculated with the LKB

model. This process is repeated for each injury, resulting in an NTCP for each possible

injury for each year after treatment.

3.3.2.2 Second primary cancer induction probability (SPCIP)

The calculation of the SPCIPs are similar to the NTCPs, in that there is a probability for

each year and for each tissue. The difference is that these time-dependent probabilities

do not follow a normal distribution, as detailed in the publication P1, Section 2.4.3. In

addition, the units of EARorg are per 104 person-years and hence EARorg must be divided

by 104.

3.3.2.3 Cancer and injury death

A key feature of first-order Markov models is the memoryless property, whereby the

transition probabilities depend only on the current state and not on any previous states.

It was assumed that in reality the death probability changes depending on if and when a

cancer or injury develops, which can be represented as a Markov model of arbitrary order.

Injury death (and also injury recovery) was assumed to follow a normal distribution, with

injury-specific parameters specified by the user. Cancer death was assumed to follow an

exponential distribution (Section 2.4.5 of the publication P1). Background death, which

is not discussed in this section, depends on the age of the patient at a given time.

It is possible to accurately implement a time-dependent death probability using a first-

order Markov chain, by having a separate state for each time period that an injury or

cancer could be affecting a patient, and assigning the probability of dying depending

on which state the patient is in. The disadvantage of this approach is that the number

of Markov states becomes very large, also known as “state explosion”, which decreases

computational efficiency as this is a function of the number of Markov states.

To avoid state explosion, an alternative method for modelling time dependence is used

in the code. An array is used to track the year in which a particular injury or second
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cancer develops. In subsequent years, the death probability that is applied corresponds

to the year since it was developed. Injury recovery is also treated in a similar manner,

with the yearly recovery probability being applied rather than the death probability. It

is assumed that the initial primary cancer, if present, has been present since the initial

Markov cycle and hence it is not necessary to track the time since its development.

A flag is also used to track whether an injury has been recovered from. If the flag evaluates

to TRUE, the relevant NTCP is set to zero for all subsequent years to prevent the injury

from redeveloping.

3.3.2.4 Scaling of death probabilities

For a given state, the true probability of death can be difficult to determine exactly, as

it is possible for a patient to die as result of multiple different causes. For example, if a

patient is in the Well state, then it is possible to die as a result of unrelated causes only.

However, if the patient is in a state representing a cancer, then it is possible to die from

either that cancer or unrelated causes. Dying as a result of the cancer or from unrelated

causes are not independent events as it is not possible to die from both. Furthermore,

the possibility of both a cancer and an injury also exists in this model, and in this case,

there would be three possible ways to move to the Deceased state.

In this example, let the event of dying from cancer be DieC and the event of background

death be DieB, and assume that it is not possible to die from an injury. As these two

events are disjoint and exhaustive, the probability of not dying is 1−Pr(DieB)−Pr(DieC).

Ideally, studies would report the fraction of their study population that died of various

causes, which would allow true probabilities to be known, as Pr(DieB) and Pr(DieC)

would be derived from the same source. However, mortality rates due to various causes

are often convoluted in a single reported mortality. This situation becomes increasingly

complex with an increasing number of injuries and cancers. As a result, it was necessary

in this work to source probabilities from different studies, with the consequence being that

the sum of individual death probabilities can exceed 1, which should not be possible. It is

not a reasonable approximation in this case to truncate the combined death probability
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to 1 and hence assume that death occurs with certainty. Hence, a challenge exists in

combining probabilities from multiple sources in a meaningful way in the Markov model.

As an alternative, it was assumed that the probability of moving from a given state to

the Deceased state was the maximum of all possible death probabilities:

Pr(Die) = max
i
{Pr(Diei)}, (3.2)

where Pr(Diei) is the input probability of dying due to cause i. Clearly, if an injury or

cancer is not present in a given state, then it is not possible to die as a result of it.

In order to maintain a distinction between alternative causes of death, all death proba-

bilities are scaled such that their sum is equal to the maximum death probability (before

scaling), as given by (3.2). To achieve this, each unscaled death probability is divided by

the scaling factor, c, given by

c =

∑M+N+2
i=0 Pr(Diei)

Pr(Die)
. (3.3)

The limitation of this approach is that the true estimates are not preserved. Furthermore,

a patient with one potentially fatal injury would have the same probability of dying as a

patient with two potentially fatal injuries. However, this is a reasonable assumption to

make as often there is a single dominant death probability. This is particularly true when

the patient is older and the background death probability becomes large. Alternatively,

there is a higher probability of dying in the years immediately after treatment if the treat-

ment was unsuccessful. For the example presented in the publication P1, an alternative

method was used that involved scaling all values of the row of the transition matrix such

that all values summed to 1, rather than scaling the death probabilities separately. If

the scaling method outlined in this section is applied instead, then the estimates of the

QALEs are 77.0 for protons and 76.0 for photons. This represents a small difference of

0.5 and 1.1 years, respectively. Therefore, implementing this method of scaling has a

small impact on the results, while being more mathematically correct in that transition

probabilities to non-deceased states are preserved.
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It is also worth noting that the death probabilities are dose-independent and are in-

cluded to allow for a more realistic estimation of the life expectancy resulting from a

given treatment plan. In contrast to the dose-dependent transition probabilities that will

differ between the treatment plans being compared, the death probabilities are constant

between treatment plans.

3.3.3 The transition matrix

The development of the transition matrix is a complex process due to the large number of

states involved. The transition matrix P has dimensions of n× n where n is the number

of Markov states. Each element pij, i = 1, ..., n, j = 1, ..., n, represents the probability of

transitioning from state i to state j.

To transition between any of the states that are within the Unwell group (all Markov

states excluding Well and Deceased), at least one of three possible events must occur:

development of an SPC, development of an injury, or recovery from an injury. In addition,

death must not occur if a transition is made from one Unwell state to another. Injuries

and SPCs develop independently of whether the tumour was successfully treated in this

model. As a result, the presence or absence of the initial primary cancer was treated as a

constant factor and was modelled separately to the transitions between the Unwell states.

Depending on the number of iterations chosen (the number of Sims) and the number of

organs at risk (which determines the number of states, see Section 3.3.1), the Monte Carlo

model can have a significant computation time. However, as each Sim (as defined in the

publication P1, Section 2.3) in the hypothetical cohort is considered separately, it is only

necessary to calculate the row of the transition matrix corresponding to the starting state

of the Sim at a given cycle. The process of constructing each row of the matrix includes:

1. Efficiently representing the states.

2. Determining which injuries or second cancers contribute to a given transition prob-

ability.
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3. Multiplying the probabilities of independent events together that all must occur for

a given transition.

3.3.3.1 Representing states

Consider the situation where there are M possible injuries and N possible SPCs that could

affect the Sim at any given time. When constructing the transition matrix, it is important

to be able to efficiently determine which of the states correspond to injured states or cancer

states. A method was developed to ensure all combinations were accounted for and that

the meaning of each state could be easily specified to allow appropriate quality of life

utilities to be applied. A Boolean vector Si with M + N elements was used to track

which injuries and SPCs are affecting the Sim at the beginning of a particular Markov

cycle in the initial state i:

Si,` =





1 if Sim has NTC/SPC `,

0 otherwise.

(3.4)

Therefore, Si represents the state being transitioned from in a particular cycle. Another

Boolean vector, Sj with M + N elements, is used to track which injuries and SPCs are

affecting the Sim at the end of a Markov cycle in the state that is transitioned to. The

first M elements of Si or of Sj correspond to the injuries and the remaining elements

represent the SPCs.

For example, if M = 3 and N = 2, then the state where the Sim has injury 1, injury 3,

and SPC 2 is represented by S = [1 0 1 0 1]. In the Well state, there are no injuries or

cancers present and therefore it is represented by S = [0 0 0 0 0]. A vector is not required

to represent Deceased states as there is no possibility of leaving absorbing states, and it

is also unnecessary to multiply the death probabilities to obtain the final probability of

moving to a deceased state, as explained later in Section 3.3.3.2.

It is not necessary to consider the states where both injuries/second cancers and primary

cancer are present, as the presence or absence of the primary cancer does not directly affect

the transition probabilities between Unwell states. A separate flag is used to track the
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presence or absence of the primary cancer, which is constant throughout the simulation.

This flag allows the correct probabilities and utilities to be applied at the appropriate

year. Hence, the state representing the situation where only the initial primary cancer is

present is also represented by S = [0 0 0 0 0] if M +N = 5.

3.3.3.2 Calculation of transition probabilities

The probability of transitioning to the Deceased state for a given starting state is de-

termined using the method outlined in Section 3.3.2.4. To transition between all other

Markov states, one or more events must occur. For example, one or more injuries may

develop while others do not and others are recovered from. The development of, and

recovery from, different injuries and SPCs were modelled as independent events. The

development of a second cancer and an injury in the same tissue were also assumed to be

independent events, as there are very different cellular processes involved. In this model,

it is therefore possible for more than one injury or SPC to develop in a given cycle. As

these events are assumed to be independent, the probability of multiple events occurring

is given by the multiplication of the probabilities of the events occurring individually. It

should be noted that while it is possible to recover from an injury and develop another in

the same cycle, it is not possible to develop and recover from the same injury in a given

cycle.

There is an event E` for each second cancer and injury `, ` = 1, ...,M +N , that is being

considered for a given patient (recall that it is not possible to develop or recover from the

initial primary cancer once the Markov process has begun and hence it is not necessary

to account for this). Therefore, the probability of transitioning from state i to state j at

year x after treatment is given by:

pij(x) = (1−Pr(Die, i, x))
M+N∏

`=1

Pr(E`, i, j, x); i = 1, ..., n−nd, j = 1, ..., n−nd, (3.5)

where nd = M −N − 2 is the number of Deceased states, Pr(E`, i, j, x) is the probability

of event E` occurring in year x in the transition from state i to state j, and Pr(Die, i, x)

is the probability of transitioning from state i to the Deceased state. The probabilities
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Pr(E`, i, j, x) are determined by comparing the Boolean vector, Si, representing the state

being transitioned from, i, to the vector, Sj, representing the state being transitioned

to, j. The values of each of the ` elements of Si and Sj are determined by the events

E` that occur in the transition. The events include injury development, second cancer

development, or injury recovery. The probability of not developing an injury or cancer, or

not recovering from an injury is given by the complement of the respective development

or recovery probabilities. The event probabilities are given by:

Pr(E`, i, j, x) =





NTCP`(x) if Si,` = 0, Sj,` = 1, ` ≤M,

SPCIP`−M(x) if Si,` = 0, Sj,` = 1, M < ` ≤M +N,

1− NTCP`(x) if Si,` = 0, Sj,` = 0, ` ≤M,

1− SPCIP`−M(x) if Si,` = 0, Sj,` = 0, M < ` ≤M +N,

Pr(IR`, x) if Si,` = 1, Sj,` = 0, ` ≤M,

1− Pr(IR`, x) if Si,` = 1, Sj,` = 1, ` ≤M,

0 if Si,` = 1, Sj,` = 0, M < ` ≤M +N,

1 if Si,` = 1, Sj,` = 1, M < ` ≤M +N.

(3.6)

where Pr(IR`, x) is the recovery probability for injury ` at year x. As the first M elements

of S correspond to injuries, it is necessary to subtract M from the SPCIP index to ensure

that the correct probability is applied. For example, if M = 2, N = 3 and ` = 3, then

the relevant SPCIP is SPCIP1, even though ` = 3. Note that it is not possible to recover

from second cancers. It is necessary to multiply all transition probabilities between living

states by the complement of the death probability as it is assumed that death must not

occur for a transition to be made to a living state.

The elements pij, where 1 ≤ i ≤ n − nd and n − nd < j ≤ n, correspond to the death

probabilities, which include the probabilities of dying as a result of each injury (j = n−
nd+1, ..., n−nd+M), followed by each second cancer (j = n−nd+M+1, ..., n−nd+M+N),

the primary cancer, pi,n−1, and the probability of dying due to unrelated causes, pin. If

an injury or cancer is not present in the state being considered, then the corresponding

death probability is set to zero.
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The elements pij, where n− nd < i ≤ n and 1 ≤ j ≤ n− nd, are all zero, as each of these

represent the probability of returning from the dead. Furthermore, for i > n − nd and

j > n − nd, if i 6= j, then pij = 0 (the probability of moving between deceased states),

and if i = j then pij = 1 (the probability of remaining in a Deceased state).

In this model, not all rows of the transition matrix are defined simultaneously. Only the

row that represents the state at the beginning of a given cycle is defined. However, to

demonstrate (3.6), an example transition matrix for a given year is provided below for the

case where there are two injuries only. The states are ordered from left to right (and top

to bottom) as follows: Well, Injury 1, Injury 2, Injury 1 and 2, Deceased (due to Injury

1), Deceased (due to Injury 2), and Deceased (due to unrelated causes). Each death

probability is scaled using the method described in Section 3.3.2.4, to give the scaled

probability of death due to unrelated causes, Pr(Db) (denoted by Db), and the scaled

probability of death due to injuries 1 and 2, Pr(Di1) and Pr(Di2), respectively, such that

Pr(Db) + Pr(Di1) + Pr(Di2) = α, the maximum of all the possible death probabilities.

The event NTCPx is denoted by Ix for simplicity. The recovery probability is denoted

by Rx for injury x. The transition matrix P is given by

P =




p11 I1(1− I2)(1− α) I2(1− I1)(1− α) I1I2(1− α) 0 0 Db

R1(1− I2)(1− α) p22 R1I2(1− α) I2(1−R1)(1− α) Di1 0 Db

R2(1− I1)(1− α) I1R2(1− α) p33 I1(1−R2)(1− α) 0 Di2 Db

R1R2(1− α) R2(1−R1)(1− α) R1(1−R2)(1− α) p44 Di1 Di2 Db

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




,

where the diagonal elements are





p11 = (1− I1)(1− I2)(1− α),

p22 = (1−R1)(1− I2)(1− α),

p33 = (1− I1)(1−R2)(1− α),

p44 = (1−R1)(1−R2)(1− α).

(3.7)
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All possible transitions are both mutually exclusive and collectively exhaustive. In other

words, either a single transition is made in a given Markov cycle or the patient stays in

the same state, with the state at the beginning of the cycle being the same as the state

at the end of the cycle. The implication is that each row of the transition matrix will

sum to 1.

3.3.4 Monte Carlo simulation

The Monte Carlo simulation involves using random numbers to determine which transi-

tions are made in the Markov model. A random number η ∈ [0, 1] can be used for this

purpose. If this interval is partitioned into subintervals that represent the magnitude

of each of the transition probabilities, then the most likely transition will be the one

with the largest magnitude. The interval [0, 1] is partitioned by converting the transition

probabilities in a given row of the transition matrix from absolute to cumulative. The

result is that [0, 1] contains n subintervals where n is the number of states. This process

is demonstrated by Figure 3.1 with three states considered for simplicity.

Figure 3.1: Demonstration of the conversion of the transition probabilities from ab-
solute to cumulative. The interval [0, 1] is partitioned to represent the magnitudes of

each probability.

In the example depicted in Figure 3.1, the row of the transition matrix is Pi = [0.2, 0.45, 0.35],

and the cumulative vector is Ci = [0.2, 0.65, 1]. In general, each element k of Ci is calcu-

lated as:

Ci(k) =
k∑

j=1

pij, for1 ≤ k ≤ n. (3.8)

Thus, Ci(n) = 1. If a particular transition is not allowed, for example to state k, then it

will have zero width on the interval [0, 1] and Ci(k) = Ci(k − 1).
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As explained in the publication P1, Section 2.3, if Ci(k) < η ≤ Ci(k + 1) then the Sim

moves to state k. If η ≤ Ci(1), which is the probability of being in the Well state at the

end of the cycle (see the definition of P in Section 3.3.3.2), then the Sim transitions to

the Well state.

Once a transition from state i to state j has been made, each Si,` is reset to the values of

Sj,` for all `, and the process of recalculating the transition probabilities to the allowed

states is repeated in the subsequent cycle of the Markov model.

For each cycle, the age and state variables are updated. When a Deceased state is reached,

the simulation is terminated.

3.3.5 Analysis of model output

Once the Markov chain has been simulated for each Sim in the cohort, with the life

expectancy and QALE determined for each, it is possible to obtain mean life expectancies

and QALEs. The mean QALE in particular represents the most important output of the

model.

There is a notable technicality in the code, in that the counter for the loop that iterates

through each year of the Sim’s life starts at zero and hence its value is zero during the

first year of the Markov cycle. However, if a Sim were to die in the first year then their

life expectancy is 1.

Kaplan-Meier curves, both raw and quality-adjusted are also produced using the data

for each Sim. Examples of these are shown in Figures 3 and 4 of the publication P1.

Log-rank tests were used to determine the statistical significance of the difference in the

survival curves between protons and photons. The results are presented in Table 3.1. A

statistically significant difference was found for both the raw and quality-adjusted survival

curves.

Along with the survival curves, the fraction of the cohort with any injury or second cancer

for each year after treatment is also stored.
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Raw LE QALE
Z-statistic 8.360 49.143
p-value <0.0001 <0.0001

Table 3.1: Results of the two-tailed log-rank tests comparing raw and quality-adjusted
Kaplan-Meier survival curves. The Z-statistic and corresponding p-values are shown.

3.4 Model verification

Once the model had been developed, tests were carried out to ensure that it was behaving

as expected. These tests included modelling situations in which a patient receives zero

dose for the cases with and without an initial tumour present. The tests were used to

confirm that the cancer death model and life table data were being processed correctly

in the Markov framework. A cohort size of 105 was chosen for the purposes of testing the

model, as this gave a statistical standard error of less than 1%. The proton treatment

plan data used for the publication P1 was used as input for the verification. For the

purposes of this testing, the cohort membership was counted at the beginning of each

cycle.

3.4.1 Zero dose, tumour absent case

For the case where the tumour was absent, and no dose is received, the expected fraction

of Sims surviving at the beginning of year t, for t ≥ 1 is given by

Ft =
t−1∏

i=1

(1− Pri), (3.9)

where Pri is the probability of a healthy individual dying in the ith year of their life as

given by the life table data. Note that Death is not possible at t = 0, the beginning of

the first Markov cycle, and hence Pr0 = 0 which gives F0 = 1. The results are given in

Figure 3.2.
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Figure 3.2: The surviving fraction of the cohort for each year after treatment, where
there is no dose received by any organs and a tumour was absent. As a result, the
only enabled death possibility was background death. A good agreement between the

output and expectations is apparent.

3.4.2 Zero dose, tumour present case

The expected surviving fraction was also calculated for the case where the tumour was

present using (3.9), with Pri instead being the time-dependent probability of dying from

the primary cancer during a given year i after the treatment. The effect of background

death was omitted for the purposes of testing this component of the model. The results

of this test are summarised in Figure 3.3.
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Figure 3.3: The surviving fraction of the cohort for each year after treatment, where
there is no dose received by any organs and a tumour was present (TCP manually
overridden and set to 0). The integral death probability was set to 0.9 and the decay
constant needed for the calculation of yearly death probabilities was set to 0.96. Back-
ground death was also disabled. OARs outside of the tumour volume received no dose

for this test. A good agreement between the output and expectations is apparent.

3.4.3 Uniform dose, tumour absent case

The radiobiological components of the model were also verified. The NTCP and SPCIP

components were tested for the case where a tissue received a uniform dose of 50 Gy in

30 fractions, which resulted in a 21% injury occurrence rate.

Figure 3.4 shows a comparison of the expected fraction of the cohort with the injury and

fraction predicted by the model. The expected fraction with an injury at the beginning

of year t was estimated with:

It = 1− [(1− It−1)(1−NTCPt−1) + (PrIR)t−1It−1] , for 1 ≤ t < 100, (3.10)

where PrIR represents the probability of injury recovery. The sum on the right-hand-side

of (3.10) calculates the fraction without an injury, with the first summand calculating the
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fraction without an injury who do not develop one in that cycle and the second calculating

the fraction with an injury who recover during the cycle. It is not possible to develop an

injury at the beginning of the first cycle.

The injury death model was also tested. The results are presented in Figure 3.5. The

expected fraction with an injury at the beginning of year t was estimated using (3.9) with

Pi being set to the injury death probability for year i. In this test, the probability of

death was set as a constant of 0.01 for all years. Note that Death is not possible at t = 0,

the beginning of the first Markov cycle, and hence P0 = 0 which gives S0 = 1.

Figure 3.4: The fraction of the cohort with an injury, for each year after treatment.
The NCTP was set to 0.21 (as a result of a uniform dose delivered to an OAR) for the
first year after treatment and 0 for all subsequent years and the probability of injury
recovery was set to 0.05. The possibility of death from all causes was disabled for the
purposes of this test. A good agreement between the expectations and the output is

apparent.
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Figure 3.5: The surviving fraction for each year after treatment, where an OAR
received a uniform dose (resulting in an NTCP of 1.0 for the first year after treatment).
The possibility of injury recovery was disabled for the purposes of this test. The injury
death probability was set to 0.01, and all other death possibilities were disabled. A

good agreement between the expectations and the output is apparent.

3.4.4 Statistical significance

To determine whether the observed differences in the distributions in Figures 3.2-3.5 were

statistically significant, Pearson’s chi-squared tests were conducted. The null hypothesis

(H0) was that the observed distribution as output by the model was drawn from the

expected distribution:

H0 : The distribution of deceased/injured Sims as estimated by the Markov model

was drawn from the expected distribution;

H1 : The distribution of deceased/injured Sims as estimated by the Markov model

was NOT drawn from the expected distribution.

The test statistics and p-values for the chi-squared tests that were conducted for each

of the three cases are summarised in Table 3.2. The high p-values indicated that the
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Case KS test statistic p-value H0 rejected
Tumour absent, zero dose 21.9 0.99 No
Tumour present, zero dose 5.2 1.0 No
Tumour absent, uniform dose 49.0 0.55 No

Table 3.2: Summary of the Chi-squared test statistics. For these tests, the number
of degrees of freedom was set at 51 as there were 52 bins in total (the example patient

was initially aged 48, with 52 years remaining until they reached 100).

observed and expected distributions agreed in each case, and that the model was behaving

as expected.

3.5 Discussion

The toolkit has been presented and output demonstrated in the publication. Verification

of the model has also been carried out, with the result being that the model performed

as intended. However, it must be stressed that this method is distinct from validation

whereby the results are compared with outcomes of real patients. This step is vital before

the model is able to be implemented clinically.

The technical aspects that were not presented in the publication also have limitations.

Monte Carlo methods are inherently slow as a large number of iterations are required for

accurate results. Although this process may be easily parallelised using packages such as

OpenMP (OpenMP Architecture Review Board; www.openmp.org), the efficiency will be

limited by the number of available processors. The model is currently only a prototype,

but the intention is that it will be implemented clinically in the future. It is likely

that many clinics will be publicly funded and may not have access to high performance

computing resources that offer a larger number of processors.

The uncertainty associated with the model output is statistical uncertainty due to the

Monte Carlo simulation being based on random sampling. There is no consideration of

uncertainties in the model parameters or in the dose delivered to the tumour and organs

at risk. These uncertainties have the potential to influence the predicted benefit (or lack

thereof) of treating a patient with proton therapy.
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Another limitation of this model is the assumption that the death probabilities (as a

result of cancers and injuries) are dependent on time. However, it is more likely that the

probability of death would depend on stage of cancer or grade of injury. The quality of

life associated with an Unwell state would also depend on the grade or stage.

While the importance of validation has been addressed in the Discussion of the publication

P1, it would likely be difficult to validate some aspects of the model. For example, it

difficult to know exactly what causes a second cancer as it is a biologically stochastic

process.

3.6 Conclusion

The initial model has been developed successfully to consistently predict a clinical out-

come given a radiotherapy treatment plan using a Monte Carlo approach. Although the

model has incorporated numerous technical details, there are limitations that are ad-

dressed in a later model (see Chapter 4). However, if computational efficiency were not

an issue, the presented model could potentially be implemented clinically upon external

validation.



Chapter 4

Analytic Evaluation

4.1 Introduction

The initial model developed as part of this work was presented in Chapter 3. This model,

referred to in this chapter as the Monte Carlo Evaluated (MCE) model, had limitations

which were discussed. A notable limitation was the large computation time. In addition,

there was no consideration of uncertainties associated with the input parameters or dose

data used to calculate the state transition probabilities. It was concluded that the most

efficient way to include these uncertainties was to evaluate the Markov model analytically

instead of with a Monte Carlo simulation. Hence, the model presented in this chapter

was developed to facilitate the inclusion of non-statistical uncertainties in the model

estimates. These uncertainties, which can potentially impact on whether a patient is

selected for proton therapy, are considered in a later version (see Chapter 5).

In this chapter, an updated model is presented and evaluated analytically, producing

results consistent with the results of the model outlined in Chapter 3 (provided a suffi-

ciently large number of Monte Carlo iterations). This model, referred to in this chapter as

the Analytically Evaluated (AE) model, involves considering simultaneously the entirety

of a hypothetical cohort of Sims (each being an identical copy of an individual patient

under consideration), rather than each Sim in the cohort individually with each being a

Monte Carlo simulation. For this reason, it is possible to obtain results with significantly

68
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reduced computation time compared with the MCE model. However, a disadvantage is

a greater memory usage requirement. At any given time, only the distribution of Sims

among the Markov states is known, and it is not possible to track individual Sims in the

AE model. Therefore, alternative methods must be employed to obtain results that are

equivalent to the MCE model and to ensure efficient usage of memory. Both models were

written in the C programming language.

The development of the AE model involved implementing several alterations in the Monte

Carlo code, predominantly to increase computation efficiency and to provide a more

realistic model output. Details of these are outlined in Section 4.2, where key differences

in the Markov states and transition probabilities are described. Next, the method of

evaluating the AE model is presented in Sections 4.3 and 4.4. The output is described

in Section 4.5 and the results and computational efficiency are compared with the MCE

model in Section 4.6. Finally, a discussion of the strengths and limitations of the AE

model is provided in Section 4.7, with several points also being applicable to the MCE

model.

4.2 Description of the AE model

While the two models are largely equivalent, there are key differences which are sum-

marised in this section. More realistic predictions are facilitated in the AE model by

incorporating the effects of differing injury grades and cancer stages on the quality of life

of the patient. This allows for a more accurate estimate of the quality of life of a patient.

Grades specify the severity of an injury, with higher grades corresponding to more severe

injuries, which have a larger impact on quality of life. Different grades may also have

different death and recovery probabilities (see Section 4.2.3). The staging of cancers is

explained in Section 4.2.1. For each cancer, a state was allocated to each possible stage,

and for each injury, a state was allocated to each possible grade. As a result, the number

of Markov states in the AE model is significantly greater than that of the MCE model

(see Section 4.2.6). The increased computational efficiency that could be achieved with
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an analytic approach compared with a Monte Carlo simulation allowed for the inclusion

of these additional states.

However, while the analytic evaluation is computationally more efficient compared with

the Monte Carlo simulation (see Section 4.4), the computation speed is still a function

of the number of Markov states. To further increase computational efficiency, techniques

were employed to remove unnecessary Markov states. These included the removal of neg-

ligible probabilities, removing negligible injury grades, and combining all second cancer

states into a single second cancer state.

4.2.1 Cancer staging

Cancers can be classified based on the likely prognosis [85]. Factors including tumour

extent, lymph node involvement and the extent of metastasis affect the classification.

The cancer classification groups are known as stages which are described as follows:

� Stage 0: Carcinoma in situ with no metastatic potential,

� Stage I: Smaller and less invasive cancers with negative nodes,

� Stages II and III: Increasing tumour or nodal extent,

� Stage IV: Distant metastasis.

A state was allocated to each possible stage of cancer. It was assumed that there were

three stages in the model, as Stage 0 was not considered to impact quality of life. However,

this assumption can be easily modified if necessary.

As prognosis is represented by the stage, it was concluded that death probability should

depend on the stage for a given cancer, rather than the time since treatment. Therefore,

each stage has a unique death probability. This is discussed in more detail in Section 4.2.3.
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4.2.2 Inclusion of higher injury grades

Unlike the transitions from the Well state to states with higher cancer stages, it is pos-

sible to transition to states with higher injury grades directly from the Well state. The

probability of this transition is given by the NTCP for each grade of injury. The events

of developing different grades of the same injury are mutually exclusive, that is, it is not

possible to be simultaneously affected by two grades of the same injury at the same time.

Therefore, there are no Markov states where two grades of the same injury co-exist. It is

also impossible to develop a grade of an injury once another has been recovered from (see

Section 4.3.1). Note that there is a single Deceased state for each injury: death due to

differing grades of the same injury will result in a transition to the same Deceased state.

If a member of the cohort does not have a given injury ` at a given time, then the

probability of not developing that injury, Prc(`, x), is the complement of the probability

of developing any grade of that injury at year x, given by

Prc(`, x) = 1−
Ng∑

i=1

NTCPi(x), (4.1)

where NTCPi(x) denotes the probability of developing grade i of the injury, and Ng

denotes the total number of grades of the injury. This probability is implemented when

calculating the transition probabilities with (3.5) and (3.6), which combine the probabil-

ities of various events that constitute a transition. For example, consider the case where

there are two possible injuries that could affect a patient, with Injury 1 having one grade

and Injury 2 having two grades, a and b. For simplicity, death is not possible in this

example. The probability of staying in the Well state (with row i = 1 and column j = 1)

at year x is the probability of not developing any grades of any injury,

p11(x) = (1− NTCP1(x))(1− NTCP2a(x)− NTCP2b(x)). (4.2)

It is also assumed that any time spent in lower grades of the same injury while recovering

from a higher grade is negligible. Therefore, it is not possible to transition between

different grades of the same injury.
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If a constant number of grades is assumed for all injuries, then the result is a larger number

of Markov states, corresponding to an increased computation time. As an alternative,

the number of grades for each injury was defined as a variable that depends on the injury,

as specified by the user. For example, Injury 1 may have a single grade while Injury 2

may have two.

Once the injury grades were incorporated into the model, the output was tested under a

variety of conditions to ensure that the model was behaving as expected. These included

varying the number of injuries and the number of grades for each. Death and injury

recovery were also included. Example results are provided in Figures 4.1 and 4.2. It is

evident that the model is behaving as expected after the inclusion of injury grades.
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Figure 4.1: A comparison of the model output with expectations for each year after
treatment and a variety of scenarios: (a) the surviving fraction with background death
being the only possible cause of death (with a non-zero SPCIP and NTCP and a varying
number of injuries and grades, which allows the transitions between these states to be
checked); (b) the same as (a) with the only cause of death being the initial primary
cancer (with probability 0.9 and a TCP = 1); (c) the same as (a) with the only cause of
death being second cancer (with probability 0.5); (d) the fraction with a second cancer.
In (d) all possible causes of death were disabled to allow this specific component of the

model to be tested. A perfect agreement with expectations is apparent.
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Figure 4.2: A comparison of the model output with expectations for each year after
treatment and two injury related scenarios: (a) The fraction surviving with the only
cause of death being injury related (with probability 0.5); (b) The fraction of the cohort
with an injury where death is not possible and recovery occurs with a yearly probability
of 0.05. Several tests were carried out for each scenario with varying grades of injuries.

A perfect agreement with expectations is apparent.

4.2.3 Grade/stage dependence of death probabilities

A key difference between the two models is that the recovery and death probabilities

were assumed to be time-independent in the AE model, with the exception being the

probability of unrelated death. This is time-dependent in both models, as it is not

realistic to assume a constant unrelated background death probability for all ages.

Instead of being time-dependent, the cancer and injury death probabilities are grade-

or stage-dependent in the AE model. This is a realistic assumption, as explained in

Section 4.2.1. For the case of cancer, it could be argued that the cancer stage and the

duration for which it has been present are correlated, but it was concluded that the stage

of a cancer is a more appropriate determinant of death probability as the prognosis is

represented by the stage.

Besides injury grades and cancer stages being more realistic determinants of the patient’s

treatment outcome than time, they also allow for a much smaller number of Markov
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states. Recall, from Section 3.3.2.3, that the memoryless property of Markov models

would mean that each state would be required to include the length of time a given

injury or cancer has been present to allow the correct time-dependent probability to be

applied. This would lead to an impractically large number of Markov states.

The death probabilities can be specified by the user. It is also possible to transition to

higher stages of cancer from lower stages, with these probabilities also being user-defined.

It is assumed that if a cancer develops as specified by the SPCIP, then the lowest possible

stage of cancer develops and that the patient moves to the corresponding state. Refer to

Section 4.2.2 for an explanation of the relationship between states representing different

grades of injury.

4.2.4 Removal of negligible probabilities

The computation time and memory usage both increase rapidly with the number of OARs

that are considered in the model. To increase efficiency, OARs that received a particularly

small dose of radiation were not considered. For simplicity, this section will focus on the

NTCP but similar methods were applied to the SPCIPs.

The all-time NTCPs are firstly calculated for each OAR. If the NTCP is less than a

user-defined threshold, then the OAR is removed from the list of injuries. The removal,

if required, is carried out before the time-dependent NTCPs are calculated using the

method described in Section 2.4.2 of the publication P1. Ideally, the optimum threshold

for probability exclusion would be determined through a sensitivity analysis to ensure

that the accuracy of the output is not compromised by the removal of organs with small

NTCPs.

4.2.5 Combining individual organ SPCIPs

Although it is important to consider the effect of a radiation-induced second cancer in the

model, injuries typically have a greater effect on the quality of life of a patient as SPCs

typically occur much later than injuries. It is therefore reasonable to assume that all
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SPCs have an equal impact on the quality of life of a patient. As a result, a simplification

was made by having only one Markov state to represent all of the SPCs that could

potentially develop within the patient, rather than a separate state for each organ. This

simplification results in a greatly reduced number of Markov states and a corresponding

decrease in computation time. Note that a state still exists for the cases where a SPC is

present in addition to every possible combination of injuries as well as the initial primary

cancer.

The probability of transitioning to the combined second cancer state is given by the

combined yearly SPCIP for each cancer site under consideration. The formula used to

combine the probabilities is given by

Pr(E1 ∪ E2 ∪ ... ∪ EN) = 1− Pr(Ec
1 ∩ Ec

2 ∩ ... ∩ Ec
N)

= 1−
N∏

i=1

[1− Pr(Ei)],
(4.3)

which gives the probability of developing a second cancer in tissue i (event Ei) at any

year after treatment. Here, Pr(Ei) is the SPCIP for tissue i for a particular year, N is

the total number of tissues being considered as potential cancer sites, and Ec
i denotes the

complement of Ei. It was assumed that the SPCIPs for each tissue were independent.

This calculation is repeated for each year after treatment.

A single quality of life utility is assigned to this state and there is also a fixed (user-defined)

probability of transitioning to higher grades of the cancer. This allows a reduced quality

of life to be applied to a higher grade and for an increased death probability. Recovery

from cancer remains impossible in the model. The exception is that it is possible to

recover from the primary cancer immediately after treatment and before the beginning

of the first Markov cycle.
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4.2.6 Number of Markov states

There is a state for every possible combination of injury grade and cancer stage. The

total number of states, without any minimisation techniques, is given by

n = (u+ 2)M(v + 1)N+1 +M +N + 2, (4.4)

where M is the total number of injuries, u is the number of grades of each injury, N is

the number of second cancer sites being considered and v is the number of cancer stages.

The first summand on the right hand side of (4.4) represents the number of living states

which is equivalent to the number of permutations, where the order matters. Each cancer

and injury can take a particular ‘value’, depending on whether it is present in a given

state, and which grade or stage if present. The combination of all these values in a given

state corresponds to a particular permutation. The order matters as it is important that

the grade/stage of a particular injury or cancer is known (rather than simply knowing

that a certain number of injuries were of a given grade).

For a given state, each injury can have u + 2 possible ‘values’, one for each grade, one

for the case where the injury is not present, and one for the case where the injury is not

present but there is a history of the injury in the time since radiation treatment. This

is explained in more detail in Section 4.3.1. Hence there are u + 2 values to select from,

and M are selected. Similar reasoning applies to the cancers, however it is not possible

to recover from cancers and hence there are only v+ 1 values, and N + 1 are selected (N

second cancers plus the initial primary cancer).

The addition of M + N + 2 represents the dead states, one for death from each second

cancer and injury, one from the initial primary cancer and one from background death.

If the number of injury grades is variable for each injury (Section 4.2.2) and all possible

second cancer sites are combined into a single site (Section 4.2.5), then the number of

Markov states becomes

n = (v + 1)2
M∏

`=1

(u` + 2) +M + 3, (4.5)
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where u` is the number of injury grades for injury `. Here, N has been replaced with the

value 1.

4.3 Evaluation

For the AE model, the transition matrix P for a given year after treatment is constructed

which stores the transition probabilities for each state pair at a particular year. A differ-

ence to the MCE model is that the entirety of the transition matrix must be evaluated

at a given year, rather than a single row.

The row vector πi represents the fraction of the cohort in each state at the end of year i

and has n elements, one for each state. The first two elements represent the fraction of

the cohort that are well and the fraction with the initial primary cancer only, respectively

(see (4.8)). All other elements are zero at this point. At year i,

πi = πi−1Pi. (4.6)

Thus, πx at year x after treatment can be calculated by

πx = π0

x∏

i=1

Pi, (4.7)

where π0 is given by

π0 =
[
TCP (1− TCP ) 0 · · · 0

]
. (4.8)

4.3.1 Preventing redevelopment of injuries

Including the possibility of recovery from an injury allows for a more accurate estimate of

the quality of life of a patient. Biologically, it is impossible to develop a radiation-induced

injury after it has been recovered from. It is therefore important to distinguish between
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situations where a patient is well without a history of the injury (since treatment), and

where he/she is well but has developed and recovered from an injury since the treatment.

In the MCE model, flags were used to determine which injuries had been recovered from

and therefore which NTCPs should be zero in subsequent years (see Section 3.3.2.3). This

is not possible in the AE model, however, as it is not possible to track individual Sims. In

the AE model, an extra state was created to represent the situation where an injury had

been recovered from to track the injury history. Transition probabilities from recovered

states to injured states (associated with the same injury) are zero. For the case where

multiple injuries could possibly affect the patient, an extra Markov state was created for

every possible combination of injuries that could have been recovered from. An example

of this is provided in the publication P2, which forms the basis of Chapter 5.

The possibility of redevelopment of cancers is not considered, as it is assumed that it is

not possible to recover from cancers in this model.

4.3.2 Representing states

As with the MCE model, efficiently constructing the transition matrix for the AE model

is a complex task. The reason for this complexity is that not only is there a state for

every possible combination of cancer and injury that could be present, but also every

possible combination of injury grades and cancer stages, which corresponds to a much

larger number of states.

A similar method to the MCE model was employed to address this issue. A vector

S was used to represent each Markov state, with each element being an integer value.

The combination of element values is unique to each state (see Section 3.3.3.1). There

is an element to represent the presence or absence of each injury or cancer in a given

state. The format of S can be explained as follows: The first M elements represent the

injuries, the second to last element represents the SPC and the final element represents the

initial primary cancer. For example, if M = 3 and the initial primary cancer was treated

successfully, then the state where the patient has grade 1 of injury 1, does not have injury

2, has grade 2 of injury 3, and has stage 2 SPC, is represented by S = [1 0 2 2 0].
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In the AE model, the form of S has two key differences compared with the form in the

MCE model:

1. The number of elements.

(a) All second cancers are combined into a single state (see Section 4.2.5), and

hence there is only one element in S to represent the presence or absence of

second cancers.

(b) An element is also added to represent the initial primary cancer. In the MCE

model, each Sim is tracked separately and hence it is possible to simply use a

flag to mark the presence or absence of a successful treatment. However, this

is not possible in the AE model as the cohort is considered simultaneously,

and it is therefore necessary to track the status of the initial primary cancer

using other means. Consequently, there are M + 2 elements in each vector S.

For example, if M = 3 and N = 2, in the MCE model

S = [s1 s2 s3 s4 s5 ], (4.9)

and in the AE model

S = [s1 s2 s3 s4 s5 ], (4.10)

where the positions of the elements representing second primary cancer states

are highlighted in pink and the initial primary cancer in yellow.

2. The possible values for the elements. In the MCE model, if an injury or cancer is

present, then the value of its corresponding element is 1. Otherwise, it is 0. In the

AE model the state at the beginning of a cycle is represented by

Si,` =





r if patient has grade/stage r of injury/SPC `,

−1 if patient has a history of injury `,

0 otherwise.

(4.11)
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The state at the end of the cycle is represented by Sj, which has each element `

defined in the same manner:

(a) Integers greater than 1 are used to account for states where there are higher

grades of injury or stages of cancer present. For example, if the lowest grade/stage

is present, then the element representing the corresponding injury/cancer is

assigned a value of 1. If grade/stage 2 is present, it is assigned a value of 2

and so on.

(b) Recovered states. Additional states, called recovered states, were assigned to

represent situations where there has been a history of a particular injury (see

Section 4.3.1). States where an injury is absent but has been present in the

past have the element representing the injury assigned to −1.

4.3.3 Structure of the transition matrix

The row order of the transition matrix for each year is as follows:

1. The Well state is listed first, followed by the initial primary cancer only (no second

cancers or injuries) state.

2. All Unwell states are listed with the exception of the states where an injury has

been recovered from. These states are listed in lexicographical order. For example,

the order of the first states (represented by S) are: [0 0 0 0] (well), [0 0 0 1], [0 0 0

2], [0 0 0 3], [0 0 1 0], etc.

3. These Unwell states are followed by the Unwell states that are duplicated for the

cases where there has been a history for one or more injuries. For a given number

of absent injuries, there is a duplicate for every possible combination of histories

of the absent injuries. For example, if there are two absent injuries, Injuries 1

and 2, then there are four states with only these injuries absent (all other factors

constant, including the presence or absence of cancers and other injuries). If the

cancers are absent, then there is the state for where both have never been present,

represented by S = [0 0 0 0], a state for where both have been present (S =



Chapter 4. Analytic Evaluation 82

[−1 − 1 0 0]) and two states for the cases where one has been present in the

past (S = [0 − 1 0 0] and S = [−1 0 0 0]). Of these four, the first is listed

with the non-recovered Unwell states in the previous item.

4. The order of the recovered Unwell states follows the order of the non-recovered Un-

well states, that is, all duplicates of a given non-recovered state are listed together.

The order of these follows a binary pattern, with a 1 being replaced with a -1 to

denote the history of an injury. For example, consider the simple case where there

are no cancers present and two injuries. The order of the states are demonstrated

as follows for the case where the cancers are absent, along with a description of

each of the states:

[0 0 0 0]→Well, no injury history,

[0 1 0 0]→Injury 2, no history of Injury 1,

[1 0 0 0]→Injury 1, no history of Injury 2,

[1 1 0 0]→Injuries 1 and 2,

[0 -1 0 0]→Well, history of Injury 2,

[-1 0 0 0]→Well, history of Injury 1,

[-1 -1 0 0]→Well, history of both injuries,

[1 -1 0 0]→Injury 1, history of injury 2,

[-1 1 0 0]→Injury 2, history of injury 1.

5. Finally, the Deceased states are listed, one for each injury, followed by the second

cancer Deceased state, the initial primary cancer Deceased state and the background

Deceased state.

4.3.4 Calculation of transition probabilities

The elements of the transition matrix are calculated in the AE model using a similar

method to the MCE model (see Section 3.3.3.2). Development of different injuries and
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SPCs are independent (with the exception of differing grades of the same injury). There-

fore, the probability of transitioning from state i to state j at year x after treatment is

given by

pij(x) = (1−Pr(Die, i, x))
M+2∏

`=1

Pr(E`, i, j, x), i = 1, ..., n−nd, j = 1, ..., n−nd, (4.12)

where Pr(E`) is the probability of event E` occurring and nd = M − 3 is the number

of Deceased states. The events associated with a given transition are determined by

comparing the state at the beginning of the cycle, represented by Si, to the state at the

end of the cycle, represented by Sj. The values of each of the ` elements of Si and Sj

are determined by the events that occur in the transition. The events include injury or

second cancer development, or injury recovery, with probabilities

Pr(E`, x) =





NTCP`,r(x) if ` ≤M, Si,` = 0, Sj,` = r, r ≥ 1,

SPCIP(x) if ` = M + 1, Si,` = 0, Sj,` = 1,

1−∑u
r=1 NTCP`,r(x) if ` ≤M, Si,` = 0, Sj,` = 0,

1− SPCIP(x) if ` = M + 1, Si,` = 0, Sj,` = 0,

P r(EIR,`,r) if ` ≤M, Si,` = r, r ≥ 1, Sj,` = 0,

1− Pr(EIR,`,r) if ` ≤M, Si,` = Sj,v ≥ 1,

P r(ESI,s, is, js) if ` = M + 1, Si,` ≥ 1, is < js,

1− Pr(ESI,s, is, js) if ` = M + 1, Si,` = Sj,` ≥ 1, is < js,

P r(ESI,p, is, js) if ` = M + 2, Si,` ≥ 1, is < js,

1− Pr(ESI,p, is, js) if ` = M + 2, Si,` = Sj,` ≥ 1, is < js,

(4.13)

where Pr(ESI,s, is, js) is the time-independent probability of the stage of second cancer

increasing from stage is to stage js, Pr(ESI,p, is, js) is the time-independent probability

of the stage of initial primary cancer increasing from stage is to stage js, NTCP`,r is the

probability of developing grade r of injury `, Pr(EIR,`,r) is the probability of recovering

from grade r of injury `, and u is the total number of grades of injury `. The probability
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of the stage of cancer increasing can be unique for a given pair of stages. Note that the

injury recovery is time-independent.

Many of the transitions from Si to Sj are impossible, including:

� Si,` = −1, Sj,` > 0, ` ≤M : developing an injury again once recovered from,

� Si,` 6= 0, Sj,` = 0, ` ≤M : erasing a history of injury,

� Si,` = 0, Sj,` = −1, ` ≤M : recovering from an injury before obtaining it,

� Si,` > 0, Sj,` > 0, Si,` 6= Sj,`, ` ≤ M : transitioning between different grades of the

same injury,

� Si,` > 0, Sj,` = 0, ` > M + 1: cancer recovery,

� Si,` = 0, Sj,` > 1, ` = M + 1: developing a higher stage of cancer before the lowest

stage,

� Si,` = 0, Sj,` > 1, ` = M + 2: recurrence of the initial primary cancer.

4.4 Computational efficiency methods

With a state for every possible combination of injury grades, cancer stages and also

the recovered states, a challenge exists in storing the entirety of the transition matrix

simultaneously. As explained in Section 4.3.4, the transition matrix is a sparse matrix

as many elements are zero. This property was utilised to allow for more efficient storage

and computation time without compromising the model predictions. This is particularly

important as the intended purpose of the model is to provide decision support in the

clinic with minimal computation time. Furthermore, it is likely that many clinics would

rely on standard desktop computers due to a limited access to supercomputer clusters.
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4.4.1 Method of matrix condensation

Each matrix element is calculated in order of increasing row, then increasing column. The

method of matrix storage involves storing only the non-zero values of the transition matrix

as they are calculated. These values are stored sequentially in a single one-dimensional

array in order of increasing row then increasing column (the order in which they are

calculated). As a number of probabilities are time-dependent, the length of this array is

not necessarily constant for each year after treatment. The array is accompanied by two

other arrays of equal length: one stores the row index of each non-zero element and the

other stores the column index of each non-zero element. The indices are important as

they allow successive transition matrices to be multiplied together.

4.4.2 Filling of the transition matrix in blocks

The slowest component of the model evaluation is the process of determining which

events contribute to each probability in the transition matrix (see Section 4.3.4). It is

not possible to know which transitions are impossible until the events that contribute

to the transition have been assessed. As the matrix is sparse, there are many elements

that are calculated but not stored as they evaluate to zero. This represents unnecessary

computation time.

Fortunately, the structure of the matrix has a pattern due to the lexicographical ordering

of the states (see Section 4.3.3). This property was exploited to decrease the computation

time required to construct the transition matrix for each year. For example, consider the

case where there are three injuries and no cancers. The state where the first injury is

present and the others are not is represented by Si = [1 0 0 0 0]. Suppose the elements of

the row corresponding to this state are being calculated. The first transition considered

is from this state to the Well state, represented by Sj = [0 0 0 0 0]. This transition is im-

possible as recovery from the first injury would mean a transition to the state represented

by [−1 0 0 0 0]. Hence, once the first element of Si in this case is compared with the first

element of Sj, the transition matrix element will evaluate to zero regardless of any events

associated with the other injuries present. Therefore, it is not necessary to consider these
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events. Similarly, it is impossible to transition to all other states where Sj,1 = 0 if Si,1 = 1

and these probabilities are not stored as a result. Recall that, due to the lexicographical

order, all states where Sj,1 = 0 (or where Sj,1 = 1) are listed consecutively due to the

order of the states. States where Sj,2 = 0 or where Sj,2 = 1 are not necessarily listed

together but are listed in sub-blocks. The sizes of the blocks decrease with increasing

index value of the element of Sj. Hence, the largest computation savings correspond to

elements of Sj with the smaller indices.

In general, the process of filling the matrix in blocks is as follows:

1. Each row is considered separately (i is kept constant), that is, the probabilities of

transitioning from a given state to all other states. The rows representing Deceased

states are not included in the algorithm as all elements of these rows will be zeros

(except the diagonal elements, i = j > n−nd, which are equal to 1 as it is impossible

to leave a Deceased state). Once rows i ≤ n−nd have been filled, nd elements with

the value 1 are appended to the end of the array that contains the values of the

transition matrix (see Section 4.4.1).

2. The events corresponding to the first transition probability in the row are deter-

mined by considering elements of Si,` and Sj,` for ` = 1, ...,M + 2.

3. If a forbidden event is encountered for a given i and j, then the transition probability

is assigned a value of 0 regardless of whether all possible values of ` have been

considered. This is because each transition consists of several events and if at least

one event is forbidden, then the transition is not possible. Thus, it is not necessary

to check all possible values of `, thereby saving computation time.

4. A check is then carried out to determine whether the same forbidden event E` exists

for a transition to be made from state i to the next state in the row, j + 1 (before

checking if other events exist by keeping ` constant). If it does occur, then the

transition is also forbidden and the state j + 1 is skipped without being stored.

No other calculations are necessary to determine that transition probability. The

reduced number of calculations results in a reduced computation time.
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5. Each of the following states are skipped (j + 1 is incremented while keeping `

constant) until a state is encountered where the forbidden event does not occur.

Then Step 2 is repeated for the next probability in the row i.

6. The process is repeated until j = n− nd + 1 and the absorbing states are reached.

These are appended to the list of transition matrix values. If the row represents a

state where an injury or cancer is not present, then the corresponding element is

set to zero and not stored in the condensed representation of the transition matrix

(recall that only the non-zero elements are stored).

7. The process is repeated for the next row of the transition matrix.

4.5 Model output

Evaluating the AE model analytically involves making calculations based on the distri-

bution of the cohort among Markov states at each cycle. From here, it is possible to

calculate both the raw and quality-adjusted life expectancy.

4.5.1 Raw life expectancy

Both mean and median raw life expectancy can be calculated from the fraction of the

cohort that moved to a Deceased state each year. This fraction for a given year is the

difference between the surviving fractions of two consecutive years. Initially, at τ = 0, the

surviving fraction is 1 by default as it is not possible to die at this time in the model. In

a discrete-time Markov model, the time to death, τ , is a discrete random variable. Hence

it is only possible for a member of the cohort to die at τ = 1, 2, 3..... If death occurs at

τ = 1 for example, then the life expectancy is 1.

The mean life expectancy is equivalent to the expected time until death, E[τ ], plus the

patient’s age at treatment, a. The expected time to death is determined by finding the

mean of the distribution of yearly deaths, which depends on the probability of dying in



Chapter 4. Analytic Evaluation 88

a given year k, Pr(τ = k):

E[τ ] =
m∑

k=1

kPr(τ = k), (4.14)

where m = 100− a, Pr(τ = m) = 1−∑m−1
k=1 Pr(τ = k) and Pr(τ > m) = 0, that is, the

surviving fraction of the cohort is absorbed after the final year of the Markov chain. If a

patient does not die before 100−a, then it is assumed that they are deceased after 100−a,

as it is not possible to live beyond the age of 100 in the model. This assumption allows

comparison of the output with that of the MCE model, where each Sim is considered

individually.

The probability of dying at a given year can be calculated as

Pr(τ = k) = πA
0

k−1∏

i=0

P
(i)
A d, (4.15)

where πA
0 contains the initial fraction of the cohort in each living state, the square matrix

P
(i)
A is the upper left quadrant of the transition matrix at year i that represents the proba-

bilities of transitioning between the living states, and d contains each of the probabilities

of moving from a living state to a Deceased state. The sum of the numbers of elements

of d and πA
0 is equal to the number of Markov states, n.

Thus, the mean life expectancy is calculated as

E[τ ] =
m∑

k=1

k

(
πA

0

k−1∏

i=1

P
(i)
A d

)
. (4.16)

It is also possible to calculate the mean “on the fly” with a less computationally expensive

approach. The expectation time can be re-written as

E[τ ] =
m∑

k=1

kPr(τ = k)
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=
m∑

k=1

k∑

j=1

Pr(τ = k)

=
m∑

j=1

m∑

k=j

Pr(τ = k)

=
m∑

j=1

Pr(τ ≥ j)

=
m∑

j=0

Pr(τ > j)

=
m∑

j=0

n∑

i=1

(πj)i, (4.17)

where n is the number of Markov states. This is essentially the sum of the surviving

fraction at each year.

In reality, the distribution of the time until death is a skewed distribution, as typically the

death probability increases with time due to the effect of background death. Therefore,

it is more appropriate to report the median life expectancy instead of the mean, as

it generally is not distorted by skewed data. It is possible that two treatment plans

could have equal mean life expectancies but unequal medians and therefore the median

can provide additional information. By definition, half of the cohort will die before the

median life expectancy. This quantity may therefore be calculated by finding the age

corresponding to half of the area contained within the distribution of time until death.

4.5.2 Quality-adjusted life expectancy

The calculation of the QALE is more complicated than the raw life expectancy. Unlike

the MCE model, it is not possible to track individual members of the cohort and it is

therefore not straightforward to obtain a distribution of QALEs for the calculation of the

mean and median QALE. For example, if a certain fraction moves to the Deceased state

in a given year, each member in that fraction would not necessarily have had the same
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injuries or cancers for the same amount of time and hence may not have had the same

quality of life.

Equation (4.17) calculates the mean survival each year, and then sums over all years.

The result is the mean life expectancy. A similar method can be used to obtain the mean

QALE, by multiplying the fraction of the cohort in a given state by the utility of the

corresponding state, and then summing over all years:

Q̂ALE =
m∑

j=0

n∑

i=1

(πj)i · ui (4.18)

where U = [u1 u2 ... us] is a vector of the quality of life utilities for each state. While

the mean QALE is straightforward to obtain, this is not the case for the median QALE.

Therefore, the median QALE was not considered in the AE model.

4.5.3 Other metrics

The proportion of the cohort that died of particular causes (discussed in Chapter 3) is

evaluated by the AE model. This is achieved by having several Deceased states, one for

each possible cause of death (as explained in Section 3.3.2.4), and considering the fraction

of the cohort in each of these states when the time horizon is reached.

The yearly fraction of the surviving cohort that suffered an injury or second cancer after

treatment is also evaluated by the model. This is calculated as the sum of the fractions of

the cohort in each injured or cancer state, respectively (some states are both injured and

cancer states). The fraction with an injury or second cancer is divided by the surviving

fraction to give the surviving fraction in an unwell state.

4.6 Comparison with the MCE model

It was necessary to compare the output of the two models to ensure that the AE model

was developed correctly. The output of the MCE model was verified to ensure that the
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model was behaving as expected (see Section 3.4). Therefore, if the two model outputs

agree, then it could be inferred that the AE model is also behaving as expected.

The fundamental difference between the evaluation of the two models is that the entirety

of the hypothetical cohort is considered simultaneously in the AE model, whereas individ-

ual cohort members are considered separately in the MCE model. However, this should

not affect the predictions of the model.

Another important difference between the evaluation of each model is the alternative

methods used to prevent injury redevelopment. While this should not result in differing

predictions, it does increase the number of states in the AE model compared with the

Monte Carlo simulation. This is important to consider when comparing the computation

time of the two models.

The death and recovery probabilities are time-independent in the AE model (with the

exception of the background death probabilities), as described in Section 4.2.3. However,

for the purposes of comparing the output between the two models, the death probabilities

in the MCE model were manually set to time-independent values that were equal to those

used in the AE model. Furthermore, for the purposes of comparing with the MCE output,

injury grades and cancer stages were not included in the AE model as these were not

originally considered in the MCE model.

The SPCIPs are combined for all organs in the AE model. Therefore, only a single organ

was considered in the comparison to remove the effect of the alternative processing of

these probabilities on the comparison. Negligible probabilities were not removed.

The data from a proton plan for a four-year-old female base of skull chordoma patient

was considered for the test. This data was the input to both models. A cohort size of 106

was selected for all tests of the Monte Carlo simulation as this gave results consistent to

3 significant figures. The yearly primary cancer death probability was set to 0.9 and the

yearly second cancer death probability was set to 0.1. The injury death probability was

set to 0. The results are summarised in Table 4.1. The two models produce the same

result to within 3 significant figures, and also agreed to within the statistical error of the

MCE model. This is the same level of accuracy that can be obtained when comparing
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different outputs of the Monte Carlo simulation calculated with the same input data. A

comparison of the graphical output is given in Figures 4.3-4.5. These compare at each

year after treatment the surviving fraction of the cohort, the fraction injured, and the

fraction with a second cancer, respectively. Good agreement was achieved for all cases

tested.

Monte Carlo Analytic

Mean raw LE (years) 67.43±0.08 67.42

Mean QALE (years) 41.05 ±0.32 41.00

Table 4.1: The results of each model given equivalent input data. The TCP resulting
from the input treatment plan was 0.83 and the NCTP was 0.99. The Monte Carlo
cohort size was 106 and the statistical uncertainty associated with the life expectancies

is shown.

Figure 4.3: The fraction of the cohort surviving for each year after treatment. The
cancer death probability was set at 0.9 which results in the initial sharp decrease in
survival. The possibility of death due to injury was disabled. The background death
accounts for the large decrease in survival in the later years after treatment. A good

agreement between the two models is apparent.
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Figure 4.4: The fraction of the cohort with an injury for each year after treatment.
The probability of injury recovery was set to 0.05. A good agreement between the two

models is apparent.

Figure 4.5: The fraction of the cohort with a second cancer at each year after treat-
ment. The small discrepancy apparent is a result of the relatively small probability of
developing a second cancer (differences are more easy to detect compared to Figure 4.4,

due to the difference in vertical scale).
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The computation time was also compared between the two models. For the Monte Carlo

simulation, this time is a function of both the hypothetical cohort size (number of itera-

tions) and the number of states. In contrast, the analytic computation time is function

of the number of states only. The same patient data was used (proton treatment plan

for the four-year-old female patient with base of skull chordoma). As stated above, the

AE model combines all organs to give a single estimate of the SPCIP. Hence, only the

length of the list of injuries was increased sequentially to determine the computational

efficiency for an increasing number of states. It is unlikely that more than 6 OARs would

receive a significant dose, so this was the maximum considered. The results are tabulated

in Table 4.2, and graphed in Figure 4.6. Recall that additional states are required in the

AE model (see Section 4.2.6).

MCE model AE model

# Injuries # States Time (s) # States Time (s)

1 8 78.2 16 0.052

2 13 93.3 41 0.13

3 22 123.0 114 0.4

4 39 193.8 331 1.5

5 72 365.8 980 10.3

6 137 748.1 2925 125.1

Table 4.2: The results of the computation time comparison.
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Figure 4.6: The computation time for each model, as a function of the number of
Markov states (left) and organs at risk (right). For an equivalent number of states/or-
gans at risk, the AE model clearly offers an advantage over the MCE model in terms

of computation time.

The AE model offers a significantly reduced computation time compared with the Monte

Carlo simulation. For six OARs, the runtime is six times faster even though the number

of states is at least 20 times greater. When the number of states are approximately equal,

the AE model is approximately 1,800 times faster.

It should be noted that it can be difficult to compare the two models fairly in terms of

computation speed for several reasons. Firstly, the entire matrix is calculated each year

in the AE model whereas only a single row is calculated each year in the MCE model.

Secondly, a number of computational efficiency techniques were implemented in the AE

model.

4.7 Discussion and conclusion

The AE model has been implemented successfully and produces predictions with a signif-

icantly reduced computation time compared with the MCE model. A major contributor

to this is the efficiency of matrix multiplications compared with Monte Carlo simulations.
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Furthermore, these results do not have the statistical uncertainty that is present in the

results of the Monte Carlo simulation. However, like the MCE model, the AE model has

limitations. Some of these are unique to the latter but many also apply to the former.

A key enhancement of the model is that the injury and cancer death probabilities depend

on the grade or stage rather than time. While it is more realistic for death probabilities

to depend on severity rather than time, a difficulty exists in sourcing appropriate death

probabilities, particularly for different stages of cancer. Furthermore, there is a time-

and dose-independent probability of transitioning to higher stages of cancer to allow for

more realistic quality of life estimates for the fraction of the cohort being affected by

each cancer. However, it can be difficult to source reliable estimates of these parameters.

In the absence of reliable estimates, a single representative quality of life utility can be

applied to the lowest stage while omitting the probabilities of transitioning to higher

grades.

In other models developed for patient selection for proton therapy, patient-specific vari-

ables other than dose are included [66, 68, 69]. In this thesis (both the MCE and AE

models), the only patient-specific variables are dose, age and gender. There is no consid-

eration of concurrent chemotherapy, pre-radiotherapy patient history, or genetics, all of

which may influence patient outcome after receiving radiotherapy. However, due to the

structure of the model, it would be difficult to include these factors without having an

unacceptably large number of Markov states.

In both models, there is uncertainty inherent in the application of the NTCP model

parameters, as they have been determined in studies based on populations treated with

photons only. As a result, they may not be able to produce reliable predictions for a

patient when treated with proton therapy. In future work, the model parameters should

be validated using populations treated with both photon therapy and proton therapy.

Finally, it is important to consider the quality of the input data. In both models, uncer-

tainty associated with the input data is not taken into consideration. The methods used

to include these uncertainties are outlined in Chapter 5.



Chapter 5

Model Uncertainties Incorporating

Robust Plan Analysis

The publication P2 forms the basis of this chapter:

Austin, A.M., Douglass, M.J.J., Nguyen, G.T. & Penfold, SN. Patient selection for pro-

ton therapy: A radiobiological fuzzy Markov model incorporating robust plan analysis.

Mathematical Medicine and Biology. 2019 (Submitted May 2019).

5.1 Introduction and motivation

The AE model presented in Chapter 4 was developed to improve computational efficiency

and to include the effects of higher injury grades and cancer stages on patient quality

of life. In addition, it facilitated the development of the model presented in this chap-

ter, which forms the basis of the publication P2. This model incorporates the effects

of uncertainties in the radiobiological model parameters and the dose delivery into its

predictions.

Where different treatment modalities are being considered, there may be significant differ-

ences in uncertainties that could arise due to patient set up and changes to the treatment

volume over the course of treatment. Internal organ motion/displacement and breathing
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may exacerbate these effects. In addition, due to the prominence of the Bragg peak in the

proton therapy dose deposition, the range uncertainty for proton therapy can be signifi-

cantly larger than that of X-ray therapy. This is because a small shift in the Bragg peak

can have a much more significant effect on the tumour and healthy tissue than changes

in the X-ray therapy dose distribution. These effects are not taken into account in the

AE model. It is important to consider these uncertainties as they can affect whether a

patient is selected for proton therapy.

The aims of this publication were to present the model that incorporated these uncer-

tainties into its predictions, and to demonstrate the output with an example patient.

The model is based on a fuzzy Markov model, which is a Markov model with uncertain

transition probabilities.

This chapter details features and technical aspects that were not included in the publica-

tion (Section 5.3), including the uncertainties in the quality of life utilities (Section 5.3.3).

A discussion and conclusion are given in Section 5.4.

5.2 Statement of contribution

5.2.1 Conception

The idea to incorporate the effect of uncertainties into the model was first conceptualised

by Scott Penfold. All authors contributed to the development of ideas and methods.

5.2.2 Realisation

The writing of the code and analysis was performed by Annabelle Austin, with advice

provided by Scott Penfold, Michael Douglass and Giang Nguyen.

5.2.3 Documentation

This paper was written by Annabelle Austin. Editing was performed by all authors.
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Abstract

Purpose: While proton therapy can offer increased sparing of healthy tissue

compared with X-ray therapy, it can be difficult to predict whether a benefit

can be expected for an individual patient. Predictive modelling may aid in

this respect. However, the predictions of these models can be affected by un-

certainties in radiobiological model parameters and in planned dose. The aim

of this work is to present a Markov model that incorporates these uncertain-

ties to compare clinical outcomes for individualised proton and X-ray therapy

treatments.

Methods: A time-inhomogeneous fuzzy Markov model was developed which

estimates the response of a patient to a given treatment plan in terms of quality

adjusted life years. These are calculated using the dose-dependent probabili-

ties of tumour control and toxicities as transition probabilities in the model.

Dose-volume data representing multiple isotropic patient set-up uncertainties

and range uncertainties (for proton therapy) are included to model dose deliv-

ery uncertainties.

Results: The model was retrospectively applied to an example patient as a

demonstration. When uncertainty in the radiobiological model parameter was

considered, the model predicted that proton therapy would result in an im-

proved clinical outcome compared with X-ray therapy. However, when dose

delivery uncertainty was included, there was no difference between the two

treatments.

Conclusion: By incorporating uncertainties in the predictive modelling cal-

culations, the fuzzy Markov concept was found to be well suited to providing a

more holistic comparison of individualised treatment outcomes for proton and
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X-ray therapy. This may prove to be useful in model-based patient selection

strategies.

Keywords : Proton therapy, patient selection, Markov model, decision aid, radiobi-

ological models
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1 Introduction

As proton therapy becomes increasingly available, a greater number of clinics will

need to decide which patients to treat with proton therapy instead of X-ray therapy.

While a reduction in normal tissue complications can generally be expected with

proton therapy, the expense and limited availability of the treatment suggests that

the patients with the greatest need should be prioritised. Randomised Phase III

clinical trial data comparing novel and standard treatments can become outdated

in the rapidly evolving environment of radiation oncology. Hence this data may not

always provide an adequate reference to determine which patients can expect the

greatest benefit from receiving proton therapy. Alternatively, a modelling study in

the form of an in-silico clinical trial [1] can be used to predict the patient outcome.

There has been a growing interest in the clinical use of model-based methods to

select patients for proton therapy [2, 3].

In previous work, a Markov model was developed which used dosimetric data from

a given treatment plan to determine probabilities of tumour control, second primary

cancer induction, and multiple normal tissue complications [4]. The model com-

bines these probabilities to give a single metric, the quality adjusted life expectancy

(QALE), which allows a quantification of the effect of a treatment on a patient’s

quality of life. The result is a quantitative comparison of the clinical outcomes of

two treatments on an individual patient basis. However, the limitation of the model

was that the nominal planned dose was used in the comparison and there was no

3



consideration of the effect of dose and radiobiological model parameter uncertainties

on the prediction.

The delivered dose can be different from the planned dose due to patient set-up

errors or anatomical changes over the course of treatment. It has been suggested

that these can have a significant impact on the accuracy of model-based selection of

oropharyngeal cancer patients for proton therapy [5]. Range uncertainties are also

an important consideration for proton therapy, where the distribution of dose with

depth increases sharply at the end of the proton range. This feature is known as

the Bragg peak and if this is misplaced, the result can be unacceptably high doses

being delivered in normal tissue or an under-dosage of the clinical target volume

(CTV). Furthermore, the parameters used in the radiobiological models are typically

obtained with regression methods and are also subject to uncertainty. The combined

impact of these uncertainties on the predictions of patient selection models warrants

further investigation.

The aim of this work is to present an evolution of the patient selection model

developed by Austin et al. [4], which includes a quantification of the effect of treat-

ment and model uncertainties during model-based patient selection for proton ther-

apy. The new model accounts for these sources of uncertainty using a fuzzy Markov

model. Fuzzy Markov models are an extension of conventional Markov models where

the transition probabilities are not known precisely [6]. The technical details of the

model are presented in Section 2 with a description of the Markov states, transition

probabilities and uncertainties. The model is demonstrated with a clinical example
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(base of skull chordoma) in Section 3, and a discussion and conclusion are given in

Section 4.

2 Methods

2.1 The Markov model

With a discrete-time inhomogeneous (time-dependent) Markov chain, the response

of a patient to a particular treatment is modelled. Here, a revised version of the

model developed by Austin et al. [4] is presented that takes the uncertainty of the

input parameters into account. The reader is referred to Austin et al. [4] for the

underlying details and motivation for the development of this model.

2.1.1 Markov states

A patient can occupy only a single Markov state at a given time. These states

describe the health status of a patient and include Well, Deceased and the Unwell

group of states. Figure 1 shows the Markov states for the simple case where only one

injury with one grade is considered and multiple stages of cancer are not considered.

In this figure, each state is represented by a node and allowed transitions are indicated

by arrows between the relevant states.

In this work, the Unwell group contains states that represent varying numbers

and forms of complications arising as a result of treatment. These states include the

cases in which a patient:

5



• still has their initial primary cancer due to unsuccessful treatment, represented

by the Cancer node;

• develops one or more normal tissue complications as a result of treatment,

represented by the Inj node;

• develops one or more second primary cancers (SPCs) as a result of treatment,

represented by the SPC node.

There are also other states representing every possible combination of the above:

• Unwell (primary cancer and injury): Cancer & Inj node;

• Unwell (primary and second cancer): Cancer & SPC node;

• Unwell (second cancer and injury): SPC & Inj node;

• Unwell (primary and second cancer and injury): Cancer & SPC & Inj node.

If there are multiple injuries being considered in the model, then a state exists for

every possible combination of injuries. In addition, a patient can have any number of

injuries as well as the primary cancer (if remaining after an unsuccessful treatment)

and/or a second radiation-induced cancer.

The states with no injury present are duplicated and denoted by * in Figure 1.

These are the states that a patient moves to after recovering from a particular injury.

For each injury, there is a zero probability of moving from a recovered state back to

the injured state, however a patient can develop a different injury from the recovered

state. For example, if a patient develops only injury 1 and subsequently recovers,

6



they will be in the (Well, Injury 1*) state, where the star denotes a history of injury 1.

From here it is possible to develop injury 2, but not injury 1. If injury 2 is developed

and recovered from, then the patient will move to the (Well, Injury 1*, Injury 2*)

state where the stars denote a history of both injuries. The recovered states were

implemented to avoid a contradiction that would arise when a patient moved back

to the Well state after recovering from an injury, only to develop it again some time

later.

2.1.2 State transition probabilities

The time period modelled is the interval between the completion of the treatment

and the death of the patient. The Markov chain consists of discrete time intervals,

or cycles. Markov models in medical applications assume that a patient remains

in a state for the duration of a cycle. The cycle length for this Markov chain was

chosen to be one year, as this provided computational efficiency while maintaining

sufficient temporal resolution. As a result, only toxicities occurring after one year

are considered in the model. At the end of each cycle, it is possible for a patient to

transition to another state. The time-dependent transition probabilities determine

the likelihood of transitioning between particular state pairs at a given year of the

Markov chain.

Many of the transition probabilities are derived from radiobiological models that

take the planned dose to a structure as an input. These include:

• The tumour control probability (TCP), which is a single probability calculated

using the dose-volume histogram (DVH) associated with the tumour volume [7].
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Well Cancer

Inj &
SPC

Inj SPC

Well* SPC*

Cancer &
Inj & SPC

Cancer
& Inj

Cancer
& SPC

Cancer*
Cancer &
SPC*

Deceased

1

Figure 1: The Markov state transition diagram showing the allowed transitions between
states. For simplicity, this describes the case where there is only one injury and one
second primary cancer being considered in the model. ‘Well’ represents perfect health.
‘Cancer’ represents the situation where the patient still has the initial primary cancer
‘SPC’ represents a state with a second primary cancer, and ‘Inj’ represents an injury state.
The starred states denote a history of an injury. Unwell states are represented by pale grey
nodes and the Deceased state is represented by a dark grey node.
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Depending on the value of the TCP, the patient can begin the Markov chain in

either the Well state or the Primary cancer state. Therefore, once the Markov

chain has begun, it is not possible to transition between these two states, as

depicted in Figure 1. The probability of beginning in the Well state is equal

to the value of the TCP. The probability of beginning in the Primary cancer

state is equal to the probability of the complement event, that is, 1 - TCP. It

is not possible to begin the chain in any other state.

• The normal tissue complication probability (NTCP), which is the probabil-

ity of developing a radiation-induced injury and is calculated using the DVH

associated with a particular organ and the Lyman-Kutcher-Burman (LKB)

model [8–10], given by

NTCP =
1√
2π

∫ t

−∞
exp

(−x2
2

)
dx, (1)

with t =
Deff − TD50

mTD50

and Deff =

(∑̀

i=1

viD
1
n
i

)n

,

where TD50 is the uniform dose given to the entire organ that results in 50%

complication risk, m is an organ specific parameter that is related to dNTCP
dD

, n

is a parameter that characterises the volume dependence of the organ’s response

to radiation, Deff is the effective dose, and ` is the number of voxels. This is

a time-dependent probability and the reader is referred to Austin et al. [4] for

the details of the time-dependent probability calculation. Injury recovery was
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not considered in this work. The injuries considered here include brainstem

necrosis, tinnitus, blindness and endocrine dysfunction.

• The second primary cancer induction probability (SPCIP), which is the prob-

ability of developing a radiation-induced cancer as a result of the treatment.

This is also a dose- and time-dependent quantity and was calculated using

the model developed by Schneider et al. [11]. In this work, a single SPCIP is

calculated using all contoured non-tumour volumes that represents the overall

probability of having a second primary cancer in any structure.

The events of developing different injuries or a second cancer are assumed to

be independent. Consequently, for the transitions that involve the development of

several injuries and/or a second cancer simultaneously, the transition probability was

assumed to be the multiplication of the relevant individual probabilities.

In addition to the dose-dependent transition probabilities, there are the prob-

abilities of transitioning to the Deceased state. While these quantities are dose-

independent and are not directly related to the treatment plan that is being com-

pared, they allow for a more realistic estimate of the length and quality of life a

patient can expect after receiving a given treatment. Uncertainties in these proba-

bilities were not considered in this work. The probabilities of dying as a result of

various causes include:

• Death from the primary cancer (with yearly probability 0.4, derived from 5-year

survival rates after relapse of base of skull chordoma [12]) or a second primary

cancer (with yearly probability 0.08 derived from cancer survival data [13]).

These are time-independent quantities.
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• Death from injury. This is also a time-independent quantity. In this work, it

was assumed that it was not possible to die as a result of any injury, with the

exception of brainstem necrosis which was assumed to be fatal.

• Unrelated death. This time-dependent probability is based on data from life

tables obtained from the Australian Bureau of Statistics [14].

2.1.3 Quality of life utilities

Each state is assigned a quality of life (QoL) utility which represents the quality

of life associated with the state, relative to perfect health. These utilities are used

to calculate the QALE, which is the number of QALYs that are lived by a patient

until they move to the absorbing Deceased state. A time horizon of 100 years was

selected for the Markov model as the survival probability is negligible beyond this

point. The QALE can be thought of as the number of years with a quality of

life equivalent to perfect health lived by a patient after treatment. This is the

primary metric used to evaluate and compare treatment plans in the proposed patient

selection approach, as it incorporates both the probabilities of tumour control and

of developing complications.

The QoL utilities applied in the Markov model are listed in Table 1. For Unwell

states where there is more than one injury or cancer, the assigned utility is a multi-

plication of the utilities corresponding to the states where only one of each injury or

cancer is present. The states representing the cases of second primary cancers were

all assigned a value of 0.8 in accordance with the Eastern Cooperative Oncology

Group (ECOG) performance status [15], as their definition of a grade 1 complication
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QUALITY OF LIFE UTILITIES

State Utility Source Comments
Skull base chordoma 0.72 [16]
Brainstem necrosis 0.6 [15]
Endocrine dysfunction 0.6 [15]
Tinnitus 0.58 [17] Evaluated after visit-

ing a tinnitus clinic
Blindness 0.33 [18] Complete blindness
Second primary cancer 0.8 [15]

Table 1: Estimates for the quality of life (QoL) utilities for states in the Markov model.

(with utility 0.8) gives a reasonable description of these states. Where it was not

possible to source an appropriate QoL utility for a particular injury, a default value

of 0.6 was assigned as the ECOG definition of a grade 2 complication (which has a

utility of 0.6) gives a reasonable description of these states.

2.1.4 Model evaluation

In the previous version of the model [4], the Markov chain was evaluated using a

Monte Carlo approach. This involved simulating the Markov process many times

with each simulation representing a different member of a hypothetical patient co-

hort. The disadvantage of this approach is that a large cohort is required for accurate

results, corresponding to a significant computation time.

As an alternative, an analytical solution was implemented in this work. This

enables the exact solution to be obtained with a significantly reduced computation

time compared with the Monte Carlo method. Using the analytical approach, the

distribution of a hypothetical cohort of patients – which are each an identical copy
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of the real patient under consideration – amongst all Markov states, π, is calculated.

This is achieved with the use of a transition matrix, P, which stores the probability

of transitioning from each Markov state to all other Markov states. As this Markov

model is time-dependent, the values of P vary at each Markov cycle. Matrix multipli-

cation is carried out to determine the distribution at a given time. The distribution

of the cohort after x Markov cycles is given by

πx = π0

x−1∏

k=0

Pk, (2)

where Pk is the transition matrix corresponding to cycle k and π0 is the initial

distribution of the cohort immediately after treatment (before any Markov cycles

have taken place). Each element of the vector π gives the fraction of the cohort in

a given state. Hence, all elements of π0 are zero except the elements representing

the fraction of cohort who are well (equal to the TCP) and the fraction who did not

have a successful treatment and still have the cancer (equal to 1 - TCP).

The expectation value (or mean) of the life expectancy (LE), denoted L̂E, can be

calculated with this data as

L̂E =
m∑

k=0

n−1∑

j=1

(πk)j (3)

for n states and i years after treatment where the maximum value of i, m = 100−a,

corresponds to the year in which the patient (with age a at the time of treatment)

is 100 years old. The Deceased state represented by the final element of π is not

included in the summation.
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To calculate the mean QALE, denoted Q̂ALE, each fraction is multiplied by the

utility of the corresponding state:

Q̂ALE =
m∑

k=0

n−1∑

j=1

(πk)j · uj (4)

where U = [u1, ..., un−1] is a vector of the utilities for each state.

2.2 Uncertainties

2.2.1 Radiobiological model parameters

The uncertainties in the radiobiological parameters manifest as uncertainties in the

dose-dependent transition probabilities. The parameters in these models are usually

determined with regression methods. In this work, uncertainties were only considered

in the TD50 parameters for the pituitary dysfunction NTCP [19] and tinnitus [20],

as the NTCPs associated with brainstem necrosis and blindness are typically small.

The uncertainty was set to zero for other model parameters, but the framework exists

to allow for non-zero uncertainties in these parameters.

2.2.2 Dose

The uncertainty related to the delivered dose was considered by performing analysis

with the fuzzy numbers constructed from uncertainty in the radiobiological model

parameters, for multiple scenarios of dose delivery variability. DVH curves corre-

sponding to each scenario were calculated using the Varian Eclipse treatment plan-

ning system 13.7 (TPS) (Varian (Palo Alto, CA, USA)) and the relevant DVHs were
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exported for use in the Markov chain. The result is a set of DVHs, one for each

organ at risk (OAR) and the tumour volume for each scenario. Survival curves and

QALEs were obtained for each scenario using the Markov chain.

2.3 The fuzzy Markov model

A ‘crisp’ Markov chain [6] can be thought of as a Markov chain where the values of

the transition probabilities are known precisely. A fuzzy Markov chain does not have

precisely known transition probabilities [6]: rather than a single probability X, each

element of the transition matrix is an interval, [X,X], where X is the lower bound

on the estimate of the value of X and X is the upper bound. The upper and lower

bounds are not necessarily symmetric about the crisp value in this model. In order to

multiply fuzzy matrices, interval arithmetic must be applied. Matrix multiplication

involves both multiplication and addition when considering elements; the rules for

intervals are outlined as follows (following the notation of Moore et al. [21]):

• Addition

X + Y =
[
X + Y ,X + Y

]
. (5)

• Multiplication

X · Y = [minS,maxS] , whereS = {XY ,XY ,XY ,XY }. (6)
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The result is a confidence interval for each element of π, with lower and upper

bounds given by π and π, which serves as a quantification of the uncertainty in the

model output.

2.3.1 Optimization of the QALE uncertainty

Let the quality adjusted surviving fraction of the hypothetical cohort at a given time,

F (k), be defined as F (k) =
∑n−nA

j=0 (πk)j · uj, k = [0, 1, 2, ...,m], where there are nA

absorbing states. While
∑n

j=0 πj = 1 by definition,
∑n

j=0 πj and
∑n

j=0 πj may not

necessarily be 1 for a given scenario of dose delivery accuracy. Therefore, a situation

could arise where
∑n

j=0 πj > 1, and therefore F (k) and F (k) cannot be defined as

F (k) =
∑n−1

j=0 (πk)j and F (k) =
∑n−1

j=0 (πk)j, respectively. As a result, defining QALE

and QALE as QALE =
∑m

k=0 F (k) and QALE =
∑m

k=0 F (k), respectively, would be

invalid.

As an alternative, the uncertainty in the QALE was determined through mathe-

matical optimization. Using (2), it can be shown that the quality adjusted survival

at a given year is a function of all the elements of the transition matrix P, some of

which are functions of the various NTCPs. Therefore, the QALE defined in (4) can

be written as a function of the parameters in the radiobiological models as

f(λ) = f(p11(λ,m), ..., p1n(λ,m), p21(λ,m), ..., pnn(λ, x),

p11(λ,m− 1), ..., p1n(λ,m− 1), p21(λ,m− 1), ..., pnn(λ,m− 1), ...,

p11(λ, 1), ..., p1n(λ, 1), p21(λ, 1), ..., pnn(λ, 1),U),
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where m is the total number of Markov cycles, λ = [λ1, λ2] = [TD50t, TD50e], TD50t

is used to calculate the probability of tinnitus, and TD50e is used to calculate the

probability of endocrine dysfunction. Let λ1 and λ1 be the lower and upper bounds

for TD50t and λ2 and λ2 be the lower and upper bounds for TD50e. The two opti-

mization problems used to find the upper and lower bounds on the uncertainty have

non-linear constraints and are defined as:

min
λ

f(λ)

subject to
n∑

j=1

pij(k) = 1, for i = 1, ..., n and k = 1, ...,m,

λ1 ∈ [λ1, λ1],

λ2 ∈ [λ2, λ2],

(7)

and

max
λ

f(λ)

subject to
n∑

j=1

pij(k) = 1, for i = 1, ..., n and k = 1, ...,m,

λ1 ∈ [λ1, λ1],

λ2 ∈ [λ2, λ2].

(8)

The constraints in the optimization problems ensure that each row of the tran-

sition matrix at each year must sum to 1. The objective function also depends on

the quality of life utilities U, which were not allowed to vary in the optimization

problems.
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The objective function and constraints were used with MATLAB’s fmincon()

routine for non-linear constrained optimization to determine the uncertainty bounds.

To determine the uncertainty in the QALE as a result of radiobiological model pa-

rameter uncertainty only, the optimization routine was performed using the dose data

for the nominal scenario. When considering dose delivery uncertainty in addition to

the radiobiological model parameter uncertainty, the optimization was carried out

for each dose delivery scenario d, and the upper and lower bounds are defined as:

QALE = min{QALE1,QALE2, ...,QALED},

and

QALE = max{QALE1,QALE2, ...,QALED}.

3 Demonstration patient

A four-year-old female presenting with base of skull chordoma was considered for

the purposes of demonstrating the functionality of the model. Treatment plans for

the delivery of 70 Gy in 35 fractions to the tumour with both protons (intensity

modulated pencil beam scanning) and X-rays (volumetric modulated arc therapy

(VMAT)) were retrospectively generated using the Varian Eclipse 13.7 TPS. In each

treatment plan for this patient, each critical structure (healthy tissue) and the target

volume corresponding to the tumour were contoured by a clinician. The VMAT plan

was created on a planning target volume (PTV) with a 4 mm expansion of the CTV.

The proton plan was generated through robust optimization of the CTV with a 3%
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DOSE-DEPENDENT TRANSITION PROBABILITIES
Protons VMAT

TCP 0.83 [0.64, 0.84] 0.74 [0.50, 0.83]
SPCIP <0.01 0.020 [0.019, 0.076]
Brainstem necrosis NTCP <0.01 <0.01
Tinnitus NTCP 0.05 [0.02, 0.12] 0.14 [0.08, 0.24]
Blindness NTCP 0.01 [<0.01, 0.05] 0.01 [<0.01, 0.05]
Endocrine dysfunction NTCP 0.99 [0.91, 1.0] 0.93 [0.56, 1.0]

Table 2: The values for the transition probabilities that were calculated and used as
input for the Markov model, for each treatment modality. The SPCIPs listed represent the
probability of a second cancer in the 25 years after treatment. Each probability calculated
without considering uncertainties is listed along with its upper and lower bounds in square
brackets when uncertainty is considered. TCP=tumour control probability.

range uncertainty and a 3 mm set-up uncertainty. A differential DVH was generated

for each of the OARs and the CTV for both the nominal plan and the set of scenarios

of dose delivery. These scenarios were produced in a robust plan analysis of both the

VMAT and proton plan taking into account patient setup uncertainties and include

+/- shifts of 3 mm in the (x, y, z) position of the patient with respect to isocentre

(giving a total of 6 uncertainty scenarios). For proton therapy, there is an additional

+/- beam range uncertainty of 3%, resulting in 12 scenarios.

The TCP was calculated based on dose to the CTV for both the proton and

X-ray plans. The TCP, NTCPs and SPCIP that were calculated for each treatment

plan for this patient are listed in Table 2.

The model returned the expectation value of the patient life expectancy along

with the expectation value of the QALE. The results for this clinical example are

listed in Table 3. The NTCP model parameter uncertainties do not contribute to

the raw life expectancy, as it was assumed that the relevant injuries were not fatal.
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ESTIMATED LIFE EXPECTANCIES

Protons VMAT
Raw LE 66.6 [53.4, 68.7] 57.9 [40.8, 65.7]
QALE
(model uncertainties only)

39.5 [39.2, 40.0] 34.4 [33.0, 36.1]

QALE
(model and dose uncertainties)

39.5 [31.4, 41.5] 34.4 [24.5, 45.8]

Table 3: The estimates of the mean raw life expectancies (LE) and the mean quality
adjusted life expectancies (QALE) in years for each treatment modality. The results cal-
culated without considering uncertainties are listed along with their respective upper and
lower bounds in square brackets. The uncertainties in the QALE are listed with and
without the inclusion of dose uncertainties.

Therefore, the uncertainties in the raw life expectancy arise from dose uncertainties

only. The estimates of the life expectancy and QALE for the nominal proton plan are

greater than the X-ray plan. When uncertainties in the radiobiological parameters

only are considered, there would be a clear benefit for the patient if treated with

proton therapy. However, when the uncertainties associated with treatment delivery

are accounted for, the proton plan does not have a significantly increased benefit

compared with the X-ray plan. The survival curves are given in Figures 2 and 3.

The uncertainty in the quality adjusted survival curve was calculated with (2) and

the maximum and minimum values of TD50 that satisfied the constraints of the

optimization problem. It is apparent that uncertainty in the NTCP parameters has

a smaller effect than the set-up and range uncertainties, and that the uncertainty

associated with proton therapy is smaller than that of VMAT.
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Figure 2: Raw survival curves for both the proton plan and VMAT plan.

4 Discussion

For the presented example, the uncertainty associated with proton therapy was pre-

dicted to be smaller than the uncertainty associated with VMAT. This is the case for

both the dose and radiobiological model parameter uncertainties. The later is due

to the differences in the effective dose, Deff between the two treatments, resulting in

different t parameters. The implication of a t parameter corresponding to a steeper

part of the dose response curve will be a greater magnitude in NTCP uncertainty

if t is varied within a certain range. The difference in the magnitude of the dose

uncertainty is likely a result of the proton plan being robustly optimized to the CTV

and the photon plan being robustly optimized to the PTV.
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Figure 3: Quality adjusted survival curves for both the proton plan and the VMAT plan.
The top right figure corresponds to a situation in which only uncertainty in NTCP model
parameters is considered. The bottom left figure corresponds to a situation in which only
uncertainty in dose is considered. The bottom right figure corresponds to the situation in
which both dose and NTCP model parameter uncertainties are included.
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The presented model improves on the existing model [4] by considering the effects

of dose delivery and radiobiological model parameter uncertainties associated with a

radiotherapy treatment on whether an individual patient would be selected for pro-

ton therapy. However, the model has several limitations. It should be stressed that

not all transition probabilities and quality of life utilities in the presented example

were clinically founded, as it was not always possible to obtain representative values

in the literature. As in any predictive model, the usefulness of the results is directly

dependent on the accuracy of the input parameters. At this stage, the functional-

ity of the model has been demonstrated with an example patient and appropriate

validation of all radiobiological model parameters must be conducted before clinical

implementation of this model-based patient selection approach. In-silico clinical tri-

als could potentially be used to gradually refine the accuracy of the input data over

time through a feedback system [1].

However, in some cases, it is not possible to know the true transition probability

for a given state pair. This is particularly true for patient death in the cases where

there are multiple possible causes of death. For example, for the fraction of the

cohort in a state where there are multiple cancers or fatal injuries, there are different

ways of transitioning to the absorbing state. However, the death probabilities used in

the model correspond to the probability of transitioning from a state representing a

given complication to the Deceased state, and do not reflect the probability of dying

when multiple complications are present. In these cases, it was assumed that the

probability of death was the maximum death probability out of all possible causes.

The result is that patients with multiple complications have the same probability
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of dying compared to patients with a single complication. This is a reasonable

approximation, as there is usually a single dominant death probability and it is

unlikely that a patient could have a fatal cancer or injury while simultaneously

having an equally high background death probability.

Several of the parameters in the radiobiological models used in this study were de-

termined in studies based on adult populations. However, the output of the Markov

model is demonstrated using a paediatric patient in this work. It is possible that

this assumption contributed to uncertainty in the results, as it is likely that younger

cell populations have differing radiobiological properties compared with older popu-

lations.

The estimated SPCIPs for the example patient were lower compared with ob-

servations of second malignancy incidences. These have been found to be 7.5% for

photons and 5.3% for protons (median follow up of 6.7 years) [22]. The model used

to calculate the SPCIP in this work is yet to be validated, and this is the likely

reason for the discrepancy between this work and the observations.

The dose uncertainty included in the model is derived from multiple scenarios of

treatment delivery accounting for variations in delivered dose as a result of patient

positioning and range uncertainties. These include worst case scenarios modelled

with a systematic set-up uncertainty applied throughout the treatment course, which

is unlikely to occur in reality. The result is an overestimation of the magnitude of

the uncertainty in the final results. In future applications of the model, the robust

analysis will be refined to allow the generation of more realistic scenarios through

the incorporation of fractionation effects of random set-up uncertainties [23].
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As the dose distribution will influence tumour control rates and complication

rates, it is entirely possible that uncertainties in the radiobiological parameters nat-

urally incorporate the effect of uncertainties in the dose delivery. As we consider dose

uncertainties in addition to uncertainties in these parameters, there is the possibility

that the quoted uncertainties in the QALE are overestimated due to the doubling

of the dose uncertainty. However, the advantage of considering the dose uncertain-

ties separately is that it allows the contribution of these uncertainties to be directly

assessed and isolated.

4.1 Conclusion

The presented model could serve as a valuable tool for patient selection for proton

therapy. The effects of radiobiological model parameter and dose uncertainties have

been included to aid decision making in the referral process. In this work, the

functionality of the model has been demonstrated. The inclusion of the uncertainties

demonstrated the need for validated and precise radiobiological model parameters in

model-based patient selection strategies.
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5.3 Fuzzy Markov model details

The development of the Fuzzy model involved assigning uncertainties to the transition

probabilities in the Markov model. The only probabilities that did not have uncertainty

were the background death probabilities. Error bounds were assumed to be asymmetric.

The uncertainties in the radiobiological model parameters and the input dose data have

been discussed in the publication P2. There are additional uncertainties included in the

model that were not considered in the publication. The primary reason for this was due

to a lack of available data on uncertainties. The quality of life utilities have a significant

influence on the QALE predicted for a given patient and treatment plan. Uncertainties

in these weights were incorporated into the Fuzzy model. In addition, while the publi-

cation P2 focussed on uncertainties in the dose-dependent transition probabilities, there

was no consideration of dose-independent transition probabilities. These include death

probabilities, injury recovery probabilities and the probabilities of transitioning to higher

stages of cancer. The Fuzzy model includes uncertainties in these probabilities, with the

uncertainties being easily modifiable by the user if reliable parameters become available.

5.3.1 NTCP calculation

The NTCP was calculated for each injury using (2.8) (Section 2.3.2). The parameters

used in the NTCP calculations are listed in Table 5.1.
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Table 5.1: Parameters used for the calculation of the all-time NTCP for each injury using
the LKB model. Burman et al. [62] was used as the source of the parameters unless otherwise
stated. Estimates of the mean (x̄) and standard deviation (σx) of the time taken for each
injury to develop after treatment are also listed in months. Where it was not possible to find
an estimate of the mean or standard deviation, it was assumed to be 12 months or 6 months,
respectively. Confidence intervals are indicated in square brackets for the TD50 parameters

where applicable.

Tissue α/β (Gy) Endpoint n m TD50 (Gy) x̄ σx

Brainstem 2.5 1 Necrosis 0.16 0.14 65 17 2 6 3

Ear 3.0 4 Tinnitus 0.01 0.35 5 46.5 [41.9, 53.4] 5 12 3 6 3

Optic

chiasm

3.0 4 Blindness 0.25 0.14 65 18 6 6 3

Pituitary 3.0 4 Endocrine

dysfunction

0.156 7 0.08 7 60.6 [59.1, 62.0] 7 12 3 6 3

1 Source: [86]

2 Source: [87]

3 Not clinically founded

4 Assumed as the default 3.0 for late responding tissue

5 Source: [64]

6 Source: [88]

7 Source: [63]

5.3.2 Interval arithmetic

As discussed in the publication P2 Section 2.2, interval arithmetic is applied to evaluate

the Fuzzy model.

Following the notation used in Moore [89], an interval X can be represented as X =
[
X,X

]
. Simple arithmetic operations can be carried out through applying the following

rules:

� Addition

X + Y =
[
X + Y ,X + Y

]
. (5.1)
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� Subtraction

X − Y =
[
X − Y ,X − Y

]
. (5.2)

� Multiplication

XY = [min S,max S] , where S = {XY ,XY ,XY ,XY }. (5.3)

� Division

X/Y = X(1/Y ) where 1/Y =
[
1/Y , 1/Y

]
. (5.4)

These operations allow fuzzy transition matrices to be multiplied.

5.3.3 Quality of life utility weights

The quality of life utility weights are a major contributor to the QALE estimated from a

given plan, which is the primary metric used to evaluate the plan quality (Section 2.2.3).

It can be difficult to quantify the impact of an illness on a patient’s quality of life,

relative to perfect health. As a result, estimates of quality of life utilities often include

an uncertainty estimate [90].

The model presented in this chapter treats the quality of life utilities as fuzzy numbers.

The interval arithmetic rules defined in Section 5.3.2 are applied when multiplying the

vector of utilities U with π (in (3) of the publication P2) to calculate the bounds on the

QALE. While it was not possible to source uncertainties for utilities for the injuries and

cancers considered in P2, the framework exists in the model to include uncertainties if

required. The utilities and associated uncertainties may be modified by the user in this

instance.

The lower bounds on the utilities for states where there are more than one injury or

cancer present is the multiplication of the lower bounds on the utilities of the individual

injuries or cancers. This method is also applied to calculate the upper bounds.
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5.3.4 Transition matrix

Once all of the individual transition probability confidence intervals (CIs) are calculated,

they are used to calculate the upper and lower bounds on each element of the transition

matrix P. The CIs of all matrix elements are calculated using the lower bounds on the

CIs of the each of the relevant NTCPs, SPCIPs, death and recovery probabilities. The

same is true for the upper bounds. An important implication is that the lower bounds on

the CIs of all elements of a given row will not necessarily sum to one. This also applies

to the upper bounds.

Organs with negligible NTCPs are not considered in the model (see Section 4.2.4). How-

ever, an organ may have a negligible NTCP in one scenario of dose delivery accuracy,

while having a non-negligible NTCP in another. It was therefore necessary to recalculate

the number of injuries and the number of states for each scenario. This process allows

the model to run faster for some scenarios, and hence the model as a whole can be more

efficient.

For the transitions between absorbing states, the diagonal elements are [1, 1] and the

off-diagonal elements are [0, 0], as there are no uncertainties associated with these.

5.4 Discussion and conclusion

The Fuzzy model has been developed to include the effect of several sources of uncertainty

on the model predictions. Optimizing the QALE uncertainty demonstrated that the

patient considered could expect a clinical benefit as a result of proton therapy (in the

presence of NTCP model parameter uncertainty only). Including more realistic scenarios

of dose delivery accuracy in treatment planning systems could reduce the magnitude

of uncertainties in dose delivery. A challenge in developing this model was sourcing

appropriate input uncertainties, particularly for the quality of life utility weights. The

model presented in this chapter contains the framework to analyse these uncertainties,

once they become available. Ultimately, comparing the model predictions with patient

outcomes through clinical validation will allow the estimated uncertainties to be assessed.



Chapter 6

Cost-effectiveness Model

The publication P3 forms the basis of this chapter:

Austin, A.M., Douglass, M.J.J., Nguyen, G.T., Dalfsen, R., Le, H., Gorayski, P., Tee,

H., Penniment, M. & Penfold, S.N.. Cost-effectiveness of proton therapy in treating base

of skull chordoma. Australasian Physical and Engineering Sciences in Medicine. 2019

(Submitted May 2019).

6.1 Introduction and motivation

In Chapter 5, the incorporation of model parameter uncertainties into the AE model is

described. However, this model did not consider the effects of treatment cost-effectiveness.

This is particularly important when considering proton therapy, where treatment costs

are significantly greater when compared with X-ray therapy. Treatment costs are also an

important consideration when developing health policy more generally.

In this chapter, the method of incorporating cost-effectiveness into the AE model (at the

stage before uncertainties were incorporated) is described. The motivation of this work

was to develop the functionality of the patient selection model to make decisions based on

treatment cost-effectiveness. In some cases where there is an elevated risk of treatment

failure or radiation-induced injury or cancer associated with an X-ray treatment, the
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larger initial cost of proton therapy may be justified if it is less than the combined cost

of X-ray therapy and of treating complications.

The aim of the publication that is the basis of this chapter was to present the model with

cost-effectiveness incorporated and utilise a cohort of base of skull chordoma patients to

determine whether this indication may be treated with proton therapy cost-effectively.

The advantage of presenting a cohort rather than an individual patient is that it enables

a more powerful conclusion to be drawn regarding the cost-effectiveness of the treatment.

6.2 Statement of contribution

6.2.1 Conception

The idea of incorporating cost-effectiveness into the model was first conceptualised by

Scott Penfold. Annabelle Austin developed the approach of incorporating cost-effectiveness.

6.2.2 Realisation

The writing of the code, analysis, and sourcing of parameters was performed by Annabelle

Austin. The organs on the CT scans were contoured by Hien Le, Peter Gorayski, Hui

Tee and Michael Penniment. The radiotherapy treatment plans used in the analysis were

created by Raymond Dalfsen.

6.2.3 Documentation

This paper was written by Annabelle Austin. Editing was performed by all authors.
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Abstract 

Introduction: While proton beam therapy (PBT) can offer increased sparing of healthy 

tissue, it is associated with large capital costs and as such, has limited availability. 

Furthermore, it has not been well established whether PBT has significant clinical 

advantages over conventional volumetric modulated arc therapy (VMAT) for all tumour 

types. PBT can potentially offer improved clinical outcomes for base of skull chordoma 

(BOSCh) patients compared with photon (X-ray) therapy, however the cost-effectiveness of 

these treatments is unclear. In this study, the cost-effectiveness of PBT in the treatment of 

BOSCh patients is assessed, based on an analysis of comparative radiotherapy treatment 

plans using a radiobiological Markov model.     

Methods: Seven BOSCh patients had treatment plans for the delivery of intensity modulated 

proton therapy (IMPT) and VMAT retrospectively analysed. The patient outcome (in terms 

of tumour local control and normal tissue complications) after receiving each treatment was 

estimated with a radiobiological Markov model. In addition, the model estimated the cost of 

both the primary treatment and treating any resultant adverse events. The incremental 

cost-effectiveness ratio (ICER) was obtained for each patient. 

Results: PBT was found to be cost-effective for 6 patients and cost-saving for 1. The mean 

ICER was AUD$3,220 per quality adjusted life year (QALY) gained. Variation of model 

parameters resulted in the proton treatments remaining cost-effective for these patients. 

Conclusion: Based on this cohort, PBT is a cost-effective treatment for patients with BOSCh. 

This supports the inclusion of PBT for BOSCh in the Medicare Services Advisory Committee 

1455 application. 
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1 Introduction 
Medicare support for proton beam therapy (PBT) in Australia is currently being considered 

as part of the Medicare Services Advisory Committee (MSAC) 1455 application. MSAC 1455 

considers PBT for a specific list of cancer types and has included a review of clinical evidence 

for PBT for these cancers. The assessment identified a lack of Level 1 evidence for PBT 

across multiple tumour types. Due to issues regarding equipoise, funding and availability, 

there have not been any Phase III randomized clinical trials comparing PBT to conventional 

photon (X-ray) therapy for the cancer types listed in MSAC 1455. In this case, a lack of 

evidence does not equate to non-superiority. Therefore, it is important that other 

approaches are considered when assessing whether new technologies should be supported 

for funding through the public health system. 

Markov models were adopted by the Assessment of New Radiation Oncology Technology 

and Treatments (ANROTAT) project1, undertaken by the Trans-Tasman Radiation Oncology 

Group (TROG) and funded by the Australian Federal Government Department of Health and 

Aging. The group recommends that Markov models be adopted for economic assessments 

of new health technologies. In the current work, we propose the use of Markov models for 

assessing the cost-effectiveness of PBT relative to conventional X-ray therapy.  

One of the most common indications making use of the Medical Treatment Overseas 

Program (funded by the Australian Government Department of Health) for PBT is base of 

skull chordoma (BOSCh). Chordoma is a very rare form of bone tumour, accounting for 1–4% 

of all primary malignant bone tumours2 with base of skull cases representing approximately 

one third of presentations3. Achieving complete surgical removal can be limited by the 

critical anatomical location. Similarly, postoperative radiotherapy with X-rays can also be 

limited by the presence of nearby critical organs. 
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Mailhot Vega et al.4 have proposed a method of selecting paediatric brain cancer patients to 

receive PBT based on treatment cost-effectiveness. PBT was found to be cost-effective or 

even cost-saving, depending on the degree to which the hypothalamus could be spared with 

protons compared with photons. Peeters et al.5 have carried out a cost analysis of treating 

various indications with particle therapies compared with photon therapy, based on 

construction and operational costs. Treatment costs for various tumour types were sourced 

through a review of cost-effectiveness studies. Cost differences between particle and 

photon therapy were found to be larger for BOSCh treatments compared with lung and 

prostate treatments. The cost-effectiveness of carbon ion therapy in the treatment of 

BOSCh has been analysed by Jäkel et al.6 , based on studies of local control improvement 

compared with photon therapy. Primary treatment costs and costs for recurrent tumours 

were estimated. It was found that if local control exceeds 70% with carbon ion therapy, then 

the overall treatment costs of carbon ion therapy are lower than that of conventional 

radiotherapy (assuming a local control rate of 50%). The limitation of their approach is that 

costs associated with toxicities and productivity losses were not considered. Therefore, it 

may be possible that carbon ion therapy is cost-effective at a smaller difference in local 

control. Lundkvist et al.7 have included the effects of adverse events to evaluate the cost-

effectiveness of PBT in the treatment of childhood medulloblastoma. A Markov simulation 

model was used to combine risks of a wide range of toxicities including hearing loss, 

intelligence quotient (IQ) loss, hypothyroidism, growth hormone deficiency (GHD), 

osteoporosis, cardiac disease, and second malignancies. PBT was found to be cost-effective 

and cost-saving compared with conventional radiation therapy for patients with a high risk 

of IQ loss or developing GHD. However, in this approach variations in the dosimetry 
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between individual patient treatment plans was not considered directly (population-based 

risks were applied). 

In previous work by our group, a Markov model was developed with the ability to identify 

patients who would receive the most improved clinical outcome if treated with PBT 

compared with X-ray therapy8. The model predicts the radiobiological effect of a given 

treatment plan on an individual patient basis. This effect includes contributions from 

locoregional control, treatment toxicities and radiation-induced malignancies. The inclusion 

of second radiation-induced cancer risk is particularly important when considering younger 

patients (who comprise the majority of BOSCh patients) as they have a longer remaining 

life-time over which to develop second cancers. The output of the Markov model was the 

quality-adjusted life expectancy (QALE), or the number of quality adjusted life years (QALYs) 

associated with a radiotherapy treatment plan. This output allows quantitative comparisons 

of treatment modalities.  

In the current work, the previously developed Markov model is extended to include a cost-

effectiveness analysis, with the output being the cost of a treatment per QALY gained, also 

known as the incremental cost-effectiveness ratio (ICER). This work builds on that of Mailhot 

Vega et al.4 with the inclusion of second cancer risk, locoregional control and a wider range 

of potential radiation-induced injuries. The aim of this work was to determine whether 

BOSCh patients can be treated with PBT cost-effectively, based on individual patient 

dosimetric analyses.  
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2 Methods 

2.1 Patient cohort and treatment planning 
The cohort consisted of 7 female BOSCh patients with a wide range of ages at the time of 

treatment. The size and characteristics of the cohort was limited by availability as BOSCh is 

particularly rare. The ages and prescription doses are summarised in Table 1. Each patient 

had volumetric modulated arc therapy (VMAT) and intensity modulated proton therapy 

(IMPT) treatment plans generated in the Varian Eclipse treatment planning system. VMAT 

plans consisted of 2 co-planar arcs using a 6 MV Varian TrueBeam HD MLC beam model 

clinically commissioned at the Royal Adelaide Hospital (RAH). Plans were optimized to a 

planning target volume (PTV) which was generated from a 3 mm expansion of the CTV. IMPT 

plans consisted of 2-4 beams with pencil beam weights obtained through robust multi-field 

optimization (MFO) to the clinical target volume (CTV). Beam range uncertainty of 3% and 

set-up uncertainties of +/-3mm were included in the robust optimization. The proton beam 

model was based on a Varian ProBeam accelerator.  

 

Table 1: The patient ages at the time of treatment and prescription doses. 

Patient ID Age (years) Treatment schedule 
(Gy/fraction #) 

Comments 

1 6 78/39  
2 12 78/39  
3 8 78/39  
4 46 70/35  
5 27 74/37  
6 51 74/37 Pituitary not discernible 
7 4 70/35 CT scan did not extent to parotids 

 

2.2 Markov model 

A discrete-time Markov chain model developed previously8 was extended in this work to 

model the clinical outcome of each patient. The model consists of several Markov states, 

with each representing a unique status of health. These include the Well state (or 
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complication-free control), the Deceased state, and the states representing various 

treatment complications. These are detailed in Sections 2.4 and 2.5. In addition, there are 

states representing an unsuccessful treatment.  

 

It is assumed that a patient occupies a single state at a given time. In each cycle (defined to 

be one year in this work), it is possible for the patient to transition to another state based 

on certain probabilities. For example, the probability of transitioning from the Well state to 

an injured state is given by the calculated normal tissue complication probability (NTCP) 

corresponding to the injury for the patient being considered. 

 

The transition probabilities in the model can be either dose-dependent or dose-

independent. The probabilities of locoregional control, second cancer induction and normal 

tissue complication are dose-dependent and are calculated using the dose-volume 

histogram (DVH) data from a given treatment plan. Death and recovery probabilities were 

assumed to be dose-independent in this work. 

 

2.3 Locoregional control  

The DVH data for the tumour volume for each patient was used to determine a tumour 

control probability (TCP) that was unique for each patient (details described by Austin et 

al.8). In the event of treatment failure, it is assumed the patients cannot return to the well 

state (i.e. no retreatments). While this is a simplification of the disease progression, the 

clinical outcome of the two alternate primary treatments are the subjects of comparison in 

the model.  
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The yearly death probability (due to treatment failure), denoted Pr(Die), applied in this 

analysis was 0.4. This was derived from 5-year survival rates after relapse (local or distant) 

of base of skull chordoma9 (7%), by evaluating 𝑆 = (1 − Pr(𝐷𝑖𝑒))𝑛,  where n=5 and S=0.07. 

Solving for the death probability gives 0.4. There is an additional risk of death each year due 

to unrelated causes. The annual probability of this was derived using Life Tables published 

by the Australian Bureau of Statistics10. 

 

2.4 Second primary cancers 

The volumes used to calculate the time-dependent second primary cancer induction 

probability (SPCIP) for each patient included the brain and the whole body (with the brain 

and tumour volumes subtracted). The SPCIP was then calculated for both of these volumes 

using the parameters determined by Schneider et al.11. The yearly SPCIP derived for each 

volume was combined into a single probability for each year x after treatment as follows: 

𝑆𝑃𝐶𝐼𝑃(𝑥) = 1 − (1 − 𝑆𝑃𝐶𝐼𝑃𝐵𝑜𝑑𝑦(𝑥)) (1 − 𝑆𝑃𝐶𝐼𝑃𝐵𝑟𝑎𝑖𝑛(𝑥)). 

Treatment of second primary cancer was not considered. The yearly second cancer death 

probability was assumed to be 0.08, derived from 5-year survival rates of all cancers 

combined12. 

 

2.5 Injuries 

Several injuries were considered in this analysis. These included brainstem necrosis, spinal 

cord myelitis, tinnitus (damage to the cochlea), blindness (damage in either optic nerve or 
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the optic chiasm), xerostomia (damage to the parotid glands), cataracts (damage to the 

lens), and endocrine dysfunction (damage to the pituitary gland). The model determined by 

Lee et al.13 was used to estimate the NTCP for tinnitus. The model determined by De Marzi 

et al.14 was used to estimate the NTCP for endocrine dysfunction. The models used for all 

other injuries have been described in previous work8. 

It was assumed that all injuries were non-fatal, with the exception of brainstem necrosis, 

which was assumed to be fatal within one year for all patients affected.  

All injuries were assumed to be chronic, with the exception of cataracts (which can usually 

be treated with surgery) and spinal cord myelitis due to a lack of data on long-term costs for 

this complication. 

 

2.6 Estimation of costs and utilities   

Costs associated with both the primary radiation treatment and treatment of side effects 

were incorporated into this model. Each state of health was assigned both a yearly cost and 

a quality of life utility. By default, the Well state has a utility of 1 and the Deceased state has 

a utility of 0. All other states have utilities within this interval depending on the impact of 

the corresponding complication on patient quality of life. The utilities used in this work are 

listed in Table 2, and are used to calculate the QALE. Second cancers were assumed to have 

a utility of 0.8. These assumptions are discussed in detail by Austin et al.8. 
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Table 2: Estimates for the quality of life utilities for states in the Markov model. 

State Utility Comments 

Base of skull chordoma  0.7215  

Second primary cancer 0.8 Not clinically founded 

Brainstem necrosis     0.6 Not clinically founded 

Spinal cord myelitis 0.716 Utility for spinal cord stenosis taken as an 
approximation for myelitis  

Tinnitus 0.5817 Evaluated after visiting a tinnitus clinic 

Blindness 0.3316 Complete blindness 

Xerostomia 0.8315  

Cataracts 0.616 Advanced lens opacity 

Endocrine dysfunction 0.7318 Utility of adult females with growth hormone 
deficiency. Average of values derived from 
Belgian and Dutch cohorts. 

 

 

No costs were assumed for death, only loss of QALYs. Costs and utilities were discounted by 

3% annually, to adjust for differences in timing of costs and effects. All costs are listed in 

Australian dollars. The costs applied in the model are as follows: 

 Radiation therapy: The cost of a photon treatment was assumed to be $11,87719 and 

the cost of PBT to be conservatively 2.5 times greater19. 

 Chordoma and second cancers: Re-treatments are not incorporated into the model and 

hence the only assumed cost associated with cancers was due to lost productivity. The 

reduction in Australia's GDP has been found to be $1,738 million due to 108,900 cancer 

patients not participating in the work force20, or approximately $15,960 per patient per 

year. The same estimate was applied for the chordoma state, due to a lack of data 

specific to this rare cancer. In this model, it is likely that the majority of patients in 
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cancer states will move to the Deceased state before they reach the typical retirement 

age or shortly after. To reduce bias however, the estimated cost of lost productivity was 

not applied to patients when they were older than 65 years, which is the minimum age 

to be eligible for the aged pension in Australia. In addition, costs due to lost productivity 

were not applied when the patient age was less than 18. 

 Spinal cord myelitis: The cost of an episode of myelitis was assumed to be $43,76421. 

This cost was only applied once, rather than annually. 

 Tinnitus: The treatment and societal costs of tinnitus have been analysed by Maes et 

al.22 On average, the annual cost of tinnitus per patient was estimated as €11,949 

(AUD$18,918), representing a significant economic burden. Productivity losses were 

included in this estimate.  

 Blindness: It has been estimated that vision impairment cost $9.85 billion in Australia in 

2004, corresponding to 480,000 vision-impaired people23. This implies that on average, a 

vision-impaired person costs $20,520 annually. This cost estimate includes both direct 

healthcare expenditure and indirect costs such as carer costs, lost earnings and welfare 

payments. 

 Xerostomia: The annual cost of xerostomia was assumed to be US$2,14424 (AUD$2,950), 

including oral saline rinses, pilocarpine, dental and nutritionist visits and fluoride gel.   

 Cataracts: Cataracts was assumed to be treatable with surgery involving lens extraction 

and insertion of an intraocular lens. The cost of this was estimated at $760 based on the 

Medicare Benefits Schedule25.   

 Endocrine dysfunction: The cost of the medicine required to treat GHD is on average 

$5,478 per patient annually19. This cost was only applied to patients aged 18 years and 



13 
 

under as treatment is usually not necessary beyond this age. However, it was assumed 

that it was not possible to recover from this injury. 

 

3 Results 

The dose-dependent transition probabilities calculated for each plan and for each patient 

are summarised in Table 3. No patients had a significant risk of brainstem necrosis, spinal 

cord myelitis, or blindness from any treatment. This is most likely due to these organs being 

particularly critical and being weighted accordingly during plan optimisation. IMPT was able 

to provide a much greater probability of locoregional control in some patients (the greatest 

difference was 0.2 for Patient 1). Tinnitus and endocrine dysfunction were the most 

common injuries in the cohort, although the probabilities of these complications were 

negligible in some patients, regardless of the treatment. The risk of xerostomia was 10 times 

greater for Patient 2 if treated with VMAT (10% compared with 1%). Patient 1 had a 25% 

chance of developing cataracts if treated with VMAT compared with a negligible probability 

(<1%) if treated with IMPT. 

The Markov model took the dose-dependent transition probabilities as input to calculate an 

ICER for each patient (Table 4). In accordance with NICE guidelines26, an IMPT treatment 

was classified as cost-effective if it could be provided at a cost of £20,000-30,000 

(AUD$36,000-54,000) per QALY gained or less compared with VMAT. Table 4 demonstrates 

that all patients could be treated with PBT cost-effectively. The mean ICER was AUD$3,220 

per QALY gained. Of particular interest was Patient 5, who had an improved predicted 

clinical outcome if treated with IMPT. However, this also corresponded to a lower cost 
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compared with VMAT when complication costs were considered. This is likely a result of the 

elevated dose received by the ear with VMAT.  

One-way sensitivity analyses were conducted to test the sensitivity of the results to 

estimated model parameters. The results are summarised in Table 5. Only the parameters 

associated with cancers, tinnitus, and endocrine dysfunction were considered in the 

sensitivity analysis, as these were the most common injuries. As the most likely driver of the 

treatment cost ratio is the PBT cost, this cost was varied in the sensitivity analysis. The 

fraction of the cohort that could be treated cost-effectively remained stable with all 

parameter variations.  
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Table 3: Dose-dependent transition probabilities for each patient. The second primary cancer 

induction probabilities (SPCIPs) listed represents the probability of a second primary cancer 

within 25 years after treatment. The normal tissue complication probabilities (NTCPs) 

represent the time integrated probabilities. TCP = tumour control probability. 
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1 IMPT 0.88 <0.01 <0.01 0.98 0.01 <0.01 <0.01 1.00 0.01 

 VMAT 0.68 <0.01 <0.01 0.98 <0.01 <0.01 0.24 1.00 0.02 

2 IMPT 0.89 <0.01 <0.01 0.01 <0.01 0.01 <0.01 <0.01 0.01 

 VMAT 0.82 <0.01 <0.01 0.01 <0.01 0.10 <0.01 <0.01 0.02 

3 IMPT 0.94 0.02 0.02 0.01 <0.01 <0.01 <0.01 0.82 <0.01 

 VMAT 0.75 <0.01 <0.01 0.13 <0.01 <0.01 <0.01 0.25 0.01 

4 IMPT 0.86 0.01 <0.01 0.02 <0.01 <0.01 <0.01 0.39 0.01 

 VMAT 0.78 <0.01 <0.01 0.04 <0.01 <0.01 <0.01 0.79 0.03 

5 IMPT 0.83 0.01 0.01 0.48 <0.01 <0.01 <0.01 0.99 0.02 

 VMAT 0.79 <0.01 <0.01 0.67 <0.01 <0.01 0.02 0.84 0.03 

6 IMPT 0.62 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 - <0.01 

 VMAT 0.61 <0.01 <0.01 0.03 0.01 <0.01 0.01 - 0.01 

7 IMPT 0.83 <0.01 <0.01 0.05 <0.01 - <0.01 0.97 0.01 

 VMAT 0.74 <0.01 <0.01 0.14 0.01 - 0.01 0.83 0.02 
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Table 4: Predicted life expectancies, costs and ICERs for each patient. QALE = quality 

adjusted life expectancy; QALY = quality adjusted life year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patient ID Treatment Raw LE (years) QALE (QALYs) Cost ($) ICER ($/QALY) 

1 IMPT 68.4 29.8 358,320 13,620 

 VMAT 52.8 23.1 266,440  

2 IMPT 63.8 63.2 35,320 2,230 

 VMAT 58.7 57.2 21,860  

3 IMPT 71.2 55.3 72,350 4,220 

 VMAT 57.8 51.0 54,020  

4 IMPT 34.1 30.3 37,790 2,110 

 VMAT 31.3 24.4 25,390  

5 IMPT 47.6 28.5 189,990 -15,800 

 VMAT 45.3 26.0 229,800  

6 IMPT 22.9 22.6 39,390 14,250 

 VMAT 22.3 21.7 26,270  

7 IMPT 66.2 47.9 98,590 1,910 

 VMAT 57.4 41.9 87,100  
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Table 5: The effect of model parameter variation on the percentage of the cohort that could be 

treated with IMPT cost-effectively. The treatment cost ratios were altered by altering the proton 

treatment cost. This cost is more likely to vary compared with the photon treatment cost. 

Scenario Percentage cost-effective 

No parameter variation                         100 

Decreased proton/photon cost ratio to 1.5  100 

Increased proton/photon cost ratio to 3.5 100 

Primary cancer state  

Decreased cost to 75% 100 

Increased cost to 125% 100 

Decreased utility by 0.1 100 

Increased utility by 0.1 100 

Second primary cancer state  

Decreased cost to 75% 100 

Increased cost to 125% 100 

Decreased utility by 0.1 100 

Increased utility by 0.1 100 

Tinnitus state  

Decreased cost to 75% 100 

Increased cost to 125% 100 

Decreased utility by 0.1 100 

Increased utility by 0.1 100 

Endocrine dysfunction state  

Decreased cost to 75% 100 

Increased cost to 125% 100 

Decreased utility by 0.1 100 

Increased utility by 0.1 100 

 

4 Discussion 
For all of the cases presented, it was found that the initial cost of the proton treatment was 

justifiable if the costs associated with the greater risk of radiation-induced toxicity arising 

from photon treatments are considered. This was predominantly due to reduced risks of 

tinnitus and endocrine dysfunction, as well as improved tumour control probabilities 
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associated with the IMPT treatments. It was predicted that the proton treatment for one of 

the patients was cost-saving, that is, the treatment of both the tumour and treatment side 

effects were both less expensive and resulted in an improved clinical outcome compared 

with VMAT.  

The results presented here are consistent with those of Mailhot Vega et al.4, in that PBT has 

been found to be a cost-effective treatment in cases where critical structures can be spared 

(typically the pituitary and cochlea in this case). While Peeters et al.5 found a larger cost 

difference between proton and photon treatments for BOSCh (AUD$26,070) compared with 

other indications, here proton treatments were found to be cost-effective for BOSCh 

patients with a mean cost difference of AUD$17,200. The discrepancy between the results 

presented here and those of Peeters et al. is possibly due to different healthcare systems, as 

well as our inclusion of costs associated with additional treatment complications.  

This work has limitations that should be considered when interpreting the results. The 

quality of life utility associated with the endocrine dysfunction state was derived from an 

adult population and may not be representative of the quality of life experienced by a 

paediatric patient, which may influence the ICER calculated for certain patients in the cohort 

considered here. Furthermore, it is possible that endocrine dysfunction could be associated 

with costs other than that of treating GHD, and the cost assumed in this work could be 

underestimated as a result. However, the results were stable with variations in the costs 

associated with this injury. The assumed cost of spinal cord myelitis could also be 

underestimated as it did not include treatment of additional complications associated with 

the condition. However, the NTCP calculated for this injury was <0.01 for most patients and 
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did not exceed 0.02 for any patient or treatment, so it is unlikely that this assumption 

impacted the results. 

No costs were assumed for premature death. Due to the large TCP difference between IMPT 

and VMAT treatments for many patients, this assumption likely underestimates the costs 

associated with VMAT. There was also difficulty in sourcing accurate injury development 

times, resulting in a degree of uncertainty in the costs and QALYs. 

Model validation is an important step in the process of developing individualised patient 

selection strategies27. The estimated SPCIPs for several patients in the cohort were 

comparatively low considering observations of second malignancy incidences in all 

treatment sites. These have been found to be 7.5% for photons and 5.3% for protons 

(median follow up of 6.7 years)28. The model used to calculate the SPCIP in this work is yet 

to be validated, and this is the likely reason for the discrepancy between this work and the 

observations. 

 

5 Conclusion 

Markov modelling provides a means for timely assessment of new technologies in radiation 

oncology. This concept has been applied in the current work on an individual patient 

dosimetry basis for the assessment of cost-effectiveness of PBT for BOSCh. The model 

suggested all patients could be treated cost-effectively with PBT when compared to VMAT. 

Sensitivity analyses demonstrated the robustness of these results. This form of assessment 

may prove useful in guiding public health system support for patients to receive PBT in 

Australia. 
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6.3 Discussion and conclusion

The publication presented in this chapter demonstrates that a consideration of treatment

cost-effectiveness has been successfully added to the patient selection tool. This will

increase the utility of the model in future applications.

The results suggest that base of skull chordoma is not only a standard indication for

proton therapy, but also a cost-effective one. As proton therapy becomes an available

treatment option in Australia, such evidence could be used as a means of justifying the

reimbursement of providing the treatment to base of skull chordoma patients.



Chapter 7

Cost-effectiveness of Proton

Therapy: Breast Cancer

The publication P4 forms the basis of this chapter:

Austin, A.M., Douglass, M.J.J., Nguyen, G.T., Cunningham, L., Le, H., Hu, Y. & Pen-

fold, S.N.. Individualised selection of left-sided breast cancer patients for proton therapy

based on cost-effectiveness. International Journal of Particle Therapy. 2019 (Submitted

May 2019).

7.1 Introduction and motivation

The method of incorporating treatment cost-effectiveness into the patient selection tool

has been presented in Chapter 6. The output was demonstrated with a small cohort of

base of skull chordoma patients. This disease is relatively rare and is most common in

paediatric patients. In contrast, breast cancer is more prevalent. However, unlike base

of skull chordoma, breast cancer is not considered to be a standard indication for proton

therapy.

While the costs of construction and operation of proton therapy treatment facilities is

significant, they become increasingly viable if more patients are expected to benefit from
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the treatment. Therefore, the cost-effectiveness of treating common indications with

proton therapy warrants further investigation.

The aim of the publication that forms the basis of this chapter was to apply the method

of patient selection for proton therapy that had been developed in this work to a non-

standard indication. In this case, the indication considered was left-sided breast cancer.

Patients with this diagnosis that receive radiation therapy have an elevated risk of com-

plications related to the heart, lungs and the contralateral breast. The possibility of a

reduced dose to these organs offered by proton therapy suggests that left-sided breast

cancer patients could benefit from the treatment. Another key difference between this

cohort and the cohort considered in Chapter 6 is that no patients received proton ther-

apy. All treatment plans were created for the purposes of retrospective analysis as part

of research.

This chapter details additional data and technical aspects that were not included in the

publication, including probability calculations (Section 7.3) and the estimation of costs

(Section 7.4). A discussion and conclusion are given in Section 7.7.

7.2 Statement of contribution

7.2.1 Conception

The idea to apply the Markov model to a cohort of breast cancer patients first concep-

tualised by Scott Penfold. The method by which to implement this was developed by

Annabelle Austin.

7.2.2 Realisation

The writing of the code, analysis, and sourcing of parameters was performed by Annabelle

Austin. The organs on the CT scans were contoured by Hien Le and Yvonne Hu. The

radiotherapy treatment plans used in the analysis were created by Lisa Cunningham.
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7.2.3 Documentation

This paper was written by Annabelle Austin. Editing was performed by all authors.
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Abstract 

Introduction: The significantly greater cost of proton therapy compared with X-ray therapy 

is frequently justified by the expected reduction in normal tissue toxicity. This is often true 

for indications such as paediatric and skull base cancers. However, the benefit is less clear 

for other more common indications such as breast cancer. This is due to uncertainty 

regarding the effect of a reduced dose in the chest region on clinical outcome. The aim of 

this work is to demonstrate an individualised selection method for proton therapy of left-

sided breast cancer patients based on cost-effectiveness of treatment.   

Patients and Methods: 16 left-sided breast cancer patients had a treatment plan generated 

for the delivery of intensity modulated proton therapy (IMPT) and of intensity modulated 

photon therapy (IMRT) with the deep inspiration breath hold (DIBH) technique. The 

resulting dosimetric data was used to predict probabilities of tumour control and toxicities. 

These probabilities were used in a Markov model to predict costs and the number of quality 

adjusted life years expected as a result of each of the two treatments.  

Results: IMPT was not cost-effective for the majority of patients, but was cost-effective 

where there was a greater risk reduction of second malignancies with IMPT.  

Conclusion: The Markov model predicted that IMPT with DIBH can only be cost-effective for 

selected left-sided breast cancer patients where IMRT would result in a significantly greater 

dose to normal tissue. The presented model may serve as a means of evaluating the cost-

effectiveness of IMPT on an individual patient basis. 

 

Keywords 

Proton therapy, cost-effectiveness, breast cancer, Markov model, decision aid, 

radiobiological models 
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1 Introduction 
Comparative planning studies have suggested that proton therapy has the potential to 

increase sparing of critical structures in the treatment of breast cancers for certain 

patients1,2. However, Weber et al.2 noted that the issues of treatment cost and availability 

for a common disease could limit the routine clinical use of protons in the post-operative 

treatment of breast cancer. 

While proton therapy is a more expensive treatment than conventional X-ray therapy, it 

may be justified when costs other than that of the initial treatment are considered over the 

lifetime of a patient. For some patients, savings may be made if they are treated with 

proton therapy, even if the initial cost is greater. Lundkvist et al.3 have investigated whether 

improved outcomes for breast cancer patients who receive proton therapy are sufficient to 

justify a greater treatment cost. They found the treatment to be cost-effective for patients 

who had a high risk of developing a cardiac complication as a result of the radiation. Mailhot 

Vega et al.4 have developed an approach of selecting breast cancer patients to receive 

proton therapy based on risk of radiation-induced cardiac toxicity and proton treatment 

cost-effectiveness. Proton therapy was found to be cost-effective for cases where a woman 

had a cardiac risk factor and would receive a mean heart dose of greater than 5 Gy if treated 

with photons. 

Deep inspiration breath hold (DIBH) with X-rays is becoming increasingly common for the 

treatment of left-sided breast cancer5. This technique can increase the distance between 

the breast and the heart, reducing heart dose and thereby the risk of radiation induced 

heart complications. For patients capable of the breath hold technique, the reduction in risk 

of radiation induced toxicity may be negligible with proton therapy. Proton therapy still has 

the potential to reduce dose to the lung and contralateral breast compared with DIBH with 
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X-rays, however6, 7. These organs are particularly sensitive to radiation induced second 

primary cancers8. It is important these organs at risk are included in an analysis of cost-

effectiveness of proton therapy compared to state-of-the-art X-ray therapy. 

The objective of the current work was to assess cost-effectiveness of proton therapy for a 

cohort of 16 DIBH-capable early stage breast cancer patients. In addition to cardiac toxicity, 

pneumonitis and second primary cancer induction were included in a Markov chain cost-

effective analysis comparing intensity modulated proton therapy (IMPT) with hybrid three 

dimensional conformal radiotherapy (3DCRT)/intensity modulated radiotherapy (IMRT) X-

ray radiotherapy. The transition probabilities of the Markov model were based on 

radiobiological models of tumour control probability (TCP), normal tissue complication 

probability (NTCP) and second primary cancer induction probability (SPCIP). These 

probabilities were derived on an individual basis from their comparative proton/X-ray 

radiotherapy treatment plans. The model was used to predict the likely outcome after a 

given treatment for each of the patients in the cohort in terms of life expectancy and quality 

adjusted life expectancy (QALE). Costs of primary and subsequent treatment were also 

included to determine the cost per quality adjusted life year (QALY) gained for protons 

compared to X-rays, also known as the incremental cost-effectiveness ratio (ICER). 

2 Patients and Methods 

2.1 Patient cohort and treatment planning 
The cohort of patients considered in this retrospective study consisted of 16 female left-

sided breast cancer patients treated at the Royal Adelaide Hospital with X-ray radiotherapy. 

The median age was 56 years (range 36-74). 50% of diagnoses were invasive ductal 

carcinoma, but diagnoses also included invasive lobular carcinoma, papillary carcinoma, 

ductal carcinoma in situ, and apocrine carcinoma.  A majority (68%) of patients were stage 
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T1 and N0 (87.5%). As patients with metastatic disease were excluded from the study, most 

patients were M0, with one patient Mx (unable to be assessed for distant metastases). All 

patients had breasts intact and the whole breast was modelled in treatment planning.  

Each patient had a computed tomography (CT) scan acquired with DIBH. The clinical target 

volume (CTV) included apparent CT glandular breast tissue and lumpectomy CTV. In this 

retrospective analysis, each patient had two new treatment plans created. The prescribed 

dose was 40 GyRBE (the RBE weighted dose) in 15 fractions. Planning objectives for the heart 

were Dmean < 3 Gy and V21.5Gy < 10%, for the left lung V18Gy < 15% and as low as reasonably 

achievable doses to the left anterior descending artery, right lung, and right breast. 

The X-ray treatment plan made use of the 3DCRT/IMRT hybrid technique (h-IMRT). The 

plans consisted of opposing tangential fields with 70% and 30% weighting of the 3DCRT 

(open tangent field) and IMRT beams (inversely optimized IMRT field) in each tangent 

respectively. This weighting was used to ensure planning consistency. 6 MV beams were 

used unless the size of the breast required the use of 10 MV beams in the 3DCRT beam to 

reduce lateral hotspots and improve target coverage. IMRT beams were optimized to a 

planning target volume, defined as the CTV with a 5 mm margin limited to within the 

exterior of the patient minus 5 mm and excluding the left lung. Treatment plans were 

created to achieve 98% coverage of the planning target volume (PTV) with 95% of the 

prescribed dose. 

IMPT plans were created with a single en-face beam. A range-shifter was used to allow the 

placement of Bragg peaks close to the patient surface. A beam specific PTV was generated 

with an expansion of 5 mm laterally and 3% of the beam range distally. Two patients were 

duplicated and re-planned to test planning consistency. 



6 
 

2.2 Markov model 

A discrete-time Markov chain model was applied in this work9. The time period modelled 

begins immediately after the final fraction of radiotherapy treatment and ends when the 

patient is deceased. The cycle length was chosen to be one year. 

A patient can occupy only a single Markov state at a given time. These states are 

summarised in Figure 1. The toxicities considered included pneumonitis and heart disease. 

The possibility of developing a second primary cancer (SPC) as a result of the initial radiation 

treatment was also included. 

The following assumptions were made when determining the Markov states to be used in 

the model: 

 Pneumonitis, if developed, is likely to resolve many years prior to the induction of a 

second primary cancer. Therefore there are no states for the situations where a patient 

is affected by both pneumonitis and a second primary cancer. 

 If a treatment is unsuccessful, it is assumed that it is highly unlikely that the patient will 

still be alive when the probability of developing a second malignancy is significant. 

Therefore there are no states where the initial cancer and a second cancer coexist. 

2.3 Markov state transition probabilities  

Markov models in medical applications assume that a patient occupies a single state for the 

duration of a cycle. At the end of each cycle, it is possible for a patient to transition to 

another state. The allowed transitions are summarised in Figure 1. 

The following assumptions were made when determining the allowed transitions in the 

model: 

 It is not possible to recover from heart disease or a second cancer once it has developed. 
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 It is not possible to transition from the Cancer state to the Well state once the first 

Markov cycle has begun. The patient may begin in the Well state as a result of a 

successful treatment. 

 There is a large difference in the time point after treatment at which the second primary 

cancer induction probability (SPCIP) becomes significant compared to the time point 

where the NTCP is significant for the toxicities considered. Therefore, the probability of 

simultaneously developing an injury and second cancer is negligible. Similarly, the 

probability of developing an injury after a second cancer is also negligible. 

 Once pneumonitis has been recovered from, the model ensures that it is not possible to 

relapse. 

The transition probabilities are explained in more detail in Sections 2.3.1 – 2.3.4.  

2.3.1 Locoregional control 

The probability of the patient beginning in the Well state is equal to the dose-dependent 

TCP (defined in the Supplementary Material), while the probability of beginning in the 

Cancer state is the complement of the TCP. Re-treatments are not directly included in the 

model. This is assumed as the outcome of the initial treatment is the focus of this selection 

tool. Similarly, while there were no explicit states for metastases, the cancer death 

probabilities incorporate this implicitly in the model.   

2.3.2 Normal tissue complications 

The probability of pneumonitis is calculated using the radiation dose to both lungs. The 

probability of heart disease is calculated with the dose to the heart. These transition 

probabilities are time-dependent to allow for a more realistic estimation of costs and QALYs. 

The details of the calculations are described in the Supplementary Material. 
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The majority of patients with pneumonitis recover10. It was assumed that recovery would 

occur after 1 year as all estimated costs associated with treating this injury applied within 

the first year only. It was assumed that heart disease was chronic and the possibility of 

recovery was neglected in this work. 

2.3.3 Second primary cancer induction 

The SPCIP is the probability of developing a radiation induced cancer as a result of the 

treatment. This is an important consideration due to the expected difference in integral 

dose between a proton and photon plan. This is also a dose- and time-dependent quantity 

and was calculated using the model developed by Schneider et al.11. The relevant formula 

and input data are described in the Supplementary Material. 

2.3.4 Death Probabilities  

Unlike the other transition probabilities described in this section, the probability of 

transitioning to the Deceased state is dose-independent. The purpose of this study was to 

evaluate the cost-effectiveness from a dosimetric point of view and while the death 

probabilities are not dosimetric quantities, they allow for a more realistic estimate of the 

number of QALYs gained as a result of a given treatment. Depending on the Markov state of 

a patient, there are a number of possible transitions that can be made to the Deceased 

state: 

 Death due to breast cancer as a result of an unsuccessful treatment. Survival of breast 

cancer patients was found to be 55% at 10 years for the case of local failure12. A 

constant yearly death probability, denoted 𝑃𝑟(𝐷𝑖𝑒), was derived from this data, where 

𝑆 = (1 − Pr(𝐷𝑖𝑒))𝑛, 𝑛 = 10  is the number of years after treatment, and S=0.55 is the 

surviving fraction. Solving for the death probability gives 0.06. 
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 Death due to a second malignancy. The 5-year survival for all cancers combined is 68%13. 

Using the same method for the breast cancer death described above, a yearly death 

probability of 0.08 was derived. 

 Death due to heart disease. The probability was assumed to be 0.01 per year which was 

estimated using 2007 prevalence (3.5 million) and death rates (48, 456) associated with 

cardiovascular disease in Australia14. 

 Unrelated death. This time-dependent probability is based on data from life tables 

obtained from the Australian Bureau of Statistics (ABS)15. 

Note that as recovery from pneumonitis is highly likely, it was assumed that this injury was 

non-fatal. 

2.4 Estimation of quality of life utilities   

The quality of life (QoL) utility value of each Markov state represents the quality of life 

associated with the state relative to perfect health (with QoL=1). By default, the quality of 

life associated with death is 0. The utilities used in the current work are listed in Table 1.  

For states where there is more than one injury or cancer, the assigned utility is a 

multiplication of the utilities of the states where there is only one of each injury or cancer. 

The state representing the cases of second primary cancers were assigned a value of 0.8 in 

accordance with the Eastern Cooperative Oncology Group (ECOG) performance status16 as 

their definition of a grade 1 complication gives the most accurate description of this state.  

2.5 Estimation of costs 

In addition to the cost of the breast cancer treatment, costs of side-effect treatments were 

also incorporated into the model to allow for a more realistic representation of the costs 

associated with a given treatment. The costs of re-treatments and treatments of second 
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cancers were not included. No costs were assumed for fatal events, only loss of QALYs. For 

states where several injuries or cancers affect a patient, the cost applied was the sum of the 

costs for the individual injuries. Costs and QALYs were discounted by 3% annually, to adjust 

for differences in timing of costs and effects. Where possible, Australian costs were applied 

for consistency and all costs are in Australian dollars (AUD). These are summarised in Table 

1. The details of the cost estimation are given in the Supplementary Material. 

3 Results 

The ICER was calculated for each patient in the cohort. The results are given in Table 2. In 

accordance with the NICE guidelines17, IMPT was considered cost-effective if it cost £20,000 

($36,000) per QALY gained or less compared with h-IMRT.   

Proton therapy was cost-effective for one patient in the cohort and cost-ineffective for 15 

patients. Both members of both sets of the duplicated patients were classified as cost-

ineffective. The difference in the ICER calculated for patient 3 and the ICER calculated for its 

re-planned duplicate was approximately $8,000. For patient 8, the difference between the 

ICER and the ICER of the duplicate was $6,000. These differences are due to small 

differences (up to 0.1 years) in the number of QALYs in the denominators. 

3.1 Sensitivity analysis 

Variation of selected parameters altered the fraction of the cohort that could be treated 

with IMPT cost-effectively. 

Parameters related to second cancers were varied as these had a large impact on whether a 

patient was classified as cost-effective. These included costs, the utility and the death 

probability. In contrast, the TCP difference between the treatments did not exceed 0.01 for 
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any of the patients. Therefore, it is unlikely that variation of related parameters would 

impact the results. 

Due to the relatively small NTCP for pneumonitis (see Supplementary Material), no 

parameters relevant to pneumonitis were considered to have a significant effect on the 

results. Even if the NTCP difference were larger between the two treatments, the relatively 

small cost and duration of pneumonitis would result in a minimal effect on the results. The 

exception was the possibility of this injury becoming chronic in a fraction of patients. 

There was not a significant difference in the heart disease NTCP between IMPT and h-IMRT 

for any of the patients (see Supplementary Material). The only parameter related to heart 

disease that was varied was the baseline risk. This parameter was doubled in the analysis to 

investigate whether high risk groups could be treated with protons cost-effectively. 

Treatment cost ratios were varied by varying the proton treatment cost, as this was 

considered to have the greatest uncertainty. 

After selecting parameters that were most likely to influence the results, a sensitivity 

analysis was performed for each. The results are presented in Table 3. As expected, if IMPT 

could be delivered at a lower cost (1.5 times that of IMRT), then a significantly greater 

proportion of the cohort could be treated with IMPT cost-effectively. Proton therapy was 

also less likely to be cost-effective where there was a reduced probability of death due to 

second cancer induction. The results were stable with variation of other model parameters. 

4 Discussion 

The Markov model predicted that IMPT could not be delivered cost-effectively to the 

majority of patients in the cohort investigated. The patient that could be treated cost-
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effectively had a comparatively high lung dose (see Supplementary material) which 

increased the second cancer risk. The higher lung dose was necessary to spare breast tissue 

in this patient who had relatively larger breasts. This was also a younger patient (less than 

the assumed retirement age at the time of treatment) and hence in the model they had the 

potential to be less productive in society as a result of second malignancies. Alternatively, 

the difference in normal tissue doses between treatments was smaller for the remainder of 

the cohort.  

The sensitivity analysis indicated that, as expected, the initial cost of the proton treatment 

had the largest impact on whether a patient could be treated cost-effectively. However, it is 

anticipated that the cost of proton therapy will decrease over time as it is a newer 

treatment. Furthermore, it is likely that the initial cost of building a proton clinic would have 

a large contribution to this cost. This cost can be increasingly justifiable with an increasing 

number of patients who are expected to benefit from the treatment. If breast cancer 

patients could be included in this category, then proton clinics may be more viable as 

current standard indications are predominantly relatively rare or paediatric cases. 

Lung cancer was found to be the most likely second cancer in this work, agreeing with a 

study of second cancer incidences after X-ray therapy for breast cancer18. In a planning 

study of various X-ray treatment techniques for breast cancer, Santos et al.8 also found the 

lungs to have the highest second cancer risk.  

The mean heart dose did not exceed 4 Gy for any treatment for any of the patients (see 

Supplementary material). This is likely a result of the DIBH technique, which is designed to 

reduce exposure to the heart. Mailhot Vega et al.4 found that for a proton treatment of 

breast cancer to be cost-effective, it was necessary for the mean dose to the heart from 
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photons to be greater than 5 Gy. Hence, the results presented here are consistent with this 

finding.  

The average predicted ICER of $84,600 was smaller than the average predicted by Lundkvist 

et al. of €67,000 ($105,000)3. Our estimation of the ratio of proton therapy to photon 

therapy costs is similar (2.5 in this work compared with 2.6). Their estimation of the 

probability of death due to breast cancer was lower than ours, but it is unlikely that this 

alone would influence our results significantly due to the relatively small difference in the 

expected TCP between IMPT and IMRT for the patients in our cohort. Therefore, the 

discrepancy is likely due to our inclusion of costs associated with the possibility of radiation-

induced cancers. 

While an ICER of £20,000 was assumed to be the threshold for a treatment to be cost-

effective in this work, according to the NICE guidelines17 the threshold can be as large as 

£30,000 ($54,000) if advisory bodies can make a strong case in support of the intervention. 

If this threshold were to be assumed here, an additional 4 patients would have a cost-

effective proton treatment (31% of the cohort in total). These patients had relatively large 

lung dose differences between the two modalities, corresponding to larger SPCIP 

differences. 

There are several assumptions in the Markov model that may have influenced the results. 

For example, re-treatments were omitted as the alternate treatments of the initial cancer 

are the subject of comparison in the model. However, the results may be less realistic as a 

consequence of this assumption. In reality re-treatments would likely occur and this would 

contribute to costs. In addition, loss of life is assumed to have no cost. Including each of 



14 
 

these factors would increase the likelihood of a proton treatment being cost-effective, 

assuming it resulted in improved tumour control and reduced second cancer rates.     

The radiobiological models that are built into the Markov model also have limitations. For 

example, the model used to estimate the probability of developing heart disease was 

developed using data from both left and right-sided breast cancer patients. The effect of this 

is that the true NTCP may be underestimated, which could have contributed to the relatively 

small probabilities that were obtained for each of the patients despite a wide variation in 

mean heart dose.  

It is worth noting that the patients considered in this study represent a subset of breast 

cancer patients who are able to hold their breath during treatment. This is not the case for 

all breast cancer patients, particularly those who are elderly. It may be possible to treat 

patients cost-effectively if they are not able to hold their breath or have suspected nodal 

involvement and therefore would experience a higher risk of cardiac toxicity if treated with 

X-rays. 

5 Conclusion 

The cost-effectiveness of proton therapy for a cohort of left-sided breast cancer patients 

capable of being treated with DIBH has been assessed with a Markov model. It was found 

that proton therapy was not a cost-effective treatment for the majority of the cohort. 

However, patients that would have an elevated risk of second malignancy if treated with X-

rays could be treated with IMPT cost-effectively. The presented model has the potential to 

evaluate the cost-effectiveness of treatments on a case-by-case basis, facilitating the 

delivery of individualised medicine and ensuring the efficient usage of healthcare resources. 
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Figure 1: The Markov state transition diagram showing the allowed transitions between states. 

`Well' represents perfect health. `Cancer' represents the situation where the patient still has the 

initial primary breast cancer, `SPC' represents a second primary cancer, `Pneum.' refers to 

pneumonitis and `HD' represent heart disease. 
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Table 1: Estimates for the yearly costs and quality of life utilities for states in the Markov model. 

Details of the cost estimations are given in the supplementary material. 

State Utility Cost ($) 

Breast cancer 0.8919 15,960 

Heart disease 0.820 13,658 

Pneumonitis 0.820 4,037 

Second primary cancer 0.816 15,960 
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Table 2: Predicted life expectancies and costs for each patient. The cost of protons per QALY 

gained is listed. Duplicated patients are denoted by an asterisk. QALY = quality adjusted life year. 

QALE = quality adjusted life expectancy=number of QALYs lived. 

Patient ID Treatment Raw LE (y) QALE (QALYs) Costs ($) ICER ($/y) 

1 IMPT 48.2 25.48 39,040 73,950 
 IMRT 47.6 25.26 22,470  

2 IMPT 19.0 14.38 31,430 107,130 
 IMRT 18.8 14.21 13,650  

3 IMPT 38.9 22.91 38,040 122,700 
 IMRT 38.6 22.77 20,740  

3* IMPT 38.9 22.88 38,160 128,640 
 IMRT 38.6 22.75 21,050  

4 IMPT 22.3 16.16 31,720 49,610 
 IMRT 21.9 15.80 13,960  

5 IMPT 19.0 14.40 31,430 79,660 
 IMRT 18.8 14.17 13,660  

6 IMPT 33.4 21.02 37,000 89,980 
 IMRT 33.1 20.83 20,000  

7 IMPT 25.6 17.78 33,760 46,640 
 IMRT 25.2 17.41 16,450  

8 IMPT 33.5 21.07 36,490 54,730 
 IMRT 33.0 20.77 20,180  

8* IMPT 33.4 21.01 37,050 60,910 
 IMRT 33.0 20.74 20,550  

9 IMPT 18.2 13.94 31,360 67,800 
 IMRT 18.0 13.67 13,600  

10 IMPT 21.4 15.69 31,650 87,370 
 IMRT 21.2 15.48 13,910  

11 IMPT 36.2 22.00 37,660 237,110 
 IMRT 36.0 21.92 20,110  

12 IMPT 15.0 12.03 31,040 99,620 
 IMRT 14.9 11.85 13,410  

13 IMPT 18.1 13.92 31,360 90,840 
 IMRT 18.0 13.73 13,920  

14 IMPT 30.7 19.96 36,450 26,750 
 IMRT 29.9 19.38 20,780  

15 IMPT 40.6 23.42 38,660 52,680 
 IMRT 40.0 23.12 22,540  

16 IMPT 29.0 19.26 35,480 45,820 
 IMRT 28.5 18.90 18,800  
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Table 3: The effect of model parameter variation on the percentage of the cohort that could be 

treated with IMPT cost-effectively. The ratio of the treatment costs was varied by varying the 

proton treatment cost. 

Scenario Percentage cost-effective 

No parameter variation 6 

Decreased proton/photon cost ratio to 1.5 88 

Increased proton/photon cost ratio to 3.5 0 

Decreased recovery rate of pneumonitis to 80% 6 

Decreased second cancer death probability by  50% 0 

Increased second cancer death probability by 50% 6 

Decreased second cancer cost to 75% 6 

Increased second cancer cost to 125% 6 

Decreased second cancer utility by 10% 6 

Increased second cancer utility by 10% 6 

Doubled baseline risk of heart disease 6 

 

 



Chapter 7. Cost-Effectiveness of Breast Cancer 186

7.3 Calculation of transition probabilities from DVH

data

7.3.1 Tumour control probability (TCP) calculation

The TCP used in this model is based on the linear quadratic (LQ) model [58]:

TCP =
M∏

i=1

P (Di)
vi , (7.1)

with P (Di) = exp

(
− exp

(
eγ − αDi − β

D2
i

nfrac

))
, (7.2)

where there are a total of M voxels, each having a fractional volume vi (of the total

tumour) that receives dose Di as part of a treatment delivered in n fractions (nfrac), and

α and β are the linear and quadratic coefficients of the LQ model, respectively. For breast

cancer, α/β = 2.88 and α = 0.08 [91]. The dose was converted to an equivalent dose in

2 Gy fractions.

The parameter γ is the normalised dose-response gradient evaluated at D = D50, the

dose at which 50% of tumours are controlled. This value was taken as 1.46 [92].

7.3.2 Normal tissue complication probabilities

7.3.2.1 Pneumonitis

The Lyman-Kutcher-Burman (LKB) NTCP formalism was used to determine the prob-

ability of developing pneumonitis. The NTCP is given by (7.3) and (7.4) [60, 61],

NTCP (pneumonitis) =
1√
2π

∫ t

−∞
exp

(−x2
2

)
dx, (7.3)

with t =
Deff − TD50

mTD50

and Deff =

(∑̀

i=1

viD
1
n
i

)n

, (7.4)
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where TD50 is the uniform dose in Gy given to the entire organ that results in 50%

complication risk, m is an organ-specific parameter that represents the gradient of the

dose-response curve (analogous to γ in the TCP calculation), and n is a parameter that

characterises the volume dependence of the organ’s response to radiation, and ` is the

number of voxels. The values determined by Seppenwoolde et al. [93] (TD50 = 30.8 Gy,

m = 0.37, n = 0.99) were used in this model. An α/β of 3.0 was assumed for the lung to

convert the dose to an equivalent dose in 2 Gy fractions.

To calculate a time-dependent NTCP, a time-dependent normal distribution was defined

that was normalised such that the integral was equal to the NTCP defined in (7.3). The

mean of the distribution was the mean time taken for pneumonitis to develop. This was

assumed to be 6 months with a standard deviation of 2 months as most cases are expected

to develop within a year [94]. The result is a discretised normal distribution with a NTCP

for each year after treatment.

7.3.2.2 Heart disease

The probability of a major coronary event was calculated using the model developed by

Darby et al. [27]:

NTCP (heart disease) = B(1 +KD), (7.5)

where K = 0.074 Gy, D is the mean dose to the heart, calculated from the individual

patient’s DVH for the heart associated with a particular plan, and B is the risk of a

cardiac event without radiation therapy. This was estimated to be 1.5% based on a

review of the prevalence of heart failure in Australia [95], which was found to be 1-2%.

An α/β of 3.0 was assumed for the heart to convert the dose to an equivalent dose in 2

Gy fractions.

Once the NTCP for cardiac events was calculated, time-dependent probabilities were

derived using the same method described for pneumonitis. The mean time taken for a

cardiac event to occur after treatment was estimated to be based on data presented by

Darby et al.[27] on the percentage increase of events per Gy for given time periods after

radiotherapy. The overall average of the mean dose to the heart in their population study
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was 4.9 Gy. The largest increase was within 4 years of radiotherapy, and hence the mean

was assumed to be 4 years. A standard deviation of 2 year was assumed in this model,

but this was not clinically founded.

7.3.3 Second primary cancer induction probabilities

The excess absolute risk (EAR) of developing a cancer in a particular organ at a particular

time after treatment due to radiation exposure is given by (7.6) and was taken as an

estimate of the SPCIP [84, 96]

EARorg(age) =
1

VT

∑̀

i=1

vi(Di)βEARRED(Di)µ(ageX, age). (7.6)

Here, ageX is the age of the patient at the time of treatment (the time of exposure to

radiation), age is the age of the patient after treatment at the year of interest, VT is

the total volume of the organ, βEAR is the initial slope, ` is the number of voxels, and

µ(ageX, age) is the modifying function,

µ(ageX, age) = exp
[
γe(ageX − 30) + γa ln

(age
30

)]
, (7.7)

with γe and γa being the age modifying parameters.

Equation (7.8) gives the risk equivalent dose (RED) mechanistic model which accounts

for the effects of cell killing and fractionation

RED(D) =
e−α

′D

α′R

(
1− 2R +R2eα

′D − (1−R)2e
α′R
1−RD

)
, (7.8)

where R is the repopulation/repair parameter, α′ is given by

α′ = α + β
Di

DT

dT , (7.9)
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and DT and dT represent the prescribed dose to the target volume and the corresponding

dose per fraction, respectively. The values used for these parameters are listed in Table

7.1.

It was assumed that it was possible to develop a second cancer in any of the following:

the left lung, the right breast, and all regions in the body that were not contoured. The

parameters used for the SPCIP calculation are listed in Table 7.1 [84].

Table 7.1: Parameters used for the calculation of the SPCIP for each year after
treatment. Data was not provided for the heart.

SPCIP PARAMETERS

Tissue βEAR α R γe γa

Lung 8.0 0.042 0.83 0.002 4.23

Body 74.0 0.089 0.17 -0.024 2.38

Breast 8.2 0.044 0.15 -0.037 1.7

Once the SPCIP for each year had been calculated for the two tissues being considered,

they were combined into a single probability of developing any second cancer (SC) in a

given year, P(SC 1 ∪ SC 2), assuming the two events were independent.

7.4 Estimation of costs

7.4.1 Radiation therapy

The cost of IMRT was assumed to be $11,877 [14] and the cost of proton therapy to be

conservatively 2.5 times greater [14].
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7.4.2 Cancer

The estimate of the cost associated with an unsuccessful treatment (resulting in the

patient being in a state associated with cancer) was based on lost productivity (see

Section 2.6 of the publication P3, Chapter 6). The model does not incorporate the effect

of re-treatments and hence the costs associated with this were not included. In reality, it

is likely that re-treatments would occur resulting in the true cost being higher. However,

the original treatment (either proton or photon) is the subject of comparison in this study.

7.4.3 Heart disease

In the 2004-2005 financial year, $5,942 million was spent on approximately 685,000 car-

diovascular disease patients in Australia, corresponding to an average cost per year per

person of $8,674. This estimate includes hospital admissions, prescription pharmaceu-

ticals (including the contribution from the PBS (pharmaceutical benefits scheme) and

patient contributions), and out-of-hospital medical services [97]. The expenditure on

lipid-lowering medicines was not included which may lead to a significant underestima-

tion of costs. The annual expenditure on research ($164 million) was subtracted for this

study as it is not necessarily case specific.

To estimate costs associated with lowered productivity and workforce participation, the

cost of heart disease-related absenteeism in 2004 obtained for a study in productivity

loss [98] was applied. Applying a prevalence of 355,600 in 2004 [99], the total cost of

$31.7 million was translated to $89 per person. Similarly to cancer, costs associated with

workforce participation were applied only when the patients were below the retirement

age.

7.4.4 Pneumonitis

The costs associated with pneumonitis were estimated based on management strategies

described by Ghafoori et al. [100]. These included a chest X-ray and a course of oral

prednisone (a corticosteroid). The cost of the X-ray was estimated to be $47, based on
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Medicare Benefits Schedule (MBS) data [101]. The medication cost was estimated at $63,

based on the Pharmaceutical Benefits Scheme (PBS) dispensed price [102].

In the estimations of Lundkvist et al. [40], one month of leave was assumed for 75% of

patients with the injury. This corresponded to a total average leave cost of $3,927 after

applying data relevant to Australia. A patient recovers from pneumonitis after a single

cycle and hence the cost is applied for one year only.

7.5 Dose-dependent transition probabilities by pa-

tient

The transition probabilities that were calculated based on the dose received by each

patient are summarised in Table 7.2. The NTCPs and SPCIP are time-dependent proba-

bilities. The total NTCP integrated from the starting age of the patient to the maximum

possible age in the model (100) and the average yearly SPCIP is listed.

TRANSITION PROBABILITIES

Patient ID Treatment TCP Pneumonitis NTCP Heart NTCP SPCIP

1 IMPT 0.971 <0.01 0.02 0.053

IMRT 0.973 0.01 0.02 0.130

2 IMPT 0.971 <0.01 0.02 0.044

IMRT 0.974 0.01 0.02 0.110

3 IMPT 0.971 <0.01 0.02 0.055

IMRT 0.975 0.01 0.02 0.110

3 * IMPT 0.972 <0.01 0.02 0.065

IMRT 0.972 0.01 0.02 0.100

4 IMPT 0.971 <0.01 0.02 0.044

IMRT 0.975 0.02 0.02 0.160

5 IMPT 0.971 <0.01 0.02 0.040

IMRT 0.971 0.01 0.02 0.110

6 IMPT 0.973 <0.01 0.02 0.069
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IMRT 0.971 0.01 0.02 0.120

7 IMPT 0.971 <0.01 0.02 0.057

IMRT 0.973 0.02 0.02 0.170

8 IMPT 0.976 <0.01 0.02 0.067

IMRT 0.972 0.01 0.02 0.130

8 * IMPT 0.971 <0.01 0.02 0.069

IMRT 0.969 0.01 0.02 0.140

9 IMPT 0.971 <0.01 0.02 0.036

IMRT 0.972 0.02 0.02 0.130

10 IMPT 0.967 <0.01 0.02 0.050

IMRT 0.973 0.01 0.02 0.120

11 IMPT 0.971 <0.01 0.02 0.060

IMRT 0.972 0.01 0.02 0.080

12 IMPT 0.971 <0.01 0.02 0.036

IMRT 0.972 0.02 0.02 0.100

13 IMPT 0.971 <0.01 0.02 0.042

IMRT 0.971 0.01 0.02 0.110

14 IMPT 0.969 <0.01 0.02 0.069

IMRT 0.972 0.03 0.02 0.230

15 IMPT 0.971 <0.01 0.02 0.068

IMRT 0.971 0.01 0.02 0.150

16 IMPT 0.972 <0.01 0.02 0.073

IMRT 0.97 0.02 0.02 0.170

Table 7.2: Transition probabilities calculated based on the dose to each patient.
Duplicates are indicated by an asterisk.

7.6 Mean organ doses by patient

The mean radiation doses that would be received by each organ as a result of each

treatment are summarised in Table 7.3. The difference in dose for each modality is listed
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for each patient.

ORGAN DOSES

Patient ID Lung Heart

IMPT (Gy) IMRT (Gy) ∆(Gy) IMPT (Gy) IMRT (Gy) ∆(Gy)

1 0.74 3.00 2.26 0.05 0.25 0.20

2 0.94 4.54 3.60 0.08 0.44 0.37

3 0.92 3.11 2.20 0.04 0.34 0.30

3* 1.29 2.92 1.63 0.06 0.34 0.28

4 0.89 7.95 7.06 0.03 0.64 0.62

5 0.91 5.24 4.34 0.03 0.58 0.55

6 1.41 3.83 2.42 0.20 0.34 0.14

7 1.16 6.83 5.67 0.06 1.23 1.17

8 1.32 4.66 3.34 0.06 0.47 0.41

8* 1.38 4.67 3.28 0.08 0.48 0.40

9 0.89 6.45 5.56 0.07 0.69 0.61

10 1.14 4.82 3.68 0.02 0.71 0.69

11 1.02 1.86 0.84 0.10 0.32 0.22

12 1.35 7.80 6.46 0.10 2.04 1.95

13 1.15 5.58 4.42 0.10 3.31 3.21

14 1.19 10.00 8.81 0.14 2.68 2.54

15 1.18 3.70 2.52 0.06 0.39 0.33

16 1.36 6.32 4.96 0.07 0.54 0.47

Table 7.3: Mean doses to the heart and lung for each patient and treatment modality.
Duplicates are indicated by an asterisk.

7.7 Discussion and conclusion

The proton treatment cost-effectiveness was predicted for each member of the left-sided

breast cancer patients in the cohort. However, the presented approach has limitations

that should be considered when interpreting the results.
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The estimation of costs of adverse events is inherently challenging and can be signifi-

cantly more complex compared with the estimations employed here. For example, the

cost of drugs is highly variable with time. In addition, productivity loss was estimated

considering paid work only and work such as caring and volunteering was omitted. This

could be particularly relevant for older patients who were assumed to have no potential

for productivity loss and were predicted as having predominantly cost-ineffective proton

treatments.

Another limitation is the uncertainty associated with the time for toxicities to develop.

This may have resulted in uncertainties in the estimated cost and QALYs. Uncertainties

in the dose were not considered as it was not possible to perform a robust analysis in the

treatment planning system used to develop the plans used in this work. Furthermore,

there was a lack of data available on the uncertainties associated with the radiobiological

model parameters.

The publication presented in this chapter demonstrates the developed model as a potential

tool for selecting patients for proton therapy. This is particularly important for cancer

types that would not normally be considered as standard indications for the treatment.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

The model developed in this work provides a prediction of the clinical outcome associated

with a given radiotherapy treatment plan. Specifically, the difference in dose distribu-

tion evident in a comparison of treatment plans is translated to a difference in clinical

outcome. As a result, it has the ability to estimate the relative benefit of a proton treat-

ment compared to conventional X-ray radiotherapy on an individual patient basis. This

prediction is of great value in the absence of data from clinical trials of proton therapy

and allows the patients who are expected to receive the greatest benefit from this limited

resource to be identified.

Several stages of model development have been detailed in this work. These included:

1. The initial model, which was evaluated with a Monte Carlo simulation. While this

model was functional, it was limited by large computational times.

2. The model that was evaluated analytically, giving the exact solution with a signifi-

cantly reduced computation time. This model also assumed that the probability of

death due to cancer or injury was determined by the stage/grade rather than the

time the cancer/injury had been present.

195
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3. Incorporation of the effects of dose and radiobiological model parameter uncertain-

ties on the model predictions. It was found that uncertainties in dose delivery made

it difficult to conclude whether proton therapy would improve the clinical outcome

of the base of skull chordoma (BOSCh) demonstration patient. However, when

considering NTCP model parameter uncertainty only, a clear benefit was predicted

for the demonstration patient if they were to be treated with protons. A framework

for considering the effect of uncertainty in the quality of life utility weights was also

developed. These weights are particularly important drivers of outcomes.

4. Incorporation of the effect of treatment cost-effectiveness to allow the model to

select patients for proton therapy through balancing treatment cost and patient

quality of life.

5. An investigation of the patients selected by the model to receive proton therapy,

based on proton treatment cost-effectiveness. Two distinct cohorts were considered,

one consisting of BOSCh patients and the other consisting of left-sided breast cancer

patients (treated with the deep inspiration breath hold technique (DIBH)). The

former is considered to be a standard indication for proton therapy, while the latter

is not. It was found that all BOSCh patients could be treated with proton therapy

cost-effectively. In contrast, the majority of the breast cancer patient cohort could

not be treated cost-effectively. This was largely due to the greater risk of toxicity

associated with the radiation treatment of BOSCh, while the toxicity rate associated

with DIBH (particularly cardiovascular disease) was found to be low for both proton

and photon treatments. However, it was also evident that the breast cancer patients

who could be treated cost-effectively had an elevated lung dose associated with the

planned photon treatment. Therefore, individualised approaches to patient selection

may prove useful for this indication. Conversely, the results are supportive of proton

therapy being adopted as a standard treatment for BOSCh.

The developed toolkit has the potential to serve as the basis of a patient selection system

for proton therapy in clinical environments. This is particularly relevant in Australia as

proton therapy facilities commence construction. Patient selection systems are valuable
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in ensuring the efficient and equitable delivery of healthcare, both of which are high

priorities in any society.

8.2 Future work

The prediction offered by the presented model provides a valuable approach to patient

selection for proton therapy. However, there remains significant potential for further de-

velopment of the model both before and after clinical implementation. Recommendations

for future work are as follows:

� External model validation. This is an essential requirement before this type of

model can be implemented clinically, as it allows the clinical utility to be evaluated

and the accuracy of the predictions to be tested.

� The inclusion of additional predictors. Currently, the model input variables are the

dose distributions for each organ and the tumour, along with the patient gender

and age at the time of treatment. Demographic specific toxicity models, which

could give information on baseline risks or histories of certain complications, are

not included. In addition, further information regarding the tumour stage at the

time of treatment and the presence or absence of concurrent treatment could lead

to more informed predictions.

� Individualised medicine and precision medicine have been gaining increased atten-

tion in recent years [103]. These approaches involve individual-specific treatments

where individual variability is taken into account. While the model developed in this

work aims to achieve this goal, there remains the potential for future development

as advances are made in the field of genomics and as biomarkers are identified.

� Several of the parameters used in the model were not clinically founded due to a lack

of appropriate data. However, as an increasing number of patients receive proton

therapy treatment, and their treatment outcomes are recorded in multi-institutional

data registries, it will be possible to gather observations of clinical outcomes and to
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adjust the prediction through a mechanism of gradual feedback. This is also true

for the quality of life utility weights. Therefore, it is possible to continuously refine

the parameters in the toxicity models [28].

� A major limitation of the proposed style of patient selection system is that two

treatment plans are required as input for the model to produce a comparison. This

corresponds to a greater time investment from clinic staff. Automated planning has

been proposed to address this issue [104] by facilitating the automatic generation

of robust proton plans with a dose mimicking algorithm. Combining similar work

with the model presented here would assist in addressing this practical aspect of

clinical implementation.

� As proposed by Langendijk et al. [28], a possible future application of the model that

has been developed is to investigate the efficacy of proton therapy in the treatment

of certain indications. For example, while the model predicted that the majority

of patients in the cohort considered in the publication P3 would receive a clear

benefit from proton therapy, not all patients were treated with proton therapy for

various reasons. Observations of the clinical outcomes of these patients would make

for an interesting comparison with the outcomes of those patients who did receive

proton therapy. As the two groups were predicted to have similar outcomes, any

differences in observations could potentially be attributed to the proton treatment.

Similar studies could be conducted in the future to investigate the efficacy of proton

therapy.
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