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Abstract

We identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-

stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved

in mammary development. The mutation caused post-partum failure of lactation in healthy

mice with otherwise normally developed mammary glands, characterized by greatly reduced

milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a

robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11

or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in

the mouse. The mutation activates the OAS2 pathway, demonstrated by a 34-fold increase

in RNase L activity, and its effects were dependent on expression of RNase L and IRF7,

proximal and distal pathway members. This is the first report of a viral recognition pathway

regulating lactation.

Author summary

Using ENU-mutagenesis in mice we discovered a pedigree with lactation failure. Mam-

mary development through puberty and pregnancy appeared normal in mutant animals,

but the activation of lactation failed in the immediate post partum period and no milk

reached the pups. Failure of lactation was accompanied by greatly diminished milk pro-

tein synthesis, decreased epithelial cell proliferation, increased epithelial cell death and a

robust interferon response. A non-synonymous mutation in Oas2 (I405N) in the viral

sensor Oas2 was found and expression of mutant Oas2 in mammary cells recapitulated

these phenotypes. RNase L, the most proximal effector of OAS2 action, was activated in

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007072 November 8, 2017 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Oakes SR, Gallego-Ortega D, Stanford

PM, Junankar S, Au WWY, Kikhtyak Z, et al. (2017)

A mutation in the viral sensor 2’-5’-oligoadenylate

synthetase 2 causes failure of lactation. PLoS

Genet 13(11): e1007072. https://doi.org/10.1371/

journal.pgen.1007072

Editor: Christine A. Wells, University of Melbourne,

AUSTRALIA

Received: May 31, 2017

Accepted: October 11, 2017

Published: November 8, 2017

Copyright: © 2017 Oakes et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The complete

transcript profiling data are available from the NBCI

GEO data repository and accessible through

dataset IDs GSE69397,GSE69390, and GSE69396.

All other relevant data are within the manuscript

and its Supporting Information files.

Funding: This work was supported by grants from

the Congress Directed Medical Research Program

(BC995364 and DAMD17-01-1-0241), Cure Cancer

Australia Foundation, NHMRC Australia (projects

1047149, Fellowships 1058356, 481310,

https://doi.org/10.1371/journal.pgen.1007072
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007072&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007072&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007072&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007072&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007072&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007072&domain=pdf&date_stamp=2017-11-08
https://doi.org/10.1371/journal.pgen.1007072
https://doi.org/10.1371/journal.pgen.1007072
http://creativecommons.org/licenses/by/4.0/


the mammary glands of mutant mice and in mammary cells expressing mutant Oas2.

Knockdown of RNase L, or the distal pathway member IRF7, prevented these effects, indi-

cating that the mutation in OAS2 caused activation of the viral signaling pathway. These

results show that viral detection in the mammary gland can prevent lactation.

Introduction

The oligoadenylate synthetase (OAS) enzymes are activated by detection of double stranded

RNA produced during the viral life cycle, and in response polymerize ATP into 2´-5´ linked

oligoadenylates (2-5A) of various lengths. The 2-5As then bind and activate latent RNase L,

which degrades viral and host single stranded RNAs, so disrupting the viral life cycle [1]. It has

been reported that OAS1 has antiviral activity independently of RNAse L [2], that OAS2 binds

to NOD2 [3], and that OASL binds RIG-I [4], pointing to additional mechanisms of action.

Although mechanistic detail is lacking, it is proposed that OAS enzymes can activate anti viral

responses via mechanisms independently of 2-5A production, by direct interactions within the

viral signaling complex. For example, this complex is tethered to the mitochondrial outer

membrane by the scaffold protein MAVS, and contains RIG-I, related helicase MDA5, and

possibly OAS family members [5]. OAS family members may also mediate apoptosis outside

the context of viral infection [6,7]. Here we report a mutation of OAS2 that produces lactation

failure in an otherwise normal mouse. This is the first demonstration that a viral recognition

pathway can regulate lactation.

Results

Using N-ethyl-N-nitrosourea (ENU) mutagenesis and a screen for failed lactation we estab-

lished a mouse line in which heterozygous (wt/mt) dams showed partial penetrance of poor

lactation, producing litters that failed to thrive, while homozygous (mt/mt) dams experi-

enced complete failure of lactation (Fig 1A), providing a dominant pattern of inheritance.

Development of the mammary ductal network during puberty, and of the lobulo-alveolar

units during pregnancy, was normal in mt/mt dams (S1A and S1B Fig). The onset of milk

protein synthesis also showed no defects during pregnancy by immunohistochemistry or

western blot (S1C Fig and S1D Fig). Lactation failure in mt/mt mice at 2 days post-partum
(2dpp) was seen as failure of alveolar expansion and retention of lipid droplets and colos-

trum (Fig 1B–1G). Western blotting for milk (Fig 1H and S1C and S1D Fig) showed greatly

reduced expression of all the major milk components at 2dpp relative to the level of the epi-

thelial cell marker cytokeratin 18. Quantitative PCR for the mRNAs for the milk proteins

whey acidic protein (WAP) and β-casein (β-Cas) showed reduced levels in mt/mt dams

(mt) compared to wt/wt dams (wt) at 18 days post-coitus (dpc) and especially at 2dpp (Fig 1I

and 1J). The number of cleaved Caspase-3 positive epithelial cells increased (Fig 1K) and

BrdU incorporation by the epithelium was reduced, indicating increased cell death rate and

decreased cell proliferation respectively (Fig 1L).

We used immunohistochemistry to examine STAT1 activation as it is an interferon regu-

lated gene involved in mammary gland involution [8]. In wt/wt dams at d18.5 of pregnancy

and 2 days post partum, we observed scattered regions of phosphorylated Stat1 staining in

tightly packed areas of small and unexpanded alveoli (Fig 1M). These regions were very rare at

the other stages of development examined. In mt/mt animals Stat1 phosphorylation was again

seen within regions of small unexpanded and tightly packed alveoli (Fig 1N), but at day 18.5 of

pregnancy, these regions of STAT1 phosphorylation occurred at a far greater frequency than
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in wt/wt glands, and instead of receding in the post partum period like wt/wt glands, the fre-

quency of this pattern of staining increased further (Fig 1O). We examined Stat1 phosphoryla-

tion in mammary glands formed by transplant of epithelium from mt/mt or wt/wt animals

into the mammary fat pads of prepubescent wild type mice cleared of endogenous epithelium.

We again observed a statistically significant increase in Stat1 phosphorylation in mt/mt trans-

plants in the pre-partum period (transplants can’t interrogate the post partum period), demon-

strating that the ENU-mutation operates autonomously via the mammary epithelial cell (Fig

1P).

We used the Affymetrix Mouse Transcriptome Assay (MTA) 1.0 GeneChip to measure

changes in gene expression underlying these events. We profiled RNA transcripts in the mam-

mary glands at 18dpc and 2dpp from wt/wt and mt/mt mice. A Gene Set Enrichment Analysis

(GSEA) of genes was carried out using the Limma t-statistic as a measure of ranked differential

expression and visualized with the Enrichment Map plugin for Cytoscape. We compared gene

expression changes between mt/mt and wt/wt mice at 18dpc or 2dpp (Fig 2, shown in detail S2

Fig). This identified a robust enrichment of a prominent cluster of gene sets involved in the

interferon response in postpartum mt/mt but not wt/wt mammary glands, which increased in

magnitude between 18dpc and 2dpp. Genes in these sets included the interferon-induced

genes Isg15, Mx1, Rsad2, Oas1, Oas2 and OasL1. Interferon-induced genes involved in the

molecular pattern response pathway were also induced, such as Ddx58 (RIG-1), Dhx58 (RIG-1

regulator), Mavs and Nlrc5 (NOD5). Additional downstream transcriptional regulators of the

interferon response, such as Stat1, Irf7 and Irf9, were upregulated. In mt/mt glands this was

accompanied by increased expression of a broad range of mitochondria-associated cell death

genes such as Tnsfs10 (TRAIL), Acin1, Birc2, Traf2, Bcl2l1 (BCL-XL), Bcl2l11 (BIM), Apaf1,

Dffb, Xaf and Ripk1. Very similar results were obtained using an independent analysis tech-

nique based on self-organizing maps (S3 Fig). These results are also presented as a.txt table (S1

Table) of the 5000 probes showing most-changed expression. This transcriptional data indi-

cates that a robust interferon response is induced by the mutation.

PCR genotyping of polymorphic markers and their co-inheritance with lactation failure

narrowed the mutation to a 4Mb region of chromosome 5 between rs3662655 and rs2020515.

We expected 4–8 ENU mutations per 4Mb and our strategy was to sequentially sequence

exomes and then to experimentally validate when an exonic mutation was discovered.

Sequencing revealed a T to A base change in Oas2, resulting in a non-conservative isoleucine

Fig 1. Discovery of a pedigree with dominant inheritance of failed lactation. (A) Lactation performance of

dams of the indicated genotypes (wild type; wt/wt mutant; mt/mt) assessed by pup weight-gain or survival

(inset). Error bars show standard error of the mean for 4–5 litters per genotype of 7 pups each. wt/wt n = 35, wt/

mt n = 28 and mt/mt n = 28 pups. (B and C) Whole mount histology of the 4th inguinal mammary gland showing

lobuloalveolar development at 2 days post partum (dpp) in wt/wt or mt/mt mice. (D and E) Corresponding

haematoxylin-eosin histochemistry. (F and G) Corresponding immunohistochemistry for milk protein

expression. (H) Corresponding Western blot for milk proteins. Molecular size is shown together with the

established sizes of the indicated milk proteins [35]. Lactoferrin (LF), serum albumin (SA), caseins α,κ,β,γ and

ε, whey acidic protein (wap) and alpha lactalbumin (lac). (I) Quantification of Wap mRNA by qPCR at in wt/wt or

mt/mt mice. (J) Quantification of β-casein (β-Cas) mRNA by qPCR. (K) Quantification of epithelial cell death by

immunohistochemistry for cleaved caspase 3, results are the number of positively stained epithelial cells as a

percentage as a percentage of total number of epithelial cells per field. (L) Quantification of epithelial cell

proliferation by incorporated BrdU expressed as a percentage of total number of epithelial cells per field. (M

and N) immunohistochemistry for phosphorylated (P) STAT1 at 2 days post partum (dpp) in wt/wt or mt/mt

mice. (O) quantification of P-STAT1 in wt/wt or mt/mt mice by immunohistochemistry, results are the number of

positively stained epithelial cells as a percentage of total epithelial area. (P) Quantification of P-STAT1 in wt/wt

or mt/mt mammary transplants by immunohistochemistry, results are the number of positively stained epithelial

cells as a percentage of total epithelial area. (I-J and O) wt/wt n = 4–5 mice, mt/mt n = 3–5 mice per time point

(P) wt/wt n = 3–5 mice, mt/mt n = 2–5 per time point. Student’s t-test p values are given, error bars are standard

error of the mean.

https://doi.org/10.1371/journal.pgen.1007072.g001
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Fig 2. Effects of OAS2 mutation on global patterns of gene expression in the mammary gland. Whole mouse

mammary glands from homozygous Oas2 mutant (mt) or wild type (wt) animals were profiled using Affymetrix MTA arrays.

Differential gene expression was ranked by the limma t-statistic and this was used as the input for gene set enrichment

analysis to identify functional signatures. The enrichment-map plug in for Cytoscape was used to visualize the results. Each

node represents a gene set and the expression of genes comprising the leading edge of some of these sets is shown as

heat maps of the t-statistic. Labels indicate the function of the clustered gene sets. Gene expression in mt animals is

compared with wt animals at 2dpp (node center color) or 18dpc (node edge color). Red indicates enrichment of expression

the gene set and blue suppression of expression.

https://doi.org/10.1371/journal.pgen.1007072.g002
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to asparagine amino acid substitution (I405N; Fig 3A and S4A Fig) in a conserved region of

the OAS2 catalytic domain (S4B and S4C Fig). In wt/wt animals Oas2 was expressed at a rela-

tively low level until the establishment of lactation, when the level of Oas2 mRNA increased by

20 fold (S5A Fig) and subsequently fell during early involution. Changes in Oas2 expression in

wt/wt animals compared to mt/mt animals are shown in S1E Fig. Using immunohistochemis-

try we observed corresponding changes in OAS2 levels in the mammary epithelium (S5B Fig).

We measured RNase L activity in the mammary glands of wt/wt and mt/mt mice at 18 days

post coitus (dpc) and 2 days post partum (dpp) using a recently developed technique [9]. In

wt/wt mice we observed a fall in RNase L activity from pre lactation at 18 dpp to lactation at 2

dpp despite the rise in OAS2 over this period (Fig 3B top panel). In contrast mt/mt animals

showed an increase in RNase L activity over this period, so that at 2 dpp, RNase L activity was

34 fold higher in mt/mt animals. PCR for RNase L-cleaved rRNA showed a six-fold increase

RNase L activity (Fig 3B lower panel), while non-RNase L generated cleavage was negligible.

Bioanalyzer profiles of RNA (S5C Fig) showed increased RNA degradation in mt/mt animals,

but not to the extent that appreciable loss of the 18S or 28S ribosomes was seen, and which

may be a result of both RNase L dependent and independent mechanisms. Although robust

activation of RNase L can cause the loss of the 18S and 28S ribosomes [10], recent findings

show that ribosomal degradation is not required for RNase L to stop protein synthesis [9]. To

determine if the mutation altered OAS2 enzyme activity we purified the mutant and wild type

forms of mouse OAS2 expressed in HeLa cells by FLAG-immunoprecipitation. Using a cell-

free system we observed that both mutant and wild type forms of OAS2 showed induction of

enzyme activity by the double-stranded RNA mimic poly (I:C), seen as the formation of a

series of 2-5A species resolved by denaturing PAGE. Both mutant and wild type forms of

OAS2 showed similar sensitivity to increasing poly (I:C) concentrations (Fig 3C, quantified in

Fig 3D). Western blotting showed that the immunoprecipitates used in these experiments had

similar OAS2 levels (Fig 3E). These experiments show that the ENU-induced mutation in

OAS2 does not change the size range of oligoadenylates that it produces, its capacity for 2-5A

synthesis, or its sensitivity to activation by poly (I:C). This assay uses a cell free system, so we

cannot exclude a mechanism where mutant OAS2 activates RNase L activity via an indirect

effect to increase the active 2-5A pool without altering its rate of synthesis, such as reduced 2-

5A depletion or loss of 2-5A sequestration. Another possibility is that mutant OAS2 has an

altered molecular interaction with a species that increases its enzymatic activity, but which is

lost in the immunoprecipitation of OAS2 in this assay. Regardless, the mutation in Oas2 acti-

vates RNase L in mice and tissue culture models.

We constructed a model of doxycycline (Dox)-inducible expression of mutant or wild type

Oas2 in T47D human breast cancer cells (Fig 4A). These models produced a 20-fold induction

of Oas2 expression (Fig 4B). Western analysis showed the appearance of mouse OAS2 protein

following Dox administration just below endogenous human OAS2, both above a non-specific

band (Fig 4C). Thus although PCR showed a small amount of leakiness in this system it seems

negligible by western blot. Cells expressing either mutant or wild type Oas2 showed a similar

sensitivity to poly (I:C) that was not changed significantly by induction with Dox (Fig 4D).

Induction of mutant, but not wild type Oas2 for 72 h reduced cell number (Fig 4E). Increased

cell detachment was observed, but the magnitude of this effect was highly variable between

experiments using mutant cells and so did not reach statistical significance at p<0.05 (Fig 4F).

Reduced re-plating efficiency however following trypsinization was significant, indicting that

cell surface re-expression of adhesion molecules following their trypsin digestion was impaired

(Fig 4G). Western analysis of two of these molecules, Beta-1 Integrin (ß1) and E-Cadherin

(EC), showed reduced expression in response to Dox-induction of mutant Oas2, especially for

Beta-1 Integrin, shown in the far right hand side lane (Fig 4H). We used flow cytometry to

OAS2 in lactation
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simultaneously measure cell viability by propidium iodide exclusion and cell death by cell sur-

face expression of Annexin V, in response to Oas2 expression. While induction of wild type

Oas2 expression produced no apoptotic response, induction of mutant Oas2 produced a

Fig 3. Enzymatic properties of mutant OAS2. (A) Details of the mutation in Oas2 showing the ENU-induced SNP changing

isoleucine to asparagine. (B) RNAseL activity measured as the abundance of RNase L-specific cleavage of tRNA-His-36 (upper

panel) or rRNA (lower panel) at day 18 of pregnancy (d18pc) and two days post partum (2dpp). (C) Representative denaturing

PAGE separating 2-5A species of different molecular weights synthesized in a cell free system by mutant (mt) or wild type (wt)

mouse OAS2, in response to activation by different concentrations of the double-stranded RNA mimic polyI:C. (D) quantification

of the data in panel C. (E) western blot demonstrating similar OAS2 protein input to the assay above.

https://doi.org/10.1371/journal.pgen.1007072.g003
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Fig 4. The effects of inducible expression of mutant and wild type Oas2 in T47D cells. (A) pHUSH

ProEx expression vector used to express either mutant (mt) or wild type (wt) mouse Oas2 in T47D cells in

response to doxycycline (DOX). (B) relative expression of mt and wt Oas2. (C) Western blot showing

induction of mouse OAS2 (m) running just below endogenous human OAS2 protein, with both bands above a

non-specific band (nsb). (D) Sensitivity of the cells lines to poly I:C (pl:C) with and without DOX induction of mt

and wt Oas2. (E) Effect of mt and wt Oas2 on adherent cell number after 72h. (F) Cell detachment (numbers

of live cells in supernatant fraction) caused by mt Oas2. (G) Effects of mt or wt Oas2 on replating of T47D cells

OAS2 in lactation
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doubling in the number early apoptotic cells within the cultures (Fig 4I). Induction of wild

type Oas2 did not alter the distribution of cells among the phases of the cell cycle, while induc-

tion of the mutant produced a shift of cells out of S-phase and into G1 (Fig 4J). Thus the effects

of mutant Oas2 expression in T47D cells reproduce the phenotypes of cell death and reduced

cell proliferation seen in the mouse, and indicate that epithelial cell adhesion may also be

affected.

Mouse HC-11 cells express milk proteins in response to withdrawal of EGF and the addi-

tion of prolactin and dexamethasone, providing a way to examine the effects of mutant and

wild type Oas2 expression on milk protein expression. The inducible vector system used suc-

cessfully in T47D cells (Fig 4A) proved to be very leaky in HC-11 cells, resulting in high base-

line expression of Oas2 in the pooled clones without DOX treatment. Cloning, in an attempt

to find cells without leaky expression, was unsuccessful, but resulted in cell lines with similar

levels of constitutive expression of mutant or wild type Oas2 that was many fold greater than

seen in untransfected cells (Fig 4K). Treatment with prolactin and dexamethasone induced

beta casein levels in the cell line expressing wild type Oas2, and this effect was comparable in

magnitude to that seen in parental HC-11 cells, but in the two lines expressing mutant Oas2
the induction of beta casein was greatly reduced (Fig 4L), reproducing the suppression of milk

protein synthesis seen in the ENU-mutant mouse. Transient expression of wild type and

mutant Oas2 in HC11 cells also showed an increase in the basal rate of cell death, reproducing

the cell death phenotype (Fig 4M).

We used Affymetrix Human Transcriptome Assay 2.0 GeneChips to profile the changes in

gene expression that occurred in T47D cells when either wild type or mutant Oas2 was

induced for 72h, presented as GSEA/Cytoscape (S6 Fig), self organizing maps (S7 Fig) and as

table containing the top 500 differentially expressed genes (S2 Table). We compared the tran-

scriptional effects of mutant Oas2 in T47D cells to the effects in the ENU mouse shown in Fig

2 using Cytoscape (S8 Fig), or self-organizing maps (S7 Fig). The transcriptional effects of

mutant OAS2 in T47D cells were very similar to those observed in the ENU-mutant mouse,

with the interferon response most prominent. This demonstrates that expression of mutant

but not wild type Oas2 in T47D cells reproduces the molecular phenotypes observed in the

ENU mutant mice. While the phenotype in mice is likely to involve additional cells of the

immune system, these effects in T47D cells show that the transcriptional phenotype can be

elicited via the innate immune response of the mammary epithelial cell, in agreement with the

findings made using transplanted ENU-mutant mammary epithelium into wild type mice (Fig

1P).

OAS2 activates RNaseL. In T47D cells we used siRNA against human RNASEL to knock-

down its expression in the context of Dox-induction of mutant or wild type mouse Oas2. In

these experiments the induction of Oas2 in response to Dox was robust and knockdown of

RNASEL was very effective, as demonstrated by qPCR (Fig 5A and 5B) and by western blot

(Fig 5C). Induction of wild type Oas2 had no effect on RNase L activity, cell death or cytokine

in a 4 hour trypsin only replating assay after 48h of DOX. (H) Expression of β1 integrin (β1), E-cadherin (EC)

and β-actin (βa) in response to induction of mt or wt Oas2. (I) apoptotic response to induction of mt or wt

Oas2. Data represents the average of 7 independent experiments. (J) cell-cycle-phase distribution at the

indicated times following induction of mt or wt Oas2. Data represents the average of 5 independent

experiments. *p<0.01. ANOVA 4I and J. (K) Oas2 expression in parental (p) normal mouse mammary HC11

cells or in cells constitutively expressing mt or wt Oas2. (L) Effect of wt or mt Oas2 on beta Casein in HC11s

after 72 hours of prolactin (Prl) and Dexamethasone (Dex) stimulation. (M) Effect of mt or wt Oas2 expression

on cell death at 96 hours in HC11 cells after transient transfection. All data are representative of 3

independent experiments in response to 72h of DOX except otherwise specified. Paired t-tests 4B,E,F, G, L

and M.

https://doi.org/10.1371/journal.pgen.1007072.g004
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levels and knockdown of RNASEL was without consequence to these endpoints. In contrast,

induction of mutant Oas2 produced a large increase in RNase L activity, cell death, and inter-

feron gamma and GM-CSF protein secretion, changes that were prevented by knockdown of

RNASEL (Fig 5D–5G).

Expression of the IRF transcription factors, especially IRF7, was increased by mutant

OAS2. We knocked down IRF7 (Fig 5H) and found a similar prevention of cell death (Fig 5I),

indicating that the signaling pathway activated by mutant OAS2 also involves IRF7, a distal

member of the viral-detection signaling pathway. Knockdown of IRF3 (Fig 5J), which often

acts together with IRF7, had the opposite effect (Fig 5K), suggesting IRF3 acts to oppose signal-

ing via the OAS2 pathway.

Discussion

These experiments show that the Oas2 mutation caused activation of OAS2 driven signaling

to prevent the activation of lactation in the post partum period. The effect of the mutation

could be detected via Stat1 activation from mid pregnancy and was most apparent in the post

partum period, and was only required in the mammary epithelial cell for effect. The mutation

increased RNase L activity but the enzymatic activity of mutant OAS2 was unaltered. Thus

RNase L activation must occur via mechanisms that increase the effect of 2-5A without a

change in its production, such as by reducing 2-5A degradation, increasing the efficiency of 2-

5A interaction with RNase L or OAS2 interaction with dsRNA, or by causing relief of a mecha-

nism that sequesters 2-5A. The activation of RNAse L is not sufficient to degrade the ribo-

somes, indicating that the loss of milk production does not occur via a generalized loss of

translation. Thus while RNase L expression is required for activity of the mutation, the muta-

tion may act via regulatory mechanisms that do not require 2-5A activation of RNase L. RNase

L may be simply permissive of an alternative mechanism of action, such as altering interactions

of OAS2 with its cellular binding partners, by changing its subcellular localization, or by

decreasing the rate of OAS2 degradation. Thus it is possible that RNase L and OAS2 could also

both be involved in as yet undiscovered molecular complexes that initiate activation of this

pathway. For example OAS2 has been reported to bind NOD2 [3], and the composition and

mechanism of action of this mitochondrial-signaling complex is currently the subject of

intense worldwide study, but its definition is proving to be elusive. The non catalytic OAS1b

[11] and OASL1 [12] have mechanisms independent of 2-5A production involving molecular

interactions. This is the first genetic demonstration that OAS2 can signal in ways other than by

alterations in enzyme activity. This mutation may prove to be important for the discovery of

the mechanisms signaling the detection of viral infection, which remain largely unknown,

because it provides a single point of pathway activation, unlike the existing reagents used for

this purpose. Like other family members, OAS2 may regulate apoptosis independently of its

function to control viral replication [6,7].

Lactation failure and milk stasis characterize mastitis, raising an interesting new avenue of

investigation opened by our findings. The major consequence of mastitis is reduced weight-

Fig 5. Effects of knockdown of RNASEL, IRF7 and IRF3 on the effects of inducible expression of

either mutant (mt) or wild type (wt) mouse Oas2 in T47D cells. (A-G) Provide the context of RNase L

knockdown. (A-C) Demonstration of Doxycycline (DOX)-inducible expression of wt or mt Oas2 in T47D cells,

and effective knock-down of RNASEL (RNaL) in mt or wt expressing T47D cells by quantitative PCR (B) or

western blot (C). (D) Effect of the induction of mt or wt OAS2 on RNase L activity (E) Effects of induction of mt

and wt Oas2 expression on apoptosis. (F) Effects of these treatments on interferon gamma protein

production. (G) effects of these treatments on GM-CSF production. (H) Demonstration of effective knockdown

of IRF7. (I) Effects of knockdown of IRF7 on mutant or wild type Oas2-driven apoptosis. (J) Demonstration of

knockdown of IRF3. (K) Effects of knockdown of IRF3 on mutant or wild type Oas2-driven apoptosis.

https://doi.org/10.1371/journal.pgen.1007072.g005
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gain of the infant, precipitating a switch to bottle-feeding where available, or reduced neonatal

health where it is not. Our results raise the possibility that the OAS2 pathway may be involved

in its pathogenesis. Bacterial infection is commonly thought to be the cause of mastitis but the

evidence resoundingly shows that bacterial infection is the sequelae of an unknown primary

cause of the disease. For example, in women the severity of symptoms of mastitis do not corre-

late with the level of bacterial infection, the disease is often observed in the absence of bacteria

in the milk, bacteria are often found in the milk of healthy mothers, and meticulous hygiene or

prophylactic antibiotics do not prevent mastitis (reviewed [13]). Recent Cochrane Systematic

Reviews concluded that there is insufficient evidence to support antibiotic use for the preven-

tion [14] or treatment [15] of mastitis. The strongest risk factors for mastitis in women involve

incomplete or interrupted milk flow from one or more galactophores [13] and the World

Health Organization recognizes milk stasis as the cause of mastitis [16]. Thus bacterial infec-

tion most likely represents progression of mastitis to a more pathogenic form involving abscess

formation, but it is not the primary cause.

The concept of physiological inflammation as the primary cause of mastitis was proposed

in 2001, though no mechanism was proposed at the time [17], and the unavailability of breast

tissue from women with mastitis makes the study of mechanism near impossible. Using mice,

Ingman and colleagues hypothesize that molecular pattern receptors like Tlr4 recognize mole-

cules released by tissue damage caused by milk engorgement, which trigger an innate immune

response and milk stasis [13,18]. Alleles of Tlr4, a bacterial associated molecular pattern recep-

tor, are linked with the occurrence of mastitis in cattle [19]. Tlr4 has also been linked to a num-

ber of the systemic symptoms of mastitis [13]. As we show, stimulation of the OAS2 pathway

can produce the accepted cause of mastitis, milk stasis, opening a new avenue of investigation

into human mastitis as a disease amenable to anti-inflammatory therapy. Our findings also

open the question of the role of viruses in the initiation of mastitis. Even non-infectious forms

could play a role. Fragments of the mouse mammary tumor virus are present in the genome of

all laboratory mice and they continue to produce transcripts in response to the hormones of

pregnancy, while homologous fragments exist in the human genome [20,21], which may pro-

mote milk stasis and inflammation via OAS2 activation.

This is the first time that a viral recognition pathway has been implicated in the regulation

of lactation. Transmission of viruses via milk is a well-documented phenomenon and the evo-

lution of mechanisms to prevent it would be expected. This would not necessarily be lethal for

the neonate as all mammals have multiple and independent lactation systems. Mice, for exam-

ple have 10 mammary glands each containing a single ductal system. Each human breast con-

tains between 6 and 8 independent ductal systems, exiting at the nipple without joining. Viral

infection in one ductal system, or one mammary gland, could initiate milk stasis in that sys-

tem, leaving the others to continue lactation. Social systems in humans and mice allow the

feeding of neonates by multiple mothers. There could be an intriguing evolutionary twist here

resulting from the evolutionary arms-race between viruses and their hosts [22]. Since HIV

transmission via the milk occurs far more frequently if mastitis is present [23], could viruses

have adapted to this defense and learned to induce a limited mastitis to aid viral transmission?

A molecular mechanism is suggested by our results (S9 Fig) that requires further investiga-

tion. STAT1 activation (Fig 1), presumably resulting from the production of interferon due to

OAS2 pathway activation, would be expected to cause the induction of the SOCS proteins,

which inhibit STAT phosphorylation via targeting the JAK kinases, including JAK2 which

phosphorylates STAT5 in response to prolactin, the major hormone driving the onset of lacta-

tion. Many aspects of this pathway have been demonstrated in mice such as the regulation of

lactation by prolactin via STAT5 [24,25] and the SOCS proteins [26–28], the induction of

STAT1 in conditions of sterile mastitis [29] and the ability of STAT1 to regulate prolactin
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signaling [30]. In the T47D transcript profiling (S6–S8 Figs and S2 Table) we observed

increases in the levels of SOCS 1,4,5 and 6. In the ENU mice we observed a decrease in STAT5

phosphorylation. So it is possible that OAS2 pathway stimulation, resulting from the natural

rise in OAS2 at d18.5 of pregnancy (S1 and S5 Figs), produces a persistent interferon response

in OAS2 mutant animals, because mutant OAS2 activates RNase L which via the resulting

interferon response maintains high OAS2 levels, establishing a positive feed-back loop which

then persistently prevents prolactin from activating STAT5 (maybe via SOCS) to induce the

activation of milk secretion during the post partum period.

Materials and methods

Ethics statement

All mice were housed in specific pathogen-free conditions at the Australian Phenomics Facility

and the Garvan Institute, with all animal experiments carried out according to guidelines con-

tained within the NSW (Australia) Animal Research Act 1985, the NSW (Australia) Animal

Research Regulation 2010 and the Australian code of practice for the care and use of animals

for scientific purposes, (8th Edition 2013, National Health and Medical Research Council

(Australia)) and approved by either the Australian National University or Garvan/St Vincent’s

Animal Ethics and Experimentation Committees (approval number 14/27).

Mice

ENU mutagenesis and pedigree construction was carried out as previously described [31]. The

Oas2 mutation was discovered in a single G1 female and heritability of the phenotype con-

firmed by breeding with CBA CaJ male and cross fostering of pups. For quantification of lacta-

tion failure litters were standardized to 7 pups per dam. Pups were weighed, as a group, at the

same time daily. Mice were injected with BrdU dissolved in H2O (100μg BrdU per gram body

weight) 2 h prior to sacrifice by CO2 asphyxiation, and mammary glands were collected. Mam-

mary glands were either whole-mounted and stained with Carmine alum or snap frozen in liq-

uid nitrogen for mRNA and protein analyses. All animals were housed with food and water ad

libitum with a 12-h day/night cycle at 22˚C and 80% relative humidity.

Histopathology and organ pathology

A complete analysis of the histology and pathology of the Jersey strain was conducted by the

Australian Phenomics Network (APN) Histopathology and Organ Pathology Service, Univer-

sity of Melbourne. Eight week and a 31 week female sibling pairs, comprised of mt/mt and wt/

wt siblings, were examined macro and microscopically. Mammary tissue, ovaries, oviducts,

bicornuate uterus, cervix, urinary bladder, liver/gall bladder, cecum, colon, spleen/pancreas,

mesenteric lymph node, stomach, duodenum, jejunum, ileum, kidney/adrenal, salivary

glands/lymph nodes, thymus, lungs, heart, skin, eyes, brain, spinal cord, skeletal muscle, skele-

tal tissue/hind leg were macro and microscopically examined.

Mapping and sequencing

A pool of 15 affected N2 mice and a pool of 15 unaffected N2 backcrossed mice were screened

with a set of ~130 markers polymorphic between C57BL/6 and CBA/CaJ mice that spanned

the genome at 10–20 Mb intervals. Allele specific SNP primers were designed from a set of val-

idated SNPs available at www.well.ox.ac.uk/mouse/INBREDS/. SNP genotyping was per-

formed using the Amplifluor kit (Chemicon) as per the manufacturers instructions. The

confirmation and fine mapping were performed using Amplifluor markers designed to
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amplify C57BL/6 x CBA/CaJ SNPs within the linkage interval in individual affected and unaf-

fected mice. Markers were designed at approximately 1–2 Mb distances within the initial map

interval. More than 250 mice were screened from many successive cohorts of mice from back-

crosses to CBA/CaJ to narrow the region to a 3 Mb interval. Sequencing of candidate genes

was performed to locate the causal ENU base substitution using an affected mouse homozy-

gous for the linkage region. Primers were designed for candidate genes to amplify all exons +/-

15 bp to cover splice junctions. Sanger sequencing was used to identify the causal mutation by

comparing the sequence of the affected individual against a C57BL/6 mouse reference genome.

Mutations were confirmed in a second affected individual and a C57BL/6wild type mouse.

Nimblegen sequence capture

The mapping was performed with the gsMapper program, which is part of the 454 software

suite. The two samples (defined by Jersey_F4IC140 and Jersey_pool) were mapped against the

full region of the mouse genome on chromosome 5. The sequence used as reference is from

genbank build37/UCSCmm9. Further analysis then focused on the reads mapped onto the tar-

get region: 118710087–123738720 on chromosome5.

Variation analysis detected where at least 2 reads differ either from the reference sequence

or from other reads aligned at a specific location. SNPs, insertion-deletion pairs, multi-homo-

polymer insertion or deletion regions, and single-base overcalls and under calls are reported.

Also, in order for a difference to be identified and reported, there have been at least two non-

duplicate reads that (1) show the difference, (2) have at least 5 bases on both sides of the differ-

ence, and (3) have few other isolated sequence differences in the read. Variations were classi-

fied as high-confidence if they fulfilled the following rules: 1. There must be at least 3 non-

duplicate reads with the difference. 2. There must be both forward and reverse reads showing

the difference, unless there are at least 5 reads with quality scores over 20 (or 30 if the differ-

ence involves a 5-mer or higher). 3. If the difference is a single-base overcall or under call, then

the reads with the difference must form the consensus of the sequenced reads (i.e., at that loca-

tion, the overall consensus must differ from the reference).

Oas2 mutant mouse line maintenance and genotyping

After identification of the causative mutation genotyping was performed using the following

primers:

Forward-wildtype: GCTCTTCCTAAAGCAGAT

Forward-mutant: GCTCTTCCTAAAGCAGAA

Common reverse: GGTGTCAGAATTCAAGAAGCAGAC

The Oas2 mutant colony was maintained by breeding heterozygous males (wt/mt) with wt/

wt females. For the generation of homozygous experimental animals wt/mt males were bred

with wt/mt females and their offspring removed at 1dpp and fostered on a control mother.

RNA extractions and quantitative PCR

Total RNA was isolated using Trizol reagent (mouse tissues; Gibco/Invitrogen Vic) or RNeasy

extraction kit (cell pellets; Qiagen) according to the manufacturer’s instructions. All total RNA

samples were quantified with a Nanodrop 1000 Spectrophotometer (ThermoFisher) prior to

loading 100 ng of total RNA on a 2100 Bioanalyzer (Agilent) total RNA analysis. Single

stranded cDNA was produced by reverse transcription using 1 μg of RNA in a 20μl reaction

and diluted 1:5 with H2O (Promega). Quantitative PCR was performed using the Taqman
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probe-based system (Table 1) on the ABI 7900HT as per the manufacturer’s instructions

(Applied Biosystems).

RNase L dependent tRNA cleavage assay

tRNA cleavage by RNaseL was performed using the technique developed by JD and AK [9].

Briefly, RNA was ligated with 2’,3’-cyclic phosphate to an adaptor with RtcB as described in

[9]. Reactions were stopped by adding EDTA and used as a template for reverse transcription

with Multiscribe RT. A primer with a 3’-end complimentary to the adaptor and a 5’-overhang

that serves as a universal priming site (5’-TCCCTATCAGTGATAGAGAGTTCAGAGTTCT

ACAGTCCG- 3’) was used for reverse transcription. SYBR green-based qPCR was conducted

using a universal reverse primer that binds to the cDNA overhang (underlined) and cleavage-

site specific forward primers designed for tRNA [9]. qPCR was carried out for 50 cycles using

62˚C annealing/extension for 1 min. U6, which has a naturally occurring 2’,3’-cyclic phosphate

and an RNase L independent cleavage site in tRNA-His (position 18, transcript numbering;

[9]) was used for normalization.

Cell free Oas2 poly (I:C) sensitivity assay

HeLa cells were maintained in MEM + 10% FBS in a humidified 5% CO2 atmosphere. Cells

cultured in 10 cm dishes were transfected at 80–90% confluence with 10 μg empty pcDNA4/

TO or N-terminally FLAG-tagged WT or I405N mouse OAS2 in pcDNA4/TO (Life Technolo-

gies) using Lipofectamine 2000 (Life Technologies). Cells were harvested by trypsinization 24h

post-transfection, resuspended in complete media, and washed 2 x 10 mL ice-cold PBS. Cell

pellets were lysed in buffer A (20 mM HEPES pH 7.5, 100 mM NaCl, 0.1% Triton X100, and

1x complete protease inhibitor cocktail (Roche) for 10 min with end-over-end rotation at 4˚C.

Lysates were cleared by centrifugation at 16,000 x g, 15 min, 4˚C and the supernatants sub-

jected to immunoprecipitation with M2-α-FLAG magnetic beads (Sigma) for 2h at 4˚C fol-

lowed by 4 x 1mL washes, 10 min per wash, with buffer A without protease inhibitors. After

the fourth wash the beads were washed with 2 x 1 mL storage buffer (20 mM HEPES pH 7.5,

100 mM NaCl, 10% glycerol), the supernatant removed, storage buffer added to 100 μL. Inputs

and IPs were blotted with α-FLAG to verify expression and IP of FLAG-OAS2. 5% of each IP

was incubated with 1 mM ATP, trace-labeled with 3 nM 32P-α-ATP, in the absence or pres-

ence poly (I:C) (Sigma) for 2h at 37˚C. Reaction volumes were 20 μL and contained 20 mM

HEPES pH 7.5, 70 mM NaCl, 10 mM MgCl2, 10% glycerol, and 4 mM DTT. After incubation,

the reactions were quenched by adding 120 μL stop buffer (8M urea, 0.1% SDS, 1 mM EDTA,

0.02% bromophenol blue, 0.02% xylene cyanol). Equal portions of each reaction were resolved

Table 1. Taqman probes used for quantitative PCR indicating gene name, probe ID number and spe-

cies specificity.

Gene Probe (s) Species

Oas2 Mm00460961_m1 Mouse

Oas2-2 Mm01202789_m1 Mouse

Wap Mm00839913_m1 Mouse

beta Casein Mm0089664_m1 Mouse

RNASEL Hs00221692_m1 Human

IRF7 Hs01014809_g1 Human

GapDH Hs02758991_g1 Human

GapDH Mm99999915_g1 Mouse

https://doi.org/10.1371/journal.pgen.1007072.t001
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by 20% denaturing PAGE and visualized by phosphoimaging. Gels were quantitated using

GelQuant.NET software.

Mouse Oas2 cloning and cell culture experiments in T47D human breast

cancer cell lines

The N—terminal and C—terminal cDNAs of mouse Oas2 were obtained as a gift of Yoichiro

Iwakura (Institute of Medical Science, University Tokyo) and subcloned into pcDNA3.1 and

pBluescript vectors. Site directed mutagenesis was performed using Phusion Site-directed

mutagenesis (Thermo Scientific) as per the manufacturer’s instructions using the following

primers (Forward Jer: TATATGTTCCTTCCTTAAAAATGTCTGC and Reverse AGGATTT

CGTCTTGTTCCTTCGACAACTGTA). Wildtype and mutant (I405N) mouse Oas2 clones

were then subcloned into pShuttle and finally into the pHUSH ProEx tetracycline inducible

retroviral expression system [32]. Retrovirus was then packaged by transfecting Phoenix cells

with pHUSH containing either mouse wildtype (wt) or Oas2 I405N mutant (mt) cDNAs using

Fugene transfection reagent (Promega). T47D breast cancer cells were then infected with fil-

tered viral supernatants and stable cell lines selected using Puromycin. T47Ds were maintained

sub-confluent in RPMI complete media (Gibco) containing 10% tetracycline free FCS and

supplemented with 10μg/ml Insulin. Mouse Oas2 wt or mt expression was induced with 100

ng/ml Doxycline (DOX) or vehicle control daily in the media and cells were harvested at 72

hours after plating. Cell counts of viable and non-viable cells (identified by the incorporation

of 0.4% Trypan Blue at a 1:2 dilution) were performed in triplicate from 3 independent experi-

ments. Annexin V PI staining was performed using the Annexin V-FITC Apoptosis Kit (Biovi-

sion, CA USA) as per the manufacturers instructions. Human inflammatory cytokines were

analyzed using the Multi-Analyte ELISArray (Qiagen).

HC11 Mouse Oas2 cloning and cell culture experiments

Retrovirus was made packaged as above by transfecting Phoenix cells with pHUSH containing

either mouse wildtype (wt) or Oas2 I405N mutant (mt) cDNAs using Fugene transfection

reagent (Promega). HC11 normal mouse mammary cell lines were then infected with filtered

viral supernatants and stable constitutive cell lines selected using Puromycin and then clonal

colonies established by titrating single cells into 96 well plates. HC11s were maintained in

maintenance RPMI media containing 10% FCS and supplemented with 5μg/ml Insulin and

10ng/ml human recombinant epidermal growth factor (EGF, Sigma-Aldrich). For differentia-

tion assays, HC11 cells were plated sub confluent in maintenance media for 2 days until con-

fluent and then media replaced with RPMI media containing 10% FCS and supplemented

with 5μg/ml Insulin and supplemented with 5μg/ml sheep pituitary Prolactin (Sigma Aldrich)

and 1μM Dexamethasone (Sigma Aldrich) daily for 3 days before RNA harvest and quantita-

tive PCR analysis as above. For transient transfections apoptotic assays wildtype (wt) or Oas2

I405N mutant (mt) cDNAs were cloned into pIRES-EGFP vectors and transiently transfected

with 2μg DNA/well using X-tremeGENE transfection reagent (Roche) in maintenance media

as per the manufacturers instructions. After 24 hours the media replaced with RPMI media

containing 10% FCS and supplemented with 5μg/ml Insulin and cells were harvested 96 hours

after transfection for Annexin V PI staining as above.

Poly (I:C) sensitivity assay

T47D Oas2 wt or mt cells were plated in 10cm dishes and treated daily for 48 hours with 100

ng/ml DOX or vehicle. At 48 hours the cells harvested by trypsinization, retreated with DOX

or vehicle, counted, plated at a density of 5000 cells/well and simultaneously transfected with
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Poly (I:C) (11 point titration) using RNAiMAX (Invitrogen) in opaque 96 well plates. 24 hours

after transfection the plates were analysed using the CellTiter-Glo Luminescent Cell Viability

Assay Protocol (Promega). Inhibitory dose curves were plotted in Prism 6 statistical software

and normalized data analyzed using the sigmoidal-dose response function. The mean was cal-

culated from quadruplicate replicates.

Replating assay

T47D Oas2 wt or mt cells were plated in T150 flasks and mouse Oas2 wt or mt expression was

induced with 100 ng/ml DOX or vehicle for 48 hours prior to trypsinisation by 0.25% Trypsin

(no EDTA) with phenol red (Life Technologies) for 3 mins. 1 x 106 cells from each cell line was

treated with DOX or vehicle and then plated in 6-well plates and allowed to adhere for 4

hours. After 4 hours the cells were gently washed, trypsinised and the number of adherent cells

counted and expressed as a proportion of the total number of cells plated.

Propidium iodide cell cycle analysis

T47D Oas2 wt or mt cells were plated in 6-well plates and mouse Oas2 wt or mt expression

was induced with 100 ng/ml DOX or vehicle for 72 hours. Cells were harvested by trypsinisa-

tion, washed in 1 ml of PBS and fixed by adding 10 mls of 100% cold ethanol drop wise onto

1ml re-suspended cells and incubated at 4˚C overnight. Cells were then pelleted, washed and

incubated at 90˚C for 5 mins and then re-suspended in a FACS buffer containing 0.5ng/ml

RNase (Qiagen) and 1μg/ml Propidium iodide. Flow cytometry was performed and G1, S

phase and G2/M phases for each experimental group estimated using the propidium iodide

fluorescence intensity histograms. The mean of 5 independent experiments was calculated.

siRNA experiments

T47D Oas2 wt or mt cells were reverse transfected with ON-TARGET plus SMARTPOOLS of

siRNA against RNaseL (L-005032-01-05) or Non Targeting controls (D-001810-10-05) using

RNAiMAX (Invitrogen) in 10cm dishes as per the manufacturers specification. 24 hours after

transfection, cells were washed, media replaced and either treated with 100 ng/ml DOX or

vehicle daily for 3 days after which they were harvested by trypsinisation. Annexin V PI stain-

ing was performed using the Annexin V-FITC Apoptosis Kit (Biovision, CA USA) as per the

manufacturers instructions. Cell pellets were also collected for RNA isolation and western blot-

ting and the supernatant collected, filtered with a 0.22μm filter and stored at -80˚C. Human

inflammatory cytokines were analyzed using the Multi-Analyte ELISArray™ Kits as per the

manufacturers instructions.

Transcript profiling

Wt/wt or mt/mt mice were time mated and mammary glands collected at day 18 of pregnancy

or 2 days after partuition (2dpp) and snap frozen in liquid N2. Total RNA was isolated using

Trizol reagent (Gibco/Invitrogen, Vic) and measured on the 2100 Bioanalyzer (Agilent). From

the cell experiments, total RNA was extracted using the RNeasy extraction kit (Qiagen) for

cells with or without DOX induction of the wt or mt mOas2 gene. Total RNA from the mouse

mammary glands was then labeled and hybridized to the Mouse Transcriptome Array (MTA)

1.0 as per the manufacturer’s instructions (Affymetrix Ca, USA) at Ramiaciotti Centre for

Genomics (UNSW Sydney, Australia). Likewise, total RNA from the T47D cells was labeled

and hybridized to the Affymetrix Human Transcriptome Array (HTA) 2.0 as per the manufac-

turer’s instructions (Affymetrix Ca, USA) at Ramiaciotti Centre for Genomics (UNSW
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Sydney, Australia). All mouse and T47D samples were prepared in biological triplicate for

each experimental grouping, except for the T47D mt -DOX group where analysis was per-

formed in duplicate due to one of the samples failing quality control. Microarray data are freely

available from GEO: GSE69397 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=

ohkleoespjotzoh&acc=GSE69397

Quality control was performed using the Affymetrix Expression Console. Normalisation

and probe-set summarization was performed using the robust multichip average method of

the Affymetrix Power Tools apt-probeset-summarize software (version 1.16.1) (using the -a

rma option). The transcript clusters with official HGNC symbols were then extracted from the

HTA 2.0 arrays, resulting in 23532 gene transcript clusters. Differential expression between

experimental groups was assessed using Limma [33] via the limmaGP tool in GenePattern.

Functionally associated gene-sets were identified using Gene Set Enrichment Analysis (GSEA)

[34] on a ranked list of the limma moderated t-statistics, from each pair-wise comparison,

against a combined set of 6947 gene-sets from v4.0 of the MSigDB [35] and custom gene-sets

derived from the literature. Mouse gene-symbols were mapped to their human orthologs using

the ensembl database. The Enrichment Map plugin [36] for Cytoscape [37] was used to build

and visualize the resulting regulatory network of gene-signatures, with conservative parame-

ters: p = 0.001; q = 0.05; overlap s = 0.5.

Polyacrylamide gel electrophoresis and Western blotting

10μg reduced protein was loaded in each well of 12% NuPAGE SDS polyacrylamide gels (Life

Technologies) and separated using electrophoresis. Proteins were transferred to Immun Blot

PVDF (Biorad) and Western blotted for mouse Oas2 (M-105, sc99098 Santa-Cruz), RNaseL

(H-300, sc25798 Santa Cruz), E-cadherin (610182 BD Biosciences) and beta-ACTIN (AC-74,

A5316, Santa Cruz)

Cluster generation using self-organising maps

The limma F-test statistic [33], with a Benjamini-Hochberg adjusted p-value threshold of 0.05,

was used to identify differentially expressed transcripts across the four experimental groups in

the mouse expression arrays (wt/wt 2dpc, wt/wt 2dpp, mt/mt 2dpc, mt/mt 2dpp) and T47D

cell-line expression arrays (wt–Dox, wt +Dox, mt–Dox, mt +Dox). This resulted in 660 and

135 significant transcript clusters from the mouse and T47D arrays, respectively.

Self-organising maps (SOMs), consisting of 6 nodes, were used to identify clusters of genes

in both the mouse and T47D cells. The z-scores of the log2 normalised gene-expression values,

for each transcript cluster, were used as input to the biopython SOM algorithm implementa-

tion [38]. The somcluster() parameters used were: iterations = 50,000; nx = 2, ny = 3, init-

tau = 0.02, dist = Euclidean.

DAVID functional annotation clustering

The db2db() function from the BioDBNet database [39] was used to convert gene-symbols to

Ensembl gene IDs for input into DAVID. Functional annotation clustering was carried out

using the getTermClusterReport() function from the DAVID web services interface (Jiao et al.,

2012), with the following parameters: overlap = 3, initialSeed = 3, finalSeed = 3, linkage = 0.5,

kappa = 50.

DAVID databases used: (BBID, GOTERM_CC_FAT, BIOCARTA, GOTERM_MF_FAT,

SMART, COG_ONTOLOGY, SP_PIR_KEYWORDS, KEGG_PATHWAY, INTERPRO,

UP_SEQ_FEATURE, OMIM_DISEASE, GOTERM_BP_FAT, PIR_SUPERFAMILY)
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Functional enrichment of signature gene-sets

A Hypergeometric test was used to calculate the level of gene overlap between the genes identi-

fied in each SOM cluster and the MSigDB gene-set collections [35] and our custom functional

signature gene-sets. A background set number, of 45956, as described on the MSigDB website,

was used. A Benjamini-Hochberg (BH) corrected p-value was calculated for each set and a

threshold of BH<0.05 was considered a significant enrichment. Mouse gene-symbols were

mapped to their human orthologs using the ensembl database.

Mammary gland whole mounting and immuno-histochemistry

Mouse mammary glands were harvested from wt/wt and mt/mt mice and fixed in 4% buffered

formalin for 4 hours. Glands were defatted in 3–4 changes of acetone before being dehydrated

and stained in Carmine alum as previously described [40]. Glands were then dehydrated in a

series of graded alcohols and embedded in Paraffin for sectioning. Sections were either stained

with haematoxylin and eosin for routine histochemistry or stained with antibodies to the fol-

lowing antigens using immunohistochemistry protocols as detailed in Table 2.

Supporting information

S1 Fig. Mammary phenotype at key stages of mammary development. (A) Whole mount

histology of the 4th inguinal mammary gland showing ductal development in mature virgin

mice (8–10 weeks old) and lobulo-alveolar development at 12.5 days post coitus (dpc), 18.5

dpc and 2 days post partum (2dpp) in wild type mice (wt/wt) or homozygous mutant mice

(mt/mt). (B) Corresponding hematoxylin-eosin histochemistry. (C) Corresponding immuno-

histochemistry for milk protein expression using an antibodies raised against whole mouse

milk. (D) Corresponding western blot for milk proteins using the anti mouse milk antibody

and keratin 18 loading control. Molecular size is shown together with the established sizes of

the indicated milk proteins [41]. Lactoferrin (LF), serum albumin (SA), caseins α,κ,β,γ and ε
whey acidic protein (wap) and alpha lactalbumin (αLac). (E) Corresponding Oas2 expression

by quantitative PCR for regions of exon 4 (ex4) or exon 10 (ex10) with error bars showing

standard error and p values for comparison of wt/wt and corresponding mt/mt animals at the

indicated time points.

(TIF)

Table 2. Antibodies, concentration and antigen retrieval conditions for immunohistochemistry. All reagents were from Dako unless otherwise speci-

fied. Visualisation of antigen: antibody complexes was performed using the DAB+ liquid Substrate chromogen system (K3467).

Antigen Antibody Species

reactivity

Retrieval Primary antibody

conc.

Secondary antibody

Oas2 M18, sc49858 Santa-Cruz Mouse/ human pH9 S2367 Pressure

Cooker 15secs

1:200 Goat Immpress-HRP (Vector

Labs) MP7405

Anti Milk Accurate Chemical & Scientific

CO. YNRMTM

mouse pH6 S1699 Waterbath 20

mins

1:12000 Envision Rabbit (K4009)

Cleaved

Caspase 3

Asp175 5A Cell Signaling 9661 Mouse/ human pH9 S2367 Pressure

Cooker 30secs

1:100 Envision Rabbit (K4009)

BrdU Bu20a M0744 Dako mouse pH9 S2367 Waterbath 20

mins

1:100 Envision Mouse (K4007)

P-Stat1 Tyr701 (58D6) Cell Signalling

9167

mouse pH9 S2367 Pressure

Cooker 30secs

1:800 Signal Stain Boost Cell

Signalling 8114

P-Stat5 Tyr694 (C11C5) Cell Signalling

9359

mouse pH9 S2367 Pressure

Cooker 30secs

1:600 Signal Stain Boost Cell

Signalling 8114

https://doi.org/10.1371/journal.pgen.1007072.t002
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S2 Fig. Global patterns of gene expression in the mammary glands of wildtype and mutant

mice. Whole mouse mammary glands from homozygouns Oas2 mutant (mt) or wild type (wt)

animals were interrogated using Affymetrix MTA arrays. Differential gene expression was

ranked by LIMMA and this was used as the input for gene set enrichment analysis to identify

functional signatures. The enrichment-map plug in for cytoscape was used to visualize the

results. Each node represents a gene set and the expression of genes comprising the leading

edge of some of these sets is shown as heat maps. Labels indicate the function of the clustered

gene sets. (A) comparison of gene expression at day 2 post partum (2dpp) with day 18 post coi-

tus (18dpc) in either mutant (mt) mice, color at the node center, or wild type mice (wt), color

at the node border. Red indicates enrichment of expression the gene set and blue suppression

of expression. (B) Comparison of gene expression in mt animals with wt animals at 2dpp,

color at the node center, or 18dpc, color at the node border.

(TIF)

S3 Fig. Self organizing maps to identify functional expression signatures. Top panel, gene

expression changes induced in mouse mammary gland by expression of mutant or wild-type

Oas2, resolved into 6 patterns. Bottom panel, corresponding functional groups uniquely con-

tained within each of the gene expression patterns from the top panel. The top-5 functions in

each category (DAVID, MolSig DB Hallmark sets, Transcription factor sets (TFT), our set of

Involution and lactation profiles and MolSig DB pathways sets) are shown as scored either by

the DAVID enrichment score or the BH corrected p-value from the hypergeometric test.

(TIF)

S4 Fig. The Oas2mutation. (A) Details of the mutation in Oas2 showing amino acid change.

(B) Conservation of the region containing the mutation in very diverse species including

Archaea. (C) Location of the mutation in relation to the active enzyme site of Oas2.

(TIF)

S5 Fig. Patterns of Oas2 expression and RNaseL activity during development in mouse

mammary gland. (A) Oas2 and RNaseL expression in the mammary glands of wild type mice

at the indicated stages of mammary development measured by quantitative PCR. (B) Immu-

nohistochemistry for OAS2 in wild type mouse mammary glands. (C) Bioanalyser results of

RNA banding pattern from the mammary glands of individual mice of the indicated genotypes

and stages of pregnancy and lactation. RNase L- mediated ribosomal RNA cleavage is com-

pared to non RNase L cleavage using a PCR based method described [9].

(TIF)

S6 Fig. Transcript profiling of T47D cells with and without induction of mutant or wild

type mouse Oas2. (A) Comparison of global gene expression patterns between T47D cell lines

expressing either mutant (mt) or wild type (wt) forms of mouse Oas2 when treated with Doxy-

cycline (+DOX) (node center color) or with vehicle (-DOX) (node ring color) for 48 hours.

Central map shows network diagram of gene sets with enrichment values indicated by color

scale from red to blue as indicated. Heat maps show expression (t-statistic) of the listed genes

from the indicated gene sets without (-) or with (+) DOX between mt and wt cells using pink

to green color scale as indicated. Functional role of the clusters of gene sets are shown. (B)

Alternative view of the data showing the comparison +DOX with–DOX within either the mt

or wt expressing cell lines. Details as above.

(TIF)

S7 Fig. Self organizing maps to identify functional expression signatures. (Top panel)

Gene expression changes induced in T47D cells by expression of mt or wt Oas2 resolved into 6

OAS2 in lactation
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patterns. (Bottom panel) Corresponding functional groups uniquely contained within each of

the gene expression patterns indicated in the top panel. The top-5 functions in each category

are shown as scored either by the DAVID enrichment score or the BH corrected p-value from

the hypergeometric test.

(TIF)

S8 Fig. Common patterns of changed gene expression induced by mutant Oas2 in mouse

mammary gland and T47D human breast cancer cells. (A) Comparison of global gene

expression patterns between mouse 2dpp mammary gland expressing either mutant (mt) or

wild type (wt) forms of mouse Oas2 (node center color) and T47D cell lines expressing either

mutant (mt) or wild type (wt) forms of mouse Oas2 when treated with Doxycycline (+DOX)

(node ring color) for 72 hours. Central map shows network diagram of gene-sets with enrich-

ment values indicated by color scale from red to blue as indicated. Functional role of the clus-

ters of gene sets are shown. Outer panels show box-plots of the GSEA normalised enrichment

scores (NES) for the each of the gene-sets in the specified functional clusters. Red crosses indi-

cate positively-enriched gene-sets with FDR<0.05, blue crosses indicate negatively-enriched

gene-sets with FDR<0.05 and grey crosses indicate gene-sets that have FDR> = 0.05. (B)

Functional groups found common to mouse and human by self organizing maps.

(TIF)

S9 Fig. Proposed mechanism linking OAS2 to the regulation of lactation. (A) Heatmap

extracted from the T47D transcript profiling showing expression changes in SOCS protein

gene expression that exceed F value greater than 0.05. (B) Example of immunohistochemistry

for STAT5 phosphorylation, which is quantitated in the (C) chart for %positivity. Note this

quantification does not capture the increased signal intensity observed in wt glands compared

to mt glands. (D)Diagram at the RHS shows the proposed pathway links between interferon

and prolactin signaling that may explain the ability of the mutation in OAS2 to prevent lacta-

tion.

(TIF)

S1 Table. Table listing the top 5000 probe sets with the greatest differential expression

between wt/wt and mt/mt mammary glands collected from mice at 18dpc and 2dpp,

detected using the Affymetrix Mouse Transcriptome Assay (MTA) 1.0 GeneChips. Col-

umns provide the MTA transcript cluster ID, change in gene expression between specified

time points and genotypes, average expression of each probe across arrays, Limma t-test p-

value and adjusted p-value and gene and title symbol where available.

(TXT)

S2 Table. Table listing the top 5000 probe sets with the greatest differential expression in

T47D cells expressing either wildtype or mutant OAS2 and induced with DOX and or vehi-

cle control in the presence of non-targeting or RNaseL siRNAs, detected using the Affyme-

trix Human Transcriptome Assay (HTA) 2.0 GeneChips. Columns provide the HTA

transcript cluster ID, change in gene expression between specified treatments, average expres-

sion of each probe across arrays, Limma t-test p-value and adjusted p-value, F statistic and

gene and title symbol where available.

(TXT)
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