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THESIS ABSTRACT 
 

Hypoxia or low dissolved oxygen occurs in both marine and freshwater systems and 

is a threat to aquatic life. Historically hypoxia arose naturally and intermittently 

however, anthropogenic influences and climate change have exacerbated its severity 

and frequency. I define a hypoxic event as one where levels of dissolved oxygen in 

the water are low enough to cause a reduction in overall fish health based on the most 

sensitive species in the system. The primary aims of my thesis were to determine the 

long-term physiological impacts of hypoxia to freshwater fish and develop the science 

to trace its occurrence through time.  

I examined the physiological effects and tolerance of fish to long-term hypoxia 

exposure at different temperatures. Higher water temperatures limit the amount of 

available dissolved oxygen occurring in water therefore, it was likely that high 

temperatures in combination with hypoxic conditions would also limit performance. I 

investigated the effects of hypoxia on three key species from the Murray Darling 

Basin, Australia, golden perch (Macquaria ambigua), silver perch (Bidyanus 

bidyanus) and Murray cod (Maccullochella peelii). In my first data chapter I found 

golden perch had a reduced metabolic scope for activity after long-term exposure to 

hypoxia, which was also influenced by temperature. Additionally, golden perch 

exhibited an acclimation response, whereby prolonged hypoxic exposure improved 

tolerance to low oxygen conditions. However, silver perch, a sympatric species, had a 

poor tolerance to hypoxia and all individuals died after one month’s exposure. In my 

next chapter, I investigated if acclimation ability was affected by exposure time (7, 14 

and 30 days) for Murray cod. Similarly long-term exposure to hypoxia improved the 

tolerance of Murray cod suggesting fish had acclimated. However, acclimation was 

inversely related to exposure time. 

After documenting the physiological impact hypoxia exposure had on fish, I 

investigated a means to track its occurrence through time. Otoliths or the ear bones of 

fish accrete daily layers of material on a calcium carbonate matrix that reflect the 

environmental conditions experienced by fish. I investigated elemental signatures that 

represented hypoxic occurrence under controlled conditions. I reared juvenile golden 
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perch under combined differing temperature and oxygen conditions for a month and 

analysed trace element concentrations in the otoliths. Trace elements measured in the 

otoliths, however, did not differ among hypoxic and normoxic treatments. By running 

transects along the otoliths of golden perch and Murray cod from modern and historic 

collections of fish that either died or experienced a hypoxic event I could reconstruct 

the long-term occurrence of hypoxic events. Records of hypoxia frequency in most 

waterways only go back a few decades so this technique could determine hypoxia 

histories of water bodies that would be unattainable using traditional methods.  

I highlight that any prolonged exposure to hypoxic conditions benefits individuals’ 

ability to remain in low oxygen environments longer, and that coexisting fish have 

species-specific responses. Furthermore, I highlight otoliths acting as natural tracers 

of hypoxia, such that given the right conditions elements routinely physiologically 

regulated act as natural tracers for low-oxygen events. Thus, our ability to reconstruct 

hypoxia through time using otoliths is reliant on the physiological disruption it 

creates. 
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CHAPTER ONE 
	

GENERAL INTRODUCTION 
 

Aquatic systems are highly productive zones that support a large diversity of plants 

and animals. Stressors associated with anthropogenic change are impacting these 

systems on a global scale. Increasing water temperatures, changes in dissolved 

oxygen levels, pH fluctuations, and pollution (eutrophication, nutrient loading and 

waste waters) are among the most prevalent changes (Richardson et al. 2001, Wong et 

al. 2018). These disruptions to the natural environment can affect the distribution and 

abundances of marine and freshwater organisms (Poloczanska 2018). Yet, in nature 

they rarely act in isolation. Understanding the cumulative effects of such stressors is 

key to assessing their impacts on aquatic organisms (Richardson et al. 2001). 

Hypoxia in aquatic systems is an increasing threat worldwide, and occurs when 

dissolved oxygen is depleted. Throughout this manuscript, hypoxia is defined as an 

incidence where concentrations of dissolved oxygen in water are low enough to 

reduce the overall health of fish based upon a system’s most sensitive species.  While 

hypoxia is often caused by natural events, the influence of climatic shifts, 

anthropogenic disruptions, eutrophication and organic pollution, are considered to be 

critical threats that exacerbate hypoxic conditions (Pollock et al. 2007, Saari et al. 

2018, Wong et al. 2018). The impacts of low dissolved oxygen range from sub-lethal 

effects on reproduction, behaviour, dispersal and declines in fisheries productivity, to 

severe effects which cause mass mortalities and widespread dead zones (Pollock et al. 

2007, King et al. 2012, Whitworth et al. 2012, Jeppesen et al. 2018). The negative 

impacts of hypoxia have increased over recent years and are expected to further 

intensify without future intervention (Pollock et al. 2007).  

FACTORS THAT INFLUENCE HYPOXIA 

Current rates of biodiversity loss rival those previously observed in global mass 

extinction events (Birnie-Gauvin et al. 2017). Freshwater fish are no exception with 

populations declining worldwide in response to habitat degradation (Hamilton et al. 

2017, Harris et al. 2017). Globally freshwater vertebrates have suffered a decline in 
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abundance of 76% over the past 40 years (Harris et al. 2017), and in the Murray-

Darling Basin of Australia, it is estimated that the abundance of native fish have 

declined by ~90% in the past 200 years (Hamilton et al. 2017). Hypoxia is a recurring 

environmental stressor in many marine, estuarine and freshwater systems worldwide 

(Roberts et al. 2012). The challenge then for researchers is to predict the likely 

responses of species and communities to hypoxic events under both natural and 

anthropogenically-influenced conditions. Herein, I focus on the hypoxic response of 

freshwater fish and the factors that influence hypoxia tolerance and occurrence.  

Water Temperature 

Under hypoxic conditions, water temperature is one of the critical factors that can 

determine whether or not an event will result in mortalities (Baldwin and Whitworth 

2009, Whitworth et al. 2012). Water temperature influences the physiological 

performance, development, growth rate and reproductive output of aquatic organisms 

(Gehrke and Fielder 1988, Pollock et al. 2007, McBryan et al. 2016), and as 

temperature increases beyond the optimum level for a species, negative effects 

manifest. High water temperatures diminish the capacity for oxygen to be dissolved, 

causing declines in production associated with increased food requirements, spread of 

disease and mortalities (Ruby et al. 2017). Additionally, continued anthropogenic 

interference in waterways exacerbates already diminished conditions by restricting 

natural flow regimes and limiting the adaptive capacity of biota to respond to 

changing temperatures (Balcombe et al. 2011, Saari et al. 2018). Therefore, 

determining how fish respond to the combination of elevated temperature and low 

dissolved oxygen is fundamental to understanding their future resilience (Stehfest et 

al. 2017, McBryan et al. 2016).  

Anthropogenic Factors 

Anthropogenic factors have dramatically impacted hypoxic events through changes to 

flow regimes, environmental water allocation, agricultural run-off, encroaching 

populations, flood timing and damming of rivers (Pollock et al. 2007, Baldwin and 

Whitworth 2009, King et al. 2012, Whitworth et al. 2012). Whilst these 

anthropogenic factors are not the sole driver of hypoxia, they have modified the 

frequency and severity of these events in natural systems (Jenny et al. 2016). In many 

instances, an improved understanding of the environmental requirements of aquatic 



	 12	

organisms would allow anthropogenic impacts to be better managed. For example, in 

late 2010, in south-eastern Australia, drought-breaking rains caused the inundation of 

extensive floodplains across the lower Murray River region, resulting in a prolonged 

large scale hypoxic blackwater event (so named due to the dark colour of the water, 

often caused by large quantities of dissolved organic carbon from organic leaf litter; 

King et al. 2012, Whitworth et al. 2012). The event lasted for six months and affected 

over 2000km of river channels and forested floodplains (Whitworth et al. 2012). 

Modelling of systems similar to this, suggested that frequent smaller inundations of 

forested floodplains, which do not receive natural water flows due to upstream 

damming and water regulation, would significantly reduce the severity of such an 

event (Baldwin and Whitworth 2009, Whitworth et al. 2012). However, due to an 

ever-increasing human population and the associated demand for water resources, 

priority is often given to shorter-term social and economic objectives, rather than 

aquatic health. Left unmanaged, anthropogenic influences often negatively impact 

organisms sometimes resulting in mass mortalities of fauna. Such outcomes can be 

mostly attributed to poor management of waterways and a lack of applicable 

knowledge regarding the physiological and ecological requirements of aquatic 

organisms (Baumgartner et al. 2017).  

Extended Hypoxic Exposure 

Organisms have developed numerous physiological, biological and behavioural 

adaptions to cope with hypoxic exposure (Chapman et al. 2002, Sollid et al. 2005, 

Crocker et al. 2013, Small et al. 2014). Lethal endpoints have often been used to 

assess safe levels of hypoxic conditions for fish (Feng et al. 2016, Speers-Rosech et 

al. 2013). However, adaptive responses to sub-lethal hypoxic exposure are more 

valuable to determine sensitivity relative to other important functions (e.g. 

reproduction, growth and mortality) (Feng et al. 2016, Dwyer et al. 2014, McBryan et 

al. 2016).  When faced with hypoxic exposure, adaptive ability (sometimes referred to 

as phenotypic plasticity) is advantageous as it can provide immediate alleviation to 

stressors, however it may not always be lasting (Cote et al. 2012, Collins et al. 2016). 

Heritable adaptations also exist and improve long-term survival particularly to cyclic 

hypoxic exposure, but require multiple generations before becoming beneficial (Cote 

et al. 2012, Collins et al. 2016).  
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If hypoxic conditions cannot be avoided (i.e. migration), the length and timing of a 

hypoxic event is a key factor in the success of an organism’s response, and thus 

capacity to survive (Crocker et al. 2013). A common response by fish to short-term 

(hours) hypoxic exposure is to maintain oxygen delivery by reducing activity 

(Crocker et al. 2013, Small et al. 2014). Long-term, this method would be insufficient 

in maintaining the homeostatic balance of the organism, and some species may not 

have the capacity to change their mechanism for oxygen delivery (Crocker et al. 

2013). Along with changes in activity some other mechanisms to cope with short-term 

hypoxia are through increased air breathing, increased use of aquatic surface 

respiration (species specific), and through vertical or horizontal habitat changes or 

avoidance (Dwyer et al. 2014, Stehfest et al. 2017). Long-term survival is 

predominantly driven through performance modifications in cells and tissues and is 

generally inherited (Dwyer et al. 2014, Cook et al. 2013). Some species may 

acclimate to hypoxic conditions, but limited research has been conducted in this area 

(Crocker et al. 2013, Small et al. 2014).  

The severity of a hypoxic event is mediated by the current environmental conditions. 

For example, a long dry period in freshwater rivers results in a build-up of leaf litter 

in wetlands and floodplains (King et al. 2012, Dean and Richardson 1999). A 

subsequent flood during this period may rapidly induce a hypoxic event due to the 

high carbon load for micro-organisms and low oxygen transfer in slow flowing water 

bodies. The timing of hypoxic events may also be important on a finer temporal scale 

(i.e. daily) (Crocker et al. 2013, Dan et al. 2014). Thus, environmental water releases 

that result in a sudden increase in the frequency and severity of hypoxia in the system 

could lead to fish mortalities (Thiem et al. 2017). Understanding the extent of acute 

hypoxic exposure organisms can tolerate, as well as their long-term responses and/or 

adaptations, is necessary to improve restoration and conservation efforts in freshwater 

systems.  

MEASURING HYPOXIC INFLUENCES ON FISH  

While the causes of a hypoxic event are generally understood in freshwater and 

floodplain systems (McMaster and Bond 2008, King et al. 2012, Whitworth et al. 

2012), comparatively little is known of the effects on aquatic life. Fish mortalities are 

among the most readily observable and immediate effects of hypoxia. Yet, the 
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vulnerability of different species remains poorly understood; this gap in knowledge 

affects our ability to predict and prevent fish kills occurring. Dissolved oxygen levels 

of ~8mg L-1 are normal for most systems (Vaquer-Sunyer and Duarte 2008). As 

dissolved oxygen levels decline below 4-5mg L-1 many species show signs of stress 

and sometimes death (King et al. 2012). During blackwater events, such as the one in 

2010, dissolved oxygen concentrations can quickly reach levels lower than 2mg L-1, 

with survival under these conditions typically less than 48 hours (Gehrke and Fielder 

1988). Lower levels of hypoxic stress influence growth, survival and presumably also 

reproductive output in some fish species; and more sensitive species are likely to be 

further influenced long-term, however, these affects have not been studied (Gehrke 

et  al. 1993, Landman et al. 2005). At present, research into the hypoxia tolerance of 

fish can be separated into two broad categories; field-based presence/absence surveys 

which are often conducted following hypoxic events and short-term 

physiological/behavioural studies, with the latter being the most dominant. In both 

cases few studies have considered the long-term effects of exposure to hypoxic 

conditions. Fewer still have attempted to track hypoxic events through time to 

determine long-term tolerance of fish species.  
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Presence-absence data 

At present, studies investigating short and long-term tolerance are commonly 

presence-absence studies that link the presence of an organism to the environmental 

conditions at the time of sampling. Such studies commonly compare affected and 

non-affected sites in terms of hypoxia, and generally have a limited spatial coverage. 

For example, a study concerning the aforementioned hypoxic blackwater event of 

2010 found that affected sites had a significantly lower number of native fish species 

in comparison to non-affected sites, but both had similar abundances of invasive 

species (King et al. 2012). The abundance of small-bodied fish was also significantly 

lower at the affected sites after the major flooding event and during the seasonal 

recruitment period (King et al. 2012). Sites affected by hypoxic blackwater also 

lacked the large-bodied natives often associated with these areas such as golden 

perch, Murray cod and silver perch, though these species were found at the non-

affected sites.  

Quantitative studies that document the physiological impact and extent of hypoxic 

events on native fish populations in these systems are limited. A general absence of 

data on natural fish assemblages prior to hypoxic events is often a key limiting factor, 

although some attempts have been made to reconstruct these from past catch records 

and fishing logs (Disspain et al. 2011). Sampling native populations during and 

following hypoxia events can be confounded by other factors including mass 

mortality of species, movement of aquatic fauna away from areas into un-sampled 

sites, and potentially large scale relocation to non-affected sites for refuge and feeding 

(when sampling during hypoxic events, King et al. 2012). An ability to track the 

effects of hypoxic events on native fauna through time would enhance our 

understanding of its impacts on both fish migrations and species assemblages.  
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Physiology and Behaviour 

Physiological and behavioural studies focus on the ability of organisms to cope and 

adapt to environmental stressors (Zhang et al. 2010, Roche et al. 2013). Respirometry 

is commonly used in physiological studies and is typically based on one of two 

methods: swimming or resting respirometry (Zhang et al. 2010, Roche et al. 2013). 

These methods facilitate the measurement of oxygen consumption rates (Ṁo2) at both 

the lower and upper bounds of a fish’s capacity to uptake oxygen. The short-term 

effects of different stressors on metabolic performance and behavioural responses on 

individual fish species are well researched; however, few studies have considered 

long-term (chronic) exposures to one or more stressors (Richardson et al. 2001, Small 

et al. 2014). Physiological and behavioural studies suggest fish tend to reduce their 

energetic requirements under hypoxic conditions by restricting movement and 

reducing their feeding rates. These behavioural changes can have a significant impact 

on growth, reproduction and development, all of which are found to be negatively 

affected under extended hypoxic exposure (Gehrke and Fielder 1988, Gehrke et al. 

1993, McMaster and Bond 2008, Landman and Ling 2011).  

Otoliths – Reconstructing Environmental Change 

Otoliths or the ear bones of fish are paired calcified structures found within the inner 

ear canal typically used for hearing and balance. These structures occur mainly as an 

aragonitic form of calcium carbonate (Radtke 1989, Campana 1999, Campana and 

Thorrold 2001, Elsdon et al. 2008). Otoliths are unique compared to other calcified 

structures found in marine organisms as they accrete layers of crystalline and protein 

material on their surface daily (Radtke 1989, Campana 1999). Minor and trace 

elements are incorporated within these layers providing a chronological record of the 

biological, physical and chemical environments, which the fish has encountered over 

its lifetime. An extensive number of studies have used otoliths to track fish 

migrations, climatic shifts as well as other environmental conditions by analysing the 

concentrations of specific elements and isotopes in the otolith (Campana 1999, 

Campana and Thorrold 2001, Elsdon and Gillanders 2003, Elsdon et al. 2008, 

Gillanders and Munro 2012, Limburg et al. 2018). The uptake of strontium and 

barium has been documented to change with temperature and salinity (Campana and 

Thorrold 2001, Elsdon and Gillanders 2002, Limburg et al. 2011). Manganese has 
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been linked to hypoxic and anoxic conditions, however, to our knowledge few studies 

have attempted to reconstruct the hypoxia histories of fish over variable timescales 

(but see Limburg et al. 2011). Dissolved manganese may become available for 

accumulation into the otolith in two ways; as a product of redox reactions in sediment 

during low oxygen events and by becoming biologically available through disruptions 

in physiological regulation during exposure to hypoxic stress (Limburg et al. 2015, 

Walther et al. 2017, Sturrock et al. 2015). Researchers validated the use of manganese 

as an indicator to reconstruct hypoxia exposure in Baltic cod (Gadus morhua), as its 

presence could be matched to those years with hypoxic conditions, and was generally 

absent in years lacking hypoxia events (Limburg et al. 2011). Studies such as this 

highlight the potential for tracking and reconstructing long term trends in hypoxia 

exposure for freshwater fish, information almost unattainable without utilising otolith 

chemistry. 

HYPOXIA AND THE MURRAY RIVER REGION 

The Murray River region is the largest freshwater catchment in Australia and covers 

~14% of the continents total surface area (Balcombe et al. 2011). The Murray River 

region is the life blood of Australia and supports many social, cultural and economic 

interests as well as a large biodiversity of organisms (Balcombe et al. 2011, Koehn 

2015).  Hypoxia is widespread in the Murray River region. The frequency and 

severity of hypoxic events is dictated by climate and the management of 

environmental flows (e.g. timing, seasonality and frequency of inundation). The 

Murray River region has historically been affected by severe moisture stress due to a 

combination of climatic drought and the over-allocation of upstream water resources. 

For example, the average total annual discharge for the Murray River at Lock 9, 

located downstream of all major tributaries of the southern Murray Darling Basin, 

between 1980 and 1999 was 5579 GL, and between 2000 and 2009 prior to the 

blackwater event in 2010, average discharge was only 1360 GL, a ~75% reduction of 

natural flow (Whitworth et al. 2012). The use of artificial flow regulation in the 

Murray region has significantly altered the natural flooding and drying cycles of the 

forests and floodplains, changing the natural dynamics of the river region. There is a 

limited amount of available environmental water for allocation and much of this is 

recycled right through the system. When water is transported from one location to 
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another the quality of that water decreases. Before river regulation across the Murray 

River region, floodplains were naturally inundated during winter and early spring. 

However, following regulation much of this water is captured upstream limiting 

flooding to smaller events in spring and early summer (King et al. 2012). A lack of 

adequate inundation increases chances of hypoxic flows, due to increased litter fall, 

summer temperatures and microbial activity (King et al. 2012). Current management 

is focused on environmental water flows, with an emphasis on increasing the extent, 

duration and frequency of flooding in the Murray River region (King et al. 2012). The 

results and subsequent benefits of these plans could be greatly enhanced by an 

informed understanding of native species physiological requirements and a baseline 

for historic hypoxic occurrence. 

The Murray River region is home to many endemic species listed from Vulnerable to 

Critically Endangered by the International Union for the Conservation of Nature 

(IUCN 2011). Reasons for this are broad, ranging from poor connectivity of 

waterways to natal habitats, introduced predators, climate shifts, fishing pressure and 

pollution. Fish kills due to hypoxic blackwater have been recorded in a number of 

different aquatic habitats in the Murray River region and across Australia (Gehrke 

et al. 1993, Townsend and Edwards 2003, Baldwin and Whitworth 2009, King et al. 

2012, Whitworth et al. 2012). Increased understanding of tolerances and effects of 

long-term exposure of native fish to hypoxia is necessary in order to begin the 

development of better preventative strategies for mass mortalities. 

THE HYPOXIA DILEMMA 

Sufficient oxygen availability is key to the survival of all fish species, but the 

influence of dissolved oxygen levels on fish health is often overlooked and poorly 

understood due to difficulties associated with testing. How then do species survive 

hypoxia, is it through a natural tolerance, acclimation, avoidance activity or is 

mortality the most common outcome? Analysis of the metabolic performance of fish 

has shown varied results among different families and species, with some of those 

tested showing large tolerance to low dissolved oxygen, while others begin surface 

respiration at levels just below normal (McNeil and Closs 2007, Nilsson et al. 2009). 

Obtaining representative data requires sampling of a range of species. Observational 

data is dependent on sampling a portion of the population at one moment in time. 
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These studies are easily confounded by species occupying the area at time of 

sampling (e.g. presence of a schooling species might suggest a greater abundance than 

would normally occur). Therefore, it is increasingly important that we conduct similar 

physiologically and behaviourally driven studies on a range of native species to 

determine their response to these environmental stressors. Freshwater species that 

have been assessed for hypoxia tolerance in Australia are typically limited to smaller 

bodied native species and other non-natives (Gehrke and Fielder 1988, Gehrke et al. 

1993, McNeil and Closs 2007, McMaster and Bond 2008). Research to date has also 

focused on those species most frequently exposed to extreme and sustained hypoxic 

conditions (Gehrke and Fielder 1988, Gehrke et al. 1993, McNeil and Closs 2007, 

McMaster and Bond 2008). Nevertheless, many species experience hypoxic 

conditions infrequently and may have adapted to these natural events through 

behavioural avoidance. In this instance, species are unlikely to have built up long-

term tolerances to severe hypoxic conditions. Informative data sources are required to 

understand the long-term effects of hypoxic exposure on typically mobile species. 

Our current understanding of responses to hypoxia in the Murray River region is 

predominantly based on presence/absence species assemblage data, with a paucity of 

pre-disturbance data and limited understanding regarding the true physiological 

impacts on native species.  

Furthermore, very little work has been done to track changes in dissolved oxygen in 

the water over variable time periods. Otoliths have the potential to trace trends in fish 

exposure to hypoxia over broad temporal scales. Changes in elemental tracers or a 

combination of elements in the otoliths of fish may be useful as a proxy for 

reconstructing a timeline of hypoxia. A short-term history could be achieved using 

modern record keeping of dissolved oxygen levels. Reconstructing long-term trends 

of hypoxia in Australian freshwater systems could utilise archival collections of 

otoliths from native fish.   

SCOPE AND OUTLINE OF THE THESIS 

This thesis summarises my doctoral research focused on tracking hypoxic effects at 

two levels; the tolerance of individuals through physiological measures and the 

environmental occurrence of hypoxia using otoliths as tracers of hypoxic events. The 

thesis focuses predominantly on three native Australian fish species (Murray cod, 
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Maccullochella peelii, golden perch, Macquaria ambigua and silver perch, Bidyanus 

bidyanus) endemic to the Murray Darling Basin. All three species have experienced 

dramatic population declines and are classed from vulnerable to critically endangered 

on the IUCN Red list. First, I identify the sub-lethal impacts of reduced dissolved 

oxygen at different temperatures, with a focus on metabolic performance and 

acclimation ability, and second, I reconstruct past hypoxic events in the Murray River 

region over decadal and centennial timescales using chemical tracers in fish ear bones 

(otoliths). 

My aim is to: 

1. Better understand the sub-lethal impacts of combined low dissolved oxygen 

(hypoxia) and temperature on fish health in several native species from the 

Murray River region  

2. Determine if exposure time exacerbates the impacts of hypoxia and elicits an 

acclimation response   

3. Validate a key elemental tracer, or combination of elemental tracers to track 

changes in hypoxia over time using otolith chemistry: and, 

4. Investigate the use of elemental tracers in otoliths to track long-term trends in 

hypoxic exposure in the Murray River region.  

 

Although these research aims are addressed in different thesis chapters and form an 

independent body of work, collectively they build upon our understanding of hypoxic 

exposure on freshwater fish and its historical occurrence in the environment. This 

thesis addresses the gap in our understanding of long-term hypoxic exposure in 

freshwater species and the prevalence of hypoxic events in an inland system that has 

been heavily impacted by anthropogenic stressors and can serve as an example for 

other systems worldwide.  
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CHAPTER OUTLINE 

Chapter 2 

Chapter 2 investigates the effects of long-term exposure to combined temperature and 

hypoxic conditions on fish physiological tolerance. I examine the responses of golden 

perch and silver perch to sub-lethal combinations of temperature and hypoxia 

sustained over 10 months. Resting respirometry was used to observe a physiological 

response and loss of equilibrium was used to measure a behavioural response. I found 

one species had a higher tolerance to hypoxic exposure even showing an acclimation 

response while the other species failed to survive beyond one-month exposure to 

conditions that were anticipated to be sub-lethal. This chapter illustrates the disparity 

in response between sympatric species and highlights the need for reconsideration of 

generic management strategies for all species.  

Chapter 3 

Chapter 3 expands on the findings regarding acclimation responses after prolonged 

sub-lethal exposure to combined temperature and hypoxic conditions from my first 

chapter. Herein, I assess the responses of Murray cod and golden perch to sub-lethal 

combinations of temperature and hypoxia from 7 to 30 days. I use the same measures 

of behavioural and physiological tolerance as before, but to address a different 

question. Is acclimation achievable and if so, how long does it take? I found that 

longer exposure to hypoxia improved hypoxia tolerance, however, metabolic 

measures alone were not sufficient in explaining this response. This chapter illustrates 

that moving forward, researchers would benefit from considering the long-term 

effects of hypoxia on species instead of only short-term studies that typically address 

the immediate impacts of hypoxic events.  

Chapter 4 

Chapter 4 involves analysis of golden perch otoliths (ear bones) from juvenile fish 

that had long-term exposure to different combinations of temperature and hypoxia. As 

otoliths are metabolically inert and accrete material that reflects the environment on a 

daily basis, they are ideal for long-term environmental tracking where no other data 

exists. However, the environmental impact of interest, in this case hypoxia, first needs 

to be assigned a validated chemical tracer. The intent of this chapter was to 
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experimentally examine whether manganese or another element could be used as a 

tracer of hypoxia. I found that manganese in otoliths was not associated with hypoxia, 

nor were they affected by physiological regulation. I concluded that a lack of 

sediment in experimental tanks did not provide the reducing conditions required to 

release manganese into solution for incorporation onto the otoliths of fish.   

Chapter 5 

My final chapter builds upon the use of otoliths to trace hypoxic events through time. 

I do this using a combination of modern and historic otoliths collected from golden 

perch and Murray cod throughout the Murray Darling Basin. The species I chose are 

long-lived natives endemic to the Murray River with individuals aged from 2 to 42 

years. I sampled transects running from the core of the otolith to the edge using laser 

ablation inductively coupled plasma mass-spectrometry (LA ICP-MS). I found 

elevated concentrations of manganese across different years of growth and combined 

this with information from digitised newspapers with recorded instances of hypoxic 

events, droughts and floods to illustrate the use of otoliths in tracing hypoxic 

occurrence in the Murray River over time. This research validates the use of this 

method for tracing environmental events over decadal and centennial scales.   
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to hypoxia, compared to individuals held under normoxic 
conditions suggesting that golden perch can acclimate to lev-
els around 3 mgO2  L−1 (kPa ~ 7) and lower. The contrasting 
tolerance of two sympatric fish species to hypoxia highlights 
our lack of understanding of how hypoxia effects fish after 
long-term exposure.

Keywords Metabolic scope · Sub-lethal · Threshold 
limit · Acclimation · Water management

Introduction

Hypoxia occurs when dissolved oxygen in the water goes 
below a level that can sustain the life of an organism and 
its natural capacity to function physiologically. Under such 
conditions organisms are unable to carry out vital processes 
such as feeding, reproduction, growth, migration and pred-
ator avoidance (Dean and Richardson 1999; Pollock et al. 
2007). Hypoxia is not a new issue; in fact, it commonly 
occurs as a natural process, with anthropogenic activities 
contributing greatly to the severity and duration of hypoxic 
events in more recent times (King et al. 2012; Whitworth 
et al. 2012). Over 500 hypoxic areas or dead zones world-
wide have been documented, predominantly associated 
with anthropogenic pressures and are expected to increase 
exponentially (by 5.54% per year Díaz and Rosenberg 2011; 
Vaquer-Sunyer and Duarte 2008).

The response of fish to hypoxia and temperature change 
is dependent on species and context, with conspecifics 
responding differently both physiologically and behaviour-
ally (Collins et al. 2013; McNeil and Closs 2007; Nilsson 
et al. 2009). Fish exposed to hypoxia encounter a number 
of problems: short term (0.5–96 h) they face problems 
with maintaining oxygen uptake to meet basic metabolic 

Abstract Hypoxic or oxygen-free zones are linked to 
large-scale mortalities of fauna in aquatic environments. 
Studies investigating the hypoxia tolerance of fish are lim-
ited and focused on marine species and short-term exposure. 
However, there has been minimal effort to understand the 
implications of long-term exposure on fish and their abil-
ity to acclimate. To test the effects of long-term exposure 
(months) of fish to hypoxia we devised a novel method to 
control the level of available oxygen. Juvenile golden perch 
(Macquaria ambigua ambigua), and silver perch (Bidyanus 
bidyanus), two key native species found within the Mur-
ray Darling Basin, Australia, were exposed to different 
temperatures (20, 24 and 28 °C) combined with normoxic 
(6–8 mgO2 L−1 or 12–14 kPa) and hypoxic (3–4 mgO2 L−1 
or 7–9 kPa) conditions. After 10 months, fish were placed 
in individual respirometry chambers to measure standard 
and maximum metabolic rate (SMR and MMR), absolute 
aerobic scope (AAS) and hypoxia tolerance. Golden perch 
had a much higher tolerance to hypoxia exposure than silver 
perch, as most silver perch died after only 1 month exposure. 
Golden perch acclimated to hypoxia had reduced MMR at 
20 and 28 °C, but there was no change to SMR. Long-term 
exposure to hypoxia improved the tolerance of golden perch 
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maintenance requirements, reductions in aerobic scope, 
bactericidal activity, and antibody levels, the production 
of disease-fighting reactive oxygen species and a build-
up of anaerobic by products (Díaz and Rosenberg 2011; 
Pörtner and Lannig 2009); long term (96 + h) they suffer 
reduced growth and fecundity, as well as altered behaviour 
and mortality (Breitburg et al. 2009; Pörtner and Lannig 
2009). Indirectly, hypoxia can result in habitat loss (from 
forced migrations), increased predation pressure, and over-
all trophic changes, with some effects being irreversible or 
requiring extensive time for recovery (Collins et al. 2013; 
McCarthy et al. 2014; Vaquer-Sunyer and Duarte 2008). 
Fish can counter hypoxia by breathing air at the water’s sur-
face (aquatic surface respiration, ASR), escaping hypoxic 
areas if possible and reducing oxygen demand by decreasing 
activity; as well as increasing the oxygen carrying capac-
ity of haemoglobin (Hb), depressing their metabolism and 
changing cardiac function (Cook et al. 2013; Timmerman 
and Chapman 2004; Rogers et al. 2016). Cellular and tissue 
modifications can also improve performance under hypoxic 
conditions, evident through lowering of the critical oxygen 
tension  (Pcrit), defined as the partial pressure of oxygen (Po2) 
below which a stable rate of oxygen uptake can be main-
tained and is not reliant upon on ambient oxygen availability 
(Cook et al. 2013; Timmerman and Chapman 2004; Sollid 
et al. 2005). Furthermore, increased temperatures reduce the 
solubility of oxygen in water, thus reducing a fish’s capac-
ity to supply oxygen to tissues, compounding the problem 
of a low-oxygen environment (Dean and Richardson 1999; 
Farrell 2016; McCarthy et al. 2014). Thus, the combined 
effects of temperature and hypoxia can be devastating and 
may affect ecological communities in complex ways and 
elicit highly species-specific responses.

The response of organisms to hypoxia can be difficult 
to measure, particularly in combination with temperature. 
Much of our understanding is based upon abundance pres-
ence–absence studies and short-term physiological and 
behavioural studies (King et al. 2012; Zhang et al. 2010). 
Presence–absence studies are limited by populations being 
present at time of sampling, typically small numbers and 
sizes of sample sites, and limited prior knowledge of fish 
assemblages of the sample area (King et al. 2012). While 
physiological and behavioural studies have focussed on 
short-term effects of different stressors (i.e. < 100 h expo-
sure to hypoxic conditions) to metabolic performance and 
behavioural responses of individual fish species, few stud-
ies have considered the longer term (chronic) exposure to 
multiple stressors (Richardson et al. 2001).

Respirometry, a physiological approach used to meas-
ure oxygen consumption rates (Ṁo2) of aquatic organisms 
presents a unique opportunity to predict an organism’s 
response to long-term exposure to environmental stressors 
(Roche et al. 2013). The metabolic scope of an individual is 

of particular interest as it shows the total capacity for energy 
use by aerobic pathways and can be estimated indirectly 
through measurements of oxygen consumption (Norin and 
Clark 2016). Furthermore, it can be influenced by a num-
ber of intrinsic and extrinsic factors such as activity level, 
body mass, temperature, food consumption and environmen-
tal conditions like hypoxia (Norin and Clark 2016; Chabot 
et al. 2016). Metabolic scope is calculated using the standard 
(resting) metabolic rate (SMR or Ṁ

O2 ,min  ) and the maxi-
mum metabolic rate (MMR or ṀO2 ,max ). The SMR repre-
sents the minimum rate of oxygen consumption (minimal 
cost of living) of a resting fish in a post-absorptive state at a 
given temperature (McBryan et al. 2013; Roche et al. 2013), 
while the MMR represents the maximum rate at which oxy-
gen from the environment can be transported to the organism 
for consumption (McBryan et al. 2013; Roche et al. 2013). A 
fish’s total aerobic scope for activity, the range of metabolic 
energy available for aerobic activity, can then be determined 
from SMR and MMR; this is referred to as the absolute aero-
bic scope (AAS)(Roche et al. 2013). Fish exposed to hypoxic 
conditions will suffer a reduction to their total metabolic 
scope. As such, it is necessary to understand the severity 
of this reduction and if prolonged hypoxia exposure would 
allow organisms to initiate an acclimation response.

Understanding the thresholds of fish to hypoxic condi-
tions is crucial for establishing management targets to avoid 
high mortalities (Vaquer-Sunyer and Duarte 2008). There 
have been few attempts to determine thresholds of hypoxia 
for fish species and identify a limit for management pur-
poses (Dean and Richardson 1999). Of the possible lim-
its proposed the majority of the literature refers to a value 
of ~ 2mgO2 L−1 for all aquatic environments (Breitburg et al. 
2009; Helz and Adelson 2013; Vaquer-Sunyer and Duarte 
2008). Species-specific responses to hypoxic conditions 
suggest that this value may be inadequate in supporting 
whole system survival, and suggests that ecosystems may 
require independent reviews before instituting a limit for 
management (Dean and Richardson 1999; Vaquer-Sunyer 
and Duarte 2008).

To date, there are no known studies that have consid-
ered freshwater species and their tolerance to the combined 
effects of elevated temperatures and hypoxia. We investi-
gated the independent and interactive effects of long-term 
exposure to low dissolved oxygen and temperature on the 
metabolic scope and tolerance of two freshwater fish species. 
We used juvenile golden perch (Percichthyidae: Macquaria 
ambigua ambigua) and silver perch (Terapontidae: Bidyanus 
bidyanus) these are key species found throughout Australia’s 
largest inland freshwater river system, the Murray Darling 
Basin (MDB) and are classified as vulnerable, threatened or 
endangered dependent on region (for more species informa-
tion see Supp. SSI 1, Lintermans 2007) were used. The MDB 
is a highly regulated system subject to extreme variations 
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in environmental conditions. Prolonged periods of severe 
drought are punctuated by periods of high rainfall and flood-
ing, conditions that can result in hypoxic events particularly 
during summer. Golden perch and silver perch were exposed 
to prolonged hypoxic conditions at different temperatures; 
however, due to mortality of silver perch physiological tests 
were only performed on golden perch. We expect long-term 
exposure to hypoxic conditions will allow fish to acclimate 
to hypoxia. Furthermore, higher temperature treatments are 
likely to limit the metabolic scope and acclimation ability of 
fish even after prolonged hypoxic exposure.

Methods

Experimental design

Silver perch (Bidyanus bidyanus, average length 45 mm, 
average body mass 2.7 ± 0.5 g) and golden perch (Mac-
quaria ambigua ambigua, average length 35 mm, average 
body mass 2.1 ± 0.5 g) were sourced from aquaculture 
stock from the NSW Hatchery Quality Assurance Scheme 
(HQAS) accredited Silverwater Native Fish Hatchery, Grong 
Grong, NSW, in March 2014. Upon arrival at the University 
of Adelaide, fish were held in 250-L holding tanks at 20 °C. 
Aged (dechlorinated) tap water was used in tanks through-
out the pre-experimental and experimental periods. Silver 
perch were fed hatchery pellet food until satiation, with any 
excess siphoned out an hour after feeding. Golden perch 
were fed live black worm (Lumbriculus variegatus), with 
waste siphoned out 24 h after feeding. Diets of both fish 
were matched to those at the hatchery: silver perch were 
fed pellets (sourced from Silverwater Native Fish Hatch-
ery) and golden perch were fed live blackworm (sourced 
from Seaview Aquarium Centre, Plympton, SA). Fish were 
exposed to a 12:12-h light:dark cycle and room temperature 
was maintained at 20 °C. Water quality was monitored every 
second day for pH, ammonia and nitrite, with 25% water 
changes made daily for silver perch and every other day for 
golden perch. For both pre-experimental and experimental 
periods all tanks were aerated, and water in each tank was 
filtered using independent submersible aquarium filters for 
the duration of the experiment. Evaporation was minimised 
by covering tanks with clear plexiglass lids.

Fish were randomly assigned to 20-L treatment tanks 
10 days after arrival to give sufficient time to adjust to the 
new conditions, with about 11 fish per tank. The experi-
mental design consisted of two oxygen treatments, normoxic 
(6–8 mgO2  L−1 or 12–14 kPa) and hypoxic (3–4 mgO2 L−1 
or 7–9 kPa), combined with up to three temperature treat-
ments (20, 24 and 28 °C). Treatments included all possible 
combinations of temperature and oxygen for golden perch, 
with duplicate tanks for each treatment (n = 12 tanks), while 

silver perch included all possible combinations of two tem-
peratures (20 °C and 28 °C) and oxygen with duplicate 
tanks for each treatment (n = 8 tanks). The experimental 
design differed for silver perch as there were less individu-
als available. The temperatures chosen reflected a portion 
of the natural thermal range experienced by both species 
(from 4 to 34 °C across their entire natural range) and are 
most likely to be affected by hypoxic conditions (Lintermans 
2007). All tanks with temperatures ≥ 24 °C were heated 
independently using submersible aquarium heaters; tem-
perature was monitored regularly. The desired temperatures 
were reached by adjusting heaters by 2 °C per day. Oxygen 
levels were based on the globally accepted tolerance limit of 
2 mgO2  L−1 which is expected to cause high levels of stress 
and mortality for most species (Vaquer-Sunyer and Duarte 
2008). The experiment was designed to provide long-term 
exposure yet still subject species to low levels of oxygen; 
therefore, the hypoxic treatments were higher than this limit, 
enough to cause slight discomfort but not mortalities. At 
the completion of all experiments fish were measured and 
weighed to calculate a simple condition index, Fulton’s K, 
which assumes that the weight of a fish is proportional to 
the cube of its length:

where W is body wet weight (g) and L the total standard 
length (cm), 100 is used to bring the factor close to a value 
of one. Fulton’s K condition factor is widely used in fish 
biology studies to describe the condition of the individual 
(Nash et al. 2006).

Control of hypoxia

For the hypoxic treatments a simple and novel degassing 
system was developed, which used nitrogen gas to remove 
oxygen from the water (see Fig. 1). A combination of 9 L/
min of nitrogen, split across 3 G-Class nitrogen cylinders 
(food grade, 3 L/min per cylinder) was mixed with 9 L/min 
of air in a loosely sealed 35-L mixing tank. Cylinders were 
changed on average every 3 days. The mixing tank contained 
two electric air pumps, with a combined flow rate of less 
than 18 L/min, which pumped the mixed gas to individual 
aquarium tanks, using air hosing (of equal distance) con-
nected to a single air stone (of the same size) in each tank. 
Air was pumped into the mixing tank from an air compres-
sor. Tanks were covered with plexiglass lids to minimise 
turbulence and limit diffusion of surrounding atmospheric 
air. This method allowed oxygen levels to be simultaneously 
controlled in all tanks over an extended period, and could be 
adjusted to suit both larger and smaller experiments.

Maximum exposure periods for silver perch and golden 
perch were 87 and 247 days, respectively. Exposure times 
varied as physiology experiments were carried out over 

K = 100
(

W ∕L3
)

,
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20 weeks, which included the initial experimental trials. 
Physiological trials were randomised such that there was lit-
tle variation of exposure to experimental conditions among 
fish relative to the total exposure time.

Resting respirometry

Resting respirometry was only conducted on golden perch 
due to high mortalities of silver perch in the initial experi-
ment. All fish were fasted for 24 h prior to experimental 
trials to evacuate the digestive tract so that only oxygen 
consumption rates (Ṁo2) were recorded. Approximately 12 
fish, per treatment, were randomly selected and subjected to 
respirometry experiments.

A four-chamber system was designed so that multiple 
fish could be tested simultaneously. Each resting chamber 
was custom made to fit the size of the fish based on a 1:10 
ratio (1 kg of animal for every 10 L of water), and was 
300 mL in volume. All four chambers were submerged 
in a larger water bath (139 × 52 × 20 cm), which was 
used to control temperature and oxygen levels. Individual 
chambers used a closed recirculation loop to pump low 
flowing water over the fish. A fibre optic oxygen probe 
(Pyroscience, OXROB3, Aachen, Germany) was fitted 
to the recirculation loop in each chamber; this recorded 
oxygen consumed during each Ṁo2 determination. Each 
chamber was connected to a flushing pump that circulated 

water intermittently after each Ṁo2 determination to 
completely replenish the chamber with oxygenated water 
from the water bath. A 5-min flushing period and a 20-min 
determination period was used for the 20 °C normoxic and 
hypoxic treatments; however, this was reduced to a 2-min 
flush and 20-min determination period for the remain-
ing treatments as the 5-min flush caused stress for fish at 
higher temperatures. Stress was indicated by fish not main-
taining a neutral or central position in the middle of the 
chamber during flushing. During the 20-min determination 
period oxygen was not reduced to less than 1 mgO2  L−1 
and was above the background respiration rates. Dissolved 
oxygen concentration was recorded using four fibre optic 
oxygen probes (OXROB3) in a four-channel FireSting  O2 
Optical Oxygen Meter (Pyroscience, Aachen, Germany), 
with one probe fitted to the recirculation loop of each 
chamber.

To determine maximum metabolic rate (MMR), we 
used a method described by Roche et al. (2013), where fish 
were subjected to a 3-min exhaustive chase followed by a 
1-min air exposure prior to being placed in respirometry 
chambers. This method forces fish to reach their MMR in 
a short time and can be determined using the highest Ṁo2 
determination value. However, the 3- and 1-min combi-
nation was too stressful for the golden perch at higher 
temperatures, such that they were unable to recover from 

Fig. 1  Schematic of degassing system used for the control of hypoxia showing setup for six tanks
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3 min of chase and 1 min of air exposure; these times 
were, therefore, reduced to a 2-min exhaustive chase with 
40-s air exposure for the 24 and 28 °C treatments. During 
the exhaustive chase, individual fish were placed in a 25-L 
bucket and were encouraged to continue swimming by 
gently touching the tip of the tail; fish were only encour-
aged if they slowed down or stopped swimming. Once the 
exhaustive chase was complete fish were suspended in a 
mesh aquarium net out of the water for 40–60 s and then 
immediately placed into a chamber. The first determina-
tion period was started 1 min after each fish was placed 
in a chamber, whereby maximum metabolic rate (MMR) 
was measured. Following this determination period, fish 
were left in the chamber for 8–12 h to allow fish to reach 
a resting state. Once the resting state was reached, the 
standard metabolic rate (SMR) was calculated using the 
equation below.

Ṁo2  (mgO2 kg−1 h−1) was calculated for each determina-
tion cycle using the equation:

where (t0) is the oxygen content of the water measured at 
the end of a flushing cycle, and (t1) is the oxygen content 
measured at the end of a determination period, just prior to 
the flush, both measured in mg  O2/L. V is the volume of the 
chamber minus the volume of the experimental animal in L, 
t is t0–t1 and BW is body weight of the experimental animal 
in kg. The average of the lowest 10% of total measurements 
was used to calculate SMR. Three determinations were run 
before and after the testing period to record background 
values of bacterial respiration. Background rates were sub-
tracted from Ṁo2 values. To reduce background respiration 
water was pumped through a heater/chiller unit fitted with 
a UV lamp that sterilized the water. The absolute aerobic 
scope (AAS) for activity of fish was calculated by subtract-
ing SMR from MMR (MMR − SMR). The whole system 
was rinsed every third day to ensure background consump-
tion of oxygen remained below 15% of the resting metabolic 
rate of fish.

Determining tolerances to hypoxia

To record tolerance limits among the different treatments, 
fish were left in chambers for an additional period of time 
with the intermittent flushing cycle turned off, which nor-
mally replenishes the system with oxygen. We defined 
the tolerance limit as the point at which an individual fish 
showed signs of stress at low oxygen levels. A sign of stress 
was indicated by a significant burst reaction in the chamber 
or loss of equilibrium. Fish were observed constantly during 
this period. At the first signs of stress, the oxygen level and 
time were recorded and the fish was immediately removed 

ṀO2 =
(

[O2 ]t0 − [O2 ]t1
)

⋅

V

t
⋅

1

BW
,

from the chamber. A tolerance limit was recorded for each 
fish.

Critical oxygen tension or  Pcrit

The critical oxygen tension or  Pcrit was measured using data 
from the closed respirometry phase of the experiment. To 
minimise the effects of  CO2 accumulation, metabolic prod-
ucts and reductions in pH the chamber was flushed after 
acclimation. The  Pcrit was defined as the point at which Ṁo2 
was reduced below SMR and fish shifted to an oxy-con-
forming state. The  Pcrit was determined for each fish by fit-
ting a segmented regression using RStudio Version 1.0.143 
(RStudio Team 2016). The critical tension was recorded as 
the point of intersection of the two lines as this indicated 
the breakpoint at which oxy-regulating changed to oxy-con-
forming. This measure differed from the hypoxia tolerance 
measure as it occurred prior to fish losing equilibrium.

Statistical analyses

Statistical analyses were conducted using PRIMER 6 and 
PERMANOVA + software (www.primer-e.com). Tempera-
ture, DO and oxygen saturation of the water, and Fulton’s K 
were analysed for both species at all possible temperature 
and treatment levels and for tank effects using a three-way 
permutational univariate analysis of variance (ANOVA) 
with unrestricted permutations. Temperature and hypoxia 
treatment levels (hypoxic or normoxic) were treated as fixed 
factors with replicate tanks treated as a random factor nested 
in temperature and hypoxia treatment. The same ANOVA 
design was used to analyse data regarding MMR, SMR, 
AAS,  Pcrit and tolerance limits. Where tank effects were not 
detected, data were pooled and re-analysed using a two-way 
permutational univariate ANOVA with unrestricted permu-
tations. Post hoc pairwise tests were conducted where sig-
nificant differences were found. All analyses included Monte 
Carlo tests to ensure that there were sufficient permutations 
to detect significant differences.

Results

Rearing conditions

Treatment conditions remained consistent throughout 
the experimental period for both species and fish length 
and weight were similar among treatments for each spe-
cies (< 0.5 g/cm, Table S1). Significant tank effects were 
detected; however, these were generally less than the vari-
ation among treatments (Table S2). All significant effects 
of temperature and hypoxia on water conditions were in 
line with the experimental treatment designs and changes 
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had minimal variation (temperature < 0.7 °C, dissolved 
oxygen  <  1  mgO2  L−1 and saturation  <  8%) over the 
course of the experiment (Table S1).

Fish condition

Body condition, Fulton’s K, did not vary for golden perch 
despite long-term exposure to varied environmental condi-
tions (Table S3, P ≤ 0.05). Silver perch in hypoxic con-
ditions had a significantly lower Fulton’s K than those in 
normoxic conditions (Table S3, Fig. 2). A between-species 
comparison also shows that golden perch overall had a 
poorer body condition than silver perch; this may be because 
of the length of time species were exposed to treatment con-
ditions (Fig. 2).

Survivorship

Mortality recorded during the rearing period for both species 
showed variation between the two species (golden perch and 
silver perch) (Fig. 3). Silver perch suffered significant high 
levels of mortality during the rearing period with no fish 
surviving beyond week 14 (P < 0.0001, Kaplan–Meier, IBM 
SPSS Statistics 24.0.0.1). Silver perch treated under hypoxic 
conditions suffered more than 50% mortality by week 2 at 
28 °C, and by week 3 at 20 °C. In contrast, silver perch 
in normoxic conditions suffered more than 50% mortalities 
in week 5 at 28 °C and week 12 at 20 °C. Comparatively, 

Fig. 2  Mean (± SE) Fulton’s K for silver perch (Bidyanus bidyanus, 
n = 93), and golden perch (Macquaria ambigua ambigua, n = 127), 
by hypoxia treatment (light grey bars represent hypoxic conditions, 
dark grey bars represent normoxia). Data for tank and temperature 
have been pooled

Fig. 3  Weekly mean survival (±  SE) for replicate tanks of each 
treatment for a silver perch (n = 93) and b golden perch (n = 127). 
Survival is calculated as a percentage of fish surviving in each tank 

and then the mean of the two tanks is shown. Silver perch were only 
exposed to two of the three temperature treatments
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golden perch treated under the same conditions (Table S2) 
suffered few mortalities over the full 40-week period.

Metabolic scope

As silver perch suffered high mortalities during the rearing 
period, metabolic variables were only measured on golden 
perch. Long-term exposure to hypoxia at 20 and 28 °C 
resulted in lower SMR and MMRs compared to 24 °C for 
golden perch (Fig. 4, Table S4). Maximum metabolic rate 
and SMR showed no significant effects of hypoxia although 
there was a significant interaction between temperature and 
hypoxia for MMR (Table S4). Significant differences were 
detected among temperature treatments for both SMR and 
MMR (Table S4, Fig. 4). Lower AAS measures occurred 
at 20 and 28 °C in fish exposed to hypoxia long term com-
pared to those treated under normoxia, while fish exposed to 
hypoxia at 24 °C had higher AAS than those treated under 
normoxia (Fig. 5).

Hypoxia tolerance limits and  Pcrit

Hypoxia tolerance limits and critical oxygen tension  (Pcrit) 
of fish were significantly higher at normoxic conditions but 
did not vary among temperatures (Table S5, Figs. 6 and 7).

Discussion

Our study showed that sympatric species have different 
responses to thermal and hypoxic stress. Despite exposure 

Fig. 4  Boxplots (95% quantile) indicating maximum metabolic rate 
(MMR) and standard metabolic rate (SMR) recorded for golden 
perch at all temperatures and hypoxia treatments; replicate tanks are 
pooled. A) MMR where light grey bars represent hypoxic condi-
tions (4 mg L−1), and dark grey bars represent normoxia (8 mg L−1, 
n  =  69). b SMR where data were pooled for each temperature 
because significant differences were not found for hypoxia at each 
temperature (n = 69). Circles (○) represent outliers that fell between 
1.5 and 3 interquartile ranges from the nearest edge of the box and 
stars (*) represent outliers beyond 3 interquartile ranges from the 
nearest edge of the box, and lines in the centre of box represent the 
median point

Fig. 5  Boxplot (95% quantile) showing absolute aerobic scope 
(AAS) for golden perch at all temperature and hypoxia treatments; 
replicate tanks are pooled (n = 69). Light grey bars represent hypoxic 
conditions (4 mg  L−1), and dark grey bars represent normoxia (8 mg 
 L−1). Circles (○) represent outliers, and lines in the centre of box rep-
resent the median point

Fig. 6  Boxplot (95% quantile) showing the hypoxia tolerance limits 
for individual golden perch at normoxic (dark grey, 8  mg  L−1) and 
hypoxic (light grey, 4  mg  L−1) conditions; replicate tanks and tem-
peratures are pooled, as there were no significant temperature or tank 
effects detected (n = 69). Circles (○) represent outliers, and lines in 
the centre of box represent the median point

Fig. 7  Mean (± SE)  Pcrit for golden perch by hypoxia treatment (light 
grey bar represents hypoxic conditions and the dark grey bar repre-
sents normoxic). Data for tank and temperature have been pooled 
(n = 60)
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to the same conditions as golden perch in our initial exper-
imental rearing period, silver perch were unable to cope 
and suffered high levels of mortality (50% mortality by 
week 3 in hypoxic treatments). Golden perch, however, 
suffered few mortalities over the whole experimental 
period. Additionally, golden perch were able to tolerate 
hypoxic conditions after prolonged exposure. The behav-
iour and tolerance of fish exposed to hypoxia often differs 
among and within species and also with size (Eliason and 
Farrell 2016; McCarthy et al. 2014; Metcalfe et al. 2016). 
Multiple studies have demonstrated highly species-specific 
responses to thermal and hypoxic stress, in some cases 
influenced by fish making physiological trade-offs associ-
ated with specific natal conditions (Eliason and Farrell 
2016; McNeil and Closs 2007). We observed that thermal 
stress accelerated the decline of silver perch, particularly 
those treated under hypoxic conditions. Due to mortal-
ity during the initial experiment, physiological perfor-
mance of silver perch was not tested; however, the effect 
of hypoxia on body condition of this species may indicate 
that exposure to hypoxic conditions quickly degenerates 
their overall health. In comparison, there was minimal 
impact on the body condition of golden perch held under 
the same conditions, but their overall condition was lower 
than silver perch. As all measures on body condition were 
conducted after the 40-week exposure period differences 
in condition between species may be attributed to golden 
perch withstanding the full 40 weeks of exposure. Differ-
ences in the diet between the two species may have also 
driven differences in body condition. Silver perch were 
fed a pellet food specifically designed to enhance fitness 
in this species (Rowland 2008, 2009; Rowland and Tully 
2004), while golden perch were fed unenriched live food. 
Golden perch and silver perch inhabit similar zones in the 
MDB, including lowland, turbid and slow-flowing rivers 
with snags and rocky outcrops (Lintermans 2007). His-
torically, the distribution of silver and golden perch was 
similar; however, changes to river regulation, reproduc-
tive behaviour, migration patterns through the addition of 
weirs and dams, threat of alien species, thermal pollution, 
hypoxic episodes and flow regime have resulted in a severe 
decline in silver perch distribution, while golden perch are 
still widespread, albeit at reduced numbers (for more spe-
cies information see Supp. SSI 1, Koehn and Nicol 2016; 
Lintermans 2007). Without knowing the complete genetic 
history of silver perch used in our study it is possible they 
do not fully reflect wild populations, although the hatch-
ery fish were sourced from are one of many involved in 
restocking wild populations throughout the MDB. How-
ever, given the dramatic decline seen in this species over 
the last 50-year exposure to hypoxia and high tempera-
tures in our laboratory experiment may explain why their 

natural range has diminished (Lintermans 2007; Rowland 
2008, 2009; Rowland and Tully 2004).

Long-term exposure to hypoxia directly affected the tol-
erance thresholds of golden perch. Fish exposed to hypoxia 
were able to tolerate lower levels of dissolved oxygen, 
while a lack of exposure (long-term normoxia) resulted in 
fish reaching their tolerance thresholds at higher levels of 
dissolved oxygen. Critical oxygen tensions  (Pcrit) of golden 
perch also followed the same pattern, suggesting that long-
term exposure to hypoxia induced an acclimation response 
(for other examples see: Cook et al. 2013, Timmerman and 
Chapman 2004; Rogers et al. 2016). Additionally, higher 
temperatures had no effect on the hypoxia tolerance of 
golden perch, which may be due to a thermal acclimation 
response from prolonged exposure (McMaster and Bond 
2008). Although golden perch may persist in low levels 
of dissolved oxygen and partial pressure (Po2) it is neces-
sary to consider at what cost this occurs and if they use 
other options in the wild such as aquatic surface respiration 
(ASR), increasing gill ventilation or simply move away. For 
example, a study on the tolerance of zebrafish (Danio rerio) 
found that individuals could persist to levels of 1 mgO2 L−1 
and lower; however, it was at the cost of poor-performing 
antioxidant enzymes, which resulted in oxidative damage 
(Feng et al. 2016). Environmental factors such as tempera-
ture, food intake and diet composition may also act to change 
this value in wild fish; therefore, oxygen thresholds of fish 
should always be used carefully for management. For exam-
ple, our results suggest golden perch would be protected 
under the current universal threshold limit (2 mgO2 L−1), 
but silver perch would be unlikely to survive (Vaquer-Sunyer 
and Duarte 2008). The threshold limit for silver perch may 
be higher than 4 mgO2 L−1 given the high mortalities dur-
ing the experimental rearing period even under normoxia; 
however, they are known to continue feeding at dissolved 
oxygen concentrations below  3mgO2 L−1 (Rowland 2009). 
Even though the global limit provides a standard for man-
agers to work from it is difficult to predict what this value 
means for wild populations. Adapting this information to 
existing models for the MDB would allow managers to pre-
dict larger scale impacts of hypoxic events and appropri-
ate dissolved oxygen levels and Po2 for highly oxygenated 
water releases to combat hypoxic events spreading. Models 
could further incorporate physiological details such as ther-
mal thresholds, oxygen carrying capacity, aerobic scope, 
and the growth, digestion and reproductive requirements of 
fish to provide a comprehensive way of predicting impacts 
on local populations. There are some examples of models 
being used effectively in this way for predicting how future 
environmental conditions will impact Pacific salmonids 
(Eliason and Farrell 2016; Hague et al. 2011; Rand et al. 
2006). However, there may be some limits to this method 
due to the clear species-specific reactions to hypoxia, thus 
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models considering the most sensitive species among local 
populations would be most appropriate. Other researchers 
have also observed fish under hypoxia reaching tolerance 
points much faster than those treated under normoxia (Dean 
and Richardson 1999; Fu et al. 2011).

Temperature is widely considered the principal control-
ling factor for aerobic and metabolic capacity, while hypoxia 
is considered the primary limiting factor (Claireaux and 
Chabot 2016; Pörtner and Lannig 2009). Long-term expo-
sure to hypoxia typically limited the aerobic and metabolic 
capacity (AAS and MMR) of golden perch at 20 and 28 °C, 
while overall fish had a lower basal oxygen demand (stand-
ard metabolic rate, SMR) at the same temperatures. There-
fore, aerobic and metabolic capacity may be limited beyond 
these points, such that it deleteriously impacts normal func-
tioning (Farrell 2016; Neuheimer et al. 2011). However, 
at 24 °C prolonged hypoxia exposure typically improved 
the aerobic and metabolic capacity of golden perch, com-
pared to those fish treated under normoxia. However, pos-
sible thermal acclimation of golden perch could confound 
some of our results, particularly the higher MMRs observed 
under normoxia at 28 °C (Farrell 2016; McBryan et al. 2013; 
McMaster and Bond 2008). Thermal acclimation can be 
achieved by reducing general metabolism via reduced feed-
ing and movement, the downregulation of protein synthesis 
or the decrease and/or modification of certain regulatory 
enzymes in aerobic and anaerobic pathways (McMaster and 
Bond 2008; Wu 2002). For example, Chilko, Oncorhynchus 
nerka, have an enhanced cardiac capacity due to a higher 
density of adrenaline-binding ventricular β-adrenoreceptors, 
giving them a broader thermal range compared to co-migra-
tors Nechako, O. nerka (Eliason et al. 2011). When fish are 
also exposed to hypoxia the capacity for oxygen transfer 
through haemoglobin and the circulatory system is reduced, 
this would seem to be the case for golden perch AAS and 
MMR, suggesting their thermal range may be limited by 
prolonged hypoxia exposure. The lower SMRs observed 
in golden perch overall at 28 °C could also be a result of 
thermal acclimation as fish at higher temperatures would be 
expected to grow and metabolise faster than those at lower 
temperatures. In a marine system, elevated levels of ambi-
ent  CO2 would have a similar limiting effect as hypoxia, 
highlighting the necessity for future physiological studies 
to consider the synergistic effects of environmental factors 
(Pörtner and Lannig 2009).

Fish respond to hypoxia in many different ways and while 
the lethal endpoint has been used in the past to assess safe 
levels of dissolved oxygen for fish, the sub-lethal tolerance 
limits are likely to be the most useful (Feng et al. 2016). Fish 
tolerance to a sub-lethal point will indicate the sensitivity of 
other vital functions such as growth and reproduction (Feng 
et al. 2016). Organisms recovery from hypoxic events can 
be partially attributed to the availability of nearby refuges 

and species capacity to adapt, exploit oxygen-rich zones and 
recolonize an area successfully after an event (Conley et al. 
2009; McMaster and Bond 2008). However, if those organ-
isms are unable to relocate or survive a hypoxic event there 
is very little chance of system recovery. Conley et al. (2009) 
suggested that systems which have been previously exposed 
to hypoxia are more prone to experience it in the future and 
suffer a slower recovery with each incidence. For example, 
hypoxic events resulting in large-scale losses of benthic 
communities lead to a change in overall trophic structure, 
with smaller, fast-growing species recolonizing an area 
first, impacting not only community structure but complete 
system functioning with deleterious effects to the storage 
capacity of sediments (Conley et al. 2009; Diaz and Rosen-
berg 2008). Only ~ 4% of the 500-plus systems affected by 
hypoxia worldwide have shown signs of recovery (Diaz and 
Rosenberg 2008).

Supply of oxygen to aquatic organisms worldwide is 
going to be affected by climate change, with models pre-
dicting substantial warming and deoxygenation throughout 
much of the world’s oceans and terrestrial water bodies 
(Deutsch et al. 2015). Due to the disparity observed among 
our two case study species, it will be necessary to consider 
management targets carefully to ensure the survival of all 
species within any one system (Vaquer-Sunyer and Duarte 
2008). We show some species may be able to develop natural 
resistance to poor oxygen conditions over time; however, 
this may be limited to only those with a naturally higher 
tolerance to hypoxia. Furthermore, future research should 
be targeted towards understanding the individual tolerance 
of known sensitive species within a system. We recommend 
that it is valuable to consider each system individually in 
terms of species and the effects of large-scale water alloca-
tion on dissolved oxygen content. Poor management of re-
allocated waters will influence local fauna where managers 
do not consider the complete spectrum of organism tolerance 
to hypoxia. Sympatric populations of fish under hypoxic 
stress in our system exhibited distinctly different responses 
to prolonged hypoxia exposure, and while it appears accli-
mation is achievable it remains species specific.
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SUPPLEMENTARY INFORMATION 

Study Species Information 1: 

Percichthyidae: Macquaria ambigua (Golden perch, Yellowbelly, Callop, Murray 

perch) 

Terapontidae: Bidyanus bidyanus (Silver perch, Black bream, Silver bream, Bidyan) 

Golden perch and silver perch are two sympatric endemic species found throughout 

the Murray Darling Basin, Australia. Golden perch grow as large as 76cm in length 

with weights recorded up to 23kg. Silver perch grow as large as 50cm in length with 

weights recorded up to 8kg (Lintermans 2007). Golden perch males reach maturity at 

two years and females at four years, and silver perch reach maturity between 3-5 

years for both sexes (Lintermans 2007). The Murray-Darling system encompasses 

five separate states and is the largest catchment in Australia covering approx. one 

million km2 (Koehn and Nicol 2016). Golden perch are opportunistic carnivores while 

silver perch are omnivores (Lintermans 2007). Both species are found predominantly 

in lowland, turbid and slow flowing rivers, it has also been suggested that golden 

perch prefer deeper pools found within these habitats (Lintermans 2007). Golden 

perch and silver perch are both bred artificially by government and commercial 

hatcheries and are widely stocked in farm dams, lakes, streams and reservoirs 

(Lintermans 2007). Abundance of these species has been drastically reduced across 

their natural range due to both natural (e.g. high temperature, hypoxia) and 

anthropogenic factors (e.g. extensive barriers in place which limit fish passage and 

environmental watering, Koehn and Nicol 2016).  
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Table S1. Summary of the rearing conditions and length and weight data of the fish 
within treatment tanks for the experiments. Data are displayed as means ± standard 
error (SE) with n represents the number of fish assigned to each treatment. For 
temperature, dissolved oxygen and saturation, n denotes the number of recordings 
taken throughout experimental period; this differed as the experiment with golden 
perch ran for a longer time.  

Water 
Condition 

Hypoxia, 
mg L-1 Tank 

Temperature 
°C 

Dissolved 
Oxygen,  
mg L-1 

Saturation, 
% 

Fish 
Length, 
cm 

Fish 
Weight, 
g n 

Silver 
Perch   (n=50) (n=50) (n=50)    
         
20 Hypoxic 1 19.4±0.20 3.92±0.09 57.2±0.96 4.8±0.18 1.9±0.28 11 
  2 19.2±0.15 3.59±0.09 49.6±1.38 5.2±0.21 2.5±0.48 12 
 Normoxic 1 18.3±0.13 6.63±0.05 89.2±1.56 5.4±0.39 2.9±0.85 12 
  2 18.4±0.25 6.73±0.05 91.0±0.57 5.5±0.35 3.1±0.44 12 
28 Hypoxic 1 28.3±0.03 3.18±0.07 51.6±1.11 5.3±0.44 2.3±0.74 12 
  2 27.1±0.04 3.02±0.07 48.0±1.05 5.0±0.35 2.2±0.55 12 
 Normoxic 1 27.9±0.08 5.60±0.04 89.9±0.58 5.5±0.46 3.4±0.71 11 
  2 27.7±0.02 5.54±0.02 86.1±1.04 5.5±0.37 3.4±0.63 11 
Golden 
Perch   (n=100) (n=100) (n=100)    
         
20 Hypoxic 1 19.3±0.09 3.82±0.07 53.0±0.94 5.4±0.28 1.8±0.39 11 
  2 18.8±0.08 4.17±0.10 55.5±1.30 5.6±0.22 1.8±0.30 11 
 Normoxic 1 19.7±0.07 6.70±0.05 92.4±0.92 5.4±0.03 2.3±0.50 10 
  2 19.1±0.16 6.74±0.04 92.3±0.56 5.7±0.26 2.3±0.75 11 
24 Hypoxic 1 24.3±0.03 3.36±0.05 49.6±0.69 6.0±0.39 2.4±0.65 10 
  2 24.7±0.07 3.32±0.06 50.0±0.94 5.6±0.16 1.9±0.28 11 
 Normoxic 1 23.4±0.03 5.96±0.03 88.2±0.36 5.9±0.36 1.9±0.56 10 
  2 24.1±0.05 5.65±0.03 86.2±0.42 5.7±0.25 2.1±0.50 11 
28 Hypoxic 1 27.3±0.05 3.30±0.05 51.1±0.72 5.7±0.43 2.1±0.90 10 
  2 27.4±0.03 3.03±0.06 47.3±0.91 5.6±0.52 2.6±0.50 10 
 Normoxic 1 26.9±0.05 5.63±0.03 88.1±0.36 5.2±0.15 1.8±0.62 11 
  2 26.4±0.12 5.59±0.03 88.5±0.41 5.6±0.31 2.3±0.47 11 
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Table S2. Analysis of variance for the effects of temperature, dissolved oxygen (DO), 
oxygen saturation (SAT) and hypoxia in the rearing water.  

Water Source of Variation df MS F P 
Silver Perch      
Temp Temp 1 7612.9 809.12 ≤0.001* 
 Hypoxia 1 17.75 1.89 >0.050 
 Temp X Hypoxia 1 24.85 2.64 >0.050 
 Tank (Temp X Hypoxia) 4 9.43 11.56 ≤0.001* 
 Residuals 377 0.82   
DO Temp 1 74.12 90.11 ≤0.001* 
 Hypoxia 1 697.81 847.3 ≤0.001* 
 Temp X Hypoxia 1 5.09 6.19 >0.050 
 Tank (Temp X Hypoxia) 4 0.83 4.15 <0.050* 
 Residuals 377 0.21   
SAT Temp 1 781.29 1.55 >0.050 
 Hypoxia 1 1.34 266.65 ≤0.001* 
 Temp X Hypoxia 1 52.07 0.10 >0.050 
 Tank (Temp X Hypoxia) 4 504.94 8.75 ≤0.001* 
 Residuals 377 57.72   
Golden Perch      
Temp Temp 2 5886.9 506.02 ≤0.001* 
 Hypoxia 1 39.31 3.38 >0.050 
 Temp X Hypoxia 2 32.84 2.82 >0.050 
 Tank (Temp X Hypoxia) 6 11.64 20.02 ≤0.001* 
 Residuals 1148 0.58   
DO Temp 2 99.88 41.30 ≤0.001* 
 Hypoxia 1 1881.5 778.35 ≤0.001* 
 Temp X Hypoxia 2 2.14 0.89 >0.050 
 Tank (Temp X Hypoxia) 6 2.42 8.68 ≤0.001* 
 Residuals 1148 0.28   
SAT Temp 2 2787.1 13.96 <0.050* 
 Hypoxia 1 4.23 2118.9 ≤0.001* 
 Temp X Hypoxia 2 73.60 0.37 >0.050 
 Tank (Temp X Hypoxia) 6 199.81 3.57 ≤0.001* 
 Residuals 1148 55.91   
* Denotes significant effect 
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Table S3. Analysis of variance for the effects of tank, temperature and hypoxia on 
body condition, calculated using Fulton’s K, of silver perch and golden perch.  

Fulton’s K Condition Index Sources of Variation df MS F P 
Silver Perch Temp 2 0.39 2.48 >0.050 
 Hypoxia 1 1.36 8.66 <0.050* 
 Temp X Hypoxia 2 0.39 2.51 >0.050 
 Tank(Temp X Hypoxia) 6 0.16 0.63 >0.050 
 Residuals 85 0.24   
      
Golden Perch Temp 2 0.81 3.81 >0.050 
 Hypoxia 1 2.49 0.12 >0.050 
 Temp X Hypoxia 2 5.34 0.25 >0.050 
 Tank(Temp X Hypoxia) 6 0.21 0.70 >0.050 
 Residuals 63 0.30   
*Denotes significant effect 

Table S4. Analysis of variance for the effects of temperature and hypoxia on the 
metabolic rates of golden perch. All possible temperature (20, 24 and 28°C) and 
hypoxic treatments (normoxic and hypoxic) are considered. No tank effects were 
detected so data were pooled. 

Metabolic Rate Sources of Variation df MS F P 
MMR Temp 2 35709 18.12 ≤0.001* 
 Hypoxia 1 3347.6 1.71 >0.050 
 Temp X Hypoxia 2 41421 10.51 ≤0.001* 
 Residuals 63 1970.4   
      
SMR Temp 2 19515 13.76 ≤0.001* 
 Hypoxia 1 1638.8 1.16 >0.050 
 Temp X Hypoxia 2 216.69 0.15 >0.050 
 Residuals 63 1418.1   
      
AAS Temp 2 2460 1.69 >0.050 
 Hypoxia 1 9671 6.64 ≤0.001* 
 Temp X Hypoxia 2 17408 11.96 ≤0.001* 
 Residuals 63 1456.2   
* Denotes significant effect. 
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Table S5. Analysis of variance for the effects of temperature and hypoxia on the 
ability of golden perch to tolerate hypoxic conditions (recorded once fish exhibited 
bursting or equilibrium loss) and their critical oxygen tension (Pcrit). All possible 
temperature (20, 24 and 28°C) and hypoxic combinations (normoxic and hypoxic) 
were considered. No tank effects were detected so data were pooled. 

Hypoxia Tolerance Sources of Variation df MS F P 
Tolerance Limits Temp 2 0.12 1.73 >0.050 
 Hypoxia 1 1.48 22.95 ≤0.001* 
 Temp X Hypoxia 2 0.13 2.0068 >0.050 
 Residuals 64 0.0065   
Pcrit Temp 2 4.93 1.53 >0.050 
 Hypoxia 1 52.48 16.24 ≤0.001* 
 Temp X Hypoxia 2 2.52 0.78 >0.050 
 Residuals 50 3.23   
* Denotes significant effect 
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ABSTRACT 

Persistent hypoxic conditions in aquatic systems are becoming more frequent 

worldwide, causing large-scale mortalities to aquatic fauna. It is poorly understood, 

however, whether species can acclimate to long-term hypoxic conditions. In two 

experiments we exposed juvenile freshwater fish (Murray cod, Maccullochella peelii), 

to low-oxygen conditions and investigated acclimation effects. Experiment 1 

determined how responses could be modified by exposure to different temperatures 

(20, 24 and 28°C) and oxygen conditions (normoxia/control 6-8mgO2 L-1 and 

hypoxia/low-oxygen 3-4mgO2 L-1), over 30 days. Experiment 2 determined the 

acclimation ability of fish exposed to two temperatures (20 and 28°C) and low-

oxygen conditions (hypoxia/low-oxygen 3-4mgO2 L-1) for three different acclimation 

periods (7, 14 and 30 days). Responses were measured by determining critical oxygen 

tension (Pcrit), loss of equilibrium and aerobic capacity using resting respirometry. In 

experiment 1 resting oxygen requirements were negatively affected by long-term low-

oxygen exposure except at the highest temperature (28°C). However, long-term 

acclimation in low-oxygen improved tolerance as measured by loss of equilibrium but 

not Pcrit. In experiment 2 fish could tolerate lower oxygen levels before reaching loss 

of equilibrium after 7 days acclimation, but this declined overtime. Murray cod were 

most tolerant to low-oxygen at the lowest temperature (20°C) and shortest exposure 

time (7 days). Extended low-oxygen exposure resulted in reduced aerobic capacity of 

fish particularly at the lowest temperature. While prior exposure to low-oxygen may 

allow fish to cope with hypoxic conditions better in the long-term, acclimation time 

was inversely related to tolerance, suggesting that resistance to hypoxia might 

decrease as a function of exposure time. Our study fills a much-needed gap in our 

understanding of how freshwater species acclimate to hypoxia; in particular how 

exposure to prolonged periods of low-oxygen and elevated temperatures affect 

organisms physiologically. 
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INTRODUCTION 

Hypoxia can be fatal to many organisms including mammals, birds, fish, reptiles and 

invertebrates (Hermes-Lima and Zenteno-Savı́n 2002, Bickler and Buck 2007, 

Ramirez et al. 2007). However, countless species have become adapted to periods of 

hypoxia ranging from hours to months (Hermes-Lima and Zenteno-Savı́n 2002, 

Bickler and Buck 2007). Extensive research has shown many of the biochemical and 

physiological mechanisms that allow animals to endure oxidative stress (for reviews 

see: Hochachka and Lutz 2001, Hermes-Lima and Zenteno-Savı́n 2002, Bickler and 

Buck 2007, Ramirez et al. 2007). However, the focus has mostly been on the cellular 

response pathways, protein synthesis, gene expression and metabolic constraints of 

organisms under short-term (hours) exposure to hypoxia with few studies considering 

long-term exposure to hypoxia and the potential for a species to acclimate to low-

oxygen conditions.  

Fishes have adapted to almost all aquatic habitats on Earth and can be found living in 

some of the most extreme environments, yet they are also considered to be some of 

the most sensitive taxa to hypoxia (Vaquer-Sunyer and Duarte 2008, Gräns et al. 

2014). However, the ability of fish to acclimate and adapt to hypoxia has received 

little attention. Furthermore, fish species have not evolved to tolerate all conditions 

simultaneously and often exhibit species-specific responses, for example, certain 

species tolerate temperatures from -2°C in the polar regions to +44°C in African lakes 

and from 1mgO2 L-1 of oxygen to 8mgO2 L-1 (Gräns et al. 2014). Phylogenetic 

comparisons of fish species show that hypoxia tolerance has arisen independently 

many times among different lineages and geographical locations (Hochachka and 

Lutz 2001, Mandic et al. 2009, Killen et al. 2016). Research on the effects of hypoxia 

is mainly focussed on marine and estuarine species, with considerably less attention 

given to freshwater species (Diaz and Rosenberg 2011, Rogers et al. 2016). The 

paucity of research examining acclimation of fish, particularly for freshwater species, 

highlights the need for additional research. 
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Resting respirometry is one method used to determine the thermal tolerance of fish, 

and more recently, hypoxia tolerance (Roche et al. 2013, Nelson and Lipkey 2015). 

Thermal tolerance, in addition to hypoxia tolerance, is an important consideration for 

physiological and behavioural studies as it affects both oxygen demand and the 

amount of dissolved oxygen available in the water (McBryan et al. 2013, Claireaux 

and Chabot 2016). For example, every 10°C increase in temperature results in a 10 to 

20% decrease in dissolved oxygen (Farrell and Richards 2009). Therefore, fish that 

experience a broad thermal range, such as freshwater and estuarine species, will be 

strongly influenced by changes in oxygen levels and temperature. Resting 

respiromentry represents an ideal experimental solution to predict and test organism 

responses to multiple levels of environmental conditions like hypoxia and 

temperature. 

Rapid changes in water partial oxygen pressure (PO2), can have dire consequences on 

aquatic fauna as their capacity to respond to hypoxia is dictated by functioning 

physiological and biochemical systems in place at the time of exposure (Farrell and 

Richards 2009). If fish are unable to extract oxygen efficiently from the environment 

during progressive hypoxia exposure they become less tolerant (Farrell and Richards 

2009). Some fish may be able to acclimate by initiating physiological and 

biochemical changes to enhance body function and extend survival, however, the 

temporal scope of this resistance is poorly understood. Furthermore, as increased 

temperatures result in a reduction in available dissolved oxygen in the water, 

temperature may also diminish the resistance of fish to hypoxia, as it increases 

metabolism in ectotherms. The temporal resistance of fish to hypoxia and their 

acclimation ability has been largely overlooked in the literature.  

We investigated whether prior exposure to hypoxia or low-oxygen could improve the 

tolerance of freshwater fish to hypoxic conditions. We used Murray cod 

(Maccullochella peelii), a susceptible freshwater fish native to the Murray Darling 

Basin (MDB), an extensive river system that is frequently influenced by natural and 

anthropogenic hypoxic events (for further species information see SI). First, we tested 

how Murray cod responded to long-term low-oxygen exposure at different 

temperatures, and then we tested how low oxygen exposure for different lengths of 

time and different temperatures modified fish responses. We measured aerobic 

capacity, the critical oxygen limit of fish (Pcrit) and loss of equilibrium to determine if 
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there was an acclimation response to low-oxygen. We predicted that a) the 

combination of high temperatures and prolonged exposure to low-oxygen would 

exacerbate the effects of hypoxia and limit a fish’s ability to acclimate and b) we 

predicted that duration of exposure to low-oxygen would alter the acclimation 

capacity of fish such that, longer duration of exposure would decrease acclimation 

capacity.  
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METHODS 

Experimental Design 

Juvenile Murray cod (Maccullochella peelii), approximately 55mm in length and 1.5g 

average body mass, were obtained from aquaculture stock from the NSW Hatchery 

Quality Assurance Scheme (HQAS) accredited Silverwater Native Fish Hatchery, 

Grong Grong, NSW, in March 2015. Fish were kept in 250L holding tanks at 20°C at 

the University of Adelaide before being assigned to 20L tanks for the experimental 

treatments. All tanks (250L holding tanks and 20L experimental tanks) were filled 

using aged (dechlorinated) tap water and aerated and filtered for the duration of the 

experiments; evaporation was minimised using plexiglass lids. Fish were fed hatchery 

pellet food until satiation with excess food siphoned out an hour after feeding. Room 

temperature was maintained at 20°C and fish were exposed to a 12:12hr light:dark 

cycle. Water changes of 25% were made daily and water quality was monitored every 

second day for temperature, oxygen levels and saturation, pH, ammonia and nitrite. 

For Experiment 1 we exposed fish for 30 days to two oxygen treatments (normoxic 6-

8mgO2 L-1 or 12-14 kPa and low-oxygen 3-4mgO2 L-1 or 7-9 kPa), and three 

temperature treatments reflective of the species’ natural thermal range; (20, 24 and 

28°C; Lintermans 2007) in an orthogonal design (n=6 treatments). Each treatment 

was duplicated resulting in 12 tanks. Murray cod experience temperatures ranging 

from 4-34°C across their natural range; temperatures chosen reflect those most likely 

to be experienced at the higher end of the thermal range as this range would be most 

affected by low-oxygen exposure (Lintermans 2007). Experiment 2 consisted of three 

acclimation treatments (7, 14 and 30 days exposure to low-oxygen conditions 3-

4mgO2 L-1 or 7-9 kPa) and two temperature treatments (20 and 28°C) again with 

duplicate tanks in an orthogonal design (n=6 treatments, 3 acclimation durations x 2 

temperatures). However, only 8 new tanks (including duplicates) were used for 

Experiment 2 as fish from low-oxygen treatments in Experiment 1 at 20 and 28°C 

were used to measure 30 days of acclimation. Experiment 2 was run following the 

completion of Experiment 1. Fish were randomly assigned to tanks (20L), with about 

11 fish per tank. Fish in treatments ≥24°C were acclimated 2°C per day by adjusting 

the submersible aquarium heaters. To ensure survival of fish during experimentation, 

low-oxygen levels  (3-4mgO2 L-1 or 7-9 kPa) were higher than the globally accepted 
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tolerance limit of 2mgO2 L-1, which is believed to frequently result in mortality of 

aquatic species (Vaquer-Sunyer and Duarte 2008).  

The experiment was designed to provide long-term exposure yet still subject fish to 

low-oxygen conditions and minimise mortality of individuals (i.e. sub-lethal 

treatments) while allowing physiological responses to be tested. For the low-oxygen 

treatments we developed a simple method to deoxygenate the water (Gilmore et al. 

2018). Nitrogen gas (9L/min split across 3 food grade G-Class nitrogen cylinders, at 

3L/min/cylinder) was mixed with 9L/min of air (from an air compressor) in a loosely 

sealed 35L mixing chamber. Two electric air pumps running within the mixing 

chamber pumped the mixed gas into relevant individual tanks using air hosing (of 

equal distance) connected to single air stones (of the same size) with a combined flow 

rate of ~18L/min. Plexiglass lids covered all tanks to minimise turbulence and limit 

diffusion of surrounding atmospheric air. Oxygen levels in all 14 ‘low-oxygen’ tanks 

could be simultaneously controlled for extended periods (Experiment 1 low-oxygen 

tanks = 6, control = 6, Experiment 2 low-oxygen tanks = 8, the additional 4 tanks 

required in this analysis were from Experiment 1).  

Length and weight of each fish was measured at the completion of the experiments 

and used to calculate a simple condition index, Fulton’s K, which assumes the weight 

of a fish is proportional to the cube of its length: 

K = 100 (W/L3) 

Where W is body wet weight (g) and L the total standard length (McMaster and 

Bond), 100 is used to bring the factor close to a value of one. Fulton’s K condition 

index is widely used in fish biology studies to describe condition of the individual and 

has been used in our experiment to show how condition may have changed in the 

different treatments (Nash et al. 2006). 

Experimental treatment conditions were maintained consistently for all experimental 

periods (SUPP. Table 1, 2). Fish lengths and weights showed little variation among 

treatments (SUPP. Table 1).   
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Intermittent Respirometry 

Following 7, 14 or 30 days exposure, fish were fasted for 24hrs prior to experimental 

trials to evacuate the digestive tract so that only oxygen consumption rates (Ṁo2) were 

recorded. Fasting fish were held in an isolated container in the larger water bath 

where respirometry experiments were conducted, to ensure there was no shock 

experienced prior to being placed in resting chambers. Twelve fish per treatment were 

randomly selected and subjected to respirometry experiments.  

Three fish were tested simultaneously using a 4-chamber system (each 300mL 

volume), custom made to fit the fish (1kg animal: 10L water). All chambers were 

submerged in a larger water bath (139x52x20cm), where temperature and oxygen 

levels were controlled and set to match experimental treatments. A closed 

recirculation loop pumped low flowing water over the fish in individual chambers. To 

reduce background respiration water was pumped through a heater/chiller unit fitted 

with a UV lamp to sterilise the water. Further, the whole system was rinsed every 

third day to ensure background consumption of oxygen remained below 15% of the 

resting metabolic rate of fish. The remaining chamber was used to record background 

respiration each day; and was randomised each day of recording.  

Each chamber was fitted with a fibre optic oxygen probe (FireSting, Pyroscience, 

OXROB3), which recorded oxygen consumed during each Ṁo2 determination 

(mgO2kg-1h-1). A Ṁo2 determination period uses the slope of the line of oxygen 

consumption by fish for each 20 minute determination period before water is 

replenished to the chamber for 2 minutes (flushing period). Water was circulated 

intermittently after each Ṁo2 determination using a flushing pump connected to all 

chambers to completely replenish the chamber with oxygenated water from the water 

bath. During the 20min determination period oxygen was not reduced to less than 

1mgO2 L-1 and was above the background respiration rates. Maximum and standard 

metabolic rates (MMR and SMR) were determined using a modified version of the 

method described by Roche et al. (2013), where fish were chased to exhaustion for 

2min or until fish stopped responding and exposed to the air for 40sec before being 

placed inside chambers. For the exhaustive chase individual fish were placed in a 25L 

bucket and encouraged to swim continuously by gently touching the tip of the tail. At 

the completion of the exhaustive chase fish were suspended in air in a mesh net for 
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40sec and then placed immediately inside a chamber. MMR was measured during the 

first determination period. Fish were then left in the chamber for ~24hrs to allow them 

to reach a resting state. The SMR and Ṁo2 was calculated for each determination 

cycle using the equation:  

Ṁ!!  = ([!! ]!! − !!]!! .
!
! .

1
!" 

where (t0), is the oxygen content (mgO2/L) of the water at the conclusion of a 

flushing cycle, and (t1), is the oxygen content measured at the end of a determination 

period, prior to the next flushing cycle. V is the volume of the chamber minus the 

volume of the experimental animal in L, t, is t0-t1, and BW, is body weight of the 

experimental animal in kg. The lowest 10% of measurements were averaged to 

calculate SMR. Background rates were subtracted from Ṁo2 values upon calculation. 

The absolute aerobic scope of fish was calculated by subtracting SMR from MMR 

(MMR-SMR).  

Determining Tolerance to Low-Oxygen and Critical Oxygen Tension (Pcrit) 

In order to record tolerance limits of fish among the different treatments we left fish 

in chambers with the intermittent flushing cycle turned off with only access to the 

oxygen available from water in the chamber (closed respirometry). Fish were 

observed constantly during this period. Fish reached a low-oxygen tolerance limit 

when they lost equilibrium, at which point oxygen level in mgO2 L-1 was recorded 

and fish were immediately removed from the chamber. The critical oxygen tension or 

Pcrit of fish was measured using data from this closed respirometry phase. Pcrit was 

defined as the point at which ṀO2 was reduced below SMR and fish shifted to an oxy-

conforming state. Pcrit was determined for each fish by fitting a segmented regression 

using RStudio Version 1.1.419 (segmented package, https://cran.r-

project.org/web/packages/segmented/segmented.pdf), a method adapted from Yeager 

and Ultsch (1989) and Cook et al. (2013). The critical tension was recorded as the 

point of intersection of the two lines as this indicated the breakpoint at which oxy-

regulating individuals changed to oxy-conforming individuals. This measure differed 

from the low-oxygen tolerance point as it occurred prior to fish losing equilibrium. 
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Statistical Analyses 

A linear mixed effects model (lmm) was fit to the experimental data for MMR, SMR, 

AAS, Pcrit and the low-oxygen tolerance at loss of equilibrium using the R-package 

lmerTest (Kuznetsova et al. 2017). Factors included temperature and oxygen for 

Experiment 1 and temperature and acclimation duration for Experiment 2. Prior to 

model fitting the distribution of the response variable was inspected using quantile 

comparison plots. Each of the response variables closely followed a normal 

distribution, and hence this was considered the most appropriate distribution to model 

the data and warranted the use of the lmm. All treatment levels of temperature, 

oxygen (normoxic or low-oxygen) and acclimation duration (7, 14 or 30 days) were 

treated as fixed factors in both experiments. Post hoc pairwise tests were conducted 

using the least squares means of the fixed effects where significant effects of the fixed 

factors were evident in the linear mixed effects model. Tank was treated as a random 

effect. To assess the variance component of the models the residuals were plotted 

against the fitted values. The random scatter observed around zero indicated constant 

variance across the fitted values for each model. All model analyses were undertaken 

using R-Studio Version 1.1.419 (R Core Team 2018).  

Rearing water temperature, dissolved oxygen (DO) and oxygen saturation in the 

experimental tanks, as well as Fulton’s K factor, were analysed at all possible 

treatment levels (temperature, oxygen and acclimation duration) using a 2-factor 

permutational univariate analysis of variance (ANOVA) with unrestricted 

permutations using PRIMER 6 & PERMANOVA+ software (www.primer-e.com). 

All PERMANOVA+ analyses included Monte Carlo permutation tests to derive the 

probability value and ensure there were sufficient permutations to detect significant 

differences in all tests. All PERMANOVA+ statistical analyses were initially 

conducted as 3-factor permutational univariate ANOVAs with tank as the third factor 

treated as a random factor nested in temperature, oxygen or acclimation duration 

dependent on the experiment. No effects of tank were detected for rearing water or 

during any of the experimental responses in either experiment therefore data were 

pooled and 2-factor permutational univariate ANOVAs were conducted removing 

tank as a factor.  
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RESULTS 

Experiment 1: Effects of temperature and low-oxygen on fish physiology after 30 days 

exposure 

Metabolic Scope 

There was an interactive effect between temperature and oxygen treatments on SMR, 

with fish having higher SMR within the low-oxygen treatments except at the highest 

temperature (28°C, p=<0.050 Table S3, Figure 1A). SMR was higher in low-oxygen 

treatments than in normoxic treatments at 20°C (p=0.020, Figure 1A, Table S3). 

MMR and AAS were not affected by low-oxygen exposure or temperature treatments 

(Table S3).  

	

Figure 1. Mean (±SE) standard metabolic rate (SMR) for individual Murray cod at all 
temperatures (20, 24, and 28°C) and treatments (low-oxygen, 3-4mgO2 L-1 or 7-9 kPa, 
and normoxia, 6-8mgO2 L-1 or 12-14 kPa), replicate tanks were pooled. Multifactorial 
pairwise comparisons are indicated by letters and asterisks where significant 
differences occur (p<0.05). Letters indicate significant differences occurring among 
temperatures for each oxygen level (normoxic or low-oxygen). Brackets and asterisks 
indicate significant differences occurring between oxygen levels for each temperature. 
Red squares represent low-oxygen, 20°C n=8, 24°C n=11 and 28°C n=9, and yellow 
triangles represent normoxia 20°C n=11, 24°C n=11 and 28°C n=10. 
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Low oxygen Tolerance Limits & Pcrit 

Fish exposed to low-oxygen maintained equilibrium for longer than those exposed to 

normoxic conditions (p=0.022, Figure 2A, Table S4). The Pcrit of fish was unaffected 

by hypoxia or temperature (hypoxia p=0.121 and temperature p=0.332, Table S6). 

 

Figure 2. Mean (±SE) low-oxygen tolerance at loss of equilibrium from exposure to 
low-oxygen or normoxia for individual Murray cod (low-oxygen 3-4mgO2 L-1 or 7-9 
kPa, n=28 and normoxia 6-8mgO2 L-1 or 12-14 kPa, n=34). Multifactorial pairwise 
comparisons are indicated by letters where significant differences occur (p<0.05). Red 
squares represent low-oxygen and yellow triangles represent normoxia. 
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Figure 3. Pcrit and average metabolic rate of Murray cod at different kPa’s, 
temperature’s (20, 24 and 28°C) and oxygen exposures (low-oxygen, 3-4mgO2 L-1 or 
7-9 kPa, solid lines or normoxia, 6-8mgO2 L-1 or 12-14 kPa, dashed lines). Treatments 
are distinguished by colour with yellow representing 20°C under normoxia (n=10), 
red representing 20°C under low-oxygen (n=8), teal representing 24°C under 
normoxia (n=11), green representing 24°C under low-oxygen (n=11), pink 
representing 28°C under normoxia (n=9) and blue representing 28°C under low-
oxygen (n=9). Shading around the lines indicates standard error.  
 

Experiment 2: Acclimation of fish at two temperatures under low-oxygen conditions 

Metabolic Scope 

Murray cod had the highest aerobic capacity (AAS) after 14 days exposure to low-

oxygen and the lowest after 30 days exposure (p=<0.001, Figure 4A, Table S5). No 

effect of temperature was detected for AAS (p=0.06, Table S5). There was an 

interaction between temperature and exposure time for both measures of metabolic 

rate (SMR and MMR) with fish held at 28°C, and 14 days exposure to low-oxygen 

having the highest metabolic rates (p=<0.001, Figure 4B & C, Table S5). Fish held at 

20°C and 7 days exposure had the lowest metabolic rates (p=<0.001, Figure 4B & C, 

Table S5). Additionally, fish had higher metabolic rates after 7 and 14 days exposure 

at 28°C compared to 20°C in both SMR and MMR (p=<0.001, Figure 4B & C, Table 

S5).  
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Figure 4. Mean (±SE) A) absolute aerobic scope (AAS) for Murray cod exposed to 
low-oxygen for different acclimation times (7, n=20, 14, n=16, and 30 days, n=17); 
temperature treatments and replicate tanks have been pooled as no significant effects 
were detected. B) Maximum metabolic rates (MMR) and C) standard metabolic rates 
(SMR) for Murray cod exposed to low-oxygen at 20 and 28°C, for three different 
acclimation times (7, 14 and 30 days). Shapes and colours have been used to 
differentiate acclimation times (yellow triangle = 7 days, red circle = 14 days and 
orange square = 30 days), except in A) where rectangles were used as temperatures 
were pooled. Multifactorial pairwise comparisons are indicated by letters and 
asterisks where significant differences occur (p<0.05). Letters indicate significant 
differences occurring between temperatures for each acclimation time (7, 14 or 30 
days). Brackets and asterisks indicate significant differences occurring among 
acclimation times for each temperature. For both B) and C) yellow triangles represent 
seven days exposure at 20°C n=11 and 28°C n=9, red circles represent fourteen days 
exposure at 20°C n=10 and 28°C n=6, and orange squares represent thirty days 
exposure at 20°C n=9 and 28°C n=9. 
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Loss of Equilibrium & Pcrit 

Fish exhibited the greatest tolerance to low-oxygen at 20°C after only 7 days 

exposure, however, fish held at 28°C had the greatest tolerances after 30 days 

exposure to low-oxygen (Post-hoc; between 20 & 28°C after 7 days, p=0.005, and 

between different acclimation times at 20°C, 7 & 14 days, p=0.006 and 7 & 30 days, 

p=0.013 and at 28°C between 14 & 30 days, p=0.019; Figure 5, Table S6). The Pcrit of 

fish was unaffected by acclimation time or temperature (acclimation time p=0.160 

and temperature p=0.376, Table S6). 

	

Figure 5. Mean (±SE) low-oxygen tolerance at loss of equilibrium for individual 
Murray cod exposed to low-oxygen at 20 and 28°C, for three different acclimation 
times (7, 14 and 30 days). Multifactorial pairwise comparisons are indicated by letters 
and asterisks where significant differences occur (p<0.05). Letters indicate significant 
differences between temperatures for each acclimation time (7, 14 or 30 days). 
Brackets and asterisks indicate significant differences occurring among the three 
acclimation times for each temperature. Yellow triangles represent seven days 
exposure at 20°C n=11 and 28°C n=9, red circles represent fourteen days exposure at 
20°C n=13 and 28°C n=6, and orange squares represent thirty days exposure at 20°C 
n=9 and 28°C n=9. 
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Fish Condition 

Fish condition (Fulton’s K) was lowest at 28°C after exposure to low-oxygen for one 

month (Post-hoc; after exposure to low-oxygen between 20 & 28°C p=0.001 and 24 

& 28°C p=0.001; Table S7, Figure S1A). During the acclimation trials, fish exposed 

to low-oxygen for 7 days were healthier (had a higher Fulton’s K) than fish exposed 

for longer (Post-hoc; between 7 & 14 days p=0.001 and 7 & 30 days p=0.001), and 

fish reared at 20°C fared much better during all acclimation periods than those reared 

at 28°C (p=0.001; Table S7, Figure S1B).  

DISCUSSION 

Our results show that prior exposure to low-oxygen could improve the tolerance of 

fish to hypoxic conditions. Additionally we showed that time spent under low-oxygen 

conditions impacted physiological performance. However, counter to expectations, 

physiological performance (aerobic ability) did not improve with exposure to low-

oxygen compared with fish exposed to normoxia.  

Prolonged exposure to low-oxygen improved the tolerance of fish relative to those 

exposed to normoxia, allowing them to tolerate lower levels of dissolved oxygen 

before losing equilibrium. Additionally, acclimation time influenced low-oxygen 

tolerance such that fish exposed for greater periods of time had poorer tolerance, 

though critical oxygen tension (Pcrit) remained unaffected. However, the difference 

between average loss of equilibrium after low-oxygen exposure in our treatments was 

small compared to normoxic treatments (<1mg L-1), suggesting that it may not equate 

to a significant response in the wild. Acclimation of fish to hypoxia may be a 

naturally selected trait for species living in areas prone to low oxygen. For example, 

acclimation to seasonal hypoxia and diel hypoxia exposure has improved the 

tolerance of a number of fish species (Collins et al. 2016, McBryan et al. 2016, 

Rogers et al. 2016). However, chronic and daily exposure over long time periods does 

not always result in improved tolerance particularly in sensitive fish species (Cook et 

al. 2013, Remen et al. 2013). Our results suggest that prior exposure to low-oxygen 

conditions may improve tolerance of fish to hypoxia but that prolonged acclimation 

time to those conditions may significantly reduce survival. Multiple studies have 

found unique adaptations to hypoxia based on life history and habitat use (McBryan et 
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al. 2016). Species which experience a greater fluctuation of environmental conditions 

such as those inhabiting temperate, estuarine and freshwater systems, are likely to 

have a higher level of plasticity than species which remain in stable/slow-changing 

environments. Freshwater species may well have improved hypoxia tolerance due to 

more frequent exposure than saltwater species; this has been supported by differences 

in Pcrit between the two groups (Rogers et al. 2016). Our study species, Murray cod, 

has a broad geographical distribution and likely adapted to a wide range of thermal 

and hypoxic conditions, and this study provides new hypoxia data for a species of 

conservation priority (for further species information see SI; Koehn and Nicol 2016).  

As ectotherms, stress created through temperature changes directly effects growth and 

metabolic rate (Neuheimer et al. 2011). Combined low oxygen and high temperatures 

can be physiologically challenging, making mild hypoxic conditions potentially lethal 

at higher temperatures (McBryan et al. 2016, Sinclair et al. 2016). Prolonged low-

oxygen exposure improved resting oxygen requirements (SMR) at 28°C compared to 

the normoxic control in our study, suggesting an acclimation response however; other 

metabolic rate measures at the same temperature were unaffected. Fish responses to 

changes in temperature and hypoxia vary significantly among and within species 

(Pörtner and Farrell 2008, Healy and Schulte 2012, Sandblom et al. 2014, Rogers et 

al. 2016). Gill remodelling to increase gill surface area has improved oxygen uptake 

in response to temperature and hypoxia for some species (Sollid et al. 2005, McBryan 

et al. 2016). Other influences which may impact hypoxia tolerance include: variation 

in oxygen consumption influenced by ATP production, oxygen carrying capacity of 

blood, and environmental influences such as changes to food intake, diet composition 

and ambient conditions (Salin et al. 2015, Collins et al. 2016, Rogers et al. 2016). 

Prolonged exposure to low-oxygen at the lower end of the species thermal range 

reduced aerobic capacity. Additionally, varied effects of temperature were observed 

after exposure to hypoxia for different durations under measures of metabolic 

capacity of Murray Cod. In contrast, a study that investigated thermal acclimation in 

Murray cod found they were temperature-independent, such that they had a greater 

capacity to transport oxygen to tissues regardless of higher temperatures (Clark et al. 

2005). Aerobic scope values in our study appeared to be similar to aerobic scope 

values observed by Clark et al. (2005), however, our results did not indicate that 

Murray cod was temperature independent. The difference in our findings regarding 
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temperature may be explained by a difference in method as Clark, et al. (2005), 

investigated swimming respirometry rates under a higher flow, while we investigated 

resting rates of this species, as well as exposing fish for a prolonged period to low-

oxygen conditions. Declines in hypoxia tolerance have been attributed to elevated 

temperatures raising metabolic demands in some species (McBryan et al. 2016), 

however; multiple species have displayed improved tolerance to hypoxia following 

temperature stress (Todgham et al. 2005, Burleson and Silva 2011, McBryan et al. 

2013, Fu et al. 2014). Fitness of other species has also been shown to decline due to 

repeated exposure to high temperatures; this is particularly prominent in lizards and 

insects (Bickler and Buck 2007).  

Activity profiles of organisms (i.e. active versus sedentary lifestyles) are associated 

with contrasting levels of aerobic capacity, such that there is a trade-off for 

locomotive performance and tolerance to low resource availability, in particular 

oxygen (Killen et al. 2016). Species better adapted to low levels of oxygen have 

lower aerobic capacity and are able to initiate changes to increase oxygen extraction 

and transport by adjusting gill surface area, oxygen affinity of haemoglobin and 

muscle mitochondrial density (Nilsson and Ostlund-Nilsson 2008, Killen et al. 2016). 

Prolonged exposure to low-oxygen improved the tolerance of Murray cod, although in 

nature this may have had minimal impact on hypoxic tolerance, and was not reflected 

in our metabolic tests. Aerobic ability of fish was linked to long-term low-oxygen 

exposure, such that, fish exposed for a longer period did not show any marked 

improvement in low-oxygen tolerance and only showed improvement in aerobic 

ability after 14 days of acclimation. Therefore, resistance to hypoxia may be likely to 

decrease as a function of exposure time. Furthermore, our results suggest that the 

duration of low-oxygen exposure may play an important role in hypoxia tolerance and 

post-hypoxic exposure metabolism. The lack of distinct effects of temperature and 

low-oxygen on the metabolic rate and aerobic scope could still indicate acclimation 

ability. Another study showed that temperature dramatically reduced tolerance to 

hypoxia, even when aerobic scope was minimally effected (McBryan et al. 2013). 

Acclimation responses of fish remain largely unknown. Fish may move and encounter 

areas with low oxygen, but can actively avoid them (except during widespread 

events), thereby, not acclimating to those conditions, leaving them less likely to 

survive future hypoxic events. Transgenerational transfers of hypoxia tolerance 
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among individuals is also evident in some species (Rogers et al. 2016). Acclimation 

to hypoxic conditions may not be viable for all species as some may be unable to 

make selective trade-offs to cope with a changing climate. Understanding 

physiological responses of fish to environmental stressors is crucial for predicting 

future ecological impacts between environmental change and population level effects 

which will aid in setting conservation targets (Rogers et al. 2016).  

Acclimation to hypoxia is likely to be accompanied by changes to the oxygen 

transport capacity of blood (Collins et al. 2016, Rogers et al. 2016).  Some species 

exhibit increased haemoglobin and haematocrit after chronic hypoxia exposure 

resulting in improved tolerance to hypoxia (Collins et al. 2016, Rogers et al. 2016) 

however; tolerance to hypoxia does not always change (Collins et al. 2016, Rogers 

et  al. 2016). In our study, acclimation of fish at higher temperatures could have been 

improved by increases in haemoglobin leading to increased oxygen carrying capacity 

of the blood improving oxygen uptake during chronic exposure. Increases in 

temperature reduce haemoglobin oxygen binding affinity, as the haemoglobin 

molecule is thermally sensitive, therefore acclimation of fish to higher temperatures 

could counteract reduced transport efficiency by increasing the amount of oxygen 

picked up at the gills (McBryan et al. 2016). Increased transport of haemoglobin may 

explain the possible acclimation of our species at the highest temperature after the 

longest acclimation time. Manipulation of the oxygen carrying capacity of blood in 

relation to hypoxia and temperature is likely to be species-specific, and may be 

affected by life-history traits and the nature of the hypoxic event (Collins et al. 2016). 

Therefore, future research would benefit from testing the oxygen carrying capacity of 

haemoglobin when investigating hypoxia tolerance. 

Progressive warming and an increased propensity for hypoxic events in aquatic 

environments is of critical conservation concern for fish as these stressors are 

associated with shifts in phenology, distribution, abundance and reproduction, as well 

as large scale mortalities (Breitburg et al. 2009, Norin et al. 2014, Rogers et al. 2016). 

Riverine ecosystems have been largely degraded throughout the world, due to flow 

mismanagement and the construction of barriers that limit fish movements (Dwyer 

et  al. 2014, Small et al. 2014, Koehn and Nicol 2016). For example, the Murray-

Darling Basin is home to 46 native species, including Murray cod, but only represents 
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10% total abundance of their pre-European settlement populations (Koehn and Nicol 

2016). To manage the effects of combined temperature and hypoxia we need to 

understand the relationship between instantaneous physiological performance (the 

focus of most physiologically targeted studies) and long-term fitness as well as post-

hypoxic exposure responses (Sinclair et al. 2016). Physiological information on 

species hypoxia tolerance and overall aerobic capacity can be incorporated into 

models to predict the long-term outcomes of deliberate water releases and natural 

flooding events on aquatic life. Models have successfully predicted changes in 

populations due to different stressors, and there is a growing trend to incorporate 

multi-species data into models to maximise the benefits of future conservation 

management plans (Sherman et al. 2007, Koehn and Nicol 2014). Data, which could 

be incorporated to aid model efficiency, include longitudinal studies in nature or 

molecular and physiological markers of performance (Sinclair et al. 2016). Presently, 

a number of management actions exist for the recovery of Murray cod such as stock 

enhancements, translocation efforts, habitat rehabilitation, legislative protection, 

remediation of barriers to fish passage, improved water quality and flow management 

and control of alien species (Lintermans 2013). However, if hypoxic events cannot be 

controlled or managed these efforts will provide little relief for this iconic species. 

Our study showed that Murray cod could persist in low-oxygen conditions, 

particularly after prior exposure, with temperature having minimal effect on 

physiological response. However, prolonged exposure to low-oxygen conditions may 

reduce long-term survival after greater duration periods. By informing water 

managers we can aid in meeting conservation conditions for species like Murray cod. 

For example, environmental water flows could be controlled for release to alleviate 

low-oxygen conditions that persist for longer than 14 days, which may impact Murray 

cod.  

Aerobic scope measures alone were not sufficient in explaining hypoxia acclimation 

in our study. Conclusions based on oxygen consumption rates alone (metabolic scope) 

could thus lead to erroneous interpretations about the acclimation abilities of fish 

when faced with environmental stressors such as hypoxia and elevated temperatures. 

Behavioural tests on the tolerance of fish to low-oxygen illustrated the possible 

acclimation ability of Murray cod, in particular how prolonged exposure to low-

oxygen conditions may physiologically reduce tolerance long-term. Other species 
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may be similarly affected by prolonged periods of low-oxygen conditions, and our 

results provide much needed hypoxia data on a species of conservation concern. 

Future research should target numerous species and their ability to acclimate to 

hypoxia in combination with other stressors. In particular, species recovery from 

hypoxia has been largely overlooked and will aid in understanding the capabilities of 

fish to not only withstand but also endure hypoxic events. Furthermore, development 

of a universal method to measure acclimation response to hypoxia exposure would 

allow direct comparisons among different species as research in this field continues.  
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SUPPLEMENARY DATA 

Supplementary Information 1: 

Study Species 

Percichthyidae: Maccullochella peelii (Murray cod) 

Murray cod is Australia’s largest solely freshwater fish reaching sizes of 1800mm in 

length with weights recorded up to 113.6kg. It reaches maturity at around 4-5 years 

for both sexes (Couch et al. 2016). This species occurs throughout the Murray-

Darling system, a system that encompasses 5 separate states and is the largest 

catchment in Australia covering approx. 1 million km2 (Koehn and Nicol 2016). At 

present there are active national recovery programs in place for the conservation of 

this species, which is listed, as vulnerable under the Environmental Protection and 

Biodiversity Conservation Act 1999 (EPBC) and as critically endangered on the 

IUCN Red List (www.iucnredlist.org, Couch et al. 2016). This species has a 

predominantly sedentary lifestyle, and commonly uses a sit-and-wait predation 

technique, but is also well known for making large migrations (>1km, Clark et al. 

2005). Murray cod inhabit a wide variety of habitats including clear, rocky streams to 

slow flowing, turbid rivers and billabongs, with a strong preference for structural 

woody habitats (Koehn and Nicol 2016). Their abundance has been drastically 

reduced across their natural range due to both natural (e.g. increased temperature, 

hypoxia) and anthropogenic factors (e.g. extensive barriers in place which limit fish 

passage and environmental watering, Koehn and Nicol 2016).  
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SUPP Table 1. Summary of the rearing conditions and length and weight data of the 
fish within treatment tanks for physiological experiments. Data are displayed as 
means ± standard error (SE) with n representing the sample size of fish. For 
temperature, dissolved oxygen and saturation, n denotes the number of recordings 
taken throughout the experimental period; this differed with exposure length.  

Desired 
Treatments 

Oxygen, 
mg L-1 Tank 

Temperature, 
°C 

Dissolved 
Oxygen,  
mg L-1 Saturation, % 

Fish 
Length, 
cm 

Fish 
Weight, g n 

7 Days 
Exposure   (n=5) (n=5) (n=5)    
         
20 4 1 20.0±0.09 3.92±0.02 56.4±0.26 5.7±0.19 2.3±0.18 6 
  2 20.2±0.07 3.96±0.01 57.2±0.09 5.9±0.08 2.4±0.23 5 
28 4 1 28.0±0.14 3.96±0.02 53.6±0.15 6.3±0.23 2.2±0.23 6 
  2 28.3±0.05 3.88±0.01 55.4±0.13 5.8±0.23 2.2±0.18 3 
14 Days 
Exposure   (n=9) (n=9) (n=9)    
         
20 4 1 19.9±0.10 3.80±0.01 51.0±0.31 5.8±0.11 2.0±0.16 7 
  2 19.8±0.03 3.87±0.01 53.5±0.12 5.7±0.15 1.8±0.19 6 
28 4 1 28.2±0.04 3.94±0.01 54.5±0.11 5.1±0.01 1.4±0.01 2 
  2 27.8±0.04 3.90±0.01 56.4±0.12 5.6±0.16 1.1±0.21 5 
30 Days 
Exposure   (n=17) (n=17) (n=17)    
         
20 4 1 20.4±0.08 4.07±0.01 50.0±0.15 6.1±0.02 2.2±0.16 5 
  2 20.1±0.04 3.95±0.01 52.5±0.09 5.8±0.06 1.9±0.16 3 
 8 1 20.2±0.06 6.81±0.01 90.6±0.08 6.0±0.10 1.6±0.06 6 
  2 20.9±0.04 6.75±0.01 91.3±0.07 5.8±0.18 1.9±0.17 5 
24 4 1 24.3±0.04 3.79±0.01 53.6±0.07 5.6±0.05 1.6±0.10 5 
  2 24.4±0.03 3.94±0.01 56.8±0.06 6.1±0.16 2.4±0.18 6 
 8 1 24.2±0.04 6.78±0.01 89.4±0.06 6.2±0.24 2.1±0.18 5 
  2 24.1±0.03 6.85±0.01 92.1±0.04 5.9±0.12 1.8±0.18 6 
28 4 1 28.0±0.03 3.89±0.01 57.4±0.06 6.7±0.17 2.3±0.18 5 
  2 28.2±0.04 3.78±0.01 55.5±0.06 6.6±0.19 2.1±0.18 4 
 8 1 28.3±0.03 6.90±0.01 92.2±0.06 5.5±0.06 1.3±0.05 4 
  2 27.9±0.03 6.58±0.01 91.5±0.05 5.5±0.13 1.4±0.13 8 
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SUPP Table 2. Analysis of variance examining the effects of measured temperature 
(temp), dissolved oxygen (DO), and oxygen saturation (SAT) on temperature and low 
oxygen treatments in the rearing water for the month long exposure and acclimation 
to low oxygen. * refers to P values <0.05 
Water Source of Variation df MS F P 
Month long exposure      
Temp Temp 2 1013.3 15427 ≤0.001* 
 Oxygen 1 0.14 2.18 >0.050 
 Temp X Oxygen 2 1.29 19.69 ≤0.001* 
 Residuals 198 6.5x102   
DO Temp 2 0.21 26.08 ≤0.001* 
 Oxygen 1 420.8 53053 ≤0.001* 
 Temp X Oxygen 2 0.15 18.35 ≤0.001* 
 Residuals 198 7.9x103   
SAT Temp 2 158.9 120.49 ≤0.001* 
 Oxygen 1 69446 52656 ≤0.001* 
 Temp X Oxygen 2 97.34 73.81 ≤0.001* 
 Residuals 198 1.32   
Acclimation to low oxygen      
Temp Temp 1 1560.4 28298 ≤0.001* 
 Days Exposed 2 0.55 9.91 ≤0.001* 
 Temp X Days Exposed 2 0.13 2.35 >0.050 
 Residuals 118 5.5x102   
DO Temp 1 4.1x102 11.99 ≤0.001* 
 Days Exposed 2 2.6x102 7.69 ≤0.001* 
 Temp X Days Exposed 2 0.20 58.58 ≤0.001* 
 Residuals 118 3.5x103   
SAT Temp 1 99.59 72.76 ≤0.001* 
 Days Exposed 2 26.33 19.23 ≤0.001* 
 Temp X Days Exposed 2 106.86 78.07 ≤0.001* 
 Residuals 118 1.37   
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SUPP Table 3. Linear mixed effects model examining the effects of temperature and 
oxygen on the metabolic rates of Murray cod. All possible temperatures (20, 24 and 
28°C) and oxygen treatments (normoxic 6-8 and low oxygen 3-4mg L-1) are 
considered for fish exposed to treatments for 30 days.  

Metabolic Rate Sources of Variation df MS F P 
MMR Temp 2 3451.9 0.71 >0.050 
 Oxygen 1 1996.1 0.41 >0.050 
 Temp X Oxygen 2 4580.4 0.95 >0.050 
      
SMR Temp 2 2168.5 0.70 >0.050 
 Oxygen 1 5039.2 1.63 >0.050 
 Temp X Oxygen 2 11468 3.71 <0.050* 
      
AAS Temp 2 159.1 0.08 >0.050 
 Oxygen 1 5107.0 2.61 >0.050 
 Temp X Oxygen 2 3017.8 1.54 >0.050 
* Denotes significant difference. 

SUPP Table 4. Linear mixed effects model examining the effects of temperature and 
oxygen on the ability of Murray cod to tolerate low-oxygen conditions. All possible 
temperatures (20, 24 and 28°C) and oxygen treatments (normoxic 6-8 and low oxygen 
3-4, mg L-1) are considered.  

Low-oxygen Tolerance Sources of Variation df MS F P 
Pcrit Temp 2 2.57 1.39 >0.050 
 Oxygen 1 6.44 3.49 >0.050 
 Temp X Oxygen 2 5.24 2.84 >0.050 
      
Loss of equilibrium Temp 2 0.01 0.27 >0.050 
 Oxygen 1 0.33 5.57 <0.050* 
 Temp X Oxygen 2 0.05 0.88 >0.050 
* Denotes statistical significance 
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SUPP Table 5. Linear mixed effects model for the effects of temperature and length 
of exposure (7,14 or 30 days) to low oxygen on the metabolic rates of Murray cod. 
All possible temperatures (20 and 28°C) are considered.  

Metabolic Rate Sources of Variation df MS F P 
MMR Temp 1 73412 13.94 ≤0.001* 
 Days Exposed 2 120506 22.88 ≤0.001* 
 Temp X Days 2 52306 9.93 ≤0.001* 
      
SMR Temp 1 40165 10.19 ≤0.001* 
 Days Exposed 2 67884 17.22 ≤0.001* 
 Temp X Days 2 46046 11.68 ≤0.001* 
      
AAS Temp 1 7157.3 3.73 >0.050 
 Days Exposed 2 14621.8 7.62 ≤0.001* 
 Temp X Days 2 10.6 0.005 >0.050 
* Denotes significant difference. 
 

SUPP Table 6. Linear mixed effects model for the effects of temperature and days 
exposure (7, 14 or 30 days) on the ability of Murray cod to tolerate low-oxygen 
conditions. All possible temperatures (20, 24 and 28°C) are considered. 

Low-oxygen Tolerance Sources of Variation df MS F P 
Pcrit Temp 1 1.49 0.62 >0.050 
 Days Exposed 2 1.75 0.73 >0.050 
 Temp X Days 2 0.65 0.27 >0.050 
      
Loss of equilibrium Temp 1 0.21 4.5 <0.050* 
 Days Exposed 2 0.18 3.95 <0.050* 
 Temp X Days 2 0.17 3.78 <0.050* 
* Denotes statistical significance 
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SUPP Table 7. Analysis of variance for the effects of oxygen exposure over a month 
and acclimation to low oxygen on Fulton’s K condition factor. Month long exposure 
(Experiment 1) concerns fish exposed to either low oxygen or normoxia for 30 days 
under three different temperatures (20, 24 and 28°C). Acclimation to low oxygen 
(Experiment 2) concerns fish exposed only to low oxygen conditions for differing 
numbers of days (7, 14 and 30 days) and under two different temperatures (20 and 
28°C).  

Fulton’s K Condition Index Sources of Variation df MS F P 
Exp 1. Temperature Temp 2 0.26 9.16 ≤0.001* 
 Oxygen 1 3.26x102 2.32 >0.050 
 Temp X Oxygen 2 6.88x102 4.89 ≤0.001* 
 Residuals 56 1.41x102   
      
Exp 2. Acclimation Temp 1 0.97 37.57 ≤0.001* 
 Days Exposed 2 0.32 12.33 ≤0.001* 
 Temp X Days Exposed 2 7.62x103 0.29 >0.050 
 Residuals 50 2.59x102   

	

 

Figure SUPP 1. Mean (±SE) Fulton’s K factor A) temperature experiment with 
exposure to low oxygen (light grey) or normoxia (grey) separated by temperature 
treatments, and B) after acclimation to low oxygen at two temperatures after 7 (light 
grey), 14 (grey) or 30 days (dark grey) (n=54).  
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ABSTRACT 

Determining the effects of hypoxia or low oxygen levels in water can be problematic 

due to difficulties tracking the location, timing and duration of hypoxic events. 

Otoliths (ear stones) of fish may provide a means to track hypoxia due to daily 

accretion of material that reflects the environmental conditions experienced by fish. 

But first, it is necessary to identify elemental tracers that indicate hypoxic conditions. 

Using a controlled laboratory experiment, juvenile golden perch (Macquaria 

ambigua) were reared under different temperature treatments (20, 24 and 28°C) 

crossed with normoxic and hypoxic conditions for one month. Additionally, 

physiological experiments were conducted to determine effects of hypoxic conditions 

on otolith chemistry. Water samples and otoliths were analysed for a suite of elements 

to determine specific tracers associated with hypoxic conditions using laser ablation 

inductively coupled plasma-mass spectrometry (LA ICP-MS). Trace elements in 

otoliths of golden perch were not linked to hypoxic conditions and there was no 

relationship between trace elements and several physiological variables. We highlight 

the potential for Mn in otoliths as an environmental indicator of hypoxia as it was not 

physiologically regulated. If this elemental tracer is validated as a hypoxia tracer it 

will be key to reconstructing long term trends in hypoxia using freshwater fish 

otoliths, information that would be almost unattainable using traditional methods.  

  



	 83	

INTRODUCTION 

Low oxygen or hypoxic conditions in freshwater systems are increasing in frequency 

and severity on a global scale (Diaz and Rosenberg 2008, Collins et al. 2013, 

Limburg et al. 2015). Although hypoxic conditions can be caused by both natural 

processes and human activities, it is believed that worsening conditions are due to the 

increasing influence of human activities in freshwater systems (i.e. damming, 

pollution and eutrophication, Diaz and Rosenberg 2008). Instrumental records of 

oxygen only span a few decades (Diaz and Rosenberg 2008, McCarthy et al. 2014), 

therefore, to determine if human activities have increased the frequency and severity 

of hypoxia it is necessary to find a way to measure its historic occurrence over longer 

time scales.  

Otoliths, the ear stones of fish, can provide a record of environmental changes. 

Otoliths are metabolically inert aragonitic structures, which accrete layers of 

calcareous material on a daily basis (Campana 1999, Elsdon et al. 2008, Limburg et 

al. 2015). They form part of the hearing and balance system in teleost fishes and are 

surrounded by the endolymph fluid. Trace elements incorporated into otoliths can 

reflect environmental conditions. For example, salinity and temperature vary with 

strontium and barium concentrations in ambient water, which modifies relationships 

between otoliths and water in predictable ways (Elsdon et al. 2008, Collingsworth et 

al. 2010, Aschenbrenner et al. 2016). Analysis of specific trace elements incorporated 

into the otoliths of fish provides a broader temporal record of the life history of 

individual fish when matched to growth increments (e.g. Izzo et al. 2016). Otolith 

studies are increasing our understanding of fish life histories and may even be used to 

retrospectively track how environmental conditions have changed (Limburg et al. 

2011, Limburg et al. 2015, Izzo et al. 2016). Furthermore, sclerochronological and 

biochronological techniques can be applied to otoliths found in scientific collections, 

sedimentary deposits, fossil and archaeological sites to extend the temporal record as 

otoliths suffer minimal diagenetic changes (Disspain et al. 2012, Izzo et al. 2016). 

Therefore, determining a chemical tracer for hypoxic conditions in otoliths could 

place current changes in hypoxic frequency and severity into context.  
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Elements that show promise as markers of hypoxia, include those that are abundant in 

low oxygen environments. Manganese (Mn) has been associated with hypoxia in 

marine environments (Campana 1999, Miller 2009, Limburg et al. 2015, 

Aschenbrenner et al. 2016). Dissolved Mn is available as a redox product and could 

be indicative of low-oxygen concentrations (Limburg et al. 2015). Actual 

concentration of bottom water Mn depends on the duration of hypoxia and build-up of 

Mn oxides in sediment and availability of particulates that remain dissolved in 

solution for days at a time (Miller 2009, Limburg et al. 2011, Mohan et al. 2014, 

Limburg et al. 2015). Dissolved Mn fluxes out of hypoxic or anoxic sediments and is 

then available for uptake by fish that move into these hypoxic regions (Limburg et al. 

2011, Limburg et al. 2015). Conceivably then if fish are present during redox 

conditions they may be able to incorporate these elements into otoliths or other 

biomineralized structures (Lu et al. 2010, Limburg et al. 2015). However, the 

underlying mechanisms for Mn incorporation into otoliths are still being researched, 

and flux out of sediment may not be the only available source of Mn. Currently there 

has been no known validation of Mn or other elements as a tracer of hypoxic 

conditions for freshwater fish from sediments or through other means. 

Markers of hypoxia may also be elements that reflect reduced physiological 

regulation of a fish’s internal environment. Due to regulatory differences between 

freshwater and marine fish, physiological barriers may impact incorporation of Mn or 

other elements into the otolith (Woodcock et al. 2012). For example, saltwater fish 

gain ions from food and by drinking seawater, and excrete excess ions in concentrated 

urine and excess salts actively across the gill epithelium. In contrast, freshwater fish 

gain ions actively through the gills and from food with excess ions lost through urine 

and some from diffusion at the gills (Webb et al. 2012). Once fish are exposed to 

hypoxia they become physiologically stressed, and barriers usually in place that 

regulate elemental uptake in the organism could be overcome or ignored in favour of 

more important physiological functions. Therefore, elements abundant within a fish’s 

internal environment, such as magnesium obtained readily from food (Woodcock et 

al. 2012), may flood in when physiological regulation (homeostasis) breaks down. 

Water temperature could also influence physiological regulation as hypoxic 

conditions are exacerbated at higher temperatures, increasing metabolic stress and 
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potentially allowing greater concentrations of elements to be incorporated onto the 

otolith.   

Our aim was to determine if trace elements in otoliths could be used as a natural 

tracer of hypoxic events in freshwater systems. A suite of elements (Ba, Mg, Mn, Sr, 

Na and Zn) that are a by-product of chemical and redox reactions were investigated. 

In a controlled laboratory setup, fish were exposed to sub-lethal levels of hypoxia, as 

well as normoxia, combined with different temperatures. To investigate physiological 

regulation of key elements, we also linked elemental concentration to physiological 

performance of the fish. Our specific hypotheses were that A) manganese would act 

as an indicator of hypoxic conditions in otoliths of fish exposed for a prolonged 

period; B) the ability of fish to regulate ions would breakdown under stressful low 

oxygen conditions; and C) manganese incorporation was not reliant on sediment or 

driven through physiological regulation.  
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MATERIALS & METHODS 

Animal Husbandry 

Juvenile golden perch (Macquaria ambigua) approximately 40mm SL, were obtained 

from the Silverwater Native Fish Hatchery, Grong Grong, NSW. The species chosen 

is a key native long-lived freshwater fish endemic to the Murray Darling Basin, 

Australia that is listed as threatened under different bodies including the IUCN Red 

List (Lintermans 2007, Couch et al. 2016). Golden perch is known for large-scale 

migrations and is usually found actively swimming in the main channel of the river 

where is adopts a demersal lifestyle (Clark et al. 2005, Koehn and Nicol 2016). The 

Murray Darling Basin is increasingly exposed to fluctuating hypoxic conditions and 

high temperatures and golden perch have generally low tolerances to hypoxia, 

experiencing mortalities from 3 mg O2 L-1 and lower putting them at risk (Small et al. 

2014, Gilmore et al. 2018). 

Fish were bred from a common brood stock to reduce the influence of genetic 

variability on otolith chemistry. Upon arrival at the University of Adelaide, fish were 

held in 250L holding tanks equipped with filtration and aeration, at 20°C. Aged 

(dechlorinated) tap water was used in the tanks. Golden perch were fed live 

blackworm (Lumbriculus variegatus) to satiation once a day; waste was siphoned out 

an hour after feeding. Fish were exposed to a 12:12h light:dark cycle and room 

temperature was maintained at 20°C. Ammonia, nitrite and pH levels were monitored 

and 25% water  changes (approximately 4L from an aged water bath held under 

experimental hypoxia or normoxia to reduce water chemistry changes and thus otolith 

elemental composition) were made every second day to maintain fish health. All tanks 

were aerated, water was filtered for the duration of the experiment and evaporation 

was minimised by covering tanks with clear plexiglass lids. 

Otolith Marking Technique 

Eight days after arrival the fish were marked using alizarin complexone, which allows 

experimental otolith growth to be distinguished from growth prior to the experiment. 

The marking involved immersing the fish in an aerated tank and adding alizarin 

complexone (20mg/L); fish were then left overnight (Van der Walt and Faragher 

2002). Respirometry experiments were commenced after fish were held in 
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experimental conditions for a minimum of 30 days. At the completion of the 

respirometry experiments (for details see Metabolic Rate Measures) fish were 

euthanized in an ice-slurry, and standard length and weight recorded (SUPP Table 1). 

The alizarin mark was observed on the dissected otoliths under a microscope to 

ensure sufficient otolith material had been laid down during the experiment. 

Additional otolith material had been accreted between the alizarin mark and end of 

the experiment/otolith edge (mean experimental growth was 208.6µm for hypoxic 

treatments held at 20°C and 217.2µm at 28°C, and 243.1µm for normoxic treatments 

held at 20°C and 252.3µm at 28°C) such that spot samples (26µm) were completely 

within the experimental period for golden perch. There was sufficient otolith growth 

at all temperatures allowing experimental growth to be distinguished from non-

experimental.  

Experimental Treatments 

Fish were randomly assigned to 20L treatment tanks ten days after arrival to give fish 

sufficient time to acclimate, with approximately 11 fish per tank (SUPP Table 1). The 

experimental design consisted of two oxygen treatments (normoxic 6-8mg O2 L-1 or 

12-14 kPa and hypoxic 3-4mg O2 L-1 or 7-9 kPa), combined with three temperature 

treatments (20, 24 and 28°C). Golden perch can tolerate a range of water temperatures 

however hypoxic conditions are exacerbated by warmer water temperatures. Our 

chosen temperatures are reflective of the species’ natural upper thermal range 

(Lintermans 2007). The temperatures chosen reflect common temperatures along the 

Murray river during summer, the seasonal period where hypoxic events have the most 

devastating impacts. While water temperature can reach up to 30°C in summer, this is 

uncommon, therefore our thermal range reflects the most likely maximum 

temperatures fish would encounter in the wild. All possible combinations of 

temperature and oxygen were included, with duplicate tanks for each treatment (n=12 

tanks). Tanks held at ≥ 24°C were heated independently using submersible aquarium 

heaters; temperature was measured every second day to ensure temperature treatments 

were maintained. Temperatures were increased by 2°C per day until the required 

experimental temperature was reached. Hypoxic oxygen levels were chosen for long-

term exposure (≥30 days) without mortality of fish. The globally accepted hypoxia 

tolerance limit of 2 mg O2 L-1 for fish causes high levels of stress and mortality for 

most species (Vaquer-Sunyer and Duarte 2008). The experimental hypoxia levels 
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chosen were slightly higher than this tolerance level to ensure survival of fish. A 

simple degassing system was used to control oxygen levels in hypoxic treatments, 

using nitrogen gas to deoxygenate the water (see Gilmore et al. 2018, for details). 

Oxygen levels in all ‘hypoxic’ tanks could be simultaneously controlled for extended 

periods using this method. Fish were exposed to experimental conditions for ≥30 days 

to ensure sufficient otolith growth occurred prior to chemical analysis.  

Metabolic Rate Measures 

To understand the physiological regulation of elements under stress, physiological 

performance and elemental concentrations in the same fish were measured. Resting 

respirometry represents the ideal system for manipulating environmental influences 

like hypoxia. Resting respirometry allows the user to measure resting rates (standard 

metabolic rate, SMR), exhaustive rates (maximum metabolic rate, MMR) and the 

total capacity for activity (absolute aerobic scope, AAS) of oxygen consumption 

without putting fish under oxidative pressure from exercising (Roche et al. 2013). 

More specifically AAS, is a physiological measure of the total capacity of an 

organism for activity and also specific dynamic action; low aerobic scope indicates 

high stress and high aerobic scope indicates low stress. SMR represents the basic 

resting oxygen requirements of a fish; low SMR means basic oxygen requirements 

take longer to be reached creating low stress, and high SMR means basic oxygen 

requirements are reached earlier creating stress and reducing the ability of fish to 

carry out other activities i.e. feeding and reproduction. MMR measures the oxygen 

requirements under exhaustive activity; low MMR means exhaustive activity is 

limited under stress and exhaustion occurs earlier after activity, and high MMR means 

fish can endure exhaustive activity longer with low stress. Physiological responses to 

hypoxia were measured using resting respirometry, a method used to determine 

metabolic oxygen consumption rates (ṀO2) of fish under different environmental 

conditions. Approximately 12 fish per treatment were randomly selected and 

subjected to respirometry experiments (SUPP Table 1). Fish were fasted for 24 hours 

prior to tests to avoid the influence of digestion on ṀO2 estimates.  

Multiple fish were tested simultaneously using a custom designed four-chamber 

system with each chamber made to fit the size of the fish based on a 1 kg animal: 10 L 

of water ratio. The four chambers were submerged in a larger water bath that was 
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used to control temperature and oxygen levels. Three chambers were used to measure 

fish oxygen consumption with the fourth (which was randomly assigned each test) 

measuring background respiration rates. Individual chambers used a closed 

recirculation loop to pump low flowing water over the fish. Each chamber was fitted 

with a fibre optic oxygen probe (Pyroscience, OXROB3, Aachen, Germany) to 

measure oxygen consumed during each ṀO2 determination.  

A ṀO2 determination period uses the slope of the line of oxygen consumption by fish 

for each 20-minute determination period before water is replenished to the chamber 

for 2 minutes (flushing period). Water was circulated intermittently after each ṀO2 

determination using a flushing pump connected to all chambers to completely 

replenish the chamber with oxygenated water from the water bath. During the 20min 

determination period oxygen did not decline below 1 mg O2 L-1 and was held above 

the background respiration rates of microorganisms (background rates were 

continuously measured in one of the four resting chambers during each experimental 

trial with the chamber used alternated throughout trials). Maximum resting routine 

and standard metabolic rates, measures of the highest and lowest capacity for activity 

by fish (MMR and SMR), were determined using a modified version of the method 

described by Roche et al. (2013), where fish were chased to exhaustion for 2min in a 

25L bucket and exposed to the air in a mesh net for 40sec before being placed 

immediately inside chambers. MMR was measured during the first determination 

period. Fish were then left in the chamber for ~24hrs to allow them to reach a resting 

state. The SMR and ṀO2 was calculated for each determination cycle using the 

equation:  

Ṁ!!  = ([!! ]!! − !!]!! .
!
! .

1
!" 

where (t0), is the oxygen content (mg O2/L) of the water after a flushing cycle, and 

(t1), is the oxygen content measured at the end of a determination period, prior to the 

next flushing cycle. V is the volume of the chamber minus the volume of the 

experimental animal in L, t is time (t1-t0 in hr), and BW, is body weight of the 

experimental animal in kg. The lowest 10% of measurements were averaged to 

calculate SMR. Background rates were subtracted from Ṁo2 values upon calculation. 

The absolute aerobic scope (AAS) of fish was calculated by subtracting SMR from 
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MMR (MMR-SMR), a high AAS indicates low stress and a low AAS indicates high 

stress as fish reach the critical oxygen requirements for basic survival.  

Physiological measures of absolute aerobic scope and standard metabolic rate (AAS 

and SMR) were compared to Mn:Ca concentrations in otoliths, as Mn has the 

potential to be  under physiological control and could be used as an indicator of 

hypoxia (see Limburg et al. 2015). Maximum metabolic rate measures were used to 

calculate AAS, but as total aerobic capacity, AAS, and basal resting oxygen 

requirements, SMR, are critical to understanding hypoxic responses our study 

focussed on these two metrics. 

Otolith Preparation and Analyses 

At the completion of the respirometry experiments fish were euthanized in an ice-

slurry, and standard length and weight recorded (SUPP Table 1). Both sagittal otoliths 

were dissected from fish, cleaned in Milli-Q water and air-dried. An otolith from each 

fish was embedded in epoxy resin (Epofix, Struers) that had been spiked with 40ppm 

indium, and then sectioned transversely through the core to a thickness of 

approximately 300 µm using a low speed diamond saw. Sections were polished using 

9 and 3-µm lapping film, cleaned in Milli-Q water, dried overnight in a laminar flow 

cabinet, and mounted on glass microscope slides using indium-spiked thermo-plastic 

glue (Crystal BondTM 509). Slides were stored in clean sealable plastic bags until 

analysis.  

The concentration of elements in the otolith (88Sr, 137Ba, 55Mn, 24Mg, 23Na, 43,44Ca, 
34S, 57Fe, 66Zn and 115In) were determined using a ASI M50 laser connected to an 

Agilent 7700cs inductively coupled plasma-mass spectrometer (ICP-MS) (see SUPP 

Table 2 for operating parameters).  To correct for machine drift, a reference standard 

(National Institute of Standards and Technology, NIST 612) was analysed after every 

10 samples and a carbonate standard (MACS3) was analysed to calculate accuracy 

and precision of analyses at the beginning and end of the day. Spots were sampled 

from the edge of the otolith representing experimental growth, based on viewing the 

position of the alizarin complexone mark (a single spot was taken per sample, see also 

Otolith Marking Technique). A pre-ablation was done to remove any surface 

contamination. Prior to each ablation, background levels of elements in the ablation 

chamber were measured for 30s. The element:Ca ratio was calculated by converting 
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the elemental concentration in mols, and then dividing the element in mols by Ca 

(mols). Ca was treated as an internal standard. The element:Ca ratio was used as 

elements (88Sr, 137Ba, 55Mn, 24Mg, 23Na and 66Zn) either substitute for Ca or are found 

in the interstitial spaces or the organic component in otoliths (Campana 1999, 

Doubleday et al. 2015). 115In was analysed so otolith material could be distinguished 

from epoxy resin and to confirm otolith material was constantly ablated. Precision, 

calculated as the mean coefficients of variation of repeated measures, for all elements 

based on the NIST 612 standard were <8%. The coefficients of variation of the 

elements 34S and 57Fe were above this level and were not considered further due to 

poor precision. The ablation chamber was purged for 20s after each ablation to 

remove any background gas or sample particles that could contaminate future 

samples. 

Water Analyses 

Element concentrations in the rearing water were monitored by taking two replicate 

25mL water samples from each tank, one at the beginning and one at the conclusion 

of the experimental period. All samples were filtered through a 0.45 µm filter into 

acid washed vials, acidified using 500 µL of ultrapure nitric acid, and refrigerated 

until analysis. Vials were acid washed by soaking in 10% nitric acid prior to use and 

rinsed several times in Milli-Q water.  

The water samples were analysed by the National Measurement Institute using an 

ICP-AES (inductively coupled plasma - atomic emission spectrometer; Varian-Vista 

Pro ICP-AES) or a Quadrupole ICP-MS (inductively coupled plasma-mass 

spectrometer; Elan DRC-2, Perkin-Elmer). The concentration of each element (the 

specific isotopes used were 88Sr, 137Ba, 55Mn, 24Mg, 23Na, and 66Zn) was expressed as 

an element:Ca ratio to estimate actual elemental concentrations. 

Statistical Analyses 

Statistical analyses of otolith and water sample data were conducted using PRIMER 6 

& PERMANOVA+ software (www.primer-e.com). Element:Ca ratios in the water 

and otolith material were analysed individually in a 3-way permutational univariate 

analysis of variance (ANOVA) with unrestricted permutations of the data. 

Temperature and hypoxia were treated as fixed factors with replicate tanks treated as 
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a random factor nested in the interaction between temperature and hypoxia. Post hoc 

pairwise tests were conducted where significant differences were detected in the main 

tests to determine when the differences occurred among treatments or tanks. Monte 

Carlo tests were included in all analyses to ensure that there were sufficient 

permutations to detect significant differences in all tests. If significant tank effects 

were not detected in either otolith or water data for individual elements a 2-way 

permutational ANOVA was performed without tank as a nested factor. Similar results 

were found for the main effects and interaction for both 2-way and 3-way tests 

therefore only the findings from the 3-way tests are reported (see Supplementary 

Tables). 
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RESULTS 

Rearing Conditions 

Treatment conditions were maintained for golden perch throughout the experimental 

period (SUPP. Table 3). Fish lengths and weights showed little variation among 

treatments (SUPP. Table 3). Significant differences in temperature and dissolved 

oxygen were detected among relevant treatments, in line with the experimental design 

(SUPP. Table 4). In general, element:Ca ratios in the rearing water did not differ 

among treatments.  

Trace elements and hypoxia 

Concentrations of the elements did not vary due to hypoxic exposure (Mn, Mg, Na, 

Zn, Sr and Ba). Otolith Mn:Ca was not significantly influenced by hypoxia in this 

study (Figure 1). No differences in otolith Mn:Ca, Mg:Ca or Zn:Ca were found 

among treatments for golden perch (p>0.05, Table 1). Concentrations of Na:Ca 

(p<0.05) in the otoliths of golden perch were negatively affected by increasing 

temperatures, but not by hypoxia (Figure 2, Table 1). Significant effects on Ba:Ca, 

Sr:Ca and Na:Ca were detected among replicate tanks for golden perch (Ba & Sr:Ca 

p<0.001 and Na:Ca p<0.05, Figure 2, Table 1). Otolith experimental growth was 

negatively affected at both temperatures while under hypoxic conditions (mean 

experimental growth was 208.6µm at 20°C and 217.2µm 28°C under hypoxia and 

243.1µm at 20°C and 252.3µm at 28°C under normoxia). 

  



	 94	

Table 1. Analysis of variance for the effects of temperature and hypoxia exposure on 
trace elements found in the otoliths of golden perch. All possible temperatures (20, 24 
and 28°C) and hypoxic treatments (4 mg L-1 and 8 mg L-1) are considered.  

Trace Element Sources of Variation df MS F P 
Na:Ca Temp 2 25.94 8.18 <0.050* 
 Hypoxia 1 3.16 1 >0.050 
 Temp X Hypoxia 2 0.82 0.26 >0.050 
 Tank (Temp X Hypoxia) 6 3.19 2.29 <0.050* 
 Residuals 95 1.39   
      
Mg:Ca Temp 2 5.31x10^-2 3.08 >0.050 
 Hypoxia 1 7.66x10^-3 0.44 >0.050 
 Temp X Hypoxia 2 3.35x10^-2 1.94 >0.050 
 Tank (Temp X Hypoxia) 6 1.72x10^-2 0.99 >0.050 
 Residuals 95 1.74x10^-2   
      
Mn:Ca Temp 2 5.35x10^-8 1.21 >0.050 
 Hypoxia 1 2.08x10^-9 4.72x10^2 >0.050 
 Temp X Hypoxia 2 2.73x10^-8 0.61 >0.050 
 Tank (Temp X Hypoxia) 6 4.39x10^-8 0.87 >0.050 
 Residuals 95 5.03x10^-8   
      
Zn:Ca Temp 2 1.18x10^-2 3.32 >0.050 
 Hypoxia 1 1.19x10^-3 0.33 >0.050 
 Temp X Hypoxia 2 2.92x10^-3 0.82 >0.050 
 Tank (Temp X Hypoxia) 6 3.58x10^-3 1.82 >0.050 
 Residuals 95 1.97x10^-3   
      
Sr:Ca Temp 2 7.74x10^-2 0.41 >0.050 
 Hypoxia 1 0.46 2.51 >0.050 
 Temp X Hypoxia 2 0.25 1.38 >0.050 
 Tank (Temp X Hypoxia) 6 0.18 16.71 ≤0.001* 
 Residuals 95 1.13x10^-2   
      
Ba:Ca Temp 2 6.78x10^-5 2.88 >0.050 
 Hypoxia 1 3.18x10^-5 1.35 >0.050 
 Temp X Hypoxia 2 5.29x10^-5 2.24 >0.050 
 Tank (Temp X Hypoxia) 6 2.38x10^-5 5.28 ≤0.001* 
 Residuals 95 4.51x10^-6   
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Figure 1: Mean (±SE) amounts of A) Mn:Ca  B) Mg:Ca and C) Zn:Ca within otoliths of 
golden perch reared at different temperatures and oxygen levels. White bars represent fish 
reared under hypoxic conditions (4 mg O2 L-1) and grey bars denote those reared under 
normoxia (8 mg O2 L-1). Replicate tanks have been pooled, as there were no significant tank 
effects. There were no significant effects of temperature, hypoxia or an interaction between 
the two.  
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Figure 2: Mean (±SE) concentrations of Na:Ca (A), Sr:Ca (B) and Ba:Ca (C) within otoliths 
of golden perch reared at different oxygen levels (hypoxic, 4 mg L-1 and normoxic, 8 mg L-1) 
and temperatures (20, 24 and 28°C). Coloured bars denote replicate tanks, grey (tank 1) and 
white (tank 2), with significant tank effects denoted by an asterisk (*).  
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Trace elements and metabolic stress  

Metabolic stress, linked to hypoxia, was not associated with an increase in Mn:Ca 

concentrations for golden perch (Figure 3). No discernible patterns among metabolic 

rate and otolith chemistry were detected for golden perch (Figure 3). 

Trace elements in Otoliths vs. Water 

No linear relationships between the concentration of elements in the water and those 

found in the otolith were observed (SUPP Figure 5). Water condition data showed 

that there was variability in water conditions among treatments and tanks, but all were 

within the expected variability intentionally created to meet experimental parameters 

(SUPP Table 3, 4, 5 and 6). As such, chemical differences in otoliths are likely driven 

by physiological change rather than changes in the water chemistry. 

 

 

Figure 3: Mean (±SE) concentrations of Mn:Ca within otoliths and A) standard metabolic 
rate (SMR, energy consumption at rest) and B) absolute aerobic scope (AAS, total capacity 
for energy) of golden perch reared at different temperatures and oxygen levels. White 
symbols represent fish reared under hypoxic conditions (4 mg O2 L-1) and black symbols 
denote those reared under normoxia (8 mg O2 L-1). Symbol shape represents temperature 
treatment (● 20°C, ■ 24°C, ▲ 28°C) Replicate tanks have been pooled, as there were no 
significant tank effects.  
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DISCUSSION 

Environmental reconstructions based on elements found within the hard parts of 

organisms provide an unparalleled ability for scientists to elucidate modern and 

historical environmental changes. Herein, we were unable to link trace elements in 

otoliths of golden perch with hypoxic conditions. Comparisons of physiological 

performance to concentrations of trace elements in otoliths under hypoxic conditions 

also found no discernable patterns. Of the elements sampled within the otoliths Mn 

was expected to show the most promise as a marker of hypoxia. However, as aquaria 

did not contain any added sources of Mn (i.e. from sediment or elemental spiking) we 

were unable to validate Mn as a useful environmental indicator as physiological 

processes did not affect it, an interaction that to our knowledge has rarely been 

studied.  

Contrary to previous studies based in marine environments, Mn was not associated 

with hypoxic conditions (Limburg et al. 2011, Limburg et al. 2015, Aschenbrenner et 

al. 2016). The mechanism of Mn uptake in otoliths remains uncertain, as Mn is found 

in high concentrations in the primordia (nucleation points in the core) of otoliths 

along with some other trace elements (Miller 2009, Limburg et al. 2011, Limburg et 

al. 2015). Maternal transfer of Mn is one possible explanation for a high 

concentration in the primordia but does not explain high concentrations of Mn in 

otoliths in later years (Limburg et al. 2015).  Elevated dissolved Mn in the water is 

the most likely cause of elevated Mn in otoliths of fish later in life; however, to date 

there is little empirical evidence of this relationship (Limburg et al. 2011, Mohan et 

al. 2014, Limburg et al. 2015). Enriching the water with Mn typically has no impact 

on otolith Mn concentrations, with a lack of sediment in controlled aquaria suspected 

as the cause (Elsdon and Gillanders 2003, Miller 2009, Collingsworth et al. 2010). 

The chemical characteristics of Mn (monoisotopic) may be the cause of contrary 

findings between lab and field based studies (Limburg et al. 2015). The speciation 

and production of Mn can be inhibited by parameters that affect oxygenation and pH 

(Limburg et al. 2015). Furthermore, sediment redox reactions may not take place 

except under very low dissolved oxygen levels (DO <1mg L-1, Collingsworth et al. 

2010, Limburg et al. 2015). Therefore, a lack of sediment in aquaria tanks, or 

dissolved oxygen intentionally kept at 3-4mg L-1 to ensure long term survival, may 

have affected the incorporation of Mn into the otoliths in this study.  
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No source of Mn was provided in this study (e.g. no sediment, nor enrichment of Mn 

in water) allowing us to test if there was a physiological effect of hypoxic stress on 

Mn incorporation. While incorporation of Mn was generally elevated in otoliths of 

fish exposed to hypoxia (at 24 and 28°C), this was not significant, suggesting a Mn 

signature is not influenced by physiological stress (i.e. endogenous factors do not 

outweigh exogenous factors). Incorporation of Mn then is likely due to environmental 

factors, for example enhanced Mn flux in hypoxic systems. Mn incorporation could 

be physiologically regulated and our experiment designed to maintain sub-lethal 

concentrations may have limited a physiological response. However, if the impact of 

internal stress dynamics on Mn incorporation is low, as indicated in our study, it will 

be a useful indicator for environmental reconstructions of hypoxia. Our results lend 

further support to lab based studies where Mn incorporation was not detected and also 

lacked sediment and Mn enrichment (Mohan et al. 2014), and to field based caging 

experiments detecting environmentally-derived Mn (Forrester 2005, Dorval et al. 

2007, Mohan et al. 2012). Future studies should focus on the mechanism of uptake of 

this element to determine if it is physiologically regulated under hypoxic extremes or 

requires more specific conditions, as well as sampling from different size and age 

classes of wild caught fish known to have survived hypoxic events.  

Mn is not an exclusive indicator of hypoxic encounters in fish; other elements may 

also be used as indicators but often have limited validation. Magnesium levels in 

otoliths are often related to somatic growth and diet (Limburg et al. 2011, Woodcock 

et al. 2012, Aschenbrenner et al. 2016). Few studies have validated it as a tracer of 

environmental conditions as it is considered to be under physiological control 

(Woodcock et al. 2012, Barnes and Gillanders 2013). Our study found no correlation 

between elevated levels of Mg in the otoliths of golden perch and hypoxia. Uptake of 

Mg and otolith growth continues even when fish are starved suggesting the process 

that drives otolith accretion is closely linked to metabolic rate, and that the rate of 

otolith accretion is directly proportional to the metabolic rate of the fish (Limburg et 

al. 2018). If the physiological regulation of Mg is influenced by hypoxic conditions it 

could provide a valuable record of the physiological health of the fish, as well as an 

indicator of hypoxic events (Woodcock et al. 2012). Recently, it was proposed that 

the mechanism allowing uptake of Mg onto otoliths was a two-step process driven by 

active metabolic transport (Limburg et al. 2018). Higher levels of metabolic activity 
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are thought to drive more movement of Mg through the endolymph fluid to the otolith 

(Limburg et al. 2018). Inherent to this theory is the idea that Mg uptake is scaled with 

metabolism, such that limiting conditions such as high temperatures and hypoxia 

mirror incorporation rates, or reflect bioenergetic controls (e.g. consumption, 

metabolism, excretion, growth) (Limburg et al. 2018). Mg incorporation associated 

with physiological performance in this study was not related to high levels of 

metabolic activity. Golden perch are more tolerant of hypoxic conditions than other 

species being able to acclimate to levels from 3 mgO2 L-1 and lower (Gilmore et al. 

2018), which suggests low oxygen conditions during the experiment may not have 

been stressful enough to induce a physiological response to allow elevated 

incorporation of Mg onto the otoliths of golden perch. Further support for this theory 

comes from a study investigating elemental spiking, where concentrations of Mg did 

not increase in otoliths despite water spiking, suggesting some physiological 

regulation (Gilmore unpub, 2013). Additionally, dietary influences were kept to a 

minimum as all fish were fed the same during experimentation, however similar 

experiments in the future could measure dietary influences. Mg uptake in otoliths may 

be less heavily regulated under hypoxic stress allowing elevated concentrations to be 

accreted onto the otolith potentially indicative of an environmental event. 

Alternatively, Mg uptake is under complete physiological control, such that, hypoxia 

changes physiology and the level of Mg uptake in the otolith. However, there has 

been no experimental validation of this direct relationship to date (Limburg et al. 

2018).  

Other elements may also bind to the surface of the otolith under periods of high stress 

(Sturrock et al. 2015, Gronkjaer 2016, Limburg et al. 2018). Fe in the otoliths of fish 

has received minimal attention, presumably because it is difficult to measure using 

ICP-MS due to argon interferences, as was the case in our study (Limburg et al. 

2015). The rarity of dissolved forms of reduced Fe2+ in the water column and its 

affinity with oxygen has often led researchers to suspect it is unlikely to be useful as 

an indicator of hypoxia (Limburg et al. 2015).  Fe was enriched in the blood of fish 

compared to that of the endolymph fluid similarly to Mg in one study, which may 

suggest it is also physiologically regulated by the organisms through partitioning 

(Melancon et al. 2009).  Inorganic iodine present as iodide (I-, reduced form) and 

iodate (IO3-, oxidised form) has also been used as an indicator of deoxygenated waters 
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in marine systems using biogenic carbonates such as corals and foraminifera shells 

(Lu et al. 2010, Limburg et al. 2015). It is likely to also be present in otoliths, but has 

rarely been studied (Lu et al. 2010, Limburg et al. 2015). Phosphorus as a by-product 

of dissolved organic carbon which is released during the breakdown of organic 

matter, may also be useful as an indicator of hypoxic events particularly in freshwater 

systems where flushing of organic matter is less regular (McBryan et al. 2013). 

Incorporation of any elements indicating sub-lethal hypoxic exposure requires 

survival of the species through a hypoxic event and roughly a month to become 

apparent on the otolith (Campana 1999, Elsdon and Gillanders 2003, Elsdon and 

Gillanders 2006). Elements naturally occurring in low quantities in fish habitats then 

may not be useful indicators of hypoxic conditions. Further research will be necessary 

to determine the cause of elemental discrimination on otolith incorporation in fish and 

determine the physiological mechanisms that drives them (Woodcock et al. 2012).  

Environmental interactions are going to effect physiological reactions in all fish. Most 

challenging is using otoliths and the trace elements incorporated on their matrix as 

indicators of environmental cues where trace elements are physiologically controlled. 

Herein, we were unable to find a link between otolith chemistry and poor 

physiological performance when fish were exposed to hypoxia. Future research 

should continue to tease apart the interactions of physiological controls on trace 

element concentrations in otoliths. We also suggest that future experimental studies 

including Mn as a measure of hypoxic exposure should include sediment in tanks to 

allow realistic redox reactions to occur. Otoliths can be preserved over long time 

periods and have untapped potential as tracers of environmental events like hypoxia. 

Elements that are not subject to physiological regulation will provide reliable records 

of environmental change over long timescales, information that may be unattainable 

by other means. 
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SUPPLEMENTARY INFORMATION 

 

SUPP Table 1: Summary of number of golden perch, showing experimental 
treatments and sample sizes (n) for each stage of experimentation. Fish length and 
weight refers to fish in tanks length and weight at the completion of the experiment. 

 Hypoxia Tank 
Fish in 
Tanks, n 

Otoliths 
analysed, n 

Physiological 
measures, n 

Fish Length, 
cm  

Fish 
Weight, g 

20 4 1 11 11 10 5.4±0.28 1.8±0.39 
  2 11 10 5 5.6±0.22 1.8±0.30 
 8 1 10 9 4 5.4±0.03 2.3±0.50 
  2 11 9 3 5.7±0.26 2.3±0.75 
24 4 1 10 11 5 6.0±0.39 2.4±0.65 
  2 11 9 7 5.6±0.16 1.9±0.28 
 8 1 10 6 4 5.9±0.36 1.9±0.56 
  2 11 11 8 5.7±0.25 2.1±0.50 
28 4 1 10 6 6 5.7±0.43 2.1±0.90 
  2 10 8 4 5.6±0.52 2.6±0.50 
 8 1 11 9 9 5.2±0.15 1.8±0.62 
  2 11 8 4 5.6±0.31 2.3±0.47 

 

SUPP Table 2. Operating parameters for the Resonetic ASI M50 laser connected to 
the Agilent 7700cs inductively coupled plasma-mass spectrometer (ICP-MS).  

Laser    

 
Wavelength  213 nm 

 
Mode Q-switch 

 
Frequency 5 Hz 

 
Spot size 26 µm 

 
Spot scan rate 3 µm s-1 

 
Laser energy 100mJ 

 
Carrier  Ar (0.92 L·min-1) 

Attenuator value 25%T 
ICP-MS 

 
 

Optional gas He (58%) 

 
Cone Pt 

 

Dwell times (ms) 23Na (100), 137Ba (500), 88Sr (200), 
43Ca (30), 44Ca (30), 115In (100), 
55Mn(1000), 24Mg(500), 66Zn (500) 
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SUPP Table 3. Summary of the rearing conditions of golden perch within treatment 
tanks. Data are displayed as means ± standard error (SE) with n representing the 
sample size of fish. For temperature, dissolved oxygen and oxygen saturation, n 
denotes the number of recordings taken throughout experimental period.  

Water 
Conditions Hypoxia Tank 

Temperature, 
°C 

Dissolved 
Oxygen,  
mg L-1 Saturation, % n 

   (n=100) (n=100) (n=100)  
20 4 1 19.3±0.09 3.82±0.07 53.0±0.94 11 
  2 18.8±0.08 4.17±0.10 55.5±1.30 11 
 8 1 19.7±0.07 6.70±0.05 92.4±0.92 10 
  2 19.1±0.16 6.74±0.04 92.3±0.56 11 
24 4 1 24.3±0.03 3.36±0.05 49.6±0.69 10 
  2 24.7±0.07 3.32±0.06 50.0±0.94 11 
 8 1 23.4±0.03 5.96±0.03 88.2±0.36 10 
  2 24.1±0.05 5.65±0.03 86.2±0.42 11 
28 4 1 27.3±0.05 3.30±0.05 51.1±0.72 10 
  2 27.4±0.03 3.03±0.06 47.3±0.91 10 
 8 1 26.9±0.05 5.63±0.03 88.1±0.36 11 
  2 26.4±0.12 5.59±0.03 88.5±0.41 11 

 

SUPP Table 4. Analysis of variance for the effects of temperature and hypoxia on 
temperature, dissolved oxygen (DO), oxygen saturation (SAT) and hypoxia in the 
rearing water of golden perch. 

Water Source of Variation df MS F P 
Temp Temp 2 5886.9 506.02 ≤0.001* 
 Hypoxia 1 39.31 3.38 >0.050 
 Temp X Hypoxia 2 32.84 2.82 >0.050 
 Tank (Temp X Hypoxia) 6 11.64 20.02 ≤0.001* 
 Residuals 1148 0.58   
DO Temp 2 99.88 41.30 ≤0.001* 
 Hypoxia 1 1881.5 778.35 ≤0.001* 
 Temp X Hypoxia 2 2.14 0.89 >0.050 
 Tank (Temp X Hypoxia) 6 2.42 8.68 ≤0.001* 
 Residuals 1148 0.28   
SAT Temp 2 2787.1 13.96 <0.050* 
 Hypoxia 1 4.23 2118.9 ≤0.001* 
 Temp X Hypoxia 2 73.60 0.37 >0.050 
 Tank (Temp X Hypoxia) 6 199.81 3.57 ≤0.001* 
 Residuals 1148 55.91   
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SUPP Table 5. Analysis of variance for the effects of temperature and hypoxia on 
levels of trace elements in the experimental rearing water of golden perch. All 
temperature and hypoxia treatments are considered here. 

Trace 
Element 

Sources of Variation df MS F P 

Ba:Ca Hypoxia 1 0.008 2.61 >0.050 

 
Temp 2 0.002 0.79 >0.050 

 
Hypoxia x Temp 2 0.003 1.02 >0.050 

 
Tank(Hypoxia x Temp) 6 0.003 0.52 >0.050 

 
Res 12 0.006                  

Mg:Ca Hypoxia 1 3.1 0.00 >0.050 

 
Temp 2 1521.3 0.91 >0.050 

 
Hypoxia x Temp 2 1885.0 1.13 >0.050 

 
Tank(Hypoxia x Temp) 6 1671.7 0.73 >0.050 

 
Res 12 2277.2                   

Mn:Ca Hypoxia 1 0.06 1.20 >0.050 

 
Temp 2 0.05 0.91 >0.050 

 
Hypoxia x Temp 2 0.03 0.57 >0.050 

 
Tank(Hypoxia x Temp) 6 0.05 1.01 >0.050 

 
Res 12 0.05                  

Na:Ca Hypoxia 1 121330 1.75 >0.050 

 
Temp 2 946700 13.65 >0.050 

 
Hypoxia x Temp 2 63675 0.92 >0.050 

 
Tank(Hypoxia x Temp) 6 69369 0.23 >0.050 

 
Res 12 307750                  

Sr:Ca Hypoxia 1 0.22 2.97 >0.050 

 
Temp 2 0.04 0.55 >0.050 

 
Hypoxia x Temp 2 0.06 0.75 >0.050 

 
Tank(Hypoxia x Temp) 6 0.07 3.84 >0.050 

 
Res 12 0.02                  

 

SUPP Table 6. Summary of the elemental water conditions golden perch were 
exposed to within treatment tanks. Data are displayed as means ± standard error (SE) 
with n representing the sample size of water measures (beginning of experiment, 
middle of experiment, conclusion of experiment).  

Water 
Conditions Hypoxia Tank 

Ba:Ca 
(mmol/mol) 

Mg:Ca 
(mol/mol) 

Sr:Ca 
(mmol/mol) 

Mn;Ca 
(mmol/mol) 

Na:Ca 
(mol/mol) 

Golden 
Perch   (n=3) (n=3) (n=3) (n=3) (n=3) 
20 4 1 0.24±0.03 0.42±0.03 1.68±0.02 0.56±0.55 2.98±0.31 
  2 0.2±0.04 0.43±0.02 1.47±0.07 0.01±0 2.93±0.22 
 8 1 0.15±0.08 0.38±0 1.72±0.16 0.03±0.02 2.97±0.1 
  2 0.16±0.03 0.4±0 1.26±0.05 0.06±0.04 2.9±0.16 
24 4 1 0.28±0.07 0.39±0.02 1.89±0.17 0.13±0.12 3.08±0.03 
  2 0.17±0.04 0.42±0.01 1.49±0.08 0.01±0 3.16±0.05 
 8 1 0.17±0.06 0.46±0.04 1.34±0.04 0.01±0 3.71±0.51 
  2 0.18±0.03 0.39±0.04 1.27±0.07 0.01±0 3.2±0.15 
28 4 1 0.19±0.05 0.43±0.04 1.42±0.08 0.04±0 3.62±0.57 
  2 0.13±0.05 0.41±0.06 1.48±0.13 0.01±0 3.54±0.58 
 8 1 0.18±0.08 0.47±0.02 1.42±0.11 0.02±0.01 3.87±0.68 
  2 0.16±0.06 0.41±0.06 1.26±0.08 0.01±0 3.5±0.52 
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SUPP Figure 1: Mean otolith element:Ca ratio versus water element:Ca ratio separated by 
oxygen conditions (hypoxic 3-4mg L-1, or normoxic 6-8 mg L-1) among tank and temperatures 
during the experimental period. Graph shows golden perch otolith/water Mn:Ca (mmol/mol).  
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CHAPTER FIVE 

 

USING FISH EAR BONES TO TRACK HYPOXIA IN 
FRESHWATER 

 

Kayla L. Gilmore, Zoe A. Doubleday and Bronwyn M. Gillanders 

Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute,  

University of Adelaide, Adelaide, SA, 5005, Australia 

 

Above: Image of Murray cod (Maccullochella peelii) modern otolith collected at Lock 2 on 

the Murray river, South Australia, Australia. Photo credit: Kayla Gilmore  
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ABSTRACT 

Tracing the oxygen history of fish throughout their life is difficult, but the otoliths 

(ear bones) of fish may provide a novel option. Otoliths grow incrementally and 

accrete CaCO3 along with trace elements over the whole life of the fish. Our aim was 

to determine if trace elements in the otoliths of fish could be used as a natural tracer 

of hypoxic events in freshwater systems. We examined otoliths from modern and 

historical collections of field-caught fish that could have experienced or died from 

hypoxic events. We measured the trace elements in otoliths using laser ablation 

inductively coupled plasma-mass spectrometry (LA ICP-MS). Transects across field 

caught fish otoliths allowed us to correlate spikes in manganese, an element 

previously used to indicate hypoxia, to particular years of growth. We also examined 

historic newspaper articles describing hypoxia or events associated with hypoxia 

(major floods and drought) using the National Library of Australia database to 

determine if there was a link between manganese spikes in otoliths and hypoxic 

events. Our study is the first to explore the link between hypoxia and otolith 

chemistry in a freshwater environment, and adds to the use of elemental tracers and 

archived articles for detecting hypoxic conditions and tracking its occurrence through 

time. 
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INTRODUCTION 

Ecosystems worldwide have been dramatically changed from their historic baseline 

conditions through human activities, climate change and other natural events (Izzo 

et  al. 2016, Disspain et al. 2018). Human activities in particular, have exacerbated 

the occurrence, extent and severity of natural events, such as drought, floods, and 

hypoxia (low levels of dissolved oxygen in water, Diaz and Rosenberg 2011, 

Whitworth et al. 2012, Limburg et al. 2018). Effective conservation and management 

requires baseline information on long-term patterns of environmental and ecological 

community structure to set realistic and sustainable goals for environmental 

improvement (Carder and Crock 2012, Haidvogl et al. 2015, Jenny et al. 2016). 

However, in many cases these historic baselines do not exist. 

Hypoxia is a naturally occurring event that has received global attention as its 

prevalence increases in aquatic systems (Diaz and Rosenberg 2008, Diaz and 

Rosenberg 2011, Limburg et al. 2011). Establishing a historical baseline for 

comparison is difficult, as the technology to record its presence is relatively new 

(Diaz and Rosenberg 2011). Increased temperatures, eutrophication, environmental 

water releases, accumulation of dissolved organic matter and restrictions to water 

flow all contribute to hypoxic occurrence (Baldwin and Whitworth 2009, Whitworth 

et al. 2012, Limburg et al. 2015). At present we understand what hypoxia or low 

levels of dissolved oxygen are, how they occur and what mechanisms aid in altering 

its impact (Limburg et al. 2011). However, our understanding of the long-term effects 

of hypoxia to fish populations, fisheries and ecosystems is limited.  

Rivers and lakes were modified through human activities and settlement many years 

before modern ecological monitoring began (Haidvogl et al. 2015, Jenny et al. 2016). 

In fact, instrumental records of oxygen only span a few decades (Diaz and Rosenberg 

2008, McCarthy et al. 2014, Haidvogl et al. 2015). Archaeological sites, historic and 

modern scientific collections, provide the opportunity to collect data about past 

environmental conditions and fishing practices, including resources such as preserved 

bone and tissue samples, photographs and anecdotal records (Disspain et al. 2012, 

Alleway et al. 2016, Izzo et al. 2016). Furthermore, when combined with archival 

written records (e.g. boating and fishing ledgers, menus and newspapers) they enable 
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the evaluation of long-term environmental changes (Disspain et al. 2011, Alleway 

et  al. 2016, Izzo et al. 2016).  

Otolith (ear bone) chemistry is a valuable tool for unravelling critical questions in fish 

ecology and past environmental conditions (Disspain et al. 2011, Walther et al. 2017). 

Otoliths are found in the inner ear of teleost fishes and form prior to hatching, 

growing continuously throughout their life (Campana 1999, Campana and Thorrold 

2001). Although fish use these for hearing and balance, the daily accretion of material 

on the surface of the otolith in alternating layers of calcium carbonate and protein 

have further applications for scientific research (Campana 1999, Elsdon et al. 2008). 

Many studies have used otoliths for reconstructions of age and growth of fish, but 

increasingly their chemical properties and microstructure are also used to reconstruct 

environmental histories (Limburg et al. 2011, Limburg et al. 2015, Disspain et al. 

2016). Exploration of the chemical elements occurring in otoliths has been dominated 

by a few key elements (strontium (Sr) and barium (Ba)), generally believed to derive 

from water and be readily substituted for Ca in the calcium carbonate matrix (Elsdon 

et al. 2008, Doubleday et al. 2014, Walther et al. 2017). Both Sr and Ba have been 

utilised as effective tracers of past environmental variation in temperature and salinity 

explaining the proliferation of studies using these chemical markers (Reis-Santos 

et  al. 2012, Walther and Limburg 2012, Izzo et al. 2017, Walther et al. 2017).  

Physiological factors may also influence the uptake of elements in addition to 

environmental factors, opening the doors to other chemical elements to explain 

environmental variation (Limburg et al. 2011, Walther et al. 2017, Altenritter et al. 

2018). Manganese (Mn) has been the focus of recent studies as it can be affected by 

physiological regulation and may indicate different environmental patterns (Limburg 

et al. 2011, Limburg et al. 2015, Walther et al. 2017). Hypoxic conditions create 

physiological stress, and change regular physiological function in fish; therefore, 

uptake of manganese in otoliths could be linked to physiological stress caused by 

hypoxia (Limburg et al. 2015, Sturrock et al. 2015, Gilmore et al. 2018). Dissolved 

manganese is also available as a product of redox reactions and thus, useful as an 

indicator of low oxygen conditions (Limburg et al. 2015). At present there remains a 

lack of experimental validation of the uptake and incorporation dynamics of both new 

and previously explored elements in different physicochemical settings such as 

hypoxia, pH differences, water pollution and upwelling (Mohan et al. 2014, Walther 
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et al. 2017). Element choice, as well as studies that validate environmental and 

biological mechanisms driving observed chemical patterns are crucial to expanding 

the use of otolith chemistry (Walther et al. 2017). 

This paper combines qualitative data collected from digitised newspaper articles and 

quantitative data collected from otolith archives. The archives represent two time 

periods, early 1900s and early 2000s, and are collected from the lower Murray 

Darling Basin, Australia. The specific aims of this paper were to A) validate Mn as a 

chemical tracer of hypoxia in a freshwater system known to experience natural and 

anthropogenically induced hypoxia, B) examine the efficacy of Mn as a tracer among 

different species, C) utilize Mn to record a changing baseline of hypoxic water 

conditions throughout the lives of the fish, and C) highlight the value of qualitative 

data in aiding interpretation of trace element analysis of historic and modern otoliths.  
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Figure 1. Map showing sites of collected samples within the Murray Darling Basin 
(Australian Capital Territory, ACT). Image (adapted from map on 
murrayriver.com.au).  

BACKGROUND OF THE STUDY AREA 

The Murray Darling Basin is the largest freshwater catchment in Australia covering 

approx. 1 million km2 or 14% of Australia’s land area (see Figure 1, Koehn 2015, 

Koehn 2016, Koehn and Nicol 2016). It spans six legislative jurisdictions and a 

myriad of different governmental departments and agencies each with separate 

interests and disparate responsibilities. This complex political landscape often results 

in area specific management targets reflecting short-term interests, with little 

consideration of flow on effects (Koehn 2015). Fed from headwaters in the Snowy 

Mountains, the Murray incorporates Australia’s three longest rivers the Darling (2740 

km), Murray (2530 km) and Murrumbidgee (1690 km) rivers (Koehn 2015), and 

flows southwest through the Mallee Trench and Mallee Gorge to the Lakes and 

Coorong district and finally, to the Southern Ocean (Disspain et al. 2012). The region 

is highly dynamic experiencing periods of severe drought and floods and significant 

anthropogenic influences (Figure 2). Human occupation in the region dates back from 

c.8,500 years ago, and further archaeological records support that this area was among 

the most densely populated in Australia at the time of European arrival (Disspain 



	 118	

et  al. 2012). Specifically, the construction of barrages in the 1940s, as well as further 

construction of locks and weirs and the use of water for agricultural irrigation in 

subsequent years, has led to significantly altered water flows and the system is 

generally in poor health (Disspain et al. 2012, Koehn 2015). Traditionally the area 

was surrounded by forest and scrubland but is now dominated by agricultural lands.   

The Murray Darling Basin has been subjected to periods of hypoxia (Whitworth et al. 

2012, Koehn and Nicol 2016), which are believed to have increased in frequency and 

severity since European settlement in the 1840s (Disspain et al. 2012). Furthermore, 

increases in summer rainfall, which exacerbate hypoxic events and more frequent 

climatic extremes, are also expected due to climate change (Whitworth et al. 2012, 

Koehn 2015). A recent example of hypoxia in this system occurred following the 10-

year Millennium Drought (Figure 2). The basin experienced large-scale floods and 

prolonged periods of hypoxic blackwater, affecting 2000kms of the river with 

widespread fish kills (Whitworth et al. 2012).  

 

 

Figure 2. Timeline showing major droughts and floods over the sampling period 
across the lower Murray river (information for timeline collected from 
samemory.sa.gov.au, murrayriver.com.au and floodvictoria.vic.gov.au, Koehn 2015). 

METHODS 

Study species 

The fish of the Murray Darling Basin are culturally important and contribute to 

tourism and recreational fishing (Koehn 2015). However, native fish in the Murray 

Darling Basin have been estimated to be at 10% of their pre-European abundance, due 

to natural (e.g. increased temperatures and hypoxia) and anthropogenic factors (e.g. 

barriers to water flow and environmental watering, Koehn and Nicol 2016). Two 

native long-lived species endemic to the Murray River region were chosen for this 

study; Murray cod (Percichthyidae: Maccullochella peelii) and golden perch 

(Percichthyidae: Macquaria ambigua). They are the largest species in the MDB 

WWII 
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weighing up to 114 and 23 kg, respectively (Lintermans 2007, Koehn and Nicol 

2016). Both species are opportunistic carnivores however, they have quite different 

lifestyles (Lintermans 2007). Murray cod are predominantly sedentary, and have a 

strong preference for structural woody habitats, often inhabiting the same area for 

many years, however, there are also records of this species typically making small 

migrations (>1km, Clark et al. 2005, Koehn and Nicol 2016). In comparison, golden 

perch are typically found in the main channel from fast flowing upper reaches to 

lowland, turbid and slow flowing reaches and in deep pools within these habitats and 

regularly make large migrations (>1000km, Lintermans 2007).  

Both species have been bred by government and commercial hatcheries as part of 

ongoing conservation efforts and active national recovery programs currently in place 

in Australia (Lintermans 2007, Couch et al. 2016). Murray cod are listed as critically 

endangered on the International Union for Conservation of Nature (IUCN) Red List 

(www.iucnredlist.org, Couch et al. 2016), and golden perch is identified as vulnerable 

in Australia (Lintermans 2007).  

Otolith Preparation 

Archived otolith collections from Australian government agencies were mostly used 

in this study (see Table 1). Otoliths from archived collections were classified as either 

modern (collected <15 years ago) or historic (collected >15 years ago). Ninety-four 

percent of Murray cod and 73% of golden perch otoliths came from archived samples, 

with the remaining opportunistically collected from natural fish kills. Collections 

included samples from the middle to lower portion of the Murray River including 

from New South Wales, NSW, Victoria, VIC, and South Australia, SA. Otoliths were 

first rinsed using ultrapure water and then left to air-dry overnight. Otoliths were then 

embedded in latex molds in indium spiked resin (40ppm) to allow discrimination of 

otolith and resin, and placed in an oven maintained at 54.5°C overnight to harden. 

Otoliths were then sectioned transversely through the core using a low-speed diamond 

saw lubricated with ultrapure water. Sections were approximately 300µm and were 

polished to 200µm using 30- and 9-µm lapping film. Sections were mounted on slides 

using crystal bond, cleaned and placed in plastic bags for storage.  
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For the two species a total of 140 sectioned otoliths (Murray cod n=91 and golden 

perch n=49), were ablated to investigate the trace element data across 59 years (see 

Figure 3) for signs of elevated levels of manganese (spikes >5µmol/mol Mn:Ca, see 

Chemical analysis for further information). The age at time of death ranged from 2 to 

28 years for golden perch and from 3 to 41 years for Murray cod (see also Figure 3 

for distribution of sampled years). The average age of golden perch (n=49) was 7.2 

years with the majority of samples aged between 4 and 8 years (75%; n=37). The 

average age of Murray cod (n=91) was 14.1 years with the majority of samples aged 

between 5 and 16 years (68%; n=62). Modern golden perch were mostly collected in 

the colder months (n=11 of 13 fish), while the historic golden perch were mostly 

collected in the warmer months of the year (n=24 of 36 fish). The opposite was true 

of Murray cod samples where the modern collection were gathered during the warmer 

months of the year (n=46 of 47 fish) and the historic samples were collected during 

the cooler months (n=25 of 44 fish). All of the sectioned otoliths could be aged as 

annuli were clearly visible and two independent counters checked ages. Ages were 

then backdated from year of death. Both species have been validated as forming 

increments on an annual basis (Anderson et al. 1992). 
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Table 1: Details of golden perch (M, Modern = 13 samples; H, Historic = 36 
samples) and Murray cod  (M = 47 samples; H = 44 samples) otolith samples. Shown 
are collection locations and state (New South Wales, NSW; Victoria, VIC; and South 
Australia, SA), year collected; season (southern hemisphere) and years the otolith 
collection spans based on when they were collected; as well as age information for 
samples.  

State Location # 
fish 

Collected Years that 
collection 
spans 

Fish 
age  

Season 
collected 

Golden perch 
NSW Molongolo Reach 

(M) 
2 2012 2012-2000 6-13 Summer 

NSW Lake Ginnindera 
(M) 

3 2005 2005-1995 2-11 Autumn 

NSW Barmah (H)* 12 1952 1952-1925 4-28 Autumn-
Winter 

VIC Boundary Bend 
(H)* 

12 1949 1949-1940 4-10 Spring 

NSW Moorna Woolshed, 
Wentworth (H)* 

12 1954 1954-1945 4-10 Summer 

SA Swan Reach (M) 8 2014 2014-1999 4-16 Autumn 
Murray cod 
NSW Yerrabi Pond (M) 5 2009 & 

2014 
2014-2007 3-5 Winter-

Spring 
VIC Bundalong (H) 5 1953 1953-1947 3-7 Winter-

Spring 
NSW/
VIC 

Yarrawonga Weir 
(H) 

5 1953 1953-1943 6-11 Winter 

VIC Murray/Ovens river 
junction (H) 

9 1953 1953-1942 5-12 Winter 

VIC/ 
NSW 

Moira 
Lakes/Barmah (H)* 

3 1952 1952-1935 9-18 Winter 

VIC Boundary Bend 
(H)* 

13 1949 1949-1941 4-8 Spring 

NSW/
VIC 

Moorna Woolshed, 
Wentworth/Lock 8 
(H)* 

9 1954 1954-1942 6-13 Summer-
Winter 

SA Berri (M) 10 2011 2011-1977 13-35 Summer 
SA Lock 4 / Lock 3-4 

(M) 
3 2012 2012-1976 35-37 Summer 

SA Loxton (M) 10 2011 2011-1992 15-20 Summer 
SA Lock 3 (M) 3 2009 2009-1976 13-34 Spring 
SA Lock 2 (M) 6 2009 & 

2012 
2012-1977 15-34 Spring-

Summer 
SA Lock 1 (M) 10 2009 & 

2012 
2012-1969 13-41 Spring-

Summer 
* Locations that overlap for both species 
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Chemical analysis  

Concentrations of elements were measured from the core to the proximal edge of the 

otolith using a Resonetics M-50-LR 193 nm Excimer laser ablation system 

(Resonetics, Nashua, New Hampshire, USA) coupled to an Agilent 7700cx 

quadrupole ICP-MS (Agilent Technologies, Santa Clara, California, USA) at 

Adelaide Microscopy, Adelaide, South Australia, Australia. The laser ran at a scan 

speed of 3µm/s with a frequency of 10Hz using a 29µm diameter to ablate a 

continuous laser transect across the otolith. This transect measured the concentrations 

of 55Mn (1000 ms), 43Ca (30 ms), 44Ca (30 ms) and 115In (100 ms). Measures of Ca 

were used to ratio elements to Ca, and In was used to confirm otolith material was 

constantly ablated. Background levels of elements in the ablation chamber were 

measured 30s prior to each ablation. Mn:Ca has been previously used to describe 

hypoxic occurrence in otoliths of marine fish and as such was the main element of 

interest in this study (Limburg et al. 2015). 

Drift and precision of the instrument was compared to a reference standard (NIST 

612; National Institute of Standards and Technology, Gaithersburg, Maryland, USA) 

after every 10 samples when multiple samples were on a single slide, or between each 

slide when slides only contained one or two samples. A reference carbonate standard 

(MACS 3; U.S. Geological Survey, Denver, Colorado, USA) was also measured at 

the beginning and end of each laser session. Precision calculated as the mean 

coefficients of variation (CV) of repeated measures for the reference NIST 612 

standard and the MACS 3 standard was <1% for all elements. All raw data were 

processed using GLITTER software (www.glitter-gemoc.com) to distinguish 

background and otolith element mass counts. Excel was then used to further process 

the data and ratio element concentrations to Ca. Elevated levels of manganese were 

characterised by multi-point spikes >5µmol/mol Mn:Ca (multi-point defined as 

gradually increasing and decreasing data values around a central point) before being 

considered as elevated levels. The basis of this designation was derived from 

observations of the raw data before smoothing, where spikes were not obvious 

<5µmol/mol Mn:Ca and could have been affected by instrumental spikes. After 

observation of the raw data, the data were smoothed where data values ≥15µmol/mol 

Mn:Ca were subjected to averaging using the 6 data points around the value, this also 

reduced data noise. Data values exceeding ≥15µmol/mol Mn:Ca had to meet the 
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multi-point spike rule and remain after smoothing before being designated as an 

elevated spike. 

Annual growth estimation 

Images of ablated otoliths were taken under diascopic polarized light using a Nikon 

Eclipse LV100 POL A1r HD Petrographic Microscope (Adelaide Microscopy, 

Adelaide, South Australia, Australia). Otolith images were used to determine age and 

measure width of growth increments. These measurements were made using the 

program Nikon NIS-Elements D (magnification 2.5x) by measuring from the core to 

the edge on the proximal side of the otolith along the ablated transect. Growth 

increments were marked and measured in µm.  

We used established aging methods for Murray cod (Anderson et al. 1992), and 

golden perch (Anderson et al. 1992), to estimate age of each fish at the time of death. 

Two independent readers assigned ages to each sample. Where the two counts 

differed, the primary author made a third count this always matched one of the other 

counts and was taken as the age. We assigned annual growth increments a year 

relative to the date of capture. As the laser was operated in a time resolved mode, we 

used the scan speed (µm/s) to convert each time dated element:Ca data point (s) to a 

distance measurement (µm). Using this method we could align growth increment 

measures to the element:Ca data using the ablated transect and otolith edge as 

reference points to assign appropriate years.  

Archival data 

We used Trove, a database of the National Library of Australia, to examine digitised 

newspaper articles among the years encompassed by our otolith collection 1935-2015. 

Searches were limited to references linked to the Murray Darling Basin, Australia 

across three states where otoliths were collected; South Australia, SA, Victoria, VIC, 

and New South Wales, NSW. General search terms included species common names 

and variations of terms related to mortality (for full list see Table 3), that might 

highlight a hypoxic event. Articles which could be associated directly with hypoxic 

events were categorised as Hypoxic references (n=14), while articles that were 

possibly linked to a hypoxic event but did not provide enough detail to conclusively 

determine hypoxic impacts were categorised based on the authors discretion as 
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Potential references (n=30). Trove is continuing to add digitised material and as such 

articles after the 1970s have yet to be fully archived, which means our data only 

represented the years between the 1940-1970s accurately. We used annual flow data 

gathered from the Murray Darling Basin Authority website (www.mdba.gov.au, under 

no known copyright restrictions) to produce a graph of annual flow for a site near 

where our otolith samples were collected (Figure 4). We examined data from the 

Corowa river gauge, along the main river channel, that spanned the years 

encompassed by our otolith collection 1935-2015. The data allowed us to compare 

annual flow with element:Ca spikes in otoliths and flood and drought records. 
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RESULTS 

Table 2: Details of golden perch (M, Modern = 13 samples; H, Historic = 36 
samples) and Murray cod  (M = 47 samples; H = 44 samples) otolith samples where 
manganese was elevated in concentration. Shown are collection locations and state; 
total number of fish collected and total fish with manganese indicators found along 
ablated transect; year range of collected fish with manganese indicators; and total 
number of fish with manganese indicators found during flood and drought years and 
within the first year of growth.  

State Location # fish 
collected 

# fish 
w/spikes 

Year 
Range of 
fish w/Mn 

#fish 
w/spike 
in flood 

#fish 
w/spike in 
drought 

Spike 
in 1st 
Year 

Golden perch 
NSW Molongolo Reach 

(M) 
2 1 2012-2007 - 1 1 

NSW Lake Ginnindera (M) 3 2 2005-2000 - - 2 
NSW Barmah (H)* 12 9 1952-1945 9 4 9 
VIC Boundary Bend (H)* 12 11 1949-1940 - 11+ 10 
NSW Moorna Woolshed, 

Wentworth (H)* 
12 10 1954-1945 1 2+ 9 

SA Swan Reach (M) 8 3 2014-2009 2 1+ 3 
Murray cod 
NSW Yerrabi Pond (M) 5 1 2014-2011 1 - 1 
VIC Bundalong (H) 5 2 1953-1947 - - 2 
NSW
/VIC 

Yarrawonga Weir (H) 5 3 1953-1943 - 1 2 

VIC Murray/Ovens river 
junction (H) 

9 7 1953-1942 - - 3 

VIC/ 
NSW 

Moira Lakes/Barmah 
(H)* 

3 - - - - - 

VIC Boundary Bend (H)* 13 5 1949-1942 - 5+ 4 
NSW
/VIC 

Moorna Woolshed, 
Wentworth/Lock 8 
(H)* 

9 3 1954-1947 - - 2 

SA Berri (M) 10 1 2011-1994 1 - - 
SA Lock 4 / Lock 3-4 

(M) 
3 1 2012-1977 1 1+ 1 

SA Loxton (M) 10 3 2011-1992 3 - - 
SA Lock 3 (M) 3 1 2009-1976 1+ 1+ 1 
SA Lock 2 (M) 6 1 2009-1994 1+ 1+ 1 
SA Lock 1 (M) 10 5 2012-1969 2 4+ 3 

*Locations that overlap for both species 
+ Multiple years with Mn indicators for individual fish under either flood or drought 
conditions	  
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Figure 3. Number of otolith increment measurements representing each growth year for both species (green columns). Also shown are number 
of otolith increment measurements for each species with elevated levels of manganese, as a possible indicator of hypoxia (blue columns golden 
perch; red columns Murray cod). 
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Figure 4: Annual River Murray flows through the Corowa river gauge spanning the years encompassed by our otolith samples (data was 
adapted from the Murray Darling Basin Authority, www.mdba.gov.au, no known copyright restrictions). 
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Otolith chemistry 

Otolith growth increments spanned almost 60 years including 1935 to 2014 for 

Murray cod and 1925 to 2014 for golden perch (with some years excluded see Figure 

3). Seventy three percent of golden perch otoliths (36 of 49 fish) had elevated levels 

of manganese in at least one year of growth (Table 2) suggesting they had 

experienced low oxygen conditions at some point in their life. Fewer Murray cod 

otoliths (36%; 33 of 91 fish) showed elevated levels of manganese (Table 2). Samples 

of golden perch with indicators of manganese spanned years 1999-2014 and 1940-

1954 (Figure 3). Samples of Murray cod with indicators of manganese spanned years 

1969-2014 and 1942-1954 (Figure 3). Both modern and historic samples of both 

species showed evidence of increased manganese concentrations (Figure 3 and 5). 

 

Figure 5: Pie chart of otoliths with manganese as indicators of hypoxia found in any 
year of growth spanning al years 1935-2014. The large pie chart shows the difference 
in otoliths with elevated manganese (red) and those without elevated manganese 
spikes (blue). The smaller pie chart shows the relation of manganese spikes to major 
droughts (dark red), major floods (red) and those without relation to an environmental 
disturbance. Drought and flooding events were validated in digitised newspaper 
records, and with annual flow data. 
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High manganese concentrations were not found between years not represented by our 

samples for Murray cod this was between 1954 and 1975 (15 years) and for golden 

perch this was between 1954 and 1999 (45 years, Table 2 & Figure 3). Elevated 

manganese was most often found in either the first year of growth (Table 2, Figures 6, 

7 & 8) or the final year of growth (see Figures 6, 7 & 8). Manganese also appeared to 

be associated with flood and drought events (Figure 5). Elevated manganese was 

linked to major floods in 22 of the 69 fish, and was linked to major drought conditions 

in 32 of the 69 fish (Table 2, Figure 5). Flood years with the highest proportion of 

manganese occurred following the millennium drought in the Murray Darling Basin 

(2011; 66% of samples), and 1952 (29% of samples). Drought years with the highest 

proportion of manganese spikes occurred in 1945 and 1946 (70 and 68% of samples 

respectively). Additional samples where elevated manganese was detected occurred 

between 2006 and 2009, years that were also affected by the millennium drought (see 

Figure 7). Spikes in manganese, in relation to the timing of droughts and floods, were 

further supported by descents and peaks in annual flow fate (Figure 4).  
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Figure 6. Manganese in an individual golden perch otolith from the historic Barmah 
collection, age7+ fish. Stars above graphs indicate years with major droughts (red 
star) and floods (blue star). Black vertical lines show edges of growth increments.  
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Figure 7. Manganese in otoliths from the modern Murray cod A) age 36+ fish and B) 
age 31+ fish. Stars above graphs indicate years with major droughts (red star) and 
floods (blue star). Black vertical lines show edges of growth increments. 
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Figure 8. Manganese in otoliths from modern Murray cod A) age 18+ fish, B) age 
41+ fish, C) age 13+ fish and D) age 16+ fish. Stars above graphs indicate years with 
major droughts (red star) and floods (blue star). Black vertical lines show edges of 
growth increments. 

Newspaper archival and anecdotal references 

A total of 14 archival and anecdotal records (CE 1939-1952) could be confirmed as 

occurrences of hypoxia in the Murray River, Australia across three states (Table 3). 

For example, the mention of dead fish and the colour of water was clear evidence of a 

hypoxic blackwater event:  
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“For some weeks past fish in the Broken River and its tributaries have been 
dying, and the appearance of dead fish in the Broken River has been most 
noticeable. They were so numerous near the old weir on the property of Mr 
Percy Trewin, that he commenced to remove them and it presented an odd 
spot with 20 to 40 fish ranging from 10 lbs to 40 lbs. Mystery surrounds their 
death, but the colour of the water these days is enough to kill anything” 
(Benalla Ensign, VIC, 27 February 1942, colour of the water would be linked 
to hypoxic blackwater).  

Another 30 records (CE 1939-1993) referenced or alluded to environmental 

disturbances (e.g. blackwater, drought, flood, stagnant water and hot temperatures), 

which may be linked to hypoxia; however, the articles did not have enough detail to 

clearly indicate a hypoxic event. No records used the terminology hypoxia and very 

few were linked to blackwater (an environmental term describing the tea stained 

colour of water, often present under low oxygen conditions due to leaching of organic 

matter, see also Table 3). Records categorised under Hypoxic references were 

recorded most often in warmer months (57% of records) at the end of the austral 

summer; however, those categorised as Potential references were recorded more in 

cooler months (53%). However, the cooler month bias of Potential records was driven 

by a single event that occurred in early March in 1951 which was initially thought to 

be caused by an outbreak of myxomatosis virus, however, this was later shown not to 

be the case and the event had all the markers of a hypoxic event (e.g. late summer, 

high mortalities, stagnant water also see SUPP Information).  

“The Superintendent of State Fisheries (Mr. T. C. Roughley) who visited 
Leeton some time ago to investigate reports that Murray cod were breeding in 
the irrigation canals evidently believes that there is something 'fishy' about the 
co-incidental deaths of hundreds of Murray cod and perch and large numbers 
of rabbits in the same areas of northern Victoria where myxomatosis has been 
introduced by the scientists. Mr Roughley states that both the Murray cod and 
perch are extremely hardy and he can think of no natural conditions that would 
have brought about their death. It is claimed that rabbits blinded by 
mxyomatosis are falling into rivers and creeks and being eaten by fish” (The 
Murrumbidgee Irrigator, NSW, 22 March 1951).  

“A scientist from Sydney University has reported that myxomatosis, which 
has been successful in killing rabbits, had not affected fauna in the Murray 
River Valley, chairman of the Taronga Park Trust (Mr. Hallstrom) said. The 
scientist Dr. A. Bollinger, is considered Australia’s leading authority on 
marsupials. Mr. Hallstrom sent Dr. Bollinger to the Murray River Valley, 



	 136	

where it was reported fish, birds, dogs, foxes and kangaroos were dying from 
the mosquito-borne disease. Mr. Hallstrom said Dr. Bollinger proved the 
reports false.” (Barrier Daily Truth, NSW, 13 March 1951). 

“The Chairman of the C.S.I.R.O. (Dr. Clunies Ross) said tests had shown that 
myxomatosis would not affect any animal except the European wild hare, 
from which Australian rabbits were descended. He added: “There is no 
evidence to support that myxomatosis is killing kangaroos, foxes, birds and 
crayfish. The idea is fantastic.”…A C.S.I.R.O. research worker, in Canberra 
early this year inoculated himself with myxomatosis virus. He showed 
“absolutely no reaction” a C.S.I.R.O. report said.” (The Daily Telegraph, 
NSW, 2 March 1951). 

Despite the large number of records found using our search terms very few could be 

related to hypoxic events, likely due to a poor understanding of hypoxia in the mid 

1900s (see supplementary information for record specifics and Table 3).  
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Table 3. Table showing number of references linked to Trove archival digitised 
records and our search terms for each state and all states combined. Articles that could 
be directly associated with hypoxic events are listed under Hyp. ref. (n=14) and 
articles that were possibly linked to hypoxic events but did not have enough 
information to conclusively state they were a hypoxic event were listed under Pot. ref. 
(n=30). For each state the total number of records found and reviewed for hypoxic 
references are listed as #Rec. and then combined across all states in Total Rec. 
Records are sourced from articles and digitised newspapers; in addition, records were 
refined to cover the years 1939-2015 which encompassed the otolith samples.  

Search Term NSW SA VIC All States 
 Hyp.  

Ref. 
Pot. 
Ref. 

# 
Rec. 

Hyp. 
Ref. 

Pot. 
Ref. 

# 
Rec. 

Hyp. 
Ref. 

Pot. 
Ref. 

# 
Rec. 

Hyp. 
Ref. 

Pot. 
Ref. 

Total 
Ref. 

Total 
Rec. 

Fish low oxygen 0 0 202 0 0 44 0 0 49 0 0 0 295 
Fish suffocation 0 2 328 0 0 77 1 0 103 1 2 3 508 
Hypoxia 0 0 17 0 0 11 0 0 35 0 0 0 63 
Blackwater 1 1 133 1 3 21 2 0 24 4 4 8 178 
Blackwater river 1 1 133 1 3 21 1 0 24 3 4 7 178 
Murray cod 
blackwater 

0 1 3 1 1 5 1 1 1 2 3 5 9 

Murray cod 
mortality 

1 3 19 0 1 8 1 3 24 2 7 9 51 

Murray cod death 4 9 283 0 1 114 1 1 84 5 11 16 481 
Murray cod die off 1 8 81 0 0 43 1 0 18 2 8 10 142 
Murray cod 4 12 3060 4 4 1591 1 4 1476 9 20 29 6127 
Golden perch 
blackwater 

0 1 322 0 1 86 0 0 113 0 2 2 521 

Golden perch 
mortality 

0 0 46 0 0 9 0 0 17 0 0 0 72 

Golden perch death 1 1 257 0 0 67 0 0 98 1 1 2 422 
Golden perch die off 0 1 131 0 0 27 0 0 56 0 1 1 214 
Golden perch 1 1 1587 0 1 453 0 0 719 1 2 3 2759 
Callop blackwater 0 0 7 0 1 42 0 0 1 0 1 1 50 
Callop mortality 0 0 0 0 0 4 0 0 0 0 0 0 4 
Callop death 0 0 8 0 0 18 0 0 2 0 0 0 28 
Callop die off 0 0 3 0 0 14 0 0 2 0 0 0 19 
Callop 0 0 321 0 4 565 0 0 89 0 4 4 975 
Yellowbelly 
blackwater 

0 0 49 0 0 3 0 0 8 0 0 0 60 

Yellowbelly 
mortality 

0 1 4 0 0 0 0 0 0 0 1 1 4 

Yellowbelly death 1 0 45 0 0 3 0 0 4 1 0 1 52 
Yellowbelly die off 0 1 15 0 0 0 0 0 3 0 1 1 18 
Yellowbelly 1 1 278 0 0 21 0 0 31 1 1 2 330 
River fish death 7 11 4024 0 1 742 2 1 741 9 13 22 5507 
River fish mortality 3 4 250 0 1 62 1 4 81 4 9 13 393 
River fish die off 4 10 925 0 0 233 1 1 247 5 11 16 1405 
Oxygen depletion 0 0 65 0 0 31 0 0 22 0 0 0 118 
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DISCUSSION 

Developing a baseline of hypoxic occurrence in rivers has been problematic, 

particularly during years before modern records were kept. However, trace amounts 

of manganese in the otoliths of fish were successfully linked to years with known 

hypoxic events in this study. Most importantly manganese’s usefulness is limited 

more by adequate exposure of species to a hypoxic event than being present in only 

specific species within a system. Trace amounts of manganese found in historic 

collections of otoliths could be related to annual flow data from the main river 

channel, and qualitative records of environmental disturbances often linked to 

hypoxic events (drought and floods). The application of this method to larger 

collections of historic and archaeological otoliths could allow reconstructions of a 

hypoxia timeline, and has application across other environments and species.  

Around half our samples had elevated spikes of manganese in the otoliths. Of these, 

32% could be related to major flooding events and a further 46% were related to 

major droughts. These trends suggest manganese could be linked to environmental 

conditions like hypoxia, as drought and floods often exacerbate hypoxia. Some years 

in the otoliths were better represented than others for otoliths (2006-2011, 1952 and 

1946-45), and of those there was some overlap in the years 1952 and between 1945 

and 1946 with qualitative records of hypoxic events. Additionally elevated manganese 

during the final year of growth in many of our samples suggests fish died from 

hypoxic conditions. Spikes in manganese observed in years not linked to major 

drought, floods or hypoxic events collected could be caused by other smaller localised 

hypoxic events not recorded or observed.  

Manganese spikes were also observed during the first years of growth in many 

samples. Corroborating previous evidence of maternal transfer of manganese to the 

embryo (Brophy et al. 2004, Ruttenberg et al. 2005, Limburg et al. 2015). In this 

study 78% of samples had elevated manganese in the first year of growth, suggesting 

maternal influence; these samples were not counted as hypoxic occurrences. 

Environmental influences likely contributed to elevated manganese in later years, 

likely a result of encountering elevated levels of dissolved manganese as part of 

hypoxic waters (Limburg et al. 2015).  
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Retrospective tracking of whether fish encounter hypoxic waters using trace amounts 

of manganese in otoliths has shown some promising results in marine systems 

(Limburg et al. 2011, Mohan et al. 2014, Limburg et al. 2015). Quantities of 

manganese may even be linked to the intensity of hypoxic events (Limburg et al. 

2011). For example, manganese concentrations in our study varied among individual 

fish even within the same year. If manganese concentrations could discriminate the 

intensity of an event this may provide a further dimension to retrospective tracking of 

hypoxia. For example, during the Millennium drought manganese spikes ranged from 

25µmol/mol to >200µmol/mol of Mn:Ca among different individuals. Increased 

manganese in otoliths has previously been attributed to natural variation and the 

ephemeral nature of hypoxia (Limburg et al. 2015). Additionally, very low levels of 

dissolved oxygen (<1 mg L-1) may be required to produce the necessary redox 

conditions to allow the flux of Mn2+ into the water column (Limburg et al. 2015).  

Like many rivers and lakes drought, flooding and hypoxic blackwater events are part 

of the natural cycle in the Murray Darling Basin (Small et al. 2014, Haidvogl et al. 

2015, Jenny et al. 2016). Many native fish have adapted to hypoxic conditions, 

suggesting that survival is plausible and is likely to be recorded in the trace elemental 

chemistry of the otolith when encountered (Small et al. 2014). Whitworth et al. 

(2012), found that water temperature at time of floodplain inundation was critical in 

controlling dissolved oxygen concentrations, with higher water temperatures 

decreasing dissolved oxygen availability. In the case of the worst incidence of 

hypoxia during the Millennium drought in the Murray Daring Basin (2010-2011), 

flooding occurred during late spring in an area that historically experiences winter 

rainfall dominance, thus explaining the severity of the event. Fish in the wild may 

even be able to avoid hypoxic events by seeking refuge habitat or moving out of the 

affected area to avoid lethal conditions (i.e. not being present in the affected region 

thereby not laying down otolith material that reflects high Mn), possibly explaining 

the portion of samples with no recorded elevated spikes of manganese throughout 

their life (Limburg et al. 2015). Regardless, the data collected in this study is 

promising and shows that manganese is a useful indicator of hypoxic events in 

freshwater when used in tandem with other data sources.  

Collecting information from multiple data sources is useful as it can extend the period 

over which environmental changes can be observed (Disspain et al. 2018). However, 
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different datasets, be those archaeological and historic collections of otoliths or 

archival and anecdotal references require careful interpretation (Disspain et al. 2018). 

For example, many data sources may be bias by targeted fishing effort toward larger 

specimens our ‘trophy/icon’ species, therefore only representing a portion of the total 

population (Disspain et al. 2018). We found that when hypoxic events were recorded 

in Trove they were largely misunderstood. In many instances, the scientific principles 

governing hypoxic occurrence were not recognised, which often resulted in 

misleading interpretations of events. Many of the records included indicators of a 

hypoxic event, e.g. hot temperatures, stagnant water, coloured water and fish gasping 

or acting dopily, however, the link to a hypoxic or low oxygen event was never 

drawn. Accounts of hypoxic events using the specific terminology are rare, as the 

phenomenon was not understood until much later (Sheldon and Walker 1989). 

However, the indicators for a hypoxic event can still be found and used to corroborate 

chemical otolith analyses and further extend hypoxic records, as we show herein.  

Freshwater fish have been impacted by numerous threats with the most significant 

being through anthropogenic interference (Haidvogl et al. 2015, Alleway et al. 2016, 

Jenny et al. 2016). The majority of research utilising archival references agree that 

human influences have dramatically changed historical baselines in marine and 

freshwater systems (Rosenberg et al. 2005, Thurstan et al. 2015, Alleway et al. 2016), 

with few exceptions (Jones et al. 2016). For example, European colonisation drove a 

global baseline change to preferential land use transformations altering vegetation, 

and species composition particularly in inland waterways (Alleway et al. 2016). 

Herein we have shown how multiple datasets can contribute to improving our 

understanding of historic hypoxia and validating more rigorous scientific tests such as 

chemical analysis. Yet there remains a paucity of studies utilising qualitative 

information to reconstruct historical references (but see, Carder and Crock 2012, 

Haidvogl et al. 2015, Thurstan et al. 2015, Alleway et al. 2016). Often there is a 

disconnect between the management of fish and their habitats (Koehn 2015). 

However, fish, water and their habitats are intrinsically intertwined, especially 

historical accounts where knowledge was limited at the time. Furthermore, without 

historical baselines to refer to we can underestimate changes to communities and 

ecosystems when setting restoration targets (Rosenberg et al. 2005, Haidvogl et  al. 

2015, Alleway et al. 2016).  
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Hypoxia is a natural phenomena that occurs worldwide in aquatic systems. However 

given existing anthropogenic pressures and future climatic predictions, conservation 

and mitigation measures will be crucial to control the frequency, duration, spatial 

extent and severity of its occurrence. (Small et al. 2014, Koehn 2015).  A key 

challenge for restoration and rehabilitation is the shifting baseline. Without fully 

comprehending the conditions prior to adjustment, how can restoration reflect 

history? To this end, combining multiple data sources can inform managers of 

historical environmental baselines that can be used to assess rehabilitation efforts. The 

dearth of information on hypoxia historic baseline conditions globally hinders our 

ability to predict future changes to biodiversity and ecosystems and recommend 

achievable and sustainable management objectives. This study demonstrates this 

concept by using otoliths as proxies for environmental disturbances like hypoxia 

retrospectively over many years. Otolith manganese appears to be an effective tracer 

of hypoxia; particularly as elevated levels could be linked to major known flood, 

drought and hypoxic events in the system. With the potential to describe the severity 

of an event, although this requires rigorous validation as much of the data suggesting 

this currently comes from wild caught fish. Combining quantitative records and 

otolith manganese as a proxy of hypoxia could reveal long-term trends, re-establish a 

baseline of hypoxic events, and be used to predict future occurrences.   
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SUPP Table 1: Historic newspaper articles that could be directly linked to hypoxic events that occurred from 1935-2015 (Hypoxic. Ref; n=14). Articles were 
found using search terms (see Table 3) in archival digitised records on Trove, a search database of the National Library of Australia. 
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SUPP Table 2: Historic newspaper articles that were possibly linked to hypoxic events that occurred from 1935-2015, but did not have enough information 
to conclusively state they were hypoxic, (Potential. ref.; n=30). Articles were found using search terms (for specifics see Table 3) in archival digitised records 
on Trove, a search database of the National Library of Australia among the years encompassed by our otolith collection 1935-2015. 
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CHAPTER SIX 

 

GENERAL DISCUSSION 
 

Aquatic systems worldwide are increasingly affected by hypoxia (Diaz and Rosenberg 

2008, Collingsworth et al. 2010, Limburg et al. 2018). These systems are at the 

precipice of disrepair with intervention often required to assist recovery of faunal 

populations (Collingsworth et al. 2010, Jenny et al. 2016). Understanding the location 

and timing of hypoxic events, as well as how aquatic species respond, is crucial for 

predicting future hypoxic effects under a changing climate (Diaz and Rosenberg 

2008). The hypoxia problem has generated great interest in predicting organism 

responses in marine ecosystems, but there is a paucity of studies in freshwater. 

Throughout this thesis, I have investigated the physiological impact of hypoxic 

exposure on freshwater fish, and tracked hypoxic events through the study of their 

otoliths (ear stones of fish).  

In the first two data chapters, I exposed fish to prolonged hypoxic or normoxic 

conditions combined with different temperatures. Levels were set to those found at 

the upper limits of the fishes’ thermal range where physiological hypoxic effects were 

likely to be exacerbated. Disparity in resistance to hypoxia occurred among the three 

study-species: Murray cod, golden perch and silver perch. Additionally, I showed that 

fish acclimated after exposure to sub-lethal levels of hypoxia; yet, a threshold was 

reached after prolonged exposure. 

In the last two data chapters I used the otoliths from golden perch and Murray cod 

from chapters 2 and 3, to provide new data describing hypoxic occurrence in 

freshwater systems. In situ monitoring of oxygen levels in many systems is generally 

lacking, and where it does exist, records only span a few decades. Otolith carbonate 

records are well-preserved and readily accessible natural tags that can indicate 

environmental change. Otoliths provide a cost-effective mechanism to examine 

environmental change, notably where it is logistically difficult for rigorous collection 
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of data in both space and time. In chapter 4, I used controlled laboratory conditions to 

explore different elemental proxies in otoliths for freshwater hypoxic conditions, 

exploring a possible physiological connection to its occurrence. In chapter 5, I 

investigated the otoliths of wild caught fish of species from the same system and 

related manganese to hypoxia, along with major droughts and floods; that were likely 

to create hypoxic conditions using qualitative data from digitised newspaper articles.  

In this final chapter, I discuss the main findings of my studies and provide suggestions 

for future research.  

Physiological Considerations 

Species-specific responses to hypoxic exposure were observed during the 

physiological tests. Mortality rates among the three native species tested were 

significantly different. Silver perch were unable to tolerate long-term hypoxic 

exposure, whereas Murray cod and golden perch survived the full experimental 

period. On a global-scale the tolerance observed in Murray cod and golden perch was 

similar to those of other lowland river fishes (Small et al. 2014). My estimates of 

hypoxic tolerance are likely to be a ‘best case’ response, where only temperature and 

oxygen conditions in the water were changed. However, hypoxic blackwater can be 

created and intensified by numerous stressors; in particular large quantities of 

dissolved organic carbon (DOC) from leaf litter and changes to pH (McMaster and 

Bond 2008, McCarthy et al. 2014). For example, in a study investigating simulated 

blackwater, small reductions in pH and elevated DOC exacerbated hypoxia driven 

mortalities (Small et al. 2014). My study exposed fish to sub-lethal hypoxia for longer 

durations than other studies, addressing responses to gradual and lingering hypoxia 

(Collins et al. 2013, Small et al. 2014). Notwithstanding, my results may still 

underestimate the effects of hypoxia in the wild, as long-term exposure was limited to 

sub-lethal levels, particularly for Murray cod and golden perch.  
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My study highlights the variable tolerance of native Australian species to hypoxia. 

Thresholds, including but not limited to those reported here, could be used for a 

precautionary hypoxia monitoring and warning system to prevent fish kills and 

maintain river health (Small et al. 2014). Although wild fish may be able to avoid 

hypoxic waters, significant barriers to connectivity in contemporary waterways can 

create risks of inescapable hypoxic exposure (Watts et al. 2018). Further, the risk of 

hypoxia-driven mortality is highly temperature dependent, with fish kills more 

common during periods of higher water temperature (Small et al. 2014). Mitigating 

these combined risks is crucial to the survival and proliferation of native species. 

Whilst we found species-specific tolerances among sympatric native species, the 

methods used to determine species tolerance to hypoxia can vary significantly among 

studies (Collins et al. 2013, Eliason and Farrell 2016, Farrell 2016). The most obvious 

difference is where studies compare resting respirometry (measuring responses to 

environmental variables while fish are at rest), with swimming respirometry 

(measuring responses to environmental variables while fish are exercising, Farrell 

2016). Both methods have merit, although some species respond better to one method 

over the other; this often relates to lifestyle, i.e. active swimmers respond better to 

swim respirometry versus benthic dwellers that perform better under resting 

respirometry (Farrell et al. 2009, Roche et al. 2013, Farrell 2016). Additionally, when 

testing hypoxic exposure the method of reducing oxygen in tanks varies greatly 

among studies (Roche et al. 2013). Future research would benefit from a unified 

method for testing and creating hypoxic conditions. 

Otolith Considerations 

Otolith chemistry represents an unparalleled natural tag of population structure, 

connectivity and a retrospective tracer of environmental change (Sturrock et al. 2015, 

Izzo et al. 2016). Nevertheless, physiological controls on elemental uptake and otolith 

formation have again been under scrutiny in recent literature (Sturrock et al. 2015, 

Grammer et al. 2017, Limburg et al. 2018), after initial investigations in the 1990s 

(Kalish 1989, Kalish 1992, Kalish 1993). Changes in organism metabolic rate, growth 

and reproduction complicate the mechanisms of incorporation of trace elements onto 

the otolith (Sturrock et al. 2015). Whether otolith elemental composition tracks the 

ambient environment (i.e. minimal physiological influence) or rather, reflects 
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physiological processes that coincide predictably with environmental change is still 

being debated (Sturrock et al. 2015), but likely depends on the element (Izzo et al. 

2016, Thomas et  al. 2017). In laboratory experiments I was unable to link elevated 

levels of manganese or magnesium in otoliths to hypoxic conditions or to metabolic 

rate. Understanding the contribution of physiological controls on otolith composition, 

will establish the correct interpretation for modelling element uptake in relation to 

environmental monitoring and reconstruction. 

Manganese in otoliths is considered to be under physiological control, suggesting that 

while fish are under hypoxic stress this element may be incorporated more readily 

(Limburg et al. 2011, Limburg et al. 2015). I showed manganese could be used to 

retrospectively trace possible occurrences of hypoxic conditions by using field 

collected samples of otoliths and was linked to large-scale drought and floods that 

either precede hypoxic events or exacerbate them. Researchers have also shown that 

other physiologically controlled trace elements can be used to retrospectively identify 

spawning (Sturrock et al. 2015). Magnesium and zinc are two such elements that have 

been posited as tracers of environmental hypoxia (Sturrock et al. 2015, Limburg et al. 

2018). My controlled laboratory experiment was unable to validate the use of 

magnesium or zinc as a proxy for hypoxic conditions potentially due to the lack of 

hypoxic conditions extreme enough to cause a physiological reaction. Phosphorous, is 

another element that may show some promise as a tracer of hypoxia, particularly in 

inland waters as it is closely related to high levels of DOC from plant material 

(McMaster and Bond 2008). Recently high phosphorus loads in the water were linked 

to the spread of lacustrine hypoxia, with timing of phosphorus load increases 

matching hypoxic escalation (Jenny et al. 2016).  

Alternative aquatic fauna hard parts could also be used to track hypoxia, such as, 

scales, fin rays, vertebrae, scutes, eye lenses and beyond (Gillanders 2001, Izzo et al. 

2016, Carlson et al. 2017, Tzadik et al. 2017). Concentrations of trace elements 

present in calcified structures of organisms (e.g. from corals, foraminifera, molluscs 

to fish hard parts; otoliths) have received attention across a wide range of disciplines 

including chemistry, palaeontology and ecology (Sturrock et al. 2015, Izzo et al. 

2016). Studies validating the use of alternative hard parts have a number of benefits, 

1) possible non-lethal sampling, useful for species of conservation concern, 2) allow 

sampling from species that do not have otoliths, for example, elasmobranchs, 3) may 
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provide complementary chemical information to validate environmental variation 

when elemental signatures differ from otoliths, and 4) may provide alternative 

chemical records, compared to otoliths, at a higher resolution for a more reliable 

sampling method to record environmental change (Izzo et al. 2016, Walther et al. 

2017).  

Historical Baselines 

Understanding the environmental histories of aquatic ecosystems can enhance their 

value as a source of food (e.g. records of harvest) and energy (e.g. records of flow, 

Haidvogl et al. 2015). To date, studies of this nature for both freshwater and marine 

ecosystems have been limited to the Northern Hemisphere (Haidvogl et al. 2015, Izzo 

et al. 2016). Furthermore, our understanding of environmental change and its drivers 

has been limited by ecological data sets that rarely extend beyond a few decades 

(Thurstan et al. 2015). Archival records, however, can be used to extend ecological 

datasets to establish and improve historical baselines (Haidvogl et al. 2015, Thurstan 

et al. 2015, Alleway et al. 2016). The temporal gaps in our understanding of hypoxia 

occurrence are significant, and create uncertainties when considering restoration 

(Thurstan et al. 2015). Herein, I showed that increased otolith manganese in different 

years could indicate hypoxic events dating beyond conventional records. Digitised 

newspaper articles further corroborated the hypoxic occurrences found in the otoliths. 

Elevated manganese in otoliths could also be linked to major flooding and drought 

events in the river; events that exacerbate hypoxia. However, despite the increase in 

digitised resources and spread of information on a global scale, less conventional 

archival sources remain underexploited (e.g. records of precipitation, flow, 

photographs, menus, artwork, sediment cores and anecdotal references, Haidvogl 

et  al. 2015, Thurstan et al. 2015).  

In contrast to other aquatic biota, fish have been selectively taken from aquatic 

environments for millennia (Haidvogl et al. 2015, Izzo et al. 2016). While often 

records focus on trophy species, and those of commercial interest, they represent an 

unparalleled resource for environmental reconstructions (Thurstan et al. 2015, 

Disspain et al. 2018). Archaeological and historical remains (sourced from scientific 

collections, museums and human settlements e.g. castles, taverns, waste deposits and 

middens) allow investigations of historical baselines on longer timespans and larger 
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spatial scales, yet few examples of these studies exist (for further examples see Carder 

and Crock 2012, Haidvogl et al. 2015, Disspain et al. 2018). Generally speaking, 

these studies have linked declines in trophic level and mean length to fishing pressure, 

overexploitation and potential environmental disturbances that can eradicate species 

from the population (Thurstan et al. 2015, Alleway et al. 2016, Izzo et al. 2016). 

Fisheries data, while covering a far shorter timespan can also illuminate population 

shifts (Haidvogl et al. 2015, Alleway et al. 2016). For instance, the imposition of 

fishing regulations and shifts in commercial species from riverine to marine available 

at markets can indicate declines in species due to overexploitation (Haidvogl et al. 

2015, Alleway et al. 2016). Effective conservation will require baseline information 

on both current and long-term patterns (Carder and Crock 2012). Historical data 

commonly show that the magnitude of change to our environments from 

anthropogenic influences is far higher than conventional predictions and 

contemporary data suggest (for a thorough review see Thurstan et al. 2015).  

Management Implications 

This thesis highlights the damaging effects of hypoxia on fish, and the necessity in 

tracking when and where hypoxia occurs. However, despite a growing interest in 

hypoxia and its effects, recovery and restoration efforts thus far have been relatively 

unsuccessful (Diaz and Rosenberg 2008, Vaquer-Sunyer and Duarte 2008, Jenny 

et  al. 2016). I identified two areas of critical concern to improve management 

objectives in the future.  

First, physiological requirements of key native species are either not represented at 

all, or tested over short-term timescales; resulting in misrepresentation of true 

tolerance and long-term impacts. Consequences of hypoxic exposure on organisms 

can manifest at the individual level as changes to feeding, ventilation or endocrine 

functions, growth, reproduction, disease resistance and mortality (Pollock et al. 2007, 

Small et al. 2014, Eliason and Farrell 2016). At the population and community level 

these changes result in broad scale losses of biomass, habitat alterations, altered 

migrations and mass mortalities (Breitburg et al. 2009, Poertner and Lannig 2009, 

Collins et al. 2016). Maintaining the health and biodiversity of native species is 

crucial to ecosystem recovery. Herein I identified thresholds of tolerance for three 

sympatric species, as well as identifying how duration of exposure influences hypoxic 
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tolerance as a cumulative stressor. Although sometimes disparate, the physiological 

requirements of species can be used to improve restoration goals. Data such as this, or 

similar, can then be incorporated into existing ecological models to improve 

management of hypoxic conditions and recovery efforts. Some instances of this type 

of management reform exist already (Baumgartner et al. 2017, Watts et al. 2018). 

With data on physiological tolerances to common stressors like hypoxia, but also 

pollution, becoming more common, ecological modelling and thus ecosystem 

restoration could be greatly enhanced. 

Second, failure to consider historical baselines of hypoxic occurrence results in 

misrepresentation of ecosystems and in less ambitious targets for recovery (Thurstan 

et al. 2015, Jenny et al. 2016). Routine habitat monitoring was rare prior to the 1980s 

(Alleway et al. 2016, Jenny et al. 2016). This paucity of data complicates our ability 

to distinguish degraded natural habitats (Disspain et al. 2011, Thurstan et al. 2015, 

Izzo et al. 2016). Furthermore, if managers are unable to recognise the extent of 

change, they may be less likely to support conservation and recovery efforts (Koehn 

2015, Thurstan et al. 2015, Koehn 2016). Creating a narrative through the use of 

historical data can also be effective as a management tool. It can aid in engaging 

communities (e.g. through community science) and can even alter scientific and 

public perception of the condition of the natural environment today (Thurstan et al. 

2015). In turn, this can help unify conservation efforts at a number of levels (e.g. 

public sector, stakeholders, community and management, Thurstan et al. 2015). 

Restoration of hypoxic waters may be difficult without the collection of long-term 

datasets to properly inform management targets. In Europe and North America, 

restoration efforts to repair hypoxic affected waters began in the 1980s in Europe and 

North America, but with little improvement evident to date (Diaz and Rosenberg 

2011, Jenny et al. 2016). Persistence of hypoxic conditions has been attributed to 

nutrients remaining in the watershed and climate change that exacerbates hypoxic 

conditions (Diaz and Rosenberg 2011, Jenny et al. 2016). 

Historical datasets should also be incorporated into contemporary assessments and 

modern decision-making frameworks. For instance, the International Union for 

Conservation of Nature (IUCN) decline criteria, a key species risk assessment 

framework, is limited to species data from 10 years or three generations, whichever is 

longer (Thurstan et al. 2015). As such, species classification can change from 
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critically endangered to endangered based on the timeframe of assessment, even 

though conservation status may not be improved (Thurstan et al. 2015). Short-term 

criteria such as these proliferate the problem of shifting conservation baselines. 

FUTURE DIRECTIONS 

Measures of metabolic rate after prolonged hypoxic or normoxic exposure and 

measures of the chemical profiles of otoliths, both from experimental tests and field-

collected samples, formed the basis of my research. This approach demonstrated the 

usefulness of combining data sets from different disciplines to detect physiological 

responses to environmental change, the influence of physiology on chemical 

incorporation in otoliths and the application of combined data sets to track hypoxia 

retrospectively. I now outline future research directions that would enable progression 

in the field of hypoxic research, ultimately allowing researchers to effectively 

implement findings to reduce the consequences of hypoxic incidences.  

In freshwater systems hypoxic conditions are often associated with high levels of 

dissolved organic carbon (DOC; McMaster and Bond 2008, Watts et al. 2018). While 

DOC is crucial to the health of river systems, the long-term accumulation of plant 

material can promote a rapid increase of DOC into a system when flooded (King et al. 

2012, Whitworth et al. 2012). Higher temperatures can increase the solubility of some 

forms of plant carbon, further elevating DOC concentrations and microbial 

respiration, and consequently the risk of hypoxic conditions (Whitworth et al. 2012). 

For example, a hypoxic blackwater event (following the Millennium drought in 

Australia), was characterised by high levels of DOC, which were leached from a large 

amount of accumulated plant material in the inundated floodplains and dry river 

channels, and led to mass mortalities of fish and other aquatic organisms (King et al. 

2012). However, despite the simultaneous nature of elevated DOC and hypoxia in 

waterways there is limited research on the combined effects of these stressors 

(McMaster and Bond 2008). Elevated DOC increases the risks of hypoxic events to 

aquatic fauna, yet measures of physiological responses to this stressor, or attempts to 

trace its predominance through time using otolith chemistry, are generally lacking. 

Future research on hypoxic influences would benefit from investigation of DOC, as 
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far as physiological responses and otolith chemistry manipulated under experimental 

conditions using leaf litter.  

Validation of existing proxies is crucial for moving forward. Manganese was 

successful as a tracer of environmental hypoxia in otoliths of wild caught fish but not 

in those from the controlled experiment. Sediment, not included in my experimental 

tanks, may be required to provide the necessary conditions for redox reactions, which 

is crucial for manganese flux to occur (Limburg et al. 2015). Future experiments 

should investigate mechanisms of manganese uptake in otoliths as physiological 

controls may not be all that is required for incorporation.  

Expanding the proxies for tracing hypoxic exposure will also be key to developing 

realistic baselines for setting restoration and conservation goals in the future. For 

studies focusing on otolith chemical analysis, this will mean expanding the suite of 

chemicals that can reliably trace hypoxic exposure (e.g. magnesium, phosphorus, iron 

and zinc may have potential). Utilising unconventional methods can add to existing 

environmental histories (e.g. qualitative data, or data collected for other purposes; 

precipitation, fishing logs). Engaging the public in community science, such as 

rebuilding wetlands, re-snagging efforts and tag re-capture records from recreational 

fishers, could increase our awareness of ongoing change in ecosystems through 

community fed records. In particular, monitoring fish populations could expand our 

knowledge of less iconic, non-commercial or invasive species, for which there is often 

limited data (e.g. community monitoring of European carp catches). Further research 

needs to continue to investigate new proxies of long-term data with predictable 

patterns of hypoxic influence (e.g. sediment cores, foraminifera shells and tree rings).  

Interdisciplinary studies combining data from multiple sources will be vital for future 

research and conservation efforts (Haidvogl et al. 2015, Thurstan et al. 2015, Izzo 

et  al. 2016). It is particularly important for providing otherwise unattainable 

information for systems difficult to monitor; such as rivers, mangroves and estuaries 

to name a few (Izzo et al. 2016). Interdisciplinary research that embraces 

unconventional data sourced from ecologists, scientists, historians and archaeologists, 

as well as the general population (community fed research), can reveal long-term 

changes to ecosystems and climate (Haidvogl et al. 2015, Izzo et al. 2016). 

Additionally, interdisciplinary studies can reveal trends in the extent of human 
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impacts on ecosystems (Carder and Crock 2012, Haidvogl et al. 2015, Thurstan et al. 

2015). For example, research looking at the hypoxic histories of sediments in 

lacustrine systems revealed anthropogenic influences had a greater impact on 

increasing hypoxic conditions globally than climate change (Jenny et al. 2016). In 

another study, air temperature and precipitation were used as proxies to infer current 

and future shifts in species distribution (Haidvogl et al. 2015). Integration of otolith 

and fisheries data have been successfully used to assess recovery strategies for 

Murray cod, including evidence of improved survival and persistence to historical age 

class structure, albeit at a reduced size (Disspain et al. 2012). In this instance declines 

in overall size of the species were attributed to a combination of factors; predation by 

humans, competition for resources with invasive species, and environmental 

degradation (Disspain et al. 2012).  In each of these examples, utilising multiple data 

sources was critical to interpreting environmental changes. This focus on 

interdisciplinary research will continue to improve and support management strategies 

for restoration, conservation and adaptation to global change in the future (Haidvogl 

et al. 2015).  

Finally, predictions of the ecological implications of hypoxia using data from multiple 

sources be it physiological, chemical or historical datasets, should be incorporated 

into current management frameworks. Increasing numbers of studies are investigating 

environmental shifts on expansive timescales, yet few ever scale up the effects 

investigated and make the connection to a management framework (Izzo et al. 2016, 

Carlson et al. 2017). Persistence of hypoxia globally suggests a weak resilience of 

ecosystems, with inland systems showing greater vulnerability to hypoxia than marine 

waters (Jenny et  al. 2016). Comparative studies can reveal commonalities and 

differences in population, community and ecosystem changes after hypoxic exposure. 

Additionally, models can be used to scale up experimental investigations on stressors 

like hypoxia and evaluate population-level and ecosystem-level impacts allowing 

otherwise unattainable predictions of future effects of exposure to stressors like sub-

lethal hypoxia. A recent study used individual based models to examine long-term 

hypoxia effects on reproduction, growth and mortality of fish, predicting small 

population losses after one hundred years of mild hypoxia, versus a 19% reduction in 

population abundance under severe hypoxia (Rose et al. 2018). However, without 

research into stressors such as hypoxia being implemented effectively into a 



	 175	

management framework, there will be few applied benefits of the research. Research 

that supports a greater connection between science and management is required 

(Thurstan et al. 2015, Izzo et al. 2016).  

CONCLUSION 

Historical baselines of natural events like hypoxia tend to be closely intertwined with 

the effects of past climate changes and anthropogenic pressures like altered land-use 

and habitat degradation. In turn, elucidating the exact cause of increasing hypoxic 

conditions on a global scale is difficult. Throughout this thesis I focused on two 

related areas to aid in reducing the damaging effects of hypoxia in freshwater 

systems; the physiological thresholds of fish (organisms under high risk of large scale 

mortalities during hypoxic exposure), and using otoliths to retrospectively trace the 

occurrence of hypoxia in freshwater. Significant challenges face aquatic fauna when 

threatened with hypoxic flows from both natural and anthropogenic sources. While 

natural occurrences are inevitable, a better understanding of the tolerance thresholds 

for our native species would allow water managers in the future to reduce the risks 

associated with hypoxic blackwater events. It is necessary that we understand the 

long-term implication of hypoxic events on fish health and at different spatial scales 

(e.g. small to large scale events). This project has helped determine acceptable levels 

of environmental dissolved oxygen for minimum impact to fish health.  

All aquatic systems have undergone extensive change due to human activities and 

changing climates. Consequently, systems are studied and managed relative to a 

shifted baseline. The reconstruction of past hypoxic events will provide insight into 

high and low risk environmental conditions, and potentially some key environmental 

parameters that lead to or exacerbate hypoxic conditions. In the longer-term, the 

findings from this thesis can contribute to reducing the risks to fish health, providing 

data for water resource planning and the development of appropriate adaptation 

strategies for the changing environmental conditions. This research could also be 

potentially utilised to determine a national standard for dissolved oxygen levels for 

water allocation similar to other countries such as Canada and the USA. Furthermore, 

the techniques of this study can be adapted for use in other environments, such as 

marine systems, where hypoxia is an increasing issue (Pollock et al. 2007). 
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Hypoxia is complex and affects organisms differently depending on behaviour, 

physiology and other environmental factors. In this thesis, I used multiple methods to 

determine the effects of hypoxia on native fish from the Murray river. The greatest 

realisation herein was that one method alone could not describe all the effects of 

hypoxia. In the future complementary approaches will provide more information to 

support conservation and restoration efforts. To this end, this study describes the long-

term effects of hypoxia, from both a physiological and chemical basis (otoliths to 

track hypoxia) and generates vital information to aid in effective management of these 

conditions to improve the overall health of organisms through to the entire ecosystem. 
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