
UNIVERSITY OF ADELAIDE

Measuring genome wide changes in

chromatin state using ChIP-seq

Author:

Catisha Leigh COBURN

Supervisor:

Prof. David ADELSON and Assoc.

Prof. Gary GLONEK

A thesis submitted for the degree of Master of Philosophy

in the

School of Biological Sciences

Faculty of Sciences

April 11, 2019





iii

Declaration of Authorship

I certify that this work contains no material which has been accepted for the award

of any other degree or diploma in my name, in any university or other tertiary insti-

tution and, to the best of my knowledge and belief, contains no material previously

published or written by another person, except where due reference has been made

in the text. In addition, I certify that no part of this work will, in the future, be used

in a submission in my name, for any other degree or diploma in any university or

other tertiary institution without the prior approval of the University of Adelaide

and where applicable, any partner institution responsible for the joint-award of this

degree. I give permission for the digital version of my thesis to be made available on

the web, via the Universitys digital research repository, the Library Search and also

through web search engines, unless permission has been granted by the University

to restrict access for a period of time. I acknowledge the support I have received for

my research through the provision of an Australian Government Research Training

Program Scholarship.

Signed:

Date:





v

Acknowledgements

I would like to thank my supervisors, Professor David Adelson and Associate Pro-

fessor Gary Glonek, for their help and guidance throughout my Masters.

I would also like to thank my family; my mum, Robyn, for always supporting me

and my dad, Malcolm, who encouraged me to pursue a career in science.

I’m also grateful for my cat, Loki, who provided many therapeutic cuddles.

Finally, I would like to thank Kevin, my partner, for his endless patience and sup-

port. I could not have done it without you.





vii

Contents

Declaration of Authorship iii

Acknowledgements v

Abstract 1

1 Introduction 3

1.1 Introduction to the problem . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Epigenetics and chromatin . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Observing epigenetic changes . . . . . . . . . . . . . . . . . . . 6

1.1.3 Limitations and difficulties of analysis . . . . . . . . . . . . . . 10

1.1.4 Peak finding software . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.5 Analysis of differential regions . . . . . . . . . . . . . . . . . . 11

1.2 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Latent Class Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Analysis of multiple ChIP-seq programs 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Programs and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Calling Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 23



viii

2.3 Latent Class Analysis of ChIP-seq Peak Calling Programs . . . . . . . 27

2.3.1 The Simple LCA Model . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 LCA with a random effect . . . . . . . . . . . . . . . . . . . . . 31

Two Class LCRE with constant loading . . . . . . . . . . . . . 32

One Class LCRE with non-constant loading . . . . . . . . . . . 35

Two class LCRE with non-constant loading . . . . . . . . . . . 39

2.3.3 LCA with a random effect: without enRich . . . . . . . . . . . 45

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Simulation Study 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Simulating ChIP-seq data . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Generation of Test Data . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Model Fit of Simulation Data . . . . . . . . . . . . . . . . . . . 57

3.2.4 Method Assesment . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Comparing the Simple LCA and LCRE models . . . . . . . . . 60

Correlation to MGMM . . . . . . . . . . . . . . . . . . . . . . . 60

RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

BIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Sum of Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Summary of the measures . . . . . . . . . . . . . . . . . . . . . 73

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2 Should the BIC be used to select the best model? . . . . . . . . 76

Correlation to the MGMM . . . . . . . . . . . . . . . . . . . . . 77

RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



ix

Sum of Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.3 Investigating preference of One Class vs Two Class models us-

ing the BIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Analysis of two class data . . . . . . . . . . . . . . . . . . . . . 85

Analysis of one class data . . . . . . . . . . . . . . . . . . . . . 89

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Changing Threshold Method 97

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Correlation to MGMM . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2 RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.3 Binding Accuracy using p0 . . . . . . . . . . . . . . . . . . . . 106

4.3.4 Sum of Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Applying new LCA method to data 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Conclusions and Future Directions 127

A Software 135



x

A.1 ChIP-seq Peak Identification Software . . . . . . . . . . . . . . . . . . 135

A.2 R Software and Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.2.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.2.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Other Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B Chapter 3 Full Results 143

B.1 Comparing the Simple LCA and LCRE models Results . . . . . . . . 143

B.1.1 Average Correlation to MGMM and Standard Deviation of

Correlation to MGMM for three models . . . . . . . . . . . . . 143

B.1.2 RMSE for three models . . . . . . . . . . . . . . . . . . . . . . 160

B.1.3 BIC for each of the three models . . . . . . . . . . . . . . . . . 162

B.1.4 Sum of Scores with matching replicate results . . . . . . . . . 163

B.2 Investigating preference of One Class vs Two Class models using the

BIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B.2.1 Frequencies of one class preference for data with two clusters 165

B.2.2 Frequencies of one class preference for data with one clusters 167

C Chapter 4 Full Results 169

C.1 Average correlation and standard deviation for threshold method re-

sults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.2 RMSE results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.3 Binding Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Bibliography 177



1

Abstract

As research into epigenetics grows, it is clear that modifications to DNA through hi-

stones and other proteins can change behaviour within the cell, and is an important

aspect of cellular function. One of the methods to observe these modifications is

chromatin immunoprecipitation sequencing (ChIP-seq), which specifically targets

protein-bound DNA to determine its location along the genome. The outcome of

this technique are sequences of DNA, which indicate regions of DNA that may be

bound by the protein. A drawback of this technique is that noise within the data can

hide the true location of these proteins, and thus ChIP-seq peak calling software is

needed to identify putative binding sites, which can then be associated with genes.

There are a number of these programs available, but they tend to have a low

level of agreement. This is because they use a wide variety of peak identification

models that rely on different assumptions about the data. Ideally, the results from a

number of tools could be combined to identify a combined, robust set of associated

genes. One candidate technique is Latent Class Analysis (LCA).

The aim of this thesis is to apply LCA to ChIP-seq data, and use it to identify a

reliable set of bound genes.

Three different LCA models were considered; a simple model, as well as models

with additional random effects. These random effects had either constant loading

among the programs, or non-constant loading. In Chapter 1, I applied these models

to ChIP-seq data to observe the initial results.

Next, in Chapter 2, I performed a series of simulations with varying parameters,
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and analysed them with the three models, to clarify and extend upon the results

from Chapter 1. In this case, the underlying truth was known, so I could measure

the performance of each model. These measurements included the correlation to

a Multivariate Gaussian Mixture Model (MGMM) results, which was fitted to the

underlying data, and the root mean squared error to the MGMM results.

An additional measurement was the BIC. Aside from comparing the models for

accuracy, I also assessed the use of BIC for both determining the correct number of

classes to use, and as a method of determining the best model using the simulations.

Finally, in Chapter 4, I developed and tested using simulations a new method

of using the LCA models to acquire a more accurate set of putative binding genes.

This was analysed using the MGMM, as well as by comparing the proportion of

binding genes with the known expected number. I then applied this new method to

the original data in Chapter 5.

Based on initial results in Chapter 1, the LCA model without random effects gen-

erated a reasonable set of binding genes. This was further confirmed using the re-

sults of the simulations in Chapter 2, which indicated that the posterior probabilities

are more accurate using this model. In addition, the BIC was not found to accurately

determine the best number of classes. When assessing the use of the BIC to choose

a model, it was found that it did not necessarily find the best performing model,

and, based on the simulations, selecting the LCA is better. Finally, assessments of

the new method indicated that it performed well compared to using a single model.

In conclusion, the approach that incorporates changing thresholds with the LCA

was shown to be the most effective at producing a combined robust set of genes.
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Chapter 1

Introduction

1.1 Introduction to the problem

1.1.1 Epigenetics and chromatin

Epigenetics is the study of heritable changes to DNA that are not due to changes

in the DNA sequence (Berger et al., 2009). These changes include the modification

of histones; large proteins that the DNA wraps around to form complex structures

called nucleosomes, as well as the addition of methyl (-CH3) groups to bases in a

process called methylation.

Modifications to DNA methylation and histones are key to cell differentiation

within the body. These modifications of the DNA affect transcription, and lead to

the differential expression of proteins. Methyl groups have been found to inhibit

protein binding, preventing key transcriptional proteins such as RNA polymerase

from acting on regions of DNA. This leads to regulation of transcription (Jeong et al.,

2016).

Nucleosomes are the principal component of chromatin. The packaging of the

DNA into tight clusters is organised around these chemical spools (see Figure 1.2).

The inclusion of nucleosomes affects the accessibility of the DNA to proteins and
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hence allows the cell to control gene expression.

Histones can be modified in a number of ways to regulate genetic activity. These

modifications, including histone methylation (addition of methyl groups) and his-

tone acetylation (addition of an acetyl group -CH3CO), lead to changes in the com-

position and positioning of the nucleosome (see Figure 1.1). For instance, different

histone variants influence the stability of the nucleosome and lead to changes in the

structure of chromatin. Positioning of the nucleosome is affected by a large num-

ber of enzymes. These enzymes can be used by the cell to tag nucleosomes for re-

moval and insertion into different areas of the genome. Other enzymes may lead to

the shifting of nucleosomes a relatively short distance along the DNA, allowing for

more dynamic control of transcription. While the effect of particular histone modifi-

cations has been characterised, the exact mechanisms causing these effects remains

poorly understood.

Nucleosomes are also the basis for more complex packaging of the DNA; nucloe-

somes can be packaged close together leading to the formation of the metaphase

chromosome (see Figure 1.2). Generally, DNA is more loosely packaged to allow for

protein access (Venkatesh and Workman, 2015).

Different cell types within an organism have different patterns of chromatin

modification (Stueve et al., 2016). Regions which are accessed often will have open

or loose chromatin, where histones are more sparsely located along the DNA, and

where proteins are more likely to bind. Conversely, regions accessed rarely will be

found in a closed or tight chromatin state, with a greater number of histones and a

lower chance of bound proteins (Even-Faitelson et al., 2016). Similarly, methylation

is also more common in areas of low access, and vice versa for regions of high access

(Jeong et al., 2016). Through these mechanisms, the cell has fine control of gene ex-

pression at the level of the DNA. Since these epigenetic changes are also reversible,
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FIGURE 1.1: Histone modifications that lead to changes in transcrip-
tion. a) Different histone variants can be incorporated into the nucleo-
some, influencing the stability of the nucleosome and structure of the
chromatin. b) Addition of chemical groups to histones may affect the
expression of genes on the associated DNA. c) Enzymes can affect the
positioning of the nucleosome, leading to the shifting of the protein

complex along the DNA, or its entire removal (not shown).

FIGURE 1.2: Structure of chromatin within the nucleus of the cell
adapted from en.wikipedia
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the cell is also able to change its gene expression in response to environmental cues

(Venkatesh and Workman, 2015).

The effects of epigenetics are often observed in disease. Epigenetics can cause

disease by the deregulation of epigenetic modification pathways, leading to changes

in gene expression, or through inhibiting access of RNA Polymerase to functional

genes (Jeong et al., 2016; Portela and Esteller, 2010). In cancer, it is common for there

to be significant changes in chromatin that lead to increased expression of genes

promoting cell proliferation, cell growth and survival and decreased expression in

genes that downregulate these pathways and initiate apoptosis. Some inherited dis-

eases, such as Prader-Willi syndrome, occur because the only functional copy of a

particular gene is methylated, leaving only the mutated gene available for transcrip-

tion (Portela and Esteller, 2010).

The types of condition needed to effect changes to the chromatin state are still

being investigated. It is of interest to determine not only the conditions necessary for

change, but also the dynamics of such change within the genome. This is achieved

by performing time course analyses, where multiple samples are obtained over time

from the same experiment. There are well established methods of finding locations

of closed chromatin, however the statistical analysis of the resulting data is complex.

This literature review will examine different methods for analysing this type of data,

in particular current tools available for implementation.

1.1.2 Observing epigenetic changes

It is necessary to determine when epigenetic changes are occurring, and where in the

genome, in order to investigate this phenomenon. However, sequencing the genome

will not normally give information about chromatin or epigenetics, as bound pro-

teins are removed from the DNA during the sequencing preparation process, and
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methylated DNA cannot be distinguished from ordinary DNA during normal se-

quencing (Ku et al., 2011).

CpG methylation is relatively simple to measure using bisulphite sequencing.

Bisulphite is used to treat samples of DNA, which causes the conversion of un-

methylated cytosine to uracil, but leaves methylated cytosine nucleotides unchanged.

After sequencing, the treated sample is compared with an untreated sample. The re-

maining cytosines indicate the original location of the methylated cytosines (Jeong

et al., 2016).

In contrast, histone modification is difficult to measure directly. In recent years

several new procedures have been developed to determine locations of tightly bound

chromatin (see Figure 1.3). These techniques are presented in the following section.

The procedures are performed on samples of cells with qualities of interest. While

all of the techniques below are used to determine the state of chromatin, chromatin

immunoprecipitation sequencing (ChIP-seq) specifically targets protein-bound DNA,

while both the assay for transposon accessible chromatin sequencing (ATAC-seq)

and formaldehyde assisted isolation of regulatory elements (FAIRE-seq) identify re-

gions of open chromatin (Johnson et al., 2007; Buenrostro et al., 2013; Giresi et al.,

2007). While this seems to imply that ChIP-seq will return different regions of the

genome to ATAC-seq and FAIRE-seq, this is largely dependent on the protein cho-

sen. Many proteins, for example RNA polymerase, are associated with open regions

of chromatin (Phillips and Shaw, 2008). The output of the techniques are fragments

of DNA that can be sequenced.

ChIP-Seq

ChIP-seq is one of the older methods developed to determine locations of tightly

bound chromatin, or any DNA binding protein. Proteins are covalently bound to the

DNA using formaldehyde, and the DNA is then extracted and sonicated to break it
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into small fragments. Next immunoprecipitation occurs; specific antibodies attach

to the protein of interest, allowing these DNA-protein complexes to be extracted

from the sample. The DNA-protein binding is reversed, and the sample is purified

to isolate the DNA (Johnson et al., 2007).

ATAC-seq

ATAC-seq uses a transposase known as Tn5. When a cell is treated with this trans-

posase, it simultaneously fragments exposed areas of the genome and adds a se-

quencing tag in a process called tagmentation. The transposase will tend to only

affect areas where chromatin is not tightly bound, since these areas allow for bind-

ing to occur more often. Using these tags, genome fragments are then isolated and

amplified for sequencing (Buenrostro et al., 2013).

FAIRE-seq

FAIRE-seq uses formaldehyde to first bind all proteins covalently to DNA, as in

ChIP-seq. The sample is sonicated to break the DNA into small fragments, and

a phenol-chloroform extraction is performed. This creates two phases within the

sample. The DNA fragments bound to nucleosomes will preferentially sit in one of

these phases, allowing it to be extracted from the rest. The remaining DNA, which

corresponds to open chromatin, can be sequenced (Giresi et al., 2007).

Each technique has its advantages and disadvantages in terms of both experimental

procedure and analysis. ChIP-seq is the most widely used of the three techniques,

and the most flexible in that it can be used to find non-epigenetic proteins as well

as specific histone marks (Johnson et al., 2007). The most significant cause of bias in

ChIP-seq is the use of antibodies, as different antibodies bind to proteins of interest

with different strengths. This leads to changes in the relative strengths of sample
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FIGURE 1.3: ChIP-seq, FAIRE-seq and ATAC-seq methods, adapted
from the Illumina Sequencing Method explorer

peaks and these differences in data quality reduce accuracy in analysis (Meyer and

Liu, 2014). It is recommended that ChIP-seq experiments are accompanied by a

control, preferably a spike-in control, where quantities of known readily identifiable

nucleic acids are added to the sample before immunoprecipitation. While ATAC-seq

and FAIRE-seq require less experimental calibration and do not have the difficulties

associated with immunoprecipitation, these technologies are still relatively new and

the associated biases are not fully understood (Meyer and Liu, 2014).

All of these techniques require some method of reading large numbers of frag-

ments. This became possible with the advent of next generation sequencing, which

allows for high throughput of data (Schuster, 2008). The most common method of

sequencing is performed by Illumina, and the end result is short (50-200 bp) single

or paired end reads. Next, the samples are aligned to a reference genome, allowing

for analysis.
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Since most techniques of analysis are created with ChIP-seq in mind, this tech-

nique will be the main focus for the rest of this review. However, tools and tech-

niques discussed here are also relevant to ATAC-seq and FAIRE-seq.

1.1.3 Limitations and difficulties of analysis

One of the challenges of ChIP-seq and similar data is that the analysis is more dif-

ficult than in related techniques. Two methods that ChIP-seq is often compared

to, and which have similar analyses, are bisulphite sequencing (as previously de-

scribed) and RNA-seq. This is a technique that collects and analyses RNA fragments

to determine the expression levels of genes in the cell at the time of collection (Wang,

Gerstein, and Snyder, 2009). This technique is well-characterised and many tools are

available for analysis

The analysis of ChIP-seq data is more difficult for a number of reasons. Unlike in

RNA-seq, the space in which there could be potential changes to chromatin are not

limited to within genes, but instead cover the entire genome. Additionally, there is

no limit on the amount of signal that could be obtained from this type of data, unlike

CpG methylation, which is constrained to a finite interval of 0 to 100% methylated.

Furthermore, depending on the particular method employed, one can expect to see

considerable noise between samples of data, especially when those samples were

not obtained during the same experiment or from the same laboratory. This com-

plication means that normalisation of the data is a key step within analysis. Finally,

the length and shape of enriched regions will differ significantly, depending on the

target protein. This variation is observed because proteins vary in size, and different

lengths of DNA will be enriched in the sample (Steinhauser et al., 2016). In the case

of epigenetic modifications, these regions are usually larger (Shen et al., 2013; Xu

et al., 2014).
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1.1.4 Peak finding software

After alignment, the next step is to identify locations of bound chromatin by differ-

entiating peaks in the data from the noise (Zhang et al., 2008). There are a number

of tools readily available to do this; collectively known as peak-finding software.

The method of determining enriched peaks differs based on the tool used. Tools

currently available for this purpose include BELT, SISSRs, QuEST, PeakSeq and

MACS. BELT uses a percentile rank of the bins to determine significant enrichment

levels, and SISSRs calculates binding sites based on the number of forward and

reverse reads between windows (Lan et al., 2010; Narlikar and Jothi, 2012). Both

QuEST and PeakSeq use a control to compare enrichment in windows and specify

regions that differ significantly as potential peaks (Valouev et al., 2008; Rozowsky et

al., 2009). MACS models the data as a Poisson distribution and then finds candidate

peaks using the p-value for significant enrichment (Zhang et al., 2008).

To rank peaks, most tools estimate a False Discovery Rate (FDR) for the data

(Zhang et al., 2008; Lan et al., 2010; Narlikar and Jothi, 2012; Rozowsky et al., 2009),

while others rank the peaks using different scoring methods. For example, QuEST

uses kernel density estimation derived scores (Valouev et al., 2008). The result of all

tools is a list of peaks, denoting locations of bound protein within the genome.

1.1.5 Analysis of differential regions

One of the key applications of ChIP-seq and similar technology is determining the

effect of different cell types or treatments on chromatin. By comparing two differ-

ent samples that differ only by a condition of interest, it is possible to determine

its effect on the chromatin state. In particular, the changes in the location of closed

chromatin, and thus potential changes in gene expression are of interest (Shen et al.,

2013). A simple visualisation of this is given in Figure 1.4. Here we can see that in
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FIGURE 1.4: Comparing two samples for locations of differential bind-
ing. Putative regions are emphasised by the boxes. Adapted from (All-

hoff et al., 2014).

our two samples, there is an apparent difference in binding at one location, but not

in the other. To identify regions across the entire genome we require complex statis-

tical tools. The effect of certain mutations, potential nuclear drug targets, variations

between cell types and temporal changes to chromatin state are some themes that

could be explored (Chahwan, Wontakal, and Roa, 2011).

Due to the overwhelmingly large number of reads generated by ChIP-seq and

similar technology, computers are required to identify regions that appear to vary

between conditions. ChIP-seq is a recent technological advance and more estab-

lished techniques have developed well understood methods of identifying differ-

ential regions within the genome. There are many tools that identify differences in

DNA methylation using the results of bisulphite sequencing, including IMA and

QDMR (Zhang et al., 2011; Wang et al., 2012).

Two popular computational tools used for determining differential RNA expres-

sion are edgeR and DESeq, and these are often used in the analysis of ChIP-seq data

as well (Anders and Huber, 2010; Robinson, McCarthy, and Smyth, 2010). One dis-

advantage of using these tools specialised for RNA-seq is that they were originally

designed for finding peaks over the relatively short regions that form individual

genes. In contrast, when ChIP-seq and similar technology is used for determining
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locations of closed chromatin, the peaks cover much larger regions of the genome. If

this difference is not taken into account it may lead to erroneous results (Shen et al.,

2013).

There are a number of tools that identify differential regions of ChIP-seq, FAIRE-

seq and ATAC-seq data (Steinhauser et al., 2016). While most are initially designed

for ChIP-seq, most researchers will use the same tools for FAIRE-seq and ATAC-seq,

under the assumption that the data is similarly distributed. There are a variety of

methods available, and depending on the experiment, the most appropriate tool to

use will vary. Most tools will then perform three main steps of analysis; peak calling,

normalisation and statistical testing (Steinhauser et al., 2016). These steps may be

done discretely, or in one complete process.

Statistical tests allow the two samples to be compared in order to determine

whether any given peak could be considered common to both or unique. There

are a number of methods that can be used to compare sets of peaks. While each

tool has its own implementation of a method, there are a number of common ap-

proaches. This may include using a fold change threshold, applying model based

analysis approach, using a non-parametric test or utilising Hidden Markov Models

(HMM).

In a fold change threshold method, bins between the two samples are considered

equal if the read numbers do not exceed a pre-specified fold-change threshold. This

is used by HOMER and MACS2 (Heinz et al., 2010; Zhang et al., 2008).

When using a model based analysis approach, equivalent bins between the sam-

ples are compared and a p-value is calculated based on either the Poisson or the

negative binomial (NB) distribution, with a null hypothesis that the true expression

between the two bins is the same based on the number of counts observed (Zang

et al., 2009). This type of approach is used by SICER (Zang et al., 2009; Xu et al.,
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2014).

Programs that use a non parametric approach include QChiPat, created by Liu

et al., (2013), which uses Wilcoxon rank tests to distinguish differentially enriched

regions. Finally, some tools, such as ODIN and RSEG, determine differentially en-

riched regions with a Hidden Markov Model (HMM) (Allhoff et al., 2014; Song and

Smith, 2011). This approach differs significantly from the more typical methods de-

scribed above, particularly in that the entire analysis occurs in one step, rather than

in discrete steps for peak calling, normalisation and testing.

1.2 Further Analysis

The vast array of tools available to analyse ChIP-seq data give researchers the ability

to identify the effect of these tools on the same set of data. As has been identified

in a number of other studies (Thomas et al., 2016; Steinhauser et al., 2016), ChIP-seq

programs tend to have a low level of agreement. Since every program relies on a

number of assumptions regarding their model for ChIP-seq and similar data, it is

reasonable to expect that all tools generate false positive as well as false negative

results (Cantarel et al., 2014). Due to the nature of ChIP-seq data, a ”gold-standard”

does not exist, because while it is possible to individually validate some sites via

other molecular biology techniques, this is not feasible to undertake for an entire

genome.

Currently, the main technique used by many ChIP-seq tools in order to justify

their approach is to create simulated data for assessment by their tool as well as

other established tools (Zhang et al., 2008; Ranciati, Viroli, and Wit, 2015; Allhoff

et al., 2014). This allows them to compare the results and indicate their tool is the

best for ChIP-seq data for the particular use case. However, this technique can be
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problematic; when the data is simulated using a model based on the assumptions

on which the ChIP-seq tool was designed, this will bias the tool for which the paper

was written.

An approach taken in other areas of bioinformatics that also lack a gold standard

for judging programs is to create a combined data set of interest by using the results

of multiple tools (Cantarel et al., 2014; Elsik et al., 2007; Chen et al., 2007). Some

approaches tend to be ad hoc and rely on finding a ”majority vote” set or other inter-

section based methods. Others are more complex and use statistical classsification

techniques such as Latent Class Analysis (LCA). This has been used successfully to

generate a set of genome variants, create a consensus gene set based on gene models

and to infer orthologous genes from different genomes (Cantarel et al., 2014; Elsik

et al., 2007; Chen et al., 2007).

Such an approach in ChIP-seq would allow the different strengths of the pro-

grams to be combined to give a more reliable putative peak set to be investigated

further. Currently, complex statistical classification techniques to combine ChIP-seq

programs have not been applied to ChIP-seq data in the literature.

1.3 Latent Class Analysis

LCA can be applied to the problem of combining multiple tools in a statistically

robust manner. LCA is a popular technique in psychology and social sciences, origi-

nally used for finding latent groups or classes based on a number of variables (Linda

M. Collins, 2010). In these applications, a group of people are asked questions rel-

evant to a variable of interest (for example, prevalence of alcohol and drug use in

teenagers). These questions are designed to be categorical, so the participants may

select one of a number of options.
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The questions are called response variables and the options response categories.

Suppose that there are t = 1, ...T observed variables and observed variable t has

Rt response categories. The responses are placed in a contingency table, which is

formed by cross tabulating the T variables and has W = ∏T
t=1 Rt cells. Thus each

row represents a response pattern y = (y1, y2, ..., yt), each of which is associated

with a probability P(Y = y).

For a model with c = 1, ..., C latent classes, each class has a probability of mem-

bership, which is called the prevalence of latent class c and is represented by γc. The

probability of a response rt given membership in class c is called the item-response

probability and is denoted by ρt,rt|c. Thus the probability of observing response y

conditional on membership in latent class c is given by:

P(Y = r|L = c) =
T

∏
t=1

Rj

∏
rt=1

ρ
I(yt=rt)
t,rt|c (1.1)

where L is the latent variable and I(yt = rt) is an indicator function that equals

1 when yt = rt and 0 otherwise. Finally the probability of observing response y

regardless of class c is given by:

P(Y = r) =
C

∑
c=1

γc

T

∏
t=1

Rt

∏
rt=1

ρ
I(yt=rt)
t,rt|c (1.2)

Using Bayes Theorem, we can find the posterior probability of a class c given the

response pattern y:

P(L = c|Y = y) =
P(y = y|L = c)P(L = c)

P(Y = y)

=
γc ∏T

t=1 ∏Rt
rt=1 ρ

I(yt=rt)
t,rt|c

∑C
c=1 γc ∏T

t=1 ∏Rt
rt=1 ρ

I(yt=rt)
t,rt|c
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Returning to the example of a group of people asked questions relating to a variable

of interest, classes will consist of similar sets of responses to the questions. We can

then identify the most likely class for each person based on their response. For

given C, the Estimation-Maximisation (EM) algorithm can be used to estimate the

parameters of the LCA model.

There are a number of programs available to estimate the number of classes au-

tomatically based on the input of the contingency table or equivalent data. Multiple

LCAs are performed, with differing numbers of classes, and the results are com-

pared using BIC or similar to determine the best number of classes for the data (Qu,

Tan, and Kutner, 1996).

LCA can be applied to ChIP-seq data to combine the responses of different callers.

For the application to the problem of identifying a binding and non-binding class

using the results from multiple programs, we can consider genes as the responders

and the programs as our variables.

The response items would be binary, either binding or non-binding, and based

on the results of a program. Furthermore, the maximum expected class size would

be two, where the genes are separated into a binding or non-binding group overall.

Based on these changes, the posterior probability can be simplified to:

P(L = c|Y = y) =
γc ∏T

t=1 π
yt
t|c(1− πt|c)

(1−yt)

∑2
c=1 γc ∏T

t=1 π
yt
t|c(1− πt|c)

(1−yt)
(1.3)

Where πt|c is the probability that yt is 1 given that it is in class c (Beath and Heller,

2009).

One fundamental assumption of the LCA model is that there is local indepen-

dence, such that the observed variables are independent (Linda M. Collins, 2010).

However, this may not always be true for the application. An example from medicine
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could be the assessment of patients for a particular disease using different tests. If

two or more of the tests rely on similar underlying information, such as a blood

sample, this could lead to a dependence between the two tests, and invalidate the

assumption of LCA. Similarly for the application of ChIP-seq, if two of the programs

rely on similar assumptions or the same model within the data, this could cause

similarities between the results that isn’t reliant on the true binding or not-binding

status (Qu, Tan, and Kutner, 1996).

For binary response, a simple model for this dependence is to assume an unob-

served continuous random variable λi ∼ N(0, 1) for gene i, which is incorporated

into the above equation through πti|c:

πti|c = φ−1(at|c + bt|cλi) (1.4)

where at|c determines the item response probability for a value of 0 for the ran-

dom effect and bt|c scales the random effect and is usually known as the loading or

discriminant (Qu, Tan, and Kutner, 1996). This loading can be the constant or non-

constant for each program. Thus the marginal probability, found by summing over

the classes and integrating over λ becomes:

P(Y = y) =
C

∑
c=1

γc

∫
λ

φ(λ)
T

∏
t=1

π
yt
t|c(1− πt|c)

(1−yt) (1.5)

and hence the posterior probability is:

P(L = c|Y = y) =
γc ∏T

t=1 π
yt
t|c(1− πt|c)

(1−yt)

∑2
c=1 γc

∫
λ φ(λ)∏T

t=1 π
yt
t|c(1− πt|c)

(1−yt)
(1.6)
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For calculating the parameters, the integration makes it necessary to use an approx-

imation, for example the Gauss-Hermite quadrature. An algorithm has been imple-

mented in R for this complex LCA, in the package randomLCA (Beath, 2008).

1.4 Research Aims

The overall aim of this thesis is to determine suitable methods of combining the

results of multiple programs in a statistical rigorous manner. These goals can be

broken down into the following aims:

• Determine the suitability of Latent Class Analysis for combining the results of

multiple ChIP-seq programs

• Evaluate the performance of this method for a range of data using simulations

• Use the results from the simulations to make improvements upon the original

analysis, if possible
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Chapter 2

Analysis of multiple ChIP-seq

programs

2.1 Introduction

As ChIP-seq experiments have become more popular, there has been a rise in the

number of programs available to identify putative ChIP-seq peaks (Zhang et al.,

2008; Heinz et al., 2010; Allhoff et al., 2014; Bao et al., 2014; Harmanci, Rozowsky,

and Gerstein, 2014; Xing et al., 2012). These tools assume various different read dis-

tribution models in order to determine when peaks are likely to represent true bind-

ing events rather than noise. These differing assumptions mean that the tools do

not necessarily agree and, often, the levels of agreement are suprisingly low (Stein-

hauser et al., 2016). It is unclear which program has the most accurate model. Since

so many peaks are identified by any given program, it is difficult and prohibitively

expensive to use other molecular methods to corroborate these peaks. Furthermore,

depending on the target of the ChIP-seq experiment, we may observe different read

distributions. For example, some histone marks, such as H3K36me3, have peaks

that are low in read number but wide in range, while others, such as H3K4me3 are

high in read number but narrow in range (Even-Faitelson et al., 2016). Thus there is
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no gold standard for ChIP-seq peak identification.

As mentioned in Chapter 1, one way to gain a more reliable set of peaks is to

use multiple programs. One approach is to find the intersection of associated genes

found between programs. However, this method does not take into account pro-

grams with a high level of disagreement, which will remove genuine binding genes

from the gene set. In contrast, if the programs are too similar in their assumptions,

this may have the opposite problem, leading to the inclusion of non-genuine bind-

ing genes.

Latent Class Analysis (LCA) is a statistical method that can be used to provide a

more principled approach to combining results from multiple callers (Cantarel et al.,

2014). It is described in greater detail in Chapter 1. An LCA model that uses random

effects may be more appropriate when there is correlation between the programs, as

this correlation violates assumptions in the simple LCA model (Beath and Heller,

2009). For example, certain programs that make similar assumptions will create

these correlations. Therefore, three models will be considered; a simple LCA model

(the LCA model), a LCA model with random effects and constant loading (LCRE

with constant loading) and a LCA model with random effects and non-constant

loading (LCRE with non-constant loading).

In this chapter, I examined these three different models for categorising the genes

found by multiple programs. Initially I described the data as well as the programs

that were used. I then applied a simple LCA model to the data, as well as an LCA

that will include a random element with constant loading and with non-constant

loading, and compared the results.
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2.2 Programs and Dataset

2.2.1 Dataset

I used the Encyclopedia of DNA Elements (ENCODE) portal to identify a set of high

quality samples (Consortium, 2012). In addition, the portal provided filtered align-

ments, so this saved alignment and processing time. The ChIP-seq target for the

samples was H3K36me3 for Homo sapiens neutrophil cells (Experiment ENCSR373WCB).

The resulting reads were mapped to assembly GRCh38 using the tool BWA (Li and

Durbin, 2009). Two anisogenic replicates were available, to improve the quality

of the peak identification. In addition, control samples (two anisogenic replicates)

from the same laboratory were also obtained from ENCODE for control of noise

(Experiment ENCSR557RDB). Details on the processing pipeline for the samples are

available at www.encodeproject.org (Consortium, 2012). See Appendix A.3 for fur-

ther information.

H3K36me3 is a well-defined histone modification - the trimethylation of lysine 36

of histone H3. This has been found to be tightly associated with active transcription

(III and Reinberg, 2009). The goal of ENCODE, is to build a comprehensive list of

functional elements in the genome, and this experiment is part of that investigation

(Consortium, 2012). In particular, these samples are meant to indicate the standard

locations of this mark in this particular cell type.

2.2.2 Calling Programs

A number of programs were applied to the H3K36me3 dataset. The programs were

selected to represent a variety of read distribution models. While many of the pro-

grams are differential peak callers, here they are used in a single peak calling ca-

pacity. This means for some, only the peak calling step was used, while in others
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the different peak calling method was used with the control as the second data set.

Table 2.1 summarises these programs briefly.

Tool Peak Calling Normalisation
Differential peak

calling method
Reference

MACS2 Sliding window approach,
identifies peaks using
Poisson distribution

Library size normalisation Fold change threshold:
Log10 likelihood ratio
cutoff.

Zhang et al., 2008

HOMER Window based approach,
identifies peaks using
Poisson distribution

Library size normalisation Fold change threshold Heinz et al., 2010

THOR Hidden Markov model
with three states. Models
with mixture of Poison
distributions. Takes into
account replicates.

Allhoff et al., 2014

enRich Markov random field
model. Models with a zero
inflated negative binomial.
Now archived.

Bao et al., 2014

MUSIC Uses multiscale decompo-
sition to identify signifi-
cantly enriched regions at
7 different scales, then
merges these to gain a final
set of enriched regions.

Both control and ChIP
reads are filtered for dupli-
cates and then uses control
data to normalise before
peak calling.

Harmanci, Rozowsky, and Gerstein, 2014

BCP Designed for broad enrich-
ment. Uses a stochas-
tic Bayesian Change-Point
method to calculate poste-
rior means and categorise
the genome. Only uses one
replicate.

Uses a control to filter false
candidates.

Xing et al., 2012

TABLE 2.1: A summary of tools used for identification of binding genes
with LCA. Methods are separated into peak calling, normalisation and

differential peak calling method.

The data were analysed using the recommended settings for each tool, given the

type of protein and experiment, resulting in a series of ranges across the genome for

each program. These ranges correspond to putative binding sites. The remaining

analysis was performed with R (see Appendix A).

The ranges from each tool were used to annotate the genome in order to find

associated genes. This accounted for variation in peak length and generated a more

comparable data set for each tool. The outputs from each tool were compared to

the locations of genes, and genes that were identified as having a closely associated

putative peak (± 200bp around gene range) were retained. This was performed
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with the package biomaRt using the Ensembl gene dataset for H. sapiens (Zerbino

et al., 2018). Genes were identified based on their Entrezgene IDs. These genes were

then used for the remainder of the analysis.

An assessment of the intersections of the genes found by each of the tools was

performed using UpSetR (Lex et al., 2014) and is given in Figure 2.1. The largest

intersection contained all peak-calling programs except for enRich, and the top 5

peaks all included MACS2. The intersection of all programs was also large, with

slightly less than 1000 genes being common across all 5 programs. Additionally,

there were 11,590 genes not found by any program (not included in the Figure 2.1).

Notably, MACS2, enRich and BCP were the only programs that called peaks that

were associated with unique genes. While there are a considerable number of genes

commonly found by all the programs, for MACS2, HOMER, and BCP this consti-

tuted at most 61% of the genes found associated with those programs.

The number of genes found to be bound by H3K36me3 is shown in Table 2.2.

enRich not only found the fewest genes in general, but also had the fewest genes

in common with the other programs. Conversely, MUSIC both had the most genes

and had the most in common with other programs. MACS2, MUSIC and BCP also

found a number of genes independently of the other tools, despite HOMER finding

more genes than BCP.
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FIGURE 2.1: UpSetR plot for the intersection of genes found by peak
calling programs. The ”Intersection Size” gives the number of genes
within that intersect, while ”Set Size” shows the number of genes for
each program as listed. The filled dots indicate which programs were
included in each intersection. The target of the ChIP-seq experiment

was H3K36me3.

Program Number of Genes

MACS2 12599

MUSIC 12068

HOMER 9613

BCP 8867

THOR 6642

enRich 2539

TABLE 2.2: The number of genes found to be bound by H3K36me3 by
each program. Programs are listed in decreasing number of genes.



2.3. Latent Class Analysis of ChIP-seq Peak Calling Programs 27

2.3 Latent Class Analysis of ChIP-seq Peak Calling Pro-

grams

2.3.1 The Simple LCA Model

The LCA was performed using randomLCA (Beath, 2008). Since I was trying to de-

termine whether any given gene was being bound or not bound within the sample,

two different models were tested, one class or two classes. If the two class LCA was

not found to be a significantly better fit than the one class model, this would imply

that the genes did not partition into two classes. Using the Bayesian information

criterion (BIC), the two class model was found to be the best model.

The two class model can be interpreted as having partitioned the genes into a

binding class and a non-binding class. Figure 2.2 shows the calling probabilities of

each class and program, or the probability that the program has a peak for a gene,

given it is in that class (Schwarz, 1978). Thus Class 2 has genes that are classified as

binding, while Class 1 includes the genes that are classified as non-binding. Confi-

dence intervals at the 0.95 level were also calculated using a parametric bootstrap.

It is clear that there is a high confidence on these binding probabilities, given by the

small range over the confidence interval. Notably, enRich has a low probability of

genes binding in either class. This is partly due to the low number of binding genes

associated with the enRich peaks, as well as the low level of agreement, as observed

in Figure 2.1.

The LCA can be used to estimate the number of binding genes. Binding or non-

binding status is determined by finding the class for each gene that has the maxi-

mum posterior probability, based on the ”profile” of that gene (the outcome for each

program of whether it calls the gene or not). In this case, if Class 2 has the highest

posterior probability, the gene is considered binding under the model. Based on the



28 Chapter 2. Analysis of multiple ChIP-seq programs

FIGURE 2.2: Calling probabilities for the LCA model, including 0.95
confidence intervals. The calling probabilities give the probability that
the program has a peak for a gene, given it is in that class. The confi-
dence interval is shown in colour differing by class, while the darker

line indicates the outcome value.

LCA, 9,824 of the genes were found to be bound. This is higher than the average

number of genes found by each of the programs individually (Table 2.2). Using GO

enrichment analysis, I more closely investigated the function of these genes. The

results are given in Figure 2.3. The top GO terms found were primarily associated

with regulatory functions. This is consistent with the target H3K36me3 being asso-

ciated with transcriptionally active genes.

The observed frequencies were compared to the expected frequencies based on

the 2 Class LCA model (see Table 2.3). These expected frequencies tended to differ

quite significantly from the observed frequencies. The difference between observed

and expected indicated a generally poor fit to the data. A poor fit may be indicative

of a violation of one of the key assumptions of the LCA model; that the programs

are calling independently. This suggested a more complex model may be necessary.
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Profile Observed Expected Probability of Binding

000000 11592 10644.44 0.00

000001 266 1103.46 0.00

000010 43 99.41 0.00

000011 50 10.50 0.02

000100 0 0.00 0.11

000101 0 0.07 1.00

000110 0 0.00 0.98

000111 0 0.34 1.00

001000 0 31.33 0.00

001001 0 3.67 0.11

001010 1 0.30 0.02

001011 2 2.00 0.98

001100 0 0.00 1.00

001101 1 0.72 1.00

001110 0 0.01 1.00

001111 2 3.40 1.00

010000 704 715.29 0.00

010001 31 74.16 0.00

010010 1 6.68 0.00

010011 3 0.73 0.05

010100 0 0.00 0.24

010101 0 0.01 1.00

010110 0 0.00 0.99

010111 1 0.06 1.00

011000 0 2.11 0.00

011001 1 0.29 0.24

011010 1 0.02 0.05

011011 0 0.33 0.99

011100 0 0.00 1.00

011101 0 0.12 1.00

011110 0 0.00 1.00

011111 1 0.56 1.00

Profile Observed Expected Probability of Binding

100000 666 1528.74 0.00

100001 1204 209.93 0.25

100010 35 15.06 0.05

100011 510 243.69 0.99

100100 0 0.29 1.00

100101 4 88.95 1.00

100110 0 1.36 1.00

100111 10 418.59 1.00

101000 51 6.15 0.27

101001 962 509.84 1.00

101010 11 7.83 0.99

101011 1458 2396.92 1.00

101100 2 2.86 1.00

101101 213 880.30 1.00

101110 2 13.45 1.00

101111 5281 4142.36 1.00

110000 71 102.75 0.00

110001 181 19.15 0.44

110010 0 1.09 0.12

110011 37 40.11 1.00

110100 0 0.05 1.00

110101 0 14.70 1.00

110110 0 0.22 1.00

110111 0 69.15 1.00

111000 3 0.58 0.47

111001 173 84.18 1.00

111010 0 1.29 1.00

111011 201 395.97 1.00

111100 1 0.47 1.00

111101 44 145.42 1.00

111110 0 2.22 1.00

111111 908 684.31 1.00

TABLE 2.3: Observed and Expected frequencies for LCA model of
called genes from different programs for H3K36me3 data (without ran-
dom elements). The expected frequencies demonstrate the goodness of
fit of the model. The probability of binding gives the probability of any
given gene in that profile belonging to Class 2 (rounded to 2 decimal
places). The order of the programs in the profile is MACS2, enRich,
HOMER, THOR, BCP, and MUSIC. The profile 000101 is highlighted
to indicate where one would not ordinarily expect to see such a high

probability of binding.
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FIGURE 2.3: Significant GO terms for the combined gene set deter-
mined using the LCA model as a dotplot. The y-axis gives the sig-
nificant GO terms, while the x-axis shows the ratio of genes with this
GO term. The size of the points indicates the number of genes, and the

colour indicates the adjusted p-value for that term.

Also included in the table is the posterior probability of each profile. Many of the

profiles had a highly polarised probability of binding, in the sense that many of the

posterior probabilities are approximately 1 or 0. While this was expected for profiles

where all the programs agreed (000000 and 111111), others, such as profile 000101

(highlighted in Table 2.3), also have a posterior probability of 1. This indicated that

if only THOR and MUSIC called a peak within the region of the gene, the LCA was

confident that binding would occur. This may be due to the low number of genes

that THOR called, and its high agreement to the other programs. It appears that the

LCA model was more likely to weight this program more highly because of these

factors.
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2.3.2 LCA with a random effect

As mentioned in the Introduction, an LCA with a random effect (LCRE) is an alter-

native model for the data when there is evidence of correlation between programs.

This could be due to some other factor about particular peaks that causes depen-

dence between the programs. For example, an unusually strong signal in the data

will be called by all programs, regardless of the different underlying models. The

model for a LCRE is described in Chapter 1 as containing an unobserved continuous

random variable λ ∼ N(0, 1), which is incorporated as part of πti|c (the probability

that program t calls a peak near a particular gene i, given that it is in class c):

πit|c = Φ−1(at|c + bt|cλi)

This probability then has two parts, a fixed effect at|c and the random effect λi, spe-

cific to gene i. Finally, bt|c is a scaling or loading effect that can either be kept constant

for each program t or may vary.

Using the randomLCA package, I analysed the data above using an LCRE, test-

ing for both a single or two class model, as well as with constant loading or non-

constant loading. The BIC was used to determine the best fit. It was found that

when constant loading was used, a two class LCRE was the best fit, but when non-

constant loading was used, a 1 class LCRE was the best fit. The resulting BICs are

shown in Table 2.4. This indicated that the inclusion of a random effect in the model

could significantly change the class classification. In the case of the LCRE with non-

constant loading, the random effect has accounted for the associations between the

calling programs without the inclusion of an additional class.
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Classes LCRE (Constant Loading) LCRE (No Constant Loading)

1 110194.62 91049.05

2 91622.69 91057.04

TABLE 2.4: BIC for different LCRE models for different class numbers
and with or without constant loading. A lower BIC is preferred.

Notable is the size of the BIC for all four models. This is explained by examining

the equation for the BIC:

BIC = ln(n)k− 2 ln(L̂)

Where L is the maximised value of the likelihood function of the model and de-

scribes the goodness of fit for the data, n is the number of data points (in this case,

the number of genes) and k is the number of parameters estimated by the model.

Thus, the first term will mean a lower complexity model is preferred when the im-

provement in the fit is small. Because there is a such a large number of genes, the

BIC values will always be large because of the complexity term, even with relatively

simple models. Based on these results, I further investigated the two class LCRE

model and the single class with non-constant loading.

Two Class LCRE with constant loading

The results from the two class LCRE with constant loading were used to generate

calling probabilities for each program and class with percentiles. These are plot-

ted alongside the equivalent probabilities for the LCA in order to compare the two

methods in Figure 2.4. Class 1 is labelled here as the non-binding class and Class 2

as the binding class. The methods showed different calling probabilities for the dif-

ferent programs, with the LCA tending to have higher extremes in the probabilities

relative to the LCRE. For the LCA, the calling probability for most of the programs
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in Class 1 was greater than 0.5 with the exception of enRich, and all the programs

were lower than 0.5 in Class 2. In contrast, both classes had calling probabilities

closer to 0.5 for the LCRE for most programs, except for enRich. This implied that

the LCRE with constant loading found fewer clear differences between the classes

for most of the programs.

The confidence intervals were much wider for the LCRE, and in particular Class

2 showed a much wider range of possible calling probabilities, especially for pro-

grams HOMER, MACS2 and MUSIC. This is due to the addition of the random

effect; because there is an additional term in the model that varies per gene, the call-

ing probabilities for each program will vary per gene also, leading to the intervals

observed.

While in general the LCA showed a greater difference in calling probabilties be-

tween the two classes, there was a much more extreme result for enRich. This was

not observed in the calling probabilities of the LCRE,which instead found a higher

calling probability for enRich in Class 1 and a much lower calling probability for

enRich in Class 2. This implied that enRich was more likely to call a gene in Class 1

than Class 2 compared to the other programs.

Based on the LCRE, 2,320 of the genes were estimated to be bound, a number

much lower than that found using LCA. This number agreed with previous results,

which found that enRich was the most influential program, and the number of genes

found by enRich was 2539 (see Table 2.2). When the gene lists between the LCA and

the LCRE were compared, it was found that the majority of the genes found by the

LCRE were common to both the LCRE and the LCA. This is demonstrated with the

Venn diagram in Figure 2.5. Of the genes found to be binding by LCRE, 58% of these

were also found to be binding by LCA.

To determine functional differences in the genes found by the LCRE compared
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to the LCA, I investigated the gene set using a GO enrichment analysis. Due to the

low number of binding genes identified, no significant GO terms were found.

Finally, I compared the expected and observed results for the LCRE. These re-

sults, along with the matching profile and probability of binding, are given in Table

2.5. Clearly, the expected values matched more closely compared to the expected

values in Table 2.3. However, many of the values still had significant differences,

which was particularly noticeable when the observed value was low. For example,

for the profile 000010 the LCRE was expected to observe only 9 genes, but instead

43 were observed. Examining the probabilities of binding calculated by the LCRE,

the biggest impact appeared to be the presence or absence of enRich. When enRich

was present, the probability of binding was 1, and otherwise was 0. This extreme

set of probabilities matched the results from the calling probabilities and the Venn

diagram, which indicated that the LCRE was heavily biased towards the results of

FIGURE 2.4: Calling probabilities for the LCRE with constant loading
and the LCA for each program, including 2.5% and 97.5% quantiles.
Ranges are shown in colour differing by model, while the line indicates

the outcome value.
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FIGURE 2.5: Venn diagram of Entrezgene IDs based on binding genes
based on the LCA and LCRE models.

enRich. This was likely due to the random effect incorporated into the model low-

ering the influence of the other programs as they had a high agreement between

them.

One Class LCRE with non-constant loading

Calling probabilities were generated for each program and class along with 95%

confidence intervals, as calculated for the LCA. The results are given in Figure 2.6.

As mentioned earlier, a one-class model implies that the genes did not classify into

two classes. The overall low calling probability observed across the programs is

likely because most of the genes were not called by any of the programs (this was

also observed when using the simple LCA model). The small range indicates that

the random effect had a small influence on the program calling probabilities, espe-

cially compared to 2.4.

The observed vs expected results were also calculated, and can be seen in Table
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Profile Observed Expected Probability of Binding

000000 11592 11508.69 0.02

000001 266 464.23 0.00

000010 43 8.55 0.00

000011 50 17.89 0.00

000100 0 0.11 0.00

000101 0 0.48 0.00

000110 0 0.02 0.00

000111 0 0.19 0.00

001000 0 22.93 0.00

001001 0 40.70 0.00

001010 1 1.24 0.00

001011 2 8.34 0.00

001100 0 0.03 0.00

001101 1 0.38 0.00

001110 0 0.01 0.00

001111 2 0.36 0.00

010000 704 698.62 1.00

010001 31 57.54 1.00

010010 1 0.15 1.00

010011 3 0.57 1.00

010100 0 0.00 1.00

010101 0 0.03 1.00

010110 0 0.00 1.00

010111 1 0.00 1.00

011000 0 2.10 1.00

011001 1 5.03 1.00

011010 1 0.03 1.00

011011 0 0.36 1.00

011100 0 0.00 1.00

011101 0 0.03 1.00

011110 0 0.00 1.00

011111 1 0.01 1.00

Profile Observed Expected Probability of Binding

100000 666 879.65 0.00

100001 1204 1230.89 0.00

100010 35 35.71 0.00

100011 510 359.10 0.00

100100 0 1.02 0.00

100101 4 19.80 0.00

100110 0 0.45 0.00

100111 10 39.60 0.00

101000 51 80.53 0.00

101001 962 752.72 0.00

101010 11 18.92 0.00

101011 1458 1417.27 0.00

101100 2 0.92 0.00

101101 213 91.27 0.00

101110 2 1.02 0.00

101111 5281 5361.45 0.00

110000 71 94.04 1.00

110001 181 184.36 1.00

110010 0 1.00 1.00

110011 37 23.49 1.00

110100 0 0.05 1.00

110101 0 2.34 1.00

110110 0 0.01 1.00

110111 0 2.53 1.00

111000 3 8.66 1.00

111001 173 155.02 1.00

111010 0 0.72 1.00

111011 201 173.49 1.00

111100 1 0.06 1.00

111101 44 21.19 1.00

111110 0 0.03 1.00

111111 908 932.08 0.99

TABLE 2.5: Observed and Expected frequencies for genes called from
programs from H3K36me3 data based on a two class LCRE model with
constant loading. The expected frequencies demonstrate the goodness
of fit of the model. The order of the programs in the profile is MACS2,
enRich, HOMER, THOR, BCP, and MUSIC. The posterior probabilities
indicate the probability for a gene with that profile being bound, ac-

cording to the model.
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2.6. Note that the probability of binding is not included, as the one-class model as-

sumes all genes have a probability of 1 of being present in the only class within the

model. The expected values in the table indicate that the fit appears improved com-

pared to the equivalent values given by the LCA. For example, the observed num-

ber of genes that had calling profile 000000 was 11592. The LCA expected 10644.44

genes, which was almost 1000 less than actually observed, while the LCRE with

non-constant loading expected 11540.72 genes, a closer fit. Similar results are seen

throughout the table.

It is interesting that such an improvement in the fit was observed; based on the

agreement within the data, some amount of clustering was expected. Specifically,

when the observed results are revisited, some of the largest profiles are those with

total agreement (000000 and 111111) or close to total agreement (101111). The results

from this are not useful for the purpose of the identification of binding genes.

Since there is only one class, the binding genes and GO terms were not examined,

FIGURE 2.6: Calling probabilities for the LCRE without constant load-
ing for each program, including 95% confidence intervals. The line in-

dicates the mean calling probability for each program.
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Profile Observed Expected

000000 11592 11540.72

000001 266 303.16

000010 43 55.23

000011 50 27.52

000100 0 0.02

000101 0 0.07

000110 0 0.00

000111 0 0.02

001000 0 5.40

001001 0 10.63

001010 1 0.66

001011 2 2.44

001100 0 0.00

001101 1 0.02

001110 0 0.00

001111 2 0.01

010000 704 749.66

010001 31 30.00

010010 1 5.25

010011 3 2.81

010100 0 0.00

010101 0 0.01

Profile Observed Expected

010110 0 0.00

010111 1 0.00

011000 0 0.55

011001 1 1.13

011010 1 0.07

011011 0 0.26

011100 0 0.00

011101 0 0.00

011110 0 0.00

011111 1 0.00

100000 666 685.55

100001 1204 1270.23

100010 35 68.28

100011 510 421.27

100100 0 0.23

100101 4 11.74

100110 0 0.08

100111 10 13.00

101000 51 31.83

101001 962 981.82

101010 11 8.72

101011 1458 1483.05

Profile Observed Expected

101100 2 0.13

101101 213 218.88

101110 2 0.08

101111 5281 5225.37

110000 71 68.13

110001 181 136.98

110010 0 7.04

110011 37 47.40

110100 0 0.03

110101 0 1.39

110110 0 0.01

110111 0 1.59

111000 3 3.41

111001 173 117.51

111010 0 0.96

111011 201 189.73

111100 1 0.01

111101 44 29.51

111110 0 0.01

111111 908 968.39

TABLE 2.6: Observed and Expected frequencies for LCRE without con-
stant loading of programs from H3K36me3 data. The expected frequen-
cies demonstrate the goodness of fit of the model. The order of the
programs in the profile is MACS2, enRich, HOMER, THOR, BCP, and

MUSIC.

as this would include all the genes within the genome. These results therefore would

not be meaningful for identifying binding activity.

When these results are compared to the LCA and the LCRE with constant load-

ing, the usefulness of using the BIC to determine the class of the model is question-

able. Based on the result for the LCRE with non-constant loading, I would conclude

that there is no binding in any of the programs, however this seems unlikely given
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the number of peaks identified by the programs. Additionally, the other LCA mod-

els also preferred the two class model. Thus, the one class BIC may not be appropri-

ate to use in this way. To assess this, I also decided to analyse the two class LCRE

with non-constant loading.

Two class LCRE with non-constant loading

To compare the results of the one class LCRE with non-constant loading, I assessed

the two class LCRE with non-constant loading, despite the higher BIC value. Re-

turning to the Table 2.4, this model had a lower BIC compared to the two LCRE

with constant loading models, indicating an improved fit.

Calling probabilities for each program and class with percentiles were generated,

and are shown in Figure 2.7, alongside the LCRE and LCA results. The LCRE mod-

els showed very similar calling probabilities for the different programs compared to

the LCA. Both gave enRich a high calling probability, and BCP, HOMER and THOR

a low probability for Class 2. Similarly, MACS2 had a higher calling probability

than the others in Class 1. The LCRE with non-constant loading tended to lower

probabilities for Class 2 than the other two models, particularly for HOMER.

The number of genes identified in the binding class was 2320, using the Ensembl

gene IDS. This was the same number of genes identified using the LCRE with con-

stant loading, indicating that the same genes were identified. This was confirmed

using Figure 2.8, as the LCRE models have coincident sets. The enRich gene set

appeared to be the most influential of the 6 programs.

Similarly to the LCRE with constant loading, no significant GO terms were found,

when the putative binding genes were analysed.

Table 2.7 was generated showing the observed and expected frequencies, as well

as the posterior probabilities for the model. The expected results indicated a better
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fit than either the LCRE with constant loading or the LCA models. For example,

expected values for highly observed profiles, such as Profile 000000 were at least as

close as those found by the other LCRE two class model, and the values for profiles

with fewer observed genes, such as 0010000 also had lower expected values. Com-

paring the expected values to those found by the one class LCRE with non-constant

loading indicated that the two models found similar results. The posterior prob-

abilities were very similar to those esimated by the LCRE with constant loading,

with presence or absence of enRich being the predictive factor. Thus, while the ex-

pected values fitted better, the probability of binding indicated that the model was

not combining the results of the programs in the anticipated way.

To directly compare the posterior probabilities of the different models, I pro-

duced pairwise posterior probability plots, shown in Figure 2.9. These plots indicate

that the posterior probabilities were polarised, as had been observed in the previous

FIGURE 2.7: Calling probabilities for the 3 two class models, LCA,
LCRE (CL) and LCRE (NCL), split by class. The line indicates the call-

ing probability for each program.
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Profile Observed Expected Probability of Binding

000000 11592 11580.81 0.05

000001 266 294.63 0.04

000010 43 57.57 0.01

000011 50 28.34 0.02

000100 0 0.02 0.01

000101 0 0.08 0.01

000110 0 0.00 0.01

000111 0 0.02 0.01

001000 0 5.40 0.03

001001 0 10.45 0.03

001010 1 0.70 0.01

001011 2 2.54 0.02

001100 0 0.00 0.01

001101 1 0.03 0.02

001110 0 0.00 0.01

001111 2 0.01 0.01

010000 704 702.67 1.00

010001 31 38.31 1.00

010010 1 2.50 1.00

010011 3 1.80 1.00

010100 0 0.00 1.00

010101 0 0.01 1.00

010110 0 0.00 1.00

010111 1 0.00 1.00

011000 0 0.61 1.00

011001 1 1.48 1.00

011010 1 0.04 1.00

011011 0 0.19 1.00

011100 0 0.00 1.00

011101 0 0.00 1.00

011110 0 0.00 1.00

011111 1 0.00 1.00

Profile Observed Expected Probability of Binding

100000 666 680.00 0.03

100001 1204 1232.10 0.03

100010 35 71.47 0.01

100011 510 432.11 0.01

100100 0 0.26 0.01

100101 4 12.11 0.02

100110 0 0.10 0.01

100111 10 14.16 0.01

101000 51 31.39 0.03

101001 962 927.88 0.03

101010 11 9.10 0.01

101011 1458 1481.74 0.01

101100 2 0.14 0.01

101101 213 203.77 0.02

101110 2 0.09 0.01

101111 5281 5289.17 0.01

110000 71 72.80 1.00

110001 181 174.15 1.00

110010 0 3.79 1.00

110011 37 35.39 1.00

110100 0 0.02 1.00

110101 0 1.29 1.00

110110 0 0.00 1.00

110111 0 0.96 1.00

111000 3 3.63 1.00

111001 173 174.35 1.00

111010 0 0.56 1.00

111011 201 192.97 1.00

111100 1 0.01 1.00

111101 44 42.69 1.00

111110 0 0.00 1.00

111111 908 911.59 1.00

TABLE 2.7: Observed and Expected frequencies for genes called from
programs from H3K36me3 data based on a two class LCRE model with
non-constant loading. The expected frequencies demonstrate the good-
ness of fit of the model. The order of the programs in the profile
is MACS2, enRich, HOMER, THOR, BCP, and MUSIC. The posterior
probabilities indicate the probability for a gene with that profile being

bound, according to the model.



42 Chapter 2. Analysis of multiple ChIP-seq programs

FIGURE 2.8: Venn diagram of Ensembl Gene IDs based on binding
genes based on the three models (LCA, LCRE with constant loading

and LCRE with non-constant loading).

posterior probability tables. The LCRE with constant loading and the LCRE without

constant loading appeared to have the most similar posterior probabilities per gene;

this is not suprising given that the models are similar as well. There was a number

of genes which were found to have very different posterior probabilities between

the LCA and the other models; these are indicated by points in the bottom-right and

top-left of the plot. While there was some disagreement expected based on Figure

2.8, such an extreme difference is surprising, given these parameters were fitted us-

ing the same data. Finally, the LCA model appeared more likely to given a range of

posterior probabilities, compared to the extremes of the two LCRE models. This is

again expected, based on Table 2.5. Overall this figure indicates that the LCA found

different results compared to the LCRE models.

Based on these results, the LCA method appeared the most promising. I used

a “sum of scores” method as a comparison to the results from the LCA model for

further investigation. This was performed by summing up the number of programs



2.3. Latent Class Analysis of ChIP-seq Peak Calling Programs 43

FIGURE 2.9: Pairwise plots of the posterior probabilities of genes from
the three models. The posterior probabilities indicate the likelihood of a
gene being bound under each of the 3 models. Points close to the x = y
line indicate when posterior probabilities were the same for the two
models for a particular gene, indicating agreement between models.

The posterior probabilities are very polarised.
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FIGURE 2.10: Venn diagram comparing the LCA gene set with the gene
set generated from the sum of scores method. There is a high amount

of overlap.

that found a peak associated with each gene, and dividing this by the number of

programs to get a score. The scores that were greater than 0.5 were considered bind-

ing in this method. When these genes were compared to the genes found by the

LCA method, it was found that there was a large amount of overlap. This was in-

teresting because when we reconsider Table 2.3, while the number of programs that

find binding is clearly an important factor, there are example of programs with high

probability of binding that have fewer than 3 programs calling within the profile.

One example of this is 001100, or when HOMER and THOR are the only programs

that call a gene. For most of these examples, few genes are observed with that pro-

file.
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Classes LCA LCRE (Constant Loading) LCRE (No Constant Loading)

1 161573 76470 75874

2 83738 75887 75900

TABLE 2.8: BIC for different LCA models and class number when not
including enRich in the programs. A lower BIC is preferred.

2.3.3 LCA with a random effect: without enRich

Since the program enRich had such an influential affect on the LCRE with constant

loading, I repeated the analysis without including the enRich data. This would al-

low a greater understanding of how much enRich affected the results. The BIC from

the LCA, the LCRE with constant loading and the LCRE with non-constant loading

is given in Table 2.8. The BIC indicated that for the LCA and the LCRE with constant

loading a two class model was preferred, but for the LCRE non-constant loading, a

one class model was still preferred. The remaining analysis compared the two class

models.

The calling probabilities for the remaining 5 programs were compared side-by-

side in Figure 2.11. The calling probabilities were very similar for Class 1, (which in

this case was the non-binding class) but had clear differences in Class 2. Programs

BCP and THOR showed very low calling probabilities for the LCRE with constant

loading for Class 2, but remained relatively high for the LCA (although still lower

than the other programs). This indicated that HOMER, MACS2 and MUSIC were

the most influential for both models. The calling probabilities for the LCRE were

similar to those observed in Figure 2.7, though the BCP had dropped in probability.

This indicated that removing the program enRich did not make a significant change

to this model.

Next, I compared the putative binding genes found by the LCA and the LCRE
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FIGURE 2.11: Calling probabilities for the LCRE and the LCA for each
program. Ranges are shown in colour differing by model, while the

line indicates the outcome value.

with constant loading as in previous sections. This indicated that the number of

genes found by the two models were similar to the number found when the results

from enRich were included. One major difference was that all of the genes found by

the LCRE with constant loading were also found by the LCA. This indicated that the

additional genes found previously were due to the influence of the enRich results,

based on the Table 2.5.

The two LCA models, with and without using the results from the enRich pro-

gram were compared using a venn diagram in Figure 2.13. It was found that there

was no difference is the binding genes lists. This indicated that enRich had such a

small effect on the resulting data that it made no difference to the putative binding

genes. As this is the main desired outcome from this analysis, it was concluded

that in terms of the LCA, the inclusion of enRich did not improve nor degrade the

results.

Examining the observed vs the expected results for the LCA without enRich,
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there were many similarities with Table 2.3, apart from the number of profiles, which

was decreased due to the absence of enRich. This was particularly the case for the

probability of binding, as expected given the results from Figure 2.13. One notable

difference was that the fit of the model appeared improved, although this was in

fact due to changes in the observed counts rather than changes to the expected.

Finally, I also calculated a new gene list based on a sum of scores method without

enRich, and compared this to the results from LCA in Figure 2.14. Surprisingly, this

indicated that the gene lists were also coincident. Returning to Table 2.9, this again

would not always occur according to the probability of binding; for example, 00110

has a probability of binding of 0.98 but would not be considered binding using the

sum of scores method. While in this case the two methods perform comparatively,

this may be an irregular occurrence, raising questions regarding the similarity of the

results from these two methods.

FIGURE 2.12: Venn diagram of the binding genes found by the models
LCA and LCRE with constant loading, based on the Entrezgene ID. The
genes found by the LCRE with constant loading model were also found

by the LCA model.
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FIGURE 2.13: Ven diagram of the binding genes found by the LCA
model with or without using the results from the program enRich using
the Entrezgene ID. The genes are the same, and are therefore labelled

“coincidental”.

FIGURE 2.14: Venn diagram of the binding genes found by the LCA
model without using the results from the program enRich and the gene
set generated using the sum of scores method using Entrezgene IDs.

The genes are the same, and are therefore labelled “coincident”.
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Profile Observed Expected Probability of Binding

00000 12296 11316.09 0.00

00001 297 1220.76 0.00

00010 44 105.64 0.00

00011 53 11.61 0.02

00100 0 0.00 0.11

00101 0 0.08 1.00

00110 0 0.00 0.98

00111 1 0.37 1.00

01000 0 34.03 0.00

01001 1 4.13 0.11

01010 2 0.32 0.02

01011 2 2.25 0.98

01100 0 0.00 1.00

01101 1 0.80 1.00

01110 0 0.01 1.00

01111 3 3.90 1.00

Profile Observed Expected Probability of Binding

10000 737 1675.18 0.00

10001 1385 235.15 0.23

10010 35 16.48 0.05

10011 547 266.19 0.99

10100 0 0.30 1.00

10101 4 95.55 1.00

10110 0 1.47 1.00

10111 10 464.11 1.00

11000 54 6.86 0.27

11001 1135 573.16 1.00

11010 11 8.89 0.99

11011 1659 2781.26 1.00

11100 3 3.19 1.00

11101 257 1004.71 1.00

11110 2 15.51 1.00

11111 6189 4880.00 1.00

TABLE 2.9: Observed and Expected frequencies for genes called from
programs from H3K36me3 data based on a two class LCA model, calcu-
lated without using the results from the program enRich. The expected
frequencies demonstrate the goodness of fit of the model. The order of
the programs in the profile is MACS2, HOMER, THOR, BCP, and MU-
SIC. The posterior probabilities indicate the probability for a gene with

that profile being bound, according to the model.

2.4 Conclusions

The LCA appeared to perform best of the three models considered. Initially, six pro-

grams were used to generate the ChIP-seq data-set. While there was a good level of

agreement for most of the programs, enRich had a very low level of agreement with

the other programs, and had the smallest number of total genes. The BIC was used

to identify when the two class model was appropriate, and this led to the assessment

of three models; the two class LCA, the two class LCRE with constant loading, and

the one class LCRE without constant loading. While these models were assessed,

additionally the two class LCRE with non-constant loading was also analysed, as

the BIC was still competitive with the other models.
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Of the three models considered, the LCA had the most consistent posterior prob-

abilities, as well as the most confident calling probabilities for the 6 programs. This

model also generated GO terms consistent with the original binding protein, a marker

of transcriptionally active genes. In contrast, the two LCRE models had better ex-

pected values compared to the observed. The one class model was not assessed

further, as the posterior probabilities were the same for all genes (as they belonged

to the same single class). The LCRE with constant loading and the LCRE with non-

constant loading models had very similar results, and did not combine the results of

the programs in the way anticipated. Instead, enRich appeared to be the dominant

factor in determining gene classification.

The method “sum of scores” was used as a simplistic method of using the level of

agreement between programs to generate a result. This was compared in particular

to the simple LCA as this appeared to be the best performing model. There was a

high degree of similarity between the two in terms of the putative binding genes

lists.

Since enRich appeared influential, I removed this program from the results and

repeated the analysis. This had a small effect on the results, and in particular the

LCA was almost unaffected, particularly when the binding genes were examined. In

terms of BIC, the LCRE with non-constant loading still preferred a one-class model,

so the other models were investigated only. The putative binding genes list was

unaffected by the change in programs included. The LCRE models were more af-

fected; removing enRich reduced the number of genes found, and made the model

largely dependent on HOMER, MACS and MUSIC. A new gene list was generated

using the sum of scores method but while not including enRich. This was found to

find the same genes as the LCA. Based on the probability of binding of the different

profiles for the LCA model without enRich, this may not always be the case.
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The results of the three models raised questions about the validity of using the

BIC to determine appropriate fit, as well as how appropriate the use of the LCRE

model is over the simpler LCA model. Furthermore, the results of the LCRE mod-

els indicate undesirable sensitivity to programs with small gene sets. The sum of

scores method proved to be competitive with the LCA model, however it was un-

clear which circumstances this occurred under. Additional research was needed to

resolve these issues and develop new techniques for more robust identification of

putative binding genes.
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Chapter 3

Simulation Study

3.1 Introduction

To understand how the different LCA models are affected by changes to the under-

lying data, I performed a series of simulations. The simulations changed a range

of conditions in the underlying data, and allowed the performance of the different

models to be measured. Ideally, a better understanding of these factors will inform

the application of LCA to real data.

I used the simulated data to investigate the LCA models and understand the

results in Chapter 2. Firstly, using the underlying knowledge of the simulated data,

I compared the three models using different measures. This was used to determine

the most accurate model for each of the scenarios. Next, I investigated the BIC, both

as a means to determine preferred class number for the model, and as a method to

compare the three models to each other when the true answer is not known. Using

the conclusions from each of these investigations, I was able to determine the best

ways of analysing ChIP-seq data using LCA.
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3.2 Methods

Using R, I generated test data for the three different models (LCA, LCRE with con-

stant loading, LCRE with non-constant loading) over a number of different scenar-

ios.

3.2.1 Simulating ChIP-seq data

In order to generate data, the simulation uses the concept of a score from which a

binary threshold is derived. This is a simple model of how real ChIP-seq data is

also generated. All of the programs will identify a great number of putative peaks,

but some will be considered unlikely to be actual peaks given the profile of the

surrounding noise. Thus, some sort of filter is required to reduce the number of

peaks to be more manageable. Every program used in this study, and almost all of

the tools considered for ChIP-seq peak identification, will label the peaks with some

sort of score. For MACS2 and THOR this score is a −log10 p-value, while for BCP

and HOMER the p-value is used. MUSIC uses the q-value as a score. These scores

are given to each peak at part of the calculations within the programs, and this is

used later on in order to reduce the number of putative peaks given to the user, and

thus acts as a threshold for the “best” putative peaks. The user can set a particular

score threshold by specifying, for example, the maximum p-value allowed for the

peaks.

Ideally, I would be able to use these score directly to gain a better idea of the

peaks, and use some sort of clustering classification method such as the Multivari-

ate Gaussian Mixture model (MGMM). However, the peak scores for all of the peaks

identified by each program are difficult to access, and are influenced by the thresh-

old set. For example, when peaks are close together, the programs may combine the
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peaks into one peak region, so a higher threshold may in fact reduce the number

of peaks. Furthermore, because I am using genes rather than peaks as a means of

comparing multiple programs, I would ideally have a score for each gene, based on

the peak scores. However, some genes may still remain without a score, if no peak is

found to be associated with it. Thus this investigation was beyond the scope of this

thesis. However, this concept will be used with the generation the simulated data.

In this case, the score will be directly associated with the genes, and a threshold will

be used to generate binary data.

3.2.2 Generation of Test Data

The number of “genes” was set at n = 3000, and the number of peak calling pro-

grams was given as p. The proportion of binding genes was given by p0, and was

used to calculate the number of binding and non-binding genes for the data set;

n1 = bp0nc and n2 = 1− n1 respectively.

I made some assumptions about the underlying model of the data, in particu-

lar how scores for binding and non-binding genes may differ. If the genes were

binding, the scores were randomly sampled from a normal distribution with mean

of δ, and a standard deviation of 1 (X1 ∼ Np(δ, 1)), while non-binding gene scores

were randomly sampled from a normal distribution with a mean of −δ and a stan-

dard deviation of 1 (X2 ∼ N(−δ, 1)). Scores were calculated for each gene and each

program, resulting in 3000p scores. These were allocated into lists for each pro-

gram, such that each program had n1 binding genes and n2 non-binding genes. The

randomly sampled scores were then listed together as Xij, where i is the program

number and j is the gene number.

The random effect Z was generated from a normal distribution with mean 0 and

standard deviation σz, and for each simulation a distribution B ∼ U(0, 2) was used
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to randomly determine the coefficients for the random effects for each program. The

coefficients determine how much of the random effect to add to each program. This

represents how each program will be more or less affected by the same random

effect. If two or more programs are strongly affected by the random effect, this will

result in a higher correlation between the two programs. The resulting values from

adding the random effect are thus:

Wij = Xij + Zijbj i = 1, ..., p and j = 1...n

The resulting binary outcomes for each program were then calculated using a

threshold Ti:

Yi,j =


1 if Wi,j > Ti

0 otherwise
i = 1, ..., p and j = 1, ..., n

To create different scenarios, a number of parameters were varied. The parame-

ters and the values tested are given in Table 3.1. The LCA model was hypothesised

to be the best model when σz is 0, while the LCRE models was hypothesised as the

better model when σz was greater than 0. This is because a high value of σz increases

the correlation between programs. The program threshold parameter, Ti, was also

changed. This affected the threshold scores for each program to call a gene as bind-

ing or otherwise; constant keeps the threshold score at 0, while varied changed the

threshold score to:

Ti =
2i
i
− 1 i = 1, ..., p

Such that the thresholds were evenly spread for all programs. All combinations

were tested. In addition, data with only one cluster was generated by setting δ to 0
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Parameter Description Scenario Values

p Number of programs {5, 7}

δ
Difference between binding

and non-binding scores
{0.5, 1.5}

σz Level of random effect for scores {0, 0.5, 1, 2, 4}

p0 Proportion of binding genes {0.1, 0.3, 0.5, 0.7, 0.9}

Program thresholds
Whether programs had the

same threshold or constant thresholds
{Constant, Varied}

TABLE 3.1: Values for the parameters of the simulation in the different
scenarios. For each scenario, one of each of the values is selected for
each parameter. All combination of scenarios were tested once. In total

200 different scenarios were tested.

while changing the other parameters as shown in Table 3.1.

After I observed that there was a high variability for the same parameters for

both the LCA and the LCRE due to the randomness of both the scores and the ran-

dom effect, I repeated each simulation scenario 20 times to obtain an average corre-

lation, as well as a standard deviation.

3.2.3 Model Fit of Simulation Data

The matrix Yi,j was fit to six different models; an LCA, an LCRE with constant load-

ing, and an LCRE with non-constant loading, with both 1 class and 2 classes. The

posterior probabilities for being present in Class 1 were obtained for the two class

models. These were associated with the original genes. In a few cases, the model

fitting procedure failed as the adaptive Gauss Hermite quadrature did not converge

for some replications in some scenarios. When this occurred, posterior probabilities

could not be obtained for these replications, and were not used for further analysis.
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An MGMM was used to fit the original scores in Wij. This model categorises

data points into a set number of clusters, where each cluster is made up of points

that are randomly sampled from a Gaussian distribution. Since the MGMM makes

full use of the underlying scores of each gene, the posterior probabilities the model

generates are a “gold standard” to which the posterior probabilities of the LCA and

LCRE can be compared. After fitting the data, I obtained the posterior probability

for each gene of being in one of the clusters.

3.2.4 Method Assesment

The correlation between the posterior probabilities of the three LCA models and

the MGMM across the genes were calculated. A higher correlation indicates a bet-

ter fit to the data. An average correlation for each scenario was calculated using

the results from the 20 replications. These results were compared for each model

for each scenario, and was used as an assessment of the accuracy of the posterior

probabilities.

Another statistic calculated was the root mean square error (RMSE) between pos-

terior probabilities of the MGMM and the model:

RMSE =

√
1
n

n

∑
i=1

( p̂M,i − p̂L,i)2

Where ˆpX,j are the posterior probabilities for model X, M is the MGMM model and

L is one of the three LCA models being tested. This was used to confirm that the

posterior probabilities were truly similar between the MGMM and the LCA and

LCRE, since the correlation would still be high even if the posterior probabilities

were different, as long as the difference in the posterior probability remained the

same across all of the genes. This was calculated using one of the replicates.
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To assess how changes in the scenario parameters might affect whether a one or

two class scenario was observed, I calculated the BIC for all replicates and scenar-

ios, and then averaged the BIC across the replicates. The BIC was used to compare

the different models over the different scenarios. This was useful as these measure-

ments do not rely on the MGMM, and thus give an indication of how correlated they

are to a good posterior probability. For example, if a model with a poor posterior

probability resulted in a good fit or the best BIC, this indicated that testing these for

real data is not necessarily informative.

A “sum of scores” approach was also performed, and the correlation with MGMM

calculated, as a simple method to compare to the other models. To find the sum of

scores, the outcome of each program was summed together, to get a score for each

gene:

Sj =
p

∑
i=1

Yi,j

Thus, this calculates ”votes” from each program directly, as was done during the

analysis of the ChIP-seq data in Chapter 2. This was performed for one replicate of

each scenario, similar to the RMSE. Note that one difference between this method

and that in Chapter 2 was that the score was not divided by the total number of

programs in this case, as the sum of scores is used to find a correlation with the

MGMM, rather than to calculate the number of binding genes.

I also investigated how often the BIC preferred the one class model. I analysed

the same data using a one class model for the LCA, and the two LCRE models and

calculated the BIC for each. The difference between the BIC for two class model and

the one class model was then calculated to generate ∆BIC. This was then assessed

across all 20 simulations to check how often a one class model was preferred over a

two class model for the same data.
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3.3 Results

3.3.1 Comparing the Simple LCA and LCRE models

Correlation to MGMM

Initially, the correlation of the posterior probabilities for each gene was compared

for the three methods; LCA, LCRE with constant loading and the LCRE with non-

constant loading, without considering the effect of averaging over different thresh-

old values. A higher correlation to the MGMM was considered to indicate a closer

fit. An example of the results for one scenario is given in Table 3.2 with parameters

{p, δ, σ, p0, Program Threshold} = {5, 0.5, 0, 0.1, Varied} (Scenario 1).

Full results, including the correlation tables for each scenario, can be found in

Appendix B.1.

To compare the three methods, pairwise scatter plots were generated, comparing

the average correlation compared to the MGMM for each scenario. This resulted in

the three graphs in Figure 3.1. Each correlation is coloured based on the value of

σz. The LCRE models were expected to show the most improvement over the LCA

model when σz was high.

Most of the time, the models showed a high correlation to the MGMM, indicated

by having a correlation above 0.75. Furthermore, the LCA was more likely to have

high correlations, as there are a greater number of points found above 0.75 for the

LCA compared to the other models. Overall, under low values of σz, all of the

models were competitive, as most of the points with σz at 0 to 0.5 lie close to the

x = y line. Notably, these values also have some of the highest correlations for any

of the models. This may be because there is less likely to be overlap between the

scores of the binding and non-binding genes when the random effect is low for all

of the programs, allowing all the models to more correctly classify the genes.
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LCA LCRE LCRE

(Constant Loading) (Non-Constant Loading)

0.76 0.74 0.72

0.74 0.74 0.74

0.71 0.64 0.63

0.76 0.76 0.72

0.75 0.33 0.55

0.77 0.38 0.05

0.76 0.68 0.62

0.75 0.75 0.75

0.75 0.75 0.75

0.77 0.31 0.03

0.76 0.35 0.06

0.71 0.68 0.59

0.75 0.55 0.75

0.74 0.74 0.74

0.74 0.74 0.74

0.77 0.22 0.08

0.74 0.45 0.06

0.74 0.74 0.74

0.70 0.70 0.70

0.75 0.25 0.01

Average 0.75 0.57 0.50

Standard Deviation 0.02 0.19 0.30

TABLE 3.2: Correlation results for the LCA and LCRE (constant load-
ing) and LCRE (non-constant loading) for Scenario 1. Correlation com-
pares the posterior probability for all genes for the LCA and LCRE to
the posterior probability for all genes for the MGMM. The average and

standard deviations were used to compare Scenarios.



62 Chapter 3. Simulation Study

When σz was high, at 2 or 4, the LCRE with non-constant loading tended to per-

form the best over both of the models. These values also tended to have lower cor-

relation to the MGMM, especially for the LCA and the LCRE with constant loading

model. However, for smaller values, the LCRE with non-constant loading model

was more likely to be outperformed by the LCA model. In some cases, the LCA

model performs much better than either model, even for very high values of σz. For

those points, the other parameters in those scenarios may indicate why that is the

case.

To identify if there was any other trend to which scenarios had higher correla-

tions within the models, I collated the results into Table 3.3. This only included

scenarios where the difference between the parameters was greater than 0.01, and

anything smaller was considered an equivalent correlation (and the scenario the

methods are competitive). In total, 113 of the 200 scenarios had a model that per-

formed significantly better. Most of these scenarios found that the LCA was the best

model (74), followed by the LCRE with no contant loading (34).

The parameters can be examined to identify influential factors for the correla-

tions. The number of programs, the proportion of binding sites (p and p0, respec-

tively) and the program thresholds had approximately equal number of scenarios

within each row, indicating that these parameters did not affect the correlation to

the MGMM for any of the models.

There is a clear difference in the frequencies of δ and σz for the three models. As

observed in Figure 3.1, the LCA model performed better when the values of σz were

low (0,0.5,1), while the LCRE with non-constant loading performed better when the

values of σZ were high (2,4). The parameter option with the lowest frequency for

σz was 0, which was expected; when there was no random effect all of the models

should perform equally well.
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FIGURE 3.1: Average correlation to the MGMM model for models LCA,
LCRE (constant loading) and LCRE (non-constant loading) for different
scenarios, coloured by degree of random effect (σ). A higher value on
both axes indicates a better fit to the MGMM. Points above the x = y
line indicate that the model on the y-axis performed better, while points
below indicate that the model on the x-axis performed better. When the
points lie close to the x = y line the models were competitive. When
the value of σz were high, the LCRE (non-constant loading) performed

better; otherwise the LCA performed better.
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The value of δ also influenced the model performance; when δ = 0.5, the LCA

model tended to perform better, while when δ = 1.5, the LCRE with non-constant

loading performed better. Since δ controls the level of overlap between the binding

and non-binding genes, this indicated that the LCA was better able to distinguish

the classification when the clustering was less clear. When δ was large, there was

a greater correlation between the programs across different genes (since two genes

that are both either binding or non-binding are more likely to be identified by mul-

tiple programs as binding). This may explain why the LCRE with non-constant

loading was able to perform better in these scenarios.

I also investigated why some of the scenarios with very high values of σz had

the best correlations when the model LCA was used. These are given in Table 3.4.

The LCA was the best model to use in terms of correlation if both the number of

programs was higher and δ was low, or that the number of programs was lower and

δ was high. These are scenarios where the classification of the clusters was more

distinct. The results from Table 3.4 showed that while the trends observed based on

Table 3.3 are useful, they do not hold for all scenarios.

RMSE

In order to directly compare the LCA and LCRE models, the RMSE for each of the

scenarios is given in pairwise plots in Figure 3.2. The RMSE looks at the actual dif-

ference per gene of the posterior probability found by the MGMM and the different

LCA models. A lower value indicates a smaller difference between the posterior

probabilities. In general, most of the points lie close to the x = y line in the graphs.

This implies that there were similar differences to the MGMM posterior probabil-

ities across all three models. Interestingly, the LCA and the LCRE with constant

loading appeared to be the most similar, even though in Figure 3.1, the two LCRE
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p δ σz p0 Program Thresholds Total

5 7 0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

LCA 37 39 53 23 10 21 34 8 3 16 14 17 16 13 48 36 76

LCRE

(Constant Loading)
5 0 4 1 0 0 1 2 2 0 2 0 0 3 4 1 5

LCRE

(Non-Constant Loading)
23 22 0 45 0 6 1 19 19 8 9 9 8 11 22 23 45

TABLE 3.3: Frequencies of scenarios with the best correlation (rounded
to 2 decimal places) to the MGMM across the 3 models. The number of
scenarios with particular parameter values are given in each column.
Columns are grouped by parameter type. Total number of scenarios

with a higher correlation is given at the end.

LCA
LCRE

(Constant Loading)

LCRE

(Non-Constant Loading)
p δ σz p0 Program Threshold

0.3290255 0.2371867 0.3022940 5 1.5 2 0.1 Varied

0.7575153 0.7523142 0.5816146 7 0.5 2 0.1 Varied

0.7645865 0.7437737 0.4498586 7 0.5 2 0.3 Varied

0.7550873 0.7258098 0.4000522 7 0.5 2 0.5 Varied

0.7498009 0.7369426 0.3443155 7 0.5 2 0.7 Varied

0.7798217 0.7706741 0.5516350 7 0.5 2 0.1 Constant

0.7674148 0.7516951 0.4820158 7 0.5 2 0.5 Constant

0.7650746 0.7626214 0.5278362 7 0.5 2 0.9 Constant

0.1639648 0.1195358 0.1446827 5 1.5 4 0.1 Varied

0.7756224 0.7747874 0.5714927 7 0.5 4 0.3 Constant

0.7669850 0.7641006 0.5252295 7 0.5 4 0.7 Constant

TABLE 3.4: Parameter details for scenarios where the value of σz was
high but LCA had the highest correlation to MGMM.
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models had more similar correlations overall. Most of the RMSE values appeared

to be less than 0.4, although could be as high as 0.8 for some of the scenarios. The

LCRE models tended to have a greater range of RMSE values, especially the model

with constant loading.

The smaller values of σz generally had very low differences across all three meth-

ods, which is consistent with the results found in Figure 3.1. Similarly, for high val-

ues of σz, the LCRE with non-constant loading performed best. For medium values

of σz, such as 1 and 0.5, the LCA tended to outperform the other two models. Again,

differences between the scenarios other than the random effect must cause of some

of the differences observed, in particular for those scenarios that had high values of

σz but had similar RSMEs for all models.

To identify trends in the RMSE, I generated a new table similar to Table 3.3. The

results are given in Table 3.5. In total, 140 of the 200 scenarios had a lower RMSE in

one of the models compared to the others. More scenarios had a lower RMSE in the

LCRE with non-constant loading model (72) compared to the LCRE with constant

loading (23) and the LCA (45) models. This reversal in the performance frequencies

was surprising because the LCA appeared competitive in Figure 3.5.

The most influential parameters observed in Table 3.3 were also observed in Ta-

ble 3.5. The parameters that had the biggest effect on the model performance were

σz and δ. The LCA and LCRE with non-constant loading models were better able

to perform with low values of σz, while the LCRE with constant loading model

performed best under high values of σz. Specifically, the LCRE with non-constant

loading model performed best under the middle range σz values (0.5-2), perhaps be-

cause the loading in this case had less of an effect on the final binding or not binding

classification of the genes.



3.3. Results 67

FIGURE 3.2: RMSE for the posterior probabilities for the MGMM model
for LCA and LCRE (constant loading) and the LCRE (non-constant
loading). A smaller value indicates a lower RMSE, which is preferred.
Points above the y = x line indicate scenarios where the model on the
x-axis performed better while points below indicate that the model on
could be expected that the correlation and the RMSE would give sim-
ilar results, but the y-axis performed better. For most of the scenarios,

the models appear equivalent (points lie close to the x = y line).
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p δ σz p0 Program Thresholds Total

5 7 0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

LCA 19 26 26 19 5 11 23 3 3 8 8 11 11 7 23 22 45

LCRE

(Constant Loading)
12 11 20 3 1 5 7 6 4 4 3 6 5 5 9 14 23

LCRE

(Non-Constant Loading)
35 37 21 51 0 16 7 26 23 17 15 12 11 17 38 34 72

TABLE 3.5: Frequencies of scenarios that found a lower RMSE
(rounded to 2 decimal places) to the MGMM across the 3 models. The
number of scenarios with particular parameters are given in each col-
umn. Columns are grouped by parameter type. Total number of sce-

narios with a higher correlation is given at the end.

BIC

I obtained the average BIC for the 20 replicates in each scenario to determine the

effect the different parameters had on the BIC, and which models performed best.

These are shown in a pair-wise fashion in Figure 3.3. For most of the scenarios, the

values appeared similar as the points lay close to the x = y line. This is in part

because the scenario points are distributed across a wide range of BIC values, so

the differences are small in comparison. Thus, any differences that are noticeable

indicated a large actual difference in BIC. There did not appear to be any clear trend

in the BIC value and the value of σz.

A lower value for the BIC is desirable, so the LCRE with non-constant loading

and the LCRE with constant loading appear to perform better than the LCA. This

was generally the case for high values of σz, which was consistent with the results

from the correlation to MGMM and the RMSE. The two LCRE models appeared to

be competitive, with most points lying very close to the x = y in the pairwise plot

of LCRE (CL) and LCRE (NCL).

The frequencies of the scenarios with significantly lower BIC are summarised in
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FIGURE 3.3: Pairwise plots of the average BIC for 20 replicates of each
scenarios for the LCA, LCRE with constant loading and LCRE with
non-constant loading models. A smaller BIC is desirable, so points that
lie above the y = x line indicate that the model on the x-axis is pre-
ferred, while points that lie below the y = x line indicate that the model
on the y-axis is preferred. Relative to the other scenarios, BICs for each

individual scenario are similar.
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Table 3.6. This indicated that 186 of the 200 scenarios had a better BIC for one model

compared to the others. This was mostly found to be either of the two LCRE models

with 68 and 77 scenarios preferring the constant loading and non-constant loading

model, respectively. Similar trends in the parameters were observed compared to

the correlation and RMSE tables. The parameters that appeared to influence the BIC

are σz, δ and p, with the other parameters having similar numbers across the three

models. The value of σz was 0 for almost all of the scenarios where the LCA was

preferred, and was greater than 0 for the LCRE with constant loading and for LCRE

with non-constant loading. These results was originally hypothesised based on the

model parameters and indicates that, in terms of model fit, the models are working

as expected. Parameters p and δ behaved similarly, with LCRE with constant load-

ing model preferred for low values and the LCRE with non-constant loading model

preferred for high values.

p δ σz p0 Program Thresholds Total

5 7 0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

LCA 21 20 21 20 40 1 0 0 0 9 8 8 8 8 21 20 41

LCRE

(Constant Loading)
43 25 51 17 0 18 31 13 6 13 13 17 14 11 34 34 68

LCRE

(Non-Constant Loading)
24 53 22 55 0 15 6 25 31 15 14 15 17 16 39 38 77

TABLE 3.6: Frequencies of scenarios that found a significantly lower
BIC (difference greater than 3) to the other 2 models. The number
of scenarios with particular parameters are given in each column.
Columns are grouped by parameter type. Total number of scenarios

with a lower BIC associated with each model is given at the end.

Sum of Scores

In addition to the other measures, I calculated the correlation of the results of the

sum of scores method (described in Methods) to the posterior probabilities of the
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MGMM. These correlations were compared to the correlations of the other 3 meth-

ods. The sum of scores was used as a simplistic method, where positive responses

for each program are counted, and the higher the number of positive responses the

greater the likelihood a gene is binding. Thus the level of improvement given by the

3 LCA models over this method could be investigated. It should be noted, however,

that the sum of scores should not be considered an alternative method, because it

does not generate posterior probabilities.

The pairwise correlations are given in Figure 3.4. The LCA models gave an im-

proved result for many scenarios, and this appeared to be largely influenced by the

value of σz. When the value of σz was 0 or 0.5, all of the models showed a moderate

improvement over the sum of scores approach. However, for medium to large val-

ues of σz, the result varied depending on the LCA model. The simple LCA model

performed best for many of the moderate σz scenarios, but performed worse for the

scenarios with higher (2 and 4) values of σz. This was consistent with the previous

performance of the LCA. In contrast, the LCRE models performed poorly compared

to the sum of scores for most scenarios where σz was equal to 1. The LCRE with

constant loading performed poorly for higher values of σz, but the LCRE with non-

constant loading performed much better for high values of σz, again consistent with

previous observations.

The sum of scores method was competitive with the models. This was also ob-

served in Chapter 2, when this method was compared to the results of the LCA.

However, there are a number of cases where the LCA models, in particular the LCA

and the LCRE with non-constant loading, do show improvement over this method.

To identify trends in the results, Table 3.7 was generated. This shows the cases
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FIGURE 3.4: Comparisons of each LCA model to the Sum of Scores
using correlation to the MGMM. A point above the x = y axis indicates
when the sum of scores performs better, while a point below the x = y
axis indicates when the LCA model performs better. The models tend

to perform better when the σz value is low.
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p δ σz p0 Program Thresholds Total

5 7 0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

Sum of Scores 38 40 60 18 0 12 27 19 20 18 14 15 16 15 39 39 78

TABLE 3.7: Frequencies of scenarios that found a higher correlation to
the MGMM (difference greater than 3) for the sum of scores method
compared to the 3 LCA models. The number of scenarios with partic-
ular parameters are given in each column. Columns are grouped by
parameter type. Total number of scenarios with a better correlation to
the MGMM associated with the sum of scores model is given at the

end.

where the sum of scores performed better than any of the 3 LCA models. This oc-

curred for 78 out of the 200 scenarios. As noted in Figure 3.4, this was predomi-

nantly for the scenarios with a large values of σz. Additionally, the scenarios were

also much more likely to have a δ of 0.5, compared to higher values of δ. This indi-

cated that when the difference between the binding and non-binding genes scores

were small, meaning that the thresholds were more likely to include genes that were

not binding, this simpler method tends to perform better.

Summary of the measures

Finally, I collated a summary of the different results across the average correlation to

the MGMM, the RMSE and the BIC in Table 3.8. This identified key patterns within

the data, and the level of agreement across the three measures. The number of sce-

narios with each combination of results was counted (for example, preferred LCA

for correlation, LCA for RMSE and LCA for BIC) and is given in the far right hand

side of the table under “Frequency”. As highlighted in the table, certain combi-

nations appeared disproportionately frequently compared to the others, with three

combinations representing 95 of the 200 scenarios. That these combinations were

so frequent implies that most parameters had a small effect on the performance of

individual models. This follows from the trends observed in Tables 3.3, 3.5 and
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3.6, that most of the time σz and δ correlated with the preferred model while other

parameters were distributed approximately equally across all the models.

The three most common combinations, highlighted in Table 3.8, were:

• The LCA was preferred for the correlation and RMSE but the LCRE with con-

stant loading was preferred for BIC.

• The LCRE with non-constant loading was preferred for all three measures.

• The average correlation and RMSE had no clear preference (indicating that

two or all three of the models performed equally well for that measure) but

that the LCA performed best on BIC.

Further examining the parameters from these combinations, the first combination

contained scenarios with medium values of σz, and slightly more scenarios with

a lower value of δ. In contrast, the combination with preferences for LCRE with

non-constant loading contained scenarios with exclusively a higher value of δ, and

higher values of σz. Finally, the last combination with only a preference for the LCA

model when using the BIC measure also had more scenarios with higher value of

delta, and exclusively scenarios with a value of 0 in σz. This was expected, as it

means no random effect was present, and thus all of the models should perform

competitively. When all the models perform competitively, the simplest model in

terms of the number of parameters (LCA) is preferred by BIC.

Conclusions

Based on these results, the models LCA and LCRE with non-constant loading ap-

peared to be the two most competitive models, but the one that was preferred

largely depended on the parameters σz and δ. A large δ and a large σz meant that

the LCRE with non-constant loading was more likely to be preferred; otherwise the
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LCA was preferred. Additionally, the LCA may be a better choice for practical rea-

sons, as estimations for the LCRE with non-constant loading generally take a lot

longer to calculate.

The sum of scores was considered to evaluate the benefit of using LCA rather

than a naive method. The results indicated that, in terms of correlation with the

MGMM, the LCA models offer on average a small improvement, although there

were many scenarios where the sum of scores produced a higher correlation. In par-

ticular, the LCA model was preferred to the sum of scores method for scenarios with

low σz and high δ. However, the sum of scores cannot be used to effectively rank

Average Correlation RMSE BIC Frequency

LCA LCA LCA 3

LCA LCA LCRE.CL 31

LCA LCA LCRE.NCL 3

LCA LCA - 2

LCA LCRE.CL LCA 1

LCA LCRE.CL LCRE.CL 9

LCA LCRE.CL LCRE.NCL 3

LCA LCRE.CL - 2

LCA LCRE.NCL LCRE.CL 3

LCA LCRE.NCL LCRE.NCL 4

LCA LCRE.NCL - 1

LCA - LCA 7

LCA - LCRE.CL 2

LCA - LCRE.NCL 4

LCA - - 1

LCRE.CL LCRE.NCL LCRE.CL 2

LCRE.CL LCRE.NCL LCRE.NCL 1

LCRE.CL - LCRE.NCL 1

Average Correlation RMSE BIC Frequency

LCRE.CL - - 1

LCRE.NCL LCA LCRE.NCL 2

LCRE.NCL LCRE.CL LCRE.NCL 1

LCRE.NCL LCRE.NCL LCRE.CL 2

LCRE.NCL LCRE.NCL LCRE.NCL 36

LCRE.NCL LCRE.NCL - 2

LCRE.NCL - LCRE.CL 2

- LCA LCA 2

- LCA LCRE.NCL 2

- LCRE.CL LCRE.CL 5

- LCRE.CL LCRE.NCL 2

- LCRE.NCL LCRE.CL 6

- LCRE.NCL LCRE.NCL 12

- LCRE.NCL - 3

- - LCA 28

- - LCRE.CL 6

- - LCRE.NCL 6

- - - 2

TABLE 3.8: Summary of results for model simulations. For each of
the three different analyses presented, Average Correlation, RMSE and
BIC, the best performing model was found for each scenario, and the
frequency of the different combinations was counted. For example,
LCA performed best in all three analyses for only 3 different scenar-

ios (first row). The most common 3 results are highlighted in blue.
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genes like the LCA model, because the sum of scores are not posterior probabili-

ties, and the resulting scores were coarse in comparison, since there are only p + 1

possible values.

Given that the LCA model covered a wider range of σz values, is a simpler model,

and is quick to calculate with the use of randomLCA, this would be the model of

preference if no further information about the data is known. However, other meth-

ods of model selection, such as the use of BIC in Chapter 2, could be considered.

3.3.2 Should the BIC be used to select the best model?

Rather than determining whether there was a preferred model for all scenarios, an-

other method would be to use the BIC to determine the best model. In previous

sections, the BIC was used as a measure of model fit and the results were com-

pared to the highest average correlation, and lowest RMSE, such as in Table 3.8.

This indicated that the results for the average correlation and lowest RMSE did not

necessarily match the BIC.

To further investigate whether using the BIC as a way to choose a model led to a

reliable result, I returned to the original simulation data set, and identified the model

for each scenario that had the lowest BIC. When the BIC was equivalent for multiple

models, I chose the simplest model (LCA before LCRE (CL) before LCRE (NCL)).

This meant that the LCA and LCRE with constant loading models performed best

in terms of BIC more often than previously calculated. The LCA was chosen 44

times, the LCRE with constant loading 79 times and the LCRE with non-constant

loading 77 times. I then collated the associated average correlation to the MGMM

and the RMSE for the model with the best BIC, and used this to generate a 4th set of

correlations and RMSEs.
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Correlation to the MGMM

I compared the new average correlations in a pairwise fashion to the original aver-

age correlations by model. This is shown in Figure 3.5. The LCA and LCRE with

constant loading showed mixed results. This was particularly observed when the

model chosen using the BIC was the LCRE with non-constant loading; about half of

the points indicated that the model based on BIC was superior, while the other half

indicated that the other model was superior. When examining at the pairwise plot

for the LCRE with non-constant loading, the points were more consistently found

above the x = y line, indicating that choosing the model based on the BIC improved

the correlation. This was consistent with the observation that the LCRE with non-

constant loading more often had the lowest BIC, but only improved the correlation

when σz was high.

The correlation of the preferred model based on BIC in general had higher cor-

relations compared to just choosing one model. This is shown in Figure 3.5, which

compared the distribution of points along the x-axis to the distribution of points

along the y-axis. There are many more points with a lower average correlation for

the model on the x-axis compared to the BIC based model.

Investigating the correlations more closely, I collated a table with the frequen-

cies of scenarios that preferred a different model to the BIC based model. This was

split by model and parameters, and the results are given in Table 3.9. The LCA

was the most common preference compared to the BIC based model, and found a

higher correlation for 80 of the 200 scenarios. The LCRE models were preferred less

often, for only 25 and 16 scenarios for the constant and non-constant loading mod-

els, respectively. This was in part because the LCRE was more often chosen as the

best model based on the BIC. It was also possible that more than one of the models

performed better for the same scenario compared to the BIC based model, so the
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FIGURE 3.5: Average correlation to the MGMM model for models LCA,
LCRE (constant loading) and LCRE (non-constant loading) for different
scenarios, coloured by degree of random effect (σ), compared to the
average correlation to the MGMM model for the model with the lowest
BIC for that scenario. A higher value on both axes indicates a better fit
to the MGMM. Points above the x = y line indicate that the BIC model
performed better, while points below indicate that the model on the

x-axis performed better.
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p δ σz p0 Program Thresholds Total

5 7 0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

LCA 31 49 54 26 0 17 35 15 13 16 16 16 17 15 41 39 80

LCRE

(Constant Loading)
4 21 22 3 0 1 2 10 12 6 4 4 5 6 14 11 25

LCRE

(Non-Constant Loading)
13 3 1 15 0 3 7 5 1 5 3 2 1 5 8 8 16

TABLE 3.9: Frequencies of scenarios that had a higher correlation when
the model on the left was chosen naively rather than when using the
model with the lowest BIC (difference greater than 3) for that scenario.
This does not include scenarios where the model on the left was the
best model by the BIC. The LCA had the best chance of outperforming
the BIC based model, while the LCRE with non-constant loading had

the worst chance.

scenarios found for each model were not mutually exclusive.

In general, the BIC based model appeared to perform best when the σz was low,

and when the δ was high. This is likely because all of the models perform equally

well, as observed in earlier analysis. When δ was low, and σz moderate, the LCA

model would have been a better choice than the BIC based model. Similar obser-

vations were made for the LCRE with constant loading, although a larger σz was

needed for the model to perform the best. Finally, the LCRE with non-constant

loading was more likely to outperform the BIC based model when the δ value is

high. The other parameters did not seem to influence the average correlation, as

noted previously.

One consideration for this method is how much better the other model performs

in comparison to the BIC based model. Considering Figure 3.5, most of the points

where the BIC based model performed better compared to the LCA were less than

0.5 for the LCA, and over 0.75 for the BIC based model. In contrast, when the LCA

performed better, the BIC based model in general had an average correlation higher
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than 0.5. Similar results were also observed when comparing the BIC based model

to the LCRE models. Thus, while other models may give some improvement in

terms of the average correlation this level of improvement may not necessarily be

great.

RMSE

I performed the same analysis for the RMSE results (see Figure 3.6). The results

were similar to those for Figure 3.5. When compared to the LCA, the RMSE of the

BIC based model performed inconsistently in comparison. The range in magnitude

of the RMSE also tended to be the same for both models. The LCRE with constant

loading performed worse than the BIC based model with either equivalent or higher

RMSE values. The LCRE with non-constant loading had very similar RMSE values

to the BIC based model, with most values lying close to the x = y line. This is again

due to this model having smaller BIC values compared to the other models.

The trends across the different scenarios in terms of the lowest RMSE were also

investigated, and are given in Table 3.10. Overall, fewer scenarios preferred the

naive model over the BIC based model, with the LCA preferred the most (53 out of

200 scenarios). This indicated that the BIC based model more often gave the best

RMSE result. This was particularly the case when the value of σz was 0, as before,

while more often the LCA was preferred if the σz value was 1. This agreed with the

general results from Table 3.9.

Sum of Scores

The sum of scores results were also compared to the BIC based model directly. The

pairwise comparison for the sum of scores correlation to the MGMM, and the BIC

based model correlation to the MGMM is given in Figure 3.7.
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FIGURE 3.6: RMSE for models LCA, LCRE (constant loading) and
LCRE (non-constant loading) for different scenarios, coloured by de-
gree of random effect (σ), compared to the RMSE for the model with
the lowest BIC for that scenario. A higher value on both axes indicates
a better fit to the MGMM. Points above the x = y line indicate that
the model on the y-axis performed better, while points below indicate
that the model on the x-axis performed better. When the value of σz
were high, the LCRE (non-constant loading) performed better; other-
wise the LCA performed better, or the models were equivalent (close

to the x = y line).
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p δ σz p0 Program Thresholds Total

5 7 0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

LCA 21 32 29 24 0 11 24 9 9 8 12 13 12 8 26 27 53

LCRE

(Constant Loading)
5 12 14 3 1 2 2 5 7 3 5 2 3 4 10 7 17

LCRE

(Non-Constant Loading)
21 6 14 13 0 6 12 8 1 8 7 1 2 9 15 12 27

TABLE 3.10: Frequencies of scenarios that had a lower RMSE when the
model on the left was chosen naively rather than when using the model
with the lowest BIC (difference greater than 3) for that scenario. This
does not include scenarios where the model on the left was the best
model by the BIC. The LCA had the best chance of outperforming the
BIC based model, while the LCRE with non-constant loading had the

worst chance.

The results showed that there were a large number of scenarios where the sum

of scores method was superior to the BIC based model. When the LCA was chosen

as the best model, the correlation was almost always superior to the sum of scores

result. When the LCRE with constant loading was chosen however, the result was

much more likely to be superior for the sum of scores method. The LCRE with non-

constant loading model appeared to be almost evenly split across the x = y line,

indicating that for some scenarios it was preferred, while for others the sum of scores

was preferred. This is most likely due to the LCRE with non-constant loading being

preferred for the higher values of σz. These results are consistent with the results in

the previous section, which indicated that the LCA was the most competitive with

the sum of scores method. As the BIC-based model was less likely to choose the

LCA method, it was less competitive overall compared to the LCA.

The trends for when the BIC based model was superior to the sum of scores

method are given in Table 3.11. The BIC based model was preferred to the sum of

scores for about half of the scenarios (102 out of 200). The results were consistent
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FIGURE 3.7: Correlation to the MGMM for Sum of Scores compared to
the average correlation to the MGMM for the BIC based model. Points
above the x = y line indicate points where the Sum of Scores had a
higher correlation, points below the x = y line indicate points where

the BIC based model performed better
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p δ σz p0 Program Thresholds Total

5 7 0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

BIC Based Model 48 54 29 73 40 23 5 16 18 21 20 20 19 22 51 51 102

TABLE 3.11: Frequencies of scenarios that found a higher correlation to
the MGMM (difference greater than 3) for the BIC based model com-
pared to the sum of scores method. The number of scenarios with par-
ticular parameters are given in each column. Columns are grouped by
parameter type. Total number of scenarios with a better correlation to
the MGMM associated with the BIC based model is given at the end.

with previous findings and Figure 3.7, as the BIC based model was preferred to

sum of scores method for low to moderate values of σz and higher values of δ; most

likely the occasions when the BIC based model was the LCA. This suggested that

the LCA should be preferred over the BIC based model, because it was more likely

to improve over the results given by the sum of scores method.

Conclusion

Using the BIC as a way to determine the best model had mixed results. Compar-

ing the average correlation and RMSE of the BIC based model to the other models

indicated that an alternative model was superior for most scenarios. The LCA had

the lowest BIC for 41 scenarios, and additionally performed better in the average

correlation than the BIC based model for 80 scenarios and performed better for the

RMSE than the BIC based model for 53 scenarios. Thus choosing the LCA without

considering the BIC would have been the better choice for 61% of the scenarios in

terms of average correlation, and 47% of the scenarios in terms of the RMSE. Sim-

ilar rates can be found for the LCRE models also. When comparing the results of

the correlation of the BIC based model and the sum of scores method, the results

indicated that the BIC based model performed better for only 51% of scenarios. This
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implied that the LCA would have been a better choice, since it was competitive with

the sum of scores in the previous section.

One consideration when assessing this method is that it is more time expensive.

In order to calculate the BIC, all three models must be generated, which would take

longer than any single model calculation. Thus overall it is more practical and gives

better results to choose the LCA model rather than consider all three.

3.3.3 Investigating preference of One Class vs Two Class models

using the BIC

One of the other issues discovered while applying LCA to real data was that some-

times the BIC would prefer a model with one class rather than two. This occurred

for the more complex LCRE models. For ChIP-seq data, it is reasonable to assume

that a two class model is the most appropriate, since the underlying signal would

create a class of binding and a class of non-binding genes and also that the calling

programs can, to the same extent, differentiate between binding and non-binding

genes. While in the previous section, I only examined the results from two class

models, I also investigated how often the BIC preferred the one class model.

Analysis of two class data

Initially, I analysed the same data using a one class model for the LCA, and the

two LCRE models and calculated the difference in the BIC between a two class and

one class model, ∆BIC. The two class model was preferred if the difference was

greater than 3, otherwise the one class model was preferred. This was performed

across the 20 replications. One of the initial observations was that while there were

some scenarios where the one class model was preferred for the majority of the

replications(at least 10), none of the scenarios found that a one class model was
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always preferred. In contrast, there were a number of scenarios where the two class

model was always preferred. Additionally, while often the difference in BIC was

large when the two class model was preferred, the difference when the one class

model was preferred was generally small. These observations indicated that model

preference in terms of class is more dependent on random difference within the

data than on scenario parameters. This was unexpected, and implies that the class

preference calculated by BIC is not reliably indicative of the actual number of classes

within the data.

There was a clear difference in the behaviour of ∆BIC for the three models. To

demonstrate this, Figure 3.8 shows the results across the 20 replications for 10 ran-

dom scenarios across each of the three models. Clearly, the LCA model found some

of the greatest differences between the one class and two class model, and the two

class was always preferred even if the magnitude of ∆BIC was small. In contrast,

the LCRE models found in some cases that the one class model was preferred, but

not consistently across the 20 replications. There also tended to be a greater varia-

tion in the BIC for the different replications, implying that these models were more

sensitive to random changes in the data for the same scenario.

To investigate overall trends in the data and to better understand the behaviour

observed in Figure 3.8, Table 3.12 was generated similarly to the tables in the previ-

ous section. This table shows the frequency of scenarios where the one class model

was preferred for the majority of replications, split by parameter. The LCA model

did not show any preference for the one class model, the LCRE with constant load-

ing preferred the one class model for some of the scenarios (18), and the LCRE with

non-constant loading preferred the one class model for almost half of the scenarios

(83) out of the 200 scenarios total. This is therefore due to the random effect of the

LCRE models, and more specifically the constant loading parameter.
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FIGURE 3.8: Plots of the difference in BIC (One Class-Two Class) for
20 replicates for 10 randomly selected scenarios for the LCA, LCRE
with constant loading and LCRE with non-constant loading models.
A smaller BIC is desirable, so points that lie above the y = 0 line indi-
cate that two classes are preferred, while points that lie below the y = 0
line indicate that one class is preferred. More variation is seen in the

LCRE models compared to the LCA models.
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p δ σz p0 Program Thresholds Total

5 7 0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

LCA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LCRE

(Constant Loading)
10 8 18 0 15 3 0 0 0 3 3 5 4 3 10 8 18

LCRE

(Non-Constant Loading)
37 46 82 1 16 18 17 17 15 19 17 15 16 16 45 38 83

TABLE 3.12: Frequencies of scenarios that found a significantly lower
BIC (difference greater than 3) for a one class model for the same sce-
nario and model for the majority of the replications (≥ 10 out of 20
replications). The overwhelming majority of these are found in sce-
narios with a δ of 0.5, and only for the LCRE (CL) and LCRE (no CL)

models.

When a one class model was tested, the random effect of the LCRE models ac-

counted for any difference between the binding and non-binding genes. This al-

lowed the model to have a good fit to the data with the lower complexity model,

resulting in a lower BIC. The LCA model cannot as readily account for the differ-

ence, and so has a poorer fit, leading to a higher BIC. Thus the LCA was more likely

to correctly identify a two class model as preferred when using the BIC.

The most influential parameter was δ, with almost all of the scenarios with a

preference for the one class model showing a low δ. A low value of δ was more likely

to generate a single large group of values with overlap between binding and non-

binding scores, which was reflected in the results of the programs. The LCRE with

constant loading was also more likely to prefer the one class model when the value

of σz was low, while no such trend was observed in the LCRE with non-constant

loading. This is counter-intuitive and occurs because when a random effect exists, it

is recognised by the LCRE with constant loading, leading to a better fit for the two

class model.

Finally, I also examined the average correlation to the MGMM for some of the
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scenarios for the two LCRE models. The scenarios that found an overall preference

for a one class model over the 20 replicates were each split into replicates that pre-

ferred the one class model and replicates that preferred the two class model. The

average correlation was then found for each group, and the results compared in a

pairwise fashion. This result was given in Figure 3.9.

There are a greater number of scenarios in the LCRE with non-constant loading

plot because a greater number of scenarios preferred a one class model. Overall,

there was no apparent trend between the correlation of scenarios that preferred ei-

ther class. The scenario average correlation appear randomly scattered around the

x = y line. The average difference between the correlations was calculated across

all of the scenarios; this was found to be -0.0007 for the LCRE with non-constant

loading and 0.01 for the LCRE with constant loading. This was evidence that the

preference for one class or two class based on the BIC had little to no affect on the

posterior probabilities of the model.

Analysis of one class data

I performed the same analysis using the data with only one cluster. In this case, the

BIC should find the one class models to be preferred. The results were much more

uniform across the 20 replications for the one cluster data, with almost all of the

scenarios preferring either a one class or two class model exclusively. When only

one cluster was present, the models were less sensitive to random changes, because

instead of two smaller clusters with difference means, there was one large cluster

with the same mean.

As before, there was a clear difference in the performance of the three models,

and a similar distribution of ∆BIC was observed. This can be seen in Figure 3.10,

which shows the ∆BIC across the 20 replicates for 10 randomly selected scenarios.
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FIGURE 3.9: Plots of the average correlation to the MGMM for scenar-
ios where there was an overall preference for a one class model. The
20 replicates for each scenario were divided into two groups by their
class preference, and the average correlation was calculated for each
group. Points above the x = y line indicate scenarios where the repli-
cates with incorrect class preference performed better, and points be-
low the line indicate scenarios where the replicates with correct class
preference performed better. There is no clear trend for either model.
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As discussed earlier, the amount of variation across the 20 replications was lower

in all three models, particularly for the two LCRE models. Additionally, all three

models showed a negative ∆BIC for some scenarios, indicating a preference for the

one class model. The LCRE with non-constant loading performed the best, as it

consistently generated a lower BIC for the one class model compared to the two class

model. In contrast, the other models, LCA and LCRE with constant loading, showed

a preference for the two class models for a number of scenarios. Interestingly, the

difference in ∆BIC when a one class model was preferred was still small compared

to when a two class model is preferred, especially for the LCA model (although the

difference was still significant).

Trends were identified and collated into Table 3.13. Clearly, the LCRE without

constant loading performed the best compared to the other two models, with 100%

of the scenarios correctly preferring the one class model. There was also a very

clear predictor for when the LCA and the LCRE with constant loading would prefer

the one class model, with all of the scenarios with a σz value of 0 having the cor-

rect model preferred. This stark contrast was unexpected, but indicated that these

models were much more likely to explain slight changes in variation (such as those

caused by σz) by changing the clustering, rather than from random effect.

Conclusion

This investigation indicated that the model BIC was not a reliable way to identify

clustering. The LCA and the LCRE with constant loading tended to have a higher

number of false positive in terms of preferring a two class model, especially in the

case when there was some level of random effect present. In contrast, the LCRE with

non-constant loading was more likely to have false negatives, in terms of preferring

a two class model, particularly when the differences between the two underlying
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FIGURE 3.10: Plots of the difference in BIC (One Class-Two Class) for 20
replicates for 10 randomly selected scenarios for the LCA, LCRE with
constant loading and LCRE with non-constant loading models, in the
case where there are not two groups in the underlying data. A smaller
BIC is desirable, so points that lie above the y = 0 line indicate that two
classes are preferred, while points that lie below the y = 0 line indicate
that one class is preferred. More variation is seen in the LCRE models

compared to the LCA models.
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p σz p0 Program Thresholds Total

5 7 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9 Constant Varied

LCA 10 10 20 0 0 0 0 4 4 4 4 4 10 10 20

LCRE

(Constant Loading)
10 10 20 0 0 0 0 4 4 4 4 4 10 10 20

LCRE

(Non-Constant Loading)
50 50 20 20 20 20 20 20 20 20 20 20 50 50 100

TABLE 3.13: Frequencies of scenarios that found a significantly lower
BIC (difference greater than 3) for a one class model for the same sce-
nario and model for the majority of the replications (≥ 10 out of 20
replications) for data where there was not two clusters in the under-
lying data. The LCRE (no CL) model preferred the one class model
for every scenario, while the other models preferred the correct model

when σz was 0.

clusters was small (such as when there was a small δ). Additionally, when scenarios

with preference for a one class model were further examined, it was found that this

preference did not affect the posterior probability correlation to the MGMM. This

indicated that the preference for a one class model did not affect the accuracy of the

model and the posterior probabilities could still be trusted.

When considering the analysis of ChIP-seq, it is reasonable to assume that the

data will be a two class model, but considering the BIC may be helpful in identifying

the level of noise within the data. For the application of LCA, unless all of the

models agree that a one-class model is preferred, a conclusion on clustering can

not be reached. Furthermore, examining the difference in the BIC is not necessarily

helpful, as this was not found to be correlated to clustering.

Based on the results of this section, the BIC should not be used to determine class

preference.
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3.4 Conclusions

Simulations are useful for gauging the performance of different analysis methods

when the underlying truth is not normally known. In this Chapter, simulation data

was constructed using a normal distribution and then identified by different “pro-

grams” using thresholds on the scores in order to generate a set of binary results.

The aim was to answer some of the questions that arose when the LCA models were

applied to real ChIP-seq data in Chapter 2.

Firstly, each of the models was assessed to determine which of the three mod-

els most accurately calculated the correct posterior probabilities, and had the most

competitive BIC. While the LCRE models were expected to perform best when there

was a random effect present (σz > 0) , it was found that the LCA tended to perform

the best for the average correlation to the MGMM and the RMSE when the random

effect was low to moderate (σz ≤ 1). The LCRE with non-constant loading was

preferred for higher values of the random effect for the average correlation and the

RMSE, and both of the LCRE models performed well when the BICs of the models

were compared when a random effect was present. The sum of scores was also used

as a comparison to the 3 models. It was found that the 3 models performed better

when σz was low, and δ was high. Given that this is when the LCA performed best,

this was further evidence that the LCA should be the preferred model.

The next sections investigated the BIC as a method of determining the best model.

When a two class model is assumed, the BIC can be used to determine the best

model to continue with, across the three models. This method was tested against

the more “naive” approach of selecting the same model each time. The results indi-

cated that this would result in a reasonable analysis, even if there may have been a

more appropriate model to choose. However, when the sum of scores method was

considered, the BIC based model did not necessarily improve on this score. One
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consideration before using this method is that since all models must be calculated

to determine the BIC, it is more time consuming than just selecting a model without

the BIC.

It was observed when applying the models to real data that sometimes a one

class model was preferred by the BIC. When this was assessed using the simulation

data, it was found that the LCRE models were more likely to falsely determine that

the one class model was appropriate when the underlying data had two clusters,

but that the LCA was more likely to prefer a two class model when a one class

model would be more appropriate. Additionally, it was found that class preference

by BIC did not have an effect on the accuracy of the posterior probability. While in

reality the underlying data of ChIP-seq is always expected to form two clusters, this

assessment indicated that the BIC was not reliable for determining the number of

clusters (although comparing the BICs of both models may be informative for the

level of noise in the underlying data).

There are some limitations to the simulations designed here. The main one is that

the conclusions are based on simulations that are simplistic model of actual ChIP-

seq peak finding software results. Since I cannot obtain this real data, in practise

it may not be well approximated by this kind of model, and thus might have pa-

rameters different to those I considered here. This may be improved by considering

a wider range of simulations, or a different type of simulation. Another limitation

was the number of genes chosen for the simulation.

Here, only 3000 were used compared to the approximately 25,000 present in the

Ensembl database. The full effects of this change is unknown, but it may, for ex-

ample, change the results for the BIC section. Since the BIC is calculated using the

number of data points n, the number of genes may change the results of the BIC,

which may affect the conclusions. Again, this may be improved by considering a
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wider range of simulations, in this case with different numbers of genes.

Clearly, the selection of the “best” model is influenced by the distribution of the

underlying data. In reality this knowledge cannot be obtained, and these simula-

tions are useful in determining the method that has the best results. In general, the

LCA was the model that gave the best results. Therefore, based on the results from the

simulations, using this model would be the best choice.
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Chapter 4

Changing Threshold Method

4.1 Introduction

In Chapter 3, I used the results from a series of simulations to compare the models

LCA, LCRE with constant loading and LCRE with non-constant loading. I found

that the LCA performed best for a large number of the scenarios, particularly when

the value of the random effect was low and the difference between the scores of

binding and non-binding genes was high. In this chapter, I developed a new ap-

proach that uses different thresholds on the data to generate multiple posterior prob-

abilities for each gene.

The threshold used to generate the binary data can have a large effect on the per-

formance of the LCA models. To illustrate, a series of simulations were performed

using the methods described in Chapter 3, where the scenario was kept the same

(5, 1.5, 1, 0.3, Constant) with 20 replications, but the threshold Ti was changed. The

output was then analysed using the LCA model. The results were summarised in

Figure 4.1, which shows the average correlation to the MGMM for simulated data

when a constant threshold is changed. Since the optimal threshold is known to be 0,

it is clear that increasing this threshold beyond the optimal value degrades perfor-

mance.
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FIGURE 4.1: Boxplot of correlations to MGMM for the LCA model for
the same scenario (5, 1.5, 1, 0.3, Constant) for four different thresholds
over 20 replications. A threshold of 0 is considered optimal. Thresholds

closer to this value have increased correlation to the MGMM.

When the LCA model is applied to real ChIP-seq data, the optimal threshold is

not known, and is very unlikely to used by all of the programs. A new approach

was investigated to determine if using multiple different thresholds would improve

the performance. It was hypothesised that even if some of the thresholds are non-

optimal, the overall performance would be improved compared to a single set of

non-optimal thresholds. In this chapter, this idea was tested using simulated data.

4.2 Method

I developed a new method for obtaining more robust posterior probabilities using

different thresholds for the same program. See the method described in Chapter 3
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for a description of the data generation, although note that some alterations were

made and are described below.

Instead of using the constant or varied threshold, three values were used in

Ti, representing low, medium and a high threshold value (when a ‘high’ threshold

value is discussed in this context, this means a less stringent threshold).

To generate a posterior probability for each gene from these thresholds, a gene

set was generated with each program using the three thresholds. This is in con-

trast to the usual method of generating a gene set with the programs, when a single

threshold is used. Each combinations of the gene sets for each program was anal-

ysed using the LCA models, resulting in 3p analyses for each model, and the same

number of posterior probabilities for each gene. The average posterior probability

for each gene was then calculated, generating a single posterior probability for each

gene.

This approach was performed for the scenarios described in Table 3.1 with a

program number of 5. This was done as the number of permutations that would

be required if 7 programs was tested is impractical for most settings (37 = 2187)

compared to the number required for 5 programs (35 = 243). Each scenario analysis

was repeated 7 times.

The average posterior probabilities were compared to the original results from

the three different models across the same scenarios. The analysis of this approach

was limited to the assessment of the posterior probability, as the expected and ob-

served fit changes with each LCA, so no consensus expected and observed fit would

be made. The correlation of the average posterior probability to the MGMM was

calculated to compare to the posterior probabilities for the original LCA and LCRE

results. Additionally, the RMSE for the genes was also measured.

The BIC could not be used to assess the average threshold method, as the BIC
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varied with each gene set combination. An alternative method of assessment was

instead used to approximately measure the accuracy of both methods as follows.

Since the underlying true number of binding genes was known, the number of bind-

ing genes calculated could be compared to the scenario’s p0 parameter, and used to

determine how accurately the model determined the number of genes. The number

of binding genes found by the model was calculated using the posterior probability,

making is possible to measure this for both the average and fixed threshold method.

The average posterior probabilities for each gene were added together, and av-

eraged across the 7 replications, to get the approximate number of binding genes.

This was then compared to the true number of binding genes (3000× p0) for each

scenario. A metric for the accuracy is the absolute proportion of estimated binding

genes over the true binding genes, so a perfectly accurate estimation would have

the result of 1. The closer to 1, the more accurate the estimation.

4.3 Results

4.3.1 Correlation to MGMM

The correlation to the MGMM for the scenario with parameters {p, δ, σz, p0, Program Threshold} =

{5, 0.5, 0, 0.1, Varied} (Scenario 1) for the correlation are shown in Table 4.1. Full re-

sults can be found in Appendix B.2. In contrast to similar results in Table 3.2, the

standard deviation of the correlations was lower for all of the models, particularly

for the LCRE models. Additionally, the average correlation was much higher as

well, with all three models having an average greater than 0.9.

To compare the performance of the averaged threshold results for each model,

pairwise plots were generated. These plots compared the average correlation to the

MGMM for the ”fixed threshold” method to the average correlation for the average
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LCA LCRE LCRE

(Constant Loading) (No Constant Loading)

0.920 0.918 0.913

0.915 0.910 0.880

0.930 0.925 0.927

0.920 0.909 0.903

0.916 0.911 0.910

0.925 0.921 0.923

0.922 0.916 0.901

Average 0.921 0.916 0.908

Standard Deviation 0.005 0.006 0.015

TABLE 4.1: Correlation results for the LCA and LCRE (Constant Load-
ing) and LCRE (No Constant Loading) for Scenario 1, averaged across
different thresholds. Correlation compares the posterior probability
for all genes for the LCA and LCRE to the posterior probability for all
genes for the MGMM. The average and standard deviations were used

to compare Scenarios.
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threshold method for the same model. The results are given in Figure 4.2, coloured

by the value of σz for that scenario, and indicate that for most scenarios, there was

at least some improvement found by using the average thresholds method. For the

LCA, this was mostly a minor improvement, particularly for scenarios with high

σz that had very low average correlation for the fixed threshold model. Similarly,

the LCRE with constant loading showed moderate improvement when the average

threshold method was used. Some of the low correlation, high σz points did how-

ever show a higher average correlation for the fixed threshold method, but only for

6 scenarios. For the LCRE with non-constant thresholds, many of the scenarios had

a large improvement when average threshold method was used, across all of the

values of σz. There was only one scenario for which the fixed threshold method

performed better.

While the σz value of the scenario seemed to have little effect on the level of im-

provement seen when using the average threshold method, it did have an effect of

the actual average correlation value. Lower values of σz had higher average corre-

lation, and the average correlation tended to decrease as the σz increased. A similar

effect was noted in Figure 3.1.

To further assess this new method in terms of the average correlation to the

MGMM, I analysed the trends of scenarios that preferred either the fixed threshold

or average thresholds method (see Table 4.2). This was only performed for the LCA

method, based on the results in previous sections that demonstrated this to be the

preferred model for most scenarios. The results indicated that the average threshold

method was preferred for 44 of the 50 scenarios, while the fixed threshold method

was preferred for only 3 scenarios. The remaining scenarios were competitive. In-

terestingly, the scenarios that preferred the fixed threshold method were those with

a low value of δ. This may be due to certain combinations of gene sets resulting in
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FIGURE 4.2: Average correlation to the MGMM model for fixed thresh-
olds against average correlation to the MGMM model for averaged
thresholds, for models LCA, LCRE (constant loading) and LCRE (non-
constant loading) for different scenarios, coloured by degree of ran-
dom effect (σ). A higher value on both axes indicates a better fit to
the MGMM. Points above the x = y line indicate that the average
threshold method performed better, while points below indicate that
the fixed threshold method performed better. Most of the time, the av-

erage threshold method appears to perform better.
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δ σz p0 Total

0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9

Fixed 3 0 0 1 0 1 1 1 0 0 1 1 3

Average 20 24 10 9 10 8 7 9 9 9 8 9 44

TABLE 4.2: Frequencies of scenarios that found a higher average corre-
lation for one of the two methods (fixed vs average thresholds) for the

LCA model. Most found that the average was preferred.

a much lower average posterior probability for genes compared to the other combi-

nations, reducing the average posterior probability. In this case, the fixed threshold

method would perform better in terms of posterior probability. This may be more

likely to occur when the clustering is less clear, such as when δ is low.

4.3.2 RMSE

I compared the different methods for each model with the RMSE, as shown in Figure

4.3. As before, the average threshold method performed better for most of the sce-

narios, or at least was competitive. The LCA model had the smallest improvement

for the average thresholds method, but was also the most consistent, with only 9 sce-

narios performing better with the fixed threshold method. The LCRE models were

more likely to perform better using a fixed threshold method, but in general, im-

provements in the RMSE were low. In contrast, using the average threshold method

was more likely to lead to significant improvement, especially for the LCRE with

constant loading model.

The highest RMSE for the average threshold method was less than 0.4, while the

highest with the fixed threshold method was greater than 0.6. While most scenarios

had some level of improvement under the average thresholds method, the scenarios

with a lower value of σz were more likely to be improved compare to higher values.
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FIGURE 4.3: RMSE for the posterior probabilities for the MGMM model
for LCA and LCRE (constant loading) and the LCRE (non-constant
loading) for fixed and average threshold methods. A smaller value
indicates a lower RMSE, which is preferred. Points above the y = x
line indicate scenarios where fixed threshold method performed bet-
ter while points below indicate that the average threshold method per-
formed better. For most of the scenarios, the average threshold method

appears to perform better.
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δ σz p0 Total

0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9

Fixed 8 1 0 1 1 2 5 2 3 1 2 1 9

Average 16 24 10 9 9 8 4 8 7 8 8 9 40

TABLE 4.3: Frequencies of scenarios that found a lower RMSE for one
of the two methods (fixed vs average thresholds) for the LCA model.

Most found that the average was preferred.

The overall trends for the LCA model for the RMSE results were collated in Table

4.3. While there were a greater number of scenarios that performed better under

the fixed thresholds method (9 of the 50), most still found a lower RMSE for the

average threshold method (40 scenarios). Similar trends were observed to those in

Table 4.2. The two parameters that influenced the RMSE performance in either the

fixed or average threshold method were δ and σz. Lower values of δ and higher

values of σz in scenarios were more likely to prefer the fixed threshold method than

other scenarios. This is likely a result of less distinct clusters within the underlying

data. In this case, gene sets are more likely to contain incorrectly classified genes

and generate a lower RMSE. A single fixed threshold containing more genes is thus

more likely to be better than the average threshold results.

4.3.3 Binding Accuracy using p0

Pairwise plots of the binding accuracy were generated for each model comparing

the fixed and average threshold methods, and the results are given in Figure 4.4,

coloured by the value of σz. The dashed lines indicate the ideal results for each

method. While there were some points with binding accuracy greater than 2, these

were omitted from the figure to gain a higher level of detail from the remaining

scenarios. For all three models, there was a cluster of results close to the point (1,1),
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δ σz p0 Total

0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9

Fixed 10 6 1 4 4 4 3 8 4 1 1 2 16

Average 11 7 4 2 4 4 4 1 5 4 5 3 18

TABLE 4.4: Frequencies of scenarios that were closer to the actual bind-
ing proportion(p0) for one of the two methods (fixed vs average thresh-
olds) for the LCA model. Both methods had approximately the same
number of scenarios. The fixed method performed better for p0 = 0.1.

indicating that most of the results were close to the correct estimation. Many of

the points far from (1,1) show a positive correlation between the average threshold

and fixed threshold methods, indicating that for most points with a lower binding

accuracy, the two methods were competitive. The value of σz did not appear to

have an effect on the binding accuracy. Furthermore, all three models and methods

appeared competitive for binding accuracy.

To further investigate the binding accuracy, Table 4.4 was generated. This table

identifies which method had the higher binding accuracy for each scenario (within 2

decimal places) and then looks at the frequencies of the different parameters within

all the scenarios identified. Each of the two methods found an approximately equal

number of scenarios with a higher binding accuracy, with 16 being competitive. This

result suggests that both of the methods were reasonably competitive in terms of

binding accuracy. There are few trends to be observed amongst the parameters, with

the most notable that the lowest p0 value, 0.1, was more accurately estimated by the

fixed threshold method, while higher p0 values were more accurately estimated by

the average threshold method. This may have been because a smaller number of

binding genes are harder to classify correctly using the average thresholds.
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FIGURE 4.4: Average accuracy of binding proportion compared to set
p0 for fixed thresholds against averaged thresholds, for models LCA,
LCRE with constant loading and LCRE with non-constant loading
across different scenarios, coloured by degree of random effect (σ). Ac-
curacy is measured as proportion to correct p0 value. A value closer
to 1 (dashed line) is thus preferred. The x = y line indicates similar-
ity of values between fixed and average threshold methods. In gen-
eral, the methods were comparative, with most values lying close to
(1,1), although in cases when the accuracy was poor, the fixed threshold
method performed better. Points with binding accuracy greater than 2

were omitted.
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δ σz p0 Total

0.5 1.5 0 0.5 1 2 4 0.1 0.3 0.5 0.7 0.9

Sum of Scores 11 12 0 1 4 8 10 5 4 3 6 5 23

Average 14 13 10 9 6 2 0 5 6 7 4 5 27

TABLE 4.5: Frequencies of scenarios that had higher correlations to the
MGMM for one of the two methods (sum of scores vs average thresh-
olds) for the LCA model. Both methods had approximately the same
number of scenarios. The average method performed better for σz < 1.

4.3.4 Sum of Scores

The sum of scores was used again to compare to the results of the average threshold

method. The pairwise correlation plots are given in Figure 4.5. The results indi-

cated that the average threshold method generally showed improvement over the

sum of scores method, with most scenarios showing an improved correlation to the

MGMM. The LCRE with non-constant loading showed the best improvement over

the sum of scores, particularly for σz values of 2 and 4. However, the LCA was

consistently better for lower values of σz. This was consistent with previous results.

Additionally, trends were identified using Table 4.5 for when the sum of scores

and the average threshold method with the LCA model performed better. These

resulted was consistent with the observation above, and indicated that the average

threshold method performed better for low values of σz. In total the average thresh-

old method performed better for 54% of the scenarios.
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FIGURE 4.5: Correlation to MGMM for sum of scores compared to av-
erage correlation to MGMM for the average threshold method for each
model. Points above the x = y line indicate when the average thresh-
old method performed the best, while points below indicate when the

sum of scores method performed the best.
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4.4 Conclusions

The proposed method of using thresholds to create multiple genes sets, and com-

bine them to generate average posterior probabilities, appeared to improve upon

the results from using a single fixed threshold. Examining the average correlation to

the MGMM, as well as the RMSE indicated that for most scenarios, a modest to high

improvement could be obtained using this method for all three models. This was

particularly true for parameters that generated more distinct clusters of data points,

such as a high δ. While the BIC of the average threshold method could not be calcu-

lated, an assessment of the accuracy of the estimated binding genes indicated that

the average threshold method was competitive with the fixed threshold method.

Furthermore, comparing the sum of scores and the average threshold method indi-

cated that the LCA model in particular was more competitive than used the fixed

models, as analysed in Chapter 3.

Based on the simulation results, the average thresholds method was a good ap-

proach to increase the accuracy of any of the LCA models, and is recommended in

conjunction with the LCA model in particular.
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Chapter 5

Applying new LCA method to data

5.1 Introduction

Based on the results from Chapter 4, I decided to apply the changing thresholds

method to the original H3K36me3 data. When this method was applied to simula-

tions, the posterior probabilities were improved and the LCA model gave the most

consistent results. To use this method, new thresholds were applied to each of the

programs, and combinations of thresholds were fitted with the different models.

Another change to the original method was to omit the program enRich, since it

had very little agreement with other programs as observed in Chapter 2. Further-

more, reducing the number of programs decreased the time taken to perform the

analysis, and based on Chapter 3, including more than 5 programs did not improve

the results.

Each model generated average posterior probabilities for each gene; these were

compared, along with the standard deviations of the posterior probabilities across

each gene. The posterior probabilities were then used to identify putative binding

genes for each model, and the sets were compared. Finally I focused on genes found

by the LCA model and identified significant GO terms. The results of this method

were compared to the original results from Chapter 1.
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5.2 Methods

In order to generate thresholds for each of the programs, I initially attempted to

rerun the programs from the command line. All of the programs allow some degree

of control over the final threshold of peak significance using the p-value, as can

be seen in Table 5.1. However, I found that this was not a feasible method due to

time constraints, as many of the peaks had extreme p-values that meant even very

stringent thresholds did not lower the number of identified peaks.

Program Threshold Measure Threshold Modifier Flag

BCP p-value –pval

HOMER p-value -poisson

MACS2 −log10 p-value -p

MUSIC q-value -q val

THOR −log10 p-value -p

TABLE 5.1: Summary of thresholds for the different programs. Differ-
ent programs use different measures for the threshold of peaks to re-
tain, and this can be modified by the user using the threshold modifier

flags during the command line input.

Instead, I ordered the already generated peaks identified by each program by

score. The ordered peaks were used to create 4 overlapping sets of genes, where

the number was constrained to 1000 or 4000 genes. In this way, the smallest gene

lists should contain genes from each program that are the most likely to be binding,

while the larger gene lists are less stringent. I confirmed that this would have the

same effect as having extremely stringent controls by comparing the results from

different program outputs. For MACS2, BCP, HOMER and THOR, the manual ap-

proach was equivalent in terms of the p-values observed. The program MUSIC,
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Program 1000 Gene List 4000 Gene List Default Gene List

MACS2 1000 4001 12032

HOMER 1000 4006 9321

THOR 1002 4002 6470

BCP 1000 4009 8558

MUSIC 1000 4001 11542

TABLE 5.2: Gene lists for the different thresholds for the peak calling
programs. Note that the number of genes are approximately close to

the limit.

however, retained different peaks depending on the q-value specified. For simplic-

ity, I continued to use the manual method for MUSIC. An additional list with all

genes was also kept for each program. The number of genes in each list is given

in Table 5.2. Note that for some of the gene sets, the number of retained genes is

slightly higher than the threshold limit. This occurred when reducing the number

of scored peaks reduced the number of genes to below the limit for that gene set.

I compared the genes found in each list to all the programs, resulting in the UpSet

plots in Figure 5.1. As the number of genes increased there was a higher level of

agreement between programs. The program BCP in particular had a large number

of genes that it found uniquely, as did HOMER. This is most noticeable in Figure

5.1a.

For the three models, I used the different thresholds in different combinations, as

in the Simulation methods section. Only three of the gene sets generated were used

in this case; 1000, 4000 and the default, to reduce the number of permutations and

capture a range of stringency within the thresholds. This meant that there were 243

different permutations to perform. I obtained the posterior probabilities for each

permutation, and averaged them to attain an overall posterior probability.
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(A) Intersections of 1000 genes lists (B) Intersections of 4000 genes lists

(C) Intersections of default genes lists

FIGURE 5.1: UpSet plots showing the intersections and therefore level
of agreement for the gene lists with different thresholds. There appears

to be a greater level of agreement in the larger gene lists
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5.3 Results

I performed an LCA, LCRE with constant loading and LCRE with non-constant

loading model fit in order to compare the results and determine if similar results

as the simulation were observed. The average posterior probability was plotted for

each model and the results are given side-by-side in Figure 5.2. Similar distribu-

tions were observed across all three models, with a higher density section found at

an average posterior probability of 0.3. The LCA model found a second high den-

sity point at approximately 0.7, indicating that there were two distinct groups of

genes with different posterior probabilities, with few genes in between. In contrast,

the LCRE models did not have any other high density sections, but instead several

medium density regions between 0.1 to 0.5. All three models also had a low range

of values, with no posterior probability greater than 0.75. This implied that many of

the genes had low posterior probabilities for at least some of the combinations. This

may have been due to the lack of agreement observed in the 1000 gene set, which

may have decreased the posterior probability for some of the genes.

To directly compare the average posterior probabilities for each gene, pairwise

plots comparing the three models were generated (see Figure 5.3). The amount of

correlation between the LCA and the two LCRE models was low, particularly for

genes that were given a low average posterior probability by the LCA model. In

comparison, the LCRE models had a much higher level of agreement, with most

points falling close to the x = y line. The LCRE posterior probabilities were also

more evenly distributed across both axes compared to the posterior probabilities of

the LCA model, where most points have an average posterior probability of approx-

imately 0.7. Additionally, the LCA model found a number of genes with posterior

probabilities of approximately 0.3. The LCRE models tended to have a wide range

of posterior probabilities, extending from 0.35 to 0.9 for the constant loading model.
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FIGURE 5.2: Average posterior probabilities over different thresholds
for genes from H3K36me3 data, separated by model (LCA, LCRE (CL)
and LCRE (NCL)) and displayed as a violin plot. The y-axis gives the
average posterior probability, and the width of the violins along the x-
axis determines the number of genes with that average posterior prob-
ability. There are a large number of genes with a posterior probability

of 0.7 across the three models.

In contrast, the LCA range extended from 0.35 to 0.7. This indicated less variation

for the combinations of gene sets tested for these models.

Each gene has 243 posterior probabilities, one for each combination of thresh-

olds. To further investigate the differences between the models, I calculated the

standard deviation of these posterior probabilities for each gene. This is given in

Figure 5.4. The genes ranged in standard deviation from 0.2 to 0.5. The LCRE mod-

els generally had lower average standard deviations, and a greater range of standard

deviations. The LCA model results had the lowest range, and the highest average

standard deviations. This high level of variability in the posterior probability are

most likely due to the lack of agreement in the smaller gene lists. This meant some

permutations of thresholds gave genes very different profiles, resulting in different
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FIGURE 5.3: Average posterior probabilities over different thresholds
for genes from H3K36me3 data, plotted pairwise for the 3 models. An
x = y line is included. Points are given a light colour to indicate over-
lapping; black indicates more than five superimposed points. There is
a positive correlation between the LCRE (CL) and LCRE (NCL) results.
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FIGURE 5.4: Standard deviations of posterior probabilities over differ-
ent thresholds for genes from H3K36me3 data by model. Standard de-
viations are collated as boxplots. The LCA model has the highest aver-

age standard deviation across the genes.

posterior probabilities for presence in a particular class. Furthermore, this also ex-

plained why the maximum posterior probability for all three models was low, and

the minimum posterior probability was high, relative to the possible range. If dif-

ferences within genes are large, this results in the average moving away from the

extremes.

Next, I examined the genes that were associated with binding for each model.

This was calculated by classifying all genes with a posterior probability greater than

0.5 as binding, and those with a posterior probability less than 0.5 as non-binding.

The resulting gene sets for each model were compared using the Entrezgene ID,

and the Venn diagram shown in Figure 5.5 was constructed. The figure indicates

that there was a large amount of correlation across all three models, and the LCRE

with non-constant loading in particular found no unique genes compared to the

other models. In contrast, the LCRE models in Chapter 2 found almost identical

gene sets.
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The LCA model found 8779 genes were binding, the LCRE model with constant

loading found 11,198 and the LCRE with non-constant loading found 9862. The

majority of these (8733) were found by all three models. Notably, these numbers are

comparable with the original gene lists identified by the fixed thresholds method

with the models.

FIGURE 5.5: Venn diagram of binding genes based on the three
LCA models; LCA, LCRE with constant loading and LCRE with non-
constant loading. The results indicate a high level of agreement (8733
were found by all genes) the LCRE with non-constant loading found

no unique genes.

Focusing on the results for the LCA, I obtained the significant GO terms for these

genes, as I did with the original LCA and LCRE models (see Figure 5.6). The sig-

nificantly enriched GO terms are different to those found in Chapter 2 when using

the fixed threshold method. Thus, despite the similarities in the number of genes

identified as enriched, there was a difference in the set of genes found by the two

different methods. These GO terms still appeared to be associated with transcrip-

tional activity, as noted in Chapter 2.
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FIGURE 5.6: Significant GO terms for the LCA model using the average
threshold method. While a comparative number of genes were identi-

fied as binding overall, different significant GO terms were found.

I then compared the gene list from the average threshold method LCA to the

fixed threshold method LCA. Despite the differences in the GO terms found, the

genes had a large amount of overlap, with around 8746 genes being in common.

This also indicated that the average threshold resulted in a more stringent number

of genes, and gives high confidence for the resulting set. Notably, using a sum of

scores method will give the same results as the fixed threshold LCA, so this is also

the overlap between the average threshold method and the sum of scores method

as well.

Due to constraints with this method, the actual and expected number of genes

could not be calculated, as the profile of each gene varied in the combinations de-

pending on its score for each program. However, it is clear that this method is useful
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FIGURE 5.7: Venn diagram for Entrezgene IDs for the genes found with
the fixed threshold LCA method (from Chapter 2) and the genes found

with the average threshold LCA method

and can be used to combine the results from multiple ChIP-seq programs in a more

reliable way.

5.4 Conclusions

In this chapter, I applied a new method developed as part of Chapter 4 to the exper-

imental ChIP-seq data. This method used varying thresholds to create several sets

of genes for each program, representing low, medium and high stringency, where a

high stringency would only retain the most likely genes for binding. Each combina-

tion of the gene sets for all the programs was analysed using the three different LCA

models, with the resulting posterior probabilities from each combination averaged

for each gene.
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The resulting average posterior probabilities were compared for the three mod-

els. All three models had a relatively small range of posterior probabilities, partic-

ularly the LCA model. A large number of genes were found to have low posterior

probabilities for all three models. The LCA model had a similar cluster of genes with

high posterior probabilities, while the LCRE models tended to have more genes

along the range of posterior probabilities, with only a few gaining the maximum

value. Analysis of the standard deviation indicated that the LCA also had the high-

est standard deviation, which may have resulted in the smaller maximum value of

the posterior probabilities.

I generated putative binding genes for each model using the average posterior

probabilities. Comparisons of these sets indicated that about 9000 genes were found

by all three models. Based on the results of Chapters 2, 3 and 4, I selected the LCA

model for further analysis. I identified significant GO terms for the LCA putative

gene binding set, and found that the results were different to those found in Chapter

2. However, these GO terms still confirmed that this gene set was associated with

basal transcriptional activity, as expected.

When comparing the fixed threshold LCA gene set and the average LCA gene

set, it was found that there was a large amount of overlap in the genes identified as

putatively binding. This meant that the genes found by the average LCA gene set

can be considered high confidence.

While all three models are useful, the LCA model is the most practical in con-

junction with the average thresholds method, because it estimates the parameters

much more quickly.

There are some limitations to this application of the threshold methods. The

threshold was kept at the default for the 5 programs, so this makes the assumption
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that the optimal threshold is at the default or lower, which may not be the case. Sim-

ilarly, if the thresholds chosen are all poor, then this would degrade the performance

further. An extension to this study would be to change the default threshold value

using the threshold modifiers described in Table 5.1, and then generate thresholds

using the method described in 5.2. The results would be useful as a comparison and

would provide more insight into the gene lists.

Another limitation is that the target protein of the ChIP-seq data set used identi-

fies transcriptionally active genes, but no condition was changed during the experi-

ment. An experiment that has a known outcome (for example, the activation of ion

channels) prior to the use of LCA may be helpful for measuring the effectiveness of

this method.

Overall, the results of this chapter indicated that the average threshold method

provides useful results.
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Chapter 6

Conclusions and Future Directions

ChIP-seq is a popular tool for identifying binding regions of proteins within the

genomes. Applications of this technology include finding transcriptionally active

regions with histone marks, as well as the effects of an added treatment over time

for particular proteins. The results of ChIP-seq vary in both peak characteristics and

quality, and therefore subsequent analysis is complex.

It is difficult to determine the best program to use on ChIP-seq data, even when

accounting for the expected type of peak. The surprising amount of variation be-

tween programs, and even within programs using different settings, means there is

often a low level of agreement on genes associated with binding sites. This thesis

explored methods of identifying putative binding genes for the purposes of further

investigation, in particular through the application of LCA and LCRE (with constant

loading and with non-constant loading) models.

Conclusions

In Chapter 2, a data set obtained from ENCODE was analysed using a num-

ber of different ChIP-seq programs. Peaks were associated with genes in order to

compare between programs easily. The programs had varying levels of agreement,

making this data set ideal for testing the LCA models. Three different models were
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compared, increasing in complexity; LCA (without random effects), LCRE with con-

stant loading, and LCRE with non-constant loading. The BIC was used to identify

whether the two class or one class fit was more appropriate for each of the mod-

els, with the assumption that a one class fit would occur when the data could not

sufficiently be classified into two classes.

It was initially expected that the LCRE would more closely fit the data, as this

model accounts for the anticipated correlation found between programs as a ran-

dom effect. While the LCRE models improved the fit to the data, the result tended

to rely too heavily on particular programs, such as enRich. Furthermore, the BIC

of the LCRE with non-constant loading models indicated that a one class model

should be preferred. Despite the assumed dependence between programs, the LCA

provided the most reliable results, and was the most practical to use when consider-

ing the time to estimate the parameters. Questions about the use of BIC to identify

the correct number of classes remained.

In Chapter 3, simulated data was generated to investigate the 3 LCA models

across a range of scenarios. The parameters varied across these scenarios included

the extent to which genes were separated into two groups, the amount of random

effect present within the data, the number of programs used, and the proportion

of binding genes within the data. To assess the models, an MGMM was used as a

“gold-standard” using the true underlying scores. Measures of the performance of

the three models included the average correlation to the MGMM for each scenario,

the RMSE compared to the MGMM, and the BIC.

The LCA model was found to perform best even when moderate levels of ran-

dom effect were included. The LCA generally had higher average correlations, and

lower RMSE, than the other two models, unless the random effect was large in mag-

nitude, in which case the LCRE with non-constant loading was the better choice of
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model. The LCRE models tended to attain better BIC values for most scenarios.

Next, the method of using the BIC to select a model, rather than always using

the same model was assessed. The BIC for all the models for each scenarios were

compared, and the average correlation to the MGMM and RMSE were retained for

the preferred model. This was found to produce competitive results for most sce-

narios, however did not improve the results found when using the sum of scores.

The drawback of this approach is that it involves estimating the parameters for all

three models, which is more time consuming than selecting a single model. Fur-

thermore, in most cases the LCA was still an appropriate model, unless the random

effect was large in magnitude. Thus using the simple LCA is preferred over com-

paring the models’ BIC (when using a two class model) to identify the best model

for a particular data set.

To assess the reliability of the BIC for choosing a one class or two class model,

these different models were also tested with the simulated data. When the simulated

data was generated with two classes, the LCA always identified the two class model

as best, but the LCRE models were less consistent, particularly the model with non-

constant loading. In contrast, when the simulated data was generated with a single

class, the LCRE model with non-constant loading most accurately identified this

correctly, while the LCA and LCRE with constant loading showed mixed results. It

was concluded that comparing a one class and two class model BIC was found to be

an unreliable way to determine whether the two class model was appropriate.

When the LCRE BIC suggested that a one-class model is more appropriate for

the data, it was considered that this may degrade the performance of the two class

posterior probabilities. However, the simulation studied showed no such effect and

I concluded that an LCRE BIC that favours a one class model is not diagnostic of

poor performance. Overall when analysing multiple ChIP-seq programs, it is more
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realistic to assume a two class model should be used.

In Chapter 4, I developed a new method of using the LCA model. In this method,

different thresholds were used to create new gene lists with varying levels of strin-

gency for each program. The LCA models were then used to analyse each combina-

tion of the gene lists, and the resulting posterior probabilities were averaged. When

tested on the simulated data, this led to very consistent posterior probabilities that

relied less on random changes to the data. Furthermore, the results showed im-

provement for most scenarios for each of the three models. However, this method

is also time consuming, and is most appropriate when used in conjunction with the

LCA model, which is fast compared to the LCRE models.

Finally, in Chapter 5, the changing threshold method was applied to the origi-

nal data, based on the conclusions from Chapter 3. Comparisons between the three

models indicated that the LCA tended to have greater variation in the probabili-

ties for each gene, and smaller posterior probabilities overall. In comparison to the

LCRE models, the LCA had two distinct groups of genes, with either high or low

posterior probabilities.

The average posterior probabilities were used to identify a number of binding

genes, which showed general agreement between the three models. The binding

genes that were found by the LCA model were used to identify significant GO

terms. The results indicated that these genes had different functions to those found

in Chapter 2. I concluded that this method provided consistent results, and gener-

ates a set of putative binding genes that can be used for further analysis.

Future Directions

Further research is required to fully take advantage of LCA in conjunction with

ChIP-seq data.
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The LCA model should be applied to a greater range of data sets. The H3K36me3

data used in this thesis was chosen because it was high quality and was well doc-

umented, however testing with a number of other data sets, including those with

different peak characteristics such as DNA binding proteins will give greater in-

sight into the affects of different types of peaks on DNA. Furthermore, data sets

where there is a known change in the condition of cells between different samples

would allow a better understanding of the differences in gene sets between the fixed

threshold LCA method and the average threshold LCA method. For example, if the

only genes found are associated with depolarisation activity after the addition of

potassium depolarisation solution, this would provide greater confidence for the

LCA model. Applying the LCA model to a ChIP-seq data set to identify changes

under different condition is also the most likely application of this method. Apply-

ing LCA to a number of different data sets would therefore allow for better testing

of the model in a range of conditions. Additionally, as mentioned in Chapter 5, us-

ing the same dataset but changing the default threshold may also provide greater

insight into the method outcomes.

More extensive simulations are needed to fully explore this model. In Chapter

3 and 4, simulations were used to test the accuracy of the 3 LCA models when the

underlying truth about the data was known. As mentioned in that section, there

are some limitations in the results because the model makes assumptions about the

distribution of the underlying data that may not be accurate. Therefore, testing a

wider variety of parameters and different extensions to the model may lead to more

relevant results. In particular, increasing the number of genes would be beneficial,

since this affected the results of the BIC, one of the measures tested in Chapter 3. In

addition, alternative measures to the BIC should be explored, such as a bootstrap

likelihood ratio test (McLachlan, 1987).
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A greater variety of parameter options would also be beneficial. Testing different

simulation data generation models would also be useful, for example testing alter-

native score distributions. Furthermore, the use of the program enRich in Chapter

2 indicated that a low agreement and small gene set result can influence the LCRE

models in particular. This was not explored in the simulations, which assumed that

all of the programs were equally accurate. Thus testing the results of the LCA mod-

els when one or multiple programs has low agreement may provide further insight

into these effects.

Finally, the merits of using an ordinal response LCA should be considered as

an alternative to the average threshold method. The original proposal to use LCA

as a means to integrate the results from several calling programs or across several

studies assumes a binary outcome from each program (Cantarel et al., 2014; Elsik

et al., 2007; Chen et al., 2007). For example, each gene is classified as either bind-

ing or non-binding by each calling program in the present context. When multiple

thresholds are introduced, as introduced here, the outcomes can then be considered

as ordinal rather than binary. A more standard statistical approach is then to con-

sider LCA models for ordinal rather than binary data, see Agresti and Lang, (1993).

In principle, that approach could be expected to make optimal use of the data and

produce more efficient estimates of the posterior probabilities than those obtained

from the averaging method considered in this thesis. The application of LCA with

ordinal responses was not undertaken in this thesis due to difficulties with imple-

mentation. Nevertheless, the evaluation of such methods is a logical next step and

an important area for future research.

Final Recommendations

The results of the thesis indicate that the LCA is a promising model for the pur-

pose of combining multiple ChIP-seq peak finding identification programs to create
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a set of putative binding genes. While three different LCA models of increasing

complexity were considered, the simplest LCA model without random effects not

only had the most reliable performance when applied to real ChIP-seq data, but also

had the most accurate results for most of the scenarios in Chapter 3.

A further recommendation would be to use the average threshold method devel-

oped in Chapter 4 and applied in Chapter 5. The results indicated that this, when

used in conjunction with the LCA model, was more accurate than the fixed thresh-

old method.

In addition, further research is needed to fully explore the application of LCA to

ChIP-seq data, including more extensive simulations, the applications to a greater

variety of ChIP-seq data sets and the investigation into an ordinal response LCA.
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Appendix A

Software

This appendix describes all of the software and other resources used in this the-

sis, and includes the scripts used to generate and analyse the data, where possible.

Code used can be found in the digital appendix on GitHub at https://github.com/

catisha/Thesis_Code/ under the subheadings given here:

A.1 ChIP-seq Peak Identification Software

MACS2

MACS2 version 2.1.0.20151222

See macs2 all samples.sh for commands.

HOMER

HOMER v4.10.1

See homer analysis.sh for commands.

THOR

THOR version 0.11.3

See THOR analysis.sh and H3K36me3 THOR.config for commands.

https://github.com/catisha/Thesis_Code/
https://github.com/catisha/Thesis_Code/
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enRich

enRich version 3.0

See:

• enrich all chromosomes.sh

• enrich mycounts allchromosomes human neutrophil pheonix.R

• combine chroms enRich.R

for commands.

Note enrich mycounts allchromosomes human neutrophil pheonix.R was run

on R version 3.4.1 while combine chroms enRich.R was run on R version 3.5.1.

MUSIC

See MUSIC analysis.sh for commands.

BCP

BCP version 1.18

See BCP analysis.sh for commands.

A.2 R Software and Scripts

A.2.1 Chapter 2

R version 3.5.1 (2018-07-02)

Platform: x86 64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.5 LTS
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R scripts (see Digital Appendix):

• macs analysis slim.Rmd: Takes peak information generated by the MACS2 pro-

gram and identifies associated peaks. Also generates thresholds for the program for

Chapter 4.

• HOMER analysis slim.Rmd: Takes peak information generated by the HOMER pro-

gram and identifies associated peaks. Also generates thresholds for the program for

Chapter 4.

• THOR analysis slim.Rmd: Takes peak information generated by the THOR program

and identifies associated peaks. Also generates thresholds for the program for Chap-

ter 4.

• enRich analysis.Rmd: Takes peak information generated by the MUSIC program and

identifies associated peaks.

• MUSIC analysis slim.Rmd: Takes peak information generated by the MUSIC program

and identifies associated peaks. Also generates thresholds for the program for Chap-

ter 4.

• BCP analysis slim.Rmd: Takes peak information generated by the BCP program and

identifies associated peaks. Also generates thresholds for the program for Chapter 4.

• lca random programs.Rmd: Combines genes lists from the programs and tests the

LCA, LCRE (CL) and LCRE (NCL) models with enRich and without enRich. Gen-

erates figures used in Chapter 2.

A.2.2 Chapter 3

Simulation Generation

R version 3.4.1 (2017-06-30)
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Platform: x86 64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.5 LTS

R scripts (see Digital Appendix):

• LCA sim with lca record commandline conLoad pcoef.R: Generates simulation

data based on Chapter 3 Methods with a varied threshold and two clusters of scores.

• LCA sim with lca record contThresh commandline conLoad pcoef.R: Generates sim-

ulation data based on Chapter 3 Methods with a constant threshold and two clusters

of scores.

• LCA sim with lca record commandline conLoad pcoef oneclass.R: Generates sim-

ulation data based on Chapter 3 Methods with a varied threshold and one cluster of

scores.

• LCA sim with lca record contThresh commandline conLoad pcoef oneclass.R: Gen-

erates simulation data based on Chapter 3 Methods with a constant threshold and one

cluster of scores.

Commandline Scripts (see Digital Appendix):

• simulate LCA commandline 3methods.sh: Used to run the top two scripts above

with a range of parameters.

• simulate LCA commandline 1cluster 3methods.shUsed to run the bottom two

scripts above with a range of parameters.

Analysis

R version 3.5.1 (2018-07-02)

Platform: x86 64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.5 LTS

R scripts (see Digital Appendix):
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• combined comparing parameters simulation.R: Takes the simulation data for both

varied and constant thresholds, and generates results for the correlation MGMM, the

RMSE, the BIC and the sum of scores, as well as additional analyses that were not

used. (Section 3.3.1)

• choose by BIC.R: Analysis comparing the results when using the BIC based model

compared to the results using one of th other LCA models. (Section 3.3.2)

• one class vs two class analysis.R: Compares the BIC for a one class model vs a

two class model and generates results used for assessment of the BIC. (Section 3.3.3)

• nocluster one class vs two class analysis.R: Compares the BIC for a one class

model vs a two class model when the underlying only has one cluster and generates

results used for assessment of the BIC. (Section 3.3.3)

A.2.3 Chapter 4

Average Threshold Method Simulation Generation

R version 3.4.4 (2018-03-15) on Pheonix

Platform: x86 64-pc-linux-gnu (64-bit)

Running under: Red Hat Enterprise Linux Server 7.5 (Maipo)

R Scripts (see Digital Appendix):

• LCA sim with lca record change Thresh commandline conLoad pcoef.R: Gen-

erates simulation data for motivating example used in section 4.1.

• LCA sim 3 thresholds commandline 20rep.R: Generates simulation data based on Chap-

ter 4 Methods for the average threshold method.

Commandline Scripts (see Digital Appendix):

• simulate LCA 3methods thresholds commandline.sh: Used to run the above R

script for a variety of parameters.
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Analysis

R version 3.5.1 (2018-07-02)

Platform: x86 64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.5 LTS

R Scripts (see Digital Appendix):

• one scenario different thresholds compare.R: Generates plot for motivating

example used in section 4.1.

• ave threshold results.R: Takes the simulation data of the average thresholds and

generates results using the correlation to the MGMM, the RMSE, the sum of scores

and the binding gene accuracy for comparison.

• compare thresholds ave fixed.R: Takes the results from the previous R script and

compares them to the results from combined comparing parameters simulation.R.

A.2.4 Chapter 5

R version 3.5.1 (2018-07-02)

Platform: x86 64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.5 LTS

R Scripts (see Digital Appendix):

• lca peak thresholds.Rmd: Takes the threshold data from the 5 programs (MACS2,

HOMER, THOR, MUSIC and BCP) and applies the average threshold data described

in Section 5.2. Analyses and produces the results shown in Section 5.3.

A.3 Other Software

ENCODE
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This data is originally from www.encodeproject.org. It was chosen because it

was a histone mark, was ansiogenic and has no known significant issues, according

to the website.

• The H3K36me3 data can be found at: https://www.encodeproject.org/experiments/

ENCSR373WCB/ at the bottom under Processed Data. I selected the filtered align-

ments. 1 or 2 indicates which anisogenic replicate it is.

• The Control data can be found at: https://www.encodeproject.org/experiments/

ENCSR557RDB/ at the bottom under Processed Data. I selected the filtered align-

ments. 1 or 2 indicates which anisogenic replicate it is.

• Details of how the ChIP-seq reads were mapped can be found at: https://

www.encodeproject.org/pipelines/ENCPL220NBH/

• Details of processing after mapping can be found at: https://www.encodeproject.

org/pipelines/ENCPL272XAE/

• General information on the histone analysis can be found at: https://www.

encodeproject.org/chip-seq/histone/#histone

Ensembl BioMart

To identify genes, the R package biomaRtwas used to access the Ensembl BioMart

database. To match the time of the H3K36me3 generation and mapping, an older

version of the gene database is used, http://mar2016.archive.ensembl.org/index.

html. More information about the package can be found at https://bioconductor.

org/packages/release/bioc/html/biomaRt.html.

Phoenix

www.encodeproject.org
https://www.encodeproject.org/experiments/ENCSR373WCB/
https://www.encodeproject.org/experiments/ENCSR373WCB/
https://www.encodeproject.org/experiments/ENCSR557RDB/
https://www.encodeproject.org/experiments/ENCSR557RDB/
https://www.encodeproject.org/pipelines/ENCPL220NBH/
https://www.encodeproject.org/pipelines/ENCPL220NBH/
https://www.encodeproject.org/pipelines/ENCPL272XAE/
https://www.encodeproject.org/pipelines/ENCPL272XAE/
https://www.encodeproject.org/chip-seq/histone/#histone
https://www.encodeproject.org/chip-seq/histone/#histone
http://mar2016.archive.ensembl.org/index.html
http://mar2016.archive.ensembl.org/index.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html


142 Appendix A. Software

A portion of this thesis was completed using supercomputing resources pro-

vided by the Phoenix HPC service at the University of Adelaide, in particular the

generation of data used in Chapter 4, and the analysis of H3K36me3 using the pro-

gram enRich.
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Appendix B

Chapter 3 Full Results

B.1 Comparing the Simple LCA and LCRE models Re-

sults

B.1.1 Average Correlation to MGMM and Standard Deviation of

Correlation to MGMM for three models
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B.1.2 RMSE for three models

p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 0.5 0 0.1 Varying over Programs 0.15866 0.80402 0.55664

5 0.5 0 0.3 Varying over Programs 0.20296 0.20296 0.20296

5 0.5 0 0.5 Varying over Programs 0.21613 0.21614 0.21614

5 0.5 0 0.7 Varying over Programs 0.19961 0.41280 0.22250

5 0.5 0 0.9 Varying over Programs 0.16019 0.16271 0.16348

5 1.5 0 0.1 Varying over Programs 0.06412 0.06439 0.06544

5 1.5 0 0.3 Varying over Programs 0.07959 0.07915 0.08270

5 1.5 0 0.5 Varying over Programs 0.06991 0.06994 0.07424

5 1.5 0 0.7 Varying over Programs 0.07071 0.07072 0.07113

5 1.5 0 0.9 Varying over Programs 0.05657 0.05652 0.06218

7 0.5 0 0.1 Varying over Programs 0.14260 0.14836 0.15959

7 0.5 0 0.3 Varying over Programs 0.20186 0.20259 0.20726

7 0.5 0 0.5 Varying over Programs 0.21550 0.21550 0.21550

7 0.5 0 0.7 Varying over Programs 0.19921 0.19910 0.19904

7 0.5 0 0.9 Varying over Programs 0.15303 0.16258 0.15572

7 1.5 0 0.1 Varying over Programs 0.02213 0.02213 0.02213

7 1.5 0 0.3 Varying over Programs 0.03414 0.03414 0.03414

7 1.5 0 0.5 Varying over Programs 0.03624 0.03629 0.03616

7 1.5 0 0.7 Varying over Programs 0.04209 0.04191 0.04222

7 1.5 0 0.9 Varying over Programs 0.02940 0.02940 0.02940

5 0.5 0 0.1 Constant Over Programs 0.13717 0.13494 0.17261

5 0.5 0 0.3 Constant Over Programs 0.17969 0.18076 0.25149

5 0.5 0 0.5 Constant Over Programs 0.18735 0.18734 0.18734

5 0.5 0 0.7 Constant Over Programs 0.17854 0.18240 0.19186

5 0.5 0 0.9 Constant Over Programs 0.14655 0.17774 0.15428

5 1.5 0 0.1 Constant Over Programs 0.04004 0.04059 0.04172

5 1.5 0 0.3 Constant Over Programs 0.05521 0.05521 0.05521

5 1.5 0 0.5 Constant Over Programs 0.04857 0.04857 0.04857

5 1.5 0 0.7 Constant Over Programs 0.05750 0.05677 0.05955

5 1.5 0 0.9 Constant Over Programs 0.04437 0.04499 0.04636

7 0.5 0 0.1 Constant Over Programs 0.14157 0.14149 0.14149

7 0.5 0 0.3 Constant Over Programs 0.17786 0.17786 0.17786

7 0.5 0 0.5 Constant Over Programs 0.18986 0.19068 0.20278

7 0.5 0 0.7 Constant Over Programs 0.18557 0.18613 0.18790

7 0.5 0 0.9 Constant Over Programs 0.12997 0.13671 0.15004

7 1.5 0 0.1 Constant Over Programs 0.01562 0.01562 0.01562

7 1.5 0 0.3 Constant Over Programs 0.02363 0.02357 0.02275

7 1.5 0 0.5 Constant Over Programs 0.01932 0.01954 0.02152

7 1.5 0 0.7 Constant Over Programs 0.02479 0.02485 0.02488

7 1.5 0 0.9 Constant Over Programs 0.02213 0.02213 0.02213

5 0.5 0.5 0.1 Varying over Programs 0.27892 0.27677 0.40042

5 0.5 0.5 0.3 Varying over Programs 0.24687 0.24807 0.23823

5 0.5 0.5 0.5 Varying over Programs 0.25248 0.33031 0.42622

5 0.5 0.5 0.7 Varying over Programs 0.19831 0.18945 0.20173

5 0.5 0.5 0.9 Varying over Programs 0.47151 0.46227 0.23402

5 1.5 0.5 0.1 Varying over Programs 0.08791 0.08589 0.07680

5 1.5 0.5 0.3 Varying over Programs 0.11639 0.11634 0.09950

5 1.5 0.5 0.5 Varying over Programs 0.10509 0.10803 0.10629

5 1.5 0.5 0.7 Varying over Programs 0.11819 0.24335 0.10204

5 1.5 0.5 0.9 Varying over Programs 0.08313 0.07561 0.07711

p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

7 0.5 0.5 0.1 Varying over Programs 0.44093 0.46290 0.44806

7 0.5 0.5 0.3 Varying over Programs 0.26527 0.27857 0.27865

7 0.5 0.5 0.5 Varying over Programs 0.22646 0.27723 0.27875

7 0.5 0.5 0.7 Varying over Programs 0.27831 0.19813 0.24780

7 0.5 0.5 0.9 Varying over Programs 0.30197 0.23610 0.32432

7 1.5 0.5 0.1 Varying over Programs 0.06258 0.06109 0.05552

7 1.5 0.5 0.3 Varying over Programs 0.07534 0.07565 0.06756

7 1.5 0.5 0.5 Varying over Programs 0.09047 0.08889 0.08175

7 1.5 0.5 0.7 Varying over Programs 0.08248 0.07948 0.07410

7 1.5 0.5 0.9 Varying over Programs 0.06338 0.06017 0.04604

5 0.5 0.5 0.1 Constant Over Programs 0.29774 0.25706 0.42689

5 0.5 0.5 0.3 Constant Over Programs 0.22514 0.26886 0.29773

5 0.5 0.5 0.5 Constant Over Programs 0.20991 0.33672 0.39982

5 0.5 0.5 0.7 Constant Over Programs 0.23269 0.43316 0.60708

5 0.5 0.5 0.9 Constant Over Programs 0.21399 0.21892 0.20535

5 1.5 0.5 0.1 Constant Over Programs 0.06890 0.06331 0.05223

5 1.5 0.5 0.3 Constant Over Programs 0.10162 0.09362 0.08194

5 1.5 0.5 0.5 Constant Over Programs 0.10746 0.27109 0.09176

5 1.5 0.5 0.7 Constant Over Programs 0.10391 0.09191 0.08959

5 1.5 0.5 0.9 Constant Over Programs 0.10794 0.08492 0.07392

7 0.5 0.5 0.1 Constant Over Programs 0.31627 0.33295 0.34099

7 0.5 0.5 0.3 Constant Over Programs 0.25271 0.26822 0.27630

7 0.5 0.5 0.5 Constant Over Programs 0.21968 0.26851 0.36742

7 0.5 0.5 0.7 Constant Over Programs 0.28311 0.28992 0.28917

7 0.5 0.5 0.9 Constant Over Programs 0.24957 0.20619 0.44420

7 1.5 0.5 0.1 Constant Over Programs 0.05183 0.05027 0.04692

7 1.5 0.5 0.3 Constant Over Programs 0.07094 0.06279 0.05423

7 1.5 0.5 0.5 Constant Over Programs 0.05938 0.05654 0.04900

7 1.5 0.5 0.7 Constant Over Programs 0.07507 0.07113 0.06628

7 1.5 0.5 0.9 Constant Over Programs 0.06082 0.05570 0.04498

5 0.5 1 0.1 Varying over Programs 0.30712 0.28531 0.15225

5 0.5 1 0.3 Varying over Programs 0.27879 0.25401 0.51879

5 0.5 1 0.5 Varying over Programs 0.33344 0.33957 0.34413

5 0.5 1 0.7 Varying over Programs 0.37496 0.34598 0.37256

5 0.5 1 0.9 Varying over Programs 0.28927 0.27617 0.28323

5 1.5 1 0.1 Varying over Programs 0.29916 0.29856 0.33349

5 1.5 1 0.3 Varying over Programs 0.26439 0.51402 0.72499

5 1.5 1 0.5 Varying over Programs 0.23362 0.47896 0.45023

5 1.5 1 0.7 Varying over Programs 0.24929 0.32042 0.33845

5 1.5 1 0.9 Varying over Programs 0.33176 0.22657 0.22313

7 0.5 1 0.1 Varying over Programs 0.46386 0.46424 0.43030

7 0.5 1 0.3 Varying over Programs 0.37414 0.39367 0.39126

7 0.5 1 0.5 Varying over Programs 0.25246 0.26883 0.26851

7 0.5 1 0.7 Varying over Programs 0.31742 0.35661 0.58016

7 0.5 1 0.9 Varying over Programs 0.34581 0.30672 0.22434

7 1.5 1 0.1 Varying over Programs 0.27583 0.23743 0.30793

7 1.5 1 0.3 Varying over Programs 0.20647 0.19757 0.11207

7 1.5 1 0.5 Varying over Programs 0.17825 0.42939 0.45563

7 1.5 1 0.7 Varying over Programs 0.18404 0.33789 0.28674

7 1.5 1 0.9 Varying over Programs 0.25707 0.45140 0.44671
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p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 0.5 1 0.1 Constant Over Programs 0.47196 0.45217 0.44155

5 0.5 1 0.3 Constant Over Programs 0.41298 0.41285 0.42627

5 0.5 1 0.5 Constant Over Programs 0.32131 0.28209 0.31562

5 0.5 1 0.7 Constant Over Programs 0.30074 0.30541 0.31281

5 0.5 1 0.9 Constant Over Programs 0.26632 0.24654 0.22230

5 1.5 1 0.1 Constant Over Programs 0.27938 0.45373 0.38476

5 1.5 1 0.3 Constant Over Programs 0.25324 0.35182 0.30624

5 1.5 1 0.5 Constant Over Programs 0.23960 0.30746 0.34628

5 1.5 1 0.7 Constant Over Programs 0.25045 0.30940 0.29051

5 1.5 1 0.9 Constant Over Programs 0.32787 0.53513 0.42639

7 0.5 1 0.1 Constant Over Programs 0.40342 0.38100 0.40444

7 0.5 1 0.3 Constant Over Programs 0.37580 0.41387 0.43831

7 0.5 1 0.5 Constant Over Programs 0.27056 0.30089 0.38750

7 0.5 1 0.7 Constant Over Programs 0.29614 0.31642 0.31334

7 0.5 1 0.9 Constant Over Programs 0.42050 0.40949 0.42193

7 1.5 1 0.1 Constant Over Programs 0.26611 0.59631 0.51885

7 1.5 1 0.3 Constant Over Programs 0.18868 0.43883 0.45640

7 1.5 1 0.5 Constant Over Programs 0.18585 0.35664 0.54672

7 1.5 1 0.7 Constant Over Programs 0.19370 0.45620 0.46902

7 1.5 1 0.9 Constant Over Programs 0.26666 0.23129 0.32715

5 0.5 2 0.1 Varying over Programs 0.32283 0.31432 0.24449

5 0.5 2 0.3 Varying over Programs 0.28431 0.26862 0.25426

5 0.5 2 0.5 Varying over Programs 0.38588 0.36742 0.38169

5 0.5 2 0.7 Varying over Programs 0.40857 0.40332 0.40897

5 0.5 2 0.9 Varying over Programs 0.41427 0.40420 0.38525

5 1.5 2 0.1 Varying over Programs 0.51109 0.52477 0.51610

5 1.5 2 0.3 Varying over Programs 0.48088 0.57666 0.43637

5 1.5 2 0.5 Varying over Programs 0.46338 0.59757 0.34535

5 1.5 2 0.7 Varying over Programs 0.48667 0.46377 0.22839

5 1.5 2 0.9 Varying over Programs 0.51991 0.45923 0.21052

7 0.5 2 0.1 Varying over Programs 0.54722 0.54286 0.48905

7 0.5 2 0.3 Varying over Programs 0.30966 0.31005 0.40145

7 0.5 2 0.5 Varying over Programs 0.31014 0.32173 0.30564

7 0.5 2 0.7 Varying over Programs 0.36609 0.36762 0.38695

7 0.5 2 0.9 Varying over Programs 0.32242 0.32739 0.52900

7 1.5 2 0.1 Varying over Programs 0.49832 0.54590 0.11106

7 1.5 2 0.3 Varying over Programs 0.44742 0.61963 0.14167

7 1.5 2 0.5 Varying over Programs 0.40104 0.54150 0.15882

7 1.5 2 0.7 Varying over Programs 0.44297 0.49830 0.14851

7 1.5 2 0.9 Varying over Programs 0.50848 0.59382 0.53888

5 0.5 2 0.1 Constant Over Programs 0.37168 0.36837 0.37802

5 0.5 2 0.3 Constant Over Programs 0.37903 0.36104 0.36021

5 0.5 2 0.5 Constant Over Programs 0.29918 0.28974 0.29672

5 0.5 2 0.7 Constant Over Programs 0.26321 0.25014 0.25612

5 0.5 2 0.9 Constant Over Programs 0.31322 0.30656 0.30414

5 1.5 2 0.1 Constant Over Programs 0.52657 0.60325 0.10319

5 1.5 2 0.3 Constant Over Programs 0.48301 0.53359 0.21553

5 1.5 2 0.5 Constant Over Programs 0.45675 0.47546 0.17672

5 1.5 2 0.7 Constant Over Programs 0.48907 0.49975 0.22359

5 1.5 2 0.9 Constant Over Programs 0.51493 0.55975 0.26073

p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

7 0.5 2 0.1 Constant Over Programs 0.51050 0.50110 0.48717

7 0.5 2 0.3 Constant Over Programs 0.35761 0.35084 0.36467

7 0.5 2 0.5 Constant Over Programs 0.33050 0.31756 0.28557

7 0.5 2 0.7 Constant Over Programs 0.36063 0.35105 0.31842

7 0.5 2 0.9 Constant Over Programs 0.32165 0.31242 0.45887

7 1.5 2 0.1 Constant Over Programs 0.50856 0.60670 0.10209

7 1.5 2 0.3 Constant Over Programs 0.44988 0.55626 0.12677

7 1.5 2 0.5 Constant Over Programs 0.42137 0.50964 0.14398

7 1.5 2 0.7 Constant Over Programs 0.44491 0.57220 0.14173

7 1.5 2 0.9 Constant Over Programs 0.49166 0.54668 0.10802

5 0.5 4 0.1 Varying over Programs 0.32070 0.31350 0.30140

5 0.5 4 0.3 Varying over Programs 0.29995 0.29284 0.28964

5 0.5 4 0.5 Varying over Programs 0.32414 0.32033 0.31797

5 0.5 4 0.7 Varying over Programs 0.31384 0.30584 0.31029

5 0.5 4 0.9 Varying over Programs 0.28559 0.27604 0.26627

5 1.5 4 0.1 Varying over Programs 0.61223 0.61793 0.61520

5 1.5 4 0.3 Varying over Programs 0.59773 0.63156 0.23485

5 1.5 4 0.5 Varying over Programs 0.31945 0.27178 0.52961

5 1.5 4 0.7 Varying over Programs 0.60200 0.65899 0.19197

5 1.5 4 0.9 Varying over Programs 0.61310 0.64578 0.15634

7 0.5 4 0.1 Varying over Programs 0.33091 0.32795 0.27055

7 0.5 4 0.3 Varying over Programs 0.39692 0.39534 0.41743

7 0.5 4 0.5 Varying over Programs 0.33209 0.34076 0.30777

7 0.5 4 0.7 Varying over Programs 0.37156 0.37968 0.41958

7 0.5 4 0.9 Varying over Programs 0.39894 0.40249 0.61559

7 1.5 4 0.1 Varying over Programs 0.60213 0.61302 0.14391

7 1.5 4 0.3 Varying over Programs 0.58471 0.64243 0.18113

7 1.5 4 0.5 Varying over Programs 0.56838 0.64344 0.21854

7 1.5 4 0.7 Varying over Programs 0.57283 0.65272 0.18875

7 1.5 4 0.9 Varying over Programs 0.58119 0.62112 0.15883

5 0.5 4 0.1 Constant Over Programs 0.40207 0.39644 0.39993

5 0.5 4 0.3 Constant Over Programs 0.33745 0.33231 0.33341

5 0.5 4 0.5 Constant Over Programs 0.37239 0.36441 0.37354

5 0.5 4 0.7 Constant Over Programs 0.30219 0.29656 0.29601

5 0.5 4 0.9 Constant Over Programs 0.31822 0.30915 0.31001

5 1.5 4 0.1 Constant Over Programs 0.62161 0.65373 0.16422

5 1.5 4 0.3 Constant Over Programs 0.60165 0.64478 0.35002

5 1.5 4 0.5 Constant Over Programs 0.58932 0.63628 0.20952

5 1.5 4 0.7 Constant Over Programs 0.60176 0.64819 0.19433

5 1.5 4 0.9 Constant Over Programs 0.60342 0.61262 0.60689

7 0.5 4 0.1 Constant Over Programs 0.35920 0.35541 0.33913

7 0.5 4 0.3 Constant Over Programs 0.41384 0.40400 0.61053

7 0.5 4 0.5 Constant Over Programs 0.46700 0.45940 0.57479

7 0.5 4 0.7 Constant Over Programs 0.33562 0.33779 0.44668

7 0.5 4 0.9 Constant Over Programs 0.35755 0.35330 0.33675

7 1.5 4 0.1 Constant Over Programs 0.60230 0.62916 0.15085

7 1.5 4 0.3 Constant Over Programs 0.58441 0.64214 0.17819

7 1.5 4 0.5 Constant Over Programs 0.57093 0.64010 0.20422

7 1.5 4 0.7 Constant Over Programs 0.57404 0.63987 0.17554

7 1.5 4 0.9 Constant Over Programs 0.58273 0.60943 0.15597
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B.1.3 BIC for each of the three models

p δ σz p0 Threshold Preferred Model LCA LCRE.CL LCRE.NCL

5 0.5 0 0.1 Varying over Programs LCA 18028.997 18039.847 18065.845

5 0.5 0 0.3 Varying over Programs LCA 18312.155 18326.782 18351.493

5 0.5 0 0.5 Varying over Programs LCA 18103.646 18111.817 18141.146

5 0.5 0 0.7 Varying over Programs LCA 17429.707 17444.435 17469.465

5 0.5 0 0.9 Varying over Programs LCA 16269.319 16281.586 16306.435

5 1.5 0 0.1 Varying over Programs LCA 11799.375 11806.764 11834.252

5 1.5 0 0.3 Varying over Programs LCA 12756.800 12763.921 12792.266

5 1.5 0 0.5 Varying over Programs LCA 12539.798 12631.404 12623.773

5 1.5 0 0.7 Varying over Programs LCA 11361.300 11368.093 11395.812

5 1.5 0 0.9 Varying over Programs LCA 8996.169 9003.612 9032.024

7 0.5 0 0.1 Varying over Programs LCA 24858.771 24868.895 24909.444

7 0.5 0 0.3 Varying over Programs LCA 25314.861 25322.106 25364.161

7 0.5 0 0.5 Varying over Programs LCA 25135.791 25142.982 25184.779

7 0.5 0 0.7 Varying over Programs LCA 24450.073 24457.736 24500.232

7 0.5 0 0.9 Varying over Programs LCA 23142.362 23156.603 23197.070

7 1.5 0 0.1 Varying over Programs LCA 15084.657 15092.032 15134.565

7 1.5 0 0.3 Varying over Programs LCA 16152.976 16160.598 16203.675

7 1.5 0 0.5 Varying over Programs LCA 15993.287 16000.742 16044.408

7 1.5 0 0.7 Varying over Programs LCA 14804.138 14811.817 14854.302

7 1.5 0 0.9 Varying over Programs LCA 12352.946 12360.354 12402.578

5 0.5 0 0.1 Constant Over Programs LCA 19308.561 19315.830 19346.074

5 0.5 0 0.3 Constant Over Programs LCA 20109.356 20116.820 20144.549

5 0.5 0 0.5 Constant Over Programs LCA 20354.906 20362.577 20391.872

5 0.5 0 0.7 Constant Over Programs LCA 20105.623 20112.809 20140.625

5 0.5 0 0.9 Constant Over Programs LCA 19347.006 19354.752 19383.452

5 1.5 0 0.1 Constant Over Programs LCA 9381.105 9388.800 9418.828

5 1.5 0 0.3 Constant Over Programs LCA 11097.949 11104.768 11132.674

5 1.5 0 0.5 Constant Over Programs LCA 11613.527 11653.878 11669.090

5 1.5 0 0.7 Constant Over Programs LCA 11107.442 11114.287 11142.660

5 1.5 0 0.9 Constant Over Programs LCA 9407.272 9414.900 9444.119

7 0.5 0 0.1 Constant Over Programs LCA 26973.203 26980.514 27023.346

7 0.5 0 0.3 Constant Over Programs LCA 27956.482 27964.080 28005.230

7 0.5 0 0.5 Constant Over Programs LCA 28227.258 28234.856 28279.094

7 0.5 0 0.7 Constant Over Programs LCA 27954.485 27962.394 28004.125

7 0.5 0 0.9 Constant Over Programs LCA 26986.087 26993.692 27036.458

7 1.5 0 0.1 Constant Over Programs LCA 12344.203 12351.986 12394.128

7 1.5 0 0.3 Constant Over Programs LCA 14100.635 14108.308 14151.928

7 1.5 0 0.5 Constant Over Programs LCA 14609.459 14617.097 14660.726

7 1.5 0 0.7 Constant Over Programs LCA 14111.857 14119.356 14163.667

7 1.5 0 0.9 Constant Over Programs LCA 12379.660 12386.973 12431.906

5 0.5 0.5 0.1 Varying over Programs LCA 18263.331 18266.373 18291.537

5 0.5 0.5 0.3 Varying over Programs LCRE.CL 18341.159 18336.285 18363.005

5 0.5 0.5 0.5 Varying over Programs LCRE.CL 18000.745 17995.688 18022.217

5 0.5 0.5 0.7 Varying over Programs LCRE.CL 17362.196 17352.755 17379.252

5 1.5 0.5 0.5 Varying over Programs LCRE.CL 13609.161 13577.343 13583.198

5 1.5 0.5 0.9 Varying over Programs LCRE.CL 10153.125 10107.295 10110.975

7 0.5 0.5 0.1 Varying over Programs LCRE.CL 25235.557 25227.327 25265.446

7 0.5 0.5 0.3 Varying over Programs LCRE.CL 25436.810 25409.769 25447.293

7 0.5 0.5 0.5 Varying over Programs LCRE.CL 25153.254 25110.100 25148.070

7 0.5 0.5 0.7 Varying over Programs LCRE.CL 24446.563 24404.767 24444.314

7 0.5 0.5 0.9 Varying over Programs LCRE.CL 23192.460 23173.796 23210.369

5 0.5 0.5 0.3 Constant Over Programs LCRE.CL 19807.908 19797.525 19823.642

5 0.5 0.5 0.5 Constant Over Programs LCRE.CL 19981.307 19962.484 19989.637

5 0.5 0.5 0.7 Constant Over Programs LCRE.CL 19815.444 19804.865 19830.555

7 0.5 0.5 0.1 Constant Over Programs LCRE.CL 26789.760 26772.894 26807.145

7 0.5 0.5 0.3 Constant Over Programs LCRE.CL 27540.468 27498.804 27537.264

7 0.5 0.5 0.5 Constant Over Programs LCRE.CL 27785.977 27727.500 27767.998

7 0.5 0.5 0.7 Constant Over Programs LCRE.CL 27523.225 27488.627 27527.450

7 0.5 0.5 0.9 Constant Over Programs LCRE.CL 26804.118 26791.751 26828.294

5 0.5 1 0.1 Varying over Programs LCRE.CL 17889.306 17877.344 17901.942

5 0.5 1 0.3 Varying over Programs LCRE.CL 17801.155 17771.205 17795.704

5 0.5 1 0.5 Varying over Programs LCRE.CL 17428.183 17385.941 17412.158

5 0.5 1 0.7 Varying over Programs LCRE.CL 16794.478 16760.484 16786.449

5 0.5 1 0.9 Varying over Programs LCRE.CL 15909.193 15900.768 15925.838

p δ σz p0 Threshold Preferred Model LCA LCRE.CL LCRE.NCL

5 1.5 1 0.1 Varying over Programs LCRE.CL 14336.348 14238.816 14251.605

5 1.5 1 0.5 Varying over Programs LCRE.CL 14992.656 14672.302 14685.994

5 1.5 1 0.7 Varying over Programs LCRE.CL 13903.900 13507.096 13532.453

7 0.5 1 0.1 Varying over Programs LCRE.CL 24789.650 24706.180 24718.266

7 0.5 1 0.3 Varying over Programs LCRE.CL 24802.801 24652.525 24683.379

7 0.5 1 0.5 Varying over Programs LCRE.CL 24469.037 24279.117 24307.365

7 0.5 1 0.7 Varying over Programs LCRE.CL 23719.299 23556.591 23584.337

7 0.5 1 0.9 Varying over Programs LCRE.CL 22576.612 22492.899 22515.167

7 1.5 1 0.5 Varying over Programs LCRE.CL 19431.484 18776.098 18797.582

5 0.5 1 0.1 Constant Over Programs LCRE.CL 18358.968 18349.987 18376.119

5 0.5 1 0.3 Constant Over Programs LCRE.CL 18789.501 18751.648 18776.178

5 0.5 1 0.5 Constant Over Programs LCRE.CL 18923.550 18872.116 18898.094

5 0.5 1 0.7 Constant Over Programs LCRE.CL 18774.433 18733.232 18758.812

5 0.5 1 0.9 Constant Over Programs LCRE.CL 18338.865 18327.482 18352.522

5 1.5 1 0.3 Constant Over Programs LCRE.CL 14405.646 13940.504 13966.746

5 1.5 1 0.5 Constant Over Programs LCRE.CL 14853.621 14334.476 14358.063

5 1.5 1 0.7 Constant Over Programs LCRE.CL 14362.791 13898.407 13923.829

7 0.5 1 0.1 Constant Over Programs LCRE.CL 25490.971 25406.389 25427.672

7 0.5 1 0.3 Constant Over Programs LCRE.CL 26130.066 25968.613 26000.534

7 0.5 1 0.5 Constant Over Programs LCRE.CL 26302.405 26108.018 26140.849

7 0.5 1 0.7 Constant Over Programs LCRE.CL 26073.394 25917.515 25947.465

7 0.5 1 0.9 Constant Over Programs LCRE.CL 25500.735 25426.647 25447.668

7 1.5 1 0.1 Constant Over Programs LCRE.CL 17019.665 16477.672 16493.932

7 1.5 1 0.3 Constant Over Programs LCRE.CL 18724.055 17988.416 18025.807

7 1.5 1 0.5 Constant Over Programs LCRE.CL 19193.223 18381.449 18415.483

7 1.5 1 0.7 Constant Over Programs LCRE.CL 18714.391 17991.819 18027.227

5 0.5 2 0.1 Varying over Programs LCRE.CL 16397.185 16350.929 16359.656

5 0.5 2 0.3 Varying over Programs LCRE.CL 16305.249 16238.287 16252.960

5 0.5 2 0.5 Varying over Programs LCRE.CL 15949.876 15877.113 15895.006

5 0.5 2 0.7 Varying over Programs LCRE.CL 15394.839 15329.059 15346.520

5 0.5 2 0.9 Varying over Programs LCRE.CL 14622.662 14590.475 14608.797

5 1.5 2 0.1 Varying over Programs LCRE.CL 14508.988 14324.312 14340.351

5 1.5 2 0.9 Varying over Programs LCRE.CL 11976.806 11549.128 11557.013

5 0.5 2 0.1 Constant Over Programs LCRE.CL 16408.024 16368.981 16384.952

5 0.5 2 0.3 Constant Over Programs LCRE.CL 16781.182 16707.341 16726.524

5 0.5 2 0.5 Constant Over Programs LCRE.CL 16870.746 16786.399 16805.973

5 0.5 2 0.7 Constant Over Programs LCRE.CL 16787.199 16712.136 16731.435

5 0.5 2 0.9 Constant Over Programs LCRE.CL 16372.227 16332.311 16347.626

5 1.5 2 0.1 Constant Over Programs LCRE.CL 13131.786 12784.512 12788.771

5 0.5 4 0.5 Varying over Programs LCRE.CL 14126.635 13994.092 13997.893

5 0.5 4 0.9 Varying over Programs LCRE.CL 13180.434 13101.198 13104.337

5 1.5 4 0.1 Varying over Programs LCRE.CL 13126.204 12884.898 12890.985

5 0.5 4 0.3 Constant Over Programs LCRE.CL 14339.194 14224.716 14233.361

5 0.5 4 0.5 Constant Over Programs LCRE.CL 14432.245 14304.792 14311.600

5 0.5 4 0.7 Constant Over Programs LCRE.CL 14343.102 14222.673 14226.672

5 1.5 0.5 0.1 Varying over Programs LCRE.NCL 12914.087 12883.976 12879.314

5 1.5 0.5 0.7 Varying over Programs LCRE.NCL 12419.404 12419.100 12411.547

7 1.5 0.5 0.1 Varying over Programs LCRE.NCL 16697.048 16624.914 16616.616

7 1.5 0.5 0.5 Varying over Programs LCRE.NCL 17388.987 17311.247 17299.035

7 1.5 0.5 0.7 Varying over Programs LCRE.NCL 16221.843 16142.770 16136.511

7 1.5 0.5 0.9 Varying over Programs LCRE.NCL 13820.515 13732.596 13711.631

5 1.5 0.5 0.1 Constant Over Programs LCRE.NCL 10885.652 10846.994 10841.132

5 1.5 0.5 0.5 Constant Over Programs LCRE.NCL 12975.416 12958.678 12940.775

5 1.5 0.5 0.7 Constant Over Programs LCRE.NCL 12495.348 12458.579 12454.383

5 1.5 0.5 0.9 Constant Over Programs LCRE.NCL 10905.337 10869.115 10862.538

7 1.5 0.5 0.1 Constant Over Programs LCRE.NCL 14371.189 14285.819 14263.463

7 1.5 0.5 0.3 Constant Over Programs LCRE.NCL 16034.394 15953.918 15949.520

7 1.5 0.5 0.5 Constant Over Programs LCRE.NCL 16549.146 16501.413 16461.554

7 1.5 0.5 0.7 Constant Over Programs LCRE.NCL 16057.002 15982.041 15976.869

7 1.5 0.5 0.9 Constant Over Programs LCRE.NCL 14398.725 14309.187 14294.772

5 1.5 1 0.3 Varying over Programs LCRE.NCL 15259.410 15051.039 15031.780

5 1.5 1 0.9 Varying over Programs LCRE.NCL 11637.090 11345.796 11309.278

7 1.5 1 0.1 Varying over Programs LCRE.NCL 18836.827 18517.002 18482.108

7 1.5 1 0.3 Varying over Programs LCRE.NCL 19782.002 19249.383 19009.049
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p δ σz p0 Threshold Preferred Model LCA LCRE.CL LCRE.NCL

7 1.5 1 0.7 Varying over Programs LCRE.NCL 18210.930 17452.210 17415.918

7 1.5 1 0.9 Varying over Programs LCRE.NCL 15815.135 15143.548 15085.458

5 1.5 2 0.5 Varying over Programs LCRE.NCL 15496.917 14744.816 14741.720

5 1.5 2 0.7 Varying over Programs LCRE.NCL 14399.594 13636.741 13632.598

7 0.5 2 0.1 Varying over Programs LCRE.NCL 22539.047 22262.705 22205.271

7 0.5 2 0.3 Varying over Programs LCRE.NCL 22626.680 22266.527 22235.866

7 0.5 2 0.5 Varying over Programs LCRE.NCL 22424.151 22033.319 22006.809

7 0.5 2 0.7 Varying over Programs LCRE.NCL 21858.937 21492.227 21465.573

7 0.5 2 0.9 Varying over Programs LCRE.NCL 21052.447 20789.469 20739.909

7 1.5 2 0.1 Varying over Programs LCRE.NCL 19111.509 18398.887 18312.204

7 1.5 2 0.3 Varying over Programs LCRE.NCL 20775.660 19193.260 19076.625

7 1.5 2 0.5 Varying over Programs LCRE.NCL 20920.210 18845.522 18791.165

7 1.5 2 0.7 Varying over Programs LCRE.NCL 19626.990 17652.850 17627.725

7 1.5 2 0.9 Varying over Programs LCRE.NCL 16539.497 15525.618 15487.963

5 1.5 2 0.3 Constant Over Programs LCRE.NCL 15050.243 14162.927 14153.969

5 1.5 2 0.5 Constant Over Programs LCRE.NCL 15675.137 14583.906 14577.432

5 1.5 2 0.7 Constant Over Programs LCRE.NCL 15040.331 14131.433 14125.280

7 0.5 2 0.1 Constant Over Programs LCRE.NCL 22573.221 22338.076 22307.831

7 0.5 2 0.3 Constant Over Programs LCRE.NCL 23045.071 22721.200 22708.759

7 0.5 2 0.5 Constant Over Programs LCRE.NCL 23217.528 22840.176 22834.088

7 0.5 2 0.7 Constant Over Programs LCRE.NCL 23003.078 22684.801 22675.941

7 0.5 2 0.9 Constant Over Programs LCRE.NCL 22568.403 22335.185 22300.698

7 1.5 2 0.1 Constant Over Programs LCRE.NCL 17785.805 16915.643 16824.055

7 1.5 2 0.3 Constant Over Programs LCRE.NCL 20284.965 18387.279 18331.594

7 1.5 2 0.5 Constant Over Programs LCRE.NCL 20965.011 18759.359 18718.277

7 1.5 2 0.7 Constant Over Programs LCRE.NCL 20174.512 18312.994 18255.239

7 1.5 2 0.9 Constant Over Programs LCRE.NCL 17695.294 16875.884 16799.202

5 0.5 4 0.1 Varying over Programs LCRE.NCL 14310.403 14207.085 14199.749

5 1.5 4 0.3 Varying over Programs LCRE.NCL 14253.944 13708.091 13676.432

5 1.5 4 0.5 Varying over Programs LCRE.NCL 14331.064 13599.719 13563.604

5 1.5 4 0.7 Varying over Programs LCRE.NCL 13457.305 12773.513 12767.570

5 1.5 4 0.9 Varying over Programs LCRE.NCL 11299.440 10974.081 10968.751

7 0.5 4 0.1 Varying over Programs LCRE.NCL 18869.035 18370.226 18267.580

7 0.5 4 0.3 Varying over Programs LCRE.NCL 19134.707 18567.644 18483.958

7 0.5 4 0.5 Varying over Programs LCRE.NCL 19152.358 18559.678 18470.070

7 0.5 4 0.7 Varying over Programs LCRE.NCL 18976.873 18387.901 18294.564

p δ σz p0 Threshold Preferred Model LCA LCRE.CL LCRE.NCL

7 0.5 4 0.9 Varying over Programs LCRE.NCL 18560.967 18054.131 17937.331

7 1.5 4 0.1 Varying over Programs LCRE.NCL 17109.763 16207.579 16134.156

7 1.5 4 0.3 Varying over Programs LCRE.NCL 18970.088 17314.155 17221.254

7 1.5 4 0.5 Varying over Programs LCRE.NCL 19448.807 17427.187 17356.764

7 1.5 4 0.7 Varying over Programs LCRE.NCL 18522.334 16721.059 16653.638

7 1.5 4 0.9 Varying over Programs LCRE.NCL 16205.147 15178.769 15106.958

5 0.5 4 0.9 Constant Over Programs LCRE.NCL 14045.296 13951.959 13946.694

5 1.5 4 0.1 Constant Over Programs LCRE.NCL 12244.441 11952.154 11934.550

5 1.5 4 0.3 Constant Over Programs LCRE.NCL 14003.017 13268.418 13246.882

5 1.5 4 0.5 Constant Over Programs LCRE.NCL 14498.674 13579.095 13559.495

5 1.5 4 0.7 Constant Over Programs LCRE.NCL 13993.960 13221.179 13199.711

5 1.5 4 0.9 Constant Over Programs LCRE.NCL 12189.568 11894.748 11884.752

7 0.5 4 0.1 Constant Over Programs LCRE.NCL 18669.067 18242.436 18168.137

7 0.5 4 0.3 Constant Over Programs LCRE.NCL 19079.519 18581.831 18528.626

7 0.5 4 0.5 Constant Over Programs LCRE.NCL 19159.237 18641.341 18593.640

7 0.5 4 0.7 Constant Over Programs LCRE.NCL 19057.709 18564.379 18515.992

7 0.5 4 0.9 Constant Over Programs LCRE.NCL 18702.217 18294.128 18223.127

7 1.5 4 0.1 Constant Over Programs LCRE.NCL 16517.742 15613.752 15540.397

7 1.5 4 0.3 Constant Over Programs LCRE.NCL 18677.154 16944.853 16886.883

7 1.5 4 0.5 Constant Over Programs LCRE.NCL 19406.954 17368.654 17315.810

7 1.5 4 0.7 Constant Over Programs LCRE.NCL 18638.880 16888.906 16819.342

7 1.5 4 0.9 Constant Over Programs LCRE.NCL 16508.297 15601.387 15570.667

5 0.5 0.5 0.9 Varying over Programs LCA 16356.983 16357.353 16381.739

5 1.5 0.5 0.3 Varying over Programs LCRE.CL 13861.994 13831.720 13833.652

7 1.5 0.5 0.3 Varying over Programs LCRE.CL 17638.889 17566.864 17563.979

5 0.5 0.5 0.1 Constant Over Programs LCA 19218.581 19220.299 19247.320

5 0.5 0.5 0.9 Constant Over Programs LCA 19234.291 19233.230 19259.768

5 1.5 0.5 0.3 Constant Over Programs LCRE.CL 12568.638 12535.368 12534.084

5 1.5 1 0.1 Constant Over Programs LCRE.CL 12734.590 12492.102 12490.875

5 1.5 1 0.9 Constant Over Programs LCRE.CL 12777.799 12519.563 12519.091

7 1.5 1 0.9 Constant Over Programs LCRE.CL 16969.527 16465.210 16465.467

5 1.5 2 0.3 Varying over Programs LCRE.CL 15542.633 15027.556 15027.169

5 1.5 2 0.9 Constant Over Programs LCRE.CL 13111.870 12773.070 12772.430

5 0.5 4 0.3 Varying over Programs LCRE.CL 14274.565 14158.264 14159.499

5 0.5 4 0.7 Varying over Programs LCRE.CL 13734.602 13625.051 13626.569

5 0.5 4 0.1 Constant Over Programs LCRE.CL 14061.092 13973.061 13974.866

B.1.4 Sum of Scores with matching replicate results

p δ σz p0 Threshold LCA LCRE (CL) LCRE (No CL) Sum of Scores

5 0.5 0 0.1 Varying over Programs 0.75108 0.24617 0.01034 0.68779

5 0.5 0 0.3 Varying over Programs 0.83091 0.83091 0.83091 0.78973

5 0.5 0 0.5 Varying over Programs 0.84685 0.84685 0.84685 0.82845

5 0.5 0 0.7 Varying over Programs 0.84163 0.46025 0.79841 0.80806

5 0.5 0 0.9 Varying over Programs 0.76597 0.76156 0.75463 0.70606

5 1.5 0 0.1 Varying over Programs 0.97687 0.97670 0.97591 0.85253

5 1.5 0 0.3 Varying over Programs 0.98481 0.98497 0.98356 0.93569

5 1.5 0 0.5 Varying over Programs 0.99017 0.99016 0.98891 0.95152

5 1.5 0 0.7 Varying over Programs 0.98801 0.98800 0.98787 0.94754

5 1.5 0 0.9 Varying over Programs 0.98202 0.98206 0.97832 0.89758

7 0.5 0 0.1 Varying over Programs 0.80379 0.79618 0.74993 0.64622

7 0.5 0 0.3 Varying over Programs 0.85588 0.85539 0.85034 0.80090

7 0.5 0 0.5 Varying over Programs 0.85959 0.85959 0.85959 0.83092

7 0.5 0 0.7 Varying over Programs 0.85962 0.85966 0.85800 0.81231

7 0.5 0 0.9 Varying over Programs 0.78081 0.76413 0.76707 0.66437

7 1.5 0 0.1 Varying over Programs 0.99728 0.99728 0.99728 0.90381

7 1.5 0 0.3 Varying over Programs 0.99722 0.99722 0.99722 0.95650

7 1.5 0 0.5 Varying over Programs 0.99737 0.99736 0.99738 0.96444

7 1.5 0 0.7 Varying over Programs 0.99577 0.99581 0.99575 0.95988

7 1.5 0 0.9 Varying over Programs 0.99519 0.99519 0.99519 0.92367

5 0.5 0 0.1 Constant Over Programs 0.83063 0.83069 0.77977 0.75191

5 0.5 0 0.3 Constant Over Programs 0.87124 0.87053 0.76590 0.83585

5 0.5 0 0.5 Constant Over Programs 0.88526 0.88526 0.88526 0.86232

5 0.5 0 0.7 Constant Over Programs 0.87035 0.86803 0.84986 0.82891

p δ σz p0 Threshold LCA LCRE (CL) LCRE (No CL) Sum of Scores

5 0.5 0 0.9 Constant Over Programs 0.80184 0.73322 0.78246 0.72466

5 1.5 0 0.1 Constant Over Programs 0.99105 0.99081 0.99027 0.91465

5 1.5 0 0.3 Constant Over Programs 0.99270 0.99270 0.99270 0.96256

5 1.5 0 0.5 Constant Over Programs 0.99527 0.99527 0.99527 0.96876

5 1.5 0 0.7 Constant Over Programs 0.99213 0.99231 0.99155 0.96154

5 1.5 0 0.9 Constant Over Programs 0.98898 0.98869 0.98796 0.91533

7 0.5 0 0.1 Constant Over Programs 0.83055 0.83062 0.83062 0.68402

7 0.5 0 0.3 Constant Over Programs 0.88925 0.88925 0.88925 0.83616

7 0.5 0 0.5 Constant Over Programs 0.89320 0.89278 0.87778 0.86237

7 0.5 0 0.7 Constant Over Programs 0.88014 0.87982 0.87809 0.83795

7 0.5 0 0.9 Constant Over Programs 0.83810 0.83011 0.80212 0.69601

7 1.5 0 0.1 Constant Over Programs 0.99864 0.99864 0.99864 0.94307

7 1.5 0 0.3 Constant Over Programs 0.99867 0.99868 0.99877 0.97231

7 1.5 0 0.5 Constant Over Programs 0.99925 0.99924 0.99907 0.97653

7 1.5 0 0.7 Constant Over Programs 0.99854 0.99853 0.99853 0.97117

7 1.5 0 0.9 Constant Over Programs 0.99728 0.99728 0.99728 0.94025

5 0.5 0.5 0.1 Varying over Programs 0.57951 0.50165 0.08076 0.69766

5 0.5 0.5 0.3 Varying over Programs 0.76713 0.75644 0.77517 0.75753

5 0.5 0.5 0.5 Varying over Programs 0.76040 0.57728 0.34301 0.82014

5 0.5 0.5 0.7 Varying over Programs 0.84181 0.83622 0.82370 0.84945

5 0.5 0.5 0.9 Varying over Programs 0.58581 0.61705 0.52517 0.47817

5 1.5 0.5 0.1 Varying over Programs 0.95558 0.95775 0.96672 0.82527

5 1.5 0.5 0.3 Varying over Programs 0.96679 0.96665 0.97576 0.91902

5 1.5 0.5 0.5 Varying over Programs 0.97736 0.97624 0.97681 0.93736
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p δ σz p0 Threshold LCA LCRE (CL) LCRE (No CL) Sum of Scores

5 1.5 0.5 0.7 Varying over Programs 0.96602 0.85910 0.97456 0.92430

5 1.5 0.5 0.9 Varying over Programs 0.96128 0.96722 0.96603 0.86128

7 0.5 0.5 0.1 Varying over Programs 0.51043 0.49771 0.49888 0.48231

7 0.5 0.5 0.3 Varying over Programs 0.76772 0.65157 0.67129 0.80363

7 0.5 0.5 0.5 Varying over Programs 0.83040 0.67549 0.68838 0.85499

7 0.5 0.5 0.7 Varying over Programs 0.72915 0.82818 0.75695 0.65478

7 0.5 0.5 0.9 Varying over Programs 0.62690 0.69646 0.53689 0.53347

7 1.5 0.5 0.1 Varying over Programs 0.97822 0.97903 0.98271 0.86154

7 1.5 0.5 0.3 Varying over Programs 0.98632 0.98623 0.98902 0.93617

7 1.5 0.5 0.5 Varying over Programs 0.98345 0.98401 0.98648 0.94788

7 1.5 0.5 0.7 Varying over Programs 0.98360 0.98473 0.98674 0.94132

7 1.5 0.5 0.9 Varying over Programs 0.97708 0.97929 0.98787 0.88509

5 0.5 0.5 0.1 Constant Over Programs 0.70550 0.70278 0.05657 0.63888

5 0.5 0.5 0.3 Constant Over Programs 0.83960 0.78664 0.73375 0.83227

5 0.5 0.5 0.5 Constant Over Programs 0.83629 0.55999 0.40784 0.87806

5 0.5 0.5 0.7 Constant Over Programs 0.79509 0.54585 0.22158 0.86056

5 0.5 0.5 0.9 Constant Over Programs 0.81456 0.78044 0.78469 0.85154

5 1.5 0.5 0.1 Constant Over Programs 0.97324 0.97737 0.98452 0.88063

5 1.5 0.5 0.3 Constant Over Programs 0.97500 0.97852 0.98359 0.94405

5 1.5 0.5 0.5 Constant Over Programs 0.97644 0.85194 0.98280 0.95180

5 1.5 0.5 0.7 Constant Over Programs 0.97400 0.97944 0.98051 0.94091

5 1.5 0.5 0.9 Constant Over Programs 0.93741 0.95879 0.96877 0.86903

7 0.5 0.5 0.1 Constant Over Programs 0.62759 0.49543 0.51338 0.75177

7 0.5 0.5 0.3 Constant Over Programs 0.78744 0.64975 0.68623 0.82606

7 0.5 0.5 0.5 Constant Over Programs 0.84349 0.69127 0.32055 0.86602

7 0.5 0.5 0.7 Constant Over Programs 0.76442 0.59148 0.62306 0.82787

7 0.5 0.5 0.9 Constant Over Programs 0.76883 0.79802 0.22631 0.71235

7 1.5 0.5 0.1 Constant Over Programs 0.98507 0.98586 0.98768 0.90284

7 1.5 0.5 0.3 Constant Over Programs 0.98794 0.99054 0.99294 0.95264

7 1.5 0.5 0.5 Constant Over Programs 0.99290 0.99356 0.99517 0.96341

7 1.5 0.5 0.7 Constant Over Programs 0.98644 0.98779 0.98941 0.95265

7 1.5 0.5 0.9 Constant Over Programs 0.97894 0.98217 0.98841 0.90209

5 0.5 1 0.1 Varying over Programs 0.76864 0.78187 0.76058 0.71224

5 0.5 1 0.3 Varying over Programs 0.81208 0.82165 0.07285 0.78908

5 0.5 1 0.5 Varying over Programs 0.65866 0.59568 0.61503 0.82296

5 0.5 1 0.7 Varying over Programs 0.78700 0.78206 0.76206 0.84449

5 0.5 1 0.9 Varying over Programs 0.79736 0.78570 0.78516 0.87443

5 1.5 1 0.1 Varying over Programs 0.64306 0.59286 0.55900 0.71036

5 1.5 1 0.3 Varying over Programs 0.82921 0.04676 0.30965 0.85298

5 1.5 1 0.5 Varying over Programs 0.88234 0.59715 0.68288 0.88315

5 1.5 1 0.7 Varying over Programs 0.85255 0.72293 0.67808 0.86045

5 1.5 1 0.9 Varying over Programs 0.61975 0.68903 0.71657 0.74151

7 0.5 1 0.1 Varying over Programs 0.69947 0.67329 0.64777 0.75063

7 0.5 1 0.3 Varying over Programs 0.57944 0.44727 0.40872 0.74885

7 0.5 1 0.5 Varying over Programs 0.82384 0.73880 0.72535 0.87240

7 0.5 1 0.7 Varying over Programs 0.73353 0.61230 0.25995 0.86838

7 0.5 1 0.9 Varying over Programs 0.71599 0.73908 0.57486 0.69019

7 1.5 1 0.1 Varying over Programs 0.71194 0.65079 0.56092 0.75045

7 1.5 1 0.3 Varying over Programs 0.90066 0.91357 0.96883 0.87740

7 1.5 1 0.5 Varying over Programs 0.93428 0.56549 0.47154 0.90295

7 1.5 1 0.7 Varying over Programs 0.91621 0.76991 0.83425 0.88903

7 1.5 1 0.9 Varying over Programs 0.73261 0.48640 0.56041 0.80049

5 0.5 1 0.1 Constant Over Programs 0.70163 0.71235 0.71534 0.67395

5 0.5 1 0.3 Constant Over Programs 0.51115 0.44415 0.40792 0.73590

5 0.5 1 0.5 Constant Over Programs 0.82617 0.83392 0.82926 0.80895

5 0.5 1 0.7 Constant Over Programs 0.72858 0.67602 0.68889 0.86607

5 0.5 1 0.9 Constant Over Programs 0.83147 0.85367 0.86790 0.71870

5 1.5 1 0.1 Constant Over Programs 0.68430 0.54774 0.64521 0.76603

5 1.5 1 0.3 Constant Over Programs 0.84558 0.67160 0.76942 0.87635

5 1.5 1 0.5 Constant Over Programs 0.87729 0.78289 0.71573 0.89283

5 1.5 1 0.7 Constant Over Programs 0.84914 0.77883 0.80983 0.86967

5 1.5 1 0.9 Constant Over Programs 0.62584 0.39137 0.61845 0.73980

7 0.5 1 0.1 Constant Over Programs 0.70243 0.69274 0.16541 0.73884

7 0.5 1 0.3 Constant Over Programs 0.59428 0.41288 0.18218 0.77390

7 0.5 1 0.5 Constant Over Programs 0.80072 0.68086 0.20827 0.89803

7 0.5 1 0.7 Constant Over Programs 0.75319 0.65317 0.64115 0.88499

7 0.5 1 0.9 Constant Over Programs 0.73016 0.73346 0.71569 0.74838

7 1.5 1 0.1 Constant Over Programs 0.72268 0.33935 0.50074 0.79271

7 1.5 1 0.3 Constant Over Programs 0.91421 0.63359 0.56787 0.89780

7 1.5 1 0.5 Constant Over Programs 0.92852 0.69592 0.07623 0.91361

7 1.5 1 0.7 Constant Over Programs 0.90891 0.60314 0.54556 0.89644

7 1.5 1 0.9 Constant Over Programs 0.71822 0.64209 0.56555 0.79734

5 0.5 2 0.1 Varying over Programs 0.77538 0.77760 0.75010 0.84219

5 0.5 2 0.3 Varying over Programs 0.85309 0.86861 0.87854 0.82060

5 0.5 2 0.5 Varying over Programs 0.77923 0.79772 0.78712 0.76082

5 0.5 2 0.7 Varying over Programs 0.69306 0.68911 0.68546 0.80963

p δ σz p0 Threshold Preferred Model LCA LCRE.CL LCRE.NCL

5 0.5 2 0.9 Varying over Programs 0.75912 0.76506 0.78399 0.80221

5 1.5 2 0.1 Varying over Programs 0.29573 0.20218 0.25991 0.50705

5 1.5 2 0.3 Varying over Programs 0.46888 0.12972 0.64336 0.68881

5 1.5 2 0.5 Varying over Programs 0.52770 0.02298 0.76116 0.74061

5 1.5 2 0.7 Varying over Programs 0.47832 0.37817 0.86495 0.70583

5 1.5 2 0.9 Varying over Programs 0.29785 0.27053 0.80208 0.54437

7 0.5 2 0.1 Varying over Programs 0.64830 0.64920 0.64229 0.71896

7 0.5 2 0.3 Varying over Programs 0.78394 0.75672 0.08610 0.86584

7 0.5 2 0.5 Varying over Programs 0.77192 0.72185 0.65380 0.89062

7 0.5 2 0.7 Varying over Programs 0.65713 0.60546 0.22621 0.80427

7 0.5 2 0.9 Varying over Programs 0.79764 0.76259 0.54810 0.91282

7 1.5 2 0.1 Varying over Programs 0.37588 0.12440 0.92583 0.54760

7 1.5 2 0.3 Varying over Programs 0.57954 0.00933 0.94854 0.72950

7 1.5 2 0.5 Varying over Programs 0.65640 0.18928 0.94570 0.77182

7 1.5 2 0.7 Varying over Programs 0.55920 0.29265 0.94277 0.75296

7 1.5 2 0.9 Varying over Programs 0.36959 0.07529 0.20828 0.62258

5 0.5 2 0.1 Constant Over Programs 0.65959 0.64219 0.63574 0.83516

5 0.5 2 0.3 Constant Over Programs 0.80173 0.81653 0.81939 0.79669

5 0.5 2 0.5 Constant Over Programs 0.83571 0.83342 0.82836 0.88463

5 0.5 2 0.7 Constant Over Programs 0.87132 0.87781 0.87732 0.87039

5 0.5 2 0.9 Constant Over Programs 0.81684 0.81325 0.81704 0.89559

5 1.5 2 0.1 Constant Over Programs 0.30094 0.01373 0.93167 0.55167

5 1.5 2 0.3 Constant Over Programs 0.48232 0.15488 0.88384 0.72322

5 1.5 2 0.5 Constant Over Programs 0.53907 0.34859 0.92972 0.75812

5 1.5 2 0.7 Constant Over Programs 0.47264 0.30831 0.87292 0.71017

5 1.5 2 0.9 Constant Over Programs 0.30207 0.06068 0.73034 0.53807

7 0.5 2 0.1 Constant Over Programs 0.69153 0.69235 0.69793 0.76378

7 0.5 2 0.3 Constant Over Programs 0.76454 0.72796 0.18074 0.88850

7 0.5 2 0.5 Constant Over Programs 0.76981 0.76561 0.69163 0.82936

7 0.5 2 0.7 Constant Over Programs 0.77853 0.75686 0.75058 0.89361

7 0.5 2 0.9 Constant Over Programs 0.76923 0.75387 0.35251 0.86285

7 1.5 2 0.1 Constant Over Programs 0.35546 0.07063 0.93678 0.57577

7 1.5 2 0.3 Constant Over Programs 0.55488 0.11760 0.95905 0.74692

7 1.5 2 0.5 Constant Over Programs 0.62247 0.27150 0.95563 0.78123

7 1.5 2 0.7 Constant Over Programs 0.56192 0.08002 0.94795 0.74254

7 1.5 2 0.9 Constant Over Programs 0.38850 0.15479 0.92418 0.59642

5 0.5 4 0.1 Varying over Programs 0.81539 0.81961 0.81575 0.88613

5 0.5 4 0.3 Varying over Programs 0.84515 0.85030 0.85465 0.87558

5 0.5 4 0.5 Varying over Programs 0.80409 0.80029 0.80239 0.90583

5 0.5 4 0.7 Varying over Programs 0.84839 0.85396 0.85169 0.89567

5 0.5 4 0.9 Varying over Programs 0.86819 0.87732 0.88285 0.87676

5 1.5 4 0.1 Varying over Programs 0.14542 0.08555 0.12600 0.35799

5 1.5 4 0.3 Varying over Programs 0.23407 0.10833 0.84335 0.51205

5 1.5 4 0.5 Varying over Programs 0.82789 0.84196 0.12036 0.78736

5 1.5 4 0.7 Varying over Programs 0.20800 0.01756 0.90227 0.51852

5 1.5 4 0.9 Varying over Programs 0.12094 0.00222 0.82211 0.36587

7 0.5 4 0.1 Varying over Programs 0.79661 0.78494 0.77146 0.89500

7 0.5 4 0.3 Varying over Programs 0.71612 0.68761 0.32437 0.84585

7 0.5 4 0.5 Varying over Programs 0.77966 0.75007 0.67367 0.89960

7 0.5 4 0.7 Varying over Programs 0.74357 0.71802 0.63093 0.88264

7 0.5 4 0.9 Varying over Programs 0.77497 0.76500 0.02330 0.88551

7 1.5 4 0.1 Varying over Programs 0.16286 0.06902 0.87050 0.35520

7 1.5 4 0.3 Varying over Programs 0.27864 0.06560 0.91471 0.52484

7 1.5 4 0.5 Varying over Programs 0.32460 0.04681 0.89829 0.57499

7 1.5 4 0.7 Varying over Programs 0.28829 0.03377 0.90425 0.55008

7 1.5 4 0.9 Varying over Programs 0.20151 0.07876 0.82496 0.41455

5 0.5 4 0.1 Constant Over Programs 0.77920 0.78445 0.77881 0.81802

5 0.5 4 0.3 Constant Over Programs 0.84123 0.84524 0.84254 0.86821

5 0.5 4 0.5 Constant Over Programs 0.80898 0.81558 0.80653 0.84140

5 0.5 4 0.7 Constant Over Programs 0.84711 0.84905 0.85249 0.88725

5 0.5 4 0.9 Constant Over Programs 0.84455 0.85497 0.85227 0.82588

5 1.5 4 0.1 Constant Over Programs 0.13923 0.02656 0.82573 0.37837

5 1.5 4 0.3 Constant Over Programs 0.23125 0.07369 0.60140 0.53472

5 1.5 4 0.5 Constant Over Programs 0.25252 0.04791 0.90433 0.57401

5 1.5 4 0.7 Constant Over Programs 0.19917 0.01384 0.90168 0.51431

5 1.5 4 0.9 Constant Over Programs 0.13001 0.05399 0.10030 0.35361

7 0.5 4 0.1 Constant Over Programs 0.80527 0.80257 0.80571 0.86573

7 0.5 4 0.3 Constant Over Programs 0.76715 0.77638 0.33022 0.81875

7 0.5 4 0.5 Constant Over Programs 0.63508 0.61506 0.23675 0.76580

7 0.5 4 0.7 Constant Over Programs 0.75464 0.73283 0.22206 0.88218

7 0.5 4 0.9 Constant Over Programs 0.79572 0.78968 0.75291 0.90318

7 1.5 4 0.1 Constant Over Programs 0.17065 0.06002 0.85391 0.37184

7 1.5 4 0.3 Constant Over Programs 0.28308 0.08058 0.91703 0.53637

7 1.5 4 0.5 Constant Over Programs 0.31882 0.04851 0.90771 0.57532

7 1.5 4 0.7 Constant Over Programs 0.28433 0.06957 0.91779 0.53955

7 1.5 4 0.9 Constant Over Programs 0.20293 0.09142 0.83473 0.39188
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B.2 Investigating preference of One Class vs Two Class

models using the BIC

B.2.1 Frequencies of one class preference for data with two clusters

p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 0.5 0.0 0.1 varied 9 15 15

5 0.5 0.0 0.3 varied 1 14 14

5 0.5 0.0 0.5 varied 0 15 15

5 0.5 0.0 0.7 varied 0 14 14

5 0.5 0.0 0.9 varied 6 11 11

5 0.5 2.0 0.1 varied 0 0 12

5 0.5 2.0 0.3 varied 0 0 14

5 0.5 2.0 0.5 varied 0 0 10

5 0.5 2.0 0.7 varied 0 0 10

5 0.5 2.0 0.9 varied 0 0 11

5 0.5 4.0 0.1 varied 0 0 13

5 0.5 4.0 0.3 varied 0 0 9

5 0.5 4.0 0.5 varied 0 0 13

5 0.5 4.0 0.7 varied 0 0 7

5 0.5 4.0 0.9 varied 0 0 13

5 1.5 0.0 0.1 varied 0 0 1

5 1.5 0.0 0.3 varied 0 0 0

5 1.5 0.0 0.5 varied 0 1 2

5 1.5 0.0 0.7 varied 0 0 0

5 1.5 0.0 0.9 varied 0 0 2

5 1.5 2.0 0.1 varied 0 0 6

5 1.5 2.0 0.3 varied 0 0 1

5 1.5 2.0 0.5 varied 0 0 0

5 1.5 2.0 0.7 varied 0 0 0

5 1.5 2.0 0.9 varied 0 0 0

5 1.5 4.0 0.1 varied 0 0 5

5 1.5 4.0 0.3 varied 0 0 0

5 1.5 4.0 0.5 varied 0 0 0

5 1.5 4.0 0.7 varied 0 0 0

5 1.5 4.0 0.9 varied 0 0 1

7 0.5 0.0 0.1 varied 3 6 6

7 0.5 0.0 0.3 varied 0 9 10

7 0.5 0.0 0.5 varied 0 10 12

p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

7 0.5 0.0 0.7 varied 0 11 12

7 0.5 0.0 0.9 varied 2 10 11

7 0.5 2.0 0.1 varied 0 0 12

7 0.5 2.0 0.3 varied 0 0 11

7 0.5 2.0 0.5 varied 0 0 14

7 0.5 2.0 0.7 varied 0 0 13

7 0.5 2.0 0.9 varied 0 0 14

7 0.5 4.0 0.1 varied 0 0 10

7 0.5 4.0 0.3 varied 0 0 11

7 0.5 4.0 0.5 varied 0 0 15

7 0.5 4.0 0.7 varied 0 0 10

7 0.5 4.0 0.9 varied 0 0 14

7 1.5 0.0 0.1 varied 0 0 0

7 1.5 0.0 0.3 varied 0 0 0

7 1.5 0.0 0.5 varied 0 0 0

7 1.5 0.0 0.7 varied 0 0 0

7 1.5 0.0 0.9 varied 0 0 0

7 1.5 2.0 0.1 varied 0 0 2

7 1.5 2.0 0.3 varied 0 0 0

7 1.5 2.0 0.5 varied 0 0 0

7 1.5 2.0 0.7 varied 0 0 0

7 1.5 2.0 0.9 varied 0 0 1

7 1.5 4.0 0.1 varied 0 0 3

7 1.5 4.0 0.3 varied 0 0 0

7 1.5 4.0 0.5 varied 0 0 0

7 1.5 4.0 0.7 varied 0 0 0

7 1.5 4.0 0.9 varied 0 0 4

5 0.5 0.5 0.1 varied 0 5 14

5 0.5 0.5 0.3 varied 0 6 11

5 0.5 0.5 0.5 varied 0 5 9

5 0.5 0.5 0.7 varied 0 4 10

5 0.5 0.5 0.9 varied 0 7 9

5 1.5 0.5 0.1 varied 0 1 2
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p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 1.5 0.5 0.3 varied 0 2 2

5 1.5 0.5 0.5 varied 0 2 2

5 1.5 0.5 0.7 varied 0 4 5

5 1.5 0.5 0.9 varied 0 2 2

7 0.5 0.5 0.1 varied 0 3 11

7 0.5 0.5 0.3 varied 0 7 13

7 0.5 0.5 0.5 varied 0 10 13

7 0.5 0.5 0.7 varied 0 10 15

7 0.5 0.5 0.9 varied 0 6 13

7 1.5 0.5 0.1 varied 0 0 1

7 1.5 0.5 0.3 varied 0 0 0

7 1.5 0.5 0.5 varied 0 0 0

7 1.5 0.5 0.7 varied 0 1 2

7 1.5 0.5 0.9 varied 0 1 1

5 0.5 1.0 0.1 varied 0 0 14

5 0.5 1.0 0.3 varied 0 0 12

5 0.5 1.0 0.5 varied 0 0 8

5 0.5 1.0 0.7 varied 0 0 13

5 0.5 1.0 0.9 varied 0 0 10

5 1.5 1.0 0.1 varied 0 3 7

5 1.5 1.0 0.3 varied 0 5 8

5 1.5 1.0 0.5 varied 0 2 2

5 1.5 1.0 0.7 varied 0 1 1

5 1.5 1.0 0.9 varied 0 6 3

7 0.5 1.0 0.1 varied 0 0 12

7 0.5 1.0 0.3 varied 0 0 15

7 0.5 1.0 0.5 varied 0 0 14

7 0.5 1.0 0.7 varied 0 0 15

7 0.5 1.0 0.9 varied 0 0 14

7 1.5 1.0 0.1 varied 0 8 10

7 1.5 1.0 0.3 varied 0 3 0

7 1.5 1.0 0.5 varied 0 5 5

7 1.5 1.0 0.7 varied 0 3 2

7 1.5 1.0 0.9 varied 0 9 6

5 0.5 0.0 0.1 constant 5 10 10

5 0.5 0.0 0.3 constant 0 15 15

5 0.5 0.0 0.5 constant 0 16 16

5 0.5 0.0 0.7 constant 0 14 13

5 0.5 0.0 0.9 constant 5 13 13

5 0.5 2.0 0.1 constant 0 0 15

5 0.5 2.0 0.3 constant 0 0 9

5 0.5 2.0 0.5 constant 0 0 8

5 0.5 2.0 0.7 constant 0 0 11

5 0.5 2.0 0.9 constant 0 0 9

5 0.5 4.0 0.1 constant 0 0 12

5 0.5 4.0 0.3 constant 0 0 10

5 0.5 4.0 0.5 constant 0 0 8

5 0.5 4.0 0.7 constant 0 0 8

5 0.5 4.0 0.9 constant 0 0 12

p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 1.5 0.0 0.1 constant 0 0 0

5 1.5 0.0 0.3 constant 0 0 0

5 1.5 0.0 0.5 constant 0 2 2

5 1.5 0.0 0.7 constant 0 0 0

5 1.5 0.0 0.9 constant 0 0 0

5 1.5 2.0 0.1 constant 0 0 3

5 1.5 2.0 0.3 constant 0 0 0

5 1.5 2.0 0.5 constant 0 0 0

5 1.5 2.0 0.7 constant 0 0 0

5 1.5 2.0 0.9 constant 0 0 4

5 1.5 4.0 0.1 constant 0 0 4

5 1.5 4.0 0.3 constant 0 0 1

5 1.5 4.0 0.5 constant 0 0 0

5 1.5 4.0 0.7 constant 0 0 0

5 1.5 4.0 0.9 constant 0 0 3

7 0.5 0.0 0.1 constant 0 10 11

7 0.5 0.0 0.3 constant 0 12 13

7 0.5 0.0 0.5 constant 0 7 7

7 0.5 0.0 0.7 constant 0 9 9

7 0.5 0.0 0.9 constant 0 9 8

7 0.5 2.0 0.1 constant 0 0 13

7 0.5 2.0 0.3 constant 0 0 14

7 0.5 2.0 0.5 constant 0 0 13

7 0.5 2.0 0.7 constant 0 0 12

7 0.5 2.0 0.9 constant 0 0 13

7 0.5 4.0 0.1 constant 0 0 8

7 0.5 4.0 0.3 constant 0 0 12

7 0.5 4.0 0.5 constant 0 0 11

7 0.5 4.0 0.7 constant 0 0 13

7 0.5 4.0 0.9 constant 0 0 15

7 1.5 0.0 0.1 constant 0 0 0

7 1.5 0.0 0.3 constant 0 0 0

7 1.5 0.0 0.5 constant 0 0 0

7 1.5 0.0 0.7 constant 0 0 0

7 1.5 0.0 0.9 constant 0 0 0

7 1.5 2.0 0.1 constant 0 0 0

7 1.5 2.0 0.3 constant 0 0 0

7 1.5 2.0 0.5 constant 0 0 0

7 1.5 2.0 0.7 constant 0 0 0

7 1.5 2.0 0.9 constant 0 0 3

7 1.5 4.0 0.1 constant 0 0 2

7 1.5 4.0 0.3 constant 0 0 0

7 1.5 4.0 0.5 constant 0 0 0

7 1.5 4.0 0.7 constant 0 0 0

7 1.5 4.0 0.9 constant 0 0 4

5 0.5 0.5 0.1 constant 0 8 15

5 0.5 0.5 0.3 constant 0 6 13

5 0.5 0.5 0.5 constant 0 5 10

5 0.5 0.5 0.7 constant 0 2 10
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p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 0.5 0.5 0.9 constant 0 3 10

5 1.5 0.5 0.1 constant 0 5 3

5 1.5 0.5 0.3 constant 0 2 2

5 1.5 0.5 0.5 constant 0 5 4

5 1.5 0.5 0.7 constant 0 3 3

5 1.5 0.5 0.9 constant 0 2 2

7 0.5 0.5 0.1 constant 0 1 10

7 0.5 0.5 0.3 constant 0 6 11

7 0.5 0.5 0.5 constant 0 10 15

7 0.5 0.5 0.7 constant 0 7 17

7 0.5 0.5 0.9 constant 0 6 15

7 1.5 0.5 0.1 constant 0 1 0

7 1.5 0.5 0.3 constant 0 0 1

7 1.5 0.5 0.5 constant 0 4 3

7 1.5 0.5 0.7 constant 0 2 2

7 1.5 0.5 0.9 constant 0 3 3

5 0.5 1.0 0.1 constant 0 0 14

5 0.5 1.0 0.3 constant 0 0 8

p δ σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 0.5 1.0 0.5 constant 0 0 10

5 0.5 1.0 0.7 constant 0 0 8

5 0.5 1.0 0.9 constant 0 0 9

5 1.5 1.0 0.1 constant 0 4 5

5 1.5 1.0 0.3 constant 0 2 2

5 1.5 1.0 0.5 constant 0 2 2

5 1.5 1.0 0.7 constant 0 1 1

5 1.5 1.0 0.9 constant 0 5 6

7 0.5 1.0 0.1 constant 0 0 11

7 0.5 1.0 0.3 constant 0 0 14

7 0.5 1.0 0.5 constant 0 0 13

7 0.5 1.0 0.7 constant 0 0 15

7 0.5 1.0 0.9 constant 0 0 15

7 1.5 1.0 0.1 constant 0 8 7

7 1.5 1.0 0.3 constant 0 4 5

7 1.5 1.0 0.5 constant 0 5 6

7 1.5 1.0 0.7 constant 0 4 5

7 1.5 1.0 0.9 constant 0 7 7

B.2.2 Frequencies of one class preference for data with one clusters

p σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 0.0 0.1 varied 20 20 20

5 0.0 0.3 varied 20 20 20

5 0.0 0.5 varied 20 20 20

5 0.0 0.7 varied 20 20 20

5 0.0 0.9 varied 20 20 20

5 2.0 0.1 varied 0 0 20

5 2.0 0.3 varied 0 0 20

5 2.0 0.5 varied 0 0 20

5 2.0 0.7 varied 0 0 20

5 2.0 0.9 varied 0 0 20

5 4.0 0.1 varied 0 0 20

5 4.0 0.3 varied 0 0 20

5 4.0 0.5 varied 0 0 20

5 4.0 0.7 varied 0 0 19

5 4.0 0.9 varied 0 0 20

p σz p0 Threshold LCA LCRE.CL LCRE.NCL

7 0.0 0.1 varied 20 20 20

7 0.0 0.3 varied 20 20 20

7 0.0 0.5 varied 20 20 20

7 0.0 0.7 varied 20 20 20

7 0.0 0.9 varied 20 20 20

7 2.0 0.1 varied 0 0 20

7 2.0 0.3 varied 0 0 20

7 2.0 0.5 varied 0 0 20

7 2.0 0.7 varied 0 0 20

7 2.0 0.9 varied 0 0 20

7 4.0 0.1 varied 0 0 20

7 4.0 0.3 varied 0 0 19

7 4.0 0.5 varied 0 0 20

7 4.0 0.7 varied 0 0 20

7 4.0 0.9 varied 0 0 20
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p σz p0 Threshold LCA LCRE.CL LCRE.NCL

5 0.5 0.1 varied 0 0 20

5 0.5 0.3 varied 0 0 20

5 0.5 0.5 varied 0 0 20

5 0.5 0.7 varied 0 0 20

5 0.5 0.9 varied 0 0 20

7 0.5 0.1 varied 0 0 20

7 0.5 0.3 varied 0 0 20

7 0.5 0.5 varied 0 0 20

7 0.5 0.7 varied 0 0 20

7 0.5 0.9 varied 0 0 20

5 1.0 0.1 varied 0 0 20

5 1.0 0.3 varied 0 0 20

5 1.0 0.5 varied 0 0 20

5 1.0 0.7 varied 0 0 20

5 1.0 0.9 varied 0 0 20

7 1.0 0.1 varied 0 0 20

7 1.0 0.3 varied 0 0 20

7 1.0 0.5 varied 0 0 20

7 1.0 0.7 varied 0 0 20

7 1.0 0.9 varied 0 0 20

5 0.0 0.1 constant 20 20 20

5 0.0 0.3 constant 20 20 20

5 0.0 0.5 constant 20 20 20

5 0.0 0.7 constant 20 20 20

5 0.0 0.9 constant 20 20 20

5 2.0 0.1 constant 0 0 20

5 2.0 0.3 constant 0 0 20

5 2.0 0.5 constant 0 0 20

5 2.0 0.7 constant 0 0 20

5 2.0 0.9 constant 0 0 20

5 4.0 0.1 constant 0 0 20

5 4.0 0.3 constant 0 0 20

5 4.0 0.5 constant 0 0 20

5 4.0 0.7 constant 0 0 20

5 4.0 0.9 constant 0 0 20

p σz p0 Threshold LCA LCRE.CL LCRE.NCL

7 0.0 0.1 constant 20 20 20

7 0.0 0.3 constant 20 20 20

7 0.0 0.5 constant 20 20 20

7 0.0 0.7 constant 20 20 20

7 0.0 0.9 constant 20 20 20

7 2.0 0.1 constant 0 0 20

7 2.0 0.3 constant 0 0 20

7 2.0 0.5 constant 0 0 20

7 2.0 0.7 constant 0 0 20

7 2.0 0.9 constant 0 0 20

7 4.0 0.1 constant 0 0 20

7 4.0 0.3 constant 0 0 20

7 4.0 0.5 constant 0 0 20

7 4.0 0.7 constant 0 0 20

7 4.0 0.9 constant 0 0 20

5 0.5 0.1 constant 0 0 20

5 0.5 0.3 constant 0 0 20

5 0.5 0.5 constant 0 0 20

5 0.5 0.7 constant 0 0 20

5 0.5 0.9 constant 0 0 20

7 0.5 0.1 constant 0 0 20

7 0.5 0.3 constant 0 0 20

7 0.5 0.5 constant 0 0 20

7 0.5 0.7 constant 0 0 20

7 0.5 0.9 constant 0 0 20

5 1.0 0.1 constant 0 0 20

5 1.0 0.3 constant 0 0 20

5 1.0 0.5 constant 0 0 20

5 1.0 0.7 constant 0 0 20

5 1.0 0.9 constant 0 0 20

7 1.0 0.1 constant 0 0 20

7 1.0 0.3 constant 0 0 20

7 1.0 0.5 constant 0 0 19

7 1.0 0.7 constant 0 0 20

7 1.0 0.9 constant 0 0 20
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Appendix C

Chapter 4 Full Results

C.1 Average correlation and standard deviation for thresh-

old method results
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C.2 RMSE results

p delta sigma.z p.0 LCA LCRE.CL LCRE.NCL

5 0.5 0 0.1 0.10730668 0.13081023 0.12930045

5 0.5 0 0.3 0.13508049 0.19706200 0.18876046

5 0.5 0 0.5 0.14467158 0.16533182 0.16805354

5 0.5 0 0.7 0.13572640 0.20350745 0.18944506

5 0.5 0 0.9 0.10707998 0.12937579 0.13264158

5 1.5 0 0.1 0.02609860 0.02642228 0.02643204

5 1.5 0 0.3 0.03308827 0.07610076 0.07224225

5 1.5 0 0.5 0.03481727 0.04803807 0.04290975

5 1.5 0 0.7 0.03243031 0.07337678 0.06830176

5 1.5 0 0.9 0.02710538 0.02730255 0.02739059

5 0.5 0.5 0.1 0.26082702 0.25768556 0.25826198

5 0.5 0.5 0.3 0.20242846 0.24867932 0.23774761

5 0.5 0.5 0.5 0.18633304 0.24889735 0.25576147

5 0.5 0.5 0.7 0.22519690 0.26064805 0.26262157

5 0.5 0.5 0.9 0.22984598 0.22266777 0.23888659

5 1.5 0.5 0.1 0.06321602 0.05889048 0.04709133

5 1.5 0.5 0.3 0.07253349 0.08025064 0.07183332

5 1.5 0.5 0.5 0.07327892 0.13552756 0.14338971

5 1.5 0.5 0.7 0.07079419 0.07902630 0.07068208

5 1.5 0.5 0.9 0.06291766 0.05819404 0.04729235

5 0.5 1 0.1 0.28837864 0.27841756 0.25103724

5 0.5 1 0.3 0.29252543 0.28447443 0.27847931

5 0.5 1 0.5 0.27199083 0.27097124 0.26644069

5 0.5 1 0.7 0.27745443 0.27634065 0.26154798

5 0.5 1 0.9 0.24915428 0.23975969 0.21634978

p delta sigma.z p.0 LCA LCRE.CL LCRE.NCL

5 1.5 1 0.1 0.27965565 0.26952918 0.26731402

5 1.5 1 0.3 0.22136950 0.34808192 0.30786441

5 1.5 1 0.5 0.20702649 0.32333085 0.30684556

5 1.5 1 0.7 0.21631999 0.36241587 0.32121563

5 1.5 1 0.9 0.27841276 0.33784804 0.26115239

5 0.5 2 0.1 0.32563326 0.31864393 0.27392419

5 0.5 2 0.3 0.30488188 0.29757291 0.29030030

5 0.5 2 0.5 0.30913955 0.30108607 0.29744778

5 0.5 2 0.7 0.30630063 0.30061650 0.28580554

5 0.5 2 0.9 0.31285019 0.30696189 0.26070463

5 1.5 2 0.1 0.49179696 0.56888809 0.22376954

5 1.5 2 0.3 0.46282322 0.54207907 0.16316764

5 1.5 2 0.5 0.45019494 0.52476892 0.15715663

5 1.5 2 0.7 0.45948407 0.53222006 0.17698647

5 1.5 2 0.9 0.48974718 0.55721830 0.26029850

5 0.5 4 0.1 0.34923426 0.34606314 0.29462755

5 0.5 4 0.3 0.33027021 0.32692657 0.30785688

5 0.5 4 0.5 0.32495605 0.32077305 0.31077112

5 0.5 4 0.7 0.31717516 0.31297815 0.29475622

5 0.5 4 0.9 0.33362023 0.33047051 0.28666790

5 1.5 4 0.1 0.59509803 0.61500072 0.25801961

5 1.5 4 0.3 0.58357771 0.62711803 0.17599866

5 1.5 4 0.5 0.50229595 0.53006827 0.24129245

5 1.5 4 0.7 0.58346451 0.62804594 0.17980566

5 1.5 4 0.9 0.59241597 0.60718005 0.38831727



C.3. Binding Accuracy 175

C.3 Binding Accuracy

p δ σz p0 Binding Number LCA LCRE.CL LCRE.NCL MGMM

5 0.5 0.0 0.1 300 309.71 434.85 397.18 348.79

5 0.5 0.0 0.3 900 895.10 1165.88 1079.67 900.19

5 0.5 0.0 0.5 1500 1497.95 1498.88 1493.92 1511.79

5 0.5 0.0 0.7 2100 2097.18 1793.99 1927.74 2088.47

5 0.5 0.0 0.9 2700 2684.14 2532.52 2542.23 2637.94

5 0.5 2.0 0.1 300 1556.29 1522.75 1535.71 1401.36

5 0.5 2.0 0.3 900 1426.68 1458.09 1470.13 1389.50

5 0.5 2.0 0.5 1500 1494.18 1490.03 1486.15 1453.79

5 0.5 2.0 0.7 2100 1430.41 1449.99 1466.83 1573.20

5 0.5 2.0 0.9 2700 1419.34 1439.13 1457.34 1537.34

5 0.5 4.0 0.1 300 1502.94 1502.97 1493.04 1428.54

5 0.5 4.0 0.3 900 1516.44 1516.54 1503.92 1494.08

5 0.5 4.0 0.5 1500 1491.16 1489.78 1486.16 1312.97

5 0.5 4.0 0.7 2100 1515.09 1513.23 1520.41 1514.72

5 0.5 4.0 0.9 2700 1507.77 1509.48 1530.49 1546.82

5 1.5 0.0 0.1 300 299.80 299.44 299.51 300.17

5 1.5 0.0 0.3 900 899.90 880.71 863.79 900.01

5 1.5 0.0 0.5 1500 1500.45 1497.25 1500.71 1499.93

5 1.5 0.0 0.7 2100 2100.78 2189.84 2177.75 2100.07

5 1.5 0.0 0.9 2700 2699.27 2699.62 2699.65 2699.94

5 1.5 2.0 0.1 300 1039.25 1496.20 764.14 309.41

5 1.5 2.0 0.3 900 1275.44 1449.87 1062.59 897.34

5 1.5 2.0 0.5 1500 1494.17 1490.27 1496.33 1503.01

5 1.5 2.0 0.7 2100 1717.37 1556.45 1892.00 2100.89

5 1.5 2.0 0.9 2700 1954.89 1514.94 2120.98 2697.18

p δ σz p0 Binding Number LCA LCRE.CL LCRE.NCL MGMM

5 1.5 4.0 0.1 300 1327.60 1504.26 756.44 300.89

5 1.5 4.0 0.3 900 1383.37 1491.61 1003.60 902.58

5 1.5 4.0 0.5 1500 1496.66 1513.27 1482.88 1547.73

5 1.5 4.0 0.7 2100 1625.64 1477.80 1996.35 2103.64

5 1.5 4.0 0.9 2700 1748.51 1575.28 1965.06 2697.11

5 0.5 0.5 0.1 300 1053.36 1139.15 1144.17 1313.72

5 0.5 0.5 0.3 900 1235.13 1338.15 1338.68 1101.12

5 0.5 0.5 0.5 1500 1482.37 1518.06 1514.47 1437.10

5 0.5 0.5 0.7 2100 1765.16 1653.38 1633.29 1778.87

5 0.5 0.5 0.9 2700 1936.56 1842.33 1819.07 1807.84

5 0.5 1.0 0.1 300 1760.41 1725.59 1693.86 1479.32

5 0.5 1.0 0.3 900 1358.00 1365.34 1374.47 1422.96

5 0.5 1.0 0.5 1500 1512.67 1507.78 1504.56 1410.07

5 0.5 1.0 0.7 2100 1633.89 1630.74 1619.37 1668.13

5 0.5 1.0 0.9 2700 1756.54 1753.01 1749.04 1539.50

5 1.5 0.5 0.1 300 324.27 297.36 300.55 300.81

5 1.5 0.5 0.3 900 914.79 879.34 870.97 900.40

5 1.5 0.5 0.5 1500 1500.26 1501.55 1492.51 1499.43

5 1.5 0.5 0.7 2100 2087.10 2129.16 2139.36 2100.31

5 1.5 0.5 0.9 2700 2675.35 2702.45 2701.02 2700.42

5 1.5 1.0 0.1 300 646.87 870.52 864.66 304.29

5 1.5 1.0 0.3 900 1028.80 1329.28 1334.18 898.28

5 1.5 1.0 0.5 1500 1501.61 1495.46 1496.93 1497.84

5 1.5 1.0 0.7 2100 1977.83 1637.18 1650.59 2101.37

5 1.5 1.0 0.9 2700 2355.26 2001.61 2165.77 2699.79
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