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Abstract

As research into epigenetics grows, it is clear that modifications to DNA through hi-
stones and other proteins can change behaviour within the cell, and is an important
aspect of cellular function. One of the methods to observe these modifications is
chromatin immunoprecipitation sequencing (ChIP-seq), which specifically targets
protein-bound DNA to determine its location along the genome. The outcome of
this technique are sequences of DNA, which indicate regions of DNA that may be
bound by the protein. A drawback of this technique is that noise within the data can
hide the true location of these proteins, and thus ChIP-seq peak calling software is
needed to identify putative binding sites, which can then be associated with genes.

There are a number of these programs available, but they tend to have a low
level of agreement. This is because they use a wide variety of peak identification
models that rely on different assumptions about the data. Ideally, the results from a
number of tools could be combined to identify a combined, robust set of associated
genes. One candidate technique is Latent Class Analysis (LCA).

The aim of this thesis is to apply LCA to ChIP-seq data, and use it to identify a
reliable set of bound genes.

Three different LCA models were considered; a simple model, as well as models
with additional random effects. These random effects had either constant loading
among the programs, or non-constant loading. In Chapter 1, I applied these models
to ChIP-seq data to observe the initial results.

Next, in Chapter 2, I performed a series of simulations with varying parameters,



2 Abstract

and analysed them with the three models, to clarify and extend upon the results
from Chapter 1. In this case, the underlying truth was known, so I could measure
the performance of each model. These measurements included the correlation to
a Multivariate Gaussian Mixture Model (MGMM) results, which was fitted to the
underlying data, and the root mean squared error to the MGMM results.

An additional measurement was the BIC. Aside from comparing the models for
accuracy, I also assessed the use of BIC for both determining the correct number of
classes to use, and as a method of determining the best model using the simulations.

Finally, in Chapter 4, I developed and tested using simulations a new method
of using the LCA models to acquire a more accurate set of putative binding genes.
This was analysed using the MGMM, as well as by comparing the proportion of
binding genes with the known expected number. I then applied this new method to
the original data in Chapter 5.

Based on initial results in Chapter 1, the LCA model without random effects gen-
erated a reasonable set of binding genes. This was further confirmed using the re-
sults of the simulations in Chapter 2, which indicated that the posterior probabilities
are more accurate using this model. In addition, the BIC was not found to accurately
determine the best number of classes. When assessing the use of the BIC to choose
a model, it was found that it did not necessarily find the best performing model,
and, based on the simulations, selecting the LCA is better. Finally, assessments of
the new method indicated that it performed well compared to using a single model.

In conclusion, the approach that incorporates changing thresholds with the LCA

was shown to be the most effective at producing a combined robust set of genes.



Chapter 1

Introduction

1.1 Introduction to the problem

1.1.1 Epigenetics and chromatin

Epigenetics is the study of heritable changes to DNA that are not due to changes
in the DNA sequence (Berger et al., 2009). These changes include the modification
of histones; large proteins that the DNA wraps around to form complex structures
called nucleosomes, as well as the addition of methyl (-CHj3) groups to bases in a
process called methylation.

Modifications to DNA methylation and histones are key to cell differentiation
within the body. These modifications of the DNA affect transcription, and lead to
the differential expression of proteins. Methyl groups have been found to inhibit
protein binding, preventing key transcriptional proteins such as RNA polymerase
from acting on regions of DNA. This leads to regulation of transcription (Jeong et al.,
2016).

Nucleosomes are the principal component of chromatin. The packaging of the
DNA into tight clusters is organised around these chemical spools (see Figure 1.2).

The inclusion of nucleosomes affects the accessibility of the DNA to proteins and



4 Chapter 1. Introduction

hence allows the cell to control gene expression.

Histones can be modified in a number of ways to regulate genetic activity. These
modifications, including histone methylation (addition of methyl groups) and his-
tone acetylation (addition of an acetyl group -CH3CO), lead to changes in the com-
position and positioning of the nucleosome (see Figure 1.1). For instance, different
histone variants influence the stability of the nucleosome and lead to changes in the
structure of chromatin. Positioning of the nucleosome is affected by a large num-
ber of enzymes. These enzymes can be used by the cell to tag nucleosomes for re-
moval and insertion into different areas of the genome. Other enzymes may lead to
the shifting of nucleosomes a relatively short distance along the DNA, allowing for
more dynamic control of transcription. While the effect of particular histone modifi-
cations has been characterised, the exact mechanisms causing these effects remains
poorly understood.

Nucleosomes are also the basis for more complex packaging of the DNA; nucloe-
somes can be packaged close together leading to the formation of the metaphase
chromosome (see Figure 1.2). Generally, DNA is more loosely packaged to allow for
protein access (Venkatesh and Workman, 2015).

Different cell types within an organism have different patterns of chromatin
modification (Stueve et al., 2016). Regions which are accessed often will have open
or loose chromatin, where histones are more sparsely located along the DNA, and
where proteins are more likely to bind. Conversely, regions accessed rarely will be
found in a closed or tight chromatin state, with a greater number of histones and a
lower chance of bound proteins (Even-Faitelson et al., 2016). Similarly, methylation
is also more common in areas of low access, and vice versa for regions of high access
(Jeong et al., 2016). Through these mechanisms, the cell has fine control of gene ex-

pression at the level of the DNA. Since these epigenetic changes are also reversible,
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FIGURE 1.1: Histone modifications that lead to changes in transcrip-
tion. a) Different histone variants can be incorporated into the nucleo-
some, influencing the stability of the nucleosome and structure of the
chromatin. b) Addition of chemical groups to histones may affect the
expression of genes on the associated DNA. c) Enzymes can affect the
positioning of the nucleosome, leading to the shifting of the protein
complex along the DNA, or its entire removal (not shown).
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FIGURE 1.2: Structure of chromatin within the nucleus of the cell
adapted from en.wikipedia
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the cell is also able to change its gene expression in response to environmental cues
(Venkatesh and Workman, 2015).

The effects of epigenetics are often observed in disease. Epigenetics can cause
disease by the deregulation of epigenetic modification pathways, leading to changes
in gene expression, or through inhibiting access of RNA Polymerase to functional
genes (Jeong et al., 2016; Portela and Esteller, 2010). In cancer, it is common for there
to be significant changes in chromatin that lead to increased expression of genes
promoting cell proliferation, cell growth and survival and decreased expression in
genes that downregulate these pathways and initiate apoptosis. Some inherited dis-
eases, such as Prader-Willi syndrome, occur because the only functional copy of a
particular gene is methylated, leaving only the mutated gene available for transcrip-
tion (Portela and Esteller, 2010).

The types of condition needed to effect changes to the chromatin state are still
being investigated. It is of interest to determine not only the conditions necessary for
change, but also the dynamics of such change within the genome. This is achieved
by performing time course analyses, where multiple samples are obtained over time
from the same experiment. There are well established methods of finding locations
of closed chromatin, however the statistical analysis of the resulting data is complex.
This literature review will examine different methods for analysing this type of data,

in particular current tools available for implementation.

1.1.2 Observing epigenetic changes

It is necessary to determine when epigenetic changes are occurring, and where in the
genome, in order to investigate this phenomenon. However, sequencing the genome
will not normally give information about chromatin or epigenetics, as bound pro-

teins are removed from the DNA during the sequencing preparation process, and
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methylated DNA cannot be distinguished from ordinary DNA during normal se-
quencing (Ku et al., 2011).

CpG methylation is relatively simple to measure using bisulphite sequencing.
Bisulphite is used to treat samples of DNA, which causes the conversion of un-
methylated cytosine to uracil, but leaves methylated cytosine nucleotides unchanged.
After sequencing, the treated sample is compared with an untreated sample. The re-
maining cytosines indicate the original location of the methylated cytosines (Jeong
et al., 2016).

In contrast, histone modification is difficult to measure directly. In recent years
several new procedures have been developed to determine locations of tightly bound
chromatin (see Figure 1.3). These techniques are presented in the following section.

The procedures are performed on samples of cells with qualities of interest. While
all of the techniques below are used to determine the state of chromatin, chromatin
immunoprecipitation sequencing (ChIP-seq) specifically targets protein-bound DNA,
while both the assay for transposon accessible chromatin sequencing (ATAC-seq)
and formaldehyde assisted isolation of regulatory elements (FAIRE-seq) identify re-
gions of open chromatin (Johnson et al., 2007; Buenrostro et al., 2013; Giresi et al.,
2007). While this seems to imply that ChIP-seq will return different regions of the
genome to ATAC-seq and FAIRE-seq, this is largely dependent on the protein cho-
sen. Many proteins, for example RNA polymerase, are associated with open regions
of chromatin (Phillips and Shaw, 2008). The output of the techniques are fragments
of DNA that can be sequenced.

ChIP-Seq
ChIP-seq is one of the older methods developed to determine locations of tightly
bound chromatin, or any DNA binding protein. Proteins are covalently bound to the

DNA using formaldehyde, and the DNA is then extracted and sonicated to break it
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into small fragments. Next immunoprecipitation occurs; specific antibodies attach
to the protein of interest, allowing these DNA-protein complexes to be extracted
from the sample. The DNA-protein binding is reversed, and the sample is purified

to isolate the DNA (Johnson et al., 2007).

ATAC-seq

ATAC-seq uses a transposase known as Tn5. When a cell is treated with this trans-
posase, it simultaneously fragments exposed areas of the genome and adds a se-
quencing tag in a process called tagmentation. The transposase will tend to only
affect areas where chromatin is not tightly bound, since these areas allow for bind-
ing to occur more often. Using these tags, genome fragments are then isolated and

amplified for sequencing (Buenrostro et al., 2013).

FAIRE-seq

FAIRE-seq uses formaldehyde to first bind all proteins covalently to DNA, as in
ChIP-seq. The sample is sonicated to break the DNA into small fragments, and
a phenol-chloroform extraction is performed. This creates two phases within the
sample. The DNA fragments bound to nucleosomes will preferentially sit in one of
these phases, allowing it to be extracted from the rest. The remaining DNA, which

corresponds to open chromatin, can be sequenced (Giresi et al., 2007).

Each technique has its advantages and disadvantages in terms of both experimental
procedure and analysis. ChIP-seq is the most widely used of the three techniques,
and the most flexible in that it can be used to find non-epigenetic proteins as well
as specific histone marks (Johnson et al., 2007). The most significant cause of bias in
ChlIP-seq is the use of antibodies, as different antibodies bind to proteins of interest

with different strengths. This leads to changes in the relative strengths of sample
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FIGURE 1.3: ChIP-seq, FAIRE-seq and ATAC-seq methods, adapted
from the Illumina Sequencing Method explorer

peaks and these differences in data quality reduce accuracy in analysis (Meyer and
Liu, 2014). It is recommended that ChIP-seq experiments are accompanied by a
control, preferably a spike-in control, where quantities of known readily identifiable
nucleic acids are added to the sample before immunoprecipitation. While ATAC-seq
and FAIRE-seq require less experimental calibration and do not have the difficulties
associated with immunoprecipitation, these technologies are still relatively new and
the associated biases are not fully understood (Meyer and Liu, 2014).

All of these techniques require some method of reading large numbers of frag-
ments. This became possible with the advent of next generation sequencing, which
allows for high throughput of data (Schuster, 2008). The most common method of
sequencing is performed by Illumina, and the end result is short (50-200 bp) single
or paired end reads. Next, the samples are aligned to a reference genome, allowing

for analysis.
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Since most techniques of analysis are created with ChIP-seq in mind, this tech-
nique will be the main focus for the rest of this review. However, tools and tech-

niques discussed here are also relevant to ATAC-seq and FAIRE-seq.

1.1.3 Limitations and difficulties of analysis

One of the challenges of ChIP-seq and similar data is that the analysis is more dif-
ficult than in related techniques. Two methods that ChIP-seq is often compared
to, and which have similar analyses, are bisulphite sequencing (as previously de-
scribed) and RNA-seq. This is a technique that collects and analyses RNA fragments
to determine the expression levels of genes in the cell at the time of collection (Wang,
Gerstein, and Snyder, 2009). This technique is well-characterised and many tools are
available for analysis

The analysis of ChIP-seq data is more difficult for a number of reasons. Unlike in
RNA-seq, the space in which there could be potential changes to chromatin are not
limited to within genes, but instead cover the entire genome. Additionally, there is
no limit on the amount of signal that could be obtained from this type of data, unlike
CpG methylation, which is constrained to a finite interval of 0 to 100% methylated.
Furthermore, depending on the particular method employed, one can expect to see
considerable noise between samples of data, especially when those samples were
not obtained during the same experiment or from the same laboratory. This com-
plication means that normalisation of the data is a key step within analysis. Finally,
the length and shape of enriched regions will differ significantly, depending on the
target protein. This variation is observed because proteins vary in size, and different
lengths of DNA will be enriched in the sample (Steinhauser et al., 2016). In the case
of epigenetic modifications, these regions are usually larger (Shen et al., 2013; Xu

etal., 2014).



1.1. Introduction to the problem 11

1.1.4 Peak finding software

After alignment, the next step is to identify locations of bound chromatin by differ-
entiating peaks in the data from the noise (Zhang et al., 2008). There are a number
of tools readily available to do this; collectively known as peak-finding software.

The method of determining enriched peaks differs based on the tool used. Tools
currently available for this purpose include BELT, SISSRs, QuEST, PeakSeq and
MACS. BELT uses a percentile rank of the bins to determine significant enrichment
levels, and SISSRs calculates binding sites based on the number of forward and
reverse reads between windows (Lan et al., 2010; Narlikar and Jothi, 2012). Both
QuEST and PeakSeq use a control to compare enrichment in windows and specify
regions that differ significantly as potential peaks (Valouev et al., 2008; Rozowsky et
al., 2009). MACS models the data as a Poisson distribution and then finds candidate
peaks using the p-value for significant enrichment (Zhang et al., 2008).

To rank peaks, most tools estimate a False Discovery Rate (FDR) for the data
(Zhang et al., 2008; Lan et al., 2010; Narlikar and Jothi, 2012; Rozowsky et al., 2009),
while others rank the peaks using different scoring methods. For example, QuUEST
uses kernel density estimation derived scores (Valouev et al., 2008). The result of all

tools is a list of peaks, denoting locations of bound protein within the genome.

1.1.5 Analysis of differential regions

One of the key applications of ChIP-seq and similar technology is determining the
effect of different cell types or treatments on chromatin. By comparing two differ-
ent samples that differ only by a condition of interest, it is possible to determine
its effect on the chromatin state. In particular, the changes in the location of closed
chromatin, and thus potential changes in gene expression are of interest (Shen et al.,

2013). A simple visualisation of this is given in Figure 1.4. Here we can see that in
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FIGURE 1.4: Comparing two samples for locations of differential bind-
ing. Putative regions are emphasised by the boxes. Adapted from (All-
hoff et al., 2014).

our two samples, there is an apparent difference in binding at one location, but not
in the other. To identify regions across the entire genome we require complex statis-
tical tools. The effect of certain mutations, potential nuclear drug targets, variations
between cell types and temporal changes to chromatin state are some themes that
could be explored (Chahwan, Wontakal, and Roa, 2011).

Due to the overwhelmingly large number of reads generated by ChIP-seq and
similar technology, computers are required to identify regions that appear to vary
between conditions. ChIP-seq is a recent technological advance and more estab-
lished techniques have developed well understood methods of identifying differ-
ential regions within the genome. There are many tools that identify differences in
DNA methylation using the results of bisulphite sequencing, including IMA and
QDMR (Zhang et al., 2011; Wang et al., 2012).

Two popular computational tools used for determining differential RNA expres-
sion are edgeR and DESeq, and these are often used in the analysis of ChIP-seq data
as well (Anders and Huber, 2010; Robinson, McCarthy, and Smyth, 2010). One dis-
advantage of using these tools specialised for RNA-seq is that they were originally
designed for finding peaks over the relatively short regions that form individual

genes. In contrast, when ChIP-seq and similar technology is used for determining
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locations of closed chromatin, the peaks cover much larger regions of the genome. If
this difference is not taken into account it may lead to erroneous results (Shen et al.,
2013).

There are a number of tools that identify differential regions of ChIP-seq, FAIRE-
seq and ATAC-seq data (Steinhauser et al., 2016). While most are initially designed
for ChIP-seq, most researchers will use the same tools for FAIRE-seq and ATAC-seq,
under the assumption that the data is similarly distributed. There are a variety of
methods available, and depending on the experiment, the most appropriate tool to
use will vary. Most tools will then perform three main steps of analysis; peak calling,
normalisation and statistical testing (Steinhauser et al., 2016). These steps may be
done discretely, or in one complete process.

Statistical tests allow the two samples to be compared in order to determine
whether any given peak could be considered common to both or unique. There
are a number of methods that can be used to compare sets of peaks. While each
tool has its own implementation of a method, there are a number of common ap-
proaches. This may include using a fold change threshold, applying model based
analysis approach, using a non-parametric test or utilising Hidden Markov Models
(HMM).

In a fold change threshold method, bins between the two samples are considered
equal if the read numbers do not exceed a pre-specified fold-change threshold. This
is used by HOMER and MACS2 (Heinz et al., 2010; Zhang et al., 2008).

When using a model based analysis approach, equivalent bins between the sam-
ples are compared and a p-value is calculated based on either the Poisson or the
negative binomial (NB) distribution, with a null hypothesis that the true expression
between the two bins is the same based on the number of counts observed (Zang

et al., 2009). This type of approach is used by SICER (Zang et al., 2009; Xu et al.,
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2014).

Programs that use a non parametric approach include QChiPat, created by Liu
et al., (2013), which uses Wilcoxon rank tests to distinguish differentially enriched
regions. Finally, some tools, such as ODIN and RSEG, determine differentially en-
riched regions with a Hidden Markov Model (HMM) (Allhoff et al., 2014; Song and
Smith, 2011). This approach differs significantly from the more typical methods de-
scribed above, particularly in that the entire analysis occurs in one step, rather than

in discrete steps for peak calling, normalisation and testing.

1.2 Further Analysis

The vast array of tools available to analyse ChIP-seq data give researchers the ability
to identify the effect of these tools on the same set of data. As has been identified
in a number of other studies (Thomas et al., 2016; Steinhauser et al., 2016), ChIP-seq
programs tend to have a low level of agreement. Since every program relies on a
number of assumptions regarding their model for ChIP-seq and similar data, it is
reasonable to expect that all tools generate false positive as well as false negative
results (Cantarel et al., 2014). Due to the nature of ChIP-seq data, a ”"gold-standard”
does not exist, because while it is possible to individually validate some sites via
other molecular biology techniques, this is not feasible to undertake for an entire
genome.

Currently, the main technique used by many ChIP-seq tools in order to justify
their approach is to create simulated data for assessment by their tool as well as
other established tools (Zhang et al., 2008; Ranciati, Viroli, and Wit, 2015; Allhoff
et al., 2014). This allows them to compare the results and indicate their tool is the

best for ChlP-seq data for the particular use case. However, this technique can be
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problematic; when the data is simulated using a model based on the assumptions
on which the ChIP-seq tool was designed, this will bias the tool for which the paper
was written.

An approach taken in other areas of bioinformatics that also lack a gold standard
for judging programs is to create a combined data set of interest by using the results
of multiple tools (Cantarel et al., 2014; Elsik et al., 2007; Chen et al., 2007). Some
approaches tend to be ad hoc and rely on finding a “majority vote” set or other inter-
section based methods. Others are more complex and use statistical classsification
techniques such as Latent Class Analysis (LCA). This has been used successfully to
generate a set of genome variants, create a consensus gene set based on gene models
and to infer orthologous genes from different genomes (Cantarel et al., 2014; Elsik
et al., 2007; Chen et al., 2007).

Such an approach in ChIP-seq would allow the different strengths of the pro-
grams to be combined to give a more reliable putative peak set to be investigated
further. Currently, complex statistical classification techniques to combine ChIP-seq

programs have not been applied to ChIP-seq data in the literature.

1.3 Latent Class Analysis

LCA can be applied to the problem of combining multiple tools in a statistically
robust manner. LCA is a popular technique in psychology and social sciences, origi-
nally used for finding latent groups or classes based on a number of variables (Linda
M. Collins, 2010). In these applications, a group of people are asked questions rel-
evant to a variable of interest (for example, prevalence of alcohol and drug use in
teenagers). These questions are designed to be categorical, so the participants may

select one of a number of options.
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The questions are called response variables and the options response categories.
Suppose that there are t = 1,...T observed variables and observed variable ¢ has
R¢ response categories. The responses are placed in a contingency table, which is
formed by cross tabulating the T variables and has W = []_; R; cells. Thus each
row represents a response pattern y = (y1,Yy2, ..., yt), each of which is associated
with a probability P(Y =y).

For a model with ¢ = 1, ..., C latent classes, each class has a probability of mem-
bership, which is called the prevalence of latent class ¢ and is represented by <. The
probability of a response 7; given membership in class c is called the item-response
probability and is denoted by p, ,, .. Thus the probability of observing response y

conditional on membership in latent class c is given by:
TTT ol=r)
P(Y = I“L = C) = H pt,rlﬁc ! (11)

where L is the latent variable and I(y; = r¢) is an indicator function that equals
1 when y; = r; and 0 otherwise. Finally the probability of observing response y

regardless of class c is given by:

Z Te H H oy (1.2)

c=1 t= 17’t

Using Bayes Theorem, we can find the posterior probability of a class c given the

response pattern y:

P(L=c|Y=y) = Py = yIL%Y:_C)yI;(L =¢)

I(yr=rt)
’)’cHt 1Hrt 1 trt|c
I(yt=rt)
Z 1'YcHt 1Hrt 1P
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Returning to the example of a group of people asked questions relating to a variable
of interest, classes will consist of similar sets of responses to the questions. We can
then identify the most likely class for each person based on their response. For
given C, the Estimation-Maximisation (EM) algorithm can be used to estimate the
parameters of the LCA model.

There are a number of programs available to estimate the number of classes au-
tomatically based on the input of the contingency table or equivalent data. Multiple
LCAs are performed, with differing numbers of classes, and the results are com-
pared using BIC or similar to determine the best number of classes for the data (Qu,
Tan, and Kutner, 1996).

LCA can be applied to ChIP-seq data to combine the responses of different callers.
For the application to the problem of identifying a binding and non-binding class
using the results from multiple programs, we can consider genes as the responders
and the programs as our variables.

The response items would be binary, either binding or non-binding, and based
on the results of a program. Furthermore, the maximum expected class size would
be two, where the genes are separated into a binding or non-binding group overall.

Based on these changes, the posterior probability can be simplified to:

Ye Hthl 7T‘;/|tc(1 — ﬂt‘c)(l_]/f)
Yo ve Ty nty|fc(1 — 71y0) 1)

P(L=clY=y) = (1.3)
Where 71, is the probability that y; is 1 given that it is in class ¢ (Beath and Heller,
2009).

One fundamental assumption of the LCA model is that there is local indepen-
dence, such that the observed variables are independent (Linda M. Collins, 2010).

However, this may not always be true for the application. An example from medicine
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could be the assessment of patients for a particular disease using different tests. If
two or more of the tests rely on similar underlying information, such as a blood
sample, this could lead to a dependence between the two tests, and invalidate the
assumption of LCA. Similarly for the application of ChIP-seq, if two of the programs
rely on similar assumptions or the same model within the data, this could cause
similarities between the results that isn’t reliant on the true binding or not-binding
status (Qu, Tan, and Kutner, 1996).

For binary response, a simple model for this dependence is to assume an unob-
served continuous random variable A; ~ N(0,1) for gene i, which is incorporated

into the above equation through 77 :

Tile = ¢71(at\c + bt\c/\i) (1.4)

where 4, determines the item response probability for a value of 0 for the ran-
dom effect and by, scales the random effect and is usually known as the loading or
discriminant (Qu, Tan, and Kutner, 1996). This loading can be the constant or non-
constant for each program. Thus the marginal probability, found by summing over

the classes and integrating over A becomes:

C T
POY=y) = Y7 [ o] (1 =) (15
c=1 t=1
and hence the posterior probability is:

Yc Hz 1 ntyf (1 - nt\c)(liyt)

P(L=clY=y)=
c 1%Yc f)\ Ht 1 7Tt|c( 7-[if|c)(1_yt)

(1.6)
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For calculating the parameters, the integration makes it necessary to use an approx-
imation, for example the Gauss-Hermite quadrature. An algorithm has been imple-

mented in R for this complex LCA, in the package randomLCA (Beath, 2008).

1.4 Research Aims

The overall aim of this thesis is to determine suitable methods of combining the
results of multiple programs in a statistical rigorous manner. These goals can be

broken down into the following aims:

e Determine the suitability of Latent Class Analysis for combining the results of

multiple ChIP-seq programs
e Evaluate the performance of this method for a range of data using simulations

e Use the results from the simulations to make improvements upon the original

analysis, if possible
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Chapter 2

Analysis of multiple ChIP-seq

programs

2.1 Introduction

As ChIP-seq experiments have become more popular, there has been a rise in the
number of programs available to identify putative ChIP-seq peaks (Zhang et al.,
2008; Heinz et al., 2010; Allhoff et al., 2014; Bao et al., 2014; Harmanci, Rozowsky,
and Gerstein, 2014; Xing et al., 2012). These tools assume various different read dis-
tribution models in order to determine when peaks are likely to represent true bind-
ing events rather than noise. These differing assumptions mean that the tools do
not necessarily agree and, often, the levels of agreement are suprisingly low (Stein-
hauser et al., 2016). It is unclear which program has the most accurate model. Since
so many peaks are identified by any given program, it is difficult and prohibitively
expensive to use other molecular methods to corroborate these peaks. Furthermore,
depending on the target of the ChIP-seq experiment, we may observe different read
distributions. For example, some histone marks, such as H3K36me3, have peaks
that are low in read number but wide in range, while others, such as H3K4me3 are

high in read number but narrow in range (Even-Faitelson et al., 2016). Thus there is
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no gold standard for ChIP-seq peak identification.

As mentioned in Chapter 1, one way to gain a more reliable set of peaks is to
use multiple programs. One approach is to find the intersection of associated genes
found between programs. However, this method does not take into account pro-
grams with a high level of disagreement, which will remove genuine binding genes
from the gene set. In contrast, if the programs are too similar in their assumptions,
this may have the opposite problem, leading to the inclusion of non-genuine bind-
ing genes.

Latent Class Analysis (LCA) is a statistical method that can be used to provide a
more principled approach to combining results from multiple callers (Cantarel et al.,
2014). Itis described in greater detail in Chapter 1. An LCA model that uses random
effects may be more appropriate when there is correlation between the programs, as
this correlation violates assumptions in the simple LCA model (Beath and Heller,
2009). For example, certain programs that make similar assumptions will create
these correlations. Therefore, three models will be considered; a simple LCA model
(the LCA model), a LCA model with random effects and constant loading (LCRE
with constant loading) and a LCA model with random effects and non-constant
loading (LCRE with non-constant loading).

In this chapter, I examined these three different models for categorising the genes
found by multiple programs. Initially I described the data as well as the programs
that were used. I then applied a simple LCA model to the data, as well as an LCA
that will include a random element with constant loading and with non-constant

loading, and compared the results.
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2.2 Programs and Dataset

2.2.1 Dataset

I'used the Encyclopedia of DNA Elements (ENCODE) portal to identify a set of high
quality samples (Consortium, 2012). In addition, the portal provided filtered align-
ments, so this saved alignment and processing time. The ChIP-seq target for the
samples was H3K36me3 for Homo sapiens neutrophil cells (Experiment ENCSR373WCB).
The resulting reads were mapped to assembly GRCh38 using the tool BWA (Li and
Durbin, 2009). Two anisogenic replicates were available, to improve the quality
of the peak identification. In addition, control samples (two anisogenic replicates)
from the same laboratory were also obtained from ENCODE for control of noise
(Experiment ENCSR557RDB). Details on the processing pipeline for the samples are
available at www.encodeproject.org (Consortium, 2012). See Appendix A.3 for fur-
ther information.

H3K36me3 is a well-defined histone modification - the trimethylation of lysine 36
of histone H3. This has been found to be tightly associated with active transcription
(Il and Reinberg, 2009). The goal of ENCODE, is to build a comprehensive list of
functional elements in the genome, and this experiment is part of that investigation
(Consortium, 2012). In particular, these samples are meant to indicate the standard

locations of this mark in this particular cell type.

2.2.2 Calling Programs

A number of programs were applied to the H3K36me3 dataset. The programs were
selected to represent a variety of read distribution models. While many of the pro-
grams are differential peak callers, here they are used in a single peak calling ca-

pacity. This means for some, only the peak calling step was used, while in others



24 Chapter 2. Analysis of multiple ChIP-seq programs

the different peak calling method was used with the control as the second data set.

Table 2.1 summarises these programs briefly.

Differential peak
Tool Peak Calling Normalisation Reference
calling method
MACS2  Sliding window approach, Library size normalisation Fold change threshold: Zhang et al., 2008
identifies peaks using Logio likelihood ratio
Poisson distribution cutoff.
HOMER Window based approach, Library size normalisation Fold change threshold Heinz et al., 2010

identifies peaks using
Poisson distribution

THOR Hidden Markov model Allhoff et al., 2014
with three states. Models
with mixture of Poison
distributions. Takes into
account replicates.

enRich Markov  random field Bao etal., 2014
model. Models with a zero
inflated negative binomial.
Now archived.

MUSIC  Uses multiscale decompo- Both control and ChIP Harmanci, Rozowsky, and Gerstein, 2014
sition to identify signifi- reads are filtered for dupli-
cantly enriched regions at cates and then uses control
7 different scales, then data to normalise before
merges these to gain a final peak calling.
set of enriched regions.

BCP Designed for broad enrich- Uses a control to filter false Xing et al., 2012
ment. Uses a stochas- candidates.
tic Bayesian Change-Point
method to calculate poste-
rior means and categorise
the genome. Only uses one
replicate.

TABLE 2.1: A summary of tools used for identification of binding genes
with LCA. Methods are separated into peak calling, normalisation and
differential peak calling method.

The data were analysed using the recommended settings for each tool, given the
type of protein and experiment, resulting in a series of ranges across the genome for
each program. These ranges correspond to putative binding sites. The remaining
analysis was performed with R (see Appendix A).

The ranges from each tool were used to annotate the genome in order to find
associated genes. This accounted for variation in peak length and generated a more
comparable data set for each tool. The outputs from each tool were compared to
the locations of genes, and genes that were identified as having a closely associated

putative peak (& 200bp around gene range) were retained. This was performed
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with the package biomaRt using the Ensembl gene dataset for H. sapiens (Zerbino
etal., 2018). Genes were identified based on their Entrezgene IDs. These genes were
then used for the remainder of the analysis.

An assessment of the intersections of the genes found by each of the tools was
performed using UpSetR (Lex et al., 2014) and is given in Figure 2.1. The largest
intersection contained all peak-calling programs except for enRich, and the top 5
peaks all included MACS2. The intersection of all programs was also large, with
slightly less than 1000 genes being common across all 5 programs. Additionally,
there were 11,590 genes not found by any program (not included in the Figure 2.1).
Notably, MACS2, enRich and BCP were the only programs that called peaks that
were associated with unique genes. While there are a considerable number of genes
commonly found by all the programs, for MACS2, HOMER, and BCP this consti-
tuted at most 61% of the genes found associated with those programs.

The number of genes found to be bound by H3K36me3 is shown in Table 2.2.
enRich not only found the fewest genes in general, but also had the fewest genes
in common with the other programs. Conversely, MUSIC both had the most genes
and had the most in common with other programs. MACS2, MUSIC and BCP also
found a number of genes independently of the other tools, despite HOMER finding

more genes than BCP.
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FIGURE 2.1: UpSetR plot for the intersection of genes found by peak

calling programs. The “Intersection Size” gives the number of genes

within that intersect, while “Set Size” shows the number of genes for

each program as listed. The filled dots indicate which programs were

included in each intersection. The target of the ChIP-seq experiment
was H3K36me3.

Program Number of Genes

MACS2 12599
MUSIC 12068
HOMER 9613
BCP 8867
THOR 6642
enRich 2539

TABLE 2.2: The number of genes found to be bound by H3K36me3 by
each program. Programs are listed in decreasing number of genes.
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2.3 Latent Class Analysis of ChIP-seq Peak Calling Pro-

grams

2.3.1 The Simple LCA Model

The LCA was performed using randomLCA (Beath, 2008). Since I was trying to de-
termine whether any given gene was being bound or not bound within the sample,
two different models were tested, one class or two classes. If the two class LCA was
not found to be a significantly better fit than the one class model, this would imply
that the genes did not partition into two classes. Using the Bayesian information
criterion (BIC), the two class model was found to be the best model.

The two class model can be interpreted as having partitioned the genes into a
binding class and a non-binding class. Figure 2.2 shows the calling probabilities of
each class and program, or the probability that the program has a peak for a gene,
given it is in that class (Schwarz, 1978). Thus Class 2 has genes that are classified as
binding, while Class 1 includes the genes that are classified as non-binding. Confi-
dence intervals at the 0.95 level were also calculated using a parametric bootstrap.
It is clear that there is a high confidence on these binding probabilities, given by the
small range over the confidence interval. Notably, enRich has a low probability of
genes binding in either class. This is partly due to the low number of binding genes
associated with the enRich peaks, as well as the low level of agreement, as observed
in Figure 2.1.

The LCA can be used to estimate the number of binding genes. Binding or non-
binding status is determined by finding the class for each gene that has the maxi-
mum posterior probability, based on the “profile” of that gene (the outcome for each
program of whether it calls the gene or not). In this case, if Class 2 has the highest

posterior probability, the gene is considered binding under the model. Based on the
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FIGURE 2.2: Calling probabilities for the LCA model, including 0.95

confidence intervals. The calling probabilities give the probability that

the program has a peak for a gene, given it is in that class. The confi-

dence interval is shown in colour differing by class, while the darker
line indicates the outcome value.

LCA, 9,824 of the genes were found to be bound. This is higher than the average
number of genes found by each of the programs individually (Table 2.2). Using GO
enrichment analysis, I more closely investigated the function of these genes. The
results are given in Figure 2.3. The top GO terms found were primarily associated
with regulatory functions. This is consistent with the target H3K36me3 being asso-
ciated with transcriptionally active genes.

The observed frequencies were compared to the expected frequencies based on
the 2 Class LCA model (see Table 2.3). These expected frequencies tended to differ
quite significantly from the observed frequencies. The difference between observed
and expected indicated a generally poor fit to the data. A poor fit may be indicative
of a violation of one of the key assumptions of the LCA model; that the programs

are calling independently. This suggested a more complex model may be necessary.

Class

H:
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Profile

Observed Expected Probability of Binding

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
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011010
011011
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011101
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10644.44
1103.46
99.41
10.50
0.00
0.07
0.00
0.34
31.33
3.67
0.30
2.00
0.00
0.72
0.01
3.40
715.29
74.16
6.68
0.73
0.00
0.01
0.00
0.06
2.11
0.29
0.02
0.33
0.00
0.12
0.00
0.56

0.00
0.00
0.00
0.02
0.11
1.00
0.98
1.00
0.00
0.11
0.02
0.98
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.05
0.24
1.00
0.99
1.00
0.00
0.24
0.05
0.99
1.00
1.00
1.00
1.00

100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

666
1204
35
510
0
4
0
10
51
962
11
1458

213

5281

71
181

w o o o o

173

201
1
44
0
908

1528.74
209.93
15.06
243.69
0.29
88.95
1.36
418.59
6.15
509.84
7.83
2396.92
2.86
880.30
13.45
4142.36
102.75
19.15
1.09
40.11
0.05
14.70
0.22
69.15
0.58
84.18
1.29
395.97
0.47
145.42
222
684.31

0.00
0.25
0.05
0.99
1.00
1.00
1.00
1.00
0.27
1.00
0.99
1.00
1.00
1.00
1.00
1.00
0.00
0.44
0.12
1.00
1.00
1.00
1.00
1.00
0.47
1.00
1.00
1.00
1.00
1.00
1.00
1.00

TABLE 2.3: Observed and Expected frequencies for LCA model of
called genes from different programs for H3K36me3 data (without ran-
dom elements). The expected frequencies demonstrate the goodness of
fit of the model. The probability of binding gives the probability of any
given gene in that profile belonging to Class 2 (rounded to 2 decimal
places). The order of the programs in the profile is MACS2, enRich,
HOMER, THOR, BCP, and MUSIC. The profile 000101 is highlighted
to indicate where one would not ordinarily expect to see such a high

probability of binding.
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FIGURE 2.3: Significant GO terms for the combined gene set deter-

mined using the LCA model as a dotplot. The y-axis gives the sig-

nificant GO terms, while the x-axis shows the ratio of genes with this

GO term. The size of the points indicates the number of genes, and the
colour indicates the adjusted p-value for that term.

Also included in the table is the posterior probability of each profile. Many of the
profiles had a highly polarised probability of binding, in the sense that many of the
posterior probabilities are approximately 1 or 0. While this was expected for profiles
where all the programs agreed (000000 and 111111), others, such as profile 000101
(highlighted in Table 2.3), also have a posterior probability of 1. This indicated that
if only THOR and MUSIC called a peak within the region of the gene, the LCA was
confident that binding would occur. This may be due to the low number of genes
that THOR called, and its high agreement to the other programs. It appears that the
LCA model was more likely to weight this program more highly because of these

factors.
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2.3.2 LCA with a random effect

As mentioned in the Introduction, an LCA with a random effect (LCRE) is an alter-
native model for the data when there is evidence of correlation between programs.
This could be due to some other factor about particular peaks that causes depen-
dence between the programs. For example, an unusually strong signal in the data
will be called by all programs, regardless of the different underlying models. The
model for a LCRE is described in Chapter 1 as containing an unobserved continuous
random variable A ~ N(0,1), which is incorporated as part of 77 . (the probability

that program ¢ calls a peak near a particular gene i, given that it is in class c):
-1
Ttle = N (at|c + bt\c)‘i)

This probability then has two parts, a fixed effect 4, and the random effect A;, spe-
cific to gene i. Finally, by is a scaling or loading effect that can either be kept constant
for each program t or may vary.

Using the randomLCA package, I analysed the data above using an LCRE, test-
ing for both a single or two class model, as well as with constant loading or non-
constant loading. The BIC was used to determine the best fit. It was found that
when constant loading was used, a two class LCRE was the best fit, but when non-
constant loading was used, a 1 class LCRE was the best fit. The resulting BICs are
shown in Table 2.4. This indicated that the inclusion of a random effect in the model
could significantly change the class classification. In the case of the LCRE with non-
constant loading, the random effect has accounted for the associations between the

calling programs without the inclusion of an additional class.
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Classes LCRE (Constant Loading) LCRE (No Constant Loading)

1 110194.62 91049.05
2 91622.69 91057.04

TABLE 2.4: BIC for different LCRE models for different class numbers
and with or without constant loading. A lower BIC is preferred.

Notable is the size of the BIC for all four models. This is explained by examining
the equation for the BIC:
BIC = In(n)k — 2In(L)

Where L is the maximised value of the likelihood function of the model and de-
scribes the goodness of fit for the data, n is the number of data points (in this case,
the number of genes) and k is the number of parameters estimated by the model.
Thus, the first term will mean a lower complexity model is preferred when the im-
provement in the fit is small. Because there is a such a large number of genes, the
BIC values will always be large because of the complexity term, even with relatively
simple models. Based on these results, I further investigated the two class LCRE

model and the single class with non-constant loading.

Two Class LCRE with constant loading

The results from the two class LCRE with constant loading were used to generate
calling probabilities for each program and class with percentiles. These are plot-
ted alongside the equivalent probabilities for the LCA in order to compare the two
methods in Figure 2.4. Class 1 is labelled here as the non-binding class and Class 2
as the binding class. The methods showed different calling probabilities for the dif-
ferent programs, with the LCA tending to have higher extremes in the probabilities

relative to the LCRE. For the LCA, the calling probability for most of the programs
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in Class 1 was greater than 0.5 with the exception of enRich, and all the programs
were lower than 0.5 in Class 2. In contrast, both classes had calling probabilities
closer to 0.5 for the LCRE for most programs, except for enRich. This implied that
the LCRE with constant loading found fewer clear differences between the classes
for most of the programs.

The confidence intervals were much wider for the LCRE, and in particular Class
2 showed a much wider range of possible calling probabilities, especially for pro-
grams HOMER, MACS2 and MUSIC. This is due to the addition of the random
effect; because there is an additional term in the model that varies per gene, the call-
ing probabilities for each program will vary per gene also, leading to the intervals
observed.

While in general the LCA showed a greater difference in calling probabilties be-
tween the two classes, there was a much more extreme result for enRich. This was
not observed in the calling probabilities of the LCRE,which instead found a higher
calling probability for enRich in Class 1 and a much lower calling probability for
enRich in Class 2. This implied that enRich was more likely to call a gene in Class 1
than Class 2 compared to the other programs.

Based on the LCRE, 2,320 of the genes were estimated to be bound, a number
much lower than that found using LCA. This number agreed with previous results,
which found that enRich was the most influential program, and the number of genes
found by enRich was 2539 (see Table 2.2). When the gene lists between the LCA and
the LCRE were compared, it was found that the majority of the genes found by the
LCRE were common to both the LCRE and the LCA. This is demonstrated with the
Venn diagram in Figure 2.5. Of the genes found to be binding by LCRE, 58% of these
were also found to be binding by LCA.

To determine functional differences in the genes found by the LCRE compared
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to the LCA, I investigated the gene set using a GO enrichment analysis. Due to the
low number of binding genes identified, no significant GO terms were found.
Finally, I compared the expected and observed results for the LCRE. These re-
sults, along with the matching profile and probability of binding, are given in Table
2.5. Clearly, the expected values matched more closely compared to the expected
values in Table 2.3. However, many of the values still had significant differences,
which was particularly noticeable when the observed value was low. For example,
for the profile 000010 the LCRE was expected to observe only 9 genes, but instead
43 were observed. Examining the probabilities of binding calculated by the LCRE,
the biggest impact appeared to be the presence or absence of enRich. When enRich
was present, the probability of binding was 1, and otherwise was 0. This extreme
set of probabilities matched the results from the calling probabilities and the Venn

diagram, which indicated that the LCRE was heavily biased towards the results of

Class: 1 Class: 2
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FIGURE 2.4: Calling probabilities for the LCRE with constant loading

and the LCA for each program, including 2.5% and 97.5% quantiles.

Ranges are shown in colour differing by model, while the line indicates
the outcome value.

Method
— LcA
— LCRE
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LCRE
8444

FIGURE 2.5: Venn diagram of Entrezgene IDs based on binding genes
based on the LCA and LCRE models.

LCA

enRich. This was likely due to the random effect incorporated into the model low-
ering the influence of the other programs as they had a high agreement between

them.

One Class LCRE with non-constant loading

Calling probabilities were generated for each program and class along with 95%
confidence intervals, as calculated for the LCA. The results are given in Figure 2.6.
As mentioned earlier, a one-class model implies that the genes did not classify into
two classes. The overall low calling probability observed across the programs is
likely because most of the genes were not called by any of the programs (this was
also observed when using the simple LCA model). The small range indicates that
the random effect had a small influence on the program calling probabilities, espe-
cially compared to 2.4.

The observed vs expected results were also calculated, and can be seen in Table
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Profile Observed Expected Probability of Binding‘ Profile Observed Expected Probability of Binding

000000 11592 11508.69 0.02 100000 666 879.65 0.00
000001 266 464.23 0.00 100001 1204 1230.89 0.00
000010 43 8.55 0.00 100010 35 35.71 0.00
000011 50 17.89 0.00 100011 510 359.10 0.00
000100 0 0.11 0.00 100100 0 1.02 0.00
000101 0 0.48 0.00 100101 4 19.80 0.00
000110 0 0.02 0.00 100110 0 0.45 0.00
000111 0 0.19 0.00 100111 10 39.60 0.00
001000 0 22.93 0.00 101000 51 80.53 0.00
001001 0 40.70 0.00 101001 962 752.72 0.00
001010 1 1.24 0.00 101010 11 18.92 0.00
001011 2 8.34 0.00 101011 1458 1417.27 0.00
001100 0 0.03 0.00 101100 2 0.92 0.00
001101 1 0.38 0.00 101101 213 91.27 0.00
001110 0 0.01 0.00 101110 2 1.02 0.00
001111 2 0.36 0.00 101111 5281 5361.45 0.00
010000 704 698.62 1.00 110000 71 94.04 1.00
010001 31 57.54 1.00 110001 181 184.36 1.00
010010 1 0.15 1.00 110010 0 1.00 1.00
010011 3 0.57 1.00 110011 37 23.49 1.00
010100 0 0.00 1.00 110100 0 0.05 1.00
010101 0 0.03 1.00 110101 0 2.34 1.00
010110 0 0.00 1.00 110110 0 0.01 1.00
010111 1 0.00 1.00 110111 0 2.53 1.00
011000 0 2.10 1.00 111000 3 8.66 1.00
011001 1 5.03 1.00 111001 173 155.02 1.00
011010 1 0.03 1.00 111010 0 0.72 1.00
011011 0 0.36 1.00 111011 201 173.49 1.00
011100 0 0.00 1.00 111100 1 0.06 1.00
011101 0 0.03 1.00 111101 44 21.19 1.00
011110 0 0.00 1.00 111110 0 0.03 1.00
011111 1 0.01 1.00 111111 908 932.08 0.99

TABLE 2.5: Observed and Expected frequencies for genes called from

programs from H3K36me3 data based on a two class LCRE model with

constant loading. The expected frequencies demonstrate the goodness

of fit of the model. The order of the programs in the profile is MACS2,

enRich, HOMER, THOR, BCP, and MUSIC. The posterior probabilities

indicate the probability for a gene with that profile being bound, ac-
cording to the model.
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2.6. Note that the probability of binding is not included, as the one-class model as-
sumes all genes have a probability of 1 of being present in the only class within the
model. The expected values in the table indicate that the fit appears improved com-
pared to the equivalent values given by the LCA. For example, the observed num-
ber of genes that had calling profile 000000 was 11592. The LCA expected 10644.44
genes, which was almost 1000 less than actually observed, while the LCRE with
non-constant loading expected 11540.72 genes, a closer fit. Similar results are seen
throughout the table.

It is interesting that such an improvement in the fit was observed; based on the
agreement within the data, some amount of clustering was expected. Specifically,
when the observed results are revisited, some of the largest profiles are those with
total agreement (000000 and 111111) or close to total agreement (101111). The results
from this are not useful for the purpose of the identification of binding genes.

Since there is only one class, the binding genes and GO terms were not examined,

0.54
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FIGURE 2.6: Calling probabilities for the LCRE without constant load-
ing for each program, including 95% confidence intervals. The line in-
dicates the mean calling probability for each program.
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Profile Observed Expected‘ Profile Observed Expected‘ Profile Observed Expected

000000 11592 11540.72 | 010110 0 0.00 101100 2 0.13
000001 266 303.16 010111 1 0.00 101101 213 218.88
000010 43 55.23 011000 0 0.55 101110 2 0.08
000011 50 27.52 011001 1 1.13 101111 5281 5225.37
000100 0 0.02 011010 1 0.07 110000 71 68.13
000101 0 0.07 011011 0 0.26 110001 181 136.98
000110 0 0.00 011100 0 0.00 110010 0 7.04
000111 0 0.02 011101 0 0.00 110011 37 47.40
001000 0 5.40 011110 0 0.00 110100 0 0.03
001001 0 10.63 011111 1 0.00 110101 0 1.39
001010 1 0.66 100000 666 685.55 110110 0 0.01
001011 2 2.44 100001 1204 1270.23 | 110111 0 1.59
001100 0 0.00 100010 35 68.28 111000 3 3.41
001101 1 0.02 100011 510 421.27 111001 173 117.51
001110 0 0.00 100100 0 0.23 111010 0 0.96
001111 2 0.01 100101 4 11.74 111011 201 189.73
010000 704 749.66 100110 0 0.08 111100 1 0.01
010001 31 30.00 100111 10 13.00 111101 44 29.51
010010 1 525 101000 51 31.83 111110 0 0.01
010011 3 2.81 101001 962 981.82 111111 908 968.39
010100 0 0.00 101010 11 8.72

010101 0 0.01 101011 1458 1483.05

TABLE 2.6: Observed and Expected frequencies for LCRE without con-
stant loading of programs from H3K36me3 data. The expected frequen-
cies demonstrate the goodness of fit of the model. The order of the
programs in the profile is MACS2, enRich, HOMER, THOR, BCP, and
MUSIC.
as this would include all the genes within the genome. These results therefore would
not be meaningful for identifying binding activity.
When these results are compared to the LCA and the LCRE with constant load-
ing, the usefulness of using the BIC to determine the class of the model is question-

able. Based on the result for the LCRE with non-constant loading, I would conclude

that there is no binding in any of the programs, however this seems unlikely given
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the number of peaks identified by the programs. Additionally, the other LCA mod-
els also preferred the two class model. Thus, the one class BIC may not be appropri-
ate to use in this way. To assess this, I also decided to analyse the two class LCRE

with non-constant loading.

Two class LCRE with non-constant loading

To compare the results of the one class LCRE with non-constant loading, I assessed
the two class LCRE with non-constant loading, despite the higher BIC value. Re-
turning to the Table 2.4, this model had a lower BIC compared to the two LCRE
with constant loading models, indicating an improved fit.

Calling probabilities for each program and class with percentiles were generated,
and are shown in Figure 2.7, alongside the LCRE and LCA results. The LCRE mod-
els showed very similar calling probabilities for the different programs compared to
the LCA. Both gave enRich a high calling probability, and BCP, HOMER and THOR
a low probability for Class 2. Similarly, MACS2 had a higher calling probability
than the others in Class 1. The LCRE with non-constant loading tended to lower
probabilities for Class 2 than the other two models, particularly for HOMER.

The number of genes identified in the binding class was 2320, using the Ensembl
gene IDS. This was the same number of genes identified using the LCRE with con-
stant loading, indicating that the same genes were identified. This was confirmed
using Figure 2.8, as the LCRE models have coincident sets. The enRich gene set
appeared to be the most influential of the 6 programs.

Similarly to the LCRE with constant loading, no significant GO terms were found,
when the putative binding genes were analysed.

Table 2.7 was generated showing the observed and expected frequencies, as well

as the posterior probabilities for the model. The expected results indicated a better
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tit than either the LCRE with constant loading or the LCA models. For example,
expected values for highly observed profiles, such as Profile 000000 were at least as
close as those found by the other LCRE two class model, and the values for profiles
with fewer observed genes, such as 0010000 also had lower expected values. Com-
paring the expected values to those found by the one class LCRE with non-constant
loading indicated that the two models found similar results. The posterior prob-
abilities were very similar to those esimated by the LCRE with constant loading,
with presence or absence of enRich being the predictive factor. Thus, while the ex-
pected values fitted better, the probability of binding indicated that the model was
not combining the results of the programs in the anticipated way.

To directly compare the posterior probabilities of the different models, I pro-
duced pairwise posterior probability plots, shown in Figure 2.9. These plots indicate

that the posterior probabilities were polarised, as had been observed in the previous

Class: 1 Class: 2

1.004

0.754

Model

— LCA

— LCRE (CL)
— LCRE (NCL)

Calling Probability
g

0.254

0.004

BCP enRich HOMER MACS2 MUSIC THOR BCP enRich HOMER MACS2 MUSIC THOR
Program

FIGURE 2.7: Calling probabilities for the 3 two class models, LCA,
LCRE (CL) and LCRE (NCL), split by class. The line indicates the call-
ing probability for each program.
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Profile Observed Expected Probability of Binding ‘ Profile Observed Expected Probability of Binding
000000 11592 11580.81 0.05 100000 666 680.00 0.03
000001 266 294.63 0.04 100001 1204 1232.10 0.03
000010 43 57.57 0.01 100010 35 71.47 0.01
000011 50 28.34 0.02 100011 510 432.11 0.01
000100 0 0.02 0.01 100100 0 0.26 0.01
000101 0 0.08 0.01 100101 4 12.11 0.02
000110 0 0.00 0.01 100110 0 0.10 0.01
000111 0 0.02 0.01 100111 10 14.16 0.01
001000 0 5.40 0.03 101000 51 31.39 0.03
001001 0 10.45 0.03 101001 962 927.88 0.03
001010 1 0.70 0.01 101010 11 9.10 0.01
001011 2 2.54 0.02 101011 1458 1481.74 0.01
001100 0 0.00 0.01 101100 2 0.14 0.01
001101 1 0.03 0.02 101101 213 203.77 0.02
001110 0 0.00 0.01 101110 2 0.09 0.01
001111 2 0.01 0.01 101111 5281 5289.17 0.01
010000 704 702.67 1.00 110000 71 72.80 1.00
010001 31 38.31 1.00 110001 181 174.15 1.00
010010 1 2.50 1.00 110010 0 3.79 1.00
010011 3 1.80 1.00 110011 37 35.39 1.00
010100 0 0.00 1.00 110100 0 0.02 1.00
010101 0 0.01 1.00 110101 0 1.29 1.00
010110 0 0.00 1.00 110110 0 0.00 1.00
010111 1 0.00 1.00 110111 0 0.96 1.00
011000 0 0.61 1.00 111000 3 3.63 1.00
011001 1 1.48 1.00 111001 173 174.35 1.00
011010 1 0.04 1.00 111010 0 0.56 1.00
011011 0 0.19 1.00 111011 201 192.97 1.00
011100 0 0.00 1.00 111100 1 0.01 1.00
011101 0 0.00 1.00 111101 44 42.69 1.00
011110 0 0.00 1.00 111110 0 0.00 1.00
011111 1 0.00 1.00 111111 908 911.59 1.00

TABLE 2.7: Observed and Expected frequencies for genes called from

programs from H3K36me3 data based on a two class LCRE model with

non-constant loading. The expected frequencies demonstrate the good-

ness of fit of the model. The order of the programs in the profile

is MACS2, enRich, HOMER, THOR, BCP, and MUSIC. The posterior

probabilities indicate the probability for a gene with that profile being
bound, according to the model.



42 Chapter 2. Analysis of multiple ChIP-seq programs

LCRE (CL)

LCRE (NCL)
LCA

FIGURE 2.8: Venn diagram of Ensembl Gene IDs based on binding
genes based on the three models (LCA, LCRE with constant loading
and LCRE with non-constant loading).

posterior probability tables. The LCRE with constant loading and the LCRE without
constant loading appeared to have the most similar posterior probabilities per gene;
this is not suprising given that the models are similar as well. There was a number
of genes which were found to have very different posterior probabilities between
the LCA and the other models; these are indicated by points in the bottom-right and
top-left of the plot. While there was some disagreement expected based on Figure
2.8, such an extreme difference is surprising, given these parameters were fitted us-
ing the same data. Finally, the LCA model appeared more likely to given a range of
posterior probabilities, compared to the extremes of the two LCRE models. This is
again expected, based on Table 2.5. Overall this figure indicates that the LCA found
different results compared to the LCRE models.

Based on these results, the LCA method appeared the most promising. I used
a “sum of scores” method as a comparison to the results from the LCA model for

further investigation. This was performed by summing up the number of programs
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FIGURE 2.9: Pairwise plots of the posterior probabilities of genes from
the three models. The posterior probabilities indicate the likelihood of a
gene being bound under each of the 3 models. Points close to the x =y
line indicate when posterior probabilities were the same for the two
models for a particular gene, indicating agreement between models.
The posterior probabilities are very polarised.
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Sum of Scores Fixed Threshold

9806 9806

(Coincidental)

FIGURE 2.10: Venn diagram comparing the LCA gene set with the gene
set generated from the sum of scores method. There is a high amount
of overlap.

that found a peak associated with each gene, and dividing this by the number of
programs to get a score. The scores that were greater than 0.5 were considered bind-
ing in this method. When these genes were compared to the genes found by the
LCA method, it was found that there was a large amount of overlap. This was in-
teresting because when we reconsider Table 2.3, while the number of programs that
tind binding is clearly an important factor, there are example of programs with high
probability of binding that have fewer than 3 programs calling within the profile.
One example of this is 001100, or when HOMER and THOR are the only programs
that call a gene. For most of these examples, few genes are observed with that pro-

file.
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Classes LCA LCRE (Constant Loading) LCRE (No Constant Loading)

1 161573 76470 75874
2 83738 75887 75900

TABLE 2.8: BIC for different LCA models and class number when not
including enRich in the programs. A lower BIC is preferred.

2.3.3 LCA with a random effect: without enRich

Since the program enRich had such an influential affect on the LCRE with constant
loading, I repeated the analysis without including the enRich data. This would al-
low a greater understanding of how much enRich affected the results. The BIC from
the LCA, the LCRE with constant loading and the LCRE with non-constant loading
is given in Table 2.8. The BIC indicated that for the LCA and the LCRE with constant
loading a two class model was preferred, but for the LCRE non-constant loading, a
one class model was still preferred. The remaining analysis compared the two class
models.

The calling probabilities for the remaining 5 programs were compared side-by-
side in Figure 2.11. The calling probabilities were very similar for Class 1, (which in
this case was the non-binding class) but had clear differences in Class 2. Programs
BCP and THOR showed very low calling probabilities for the LCRE with constant
loading for Class 2, but remained relatively high for the LCA (although still lower
than the other programs). This indicated that HOMER, MACS2 and MUSIC were
the most influential for both models. The calling probabilities for the LCRE were
similar to those observed in Figure 2.7, though the BCP had dropped in probability.
This indicated that removing the program enRich did not make a significant change
to this model.

Next, I compared the putative binding genes found by the LCA and the LCRE
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Class: 1 Class: 2
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FIGURE 2.11: Calling probabilities for the LCRE and the LCA for each
program. Ranges are shown in colour differing by model, while the
line indicates the outcome value.

with constant loading as in previous sections. This indicated that the number of
genes found by the two models were similar to the number found when the results
from enRich were included. One major difference was that all of the genes found by
the LCRE with constant loading were also found by the LCA. This indicated that the
additional genes found previously were due to the influence of the enRich results,
based on the Table 2.5.

The two LCA models, with and without using the results from the enRich pro-
gram were compared using a venn diagram in Figure 2.13. It was found that there
was no difference is the binding genes lists. This indicated that enRich had such a
small effect on the resulting data that it made no difference to the putative binding
genes. As this is the main desired outcome from this analysis, it was concluded
that in terms of the LCA, the inclusion of enRich did not improve nor degrade the
results.

Examining the observed vs the expected results for the LCA without enRich,



2.3. Latent Class Analysis of ChlP-seq Peak Calling Programs 47

there were many similarities with Table 2.3, apart from the number of profiles, which
was decreased due to the absence of enRich. This was particularly the case for the
probability of binding, as expected given the results from Figure 2.13. One notable
difference was that the fit of the model appeared improved, although this was in
fact due to changes in the observed counts rather than changes to the expected.
Finally, I also calculated a new gene list based on a sum of scores method without
enRich, and compared this to the results from LCA in Figure 2.14. Surprisingly, this
indicated that the gene lists were also coincident. Returning to Table 2.9, this again
would not always occur according to the probability of binding; for example, 00110
has a probability of binding of 0.98 but would not be considered binding using the
sum of scores method. While in this case the two methods perform comparatively,
this may be an irregular occurrence, raising questions regarding the similarity of the

results from these two methods.

8414

LCRE (CL

LCA

FIGURE 2.12: Venn diagram of the binding genes found by the models

LCA and LCRE with constant loading, based on the Entrezgene ID. The

genes found by the LCRE with constant loading model were also found
by the LCA model.
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FIGURE 2.13: Ven diagram of the binding genes found by the LCA

model with or without using the results from the program enRich using

the Entrezgene ID. The genes are the same, and are therefore labelled
“coincidental”.

Sum of Scores Fixed Threshold

9806 9806
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FIGURE 2.14: Venn diagram of the binding genes found by the LCA

model without using the results from the program enRich and the gene

set generated using the sum of scores method using Entrezgene IDs.
The genes are the same, and are therefore labelled “coincident”.
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Profile Observed Expected Probability of Binding | Profile Observed Expected Probability of Binding

00000 12296 11316.09 0.00 10000 737 1675.18 0.00
00001 297 1220.76 0.00 10001 1385 235.15 0.23
00010 44 105.64 0.00 10010 35 16.48 0.05
00011 53 11.61 0.02 10011 547 266.19 0.99
00100 0 0.00 0.11 10100 0 0.30 1.00
00101 0 0.08 1.00 10101 4 95.55 1.00
00110 0 0.00 0.98 10110 0 1.47 1.00
00111 1 0.37 1.00 10111 10 464.11 1.00
01000 0 34.03 0.00 11000 54 6.86 0.27
01001 1 413 0.11 11001 1135 573.16 1.00
01010 2 0.32 0.02 11010 11 8.89 0.99
01011 2 2.25 0.98 11011 1659 2781.26 1.00
01100 0 0.00 1.00 11100 3 3.19 1.00
01101 1 0.80 1.00 11101 257 1004.71 1.00
01110 0 0.01 1.00 11110 2 15.51 1.00
01111 3 3.90 1.00 11111 6189 4880.00 1.00

TABLE 2.9: Observed and Expected frequencies for genes called from

programs from H3K36me3 data based on a two class LCA model, calcu-

lated without using the results from the program enRich. The expected

frequencies demonstrate the goodness of fit of the model. The order of

the programs in the profile is MACS2, HOMER, THOR, BCP, and MU-

SIC. The posterior probabilities indicate the probability for a gene with
that profile being bound, according to the model.

2.4 Conclusions

The LCA appeared to perform best of the three models considered. Initially, six pro-
grams were used to generate the ChIP-seq data-set. While there was a good level of
agreement for most of the programs, enRich had a very low level of agreement with
the other programs, and had the smallest number of total genes. The BIC was used
to identify when the two class model was appropriate, and this led to the assessment
of three models; the two class LCA, the two class LCRE with constant loading, and
the one class LCRE without constant loading. While these models were assessed,
additionally the two class LCRE with non-constant loading was also analysed, as

the BIC was still competitive with the other models.
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Of the three models considered, the LCA had the most consistent posterior prob-
abilities, as well as the most confident calling probabilities for the 6 programs. This
model also generated GO terms consistent with the original binding protein, a marker
of transcriptionally active genes. In contrast, the two LCRE models had better ex-
pected values compared to the observed. The one class model was not assessed
turther, as the posterior probabilities were the same for all genes (as they belonged
to the same single class). The LCRE with constant loading and the LCRE with non-
constant loading models had very similar results, and did not combine the results of
the programs in the way anticipated. Instead, enRich appeared to be the dominant
factor in determining gene classification.

The method “sum of scores” was used as a simplistic method of using the level of
agreement between programs to generate a result. This was compared in particular
to the simple LCA as this appeared to be the best performing model. There was a
high degree of similarity between the two in terms of the putative binding genes
lists.

Since enRich appeared influential, I removed this program from the results and
repeated the analysis. This had a small effect on the results, and in particular the
LCA was almost unaffected, particularly when the binding genes were examined. In
terms of BIC, the LCRE with non-constant loading still preferred a one-class model,
so the other models were investigated only. The putative binding genes list was
unaffected by the change in programs included. The LCRE models were more af-
fected; removing enRich reduced the number of genes found, and made the model
largely dependent on HOMER, MACS and MUSIC. A new gene list was generated
using the sum of scores method but while not including enRich. This was found to
tind the same genes as the LCA. Based on the probability of binding of the different

profiles for the LCA model without enRich, this may not always be the case.
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The results of the three models raised questions about the validity of using the
BIC to determine appropriate fit, as well as how appropriate the use of the LCRE
model is over the simpler LCA model. Furthermore, the results of the LCRE mod-
els indicate undesirable sensitivity to programs with small gene sets. The sum of
scores method proved to be competitive with the LCA model, however it was un-
clear which circumstances this occurred under. Additional research was needed to
resolve these issues and develop new techniques for more robust identification of

putative binding genes.
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Chapter 3

Simulation Study

3.1 Introduction

To understand how the different LCA models are affected by changes to the under-
lying data, I performed a series of simulations. The simulations changed a range
of conditions in the underlying data, and allowed the performance of the different
models to be measured. Ideally, a better understanding of these factors will inform
the application of LCA to real data.

I used the simulated data to investigate the LCA models and understand the
results in Chapter 2. Firstly, using the underlying knowledge of the simulated data,
I compared the three models using different measures. This was used to determine
the most accurate model for each of the scenarios. Next, I investigated the BIC, both
as a means to determine preferred class number for the model, and as a method to
compare the three models to each other when the true answer is not known. Using
the conclusions from each of these investigations, I was able to determine the best

ways of analysing ChIP-seq data using LCA.
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3.2 Methods

Using R, I generated test data for the three different models (LCA, LCRE with con-
stant loading, LCRE with non-constant loading) over a number of different scenar-

i0s.

3.2.1 Simulating ChIP-seq data

In order to generate data, the simulation uses the concept of a score from which a
binary threshold is derived. This is a simple model of how real ChIP-seq data is
also generated. All of the programs will identify a great number of putative peaks,
but some will be considered unlikely to be actual peaks given the profile of the
surrounding noise. Thus, some sort of filter is required to reduce the number of
peaks to be more manageable. Every program used in this study, and almost all of
the tools considered for ChIP-seq peak identification, will label the peaks with some
sort of score. For MACS2 and THOR this score is a —log19 p-value, while for BCP
and HOMER the p-value is used. MUSIC uses the g-value as a score. These scores
are given to each peak at part of the calculations within the programs, and this is
used later on in order to reduce the number of putative peaks given to the user, and
thus acts as a threshold for the “best” putative peaks. The user can set a particular
score threshold by specifying, for example, the maximum p-value allowed for the
peaks.

Ideally, I would be able to use these score directly to gain a better idea of the
peaks, and use some sort of clustering classification method such as the Multivari-
ate Gaussian Mixture model (MGMM). However, the peak scores for all of the peaks
identified by each program are difficult to access, and are influenced by the thresh-

old set. For example, when peaks are close together, the programs may combine the



3.2. Methods 55

peaks into one peak region, so a higher threshold may in fact reduce the number
of peaks. Furthermore, because I am using genes rather than peaks as a means of
comparing multiple programs, I would ideally have a score for each gene, based on
the peak scores. However, some genes may still remain without a score, if no peak is
found to be associated with it. Thus this investigation was beyond the scope of this
thesis. However, this concept will be used with the generation the simulated data.
In this case, the score will be directly associated with the genes, and a threshold will

be used to generate binary data.

3.2.2 Generation of Test Data

The number of “genes” was set at n = 3000, and the number of peak calling pro-
grams was given as p. The proportion of binding genes was given by py, and was
used to calculate the number of binding and non-binding genes for the data set;
n1 = | pon] and ny = 1 — nq respectively.

I made some assumptions about the underlying model of the data, in particu-
lar how scores for binding and non-binding genes may differ. If the genes were
binding, the scores were randomly sampled from a normal distribution with mean
of 4, and a standard deviation of 1 (X1 ~ Ny(J,1)), while non-binding gene scores
were randomly sampled from a normal distribution with a mean of —¢ and a stan-
dard deviation of 1 (X2 ~ N(—4,1)). Scores were calculated for each gene and each
program, resulting in 3000p scores. These were allocated into lists for each pro-
gram, such that each program had 7, binding genes and n; non-binding genes. The
randomly sampled scores were then listed together as X;;, where i is the program
number and j is the gene number.

The random effect Z was generated from a normal distribution with mean 0 and

standard deviation o7, and for each simulation a distribution B ~ U(0,2) was used
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to randomly determine the coefficients for the random effects for each program. The
coefficients determine how much of the random effect to add to each program. This
represents how each program will be more or less affected by the same random
effect. If two or more programs are strongly affected by the random effect, this will
result in a higher correlation between the two programs. The resulting values from

adding the random effect are thus:

Wij=X;j+Zjb; i=1,.,p and j=1.n

The resulting binary outcomes for each program were then calculated using a

threshold T;:

1 if Wi’]' > T;
Yi,]' = i= 1,...,p and ] = 1,...,71

0 otherwise

To create different scenarios, a number of parameters were varied. The parame-
ters and the values tested are given in Table 3.1. The LCA model was hypothesised
to be the best model when o is 0, while the LCRE models was hypothesised as the
better model when ¢, was greater than 0. This is because a high value of ¢, increases
the correlation between programs. The program threshold parameter, T;, was also
changed. This affected the threshold scores for each program to call a gene as bind-
ing or otherwise; constant keeps the threshold score at 0, while varied changed the
threshold score to:

2i

Li=%-1 i=1..p

Such that the thresholds were evenly spread for all programs. All combinations

were tested. In addition, data with only one cluster was generated by setting 6 to 0
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Parameter Description Scenario Values

p Number of programs {5,7}

Difference between binding
0 {0.5,1.5}
and non-binding scores

oy Level of random effect for scores {0,0.5,1, 2,4}
Po Proportion of binding genes {0.1,0.3,0.5,0.7,0.9}

Whether programs had the _
Program thresholds {Constant, Varied}

same threshold or constant thresholds

TABLE 3.1: Values for the parameters of the simulation in the different

scenarios. For each scenario, one of each of the values is selected for

each parameter. All combination of scenarios were tested once. In total
200 different scenarios were tested.

while changing the other parameters as shown in Table 3.1.
After I observed that there was a high variability for the same parameters for
both the LCA and the LCRE due to the randomness of both the scores and the ran-

dom effect, I repeated each simulation scenario 20 times to obtain an average corre-

lation, as well as a standard deviation.

3.2.3 Model Fit of Simulation Data

The matrix Y; ; was fit to six different models; an LCA, an LCRE with constant load-
ing, and an LCRE with non-constant loading, with both 1 class and 2 classes. The
posterior probabilities for being present in Class 1 were obtained for the two class
models. These were associated with the original genes. In a few cases, the model
titting procedure failed as the adaptive Gauss Hermite quadrature did not converge
for some replications in some scenarios. When this occurred, posterior probabilities

could not be obtained for these replications, and were not used for further analysis.
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An MGMM was used to fit the original scores in Wj;. This model categorises
data points into a set number of clusters, where each cluster is made up of points
that are randomly sampled from a Gaussian distribution. Since the MGMM makes
tull use of the underlying scores of each gene, the posterior probabilities the model
generates are a “gold standard” to which the posterior probabilities of the LCA and
LCRE can be compared. After fitting the data, I obtained the posterior probability

for each gene of being in one of the clusters.

3.2.4 Method Assesment

The correlation between the posterior probabilities of the three LCA models and
the MGMM across the genes were calculated. A higher correlation indicates a bet-
ter fit to the data. An average correlation for each scenario was calculated using
the results from the 20 replications. These results were compared for each model
for each scenario, and was used as an assessment of the accuracy of the posterior
probabilities.

Another statistic calculated was the root mean square error (RMSE) between pos-

terior probabilities of the MGMM and the model:

1 & .
RMSE = \/E Y (Pmi— Pri)?
iz

Where p ; are the posterior probabilities for model X, M is the MGMM model and
L is one of the three LCA models being tested. This was used to confirm that the
posterior probabilities were truly similar between the MGMM and the LCA and
LCRE, since the correlation would still be high even if the posterior probabilities
were different, as long as the difference in the posterior probability remained the

same across all of the genes. This was calculated using one of the replicates.
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To assess how changes in the scenario parameters might affect whether a one or
two class scenario was observed, I calculated the BIC for all replicates and scenar-
ios, and then averaged the BIC across the replicates. The BIC was used to compare
the different models over the different scenarios. This was useful as these measure-
ments do not rely on the MGMM, and thus give an indication of how correlated they
are to a good posterior probability. For example, if a model with a poor posterior
probability resulted in a good fit or the best BIC, this indicated that testing these for
real data is not necessarily informative.

A “sum of scores” approach was also performed, and the correlation with MGMM
calculated, as a simple method to compare to the other models. To find the sum of
scores, the outcome of each program was summed together, to get a score for each

gene:

P
Sj=2.Y,
i=1

Thus, this calculates “votes” from each program directly, as was done during the
analysis of the ChIP-seq data in Chapter 2. This was performed for one replicate of
each scenario, similar to the RMSE. Note that one difference between this method
and that in Chapter 2 was that the score was not divided by the total number of
programs in this case, as the sum of scores is used to find a correlation with the
MGMM,, rather than to calculate the number of binding genes.

I also investigated how often the BIC preferred the one class model. I analysed
the same data using a one class model for the LCA, and the two LCRE models and
calculated the BIC for each. The difference between the BIC for two class model and
the one class model was then calculated to generate ABIC. This was then assessed
across all 20 simulations to check how often a one class model was preferred over a

two class model for the same data.
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3.3 Results

3.3.1 Comparing the Simple LCA and LCRE models
Correlation to MGMM

Initially, the correlation of the posterior probabilities for each gene was compared
for the three methods; LCA, LCRE with constant loading and the LCRE with non-
constant loading, without considering the effect of averaging over different thresh-
old values. A higher correlation to the MGMM was considered to indicate a closer
tit. An example of the results for one scenario is given in Table 3.2 with parameters
{p,é,0, po, Program Threshold} = {5,0.5,0,0.1, Varied } (Scenario 1).

Full results, including the correlation tables for each scenario, can be found in
Appendix B.1.

To compare the three methods, pairwise scatter plots were generated, comparing
the average correlation compared to the MGMM for each scenario. This resulted in
the three graphs in Figure 3.1. Each correlation is coloured based on the value of
0z. The LCRE models were expected to show the most improvement over the LCA
model when ¢, was high.

Most of the time, the models showed a high correlation to the MGMM, indicated
by having a correlation above 0.75. Furthermore, the LCA was more likely to have
high correlations, as there are a greater number of points found above 0.75 for the
LCA compared to the other models. Overall, under low values of o3, all of the
models were competitive, as most of the points with ¢, at 0 to 0.5 lie close to the
x = y line. Notably, these values also have some of the highest correlations for any
of the models. This may be because there is less likely to be overlap between the
scores of the binding and non-binding genes when the random effect is low for all

of the programs, allowing all the models to more correctly classify the genes.
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LCA LCRE LCRE
(Constant Loading) (Non-Constant Loading)

0.76 0.74 0.72
0.74 0.74 0.74
0.71 0.64 0.63
0.76 0.76 0.72
0.75 0.33 0.55
0.77 0.38 0.05
0.76 0.68 0.62
0.75 0.75 0.75
0.75 0.75 0.75
0.77 0.31 0.03
0.76 0.35 0.06
0.71 0.68 0.59
0.75 0.55 0.75
0.74 0.74 0.74
0.74 0.74 0.74
0.77 0.22 0.08
0.74 0.45 0.06
0.74 0.74 0.74
0.70 0.70 0.70
0.75 0.25 0.01
Average 0.75 0.57 0.50
Standard Deviation 0.02 0.19 0.30

TABLE 3.2: Correlation results for the LCA and LCRE (constant load-
ing) and LCRE (non-constant loading) for Scenario 1. Correlation com-
pares the posterior probability for all genes for the LCA and LCRE to
the posterior probability for all genes for the MGMM. The average and
standard deviations were used to compare Scenarios.
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When ¢, was high, at 2 or 4, the LCRE with non-constant loading tended to per-
form the best over both of the models. These values also tended to have lower cor-
relation to the MGMM, especially for the LCA and the LCRE with constant loading
model. However, for smaller values, the LCRE with non-constant loading model
was more likely to be outperformed by the LCA model. In some cases, the LCA
model performs much better than either model, even for very high values of ¢,. For
those points, the other parameters in those scenarios may indicate why that is the
case.

To identify if there was any other trend to which scenarios had higher correla-
tions within the models, I collated the results into Table 3.3. This only included
scenarios where the difference between the parameters was greater than 0.01, and
anything smaller was considered an equivalent correlation (and the scenario the
methods are competitive). In total, 113 of the 200 scenarios had a model that per-
formed significantly better. Most of these scenarios found that the LCA was the best
model (74), followed by the LCRE with no contant loading (34).

The parameters can be examined to identify influential factors for the correla-
tions. The number of programs, the proportion of binding sites (p and py, respec-
tively) and the program thresholds had approximately equal number of scenarios
within each row, indicating that these parameters did not affect the correlation to
the MGMM for any of the models.

There is a clear difference in the frequencies of  and o for the three models. As
observed in Figure 3.1, the LCA model performed better when the values of 0, were
low (0,0.5,1), while the LCRE with non-constant loading performed better when the
values of 0z were high (2,4). The parameter option with the lowest frequency for
0, was 0, which was expected; when there was no random effect all of the models

should perform equally well.
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FIGURE 3.1: Average correlation to the MGMM model for models LCA,
LCRE (constant loading) and LCRE (non-constant loading) for different
scenarios, coloured by degree of random effect (¢). A higher value on
both axes indicates a better fit to the MGMM. Points above the x = y
line indicate that the model on the y-axis performed better, while points
below indicate that the model on the x-axis performed better. When the
points lie close to the x = y line the models were competitive. When
the value of 0, were high, the LCRE (non-constant loading) performed

better; otherwise the LCA performed better.
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The value of ¢ also influenced the model performance; when 6 = 0.5, the LCA
model tended to perform better, while when § = 1.5, the LCRE with non-constant
loading performed better. Since § controls the level of overlap between the binding
and non-binding genes, this indicated that the LCA was better able to distinguish
the classification when the clustering was less clear. When § was large, there was
a greater correlation between the programs across different genes (since two genes
that are both either binding or non-binding are more likely to be identified by mul-
tiple programs as binding). This may explain why the LCRE with non-constant
loading was able to perform better in these scenarios.

I also investigated why some of the scenarios with very high values of ¢, had
the best correlations when the model LCA was used. These are given in Table 3.4.
The LCA was the best model to use in terms of correlation if both the number of
programs was higher and § was low, or that the number of programs was lower and
0 was high. These are scenarios where the classification of the clusters was more
distinct. The results from Table 3.4 showed that while the trends observed based on

Table 3.3 are useful, they do not hold for all scenarios.

RMSE

In order to directly compare the LCA and LCRE models, the RMSE for each of the
scenarios is given in pairwise plots in Figure 3.2. The RMSE looks at the actual dif-
ference per gene of the posterior probability found by the MGMM and the different
LCA models. A lower value indicates a smaller difference between the posterior
probabilities. In general, most of the points lie close to the x = y line in the graphs.
This implies that there were similar differences to the MGMM posterior probabil-
ities across all three models. Interestingly, the LCA and the LCRE with constant

loading appeared to be the most similar, even though in Figure 3.1, the two LCRE
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p ) o Po Program Thresholds ~ Total

5 7 05 15 0 05 1 2 4 01 03 05 07 09  Constant Varied
LCA 37 39 53 23 10 21 34 8 3 16 14 17 16 13 48 36 76
LCRE

5 0 4 1 0o o0 1 2 2 0o 2 0 0 3 4 1 5
(Constant Loading)
LCRE

23 22 0 45 0 6 1 19 19 8 9 9 8 1 22 23 45

(Non-Constant Loading)

TABLE 3.3: Frequencies of scenarios with the best correlation (rounded
to 2 decimal places) to the MGMM across the 3 models. The number of
scenarios with particular parameter values are given in each column.
Columns are grouped by parameter type. Total number of scenarios

with a higher correlation is given at the end.

LCA LCRE LCRE p 6 o0, po Program Threshold
(Constant Loading) (Non-Constant Loading)
0.3290255 0.2371867 0.3022940 5 15 2 0.1 Varied
0.7575153 0.7523142 0.5816146 7 05 2 0.1 Varied
0.7645865 0.7437737 0.4498586 7 05 2 03 Varied
0.7550873  0.7258098 0.4000522 7 05 2 05 Varied
0.7498009 0.7369426 0.3443155 7 05 2 0.7 Varied
0.7798217 0.7706741 0.5516350 7 05 2 0.1 Constant
0.7674148 0.7516951 0.4820158 7 05 2 05 Constant
0.7650746 0.7626214 0.5278362 7 05 2 09 Constant
0.1639648 0.1195358 0.1446827 5 15 4 0.1 Varied
0.7756224 0.7747874 0.5714927 7 05 4 03 Constant
0.7669850 0.7641006 0.5252295 7 05 4 0.7 Constant

TABLE 3.4: Parameter details for scenarios where the value of 0, was

high but LCA had the highest correlation to MGMM.
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models had more similar correlations overall. Most of the RMSE values appeared
to be less than 0.4, although could be as high as 0.8 for some of the scenarios. The
LCRE models tended to have a greater range of RMSE values, especially the model
with constant loading.

The smaller values of o, generally had very low differences across all three meth-
ods, which is consistent with the results found in Figure 3.1. Similarly, for high val-
ues of 0, the LCRE with non-constant loading performed best. For medium values
of 03, such as 1 and 0.5, the LCA tended to outperform the other two models. Again,
differences between the scenarios other than the random effect must cause of some
of the differences observed, in particular for those scenarios that had high values of
0, but had similar RSMEs for all models.

To identify trends in the RMSE, I generated a new table similar to Table 3.3. The
results are given in Table 3.5. In total, 140 of the 200 scenarios had a lower RMSE in
one of the models compared to the others. More scenarios had a lower RMSE in the
LCRE with non-constant loading model (72) compared to the LCRE with constant
loading (23) and the LCA (45) models. This reversal in the performance frequencies
was surprising because the LCA appeared competitive in Figure 3.5.

The most influential parameters observed in Table 3.3 were also observed in Ta-
ble 3.5. The parameters that had the biggest effect on the model performance were
0, and 4. The LCA and LCRE with non-constant loading models were better able
to perform with low values of ¢,, while the LCRE with constant loading model
performed best under high values of ¢,. Specifically, the LCRE with non-constant
loading model performed best under the middle range o, values (0.5-2), perhaps be-
cause the loading in this case had less of an effect on the final binding or not binding

classification of the genes.
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FIGURE 3.2: RMSE for the posterior probabilities for the MGMM model
for LCA and LCRE (constant loading) and the LCRE (non-constant
loading). A smaller value indicates a lower RMSE, which is preferred.
Points above the y = x line indicate scenarios where the model on the
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ilar results, but the y-axis performed better. For most of the scenarios,
the models appear equivalent (points lie close to the x = y line).
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p ) o, Po Program Thresholds Total

5 7 05 1.5 0 05 1 2 4 01 03 05 07 09 Constant ~ Varied

LCA 19 26 26 19 5 11 23 3 3 g§ 8 11 11 7 23 22 45

LCRE
12 11 20 3 1 5 7 6 4 4 3 6 5 5 9 14 23

(Constant Loading)

LCRE
35 37 21 51 0 16 7 26 23 17 15 12 11 17 38 34 72

(Non-Constant Loading)

TABLE 3.5: Frequencies of scenarios that found a lower RMSE

(rounded to 2 decimal places) to the MGMM across the 3 models. The

number of scenarios with particular parameters are given in each col-

umn. Columns are grouped by parameter type. Total number of sce-
narios with a higher correlation is given at the end.

BIC

I obtained the average BIC for the 20 replicates in each scenario to determine the
effect the different parameters had on the BIC, and which models performed best.
These are shown in a pair-wise fashion in Figure 3.3. For most of the scenarios, the
values appeared similar as the points lay close to the x = y line. This is in part
because the scenario points are distributed across a wide range of BIC values, so
the differences are small in comparison. Thus, any differences that are noticeable
indicated a large actual difference in BIC. There did not appear to be any clear trend
in the BIC value and the value of o.

A lower value for the BIC is desirable, so the LCRE with non-constant loading
and the LCRE with constant loading appear to perform better than the LCA. This
was generally the case for high values of ¢, which was consistent with the results
from the correlation to MGMM and the RMSE. The two LCRE models appeared to
be competitive, with most points lying very close to the x = y in the pairwise plot
of LCRE (CL) and LCRE (NCL).

The frequencies of the scenarios with significantly lower BIC are summarised in
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FIGURE 3.3: Pairwise plots of the average BIC for 20 replicates of each
scenarios for the LCA, LCRE with constant loading and LCRE with
non-constant loading models. A smaller BIC is desirable, so points that
lie above the y = x line indicate that the model on the x-axis is pre-
ferred, while points that lie below the y = x line indicate that the model
on the y-axis is preferred. Relative to the other scenarios, BICs for each

individual scenario are similar.
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Table 3.6. This indicated that 186 of the 200 scenarios had a better BIC for one model
compared to the others. This was mostly found to be either of the two LCRE models
with 68 and 77 scenarios preferring the constant loading and non-constant loading
model, respectively. Similar trends in the parameters were observed compared to
the correlation and RMSE tables. The parameters that appeared to influence the BIC
are 0, 0 and p, with the other parameters having similar numbers across the three
models. The value of ¢, was 0 for almost all of the scenarios where the LCA was
preferred, and was greater than 0 for the LCRE with constant loading and for LCRE
with non-constant loading. These results was originally hypothesised based on the
model parameters and indicates that, in terms of model fit, the models are working
as expected. Parameters p and 6 behaved similarly, with LCRE with constant load-
ing model preferred for low values and the LCRE with non-constant loading model

preferred for high values.

4 0 oy Po Program Thresholds Total

5 7 05 15 0 05 1 2 4 01 03 05 07 09 Constant  Varied

LCA 21 20 21 20 40 1 0 0 O 9 8 8 8 8 21 20 41
LCRE

43 25 51 17 0 18 31 13 6 13 13 17 14 11 34 34 68
(Constant Loading)
LCRE

24 53 22 55 0 15 6 25 31 15 14 15 17 16 39 38 77

(Non-Constant Loading)

TABLE 3.6: Frequencies of scenarios that found a significantly lower
BIC (difference greater than 3) to the other 2 models. The number
of scenarios with particular parameters are given in each column.
Columns are grouped by parameter type. Total number of scenarios
with a lower BIC associated with each model is given at the end.

Sum of Scores

In addition to the other measures, I calculated the correlation of the results of the

sum of scores method (described in Methods) to the posterior probabilities of the
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MGMM. These correlations were compared to the correlations of the other 3 meth-
ods. The sum of scores was used as a simplistic method, where positive responses
for each program are counted, and the higher the number of positive responses the
greater the likelihood a gene is binding. Thus the level of improvement given by the
3 LCA models over this method could be investigated. It should be noted, however,
that the sum of scores should not be considered an alternative method, because it
does not generate posterior probabilities.

The pairwise correlations are given in Figure 3.4. The LCA models gave an im-
proved result for many scenarios, and this appeared to be largely influenced by the
value of 0. When the value of 0, was 0 or 0.5, all of the models showed a moderate
improvement over the sum of scores approach. However, for medium to large val-
ues of 0, the result varied depending on the LCA model. The simple LCA model
performed best for many of the moderate o, scenarios, but performed worse for the
scenarios with higher (2 and 4) values of 0;. This was consistent with the previous
performance of the LCA. In contrast, the LCRE models performed poorly compared
to the sum of scores for most scenarios where o, was equal to 1. The LCRE with
constant loading performed poorly for higher values of ¢, but the LCRE with non-
constant loading performed much better for high values of ¢, again consistent with
previous observations.

The sum of scores method was competitive with the models. This was also ob-
served in Chapter 2, when this method was compared to the results of the LCA.
However, there are a number of cases where the LCA models, in particular the LCA
and the LCRE with non-constant loading, do show improvement over this method.

To identify trends in the results, Table 3.7 was generated. This shows the cases
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p 6 o Po Program Thresholds Total

5 7 05 15 005 1 2 4 01 03 05 07 09 Constant  Varied

Sum of Scores 38 40 60 18 0 12 27 19 20 18 14 15 16 15 39 39 78

TABLE 3.7: Frequencies of scenarios that found a higher correlation to

the MGMM (difference greater than 3) for the sum of scores method

compared to the 3 LCA models. The number of scenarios with partic-

ular parameters are given in each column. Columns are grouped by

parameter type. Total number of scenarios with a better correlation to

the MGMM associated with the sum of scores model is given at the
end.

where the sum of scores performed better than any of the 3 LCA models. This oc-
curred for 78 out of the 200 scenarios. As noted in Figure 3.4, this was predomi-
nantly for the scenarios with a large values of ¢,. Additionally, the scenarios were
also much more likely to have a § of 0.5, compared to higher values of §. This indi-
cated that when the difference between the binding and non-binding genes scores
were small, meaning that the thresholds were more likely to include genes that were

not binding, this simpler method tends to perform better.

Summary of the measures

Finally, I collated a summary of the different results across the average correlation to
the MGMM, the RMSE and the BIC in Table 3.8. This identified key patterns within
the data, and the level of agreement across the three measures. The number of sce-
narios with each combination of results was counted (for example, preferred LCA
for correlation, LCA for RMSE and LCA for BIC) and is given in the far right hand
side of the table under “Frequency”. As highlighted in the table, certain combi-
nations appeared disproportionately frequently compared to the others, with three
combinations representing 95 of the 200 scenarios. That these combinations were
so frequent implies that most parameters had a small effect on the performance of

individual models. This follows from the trends observed in Tables 3.3, 3.5 and
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3.6, that most of the time ¢, and J correlated with the preferred model while other
parameters were distributed approximately equally across all the models.

The three most common combinations, highlighted in Table 3.8, were:

e The LCA was preferred for the correlation and RMSE but the LCRE with con-

stant loading was preferred for BIC.
e The LCRE with non-constant loading was preferred for all three measures.

e The average correlation and RMSE had no clear preference (indicating that
two or all three of the models performed equally well for that measure) but

that the LCA performed best on BIC.

Further examining the parameters from these combinations, the first combination
contained scenarios with medium values of ¢, and slightly more scenarios with
a lower value of §. In contrast, the combination with preferences for LCRE with
non-constant loading contained scenarios with exclusively a higher value of J, and
higher values of 0. Finally, the last combination with only a preference for the LCA
model when using the BIC measure also had more scenarios with higher value of
delta, and exclusively scenarios with a value of 0 in ¢,. This was expected, as it
means no random effect was present, and thus all of the models should perform
competitively. When all the models perform competitively, the simplest model in

terms of the number of parameters (LCA) is preferred by BIC.

Conclusions

Based on these results, the models LCA and LCRE with non-constant loading ap-
peared to be the two most competitive models, but the one that was preferred
largely depended on the parameters ¢, and 6. A large ¢ and a large ¢, meant that

the LCRE with non-constant loading was more likely to be preferred; otherwise the
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LCA was preferred. Additionally, the LCA may be a better choice for practical rea-
sons, as estimations for the LCRE with non-constant loading generally take a lot
longer to calculate.

The sum of scores was considered to evaluate the benefit of using LCA rather
than a naive method. The results indicated that, in terms of correlation with the
MGMM, the LCA models offer on average a small improvement, although there
were many scenarios where the sum of scores produced a higher correlation. In par-
ticular, the LCA model was preferred to the sum of scores method for scenarios with

low ¢, and high §. However, the sum of scores cannot be used to effectively rank

Average Correlation RMSE BIC Frequency ‘ Average Correlation RMSE BIC Frequency
LCA LCA LCA 3 LCRE.CL - - 1
LCA LCA LCRECL 31 LCRE.NCL LCA LCRENCL 2
LCA LCA LCRE.NCL 3 LCRE.NCL LCRE.CL LCRENCL 1
LCA LCA - 2 LCRE.NCL LCRENCL LCRE.CL 2
LCA LCRECL LCA 1 LCRE.NCL LCRENCL LCRENCL 36
LCA LCRE.CL LCRE.CL 9 LCRE.NCL LCRE.NCL - 2
LCA LCRECL LCRENCL 3 LCRE.NCL - LCRECL 2
LCA LCRECL - 2 - LCA LCA 2
LCA LCRENCL LCRE.CL 3 - LCA LCRENCL 2
LCA LCRE.NCL LCRE.NCL 4 - LCRE.CL LCRECL 5
LCA LCRENCL - 1 - LCRE.CL LCRENCL 2
LCA - LCA 7 - LCRENCL LCRECL 6
LCA - LCRE.CL 2 - LCRE.NCL LCRENCL 12
LCA - LCRENCL 4 - LCRENCL - 3
LCA - - 1 - - LCA 28
LCRE.CL LCRENCL LCRECL 2 - - LCRECL 6
LCRE.CL LCRE.NCL LCRE.NCL 1 - - LCRE.NCL 6
LCRE.CL - LCRENCL 1 - - - 2

TABLE 3.8: Summary of results for model simulations. For each of
the three different analyses presented, Average Correlation, RMSE and
BIC, the best performing model was found for each scenario, and the
frequency of the different combinations was counted. For example,
LCA performed best in all three analyses for only 3 different scenar-
ios (first row). The most common 3 results are highlighted in blue.
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genes like the LCA model, because the sum of scores are not posterior probabili-
ties, and the resulting scores were coarse in comparison, since there are only p + 1
possible values.

Given that the LCA model covered a wider range of 0, values, is a simpler model,
and is quick to calculate with the use of randomLCA, this would be the model of
preference if no further information about the data is known. However, other meth-

ods of model selection, such as the use of BIC in Chapter 2, could be considered.

3.3.2 Should the BIC be used to select the best model?

Rather than determining whether there was a preferred model for all scenarios, an-
other method would be to use the BIC to determine the best model. In previous
sections, the BIC was used as a measure of model fit and the results were com-
pared to the highest average correlation, and lowest RMSE, such as in Table 3.8.
This indicated that the results for the average correlation and lowest RMSE did not
necessarily match the BIC.

To further investigate whether using the BIC as a way to choose a model led to a
reliable result, I returned to the original simulation data set, and identified the model
for each scenario that had the lowest BIC. When the BIC was equivalent for multiple
models, I chose the simplest model (LCA before LCRE (CL) before LCRE (NCL)).
This meant that the LCA and LCRE with constant loading models performed best
in terms of BIC more often than previously calculated. The LCA was chosen 44
times, the LCRE with constant loading 79 times and the LCRE with non-constant
loading 77 times. I then collated the associated average correlation to the MGMM
and the RMSE for the model with the best BIC, and used this to generate a 4th set of

correlations and RMSEs.
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Correlation to the MGMM

I compared the new average correlations in a pairwise fashion to the original aver-
age correlations by model. This is shown in Figure 3.5. The LCA and LCRE with
constant loading showed mixed results. This was particularly observed when the
model chosen using the BIC was the LCRE with non-constant loading; about half of
the points indicated that the model based on BIC was superior, while the other half
indicated that the other model was superior. When examining at the pairwise plot
for the LCRE with non-constant loading, the points were more consistently found
above the x = y line, indicating that choosing the model based on the BIC improved
the correlation. This was consistent with the observation that the LCRE with non-
constant loading more often had the lowest BIC, but only improved the correlation
when ¢, was high.

The correlation of the preferred model based on BIC in general had higher cor-
relations compared to just choosing one model. This is shown in Figure 3.5, which
compared the distribution of points along the x-axis to the distribution of points
along the y-axis. There are many more points with a lower average correlation for
the model on the x-axis compared to the BIC based model.

Investigating the correlations more closely, I collated a table with the frequen-
cies of scenarios that preferred a different model to the BIC based model. This was
split by model and parameters, and the results are given in Table 3.9. The LCA
was the most common preference compared to the BIC based model, and found a
higher correlation for 80 of the 200 scenarios. The LCRE models were preferred less
often, for only 25 and 16 scenarios for the constant and non-constant loading mod-
els, respectively. This was in part because the LCRE was more often chosen as the
best model based on the BIC. It was also possible that more than one of the models

performed better for the same scenario compared to the BIC based model, so the
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FIGURE 3.5: Average correlation to the MGMM model for models LCA,
LCRE (constant loading) and LCRE (non-constant loading) for different
scenarios, coloured by degree of random effect (), compared to the
average correlation to the MGMM model for the model with the lowest
BIC for that scenario. A higher value on both axes indicates a better fit
to the MGMM. Points above the x = y line indicate that the BIC model
performed better, while points below indicate that the model on the
x-axis performed better.
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4 ) o Po Program Thresholds Total

5 7 05 1.5 005 1 2 4 01 03 05 07 09 Constant ~ Varied

LCA 31 49 54 26 0 17 35 15 13 16 16 16 17 15 41 39 80

LCRE
4 21 22 3 0 1 2 10 12 6 4 4 5 6 14 11 25

(Constant Loading)

LCRE
13 3 1 15 0o 3 7 5 1 5 3 2 1 5 8 8 16

(Non-Constant Loading)

TABLE 3.9: Frequencies of scenarios that had a higher correlation when

the model on the left was chosen naively rather than when using the

model with the lowest BIC (difference greater than 3) for that scenario.

This does not include scenarios where the model on the left was the

best model by the BIC. The LCA had the best chance of outperforming

the BIC based model, while the LCRE with non-constant loading had
the worst chance.

scenarios found for each model were not mutually exclusive.

In general, the BIC based model appeared to perform best when the o, was low,
and when the § was high. This is likely because all of the models perform equally
well, as observed in earlier analysis. When é was low, and ¢, moderate, the LCA
model would have been a better choice than the BIC based model. Similar obser-
vations were made for the LCRE with constant loading, although a larger o, was
needed for the model to perform the best. Finally, the LCRE with non-constant
loading was more likely to outperform the BIC based model when the ¢ value is
high. The other parameters did not seem to influence the average correlation, as
noted previously.

One consideration for this method is how much better the other model performs
in comparison to the BIC based model. Considering Figure 3.5, most of the points
where the BIC based model performed better compared to the LCA were less than
0.5 for the LCA, and over 0.75 for the BIC based model. In contrast, when the LCA

performed better, the BIC based model in general had an average correlation higher
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than 0.5. Similar results were also observed when comparing the BIC based model
to the LCRE models. Thus, while other models may give some improvement in
terms of the average correlation this level of improvement may not necessarily be

great.

RMSE

I performed the same analysis for the RMSE results (see Figure 3.6). The results
were similar to those for Figure 3.5. When compared to the LCA, the RMSE of the
BIC based model performed inconsistently in comparison. The range in magnitude
of the RMSE also tended to be the same for both models. The LCRE with constant
loading performed worse than the BIC based model with either equivalent or higher
RMSE values. The LCRE with non-constant loading had very similar RMSE values
to the BIC based model, with most values lying close to the x = y line. This is again
due to this model having smaller BIC values compared to the other models.

The trends across the different scenarios in terms of the lowest RMSE were also
investigated, and are given in Table 3.10. Overall, fewer scenarios preferred the
naive model over the BIC based model, with the LCA preferred the most (53 out of
200 scenarios). This indicated that the BIC based model more often gave the best
RMSE result. This was particularly the case when the value of ¢, was 0, as before,
while more often the LCA was preferred if the 0, value was 1. This agreed with the

general results from Table 3.9.

Sum of Scores

The sum of scores results were also compared to the BIC based model directly. The
pairwise comparison for the sum of scores correlation to the MGMM, and the BIC

based model correlation to the MGMM is given in Figure 3.7.
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FIGURE 3.6: RMSE for models LCA, LCRE (constant loading) and
LCRE (non-constant loading) for different scenarios, coloured by de-
gree of random effect (¢), compared to the RMSE for the model with
the lowest BIC for that scenario. A higher value on both axes indicates
a better fit to the MGMM. Points above the x = y line indicate that
the model on the y-axis performed better, while points below indicate
that the model on the x-axis performed better. When the value of o
were high, the LCRE (non-constant loading) performed better; other-
wise the LCA performed better, or the models were equivalent (close

to the x = y line).
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4 ) o Po Program Thresholds Total

5 7 05 15 0 05 1 2 4 01 03 05 07 09 Constant  Varied

LCA 21 32 29 24 0 11 24 9 9 8 12 13 12 8 26 27 53

LCRE
(Constant Loading)

LCRE
21 6 14 13 0 6 12 8 1 8 7 1 2 9 15 12 27

(Non-Constant Loading)

TABLE 3.10: Frequencies of scenarios that had a lower RMSE when the

model on the left was chosen naively rather than when using the model

with the lowest BIC (difference greater than 3) for that scenario. This

does not include scenarios where the model on the left was the best

model by the BIC. The LCA had the best chance of outperforming the

BIC based model, while the LCRE with non-constant loading had the
worst chance.

The results showed that there were a large number of scenarios where the sum
of scores method was superior to the BIC based model. When the LCA was chosen
as the best model, the correlation was almost always superior to the sum of scores
result. When the LCRE with constant loading was chosen however, the result was
much more likely to be superior for the sum of scores method. The LCRE with non-
constant loading model appeared to be almost evenly split across the x = y line,
indicating that for some scenarios it was preferred, while for others the sum of scores
was preferred. This is most likely due to the LCRE with non-constant loading being
preferred for the higher values of 0,. These results are consistent with the results in
the previous section, which indicated that the LCA was the most competitive with
the sum of scores method. As the BIC-based model was less likely to choose the
LCA method, it was less competitive overall compared to the LCA.

The trends for when the BIC based model was superior to the sum of scores
method are given in Table 3.11. The BIC based model was preferred to the sum of

scores for about half of the scenarios (102 out of 200). The results were consistent
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FIGURE 3.7: Correlation to the MGMM for Sum of Scores compared to

the average correlation to the MGMM for the BIC based model. Points

above the x = y line indicate points where the Sum of Scores had a

higher correlation, points below the x = y line indicate points where
the BIC based model performed better
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14 1 oy Po Program Thresholds Total

5 7 05 15 0 051 2 4 01 03 05 07 09 Constant  Varied

BIC Based Model 48 54 29 73 40 23 5 16 18 21 20 20 19 22 51 51 102

TABLE 3.11: Frequencies of scenarios that found a higher correlation to
the MGMM (difference greater than 3) for the BIC based model com-
pared to the sum of scores method. The number of scenarios with par-
ticular parameters are given in each column. Columns are grouped by
parameter type. Total number of scenarios with a better correlation to
the MGMM associated with the BIC based model is given at the end.

with previous findings and Figure 3.7, as the BIC based model was preferred to
sum of scores method for low to moderate values of o, and higher values of §; most
likely the occasions when the BIC based model was the LCA. This suggested that
the LCA should be preferred over the BIC based model, because it was more likely

to improve over the results given by the sum of scores method.

Conclusion

Using the BIC as a way to determine the best model had mixed results. Compar-
ing the average correlation and RMSE of the BIC based model to the other models
indicated that an alternative model was superior for most scenarios. The LCA had
the lowest BIC for 41 scenarios, and additionally performed better in the average
correlation than the BIC based model for 80 scenarios and performed better for the
RMSE than the BIC based model for 53 scenarios. Thus choosing the LCA without
considering the BIC would have been the better choice for 61% of the scenarios in
terms of average correlation, and 47% of the scenarios in terms of the RMSE. Sim-
ilar rates can be found for the LCRE models also. When comparing the results of
the correlation of the BIC based model and the sum of scores method, the results

indicated that the BIC based model performed better for only 51% of scenarios. This
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implied that the LCA would have been a better choice, since it was competitive with
the sum of scores in the previous section.

One consideration when assessing this method is that it is more time expensive.
In order to calculate the BIC, all three models must be generated, which would take
longer than any single model calculation. Thus overall it is more practical and gives

better results to choose the LCA model rather than consider all three.

3.3.3 Investigating preference of One Class vs Two Class models

using the BIC

One of the other issues discovered while applying LCA to real data was that some-
times the BIC would prefer a model with one class rather than two. This occurred
for the more complex LCRE models. For ChIP-seq data, it is reasonable to assume
that a two class model is the most appropriate, since the underlying signal would
create a class of binding and a class of non-binding genes and also that the calling
programs can, to the same extent, differentiate between binding and non-binding
genes. While in the previous section, I only examined the results from two class

models, I also investigated how often the BIC preferred the one class model.

Analysis of two class data

Initially, I analysed the same data using a one class model for the LCA, and the
two LCRE models and calculated the difference in the BIC between a two class and
one class model, ABIC. The two class model was preferred if the difference was
greater than 3, otherwise the one class model was preferred. This was performed
across the 20 replications. One of the initial observations was that while there were
some scenarios where the one class model was preferred for the majority of the

replications(at least 10), none of the scenarios found that a one class model was
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always preferred. In contrast, there were a number of scenarios where the two class
model was always preferred. Additionally, while often the difference in BIC was
large when the two class model was preferred, the difference when the one class
model was preferred was generally small. These observations indicated that model
preference in terms of class is more dependent on random difference within the
data than on scenario parameters. This was unexpected, and implies that the class
preference calculated by BIC is not reliably indicative of the actual number of classes
within the data.

There was a clear difference in the behaviour of ABIC for the three models. To
demonstrate this, Figure 3.8 shows the results across the 20 replications for 10 ran-
dom scenarios across each of the three models. Clearly, the LCA model found some
of the greatest differences between the one class and two class model, and the two
class was always preferred even if the magnitude of ABIC was small. In contrast,
the LCRE models found in some cases that the one class model was preferred, but
not consistently across the 20 replications. There also tended to be a greater varia-
tion in the BIC for the different replications, implying that these models were more
sensitive to random changes in the data for the same scenario.

To investigate overall trends in the data and to better understand the behaviour
observed in Figure 3.8, Table 3.12 was generated similarly to the tables in the previ-
ous section. This table shows the frequency of scenarios where the one class model
was preferred for the majority of replications, split by parameter. The LCA model
did not show any preference for the one class model, the LCRE with constant load-
ing preferred the one class model for some of the scenarios (18), and the LCRE with
non-constant loading preferred the one class model for almost half of the scenarios
(83) out of the 200 scenarios total. This is therefore due to the random effect of the

LCRE models, and more specifically the constant loading parameter.
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FIGURE 3.8: Plots of the difference in BIC (One Class-Two Class) for

20 replicates for 10 randomly selected scenarios for the LCA, LCRE

with constant loading and LCRE with non-constant loading models.

A smaller BIC is desirable, so points that lie above the y = 0 line indi-

cate that two classes are preferred, while points that lie below the y = 0

line indicate that one class is preferred. More variation is seen in the
LCRE models compared to the LCA models.
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p ) o, Po Program Thresholds Total

5 7 05 15 0 05 1 2 4 01 03 05 07 09 Constant  Varied

LCA 0 0 0 0 0 0 0 0 O 0 0 0 o0 O 0 0 0

LCRE
10 8 18 0 5 3 0 0 0 3 3 5 4 3 10 8 18

(Constant Loading)

LCRE
37 46 82 1 16 18 17 17 15 19 17 15 16 16 45 38 83

(Non-Constant Loading)

TABLE 3.12: Frequencies of scenarios that found a significantly lower

BIC (difference greater than 3) for a one class model for the same sce-

nario and model for the majority of the replications (> 10 out of 20

replications). The overwhelming majority of these are found in sce-

narios with a § of 0.5, and only for the LCRE (CL) and LCRE (no CL)
models.

When a one class model was tested, the random effect of the LCRE models ac-
counted for any difference between the binding and non-binding genes. This al-
lowed the model to have a good fit to the data with the lower complexity model,
resulting in a lower BIC. The LCA model cannot as readily account for the differ-
ence, and so has a poorer fit, leading to a higher BIC. Thus the LCA was more likely
to correctly identify a two class model as preferred when using the BIC.

The most influential parameter was J, with almost all of the scenarios with a
preference for the one class model showing a low J. A low value of § was more likely
to generate a single large group of values with overlap between binding and non-
binding scores, which was reflected in the results of the programs. The LCRE with
constant loading was also more likely to prefer the one class model when the value
of 0, was low, while no such trend was observed in the LCRE with non-constant
loading. This is counter-intuitive and occurs because when a random effect exists, it
is recognised by the LCRE with constant loading, leading to a better fit for the two
class model.

Finally, I also examined the average correlation to the MGMM for some of the
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scenarios for the two LCRE models. The scenarios that found an overall preference
for a one class model over the 20 replicates were each split into replicates that pre-
ferred the one class model and replicates that preferred the two class model. The
average correlation was then found for each group, and the results compared in a
pairwise fashion. This result was given in Figure 3.9.

There are a greater number of scenarios in the LCRE with non-constant loading
plot because a greater number of scenarios preferred a one class model. Overall,
there was no apparent trend between the correlation of scenarios that preferred ei-
ther class. The scenario average correlation appear randomly scattered around the
x = y line. The average difference between the correlations was calculated across
all of the scenarios; this was found to be -0.0007 for the LCRE with non-constant
loading and 0.01 for the LCRE with constant loading. This was evidence that the
preference for one class or two class based on the BIC had little to no affect on the

posterior probabilities of the model.

Analysis of one class data

I performed the same analysis using the data with only one cluster. In this case, the
BIC should find the one class models to be preferred. The results were much more
uniform across the 20 replications for the one cluster data, with almost all of the
scenarios preferring either a one class or two class model exclusively. When only
one cluster was present, the models were less sensitive to random changes, because
instead of two smaller clusters with difference means, there was one large cluster
with the same mean.

As before, there was a clear difference in the performance of the three models,
and a similar distribution of ABIC was observed. This can be seen in Figure 3.10,

which shows the ABIC across the 20 replicates for 10 randomly selected scenarios.
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FIGURE 3.9: Plots of the average correlation to the MGMM for scenar-
ios where there was an overall preference for a one class model. The
20 replicates for each scenario were divided into two groups by their
class preference, and the average correlation was calculated for each
group. Points above the x = y line indicate scenarios where the repli-
cates with incorrect class preference performed better, and points be-
low the line indicate scenarios where the replicates with correct class
preference performed better. There is no clear trend for either model.
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As discussed earlier, the amount of variation across the 20 replications was lower
in all three models, particularly for the two LCRE models. Additionally, all three
models showed a negative ABIC for some scenarios, indicating a preference for the
one class model. The LCRE with non-constant loading performed the best, as it
consistently generated a lower BIC for the one class model compared to the two class
model. In contrast, the other models, LCA and LCRE with constant loading, showed
a preference for the two class models for a number of scenarios. Interestingly, the
difference in ABIC when a one class model was preferred was still small compared
to when a two class model is preferred, especially for the LCA model (although the
difference was still significant).

Trends were identified and collated into Table 3.13. Clearly, the LCRE without
constant loading performed the best compared to the other two models, with 100%
of the scenarios correctly preferring the one class model. There was also a very
clear predictor for when the LCA and the LCRE with constant loading would prefer
the one class model, with all of the scenarios with a ¢, value of 0 having the cor-
rect model preferred. This stark contrast was unexpected, but indicated that these
models were much more likely to explain slight changes in variation (such as those

caused by ) by changing the clustering, rather than from random effect.

Conclusion

This investigation indicated that the model BIC was not a reliable way to identify
clustering. The LCA and the LCRE with constant loading tended to have a higher
number of false positive in terms of preferring a two class model, especially in the
case when there was some level of random effect present. In contrast, the LCRE with
non-constant loading was more likely to have false negatives, in terms of preferring

a two class model, particularly when the differences between the two underlying
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FIGURE 3.10: Plots of the difference in BIC (One Class-Two Class) for 20
replicates for 10 randomly selected scenarios for the LCA, LCRE with
constant loading and LCRE with non-constant loading models, in the
case where there are not two groups in the underlying data. A smaller
BIC is desirable, so points that lie above the y = 0 line indicate that two
classes are preferred, while points that lie below the y = 0 line indicate
that one class is preferred. More variation is seen in the LCRE models

compared to the LCA models.
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P e Po Program Thresholds Total
5 7 0 05 1 2 4 01 03 05 0.7 09 Constant  Varied

LCA 10 10 20 0 0 0 O 4 4 4 4 4 10 10 20
LCRE

10 10 20 0 0 O O 4 4 4 4 4 10 10 20
(Constant Loading)
LCRE

50 50 20 20 20 20 20 20 20 20 20 20 50 50 100

(Non-Constant Loading)

TABLE 3.13: Frequencies of scenarios that found a significantly lower

BIC (difference greater than 3) for a one class model for the same sce-

nario and model for the majority of the replications (> 10 out of 20

replications) for data where there was not two clusters in the under-

lying data. The LCRE (no CL) model preferred the one class model

for every scenario, while the other models preferred the correct model
when o, was 0.

clusters was small (such as when there was a small /). Additionally, when scenarios
with preference for a one class model were further examined, it was found that this
preference did not affect the posterior probability correlation to the MGMM. This
indicated that the preference for a one class model did not affect the accuracy of the
model and the posterior probabilities could still be trusted.

When considering the analysis of ChIP-seq, it is reasonable to assume that the
data will be a two class model, but considering the BIC may be helpful in identifying
the level of noise within the data. For the application of LCA, unless all of the
models agree that a one-class model is preferred, a conclusion on clustering can
not be reached. Furthermore, examining the difference in the BIC is not necessarily
helpful, as this was not found to be correlated to clustering.

Based on the results of this section, the BIC should not be used to determine class

preference.
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3.4 Conclusions

Simulations are useful for gauging the performance of different analysis methods
when the underlying truth is not normally known. In this Chapter, simulation data
was constructed using a normal distribution and then identified by different “pro-
grams” using thresholds on the scores in order to generate a set of binary results.
The aim was to answer some of the questions that arose when the LCA models were
applied to real ChIP-seq data in Chapter 2.

Firstly, each of the models was assessed to determine which of the three mod-
els most accurately calculated the correct posterior probabilities, and had the most
competitive BIC. While the LCRE models were expected to perform best when there
was a random effect present (o, > 0) , it was found that the LCA tended to perform
the best for the average correlation to the MGMM and the RMSE when the random
effect was low to moderate (0; < 1). The LCRE with non-constant loading was
preferred for higher values of the random effect for the average correlation and the
RMSE, and both of the LCRE models performed well when the BICs of the models
were compared when a random effect was present. The sum of scores was also used
as a comparison to the 3 models. It was found that the 3 models performed better
when 0, was low, and § was high. Given that this is when the LCA performed best,
this was further evidence that the LCA should be the preferred model.

The next sections investigated the BIC as a method of determining the best model.
When a two class model is assumed, the BIC can be used to determine the best
model to continue with, across the three models. This method was tested against
the more “naive” approach of selecting the same model each time. The results indi-
cated that this would result in a reasonable analysis, even if there may have been a
more appropriate model to choose. However, when the sum of scores method was

considered, the BIC based model did not necessarily improve on this score. One
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consideration before using this method is that since all models must be calculated
to determine the BIC, it is more time consuming than just selecting a model without
the BIC.

It was observed when applying the models to real data that sometimes a one
class model was preferred by the BIC. When this was assessed using the simulation
data, it was found that the LCRE models were more likely to falsely determine that
the one class model was appropriate when the underlying data had two clusters,
but that the LCA was more likely to prefer a two class model when a one class
model would be more appropriate. Additionally, it was found that class preference
by BIC did not have an effect on the accuracy of the posterior probability. While in
reality the underlying data of ChIP-seq is always expected to form two clusters, this
assessment indicated that the BIC was not reliable for determining the number of
clusters (although comparing the BICs of both models may be informative for the
level of noise in the underlying data).

There are some limitations to the simulations designed here. The main one is that
the conclusions are based on simulations that are simplistic model of actual ChIP-
seq peak finding software results. Since I cannot obtain this real data, in practise
it may not be well approximated by this kind of model, and thus might have pa-
rameters different to those I considered here. This may be improved by considering
a wider range of simulations, or a different type of simulation. Another limitation
was the number of genes chosen for the simulation.

Here, only 3000 were used compared to the approximately 25,000 present in the
Ensembl database. The full effects of this change is unknown, but it may, for ex-
ample, change the results for the BIC section. Since the BIC is calculated using the
number of data points 1, the number of genes may change the results of the BIC,

which may affect the conclusions. Again, this may be improved by considering a
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wider range of simulations, in this case with different numbers of genes.

Clearly, the selection of the “best” model is influenced by the distribution of the
underlying data. In reality this knowledge cannot be obtained, and these simula-
tions are useful in determining the method that has the best results. In general, the
LCA was the model that gave the best results. Therefore, based on the results from the

simulations, using this model would be the best choice.
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Chapter 4

Changing Threshold Method

4.1 Introduction

In Chapter 3, I used the results from a series of simulations to compare the models
LCA, LCRE with constant loading and LCRE with non-constant loading. I found
that the LCA performed best for a large number of the scenarios, particularly when
the value of the random effect was low and the difference between the scores of
binding and non-binding genes was high. In this chapter, I developed a new ap-
proach that uses different thresholds on the data to generate multiple posterior prob-
abilities for each gene.

The threshold used to generate the binary data can have a large effect on the per-
formance of the LCA models. To illustrate, a series of simulations were performed
using the methods described in Chapter 3, where the scenario was kept the same
(5,1.5,1, 0.3, Constant) with 20 replications, but the threshold T; was changed. The
output was then analysed using the LCA model. The results were summarised in
Figure 4.1, which shows the average correlation to the MGMM for simulated data
when a constant threshold is changed. Since the optimal threshold is known to be 0,
it is clear that increasing this threshold beyond the optimal value degrades perfor-

mance.
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FIGURE 4.1: Boxplot of correlations to MGMM for the LCA model for

the same scenario (5, 1.5, 1, 0.3, Constant) for four different thresholds

over 20 replications. A threshold of 0 is considered optimal. Thresholds
closer to this value have increased correlation to the MGMM.

When the LCA model is applied to real ChIP-seq data, the optimal threshold is
not known, and is very unlikely to used by all of the programs. A new approach
was investigated to determine if using multiple different thresholds would improve
the performance. It was hypothesised that even if some of the thresholds are non-

optimal, the overall performance would be improved compared to a single set of

non-optimal thresholds. In this chapter, this idea was tested using simulated data.

4.2 Method

I developed a new method for obtaining more robust posterior probabilities using

different thresholds for the same program. See the method described in Chapter 3
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for a description of the data generation, although note that some alterations were
made and are described below.

Instead of using the constant or varied threshold, three values were used in
T;, representing low, medium and a high threshold value (when a ‘high’ threshold
value is discussed in this context, this means a less stringent threshold).

To generate a posterior probability for each gene from these thresholds, a gene
set was generated with each program using the three thresholds. This is in con-
trast to the usual method of generating a gene set with the programs, when a single
threshold is used. Each combinations of the gene sets for each program was anal-
ysed using the LCA models, resulting in 37 analyses for each model, and the same
number of posterior probabilities for each gene. The average posterior probability
for each gene was then calculated, generating a single posterior probability for each
gene.

This approach was performed for the scenarios described in Table 3.1 with a
program number of 5. This was done as the number of permutations that would
be required if 7 programs was tested is impractical for most settings (37 = 2187)
compared to the number required for 5 programs (3% = 243). Each scenario analysis
was repeated 7 times.

The average posterior probabilities were compared to the original results from
the three different models across the same scenarios. The analysis of this approach
was limited to the assessment of the posterior probability, as the expected and ob-
served fit changes with each LCA, so no consensus expected and observed fit would
be made. The correlation of the average posterior probability to the MGMM was
calculated to compare to the posterior probabilities for the original LCA and LCRE
results. Additionally, the RMSE for the genes was also measured.

The BIC could not be used to assess the average threshold method, as the BIC
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varied with each gene set combination. An alternative method of assessment was
instead used to approximately measure the accuracy of both methods as follows.
Since the underlying true number of binding genes was known, the number of bind-
ing genes calculated could be compared to the scenario’s pg parameter, and used to
determine how accurately the model determined the number of genes. The number
of binding genes found by the model was calculated using the posterior probability,
making is possible to measure this for both the average and fixed threshold method.

The average posterior probabilities for each gene were added together, and av-
eraged across the 7 replications, to get the approximate number of binding genes.
This was then compared to the true number of binding genes (3000 x py) for each
scenario. A metric for the accuracy is the absolute proportion of estimated binding
genes over the true binding genes, so a perfectly accurate estimation would have

the result of 1. The closer to 1, the more accurate the estimation.

4.3 Results

4.3.1 Correlation to MGMM

The correlation to the MGMM for the scenario with parameters {p, J, 0z, po, Program Threshold } =
{5,0.5,0,0.1, Varied } (Scenario 1) for the correlation are shown in Table 4.1. Full re-
sults can be found in Appendix B.2. In contrast to similar results in Table 3.2, the
standard deviation of the correlations was lower for all of the models, particularly
for the LCRE models. Additionally, the average correlation was much higher as
well, with all three models having an average greater than 0.9.
To compare the performance of the averaged threshold results for each model,
pairwise plots were generated. These plots compared the average correlation to the

MGMM for the “fixed threshold” method to the average correlation for the average
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LCA LCRE LCRE
(Constant Loading) (No Constant Loading)

0.920 0.918 0.913

0.915 0.910 0.880

0.930 0.925 0.927

0.920 0.909 0.903

0.916 0.911 0.910

0.925 0.921 0.923

0.922 0.916 0.901

Average 0.921 0.916 0.908

Standard Deviation 0.005 0.006 0.015

TABLE 4.1: Correlation results for the LCA and LCRE (Constant Load-

ing) and LCRE (No Constant Loading) for Scenario 1, averaged across

different thresholds. Correlation compares the posterior probability

for all genes for the LCA and LCRE to the posterior probability for all

genes for the MGMM. The average and standard deviations were used
to compare Scenarios.
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threshold method for the same model. The results are given in Figure 4.2, coloured
by the value of ¢, for that scenario, and indicate that for most scenarios, there was
at least some improvement found by using the average thresholds method. For the
LCA, this was mostly a minor improvement, particularly for scenarios with high
0, that had very low average correlation for the fixed threshold model. Similarly,
the LCRE with constant loading showed moderate improvement when the average
threshold method was used. Some of the low correlation, high ¢, points did how-
ever show a higher average correlation for the fixed threshold method, but only for
6 scenarios. For the LCRE with non-constant thresholds, many of the scenarios had
a large improvement when average threshold method was used, across all of the
values of 0. There was only one scenario for which the fixed threshold method
performed better.

While the ¢, value of the scenario seemed to have little effect on the level of im-
provement seen when using the average threshold method, it did have an effect of
the actual average correlation value. Lower values of ¢, had higher average corre-
lation, and the average correlation tended to decrease as the o, increased. A similar
effect was noted in Figure 3.1.

To further assess this new method in terms of the average correlation to the
MGMM, I analysed the trends of scenarios that preferred either the fixed threshold
or average thresholds method (see Table 4.2). This was only performed for the LCA
method, based on the results in previous sections that demonstrated this to be the
preferred model for most scenarios. The results indicated that the average threshold
method was preferred for 44 of the 50 scenarios, while the fixed threshold method
was preferred for only 3 scenarios. The remaining scenarios were competitive. In-
terestingly, the scenarios that preferred the fixed threshold method were those with

a low value of 4. This may be due to certain combinations of gene sets resulting in
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FIGURE 4.2: Average correlation to the MGMM model for fixed thresh-
olds against average correlation to the MGMM model for averaged
thresholds, for models LCA, LCRE (constant loading) and LCRE (non-
constant loading) for different scenarios, coloured by degree of ran-
dom effect (¢). A higher value on both axes indicates a better fit to
the MGMM. Points above the x = y line indicate that the average
threshold method performed better, while points below indicate that
the fixed threshold method performed better. Most of the time, the av-
erage threshold method appears to perform better.
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0 o Po Total

05 15 0 05 1 2 4 01 03 05 07 09

Fixed 3 0 o 1 0 1 1 1 0 0 1 1 3
Average 20 24 10 9 10 8 7 9 9 9 8 9 44

TABLE 4.2: Frequencies of scenarios that found a higher average corre-
lation for one of the two methods (fixed vs average thresholds) for the
LCA model. Most found that the average was preferred.

a much lower average posterior probability for genes compared to the other combi-
nations, reducing the average posterior probability. In this case, the fixed threshold
method would perform better in terms of posterior probability. This may be more

likely to occur when the clustering is less clear, such as when ¢ is low.

4.3.2 RMSE

I compared the different methods for each model with the RMSE, as shown in Figure
4.3. As before, the average threshold method performed better for most of the sce-
narios, or at least was competitive. The LCA model had the smallest improvement
for the average thresholds method, but was also the most consistent, with only 9 sce-
narios performing better with the fixed threshold method. The LCRE models were
more likely to perform better using a fixed threshold method, but in general, im-
provements in the RMSE were low. In contrast, using the average threshold method
was more likely to lead to significant improvement, especially for the LCRE with
constant loading model.

The highest RMSE for the average threshold method was less than 0.4, while the
highest with the fixed threshold method was greater than 0.6. While most scenarios
had some level of improvement under the average thresholds method, the scenarios

with a lower value of ¢, were more likely to be improved compare to higher values.
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FIGURE 4.3: RMSE for the posterior probabilities for the MGMM model
for LCA and LCRE (constant loading) and the LCRE (non-constant
loading) for fixed and average threshold methods. A smaller value
indicates a lower RMSE, which is preferred. Points above the y = x
line indicate scenarios where fixed threshold method performed bet-
ter while points below indicate that the average threshold method per-
formed better. For most of the scenarios, the average threshold method
appears to perform better.
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0 o Po Total

05 1.5 0 05 1 2 4 01 03 05 07 09

Fixed 8 1 0O 1 1 2 5 2 3 1 2 1 9
Average 16 24 10 9 9 8 4 8 7 8 8 9 40

TABLE 4.3: Frequencies of scenarios that found a lower RMSE for one
of the two methods (fixed vs average thresholds) for the LCA model.
Most found that the average was preferred.

The overall trends for the LCA model for the RMSE results were collated in Table
4.3. While there were a greater number of scenarios that performed better under
the fixed thresholds method (9 of the 50), most still found a lower RMSE for the
average threshold method (40 scenarios). Similar trends were observed to those in
Table 4.2. The two parameters that influenced the RMSE performance in either the
fixed or average threshold method were é and ¢,. Lower values of § and higher
values of ¢, in scenarios were more likely to prefer the fixed threshold method than
other scenarios. This is likely a result of less distinct clusters within the underlying
data. In this case, gene sets are more likely to contain incorrectly classified genes
and generate a lower RMSE. A single fixed threshold containing more genes is thus

more likely to be better than the average threshold results.

4.3.3 Binding Accuracy using py

Pairwise plots of the binding accuracy were generated for each model comparing
the fixed and average threshold methods, and the results are given in Figure 4.4,
coloured by the value of ¢,. The dashed lines indicate the ideal results for each
method. While there were some points with binding accuracy greater than 2, these
were omitted from the figure to gain a higher level of detail from the remaining

scenarios. For all three models, there was a cluster of results close to the point (1,1),
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0 ot Po Total

05 15 0 05 1 2 4 01 03 05 07 09

Fixed 10 6 1 4 4 4 3 8§ 4 1 1 2 16
Average 11 7 4 2 4 4 4 1 5 4 5 3 18

TABLE 4.4: Frequencies of scenarios that were closer to the actual bind-
ing proportion(pg) for one of the two methods (fixed vs average thresh-
olds) for the LCA model. Both methods had approximately the same
number of scenarios. The fixed method performed better for py = 0.1.

indicating that most of the results were close to the correct estimation. Many of
the points far from (1,1) show a positive correlation between the average threshold
and fixed threshold methods, indicating that for most points with a lower binding
accuracy, the two methods were competitive. The value of ¢, did not appear to
have an effect on the binding accuracy. Furthermore, all three models and methods
appeared competitive for binding accuracy.

To further investigate the binding accuracy, Table 4.4 was generated. This table
identifies which method had the higher binding accuracy for each scenario (within 2
decimal places) and then looks at the frequencies of the different parameters within
all the scenarios identified. Each of the two methods found an approximately equal
number of scenarios with a higher binding accuracy, with 16 being competitive. This
result suggests that both of the methods were reasonably competitive in terms of
binding accuracy. There are few trends to be observed amongst the parameters, with
the most notable that the lowest pg value, 0.1, was more accurately estimated by the
fixed threshold method, while higher pg values were more accurately estimated by
the average threshold method. This may have been because a smaller number of

binding genes are harder to classify correctly using the average thresholds.
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FIGURE 4.4: Average accuracy of binding proportion compared to set
po for fixed thresholds against averaged thresholds, for models LCA,
LCRE with constant loading and LCRE with non-constant loading
across different scenarios, coloured by degree of random effect (¢). Ac-
curacy is measured as proportion to correct py value. A value closer
to 1 (dashed line) is thus preferred. The x = y line indicates similar-
ity of values between fixed and average threshold methods. In gen-
eral, the methods were comparative, with most values lying close to
(1,1), although in cases when the accuracy was poor, the fixed threshold
method performed better. Points with binding accuracy greater than 2
were omitted.
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0 ot Po Total

05 15 0 05 1 2 4 01 03 05 07 09

Sum of Scores 11 12 0 1 4 8 10 5 4 3 6 5 23
Average 14 13 10 9 6 2 0 5 6 7 4 5 27

TABLE 4.5: Frequencies of scenarios that had higher correlations to the
MGMM for one of the two methods (sum of scores vs average thresh-
olds) for the LCA model. Both methods had approximately the same
number of scenarios. The average method performed better for o, < 1.

4.3.4 Sum of Scores

The sum of scores was used again to compare to the results of the average threshold
method. The pairwise correlation plots are given in Figure 4.5. The results indi-
cated that the average threshold method generally showed improvement over the
sum of scores method, with most scenarios showing an improved correlation to the
MGMM. The LCRE with non-constant loading showed the best improvement over
the sum of scores, particularly for o, values of 2 and 4. However, the LCA was
consistently better for lower values of ¢,. This was consistent with previous results.

Additionally, trends were identified using Table 4.5 for when the sum of scores
and the average threshold method with the LCA model performed better. These
resulted was consistent with the observation above, and indicated that the average
threshold method performed better for low values of ¢,. In total the average thresh-

old method performed better for 54% of the scenarios.
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sum of scores method performed the best.
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4.4 Conclusions

The proposed method of using thresholds to create multiple genes sets, and com-
bine them to generate average posterior probabilities, appeared to improve upon
the results from using a single fixed threshold. Examining the average correlation to
the MGMM, as well as the RMSE indicated that for most scenarios, a modest to high
improvement could be obtained using this method for all three models. This was
particularly true for parameters that generated more distinct clusters of data points,
such as a high 6. While the BIC of the average threshold method could not be calcu-
lated, an assessment of the accuracy of the estimated binding genes indicated that
the average threshold method was competitive with the fixed threshold method.
Furthermore, comparing the sum of scores and the average threshold method indi-
cated that the LCA model in particular was more competitive than used the fixed
models, as analysed in Chapter 3.

Based on the simulation results, the average thresholds method was a good ap-
proach to increase the accuracy of any of the LCA models, and is recommended in

conjunction with the LCA model in particular.
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Chapter 5

Applying new LCA method to data

5.1 Introduction

Based on the results from Chapter 4, I decided to apply the changing thresholds
method to the original H3K36me3 data. When this method was applied to simula-
tions, the posterior probabilities were improved and the LCA model gave the most
consistent results. To use this method, new thresholds were applied to each of the
programs, and combinations of thresholds were fitted with the different models.
Another change to the original method was to omit the program enRich, since it
had very little agreement with other programs as observed in Chapter 2. Further-
more, reducing the number of programs decreased the time taken to perform the
analysis, and based on Chapter 3, including more than 5 programs did not improve
the results.

Each model generated average posterior probabilities for each gene; these were
compared, along with the standard deviations of the posterior probabilities across
each gene. The posterior probabilities were then used to identify putative binding
genes for each model, and the sets were compared. Finally I focused on genes found
by the LCA model and identified significant GO terms. The results of this method

were compared to the original results from Chapter 1.
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5.2 Methods

In order to generate thresholds for each of the programs, I initially attempted to
rerun the programs from the command line. All of the programs allow some degree
of control over the final threshold of peak significance using the p-value, as can
be seen in Table 5.1. However, I found that this was not a feasible method due to
time constraints, as many of the peaks had extreme p-values that meant even very

stringent thresholds did not lower the number of identified peaks.

Program Threshold Measure Threshold Modifier Flag

BCP p-value —poal
HOMER p-value -poisson
MACS2  —logig p-value -p
MUSIC  g-value -q-val
THOR —log1g p-value -p

TABLE 5.1: Summary of thresholds for the different programs. Differ-

ent programs use different measures for the threshold of peaks to re-

tain, and this can be modified by the user using the threshold modifier
flags during the command line input.

Instead, I ordered the already generated peaks identified by each program by
score. The ordered peaks were used to create 4 overlapping sets of genes, where
the number was constrained to 1000 or 4000 genes. In this way, the smallest gene
lists should contain genes from each program that are the most likely to be binding,
while the larger gene lists are less stringent. I confirmed that this would have the
same effect as having extremely stringent controls by comparing the results from
different program outputs. For MACS2, BCP, HOMER and THOR, the manual ap-

proach was equivalent in terms of the p-values observed. The program MUSIC,
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Program 1000 Gene List 4000 Gene List Default Gene List

MACS2 1000 4001 12032
HOMER 1000 4006 9321
THOR 1002 4002 6470
BCP 1000 4009 8558
MUSIC 1000 4001 11542

TABLE 5.2: Gene lists for the different thresholds for the peak calling
programs. Note that the number of genes are approximately close to
the limit.

however, retained different peaks depending on the g-value specified. For simplic-
ity, I continued to use the manual method for MUSIC. An additional list with all
genes was also kept for each program. The number of genes in each list is given
in Table 5.2. Note that for some of the gene sets, the number of retained genes is
slightly higher than the threshold limit. This occurred when reducing the number
of scored peaks reduced the number of genes to below the limit for that gene set.

I compared the genes found in each list to all the programs, resulting in the UpSet
plots in Figure 5.1. As the number of genes increased there was a higher level of
agreement between programs. The program BCP in particular had a large number
of genes that it found uniquely, as did HOMER. This is most noticeable in Figure
5.1a.

For the three models, I used the different thresholds in different combinations, as
in the Simulation methods section. Only three of the gene sets generated were used
in this case; 1000, 4000 and the default, to reduce the number of permutations and
capture a range of stringency within the thresholds. This meant that there were 243
different permutations to perform. I obtained the posterior probabilities for each

permutation, and averaged them to attain an overall posterior probability.
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5.3 Results

I performed an LCA, LCRE with constant loading and LCRE with non-constant
loading model fit in order to compare the results and determine if similar results
as the simulation were observed. The average posterior probability was plotted for
each model and the results are given side-by-side in Figure 5.2. Similar distribu-
tions were observed across all three models, with a higher density section found at
an average posterior probability of 0.3. The LCA model found a second high den-
sity point at approximately 0.7, indicating that there were two distinct groups of
genes with different posterior probabilities, with few genes in between. In contrast,
the LCRE models did not have any other high density sections, but instead several
medium density regions between 0.1 to 0.5. All three models also had a low range
of values, with no posterior probability greater than 0.75. This implied that many of
the genes had low posterior probabilities for at least some of the combinations. This
may have been due to the lack of agreement observed in the 1000 gene set, which
may have decreased the posterior probability for some of the genes.

To directly compare the average posterior probabilities for each gene, pairwise
plots comparing the three models were generated (see Figure 5.3). The amount of
correlation between the LCA and the two LCRE models was low, particularly for
genes that were given a low average posterior probability by the LCA model. In
comparison, the LCRE models had a much higher level of agreement, with most
points falling close to the x = y line. The LCRE posterior probabilities were also
more evenly distributed across both axes compared to the posterior probabilities of
the LCA model, where most points have an average posterior probability of approx-
imately 0.7. Additionally, the LCA model found a number of genes with posterior
probabilities of approximately 0.3. The LCRE models tended to have a wide range

of posterior probabilities, extending from 0.35 to 0.9 for the constant loading model.
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FIGURE 5.2: Average posterior probabilities over different thresholds

for genes from H3K36me3 data, separated by model (LCA, LCRE (CL)

and LCRE (NCL)) and displayed as a violin plot. The y-axis gives the

average posterior probability, and the width of the violins along the x-

axis determines the number of genes with that average posterior prob-

ability. There are a large number of genes with a posterior probability

of 0.7 across the three models.

In contrast, the LCA range extended from 0.35 to 0.7. This indicated less variation
for the combinations of gene sets tested for these models.

Each gene has 243 posterior probabilities, one for each combination of thresh-
olds. To further investigate the differences between the models, I calculated the
standard deviation of these posterior probabilities for each gene. This is given in
Figure 5.4. The genes ranged in standard deviation from 0.2 to 0.5. The LCRE mod-
els generally had lower average standard deviations, and a greater range of standard
deviations. The LCA model results had the lowest range, and the highest average
standard deviations. This high level of variability in the posterior probability are

most likely due to the lack of agreement in the smaller gene lists. This meant some

permutations of thresholds gave genes very different profiles, resulting in different
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a positive correlation between the LCRE (CL) and LCRE (NCL) results.
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FIGURE 5.4: Standard deviations of posterior probabilities over differ-

ent thresholds for genes from H3K36me3 data by model. Standard de-

viations are collated as boxplots. The LCA model has the highest aver-
age standard deviation across the genes.

posterior probabilities for presence in a particular class. Furthermore, this also ex-
plained why the maximum posterior probability for all three models was low, and
the minimum posterior probability was high, relative to the possible range. If dif-
ferences within genes are large, this results in the average moving away from the
extremes.

Next, I examined the genes that were associated with binding for each model.
This was calculated by classifying all genes with a posterior probability greater than
0.5 as binding, and those with a posterior probability less than 0.5 as non-binding.
The resulting gene sets for each model were compared using the Entrezgene ID,
and the Venn diagram shown in Figure 5.5 was constructed. The figure indicates
that there was a large amount of correlation across all three models, and the LCRE
with non-constant loading in particular found no unique genes compared to the
other models. In contrast, the LCRE models in Chapter 2 found almost identical

gene sets.
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The LCA model found 8779 genes were binding, the LCRE model with constant
loading found 11,198 and the LCRE with non-constant loading found 9862. The
majority of these (8733) were found by all three models. Notably, these numbers are
comparable with the original gene lists identified by the fixed thresholds method

with the models.

LCRE (no CL)

LCRE (CL)

FIGURE 5.5: Venn diagram of binding genes based on the three

LCA models; LCA, LCRE with constant loading and LCRE with non-

constant loading. The results indicate a high level of agreement (8733

were found by all genes) the LCRE with non-constant loading found
no unique genes.

Focusing on the results for the LCA, I obtained the significant GO terms for these
genes, as I did with the original LCA and LCRE models (see Figure 5.6). The sig-
nificantly enriched GO terms are different to those found in Chapter 2 when using
the fixed threshold method. Thus, despite the similarities in the number of genes
identified as enriched, there was a difference in the set of genes found by the two
different methods. These GO terms still appeared to be associated with transcrip-

tional activity, as noted in Chapter 2.
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FIGURE 5.6: Significant GO terms for the LCA model using the average
threshold method. While a comparative number of genes were identi-
tied as binding overall, different significant GO terms were found.

I then compared the gene list from the average threshold method LCA to the
tixed threshold method LCA. Despite the differences in the GO terms found, the
genes had a large amount of overlap, with around 8746 genes being in common.
This also indicated that the average threshold resulted in a more stringent number
of genes, and gives high confidence for the resulting set. Notably, using a sum of
scores method will give the same results as the fixed threshold LCA, so this is also
the overlap between the average threshold method and the sum of scores method
as well.

Due to constraints with this method, the actual and expected number of genes
could not be calculated, as the profile of each gene varied in the combinations de-

pending on its score for each program. However, it is clear that this method is useful
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Fixed Threshold ~ ——> Average Threshold

FIGURE 5.7: Venn diagram for Entrezgene IDs for the genes found with
the fixed threshold LCA method (from Chapter 2) and the genes found
with the average threshold LCA method

and can be used to combine the results from multiple ChIP-seq programs in a more

reliable way.

5.4 Conclusions

In this chapter, I applied a new method developed as part of Chapter 4 to the exper-
imental ChIP-seq data. This method used varying thresholds to create several sets
of genes for each program, representing low, medium and high stringency, where a
high stringency would only retain the most likely genes for binding. Each combina-
tion of the gene sets for all the programs was analysed using the three different LCA
models, with the resulting posterior probabilities from each combination averaged

for each gene.
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The resulting average posterior probabilities were compared for the three mod-
els. All three models had a relatively small range of posterior probabilities, partic-
ularly the LCA model. A large number of genes were found to have low posterior
probabilities for all three models. The LCA model had a similar cluster of genes with
high posterior probabilities, while the LCRE models tended to have more genes
along the range of posterior probabilities, with only a few gaining the maximum
value. Analysis of the standard deviation indicated that the LCA also had the high-
est standard deviation, which may have resulted in the smaller maximum value of
the posterior probabilities.

I generated putative binding genes for each model using the average posterior
probabilities. Comparisons of these sets indicated that about 9000 genes were found
by all three models. Based on the results of Chapters 2, 3 and 4, I selected the LCA
model for further analysis. I identified significant GO terms for the LCA putative
gene binding set, and found that the results were different to those found in Chapter
2. However, these GO terms still confirmed that this gene set was associated with
basal transcriptional activity, as expected.

When comparing the fixed threshold LCA gene set and the average LCA gene
set, it was found that there was a large amount of overlap in the genes identified as
putatively binding. This meant that the genes found by the average LCA gene set
can be considered high confidence.

While all three models are useful, the LCA model is the most practical in con-
junction with the average thresholds method, because it estimates the parameters
much more quickly.

There are some limitations to this application of the threshold methods. The

threshold was kept at the default for the 5 programs, so this makes the assumption
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that the optimal threshold is at the default or lower, which may not be the case. Sim-
ilarly, if the thresholds chosen are all poor, then this would degrade the performance
further. An extension to this study would be to change the default threshold value
using the threshold modifiers described in Table 5.1, and then generate thresholds
using the method described in 5.2. The results would be useful as a comparison and
would provide more insight into the gene lists.

Another limitation is that the target protein of the ChIP-seq data set used identi-
ties transcriptionally active genes, but no condition was changed during the experi-
ment. An experiment that has a known outcome (for example, the activation of ion
channels) prior to the use of LCA may be helpful for measuring the effectiveness of
this method.

Overall, the results of this chapter indicated that the average threshold method

provides useful results.
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Chapter 6

Conclusions and Future Directions

ChIP-seq is a popular tool for identifying binding regions of proteins within the
genomes. Applications of this technology include finding transcriptionally active
regions with histone marks, as well as the effects of an added treatment over time
for particular proteins. The results of ChIP-seq vary in both peak characteristics and
quality, and therefore subsequent analysis is complex.

It is difficult to determine the best program to use on ChIP-seq data, even when
accounting for the expected type of peak. The surprising amount of variation be-
tween programs, and even within programs using different settings, means there is
often a low level of agreement on genes associated with binding sites. This thesis
explored methods of identifying putative binding genes for the purposes of further
investigation, in particular through the application of LCA and LCRE (with constant

loading and with non-constant loading) models.

Conclusions

In Chapter 2, a data set obtained from ENCODE was analysed using a num-
ber of different ChIP-seq programs. Peaks were associated with genes in order to
compare between programs easily. The programs had varying levels of agreement,

making this data set ideal for testing the LCA models. Three different models were
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compared, increasing in complexity; LCA (without random effects), LCRE with con-
stant loading, and LCRE with non-constant loading. The BIC was used to identify
whether the two class or one class fit was more appropriate for each of the mod-
els, with the assumption that a one class fit would occur when the data could not
sufficiently be classified into two classes.

It was initially expected that the LCRE would more closely fit the data, as this
model accounts for the anticipated correlation found between programs as a ran-
dom effect. While the LCRE models improved the fit to the data, the result tended
to rely too heavily on particular programs, such as enRich. Furthermore, the BIC
of the LCRE with non-constant loading models indicated that a one class model
should be preferred. Despite the assumed dependence between programs, the LCA
provided the most reliable results, and was the most practical to use when consider-
ing the time to estimate the parameters. Questions about the use of BIC to identify
the correct number of classes remained.

In Chapter 3, simulated data was generated to investigate the 3 LCA models
across a range of scenarios. The parameters varied across these scenarios included
the extent to which genes were separated into two groups, the amount of random
effect present within the data, the number of programs used, and the proportion
of binding genes within the data. To assess the models, an MGMM was used as a
“gold-standard” using the true underlying scores. Measures of the performance of
the three models included the average correlation to the MGMM for each scenario,
the RMSE compared to the MGMM,, and the BIC.

The LCA model was found to perform best even when moderate levels of ran-
dom effect were included. The LCA generally had higher average correlations, and
lower RMSE, than the other two models, unless the random effect was large in mag-

nitude, in which case the LCRE with non-constant loading was the better choice of
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model. The LCRE models tended to attain better BIC values for most scenarios.

Next, the method of using the BIC to select a model, rather than always using
the same model was assessed. The BIC for all the models for each scenarios were
compared, and the average correlation to the MGMM and RMSE were retained for
the preferred model. This was found to produce competitive results for most sce-
narios, however did not improve the results found when using the sum of scores.
The drawback of this approach is that it involves estimating the parameters for all
three models, which is more time consuming than selecting a single model. Fur-
thermore, in most cases the LCA was still an appropriate model, unless the random
effect was large in magnitude. Thus using the simple LCA is preferred over com-
paring the models” BIC (when using a two class model) to identify the best model
for a particular data set.

To assess the reliability of the BIC for choosing a one class or two class model,
these different models were also tested with the simulated data. When the simulated
data was generated with two classes, the LCA always identified the two class model
as best, but the LCRE models were less consistent, particularly the model with non-
constant loading. In contrast, when the simulated data was generated with a single
class, the LCRE model with non-constant loading most accurately identified this
correctly, while the LCA and LCRE with constant loading showed mixed results. It
was concluded that comparing a one class and two class model BIC was found to be
an unreliable way to determine whether the two class model was appropriate.

When the LCRE BIC suggested that a one-class model is more appropriate for
the data, it was considered that this may degrade the performance of the two class
posterior probabilities. However, the simulation studied showed no such effect and
I concluded that an LCRE BIC that favours a one class model is not diagnostic of

poor performance. Overall when analysing multiple ChIP-seq programs, it is more
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realistic to assume a two class model should be used.

In Chapter 4, I developed a new method of using the LCA model. In this method,
different thresholds were used to create new gene lists with varying levels of strin-
gency for each program. The LCA models were then used to analyse each combina-
tion of the gene lists, and the resulting posterior probabilities were averaged. When
tested on the simulated data, this led to very consistent posterior probabilities that
relied less on random changes to the data. Furthermore, the results showed im-
provement for most scenarios for each of the three models. However, this method
is also time consuming, and is most appropriate when used in conjunction with the
LCA model, which is fast compared to the LCRE models.

Finally, in Chapter 5, the changing threshold method was applied to the origi-
nal data, based on the conclusions from Chapter 3. Comparisons between the three
models indicated that the LCA tended to have greater variation in the probabili-
ties for each gene, and smaller posterior probabilities overall. In comparison to the
LCRE models, the LCA had two distinct groups of genes, with either high or low
posterior probabilities.

The average posterior probabilities were used to identify a number of binding
genes, which showed general agreement between the three models. The binding
genes that were found by the LCA model were used to identify significant GO
terms. The results indicated that these genes had different functions to those found
in Chapter 2. I concluded that this method provided consistent results, and gener-

ates a set of putative binding genes that can be used for further analysis.

Future Directions
Further research is required to fully take advantage of LCA in conjunction with

ChIP-seq data.
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The LCA model should be applied to a greater range of data sets. The H3K36me3
data used in this thesis was chosen because it was high quality and was well doc-
umented, however testing with a number of other data sets, including those with
different peak characteristics such as DNA binding proteins will give greater in-
sight into the affects of different types of peaks on DNA. Furthermore, data sets
where there is a known change in the condition of cells between different samples
would allow a better understanding of the differences in gene sets between the fixed
threshold LCA method and the average threshold LCA method. For example, if the
only genes found are associated with depolarisation activity after the addition of
potassium depolarisation solution, this would provide greater confidence for the
LCA model. Applying the LCA model to a ChIP-seq data set to identify changes
under different condition is also the most likely application of this method. Apply-
ing LCA to a number of different data sets would therefore allow for better testing
of the model in a range of conditions. Additionally, as mentioned in Chapter 5, us-
ing the same dataset but changing the default threshold may also provide greater
insight into the method outcomes.

More extensive simulations are needed to fully explore this model. In Chapter
3 and 4, simulations were used to test the accuracy of the 3 LCA models when the
underlying truth about the data was known. As mentioned in that section, there
are some limitations in the results because the model makes assumptions about the
distribution of the underlying data that may not be accurate. Therefore, testing a
wider variety of parameters and different extensions to the model may lead to more
relevant results. In particular, increasing the number of genes would be beneficial,
since this affected the results of the BIC, one of the measures tested in Chapter 3. In
addition, alternative measures to the BIC should be explored, such as a bootstrap

likelihood ratio test (McLachlan, 1987).
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A greater variety of parameter options would also be beneficial. Testing different
simulation data generation models would also be useful, for example testing alter-
native score distributions. Furthermore, the use of the program enRich in Chapter
2 indicated that a low agreement and small gene set result can influence the LCRE
models in particular. This was not explored in the simulations, which assumed that
all of the programs were equally accurate. Thus testing the results of the LCA mod-
els when one or multiple programs has low agreement may provide further insight
into these effects.

Finally, the merits of using an ordinal response LCA should be considered as
an alternative to the average threshold method. The original proposal to use LCA
as a means to integrate the results from several calling programs or across several
studies assumes a binary outcome from each program (Cantarel et al., 2014; Elsik
et al.,, 2007; Chen et al., 2007). For example, each gene is classified as either bind-
ing or non-binding by each calling program in the present context. When multiple
thresholds are introduced, as introduced here, the outcomes can then be considered
as ordinal rather than binary. A more standard statistical approach is then to con-
sider LCA models for ordinal rather than binary data, see Agresti and Lang, (1993).
In principle, that approach could be expected to make optimal use of the data and
produce more efficient estimates of the posterior probabilities than those obtained
from the averaging method considered in this thesis. The application of LCA with
ordinal responses was not undertaken in this thesis due to difficulties with imple-
mentation. Nevertheless, the evaluation of such methods is a logical next step and

an important area for future research.

Final Recommendations
The results of the thesis indicate that the LCA is a promising model for the pur-

pose of combining multiple ChIP-seq peak finding identification programs to create
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a set of putative binding genes. While three different LCA models of increasing
complexity were considered, the simplest LCA model without random effects not
only had the most reliable performance when applied to real ChIP-seq data, but also
had the most accurate results for most of the scenarios in Chapter 3.

A further recommendation would be to use the average threshold method devel-
oped in Chapter 4 and applied in Chapter 5. The results indicated that this, when
used in conjunction with the LCA model, was more accurate than the fixed thresh-
old method.

In addition, further research is needed to fully explore the application of LCA to
ChIP-seq data, including more extensive simulations, the applications to a greater

variety of ChIP-seq data sets and the investigation into an ordinal response LCA.
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Appendix A

Software

This appendix describes all of the software and other resources used in this the-
sis, and includes the scripts used to generate and analyse the data, where possible.
Code used can be found in the digital appendix on GitHub at https://github.com/

catisha/Thesis_Code/ under the subheadings given here:

A.1 ChIP-seq Peak Identification Software

MACS2
MACS2 version 2.1.0.20151222

See macs2 all samples.sh for commands.

HOMER
HOMER v4.10.1

See homer_analysis.sh for commands.

THOR
THOR version 0.11.3

See THOR_analysis.sh and H3K36me3 _THOR.config for commands.


https://github.com/catisha/Thesis_Code/
https://github.com/catisha/Thesis_Code/
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enRich
enRich version 3.0

See:

e enrich_all_chromosomes.sh

e enrich mycounts_allchromosomes_human neutrophil_pheonix.R
e combine_chroms_enRich.R

for commands.
Note enrich mycounts_allchromosomes_human neutrophil pheonix.R was run

on R version 3.4.1 while combine_chroms_enRich.R was run on R version 3.5.1.

MUSIC

See MUSIC analysis.sh for commands.

BCP
BCP version 1.18

See BCP_analysis.sh for commands.

A.2 R Software and Scripts

A.21 Chapter2

R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.5 LTS
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R scripts (see Digital Appendix):

e macs_analysis_slim.Rmd: Takes peak information generated by the MACS2 pro-
gram and identifies associated peaks. Also generates thresholds for the program for

Chapter 4.

e HOMER_analysis_slim.Rmd: Takes peak information generated by the HOMER pro-
gram and identifies associated peaks. Also generates thresholds for the program for

Chapter 4.

e THOR_analysis_slim.Rmd: Takes peak information generated by the THOR program
and identifies associated peaks. Also generates thresholds for the program for Chap-

ter 4.

e enRich_analysis.Rmd: Takes peak information generated by the MUSIC program and

identifies associated peaks.

e MUSIC_analysis_slim.Rmd: Takes peak information generated by the MUSIC program
and identifies associated peaks. Also generates thresholds for the program for Chap-

ter 4.

e BCP_analysis_slim.Rmd: Takes peak information generated by the BCP program and

identifies associated peaks. Also generates thresholds for the program for Chapter 4.

e lca random_programs.Rmd: Combines genes lists from the programs and tests the
LCA, LCRE (CL) and LCRE (NCL) models with enRich and without enRich. Gen-

erates figures used in Chapter 2.

A.2.2 Chapter3

Simulation Generation

R version 3.4.1 (2017-06-30)
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Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.5 LTS

R scripts (see Digital Appendix):

LCA_sim_with_lca_record_commandline_conLoad_pcoef.R: Generates simulation

data based on Chapter 3 Methods with a varied threshold and two clusters of scores.

e LCA sim with lca record_contThresh commandline conload pcoef .R: Generates sim-
ulation data based on Chapter 3 Methods with a constant threshold and two clusters

of scores.

e LCA_sim with_lca_record_commandline conLoad_pcoef_oneclass.R: Generates sim-
ulation data based on Chapter 3 Methods with a varied threshold and one cluster of

scores.

e LCA_sim with lca record_contThresh commandline_conLoad pcoef_oneclass.R: Gen-
erates simulation data based on Chapter 3 Methods with a constant threshold and one

cluster of scores.

Commandline Scripts (see Digital Appendix):

e simulate LCA_commandline _3methods.sh: Used to run the top two scripts above

with a range of parameters.

e simulate LCA_commandline_1lcluster_3methods.sh Used to run the bottom two

scripts above with a range of parameters.

Analysis
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.5 LTS

R scripts (see Digital Appendix):
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e combined comparing parameters_simulation.R: Takes the simulation data for both
varied and constant thresholds, and generates results for the correlation MGMM, the
RMSE, the BIC and the sum of scores, as well as additional analyses that were not

used. (Section 3.3.1)

e choose_by BIC.R: Analysis comparing the results when using the BIC based model

compared to the results using one of th other LCA models. (Section 3.3.2)

e one_class_vs_two_class_analysis.R: Compares the BIC for a one class model vs a

two class model and generates results used for assessment of the BIC. (Section 3.3.3)

e nocluster_one_class_vs_two_class_analysis.R: Compares the BIC for a one class
model vs a two class model when the underlying only has one cluster and generates

results used for assessment of the BIC. (Section 3.3.3)

A.2.3 Chapter4

Average Threshold Method Simulation Generation
R version 3.4.4 (2018-03-15) on Pheonix
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux Server 7.5 (Maipo)

R Scripts (see Digital Appendix):

e LCA_sim with_lca_record_change Thresh_commandline_conlLoad_pcoef.R:Gen-

erates simulation data for motivating example used in section 4.1.

e LCA_sim_3_thresholds_commandline_20rep.R: Generates simulation data based on Chap-

ter 4 Methods for the average threshold method.

Commandline Scripts (see Digital Appendix):

e simulate_LCA_3methods_thresholds_commandline.sh: Used to run the above R

script for a variety of parameters.
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Analysis
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.5 LTS

R Scripts (see Digital Appendix):

e one_scenario_different_thresholds_compare.R: Generates plot for motivating

example used in section 4.1.

e ave_threshold results.R: Takes the simulation data of the average thresholds and
generates results using the correlation to the MGMM, the RMSE, the sum of scores

and the binding gene accuracy for comparison.

e compare_thresholds_ave_fixed.R: Takes the results from the previous R script and

compares them to the results from combined_comparing parameters_simulation.R.

A.24 Chapter5

R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.5 LTS

R Scripts (see Digital Appendix):

e lca peak_thresholds.Rmd: Takes the threshold data from the 5 programs (MACS2,
HOMER, THOR, MUSIC and BCP) and applies the average threshold data described

in Section 5.2. Analyses and produces the results shown in Section 5.3.

A.3 Other Software

ENCODE
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This data is originally from www.encodeproject.org. It was chosen because it
was a histone mark, was ansiogenic and has no known significant issues, according

to the website.

e The H3K36me3 data can be found at: https://www.encodeproject.org/experiments/
ENCSR373WCB/ at the bottom under Processed Data. I selected the filtered align-

ments. 1 or 2 indicates which anisogenic replicate it is.

e The Control data can be found at: https://www.encodeproject.org/experiments/
ENCSR557RDB/ at the bottom under Processed Data. I selected the filtered align-

ments. 1 or 2 indicates which anisogenic replicate it is.

e Details of how the ChIP-seq reads were mapped can be found at: https://

www .encodeproject.org/pipelines/ENCPL220NBH/

e Details of processing after mapping can be found at: https://www.encodeproject.

org/pipelines/ENCPL272XAE/

e General information on the histone analysis can be found at: https://www.

encodeproject.org/chip-seq/histone/#histone

Ensembl BioMart

To identify genes, the R package biomaRt was used to access the Ensembl BioMart
database. To match the time of the H3K36me3 generation and mapping, an older
version of the gene database is used, http://mar2016.archive.ensembl.org/index.
html. More information about the package can be found at https://bioconductor.

org/packages/release/bioc/html/biomaRt.html.

Phoenix


www.encodeproject.org
https://www.encodeproject.org/experiments/ENCSR373WCB/
https://www.encodeproject.org/experiments/ENCSR373WCB/
https://www.encodeproject.org/experiments/ENCSR557RDB/
https://www.encodeproject.org/experiments/ENCSR557RDB/
https://www.encodeproject.org/pipelines/ENCPL220NBH/
https://www.encodeproject.org/pipelines/ENCPL220NBH/
https://www.encodeproject.org/pipelines/ENCPL272XAE/
https://www.encodeproject.org/pipelines/ENCPL272XAE/
https://www.encodeproject.org/chip-seq/histone/#histone
https://www.encodeproject.org/chip-seq/histone/#histone
http://mar2016.archive.ensembl.org/index.html
http://mar2016.archive.ensembl.org/index.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
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A portion of this thesis was completed using supercomputing resources pro-
vided by the Phoenix HPC service at the University of Adelaide, in particular the
generation of data used in Chapter 4, and the analysis of H3K36me3 using the pro-

gram enRich.
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Appendix B

Chapter 3 Full Results

B.1 Comparing the Simple LCA and LCRE models Re-

sults

B.1.1 Average Correlation to MGMM and Standard Deviation of

Correlation to MGMM for three models
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B.1. Comparing the Simple LCA and LCRE models Results
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B.1. Comparing the Simple LCA and LCRE models Results

pSE|T 0 LL68LO SFTT0'0 ITPL00  9S/T00  60FST0 SwerSorg@AQIuRISUOD 60  F ST
928000 805060 18910°0 981600 16V10°0  ISh/T’0 sweiSoig AQIuRISUO) L0 b ST
9ETT 0 TT8180 $9062°0 PT6PT0  9P6610  196/€0 SwWeiSoif PAQIUBISUOD G0 b ST
81600°0 €££06°0 19€20°0 0S8F0°0  €6V1000  89p/T’0 surerSorg paQueIsu0d €0 F ST
16¥10°0 12678°0 LEETO0 9/E0°0  OFITO0 61810 swreiSoig AaQIueIsuod [0 F ST
PSTON'HYDT At TON'HNDT PSIIMIDT 248 TIHADT PSVIT 248 VT ploysany, d g




160

Appendix B. Chapter 3 Full Results

B.1.2 RMSE for three models

p 6 o0z po Threshold LCA LCRECL LCRENCL p 46 o0 po Threshold LCA LCRE.CL LCRE.NCL
5 05 0 0.1 Varyingover Programs  0.15866 0.80402  0.55664 7 05 05 0.1 Varyingover Programs  0.44093 0.46290  0.44806
5 05 0 03 Varyingover Programs  0.20296 0.20296  0.20296 7 05 05 03 Varyingover Programs  0.26527 0.27857  0.27865
5 05 0 0.5 Varyingover Programs 021613 0.21614  0.21614 7 05 05 0.5 Varyingover Programs  0.22646 0.27723  0.27875
5 05 0 0.7 Varyingover Programs  0.19961 0.41280  0.22250 7 05 05 0.7 Varyingover Programs  0.27831 0.19813  0.24780
5 05 0 09 Varyingover Programs  0.16019 0.16271 0.16348 7 05 05 09 Varyingover Programs  0.30197 0.23610  0.32432
5 15 0 0.1 Varyingover Programs  0.06412 0.06439 0.06544 7 15 05 0.1 Varyingover Programs  0.06258 0.06109  0.05552
5 15 0 03 Varyingover Programs  0.07959 0.07915 0.08270 7 15 05 03 Varyingover Programs  0.07534 0.07565  0.06756
5 15 0 05 Varyingover Programs  0.06991 0.06994  0.07424 7 15 05 05 Varyingover Programs  0.09047 0.08889  0.08175
5 15 0 0.7 Varyingover Programs  0.07071 0.07072 0.07113 7 15 05 0.7 Varyingover Programs  0.08248 0.07948 0.07410
5 15 0 09 Varyingover Programs  0.05657 0.05652  0.06218 7 15 05 09 Varyingover Programs  0.06338 0.06017  0.04604
7 05 0 0.1 Varyingover Programs  0.14260 0.14836 0.15959 5 05 05 0.1 ConstantOver Programs 0.29774 0.25706 0.42689
7 05 0 03 Varyingover Programs  0.20186 0.20259 0.20726 5 05 05 03 Constant Over Programs 0.22514 0.26886  0.29773
7 05 0 0.5 Varyingover Programs 021550 0.21550  0.21550 5 05 05 0.5 ConstantOver Programs 0.20991 0.33672  0.39982
7 05 0 0.7 Varyingover Programs  0.19921 0.19910  0.19904 5 05 05 0.7 ConstantOver Programs 0.23269 0.43316  0.60708
7 05 0 09 Varyingover Programs  0.15303 0.16258  0.15572 5 05 05 09 ConstantOver Programs 0.21399 0.21892  0.20535
7 15 0 0.1 Varyingover Programs  0.02213 0.02213  0.02213 5 15 05 0.1 ConstantOver Programs 0.06890 0.06331 0.05223
7 15 0 03 Varyingover Programs  0.03414 0.03414  0.03414 5 15 05 03 Constant Over Programs 0.10162 0.09362  0.08194
7 15 0 0.5 Varyingover Programs  0.03624 0.03629 0.03616 5 15 05 0.5 ConstantOver Programs 0.10746 0.27109  0.09176
7 15 0 0.7 Varyingover Programs  0.04209 0.04191 0.04222 5 15 05 0.7 Constant Over Programs 0.10391 0.09191 0.08959
7 15 0 09 Varyingover Programs  0.02940 0.02940  0.02940 5 15 05 09 Constant Over Programs 0.10794 0.08492  0.07392
5 05 0 0.1 ConstantOverPrograms 0.13717 0.13494  0.17261 7 05 05 0.1 ConstantOver Programs 031627 0.33295  0.34099
5 05 0 03 Constant Over Programs 0.17969 0.18076  0.25149 7 05 05 03 Constant Over Programs 0.25271 0.26822  0.27630
5 05 0 05 Constant Over Programs 0.18735 0.18734  0.18734 7 05 05 05 Constant Over Programs 0.21968 0.26851 0.36742
5 05 0 0.7 ConstantOver Programs 0.17854 0.18240  0.19186 7 05 05 0.7 Constant Over Programs 0.28311 0.28992  0.28917
5 05 0 09 Constant Over Programs 0.14655 0.17774  0.15428 7 05 05 09 Constant Over Programs 0.24957 0.20619  0.44420
5 15 0 01 ConstantOver Programs 0.04004 0.04059 0.04172 7 15 05 0.1 ConstantOver Programs 0.05183 0.05027  0.04692
5 15 0 03 Constant Over Programs 0.05521 0.05521 0.05521 7 15 05 03 Constant Over Programs 0.07094 0.06279  0.05423
5 15 0 0.5 Constant Over Programs 0.04857 0.04857  0.04857 7 15 05 0.5 Constant Over Programs 0.05938 0.05654  0.04900
5 15 0 0.7 Constant Over Programs 0.05750 0.05677  0.05955 7 15 05 0.7 Constant Over Programs 0.07507 0.07113  0.06628
5 15 0 09 Constant Over Programs 0.04437 0.04499 0.04636 7 15 05 09 Constant Over Programs 0.06082 0.05570  0.04498
7 05 0 01 Constant Over Programs 0.14157 0.14149 0.14149 5 05 1 01 Varyingover Programs  0.30712 0.28531 0.15225
7 05 0 03 Constant Over Programs 0.17786 0.17786  0.17786 5 05 1 03 Varyingover Programs  0.27879 0.25401 0.51879
7 05 0 05 ConstantOver Programs 0.18986 0.19068  0.20278 5 05 1 05 Varyingover Programs  0.33344 0.33957  0.34413
7 05 0 0.7 Constant Over Programs 0.18557 0.18613 0.18790 5 05 1 0.7 Varyingover Programs  0.37496 0.34598 0.37256
7 05 0 09 Constant Over Programs 0.12997 0.13671 0.15004 5 05 1 09 Varyingover Programs  0.28927 0.27617  0.28323
7 15 0 01 Constant Over Programs 0.01562 0.01562 0.01562 5 15 1 0.1 Varyingover Programs  0.29916 0.29856 0.33349
7 15 0 03 Constant Over Programs 0.02363 0.02357 0.02275 5 15 1 03 Varyingover Programs  0.26439 0.51402 0.72499
7 15 0 0.5 Constant Over Programs 0.01932 0.01954 0.02152 5 15 1 0.5 Varyingover Programs  0.23362 0.47896 0.45023
7 15 0 0.7 Constant Over Programs 0.02479 0.02485 0.02488 5 15 1 0.7 Varyingover Programs  0.24929 0.32042  0.33845
7 15 0 09 Constant Over Programs 0.02213 0.02213  0.02213 5 15 1 09 Varyingover Programs  0.33176 0.22657  0.22313
5 05 05 0.1 Varyingover Programs 027892 0.27677  0.40042 7 05 1 01 Varyingover Programs  0.46386 0.46424  0.43030
5 05 05 03 Varyingover Programs  0.24687 0.24807  0.23823 7 05 1 03 Varyingover Programs  0.37414 0.39367  0.39126
5 05 05 0.5 Varyingover Programs  0.25248 0.33031 0.42622 7 05 1 05 Varying over Programs  0.25246 0.26883  0.26851
5 05 05 0.7 Varyingover Programs  0.19831 0.18945 0.20173 7 05 1 0.7 Varyingover Programs  0.31742 0.35661 0.58016
5 05 05 09 Varyingover Programs  0.47151 0.46227  0.23402 7 05 1 09 Varyingover Programs  0.34581 0.30672  0.22434
5 15 05 0.1 Varyingover Programs  0.08791 0.08589  0.07680 7 15 1 01 Varyingover Programs  0.27583 0.23743  0.30793
5 15 05 0.3 Varyingover Programs  0.11639 0.11634  0.09950 7 15 1 03 Varyingover Programs  0.20647 0.19757  0.11207
5 15 05 0.5 VaryingoverPrograms  0.10509 0.10803  0.10629 7 15 1 05 Varyingover Programs  0.17825 0.42939  0.45563
5 15 05 0.7 Varyingover Programs  0.11819 0.24335 0.10204 7 15 1 0.7 Varying over Programs  0.18404 0.33789 0.28674
5 15 0.5 09 Varyingover Programs  0.08313 0.07561 0.07711 7 15 1 09 Varyingover Programs  0.25707 0.45140  0.44671




B.1. Comparing the Simple LCA and LCRE models Results 161
p 0 0oz po Threshold LCA LCRECL LCRENCL p d oz po Threshold LCA LCRE.CL LCRE.NCL
5 05 1 0.1 ConstantOverPrograms 047196 045217  0.44155 7 05 2 0.1 ConstantOver Programs 0.51050 0.50110  0.48717
5 05 1 03 ConstantOver Programs 0.41298 041285  0.42627 7 05 2 03 Constant Over Programs 0.35761 0.35084  0.36467
5 05 1 05 Constant Over Programs 0.32131 0.28209  0.31562 7 05 2 05 ConstantOver Programs 0.33050 0.31756  0.28557
5 05 1 07 ConstantOver Programs 0.30074 0.30541 0.31281 7 05 2 0.7 Constant Over Programs 0.36063 0.35105 0.31842
5 05 1 09 ConstantOver Programs 0.26632 0.24654 0.22230 7 05 2 09 ConstantOver Programs 0.32165 0.31242 0.45887
5 15 1 0.1 ConstantOverPrograms 0.27938 045373  0.38476 7 15 2 0.1 Constant Over Programs 0.50856 0.60670  0.10209
5 15 1 03 Constant Over Programs 0.25324 0.35182 0.30624 7 15 2 03 Constant Over Programs 0.44988 0.55626 0.12677
5 15 1 05 ConstantOver Programs 0.23960 0.30746 0.34628 7 15 2 05 Constant Over Programs 0.42137 0.50964 0.14398
5 15 1 0.7 ConstantOverPrograms 025045 0.30940  0.29051 7 15 2 07 Constant Over Programs 044491 057220  0.14173
5 1.5 1 09 ConstantOver Programs 0.32787 0.53513 0.42639 7 15 2 09 Constant Over Programs 0.49166 0.54668 0.10802
7 05 1 0.1 ConstantOver Programs 0.40342 0.38100 0.40444 5 05 4 0.1 Varyingover Programs  0.32070 0.31350 0.30140
7 05 1 03 ConstantOver Programs 0.37580 0.41387  0.43831 5 05 4 03 Varyingover Programs  0.29995 0.29284 0.28964
7 05 1 05 ConstantOver Programs 0.27056 0.30089 0.38750 5 05 4 05 Varyingover Programs  0.32414 0.32033 0.31797
7 05 1 07 ConstantOver Programs 0.29614 0.31642 0.31334 5 05 4 0.7 VaryingoverPrograms  0.31384 0.30584 0.31029
7 05 1 09 ConstantOver Programs 0.42050 0.40949 0.42193 5 05 4 09 Varyingover Programs  0.28559 0.27604 0.26627
7 15 1 01 Constant Over Programs 0.26611 0.59631 0.51885 5 15 4 0. Varyingover Programs  0.61223 0.61793 0.61520
7 15 1 03 Constant Over Programs 0.18868 0.43883 0.45640 5 15 4 03 Varyingover Programs 059773 0.63156 0.23485
7 15 1 05 Constant Over Programs 0.18585 0.35664 0.54672 5 15 4 05 Varyingover Programs 031945 0.27178 0.52961
7 15 1 0.7 Constant Over Programs 0.19370 0.45620 0.46902 5 15 4 0.7 Varyingover Programs  0.60200 0.65899 0.19197
7 15 1 09 ConstantOver Programs 0.26666 0.23129 0.32715 5 1.5 4 09 Varyingover Programs  0.61310 0.64578 0.15634
5 05 2 0.1 Varyingover Programs  0.32283 0.31432 0.24449 7 05 4 01 Varyingover Programs  0.33091 0.32795 0.27055
5 05 2 03 Varyingover Programs  0.28431 0.26862 0.25426 7 05 4 03 Varyingover Programs  0.39692 0.39534 0.41743
5 05 2 05 Varyingover Programs  0.38588 0.36742 0.38169 7 05 4 05 Varyingover Programs  0.33209 0.34076 0.30777
5 05 2 07 Varying over Programs  0.40857 0.40332 0.40897 7 05 4 0.7 Varyingover Programs  0.37156 0.37968 0.41958
5 05 2 09 Varyingover Programs  0.41427 0.40420 0.38525 7 05 4 09 VaryingoverPrograms 039894 0.40249 0.61559
5 15 2 0.1 Varyingover Programs 051109 0.52477  0.51610 7 15 4 01 Varyingover Programs  0.60213 0.61302 0.14391
5 15 2 0.3 Varyingover Programs  0.48088 0.57666 0.43637 7 15 4 03 Varyingover Programs  0.58471 0.64243 0.18113
5 15 2 05 Varyingover Programs  0.46338 0.59757  0.34535 7 15 4 05 VaryingoverPrograms 056838 0.64344 0.21854
5 15 2 0.7 Varyingover Programs  0.48667 0.46377  0.22839 7 15 4 0.7 Varyingover Programs  0.57283 0.65272 0.18875
5 15 2 09 Varyingover Programs  0.51991 0.45923 0.21052 7 15 4 09 Varyingover Programs 058119 0.62112 0.15883
7 05 2 01 Varyingover Programs  0.54722 0.54286 0.48905 5 05 4 0.1 ConstantOver Programs 0.40207 0.39644 0.39993
7 05 2 03 Varyingover Programs  0.30966 0.31005 0.40145 5 05 4 03 Constant Over Programs 0.33745 0.33231 0.33341
7 05 2 05 Varyingover Programs  0.31014 032173  0.30564 5 05 4 05 ConstantOver Programs 0.37239 0.36441  0.37354
7 05 2 0.7 Varyingover Programs  0.36609 0.36762 0.38695 5 05 4 0.7 ConstantOverPrograms 0.30219 0.29656 0.29601
7 05 2 09 Varyingover Programs  0.32242 0.32739 0.52900 5 05 4 09 Constant Over Programs 0.31822 0.30915 0.31001
7 15 2 0.1 Varyingover Programs 049832 0.54590  0.11106 5 15 4 0.1 ConstantOver Programs 0.62161 0.65373  0.16422
7 15 2 03 Varyingover Programs  0.44742 0.61963 0.14167 5 15 4 03 Constant Over Programs 0.60165 0.64478 0.35002
7 15 2 05 Varyingover Programs 040104 0.54150  0.15882 5 15 4 05 ConstantOver Programs 0.58932 0.63628  0.20952
7 15 2 0.7 Varyingover Programs  0.44297 0.49830 0.14851 5 15 4 0.7 Constant Over Programs 0.60176 0.64819 0.19433
7 15 2 09 Varyingover Programs  0.50848 0.59382 0.53888 5 1.5 4 09 Constant Over Programs 0.60342 0.61262 0.60689
5 05 2 0.1 ConstantOver Programs 0.37168 0.36837  0.37802 7 05 4 0.1 ConstantOver Programs 0.35920 0.35541  0.33913
5 05 2 0.3 ConstantOver Programs 037903 0.36104  0.36021 7 05 4 03 Constant Over Programs 0.41384 0.40400  0.61053
5 05 2 05 Constant Over Programs 0.29918 0.28974 0.29672 7 05 4 05 Constant Over Programs 0.46700 0.45940 0.57479
5 05 2 0.7 ConstantOver Programs 0.26321 0.25014 0.25612 7 05 4 07 ConstantOver Programs 0.33562 0.33779 0.44668
5 05 2 09 ConstantOver Programs 0.31322 0.30656  0.30414 7 05 4 09 ConstantOver Programs 0.35755 0.35330  0.33675
5 15 2 0.1 Constant Over Programs 0.52657 0.60325 0.10319 7 15 4 01 Constant Over Programs 0.60230 0.62916 0.15085
5 15 2 03 Constant Over Programs 0.48301 053359  0.21553 7 15 4 03 Constant Over Programs 0.58441 0.64214  0.17819
5 15 2 05 ConstantOver Programs 0.45675 047546  0.17672 7 15 4 05 ConstantOver Programs 0.57093 0.64010  0.20422
5 15 2 0.7 Constant Over Programs 0.48907 0.49975 0.22359 7 15 4 07 Constant Over Programs 0.57404 0.63987 0.17554
5 15 2 09 Constant Over Programs 0.51493 0.55975  0.26073 7 15 4 09 ConstantOver Programs 0.58273 0.60943  0.15597
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Appendix B.

Chapter 3 Full Results

B.1.3 BIC for each of the three models

p 6 o po Threshold Preferred Model LCA LCRECL LCRENCL p 6 o0z po Threshold Preferred Model LCA LCRE.CL LCRE.NCL
5 05 0 01 Varyingover Programs LCA 18028.997 18039.847 18065.845 5 15 1 0.1 Varyingover Programs LCRE.CL 14336.348 14238.816 14251.605
5 05 0 03 Varyingover Programs LCA 18312155 18326782 18351493 | 5 15 1 0.5 Varyingover Programs  LCRE.CL 14992.656 14672.302 14685.994
5 05 0 05 Varyingover Programs LCA 18103.646 18111.817 18141.146 5 15 1 07 Varyingover Programs LCRE.CL 13903.900 13507.096 13532.453
5 05 0 07 Varyingover Programs LCA 17429.707 17444435 17469465 | 7 05 1 0.1 Varyingover Programs  LCRE.CL 24789.650 24706.180 24718.266
5 05 0 09 Varyingover Programs LCA 16269.319 16281.586 16306.435 7 05 1 0.3 Varying over Programs ~ LCRE.CL 24802.801 24652.525 24683.379
5 15 0 01 Varyingover Programs LCA 11799.375 11806.764 11834.252 7 05 1 0.5 Varying over Programs ~ LCRE.CL 24469.037 24279117 24307.365
5 15 0 03 Varyingover Programs LCA 12756.800 12763.921 12792.266 7 05 1 07 Varyingover Programs LCRE.CL 23719.299 23556.591 23584.337
5 15 0 05 Varyingover Programs LCA 12539.798 12631.404 12623.773 7 05 1 0.9 Varying over Programs ~ LCRE.CL 22576.612  22492.899 22515.167
5 15 0 07 Varyingover Programs LCA 11361.300 11368.093 11395.812 7 15 1 05 Varyingover Programs LCRE.CL 19431.484 18776.098 18797.582
5 15 0 09 Varyingover Programs LCA 8996.169  9003.612  9032.024 5 05 1 0.1 ConstantOver Programs LCRE.CL 18358.968 18349.987 18376.119
7 05 0 0.1 Varyingover Programs LCA 24858.771 24868.895 24909.444 5 05 1 03 Constant Over Programs LCRE.CL 18789.501 18751.648 18776.178
7 05 0 03 Varyingover Programs LCA 25314.861 25322.106 25364.161 5 05 1 05 ConstantOver Programs LCRE.CL 18923.550 18872.116 18898.094
7 05 0 05 Varyingover Programs LCA 25135.791 25142.982 25184.779 5 05 1 07 ConstantOver Programs LCRE.CL 18774.433 18733.232 18758.812
7 05 0 07 Varyingover Programs  LCA 24450.073 24457.736 24500232 | 5 05 1 09 Constant Over Programs LCRE.CL 18338.865 18327.482 18352.522
7 05 0 09 Varyingover Programs LCA 23142362 23156.603 23197.070 5 15 1 03 Constant Over Programs LCRE.CL 14405.646  13940.504 13966.746
7 15 0 0.1 Varyingover Programs LCA 15084.657 15092.032 15134565 | 5 1.5 1 0.5 Constant Over Programs LCRE.CL 14853.621 14334476 14358.063
7 15 0 03 Varyingover Programs LCA 16152976 16160.598 16203.675 5 15 0.7 Constant Over Programs LCRE.CL 14362.791 13898.407 13923.829
7 15 0 05 Varyingover Programs LCA 15993.287 16000.742 16044.408 | 7 0.5 0.1 Constant Over Programs LCRE.CL 25490971 25406.389 25427.672
7 15 0 07 Varyingover Programs LCA 14804.138 14811.817 14854.302 7 05 1 03 Constant Over Programs LCRE.CL 26130.066 25968.613 26000.534
7 15 0 09 Varyingover Programs LCA 12352946 12360.354 12402578 | 7 05 1 0.5 Constant Over Programs LCRE.CL 26302405 26108.018 26140.849
5 05 0 01 ConstantOver Programs LCA 19308.561 19315.830 19346.074 7 05 1 07 Constant Over Programs LCRE.CL 26073.394 25917515 25947.465
5 05 0 03 ConstantOver Programs LCA 20109.356 20116.820 20144549 | 7 05 1 09 Constant Over Programs LCRE.CL 25500.735 25426.647 25447.668
5 05 0 05 ConstantOver Programs LCA 20354.906 20362.577 20391.872 7 15 1 01 Constant Over Programs LCRE.CL 17019.665 16477.672 16493.932
5 05 0 07 ConstantOver Programs LCA 20105.623 20112.809 20140.625 7 15 1 0.3 Constant Over Programs LCRE.CL 18724.055 17988.416 18025.807
5 05 0 09 ConstantOver Programs LCA 19347.006 19354.752 19383.452 7 15 1 05 Constant Over Programs LCRE.CL 19193.223 18381.449 18415.483
5 15 0 01 ConstantOver Programs LCA 9381.105  9388.800  9418.828 7 15 1 0.7 Constant Over Programs LCRE.CL 18714.391 17991.819 18027.227
5 15 0 03 Constant Over Programs LCA 11097.949 11104.768 11132.674 5 05 2 01 Varyingover Programs LCRE.CL 16397.185 16350.929 16359.656
5 15 0 05 ConstantOver Programs LCA 11613.527 11653.878 11669.090 | 5 05 2 0.3 Varyingover Programs LCRE.CL 16305.249  16238.287 16252.960
5 15 0 07 ConstantOver Programs LCA 11107.442 11114.287 11142.660 5 05 2 05 Varyingover Programs  LCRE.CL 15949.876 15877.113 15895.006
5 15 0 09 ConstantOver Programs LCA 9407.272 9414900  9444.119 5 05 2 07 Varyingover Programs LCRE.CL 15394.839 15329.059 15346.520
7 05 0 01 ConstantOver Programs LCA 26973.203 26980.514 27023.346 5 05 2 09 Varyingover Programs  LCRE.CL 14622.662 14590.475 14608.797
7 05 0 03 Constant Over Programs LCA 27956.482  27964.080 28005.230 5 15 2 01 Varyingover Programs LCRE.CL 14508.988 14324.312 14340.351
7 05 0 05 ConstantOver Programs LCA 28227.258 28234.856 28279.094 5 15 2 09 Varyingover Programs LCRE.CL 11976.806 11549.128 11557.013
7 05 0 07 Constant Over Programs LCA 27954.485 27962.394 28004.125 5 05 2 01 ConstantOver Programs LCRE.CL 16408.024 16368.981 16384.952
7 05 0 09 ConstantOver Programs LCA 26986.087 26993.692 27036.458 5 05 2 03 Constant Over Programs LCRE.CL 16781.182 16707.341 16726.524
7 15 0 01 ConstantOver Programs LCA 12344.203 12351.986 12394.128 5 05 2 05 Constant Over Programs LCRE.CL 16870.746  16786.399 16805.973
7 15 0 03 Constant Over Programs LCA 14100.635 14108.308 14151.928 5 05 2 07 Constant Over Programs LCRE.CL 16787.199 16712.136 16731.435
7 15 0 05 Constant Over Programs LCA 14609.459 14617.097 14660.726 5 05 2 09 ConstantOver Programs LCRE.CL 16372.227 16332.311 16347.626
7 15 0 07 Constant Over Programs LCA 14111.857 14119.356 14163.667 5 15 2 01 Constant Over Programs LCRE.CL 13131.786 12784.512 12788.771
7 15 0 09 Constant Over Programs LCA 12379.660 12386.973 12431.906 5 05 4 05 Varyingover Programs LCRE.CL 14126.635 13994.092 13997.893
5 05 05 0.1 Varyingover Programs LCA 18263.331 18266.373 18291.537 5 05 4 09 Varyingover Programs  LCRE.CL 13180.434 13101.198 13104.337
5 05 05 03 Varyingover Programs LCRE.CL 18341.159 18336.285 18363.005 5 15 4 0.1 Varyingover Programs LCRE.CL 13126.204 12884.898 12890.985
5 05 05 05 Varyingover Programs  LCRE.CL 18000.745 17995.688 18022.217 5 05 4 03 Constant Over Programs LCRE.CL 14339.194 14224.716 14233.361
5 05 05 07 Varyingover Programs LCRE.CL 17362.196 17352.755 17379.252 5 05 4 05 ConstantOver Programs LCRE.CL 14432245 14304.792 14311.600
5 15 05 05 Varyingover Programs  LCRE.CL 13609.161 13577.343 13583.198 5 05 4 07 Constant Over Programs LCRE.CL 14343.102 14222.673 14226.672
5 15 05 09 Varyingover Programs LCRE.CL 10153.125 10107.295 10110.975 5 15 05 0.1 Varyingover Programs LCRE.NCL 12914.087 12883.976 12879.314
7 05 05 0.1 Varyingover Programs  LCRE.CL 25235.557 25227.327 25265.446 5 15 05 07 Varyingover Programs LCRE.NCL 12419.404 12419.100 12411.547
7 05 05 03 Varyingover Programs LCRE.CL 25436.810 25409.769 25447.293 7 15 05 0.1 Varyingover Programs LCRENCL 16697.048 16624.914 16616.616
7 05 05 05 Varyingover Programs  LCRE.CL 25153.254 25110.100 25148.070 7 15 05 05 Varyingover Programs LCRE.NCL 17388.987 17311.247 17299.035
7 05 05 07 Varyingover Programs LCRE.CL 24446.563 24404.767 24444314 7 15 05 07 Varyingover Programs LCRENCL 16221.843 16142.770 16136.511
7 05 05 09 Varyingover Programs  LCRE.CL 23192460 23173.796 23210369 | 7 1.5 0.5 0.9 Varyingover Programs LCRE.NCL 13820.515 13732596 13711.631
5 05 05 03 Constant Over Programs LCRE.CL 19807.908 19797.525 19823.642 5 15 05 0.1 ConstantOver Programs LCRE.NCL 10885.652 10846.994 10841.132
5 05 05 05 ConstantOver Programs LCRE.CL 19981.307 19962484 19989.637 | 5 1.5 0.5 0.5 Constant Over Programs LCRE.NCL 12975.416 12958.678 12940.775
5 05 05 07 ConstantOver Programs LCRE.CL 19815.444 19804.865 19830.555 5 15 05 07 ConstantOver Programs LCRE.NCL 12495.348 12458.579 12454.383
7 05 05 0.1 ConstantOver Programs LCRE.CL 26789.760 26772.894 26807.145 | 5 1.5 0.5 09 Constant Over Programs LCRE.NCL 10905.337 10869.115 10862.538
7 05 05 03 Constant Over Programs LCRE.CL 27540.468 27498.804 27537.264 7 15 05 0.1 ConstantOver Programs LCRENCL 14371.189 14285.819 14263.463
7 05 05 05 ConstantOver Programs LCRE.CL 27785.977 27727.500 27767.998 | 7 1.5 0.5 03 Constant Over Programs LCRE.NCL 16034.394 15953.918 15949.520
7 05 05 07 ConstantOver Programs LCRE.CL 27523.225 27488.627 27527.450 7 15 05 05 Constant Over Programs LCRENCL 16549.146  16501.413 16461.554
7 05 05 09 ConstantOver Programs LCRE.CL 26804.118 26791.751 26828.294 | 7 1.5 0.5 0.7 Constant Over Programs LCRE.NCL 16057.002 15982.041 15976.869
5 05 1 0.1 Varyingover Programs LCRE.CL 17889.306 17877.344 17901.942 7 15 05 09 ConstantOver Programs LCRENCL 14398.725 14309.187 14294.772
5 05 1 0.3 Varying over Programs ~ LCRE.CL 17801.155 17771.205 17795.704 5 15 1 0.3 Varying over Programs ~ LCRE.NCL 15259.410 15051.039 15031.780
5 05 1 05 Varyingover Programs LCRE.CL 17428.183 17385.941 17412.158 5 15 1 09 Varyingover Programs LCRE.NCL 11637.090 11345.796 11309.278
5 05 1 0.7 Varying over Programs ~ LCRE.CL 16794.478 16760.484 16786.449 7 15 1 0.1 Varying over Programs ~ LCRE.NCL 18836.827 18517.002 18482.108
5 05 1 09 Varyingover Programs LCRE.CL 15909.193 15900.768 15925.838 7 15 1 03 Varyingover Programs  LCRENCL 19782.002 19249.383 19009.049
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p 6 oz po Threshold Preferred Model LCA LCRECL LCRENCL p & oz po Threshold Preferred Model LCA LCRE.CL LCRE.NCL
7 15 1 07 Varyingover Programs LCRE.NCL 18210.930 17452.210 17415.918 7 05 4 09 Varyingover Programs LCRE.NCL 18560.967 18054.131 17937.331
7 15 1 09 Varyingover Programs LCRE.NCL 15815.135 15143.548 15085.458 7 15 4 0.1 Varyingover Programs LCRE.NCL 17109.763  16207.579 16134.156
5 15 2 05 Varyingover Programs LCRE.NCL 15496.917 14744.816 14741.720 7 15 4 03 Varyingover Programs  LCRE.NCL 18970.088 17314.155 17221.254
5 15 2 07 Varyingover Programs LCRE.NCL 14399.594 13636.741 13632.598 7 15 4 05 Varyingover Programs LCRE.NCL 19448.807 17427.187 17356.764
7 05 2 0.1 Varyingover Programs LCRE.NCL 22539.047 22262.705 22205.271 7 15 4 07 Varyingover Programs  LCRE.NCL 18522.334 16721.059 16653.638
7 05 2 03 Varyingover Programs LCRE.NCL 22626.680 22266.527 22235.866 7 15 4 09 Varyingover Programs LCRE.NCL 16205.147 15178.769 15106.958
7 05 2 05 Varyingover Programs LCRENCL 22424151 22033.319 22006.809 | 5 05 4 09 ConstantOver Programs LCRE.NCL 14045.296 13951.959 13946.694
7 05 2 07 Varyingover Programs ~ LCRE.NCL 21858937 21492.227 21465573 | 5 15 4 0.1 Constant Over Programs LCRE.NCL 12244.441 11952.154 11934.550
7 05 2 09 Varyingover Programs LCRE.NCL 21052.447 20789.469 20739.909 5 15 4 03 Constant Over Programs LCRE.NCL 14003.017 13268.418 13246.882
7 15 2 0.1 Varyingover Programs  LCRE.NCL 19111.509 18398.887 18312.204 5 15 4 05 Constant Over Programs LCRENCL 14498.674 13579.095 13559.495
7 15 2 03 Varyingover Programs ~ LCRE.NCL 20775.660 19193.260 19076.625 | 5 15 4 0.7 Constant Over Programs LCRE.NCL 13993.960 13221.179 13199.711
7 15 2 05 Varyingover Programs LCRE.NCL 20920.210 18845.522 18791.165 5 15 4 09 Constant Over Programs LCRENCL 12189.568 11894.748 11884.752
7 15 2 07 Varyingover Programs  LCRE.NCL 19626.990 17652.850 17627.725 7 05 4 01 ConstantOver Programs LCRE.NCL 18669.067 18242436 18168.137
7 15 2 09 Varyingover Programs LCRE.NCL 16539.497 15525.618 15487.963 7 05 4 03 Constant Over Programs LCRE.NCL 19079.519 18581.831 18528.626
5 15 2 03 Constant Over Programs LCRE.NCL 15050.243 14162.927 14153.969 7 05 4 05 ConstantOver Programs LCRE.NCL 19159.237 18641.341 18593.640
5 15 2 05 Constant Over Programs LCRE.NCL 15675.137 14583906 14577432 | 7 05 4 0.7 Constant Over Programs LCRE.NCL 19057.709 18564.379 18515.992
5 15 2 07 ConstantOver Programs LCRE.NCL 15040.331 14131.433 14125.280 7 05 4 09 ConstantOver Programs LCRE.NCL 18702.217 18294.128 18223.127
7 05 2 01 ConstantOver Programs LCRE.NCL 22573.221 22338.076 22307.831 7 15 4 01 ConstantOver Programs LCRE.NCL 16517.742  15613.752 15540.397
7 05 2 03 Constant Over Programs LCRE.NCL 23045.071 22721.200 22708759 | 7 15 4 0.3 Constant Over Programs LCRE.NCL 18677.154 16944.853 16886.883
7 05 2 05 ConstantOver Programs LCRE.NCL 23217.528 22840.176 22834.088 7 15 4 05 ConstantOver Programs LCRE.NCL 19406.954 17368.654 17315.810
7 05 2 07 Constant Over Programs LCRE.NCL 23003.078 22684.801 22675.941 7 15 4 07 ConstantOver Programs LCRE.NCL 18638.880 16888.906 16819.342
7 05 2 09 Constant Over Programs LCRE.NCL 22568.403 22335.185 22300.698 | 7 15 4 0.9 Constant Over Programs LCRE.NCL 16508297 15601.387 15570.667
7 15 2 0.1 Constant Over Programs LCRE.NCL 17785.805 16915.643 16824.055 5 05 05 09 Varyingover Programs LCA 16356.983 16357.353 16381.739
7 15 2 03 Constant Over Programs LCRE.NCL 20284.965 18387.279 18331.594 5 15 05 0.3 VaryingoverPrograms LCRE.CL 13861.994 13831.720 13833.652
7 15 2 05 ConstantOver Programs LCRE.NCL 20965.011 18759.359 18718.277 7 15 05 03 Varyingover Programs LCRE.CL 17638.889 17566.864 17563.979
7 15 2 07 Constant Over Programs LCRE.NCL 20174512 18312994 18255239 | 5 0.5 05 0.1 ConstantOver Programs LCA 19218.581 19220.299 19247.320
7 15 2 09 Constant Over Programs LCRE.NCL 17695.294 16875.884 16799.202 | 5 0.5 0.5 09 Constant Over Programs LCA 19234291 19233.230 19259.768
5 05 4 0.1 Varyingover Programs LCRE.NCL 14310403 14207.085 14199.749 5 15 05 03 Constant Over Programs LCRE.CL 12568.638 12535368 12534.084
5 15 4 03 Varyingover Programs LCRE.NCL 14253.944 13708.091 13676.432 5 15 1 01 ConstantOver Programs LCRE.CL 12734.590 12492.102 12490.875
5 15 4 05 VaryingoverPrograms LCRE.NCL 14331.064 13599.719 13563.604 | 5 15 1 09 Constant Over Programs LCRE.CL 12777.799 12519.563 12519.091
5 15 4 07 Varyingover Programs LCRENCL 13457.305 12773.513 12767.570 7 15 1 09 ConstantOver Programs LCRE.CL 16969.527 16465210 16465.467
5 15 4 09 Varyingover Programs LCRE.NCL 11299.440 10974.081 10968.751 5 15 2 03 Varyingover Programs  LCRE.CL 15542.633 15027.556 15027.169
7 05 4 0.1 Varyingover Programs LCRE.NCL 18869.035 18370.226 18267.580 5 15 2 09 Constant Over Programs LCRE.CL 13111.870 12773.070 12772.430
7 05 4 03 Varyingover Programs  LCRENCL 19134.707 18567.644 18483.958 5 05 4 03 Varyingover Programs LCRE.CL 14274.565 14158264 14159.499
7 05 4 05 Varyingover Programs  LCRE.NCL 19152.358 18559.678 18470.070 | 5 05 4 0.7 Varyingover Programs LCRE.CL 13734.602 13625.051 13626.569
7 05 4 07 Varyingover Programs LCRE.NCL 18976.873 18387.901 18294.564 5 05 4 0.1 Constant Over Programs LCRE.CL 14061.092 13973.061 13974.866

B.1.4

Sum of

Scores with matching

replicate results

p 6 o po Threshold LCA LCRE(CL) LCRE(NoCL) SumofScores p 6 0oz po Threshold LCA LCRE(CL) LCRE(NoCL) Sum of Scores
5 05 0 0.1 VaryingoverPrograms 0.75108 0.24617 0.01034 0.68779 5 05 0 09 ConstantOver Programs 0.80184 0.73322 0.78246 0.72466
5 05 0 03 Varyingover Programs  0.83091 0.83091 0.83091 0.78973 5 15 0 0.1 Constant Over Programs 0.99105 0.99081 0.99027 0.91465
5 05 0 05 Varyingover Programs  0.84685 0.84685 0.84685 0.82845 5 15 0 03 Constant Over Programs 0.99270 0.99270 0.99270 0.96256
5 05 0 07 VaryingoverPrograms  0.84163 0.46025 0.79841 0.80806 5 15 0 05 ConstantOver Programs 0.99527 0.99527 0.99527 0.96876
5 05 0 09 Varyingover Programs  0.76597 0.76156 0.75463 0.70606 5 15 0 07 ConstantOver Programs 099213 0.99231 0.99155 0.96154
5 15 0 0.1 VaryingoverPrograms 097687 0.97670 0.97591 0.85253 5 15 0 09 Constant Over Programs 0.98898 0.98869 0.98796 0.91533
5 15 0 0.3 Varyingover Programs  0.98481 0.98497 0.98356 0.93569 7 05 0 0.1 ConstantOver Programs 0.83055 0.83062 0.83062 0.68402
5 15 0 05 Varyingover Programs 099017 0.99016 0.98891 095152 7 05 0 03 Constant Over Programs 0.88925 0.88925 0.88925 0.83616
5 15 0 07 VaryingoverPrograms 098801 0.98800 0.98787 0.94754 7 05 0 05 ConstantOver Programs 0.89320 0.89278 0.87778 0.86237
5 15 0 09 Varyingover Programs  0.98202 0.98206 0.97832 0.89758 7 05 0 07 Constant Over Programs 0.88014 0.87982 0.87809 0.83795
7 05 0 0.1 Varyingover Programs  0.80379 0.79618 0.74993 0.64622 7 05 0 09 ConstantOver Programs 0.83810 0.83011 0.80212 0.69601
7 05 0 03 Varyingover Programs  0.85588 0.85539 0.85034 0.80090 7 15 0 0.1 ConstantOver Programs 0.99864 0.99864 0.99864 0.94307
7 05 0 05 Varyingover Programs  0.85959 0.85959 0.85959 0.83092 7 15 0 03 Constant Over Programs 0.99867 0.99868 0.99877 0.97231
7 05 0 07 Varyingover Programs  0.85962 0.85966 0.85800 0.81231 7 15 0 05 ConstantOver Programs 0.99925 0.99924 0.99907 0.97653
7 05 0 09 Varyingover Programs  0.78081 0.76413 0.76707 0.66437 7 15 0 07 ConstantOver Programs 0.99854 0.99853 0.99853 0.97117
7 15 0 0.1 Varyingover Programs  0.99728 0.99728 0.99728 0.90381 7 15 0 09 Constant Over Programs 0.99728 0.99728 0.99728 0.94025
7 15 0 03 Varyingover Programs 099722 0.99722 0.99722 0.95650 5 05 05 0.1 Varyingover Programs  0.57951 0.50165 0.08076 0.69766
7 15 0 05 VaryingoverPrograms 099737 0.99736 0.99738 0.96444 5 05 05 03 VaryingoverPrograms  0.76713 0.75644 0.77517 0.75753
7 15 0 07 Varyingover Programs  0.99577 0.99581 0.99575 0.95988 5 05 05 0.5 VaryingoverPrograms  0.76040 0.57728 0.34301 0.82014
7 15 0 09 Varyingover Programs 099519 0.99519 0.99519 092367 5 05 05 07 Varyingover Programs  0.84181 0.83622 0.82370 0.84945
5 05 0 01 ConstantOver Programs 0.83063 0.83069 0.77977 0.75191 5 05 05 09 VaryingoverPrograms 058581 0.61705 0.52517 0.47817
5 05 0 03 ConstantOver Programs 0.87124 0.87053 0.76590 0.83585 5 15 05 0.1 VaryingoverPrograms  0.95558 0.95775 0.96672 0.82527
5 05 0 05 ConstantOver Programs 0.88526 0.88526 0.88526 0.86232 5 15 05 03 Varyingover Programs  0.96679 0.96665 0.97576 0.91902
5 05 0 07 ConstantOver Programs 0.87035 0.86803 0.84986 0.82891 5 15 05 05 Varyingover Programs 097736 0.97624 0.97681 0.93736
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Chapter 3 Full Results

p 6 oz po Threshold LCA LCRE(CL) LCRE(NoCL) SumofScores p & oz po Threshold Preferred Model LCA  LCRE.CL LCRENCL
5 15 05 0.7 Varyingover Programs  0.96602 0.85910 0.97456 0.92430 5 05 2 09 Varyingover Programs  0.75912 0.76506 0.78399  0.80221
5 15 05 09 VaryingoverPrograms  0.96128 0.96722 0.96603 0.86128 5 15 2 0.1 Varyingover Programs  0.29573 0.20218  0.25991 0.50705
7 05 05 0.1 Varyingover Programs 051043 0.49771 0.49888 0.48231 5 15 2 03 Varyingover Programs  0.46888 012972 0.64336  0.68881
7 05 05 03 Varyingover Programs  0.76772 0.65157 0.67129 0.80363 5 15 2 05 Varyingover Programs  0.52770 0.02298 0.76116  0.74061
7 05 05 05 Varyingover Programs  0.83040 0.67549 0.68838 0.85499 5 15 2 07 Varyingover Programs  0.47832 0.37817 0.86495  0.70583
7 05 05 0.7 Varyingover Programs  0.72915 0.82818 0.75695 0.65478 5 15 2 09 Varyingover Programs  0.29785 0.27053 0.80208  0.54437
7 05 05 09 Varyingover Programs  0.62690 0.69646 0.53689 0.53347 7 05 2 0.1 Varyingover Programs  0.64830 0.64920 0.64229  0.7189%6
7 15 05 01 Varyingover Programs  0.97822 0.97903 0.98271 0.86154 7 05 2 03 Varyingover Programs  0.78394 0.75672 0.08610  0.86584
7 15 05 03 Varyingover Programs  0.98632 0.98623 0.98902 0.93617 7 05 2 05 Varyingover Programs  0.77192 0.72185 0.65380  0.89062
7 15 05 05 Varyingover Programs  0.98345 0.98401 0.98648 0.94788 7 05 2 0.7 Varyingover Programs  0.65713 0.60546  0.22621 0.80427
7 15 05 0.7 Varyingover Programs  0.98360 0.98473 0.98674 0.94132 7 05 2 09 Varyingover Programs  0.79764 0.76259 0.54810  0.91282
7 15 05 09 Varyingover Programs  0.97708 0.97929 0.98787 0.88509 7 15 2 0.1 Varyingover Programs  0.37588 0.12440 0.92583  0.54760
5 05 05 0.1 ConstantOver Programs 0.70550 0.70278 0.05657 0.63888 7 15 2 0.3 Varyingover Programs  0.57954 0.00933 0.94854  0.72950
5 05 05 03 Constant Over Programs 0.83960 0.78664 0.73375 0.83227 7 15 2 0.5 Varyingover Programs  0.65640 0.18928 0.94570  0.77182
5 05 05 05 Constant Over Programs 0.83629 0.55999 0.40784 0.87806 7 15 2 0.7 Varyingover Programs  0.55920 0.29265 0.94277  0.75296
5 05 05 0.7 Constant Over Programs 0.79509 0.54585 0.22158 0.86056 7 15 2 09 Varyingover Programs  0.36959 0.07529 0.20828  0.62258
5 05 05 09 Constant Over Programs 0.81456 0.78044 0.78469 0.85154 5 05 2 0.1 ConstantOver Programs 0.65959 0.64219 0.63574  0.83516
5 15 05 0.1 ConstantOver Programs 0.97324 0.97737 0.98452 0.88063 5 05 2 0.3 Constant Over Programs 0.80173 0.81653 0.81939  0.79669
5 15 05 03 Constant Over Programs 0.97500 0.97852 0.98359 0.94405 5 05 2 0.5 ConstantOver Programs 0.83571 0.83342 0.82836  0.88463
5 15 05 0.5 Constant Over Programs 0.97644 0.85194 0.98280 0.95180 5 05 2 0.7 ConstantOver Programs 0.87132 0.87781 0.87732  0.87039
5 15 05 07 ConstantOver Programs 0.97400 0.97944 0.98051 0.94091 5 05 2 09 ConstantOver Programs 0.81684 0.81325 0.81704  0.89559
5 15 05 09 ConstantOver Programs 0.93741 0.95879 0.96877 0.86903 5 15 2 0.1 ConstantOver Programs 0.30094 0.01373  0.93167  0.55167
7 05 05 0.1 ConstantOver Programs 0.62759 0.49543 0.51338 0.75177 5 15 2 03 Constant Over Programs 0.48232 0.15488 0.88384 072322
7 05 05 03 Constant Over Programs 0.78744 0.64975 0.68623 0.82606 5 15 2 05 Constant Over Programs 0.53907 034859 0.92972  0.75812
7 05 05 05 Constant Over Programs 0.84349 0.69127 0.32055 0.86602 5 15 2 0.7 ConstantOver Programs 0.47264 030831 0.87292  0.71017
7 05 05 07 ConstantOver Programs 0.76442 0.59148 0.62306 0.82787 5 15 2 09 ConstantOver Programs 0.30207 0.06068 0.73034  0.53807
7 05 05 09 Constant Over Programs 0.76883 0.79802 0.22631 0.71235 7 05 2 01 ConstantOver Programs 0.69153 0.69235 0.69793  0.76378
7 15 05 0.1 ConstantOver Programs 0.98507 0.98586 0.98768 0.90284 7 05 2 03 Constant Over Programs 0.76454 072796 0.18074  0.88850
7 15 05 03 Constant Over Programs 0.98794 0.99054 0.99294 0.95264 7 05 2 05 Constant Over Programs 0.76981 0.76561 0.69163  0.82936
7 15 05 05 Constant Over Programs 0.99290 0.99356 0.99517 0.96341 7 05 2 07 ConstantOver Programs 0.77853 0.75686 0.75058  0.89361
7 15 05 07 ConstantOver Programs 0.98644 0.98779 0.98941 0.95265 7 05 2 09 ConstantOver Programs 0.76923 0.75387 0.35251  0.86285
7 15 05 09 ConstantOver Programs 097894 0.98217 0.98841 0.90209 7 15 2 01 ConstantOver Programs 0.35546 0.07063 0.93678  0.57577
5 05 1 01 VaryingoverPrograms  0.76864 0.78187 0.76058 0.71224 7 15 2 03 Constant Over Programs 0.55488 0.11760 0.95905  0.74692
5 05 0.3 Varying over Programs ~ 0.81208 0.82165 0.07285 0.78908 7 15 2 05 Constant Over Programs 0.62247 027150 0.95563  0.78123
5 05 1 05 Varyingover Programs  0.65866 0.59568 0.61503 0.82296 7 15 2 07 Constant Over Programs 0.56192 0.08002 0.94795  0.74254
5 05 1 0.7 Varyingover Programs  0.78700 0.78206 0.76206 0.84449 7 15 2 09 Constant Over Programs 0.38850 0.15479  0.92418 0.59642
5 05 1 09 Varyingover Programs  0.79736 0.78570 0.78516 0.87443 5 05 4 0.1 Varyingover Programs  0.81539 0.81961 0.81575  0.88613
5 15 1 01 VaryingoverPrograms  0.64306 0.59286 0.55900 0.71036 5 05 4 03 Varyingover Programs  0.84515 0.85030 0.85465  0.87558
5 15 1 03 Varyingover Programs  0.82921 0.04676 0.30965 0.85298 5 05 4 05 Varyingover Programs  0.80409 0.80029 0.80239  0.90583
5 15 1 05 Varyingover Programs  0.88234 0.59715 0.68288 0.88315 5 05 4 07 Varyingover Programs  0.84839 0.85396 0.85169  0.89567
5 15 1 0.7 Varyingover Programs  0.85255 0.72293 0.67808 0.86045 5 05 4 09 Varyingover Programs  0.86819 0.87732 0.88285  0.87676
5 15 1 09 Varyingover Programs  0.61975 0.68903 0.71657 0.74151 5 15 4 0.1 Varyingover Programs  0.14542 0.08555 0.12600  0.35799
7 05 1 01 Varyingover Programs  0.69947 0.67329 0.64777 0.75063 5 15 4 03 Varyingover Programs  0.23407 0.10833 0.84335  0.51205
7 05 1 03 Varyingover Programs  0.57944 0.44727 0.40872 0.74885 5 15 4 05 Varyingover Programs  0.82789 0.84196 0.12036  0.78736
7 05 1 05 Varyingover Programs  0.82384 0.73880 0.72535 0.87240 5 15 4 07 Varyingover Programs  0.20800 0.01756 0.90227  0.51852
7 05 1 07 Varyingover Programs  0.73353 0.61230 0.25995 0.86838 5 15 4 09 Varyingover Programs  0.12094 0.00222 0.82211 0.36587
7 05 1 09 Varyingover Programs  0.71599 0.73908 0.57486 0.69019 7 05 4 0.1 Varyingover Programs  0.79661 0.78494 0.77146  0.89500
7 15 1 01 VaryingoverPrograms  0.71194 0.65079 0.56092 0.75045 7 05 4 03 Varyingover Programs  0.71612 0.68761 0.32437  0.84585
7 15 1 03 Varyingover Programs  0.90066 0.91357 0.96883 0.87740 7 05 4 05 Varyingover Programs  0.77966 0.75007 0.67367  0.89960
7 15 1 05 Varyingover Programs  0.93428 0.56549 047154 0.90295 7 05 4 0.7 Varyingover Programs  0.74357 0.71802 0.63093  0.88264
7 15 1 07 Varyingover Programs  0.91621 0.76991 0.83425 0.88903 7 05 4 09 Varyingover Programs  0.77497 0.76500 0.02330  0.88551
7 15 1 09 Varyingover Programs  0.73261 0.48640 0.56041 0.80049 7 15 4 0.1 Varyingover Programs  0.16286 0.06902 0.87050  0.35520
5 05 1 01 ConstantOver Programs 0.70163 0.71235 0.71534 0.67395 7 15 4 03 Varyingover Programs  0.27864 0.06560 0.91471 0.52484
5 05 1 03 ConstantOver Programs 0.51115 0.44415 0.40792 0.73590 7 15 4 05 Varyingover Programs  0.32460 0.04681 0.89829  0.57499
5 05 1 05 ConstantOver Programs 0.82617 0.83392 0.82926 0.80895 7 15 4 0.7 Varyingover Programs  0.28829 0.03377 0.90425  0.55008
5 05 1 07 ConstantOver Programs 0.72858 0.67602 0.68889 0.86607 7 15 4 09 Varyingover Programs  0.20151 0.07876 0.82496  0.41455
5 05 1 09 ConstantOver Programs 0.83147 0.85367 0.86790 0.71870 5 05 4 0.1 ConstantOver Programs 0.77920 0.78445 0.77881 0.81802
5 15 1 01 ConstantOver Programs 0.68430 0.54774 0.64521 0.76603 5 05 4 03 Constant Over Programs 0.84123 0.84524 0.84254  0.86821
5 15 1 03 Constant Over Programs 0.84558 0.67160 0.76942 0.87635 5 05 4 05 Constant Over Programs 0.80898 0.81558 0.80653  0.84140
5 15 1 05 Constant Over Programs 0.87729 0.78289 0.71573 0.89283 5 05 4 07 Constant Over Programs 0.84711 0.84905 0.85249  0.88725
5 15 1 0.7 Constant Over Programs 0.84914 0.77883 0.80983 0.86967 5 05 4 09 Constant Over Programs 0.84455 0.85497 0.85227  0.82588
5 15 1 09 Constant Over Programs 0.62584 0.39137 0.61845 0.73980 5 15 4 0.1 ConstantOver Programs 0.13923 0.02656 0.82573  0.37837
7 05 1 01 ConstantOver Programs 0.70243 0.69274 0.16541 0.73884 5 15 4 0.3 Constant Over Programs 0.23125 0.07369 0.60140  0.53472
7 05 1 03 Constant Over Programs 0.59428 0.41288 0.18218 0.77390 5 15 4 0.5 ConstantOver Programs 0.25252 0.04791 0.90433  0.57401
7 05 1 05 Constant Over Programs 0.80072 0.68086 0.20827 0.89803 5 15 4 0.7 ConstantOver Programs 0.19917 0.01384 0.90168  0.51431
7 05 1 07 ConstantOver Programs 0.75319 0.65317 0.64115 0.88499 5 15 4 09 ConstantOver Programs 0.13001 0.05399 0.10030  0.35361
7 05 1 09 ConstantOver Programs 0.73016 0.73346 0.71569 0.74838 7 05 4 01 ConstantOver Programs 0.80527 0.80257 0.80571  0.86573
7 15 1 01 ConstantOver Programs 0.72268 0.33935 0.50074 0.79271 7 05 4 03 ConstantOver Programs 0.76715 0.77638 0.33022  0.81875
7 15 1 03 Constant Over Programs 091421 0.63359 0.56787 0.89780 7 05 4 05 ConstantOver Programs 0.63508 0.61506 0.23675  0.76580
7 15 1 05 Constant Over Programs 092852 0.69592 0.07623 091361 7 05 4 07 ConstantOver Programs 0.75464 073283 0.22206  0.88218
7 15 1 07 Constant Over Programs 0.90891 0.60314 0.54556 0.89644 7 05 4 09 ConstantOver Programs 0.79572 078968 0.75291  0.90318
7 15 1 09 ConstantOver Programs 0.71822 0.64209 0.56555 0.79734 7 15 4 01 ConstantOver Programs 0.17065 0.06002 0.85391  0.37184
5 05 2 01 VaryingoverPrograms  0.77538 0.77760 0.75010 0.84219 7 15 4 03 Constant Over Programs 0.28308 0.08058 0.91703  0.53637
5 05 2 03 Varyingover Programs  0.85309 0.86861 0.87854 0.82060 7 15 4 05 Constant Over Programs 0.31882 0.04851 0.90771  0.57532
5 05 2 05 Varyingover Programs  0.77923 0.79772 0.78712 0.76082 7 15 4 07 ConstantOver Programs (0.28433 0.06957 0.91779  0.53955
5 05 2 07 Varyingover Programs  0.69306 0.68911 0.68546 0.80963 7 15 4 09 ConstantOver Programs 0.20293 0.09142 0.83473  0.39188
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B.2 Investigating preference of One Class vs Two Class

models using the BIC

B.2.1 Frequencies of one class preference for data with two clusters

p 6 o0z po Threshold LCA LCRECL LCRENCL p 6 o0 po Threshold LCA LCRE.CL LCRENCL
5 05 00 0.1 varied 9 15 15 7 05 00 0.7 varied 0 11 12
5 05 00 03 varied 1 14 14 7 05 00 09 varied 2 10 11
5 05 00 05 varied 0 15 15 7 05 20 01 varied 0 0 12
5 05 00 0.7 varied 0 14 14 7 05 20 0.3 varied 0 0 11
5 05 00 09 varied 6 11 11 7 05 20 05 varied 0 0 14
5 05 20 0.1 varied 0 0 12 7 05 20 07 varied 0 0 13
5 05 20 03 varied 0 0 14 7 05 20 09 varied 0 0 14
5 05 20 05 varied 0 0 10 7 05 40 0.1 varied 0 0 10
5 05 20 0.7 varied 0 0 10 7 05 40 03 varied 0 0 11
5 05 20 09 varied 0 0 11 7 05 40 05 varied 0 0 15
5 05 40 0.1 varied 0 0 13 7 05 40 0.7 varied 0 0 10
5 05 40 03 varied 0 0 9 7 05 40 09 varied 0 0 14
5 05 40 05 varied 0 0 13 7 15 00 01 varied 0 0 0
5 05 40 0.7 varied 0 0 7 7 15 00 0.3 varied 0 0 0
5 05 40 09 varied 0 0 13 7 15 00 05 varied 0 0 0
5 15 00 0.1 varied 0 0 1 7 15 00 07 varied 0 0 0
5 1.5 0.0 0.3 varied 0 0 0 7 15 00 09 varied 0 0 0
5 1.5 00 0.5 varied 0 1 2 7 15 20 0.1 varied 0 0 2
5 15 00 0.7 varied 0 0 0 7 15 20 03 varied 0 0 0
5 15 00 09 varied 0 0 2 7 15 20 05 varied 0 0 0
5 1.5 20 0.1 varied 0 0 6 7 15 20 0.7 varied 0 0 0
5 1.5 20 03 varied 0 0 1 7 15 20 09 varied 0 0 1
5 15 20 05 varied 0 0 0 7 15 40 01 varied 0 0 3
5 1.5 20 0.7 varied 0 0 0 7 15 40 0.3 varied 0 0 0
5 1.5 20 09 varied 0 0 0 7 15 40 05 varied 0 0 0
5 15 40 0.1 varied 0 0 5 7 15 40 07 varied 0 0 0
5 15 40 03 varied 0 0 0 7 15 40 09 varied 0 0 4
5 1.5 40 05 varied 0 0 0 5 05 05 01 varied 0 5 14
5 15 40 0.7 varied 0 0 0 5 05 05 0.3 varied 0 6 11
5 15 40 09 varied 0 0 1 5 05 05 05 varied 0 5 9
7 05 0.0 0.1 varied 3 6 6 5 05 05 0.7 varied 0 4 10
7 05 0.0 03 varied 0 9 10 5 05 05 09 varied 0 7 9
7 05 00 05 varied 0 10 12 5 15 05 0.1 varied 0 1 2
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p 6 o0z po Threshold LCA LCRECL LCRENCL p 6 o0 po Threshold LCA LCRE.CL LCRENCL
5 15 05 0.3 wvaried 0 2 2 5 15 0.0 01 constant 0 0 0
5 15 05 0.5 varied 0 2 2 5 15 00 03 constant 0 0 0
5 15 05 0.7 varied 0 4 5 5 15 00 0.5 constant 0 2 2
5 15 05 09 varied 0 2 2 5 15 0.0 0.7 constant 0 0 0
7 05 05 0.1 varied 0 3 11 5 15 00 09 constant 0 0 0
7 05 05 03 varied 0 7 13 5 15 20 0.1 constant 0 0 3
7 05 05 0.5 varied 0 10 13 5 15 20 03 constant 0 0 0
7 05 05 0.7 varied 0 10 15 5 15 20 05 constant 0 0 0
7 05 05 09 varied 0 6 13 5 15 20 0.7 constant 0 0 0
7 15 05 0.1 wvaried 0 0 1 5 15 20 09 constant 0 0 4
7 15 05 0.3 varied 0 0 0 5 15 40 01 constant 0 0 4
7 15 05 0.5 varied 0 0 0 5 15 40 03 constant 0 0 1
7 15 05 0.7 varied 0 1 2 5 15 40 05 constant 0 0 0
7 15 05 0.9 varied 0 1 1 5 15 40 0.7 constant 0 0 0
5 05 10 0.1 varied 0 0 14 5 15 40 09 constant 0 0 3
5 05 1.0 03 varied 0 0 12 7 05 00 0.1 constant 0 10 11
5 05 10 0.5 varied 0 0 8 7 05 00 03 constant 0 12 13
5 05 10 0.7 wvaried 0 0 13 7 05 00 05 constant 0 7 7
5 05 1.0 09 varied 0 0 10 7 05 00 07 constant 0 9 9
5 15 1.0 0.1 varied 0 3 7 7 05 00 09 constant 0 9 8
5 15 1.0 0.3 wvaried 0 5 8 7 05 20 01 constant 0 0 13
5 15 10 0.5 varied 0 2 2 7 05 20 03 constant 0 0 14
5 15 10 0.7 varied 0 1 1 7 05 20 05 constant O 0 13
5 15 1.0 0.9 varied 0 6 3 7 05 20 07 constant 0 0 12
7 05 10 0.1 wvaried 0 0 12 7 05 20 09 constant 0 0 13
7 05 10 0.3 varied 0 0 15 7 05 40 0.1 constant 0 0 8
7 05 10 0.5 wvaried 0 0 14 7 05 40 03 constant 0 0 12
7 05 10 0.7 wvaried 0 0 15 7 05 40 05 constant 0 0 11
7 05 10 09 varied 0 0 14 7 05 40 07 constant 0 0 13
7 15 10 0.1 wvaried 0 8 10 7 05 40 09 constant O 0 15
7 15 1.0 0.3 varied 0 3 0 7 15 00 01 constant 0 0 0
7 15 10 0.5 wvaried 0 5 5 7 15 00 03 constant 0 0 0
7 15 10 0.7 varied 0 3 2 7 15 00 05 constant O 0 0
7 15 1.0 0.9 varied 0 9 6 7 15 00 07 constant 0 0 0
5 05 00 01 constant 5 10 10 7 15 00 09 constant 0 0 0
5 05 00 03 constant 0 15 15 7 15 20 0.1 constant 0 0 0
5 05 00 05 constant 0 16 16 7 15 20 03 constant 0 0 0
5 05 00 0.7 constant 0 14 13 7 15 20 05 constant 0 0 0
5 05 00 09 constant 5 13 13 7 15 20 07 constant 0 0 0
5 05 20 0.1 constant 0 0 15 7 15 20 09 constant 0 0 3
5 05 20 03 constant 0 0 9 7 15 40 01 constant 0 0 2
5 05 20 05 constant 0 0 8 7 15 40 03 constant 0 0 0
5 05 20 0.7 constant 0 0 11 7 15 40 05 constant O 0 0
5 05 20 09 constant 0 0 9 7 15 40 07 constant 0 0 0
5 05 40 0.1 constant 0 0 12 7 15 40 09 constant 0 0 4
5 05 40 03 constant 0 0 10 5 05 05 01 constant 0 8 15
5 05 40 05 constant 0 0 8 5 05 05 03 constant 0 6 13
5 05 40 0.7 constant 0 0 8 5 05 05 05 constant 0 5 10
5 05 40 09 constant 0 0 12 5 05 05 0.7 constant 0 2 10
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p 6 o0z po Threshold LCA LCRECL LCRENCL p 6 o0 po Threshold LCA LCRE.CL LCRENCL
5 05 05 09 constant 0 3 10 5 05 1.0 05 constant 0 0 10
5 15 05 0.1 constant 0 5 3 5 05 1.0 0.7 constant 0 0 8
5 15 05 03 constant 0 2 2 5 05 1.0 09 constant 0 0 9
5 15 05 05 constant 0 5 4 5 15 1.0 01 constant 0 4 5
5 15 05 0.7 constant 0 3 3 5 15 1.0 03 constant 0 2 2
5 15 05 09 constant 0 2 2 5 15 1.0 0.5 constant 0 2 2
7 05 05 01 constant 0 1 10 5 15 1.0 0.7 constant 0 1 1
7 05 05 03 constant 0 6 11 5 15 1.0 09 constant 0 5 6
7 05 05 05 constant O 10 15 7 05 10 0.1 constant 0 0 11
7 05 05 07 constant 0 7 17 7 05 10 03 constant 0 0 14
7 05 05 09 constant 0 6 15 7 05 1.0 05 constant 0 0 13
7 15 05 0.1 constant 0 1 0 7 05 10 0.7 constant 0 0 15
7 15 05 03 constant 0 0 1 7 05 10 09 constant 0 0 15
7 15 05 05 constant 0 4 3 7 15 10 01 constant 0 8 7
7 15 05 07 constant 0 2 2 7 15 1.0 03 constant 0 4 5
7 15 05 09 constant 0 3 3 7 15 10 05 constant 0 5 6
5 05 10 01 constant 0 0 14 7 15 1.0 07 constant 0 4 5
5 05 10 03 constant 0 0 8 7 15 1.0 09 constant 0 7 7

B.2.2 Frequencies of one class preference for data with one clusters

p o0z po Threshold LCA LCRECL LCRENCL p o po Threshold LCA LCRE.CL LCRENCL
5 0.0 0.1 wvaried 20 20 20 7 00 0.1 wvaried 20 20 20
5 0.0 0.3 varied 20 20 20 7 0.0 0.3 varied 20 20 20
5 0.0 0.5 wvaried 20 20 20 7 0.0 0.5 wvaried 20 20 20
5 0.0 0.7 varied 20 20 20 7 0.0 0.7 varied 20 20 20
5 0.0 09 varied 20 20 20 7 0.0 09 varied 20 20 20
5 20 0.1 varied 0 0 20 7 20 0.1 wvaried 0 0 20
5 20 03 varied 0 0 20 7 20 0.3 varied 0 0 20
5 2.0 0.5 varied 0 0 20 7 20 05 wvaried 0 0 20
5 20 0.7 varied 0 0 20 7 20 0.7 varied 0 0 20
5 20 09 varied 0 0 20 7 20 09 varied 0 0 20
5 4.0 0.1 varied 0 0 20 7 40 0.1 wvaried 0 0 20
5 4.0 0.3 varied 0 0 20 7 40 0.3 varied 0 0 19
5 4.0 0.5 varied 0 0 20 7 40 0.5 wvaried 0 0 20
5 4.0 0.7 varied 0 0 19 7 40 0.7 varied 0 0 20
5 40 09 varied 0 0 20 7 4.0 09 varied 0 0 20
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p o0: po Threshold LCA LCRECL LCRENCL p o; po Threshold LCA LCRECL LCRENCL
5 05 01 varied 0 0 20 7 00 01 constant 20 20 20
5 05 0.3 varied 0 0 20 7 0.0 0.3 constant 20 20 20
5 05 05 varied 0 0 20 7 0.0 0.5 constant 20 20 20
5 05 0.7 varied 0 0 20 7 00 0.7 constant 20 20 20
5 05 09 varied 0 0 20 7 0.0 09 constant 20 20 20
7 05 0.1 varied 0 0 20 7 20 01 constant 0 0 20
7 05 0.3 varied 0 0 20 7 20 03 constant 0 0 20
7 05 0.5 varied 0 0 20 7 2.0 0.5 constant 0 0 20
7 05 0.7 varied 0 0 20 7 20 0.7 constant 0 0 20
7 05 0.9 varied 0 0 20 7 20 09 constant 0 0 20
5 1.0 0.1 varied 0 0 20 7 40 01 constant 0 0 20
5 1.0 0.3 varied 0 0 20 7 40 03 constant 0 0 20
5 1.0 0.5 varied 0 0 20 7 40 05 constant 0 0 20
5 1.0 0.7 wvaried 0 0 20 7 40 0.7 constant 0 0 20
5 1.0 09 varied 0 0 20 7 40 09 constant 0 0 20
7 1.0 0.1 varied 0 0 20 5 05 01 constant 0 0 20
7 1.0 0.3 varied 0 0 20 5 05 03 constant 0 0 20
7 1.0 0.5 varied 0 0 20 5 05 05 constant 0 0 20
7 1.0 0.7 varied 0 0 20 5 05 0.7 constant 0 0 20
7 1.0 0.9 varied 0 0 20 5 05 09 constant 0 0 20
5 0.0 01 constant 20 20 20 7 05 01 constant 0 0 20
5 00 03 constant 20 20 20 7 05 03 constant 0 0 20
5 0.0 05 constant 20 20 20 7 05 0.5 constant 0 0 20
5 0.0 0.7 constant 20 20 20 7 05 0.7 constant 0 0 20
5 00 09 constant 20 20 20 7 05 09 constant 0 0 20
5 20 0.1 constant 0 0 20 5 1.0 0.1 constant 0 0 20
5 20 03 constant 0 0 20 5 1.0 03 constant 0 0 20
5 20 05 constant 0 0 20 5 1.0 0.5 constant 0 0 20
5 20 0.7 constant 0 0 20 5 1.0 0.7 constant 0 0 20
5 20 09 constant 0 0 20 5 1.0 09 constant 0 0 20
5 4.0 0.1 constant 0 0 20 7 1.0 0.1 constant 0 0 20
5 40 03 constant 0 0 20 7 10 03 constant 0 0 20
5 40 05 constant 0 0 20 7 1.0 0.5 constant 0 0 19
5 4.0 0.7 constant 0 0 20 7 10 0.7 constant 0 0 20
5 40 09 constant 0 0 20 7 1.0 09 constant 0 0 20
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Appendix C

Chapter 4 Full Results

C.1 Average correlation and standard deviation for thresh-

old method results
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C.2 RMSE results

p delta sigma.z p.0 LCA LCRE.CL LCRENCL p delta sigmaz p.0 LCA LCRE.CL LCRE.NCL
5 05 0 0.1 0.10730668 0.13081023 0.12930045 | 5 1.5 1 0.1 0.27965565 0.26952918 0.26731402
5 05 0 0.3 0.13508049 0.19706200 0.18876046 | 5 1.5 1 0.3 0.22136950 0.34808192 0.30786441
5 05 0 0.5 0.14467158 0.16533182 0.16805354 | 5 1.5 1 0.5 0.20702649 0.32333085 0.30684556
5 05 0 0.7 0.13572640 0.20350745 0.18944506 | 5 1.5 1 0.7 021631999 0.36241587 0.32121563
5 05 0 0.9 0.10707998 0.12937579 0.13264158 | 5 1.5 1 0.9 0.27841276 0.33784804 0.26115239
5 15 0 0.1 0.02609860 0.02642228 0.02643204 | 5 0.5 2 0.1 0.32563326 0.31864393 0.27392419
5 15 0 0.3 0.03308827 0.07610076 0.07224225 | 5 0.5 2 0.3 0.30488188 0.29757291 0.29030030
5 15 0 0.5 0.03481727 0.04803807 0.04290975 | 5 05 2 0.5 0.30913955 0.30108607 0.29744778
5 15 0 0.7 0.03243031 0.07337678 0.06830176 | 5 0.5 2 0.7 0.30630063 0.30061650 0.28580554
5 15 0 0.9 0.02710538 0.02730255 0.02739059 | 5 0.5 2 0.9 0.31285019 0.30696189 0.26070463
5 05 05 0.1 0.26082702 0.25768556 0.25826198 | 5 1.5 2 0.1 0.49179696 0.56888809 0.22376954
5 05 05 0.3 0.20242846 0.24867932 0.23774761 | 5 15 2 0.3 0.46282322 0.54207907 0.16316764
5 05 05 0.5 0.18633304 0.24889735 0.25576147 | 5 15 2 0.5 0.45019494 0.52476892 0.15715663
5 05 05 0.7 0.22519690 0.26064805 0.26262157 | 5 1.5 2 0.7 0.45948407 0.53222006 0.17698647
5 05 05 0.9 0.22984598 0.22266777 0.23888659 | 5 1.5 2 0.9 0.48974718 0.55721830 0.26029850
5 15 05 0.1 0.06321602 0.05889048 0.04709133 | 5 0.5 4 0.1 0.34923426 0.34606314 0.29462755
5 15 05 0.3 0.07253349 0.08025064 0.07183332 | 5 0.5 4 0.3 0.33027021 0.32692657 0.30785688
5 15 05 0.5 0.07327892 0.13552756 0.14338971 | 5 0.5 4 0.5 0.32495605 0.32077305 0.31077112
5 15 05 0.7 0.07079419 0.07902630 0.07068208 | 5 0.5 4 0.7 031717516 0.31297815 0.29475622
5 15 05 0.9 0.06291766 0.05819404 0.04729235 | 5 0.5 4 0.9 0.33362023 0.33047051 0.28666790
5 05 1 0.1 0.28837864 0.27841756 0.25103724 | 5 1.5 4 0.1 0.59509803 0.61500072 0.25801961
5 05 1 0.3 0.29252543 0.28447443 0.27847931 | 5 15 4 0.3 0.58357771 0.62711803 0.17599866
5 05 1 0.5 0.27199083 0.27097124 0.26644069 | 5 1.5 4 0.5 0.50229595 0.53006827 0.24129245
5 05 1 0.7 0.27745443 0.27634065 0.26154798 | 5 1.5 4 0.7 0.58346451 0.62804594 0.17980566
5 05 1 0.9 0.24915428 0.23975969 0.21634978 | 5 15 4 0.9 0.59241597 0.60718005 0.38831727
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C.3 Binding Accuracy

p 0 o0 po BindingNumber LCA LCRE.CL LCRENCL MGMM 6 0z po BindingNumber LCA LCRE.CL LCRENCL MGMM
5 05 00 01 300 30971 43485 39718 34879 | 5 15 40 0.1 300 1327.60 150426 75644 300.89
5 05 00 03 900 89510 116588  1079.67 90019 | 5 15 40 03 900 138337 149161 100360  902.58
5 05 00 05 1500 1497.95 149888 149392 151179 | 5 15 40 05 1500 149666 151327 148288 1547.73
5 05 00 07 2100 209718 179399  1927.74 208847 | 5 15 40 07 2100 162564 147780 199635 2103.64
5 05 00 09 2700 268414 253252 254223 2637.94| 5 15 40 09 2700 174851 157528 196506 2697.11
5 05 20 01 300 155629 152275 153571 140136 | 5 05 05 0.1 300 105336  1139.15 114417 131372
5 05 20 03 900 142668 145809 147013 138950 | 5 05 05 03 900 123513 133815  1338.68 110LI12
5 05 20 05 1500 149418 149003 148615 145379 | 5 05 05 05 1500 148237 151806 151447 1437.10
5 05 20 07 2100 143041 144999 146683 157320 | 5 05 05 07 2100 176516 165338 163329 1778.87
5 05 20 09 2700 1419.34  1439.13  1457.34 153734| 5 05 05 09 2700 193656 184233 1819.07 1807.84
5 05 40 01 300 150294 150297 149304 142854 | 5 05 1.0 0.1 300 176041 172559 169386 1479.32
5 05 40 03 900 151644 151654 150392 149408 | 5 05 10 03 900 135800 136534 137447 1422.96
5 05 40 05 1500 149116 148978 148616 131297 | 5 05 10 05 1500 1512.67 150778 150456 1410.07
5 05 40 07 2100 151509 151323 152041 151472| 5 05 1.0 07 2100 163389  1630.74  1619.37 1668.13
5 05 40 09 2700 1507.77 150948 153049 1546.82| 5 05 1.0 09 2700 175654 175301  1749.04 1539.50
5 15 00 0.1 300 29980  299.44 29951 30017 | 5 15 05 0.1 300 32427 29736 30055 30081
5 15 00 03 900 89990 88071 86379 90001 | 5 15 05 03 900 91479 87934 87097 900.40
5 15 00 05 1500 150045 149725 150071 149993 | 5 15 05 05 1500 150026 150155 149251 1499.43
5 15 00 07 2100 210078  2189.84 217775 210007 | 5 15 05 07 2100 208710 212916  2139.36 2100.31
5 15 00 09 2700 2699.27  2699.62  2699.65 2699.94| 5 15 05 09 2700 267535 270245  2701.02  2700.42
5 15 20 01 300 1039.25 149620 76414 30941 | 5 15 10 01 300 64687 87052 864.66 30429
5 15 20 03 900 127544 144987 106259 89734 | 5 15 10 03 900 102880 132928 133418  898.28
5 15 20 05 1500 149417 149027 149633 150301 | 5 15 10 05 1500 150161 149546 149693 1497.84
5 15 20 07 2100 1717.37  1556.45 189200 210089 | 5 15 1.0 07 2100 1977.83  1637.18  1650.59 2101.37
5 15 20 09 2700 195489 151494 212098 2697.18 | 5 15 1.0 09 2700 235526 200161 216577 2699.79
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