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 Overview 

 

Cancer is the leading cause of the burden of disease and injury in Australia, accounting for 

approximately 19 percent of the total disease burden. In 2010, the risk of developing cancer 

before the age of 85 years was 1 in 2 in men and 1 in 3 in women and as such, its burden on 

society as a whole is immense. In recent years, considerable advances have been made in 

developing new therapeutics for cancer, particularly therapies targeted to specific molecular 

subtypes, which have resulted in significantly improved patient survival. However, for some 

types of solid cancers there have been no significant recent improvements in patient survival or 

development of targeted therapies. Examples are the triple negative (estrogen and 

progesterone receptor, and human epidermal growth factor receptor 2 negative) subgroup of 

breast carcinomas and Ewing sarcomas. Herein, we explore two biological pathways that are 

frequently dysregulated in these cancers and thus provide opportunity for therapeutic 

intervention.  

 

Section I of this thesis explores the proteasome as a therapeutic target and the potential use of 

proteasome inhibitors in the treatment of solid cancers and in particular triple negative breast 

cancers. In general, cancer is associated with increased proteasome activity, and is therefore an 

attractive target for therapy. Bortezomib, carfilzomib and ixazomib are proteasome inhibitors 

with FDA approval, but their current use is limited to multiple myeloma and mantle cell 

lymphoma. Chapter 1 summarizes our current understanding of the structure and function of 

proteasome variants, their dysregulation in solid cancers, as well as the rationale for 
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proteasome inhibitor based therapy. Chapter 2 assesses the potential for the use of 

proteasome inhibitors for the treatment of breast cancers. Initially, the proteasome of breast 

cancer subgroups was characterized in detail by analysis of the The Cancer Genome Atlas breast 

cancer RNA-sequencing database. Analysis of these data revealed biologically meaningful 

insights which were subsequently confirmed by experiments in breast cancer cell lines. These 

results revealed that patients with basal-like and HER2+ breast cancer subgroups express 

significantly higher levels of the immuno-proteasome variant compared to luminal subgroups. 

Based on the presented data, it was concluded that this subgroup of breast cancers are likely to 

respond to proteasome inhibitor based therapy.  

 

Proteasome inhibitors in clinical use have several shortcomings including side-effects and lack 

of efficacy for treatment of solid cancers. In chapter 3, 4 and 5, by exploiting a cross-disciplinary 

collaboration with Chemistry, we explore the efficacy of new synthesized compounds which can 

inhibit the proteasome and novel strategies to improve efficacy and/or decrease side effects 

associated with the current clinical used FDA approved proteasome inhibitors.  

 

Section II of this thesis explores the potential of new therapeutic approaches for the treatment 

of Ewing sarcoma. Chapter 6 evaluates the potential of exploiting the p53 pathway as a 

targeted therapy for Ewing sarcoma. p53 is a critical tumour suppressor that is involved in a 

multitude of cellular processes including cell cycle regulation and apoptosis. It is frequently 

deactivated in the majority of cancers by either direct mutation or by up-regulation of its 

negative regulators MDM2 and MDM4. Ewing sarcoma is atypical among cancer types as the 
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more than 90% of cases retain a wild-type p53 with functionally intact downstream pathways. 

Chapter 7 and 8 assess two drugs that engage p53 signaling to elicit their anti-tumourigenic 

effects. Chapter 7 explores whether the RNA polymerase I inhibitor, CX-5461, has potential for 

treatment of Ewing sarcoma. RNA Polymerase I is a cellular enzyme that regulates ribosomal 

synthesis and thus controls the rate of cellular growth and proliferation. To attain accelerated 

growth, cancer cells up-regulate RNA Polymerase I activity and therefore it is an attractive 

therapeutic target. It has previously been shown that inhibition of RNA Polymerase I by CX-

5461 causes cell death or cell cycle arrest in a variety of cancers both in vitro and in vivo in a 

p53-dependent manner. Our results reveal that Ewing sarcoma cell lines are acutely sensitive 

to RNA Polymerase I inhibition by CX-5461, with cell lines with wild-type p53 exhibiting 

cytotoxic LD50 values in low nanomolar figures (<3nM). This study provides encouraging pre-

clinical results for the application of CX-5461 for Ewing sarcoma treatment and warrants 

further in vivo evaluation. Chapter 8 assesses the potential of XI-006, a pharmacological 

inhibitor of MDM2, a p53 antagonist, for the treatment of Ewing sarcoma. While results were 

not consistent with targeting the activity of p53, XI-006 was found to be a potent inducer of 

apoptosis in Ewing sarcoma. 
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SECTION I 

Proteasome as a therapeutic target for the treatment of solid cancers 
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Chapter 1 

Proteasome as a therapeutic target 
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Introduction 
 

 

This chapter discusses the diverse functions of the proteasome that have been characterized 

and the potential utility of proteasome inhibitors for treatment of solid cancers.  

 

Ubiquitin-Proteasome System 
 

 

Protein degradation by the ubiquitin-proteasome system is a highly selective and efficient 

process. For a protein to be recognized by the proteasome, a small peptide (ubiquitin) must 

first be attached to the target protein. This process is controlled by a group of enzymes (E1, E2 

and E3) collectively referred to as ubiquitin ligases. E1 activates ubiquitin and transfers it to the 

carrier protein E2. E2 presents ubiquitin to E3. E3 recognizes and binds the target protein and 

interacts with E2 to covalently attach ubiquitin to the target protein (Figure 1). This process is 

reiterated a number of times to create a polyubiquitin chain that can be subsequently 

recognized by the proteasome. To date, there is only one known E1, 50 E2 and over 500 E3 

ubiquitin ligases (reviewed in [1, 2] ) providing a highly protein specific and controlled process 

of poly-ubiquitination and therefore degradation. 
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Figure 1. The Ubiquitin-Proteasome System. In step 1, ubiquitin is activated by an ubiquitin 

activating enzyme, E1. In step 2, activated ubiquitin is transferred to an ubiquitin conjugating 

enzyme, E2. In step 3, ubiquitin is subsequently conjugated to target proteins in a process 

mediated by an E3 ubiquitin ligase. In step 4, the polyubiquitinated substrate protein is 

degraded by the 26S proteasome.  

 

26S Proteasome Structure 
 

 

The constitutive proteasome (c-proteasome), generally referred to as 26S, is composed of a 20S 

catalytic core (~700kDa) capped with 19S regulatory structures at one or both ends (Figure 2). 

The 20S core is made up of four stacked rings, creating a central chamber where proteolysis 

occurs. The outer two rings, which are predominantly structural, each contain seven α subunits. 

Two inner rings each consist of seven β subunits. The proteolytic sites of the proteasome are 

located on three of the β-subunits on each of the two of inner rings, in the central cavity, 

resulting in a total of six proteolytic sites (reviewed in [3]). Catalytic activities of the proteasome 

are based upon preference to cleave a peptide bond after a particular amino acid residue. 

These activities are referred to as chymotrypsin-like (CT-L) activity, that cleaves after 

hydrophobic residues; trypsin-like (T-L) activity, that cleaves after basic residues; and caspase-
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like (C-L) activity, that cleaves after acidic residues [4, 5]. The CT-L, T-L and C-L activities are 

associated with the β5, β2 and β1 subunits respectively [6]. 

 

Entry into the proteolytic chamber is controlled by binding to the 19S ATP-dependent 

regulatory particle. Polyubiquitin-tagged proteins are recognized by the 19S particle, the 

ubiquitin molecules are cleaved, the target protein is unfolded, and then can enter the 20S 

central catalytic chamber to be cleaved into short polypeptide fragments [5].  

 

Figure 2.The Structure of the 26S Proteasome. The proteasome is a 26S enzyme complex that 

is comprised of a core 20S catalytic complex and a 19S regulatory complex. The 20S proteasome 

core has chymotrypsin-like, trypsin-like, and caspase-like activities that are associated with 

three distinct units: β5, β2, β1, respectively. Chymotrypsin-like activity at proteasome β5 

subunit is associated with the rate-limiting step of proteolysis. 

 

There are two other known variants of the 20S in eukaryotes. In cells of the immune system, 

the β1i, β2i and β5i subunits replace the corresponding constitutive subunits β1, β2 and β5 to 
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form an alternative 20Si core [7, 8]. The resulting proteasome is referred to as the immuno-

proteasome (i-proteasome). Upon exposure to inflammatory cytokines (e.g. interferon-γ), many 

solid tissues and cancers are also capable of expressing the i-proteasome variant. In the context 

of catalytic activities, β5i has CT-L activity, equivalent to β5, and β2i has T-L activity, equivalent 

to β2. However, β1i displays CT-L activity rather than the β1-associated C-L activity (Figure 3). 

The i-proteasome variant also contains a different regulatory subunit PA28 (also known as 11S 

cap). 

 

There is a third proteasome variant expressed by the cortical thymic epithelium in which the 

β5t replaces β5i in i-proteasomes to form the thymo-proteasome [7]. In addition to the variants 

described above, cells are also capable of expressing mixed proteasomes that contain varying 

combinations of thymo-, immuno- and constitutive- subunits [9]. Theoretically, combination of 

these different catalytic subunits can generate up to 36 different 20S core complexes that differ 

in their proteolytic specificity, although only a small subset have been demonstrated in vivo. 

The complexity of proteasome subtypes is further enhanced by association with different 

regulatory caps that can associate with 20S cores on one or both ends to form PA700 or PA28 

bound, or one molecule each of PA700 and PA28 hybrid proteasomes.  
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The nomenclature of the various proteasome subunits used in this thesis is quite confusing due 

in part to the multitude of subunits, often with multiple symbols for the same subunit and 

proteasome variants. In addition, the same gene is referred to by different symbols in humans 

and mice. For ease of reading, Table 1 provides a list of names for the different catalytic 

subunits in humans and mice. The remainder of this chapter focuses on the critical differences 

between the functions of the c- and i-proteasome with emphasis on the roles of i-proteasome. 

 

 

Figure 3. Subunit composition of the active sites of the constitutive, immuno- and thymo- 

proteasomes. The proteolytic subunits of the 20S constitutive, immuno- and thymo- 

proteasomes. Compared with the c-proteasome, the i-proteasome has a strongly decreased 

caspase-like activity and an increased chymotrypsin-like activity, whereas the 

thymoproteasome has a decreased chymotrypsin-like activity. 
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Table 1. Nomenclature of proteasomes. 

Protein subunit Homo sapiens gene symbol Mus musculus gene symbol 

β1 PSMB6 - 

β2 PSMB7 - 

β5 PSMB5 - 

β1i PSMB9 Lmp2 

β2i PSMB10 Mecl1 

β5i PSMB8 Lmp7 

 
 
 
Immuno-proteasome in antigen presentation 
 

The majority of proteasome generated peptide fragments from intracellular proteins are 

further degraded into shorter amino acid sequences and recycled for the synthesis of new 

proteins. However, a very small fraction of the cleaved peptides are delivered by the 

Transporter associated with antigen processing proteins (TAPs) to the endoplasmic reticulum, 

where these peptides act as ligands to nascent MHC class I molecules [10]. These MHC I bound 

peptides egress to the surface of the cell and can be recognized by naive CD8 T cells for routine 

immune surveillance. In addition, proteasomes also generate peptides for MHC I presentation 

from exogenous proteins that are internalised by endocytosis and or phagocytosis, a 

phenomenon called cross-presentation [11].  

 

https://en.wikipedia.org/wiki/Protein_biosynthesis
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As mentioned previously, c-proteasome and i-proteasome possess different catalytic subunits. 

Compared to the c-proteasomes, i-proteasomes cleave more rapidly after hydrophobic and 

basic amino acid residues and less rapidly after acidic ones. As substrates with hydrophobic and 

basic C-termini are favored for uptake by TAP transporters [12] and are essential for tight 

binding to MHC class I molecules [13], it has long been suggested that i-proteasomes have a 

specialized role in creating peptides that are antigenic. Initial in vivo studies used single gene 

knockouts of the immuno-subunits to analyse phenotypic and CD8 T cell cytotoxic responses. 

Mecl-1-deficient mice infected with lymphocytic chromiomeningitis virus (LCMV) had a slightly 

reduced number of CD8 T cells, and a decreased response to LCMV GP276 and NP205, but 

normal responses to NP396, GP33 and several other LCMV epitopes [14]. Mice lacking the Lmp2 

subunit of the i-proteasome generate normal cytotoxic responses to Sendai virus and LCMV but 

show reduced capacity to generate CD8 T cells against the nucleoprotein epitope of influenza A 

[15]. Knockdown of Mecl1 or Lmp2 does not alter the cell surface expression of the class MHC I 

molecules in the above singly-deficient mice. In contrast, Fehling et al. observed that 

splenocytes from mice lacking Lmp7 subunit (β5i) had a modest (~50%) reduction in MHC class I 

cell surface expression as well as decreased number of CD8 T cells specific to the male minor 

antigen HY [16]. Contrary to this study, Basler et al. did not observe any difference in the 

clearance of LCMV virus epitopes in Lmp7 deficient and wild-type mice. Overall, these studies 

suggest that mice lacking one i-proteasome subunit can substantially alter the production of 

some epitopes. However, these studies have only examined the presentation of a selective 

group of epitopes.  
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To rule out the possibility that functional overlap in peptide generation by the three i-

proteasome subunits could compensate for the loss of one subunit, Kinciad et al. generated 

triple knockout-mice that were deficient in all three i-proteasome subunits [17]. Kinciad et al. 

showed that class I MHC antigenic presentation in these triple deficient mice was both 

qualitatively and quantitatively different from that of single knockout mice. In their analysis of 

11 MHC class I antigens expressed on dendritic cells, expression of 8 antigens was significantly 

reduced. For Smyc antigen, compared to single-deficient mice that expressed this antigen 

without any defects, expression was substantially reduced in triple-deficient dendritic cells. 

Similarly, there were substantial defects in the expression of LCMV antigens GP33 and GP118, 

influenza antigen NP366-374 and antigen OVA257–264 presentation not seen in single-deficient 

mice in previous studies. This study substantiates that the i-proteasome is a major contributor 

to the MHC class I antigen presentation.  

 

However, it should be noted that that while many antigens are efficiently produced by the i-

proteasome, some are preferentially generated by the c-proteasome and their generation by 

the i-proteasome is highly inefficient. For example, the HLA-A2-binding antigenic peptide [18] 

ITDQVPFSV (gp100 209-217) derived from melanocytic protein gp100PMEL17, and the peptide 

YMDGTMSQV from melanocytic protein tyrosinase, are produced by the c-proteasome, but not 

by the i-proteasome. As a consequence, cells exclusively expressing c-proteasomes can 

efficiently stimulate gp100-specific and tyrosinase-specific cytotoxic T lymphocytes 

respectively. Overall, the changed subunit composition of i-proteasomes, relative to c- 
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proteasomes, contributes to altered protease activities that results in the generation of 

different antigenic peptides by these two types of proteasomes. 

 

The diversity of antigenic peptides may be further increased by the expression of intermediate 

proteasomes that contain combinations of c- and i-proteasome subunits and therefore 

differentprotease activities. The presence of proteasome complexes with different types and 

Figure 4. The role of the i-proteasome in antigen presentation. Poly-ubiquitinated 

cytoplasmic proteins are recognized and degraded by either c- or i-proteasome. 

The peptides are transported into the endoplasmic reticulum by a complex called 

TAP and attached to MHC class I molecules. Peptide-MHC complexes then egress--- 

to the cell surface where specific CD8+ T cells may recognize one of the presented 
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contributions of activating caps has the potential to further modify and alter the peptidome. 

This can influence CD8+ T cell responses by increasing the diversity of antigenic peptides 

presented on MHC class I molecules [19].  
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The role of the Immuno-proteasome in protein homeostasis 
 

 

In addition to being involved in antigen presentation, the i-proteasome has been shown to have 

roles in the cellular response to stress and injury. This idea was initially based on the 

observation that following stress, i-proteasome expression was substantially up-regulated in 

cells that do not typically present antigens [20]. For example, i-proteasome is significantly up-

regulated in immune-privileged sites like retina [21-26] and brain [21, 27] in response to acute 

injury. It is also up-regulated in cultured cells exposed to cytokines like IFNɣ and TNFα [22, 25, 

26]. Since mice deficient in subunit Lmp2 of the i-proteasome express increased levels of 

oxidized proteins [21, 28] and those double deficient in Lmp7 and Mecl1 show greater 

sensitivity to oxidative challenge [22], this suggests that the i-proteasome may provide a 

protective role against oxidative stress. 

 

Seifert et al. suggest that the primary role of the i-proteasome is to limit inflammatory damage, 

potentially by eliminating from the cell proteins damaged from inflammatory responses [29]. 

Data from Seifert and colleagues suggest that the i-proteasome is more efficient at degrading 

the “defective ribosomal products” (DRiPs), which are misfolded and /or oxidized proteins 

produced during protein synthesis. They observed that cytokine-induced oxidative stress in 

murine fibroblasts and human HeLa cells results in an initial increase in the levels of 

poly-ubiquitylated peptides, but was then followed by a decline after 24 hours, and a return to 

normal levels. The decrease observed after 24 hours coincided with induction of i-proteasomes 

and increase in proteasome CT-L activity, suggesting that i-proteasomes can function in the 

removal of poly-ubiquitinated peptides. In i-proteasome deficient cells, challenges with either 
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lipopolysaccharide or IFNɣ induced aggresome and increased levels of oxidized and 

ubiquitylated proteins by 2-fold compared to control cells. In vivo experiments supported these 

observations, with Lmp7 knockout mice exhibiting a more severe clinical score and higher levels 

of oxidized proteins and protein aggregates in the inflamed liver and brain compared to mice 

with wild-type Lmp7. Another study by Opitz et al. in a murine model of acute enterovirus 

myocarditis, showed that mice deficient in Lmp7 i-proteasome subunit exhibit severe 

myocardial destruction and large inflammatory foci in cardiac cells. These Lmp7 deficient 

cardiomyocytes also had substantially more oxidized and poly-ubiquitinylated protein 

accumulation compared to wild-type cells following exposure to IFNɣ. The authors hypothesize 

that cytokine (e.g. IFNɣ) induced inflammation significantly up-regulates protein synthesis, and 

therefore production of DRiPs leading to toxic protein aggregates, and as a consequence, the i-

proteasome is up-regulated to protect cellular homeostasis. The significance of i-proteasomes 

in protein homeostasis upon stress induction has also been observed by various other studies 

[30]. 

 

Contrary to these studies, Nathan et al. did not observe either up-regulation of poly-

ubiquitylated peptide or formation of toxic aggregates in mouse embryonic fibroblasts and B8 

fibroblasts treated with 200 U/ml of IFNɣ [31]. They also did not observe any difference in 

processing of the substrate ubiquitinated dihydrofolate reductase (Ub5DHFR) between two 

proteasome variants. Based on these results, the authors concluded that i-proteasomes are not 

more important in protein homeostasis than c-proteasomes. Discrepancies between both 

reports, however, might be explained by distinct experimental procedures [32]. 
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Proteasomes and Cancer 
 

The role of the proteasome in cancer was first considered when a number of oncogene and 

tumour suppressor gene products were found to be targets of ubiquitin and proteasome 

mediated degradation. Subsequent studies revealed that proteasome inhibitors induced 

apoptosis in leukemic cell lines and were also active in an in vivo model of Burkitt’s lymphoma 

[21, 29, 33, 34]. The proteasome controls cellular growth and division by controlling the 

degradation of all misfolded, damaged and short lived proteins, for example those involved in 

cell cycle regulation and apoptosis. Dysregulated proteolysis contributes to malignant 

transformation either by enhancing the degradation of negative cell cycle regulators or by 

causing a defect in proteolysis of positive cell cycle regulators [35]. This can occur when 

mutations in substrates result in their evasion of normal ubiquitination that controls their 

abundance, or when there are specific defects of the ubiquitin-proteasome system [36, 37]. 

 

Cancer cells are generally associated with increased proteasome activity compared to non-

malignant cells, likely due to factors including rapid cell proliferation, increased oxidative stress, 

and elevated cytokine levels [37]. With regard to i-proteasome expression levels in cancer, 

apparent differences exist across the various cancer types. For example, up-regulation of i-

proteasome has been observed in multiple myeloma, prostate cancer, and lung cancer [38, 39]. 

On the other hand, i-proteasome is reported to be down-regulated in esophageal, renal, skin, 

and head and neck cancers [40-42]. Most of these studies did not further investigate the 

functional consequences of i-proteasome down-regulation. Therefore, it remains unclear 
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whether these changes in i-proteasome expression levels have any functional significance in 

terms of cancer cell survival and proliferation. 

 

Several studies have also assessed the clinical significance of i-proteasome expression. In lung 

cancer, a study by Tripathi et al. observed that patients treated with surgery alone showed 

significantly reduced disease-free survival with low PSMB8 expressing tumours (P = 0.004) [43-

46]. PSMB8 levels also emerged as an independent significant prognostic factor for disease-free 

survival [P = 0.005; hazard ratio (HR): 2.5; 95% confidence interval (CI): 1.3–5.0]. Notably, the 

reduced i-proteasome expression led to fewer peptides presented on HLA class I molecules 

(Tripathi et al., 2016). The authors observed that in NSCLS cell lines of mesenchymal origin 

(H1299 and DFCI024) displayed a markedly reduced diversity of peptides compared to epithelial 

cell lines (DFCI032 and HCC2935). The authors predict that the due to NSCLS having high 

mutations, i-proteasomes are likely able to generate high levels and more diverse neo-epitopes, 

which can be recognized by tumour infiltrating T cells and trigger host immune responses. 

 

In breast cancer, a study reported by Rouette et al. shows that i-proteasome gene expression 

correlates with survival in breast cancer, with high i-proteasome levels associated with a 

decreased risk of death (hazard ratio = 0.53) [47]. Survival at ten years was 61.9% ± 11.7% for 

patients whose i-proteasome gene expression ranked in the top third of the cohort relative to 

36.1% ± 8.0% for those in the bottom third. Furthermore, expression of individual i-proteasome 

genes PSMB8 and PSMB10 were associated with a decreased risk of death. 
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Overall, these studies suggest that in certain cancers, i-proteasome expression is up-regulated 

and this is presumably required to facilitate increased availability of growth-promoting proteins 

to sustain accelerated cancer growth. The up-regulated i-proteasome, since they are also 

intimately connected with the MHC class I antigen-processing machinery, causes increased 

levels and diversity of antigens, their presentation and subsequent immune responses. Given 

this i-proteasome addiction for certain cancers, it is likely that disrupting proteasome function 

will have drastic effect on rapidly dividing cancer cells, which can be therapeutically exploited 

with pharmacological inhibitors. 

 

Proteasome Inhibitors in Cancer 
 

 

The first proteasome inhibitors were simple peptide aldehydes designed to study the rate of 

proteolytic activity of proteasomes in muscle atrophy. With increasing evidence for the role of 

the proteasome in cancer progression, the possibility that proteasome inhibitors may have 

potential as therapeutic agents was considered. Early studies showed that proteasome 

inhibitors displayed a broad spectrum of anti-proliferative and pro-apoptotic activity against 

hematological and solid tumours. However, these initial compounds were rudimentary and 

lacked the potency, specificity, or stability required for clinical use, which led to the design of 

new inhibitors with more potent and selective activity. Bortezomib (PS-341), a dipeptide 

boronic acid, was the first proteasome inhibitor that showed high in vitro and in vivo anti-

proliferative activity against a range of cancer types by blocking CT-L activity [48]. It was 

approved by the FDA for treatment of patients with multiple myeloma, and mantle cell 

lymphoma and is in advanced stage clinical trials for many other tumour types as a combination 
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therapy [49-51]. However, there are limitations to the use of this inhibitor, including partial to 

no response in some patients, and dose limiting toxicities, particularly peripheral neuropathy. 

Furthermore, as single agents none of these inhibitors show efficacy in solid tumours.  

 

Despite initial clinical activity in hematological malignancies, some develop resistance. In 

limited early studies of bortezomib in advanced stage solid tumours, development of resistance 

was also observed. Busse et al. demonstrated that bortezomib resistant cell-lines originating 

from refractory myeloma (U266), lymphomas (KARPAS422) and solid tumour (8505C) had 

either reduced expression, or reduced catalytic activity, of i-proteasome subunits. Given that 

bortezomib specific IC50 for c- (β5~7.5nM) or i- (β5i~3.5nM) proteasome subunits are almost 

identical, the authors suggested that sensitivity of proteasome inhibition was due to higher i-

proteasome levels. Furthermore, induction of i-proteasome assembly by IFNγ exposure 

restored (40-60%) the sensitivity of such resistant cells to bortezomib with a concomitant 

decrease in the expression of the c-proteasome, suggesting that i-proteasomes are more 

sensitive to bortezomib than c-proteasomes [52, 53]. This observation is further complemented 

by various in vitro studies that indicate that increased levels of the constitutive subunits are 

associated with decreased bortezomib sensitivity [54] . It is likely that the overall effect of 

proteasome inhibition will vary greatly between tumour types [55-58] since different organ/cell 

types can express mixed and hybrid proteasomes where individual proteasomes contain both c- 

and i-subunits.  
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In cancer, the functional roles of the three proteasome activities (CT-L, C-L, and T-L) and their 

relative inhibition by proteasome inhibitors have not been fully elucidated. The majority of 

proteasome inhibitors are directed against CT-L activity, traditionally considered the rate-

limiting step in protein degradation. Consequently, inhibitor potency has often only been 

measured against this activity for most proteasomes. More recently, it has been shown that all 

three catalytic activities contribute significantly to protein degradation and that their relative 

contributions are dependent on the cell type and protein substrate [30]. Furthermore, it has 

been shown that inhibition of CT-L sites alone correlates poorly with cytotoxicity and that either 

C-L or T-L sites need to be co-inhibited to achieve maximum cytotoxicity in cells [59]. 

 

These findings suggest that depending on tumour type, catalytic T-L and C-L sites become 

integral to proteasome dysfunction and need to be considered as co-targets of anticancer 

drugs. There is a paucity of data on the effect of proteasome inhibition in solid cancers, but a 

few preclinical studies reveal that bortezomib is cytotoxic to breast cancer and sarcoma-derived 

cell lines. However, these in vitro responses could not be translated into a therapeutic benefit 

in patients with breast cancer or metastatic/recurrent Ewing sarcoma [41, 60, 61]. Currently, 

there are extremely few solid tumours that respond to bortezomib in patient trials. Whether 

this poor response in solid tumours is related to their lack of i-proteasomes exemplifies the 

apparent limitation of bortezomib and will extend to all proteasome inhibitors as a class, is as 

yet unknown. 
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Most current and second generation proteasome inhibitors under development and in clinical 

trials pre-dominantly target the CT-L site and fail to account for the importance of C-L and T-L 

activities. Even though the second generation inhibitors that have now been developed (eg. 

carfilzomib and ixazomib) offer the potential for more specificity and potency, they may have 

only limited success in solid tumours that predominantly express the c-proteasomes. These 

observations highlight an urgent need to continue development of more cancer-specific 

proteasome inhibitors, as well as characterizing proteasomes in solid cancers.  

Clinical Significance 

 

Dysregulated and up-regulated activity of the proteasome is a universal feature of malignant 

cells. Up-regulated proteasome CT-L activity is characteristic in many malignancies, which 

makes this an attractive target for cancer therapy. Bortezomib and other proteasome inhibitors 

have been highly effective in liquid tumours such as multiple myeloma and refractory mantle 

cell lymphoma, which predominantly express the i-proteasome. However, these inhibitors have 

several shortcomings including toxicity and lack of efficacy in solid cancers. However, this 

maybe considered to be due to a lack of i-proteasome expression in solid cancers. Recent 

studies suggest that many solid cancers can also express the i-proteasome and therefore may 

be sensitive to proteasome inhibition. As such, further characterization of the proteasomes in 

solid cancers is crucial. In addition, the major proteasome inhibitor in current use, bortezomib, 

has limitations due to toxicity. There is scope to develop new proteasome inhibitors that can 

target different proteasome subunits and that have reduced overall toxicity. 
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The following four chapters highlight the potential of using proteasome inhibitors in solid 

cancer treatment. Chapter 2 demonstrates that the i-proteasome plays a crucial role in some 

subgroups of breast cancer. Chapter 3, 4, and 5 explore novel approaches in inhibitor design 

and synthesis that may increase efficacy and reduce toxicities associated with current 

proteasome inhibitors. The studies outlined here are essential for the further development of 

these cancer- specific proteasome inhibitors, which may serve as therapeutically active agents 

(alone or in combination with existing therapy) for hard to treat solid cancers. 
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Prelude 
 

 

This chapter summarizes key highlights from analysis of RNA-sequencing data of breast cancers 

generated from the TCGA initiative. These analyses revealed biologically meaningful insights 

into the expression of immuno-proteasome variants in basal-like and HER2+ breast cancer 

subgroups that were confirmed by subsequent experimentation in cell line models. 

 

This research has been submitted to eLIFE journal (March, 2017) and this chapter is the 

submitted version of the manuscript.  

 

Contribution by the candidate: All experimental work and manuscript writing. 
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Abstract 

 

The success of proteasome inhibitors in hematological cancers is attributed to up-regulated 

proteasome activity. Although breast cancers were resistant to this therapy in early clinical 

trials, proteasome activity was not assessed. Since patient stratification based on proteasome 

activity may provide a targeted approach, we interrogated proteasome expression in cell line 

and patient derived RNAseq breast cancer data. In basal-like and HER2+ tumours, 

immunoproteasome levels were significantly up-regulated compared to luminal A and B 

tumours. High expression of the immuno-proteasome was associated with improved patient 

survival in basal-like and HER2+ breast cancers, but not in luminal A or B. Bortezomib sensitivity 

was significantly correlated with increasing levels of immuno-proteasome expression in breast 

cancer cell lines. Bortezomib caused apoptosis in basal-like cell lines via unfolded protein 

response pathways. Overall, our findings provide an overarching hypothesis that integrates 

immunoproteasome expression and improved outcome in basal-like and HER2+ cancers.  
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Introduction 

 

The proteasome is the major recycling centre for the cell with the c-proteasome degrading 

poly-ubiquitinated proteins via an ATP-driven protein complex consisting of a 20S core and 19S 

cap (Sorokin, Kim, & Ovchinnikov, 2009). Three protein components of the 20S core provide the 

critical proteolytic activities of β1 caspase-like (encoded by the PSMB6 gene), β2 trypsin-like 

(encoded by PSMB7) and β5 chymotrypsin-like (encoded by PSMB5). In addition, there is an 

alternative form of the 20S core termed the immuno-proteasome (i-proteasome) with 

alternative active sites, β1i (encoded by PSMB9), β2i (encoded by PSMB10) and β5i (encoded by 

PSMB8), together with a specialised 11S cap. The i-proteasome degrades unfolded and oxidised 

proteins and does not require ATP-driven unfolding of proteins (Shringarpure, Grune, 

Mehlhase, & Davies, 2003). The i-proteasome is predominantly expressed in haematopoietic 

cells and drives the major histocompatibility complex (MHC) class I response. Interferon-γ is a 

major inducer of i-proteasome expression (Aki et al., 1994). 

 

Compared to normal cells, cancers are typically associated with an enhanced proteasome 

activity and this provides a potential therapeutic target (J. Adams, 2004). The proteasome 

inhibitors bortezomib, carfilzomib, and more recently ixazomib, are FDA approved and used 

clinically for treatment of multiple myeloma and mantle cell lymphoma. Disappointing results 

from early phase clinical trials using bortezomib for treatment of solid tumours such as breast 

cancer (Engel et al., 2007; Yang et al., 2006) refocused the use and development of new 

generation inhibitors primarily for multiple myeloma treatment. However, recently there has 
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been developing interest in the use of bortezomib in solid cancers in conjunction with other 

systemic treatments. 

 

Although the proteasome is a potential therapeutic target in solid cancer, there has been 

limited characterisation of the proteasome in such cancers. The availability of next generation 

RNA sequencing data from a large number of breast cancers provides the opportunity to 

investigate the expression of the proteasome and its components in detail. This analysis was 

undertaken to determine if a proteasome inhibitor based therapy could target particular 

subgroups of breast cancer. Supporting data was then determined from analysis of appropriate 

breast cancer cell lines. 
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Results 

 
Comparison of expression of the c-proteasome in breast cancer 
subgroups 
 

This analysis is based on the breast cancer subgroups basal-like, luminal A, luminal B and HER2+ 

 enriched as defined by PAM50, a well-characterized qRT-PCR intrinsic subtyping classifier that 

measures expression of 50 genes selected as characteristic of these five breast cancer intrinsic 

subtypes (Parker et al., 2009). The breast cancer RNAseq data is sourced from the TCGA 

initiative available from cBioPortal (Cerami et al., 2012; Gao et al., 2013). It should be noted 

that levels of message do not necessarily reflect that of protein, and the levels of individual 

proteins of the complex may not reflect a functional proteasome as this requires assembly of a 

multi-protein complex. Despite these caveats, analysis of RNAseq data reveals biologically 

meaningful insights that are then confirmed by subsequent experimentation. 

 

The level of expression of c-proteasome subunits (19S cap genes PSMC1 and PSMD1, and 

PSMB5, PSMB6 and PSMB7 encoding respectively the c-proteasome activities β5c, β1c and β2c) 

are compared across the subtypes of breast cancers (Figure 1A; Supplementary Table 1). The 

differences in expression of these subunits are similarly maintained across the different 

subtypes with HER2+ enriched tumours having an average expression 33.7% higher than luminal 

A cancers. The maintenance of these differences does suggest that these comparative gene 

expressions are representative measures of the levels of proteasome proteins. From these data 

the different subgroups of breast cancer are likely to have inherently different levels of the c-
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proteasome and this likely reflects the characteristic inherent physiological states of the 

different subtypes.  

 

It was of interest to compare expression levels of i-proteasome in the breast cancer subgroups 

as recent evidence suggests that solid tissues can express i-proteasome (Altun et al., 2005; Ho, 

Bargagna-Mohan, Wehenkel, Mohan, & Kim, 2007; Wehenkel et al., 2012). The expression of 

the i-proteasome chymotrypsin-like activity (PSMB8) was compared (Figure 1B) as this activity 

is considered to be the major activity of the proteasome (Kisselev, Callard, & Goldberg, 2006). 

The basal-like cancers had the highest proportion of tumours with high levels of the i-

proteasome (38% between 2000-4000 RSEM proteasome expression) while the luminal A 

cancers had significantly lower proportion (only 18% of cancers with greater than 2000 RSEM of 

the i-proteasome expression). It is apparent that breast cancers, in particular the basal-like 

cancers, can express levels of i-proteasome greater than that of the c-proteasome. Typically, 

the i-proteasome is highly expressed in hematopoietic cells, where it functions to generate 

peptide fragments for the MHC class I response (Aki et al., 1994). 
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Figure 1. Comparison of relative expression of proteasome across breast cancer subtypes. A. 

PSMB5, PSMB6 and PSMB7 encode the c-proteasome activities of the 20S core; PSMC1 and 

PSMD1 are constant proteins of the 19S cap. LumA: Luminal A; LumB: Luminal B. B. (left) The 

relative i-proteasome (PSMB8) expression is presented in groupings from < 2000 RSEM, 

between 2000-4000 RSEM and >4000 RSEM. B. (right) I-proteasome expression presented in 

the percentage cases in the four intrinsic breast cancer subgroups. 

 

Co-expression of genes with i-proteasome expression 
 

Co-expression, as determined by the level of correlation between the expressions of two genes, 

can provide evidence for their involvement in the same pathway. In an approach to further 

investigate the roles of the proteasome in breast cancer, genes significantly co-expressed with 

the variable genes of the 20S core were determined. All genes were analysed, irrespective of 
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their relative expression. A conservative cut-off using r=0.5 was used which was equivalent to a 

Bonferroni corrected probability of <0.001. 

  

Correlation analysis revealed that the basal-like and luminal A breast cancer subgroups had 

distinct gene signatures. There were 84 genes in luminal A breast cancers where expression was 

correlated greater than 0.5 with PSMB8, PSMB9 and PSMB10 (Figure 2A). In contrast, in the 107 

basal-like cancers there were 171 genes with correlated co-expression greater than 0.5 with 

each of PSMB8, PSMB9 and PSMB10 (Supplementary Tables 2 and 3). Notably, the basal-like 

tumours expressed higher levels of several MHC class I (TAP1, TAP2, B2M, HLA-A, -B and -C) and 

various MHC class II genes compared to luminal A tumours (Figure 2B; Supplementary Tables 3 

and 4). The two subgroups also showed difference in the expression of transcription factors and 

cytokine/chemokines. Overlapping the lists of correlated genes, we obtained a 91-gene 

signature exclusive to basal-like tumours. Pathway and GO-term enrichment analysis of this 

signature suggested that the IFNγ-mediated immune response pathways were the most 

significantly up-regulated process (Figure 2C).  

 

The genes co-expressed with the i-proteasome were divided into two groups of low and high 

average expression. Half of these co-expressed genes had an average expression in the 107 

basal-like breast cancers less than 500 RSEM and were considered as low expressing. 

Comparison of the site of expression of the two groups demonstrated that the genes with lower 

expression were typically expressed in the lymphoid lineage rather than in breast cancer (e.g. 

the basal cell line MDA-MB-468) (Supplementary Figure 1). It is speculated that these 
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transcripts originate from infiltrating lymphoid cells in the tumour tissue samples that were 

processed for RNA sequencing and this infiltration was positively correlated with the presence 

of the i-proteasome.  

 

The i-proteasome co-expressed genes with the highest expression include MHC class I and 

associated genes, such as TAP1 and TAP2, consistent with expression of i-proteasome driving 

this response. Unexpected was the high expression of the MHC class II genes that typically have 

expression in dendritic cells, mononuclear phagocytes and B cells and are induced by exposure 

to interferon gamma (Ting & Trowsdale, 2002). Possible sources of MHC class II expression are 

from breast cancer cells, stroma or from high levels of infiltrating hematopoietic cells within the 

tumour. To investigate the possible origin, MHC gene expression in breast cancer tissues was 

compared with breast cancer cell lines (Supplementary Table 4). In breast cancers, the MHC 

class I are highly expressed with the class II genes having an average expression of 23% of the 

class I. In breast cancer cell lines, although the MHC class I genes were expressed and were also 

correlated with PSMB8 expression, the expression of MHC II genes was negligible. There were 

only three of 68 breast cell lines that had showed robust expression of MHC class II genes. 

These data are consistent with the findings of Forero et al (Forero et al., 2016) where analysis 

by immunohistochemistry, and of laser-captured micro-dissected breast tumours, 

demonstrated that while the MHC II pathway was associated with B-cell and T-cell infiltration in 

the tumour there was also possible aberrant expression in breast cancer cells. 
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Figure 2. Analysis of i-proteasome co-expressed genes. A. Venn diagram demonstrating highly 

correlated genes with PSMB8 overlapping or exclusively expressed in the basal-like or luminal A 
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tumours. B. Heat map demonstrating the relative expression of highly correlated genes with 

PSMB8 in luminal and basal-like breast tumours. C. Major biological functional classification of 

immuno-proteasome co-expressed genes exclusive to either basal-like or luminal A breast 

tumours using the FunRich analysis software (http://www.funrich.org). (Pathan et al., 2015)  

 

 The interferon-gamma mediated signaling pathway 
 

The interferon gamma mediated signaling pathway was highly represented in the i-proteasome 

co-expressed gene set (Figure 2C). Interferon-γ (IFNG) is a major inducer of the immuno-

proteasome (Aki et al., 1994). Although the relative expression of IFNG was low among the 

basal-like breast samples (median expression 6.5 RSEM) this expression was significantly 

correlated with the levels of the i-proteasome expression (correlation expression levels IFNG 

and PSMB8, r=0.62). There was no significant correlation of IFNG with the expression of the c-

proteasome (correlation of IFNG and PSMB5 expression, r=-0.08, ns). In addition, the levels of 

interferon gamma were strongly correlated with levels of TBX21 (r=0.80, median expression 

26.8 RSEM) and CIITA (r=0.69, median expression 286.2 RSEM). TBX21 protein (T-bet) is a T-cell 

(Th1)-specific transcription factor that controls the expression of the cytokine interferon-

gamma (IFNɣ) (Oh & Hwang, 2014) and CIITA is the master controller of the MHC class II 

response (Downs, Vijayan, Sidiq, & Kobayashi, 2016). These data suggest that interferon-γ 

originates from infiltrating hematopoietic cells in the breast cancers. Interferon-γ can drive the 

expression of i-proteasome via the transcription factor IRF1 resulting in expression of MHC class 

I (Namiki et al., 2005). IRF1 expression was significantly correlated with i-proteasome 

expression in basal-like breast cancers (r=0.81). We speculate that a subset of basal-like breast 

http://www.funrich.org/
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cancers are characterized by IFN-γ secreting hematopoietic cells, which as a consequence, 

drives IRF1 expression and i-proteasome in breast cancer cells. High levels of i-proteasome are 

associated with increased expression of the MHC I pathway and also expression of the MHC II 

pathway. It is speculated that in basal-like cancers, high levels of i-proteasome will activate an 

innate immune response via MHC expression.  

 

We sought to validate this IFN-γ axis in basal and luminal cancer cell lines. As expected, 

treatment with interferon gamma significantly up-regulated mRNA expression of this axis in 

both cell lines. In MDA-MB-468, a basal cell line, both IRF1 and PSMB8 were up-regulated >10 

fold while STAT1, TAP1 and TAP2 were up-regulated >7 and >3-fold respectively. In MCF7, a 

luminal cell line, baseline transcript levels of the IFN-γ axis were significantly lower compared to 

MDA-MB-468. Upon treatment with IFN-γ, IRF1 and PSMB8 levels were up-regulated >20 and 

110> fold respectively. These up-regulated PSMB8 levels in treated MCF7 were comparable to 

that observed for MDA-MB-468 without any IFN-γ treatment. STAT1, TAP1 and TAP2 were also 

significantly up-regulated. There was no observable effect on the constitutive proteasome since 

there were only marginal changes in PSMB5 levels in both cell lines. 

 

Silencing-rescue experiments in MDA-MB-468 and MCF7 cells demonstrated that in both cell 

lines silencing the IFN-γ driven transcription factor IRF1 (>90% silencing achieved with RNAi) 

significantly down-regulated the majority of its tested targets (Figure 3). In MDA-MB-468, 

PSMB8 levels decreased over 3-fold, while there was a 50% reduction in STAT1 and TAP2 levels. 

In MCF7, the effect of IRF1 silencing was more pronounced, with over 5-fold and 14-fold 
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reduction in PSMB8 and STAT1 mRNA expression and 3-fold reduction of TAP1 and TAP2 levels. 

Together, the evidence confirms that the IFN-γ-IRF1-STAT1-PSMB8 axis is intact in breast cancer 

cell lines. 

 

Figure 3. Interferon-ɣ induced IRF1 signaling axis is intact in both A. basal-like MDA-MB-468 and 

B. luminal MCF-7 cells. RT-qPCR analysis of mRNA expression of IFN-γ induced genes in cells 

transfected with siIRF1 or mock siRNA in the presence or absence of 100U/ml IFN-γ.  
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Relationship of proteasome expression with breast cancer patient 
survival 
 

The proteasome is reported to be frequently up-regulated in cancer and therefore it was 

determined if expression of the proteasome was related to patient survival. As before, PSMB5 

and PSMB8 were used as representative of the expression of the c- and i--proteasome 

respectively as they encode the β5 chymotrypsin-like activity, considered to be the 

predominant activity of the proteasome (Kisselev et al., 2006). Kaplan Meier analyses of PSMB5 

and PSMB8 in the four intrinsic subtypes of breast cancer are summarised in Supplementary 

Table 5 (Kaplan Meir graphs in Supplementary Figure 2). Low expression of the c-proteasome in 

luminal A and B cancers was significantly associated with improved survival, while this was non-

significant or marginally significant for basal-like and HER2+cancers respectively. PSMB8 

expression was significantly associated with improved survival in basal-like cancers but was not 

significantly associated with survival in the luminal or HER2+ subgroups (although patient 

numbers in the latter were limited), Figure 4. Similar results were found for PSMB9 and 

PSMB10, the other two i-proteasome genes, and also with IRF1. This was not unexpected as 

these three genes are significantly co-expressed with PSMB8.  

 

High i-proteasome expression (greater than 1.5 times the expression of the c-proteasome, 

Supplementary Figure 3) is found in 23.1% of basal-like cancers but only 6.5% of luminal A 

cancers. It is intriguing that expression of the i-proteasome in luminal A cancers does not 

apparently influence patient survival (Supplementary Table 5). It is possible that in basal-like 

breast cancers there are specific circulating effector proteins and cytokines that allow a more 
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efficient initiation and maintenance of the innate immune response than in luminal A cancers. 

In an approach to identify such basal specific factors, genes with expression highly correlated 

with PSMB8 message were compared between those basal and luminal A cancers that 

expressed greater than 2500 RSEM of PSMB8 (Supplementary Table 3). In these high i-

proteasome expressing cancers, expression of the classical complement pathway components 

C1S, C1R, C1Q and C2, is reduced by 43% in luminal A compared with basal-like cancers and in 

luminal A cancers is not correlated with the presence of the i-proteasome (correlation of C1S 

with PSMB8 in luminal A: r=-0.16, ns; basal: r=0.57, p<0.005). The classical complement 

pathway is an effector arm of the immune system and contributes to the destruction of cancer 

cells in conjunction with antibodies produced by B-cells (Pio, Ajona, & Lambris, 2013). Notably, 

the alternative complement pathway component C3 is also reduced by 54% in the luminal A 

compared to basal-like cancers. Interestingly, of 33 breast cancer cell lines that have been 

clearly defined as basal or ductal-like (Neve et al., 2006) only the basal-like cell lines express 

high levels of C1S (Supplementary Figure 4). This is significant as several studies suggest that 

the complement system has the ability to recognise malignant cells and is activated in response 

to the expression of tumour-associated antigens, with the subsequent deposition of 

complement components on tumour tissue (Corrales et al., 2012; Gminski, Mykala-Ciesla, 

Machalski, Drozdz, & Najda, 1992; Nishioka, Kawamura, Hirayama, Kawashima, & Shimada, 

1976).  
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Figure 4.  Kaplan Meier survival curves of breast cancer patients are stratified by PSMB8 

expression.Survival data derived from Kaplan-Meier plotter (Gyorffy et al., 2010) using “Jetset” 

best probe set and auto-selection of best cut-off. P values are corrected for multiple testing 

using Bonferroni correction.  
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Basal-like breast cancers are addicted to the immuno-proteasome 
 

High levels of the i-proteasome in basal-type breast cancers are associated with increased 

expression of HLA type I and type II genes and it is speculated that this results in increased host-

immune surveillance and consequently a better patient prognosis. WWithin a basal breast 

cancer, those cells with high levels of i-proteasome will be expected to be eliminated by 

immune surveillance, resulting in overall suppression of i-proteasome expression. The 

persistence of basal-type cancers with high levels of i-proteasome suggests that increased 

activity of i-proteasome has a function that is essential for survival of these cancer cells. It is 

suggested that basal-like cancers can become “addicted” to high levels of i-proteasome. The 

likely basis for this addiction is the role of the i-proteasome in degrading oxidised and misfolded 

proteins in an ATP independent mechanism (Sorokin et al., 2009). In rapidly dividing cancer cells 

with a general breakdown in cellular homeostasis, oxidised and misfolded proteins would be 

expected to accumulate and have the potential to trigger a persistent “unfolded protein 

response” resulting in cell apoptosis (M. Wang & R. J. Kaufman, 2014). Thus we speculate that 

basal-type breast cancers express i-proteasome genes to enable cell survival by ameliorating 

the potential to trigger an unfolded protein response. In such cancers, as a consequence of this 

i-proteasome expression, there is also triggered a host-immune surveillance resulting in 

superior patient survival. 
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We next set out to determine if breast cancer cell lines demonstrated i-proteasome addiction. 

The expectation would be that cancers would vary in their addiction, with the levels of 

increasing addiction reflected in higher expression of i-proteasome and increasing sensitivity to 

a proteasome inhibitor such as bortezomib. Accordingly, bortezomib LD50 was determined for 

each of the breast cancer cell lines (Figure 5A; Supplementary Table 6; Supplementary Figure 5 ) 

and the expression of PSMB5 or PSMB8 assessed from RNAseq data (Klijn et al., 2015). The 

breast cell line bortezomib LD50s were significantly negatively correlated with the expression of 

PSMB8 (r=-0.86, p<0.0014) but not with levels of PSMB5 (r=0.59, p=0.06). Basal cell lines 

together with SKBR3, an ER- PR- HER2+ cell line, were on average greater than 25 fold more 

sensitive to bortezomib compared with the cell lines classified as luminal. Western data further 

confirmed the variation in i-proteasome in these breast cancer cell lines (Supplementary Figure 

6). 

 

These findings were not the consequence of bortezomib preferentially inhibiting the i-

proteasome as native in-gel proteasome activity assay showed similar inhibition of total 

proteasome activity by 0.037µM bortezomib in MDA-MB-468 (high levels of i-proteasome and 

bortezomib LD50 of 0.037µM) and MCF-7 (low levels of i-proteasome and bortezomib LD50 of 1 

µM), Figure 5B. While this bortezomib dose was lethal for MDA-MB-468 (>90% cell death), 

there was minimal effect on MCF7 survival (Figure 5C). However, prolonged monitoring of 

MCF7 growth following exposure to 0.037µM bortezomib showed gradual cessation of cell 

proliferation 
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and eventually increasing cell death (Supplementary Figure 7). Therefore, inhibition of the c-

proteasome causes cell cycle arrest and increasing cell death only after prolonged treatment. 

This is consistent with the major role of the c-proteasome in degradation of poly-ubiquitinated 

proteins that is required for the maintenance of cell homoeostasis, in particular, cell division 

(Julian Adams, 2004; Koepp, 2014). In breast cancer cell lines with high levels of i-proteasome, 

bortezomib treatment causes rapid cell death and this is suggested to reflect the addiction of 

such cancers to a unique function provided by the i-proteasome. 

 

To confirm that the observed sensitivity of basal breast cancer cell lines to bortezomib was due 

to direct i-proteasome inhibition and was not associated with an off-target effects of 

bortezomib, si-RNAs were used to silence PMBS8 expression in six breast cancer cell lines with 

varying i-proteasome expression. We predicated that this would have lethal consequences 

where cell lines were addicted to i-proteasome. This was indeed observed (Figure 5D), with si-

RNA knockdown (>80% knockdown achieved in all cell lines) of PSMB8 resulting in induction of 

45%, 48% and 39% apoptosis in MDA-MB468, BT-20 and Hs578T respectively. In contrast, 

ZR751 and MCF7 did not show any significant increase in cell death. The MDA-MB-231 cell line 

was an exception as although expressing high levels of PSMB8 and being sensitive to 

bortezomib, knock-down of PSMB8 did not markedly induce apoptosis.  
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Figure 5. A. The bortezomib sensitivity of breast cancer cells lines is highly correlated with 

expression of i-proteasome. Bortezomib sensitivity from Table S6 expressed as log base 10, 

expression of i-proteasome as PSMB8 expression from RNAseq (Klijn et al., 2015). Cancer 

subtype as in (Neve et al., 2006). Bortezomib LD50s determined from dose response graphs 

presented in Supplementary Figure S4 . B. Native in-gel proteasome assay of bortezomib 

treated breast cancer cell lines. MDA-MB-468 and MCF7 were untreated or treated with 

0.037µM bortezomib for 2h. Whole cell lysates without detergents together with ATP were 

electrophoresed on 3.5% acrylamide gels. UV image following incubation with the fluorogenic 

peptide Suc-LLVY-AMC, a chymotrypsin-like specific substrate. C. Incucyte images 

demonstrating effect of 0.037µM bortezomib on MDA-MB-468 and MCF-7 cells after 48h. D 

and E. RNAi silencing of PSMB8 for 56h causes apoptosis in basal-like and HER2+but not luminal 

cell lines. PSMB5 silencing has no apoptotic effect on either MDA-MB-468 or MCF-7 cells under 

the same conditions. F. Pre-treatment with IFN-γ treatment (100U/ml) for 24h does not 

significantly affect sensitivity to bortezomib. 

 

As the sensitivity of breast cancer cells to both bortezomib treatment and RNA interference was 

related to the levels of the i-proteasome, we next investigated whether treatment with IFN-γ 

can alter the sensitivity of cell lines to bortezomib. While treatment with 100 U/ml IFN-γ 

increased PSMB8 levels by 3-fold and 100-fold respectively in MDA-MB-468 and MCF7 

(Supplementary Figure 8), sensitivity to bortezomib was not significantly altered (Figure 5F). 

Thus, i-proteasome levels per se do not determine the sensitivity to bortezomib. 
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Unfolded protein response in basal-like breast cancers that have i-
proteasome addiction 
 

We propose addiction of breast cancers to high levels of the i-proteasome with suppression of 

proteasome activity triggering ER stress and the unfolded response pathway (UPR). Three 

signalling pathways responsible for mediating the UPR have been described (Miao Wang & 

Randal J. Kaufman, 2014) ). These can be assessed by increased expression of ATF4 while 

activation of the PERK and IRE1 branches culminate in a spliced form of the X-box transcription 

factor, XBP1s. XBP1s is a key downstream transcription factor that activates the expression of a 

wide variety of genes required for protein folding and secretion, as well as clearance of 

misfolded proteins from ER. To test the effect of proteasome dysfunction on UPR activation, 

two basal-like and two luminal cell lines were treated with the bortezomib. Bortezomib 

treatment significantly increased the ATF4 levels by 4-fold and 2-fold in MDA-MB-468 and 

Hs578T cell lines while in luminal cells, ATF4 increase was only observed for MCF7 cells (Figure 

6A).  

 

We also tested whether treatment of MDA-MB-468 cells with bortezomib increased the XBP1s 

in a time dependent manner. This was indeed observed, with in addition, concomitant with up-

regulation of pro-apoptotic genes FOXO3, NOXA, BIM, CASP3 and CASP7. We also observed a 

significant decrease in NFKB and BCL2 mRNA levels. This is consistent with previous studies in 

multiple myeloma that show bortezomib has pleotropic anti-cancer effects and causes 

suppression of anti-apoptotic target genes(Obeng et al., 2006).  
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Figure 6.Unfolded protein response pathway in breast cancer cells. A. Cells were treated with 

35nM bortezomib or vehicle control for 4h and total mRNA was extracted. ATF4 transcirpt 

levels were calculated via qRT-PCR. B. MDA-MB-468 cells were treated with 35nM bortezomib 

and the mRNA expression levels for the FOXO3, NOXA, BIM, CASP3, CASP7, BCL2 and NFκB 

were calculated.  
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Discussion 

 

The proteasome has been successfully targeted for the treatment of multiple myeloma,with 

clinical responses to proteasome inhibitors have been correlated with increased proteasome 

activity (Kuhn & Orlowski, 2012; Niewerth et al., 2013). Therefore, in an attempt to address 

whether proteasome inhibition can be a viable treatment for breast cancer, we analysed mRNA 

expression data from the TCGA breast cancer cohort. Unexpected was the observed variation in 

i-proteasome expression, with particularly high levels in a proportion of basal-like and 

HER2+breast cancers. Based on our finding that the bortezomib LD50 of breast cancer cell lines 

closely parallels the levels of i-proteasome, we propose that high levels of the i-proteasome are 

required for a critical function in these breast cancers. It has been previously proposed from 

siRNA lethality screens of breast epithelial cell lines that basal-like breast cancer cells have a 

proteasome addiction (Petrocca et al., 2013), although this was not specifically attributed to the 

i-proteasome. We propose that the basis for the i-proteasome addiction is its role in the 

maintenance of protein homoeostasis (Seifert et al., 2010) rather than its specific role in 

production of class I antigens. 

 

Our data are consistent with addiction specifically restricted to expression of the i-proteasome. 

Specific RNA interference of the i-proteasome subunit PSMB8 causes rapid cell death in basal-

like and HER2+ but not in luminal cancer cells, whereas under the same conditions, silencing of 

the PSMB5 subunit of the c-proteasome does not have any cytotoxic effects. Since the half-life 

of the c-proteasome is >120h (Heink, Ludwig, Kloetzel, & Krüger, 2005), it is possible that 
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prolonged silencing of PSMB5 is required to induce cell death. However, although blanket 

inhibition of total proteasome activity by the same concentration of bortezomib is observed by 

native in-gel activity assays (Figure 5B) in both a basal-like and luminal cell line, there is no 

effect on the viability of the luminal cell line. In addition, treatment with 100u/ml IFN-γ does 

not increase the cytotoxic sensitivity of breast cancer cell lines to bortezomib despite increasing 

total i-proteasome levels. The latter observation provides a distinction between the intrinsically 

up-regulated i-proteasome levels that are observed in basal-like and HER2+cells that are critical 

for survival and the up-regulation by extrinsic means, for example IFN- γ treatment, that has 

little or no effect on this addiction.  

 

This has notable implications for therapeutic intervention, as tumours possessing high levels of 

i-proteasome are predicted to be responsive to clinically available proteasome inhibitors. We 

observed substantial heterogeneity in mRNA and protein expression of i-proteasome subunits 

among breast cancer subtypes, with basal-like and HER2+cancers having higher levels of i-

proteasome expression than luminal cancers. Up-regulation of i-proteasome activity in these 

cancers is likely to be dependent on an interplay between their genetic instability, metabolic 

demands and requirement for degradative capacity of oxidised and unfolded proteins. As both 

basal-like and HER2+ breast cancers are generally associated with high rates of cancer cell 

proliferation and genomic instability (Shaver et al., 2016), this is likely to drive high levels of 

oxidised and misfolded proteins. To accommodate this, there is an increase in their degradative 

capacity by up-regulating the i-proteasome. The i-proteasome is labile and also has the capacity 

to degrade proteins without the requirement for ATP. This is consistent with the observation 
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that while the c-proteasome levels remain constant in most cancers, i-proteasome levels are 

highly heterogeneous. If i-proteasome function is inhibited in such cancers, for example with 

bortezomib treatment, the endoplasmic reticulum stress and the UPR response will be 

triggered. We show that bortezomib treatment of a basal breast cancer cell line activates 

multiple branches of the IRE-1-XBP1 axis and consequently leads to cell death consistent with 

the up-regulation of NOXA, FOXO, BIM and down-regulation of NFκB. These results are 

consistent with studies in multiple myeloma where treatment with bortezomib initiates the 

UPR stress pathways (Dong et al., 2009; Obeng et al., 2006). 

 

An immune response gene expression module has been shown to identify a good prognosis 

subtype in estrogen receptor negative breast cancer (Teschendorff, Miremadi, Pinder, Ellis, & 

Caldas, 2007). In this context, recognition of tumour-associated antigens by TILs is a significant 

contributor to the detection and ultimate destruction of tumour cells (del Campo, Carretero, 

Aptsiauri, & Garrido, 2012). In our analysis, i-proteasome subunit PSMB8 was significantly 

correlated with good outcome in basal-like and HER2+ cases but not in luminal A and luminal B 

patients. It is expected that the up-regulated i-proteasomes in the presence of intact HLA 

expression and IFN-γ signaling pathways contribute to a more efficient and robust immune 

signal that is recognised by circulating TILs. However, it is unlikely to be the whole story as only 

a very small fraction of all antigens, even in the context of small cell lung cancer with extremely 

high mutation rates, are able to evoke a T cell response (Tripathi et al., 2016). A possible 

explanation is that the immunogenicity of a tumour is determined by both the uniqueness and 

adequate levels of that antigen. Genome sequencing studies show that most tumours have 
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point mutations in protein coding sequences, however only a small proportion will ellicit an 

innate immune response via HLA mediated display of the i-proteasome degraded peptides. 

Although the mutation rates in basal-like cancers are not high, they are associated with high 

levels of genomic instability, which would be predicted to generate high levels of novel 

proteins. Recent developments in the analysis of RNAseq data have identified high rates of 

hybrid and novel transcripts in basal breast cancer (Shaver et al., 2016) and it would be 

predicted that these are potentially immunogenic. This may provide the basis for the improved 

prognosis of basal breast cancers expressing high levels of the i-proteasome. 

 

In conclusion, we propose that to alleviate the UPR driven consequences of high mutational 

load and metabolic demands, cancers preferentially up-regulate i-proteasome activity. By 

appropriate screening with i-proteasome as a marker, cancers can be identified with i-

proteasome addiction which can then be therapeutically exploited by treatment with 

proteasome inhibitors. In such cancers, there is a secondary, unintentional consequence of i-

proteasome up-regulation. Due to its optimal peptide cleave specificity and enhanced 

degradative capacity, this up-regulated activity of the i-proteasome leads to an increased and 

diverse peptide pool and capacity to display antigenic peptide-MHCI repertoires on the surface 

of the cancer cells. This results in more efficient detection of cancer cells by the circulating TILs. 

Such incoming TILs release cytokines such as IFN-γ which has two  effects in the in tumour 

microenvironment, upregulation of the i-proteasome-MHC axis and release of cytokines to 

further reinforce TIL recruitment. This positive feedback loop increases the efficiency of host 

anti-cancer surveillance which translates into an improved patient prognosis.  
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Materials and Methods 

 

In silico analysis 

Breast cancer RNA sequencing data was accessed from cBioPortal (Cerami et al., 2012; Gao et 

al., 2013). The mRNA expression (RNA Seq V2 RSEM) was from TCGA as cited in Ciriello et al 

(Ciriello et al., 2015). Intrinsic breast cancer subgroups categorised as basal-like, luminal A, 

luminal B and HER2+ were used. Gene expression data in cell lines were from the cancer cell line 

Encyclopaedia (Barretina et al., 2012) accessed via cBioPortal. Kaplan Meier analyses used the 

online Kaplan-Meier Plotter (Szasz et al., 2016).  

 

Cell lines 

All human breast carcinoma cancer cell lines were purchased from the American Type Culture 

Collection (ATCC, Manassas, VA, USA). MDA-MB-468, MDA-MB-231, BT-20 and Hs578T were 

cultured in DMEM. SKBR3 and BT-474 were cultured in RPMI. BT483 was cultured in RPMI with 

20% FBS, 0.01mg/ml Insulin (Sigma-Aldrich, MO, USA). T47D was cultured in RPMI, 1mM 

sodium pyruvate (GIBCO, Grand Island, NY) and 0.01mg/ml insulin. ZR751 were cultured in 

RPMI and 1mM sodium pyruvate. MCF7 was cultured in RPMI with 0.01mg/ml insulin. MCF10A 

was cultured in DMEM/F12: (1:1) (Invitrogen) with 5% horse serum (Invitrogen), 10 μg/ml 

insulin, 20 ng/ml human epidermal growth factor (Sigma-Aldrich, MO, USA), 100 ng/ml cholera 

toxin, and 500 ng/ml hydrocortisone (Sigma-Aldrich, MO, USA). All cell lines were 

supplemented with 10% (v/v) fetal bovine serum (FBS, Sigma-Aldrich, MO,USA) unless stated 

otherwise, as well as 1% (vol/vol) penicillin (100 U/mL), streptomycin (100 U/mL), and 1% 
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(vol/vol) L-glutamine (PSG, all from GIBCO-BRL, Grand Island, NY). Cells were regularly screened 

for Mycoplasma (Lonza, Basel, Switzerland). 

 

Western blot 

Cells were trypsinised, centrifuged at 300g for 5min and washed twice with PBS. Cell were lysed 

using cell culture lysis buffer (100 mmol/L HEPES, pH 7.5, 2 mmol/L EDTA, 100 mmol/L NaF, 500 

mmol/L sodium choloride, 50 μg/mL trypsin inhibitor) (Promega) containing cOmplete Mini 

Protease Inhibitor (Roche). The supernatant was collected and protein concentration was 

determined using the BCA protein assay (ThermoFisher Scientific,MA,USA). Whole protein 

lysates (5–20 μg) were resolved using SDS PAGE electrophoresis, and probed overnight at 4 °C 

with the following primary antibodies: PSMB5 (Cell signalling, 1:1000), PSMB6 (Cell Signalling, 

1:1000), PSMB7 (Cell Signalling, 1:1000), PSMB8 (Cell Signalling, 1:1000), β-tubulin (Sigma-

Aldrich, 1:200). Chemiluminescent detection of protein was done using appropriate secondary 

antibodies conjugated with horseradish peroxidase (Amersham) and the enhanced 

chemiluminescence kit according to the manufacturer's instructions (Amersham). 

 

Native in gel activity assay 

Total chymotrypsin-like activity of the proteasome was measured in freshly prepared cell 

lysates as described previously, with some minor modifications to the protocol. In brief, a total 

of 5 × 106 cells were washed 3 times with ice-cold PBS and spun down by centrifugation (5 

minutes, 250g, 4°C). Cell pellets were then resuspended in an ATP-containing lysis buffer (10 

mM Tris-HCl buffer (pH 7.8) containing 5 mM ATP, and 5 mM MgCl2) and kept on ice for 10 
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minutes. For complete lysis, cells were sonicated (MSE sonicator, amplitude 15, for 10 seconds 

at 4°C) followed by centrifugation (5 minutes, 16 000g, 4°C) to remove cell debris. Forty 

microlitres of whole cell lysate from each of the cell lines were run on a 3.5% non-denaturing 

polyacrylamide gel (BIO-RAD, CA, USA) in 10mM Tris-HCl buffer supplemented with 0.5mM ATP 

(Sigma-Aldrich, MO, USA), 5mM MgCl2, 10% (v/v) glycerol, 0.5 mM DTT). The gel was run at 35 

V for 30 min in a 4°C cold cabinet, thereafter the voltage was increased to 75 V for four hours. 

Peptidolytic activity of proteasomes was detected after incubating the gels in a Suc-LLVY-MCA 

substrate dissolved in 50 mM Tris pH 8.0, 5 mM MgCl2, 1 mM DTT, 2 mM ATP, and 0.02% SDS 

for 10 min at 37°C. Proteasome bands were identified by the release of highly fluorescent, free 

AMC under UV light (ChemiDoc, BIO-RAD). Fluorescence was quantitated using ImageJ software 

(http://imagej.nih.gov/ij/). 
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Determination of LD50  

Cells were seeded in 96-well microtiter plates at a density of 2×104 cells/well with varying 

concentrations of bortezomib. Cells were harvested 48 hours post- treatment, centrifuged at 

1,300 × g, washed in phosphate buffered saline (PBS) and stained with 7-amino-actinomycin-D 

solution (2 μg/mL) (7AAD, Invitrogen) for 10 minutes at room temperature. Viable cells were 

determined with the use of a FACS Calibur flow cytometer (Becton Dickinson Immunocytometry 

Systems), and analyzed with the use of FLOWJO (Tree Star Inc.) and GraphPad Prism (GraphPad 

Software Inc. version 6).  

 

RNA interference (RNAi) 

For RNA inhibition studies, approximately 3 × 105 cells/well were seeded in six-well plates. Cells 

were transfected with 50 nM of the following siRNAs (GenePharma): PSMB8 -

CCACUCACAGAGACAGCUAUU; IRF1- GAAAGUUGGCCUUCCACGUCU; PSMB5-

AAGCUCAUAGAUUCGACAUUG; non-coding RNA- UUCUCCGAACGUGUCACGUTT using 

Lipofectamine RNAiMAX reagent (Invitrogen) following the manufacturer’s instructions. Cells 

were harvested 72 hours post-transfection for further experiments. The RNA interference 

efficiency for interference of PSMB8 was determined using qPCR. 

 

Real-time Cell attachment 

Cells were seeded in 24 well plates (50,000 cells/wells in triplicate) with cell attachment 

monitored qualitatively over a 24h period using IncuCyte live-cell imaging system (Essen 

BioScience, Ann Arbor, MI). Phase-contrast images were taken every hour. 



64 
 

qPCR 

Total RNA was extracted from cultured cells using RNeasy mini kit (Qiagen). One microgram of 

total RNA was reverse transcribed using MMLV reverse transcriptase (Life Technologies). qPCR 

was performed using SYBR Green mastermix and run on a CFX96 Bio-Rad real time PCR 

machine. Primer sequences are presented in Table 1. Experiments were repeated three times. 

For each sample results were normalized to expression of GAPDH . 

 

PSMB5 CCGCGCTCTACCTTACCTACCT 
GCATGGCTTAATCTTTGAGACAAG 

PSMB6 CAAGCTGACACCTATTCACGAC 
CGGTATCGGTAACACATCTCCT 

PSMB8 CGTCACCAACTGGGACGACA 
CTTCTCGCGGTTGGCCTTGG 

PSMB7 ATCGCTGGGGTGGTCTATAAG 
AAGAAATGAGCTGGTTGTCAT 

IRF1 AGCTCAGCTGTGCGAGTGTA  
TAGCTGCTGTGGTCATCAGG 

FOXO3 TCTTCAGGTCCTCCTGTTCCTG 
GGAAGCACCAAAGAAGAGAGAAG 

STAT1 CGGGCTCCTTCTTCGGATTC 
CAGAGGTAGACAGCACCACC 

NOXA AGAGCTGGAAGTCGAGTGT 
GCACCTTCACATTCCTCTC 

XBP1 TCCTGTTGGGCATTCTGGAC  
GGCTGGTAAGGAACTGGGTC 

BIM GTATTCGGTTCGCTGCGTTC 
GCGTTTCTCAGTCCGAGAGT 

TAP1 TAGTCTGGGCAGGCCACTTT 
CTCGGAAAGTCCCAGGAACA 

CASP3 TGCTATTGTGAGGCGGTTGT 
TCACGGCCTGGGATTTCAAG 

TAP2 AGTGCTGGTGATTGCTCACA 
GAACCAGGCGGGAATAGAGG 

CASP 7 GTGGGAACGATGGCAGATGA 
GAGGGACGGTACAAACGAGG 

ATF4 CTTGATGTCCCCCTTCGACC 
GAAGGCATCCTCCTTGCTGT 

BCL2 GTGAAGTCAACATGCCTGCC 
ACAGCCTGCAGCTTTGTTTC 

  NFKB CGCGCCGCTTAGGAGGGAGA 
GGGCCATCTGCTGTTGGCAGT 
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Supplementary Material 

 

Supplementary Table 1. Expression of proteasome subunits across different breast cancer 

subtypes. 

Expression expressed as RSEM derived from RNAseq data (Ciriello et al., 2015); SEM: Standard 

error of mean. 

 

Supplementary Table 2. Correlations between expressions of c- and i-proteasome subunits in 

breast cancer subtypes. 

Correlation coefficients statistically significant (p < 0.01 with Bonferroni correction) unless 

indicated. ns-not significant.  

 

 c-proteasome i-proteasome 

19S cap β 5c β 1c β 2c 11S (PA28) cap β 5i β 1i β 2i 

PSMC
1 

PSMD1 PSM
B5 

PSMB
6 

PSM
B7 

PSME1 PSME2 PSMB8 PSMB
9 

PSMB10 

BASAL
-like 

Mean 
670 2865 2631 1754 2584 2875 

 
 

2716 2324 1142 1133 

 SEM 28 87 101 70 128 163 182 154 106 82 

HER2 Mean 801 3298 2937 1609 2740 4148 3304 2121 791 1090 

 SEM 65 116 174 90 191 403 331 256 100 142 

LumA Mean 555 2522 2061 1433 1972 3960 2306 1536 463 780 

 SEM 13 39 52 37 41 103 87 69 29 39 

LumB Mean 666 2984 2610 1511 2273 4551 3033 1795 680 759 

 SEM 22 80 114 56 78 201 169 115 68 51 

Breast 
cancer 
subgroup 

PSMB5 
vs 
PSMB6 

PSMB5 vs 
PSMB7 

PSMB6 vs 
PSMB7 

PSMB8 vs 
PSMB9 

PSMB8  
vs 
PSMB10 

PSMB9  
vs 
PSMB10 

PSMB5 
 vs 
 PSMB8 

Basal-like 
0.46 0.29 ns 0.30 ns 0.91 0.77 0.79 

 
0.01 ns 

HER2 0.63 0.50 0.54 0.95 0.48 0.50 0.17 ns 

Lum A 0.42 0.56 0.48 0.86 0.82 0.79 0.27 

Lum B 0.45 0.37 0.35 0.84 0.67 0.54 0.29 ns 
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Supplementary Table 3. Basal-like and luminal A breast cancer cases with expression of >2500 

RSEM PSMB8.  

 
Basal-like breast cancer Luminal A breast cancer 

 

Gene 
Co-expression 
with PSMB8 

Average RSEM 
expression 

Co-expression 
with PSMB8 

Average RSEM 
expression  

ACSL5 0.36 1048.03 0.13 640.32 
 

APOL1 0.35 3407.02 0.43 2843.47 
 

APOL2 0.60 1394.49 0.42 1418.60 
 

APOL3 0.53 1529.15 0.44 1248.63 
 

B2M 0.24 86320.13 0.60 73047.57 
 

BTN3A2 0.38 2386.53 0.53 1996.33 
 

C1QA 0.28 4719.39 0.56 2381.88 
 

C1S 0.57 18930.23 -0.16 8117.87 
 

CCL5 0.30 3366.94 0.56 1416.05 
 

CD2 0.37 897.83 0.45 571.72 
 

CD74 0.59 86455.96 0.52 68460.55 
 

CIITA 0.38 967.43 0.35 433.81 
 

CORO1A 0.47 2140.68 0.60 1815.36 
 

CXCL9 0.22 8159.66 0.28 3565.02 
 

FCER1G 0.27 1191.62 0.16 606.02 
 

FERMT3 0.39 856.66 0.54 603.90 
 

FMNL1 0.37 1047.33 0.37 778.95 
 

GBP1 0.36 7916.98 0.22 1749.36 
 

GBP2 0.21 4394.59 0.13 2488.62 
 

GBP4 0.21 4211.08 0.35 1653.19 
 

GBP5 0.23 3474.53 0.29 599.90 
 

HCLS1 0.29 1550.66 0.37 1078.15 
 

HLA-A 0.55 47843.13 0.77 39174.51 
 

HLA-B 0.51 72681.09 0.84 69223.83 
 

HLA-C 0.37 40223.73 0.78 42023.00 
 

HLA-DMA 0.58 2980.80 0.35 2087.84 
 

HLA-DMB 0.38 2207.65 0.27 1481.64 
 

HLA-DPA1 0.40 12075.63 0.31 9016.45 
 

HLA-DPB1 0.57 7200.12 0.54 5498.39 
 

HLA-DQA1 0.42 6231.44 0.34 3076.99 
 

HLA-DQB1 0.45 5280.92 0.59 3694.48 
 

HLA-DRA 0.46 35077.89 0.39 21567.79 
 

HLA-DRB1 0.53 11666.09 0.69 8506.56 
 

HLA-DRB5 0.50 4462.02 0.71 2962.90 
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HLA-E 0.49 14271.52 0.70 11422.87 
 

HLA-F 0.75 5238.08 0.74 2846.93 
 

HLA-H 0.59 4631.20 0.69 3696.58 
 

IFI35 0.46 969.00 0.28 1675.83 
 

IL2RB 0.29 986.55 0.40 640.19 
 

IL2RG 0.39 1904.72 0.54 952.76 
 

IRF1 0.56 3231.79 0.54 1974.15 
 

ITGB2 0.25 3734.61 0.35 2204.41 
 

LAP3 0.30 4887.38 0.37 3320.59 
 

LGALS9 0.48 2716.08 0.51 2032.64 
 

MVP 0.52 3162.78 0.04 5446.77 
 

NFKB2 0.38 2008.49 0.41 1251.15 
 

NLRC5 0.28 2020.48 0.28 1012.90 
 

PML 0.04 3206.75 0.31 1961.82 
 

PSMB8 1.00 4030.34 1.00 3602.91 
 

PSME1 0.34 4298.28 0.52 5915.11 
 

PSME2 0.40 4266.86 0.46 4002.40 
 

PTPN6 0.49 1541.36 0.48 1337.84 
 

RAC2 0.34 1541.22 0.61 1245.61 
 

RARRES3 0.34 2125.79 0.41 6345.87 
 

SPI1 0.32 844.55 0.52 547.76 
 

TAP1 0.57 12942.36 0.84 5870.72 
 

TAP2 0.57 5474.91 0.74 2245.24 
 

TAPBP 0.61 11090.77 0.81 8159.85 
 

TCIRG1 0.50 1592.64 0.43 1324.59 
 

TNFRSF14 0.45 1052.90 0.50 1111.30 
 

TNFRSF1B 0.46 1626.59 0.40 1003.91 
 

TYMP 0.46 4108.39 0.55 2683.15 
 

TYROBP 0.29 1442.54 0.54 1026.17 
 

UBA7 0.52 1045.64 0.18 1312.04 
 

UBD 0.40 9537.38 0.51 2368.57 
 

UBE2L6 0.36 4611.63 0.52 4036.45 
 

WARS 0.29 12689.24 0.62 3206.70 
 

Note: Number cases basal-like with expression of PSMB8>2500 is 42. R values >0.483 have 

P<0.05 with Bonferroni correction for multiple testing. Number of cases luminal A with 

expression of PSMB8>2500 is 23. R values>0.647 have P<0.05 with Bonferroni correction for 

multiple testing.  
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Supplementary Table 4. Comparison of MHC expression between breast cancer tissues and 

breast cancer cell lines 

  
  
  
  

MHC class I 

 
MHC class II 
 

PSM
B8 

HLA-A HLA-B HLA-C 
HLA-
DMA 

HLA-
DPA1 

HLA
-
DPB
1 

HLA
-
DQA
1 

HLA
-
DQB
1 

HLA
-
DRA 

Breast 
cancer 
  

Average 
expression* 

0.8 8.5 13.3 9.1 0.6 2.8 1.7 1.1 1.1 7.0 

Correlation 
with PSMB8  

0.80 0.80 0.72 0.62 0.50 0.51 0.44 0.44 0.55 

Breast 
cell lines 
  

Average 
expression* 

0.2 2.1 1.8 2.3 0.07 0.03 
0.00
7 

0.01 0.03 0.1 

Correlation 
with PSMB8  

0.56 0.63 0.64 0.34 0.16 0.22 0.14 
0.00
1 

0.30 

 *Expession given as relative to expression of PSMB5 since breast cancer data calculated as 

RSEM and cell line as RPKM (Reads Per Kilobase of transcript per Million mapped reads). Breast 

cancer RNA seq expression from cell 2015 TCGA, breast cell line expression from Klijn et al. 

 

Supplementary Table 5. Summary of the effect of PSMB5 and PSMB8 expression on the survival 

of breast cancer patients.  

 
 

PSMB5 
c-proteasome 

PSMB8 
i-proteasome 

Intrinsic 
subtype 

Number 
cases 

Number 
cases high 
expression 

Expression 
level with 
best 
prognosis 

p value 
Number 
cases high 
expression 

Expression 
level with 
best 
prognosis 

p value 

Basal 580 428  ns 223 high 
1.3e-
06 

Luminal 
A 

1764 491 low 8e-09 1205  ns 

Luminal 
B 

1002 388 low 0.0015 418  ns 

HER2+ 
 

208 24  ns 142  ns 
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Supplementary Table 6. Relative expression of PSMB8 in breast cancer cell lines and cytotoxic 

sensitivity to bortezomib.  

 

Cell line 
Cancer 
subtype 

Bortezomib 
LD50 

(µM) ± S.D 

message (PSMB8) 

    

Hs578T Basal 0.015 (0.014) 11.40 

SKBR3 
HER2+ 

 
0.020 (0.04) 12.66 

MDA-MB-468 Basal 0.032 (0.018) 12.19 

MDA-MB-231 Basal 0.037 (0.02) 12.09 

BT-20 Basal 0.039 (0.01) 13.18 

BT483 Luminal 0.228 (0.27) 11.27 

T47-D Luminal 0.5 (0.14) 10.57 

ZR75-1 Luminal 0.8 (0.45) 10.71 

MCF7 Luminal 1.0 (0.72) 9.35 

BT474 Luminal > 1.25 (0.18) 9.92 
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Supplementary Figure 1. Site of expression of the genes highly correlated (>0.5) with PSMB8 

expression divided into high and low expressing groupsaccording to whether the expression of the 

candidate genes was greater or smaller than 5000 RSEM..
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Supplementary Figure 2. Relative survival of sub-types of breast cancer classified by expression 

of c-proteasome gene PSMB5. Plots generated by Kaplan-Meier plotter (Gyorffy et al., 2010) 

using “Jetset” best probe set and auto-selection of best cut-off for classifying high and low 

expression. Logrank P values not corrected for multiple testing.  
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Supplementary Figure 3. Relative expression of i-proteasome in breast cancer subgroups. 

The relative i-proteasome (PSMB8) expression is presented in groupings from <50% to greater 

than 200% relative to the c-proteasome (PSMB5) expression. Presented is the percentage cases 

in each of the four intrinsic breast cancer subgroups. 

 

Supplementary Figure 4. Expression of C1S in breast cancer cell lines.  

Expression levels of C1S from Affymetrix expression arrays (Barretina et al., 2012). Black bars 

are basal type cell lines, blue bars luminal type cell lines (Neve et al., 2006). 
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Supplementary Figure 5. Representative LD50graphs. 
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Supplementary Figure 6. Basal-like breast cancer cell lines have higher i-proteasome subunits 

expression compared to luminal breast cancer cell lines.  
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Supplementary Figure 7. Bortezomib induces growth arrest in MCF7. A. Breast cancer cell line 

MCF7 was grown in absence (blue line) or presence of 35nM bortezomib (black line). 

Proliferation was inhibited and cell death occurred after 4 days of culture. B. Proliferation 

curves were calculated from Incucyte images.  
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Supplementary Figure 8. Treatment with IFN-ɣ induces i-proteasome expression. Cell were 

treated with 100U/ml IFN-ɣ for 24h. RT-qPCR analysis was done on mRNA expression of the 

PSMB8 subunit of the i-proteasome. In MDA-MB-468 cells, PSMB8 expression was induced over 

3-fold compared to untreated cells. In MCF-7 cells, IFN- ɣ treatment caused over 100-fold 

induction in the PSMB8 levels. These induced mRNA levels were comparative to that observed 

for MDA-MB-468 cells basally.  
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Prelude 
 

 

The 26S proteasome has emerged over the past decade as an attractive therapeutic target in 

the treatment of many cancers, in particular hematological malignancies. Here, we report new 

peptidomimetic boronates that demonstrate superior in vivo activity and less toxicity compared 

to benchmark proteasome inhibitors Bortezomib and Carfilzomib. 

 

This research has been published in ACS Med. Chem. Lett. (Dec, 2016) and this chapter is the 

published version of the manuscript.  

 

Contribution by the candidate: All biological/cell line experimental work and manuscript writing 

pertaining to biology. 
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Abstract 

 

Proteasome is a large proteinase complex that degrades proteins via its three catalytic 

activities. Among these activities, the ‘chymotrypsin-like’ activity has emerged as the focus of 

drug discovery in cancer therapy. Here, we report new peptidomimetic boronates that are 

highly specific for the chymotrypsin-like catalytic activity of the proteasome. These new specific 

proteasome inhibitors demonstrated high in vitro potency and selective cytotoxicity for cancer 

cells, with therapeutic windows superior to those observed for the benchmark proteasome 

inhibitors, bortezomib and carfilzomib. Treatment with the new inhibitors induced 

accumulation of high molecular weight polyubiqutinated proteins in the cancer cell lines, 

indicative of inhibition of 26S proteasome and subsequent cancer cell death due to unfolded 

proteins due to proteasome inhibition. 
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Introduction 
 

 

Inhibition of the 26S proteasome is a recognised therapy for the treatment of certain 

haematological cancers, with bortezomib and carfilzomib (Figure 1) being FDA approved for the 

treatment of multiple myeloma. Several other proteasome inhibitors are currently in clinical 

trials.1 These proteasome inhibitors share some common structural features, with a linear 

peptide backbone and a C-terminal electrophile that forms a covalent bond with N-terminal 

threonine of β1, β2, or β5 catalytic subunits of the 26S proteasome. Bortezomib is a dipeptide 

boronic acid that reversibly inhibits chymotrypsin-like (CT-L) activity of the 26S proteasome by 

preferentially binding to the active site of the β5 subunit.2 However, at higher doses it also 

inhibits the caspase-like (C-L) and trypsin-like (T-L) activities associated with the β1 and β2 

subunits respectively. Studies have shown that bortezomib has broad off-target inhibitory 

effect on other proteases, which are likely to contribute to its multiple clinical side effects.3 In 

comparison, the C-terminal epoxyketone of carfilzomib is highly selective for β5 and β5i 

subunits with minimal cross reactivity to other proteases, allowing more sustained and specific 

inhibition of the 20S proteasome.4 While carfilzomib has reduced side effects compared to 

bortezomib, its C-terminal epoxyketone is highly unstable in vivo, resulting in a short plasma 

half-life (5-20 minutes) and, therefore, low tissue distribution.5 These shortcomings restrict the 

use of bortezomib and carfilzomib in treating multiple myeloma and mantle cell lymphoma. 

Despite excellent in vitro efficacy in preclinical models, these inhibitors have so far failed to 

show a similar clinical benefit in patients with solid tumours.6 This is likely associated with the 

low bio-stability and selectivity of carfilzomib and bortezomib.7,8 Thus, new proteasome 
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inhibitors are required with improved overall anti-cancer efficacy, especially for the treatment 

of solid cancers.  

Results and Discussion 

 

Here we report new peptidomimetic boronate-based 26S proteasome inhibitors (see 1a,b and 

2a,b in Figure 1) that have high specificity for β5 catalytic subunit and low toxicity to non-

malignant cells. Compounds 1a and 2a induced robust accumulation of high molecular weight 

proteins by inhibiting the 26S proteasome. Compared to bortezomib and carfilzomib, 

compound 1a was significantly more toxic towards many cancer cell lines tested. Importantly, 

both compounds displayed less toxicity towards non-malignant cell lines. The combination of 

high cancer cell cytotoxicity and low non-malignant cytotoxicity endows compounds 1a and 2a 

with excellent therapeutic potential.  

 

Figure 1. Structures of FDA-approved proteasome inhibitors bortezomib and carfilzomib and 

the target peptidomimetic boronate inhibitors 1a,b, 2a,b. 
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Previous reports9,10 have shown that the incorporation of a hydrophobic substituent, such as 

isoleucine, at P2 of peptidic aldehydes enhances selectivity for the CT-L activity over the T-L and 

C-L activities of the 20S proteasome. One such example (compound 3, Figure 2) shows an 

excellent in vitro activity of 21 nM for CT-L. This peptidic aldehyde also bears a unique aliphatic 

azide at P3 to provide additional opportunities for hydrogen bonding interactions with the 

active site. Compound 4, (Figure 2), with an O-allylated tyrosine at P2 and a pyrrole replacing 

the P3 residue and an associated peptide bond, also shows selectivity for the CT-L activity. The 

backbone pyrrole moiety reduces the peptide-like character of the inhibitor and defines the 

backbone into an extended conformation. However, C-terminal aldehyde-based 

peptidomimetics of type 3 and 4 are known to react with a variety of other proteases, e.g. 

chymotrypsin11,12, calpains13,14 and cathepsins.15,16 Here we replace the aldehyde with a 

boronic pinanediol ester (highlighted in pink, Figure 1), a group reported to provide similar 

activity toward CT-L of the 26S proteasome compared to the corresponding boronic acid,17 

while being easier to prepare and purify. The chiral ester also defines the absolute 

configuration of the P1 group introduced during synthesis and negates the need for a final and 

somewhat problematic deprotection to produce boronic acid. Target compounds 1a and 2a 

have a leucine at P1 as found in known proteasome inhibitors such as bortezomib and 

carfilzomib.18-20 In comparison, compounds 1b and 2b have a phenylalanine at this position 

since the S1 binding pocket of the CT-L activity is known to favour the binding of a large 

hydrophobic group.21  
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Figure 2. Structures of proteasome inhibitors reported by Abell et al. The amino acid residues 

of the inhibitors are defined according to nomenclature developed by Schechter and 

Berger.22 

The key azide 6 was prepared by reacting Cbz-Lys-OH (5) with triflic anhydride and sodium azide 

under basic conditions. Subsequent EDCI-mediated coupling of azide 6 to Ile-OMe gave the 

dipeptide 7. Hydrolysis of the methyl ester of 7 in the presence of LiOH gave the free acid 8 in 

an excellent yield of 93%. This free acid was then coupled with amino boronate 9a,b17 in the 

presence of HATU, HOBt and DIPEA to give the target inhibitors 1a,b. 

 

Scheme 1. Synthesis of compounds 1a,b. 
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The key acid chloride 12 was prepared from commercially available methyl 3-(4-hydroxyphenyl) 

propionate (10) in three steps in an overall yield of 86%. Specifically, reaction of 10 with allyl 

bromide gave 11, the ester of which was hydrolysed with LiOH to give carboxylic acid 12. 

Reaction with SOCl2 gave the acid chloride 13, which was used in a Friedel-Crafts acylation of 

pyrrole 14,15 using Yb(OTf)3, to give the key dipeptide-mimic 15. Subsequent hydrolysis of the 

ester of 15 with KOH gave carboxylic acid 16, which was subsequently coupled with Tyr(All)-

OMe in the presence of HATU, HOBt and DIPEA to give diene 17 in 78% yield over two steps. 

The methyl ester of diene 17 was hydrolysed with NaOH to give free acid 18 in excellent yield. 

HATU-mediated coupling of 18 with amino boronates 9a,b gave the target inhibitors 2a,b.  

 

The 20S proteasome exhibits T-L, C-L and CT-L protease activities. Of the three activities, the CT-

L activity carries out the bulk of the proteolytic breakdown, and is the most common target of 

pharmacologically designed proteasome inhibitors.23 Therefore, we first evaluated whether 

the compounds 1a,b and 2a,b were potent and selective for the CT-L activity.  

 

As expected, both bortezomib and carfilzomib were highly potent inhibitors of CT-L activity in 

this assay with IC50 values of 34.6 nM and 23.1 nM respectively. Bortezomib also significantly 

inhibited the C-L activity, which is consistent with a previous report.24 The new peptidic 

boronates 1a,b and 2a,b were also highly active against the CT-L activity, with derivatives 1a,b 

and 2a proving to be more potent than bortezomib and carfilzomib. The most potent inhibitor 

in this series, 1a, has an IC50 of 14.1 nM against the CT-L activity, which is more than 2-fold 

more potent than bortezomib. Interestingly, inhibitors with leucine residue at P1 (1a, 2a)  
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Scheme 2. Synthesis of compounds 2a,b. 

inhibited the CT-L activity with higher potencies compared to the inhibitors bearing a P1 

phenylalanine (1b, 2b), suggesting that the S1 subsite of β5 subunit favours the binding of 

branched hydrophobic amino acids over planar aromatic residues. Unlike bortezomib, all of the 

compounds were at least 10-fold less active against the C-L activity compared to the CT-L 

activity. Compound 2a was the most selective inhibitor of CT-L over C-L, with a 200-fold 
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difference in activities. Following administration of carfilzomib, patients display less of the 

“typical” toxicities associated with bortezomib, and this has been attributed to its higher 

selectivity for inhibiting CT-L activity over T-L, C-L as well as other serine proteases’ activities. 

Therefore, the combination of excellent potency and high selectivity for the CT-L activity 

observed for the peptidic boronates 1a,b and 2a,b provides an opportunity to reduce side 

effects associated with the low subunit selectivity of bortezomib and limit drug resistance 

caused by the mutation in CT-L activity of the proteasome found in bortezomib-resistant cell 

lines.25 

 

Table 1. Inhibition of purified 20S proteasome from rabbit reticulocytes by compounds 1a,b, 

2a,b, bortezomib and carfilzomib. 

 IC50 

 (CT-L) (nM)a 

IC50 

 (T-L) (nM)a 

IC50 

 (C-L) (nM)a 

1a 14.1 ± 4.2 >25000 1598.0 ± 98.3 

1b 21.0 ± 4.4 >25000 2448.3 ± 73.2 

2a 20.9 ± 7.7 >25000 4179.0 ± 341.4 

2b 104.0 ± 15.9 >25000 3343.3 ± 416.1 

bortezomib 34.6 ± 4.2 >25000 108.4 ± 34.0 

carfilzomib 23.1 ± 4.4 >25000 >25000 

    a +/- Standard error of mean; n=3.  
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We next investigated whether the high potency and selectivity of 1a and 2a for CT-L activity 

translated into improved cytotoxic activity against cultured cancer cell lines. The cytotoxic LD50 

 across a panel of sarcoma, ovarian, breast and myeloma cell lines was determined using 7AAD 

assays following a 48 h exposure to titrations (0-5000 nM) of 1a, 2a, bortezomib and 

carfilzomib. Viability studies were also performed with a non-malignant breast epithelial cell 

line MCF-10A, a primary human lung fibroblasts cell line IMR-90, a primary human skin 

fibroblast line NDF and a normal human immortalised lymphoblastoid cell line LCL, thus 

allowing us to determine if the cytotoxicity of these compounds was cancer cell-specific. 

 

Compounds 1a and 2a were both potent cytotoxic agents and dose-dependently decreased cell 

viability. Of the two inhibitors, in both solid and liquid cancer cell lines, compound 1a 

consistently resulted in equal or greater cytotoxicity compared to bortezomib and carfilzomib. 

Myeloma cell lines are known to be highly sensitive to proteasome inhibitors. Consistent with 

this, the myeloma cell lines NCI-H929 and U266 showed the highest levels of sensitivity, with 

LD50 values of 6.4 nM and 15 nM, respectively. Sensitivity to compound 1a varied considerably 

between solid cancer cell lines, with LD50 values ranging from 35 nM in the RD-ES sarcoma cell 

line to 1500 nM in the MCF-7 breast carcinoma cell line. In particular, compound 1a induced 

cell death in the Ewing sarcoma cell line WE-68 (LD50 35 nM) and ovarian cancer cell line SK-OV-

3 (LD50 370 nM) at significantly lower doses compared to bortezomib (100 nM; 1600 nM 

respectively, p<0.01; n=3). Importantly, the cytotoxicity of compounds 1a and 2a was more 

specific to cancer cells, compared to bortezomib and carfilzomib. Compound 1a was 

approximately 3-fold, and compound 2a 6-fold less toxic to non-malignant cells compared to 
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bortezomib. The relative sensitivity of the cell lines to each inhibitor was essentially identical, 

suggesting a common mechanism of cytotoxic action of each inhibitor in a particular cell line. 

 

Table 2. Cytotoxicity of proteasome inhibitors against a panel of solid cancer cell lines or non-

malignant cell lines. 

Cell line Histology/ 

origin 

P53 

status 

LD50 

 (µM) 

1a 2a Bortezomib Carfilzomib 

WE-68 Ewing 

sarcoma 

wild-type 

 

0.035* 

(±0.001) 

0.065 

(±0.007) 

0.1 

(±0.01) 

0.08 

(±0.02) 

RDES Ewing 

sarcoma 

mutant 0.035 

(± 0.005) 

0.065 

(±0.01) 

0.04 

(±0.002) 

0.043 

(±0.012) 

KGN Ovarian cancer wild-type 0.065 

(±0.02) 

0.18 

(±0.11) 

0.18 

(±0.09) 

0.45 

(±0.15) 

SKOV3 Ovarian cancer null 

 

0.37* 

(±0.15) 

1.5 

(±0.3) 

1.6 

(±0.4 

0.32 

(±0.11) 

MCF7 Breast cancer wild-type 1.5* 

(±0.5) 

3* 

(±0.05) 

9.8 

(±5.5) 

4.5 

(±3.5) 

MDAMB468 Breast cancer mutant 

 

0.03 

(±0.004) 

0.05 

(±0.003) 

0.037 

(±0.013) 

0.33 

(±0.11) 

NCI-H929 Multiple 

myeloma 

wild-type 0.0064 

(±0.0002) 

0.009 

(±0.003) 

0.0066 

(±0.0011) 

ND 

U266 Multiple 

myeloma 

mutant 

 

0.015 

(±0.001) 

0.029 

(±0.002) 

0.018 

(±0.001) 

0.06 

(±0.01) 

MCF10A Breast 

carcinoma 

wild-type 5 

(±1.5) 

9* 

(±3) 

1.5 

(±0.6) 

0.32 

(±0.09) 

IMR-90 Normal primary 

lung fibroblast 

wild-type 0.2 

(±0.1) 

0.15 

(±0.1) 

0.13 

(±0.09) 

0.13 

(±0.02) 

DSF Normal skin 

fibroblast 

Wild-type 0.5 

(± 0.1) 

1.08* 

(±0.12) 

0.48 

(±0.2) 

0.35 

(±0.11) 

LCL B-cell 

lymphoblastoid 

wild-type 0.03* 

(±0.001) 

0.09* 

(±0.003) 

0.02 

(±0.002) 

0.03 

(±0.006) 
aDose-response curves are provided in Supporting Information. *indicates statistical 

significance (<0.05) compared to bortezomib. ND-not determined. 



98 
 

Previous studies report that inhibition of the proteasome causes stabilisation of the tumour 

suppressor p53, leading to activation of downstream pathways and as a consequence cancer 

cell cycle arrest or cell death.26,27 Therefore, to determine if the cell death observed upon 

treatment with 1a and 2a was influenced by p53 signalling, a pair of p53 wild-type and p53 

mutant/null cell lines were used for each cancer type. There was no significant difference 

between the average LD50 values of the p53 wild-type and p53 mutant/null cell lines (Figure S2, 

supporting information), albeit there was considerable variation within each cancer type. In 

multiple myeloma and ovarian cancer, p53-proficient cell lines NCI-H929 and KGN were 

approximately 2-fold and 5-fold more sensitive than U266 and SKOV-3 cell lines in which p53 

was mutated or null. However, in breast cancer cell lines the trend was reversed, with p53 

mutated cell line MDAMB-468 being markedly more sensitive than MCF7 with wild-type p53. As 

the overall pattern of sensitivity of the cell lines was individually consistent across a small 

library of proteasome inhibitors (bortezomib, carfilzomib, 1a and 2a), it is possible that 

stabilization of p53 may mediate cytotoxic effects in a cancer or tissue dependent manner. 

 

Next, the accumulation of polyubiquitinated proteins in intact cells was analysed to verify that 

the observed cell death was a result of proteasome inhibition by compounds 1a/2a. Cellular 

proteins destined for degradation are first “tagged” with multiple ubiquitin molecules to be 

recognised by the 26S proteasome. Therefore, inhibition of the proteasome results in rapid 

accumulation of high molecular weight polyubiquitin-conjugated proteins, which can be 

detected with an anti-ubiquitin antibody. Western blot analyses revealed that treatment with 

35 nM of compounds 1a and 2a for 4 h substantially increased high molecular weight 
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polyubiquitinated proteins in both MDA-MB-468 and MCF7 cell lines (Figure 3). This 

observation excludes the possibility that reduced uptake of proteasome inhibitors by MCF7 is 

responsible for the cytotoxic insensitivity of this cell line. For both 1a and 2a, the extent of 

polyubiquitin accumulation was quantitatively similar to that observed using bortezomib. This is 

largely consistent with cytotoxic efficacies observed for these compounds. Defects or mutations 

in downstream signalling pathways that drive proteasome inhibitor mediated cell death are 

likely responsible for the variation in sensitivity seen across cell lines. However, the mechanism 

that drives cell death requires further assessment and falls outside the scope of this study. 

 

Figure 3. Compounds 1a and 2a induce accumulation of high molecular weight ubiquitin 

conjugates. MDAMB468 and MCF7 were treated with 35 nM of compounds 1a, 2a, bortezomib 
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or carfilzomib for 4 h, and Western blots of cell homogenates hybridised to an anti-ubiquitin 

antibody. β-tubulin was used as a loading control. 

 

In summary, we report examples of a new class of proteasome inhibitor 1a,b and 2a,b with 

improved in vitro activity against the purified enzyme and higher specificity for the CT-L activity 

compared to bortezomib. Inhibitor 1a was shown to be significantly more cytotoxic against 

solid tumour cells compared to both bortezomib and carfilzomib. More importantly, 1a 

provides a larger therapeutic window than the benchmarks for all tested tumour types 

including myeloma. We also demonstrate that the observed cytotoxicity of compounds 1a and 

2a was due to inhibition of the 26S as Western blot analysis of the cell lines treated with these 

compounds showed a significant accumulation of polyubiquitinated proteins as a result of 

decreased proteasome function. Thus compound 1a is an attractive drug candidate that offers 

potential benefits as it is predicted to possess reduced clinical side effects compared to the 

current chemotherapy agents bortezomib and carfilzomib.  
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Methods and Materials 

 

General Information 

Bortezomib (Selleckchem, Houston, TX, USA), Carfilzomib (Selleckchem, Houston, TX, USA), or 

in-house generated derivatives were dissolved in 10 mM DMSO and stored at −20 °C. 

Antibodies used for western blot analysis included a mouse anti-tubulin (Sigma), anti-ubiquitin 

(Cell Signalling), sheep anti-mouse IgG-HRP (GE, USA), or donkey anti-rabbit IgG-HRP (GE, USA). 

All human cell lines (WE-68, RD-ES, SKOV3, KGN, MCF7, MDA-MB-468, NCI-H929, U266, MCF-

10A, and IMR-90) were purchased from American Type Tissue Culture. WE-68, NCI-H929, U266, 

MCF7 and LCL cell lines (established from a normal individual) were grown in RPMI-1640 media. 

RD-ES, MDA-MB-468, SKOV-3, KGN and a primary human embryonic fibroblast cell line were 

grown in Dulbecco’s Modified Eagle’s Medium (DMEM). The medium was supplemented with 

10% FCS, 1% PSG and 10 mM HEPES. MCF-7 cells were supplemented with 1% insulin. All cells 

were maintained at 37 °C in a humidified atmosphere of 5% CO2. 

 

 In Vitro Proteasome Activity Assay  

 

Proteasome CT-L, C-L and T-L activities were determined using hydrolysis of specific short 

peptide substrates conjugated to the fluorescent tag 7-amido-4-methylcoumarin (AMC). 

Purified rabbit 20S proteasome and fluorogenic CT-L substrate (Suc-Leu-Leu-Val-Tyr-AMC) were 

purchased from Boston Biochem (Cambridge, MA, USA). The T-L and C-L fluorogenic substrates 

(Bz-Val-Gly-Arg-AMC and Ac-nLPnLD-AMC) were purchased from Enzo Life Sciences 



106 
 

(Farmingdale, NY, USA). Purified 20S proteasome (Enzo Life Sciences, Farmingdale, NY, USA) (0-

2 µg) was pre-incubated with the indicated concentrations of inhibitors at 37 °C for 15 minutes 

and subsequently added to the AMC-labelled substrate peptide (50 μM) in assay buffer (20 mM 

Tris-HCl, pH 7.5, 0.5 mM EDTA, and 0.001% SDS (w/v)) for a further 2 hours. Fluorescent 

substrate cleavage by the 20S proteasome was linear during this incubation period. Hydrolysed 

AMC was subsequently detected with the Synergy™ H4 Hybrid Multi-Mode Microplate Reader 

(BioTek, USA) at excitation/emission wavelengths of 390/460 nm. Hydrolysis activity was 

measured as relative fluorescence units allowing IC50  values to be calculated that represented 

half of the maximal inhibitory activity of the proteasome. A minimum of three biological 

replicates was performed for each data point. 

 

In Vitro α-chymotrypsin Activity Assay 

 

The activity of α-chymotrypsin was assayed spectrophotometrically at 25 ºC using Synergy H4 

Hybrid Multi-Mode Microplate Reader (Bio-Tek Instruments, Inc.). A solution of α-chymotrypsin 

(21.9 µg/mL) in 1 mM aqueous HCl was prepared fresh by a 1:40 dilution of a stock solution 

(874 µg/mL) in 1 mM aqueous HCl and kept on ice. A 1:100 dilution of the 21.9 µg/mL solution 

in ice-cold 1 mM aqueous HCl was prepared immediately before the start of each 

measurement. The assay was conducted in black 96-well plates as below: To each well were 

added Ala-Ala-Phe-7-AMC (Sigma Aldrich, Castle Hill, NSW) substrate in DMSO (5 µL, final 

concentrations = 0.25, 0.5 mM), α-chymotrypsin in 1 mM aqueous HCl (10 µL, final 

concentration = 4 nM), an inhibitor (0.25 nM-25 nM) in DMSO (10 µL) and N-
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[Tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid (TES) buffer (50 mM, pH 8.0, adjusted 

with NaOH) (175 µL). The excitation and emission wavelengths of the substrate were 380 nm 

and 460 nm respectively. Progress curves were monitored over 10 min for each concentration 

of every inhibitor. The Ki values of inhibitors were determined graphically according to Dixon 1 

using mean values of relative rates obtained from triplicate measurements at two different 

concentrations. 

 

Cell Viability Assays  

 

Cell viability assays were performed as previously described 2. Briefly, cells were seeded in 96-

well microtiter plates at a density of 3 × 104 cells per well in the presence of the indicated 

proteasome inhibitor. Cells were harvested 48 hours post-treatment, centrifuged at 1,300 × g, 

washed in phosphate-buffered saline (PBS), and stained with 7AAD solution (2 μg/mL) (7-

amino-actinomycin-D, Invitrogen, Carlsbad, CA) for 10 minutes at RT. Viable cells were 

determined using a FACS Calibur flow cytometer (Becton Dickinson Immunocytometry Systems) 

and analyzed with FLOWJO (Tree Star, Inc.) and GraphPad Prism (GraphPad Software Inc.). For 

each experiment each data-point was in triplicate and the LD50 calculated from three biological 

replicates. 
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 Western blot analysis 

 

Western blot analysis was performed as previously described 3. Whole protein lysates (5–

20 μg) were resolved using SDS PAGE electrophoresis, and probed overnight at 4 °C with the 

anti-Ubiquitin primary antibody (3933, 1:1000, Cell Signaling Technology). Chemiluminescent 

detection of protein was done using appropriate secondary antibody conjugated with 

horseradish peroxidase (Amersham) and the enhanced chemiluminescence kit according to the 

manufacturer's instructions (Amersham). 
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Supplementary Data 

 

Supplementary Figure S1: Dose response curves- Compound 1a 
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Supplementary Figure S1: Dose response curves- Compound 1b 
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Supplementary Figure S1: Dose response curves- Compound 2a  
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Supplementary Figure S1: Dose response curves- Compound 2b 
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Supplementary Figure S1: Dose response curves- Bortezomib 
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Supplementary Figure S1: Dose response curves- Carfilzomib 
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Supplementary Figure S1: Dose-response curves for proteasome inhibitors on purified rabbit 

20S proteasome. The purified proteasome was incubated with the indicated concentrations of 

bortezomib, carfilzomib, compounds 1a,b and 2a,b and specific AMC-tagged peptide substrates 
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(Suc-Leu-Leu-Val-Tyr-AMC for CT-L, Bz-Val-Gly-Arg-AMC for T-L and Ac-nLPnLD-AMC for C-L) for 

2 h. Hydrolysed AMC was subsequently detected with the Synergy™ H4 Hybrid Multi-Mode 

Microplate Reader (BioTek, USA) at excitation/emission wavelengths of 390/460 nm. Dose-

response curves and IC50 values (concentration of proteasome inhibitor required to inhibit 50% 

of enzyme activity) were calculated using GraphPad Prism software (GraphPad Software Inc). 

 

Dose-response Curves for Cell Cytotoxicity Experiments 

 

Supplementary Figure S2: Dose response curves- Compound 1a 
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U266
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Supplementary Figure S2: Dose response curves- Compound 2a 
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NCI-H929
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Supplementary Figure S2: Dose response curves- Bortezomib 
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MCF7
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Supplementary Figure S2: Dose response curves- Carfilzomib 
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Supplementary Figure S2: Dose-response curves for proteasome inhibitors on a panel of normal 

and cancer cell lines. WE-68 and RDES Ewings sarcoma cells, KGN and SKOV3 ovarian cancer 

cells, NCI-H929 and U266 multiple myeloma cells, MDAMB468 and MCF7 breast carcinoma cells 

(cancer cells) or primary lung and skin fibroblasts, immortalized non-malignant MCF10A or 

normal b-lymphoblastoids (normal cells) and were incubated with the indicated concentrations 

of bortezomib, carfilzomib, compounds 1a and 2a for 48 hours. The viability of the cell cultures 

was subsequently assessed following the protocol outlined in the Materials and Methods. Dose-

response curves and IC50 values (concentration of proteasome inhibitor required to kill 50% of 

cells) were calculated using GraphPad Prism software (GraphPad Software Inc). 
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Prelude 
 

 

Although the FDA has approved the use of proteasome inhibitors for the treatment of multiple 

myeloma and refractory mantle cell lymphoma, their administration results in severe toxicities 

due to their non-specific damage to healthy tissue. Here, we have assessed whether a 

photopharmacological approach, using switchable moieties incorporated into the molecular 

structure of proteasome inhibitors can potentially be used to activate drugs specifically in 

cancerous tissue.  

 

This chapter is presented as a manuscript in preparation for submission to a journal for 

publication.  

 

Contribution by the candidate: All biological/cell line experimental work and manuscript writing 

pertaining to biology. 
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Abstract 

 

A series of azobenzene-containing peptidic boronate esters was prepared and the activity of 

the thermally adapted states (TAS), enriched in trans isomer, and the photostationary states 

(PSS), enriched in cis isomer, for each compound were evaluated against β5 and β1 proteasome 

subunits. Compounds with a sterically demanding phenyl-substituted azobenzene at P2 (4c), 

and a less sterically demanding unsubstituted azobenzene at the N-terminus (5a), showed the 

greatest difference in activity between the two states. In both cases, the more active trans-

enriched TAS had activity comparable to bortezomib and delanzomib. Furthermore, cis-

enriched 4c inhibited tumor growth in both breast and colorectal carcinoma cell lines. 

Significantly, the initial trans-enriched TAS of 4c was not cytotoxic against the non-malignant 

MCF-10A cells. 
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Introduction 
 

 

The 26S proteasome is a supramolecular protein assembly that plays a pivotal role in the 

degradation of proteins that regulate the cell cycle.1 Its over activity is associated with the 

development and progression of some cancers and as such it has recently been identified as an 

attractive target for anticancer drugs, particularly for the treatment of multiple myeloma 

(MM).2 Its substrates are degraded at three sites located within the inner cavity of the 

component 20S proteasome, i.e., chymotrypsin-like (β5), trypsin-like (β2), and caspase-like (β1) 

subunits. 3; 4; 5 ;  6 The clear link between the proteasome and the development of a number of 

human diseases has encouraged the development of a range of inhibitors and an evaluation of 

their therapeutic potential. 7; 8; 9; 10; 11; 12; 13; 14 ;15. In fact, the FDA has now approved three 

such inhibitors (bortezomib (1), carfilzomib and ixazomib) for the treatment of multiple 

myeloma and refractory mantle cell lymphoma, with others in development. 16; 17 ; 18 Several 

other proteasome inhibitors have entered clinical trials, including delanzomib (2) and 

oprozomib.19 While delanzomib20 is reported to overcome resistance reported for 

bortezomib in vitro, 21 it shows limited efficacy in the treatment of other types of cancer. It also 

displays severe side effects due to non-specific cytotoxicity towards healthy tissue 

(Fig. 1). 22 ;  23 

 

 

Figure 1. Chemical structures of proteasome inhibitors Bortezomid (1) and 
Delanzomib (2) 
 
 

http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0005
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0010
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0015
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0020
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0025
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0030
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0035
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0040
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0045
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0050
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0055
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0060
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0065
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0070
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0075
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0080
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0085
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0090
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0095
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0100
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0105
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#f0005
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0110
http://www.sciencedirect.com.proxy.library.adelaide.edu.au/science/article/pii/S0968089617312117#b0115


124 
 

There is a clear need to develop new proteasome inhibitors with improved safety and efficacy 

profiles. One approach described herein is to develop inhibitors that undergo specific activation 

at the site of action, e.g., through the action of light.24 Light is ideally suited to control the 

activity of a pharmacophore as it can be delivered with very high spatiotemporal 

precision.25 With this in mind, Feringa et al.26 recently reported an analogue of bortezomib 

containing an N-terminal azobenzene, see structure 3 in Fig. 2. A photostationary state (PSS) 

of 3 enriched in the cis isomer proved to be moderately (two- to three-fold) more active than a 

thermally adapted state (TAS) enriched in the transisomer, with the magnitude of difference 

showing some dependence on the nature of the component azobenzene. Related studies have 

been carried out on other proteases. 27;28 ;  29 We now report studies on an extended series of 

photoswitchable proteasome inhibitors with a number of different azobenzenes at the N-

terminus (see 5) and at P2 (see 4), to further investigate the effect of azobenzene substitution 

on activity and also to explore the S2 binding site 30 ;  31 as an alternative site for modification. 

All compounds contain a boronate ester, rather than the boronic acid of bortezomib and 

delanzomib, with this prodrug presenting similar potency while being easier to 

prepare. 32 ;  33 The P2 positioned azobenzene of 4 replaces the phenylalanine of bortezomib, 

where this site is known to accommodate larger groups.5 The N-terminal azobenzene-based 

peptide boronates 5 provide an opportunity to investigate the influence of an alternative 

backbone sequence with a threonine at P2 as found in delanzomib. Azobenzene substituents 

were chosen to investigate potential steric effects and to expand on earlier studies. 

Synthetic trans-enriched azobenzenes 4 and 5 were photochemically isomerized to give an 
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alternative PSS enriched in the cis isomer. All states were assayed against 

the β5 and β1 subunits of rabbit 20S proteasome ( Fig. 3). 

 

 

 

 

 

Figure 2. Photoswitchable proteasome inhibitors 3. Residues are designated P1, P2 etc from 
the boronic acid, where these groups interact with corresponding proteasomal specificity 
pockets according to the nomenclature of Schechter and Berger. 34. 

 

Figure 3. Photoswitchable target compounds 4 and 5. 
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Results and Discussion 

 

Chemistry 
 

The bortezomib analogues 4a–c were prepared as shown in Scheme 1. The key 

intermediates 8b and 8c were prepared by oxidation of the aniline 6 to the nitroso 

derivative 7 using Oxone® followed by condensation with the appropriate aniline. The other key 

intermediate 8a was synthesized by condensation of 6 directly with commercially available 

nitrosobenzene. The proposed inhibitors 4a–c were then prepared by coupling of 8a–

c with 935 ;  36 using N,N,N′,N′-tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoroborate 

(TBTU) as the coupling agent. The alternative delanzomib derivatives 5a–c, containing an N-

terminal azobenzene, were synthesized as outlined in Scheme 2. The key 

azobenzenes 12b and 12c were prepared by oxidation of the aniline 10 to the nitroso 1137 using 

Oxone® followed by condensation with the corresponding aniline. The remaining key 

azobenzene 12a was prepared by condensation of 10 directly with commercially available 

nitrosobenzene. TBTU mediated coupling of 12a–c with 1338then gave the desired boronate 

esters 5a–c as shown. 
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Proteasome inhibitory activities 
 
1H NMR analysis of compounds 4–5 in DMSO-d6 revealed an initial TAS strongly 

enriched in the trans isomer, with the results shown in Table 1a. A solution of each 

compound in DMSO-d6 (∼1 mg/mL) was then irradiated with UV light using a UVP 

BL6SV lamp (λ = 365 nm) for 1 h to give the corresponding cis-enriched PSS of 4–5. 1H 

NMR again defined the trans/cis compositions, with the results also shown in Table 1a. 

All compounds analysed after irradiation gave a PSS strongly enriched in the cis isomer 

(>76%), with the exception of 5a with its relatively small N- terminal azobenzene 

(46% cis). Compound 5c, with its sterically large N-terminal  azobenzene, gave the 

highest enrichment of cis isomer (92%). In comparison, compounds with a less 

sterically demanding azobenzene substituent (as in 4a and 5a) give the highest isomer 

differential prior to UV irradiation, with the trans isomer being the major in this case. 

 

Scheme 1. Synthesis of photoswitchable inhibitors 4. Reagents and conditions: i) Oxone®, 
DCM:water, RT, 3 h; ii) ArNH2, DMSO, HOAc, 60 °C, O/N; iii) Nitrosobenzene, HOAc, RT, 
O/N; iv) TBTU, DIPEA, DMF, 0 °C to RT, O/N. 
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Scheme 2. Synthesis of photoswitchable inhibitors 5. Reagents and conditions: i) 
Oxone®, DCM:water, RT, 4 h, (71 %); ii) ArNH2, DMSO, HOAc, 60 °C, O/N; iii) 
Nitrosobenzene, HOAc, RT, O/N; iv) 13, DMF, TBTU, NMM, 0 °C to RT, O/N.  
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Table 1. a) trans/cis ratios of compounds 4–5 before and after irradiation ( = 365 nm, in DMSO-d6). b) IC50 

 (nM) values for compounds 4–5, bortezomib and delanzomib at 5 and 1 active sites before and after irradiation (365 nm 

light). 

 
Active site Compound 4a  4b  4c  Bort. 5a  5b  5c  Delanz. 

a)  non-irradiated (trans/cis) 99:1 91:9 95:5 - 97:3 78:22 77:23 - 

  irradiated (trans/cis) 17:83 11:89 16:84 - 54:46 24:76 8:92 - 

b) 5 trans 10 53 11 5.4 17 55 22 10 

  cis 12 41 54 7.9 84 249 29 12 

  fold 1.2 1.3 5 1.5 5 4.5 1.3 1.2 

           

 1 trans 107 211 460 76 868 1624 498 59 

  cis 110 214 303 70 759 1633 1088 55 

  fold 1.1 1 1.5 1 1.1 1 2 1.1 
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Both states of 4 and 5 were then evaluated for inhibitory activity 

against β5 and β1proteasome subunits and the results are shown in Table 1b. 

IC50 values were determined graphically according to Dixon methodology and as 

detailed in Supplementary data.39Potency data is also included in Table 1b for 

bortezomib and delanzomib for comparison. All azobenzene derivatives inhibited 

the β5 and β1 active sites, with IC50 values ranging from low nanomolar to micromolar. 

Compounds were generally more potent against β5than β1, with 

critical β5 potency 5 being similar to that of bortezomib and delanzomib. The non-

irradiated (trans-enriched) TASs of 4a, 4c and 5a were the most potent, with IC50values 

of 10, 11 and 17 nM, respectively. It is interesting to note that a large azobenzene is 

generally well tolerated in both series, with both 4c and 5c showing good β5 potency. 

The incorporation of an azobenzene into the structures does somewhat compromise 

activity against β1, especially for those derivatives containing an N-terminal 

azobenzene (5). The best photoswitching of activity was obtained with 

compounds 4c, 5a and 5b, with an approximate 5-fold decrease in β5 activity observed 

on irradiation in each case. The result for 5a is particularly significant given that 

irradiation only gave modest isomerism to the cis isomer, see Table 1a. A more 

hindered azobenzene at P2 (4c) but less hindered N-terminal azobenzene (5a and 5b) 

gave the best photoswitching of activity. The effect on β1 activity is both less 

pronounced and less predictable. 
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Effect of compounds on cells 
 

The bortezomib analogue 4c, with a combination of the most potent β5 activity, good 

conversion to the cis isomer (84% cis) and the best differential in activity between the 

two states (5-fold), was investigated further to define global cytotoxicity against 

different cell lines. Colon colorectal (HCT-116) and breast carcinoma (MDA-MB-468) 

cancer cell lines were chosen for these studies as they are known to be sensitive to 

proteasome inhibitors. 40 ;  41 Cytotoxic LD50 values were determined using 7AAD 

assays following a 48 h exposure to titrations (0–5000 nM) with the results shown 

in Fig. 3. 

Interestingly, the cis-enriched PSS of 4c proved to be more active against both cell 

lines, despite it being less active than the corresponding trans-TAS against the 

proteasome β5subunit (see Table 1). This is an important finding for potential 

photopharmacological applications that necessarily require photoactivation at the site 

of action. In particular, cis-enriched 4c induced cell death in the colon colorectal cancer 

cell line HCT-116 with a LD50 of 212 nM compared to 1.03 µM for trans-enriched 4c. 

Nearly full selectivity was observed at 310 nM, with cis-enriched 4c killing almost all 

cells (cell viability = 27%), and trans-enriched 4c having limited cytotoxicity (cell 

viability = 91%), see Fig. 4a. While the cis-enriched PSS of 4c is stable for >48 h in 

DMSO, it does undergo slow isomerism to the trans isomer in buffer without evidence 

of decomposition. The cytotoxicity of cis-enriched 4c is thus likely evident well before 

the 48 h time-course of the assay, where the trans-enriched state of 4c displays limited 

cytotoxicity. A diminished differential was observed between the two isomeric states 

against the MDA-MB-468 breast cancer cell line, with an LD50 of 144 nM and 246 nM 

for cis-enriched and trans-enriched states respectively. 
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Fig. 4. 4c-(trans)-TAS (blue) and 4c-(cis)-PSS (pink) apoptotic dose response curves 

against (a) colon colorectal HCT-116 and (b) breast carcinoma MB-468 cancer cell lines 

following 48 h of treatment. 
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Fig. 5. 4c-(trans)-TAS (blue) and 4c-(cis)-PSS (pink) apoptotic dose response curves 

against normal cell line MDF-10A following 48 h of treatment. 

 

Interestingly, the cis-enriched PSS of 4c showed moderate cytoxicity against the non-

malignant MCF-10A cell line with an LD50 of 683 nM. In comparison, the trans-enriched 

state of 4c was inactive at the highest concentration tested (5000 nM) (Fig. 5). This 

suggests that the biological activity of the trans-TAS would be low in healthy tissue, to 

maximize any therapeutic benefit of the cis isomer. 
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Conclusions 
 

In summary, a series of photoswitchable proteasome inhibitors was designed, 

synthesized and evaluated for activity against β5 and β1 proteasome subunits. The 

most active inhibitors displayed activity comparable to bortezomib and delanzomib. 

Derivatives 4c, 5a and 5b gave the best photoswitching differential in activity against 

the β5 subunit, with an approximate 5-fold lower activity observed for cis-enriched 

PSSs. This compares to a somewhat more modest two- to three- fold increase in 

activity observed for a cis-enriched PSS of bortezomib analogues 3.26 The sterically less 

demanding N-terminal azobenzene of 5a appears to particularly favor photoswitching 

of activity, given that irradiation in this case only gave modest isomerism to the less 

active cis isomer. The cis-enriched PSS of bortezomib derivative 4c displayed good 

cytotoxicity to proteasome inhibitor-sensitive cancer cell lines, with LD50 values of 212 

and 144 nM against the colon colorectal cancer HCT-116 and the breast carcinoma 

MB-468 cell lines, respectively. The corresponding trans-TAS displayed significantly 

lower cytoxicity, particularly against the colon colorectal cancer cell line. Importantly, 

the trans-enriched TAS of 4c was devoid of cytotoxicity against a non-malignant breast 

epithelial cell line MCF-10A. This suggests that the more stable trans isomer should 

have reduced side effects to facilitate and reinforce any potential therapeutic effect of 

the cis isomer. Further studies to investigate any off-target effects of the compounds 

reported are underway. 
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Supplementary material 

 

a. Chemical Synthesis 

General Information. Unless otherwise indicated, all starting materials and reagents 

were purchased from AK Scientific or Sigma-Aldrich and used without further 

purification. The boronic ester 13 was prepared following literature procedures.1 TLC 

analysis was performed on 60 F254 Silica gel TLC plates, and spots were visualised under 

UV light (254 nm) and using either CAM or KMnO4 stains. LC60A 40-63 micron silica 

was used for flash chromatography purifications. 1H and 13C NMR spectra were 

obtained using either an Agilent DD2 console 500 MHz or a Varian Inova 600 MHz 

spectrometer, at the indicated frequencies, using either CDCl3, CD3OD or DMSO-d6. 1H 

chemical shifts are reported in ppm (δ) to 2 decimal places and 13C chemical shifts are 

reported in ppm to 1 decimal place. 1H coupling constants are reported to 1 decimal 

place. Infra-red spectra were obtained using a PerkinElmer FTIR 100 spectrometer 

(ATR), and all peaks are reported to 1 decimal place. HRMS (ESI) spectra were recorded 

using an Agilent QTOF HRMS and m/z masses are reported to 4 decimal places. 

Chemical structures and their systematic names were generated using ChemDraw 

Ultra 12.0. A UVP BL6SV lamp (358 nm) was used as the UV light source in 

photoswitching experiments. 

Abbreviations used: NMM: N-methylmorpholine; TBTU: N,N,N',N'-tetramethyl-O- 

(benzotriazol-1-yl)uronium tetrafluoroborate; DCM: dichloromethane; MgSO4: 

magnesium sulfate; DMSO: dimethyl sulfoxide; DIPEA: N,N-Diisopropylethylamine; 

EtOAc: ethyl acetate;  
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Synthesis of (S,E)-2-((tert-butoxycarbonyl)amino)-3-(4-

(phenyldiazenyl)phenyl)propanoic acid (8a) 

Nitrosobenzene (346 mg, 3.23 mmol, 1 eq) and and 4-aminophenylalanine (500 mg, 

1.78 mmol, 1.1 eq) were added to acetic acid (15 mL) and the mixture was stirred at 

room temperature for 12 h. The solution was diluted with water, extracted with DCM, 

dried over MgSO4 and the solvent evaporated under reduced pressure. Purification by 

flash chromatography (20% EtOAc:Hexane) gave 8a (537 mg, 82%) as an orange foam. 

1H NMR (500 MHz, CDCl3) δ 7.90 (d, J = 7.3 Hz, 2H, 2xArH), 7.87 (d, J = 8.3 Hz, 2H, 

2xArH), 7.537.44 (m, 3H, 3xArH), 7.34 (d, J = 8.2 Hz, 2H, 2xArH), 4.98 (d, J = 7.1 Hz, 1H, 

NH), 4.66 (dd, J = 12.8, 6.8 Hz, 1H, TyrH), 3.30 (dd, J = 13.7, 5.1 Hz, 1H, 

TyrCHH), 3.17 (dd, J = 13.7, 6.0 Hz, 1H, TyrCHH) and 1.43 (s, 9H, C(CH3)3) ppm. 

13C NMR (126 MHz, CDCl3) δ 176.1, 155.5, 152.8, 151.9, 139.4, 131.1, 130.3, 129.2, 

123.1, 123.0, 80.6, 54.4, 38.0 and 28.4 ppm. 

HRMS (ESI) calcd for C20H23NaN3O4 (M+Na)+ 392.1586, found 392.1584. 

IR (ATR) ʋ: 2981 (OH), 1710 and 1653 (C=O) and 1512 (N=O) cm-1. 
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Synthesis of (S,E)-2-((tert-butoxycarbonyl)amino)-3-(4-((3,5-dimethylphenyl)diazenyl) 

phenyl)propanoic acid (8b) 

A biphasic mixture of 4-aminophenylalanine 6 (500 mg, 1.8 mmol, 1 eq) and Oxone® 

(1.6 g, 5.34 mmol, 3 eq) in DCM (25 mL) and water (13 mL) was stirred vigorously at 

room temperature for 3 h. The organic layer was separated and the aqueous layer was 

extracted with DCM (x2). The combined organic layers were washed with brine, dried 

over MgSO4, filtered and evaporated under reduced pressure. Crude 7 was used 

immediately in the next step and without further purification. 

To a solution of 7 (524 mg, 1.8 mmol, 1 eq) and 3,5-dimethylaniline (0.17 mL, 1.42 

mmol, 0.8 eq) in DMSO (4.5 mL) was added acetic acid (0.4 mL) and the mixture was 

stirred at room temperature for 18 h. The crude product was partitioned between 

water and EtOAc and the organic phase was washed with water (x2). The organic 

phase was dried over MgSO4, filtered and evaporated under reduced pressure. 

Purification by flash chromatography (30-50% EtOAc:hexane) gave 8b (103 mg, 15%) as 

an orange solid. 

1H NMR (500 MHz, CD3OD): δ 7.80 (d, J = 8.1 Hz, 2H), 7.48 (s, 2H), 7.39 (d, J = 8.1 Hz, 

2H), 7.12 (s, 1H), 4.42 (dd, J = 8.7, 5.0 Hz, 1H), 3.25 (dd, J = 13.8, 4.9 Hz, 1H), 3.00 (dd, J 

= 13.8, 9.0 Hz, 1H), 2.37 (s, 6H) and 1.38 (s, 9H) ppm. 
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13C NMR (125 MHz, CD3OD): δ 175.4, 157.7, 154.1, 152.8, 142.3, 140.0, 133.6, 131.2, 

123.7, 121.5, 80.5, 56.2, 38.6, 28.7 and 21.3 ppm. 

HRMS (ESI) calculated for C22H28N3O4
+ (M+H)+ 398.2074, found 398.2045. 

IR (ATR): νmax = 2922.1 and 2853.1 (NH and OH) and 1704.3 (CO)cm-1. 

 

Synthesis of (S,E)-3-(4-([1,1'-biphenyl]-4-yldiazenyl)phenyl)-2-((tert-butoxycarbonyl) 

amino)propanoic acid (8c) 

To a solution of 7 (524 mg, 1.8 mmol, 1 eq) and [1,1'-biphenyl]-4-amine (244 mg, 1.44 

mmol, 0.8 eq) in DMSO (4.5 mL) was added acetic acid (0.4 mL) and the solution stirred 

at room temperature for 18 h. The crude product was partitioned between water and 

EtOAc and the organic phase was washed with water (x2). The organic phase was dried 

over MgSO4, filtered and evaporated under reduced pressure. Purification by flash 

chromatography (30-50% EtOAc:hexane) gave 8c (138 mg, 17%) as an orange solid. 

1H NMR (500 MHz, CD3OD): δ 7.97 (d, J = 7.9 Hz, 2H), 7.85 (d, J = 7.7 Hz, 2H), 7.78 (d, J 

= 7.8 Hz, 2H), 7.69 (d, J = 7.8 Hz, 2H), 7.497.41 (m, 4H), 7.38 (t, J = 7.3 Hz, 1H), 4.44 

(dd, J = 8.3, 4.9 Hz, 1H), 3.27 (dd, J = 13.8, 4.5 Hz, 1H), 3.01 (dd, J = 13.4, 9.6 Hz, 1H) 

and 1.39 (s, 9H) ppm. 
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13C NMR (125 MHz, CD3OD): δ 175.1, 157.8, 153.1, 152.9, 145.1, 142.5, 141.3, 131.3, 

130.0, 129.0, 128.7, 128.1, 124.4, 123.8, 80.6, 56.1, 38.6 and 28.7 ppm. 

HRMS (ESI) calculated for C26H28N3O4
+ (M+H) + 446.2074, found 446.2054. 

IR (ATR): νmax 3261.4 and 2923.1 (NH and OH) and 1719.8 and 1651.7 (CO) cm-1. 

 

Synthesis of tert-butyl ((2S)-1-(((1R)-3-methyl-1-((3aS,4S,6S)-3a,5,5-

trimethylhexahydro-4,6-methanobenzo[d][1,3,2]dioxaborol-2-yl)butyl)amino)-1-oxo-

3-(4-((E)-phenyldiazenyl)phenyl)propan-2-yl)carbamate (4a)  

A solution of 8a (117 mg, 0.31 mmol, 1 eq) and 9 (100 mg, 0.33 mmol, 1.05 eq) in DCM 

(3 mL) was cooled in ice. TBTU (99 mg, 0.31 mmol ,1 eq) and DIPEA (0.21 mL, 1.24 

mmol, 4 eq) were added, and the mixture was warmed to room temperature over 18 

h. The mixture was diluted EtOAc, washed with saturated ammonium chloride solution 

(x3), dried over MgSO4, filtered and evaporated under reduced pressure. Purification 

by flash chromatography (40% diethyl ether:hexane) gave 4a (76 mg, 95%) as an 

orange solid. 

1H NMR (500 MHz, CD3OD) δ 7.87 (m, 4H, 2xArH), 7.51 (m, 3H, 3xArH), 7.44 (d, J = 8.1 

Hz, 2H, ArH), 4.55 (t, J = 7.3 Hz, 1H, Tyr--H), 4.20 (d, J = 7.3 Hz, 1H, CH), 3.14 (dd, J = 

13.5, 7.3 Hz, 1H, Tyr--CHH), 3.05 (d, J = 8.0 Hz, 1H, Tyr--CHH), 2.70 (t, J = 7.7 Hz, CH), 

2.33 (d, J = 2.4 Hz, 1H, CH), 2.172.09 (m, 1H), 1.96 (t, J = 5.4 Hz, 1H, CH), 1.85 (br s, 
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1H, CH), 1.80 (d, J = 14.1 Hz, 1H, CH), 1.531.44 (m, 1H, CH), 1.41 (d, J = 10.6 Hz, 1H, 

CH), 1.39 (s, 3H, CH3), 1.38 (s, 9H, 3xCH3), 1.27 (s, 3H, CH3), 1.24 (m, 2H, CH2), 0.86 (s, 

3H, CH3), 0.85 (d, J = 6.7 Hz, 3H, CH3) and 0.82 (d, J = 6.5 Hz, 3H, CH3) ppm. 

13C NMR (125 MHz, CD3OD) δ 177.3, 157.2, 154.0, 152.9, 141.2, 132.2, 131.4, 130.2, 

124.0, 123.7, 84.3, 80.8, 77.4, 54.2, 53.5, 41.6, 41.3, 39.1, 38.9, 37.6, 29.7, 28.6, 27.8, 

27.4, 26.5, 24.6, 23.6 and 22.2 ppm. 

IR (ATR) ʋ: 2931 (NH), 2346 (NN) and 1684 (C=O) cm-1. 

HRMS (ESI) calcd for C35H49BN4NaO5 (M+Na) + 639.3688, found 639.3699. 

 

Synthesis of tert-butyl ((2S)-3-(4-((E)-(3,5-dimethylphenyl)diazenyl)phenyl)-1-(((1R)-

3-methyl-1-((3aS,4S,6S)-3a,5,5-trimethylhexahydro-4,6-

methanobenzo[d][1,3,2]dioxaborol-2-yl)butyl)amino)-1-oxopropan-2-yl)carbamate 

(4b) 

Compound 4b was obtained as an orange solid (38 mg, 50%) using the above 

procedure. 

1H NMR (500 MHz, CD3OD): δ 7.84 (m, J = 8.2 Hz, 2H), 7.50 (s, 2H), 7.44 (d, J = 8.2 Hz, 

2H), 7.17 (s, 1H), 4.574.51 (m, 1H), 4.21 (dd, J = 8.4, 1.9 Hz, 1H), 3.13 (dd, J = 13.7, 7.3 

Hz, 1H), 3.04 (dd, J = 13.5, 8.1 Hz, 1H), 2.69 (t, J = 7.7 Hz, 1H), 2.40 (s, 6H, 2xCH3), 

2.392.31 (m, 1H), 2.172.09 (m, 1H), 1.96 (t, J = 5.4 Hz, 1H), 1.891.83 (m, 1H), 



 

145 

 

1.821.77 (m, 1H), 1.49 (dd, J = 13.3, 6.3 Hz, 1H), 1.441.36 (m, 9H, CH3 + (C(CH3)3), 

1.29 (s, 4H), 0.88 (s, 3H, CH3), 0.86 (d, J = 6.3 Hz, 3H, CH3) and 0.83 (d, J = 6.5 Hz, 3H, 

CH3) ppm. 

13C NMR (150 MHz, CD3OD): δ 177.4, 157.7, 154.6, 153.4, 141.8, 140.5, 134.0, 131.7, 

124.2, 121.9, 85.2, 81.2, 78.0, 53.9, 41.7, 39.7, 37.7, 31.3, 30.0, 29.0, 28.1, 27.6, 27.1, 

24.9, 24.0, 22.7 and 21.6 ppm. 

HRMS (ESI) calculated for C37H54BN4O5
+ (M+H)+ 645.4182, found 645.4141. 

IR (ATR): νmax = 2961.8 and 2923.6 (NH), 1695.4 and 1646.5 (CO) cm-1. 

 

Synthesis of tert-butyl ((2S)-3-(4-((E)-[1,1'-biphenyl]-4-yldiazenyl)phenyl)-1-(((1R)-3-

methyl-1-((3aS,4S,6S)-3a,5,5-trimethylhexahydro-4,6-

methanobenzo[d][1,3,2]dioxaborol-2-yl)butyl)amino)-1-oxopropan-2-yl)carbamate 

(4c) 

Compound 4c was obtained as an orange solid (46 mg, 60%) using the above 

procedure. 

1H NMR (500 MHz, CDCl3) δ 7.98 (d, J = 8.1 Hz, 2H, 2xArH), 7.87 (d, J = 7.8 Hz, 2H, 

2xArH), 7.74 (d, J = 8.0 Hz, 2H, 2xArH), 7.66 (d, J = 7.9 Hz, 2H, 2xArH), 7.47 (s, 3H, 

3xArH), 7.39 (d, J = 7.5 Hz, 2H, 2xArH), 6.09 (s, 1H, NH), 5.17 (s, 1H, NH), 4.36 (s, 1H, 
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CH), 4.25 (d, J = 8.4 Hz, 1H, CH), 3.233.07 (m, 3H, 3xCH), 2.29 (s, 1H, CH), 2.212.12 

(m, 1H, CH), 2.01 (t, J = 5.2 Hz, 1H, CH), 1.87 (s, 1H, CH), 1.80 (d, J = 14.4 Hz, 1H, CH), 

1.50 (dd, J = 13.1, 6.6 Hz, 2H, 2xCH), 1.42 (s, 9H, C(CH3)3), 1.38 (s, 3H, CH3), 1.281.22 

(m, 3H, CH3), 0.86 (d, J = 6.4 Hz, 6H, 2xCH3) and 0.80 (s, 3H, CH3) ppm. 

13C NMR (126 MHz, CDCl3) δ 173.9, 154.4, 146.3, 142.8, 132.9, 131.6, 130.6, 130.4, 

129.8, 126.0, 125.8, 88.5, 80.4, 79.9, 54.0, 42.8, 42.2, 41.0, 40.8, 38.2, 31.2, 30.9, 29.8, 

29.0, 28.0, 26.7, 25.7 and 24.6 ppm. 

HRMS (ESI) calcd for calculated for C27H29N3O4Na+ (M+Na) + 482.2050, found 482.2020. 

IR (ATR) ʋ: 3377.8 and 2982.8 (NH), 1694.6 and 1515.8 (C=O) cm-1. 

 

Synthesis of 3-nitrosobenzoic acid (11)2 

3-Aminobenzoic acid 10 (1 g, 7.2 mmol, 1 eq) was dissolved in DCM (18 mL). A solution 

of Oxone® (4.4 g, 14.4 mmol, 2 eq) in water (80 mL) was added and the solution stirred 

under nitrogen for 3 h. The precipitate was filtered and washed with water, to give 11 

as a beige solid (1 g, 91%). 

 

Synthesis of (E)-3-(phenyldiazenyl)benzoic acid (12a)3 

                                                        
2 Priewisch. B.; Rück-Braun, K. Journal of Organic Chemistry 2005 70(6), 23502352. 
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A solution of nitrosobenzene (171 mg, 1.6 mmol, 1 eq) in glacial acetic acid (13 mL) 

was added to a suspension of p-aminobenzoic acid (263 mg, 2.24 mmol, 1.4 eq) in 

glacial acetic acid (13 mL) and the mixture was stirred at room temperature for 18 h. 

Excess water was added and the precipitate was filtered and washed with water, to 

give 12a (341 mg, 94%) as an orange solid.  

 

Synthesis of (E)-3-((3,5-dimethylphenyl)diazenyl)benzoic acid (12b) 

A solution of 11 (150 mg, 1 mmol, 2.5 eq) in DMSO (2.5 mL) and 3,5-dimethylaniline 

(0.1 mL, 0.8 mmol, 1 eq) in acetic acid (0.23 mL) was stirred at room temperature for 

18 h. Excess water was added and the precipitate was filtered and washed with water, 

to give 12b (340 mg, 57%) as a brown solid. 

1H NMR (500 MHz, DMSO-d6) δ 13.25 (s, 1H, OH), 8.36 (s, 1H, ArH), 8.12 (t, J = 8.4 Hz, 

2H, 2xArH), 7.74 (t, J = 7.8 Hz, 1H, ArH), 7.56 (s, 2H, 2xArH), 7.25 (s, 1H, ArH) and 2.39 

(s, 6H, 2xCH3) ppm. 

13C NMR (125 MHz, DMSO-d6) δ 166.7 (C), 152.0 (C), 151.9 (C), 138.8 (2xC), 133.3 (CH), 

132.2 (C), 131.7 (CH), 129.9 (CH), 127.4 (CH), 122.0 (CH), 120.5 (2xCH) and 20.8 (2xCH3) 

ppm. 

HRMS (ESI) calcd for C15H15N2O2 (M+H) + 255.1128, found 255.1135. 

IR (ATR) ʋ: 3224 (OH), 2345 (NN) and 1683 (C=O) cm-1. 

                                                                                                                                                                   
3 Fatás, P., Longo, E., Rastrelli, F., Crisma, M., Toniolo, C., Jiménez, A. I., Cativiela, C. and Moretto, A. 

ChemistryA European Journal 2011, 17 (45), 1260612611. 
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Synthesis of (E)-3-([1,1'-biphenyl]-4-yldiazenyl)benzoic acid (12c) 

To a solution of 11 (300 mg, 2 mmol, 2.5 eq) in DMSO (5 mL) was added [1,1'-

biphenyl]-4-amine (268 mg, 1.58 mmol, 1 eq) in acetic acid (0.5 mL) and the solution 

was stirred at room temperature for 18 h. Excess water was added and the precipitate 

was filtered and washed with water, to give 12c (340 mg, 57%) as a brown solid. 

1H NMR (500 MHz, CDCl3) δ 8.68 (s, 1H, ArH), 8.24 (d, J = 7.6 Hz, 1H, ArH), 8.20 (d, J = 

7.8 Hz, 1H, ArH), 8.06 (d, J = 8.3 Hz, 2H, 2xArH), 7.79 (d, J = 8.4 Hz, 2H, 2xArH), 7.68 (dd, 

J = 17.5, 7.6 Hz, 3H, 3xArH), 7.50 (t, J = 7.6 Hz, 2H, 2xArH) and 7.42 (t, J = 7.3 Hz, 1H, 

ArH) ppm. 

13C NMR (126 MHz, DMSO-d6) δ 166.7 (C), 152.0 (2xC), 138.9 (2xC), 132.2 (C), 130.0 

(2xCH), 129.1 (2xCH), 128.8 (2xCH), 127.8 (CH), 127.5 (2xCH), 126.9 (2xCH), 125.9 (CH) 

and 123.4 (CH) ppm. 

HRMS (ESI) calcd for C19H15N2NaO2 (M+H) + 303.1128, found 303.1151. 

IR (ATR) ʋ: 3012 (OH), 2343 (NN) and 1678 (C=O) cm-1. 
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Synthesis of N-((2S,3R)-3-hydroxy-1-(((1R)-3-methyl-1-((3aS,4S,6S)-3a,5,5-

trimethylhexahydro-4,6-methanobenzo[d][1,3,2]dioxaborol-2-yl)butyl)amino)-1-

oxobutan-2-yl)-3-((E)-phenyldiazenyl)benzamide (5a) 

A solution of 12a (35 mg, 0.15 mmol, 1.1 eq) and 13 (56 mg, 0.14 mmol, 1 eq) in N,N-

dimethylformamide (0.2 mL) was cooled in ice and to this was added TBTU (53 mg, 

0.16 mmol, 1.1 eq) and NMM (66 L, 0.6 mmoL, 4 eq). The mixture was warmed to 

room temperature over 18 h. Excess EtOAc was added and the mixture washed with 

saturated ammonium chloride solution (x3), dried over MgSO4, filtered and evaporated 

under reduced pressure. Purification by flash chromatography (30-40% EtOAc:hexane) 

gave 5a (21 mg, 26%) as an orange solid. 

1H NMR (500 MHz, CDCl3) δ 8.33 (s, 1H, ArH), 8.10 (d, J = 7.7 Hz, 1H, ArH), 7.96 (d, J = 

6.9 Hz, 3H, 3xArH), 7.63 (t, J = 7.7 Hz, 1H, ArH), 7.587.51 (m, 3H, 3xArH), 4.59 (s, 1H, 

Thr--H), 4.53 (d, J = 21.7 Hz, 1H), 4.29 (d, J = 8.3 Hz, 1H, Leu--H), 3.34 (m, 2H, Thr--

H + CHH), 2.312.23 (m, 1H), 2.16 (m, 1H), 1.97 (t, J = 5.5 Hz, 1H), 1.85 (m, 1H), 1.77 

(dd, J = 14.5 Hz, 1H), 1.67 (m, 1H), 1.581.50 (m, 1H), 1.47 (m, 1H), 1.35 (s, 3H), 1.29 

(m, 3H, CH3), 1.23 (s, 3H), 1.20 (s, 3H), 0.92 (dd, J = 6.3, 3.2 Hz, 6H) and 0.79 (s, 3H) 

ppm. 

13C NMR (125 MHz, CD3OD) δ 167.8, 152.7, 152.5, 134.8, 131.6, 129.6, 129.6, 129.3, 

126.2, 123.2, 121.6, 86.3, 78.1, 66.8, 56.8, 51.4, 39.8, 39.6, 38.3, 35.6, 28.6, 27.2, 26.4, 

25.7, 24.1, 23.2 and 22.1 ppm.  

IR (ATR) ʋ: 3311 and 2933 (OH and NH) and 1639 (C=O) cm-1. 

HRMS (ESI) calcd for C32H43BNaN4O5 (M+Na)+ 597.3234, found 597.3247. 
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Synthesis of 3-((E)-(3,5-dimethylphenyl)diazenyl)-N-((2S,3R)-3-hydroxy-1-(((1R)-3-

methyl-1-((3aS,4S,6S)-3a,5,5-trimethylhexahydro-4,6-

methanobenzo[d][1,3,2]dioxaborol-2-yl)butyl)amino)-1-oxobutan-2-yl)benzamide 

(5b) 

Compound 5b was obtained as an orange solid (17 mg, 20%) using the above 

procedure.  

1H NMR (500 MHz, CD3OD) δ 8.41 (s, 1H, ArH), 8.09 (d, J = 7.9 Hz, 1H, ArH), 8.03 (d, J = 

7.7 Hz, 1H, ArH), 7.68 (t, J = 7.8 Hz, 1H, ArH), 7.57 (s, 2H, 2xArH), 7.20 (s, 1H, ArH), 4.82 

(d, J = 3.5 Hz, 1H, Thr--H), 4.34 (s, 1H), 4.20 (d, J = 8.2 Hz, 1H, Leu--H), 2.862.81 (m, 

1H, Thr--H), 2.42 (s, 2H, 2xCH3), 2.372.30 (m, 1H), 2.162.11 (m, 1H), 1.97 (t, J = 5.3 

Hz, 1H), 1.85 (s, 1H), 1.831.72 (m, 2H), 1.53 (d, J = 10.3 Hz, 1H), 1.43 (dd, J = 13.7, 6.5 

Hz, 2H), 1.38 (s, 3H), 1.28 (d, J = 7.0 Hz, 6H), 0.93 (t, J = 6.3 Hz, 6H) and 0.86 (s, 3H) 

ppm. 

13C NMR (125 MHz, CD3OD) δ 177.5, 170.9, 155.3, 155.3, 141.5, 137.5, 135.4, 132.1, 

131.8, 128.4, 123.8, 123.0, 86.0, 78.8, 69.4, 59.4, 54.8, 42.6, 42.3, 40.6, 38.6, 30.9, 

29.0, 28.5, 28.1, 25.8, 24.8, 23.7, 22.5 and 21.5 ppm. 

IR (ATR) ʋ: 3316 and 2933 (OH and NH) and 1651 (C=O) cm-1. 

HRMS (ESI) calcd for C34H47BNaN4O5 (M+Na)+ 625.3537, found 625.3520. 
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Synthesis of 3-((E)-[1,1'-biphenyl]-4-yldiazenyl)-N-((2S,3R)-3-hydroxy-1-(((1R)-3-

methyl-1-((3aS,4S,6S)-3a,5,5-trimethylhexahydro-4,6-

methanobenzo[d][1,3,2]dioxaborol-2-yl)butyl)amino)-1-oxobutan-2-yl)benzamide 

(5c) 

Compound 5c was obtained as an orange solid (10 mg, 13%) using the above 

procedure. 

1H NMR (500 MHz, CDCl3) δ 8.35 (d, J = 1.7 Hz, 1H), 8.128.09 (m, 1H), 8.04 (d, J = 8.5 

Hz, 2H), 7.96 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 8.5 Hz, 2H), 7.717.67 (m, 2H), 7.64 (d, J = 

7.8 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.42 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 6.91 

(d, J = 5.7 Hz, 1H), 4.62 (dd, J = 7.9, 1.7 Hz, 1H, Thr--H), 4.54 (d, J = 21.1 Hz, 1H), 4.29 

(d, J = 10.8 Hz, 1H, Thr--H), 3.34 (dd, J = 15.4, 6.0 Hz, 1H, Leu--H), 3.04 (s, 1H), 

2.322.27 (m, 1H), 2.24 (d, J = 19.1 Hz, 2H), 2.16 (d, J = 22.4 Hz, 1H), 1.97 (t, J = 5.5 Hz, 

1H), 1.85 (d, J = 16.8 Hz, 1H), 1.78 (d, J = 19.7 Hz, 1H), 1.68 (d, J = 26.6 Hz, 1H), 1.55 (d, 

J = 33.0 Hz, 1H), 1.45 (s, 1H), 1.36 (s, 3H), 1.27 (m, 6H), 1.24 (s, 3H) and 0.92 (dd, J = 

6.5, 3.5 Hz, 6H) ppm. 

13C NMR (125 MHz, CDCl3) δ 171.6, 167.8, 152.8, 151.7 144.4, 140.2, 134.8, 129.6, 

129.6, 129.1, 128.2, 128.0, 127.4, 126.2, 123.7, 121.6, 86.3, 78.1, 66.8, 56.8, 51.4, 39.8, 

39.6, 38.3, 35.6, 29.8, 28.6, 27.2, 26.4, 25.8, 24.1, 23.2, 22.1, 18.4 and 14.3 ppm.  

IR (ATR) ʋ: 3012 and 2923 (OH and NH) and 1641 (C=O) cm-1. 
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HRMS (ESI) calcd for C38H48BN4O5 (M+H)+ 351.3712, found 351.3749. 
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b. 1H and 13C NMR Spectra 
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c. In Vitro Proteasome Activity Assay 

Proteasome inhibition assays were conducted following a modified literature 

procedure.4 In order to ensure that the assay was within the linear range, a standard 

curve was prepared in duplicate using 8 different concentrations (0-250 M). Rabbit 

20S proteasome was used, at a concentration of 12.5 µg/mL in Tris buffer (20 mM Tris-

HCl, pH 7.5, 0.5 mM EDTA, and 0.001% SDS (w/v)). Proteasome CT-L (β5) and C-L (β1) 

activities were determined using hydrolysis of specific short peptide substrates 

conjugated to the fluorescent tag 7-amido-4-methylcoumarin (AMC). Fluorogenic CT-L 

substrate (Suc-Leu-Leu-Val-Tyr-AMC) was purchased from Boston Biochem 

(Cambridge, MA, USA) and C-L fluorogenic substrate (Ac-nLPnLDAMC) was purchased 

from Enzo Life Sciences (Farmingdale, NY, USA). Both substrates were made up to 62.5 

µM in Tris buffer (20 mM Tris-HCl, pH 7.5, 0.5 mM EDTA, and 0.001% SDS (w/v)). 

GraphPad Prism 5.0, GraphPad Software, Inc. GraphPad was used for the 

determination of kinetic values and of the half maximal inhibitory concentration (IC50) 

of each inhibitor. The mean IC50 and standard error were determined by fitting the 

dose-response data to the built-in model- (inhibitor) vs. response- variable 

slope (without log transformation). IC50 with standard error for the key derivative: 4c 

(thermally adapted state) β5- 11 ± 5 nM, β1-460 ± 77 nM; 4c (photostationary state) 

β5-54 ± 10 nM, β1- 303 ± 40 nM 

Assay procedure: 10 mM stock solutions of the test inhibitors in DMSO were diluted to 

500 M in DMSO. 50 L of the 500 μM stock solutions were transferred into a 96 clear 

well round-bottom plate (in duplicate) and each was diluted to 250 μM by adding 50 
                                                        
4 a) K. C. H. Chua, M. Pietsch, X. Zhang, S. Hautmann, H. Y. Chan, J. B. Bruning, M. Gütschow, A. D. Abell, 

Angew. Chem. Int. Ed. 2014, 53, 78287831; b) S. J. Gendler, Z. A. Tökés, Biochimica et Biophysica Acta (BBA) -

General Subjects 1986, 882, 242253. 
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μL of DMSO. Serial ten-fold dilutions of the 250 μM inhibitor solutions with DMSO 

were performed within the next 7 wells, giving duplicates of each compound at 8 

different concentrations (0-250 μM). The above dilutions were performed identically 

on another 96 clear well round-bottom plate, however this plate was then irradiated 

with UV light (λ = 365 nm) for 1 h using a UVP BL6SV lamp, and the plate then 

concealed from light using aluminium foil. Compounds on the non-irradiated plate 

were used to test trans-enriched TAS of each inhibitor, while compounds on the 

irradiated plate were used to test cis-enriched PSS of each inhibitor. 10 L of each non-

irradiated compound at the 8 different concentrations was transferred into another 96 

well round-bottom plate (in duplicate), followed by 10 L of 20S proteasome (12.5 

µg/mL in Tris buffer) and the plate was left to incubate for 10 min at rt. 40 L of the 

corresponding fluorogenic substrate (62.5 µM in Tris buffer) was added to each well, 

and the plate left to incubate for 2 h at 37°C. Similarly, 10 L of each irradiated 

compound at the 8 different concentrations was transferred to another 96 well round-

bottom plate (in duplicate), followed by 10 L of 20S proteasome (12.5 µg/mL in Tris 

buffer) and the plate was left to incubate (wrapped in aluminium foil) for 10 min at rt. 

40 L of the corresponding fluorogenic substrate (62.5 µM in Tris buffer) was added to 

each well, and the plate left to incubate for 2 h at 37°C (wrapped in aluminium foil). 

Fluorescence caused by the release of AMC was measured at λem= 445 nm and λex= 390 

nm on a Synergy H4 Hybrid Multi-Mode Microplate Reader, (Bio-Tek Instruments, Inc.). 

Proteasome activity was determined under conditions in which substrate hydrolysis 

increased linearly with time and the change in fluorescence signal was proportional to 

the concentration of free AMC. 
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d. Cell Viability Assay 

Cell culture. Derivative 4c was dissolved in DMSO (10 mM) and the solution stored at 

−20°C. Human cell lines (HCT116, MDA-MB-468, and MCF-10A) were purchased from 

American Type Tissue Culture. MDA-MB-468 and HCT116 cells were grown in 

Dulbecco’s Modified Eagle’s Medium (DMEM) and supplemented with 10% FCS, 1% 

PSG and 10 mM HEPES. MCF10A cells were cultured in DMEM/F12: (1:1) (Invitrogen) 

with 5% horse serum (Invitrogen), 10 μg/mL insulin, 20 ng/mL human epidermal 

growth factor (Sigma-Aldrich, MO, USA), 100 ng/mL cholera toxin, and 500 ng/mL 

hydrocortisone (Sigma-Aldrich, MO, USA). All cells were maintained at 37°C in a 

humidified atmosphere of 5% CO2. 

Determination of LD50. Cells were seeded in 96-well microtiter plates at a density of 

2×104 cells/well with varying concentrations of proteasome inhibitors. For 4c-(cis)-

enriched compound, cells were wrapped in aluminum foil and kept in the dark. Cells 

were harvested 48 hours post treatment, centrifuged at 1,300 × g, washed in 

phosphate buffered saline (PBS) and stained with 7-amino-actinomycin-D solution (2 

μg/mL) (7AAD, Invitrogen) for 10 min at room temperature. Viable cells were 

determined with the use of a FACS Calibur flow cytometer (Becton Dickinson 

Immunocytometry Systems), and analyzed with the use of FLOWJO (Tree Star Inc.) and 

GraphPad Prism (GraphPad Software Inc. version6). 
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e. Photochemical data 

 

 

 

 

 

 

 

 

 

Figure S1. Determination of the ratio of trans/cis isomers for each state for each compound 

before and after irradiation (λ= 365 nm, 1 h) in DMSO-d6 (~2 mg/mL), by 1H NMR analysis. The 

figures show spectra of trans-enriched TAS (non-irradiated, blue line) and cis-enriched PSS 

(irradiated, pink line) for each compound. Protons for signals shown are highlighted. 
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Figure S2. UV-Vis spectra of compounds 4-5 (250 M in DMSO). Non-irradiated (trans-enriched 

TAS) samples are shown in blue, and samples irradiated at 365 nm (cis-enriched PSS) are shown 

in pink. 
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Figure 3. IC50 curves of 4−5 against β1 proteasome subunit before and after irradiation. The 

trans TAS is indicated in blue and the cis-PSS in pink. 
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Figure 4. IC50 curves of 4−5 against β5 proteasome subunit before and after irradiation. The 

trans-TAS is indicated in blue and the cis-PSS in pink. 
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Prelude 
 

 

The dipeptide boronic acid bortezomib, is a FDA approved proteasome inhibitor now in use for 

the treatment of multiple myeloma and few other malignancies. The major drawback to 

bortezomib use is its dose-limiting toxicity that arises due to its cross-reactive peptidic 

structure. Here we have explored whether modification at P1 and P2 position of bortezomib 

based derivatives increases affinity, specificity and cytotoxicity.  

 

This chapter is presented as a manuscript in preparation for submission to a journal for 

publication.  

 

Contribution by the candidate: All biological/cell line experimental work and manuscript writing 

pertaining to biology. 
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Introduction 

 
The 26S proteasome is a supramolecular protein complex that plays a pivotal role in the 

ubiquitin-dependent protein degradation pathway [1]. The proteins are degraded at three 

active sites located within the inner cavity of the 20S proteasome: chymotrypsin-like (β5), 

trypsin-like (β2), and caspase-like (β1) [2]. The 19S regulatory particle is responsible for 

unfolding protein-substrates and stimulating proteolytic activity In cancer cells, up-regulated 

proteasome activity is essential to the mechanisms underlying tumourigenesis, metastasis, and 

angiogenesis. Indeed, since the approval of Bortezomib (Velcade) for multiple myeloma in 2003 

by the FDA (Figure 1), the proteasome has been validated as an important target for cancer 

therapy [3-5]. 

 

Most proteasome inhibitors, including bortezomib, inhibit proteasome activity by forming an 

antiparallel β-sheet with the substrate-binding channel of the active sites. The boron atom 

covalently interacts with the nucleophilic oxygen lone pair of Thr1O [6]. However, due to cross-

reactivity[7], bortezomib also exhibits permanent abrogation of global protein degradation and 

severe off-target effects that result in low systemic tissue distribution. 

 

 
 

 
Figure 1. Structures of bortezomib, carfilzomib and ixazomib.  
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In this regard, it is imperative to develop proteasome inhibitors with different structural 

characteristics and, to explore new binding sites with the goal of achieving improved 

pharmacokinetic and pharmacodynamic profiles. Recent reports of non-peptidic proteasome 

inhibitors have widened the range of potential scaffolds as a way forward to address 

shortcomings associated with bortezomib non-specificity [8]. Therefore a plausible approach to 

improve proteolytic stability is to modify the chemical structure of the peptide backbone by 

introduction of L-amino acids or alkylated residues on the peptidic scaffold [8, 9]. The analysis 

of the crystal structure of bortezomib in complex with the yeast proteasome revealing an 

antiparallel beta sheet conformation and a spacious S2 pocket, in which the P2 phenylalanine of 

bortezomib lacked interactions with the protein (Figure 2)[6]. This observation presents an 

opportunity to introduce L-amino acids or alkylated residues at P2 without necessarily affecting 

binding properties. Although early structure-activity relationship studies on bortezomib at P2 

indicated that bulky groups decrease potency (ref), recent reports have proven that inhibitors 

bearing sterically demanding moieties at P2 can show highly potent proteasome inhibition. In 

addition, the introduction of such sterically demanding moieties can provide new information 

about the composition of these poorly explored proteasomal primed substrate-binding sites.  
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Figure 2. β5 active site of the yeast proteasome in complex with bortezomib. 
 
 
In this work, we investigate the biological profile of bortezomib-type inhibitors bearing side 

chains of different length, nature and configuration at P2 to obtain useful structural 

information for future design of proteasome inhibitors and with the aim to improve proteolytic 

sensitivity (Figure 3). Firstly, we studied the effect of the non-natural configuration on the 

binding properties at S1 (2a-g) and S2 (3a-g) pockets. Secondly, we explored the variation in the 

electron density of the aromatic system by introducing substituents at the para position of the 

phenyl moiety in P2. Both electron donating (1-3h, 1-3f) and electron withdrawing groups (1-

3b, 1-3c) were analyzed. The influence of the pi interactions was also investigated by 

introducing a non- aromatic group as in compounds 1-3d. 

 



 

185 

 

 
 
 

Fi
gu

re
 3

. I
n

h
ib

it
o

rs
 s

yn
th

es
iz

e
d

 in
 t

h
is

 w
o

rk
. 



 

186 

 

 

Synthesis 
 
Inhibitors 1, 2 and 3 were prepared as depicted in Scheme 1. Commercially available Boc-L-

tyrosine methyl ester (4) was first alkylated in the presence of K2CO3 and the corresponding 

bromide in DMF. Ester hydrolysis of 4 followed by coupling of the resulting acids 5 with (+)-

pinanediol ester of leucineboronic ester 7. in the presence of HATU and DIPEA gave the desired 

dipeptidic boronates 1. During the purification process of boronic esters 1, it was isolated the 

corresponding epimers at P1 (3) as well. This was caused by the partial loss of quiral integrity on 

the leucine alpha proton during the preparation of 7.i To assign the absolute configuration of 

these two sets of boronic esters, one of the inhibitors was crystallized. The X-ray of 1e confirms 

that the major epimer isolated possesses the natural configuration at P2 (Figure 4). Epi-P2 

Boronic esters 2 were synthesized following the same synthetic pathway but starting with Boc-

D-tyrosine methyl ester (8). 

Figure 4. Crystal structure of boronic ester 1e. 
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Scheme 1. Synthesis of target compounds 1, 2 and 3. 

 
Reagents and conditions: (i) BrCH2R1, K2CO3, DMF, 60 ºC, 16h; (ii) LiOH, 0 ºC, 2h; (iii) HATU, 
DIPEA, DMF, 4h; (iv) iBuB(OH)2, HCl (1M), MeOH, hexanes. 
 
 

 

Biology 
 
Compounds were tested against chymotrypsin-like (β5), trypsin-like (β2), and caspase-like (β1) 

binding pockets of core particle (Table 1). Like bortezomib, all compounds were most active at 

inhibiting β5 activity, while the inhibitory activity was reduced by approximately 10-fold when 

they were tested against β1, and were depleted of activity on the β2 binding pocket. In line 

with previous reports [10,11] , the corresponding boronic acids of 3 showed similar activity to 

their boronic ester analogues. Stereochemistry at P1 proved to be crucial as compounds with 

the natural configuration (1) were 7 to 30 fold more active than their epimer counterparts (3). 

This indicates that the orientation of the D-alanine is not favorable for the interaction with the 

S1 pocket at the binding site. In contrast, the configuration at P2 has less impact on the IC50  

values. The difference in activity between natural (1) and P2-epi inhibitors (2) only differ by 1 to 

3 fold. These two observations confirm the specificity of the S1 pocket and the promiscuity of 
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the spacious S2 site. For natural inhibitors 1, the nature of the ring had an effect on the 

inhibition. The S2 binding pocket seems to have a preference for aromatic rings (1a) over 

aliphatic rings (1d). Incorporation of an electro-withdrawing group in the para-position of 

phenyl ring such as in 1c did not markedly change the inhibition, however, the presence of 

fluorine atom at the same position as in 1b led to an increase of potency (36 nM). The presence 

of a free phenol (1h) led to a considerable loss of potency probably due to the lack of hydrogen 

bonding to stabilize it. In contrast, stereoisomers 2 did not show a clear pattern. Remarkably, all 

the activities for the inhibitors where below 250 nM even though they present a D-aminoacid at 

P2.  

 
Table 1. Inhibition values for the compounds against the three binding sites of the 20S 
proteasome. 
 

 IC50[μM] 

Compd β5 β1 β2 

1a 0.088 0.43 >125 

1b 0.036 0.28 >125 

1c 0.074 0.26 >125 

1d 0.11 0.42 >125 

1e 0.091 0.40 >125 

1f 0.099 0.78 >125 

1g 0.044 0.48 >125 

1h 4.28 17.31 >125 

2a 0.141 0.98 >125 

2b 0.117 0.50 >125 

2c 0.126 0.67 >125 

2d 0.186 1.40 >125 

2e 0.240 1.25 >125 

2f 0.112 1.57 >125 

2g 0.132 1.45 >125 

3a 1.63 (1.45) 9.25 >125 

3b 1.05 (0.94) 3.00 >125 
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3c 3.45 (3.67) 7.68 >125 

3d 2.04 (2.20) 15.19 >125 

3e 1.13 (1.25) 4.88 >125 

3f 0.711 (-) 2.81 >125 

3g 0.70 (0.95) 2.81 >125 

bortezomib 0.007 0.12 2 
aValue for boronic acid. 
 
Next, cytotoxicities of the two most potent compounds emerging from this work (1b and 1g) 

were assessed against a panel of 8 cell lines (Table 2), including 4 breast cancer cell lines (MDA-

MB-468, MCF7, HS578T and MDAMB231), a colorectal cancer cell line (HCT-116), a Ewing 

sarcoma cell line (WE-68) and two non-malignant cell lines MCF-10A and normal dermal 

fibroblasts (NDF).  

 

Compared to bortezomib, the cytotoxic potency of both compounds 1b and 1g was significantly 

reduced (between 5-10 fold) against all cell lines except for MDA-MB-468. For instance, in the 

breast carcinoma cell line Hs578T, boronic ester 1b was 10-fold less potent compared to 

bortezomib with LD50 values of 0.15 µM and 0.015 µM respectively.  This 10 fold decrease in 

cytotoxic potency for 1b is expected and consistent with its decreased inhibitory potency 

against the β5 activity of the proteasome in in vitro assays (Table 1). As expected, compounds 

1b and 1g did not differ in their relative cytotoxic potencies against all cell lines except MDA-

MB-468.  Unexpectedly, in the MDA-MB-468 breast carcinoma cell line, cytotoxic potencies for 

compound 1b was comparable to bortezomib and significantly higher than 1g. The basis for this 

result is unclear but may be attributed to the specific molecular characteristics of this cell line. 

Both 1b and 1g as well as bortezomib were significantly less cytotoxic against the non-
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malignant cell lines. Overall, our results show that bortezomib-ester derivatives, despite having 

bulky P2 moieties, remain functionally active.  

 
Table 2. Cytotoxicity of Compounds against Tumour Cell Lines (LD50 (µM)) 
 

Compd MDA-

MB-468 

MCF7 HS578T MDA-MB-

231 

HCT116 WE68 MCF-

10A 

NDF 

1b 0.05 >1.25 0.15 0.16 0.08 0.81 >1.25 0.14 

1g 0.90 1.25 0.31 0.29 0.17 1.25 >1.25 0.41 

Bortezomib 0.04 1.5 0.015 0.035 0.005 0.1 >1.25 0.48 
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Conclusion  

 
A common motif on the three FDA-approved proteasome inhibitors is the presence of a 

peptidic scaffold with an electrophilic warhead for covalent binding to the catalytic Thr1 

residues of the proteasome. Choosing peptidic backbones for inhibitor synthesis has both pros 

and cons. On the plus side, there is ease of synthesis, cost-effectiveness and derivatization. 

However, a major drawback is their cross-reactivity and drug delivery challenges. As other 

proteases can easily cleave these peptides, frequent dosing becomes necessary.  Protease-

resistant peptides would address many of these limitations. 

 

Here, we have assessed how configuration at P1 and P2 position of bortezomib based inhibitors 

affects affinity, specificity and cytotoxic efficacy. Stereochemistry at P1 proved to be crucial as 

compounds with the natural configuration were 50 fold more active than their epimer 

counterparts. In contrast, the configuration at P2 has less impact on the IC50 values with 

differences of only 1-3 fold and the S2 pocket was able to accommodate bulky aromatic 

residues and long chains, which can be exploited for introducing fluorescent markers for 

experimental purposes. Furthermore, our crystallization studies show that inhibitors 1b and 1c 

bind to non-primed and primed-regions of the S2 pocket. Structural information obtained from 

this study holds significance for future drug design and to improve proteolytic stability. This is 

an ongoing study and we are currently undertaking crystallography studies for compounds 1f, 

2b, 2c and 2f and conducting cross-reactivity assays for other proteases. 
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Methods and materials 

 
Cell culture 
 
Bortezomib (Selleckchem, Houston, TX, USA), Carfilzomib (Selleckchem, Houston, TX, USA), 

Ixazomib (Selleckchem, Houston, TX, USA) or in-house generated derivatives were dissolved in 

10 mM DMSO and stored at −20 °C. Human cell lines (WE-68, HCT116, MCF7, MDA-MB-468, 

MDA-MB-231, Hs578T, MCF-10A) were purchased from American Type Tissue Culture. Normal 

dermal fibroblasts (established from a normal individual) were a kind gift from A. Prof. Richard 

Sturm (Institutive for Biomolecular Sciences, The University of Queensland, Brisbane, Asutralia). 

WE-68 and MCF7 cell lines were grown in RPMI-1640 media. RD-ES, MDA-MB-468, HCT116, 

MDA-MB-231, Hs578T and primary dermal fibroblast cell lines were grown in Dulbecco’s 

Modified Eagle’s Medium (DMEM). Both RPMI and DMEM media were supplemented with 10% 

FCS, 1% PSG and 10 mM HEPES. MCF-7 cells were supplemented with 1% insulin. MCF10A were 

cultured in DMEM/F12: (1:1) (Invitrogen) with 5% horse serum (Invitrogen), 10 μg/ml insulin, 20 

ng/ml human epidermal growth factor (Sigma-Aldrich, MO, USA), 100 ng/ml cholera toxin, and 

500 ng/ml hydrocortisone (Sigma-Aldrich, MO, USA). All cells were maintained at 37 °C in a 

humidified atmosphere of 5% CO2. 

 

Determination of LD50  

 

Cells were seeded in 96-well microtiter plates at a density of 2×104 cells/well with varying 

concentrations of proteasome inhibitors. Cells were harvested 48 hours post treatment, 

centrifuged at 1,300 × g, washed in phosphate buffered saline (PBS) and stained with 7-amino-
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actinomycin-D solution (2 μg/mL) (7AAD, Invitrogen) for 10 minutes at room temperature. 

Viable cells were determined with the use of a FACS Calibur flow cytometer (Becton Dickinson 

Immunocytometry Systems), and analyzed with the use of FLOWJO (Tree Star Inc.) and 

GraphPad Prism (GraphPad Software Inc. version 6).  

 

In Vitro Proteasome Activity Assay  

 

Proteasome CT-L, C-L and T-L activities were determined using hydrolysis of specific short 

peptide substrates conjugated to the fluorescent tag 7-amido-4-methylcoumarin (AMC). 

Purified rabbit 20S proteasome and fluorogenic CT-L substrate (Suc-Leu-Leu-Val-Tyr-AMC) were 

purchased from Boston Biochem (Cambridge, MA, USA). The T-L and C-L fluorogenic substrates 

(Bz-Val-Gly-Arg-AMC and Ac-nLPnLD-AMC) were purchased from Enzo Life Sciences 

(Farmingdale, NY, USA). Purified 20S proteasome (Enzo Life Sciences, Farmingdale, NY, USA) (0-

2 µg) was pre-incubated with the indicated concentrations of inhibitors at 37 °C for 15 minutes 

and subsequently added to the AMC-labelled substrate peptide (50 μM) in assay buffer (20 mM 

Tris-HCl, pH 7.5, 0.5 mM EDTA, and 0.001% SDS (w/v)) for a further 2 hours. Fluorescent 

substrate cleavage by the 20S proteasome was linear during this incubation period. Hydrolysed 

AMC was subsequently detected with the Synergy™ H4 Hybrid Multi-Mode Microplate Reader 

(BioTek, USA) at excitation/emission wavelengths of 390/460 nm. Hydrolysis activity was 

measured as relative fluorescence units allowing IC50  values to be calculated that represented 

half of the maximal inhibitory activity of the proteasome. A minimum of three biological 

replicates was performed for each data point. 
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SECTION II 

Exploiting the p53 pathway as a targeted therapy to treat Ewing Sarcoma 
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Chapter 6 

Exploiting the p53 pathway as a targeted therapy to treat Ewing Sarcoma 
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Introduction 

 

Ewing sarcoma is a highly aggressive solid bone tumour that primarily afflicts children and 

young adults (peak incidence of 15 years) [1, 2]. The genetic change fundamental to the 

pathogenesis of Ewing sarcoma involves a chromosomal translocation between the EWS gene 

located on chromosome 22q12 and a member of the ETS transcription factor family. The 

majority of cases (85% to 90%), are associated with this t(11;22) where the amino terminal of 

the EWS gene is joined to the carboxyl terminus of FLI1 (chromosome 11) [3]. The resulting 

fusion protein is an oncogenic transcription factor that exerts it effect by altering cellular 

functions and signaling pathways leading to growth and proliferation of tumour cells [4, 5]. The 

development of a malignant neoplasm generally requires secondary genetic alterations, most 

frequently in oncogenes or tumour suppressors. P53 is one of the most frequently altered 

proteins in cancers, and this can occur via mutation of the TP53 gene (in 50% of all cancers) or 

overexpression of p53-regulatory proteins that suppress p53 activity e.g. MDM2 and MDM4 [6]. 

However, in Ewing sarcoma, TP53 mutations are rare with the majority of cases expressing a 

functional wild-type p53 [7, 8]. This feature is infrequent in cancer and is suggestive that Ewing 

sarcoma will be sensitive to p53-based targeted therapeutic strategies. 
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Tumour Suppressor p53 
 

 

P53 is a transcription factor that governs major cellular tumour suppression pathways, inducing 

senescence, apoptosis and cell cycle arrest [9]. It has been long known that stabilization of p53 

is pivotal for the cell to respond to cellular stresses (DNA damage, hypoxia etc.) and maintain 

cellular homeostasis. Protein levels of p53 within cells are tightly controlled and kept low 

primarily by its negative regulator MDM2, which binds to the amino terminus of p53, targeting 

it for ubiquitination and subsequent degradation [10]. 

 

Upon cellular or nucleolar stresses and depending on its cellular localization, p53 elicits various 

responses. Nuclear p53 up-regulates RNA polymerase II (Pol II) mediating transcription of cell 

cycle and apoptotic regulators (e.g. p21, BAX, PUMA) [11, 12] , while cytoplasmic p53 induces 

activation of the mitochondrial apoptotic pathway [13]. In the nucleolus, p53 impairs ribosomal 

RNA (rRNA) synthesis by disrupting the binding of the upstream binding factor (UBF) to 

selectivity factor 1 (SL1) which then partially abrogates the assembly of the pre-initiation 

complex at rDNA promoters, thus repressing the transcription by RNA polymerase I (Pol I) [14]. 

With such a crucial role in cellular surveillance in response to stress, it is not surprising that p53 

is often termed ‘the guardian of the genome’, and that mutations in the TP53 gene are 

commonly observed in diverse types of human cancer, making it an promising target for genetic 

or pharmacological intervention in cancer treatment. 
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History of Ewing sarcoma treatment 
 

Despite decades of research Ewing sarcoma has retained the most unfavorable prognosis of all 

primary musculoskeletal tumours. Prior to the use of multi-drug chemotherapy, surgery alone 

cured less than 20% of patients with Ewing sarcoma, even if the disease was localized [15]. 

However, starting in the 1970s, introduction of chemotherapy as a critical component of  Ewing 

sarcoma treatment has led to a remarkable increase in overall disease free survival, with 

survival rates for patients with localized Ewing sarcoma increasing to 70% [16]. In contrast, 

patients with metastatic Ewing sarcoma have <30% 5-year survival despite advances in 

treatment strategies including dose-intensification, use of multi-drug adjuvant therapy and 

stem cell transplantation. Failure to further manipulate or optimize the current chemotherapy 

treatment to increase overall survival has led to the development of new drugs that can 

specifically target the cancer cells. The idea is to use these targeted therapies in conjunction 

with traditional chemotherapy to achieve greater efficacy, and less toxicity to normal cells. To 

date, many targeted therapies are being explored in pre-clinical and clinical trials for Ewing 

sarcoma with some in advanced clinical stages (Table 1). 

 

On the forefront of Ewing sarcoma targeted therapies are inhibitors of insulin-growth factor- 

receptor (IGF-R) and mammalian target of rampamycin (mTOR), signaling pathways involved in 

cell proliferation and resistance to apoptosis respectively. Patient trials show good tolerance 

and tumour regression, however the major challenges with these inhibitors are their brief 

response periods and rapid development of resistance (reviewed in [17]). Lack of response or 

partial response, pharmacokinetic properties and dose-limiting toxicities are some of the issues 
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that these targeted therapies currently face, thus prompting research into other potential 

biological targets and/or improved versions of current drugs. 

 

Table 1. Molecular targets and current development of targeted therapies in Ewing sarcomas in 

advanced stage clinical trials. 

Targets Therapeutic agents Stage References 

IGF1-R inhibitors R1507; SCH 717454 Phase II paed [18, 19] 

mTOR inhibitors Ridaforolimus Phase III ad [20] 

Combination Cixutumumab + temsirolimus Phase II paed 

II ad 

[21] 

Multi-agent inhibitors Imatinib mesylate Phase II paed [22, 23] 

Bone microenvironment Zoeldronic acid Phase III paed/ad [24] 

Angiogenesis inhibitor Bevacizumab Phase I/II paed [25] 

HDAC inhibitors Vorinostat, valproic acid Phase I paed [26, 27] 

HSP90 inhibitors 17-AAG Phase I paed [28] 

Abbreviations: ad, adult patients; HSP, heat shock protein; IGF, insulin-like 

growth factor; Paed, paediatric patients; HDAC, histone deacetylase; mTOR, mammalian target 

of rapamycin. 
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Ribosomal RNA Polymerase as a therapeutic target 
 
The nucleolus is the site of ribosomal synthesis and the assembly of nuclei depends on ongoing 

ribosomal DNA (rDNA) transcription and maturation. It is a dynamic region of the nucleus that is 

disassembled and reformed each cell cycle [29]. The major role for the nucleolus is the 

generation and assembly of the key components of the ribosome, the protein synthesis 

apparatus of the cell (Figure 1). Specifically, the 5.8S, 18S and 28S rRNAs are transcribed by 

ribosomal RNA polymerase (Pol I) as a single 47S rRNA precursor in the nucleolus that is 

subsequently processed and cleaved. These rRNAs, together with the 5S rRNA transcribed by 

Pol III in the nucleoplasm, form the nucleic acid backbone of functional ribosomes. The other 

major components of the ribosome, the Pol II transcribed ribosomal proteins, are transported 

from the cytoplasm into the nucleolus for assembly with the rRNAs (reviewed in [30]). 

 

Though, traditionally viewed as a factory for ribosomal synthesis, 30% of nucleolar proteins do 

not participate in ribosomal biogenesis [31]. It is now clear that the nucleolus regulates a 

myriad of cellular functions, such as cell cycle control, stress response, protein degradation and 

mRNA modification and export suggesting a far greater role in cellular homeostasis than 

previously assumed [30]. 
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Nucleolus in cancer 
 

The relationship between the nucleolus and cancer has been the subject of study for many 

years. Abnormalities in the nucleolar morphology of cancer cells (enlarged and/or increased 

number of nucleoli) were first reported in late 19th century [32]. Since this initial report, a 

series of studies have been performed to clarify whether these nucleolar changes were a 

consequence of the cancerous state or if they might represent a cause of neoplastic 

transformation. In principle, the larger nucleoli associated with tumour cells could be attributed 

to greater levels of protein synthesis, and therefore ribosome biogenesis, required by rapidly 

dividing tumour cells. However, there is increasing evidence that nucleolar defects can be 

causative agents in the onset of cancer. Firstly, it was demonstrated that mammalian cells have 

a surveillance system for monitoring ribosomal biogenesis and nucleolar integrity and that 

disruption of these processes results in cell cycle arrest and programmed cell death at the G1 

and G2 cellular checkpoints [33-35]. Of these, the best understood is the nucleolar stress 

pathway in which insults to the nucleolus lead to the accumulation of p53 [33]. 

 

The second critical observation was that the nucleolar stress pathway in tumour cells could be 

activated in vivo by a selective small molecule inhibitor (CX-5461) of Pol I transcription. This 

approach revealed that dysregulated rDNA transcription is necessary for the transformed 

phenotype induced by oncogenes such as MYC, and that targeting this dysregulated activity 

could be used as a therapeutic strategy to selectively kill malignant cells in vivo [36]. These 

findings shed light on an unappreciated role of dysregulated ribosome biogenesis and its 
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contribution to cellular transformation, and thus represent a novel strategy in the treatment of 

human cancers. 

Dysregulation of Pol I transcription and ribosome biogenesis is universal in cancer. In general, 

this hyperactivation of rDNA transcription can be achieved by altered expression of upstream 

signaling pathways, or by oncogenic and tumour suppressive transcription factors such as p53 

and MYC that interact directly with the rDNA promoter/transcription apparatus (reviewed in 

[37, 38]). These abundant and potent transcription factors regulate all three RNA polymerases, 

suggesting that, in addition to their traditional regulatory role in Pol II transcription, hijacking 

the control of Pol I and Pol III transcription may be essential for malignant transformation 

(reviewed in [36]). In addition to the core Pol I transcription apparatus, numerous other 

nucleolar proteins, some of which may also indirectly affect ribosome biogenesis, are 

modulated in cancer. The most prominent is nucleophosmin 1 (NPM1), which is overexpressed 

in various solid tumours including Ewing sarcoma [39, 40]. 
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Figure 1. Schematic representation of ribosome biogenesis. Multiple coordinated steps are 

involved in ribosome biogenesis. Transcription of ribosomal genes exclusively by the Pol I 

transcriptional machinery in the nucleolus generates the 47S rRNA precursor which is rapidly 

processed into the 18S, 5.8S and 28S rRNAs. These three rRNAs will then assemble together 

with the 5S rRNA transcribed by Pol III, and with the ribosomal proteins transcribed by Pol II to 

form the 60S and 40S ribosomal subunit in the nucleus. These subunitsfurther assemble into 

the mature 80S ribosome which is then exported to the cytoplasm[37]. From reference [37]. 
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As yet, there is no clear evidence to support the notion that accelerated rDNA transcription in 

cancer is sufficient to initiate malignant transformation. This is in part due to the fact that rDNA 

transcription is a complex process that is tightly coupled to downstream processes, such as 

rRNA processing, ribosomal assembly, and transport. Therefore, modulation in any single rDNA 

transcription component will likely be counteracted by the rate-limiting step of the 

downstream processes. Although C-myc and oncogenic signaling pathways (PI3K/AKT/mTOR 

and RAS/RAF/ERK) can cause a robust increase in Pol I activity and subsequent acceleration of 

ribosomal synthesis, it is not possible to ascribe this function as causative for malignant 

transformation as these pathways and factors have pleiotropic effects on many aspects of 

malignant transformation in addition to their roles in ribosome biogenesis. 

 

As one bottleneck limiting cancer cell proliferation is the rate of ribosomal synthesis, it is 

possible that tumour cells become ‘addicted’ to accelerated ribosome biogenesis and therefore 

are selectively vulnerable to therapeutics that inhibit rRNA synthesis. It is therefore not 

surprising that numerous anti-cancer drugs mediate their therapeutic effect, at least in part, 

through disrupting ribosome biogenesis. For example, cisplatin, doxorubicin, mitomycin C and 

low concentrations of actinomycin D (<10nM), all inhibit rRNA synthesis at the level of Pol I 

transcription, whereas camptothecin, flavopiridol, and roscovitine modulate early rRNA 

processing steps. In either case, inhibition of Pol I transcription or rRNA processing by these 

drugs leads to nucleolar disruption. In contrast to this, drugs including 5-fluorouracil and 

homoharringtonine, which impair late rRNA processing events, leave the nucleolus intact 

(reviewed in [37, 41]). The ellipticine family of planar alkaloid compounds, which were originally 
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identified in a screen for compounds that intercalate with DNA for use as anticancer agents, 

were recently found to selectively inhibit RNA Pol I by impairing SL-1 promoter binding and 

preinitiation complex assembly [42] . Various ellipticine derivatives have been evaluated in 

Phase I and II clinical trials, but failed further clinical development due to adverse side effects. 

Actinomycin D (FDA approved) which is currently used as a chemotherapeutic drug in Wilms 

and Ewing tumours. Unfortunately, none of these drugs are highly Pol I selective and therefore 

it is not possible to assign the proportion of therapeutic effect mediated via Pol I. Furthermore, 

these drugs are DNA damaging agents that are associated with off-target toxicity. By contrast, a 

new generation of drugs are currently being developed that selectively inhibit Pol I transcription 

for the specific purpose of cancer therapy. 

 

CX-5461: a potent and selective rRNA polymerase inhibitor 
 

CX-3543 (Cycle Pharmaceuticals) was the first chemotherapeutic agent developed that 

selectively targeted Pol I transcription (Pol I) in vivo. This drug selectively disrupts the nucleolin-

rDNA G-quadruplex complex in the nucleolus. Similar to the functions of actinomycin D which 

intercalates into GC-rich duplex DNA, CX-3543 inhibits Pol I transcription at the site of RNA 

elongation and induces apoptosis in cancer cells. CX-3543 was shown to have clinical benefits 

for carcinoid/neuroendocrine tumours and is currently under phase I clinical trials [43]. 

 

CX-5461, is a next generation small molecule inhibitor, which impairs initiation of Pol I 

transcription by disrupting the interaction between Pol I transcription initiation factor SL-1 and 

the rDNA promoter [44]. CX-5461 has a 300–400 fold higher selectivity towards Pol I than either 
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Pol II or Pol III 44. In vitro studies have revealed that CX-5461 has a high anti-proliferative 

activity against a wide range of human cancer cell lines [45-48], however, the sensitivity 

towards Pol I inhibition varies widely between these cell lines (30 to 1000 fold). Interestingly, 

cell lines derived from p53 wild type hematological malignances were the most sensitive. 

However the precise role of p53 status in conferring sensitivity to CX-5461 is an area of 

contention. CX5461 was shown to selectively kill B-cell lymphoma cells in vivo, but not normal B 

cells, by inducing p53-dependent apoptosis leading to the release of ribosomal proteins which 

bind MDM2, thus abrogating the p53–MDM2 interaction (Figure 2). Several other studies show 

efficacy of CX-5461 in in vivo models of acute myeloid leukemia and prostate cancer [48, 49]. In 

contrast, a study by Wang et al, demonstrated that low nanomolar concentrations of CX-5461 

induce p53-independent autophagy in wild type, mutant and drug-resistant myeloma and 

pancreatic carcinoma cell lines [45] . 

 

This type of non-genotoxic activation of p53 caused by CX- 5461 holds great promise in future 

cancer therapy. Whether selective targeting of ribosome biogenesis can be translated into anti-

cancer treatment for different cancer types remains to be seen. Unfortunately, the majority of 

human cancers have lost wild type p53 functions, but recent results indicate that nucleolar 

stress can also be mediated independently of p53 function by other specific mechanisms, 

including inactivation of the E2F-1 transcription factor by MDM2 [35]. 
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Summary 

 

Ewing sarcoma is a childhood bone malignancy with alarmingly high mortality rate despite 

aggressive multi-modality treatment regimens. The majority of the Ewing sarcoma cases 

express a functional wild-type p53 suggesting that Ewing sarcoma will be sensitive to p53-based 

targeted therapeutic strategies. 

 

Up-regulated rRNA transcription is a hallmark of cancer cells. To sustain rapid cell growth and 

proliferation, cancer cells become dependent on accelerated ribosome production which is 

controlled by Pol I. Previous studies show that selective inhibition of rRNA transcription by low 

concentration of actinomycin D results in rapid p53 stabilization and cancer cell apoptosis in 

Ewing sarcoma. 
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Figure 2. Overview of nucleolar stress related activation of the p53 pathway. Under normal 

conditions (left panel) the ribosomal proteins (RPs) are located within the nucleolus and 

exported to the cytoplasm where they assemble together with rRNA into functional ribosomes. 

MDM2 binds and ubiquitinates p53 which promotes p53 proteasomal degradation. Under 

nucleolar stress conditions (right panel) nucleolar disruption results in the release of RPs into 

the nucleoplasm where they bind MDM2 and abrogate its interaction with p53 leading to p53 

stabilisation and activation of p53 downstream pathways, inducing cell cycle arrest, apoptosis, 

or senescence (adapted from 34). 
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CX-5461, a novel selective small-molecule inhibitor of RNA polymerase (pol) I, induces cell 

death in several human tumour types by both p53-dependent and independent mechanisms. 

However, in vitro results show that hematological cell lines with wild type p53 are the most 

sensitive to CX-5461 mediated cell death, suggesting that cancers with an intact p53 pathway 

will be sensitive to this drug. 

Clinical Significance 

 

Sarcomas represent 20% of malignancies in children and 10% of cancers in young adults. 

Despite aggressive multi-modal treatment regimens, the current mortality rate of 

approximately 50%, is amongst the worst of all cancer types in adolescents and young adults. 

The poor mortality rates have not improved over the past decade, suggesting an urgent need 

for more effective targeted treatment strategies. 

 

RNA Pol I inhibition by CX-5461 is a promising approach for the treatment of Ewing sarcoma. 

Preliminary findings using Ewing sarcoma cell lines demonstrate low nanomolar drug activity 

providing a rationale for further research into CX-5461 as a potential therapeutic agent. Pre-

clinical evaluation of the mechanism of CX5461 induced cellular death in vitro and in mouse 

models is paramount before translation of CX-5461 into the clinic. Furthermore, given that a 

considerable proportion of human cancers (~50%) exhibit mutations of the p53 gene, additional 

experiments are required to unequivocally address the role of p53 status in the sensitivity of 

cancers to RNA pol I inhibition. 

 



 

212 

 

References 

 

1. Rodriguez-Galindo, C., S.L. Spunt, and A.S. Pappo, Treatment of Ewing sarcoma family of 

tumours: current status and outlook for the future. Med Pediatr Oncol, 2003. 40(5): p. 276-87. 

2. Rosen, G., et al., Ewing's sarcoma: ten-year experience with adjuvant chemotherapy. Cancer, 

1981. 47(9): p. 2204-13. 

3. May, W.A., et al., The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent 

transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol, 

1993. 13(12): p. 7393-8. 

4. May, W.A. and C.T. Denny, Biology of EWS/FLI and related fusion genes in Ewing's sarcoma 

and primitive neuroectodermal tumour. Curr Top Microbiol Immunol, 1997. 220: p. 143-50. 

5. Owen, L.A. and S.L. Lessnick, Identification of target genes in their native cellular context: an 

analysis of EWS/FLI in Ewing's sarcoma. Cell Cycle, 2006. 5(18): p. 2049-53. 

6. Hollstein, M., et al., p53 mutations in human cancers. Science, 1991. 253(5015): p. 49-53. 

7. Radig, K., et al., p53 and ras mutations in Ewing's sarcoma. Pathol Res Pract, 1998. 194(3): p. 

157-62. 

8. Komuro, H., et al., Mutations of the p53 gene are involved in Ewing's sarcomas but not in 

neuroblastomas. Cancer Res, 1993. 53(21): p. 5284-8. 

9. Wei, C.L., et al., A global map of p53 transcription-factor binding sites in the human genome. 

Cell, 2006. 124(1): p. 207-19. 

10. Honda, R. and H. Yasuda, Activity of MDM2, a ubiquitin ligase, toward p53 or itself is 

dependent on the RING finger domain of the ligase. Oncogene, 2000. 19(11): p. 1473-6. 



 

213 

 

11. el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumour suppression. Cell, 1993. 

75(4): p. 817-25. 

12. Jin, Z. and W.S. El-Deiry, Overview of cell death signaling pathways. Cancer Biol Ther, 2005. 

4(2): p. 139-63. 

13. Mihara, M., et al., p53 has a direct apoptogenic role at the mitochondria. Mol Cell, 2003. 

11(3): p. 577-90. 

14. Zhai, W. and L. Comai, Repression of RNA polymerase I transcription by the tumour 

suppressor p53. Mol Cell Biol, 2000. 20(16): p. 5930-8. 

15. Ludwig, J.A., Ewing sarcoma: historical perspectives, current state-of-the-art, and 

opportunities for targeted therapy in the future. Curr Opin Oncol, 2008. 20(4): p. 412-8. 

16. Thacker, M.M., H.T. Temple, and S.P. Scully, Current treatment for Ewing’s sarcoma. Expert 

Review of Anticancer Therapy, 2005. 5(2): p. 319-331. 

17. Scotlandi, K., Targeted Therapies in Ewing's Sarcoma, in New trends in cancer for the 21st 

century, A. Llombart-Bosch, V. Felipo, and J.A. López-Guerrero, Editors. 2006, Springer 

Netherlands: Dordrecht. p. 13-22. 

18. Olmos, D., et al., Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R 

antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: a phase 1 

expansion cohort study. The Lancet Oncology. 11(2): p. 129-135. 

19. Pappo, A.S., et al., R1507, a monoclonal antibody to the insulin-like growth factor 1 

receptor, in patients with recurrent or refractory Ewing sarcoma family of tumours: results of a 

phase II Sarcoma Alliance for Research through Collaboration study. J Clin Oncol, 2011. 29(34): 

p. 4541-7. 



 

214 

 

20. Demetri, G.D., et al., Results of an international randomized phase III trial of the mammalian 

target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in 

patients after benefit from prior chemotherapy. J Clin Oncol, 2013. 31(19): p. 2485-92. 

21. Schwartz, G.K., et al., Cixutumumab and temsirolimus for patients with bone and soft-tissue 

sarcoma: a multicentre, open-label, phase 2 trial. The Lancet Oncology, 2013 14(4): p. 371-382. 

22. Chugh, R., et al., Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma 

using a bayesian hierarchical statistical model. J Clin Oncol, 2009. 27(19): p. 3148-53. 

23. CHAO, J., et al., Phase II Clinical Trial of Imatinib Mesylate in Therapy of KIT and/or PDGFRα-

expressing Ewing Sarcoma Family of Tumours and Desmoplastic Small Round Cell Tumours. 

Anticancer Research, 2010. 30(2): p. 547-552. 

24. Odri, G.A., et al., Zoledronic acid as a new adjuvant therapeutic strategy for Ewing's sarcoma 

patients. Cancer Res, 2010. 70(19): p. 7610-9. 

25. Benesch, M., et al., Compassionate use of bevacizumab (Avastin®) in children and young 

adults with refractory or recurrent solid tumours. Annals of Oncology, 2008. 19(4): p. 807-813. 

26. Fouladi, M., et al., Pediatric phase I trial and pharmacokinetic study of vorinostat: a 

Children's Oncology Group phase I consortium report. J Clin Oncol, 2010. 28(22): p. 3623-9. 

27. Su, J.M., et al., Phase 1 study of valproic acid in pediatric patients with refractory solid or 

CNS tumours: a children's oncology group report. Clin Cancer Res, 2011. 17(3): p. 589-97. 

28. Martins, A.S., et al., A pivotal role for heat shock protein 90 in Ewing sarcoma resistance to 

anti-insulin-like growth factor 1 receptor treatment: in vitro and in vivo study. Cancer Res, 

2008. 68(15): p. 6260-70. 



 

215 

 

29. Boisvert, F.M., et al., The multifunctional nucleolus. Nat Rev Mol Cell Biol, 2007. 8(7): p. 

574-85. 

30. Scheer, U. and R. Hock, Structure and function of the nucleolus. Curr Opin Cell Biol, 1999. 

11(3): p. 385-90. 

31. Pederson, T. and R.Y.L. Tsai, In search of nonribosomal nucleolar protein function and 

regulation. The Journal of Cell Biology, 2009. 184(6): p. 771-776. 

32. Montanaro, L., D. Treré, and M. Derenzini, Nucleolus, Ribosomes, and Cancer. The American 

Journal of Pathology, 2008. 173(2): p. 301-310. 

33. Chakraborty, A., T. Uechi, and N. Kenmochi, Guarding the 'translation apparatus': defective 

ribosome biogenesis and the p53 signaling pathway. Wiley Interdiscip Rev RNA, 2011. 2(4): p. 

507-22. 

34. Iadevaia, V., et al., PIM1 kinase is destabilized by ribosomal stress causing inhibition of cell 

cycle progression. Oncogene, 2010. 29(40): p. 5490-9. 

35. Donati, G., et al., Selective inhibition of rRNA transcription downregulates E2F-1: a new p53-

independent mechanism linking cell growth to cell proliferation. Journal of Cell Science, 2011. 

124(17): p. 3017-3028. 

36. Bywater, M.J., et al., Inhibition of RNA polymerase I as a therapeutic strategy to promote 

cancer-specific activation of p53. Cancer Cell, 2012. 22(1): p. 51-65. 

37. Bywater, M.J., et al., Dysregulation of the basal RNA polymerase transcription apparatus in 

cancer. Nat Rev Cancer, 2013. 13(5): p. 299-314. 

38. Hannan, K.M., et al., Dysregulation of RNA polymerase I transcription during disease. 

Biochim Biophys Acta, 2013. 1829(3-4): p. 342-60. 



 

216 

 

39. Falini, B., et al., Translocations and mutations involving the nucleophosmin (NPM1) gene in 

lymphomas and leukemias. Haematologica, 2007. 92(4): p. 519-32. 

40. Liu, Y., et al., Expression of Nucleophosmin/NPM1 correlates with migration and 

invasiveness of colon cancer cells. Journal of Biomedical Science, 2012. 19(1): p. 53. 

41. Drygin, D., W.G. Rice, and I. Grummt, The RNA polymerase I transcription machinery: an 

emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol, 2010. 50: p. 131-56. 

42. Andrews, W.J., et al., Old drug, new target. Ellipticines selectively inhibit RNA Polymerase I 

transcription. Journal of Biological Chemistry, 2013. 

43. Drygin, D., et al., Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. 

Cancer Res, 2009. 69(19): p. 7653-61. 

44. Drygin, D., et al., Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits 

ribosomal RNA synthesis and solid tumour growth. Cancer Res, 2011. 71(4): p. 1418-30. 

45. Wang, H., et al., CX-5461, a Novel RNA Polymerase I Inhibitor, Is Active Against Wild-Type 

and Mutant p53 Myeloma Models. Blood, 2013. 122(21): p. 4438-4438. 

46. Yan, S., et al., The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian 

Cancer. International Journal of Molecular Sciences, 2017. 18(1): p. 210. 

47. Ye, Q., et al., Therapeutic Targeting of RNA Polymerase I With the Small-Molecule CX-5461 

for Prevention of Arterial Injury–Induced Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, 

and Vascular Biology, 2017. 37(3): p. 476-484. 

48. Rebello, R.J., et al., The Dual Inhibition of RNA Pol I Transcription and PIM Kinase as a New 

Therapeutic Approach to Treat Advanced Prostate Cancer. Clinical Cancer Research, 2016. 

22(22): p. 5539-5552. 



 

217 

 

49. Hein, N., et al., Inhibition of Pol I transcription treats murine and human AML by targeting 

the leukemia-initiating cell population. Blood, 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

218 

 

CHAPTER 7 

Dysregulating ribosomal biogenesis to treat Ewing sarcoma 
 

 

Alaknanda Adwal1, Kathleen I Pishas1,2, Paul M Neilsen3, David F Callen1 

1Centre for Personalised Cancer Medicine, Adelaide Medical School, The university of Adelaide, 

North Terrace, Adelaide, South Australia 5005, Australia 

2Lessnick Sarcoma Laboratory, Centre for Childhood Cancer and Blood Disorders, 700 Children’s 

Drive, Columbus Ohio, 43205, United States of America 

3 School of Health, Medical and Applied Sciences. Central Queensland University, Bruce 

Highway, North Rockhampton, Queensland 4702, Australia 



 

219 

 

Statement of Authorship 
 



 

220 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



 

221 

 

Prelude 
 

 

This study has evaluated the molecular and cellular responses of cultured Ewing sarcoma cell 

lines following exposure to CX-5461, a recently discovered non-genotoxic specific RNA 

Polymerase I inhibitor. Our findings demonstrate that Ewing sarcoma cell lines are acutely 

sensitive to CX-5461. CX-5461 also displayed synergistic interactions with chemotherapeutic 

Actinomycin D that is currently used in treating Ewing sarcoma. Non-genotoxic cell death via 

CX-5461 provides a singular opportunity to overcome DNA damage associated with current 

treatments.  

 

This chapter is presented as a manuscript in preparation for submission to a journal for 

publication.  
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Introduction 

 

Ewing sarcoma is a highly aggressive bone and soft tissue cancer primarily diagnosed in children 

and young adolescents. It affects approximately 200,000 patients worldwide each year and has 

10-20% long term survival in patients with metastatic, relapsed, or recurrent disease1. 

Management of Ewing sarcoma is complicated by the use of genotoxic chemo-and radio- 

therapy that is associated with toxic bystander effects and secondary malignancies. The 

majority of the Ewing sarcoma patients retain functionally intact tumour suppressor p53 and 

downstream signalling pathways, hence exploiting p53-based therapies has been an attractive 

therapeutic approach. Inhibitors targeting MDM2 (e.g. Nutlin), the major negative regulator of 

p53, have demonstrated only modest benefits for patients harbouring wild-type p53. Recent 

sequencing studies demonstrate that Ewing sarcoma possesses one of the lowest mutation 

rates amongst all cancers (0.15 mutations/Mb) 2, 3, with recurrent mutation observed in EWS-

FLI1 (85% cases) and STAG2. Targeted therapies for these proteins are in clinical and pre-clinical 

trials but thus far have no translational benefits. 4-6. The constraints imposed by DNA damaging 

regimen and a combination of lack of recurrent driver mutations for this cancer require an 

alternative approach to evaluate non-genotoxic agents that broadly target cancer cell survival, 

either alone or in combination with traditional chemotherapies.  

 

Dysregulating ribosome biogenesis is one such unexplored approach. Ribosomes are the 

primary protein synthesis apparatus of a cell and directly control cell growth and proliferation. 

Their synthesis is an intricately controlled process in which ribosomal RNA genes (rRNA 28S, 
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18S, 5.8S) transcribed by RNA polymerase I and assemble with ribosomal proteins and 5s rRNA 

transcribed by RNA Pol III and 5S RNA Pol II respectively to form functional ribosome. To 

maintain high proliferation rates, cancer cells need to increase their translational capacity and 

become addicted to high rates of ribosome biogenesis 7-10, which can be exploited 

therapeutically. In fact, many clinically used chemotherapies that interfere with DNA 

metabolism also inhibit ribosome biogenesis11 consequently preventing the transcription of 

rRNA, which leads to ribosomal stress and ultimately p53-dependent cell cycle arrest or 

apoptosis12-14. Actinomycin D, a commonly used chemotherapeutic for the treatment of Ewing 

sarcoma, also inhibits RNA Pol I. However, these multi-modal chemotherapy regimens have 

reached their full capacity now and further improvements to survival can only come from non-

genotoxic approaches. Discovery of small molecule inhibitors that specifically inhibit ribosomal 

biogenesis has gained increased momentum in the last five years, with cell-based screens 

identifying several compounds that have minimal toxicity in non-malignant tissue15, 16.  

 

CX-5461 was the first non-genotoxic and selective inhibitor of ribosomal biogenesis to be 

reported 15. CX-5461 selectively impairs initiation of Pol I transcription by disrupting the 

interaction between Pol I transcription initiation factor SL-1 to the rDNA promoter that leads to 

disruption in ribosome synthesis. CX-5461 elicits its anti-proliferative effects in a wide range of 

cell lines, including leukaemia, lymphoma, osteosarcoma, and prostate cancer cells. CX5461 

was also shown to selectively kill B-cell lymphoma cells in vivo, but not normal B cells, by 

inducing p53-dependent apoptosis17. Currently, CX5461 is undergoing phase I clinical 

evaluation in patients with advanced hematologic malignancies and phase I/II evaluation 
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(NCT02719977) in patients with advanced/metastatic/recurrent solid tumours. The majority of 

sarcomas harbour wildtype p5318, 19. This study assessed whether selective inhibition of RNA Pol 

I by CX-5461 represents a possible therapeutic approach for Ewing sarcoma both as a mono-

therapy and in combination with standard cytotoxic chemotherapeutic protocols..  

 

Methods 
 

Cell culture and reagents 

CX-5461 and the ATM/ATR inhibitor KU-55933 were purchased from Selleck Chemicals 

(Houston, TX). WE-68 and VH-64 were kindly supplied by F. van Valen (Department of 

Orthopaedic Surgery, Westfälische-Wilhelms-University, Germany). TC-252 and TC-71 cell lines 

were kindly supplied by G. Hamilton (Department of Surgery, University of Vienna, Austria), 

STA-ET1 was sourced from P. Ambros (Children's Cancer Research Institute, St. Anna Children's 

Hospital, Vienna, Austria), and CADO-ES-1 was kindly supplied by J. Sonnemann (Department of 

Pediatric Haematology and Oncology, University Children's Hospital, Jena, Germany). MCF-10A, 

SK-ES-1, RD-ES, HCT116 were purchased from American Type Tissue Culture. YZ5 and pEBS 

were a kind gift from Prof. Kum Kum Khanna (Queensland Institute of Medical Research). Cell 

lines were cultured as previously described 20.  

 

Western blot analysis 

 

Western blot analysis was performed as previously described21. Whole protein lysates (5–20 μg) 

were resolved using SDS PAGE electrophoresis, and probed overnight at 4 °C with the following 
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primary antibodies Anti-E2F1 (C20, 1:500, Santa Cruz), p53 DO1 (1:1000, Santa Cruz 

Biotechnology), Phospho-p53 (Ser15) (1:500, Cell Signalling), Phospho-Histone H2A.X (Ser139) 

clone JBW301 (1:500, Millipore) and β-Actin (1:1000, AC-15, Sigma). Chemiluminescent 

detection of protein was achieved using appropriate secondary antibodies conjugated with 

horseradish peroxidase (Amersham) and the enhanced chemiluminescence kit according to the 

manufacturer's instructions (Amersham). 

 

qPCR 

 

Total RNA was extracted from cultured cells using RNeasy mini kits (Qiagen). One microgram of 

total RNA was reverse transcribed using MMLV reverse transcriptase (Life Technologies). qPCR 

was performed using SYBR Green mastermix and run on a CFX96 Bio-Rad real time PCR 

machine. Primer sequences  are listed in the table below. Experiments were repeated three 

times. Results were normalized to GAPDH expression for each sample and plotted as relative to 

the expression of control samples. 

18S pre-rRNA CCGCGCTCTACCTTACCTACCT 
GCATGGCTTAATCTTTGAGACAAG 

GAPDH CGTCACCAACTGGGACGACA 
CTTCTCGCGGTTGGCCTTGG 

ITAGV TTGGAGCATCTGTGAGGTCG 
ACATGGAGCATACTCAACAGTCT 

ITAG5 CGGGCTCCTTCTTCGGATTC 
CAGAGGTAGACAGCACCACC 

ITGB1 CCGCGCGGAAAAGATGAATTT 
CCACAATTTGGCCCTGCTTG 

ITGB3 CATCACCATCCACGACCGAA 
GTGCCCCGGTACGTGATATT 
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shRNA, siRNA and transfection 

WE-68 and VH-64 shRNA stable cells were generated using retroviral transduction with 

pRetroSuper (pRS) vectors pRS-p53, which confers puromycin resistance. The pCMV-E2F1-HA 

(#24216) plasmid was purchased from Addgene, USA. Cells were transfected using 

lipofectamine 2000 or lipofectamine RNAimax according to the manufacturer’s instructions. 

 

Proliferation assay 

 

Ewing sarcoma cells were seeded at 1 × 104 cells per well into 96-well plates, and treatments 

were administered. After the indicated time periods of incubation, medium was removed and 

cells were washed twice with PBS. 100 μL of Cell-titre glo (1:1 ration with meduma, Promega) 

was added to each well and the cells were incubated for 10 mins in dark with shaking. 

Luminescence was measured on a LUMIstar Omega Microplate Reader from BMG LABTECH 

(Carlsbad,, CA) with reactions normalised to vehicle control treated cells. 

 

Cell viability assays 

Cells were seeded in 96-well microtiter plates at a density of 2×104 cells/well in the presence of 

CX-5461 and chemotherapy drugs as indicated. For synergy experiments, cells were co-treated 

with indicated concentrations of CX-5461 and chemotherapies. Cells were harvested 48 hours 

post CX-5461 treatment, centrifuged at 1,300 × g, washed in phosphate buffered saline (PBS) 

and stained with 7-amino-actinomycin-D solution (2 μg/mL) (7AAD, Invitrogen) for 10 minutes 

at room temperature. Viable cells were determined with the use of a FACS Calibur flow 
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cytometer (Becton Dickinson Immunocytometry Systems), and analyzed with the use of 

FLOWJO (Tree Star Inc.) and GraphPad Prism (GraphPad Software Inc. version 6).  

 

Cell cycle analysis 

 

Cells were harvested, collected by centrifugation, washed with PBS, fixed in cold 70% ethanol, 

and incubated overnight at 4°C. Cell pellets were washed twice with PBS and resuspended in 

PBS containing 25 mg/mL propidium iodide, RNase A, and Triton X-100 for 30 minutes at room 

temperature in the dark immediately before fluorescence-activated cell-sorting (FACS) analysis 

by FACSCalibur flow cytometer (Beckton Dickinson). DNA content was determined with the use 

of a FACS Calibur flow cytometer with cell cycle profiles analysed using MODFIT LT software 

(version 4.1.7). 50,000 cells were counted for DNA content. 

 

Statistical analysis 

Combination index (CI) values were calculated to determine the synergistic effects of CX-5461 

on cell viability in the presence of cytotoxic agents. A CI value of <1, =1 and >1 indicates 

synergistic, additive and antagonistic effects respectively P values were calculated using 

Student's t-test with P<0.05 considered statistically significant.  
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Results 
 

Ewing sarcoma cells are hypersensitive to RNA Pol I inhibition 
 

To investigate the utility of RNA Polymerase I inhibition for the treatment of Ewing sarcoma, 

the cytotoxic effects of CX-5461 (0-5000 nM) were assessed in a panel of nine Ewing sarcoma 

cell lines with varying TP53 mutational status (Table 1). Cytotoxic sensitivity to CX-5461 varied 

widely across the cell lines (LD50 range 3-1176nM). Wild-type TP53 cell lines VH-64 and WE-68 

displayed the greatest sensitivity to CX-5461 with LD50 values of 3.0 nM and 3.4 nM 

respectively. In contrast, the mutant TP53 cell line RD-ES was the most resistant to CX-5461 

(LD50 1120 nM), requiring greater than 300 fold CX5461 to achieve 50% cell death.  However, 

there was no correlation observed between TP53 status and  CX-5461 sensitivity (p = 0.29) 

(supplementary figure 1). 

 

A comparison of CX-5461 cytotoxic sensitivity (LD50s) between Ewing sarcoma and previously 

reported solid cancers revealed Ewing sarcoma to be one of the most sensitive reported to date 

for all solid cancers tested with CX-5461 (supplementary figure 2). More importantly, these LD50 

values mirror those displayed by haematological cell lines (supplementary figure 3) for which 

CX-5461 is in phase I or II clinical trials presently. Importantly, the viability of non-malignant 

breast (MCF-10A) and skin fibroblast (NDF) cell lines remained unaffected at these 

concentrations (LD50 >2500nM) (Table 1).  

 

 

 



 

229 

 

 

Table 1. CX-5461 exhibits broad anti-cancer potency in a Ewing sarcoma cell panel.  

ES, Ewing sarcoma; NM, Non-malignant; pPNET, peripheral primitive neuroectodermal tumour. 

Data represents mean ± SEM from three independent experiments. Representative dose-

response curves and RNA Pol I inhibition are presented in supplementary figure 4.  

  

Given this acute sensitivity of Ewing sarcoma cells to CX-5461, we next wanted to determine 

whether efficacy of current treatments for Ewing sarcoma could be increased in combination 

with CX-5461. Since current treatment is limited by toxicities, this combination approach 

provides a singular opportunity to both increase treatment efficacy as well as offer protection 

from DNA damage. The ability of CX-5461 to enhance the cytotoxic effects of four standard 

Cell line Histology Patient 

gender/age 

Origin TP53 

status 

EWS 

rearrangement 

CX-5461 

LD50 (nM) 

VH-64 ES M/24 Relapse Wildtype t(11;22) 3.0 ± 6.3 

WE-68 ES F/19 Primary Wildtype t(11;22) 3.4 ± 8.7 

SKES1 ES M/18 Primary Cys176Phe t(11;22) 15± 12 

TC71 ES M/22 Primary Truncation t(11;22) 119±59 

STA-ET1 pPNET F/13 Relapse Wildtype t(11;22) 120±63 

TC252 ES Unknown Relapse Wildtype t(11;22) 130±54 

SK-N-MC ES F/14 Primary Null t(11;22) 132±67 

CADO-ES1 ES F/19 Relapse Wildtype t(21;22) 141±97 

RD-ES ES M/19 Primary Arg273Cys t(11;22) 1176±284 

MCF-10A NM  Immort

alized 

  >5000 

NDF Skin 

fibroblasts 

 Primary   >2500 
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Ewing sarcoma chemotherapeutic agents (vincristine, actinomycin D, doxorubicin or etoposide) 

was assessed in three Ewing sarcoma cell lines (WE-68, SK-ES1 and SK-N-MC). The synergistic, 

additive or antagonist drug interactions were calculated by combination index (CI) approach 

using Chou-Talalay method. CI values were then used to generate a heat map of drug 

interactions.  

 

The combination results varied from additive to antagonistic for all chemotherapy agents 

tested. The most synergistic combination of CX-5461 was observed with Actinomycin D over a 

range of doses in both p53 wild-type WE-68 cells and p53 null SK-N-MC cells but conferred 

additive effect in SKES1 (Figure 1). We suspect similarity of synergy patterns of Actinomycin D 

and RNA polymerase I inhibitor CX-5461 might be due to their overlapping mechanisms of 

action, as previous studies report that Actinomycin D also inhibits ribosomal biosynthesis, albeit 

at low concentrations. A maximum of 40% and 20% increase in cell death was observed in SK-N-

MC and WE-68 respectively, when the two agents were combined (48hr CX-5461 treatment). 

For doxorubicin, etoposide and vincristine, most combination doses with CX-5461 caused 

antagonistic effects in all cell lines tested (supplementary figure 5). Overall, the synergistic 

interaction between CX-5461 and Actinomycin D provides an attractive approach for treating 

Ewing sarcoma patients with drug combination over Actinomycin D treatment alone.  
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Figure 1. CX-5461 synergizes with Actinomycin D in vitro. A. Cells were treated for 48 h with 

the indicated concentrations of CX-5461 in the presence or absence of Actinomycin D (0.625 

ng/ml). Cell viability was measured through 7AAD staining. B. Graphic heat-map representation 

of combination indices calculated for CX-5461 in combination with Actinomycin D using the 

Chou-Talalay method.  
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CX-5461 induces cell death and cell  cycle arrest in Ewing sarcoma cell 
lines 
 
Given the disparate sensitivity of cell lines to CX-5461, we initially examined the cellular 

outcome following CX-5461 treatment. Two highly sensitive (WE-68 and VH-64), a moderately 

sensitive (SK-N-MC) and a resistant (RD-ES) cell line were treated with CX-5461 for 24h or 48h 

and analysed for cell-cycle distribution using propidium iodide staining.  

 

Treatment with CX-5461 for  did not alter cell cycle profile of WE-68 and VH-64 compared to 

untreated controls (Figure 2A). However, as expected, these CX-5461 doses significantly 

increased cell death as shown by increase in sub-G1 peak (Figure 2B). In contrast, treatment 

with 200nM CX-5461 caused a significant G2/M arrest in SK-N-MC and RD-ES cell lines. In SK-M-

C, the G2/M population of CX-5461 treated cells was 48% after 48 hr compared to 17% cells in 

in untreated controls(Figure 2A). The most dramatic increase in G2/M cell population was 

observed for the CX-5461 resistant RD-ES cell line which displayed >300% increase in G2/M cell 

cycle arrest after 48h. The increase in G2 phase was found to be associated with a concomitant 

significant decrease in the S-phase populations. These data suggest that CX-5461 elicits 

different cellular outcomes on different Ewing sarcoma cell lines.  
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Figure 2. Anti-proliferative effects of CX-5461 in Ewing sarcoma cell lines. Cells were treated 

with indicated CX-5461 doses for either 24 or 48h and Cell cycle distribution was determined by 

flow cytometry analysis of propidium iodide stained cells for A. G1/S/G2/M population and B. 

Sub-G1 population as indicator cell death. One out of three biological replicate is shown. 
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CX-5461 induced cell death in Ewing sarcoma cell lines is p53 dependent  
 

A number of lines of evidence suggest that the anti-proliferative activity of CX-5461 is due to its 

ability to activate p53 signalling, an important tumour suppressor pathway that is commonly 

deactivated in >50% of cancers. Although there was no statistical difference between LD50 

values of p53 mutant and p53 wild-type cell lines (supplementary figure 1), two of the most CX-

5461 sensitive cell lines had wild-type p53. Therefore, to determine whether sensitivity to CX-

5461 is driven by p53 function in Ewing sarcoma, we used siRNAs to specifically knock down 

p53 expression in these two cell lines. Significant silencing of p53 protein (>80%) expression 

was confirmed in western blot analysis (supplementary figure 6).  

  

Compared to cells transfected with control siRNA, WE-68 and VH-64 cell silenced for p53 

activity exhibited a modest 15-20% decrease in cell death when exposed to CX-5461 (Figure 

3A). This was not consistent with western blot analysis in which no appreciable increase was 

observed in either p53 or downstream target p21 protein expression except at the highest CX-

5461 dose (Figure 3B). However, treatment with 200nM CX-5461 caused over 15 fold induction 

in p21 mRNA levels (supplementary figure 7).  

 

Given the robust p21 induction and its role in p53 mediated cell cycle induction, we further 

assessed the inhibitory effect of CX-5461 on the cell cycle distribution in WE-68 cells silenced 

for p53 activity. Cell cycle profile of p53shRNA treated WE-68 cells showed that upon 24h 

treatment with 5nM CX-5461, these cells had a significantly higher proportion of G2/M cells 

compared to scramble controls (47% vs. 22%) (Figure 3C). These results suggested that in 
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response to CX-5461 treatment, in Ewing sarcoma cell lines both cell cycle and cell death 

function of p53 are engaged.  

Figure 3. CX-5461 induces anti-proliferative effect through a p53-depedent pathway. 7AAD 

uptake assay to determine the percentage (%) of dead cells of the A. WE-68 and WE-68 

p53shRNA (n = 2) and  VH-64 and VH-64 p53shRNA (n = 2) cell lines treated with CX-5461 as 

indicated. Error bars represent mean ± s.d. after 48h CX-5461 treatmentB. Western blot 
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analysis of p53, p21, p53(phospho- serine 15) and B-tubulin protein levels in VH-64 and WE-68 

cell lines treated with increasing doses of CX-5461 for 24 h (representative of n = 2). C. Effect of 

CX-5461 on the cell cycle profile after p53 knock-down in WE-68 cells. Top, histograpms of PI 

staining in WE-68 Ewing sarcoma cell line transfected with scrambled shRNA treated with 

vehicle control or 5nM CX-5461 for 48h. Bottom, same as above using WE-68 cells treated with 

TP53 shRNA. 
 

CX-5461 induced ATM/ATR dependent G2/M arrest in resistant Ewing 
sarcoma cell lines  
 

A possible mechanism driving the high CX-5461 sensitivity in sarcoma cells is the ATM/ATR 

pathway. Several previous studies report that in acute lymphoblastic leukaemia cell lines, CX-

5461 treatment causes a non-canonical (non-genotoxic) ATM/ATR dependent G2/M cell cycle 

arrest22, 23 . The compounds KU-55933 and CGK733 have been reported as ATM and ATM/ATR 

dual inhibitors respectively. In WE-68 cells, pre-treatment with ATM or dual ATM/ATR inhibitor 

caused a 25% rescue in cell death caused by CX-5461 (Figure 4A). In contrast, pre-treatment 

with ATM or dual ATM/ATR inhibitor caused a significant 30% and 40% increase in cell death 

upon CX-5461 treatment compared to cells not pre-treated with ATM/ATR inhibitors. We 

expected that this observed increase in cell death was due to abrogation of G2/M arrest caused 

by CX-5461. Indeed, compared to 44.6% of RD-ES cells arrested in G2/M, 1hr pre-treatment 

with dual ATM/ATR inhibitor significantly down-regulated the G2/M arrested population to 

16.4% (Figure 4B). As expected, there were no significant changes in the cell cycle profile of the 

WE-68 cells. Overall, these results suggest that in CX-5461 resistant Ewing sarcoma cell lines, 

treatment with CX-5461 induces a G2/M arrest that can be abrogated with co-treatment with 

checkpoint kinase inhibitors.  
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Figure 4. CX-5461 induces ATM/ATR driven cell cycle arrest in Ewing sarcoma cells. A. Sarcoma 

cell lines pre-treated with 200nM ATM and ATM/ATR inhibitors for 2 h and subsequently 

incubated in the absence or presence of CX-5461. Cell death was measured using 7AAD staining 

after 48h. B. Cell cycle analysis in WE-68 and RD-ES cells pre-treated with ATM inhibitor or 

ATM/ATR inhibitor for 2h and subsequently treated with CX-5461 (10 nM and 1000 nM for WE-

68 and RD-ES respectively). Cell cycle analysis using propidium iodide staining and flow 

cytometry.  

 



 

238 

 

E2F1 protein levels predict response to CX-5461 
 

Regarding the mechanism by which CX-5461 might induce its anti-tumourigenic effects in the 

absence of p53 function, we focused our attention on the expression of E2F-1, a transcription 

factor that is engaged upon ribosomal stress. E2F1 has been shown to stabilize following rRNA 

transcription inhibition using low levels of actinomycin D. Therefore, we measured the 

expression of E2F-1 protein in the Ewing sarcoma panel exposed to CX-5461 for 16h. Although 

16h exposure to CX-5461 did not modify E2F1 expression compared with untreated cells, basal 

E2F1 protein levels significantly correlated with sensitivity to CX-5461 (Figure 5A and 5B). 

Sensitive cell lines WE-68, TC-71, SK-E-S1 expressed significantly higher levels of E2F1 compared 

to the moderately sensitive SKNMC or resistant RD-ES cell lines. 

 

Next, we assessed the effect of E2F-1 overexpression on the sensitivity to CX-5461. When RD-ES 

were transfected with E2F1 overexpression plasmid pCMV-E2F1-HA, >60% of cells lost viability 

Similar results were obtained from SK-N-MC cell lines overexpressing E2F1 through transfection 

of pCMV-E2F1-HA plasmid (Figure 5C).  
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Figure 5. E2F1 protein levels correlate with CX-5461 sensitivity in Ewing sarcoma cell lines. A. 

E2F1 protein expression was determined by western blot analysis, 16h after CX-5461 

treatment. B. Correlation between cytotoxic sensitivity to CX-5461 and E2F1 protein expression 

(quantified using ImageJ program). C. 7AAD cell viability after 48h in RD-ES cells transfected 

with pCMV-E2F1-HA overexpression construct.  
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Discussion 

 

Overall survival for patients with metastatic Ewing sarcoma is less than 30% with multi-agent 

chemotherapy24. Current multi-modal chemo regimens have made a big impact in improving 

Ewing sarcoma survival rates over the past decades, but they have reached their full capacity 

now and further improvements to survival can only come from non-genotoxic approaches. CX-

5461 is a novel non-genotoxic RNA polymerase I inhibitor that has demonstrated its anti-

proliferative effects in a vast panel of hematological and solid tumour cell lines. Encouraging 

results from initial in vitro and in vivo evaluations demonstrated hematological cell lines with 

wild-type p53 to be acutely sensitive to CX-5461, which has led to Phase I/II clinical evaluations 

of CX-5461 in advanced hematological malignancies. Given that approximately 90% of Ewing 

sarcomas retain a functional wild-type p53, we hypothesized that activation of the p53 pathway 

via CX-5461 has potential for Ewing sarcoma treatment.  

 

Here, we show that Ewing sarcoma cell lines are exquisitely sensitive to CX-5461, with a subset 

(WE-68, VH-64 and SKES-1) undergoing cell death at extremely low CX-5461 doses (LD50 

<15nM; 48h). Comparison of LD50 values from previously published studies revealed Ewing 

sarcoma is by far the most responsive solid tumour to CX-5461 that has been tested to date. In 

particular, VH-64 and WE-68 Ewing sarcoma cell lines showed sensitivities lower than any ever 

reported in the literature for solid tumours and parallel some of the most potent responses 

observed in blood cancers. In both VH-64 and WE-68, the anti-tumorigenic response to CX-5461 

was p53 dependent. Silencing of p53 activity in WE-68 and VH-64 markedly decreased cytotoxic 
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sensitivity to CX-5461. Furthermore, cell cycle analysis of WE-68 cells silenced for p53 activity 

showed a significant G2/M arrest compared to scramble controls. Combination drug 

experiments revealed synergistic interaction with Actinomycin D in both wild-type p53 WE-68 

and p53 null SK-N-MC cell lines. Previous studies have reported that at low nM doses 

Actinomycin D causes p53 stabilization and subsequent cell death suggesting that CX-5461 may 

be effective in Ewing sarcoma cases that do not retain functional p53 25.  

 

p53 mutant RD-ES and p53 null SK-N-MC cell lines that were inherently resistant to CX-5461, 

underwent a G2/M arrest. We demonstrate that this G2/M cell cycle arrest is driven via 

checkpoint kinases ATM/ATR in Ewing sarcoma cells. Furthermore, pre-treatment with 

ATM/ATR inhibitor CGK733 abrogates CX-5461 mediated G2/M arrest and results in cell death.  

This observation is consistent with previous studies that show that CX-5461 treatment induces 

an ATM/ATR dependent G2/M cell cycle arrest in both hematological cell and solid cancer cell 

lines in a p53-independent manner 22, 26-28.  

 

The fact that CX-5461 was able to induce cell death in mutant p53 cell lines (SK-ES-1 and TC-71) 

implies the involvement of p53-independent mechanisms. Apart from inducing p53-dependent 

signaling, ribosomal stress is also known to induce p53-independent signaling through E2F1 

(reviewed in29). Indeed, our results strongly indicate that cell line sensitivity to CX-5461 was 

reflected in E2F1 protein expression in Ewing sarcoma cell panel.  This is in line with a previous 

study that shows that in response to low doses of Actinomyic D, p53 deficient neuroblastoma 

cell lines undergo cell death by upregulating E2F1 protein expression 25. Previous studies show 
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that CHK1 and CHK2 promote E2F1 stabilization and activity after ribosomal stress in a p73-

dependent manner as a backup when p53 is defective to ensure that damaged cells can 

undergo cell death 30. Role of E2F1 in CX-5461 mediated cell death is also consistent with the 

observation that autophagy is the mechanism of CX-5461 mediated cell death in solid cancers 

(ref). It is likely that cellular outcome following CX-5461 treatment is determined by a complex 

interplay and cross-talk between E2F1- ATM/ATR and E2F1-p53 determine cellular outcome 

and warrants further experimentation.  

 

In conclusion, we show that Ewing sarcoma cell lines are exquisitely sensitive to CX-5461. 

Amongst all cancers screened to date, Ewing sarcoma are by far the most responsive solid 

tumour. Sensitivity to CX-5461 is driven by both p53 dependent and p53-independent 

mechanisms, and likely through the E2F1 pathway. Furthermore, combination of CX-5461 with 

chemotherapeutic Actinomycin D produces synergistic interaction and causes potent cell death. 

Taken together, our study provides encouraging pre-clinical results for the application of CX-

5461 as a single agent and/or alongside chemotherapies for Ewing sarcoma treatment. 
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Supplementary material 
 

Supplementary results 
 
Figure 1. Correlation between p53 status and CX-5461 cytotoxic LD50 values. 
 

 
 
 
 
Figure 2. Relative LD50 of all solid tumour cell lines published. Ewing sarcoma cell lines (in red) 
VH-64, WE-68 and SK-eS1 are three of the most sensitive cell lines to CX-5461. 
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Figure 3. Relative LD50 of all blood cancer cell lines published. Ewing sarcoma cell lines in red. 
 

 
 
Figure 4. Representative LD50 and IC50 inhibition.   
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Figure 5. CX-5461 combination charts and heat map with various chemotherapies. Combination 
indices show that combination with most chemotherapies (Doxorubicin, Vincristine, and 
Etoposide) were either antagonistic or additive in all three cell lines for most concentrations 
tested. One exception was the comibation with Nutlin (a p53 activatior) in WE-68 cell line, 
where drug combinations were almost invariably synergestic at all concentrations tested.   
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Figure 6. p53 protein knockdown in WE-68 and VH-64 cell lines using shRNA pRS-p53.  
 
 

 
 
Figure 7. mRNA expression levels of p21 in cell lines treated with 200nM CX-5461. Error bars 
represent mean ± s.d of three biological replicates. 
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Prelude 

 

This study has evaluated the molecular and cellular responses of cultured Ewing sarcoma cell 

lines following exposure to XI-006, a MDM2 inhibitor. Treatment with XI-006 results in potent 

p53-independent apoptosis at non-DNA damaging concentrations in Ewing sarcoma cell lines.  

Notably, strong synergy was observed with olaparib, a PARP inhibitor that is gaining significant 

interest for the treatment of solid cancers and thus represents a novel therapeutic intervention 

for the treatment of Ewing sarcoma.  

 

This research has been published in Scientific Reports. (Dec, 2016) and this chapter is the 

published version of the manuscript.  

 

Contribution by the candidate:  Conducted all experiments requested by reviewers for 

publication). 

 

 

 

 

 

 

 

 



 

257 

 

Abstract 

 

There is an imperious need for the development of novel therapeutics for the treatment of 

Ewing sarcoma, the second most prevalent solid bone tumour observed in children and young 

adolescents. Recently, a 4-nitrobenzofuroxan derivative, XI-006 (NSC207895) was shown to 

diminish MDM4 promoter activity in breast cancer cell lines. As amplification of MDM4 is 

frequently observed in sarcomas, this study examined the therapeutic potential of XI-006 for 

the treatment of Ewing and osteosarcoma. XI-006 treatment of Ewing and osteosarcoma cell 

lines (n = 11) resulted in rapid and potent apoptosis at low micro-molar concentrations 

specifically in Ewing sarcoma cell lines (48 hr IC50 0.099–1.61 μM). Unexpectedly, apoptotic 

response was not dependent on MDM4 mRNA/protein levels or TP53 status. Alkaline/neutral 

comet and γH2AX immunofluorescence assays revealed that the cytotoxic effects of XI-006 

could not be attributed to the induction of DNA damage. RNA expression analysis revealed that 

the mechanism of action of XI-006 could be accredited to the inhibition of cell division and cycle 

regulators such as KIF20A and GPSM2. Finally, potent synergy between XI-006 and olaparib 

(PARP inhibitor) were observed due to the down-regulation of Mre11. Our findings suggest that 

XI-006 represents a novel therapeutic intervention for the treatment of Ewing sarcoma. 
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Introduction  
 

 

Sarcomas are a group of rare malignancies that affect approximately 200,000 individuals 

worldwide each year1. Exemplifying the heterogeneous nature of this malignancy type, 

approximately 50 distinct histological subtypes of sarcoma have been identified to date, ranging 

from indolent to highly invasive and metastatic2. The introduction of cytotoxic 

chemotherapeutic agents such as doxorubicin in the 1960’s for chemo-sensitive subtypes was a 

paradigm shift in oncology practice, however current multi-agent chemotherapeutic regimens 

are associated with significant cumulative and late toxicities. With the exception of 

gastrointestinal stromal tumours (GIST), limited progress in the management of sarcomas has 

been achieved over the past few decades years. For this reason, the advent of novel and 

targeted therapeutics with favourable efficacy and toxicity profiles are eagerly awaited, 

especially for those 20–40% of patients with non-responding, unresectable or metastatic 

disease. 

 

Cancer is a multifaceted process that can arise due to the activation of proto-oncogenes and/or 

inactivation of tumour suppressor genes. The development of novel anti-cancer agents, 

specifically those focused on targeting oncogene addiction has undergone a dramatic 

renaissance over the past decade. One particular oncogene which has gained significant 

interest is MDM4 (Mouse Double Minute 4), a structural homologue of MDM2, thought to 

promote tumourigenesis via its ability to inhibit the tumour suppressor function of TP533. In 

keeping with this hypothesis, amplification and/or overexpression of MDM4 has been 

documented across a wide spectrum of tumours including cutaneous melanoma (68.5%)4, 

http://www.nature.com/articles/srep11465#ref1
http://www.nature.com/articles/srep11465#ref2
http://www.nature.com/articles/srep11465#ref3
http://www.nature.com/articles/srep11465#ref4
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retinoblastoma (65%)5, head and neck squamous carcinoma (50%)6 , breast (19%)3 and 

sarcoma (17%)7,8. In particular, MDM4 copy number gain was documented in 54% of 

conventional, intramedullary, high-grade osteosarcomas and 33% of parosteal osteosarcomas9. 

Furthermore, amplification of MDM4 defined as >3 fold was shown to be a distinctive attribute 

of Ewing, synovial and osteosarcomas, with amplification observed in 50%, 44% and 35% of 

tumour samples respectively8. Prevailing evidence suggests that MDM4 primarily represses the 

transcriptional activity of p53 by binding its trans-activation domain. However, although 

displaying no intrinsic E3 ubiquitin ligase activity, MDM4 can also regulate p53 stability by 

promoting MDM2-mediated degradation10,11. 

 

Owing to the prevalence of MDM4 genomic amplification/mRNA overexpression in human 

cancers, several strategies aimed at inhibiting the oncogenic activity of MDM4 have been 

explored. Although a selective MDM4 small-molecule inhibitor does not currently exist, the first 

reported p53-MDM4 antagonist, SJ-172550, did exhibit cytotoxicity in retinoblastoma cells12. 

However, the thiol reactivity of SJ-172550 precludes its chemical scaffold from further 

development13. Recently, a peptide antagonist of the p53-MDM4 interaction, designated SAH-

p53-8 has been developed. This stapled peptide possesses substantially improved 

pharmacokinetic profiles compared to non-stapled peptide counterparts, and has nano-molar 

binding affinity to the N-terminal p53-binding pocket of both MDM2 and MDM414. However, 

the bioavailability of stapled peptides and their potential as therapeutic agents has been 

questioned. Small molecules are considered more desirable for cancer therapy as their cellular 

uptake is dependent on passive diffusion, whereas stapled peptides such as SAH-p53-8 require 

http://www.nature.com/articles/srep11465#ref5
http://www.nature.com/articles/srep11465#ref6
http://www.nature.com/articles/srep11465#ref3
http://www.nature.com/articles/srep11465#ref7
http://www.nature.com/articles/srep11465#ref8
http://www.nature.com/articles/srep11465#ref9
http://www.nature.com/articles/srep11465#ref8
http://www.nature.com/articles/srep11465#ref10
http://www.nature.com/articles/srep11465#ref11
http://www.nature.com/articles/srep11465#ref12
http://www.nature.com/articles/srep11465#ref13
http://www.nature.com/articles/srep11465#ref14
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pinocytosis, which is less effective15. Indeed, this is highlighted by the fact that high 

concentrations of SAH-p53-8 (15–30 μM) were required to induce significant cytotoxicity in 

melanoma cells in vitro, uptake was attenuated in the presence of serum, and complete 

regression of xenograft tumours was not achieved4,16. Given that aberrant transcription of 

MDM4 can be attributed to its overexpression in cancer17, Wang and colleagues employed a 

high-throughput drug screening strategy to identify small molecules that could mitigate MDM4 

promoter activity. A 4-nitrobenzofuroxan derivative, designated XI-006 (NSC207895) was 

identified and was shown to repress MDM4 promoter activity resulting in decreased MDM4 

mRNA and protein expression and cell viability in MDM4 amplified breast cancer cell lines18. 

To our knowledge, no studies have hitherto directly addressed whether repression of MDM4 

activity can represent a novel therapeutic strategy for the treatment of sarcomas. In particular, 

as MDM4 amplification is a characteristic of both Ewing and osteosarcoma, this study has 

examined the biological effects of XI-006 both as a single agent and in combination with 

standard chemotherapeutic agents and olaparib (PARP inhibitor) in a comprehensive panel of 

Ewing and osteosarcoma cell lines in vitro. Specifically, treatment of Ewing sarcoma cell lines 

resulted in potent apoptosis that was remarkably not dependent on MDM4 mRNA or protein 

levels or TP53 status. 
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Results 
 

MDM4 protein is overexpressed in sarcomas 
 

The majority of studies that have evaluated sarcoma MDM4 expression levels have done so 

through quantification of mRNA. As MDM4 mRNA expression was recently shown not to 

correlate with protein expression in freshly isolated human melanomas4, these previous 

studies may have grossly underestimated the frequency of MDM4 protein expression in 

sarcomas. Indeed, MDM4 mRNA overexpression was not observed in our previous cohort of 24 

sarcoma tissues19. As such, MDM4 protein expression in a cohort of 36 sarcoma samples of 

varying histopathology was determined through immunohistochemical analysis (IHC). Although 

MDM4 expression was very low to undetectable (<10% MDM4 positive cells) in 24/36 (66.7%) 

of tumour samples, strong positive staining was observed in 12/36 (33.3%) cases (Fig. 1a, Table 

1). Grade III staining (>51% positive MDM4 cells) was only observed in one de-differentiated 

liposarcoma (Tumour SE74). Interestingly, well/de-differentiated liposarcomas and 

myxofibrosarcomas exhibited significantly higher levels of MDM4 protein expression compared 

to the rest of the sarcoma cohort (p < 0.0001) (Fig. 1b). 

 

 

 

 

 

 

 

http://www.nature.com/articles/srep11465#ref4
http://www.nature.com/articles/srep11465#ref19
http://www.nature.com/articles/srep11465#f1
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http://www.nature.com/articles/srep11465#f1


 

262 

 

Figure 1: MDM4 protein is overexpressed in sarcomas 

a) Representative images of sarcoma MDM4 immunohistochemical staining. MDM4 grading 

determined from the average number of MDM4 positive cells from four fields of view, Grade 0 

(<10% positive cells), Grade I (11–25% positive cells), Grade II (26–50% positive cells), Grade III 

(>51% positive cells) Scale bar=100uM. (b) Correlation between sarcoma pathology and 

percentage positive MDM4 cells determined from immunohistochemical analysis. Asterisk 

denotes statistical significance in MDM4 expression (****P < 0.0001). (c) Lack of correlation 

between MDM4 SNP34091 genotype (AA, AC, CC) and percentage positive MDM4 cells 

determined from immunohistochemical analysis. 

http://www.nature.com/articles/srep11465/figures/1
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Table 1: Clinical characteristics and MDM4 SNP34091 genotype of the sarcoma cohort. 

Sarcoma 
ID 

Patient 
Gender 

Pathology % Positive 
MDM4 cells 

MDM4 IHC 
Grade 

MDM4 
SNP34091 

SE74* M De-differentiated 
liposarcoma 

51.8 ± 2.3 3 A/A 

SE73 M Well-differentiated 
liposarcoma 

36.2 ± 5.4 2 A/A 

SE10* M Well-differentiated 
liposarcoma 

30.2 ± 1.8 2 A/C 

SE18* M Myxofibrosacroma 28.8 ± 2.5 2 C/C 

SE31 F Undifferentiated 
pleomorphic sarcoma 

23.8 ± 5.1 1 A/A 

SE13* F Myxofibrosacroma 23.6 ± 3.7 1 A/C 

SE15* F Myxofibrosacroma 18.3 ± 1.7 1 A/A 

SE1 M Myxofibrosacroma 17.7 ± 2.0 1 C/C 

SE27* F Radiation induced sarcoma 16.5 ± 1.9 1 A/A 

SE61* M Well-differentiated 
liposarcoma 

15.4 ± 2.6 1 A/A 

SE7* M Pleomorphic liposarcoma 12.9 ± 2.8 1 A/C 

SE24* M Leiomyosarcoma 10.7 ± 4.0 1 A/C 

SE35* M Myxoid liposarcoma 6.1 ± 1.5 0 A/C 

SE72* M Undifferentiated 
pleomorphic sarcoma 

5.8 ± 2.3 0 A/A 

SE39* M De-differentiated 
liposarcoma 

4.1 ± 2.3 0 A/A 
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SE54 M Well-differentiated 
liposarcoma 

3.5 ± 1.0 0 C/C 

SE58* F Myxofibrosacroma 3.2 ± 1.4 0 A/A 

SE100 M Chondrosarcoma 2.6 ± 0.6 0 A/C 

SE43* F Undifferentiated 
pleomorphic sarcoma 

2.5 ± 1.3 0 A/A 

SE108 F Undifferentiated 
pleomorphic sarcoma 

2.4 ± 2.0 0 C/C 

SE66 F Leiomyosarcoma 1.9 ± 1.0 0 A/C 

SE115 F Leiomyosarcoma 1.7 ± 1.0 0 A/A 

SE105 M Synovial Sarcoma 1.5 ± 0.8 0 A/A 

SE69* M Undifferentiated 
pleomorphic sarcoma 

0.7 ± 0.7 0 A/C 

SE79* F Undifferentiated 
pleomorphic sarcoma 

0.6 ± 0.0 0 C/C 

SE51* F Osteosarcoma 0.5 ± 0.5 0 A/A 

SE52* F Leiomyosarcoma 0.4 ± 0.2 0 A/C 

SE41* M Ewing sarcoma 0.3 ± 0.2 0 A/C 

SE104 M Undifferentiated 
pleomorphic sarcoma 

0.3 ± 0.3 0 A/C 

SE88 M Osteosarcoma 0.3 ± 0.2 0 A/A 

SE86 F Undifferentiated 
pleomorphic sarcoma 

0.3 ± 0.2 0 A/A 

SE3 F Undifferentiated 
pleomorphic sarcoma 

0.2 ± 0.2 0 C/C 

SE83 M Leiomyosarcoma 0.2 ± 0.2 0 A/C 

SE47* M Angiosarcoma 0.2 ± 0.2 0 A/A 

SE77 M Synovial sarcoma 0.0 ± 0.0 0 C/C 
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SE45 M Leiomyosarcoma 0.0 ± 0.0 0 A/A 

MDM4 IHC Grade 0 (<10% positive cells), Grade I (11–25% positive cells), Grade II (26–50% 

positive cells), Grade III (>51% positive cells). * Denotes sarcoma samples previously described 

in Pishas et al., 2014. 

 

Recently, Wynendaele and colleagues reported that presence of a single nucleotide 

polymorphism (SNP34091, rs4245739) located 32 nucleotides downstream of the stop codon in 

the 3’UTR of MDM4 was associated with statistically significant increased MDM4 protein 

expression in high-grade ovarian carcinomas20. This A>C transversion was reported to create a 

putative illegitimate target site for hsa-miR-191, which only recognised the 3’UTR of the 

MDM4-C allele resulting in decreased MDM4 mRNA and protein expression. To determine 

whether SNP34091 regulates MDM4 protein expression in sarcomas, the 3’UTR of MDM4 was 

sequenced. Genotypes were as follows, 17 (47.2%) were homozygous for the wild-type allele 

(A/A), 12 (33.3%) were heterozygous (A/C) and 7 (19.4%) were homozygous for SNP34091 (C/C) 

(Table 1). Presence of the C allele was not significantly associated with decreased MDM4 

protein expression within our sarcoma cohort (AA vs AC: P = 0.521) (AA vs CC: P = 0.624) (Fig. 

1c). 

XI-006 induces potent apoptosis in Ewing sarcoma cell lines. 

 

As amplification of MDM4 is frequently observed in Ewing and osteosarcomas8, the anti-

tumour activity of XI-006 was evaluated in a panel of eleven Ewing and osteosarcoma cell lines. 

Sarcoma cell lines were exposed to escalating concentrations of XI-006 (0–10 μM), with the 

http://www.nature.com/articles/srep11465#ref20
http://www.nature.com/articles/srep11465#t1
http://www.nature.com/articles/srep11465#f1
http://www.nature.com/articles/srep11465#f1
http://www.nature.com/articles/srep11465#ref8
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degree of apoptosis determined after 24 and 48 hrs of treatment through 7AAD staining and 

flow cytometry. A pronounced reduction in cell viability was observed specifically in Ewing 

sarcoma cell lines at low micro-molar concentrations (Table 2, Fig. 2a). Following treatment, 

concentrations of XI-006 required to induce 50% apoptosis (IC50) in Ewing sarcoma cell lines 

ranged from 0.376–2.46 μM and 0.099–1.61 μM, 24 and 48 hr treatment respectively. In 

contrast, osteosarcoma cell lines required significantly higher levels of XI-006 (P = 0.008) to 

achieve an IC50, range of 3.60–>10 μM and 2.14–5.41 μM, 24 and 48 hr treatment respectively 

(Fig. 2b). Importantly, the viability of normal human fibroblasts (IMR90) remained unaffected at 

these low micro-molar concentrations, IC50 of 8.35 μM and 6.80 μM (24 and 48 hr treatment 

respectively) (Table 2). Colony formation assays were performed to investigate the long term 

effect of XI-006 on cellular proliferation. Following 10 days of XI-006 treatment, no colonies 

were observed at any XI-006 concentration exceeding 0.03 μM in TC252 and RD-ES Ewing 

sarcoma cell lines, and 0.11 μM in U20S and SJSA osteosarcoma cell lines (Supplementary Fig. 

S1a,b). In contrast, numerous colonies were observed at the maximum XI-006 concentration 

tested (3 μM) in IMR90 fibroblasts (Supplementary Fig. S1c), highlighting the tumour specific 

effect of XI-006. 
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Table 2: XI-006 IC50 values of the sarcoma cell line cohort. 

Cell line Histol

ogy 

TP53 

status 

MDM4 mRNA 

expression 

XI-006 IC50 

 (nM, 24 hr) 

XI-006 IC50 

 (nM, 48 hr) 

STA-ET-1 ES Wild-type 1.68 ± 0.03 376.3 ± 26.9 98.9 ± 19.5 

TC252 ES Wild-type 2.74 ± 0.04 390.2 ± 106.6 115.6 ± 6.6 

SK-N-MC ES Truncation 0.61 ± 0.00 472.3 ± 176.4 121.8 ± 31.7 

SK-ES-1 ES Cys176Phe 0.70 ± 0.01 442.4 ± 57.5 236.0 ± 15.0 

RD-ES ES Arg273Cys 0.32 ± 0.00 638.9 ± 142.4 299.7 ± 68.5 

TC71 ES Truncation 0.40 ± 0.02 567.9 ± 150.8 396.1 ± 78.8 

WE-68 ES Wild-type 1.09 ± 0.04 2089.3 ± 20.4 1475.7 ± 222.6 

VH-64 ES Wild-type 1.07 ± 0.01 2456.4 ± 315.1 1613.1 ± 274.4 

Saos-2 OS Null 0.17 ± 0.00 3600.2 ± 525.7 2143.0 ± 34.9 

SJSA OS Wild-type 0.15 ± 0.01 6257.1 ± 366.5 3690.5 ± 270.2 

U20S OS Wild-type 1.94 ± 0.04 >10 000 5416.8 ± 255.7 

IMR90 LFB Wild-type — 8348.0 ± 231.0 6802.1 ± 696.5 

ES: Ewing sarcoma, OS: Osteosarcoma, LFB: Lung fibroblast 

IC50: Concentration of XI-006 required to induce 50% apoptosis (mean ± STDEV from two 

independent experiments).MDM4 mRNA expression determined through real-time qPCR 

analysis (mean ± SE from triplicate reactions). 
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Figure 2: MDM4 mRNA and protein levels do not confer XI-006 sensitivity 

(a) XI-006 apoptotic dose response curves of all sarcoma cell lines following 48 hrs of XI-006 

treatment. Dashed and red lines denote osteosarcoma and mutant TP53/null cell lines 

respectively. Data represents mean ± STDEV from two independent experiments, duplicate 

http://www.nature.com/articles/srep11465/figures/2
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reactions. (b) Correlation between XI-006 apoptotic 48 hr IC50 values determined from 7AAD 

staining and sarcoma pathology. (c) STA-ET-1, TC252, WE-68 and U20S cells were treated with 

XI-006 (0, 2.5 and 5 μM) for the indicated times with mRNA expression levels of MDM4 

determined through real-time qPCR analysis. Data represents mean expression (fold 

change) ± SE from triplicate reactions. (d) TC252, WE-68 and U20S cell lines were treated for 

4 hrs with the indicated concentrations of XI-006. MDM4, p53, and phosphorylated p53 (serine 

15) protein levels were detected through western blot analysis. β−Actin was used a loading 

control. (e) Lack of correlation between XI-006 apoptotic 48 hr IC50 values and basal MDM4 

mRNA expression levels. ♦• Denotes Ewing sarcoma and osteosarcoma cell lines respectively. 

(f) Western blot analysis of basal MDM4 protein levels of the cell line cohort. Cell lines ranked 

in order of XI-006 sensitivity. MCF-7 (MDM4 amplified breast cancer cell line) was used as a 

positive control. Luciferase assay of (g) MDM4 and (h) p21 promoter activity from U20S cells 

treated with XI-006 for 6 hrs. Data represents mean ± SE from 3 independent experiments. 

Asterisk denotes statistical significance (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 

 

To examine the cellular outcome following XI-006 treatment, cell lines were treated with XI-006 

for 48 hrs, with cell cycle distribution determined through propidium iodide (PI) staining 

(Supplementary Fig. S2). In the Ewing sarcoma cell lines TC252 and RD-ES, XI-006 induced a 

dose-dependent decrease in the number of G1-phase cells, and accumulation of cells in SubG1. 

In contrast, XI-006 effectively arrested cell cycle progression in osteosarcoma cell lines (U20S, 

Saos-2), depleting the G1 compartment to 18.6–19.9% and increasing the G2 compartment to 

45.7–61.5% (3 μM treatment). 

http://www.nature.com/articles/srep11465#s1
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MDM4 mRNA and protein levels do not confer sensitivity to XI-006 
 

As XI-006 was shown to decrease MDM4 expression in breast cancer cell lines18, we 

investigated the effects of XI-006 on both MDM4 mRNA and protein levels in cell lines with 

varying MDM4 genomic21, mRNA and protein expression levels (Table 2, Fig. 2f). A maximum 

61.2% reduction in MDM4 mRNA expression was observed in U20S cells (2.5 μM, 4 hrs) 

following XI-006 treatment; however U20S cells were the least sensitive cell line to XI-006 (Fig. 

2c). Although XI-006 did not attenuate MDM4 mRNA levels in the sensitive Ewing sarcoma cell 

line TC252, a 23.1% reduction was observed in WE-68 cells (0.5 μM, 12 hrs), the least sensitive 

Ewing sarcoma cell line. Consistent with these findings, a dose-dependent reduction in MDM4 

protein levels following XI-006 treatment was only observed in U20S and WE-68 cells, but not 

TC252 cells (Fig. 2d). We next determined whether basal MDM4 mRNA and protein levels in our 

cohort of cell lines confers sensitivity to XI-006. Unexpectedly, no correlation between MDM4 

mRNA or protein levels and XI-006 sensitivity was observed (R2 = 0.0005) (Table 2, Fig. 2e,f). To 

confirm whether XI-006 can repress MDM4 promoter activity, luciferase assays of U20S cells 

treated with escalating concentrations of XI-006 for 6 hrs were performed. A significant 

decrease in MDM4 promoter activity was only observed at 4 μM (P = 0.05), equating to a 30.5% 

reduction in activity (Fig. 2g). No effect on p21 promoter activity was observed at this dose 

(P = 0.491) (Fig. 2h). As X1-006 had no effect on MDM4 promoter activity or mRNA/protein 

levels at concentrations required to induce 50% apoptosis in the most sensitive Ewing sarcoma 

cell lines (<0.5 μM), this suggest that the ability of XI-006 to impart apoptosis occurs 

independently of MDM4. 

 

http://www.nature.com/articles/srep11465#ref18
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XI-006 cytotoxicity occurs independently of TP53 
 

We next examined whether XI-006 can induce expression of TP53 target genes implicated in 

apoptosis (BAX, PUMA), cell cycle arrest (CDKN1A) and p53 regulation (MDM2). Wild-type TP53 

Ewing (TC252, STA-ET-1, WE-68) and osteosarcoma (U20S, SJSA) cell lines were treated with XI-

006 (0.5, 2.5 μM), with target gene expression assessed through real-time qPCR assays 

(Supplementary Fig. S3a). XI-006 dramatically increased mRNA expression levels of all TP53 

target genes in Ewing sarcoma cell lines in a dose and time dependent manner. A maximum 63 

fold increase in BBC3 levels was observed in STA-ET-1 cells (2.5 μM, 4 hrs). In contrast, 

induction of these target genes was significantly lower in all osteosarcoma cell lines, in 

particular BAX and CDKN1A, where no induction was observed for all time points and XI-006 

concentrations. 

To determine whether induction of p53 target genes specifically in Ewing sarcoma cells could 

be attributed to activation and stabilisation of p53, p53 protein levels following XI-006 

treatment were examined. Activation and stabilisation of p53 protein levels was only observed 

in TC252 and WE-68 Ewing sarcoma cell lines but not U20S cells following 4 hrs of XI-006 

treatment (Fig. 2d). Furthermore, phosphorylation of p53 at serine 15 which is synonymous 

with ATM dependent activation of the DNA damage pathway22 was observed at XI-006 

concentrations exceeding 0.5 μM. Although XI-006 induced expression of TP53 target genes, 

the cytotoxic effects of XI-006 were shown to be TP53 independent, as XI-006 sensitivity was 

not correlated with TP53 status (P = 0.190) (Supplementary Fig. S3b). Indeed, the least sensitive 

Ewing (WE-68, VH-64) and osteosarcoma (U20S, SJSA) cell lines harboured wild-type p53 (Table 

2). To further examine the role of TP53 in XI-006 cytotoxicity, TP53 wild-type and null HCT116 

http://www.nature.com/articles/srep11465#s1
http://www.nature.com/articles/srep11465#f2
http://www.nature.com/articles/srep11465#ref22
http://www.nature.com/articles/srep11465#s1
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isogenic cell lines were treated with XI-006 (0–10 μM) (Supplementary Fig. S3c). No significant 

difference in both XI-006 IC50 

 values (24 hr: P = 0.230, 48 hr: P = 0.505) or relative viability at any concentration tested was 

observed, endorsing the p53-independent cytotoxic effects of XI-006. 

 

Low micro-molar concentrations of XI-006 do not induce DNA damage 
 

Previous reports proposed that XI-006 activates the DNA damage response pathway leading to 

a delay in cell cycle progression23. As XI-006 cytotoxicity occurs independently of MDM4, we 

sought to address whether XI-006 drives apoptosis through DNA damage. Clustering of 

phosphorylated H2AX moieties (γH2AX foci) at the site of double-strand breaks (DSBs) is one of 

the earliest events indicative of DNA damage24. Indeed a dose dependent increase in γH2AX 

foci was detected through immunofluorescence analysis following 4 hrs of XI-006 treatment in 

TC252 and U20S cells (Fig. 3a). At 4 μM 64.7–79.3% of cells (TC252 and U20S respectively) 

displayed >5 positive γH2AX foci. However at low doses required to induce apoptosis in the 

most sensitive Ewing sarcoma cell lines (0.5 μM), positive γH2AX foci were only detected in 9.9–

17.4% of cells (Fig. 3b). In agreement with these findings XI-006 induced γH2AX foci formation 

was correlated with H2AX phosphorylation (Fig. 3c). Neutral comet assays were also employed 

to determine whether low dose XI-006 (0.075, 0.150, 0.300 μM) induces DSB’s following long 

term exposure (20 hrs) n TC252 and RD-ES cells (Fig. 3d). No significant difference in comet tail 

length was observed in comparison to vehicle control treated cells at any XI-006 concentration 

tested (Fig. 3e). 

 

http://www.nature.com/articles/srep11465#s1
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Figure 3: XI-006 does not induce double-strand break DNA damage at low micro-molar 

concentrations. (a) Representative images of γH2AX foci formation (immunofluorescence) from 

TC252 and U20S cells treated with the indicated concentrations of XI-006 for 4 hrs. Cells were 

stained with DAPI (blue) and γH2AX (green). (b) Percent nuclei positive for γH2AX foci (>5) from 

http://www.nature.com/articles/srep11465/figures/3
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cells treated as in (a) (mean ± STDEV from duplicate wells). (c) Western blot analysis of γH2AX 

protein levels in TC252 cells treated as in (a). β-Actin was used as the loading control. (d) 

Representative images of neutral comet assays from TC252 and RDES cells treated with low 

dose XI-006 (0.075, 0.150, 0.300 μM) for 20 hrs. (e) Quantification of tail length from cells 

treated as in (d), mean ± SE. 

 

The serine/threonine protein kinase ATM (ataxia telangiectasia mutated) is critical for sensing 

and co-ordinating repair of DNA DSBs. To further confirm that the cytotoxic effects of XI-006 

was not due to DNA damage at low concentrations, Ewing cells (TC252, RD-ES and WE-68) were 

pre-treated with the ATM inhibitor KU-55933, before the addition of XI-006 (0.02–5 μM). A 

significant reduction in both ATM and ATR mRNA expression (82.0% and 87.5% respectively) 

was observed following monotherapy KU-55933 treatment (5 μM) (Supplementary Fig. S4a,b). 

No significant difference in XI-006 apoptotic IC50 values (24 and 48 hr treatment) was observed 

following ATM inhibition across all cell lines tested (Supplementary Fig. S4c). 

 

Previous chemogenomic profiling studies suggested that XI-006 imparts its cytotoxic effect 

through the activation of the DNA-damage-response pathway. Phosphorylation of the N-

terminal domain of EWS-FLI1, the hallmark gene fusion of Ewing sarcoma, at Thr25 has been 

reported in response to mitogen or DNA alkylating agent induced DNA damage26. This post-

translational modification was found to be catalysed by p38α/p38β mitogen-activated protein 

kinases (MAPKs). As all Ewing sarcoma cell lines utilised in this study harbour the EWS-FLI1 

fusion, we examined the role p38α/p38β MAPKs in XI-006 sensitivity. TC252 and RD-ES cells 

http://www.nature.com/articles/srep11465#s1
http://www.nature.com/articles/srep11465#s1
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were pre-treated with the p38α/p38β MAPK inhibitor BIRB 796 (0.1, 1 and 10 μM) before the 

addition of XI-006 (0–2.5 μM) for 24 and 48 hrs. BIRB 796 was previously shown to inhibit 

p38α/p38β MAPKs specifically at 0.1 μM, p38y/p38δ MAPKs at 1 μM and completely suppress 

the activation and activity of all JNKs at 10 μM26 in Ewing cell lines. Treatment with BIRB 796 

had no effect on XI-006 induced cytotoxicity (24 and 48 hrs), as a significant reduction in 

apoptosis (>30%) was not observed at any BIRB 796 concentration (Supplementary Fig. S5). 

 

Finally, alkaline comet assays were employed to investigate whether XI-006 induces single-

strand break DNA damage. Following 4 hrs of XI-006 treatment, a significant increase in comet 

tail and length was only observed at concentrations exceeding 2 μM (Fig. 4). Collectively these 

results suggest that XI-006 concentrations (<0.5 μM) required to induce apoptosis in sensitive 

Ewing sarcoma cells lines cannot be attributed to a DNA damage mechanism of action 
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Figure 4: XI-006 does not induce single-strand break DNA damage at low micro-molar 

concentrations. a) Representative images of alkaline comet assays from TC252 and U20S cells 

treated with XI-006 (1, 2, 4 μM) for 4 hrs. Etoposide (ETO) was used as a positive control (b) 

Quantification of tail length and tail moment from cells treated as in (a) mean ± SE. 

XI-006 synergises with olaparib, actinomycin D, doxorubicin and etoposide 

 

As conventional single-agent cancer therapy increases the likelihood of the emergence of 

resistant cancer cell clones, combination therapies are required to achieve maximal therapeutic 

response. As such, the ability of XI-006 to enhance the cytotoxic effects of four standard Ewing 

sarcoma chemotherapeutic agents (vincristine, actinomycin D, doxorubicin or etoposide) was 

assessed in five Ewing sarcoma cell lines (TC252, STA-ET-1, WE-68, RD-ES, and SK-N-MC). 

http://www.nature.com/articles/srep11465/figures/4
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Modest synergistic combination indexes (CI < 1) were observed in 4/5 cell lines for actinomycin 

and doxorubicin and 3/5 cell lines tested for etoposide (CI range 0.753–0.989) over multiple 

chemotherapeutic doses (Supplementary Table S2, Supplementary Fig. S6). Although 

antagonistic CI values were obtained between XI-006 and vincristine (inhibitor of microtubule 

assembly), a strong correlation (R2  = 0.722) was observed between XI-006 and vincristine IC50 

 values in all Ewing sarcoma cell lines, suggesting that these two agents may have a similar 

mechanism of action (Supplementary Fig. S7). 

 

The EWS-FLI fusion protein has been shown to drive expression of PARP1 (poly-ADP-ribose 

polymerase), which subsequently further promotes transcriptional activation by EWS-FLI27. The 

primary function of PARP is to sense and mediate repair of DNA single strand breaks (SSB). 

Therefore we determined if XI-006 can synergise with olaparib (PARP inhibitor) in EWS-FLI 

positive Ewing sarcoma cell lines. TC252, RD-ES and WE-68 cells were pre-treated with olaparib 

prior to addition of XI-006 (0–5 μM). Potent synergy between these two agents was observed in 

all cell lines tested and across multiple XI-006 concentrations, 24 and 48 hrs post XI-006 

treatment. A maximum 51.9% increase in apoptosis was observed in RD-ES cells when these 

two agents were combined (48 hr XI-006 treatment) (Fig. 5a). Olaparib did not abrogate the 

cytotoxic effects of XI-006 at any concentration tested, suggesting that XI-006 does not induce 

DNA damage via single stranded breaks at low doses. 
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Figure 5: Inhibition of PARP potentiates the cytotoxic effects of XI-006 

a) TC252, RD-ES and WE-68 were pre-treated with olaparib (0.5 or 1 μM) or vehicle control 

(DMSO) for 2 hrs, prior to the addition of XI-006 (0–5 μM). Cell viability was determined 

through 7AAD staining (24 and 48 hrs post XI-006 treatment) and analysed by flow cytometry. 

Data represents average percentage cell death ± STDEV from duplicate reactions. Asterisk 

http://www.nature.com/articles/srep11465/figures/5
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denotes significant increase in apoptosis compared to XI-006 alone (*15–30%, **31–45%, 

***>46% increase). (b) STA-ET-1, RDES, WE-68 and U20S cells were treated with XI-006 (0.5, 

1.25, 2.5 μM) for 4 and 8 hrs. mRNA expression levels of Mre11 were determined through real-

time qPCR analysis. Data represents mean expression (fold change) ± SE from triplicate 

reactions. (c) RD-ES cells were pre-treated with Olaparib for 2 hrs prior to the addition of XI-006 

(0.5, 1, 2 μM) for an additional 4 hrs. Mre11 mRNA expression levels determined as in (b). 

Asterisk denotes statistical significant reduction in expression compared to either vehicle 

control (b) or XI-006 treatment alone (c) (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 

 

In addition to repair of SSB, PARP detects stalled replication forks and attracts Mre11 (meiotic 

recombination 11) for end processing to facilitate replication restart and recombination 

repair28. As XI-006 was previously shown to induce a significant delay in replication23, Mre11 

mRNA expression levels following XI-006 treatment was assessed. A decrease in Mre11 mRNA 

expression was observed across all cell lines tested, with a maximum 50.1% reduction observed 

in STA-ET-1 cells (8 hr treatment) (Fig. 5b, Supplementary Fig. S8). As PARP mediates the 

recruitment Mre11 to stalled replication forks, Mre11 expression in RD-ES pre-treated with 

olaparib (1 μM) before the addition of XI-006 was assessed. Olaparib treatment alone resulted 

in a significant 25% decrease in Mre11 mRNA expression (Fig. 5c). Co-treatment with XI-006 

(0.5 and 1 μM) further repressed Mre11 mRNA expression levels, maximum 50.4% reduction 

compared to XI-006 treatment alone observed. Together, these findings indicate that in the 

absence of DNA damage low micro-molar concentrations of XI-006 can potentiate the cytotoxic 

effects of olaparib due to down-regulation of Mre11 expression. 
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HEG1, FLOT1, UTRN and EDIL3 are differentially expressed in Ewing and osteosarcoma cells 

following XI-006 treatment. 

 

mRNA sequencing of XI-006 treated and untreated cell lines was employed to identify genes 

responsible for XI-006 cytotoxicity. Across all Ewing and osteosarcoma cell lines eleven genes 

were found to be either significantly (P < 0.05, Bonferroni correction) repressed (KIF20A, IDH1, 

SCD, GPSM2, EIF2AK4, HIBCH) or induced (STK19, DNAJC24, MTG2, FAM175B, CYB5D1) 

following non DNA-damaging XI-006 treatment (0.5 μM) (Table 3). Real-time qPCR analyses 

confirmed that KIF20A which is required for normal cleavage furrow ingression and cytokinesis 

during cell division29 and IDH1 (cytosolic NADP dependent enzyme) were repressed on average 

by 51.2% and 41.3% respectively across all cell lines following XI-006 treatment (Supplementary 

Fig. S9). 

 

We next sought to identify genes that were differentially expressed between Ewing and 

osteosarcoma cell lines following XI-006 treatment. Four genes (UTRN, HEG1, FLOT1, EDIL3) 

were identified and validated through real-time qPCR analysis (Table 3, Supplementary Fig. 

S10). Of particular interest UTRN which mediates several mitochondria dependent apoptosis 

pathways, was found to be significantly up-regulated in Ewing cell lines (average 22.7% 

increase) which undergo apoptosis following XI-006 treatment, and repressed in osteosarcoma 

cell lines (average 31.9% decrease) (P = 0.025) which undergo cell-cycle arrest following XI-006 

treatment. 
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Table 3: Genes identified from RNA expression profiling of Ewing and osteosarcoma cell lines treated with XI-006. 

 

Genes significantly induced or repressed following XI-006 across all sarcoma cell lines 

Accession 
Number 

Gene Location Full Name % Change   P value 

NM_005733 KIF20A 5q31 Kinesin family member 20A −44.49   0.0214 

NM_005063 SCD 10q24.31 Stearoyl-CoA desaturase (delta-9-
desaturase) 

−38.01   0.0076 

NM_005896 IDH1 2q33.3 Isocitrate dehydrogenase 1 (NADP+), 
soluble 

−37.14   0.0040 

NM_013296 GPSM2 1p13.3 G-protein signalling modulator −33.34   0.0401 

NM_001013703 EIF2AK4 15q15.1 Eukaryotic translation initiation factor 
2 alpha kinase 

−24.35   0.0034 

NM_014362 HIBCH 2q32.2 3-hydroxyisobutyryl-CoA hydrolase −16.66   0.0134 

NM_004197 STK19 6p21.3 Serine/threonine kinase 19 31.43   0.0433 

NM_181706 DNAJC24 11p13 DnaJ (Hsp40) homolog, superfamily C, 
member 24 

25.99   0.0181 

NM_015666 MTG2 20q13.33 Mitochondrial ribosome-associated 
GTPase 2 

25.18   0.0040 

NM_032182 FAM175B 10q26.13 Family with sequence similarity 175, 
member B 

24.37   0.0459 

NM_144607 CYB5D1 17p13.1 Cytochrome b5 domain containing 1 20.32   0.0311 
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Genes differentially expressed in Ewing and osteosarcoma cell lines following XI-006 treatment 

Accession 
Number 

Gene Location Full Name % Change Ewing 
sarcoma 

% Change 
Osteosarcoma 

P value 

NM_020733 HEG1 3q21.2 Heart development protein with EGF-
like domains 1 

4.77 −73.76 0.00001 

NM_005803 FLOT1 6p21.3 Flotillin −5.44 −98.73 0.0007 

NM_007124 UTRN 6q24 Utrophin 2.65 −53.96 0.0128 

NM_005711 EDIL3 5q14 EGF-like repeats and discoidin I-like 
domains 3 

−1.01 −110.0 0.0269 
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Discussion 

 

Despite the use of aggressive multi-modal therapeutic strategies, five year survival rates for 

relapsed Ewing sarcoma patients is <30% and in such cases no standard therapy currently exists 

for second line treatment. Despite the emerging role of MDM4 (structural homologue of 

MDM2) in the pathogenesis, maintenance, and chemo-resistance of human cancer, there are 

currently no selective MDM4 antagonists undergoing clinical trial evaluation. As MDM4 gene 

amplification is a characteristic of both Ewing and osteosarcoma8, this study assessed the 

therapeutic potential of XI-006, a small molecule thought to attenuate MDM4 promoter 

activity, for the treatment of sarcoma. Indeed, MDM4 IHC analysis of our sarcoma cohort 

detected MDM4 protein expression (>10 positive cells) in 33.3% (12/36) of cases and was highly 

prevalent in well/de-differentiated liposarcomas and myxofibrosarcomas (Fig. 1). 

 

Low micro-molar concentrations of XI-006 induced rapid apoptosis specifically in Ewing 

sarcoma cell lines (IC50 0.099–1.61 μM) in the absence of both observable DNA damage and 

effect on MDM4 expression levels (Table 1, Fig. 2). Cell line sensitivity to XI-006 was not 

correlated with MDM4 mRNA or protein levels, and reduction of MDM4 mRNA and protein 

levels were only observed in the least sensitive Ewing sarcoma and osteosarcoma cell lines at 

high XI-006 concentrations (>1 μM) that also induced DNA damage (Figs 3 and 4). It is known 

that DNA damage induces ATM/Chk2 dependent phosphorylation of several MDM4 C-terminal 

residues (S342, S367, S403), resulting in degradation of MDM4 and activation of p5325. Indeed, 

ATM mediated phosphorylation of serine 15 in p53 was observed in Ewing sarcoma cell lines 
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following treatment with double-strand break inducing concentrations of XI-006 (>0.5 μM). As 

only a maximum 30.5% reduction in MDM4 promoter activity was observed following 4 μM XI-

006 treatment (Fig. 2), our findings suggest that XI-006 cytotoxicity in Ewing sarcoma cell lines 

cannot be attributed to repression of MDM4 activity. 

 

The introduction of systemic chemotherapy in the 1960’s greatly improved survival rates for 

patients with localised Ewing sarcoma30, hence it is imperative that XI-006 can synergise with 

current chemotherapeutic protocols as well as novel agents. In addition to synergising with 

doxorubicin, etoposide and actinomycin D (CI range 0.753–0.989), a maximum 51.9% increase 

in apoptosis was observed when XI-006 was combined with the PARP inhibitor olaparib (Fig. 5). 

PARP-1 is a member of the base excision repair pathway that sensors and modulates the spatial 

and temporal organization of single-strand break repair31. Inhibition of PARP-1, results in the 

accumulation of persistent single-strand breaks which are converted to lethal double-strand 

breaks upon replication. Since the 1990’s it has been known that Ewing sarcomas express high 

levels of PARP-132, and the premise of PARP inhibition as a therapeutic avenue for the 

treatment of Ewing sarcoma has been furthered strengthened by several key studies. Firstly, 

large-scale drug screening (130 compounds) in >600 human cancer cell lines identified a highly 

significant association between EWS-FLI1, the hallmark translocation of Ewing sarcoma, and 

sensitivity to the olaparib. Indeed, FLI1 expression levels in Ewing sarcoma cell lines were highly 

correlated with olaparib sensitivity33. This study was complemented by Brenner and 

colleagues, who demonstrated that the EWS-FLI1 fusion acted in a positive feedback loop to 

maintain the expression of PARP1 which was required for EWS-FLI–mediated transcription27. 
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Furthermore, DNA damage induced by expression of EWS-FLI1 was potentiated by PARP1 

inhibition in vitro. As PARP1 inhibitors have exhibited promising activity in early clinical trials34, 

phase I/II trials of PARP inhibitors (olaparib and BMN-673) are currently undergoing 

investigations in adults with recurrent and metastatic Ewing sarcoma (NCT01583543), and 

patients with locally advanced or metastatic solid tumours (NCT02049593). 

 

Previous chemogenomic profiling studies suggested that XI-006 (referred to as NSC-207895) 

activates the DNA-damage-response pathway through an indirect mechanism leading to a 

significant delay in replication and cell cycle progression23. Replication stress, defined as the 

slowing or stalling of replication fork progression and/or DNA synthesis, has severe implications 

for genome stability and cell survival35. Several studies have implicated that PARP binds to and 

is activated at stalled replication forks that contain small gaps (<4 nucleotides) or short ssDNA 

regions, and mediates the recruitment of Mre1128. Mre11 is a key component of the MRN 

(Mre11-Rad50-Nbs1) complex, which is vital for double-strand break (DSB) recognition, 

replication fork stabilization, ATM/ATR activation and the initiation of end resection required 

for replication restart and homologous recombination (HR)36. Inhibition or loss of PARP impairs 

Mre11 localisation to stalled forks, RPA and RAD51 foci formation, HR and replication restart. 

Indeed numerous studies have shown that due to impaired HR DNA repair, loss of Mre11 

expression sensitizes breast37, colorectal38,39, endometrial40, and haematological cancers41 

to PARP-inhibitors. In the absence of DNA damage, our findings demonstrate that low dose XI-

006 rapidly down regulates the expression of Mre11 (Fig. 5) and this repression in further 

enhanced in the presence of olaparib (Fig. 5), resulting in potent apoptosis. As such, these 
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findings provide a strong rationale for further investigations into the combinatorial approach of 

PARP inhibitors with XI-006. 

 

To elucidate the genes specifically responsible for Ewing sarcoma apoptotic XI-006 sensitivity, 

mRNA sequencing was employed and identified four genes significantly differentially expressed 

between Ewing and osteosarcoma cell lines following XI-006 treatment (Table 3). Of particular 

relevance, UTRN (Utrophin) was significantly up-regulated in Ewing sarcoma cell lines but 

repressed in osteosarcoma cell lines (P = 0.025). The GTPase UTRN also known as Drip1, 

mediates outer mitochondrial membrane fission and is essential for the normal progression of 

several mitochondria dependent apoptosis pathways42. Upon induction of apoptosis, UTRN is 

recruited from the cytosol to the mitochondrial outer membrane, where it colocalizes with Bax 

at fission sites and mediates the release of apoptotic regulatory proteins including cytochrome 

c prior to caspase activation43,44. The expression of FLOT1 (flotillin) was also significantly 

repressed in osteosarcoma cell lines (P = 0.044) compared to Ewing. The flotillin family of 

proteins have been implicated in numerous cellular processes such as actin-cytoskeleton 

reorganization, endocytosis, adhesion and transduction of cellular signals45. Knockdown of 

FLOT1 has been shown to significantly impair cell proliferation and tumourigenicity of breast 

and esophageal squamous cell carcinoma cells in vitro and in vivo through the Akt/FOXO3a 

pathways46,47. Indeed, silencing of FLOT1 induced G1-S-phase arrest of breast cancer cells due 

to up-regulated expression of the CDK inhibitors p21Cip1 and p27Kip1. Following XI-006 

treatment, both UTRN and FLOT1 were strongly repressed in osteosarcoma cell lines (31.9% 

and 33.8% decrease in mRNA expression respectively) but not in Ewing cell lines. This may be 
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the basis of the finding that XI-006 induces apoptosis in Ewing sarcoma cell lines but cell cycle 

arrest in osteosarcoma cell lines (Supplementary Fig. S2).  

 

Expression profiling also revealed that following XI-006 treatment, eleven genes were globally 

repressed or induced across all Ewing and osteosarcoma cell lines. Three of these genes which 

were downregulated, KIF20A, IDH1 and GPSM2 (44.49%, 37.14% and 33.34% reduction 

respectively), have been implicated in cell proliferation. KIF20A belongs to the family of kinesin 

microtubule-dependent motor proteins, which are required for bipolar spindle assembly, 

chromosome alignment, chromosome segregation, and cytokinesis48. Similarly GPSM2 is 

required for spindle cell orientation towards the interphase long-axis49. Several studies have 

demonstrated the essential role of KIF20A in cytokinesis and maintenance of cell viability. 

Microinjection of anti-KIF20A antibody was shown to induce multi-nucleation in Hela cells50 

and knockdown of endogenous KIF20A expression markedly attenuated the growth of 

pancreatic and gastric cancer cells51,52. As sensitivity to XI-006 was strongly correlated with 

vincristine sensitivity (R2 = 0.722) (Supplementary Fig. S7), a widely used chemotherapeutic 

that inhibits microtubule assembly and induces tubulin self-association into coiled spiral 

aggregates53, this supports that the mechanism of action of XI-006 at low, micro-molar 

concentrations (<0.5 μM) can be attributed to inhibition of cell division and cycle regulators and 

not DNA damage. 

 

In summary, our findings demonstrate that XI-006 is a promising new potential therapeutic for 

the treatment of Ewing sarcoma as it induced potent p53-independent apoptosis at non-DNA 
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damaging concentrations specifically in Ewing sarcoma cell lines. Notably, strong synergy was 

observed with olaparib, a PARP inhibitor that is gaining significant interest for the treatment of 

solid cancers. As such, our preclinical findings warrant further pharmacokinetic and 

pharmacodynamic investigations of XI-006 in vivo. 
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Methods 

 

Cell lines and reagents 

Ewing sarcoma cell lines were cultured as previously described21 and supplied by G. Hamilton 

(University of Vienna, Austria) (TC252, TC71), F. van Valen (Westfälische-Wilhelms-University, 

Germany) (WE-68, VH-64), P. Ambros (St. Anna Children’s Hospital, Austria) (STA-ET-1) and V. 

Russo (Murdoch Children’s Research Institute, Australia) (SK-N-MC). SK-ES-1, RD-ES cell lines 

were purchased from American Type Tissue Culture. Osteosarcoma cells (SJSA, U20S and Soas-

2) were supplied by A. Evdokiou (University of Adelaide, Australia). 

XI-006 and BIRB 796 were purchased from Merck Millipore, KU-55933 and olaparib (AZD2281) 

were purchased from Selleck. Vincristine sulfate (Hospira), doxorubicin HCI (Pfizer), actinomycin 

D/Cosmegen (Lundbeck) and etoposide (Royal Adelaide Hospital, Australia) were supplied by 

M.P Brown (Centre for Cancer Biology, Australia). 

Sarcoma tissue cohort 

Chemotherapy/radiotherapy naïve tumour specimens were collected from thirty-six patients 

with sarcoma (22 males, 14 females) undergoing surgical resection/core biopsy at three clinical 

institutions; Royal Adelaide Hospital (RAH), Calvary Wakefield Hospital, and St Andrew’s 

Hospital between 2010 and 2013. Patient consent was obtained for accrual of surgically excised 

tissue. Study was approved by the Royal Adelaide Hospital Human Ethics Committee (RAH 

Protocol #100505). The different morphological subtypes were represented by nine 

undifferentiated pleormorphic sarcomas, eight liposarcomas (four well-differentiated, two de-

differentiated, one pleomorphic and myxoid), six leiomyosarcomas, five myxofibrosarcomas, 

http://www.nature.com/articles/srep11465#ref21
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two osteosarcomas, two synovial and one Ewing sarcoma, angiosarcoma, chondrosarcoma and 

radiation induced sarcoma. Twenty patients were previously described19. All methods were 

carried out in accordance with National Health and Medical Research (NHMRC) approved 

guidelines. 

Immunohistochemistry 

MDM4 immunohistochemical protocol was adapted from54. Briefly, FFPE (4 μm thickness) 

were deparaffinised by serial immersion in a xylene-to-ethanol solvent gradient. After citrate 

buffer (0.001 mol/L, pH 6.0) antigen retrieval, slides were quenched in 3% hydrogen peroxide 

for 5 mins to eliminate endogenous peroxidase activity. Sections were blocked with normal 

goat serum (30 mins) and immuno-labelled with rabbit HdmX/MDM4 (1:250, IHC-00108, Bethyl 

Laboratories) overnight at 4 °C. Digital images were acquired using a Nanozoomer Digital 

Pathology Scanner, at x40 magnification. To determine the percentage of positive MDM4 cells, 

a minimum of 80 cells per field of view (four) were assessed. 

MDM4 SNP34091 genotype analysis 

DNA from sarcoma tissues was isolated using the DNeasy Blood and Tissue Kit (Qiagen) 

according to the manufacturer’s instructions. The 3’UTR region of MDM4 was amplified using 

the following primer pair55 forward: 5′ACGGGCCATCTTGTCACTTGTT 3′ and reverse: 

5′ACCTGACTGCT GCATAAAGTAATCCAT 3′, to amplify a 355 base pair (bp) product. PCR was 

performed using 100 ng of genomic DNA and FastStart Taq DNA Polymerase (Roche) using the 

following parameters, enzyme activation 95 °C 3 mins, followed by 45 cycles of denaturation at 

95 °C 30 secs, annealing at 57 °C 15 secs, and extension at 72 °C 60 secs, followed by 1 cycle of 

http://www.nature.com/articles/srep11465#ref19
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final extension at 72 °C 10 mins. Reactions were processed on an ABI Hitachi 3730 DNA 

analyser. 

Apoptosis and Cell cycle analysis 

For viability assays, cell were seeded in 96-well micro-titer plates at a density of 3 × 104  

cells/well and treated with XI-006 alone or in combination with chemotherapeutics agents. For 

inhibitor studies, cells were pre-treated with olaparib, KU-55933 or BIRB 796 for 2 hrs prior to 

the addition of XI-006. Following treatment for 24 and/or 48 hrs, cells were centrifuged at 

2500 rpm for 5 mins, washed in phosphate buffered saline (PBS) and stained with 7-amino-

actinomycin-D solution (7AAD, 2 mg/mL, Invitrogen) for 10 mins at room temperature. 

For cell cycle analysis, XI-006 and vehicle control treated cells were permeabilized with cold 

70% ethanol overnight, and stained with a solution containing 50 μg/ml propidium iodide (PI, 

Sigma Aldrich), 0.05% Triton-X and 100 μg/ml RNase A at 37 °C for 40 mins. Cell viability and 

DNA content was determined through the use of a FACS Calibur flow cytometer (Becton-

Dickinson Immunocytometry Systems) with cell cycle profiles and viability analyzed using 

FLOWJO software (V7.6.5). 

Luciferase Assay 

U20S cells (3.2 × 104) were seeded overnight in 24-well plates (triplicate wells per treatment) 

and transfected with 200 ng of pCM-luci-MDM4 or p21-pro-Luc reporter constructs and 25 ng 

of pRL-TK plasmid (Promega) using Lipofectamine LTX (Invitrogen) according to the 

manufacturers’ instructions. pCM-Luci-MDM4 was kindly supplied by C. Yan (GRU Cancer 

Center). Cells were treated with vehicle control or XI-006 for 6 hrs with Dual-luciferase reporter 

assays (Promega) performed according to the manufacturer’s instructions. 
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Real-time qPCR analysis 

Total RNA was extracted using RNeasy mini kit (Qiagen), using on-column RNase-free DNase 

digestion according to the manufacturer’s instructions. cDNA was synthesized by reverse 

transcribing 600 ng of total RNA using random primers (Promega) and Moloney murine 

leukemia virus reverse transcriptase (H_; Promega). Real-time qPCR reactions were performed 

using iTaq Universal Sybr Green Supermix (BIORAD) and processed on a CFX Real-Time PCR 

detection system (BIORAD). Cycling parameters were as follows: 95 °C for 3 mins, followed by 

45 cycles of denaturation at 95 °C for 10 secs, annealing at 59–63 °C for 15 secs, and extension 

at 72 °C for 30 secs. Relative target mRNA expression was determined using the ΔCT method 

from triplicate reactions, with the levels of gene expression normalized to the relative average 

Ct value of Peptidylprolyl Isomerase-G (PPIG). Primer sequences and annealing temperatures 

are listed in Supplementary Table S1. 

Western blot 

Western blot analysis was performed as previously described21. Whole protein lysates (5–

20 μg) were resolved using SDS PAGE electrophoresis, and probed overnight at 4 °C with the 

following primary antibodies MDM4 (1:500; A300-287A, Bethyl Laboratories), p53 DO1 (1:1000, 

Santa Cruz Biotechnology), Phospho-p53 (Ser15) (1:500, Cell Signalling), Phospho-Histone H2A.X 

(Ser139) clone JBW301 (1:500, Millipore) and β-Actin (1:1000, AC-15, Sigma). 

Immunofluorescence 

TC252 and U20S cells (1.5 × 104  cells per 6 well chamber) were seeded on microscopes slides 

and treated with XI-006 (0.5, 1, 2 and 4 μM) or vehicle control (DMSO) for 4 hrs. Cells were fixed 

with 10% neutral-buffered formalin, washed with PBS and blocked with 5% bovine albumin 

http://www.nature.com/articles/srep11465#s1
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serum with 0.3% Triton-X 100 (Sigma-Aldrich). Slides were washed in PBS (3 × 5 min), then 

incubated with 1 μg/ml biotinylated mouse anti-human anti-phospho-histone H2AX (ser139) 

(JBW301, Millipore) overnight at 4 °C. After further washing, samples were incubated with 

5 μg/ml streptavidin-Alexa Fluor 488 (Life Technologies) followed by counterstaining with 

1 μg/ml DAPI. Slides were examined using an Olympus IX71 microscope (x40 magnification) 

with CellSens Standard (v1.6) software. Images were analysed using ImageJ (v1.45) (National 

Institute of Health). 

Comet Assay 

Neutral and alkaline comet assays were performed with the Trevigen CometAssay kit according 

to the manufacturer’s protocol. Briefly, 3.5 × 105  cells were plated in 6 well plates and treated 

with XI-006 or vehicle control for 4 or 20 hrs. Lysed cells were subjected to electrophoresis for 

40 mins at 30 V (300 mA) at 4 °C. Cells were stained with 2.5 μg/ml PI for 15 mins and visualised 

with an Olympus IX71 microscope (x20 magnification) with CellSens Standard (v1.6) software. 

Tail length and moment were assessed using AutoComet software (TriTek) from a minimum of 

60 cells. 

mRNA sequencing 

Ewing and osteosarcoma cell lines (n = 11) were treated with XI-006 (0.5 μM) or vehicle control 

for 4 hrs. One μg of RNA was used for polyA selection and library construction with NEBNext 

UltraT RNA Library Prep Kits for Illumina sequencing, according to the manufacturer’s 

instructions (E7530 Version 2). The mRNA library size was validated with the Agilent 

BioAnalyzer on High Sensitivity chips, with yield determined with a Life Technologies Qubit 2.0 

Fluorometer. The mRNA libraries were pooled and sequenced across five lanes of an Illumina 
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HiSeq 2500 flowcell (1 × 50 bp reads) at the Australian Cancer Research Foundation Cancer 

Genomics Facility (Adelaide, Australia). Reads were trimmed for the NEB single end adapter 

“AGATCGGAAGAGCACACGTCTGAACTCCAG TCAC” with Cutadapt v1.3, requiring a minimum 

overlap of 5, allowing a 20% error rate and discarding trimmed sequences shorter than 18 

bases. Reads were mapped to the UCSC hg19 genome and GTF annotations with Tophat 2.0.9 

using default parameters. Gene counts were performed with HTSeq-count v0.6.1p1 using 

gene_id as the GTF feature ID. 

Statistics 

Combination Index (CI) values were used to determine synergy between XI-006 and cytotoxic 

agents. A CI value of <1, =1 and >1 indicates synergistic, additive and antagonistic effects 

respectively56. P values were calculated using Student t test using Graph Pad Prism Version 6. 
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Supplementary materials 

 

 

  

Supplementary Table S1: Primer sequences utilised in this study.  

  
Target  

Primer sequence 5’ to 3’    
Annealing  

Temperature  
Forward  Reverse  

  
ATM  

  
TGGTTTGAGAAGCGATTGGC  

  
TTCAACACCCGTAATGCCCA  

  
65˚C  

ATR  CTGATGCGTGATCAGCGAGA  ACGGCAGTCCTGTCACTCTA  65˚C  
EDIL3  GAACCAACTTCAGCAGGTCCC  TAAATTCGCCTGGGCACTCA  61˚C  
FLOT1  ACTGGCATTGCCCAGGTAAA  AGGGCAATGTGGGCAATCTC  63˚C  
HEG1  TCCCAGAGTGGCAACTTAGC  ATCTCCGAGGTTCCACT  61˚C  
IDH1  TTGGCTGCTTGCATTAAAGGTT  GTTTGGCCTGAGCTAGTTTGA  61˚C  
KIF20A  CTACAAGCACCCAAGGACTCT  AGATGGAGAAGCGAATGTTT  61˚C  
MDM2  TCTACAGGGACGCCATCGA  CTGATCCAACCAATCACCTGAA  61˚C  
MDM4  TCTCGCTCTCGCACAGGATCACA  AACCACCAAGGCAGGCCAGCTA  61˚C  
Mre11  TGCCCAGGAAAATGAAGTGGA  CAGGCCGATCACCCATACAA  61˚C  
p21 (CDKN1A)  TGGACCTGGAGACTCTCAGGGTCG  TTAGGGCTTCCTCTTGGAGAAGATC  61˚C  
PARP-1  AGCGAGAGCATCCCCAAGG  TCAAACATGGGCGACTGCAC  61˚C  
PPIG  CAGATGCAGCTAGCAAACCGTTTG  CTCTTCAGTAGCACTTTCGGAATCAGAGG  61˚C  
PUMA (BBC3)  ACGACCTCAACGCACAGTACG  TCCCATGATGAGATTGTACAGGAC  61˚C  
UTRN  

  

TTGCACTGGCAGGTGAAAGA  

  

ACGTTGACTTGGCTGTAGGG  

  

59˚C  
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Supplementary Figure 1: XI-006 reduces cellular proliferation specifically in cancer cell lines 

(a) Ewing (TC252, RD-ES) and osteosarcoma (U20S and SJSA) cell lines were seeded (3x103 

cells/well) in 6-well plates in the presence or absence of XI-006 (0.03, 0.11, 0.33, 1, 3µM). Cells 

were fixed in methanol (5mins) and stained with giemsa (Sigma) (50 mins) 10 days post seeding. 

(b) Quantification of colonies from cells treated as in (a). Data represents mean ± STDEV from 

two independent experiments. (c) Representative image of IMR90 cells (normal human 

fibroblasts) treated as in (a). 
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Supplementary Figure 2 
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Supplementary Figure 2. XI-006 induces apoptosis specifically in Ewing sarcoma cells.Ewing (TC252, RD-ES) and osteosarcoma (U20S, 
Soas-2) cells were treated with XI-006 (1μM, 3 μM) or vehicle control for 48hrs. Cells were fixed, stained with propidium iodide, and 
analyzed by flow cytometry for DNA content. Numbers inserted in graphs indicate percentage of cells at different stages of the cell 
cycle (mean ± STDEV from two independent experiments). 60,000 PI stained cells were analysed for DNA content.
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Supplementary Figure 3 
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Supplementary Figure 3: XI-006 induces expression of p53 target genes specifically in Ewing sarcoma cell lines (a ) Wild-type Ewing 
(STA-ET-1, TC252,WE -68) and osteosarcoma (U20S, SJSA) cell lines were treated with XI-006 (0, 2.5 and 5μM) for the indicated 
times. mRNA expression levels of TP53 target genes (BBC3, CDKN1A, MDM2, BAX) was determined through real-time (qPCR) 
analysis. Data represents mean expression (fold change) ± SE from triplicate reactions. Asterisk denotes statistical significance in 
target gene expression (Ewing versus osteosarcoma cell lines) (*P<0.05, **P<0.01, ***P<0.001, **** P<0.0001). (b) Lack of 
correlation between XI-006 apoptotic 48hr IC50 values and TP53 status (wild-type versus mutant/null). ♦●Denotes Ewing sarcoma 
and osteosarcoma cell lines respectively. (c) Relative viability of TP53 wild-type (+/+) and null (-/-) HCT116 isogenic cell lines 
following treatment with XI-006 for 24 and 48hrs. Data represents mean ± STDEV from duplicate reactions. Viability determined 
through Cell Titer-Glo assays. 
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Supplementary Figure 4: 
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Supplementary Figure 4: Inhibition of ATM does not suppress XI- 006 cytotoxicity. Real-time qPCR analysis of (a) ATM and (b) ATR 
mRNA expression following treatment with the ATM inhibitor KU-55933 (5μM) for 6hrs. Data represents mean expression (fold 
change) ± SE from triplicate reactions. Asterisk denotes statistically difference compared to vehicle control treated cells (*P<0.05, 
****P<0.0001). (c) TC252, RDES and WE-68 were pretreated with KU-55933 (5μM) or vehicle control (DMSO) for 2hrs, prior to the 
addition of XI-006 (0-5μM). Cell viability was determined through 7AAD staining (24 and 48hrs post XI-006 treatment) and analysed 
by flow cytometry. Data represents average percentage cell death ± STDEV from duplicate reactions. 
 

 



 

312 

 

 
 

 

Supplementary Figure 5: Inhibition of p38 MAPKs has no effect on XI -006 sensitivity. TC252 and RD-ES cells were pre-treated with 
BIRB 796 (0.1μM, 1 μM and 10μM) or vehicle control (DMSO) for 2hrs, prior to the addition of XI-006 (0-2.5μM). Percentage cell 
death was determined through 7AAD staining (24 and 48hrs post XI-006 treatment) and analysed by flow cytometry. Data 
represents average percentage cell death ± STDEV from duplicate reactions. 
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Supplementary Figure.  6: XI-006 synergises with etoposide, doxorubicin, and actinomycin D 
but not vincristine STA-ET-1, TC252, RD-ES, SK-N-MC and WE-68 cells were treated with the 
chemotherapeutic agents vincristine (VIN), actinomycin D (ActD), doxorubicin (DOX) and 
Etoposide (ETO) alone or in the presence of XI-006 (indicated concentrations) for 48hrs. Cell 
viability was determined through 7AAD staining and analysed by flow cytometry. Data 
represents average percentage cell death ± STDEV from duplicate reactions. Asterisk denotes a 
Combination Index (CI) of <1, indicating synergy.   

  
XI-006 IC50 (nM) XI-006 IC50 (nM) 

  
XI-006 IC50(nM)                   XI-006 IC50 (nM) 

Supplementary Figure 7:. XI-006 sensitivity correlates with vincristine sensitivity in 

Ewing sarcoma cell lines.Correlation between XI-006  IC50 values and chemotherapeutic 

(vincristine, actinomycin D, doxorubicin, etoposide) IC50 values. All Ewing sarcoma cell 

lines (n=8) were treated with chemotherapeutic agents or XI -006 for 48hrs. Cell viability 

was determined through 7AAD staining and analysed by flow cytometry. Data represents 

mean apoptotic IC50 values (duplicate wells).  
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Supplementary Figure 8: Lowmicro-molar doses of XI-006 reduces Mre11 mRNA expression. 
Mre11 mRNA expression levels were determined through real-time qPCR analysis from STA-ET-
1 and U20S cells treated with XI-006 (0.1, 0.2, 0.3 and 0.4µM) or vehicle control for 6hrs. Data 
represents mean expression (fold change) ± SE from triplicate reactions. Asterisk denotes 
statistical significant reduction in expression compared to vehicle control (*P<0.05, **P<0.01) 

 

 

 

Supplementary Figure 9: KIF20A and IDH1 are repressed following XI-006 treatment. Real-time 
qPCR analysis of KIF20A and IDH1 expression levels following 4hr XI-006 (0.5µM) or vehicle 
control treatment. Data represents mean ± SE from triplicate reactions. Asterisk denotes 
statistical significance compared to vehicle control (*P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001). 
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Supplementary Figure  10: EDIL3, UTRN, HEG1 and FLOT1 expression levels following XI-006 
treatment. Real-time qPCR analysis of EDIL3, UTRN, HEG1 and FLOT1 expression levels 
following 4hr XI-006 treatment (0.5µM). Data represents mean ± SE from triplicate reactions. 
(*) denotes statistical significance in expression compared to vehicle control (*P<0.05, 
**P<0.01, ***P<0.001). (#) denotes significant difference in % change in expression, Ewing 
sarcoma cell lines versus osteosarcoma cell lines (# P<0.05, ###P<0.001)   
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Conclusion 
 

Over the past decade, deeper understanding of molecular mechanisms underlying cancer 

progression have led to development of new compounds that target specific pathways involved 

in tumorigenesis. Incorporation of these targeted therapies alongside chemotherapies has 

drastically improved patient survival in many cancers. However, for basal-like (triple-negative) 

breast cancers and metastatic sarcomas, the survival rates are less than 30%. Although research 

continues to reveal critical targetable pathways, there are currently no targeted treatments 

available for these cancers. This research is intended to highlight the potential for exploiting 

two relatively unexplored molecular targets, ribosomal RNA Polymerase I and the proteasome, 

for the treatment of Ewing sarcoma and breast carcinomas, respectively. These findings will 

provide the basis for future clinical studies and have the potential to provide new therapies for 

patients. 

 

Basal-like (triple negative) breast cancers accounts for 15-20% of all breast cancers and have 

the poorest survival amongst breast cancer subgroups. The current lack of targeted therapy for 

this subgroup stems from the fact that there are no recognized targets. Here, we have 

investigated whether the proteasome has utility as a therapeutic target in the treatment of 

breast cancers. Although breast cancers patients did not respond to bortezomib in the limited 

early clinical trials, these studies did not assess proteasome levels/activity. Detailed 

characterization of the proteasome in breast cancers utilizing the TCGA RNA sequencing data 

from breast cancer patients revealed that the basal-like and HER2+ breast cancer subgroups 

have high expression of the immuno-proteasome variant. This was surprising as immuno-
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proteasome expression is classically associated with cells of the immune lineage. As multiple 

myeloma cells that express high levels of immuno-proteasome are extremely sensitive to 

proteasome inhibitor based therapy, we hypothesized that breast cancer cell lines with high 

levels of immuno-proteasome will likely respond to bortezomib. Indeed, cytotoxic sensitivity of 

breast cancer cell lines to the proteasome inhibitor bortezomib was significantly correlated with 

immuno-proteasome expression. A limited number of studies have shown immuno-proteasome 

overexpression in solid cancer tissues, but to the best of our knowledge this is the first report 

that characterizes proteasome expression and evaluates proteasome inhibitory effects in the 

breast cancer subgroups in detail. In addition, we provide an overarching hypothesis that 

encapsulates cross-talk between immuno-proteasomes, immune surveillance and superior 

prognosis in breast cancer patients. Overall, our results provide convincing preliminary 

evidence for the utility of immuno-proteasomes both as a prognostic and predictive biomarker 

for proteasome inhibitor based therapy for the targeted treatment of basal-like and HER2+ 

breast cancers. 

 

The limited use of proteasome inhibitors for the treatment of cancers has been attributed to 

their dose-limiting toxicities and instability. Since the late 1990s, bortezomib has been assessed 

in several clinical trials in various solid cancers both as monotherapy and in combination with 

chemotherapies. Unfortunately, almost invariably patients did not respond and further 

research into proteasome inhibitor drug-development and assessment in solid cancer 

treatment was abandoned. Instead, the major focus for drug-design veered into developing 

second-generation proteasome inhibitors that have superior potency and less toxicity 
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specifically for multiple myeloma treatment. However, like bortezomib, these second 

generation proteasome inhibitors share similar structural characteristics and were marred by 

dose-limiting toxicities and drug delivery issues. Here, we have conceptualized and developed 

second-generation proteasome inhibitors by modifying peptide backbones using non-natural 

peptides and by attaching photo-switches for specific activation.  Overall, in vitro analyses of 

some of these new compounds revealed significantly less toxicities and better efficacies 

compared to benchmark drugs.  

 

In second part of the thesis we investigated the utility of activating p53 signaling using two 

different approaches for the treatment of Ewing sarcoma. Overall survival for patients with 

metastatic Ewing sarcoma is less than 30% with multi-agent chemotherapy. Activation of the 

p53 pathway has been a primary focus for Ewing sarcoma treatment as approximately 90% of 

Ewing sarcomas retain a functional wild-type p53. CX-5461 is a novel non-genotoxic RNA 

polymerase I inhibitor that has demonstrated its anti-proliferative effects in a vast panel of 

hematological and solid tumour cell lines. Encouraging results from initial in vitro and in vivo 

evaluations demonstrated hematological cell lines with wild-type p53 to be acutely sensitive to 

CX-5461, which led to Phase I/II clinical evaluations of CX-5461 in advanced hematological 

malignancies. Here, we show that Ewing sarcoma is by far the most responsive solid tumour to 

CX-5461 that has been tested to date. In particular, two of the Ewing sarcoma cell lines show 

sensitivities lower than any ever reported in the literature for solid tumours and parallel some 

of the most potent responses observed in blood cancers. While some Ewing sarcoma cell lines 

were inherently resistant to CX-5461, in the sensitive subgroup, the anti-tumorigenic response 
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was p53 dependent. In our second approach to exploit p53 signaling for Ewing sarcoma 

treatment, we found that while XI-006 caused rapid apoptosis in cancer cell lines, its effect was 

independent of p53 activation. However, in addition to being non-genotoxic, both CX-5461 and 

XI-006 were synergistic in combinations with chemotherapies, highlighting tremendous 

therapeutic potential that warrants further pre-clinical studies. 

 

There are currently 77 FDA approved anti-cancer targeted therapies and few hundred more in 

clinical trials. However, these targeted therapies are effective only in limited number of 

cancers, and within those cancers for only a proportion of patients. It is now becoming 

increasingly clear that cancer is a highly heterogeneous disease and that moving forward it is 

crucial to identify those patients who will respond to these targeted therapies. In this regard, 

this research provides excellent leads and highlights how immuno-proteasome expression can 

serve as a biomarker for stratifying patients who will respond to proteasome inhibitor based 

therapy in breast cancer and perhaps, in other solid cancers. 

 

                                                        

 




