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Abstract
Background Obesity is a very heterogeneous disorder at both the clinical and molecular levels and with high heritability.
Several monogenic forms and genes with strong effects have been identified for non-syndromic severe obesity. Novel
therapeutic interventions are in development for some genetic forms, emphasizing the importance of determining genetic
contributions.
Objective We aimed to define the contribution of rare single-nucleotide genetic variants (RSVs) in candidate genes to non-
syndromic severe early-onset obesity (EOO; body mass index (BMI) >+3 standard deviation score, <3 years).
Methods Using a pooled DNA-sequencing approach, we screened for RSVs in 15 obesity candidate genes in a series of 463
EOO patients and 480 controls. We also analysed exome data from 293 EOO patients from the “Viva la Familia” (VLF)
study as a replication dataset.
Results Likely or known pathogenic RSVs were identified in 23 patients (5.0%), with 7 of the 15 genes (BDNF, FTO,
MC3R, MC4R, NEGR1, PPARG and SIM1) harbouring RSVs only in cases (3.67%) and none in controls. All were
heterozygous changes, either de novo (one in BDNF) or inherited from obese parents (seven maternal, three paternal), and no
individual carried more than one variant. Results were replicated in the VLF study, where 4.10% of probands carried RSVs
in the overrepresented genes. RSVs in five genes were either absent (LEP) or more common in controls than in cases
(ADRB3, LEPR, PCSK1 and PCSK2) in both obese datasets.
Conclusions Heterozygous RSVs in several candidate genes of the melanocortin pathway are found in ~5.0% patients with
EOO. These results support the clinical utility of genetic testing to identify patients who might benefit from targeted
therapeutic intervention.

Introduction

Obesity is the most prevalent chronic childhood disease in
the occidental world and a risk factor for later obesity- and
metabolic-related disorders. It is a heterogeneous multi-
factorial disease with high heritability (50–75%) that is
undoubtedly higher in severe early-onset cases [1–3]. The
genetic causes underlying obesity remain largely unknown
with an important proportion of information missing
regarding its heritability.

A small percentage of obesity occurs as part of a syn-
dromic entity [4–10], but in the majority, obesity is not
accompanied by other specific phenotypes. Highly pene-
trant rare genetic variants, mainly autosomal recessive,
affecting at least eight genes [LEP (MIM 164160), LEPR
(MIM 601007), MC4R (MIM 155541), PCSK1 (MIM
162150), POMC (MIM 176830), MC3R (MIM 155540),
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SIM1 (MIM 603128) or NTRK2 (MIM600456)] are
reportedly found in 2–5% of non-syndromic obese patients
[11–17]. However, multigenic or multifactorial inheritance
is the best model to explain the aetiology of most cases.
Common genetic variants involved in these forms of obesity
have been identified by genome-wide and candidate-gene
association studies. Genetic variants in genes such as
ADRB3 (MIM 109691), BDNF (MIM 113505), FTO (MIM
610966), GHSR, NEGR1 (MIM 613173), PCSK2 (MIM
162151), PPARG (MIM 601487) and TMEM18 (MIM
613220) [18–22], among others, have been related to body
mass index (BMI), but the strongest effect of a single
common variant might explain about only 2% of the var-
iance in BMI. Similar to other complex traits [23, 24], copy
number variants (CNVs) also contribute to the genetic basis
of obesity [25–28]. Identification of a potential genetic
cause of severe obesity is important not only for indivi-
dualized follow-up and genetic counselling but also because
novel therapeutic approaches for genetically defined obe-
sities are becoming available [29].

Next-generation sequencing (NGS) has facilitated iden-
tification of the molecular basis of Mendelian diseases, even
with a reduced number of samples [30, 31]. However, large
numbers of patients are needed to identify a significant
mutation burden in a specific gene and prove its patho-
physiological relevance in multifactorial or highly hetero-
geneous genetic disorders. Given the known population
stratification, appropriate controls from the same geographic
origin are also needed to discard population variants that
might not be disease causative. Strategies using pooled
DNA-sequencing have proven effective in minimizing the
costs of tackling multifactorial or heterogeneous disorders
using large numbers of samples [32].

In highly heterogeneous diseases such as obesity, severe
cases with early onset are more likely explained by highly
penetrant rare genetic variants. We have used a pooled
strategy to sequence a panel of selected candidate genes in
463 patients with non-syndromic severe early-onset obesity
(EOO) and 480 controls searching for rare sequence var-
iants (RSVs) with high penetrance.

Subjects and methods

Subjects and samples

Severe early-onset obese patients were selected by using the
criteria of a BMI Z-score above three according to age and
sex for the Spanish population [33] at their first examination
and that visited the clinic due to obesity that was reported to
have an onset before 3 years of age.

Patients underwent a detailed clinical evaluation,
including oriented clinical history, physical examination

and complementary tests to rule out syndromic, endocrine
or secondary forms of obesity. These evaluations included
an interview with a dietitian to determine eating habits such
as the frequency, speed and amount of food ingested. A
molecular karyotype by microarray and a methylation-
sensitive multiple-ligation probe amplification to discard
specific entities that might clinically overlap with isolated
obesity were also performed [5].

A sample of 463 subjects with severe EOO was selected.
Blood was collected from patients and both parents when
possible to study the segregation of the genetic variants with
the phenotype in the family. DNA was isolated from total
blood using the Gentra Puregene Blood kit (Qiagen)
according to the manufacturer’s instructions.

A total of 480 adult subjects with normal weight (BMI
<P75) from the same geographic origin, provided by Banco
Nacional de ADN Carlos III (Universidad de Salamanca,
Spain), were used as controls.

Candidate genes

To define the list of 15 candidate genes, a systematic lit-
erature review was done to identify: (1) genes with reported
mutations in patients with obesity (LEP, LEPR, MC3R,
MC4R, PCSK1, NTRK2 and SIM1) [11–16, 34], and (2)
genes with single-nucleotide polymorphisms associated to
obesity in genome-wide association studies (BDNF, FTO,
NEGR1, GHSR, ADRB3, PPARG, PCSK2 and TMEM18A)
[18–22].

Pooled DNA-sequencing

Targeted enrichment was used to capture coding regions
from the 15 selected genes (SeqCap EZ Choice Enrichment
Kits, Roche Sequencing). Instead of sequencing individual
samples, a pooled DNA strategy was used. Each sample
was included in two different pools and each pool had 20
different samples. A total of 48 pools from patients and 48
pools from controls were designed (Fig. 1). To identify
which sample carried each variant, the results from each
pool were overlapped to identify the two pools harbouring
the same alterations. Using this pooling approach, one
heterozygous variant in a sample is expected to appear in
about 1/40 (2.5%) of the reads. To ensure that variants with
a low percentage of reads were represented in the sequen-
cing experiment, high coverage was mandatory. The mas-
sive sequencing was done with MiSeq (Illumina).

Variant calling

Reads were mapped to the human reference genome (UCSC
hg19). We used the MUTEC software [35] to call RSVs
represented in a low percentage of reads. Given the very
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high coverage, false-positive calls were expected in almost
all positions mapped. Thus, several quality filters were used
to discriminate real variants from false positives in an
automatic manner (Fig. 1) and visual inspection of reads in
the integrated genome viewer [36] allowed us to clearly
discriminate in dubious cases. Six samples with seven
previously detected variants were used for optimization of
filtering parameters. Base quality index and strand bias were
the best predictors to reduce false-positive detection rates.
Since false positives tended to have much lower base
quality values, only variants with individual Phred scores
over 5 and an average base quality over 15 in the two
different pools were selected. Variants with high strand bias
were found to be false positives. Thus, variants with
extreme strand bias (proportion of same strand reads <20%
or >80%) were discarded as likely false positives.

Custom-made Perl scripts were used to automate sample
identification crossing the pools where the same variant was
detected. The proportion of variants in each pool was also
considered in the pipeline as an estimation of allele fre-
quency. Although obesity is a highly heterogeneous dis-
order, the same RSV might appear twice (present in two
alleles from either the same or different samples), expected
in 5% of the reads. Consequently, the first step was filtering
the variants present in between 1 and 10% of the mapped
reads. Variants with a lower percentage were probably
artefacts and variants with a higher percentage (present in
three or more samples in the same pool) were thought too

common to be considered highly penetrant RSVs for this
heterogeneous disease.

In positions where the coverage was under 1000×, it was
particularly difficult to discriminate between real variants
and false positives. Therefore, we individually assessed all
variants in positions with coverage under 1000×.

Prioritization and analysis of variants

To establish the burden of RSVs identical approaches were
used in each group (Fig. 1). Intronic variants were excluded
due to the difficulty in interpreting their clinical significance
and only exonic variants and those putatively affecting
splicing (±6) were selected. We discarded variants with
population frequencies in any public database (gnomAD,
1000 genomes, Kaviar, Spanish variant server) [37] higher
than 1/1000 or described in a homozygous state in at least
one individual, assuming that variants with a relatively high
frequency in the general population are unlikely high
penetrant variants related to the severe phenotype of EOO.

All nonsense or frameshift, canonical splicing and mis-
sense variants predicted as damaging (Condel >0.522 and
CADD >20) [38, 39] were considered as highly likely to be
pathogenic (from now on called likely pathogenic variants).
All previously reported mutations with experimentally
validated functional consequences were also included [40].
To define pathogenicity, we also considered the constraint
metrics for variation tolerance of each gene. Variation-

Fig. 1 Summary of the strategy followed for single-nucleotide variant (SNV) analysis and rare sequence variant (RSV) identification
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intolerant genes were considered those with pLi (probability
of loss-of-function intolerance) >0.50 and missense Z-score
>0 [37].

Variant validation and co-segregation

To validate RSVs detected by pooled DNA-sequencing,
PCR amplicons from individual DNA samples were
obtained and sequenced by Sanger technology. The same
technique was used to analyse parental samples when
available to define inheritance pattern and possible co-
segregation of the RSV with the phenotype in each family.

Replication cohort

Exomes from 293 unrelated patients with EOO from the
Viva la Familia (VLF) study [41] were used to replicate the
results found in our initial cohort. VLF comprises obese
probands with BMI >95th percentile, between 4 and 19
years old, from Hispanic families in Houston. Sequence
read archive (SRA) files were downloaded from publicly
available servers (dbGAP: phs000616.v2.p2). Variant call-
ing in the 15 candidate genes was done with GATK [42]
and filtering was performed using the same criteria as
above.

Ethics statement

The project was approved by the Medical Ethical Com-
mittee of Hospital Infantil Universitario Niño Jesús in
Madrid, Spain and is in accordance with the “Ethical
Principles for Medical Research Involving Human Sub-
jects” adopted in the Declaration of Helsinki by the World
Medical Association (64th WMA General Assembly, For-
taleza, Brazil, October 2013) and Spanish data protection
act (Ley Orgánica 15/1999 de Protección de Datos). Written
informed consent was obtained from all patients or their
legal guardian after a complete description of the study.

Results

RSV detection sensitivity and specificity

The mean sequence coverage of patient pools was 2396×
(SD: 574) and 3428× (SD: 660) in controls, with >98% of
targeted sites showing coverage above 400×. The sensitivity
and specificity of this approach were assessed. Six of the
seven known variants in samples included in the study were
blindly identified with the filters mentioned above, yielding a
sensitivity of 86%. The only variant not identified had low-
quality scores. As proof of concept for high specificity, 23

variants detected with the pooled DNA approach were
selected and all (23/23, 100%) validated by Sanger sequen-
cing. Although the pooled DNA approach may not detect a
small percentage of real variants, it does not capture false
positives. These results demonstrate that the strategy used is
efficient to identify RSVs in large cohorts of samples.

Burden of RSVs in EOO

A total of 73 different RSVs were selectively identified in
only one group (Table 1): 43 variants in 48 subjects of the
patient group and 30 variants in 31 controls. This difference
was statistically significant (odds ratio (OR)= 1.61; p=
0.0342; Table 1 and Supplemental Tables 1 and 2). We used
very stringent criteria of pathogenicity to better define the
putative clinically relevant variants: all loss-of-function
(nonsense, frameshift and canonical splice-site variants) and
missense variants predicted as pathogenic by two stringent
algorithms (Condel and CADD) were considered as
likely pathogenic. Likely or known pathogenic (previously
validated) RSVs were found in 23 patients and 8 controls
(OR= 2.98; p= 0.0055). Most RSVs were present in a
single sample, but a few cases with two samples harbouring
the same RSV were found and three patients shared a var-
iant in FTO.

A subset of sequenced genes accumulated the differential
mutational load found in patients compared to controls:
BDNF, FTO, MC3R, MC4R, NEGR1, PPARG and SIM1.
Analysing this group of genes separately, a total of 30
patients with RSVs were identified in patients versus four
controls (OR= 7.78; p < 0.0001; Table 1) and four of these
seven overrepresented genes (BDNF, NEGR1, PPARG and
SIM1) are variation intolerant (Supplemental Table 3).
Analysing the likely pathogenic variants in the subset of
genes, RSVs were identified in 17 patients (3.67%) and no
controls (p < 0.0001; Table 1). Two of the variants identi-
fied were present in two unrelated patients (Table 2). All 17
likely pathogenic variants identified in the overrepresented
subset of genes heterozygous and no individual carried
more than one likely pathogenic variant (Tables 1 and 2).

In the remaining subset of genes, 18 RSVs were identi-
fied in patients and 27 in controls (not statistically sig-
nificant), including 6 likely pathogenic variants in patients
and 8 in controls (not statistically significant; Supplemental
Tables 1 and 2).

Heterozygous RSVs in patients with EOO

Among the genes with higher mutational load in patients,
MC4R was the most frequent with seven RSVs in patients
(1.51%). Of these, five have been reported as pathogenic by
demonstration of partial (H76R) or complete (S127L,
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T150I, A259V and P272L) loss of function [13, 40]. The
two RSVs not previously described include a nonsense
change interrupting the protein in the 22nd codon (R22X)
and a missense change (V52A) predicted as likely benign.
In the five cases with parental samples available, the RSV
was inherited from obese mothers. Two missense variants in
MC4R were detected in the control group, both predicted as
benign and not previously described in patients. Three
patients were also found to have RSVs in a related gene,
MC3R, with the likely pathogenic RSV (R302W) identified
in two unrelated patients (Table 2).

SIM1 also showed a high mutational load in patients
(n= 6) compared to controls (n= 1). Two of the six var-
iants identified in patients are strongly predicted to be
pathogenic. One affects a canonical splice site in intron 3
(c.352+ 1G>A) and the other is a missense variant on a
highly conserved residue of the first Perl–Arnt–Sim of the

protein (Q206K) found in two siblings concordant with the
phenotype. These RSVs were inherited from an obese father
(splicing variant) and obese mother (missense variant)
(Table 2). The variant detected in a control subject and four
of the RSVs in patients are not predicted to be pathogenic
by our criteria.

In the BDNF gene, three RSVs were found in four
patients and none in controls. Two of the variants are pre-
dicted to be pathogenic. One of these RSVs was not found
in parental samples, indicating that it occurred de novo in
the patient. Parenthood was proven using microsatellite
markers. The other RSV (I231V) was found in two unre-
lated cases, paternally inherited in the case with parental
samples available (Table 2).

We detected three RSVs (two likely pathogenic) in
PPARG in patients, as well as one single likely pathogenic
missense RSV in FTO and NEGR1, and none in controls.

Table 1 RSVs identified per
gene in each one of the analysed
groups: EOO-Sp, n= 463; VLF,
n= 293; and controls, n= 480

All RSVs Likely pathogenic RSVs

EOO-Sp (%) VLF (%) Controls (%) EOO-Sp (%) VLF (%) Controls (%)

ADRB3 1 (0.22) 1 (0.34) 4 (0.83) – – 1 (0.21)

BDNF 4 (0.86) 1 (0.34) – 3 (0.65) 1 (0.34) –

FTO 4 (0.86) 4 (1.37) 1 (0.21) 1 (0.22) – –

GHSR 2 (0.43) 6 (2.05) 3 (0.63) – 1 (0.34) –

LEP – – – – – –

LEPR 7 (1.51) 5 (1.71) 5 (1.04) 2 (0.43) 2 (0.68) 3 (0.63)

MC3R 3 (0.65) 3 (1.02) – 2 (0.43) 1 (0.34) –

MC4R 7 (1.51) 6 (2.05) 2 (0.42) 6 (1.30) 4 (1.37) –

NEGR1 3 (0.65) – – 1 (0.22) – –

NTRK2 2 (0.43) 3 (1.02) 4 (0.83) 1 (0.22) 2 (0.68) 1 (0.21)

PCSK1 4 (0.86) – 5 (1.04) 3 (0.65) – 1 (0.21)

PCSK2 2 (0.43) – 5 (1.04) – – 2 (0.42)

PPARG 3 (0.65) – – 2 (0.43) – –

SIM1 6 (1.30) 2 (0.68) 1 (0.21) 2 (0.43) – –

TMEM18 – 1 (0.34) 1 (0.21) – 1 (0.34) –

48 (10.37) 32 (10.92) 31 (6.46) 23 (4.97) 12 (4.10) 8 (1.67)

Selected genes 30 (6.48) 16 (5.46) 4 (0.83) 17 (3.67) 6 (2.05) –

Other genes 18 (3.89) 16 (5.46) 27 (5.63) 6 (1.30) 6 (2.05) 8 (1.67)

Bold represents the selected genes.

The number and percentage of individuals carrying rare and probably pathogenic genetic variants per gene
are shown. The total burden of RSVs is significantly higher in EOO-Sp (48/463) than controls (31/480)
(OR= 1.61; p= 0.0342), and in VLF compared to controls (32/293; OR= 1.69; p= 0.0306). The
proportion of individuals carrying likely pathogenic RSVs was also significantly higher in EOO-Sp than in
controls (23/463 vs. 8/480; OR= 2.98; p= 0.0055). Genes accumulating the RSV load in patients compared
with controls are in bold: BDNF, FTO, MC3R, MC4R, NEGR1, PPARG and SIM1. The proportion of
individuals carrying RSVs was significantly higher in EOO-Sp than in controls (30/463 vs. 4/480; OR=
7.78; p < 0.0001). This difference was also statistically significant in VLF (16/293; OR= 6.55; p= 0.0002).
Considering only probably pathogenic variants, the proportion in patients (17/463 in EOO-Sp and 6/293 in
VLF) was significantly higher than in controls (p < 0.0001 and p= 0.0029, respectively), where none were
found (0/480).

OR odds ratio, RSV rare sequence variant, OR odds ratio, EOO-Sp early-onset obesity-Spain, VLF Viva la
Familia
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Clinical features of RSV carriers

The main phenotypic features of patients harbouring likely
pathogenic RSVs in the selected genes are detailed in
Table 2. The six patients harbouring pathogenic RSVs in
MC4R were males with a BMI above+ 5.5 standard
deviation score (SDS), orexigenic impulsivity, hyper-
insulinism, some overgrowth (height >+1 SDS over target
height) and advanced bone age (14 months on average), a
phenotype previously defined in patients with MC4R
mutations [43, 44]. The patient with the A259V variant had
macroorchydism (8 cc volume testes despite Tanner stage
I), which is not a common feature of MC4R deficiency,
given the lack of MC4R expression in the testis [45]. The
patient with the novel nonsense mutation (R22X) had an
extremely high BMI (+18.8 SDS), uncontrollable orexi-
genic impulsivity, overgrowth (+3 SDS), advanced bone
age (51 months over chronological age) and hyperinsulin-
ism. His mother, also a carrier of the R22X mutation, had a
BMI of 51.3 kg/m2. The patient with a predicted benign
RSV at MC4R (V52A) was a girl with milder obesity (+4.2
BMI-SDS), no overgrowth (height at −1 SDS), average
bone age, and hyperinsulinism.

The two patients with likely pathogenic RSVs in MC3R
had milder obesity (BMI around +4 SDS) and no over-
growth. One had insulin resistance.

Patients harbouring SIM1 RSVs had BMIs of 4.3 and 5.6
SDS, increased longitudinal growth (+0.7 and +1.3 SDS
over standardized target height), mild hyperphagia, insulin
resistance, and impaired glucose tolerance.

Patients with RSVs in the BDNF gene had BMIs ranging
from +3.3 to +6.1 SDS. Patients with PPARG RSVs
including one sibling (BMI +4.1 to +5.5 SDS) showed
insulin resistance and three out of four had dyslipidaemia.

Replication cohort

The results of the VLF study are shown in Table 1 and
Supplemental Table 4. The frequency of RSVs in VLF
replicated the results for BDNF, FTO, MC3R, MC4R and
SIM1. No RSVs with the established criteria were detected
in NEGR1 or PPARG in the VLF cohort, but likely patho-
genic RSVs were identified in GHSR and TMEM18, absent
in controls. The increased rate of RSVs between VLF
subjects (32/293, 10.92%) and controls (31/480, 6.46%) in
all genes was similar to that of the Spanish EOO dataset
(OR= 1.69; p= 0.0306). The separate analysis of the
overrepresented subset of genes (BDNF, FTO, MC3R,
MC4R, NEGR1, PPARG and SIM1) yielded a significantly
higher proportion of VLF patients with RSVs (16/293) than
controls (4/480; OR= 6.55; p= 0.0002). This difference
was also statistically significant when considering only

likely pathogenic variants (6/293 VLF patients versus 0/480
controls; p= 0.0029; Supplemental Table 5).

Discussion

Analysis of an elevated number of individuals is necessary
to identify genetic factors with strong effects in hetero-
geneous diseases with important environmental influence,
such as obesity. Pooled DNA-sequencing reduces the
number of sequencing reactions, thus reducing costs with-
out decreasing the number of samples. This approach must
be optimized to identify all relevant variants and discern
between real variants and artefacts. Sequencing coverage
above 400 reads in most positions would yield >10 reads of
any single RSV diluted in a pool of 20 different samples.
Since sequence artefacts are detected in most mapped
positions, quality filters were required to discriminate
between real variants and false positives. The percentage of
reads with the variant, strand bias and Phred score had the
greatest discriminatory ability. Full validation rate by San-
ger sequencing (23 of 23 variants) proved the high speci-
ficity and suitability of the pooling strategy.

We failed to detect one of seven7 previously defined
RSVs (sensitivity 86%). This incomplete detection rate
might invalidate using pooling strategies for diagnostic
purposes, but it should not affect the results of this study.
The average coverage of the patient pools was lower than
that of the control pools (2396× vs. 3428×). If this differ-
ence were to generate bias when detecting RSVs, it would
favour RSV detection in controls. A more similar coverage
between groups might even increase the difference in bur-
den between patients and controls.

We focused on RSVs in 15 candidate genes that could
have a strong effect in a small subgroup of patients
according to information available at the onset of this study.
This strategy might have missed some variants with higher
frequencies that also contribute to obesity. RSVs were
identified in 10.36% of patients with half of them (5.0%)
most likely being pathogenic, a burden significantly higher
in patients than in controls. This burden was attributable to a
subset of seven genes (BDNF, FTO, MC3R, MC4R,
NEGR1, PPARG and SIM1). The replication study corro-
borated these results indicating that highly penetrant RSVs
in these genes contribute to part of the missing heritability
of EOO.

When patients are grouped according to the gene muta-
ted, most groups are too small to establish conclusive
clinical molecular correlations, but some common features
can be discerned. Among the overrepresented genes, MC4R
was the most frequent (1.51% of patients), similar to reports
revealing heterozygous and homozygous mutations in

Heterozygous rare genetic variants in non-syndromic early-onset obesity



MC4R accounting for 1–6% of severe obesity in humans
[40, 43, 44]. Patients with RSVs in MC4R had hyperphagia
with compulsive eating, very severe obesity (mean BMI+
8.9 SDS), overgrowth, accelerated skeletal maturation and
metabolic disturbances including insulin resistance. Beha-
vioural disturbances occurred mainly associated with food
seeking. It is of note that all patients described here with
RSVs at MC4R were male. The literature does not support
the possibility that in obese subjects this gene is exclusively
affected in males. However, there may be a global bias in
the parental transmission of RSVs. To determine this pos-
sibility, a larger sample size is required, as well as addi-
tional investigation. It is also of note that there was a lack of
significant differences in gene burden between the two
relatively close ethnic groups compared, European Spa-
niards and Hispanics in the USA.

Like MC4R, MC3R has a critical role in regulating
energy balance [46]. It was recently reported to regulate the
upper and lower limits of an individual’s homeostatic set-
points and the response to external metabolic challenges
[47]. MC3R-knockout mice were shown to have dysregu-
lation of energy expenditure, feeding responses and neu-
roendocrine responses to metabolic challenges such as
fasting, high fat diet intake, pregnancy and the loss of
estrogens. For example, these mice lost more weight during
fasting than wild-type mice, but gained more weight when
put on a high fat diet [47]. The three patients (0.65%) with
missense mutations in MC3R had a similar degree of obe-
sity, which was milder than those harbouring RSVs in
MC4R, and no overgrowth or advanced skeletal matura-
tion. These patients did not exhibit measurable hyperphagia,
similar to what was observed in MC3R-deficient mice [47].
However, as with mice, an inadequate diet could contribute
to the excess weight gain. Only one of our patients had
hyperinsulinism and hyperuricaemia; this patient also har-
boured a variant in the other allele that did not fulfil the
defined criteria as its frequency is 1/945 in the European
population. However, if this second variant is functionally
relevant, inheritance would be compatible with a recessive
or codominant model as reported for MC4R. In the codo-
minant mode of inheritance, both monoallelic and biallelic
mutations can cause the disorder and patients with biallelic
mutations are more affected than their heterozygous rela-
tives [48].

BDNF is a pro-survival factor in the brain that also
participates in appetite regulation. Heterozygous BDNF-
knockout mice are obese, hyperphagic and hyperactive [49]
and disruption and deletion of BDNF have been described
in patients with obesity. WAGR syndrome is a contiguous
gene deletion syndrome on chromosome 11p13 character-
ized by Wilms’ tumour, Aniridia, Genitourinary anomalies
and Mental retardation, with obesity present in patients with

larger deletions encompassing BDNF along with the other
critical genes (WAGRO syndrome) [10]. Disruption of
BDNF expression in a patient with a paracentric inversion
and deletion of the entire BDNF locus in a mother and child
were associated with hyperphagia, severe obesity and
mildly impaired cognition with or without attention deficits
and hyperactivity [50–52]. However, no point mutations in
BDNF have been reported to date in obese patients. In our
series, three patients (0.65%) harboured two different mis-
sense RSVs in this gene predicted as pathogenic, with none
detected in controls. Two unrelated cases carried the same
variant (I231V) and another carried a de novo variant
(C141G9). Obese patients with BDNF variants presented
mild to severe hyperphagia and insulin resistance with
dyslipidaemia in two cases. No behavioural or learning
issues detected.

Six RSVs in SIM1 were found in our cohort and two
were predicted as likely pathogenic. A third case was the
affected brother of case 1782, concordant for the Q206K
RSV. The phenotype of all three cases included a BMI-SDS
of +4 to +5, no intellectual or behavioural abnormalities,
and insulin resistance with impaired glucose tolerance. Sim1
haploinsufficiency in mice induces hyperphagia, obesity
and central nervous system developmental abnormalities
[53]. Deletions [54, 55] and translocations [56] affecting
SIM1 cause severe obesity in association with intense
orexigenic impulsivity and other features resembling Pra-
der–Willi syndrome. Loss-of-function point mutations in
SIM1 with variable expressivity and incomplete penetrance
also produce a “Prader–Willi-like” phenotype [57], but also
non-syndromic obesity [58]. Thus the described RSVs
could contribute to the postulated increased intra-family risk
for non-syndromic obesity [58].

Significant differences in RSV load between patients and
controls were detected in NEGR1 (3 patients, 0 controls),
FTO (4 patients, 1 control) and PPARG (3 patients, 0
controls), with five of the RSVs predicted as likely patho-
genic. Although association studies have documented their
role in obesity, no highly penetrant RSVs have been
described to date in these genes. Our data indicate that some
RSVs at NEGR1, FTO and PPARG may behave as highly
penetrant alleles causative of EOO, although the number of
patients is too small to define distinctive phenotypes. The
patient with a likely pathogenic RSV at NEGR1 had speech
and behavioural problems and hyperuricaemia, while the
three patients harbouring RSVs in PPARG (including one
sibling) had insulin resistance and associated dyslipidaemia,
in agreement with the role of PPARG variants in predis-
position to metabolic syndrome [59].

Weaker evidence for definite implication was obtained
for GHSR, NTRK2 and TMEM18. Likely pathogenic RSVs
at NTRK2 were identified in one of our patients and two
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from the VLF study, but also in one control. Single patients
with RSVs at GHSR and TMEM18, absent in controls, were
found in the VLF cohort. Whether these monoallelic RSVs
contribute to the obesity phenotype awaits studies in larger
series and functional studies. De novo NTRK2 mutations, a
highly intolerant gene to both loss-of-function (pLI= 1)
and missense variants (miss-z= 4.35), have been previously
associated with severe obesity and developmental delay
[17]. Thus, some heterozygous partially functional variants
could cause a phenotype of non-syndromic obesity without
significant developmental delay.

RSVs in five genes were either absent (LEP) or more
common in controls than in cases (ADRB3, LEPR, PCSK1
and PCSK2) in both datasets. Biallelic mutations in LEP,
LEPR and PCSK1 with a recessive model of inheritance
have been described in severely obese patients. In a study of
300 obese subjects, biallelic LEP mutations were identified
with a frequency of 3% [48], but 3/4th of the patients with
biallelic mutations were homozygous, with mutations in
identical-by-descent regions in consanguineous families
[48]. Thus, the prevalence of biallelic mutations in recessive
genes in populations that are not inbred, such as the two
cohorts studied here, might be quite low [60]. POMC was
not included in this study based on the assumed adrenal
insufficiency associated to pathogenic variants in this gene.
However, POMC is now being analysed in this cohort in
another study.

It is clear that functional analyses at the cellular, tissue
and organism levels are required to define the physio-
pathogenic mechanisms of all variants reported here.
However, we show strong epidemiological and statistical
evidence by defining the genes harbouring heterozygous
deleterious changes in our large cohort of EOO patients and
then validating the results in a replication dataset. More-
over, there is experimental evidence for the abnormal
function of some of the reported RSVs [13, 40, 61]. Many
genes involved in appetite and metabolic control appear to
be sensible to dosage [50, 62, 63], with rescue of hap-
loinsufficiency of Mc4r and Sim1 recently shown to revert
the obese phenotype in mice [64]. Thus, although the
molecular mechanisms underlying how these newly
described RSVs affect body weight remain to be estab-
lished, there is precedence for heterozygous affectation of
these genes being functionally important. Moreover, the
overall prevalence of monoallelic RSVs found in our cohort
is similar to that of a recent publication [65] where a
diagnosis rate of genetic obesity was reported in 3.9% of
patients (48/1230) and 7.3% of the paediatric subgroup (12/
164). It should also be emphasized that the interaction of
these genetic variants with the environment is of utmost
importance with morbid obesity being more likely to occur
in these cases when dietary habits are inadequate.

In summary, we documented a higher burden of
likely pathogenic heterozygous RSVs in several candidate
genes in patients with severe EOO compared to controls.
The yield for RSV detection is relatively high, around 5%
of patients with EOO. Identification of a potential genetic
cause of the phenotype in each case is very important for
individualized follow-up and genetic counselling to the
family. In addition, definition of the specific defect at the
molecular level may be instrumental, as this group of
individuals may be relatively refractory to weight loss
through diet and exercise and novel therapeutic approaches
for genetically defined obesities are becoming available. For
instance, highly potent second-generation MC4R agonists
lead to weight loss in individuals with MC4R deficiency
[40]. Thus, several patients in this study could possibly
benefit from this therapy. Our results reinforce the role of
the leptin–melanocortin pathway in obesity and bring to
light other genes that may carry highly penetrant obeso-
genic single allele variants, such as FTO, NEGR1 and
PPARG. The availability of an evidence-based algorithm for
diagnostic analysis of early-onset obesity would be of great
clinical interest. However, the obese phenotype of the
children reported here, as well as in other studies, is non-
specific, and an algorithm that could accurately suggest
which genes should be studied in each case is difficult even
if phenotype–genotype relationships lead to a better defi-
nition of the different clinical conditions. Instead, given the
currently available and affordable tools for diagnostic
genomic analysis, a genotype-first approach using expanded
panel of genes with effective copy number analyses should
be indicated in these children with early-onset obesity.
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