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Team pursuit track cycling is an elite sport that is part of the Summer Olympics. Teams

race against each other on special tracks called velodromes. In this article, we create

racing strategies that allow the team to complete the race in as little time as possible.

In addition to the traditional minimization of the race times, we consider the amount of

energy that the riders have left at the end of the race. For the team coach this extension

can have the benefit that a diverse set of trade-off strategies can be considered. For

the optimization approach, the added diversity can help to get over local optima. To

solve this problem, we apply different state-of-the-art algorithms with problem-specific

variation operators. It turns out that nesting algorithms is beneficial for achieving fast

strategies reliably.

Keywords: multi-objective optimization, bilevel problems, hierarchical programming, nested algorithms, track

cycling

1. INTRODUCTION

At the Summer Olympics, team pursuit track cycling is a bicycle racing sport held in velodromes.
This sport involves the use of strategies to minimize the overall racing time that a team of
cyclists needs. Finding these strategies presents a particularly challenging problem that involves
hierarchical dual-level solutions spread over a multi-modal solution space.

Although good strategies can be designed long before the actual competition, it may be necessary
to react quickly to changing conditions at the competition venue; for example, a rider in the
team has to be replaced due to injury by another rider with various physical properties, such as
weight, maximum power output, frontal area, and available amount of energy. As these capabilities
and properties influence the team’s performance, new racing strategies have to be found within a
computationally feasible length of time, for example, within a few hours prior to a race.

Elite cycling has previously been modeled mathematically [1–3] for a single cyclist, where an all-
out pacing strategy appears to be optimal. However, when teams cycle, then the solution requires
sub-maximal efforts throughout the race [4]. The problem’s complexity is the result of several
features that arise specific to track-based team cycling. First and foremost, a team of riders who
are riding in close formation do so with a lead rider who heads the team and who is then followed
by the remaining team members who benefit from the lead rider’s slipstream. This slip-streaming
effect is an important consideration as it allows riders to conserve energy, as the lead rider typically
uses a greater amount of energy. Therefore, teams apply in addition to a pacing strategy a transition
strategy, where the lead rider is changed for another, so that the riders may each expend their energy
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evenly. The problem is further complicated by considering a
men’s cycling team: contrary to the women’s event does the men’s
event allow for one of the individual riders to remove himself
from the race, only requiring that three out of the four riders
finish.

In this article, the problem of finding racing strategies is
formulated as optimizing two distinct sets of variables. The first
set defines the power strategy, i.e., how much power, the lead
rider is required to exert in order to ride at the necessary pace.
The second set defines the transition strategy, i.e., when during
the race a new rider is transitioned to lead. The transition strategy
of the riders is affected by the pacing strategy, and an optimal
transition strategy for a single pacing strategy may not be optimal
for all pacing strategies. Therefore, the minimization of overall
time using the pacing strategy depends on having an optimal
transition strategy. This dual level optimization results a complex
set of solutions because for any given transition strategy it may
be impossible to find an optimal pacing strategy and hence only
sub-optimal solutions for the overall problem may are created.

1.1. Related Work
Hierarchical programming is concerned with optimizing
problems that involve multiple decision makers structured in
ordered levels. In hierarchical optimization, the optimization
of higher order decision makers influence the decisions made
at lower levels [5]. This creates a difficult set of problems as
the optimal lower level solution will be different for each upper
level solution, creating a situation where multiple trade-off
lower level solutions need to be searched, and there is a complex
interaction between the upper and lower levels of a problem.
This complexity makes it hard to find an optimal solution to the
overall problem.

The bilevel optimization problem is a subset of hierarchical
problems in which there are two levels of optimization problems.
Bard [6] states that bilevel optimization problems commonly
appear in real life applications. For example, let us take a
practical problem where an optimization task must satisfy a
certain set of conditions. The problem itself would be considered
the upper level optimization task, while one or more of these
conditions can be posed as a lower level optimization task.
However, due to the difficulties in solving bilevel problems, these
lower level conditions are often represented using approximate
methodologies [7].

Hierarchical optimization has been successfully applied to
a variety of real life problems. In the realm of single-
objective bilevel optimization, there have been some studies of
applications, such as in the areas of defence, engineering, energy
planning, revenue management, transportation network design
and production scheduling problems [8, 9]. Similarly, these same
principles have been applied in a study of a single-objective
version of our cycling problem [10].

Deb and Sinha [7] have done a comprehensive survey of
bilevel multi-objective optimization studies and have found that
due to the complexity of this type of problem studies are severely
lacking. There has been theoretical research in multiobjective
bilevel problems, with Herskovits et al. [11] replacing the Karush-
Kuhn-Tucker conditions of the lower level optimization problem

as constraints in the upper level problem; however, this is not
possible in some real life problems where the lower level problem
can be quite complicated. Other studies have handled this type
of problem using a nested approach, for example by using an
exhaustive search method for the lower level problem [12]. Deb
and Sinha [7] present an algorithm for solving bilevel problems
using NSGAII to solve both levels of the problem, which were
found to be generic, being able to be used on a range of different
problems. We build on this work, adapting other multi-objective
algorithms to be suitable for use in hierarchical problems in our
framework.

In general, iterative heuristic algorithms such as local search,
simulated annealing, evolutionary algorithms, and ant colony
optimization have proven to be successful problem solvers in
a wide range of domains [13]. In this particular article, we
will employ the so-called evolutionary algorithms, however, it it
important to note that other iterative optimization approaches
can be used as well. Evolutionary algorithms form a sub-
class of bio-inspired algorithms, who mimic some fundamental
aspects of the neo-Darwinian evolutionary process. They
simultaneously search with a population of candidate solutions
and associate an objective score as a fitness value for each
one. The algorithms then select among the population to
favor those solutions that are more fit. The next generation
(i.e., a new population as a step in the overall evolution)
consists of replicates of the fitter solutions that have been
genetically mutated and crossed over in a biological metaphor:
the decision variables were perturbed such that they inherit
characters of their parents, as well as change in random
ways.

Regarding optimization in the domain of track cycling,
Wagner et al. [4, 14] described a model for the women’s team
pursuit problem, where three riders form a team, and where
race time was minimized as the sole optimization objective. The
major point of difference with our problem is that the men’s
teams consist of four riders (as mentioned above), and of these
only three need to reach the finish of the race. Furthermore,
the men’s event is competed over a longer distance of 4000
m, consisting of 16 laps of the velodrome, compared with the
women’s which is run over 3000 m (12 laps). This results in a
problem that is significantly more complex with a larger search
space.

1.2. Our Contribution
We present a real life practical problem, namely the Men’s
Team Pursuit Track Cycling Problem, which is a two-level
hierarchical problem and provides complex interactions between
the two levels of the optimization problem. Additionally
this problem is multi-objective and has a complex, multi-
modal solution space. To solve this problem, we investigate
a range of multi-objective approaches that solve the problem
holistically.

We proceed as follow. Section 2 provides a description of
the Men’s Team Pursuit Track Cycling Problem. For this, it is
necessary to explain how the cyclists benefit from slipstream
and how energy consumption is determined. A standard single
level approach to this type of problem is presented in Section 3,
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and following this the nested algorithms will be presented in
Section 4, presenting details of our experiments, the results, and
an analysis and discussion of our findings. Finally, Section 5
presents our conclusions and outlines future work.

2. MODEL

2.1. Problem Description
Men’s Team Pursuit is a cycling racing sport that features in the
Summer Olympics, in which teams of riders compete for the
fastest time around 16 laps of a banked elliptical track known
as a velodrome. It involves the use of strategies to minimize
the overall time that a team of cyclists needs to complete a
race. Finding these strategies presents a particularly challenging
problem.

The problem’s complexity is the result of several features that
arise specific to track-based team cycling. Primarily, a team of
riders who are riding in unison do so with a lead rider who
heads the team followed by the remainder of the team’s riders
who benefit from the lead rider’s slipstream. It is important to
consider this slipstreaming effect, because it allows some team
members to conserve energy, as the lead rider typically uses a
greater amount of energy. Therefore, teams apply in addition
to a pacing strategy a transition strategy, where the lead rider is
changed for another, so as that the lead rider will not expend all
their energy.

Transitions occur at the banked section of the velodrome
(i.e., either of the 2 turns), as this is the easiest position
for riders to sweep up the turn and change their position,
and cannot occur in the first or last 0.75 laps of a race.
All transitions move the lead rider to the rear, moving the
first following rider to lead position. In this way the ordering
of the riders never changes, only their relative positions.
Teams have their own preference for the order of the
riders.

The problem is further complicated by considering a men’s
cycling team: contrary to the women’s event, does the men’s event
allow for one of the individual riders to not complete the race,
only requiring that three out of the four riders finish.

Although good strategies can be designed long before the
actual competition, it may be necessary to react quickly to
changing conditions at the competition venue; for example, a
rider in the team has to be replaced due to injury by another
rider with different physical properties, such as weight, maximum
power output, and available amount of energy. As these
capabilities and properties influence the team’s performance,
new racing strategies have to be found within a computationally
feasible length of time, namely a few hours, so that they can be
run on field prior to a race.

Elite cycling has previously been modeled mathematically [1–
3] for an individual cyclist, where an all-out pacing strategy
appears to be the best choice. The consideration of additional
team members results in solutions that require sub-maximal
efforts throughout the race [4].

Following Wagner et al. [4], we formulate the problem
of finding racing strategies as optimizing two distinct sets of
variables. One set defines the transition strategy, i.e., when during

FIGURE 1 | Illustration of the solution representation. HL denotes the

half-laps before riders transition, and P indicates the power output of the lead

rider for per half lap.

the race a new rider is transitioned to lead, and the other set
defines the power strategy, i.e., how much power the lead rider
is required to exert in order to ride at the necessary pace.

This is a multi-objective problem, as the primary objective
is to minimize race time. There is also a secondary objective
to maximize the remaining energy of the riders at the end of a
race, so they can conserve energy for future races and recover
faster.

2.2. Problem Formulation
In the previous section we determined two distinct sets
of variables to be optimized: the transition strategy,
that is when during a race a rider is transitioned to
the lead, and the pacing strategy, that is how much
power the lead rider is required to exert to ride at the
required pace (the power of the following riders is less
than the leader, and is derived from keeping up with the
leader).

We represent the variables to be optimized as the following
core parameters:

• Half Laps (HL)—the number of half laps the lead rider heads
the formation before transitioning, this is a discrete variable
and represented by an integer.
• Power (P)—the power output of the first rider measured in

watts, also known as the pacing strategy, is continuous in
nature and represented by a continuous number.

This representation can be seen in Figure 1.
For the transition strategy, there are a moving number of

variables representing the strategy, equal to the number of
transitions required to complete the race. In the event the
riders transition every half lap, this would be 31 transitions
(as the riders are not allowed to transition during the first
or last 0.75 laps of the race). In the event the riders
transition less often, the extraneous variables are simply
ignored.

For the pacing strategy, the amount of power levels is fixed to
the number of effective half laps. Effective half laps are laps that
the riders can transition, and hence the first and last 0.75 laps are
represented as single half laps in the genome.

Note that the chosen representation for race strategies is
relatively simple. The fitness function takes care of some
complicated aspects, such as calculating the effective half lap and
considering riders that have dropped out due to exhaustion. This
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way, we deal with a relatively generic genome that we can then
use standard operators on.

It should be noted that we have two-level solutions distributed
over a multi-modal solution space, where the transition strategy
and pacing strategy are co-constrained. This means that an
optimal pacing strategy for a given transition strategy may
not be optimal for all transition strategies, and vice versa.
Implicitly the minimization of time using the optimal transition
strategy requires the optimal pacing strategy to be found;
however, due to the complex nature of the dual level problem
it may not be possible to find the optimal pacing strategy, and
hence sub-optimal solutions for the overall problem may be
found.

2.3. Evaluation Function
The aim of the optimization is to minimize time and maximize
remaining energy, hence time and energy are used as measures
of fitness. In the following, we outline the function as it is used
in previous studies [4, 10, 14]. The used physical equations were
derived from Martin et al. [2] and adapted to suit team pursuit
track cycling conditions.

First, the fitness function needs to assure that the solution
is feasible. In case one of the team members runs out of
energy they are assumed to have dropped out of the race,
however, if two riders run out of energy the solution becomes
infeasible and a penalty function is applied. In Algorithm 1
we show our “fitness function,” which simulates a race where
the leading cyclist’s power output determines the team’s speed
and thus the energy consumption of the individual team
members.

In order to model the time taken and the energy expended by
the riders a mathematical model derived from Martin et al. [2]
was adapted. To obtain the time taken and energy expended by
the lead rider to ride a half lap, a forward integration technique
was used, breaking down the time into small 1t of 0.1 s. To
calculate the acceleration for riding this 1t we use Equation (1):

1KE =

(

P × E− CDA×

(

1

2
ρv3

)

− µ× (vFN)

)

×1t (1)

where KE is kinetic energy, P is power, E is mechanical efficiency,
CDA is the frontal area of the bike and rider, v is speed, ρ is
air density, µ is a global coefficient of friction, FN is the weight
of the bike and the rider, and t is time. Potential energy was
removed from the original equation, as the vertical elevation can
be neglected. Note that there is no separate consideration of the
air’s wind speed, as the event is being held indoors in still air
conditions.

The energy needed for the following riders to keep up with
the acceleration from the original rider for a time 1t can be
calculated using Equation (2):

P =

(

CDA× CDraft ×
1

2
ρv3 + µ× (vFN)+

1KE

1t

)

/E (2)

where E is the efficiency of the drive system, 1KE is calculated
using the final velocity of the first rider after acceleration. CDraft

Algorithm 1: Fitness Function

input : list of transitions transitions, list of power levels
powers

output: predicted race time totalTime

1 totalTime := 0;
2 transCount := 0;
// where in the transition strategy we

are up to

3 halfLapsLeft := transitions[transcount] ;
// number of half laps left before the

next transition

4 for i ∈
{

1, . . . , powers.length
}

do

5 p := powers [i] ;
6 t := forwardIntegration(. . .) ;

// compute the time needed for cycling

a half lap, using Equation 1

7 totalTime+= t ;
8 rider1.totalEnergy−= p · t ;
9 Reduce the following riders’ energies using Equation 2,

based on them keeping up with rider1’s speed ;
10 halfLapsLeft −− ;

// 1 less half lap until transition

11 if halfLapsLeft = 0 then
// time to transition

12 reorder the riders ;
13 transCount ++ ;
14 halfLapsLeft := transitions[transcount] ;

// get the number of half laps left

before the next transition

15 if not at least 3 riders completing the race then
16 totalTime := 1000 // apply a penalty

is drafting coefficient of the rider and represents the reduction in
the CDA of a cyclist due to the aerodynamic benefits of drafting
in second, third or fourth position. A drafting benefit (CDRAFT)
was added to the original equation, in order to account for the
slipstreaming of the following riders.

3. STANDARD MULTI-OBJECTIVE
APPROACH

Our single-level optimization approach is a non-problem
specific optimization technique, treating the problem as if
it were a standard multi-objective optimization problem.
That is, it does not account for the hierarchical nature of
the problem, but rather mutates the solution as if it was
comprised of only one level. This approach does not change
the encoding as we have used a generalized representation for
the genome so that standard variation operators can still be
used.

In particular, we use two slightly different multi-objective
formulations of the optimization problem. In the first
formulation, the two-objective problem is the result of
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considering the race time as one objective and the sum of
the cyclists’ remaining energy as the second objective. In the
second formulation, the first objective is again the race time
minimization, however, objectives two to five are the energies
remaining of the four cyclists. With this second formulation,
we implicitly put an increased focus on creating energy efficient
strategies. Also, it allows us to investigate the impacts that
different strategies have on the individual racers. A team
coach might then realize that the order of the cyclists has to
change, or that particular team members need to improve their
endurance.

As the first level of the problem (the transition strategy) is
discrete in nature, and the second level of the problem (the
pacing strategy) is continuous in nature, a range of different
mutation methods have to be employed for the two levels. The
mutators chosen are standard mutation methods for discrete and
continuous variables, as used by Jordan and Kroeger [10].

The discrete variable mutators used on the transition strategy
are as follows:

• Random mutation (R): this mutator replaces the value of a
chosen gene with a random integer. A gene is chosen with
probability 1/m, wherem is the effective length of the strategy
(as explained in Section 2).
• Creep mutation (C): this mutator is a stepwise mutation that

only allows small changes at a time, with the chosen gene
“creeping” either up or down by 1. As with random mutation,
a gene is chosen with probability 1/m.

The continuous variable mutators used on the pacing strategy are
as follows:

• Uniform mutation (U): this mutator replaces the value of a
chosen gene with a random value selected between the upper
and lower bounds of the acceptable power. A gene is selected
with probability 1/n, where n is the length of the pacing
strategy.
• Non-uniform mutation (NU): this mutator decreases the

probability of mutation as the number of generations increase.
This keeps the population from stagnating in the early
stages of evolution, but allows for fine-tuning in later
stages. This mutator works in the same way as uniform
mutation, however rather than replacing the chosen gene,
a Gaussian distributed random value that narrows as the
number of generations increases is added or subtracted from
the gene.

Due to the interrelation between the two levels of our problem,
the successful application of a crossover operator is challenging.
It would only be reasonable to crossover the lower level
part of the problem (the pacing strategy) when the upper
level of both parents is the same. As there is no way to
ensure this, it was chosen not to use a crossover strategy. An
alternative could be to use an informed crossover that knows
of the peculiarities of the race, and which merges information
and attempts to achieve high quality solutions via repairs. In
extensive preliminary experiments, however, we have not been
able to design such an operator that was beneficial more often
than not.

TABLE 1 | Problem parameters.

Mechanical efficiency 0.977

Global friction 0.0025

Temperature 20◦ C

Air pressure 1013.25 hPa

Relative humidity efficiency 50%

Race distance 4000 m

Effective Half Laps 30

Maximum half-laps before transition 3

Maximum power 1300 W

Minimum power 200 W

Rider mass 75.0 kg

Rider height 1.75 m

Bicycle mass 7.7 kg

Rider mean maximum power 600 W

CDraft second position 0.75

CDraft third position 0.65

CDraft fourth position 0.55

Time to transition 0.12 s

For our first study, our portfolio of multi-objective
optimization algorithms consists of the two algorithms
NSGA-II [15] and SPEA2 [16], which are well-established
optimization algorithms for multi-objective problems.

3.1. Experimental Design
In order to compare the different combinations of operators and
algorithms, we use two population of sizes µ ∈ {10, 100}, and
then we explore all combinations. As the computation budget, we
use two million function evaluations, as these take approximately
3 h on a Intel Core 2 Duo with 2.4GHz core speed. Time budgets
longer than this could be considered as being impractical for the
use on the field prior to an actual race. Due to the stochastic
nature of the algorithms, we perform 30 repetitions of each
experiment.

In order to create a realistic model of the race, we use realistic
parameters as given in Table 1. To model fatigue, we limit the
number of laps the lead rider can head a team, and we impose a
bound on the amount of energy a rider can expend per half lap.
Also, if two or more riders are not able to complete the race due
to exhaustion, the strategy is marked infeasible by setting its race
time to 1000 s.

To compare the performance of the different configurations,
we use two approaches. First, we take from the final solution
sets the fastest strategies, and then we calculate different
statistics based on these best strategies that are found in the
30 independent optimization runs. Second, we calculate the
hypervolume that is covered with respect to a chosen reference
point. Based on preliminary experiments in which we observed
the typical ranges for good feasible solutions, we chose (300s,
220,000kJ) as the reference point for the two-objective case,
and (300s, 50,000kJ, 50,000kJ, 50,000kJ, 50,000kJ) for the five-
objective case.
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Before we analyse the results, let us briefly recall the best
results reported by Jordan and Kroeger [10], who investigated
different bi-level and cooperative coevolutionary approaches.
From their 10 configurations, we select as benchmarks the ones
that resulted in the best minimal and average race times. The
following race times will therefore act as our benchmark values:

Computation Configuration in Min. race Average

budget Jordan and time race time

Kroeger [10]

2 million Single Level Pop 100 246.6 250.0
Bi-Level 1+1 247.0 249.0

6 million Co-Evolutionary Pop 10 246.1 248.7
Bi-Level Pop 10 247.1 248.0

We implemented everything in the optimization framework
jMetal [17]. We have made the fitness function, the code, and
the results publicly available: http://cs.adelaide.edu.au/~optlog/
research/combinatorial.php.

3.2. Results
In Table 2 we list the results of our first study, where we compare
the four variation operators, when used by two multi-objective
optimization algorithms. We focus our attention on the race
times achieved by the fastest strategy, as these are the likeliest to
be implemented by a team coach.

First, it is striking that less than 50% of the runs actually
return at least one valid strategy. In all other runs, the final
solution set contain only infeasible racing strategies that cause
the unacceptable dropout of two or more cyclists during the
race. At first sight, this renders this approach useless for practical
purposes.

However, when our configurations produce feasible solutions,
then the best ones significantly outperform those found by Jordan
and Kroeger [10]. In particular, our best strategy results in a race
time of 244.2 s using two million evaluations, whereas previously
246.1 s was the best result using three times as many evaluations.

Given all 16 tested configurations, general observations are
difficult to make. As many runs did not produce feasible
solutions, the hypervolume indicator values are difficult to
interpret. What we can see is that a larger population (µ =
100) always performed better than a smaller one (µ = 10).
When it comes to the used multi-objective algorithm and to
the variation operators, no particular combination stands out. It
is only that for larger populations the use of the non-uniform
pacing mutation (NU) always outperformed the use of the
uniform pacing mutation (U).

4. NESTED APPROACH

4.1. Experimental Design
In an attempt to improve the reliability of our previous
approaches and inspired by existing approaches, we will next
investigate the use of bi-level optimization—with a twist.

First, we extend our portfolio of multi-objective optimization
algorithms, which now consists of the algorithms NSGA-II,

Algorithm 2: Framework of the Nested Multi-Objective
Race Time optimization

1 Initialize population P with µ random individuals;
2 foreach generation do

3 Initialize offspring population O← ∅;
4 for j← 1 to µ do

5 Select two random individuals from P according to
preset outer algorithm;

6 Apply transition mutation;
7 Run inner algorithm using pacing mutation only

(NSGAII/SPEA2/MO-CMA-ES);
8 Add new individuals to O;

9 Using the selection method of the outer algorithm form a
new population of µ solutions based on P and O
(NSGAII/SPEA2/GREEDY/GREEDY+RANDOM);

10 return P;

SPEA2,MO-CMA-ES [18], GREEDY, andGREEDY+RANDOM.
We add MO-CMA-ES due its self-adaptive capability and its
successful application to continuous problems. As the selection
strategies of these multi-objective algorithms focus on the
exploration of the entire range (from fast to slow) of race times,
we introduce GREEDY and GREEDY+RANDOM as simple
selection strategies that are biased toward fast race times. Given
a set of λ solutions, GREEDY selects the µ solutions with
the fastest race time. As this approach may cause a rapid
loss in the transitions strategies’ diversity, we also consider
GREEDY+RANDOM as a minor modification: the latter selects
only the fastest µ

2 solutions, and picks the remaining µ
2 uniformly

at random from the λ candidates.
Algorithm 2 outlines our framework for the race time

optimization. The outer algorithm maintains a set of µout

solutions, mutating only the transition strategy part. First, µout

offspring were generated, using the outer algorithm’s standard
selection strategy (e.g., via binary tournaments). Then, for each
such solution the inner algorithm is run in order to optimize
the pacing strategy. Each inner algorithm then returns its final
population of at most µin solutions

1.
The inner algorithms are started with the entire remaining

budget of available evaluations. In order to better use the given
budget of evaluations, we primarily use convergence as the
stopping criterion (for the inner algorithms): if no improvement
of the fastest race time is found over a specified number of
generations (we chose this number to be 100), the optimization
process is ended and the last population is returned. Then, the
global budget of evaluations is updated according to the number
of evaluations used by the inner algorithms.We proceed until the
budget of evaluations is used up.

Note that our approach is loosely related to the hierarchical
one used by Wagner et al. and Wagner et al. [4, 14]. There,
the problem was split into the outer problem of finding good

1Note that some inner algorithms may return less than µin solutions, as some

return only non-dominated solutions.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 October 2016 | Volume 2 | Article 17

http://cs.adelaide.edu.au/~optlog/research/combinatorial.php
http://cs.adelaide.edu.au/~optlog/research/combinatorial.php
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Wagner Optimizing Team Track Pursuit Cycling

TABLE 2 | Results of the single-level multi-objective study.

Mutation Fastest strategy per final solution set Hypervolume

µ Algorithm Pacing Transition Feasible Time (mean) Time (stdev) Energy (mean) Energy Mean Median stdev Min.

(stdev) time

100 SPEAII NU C 14 248.6 1.64 1236 1089 0.102 0.000 0.111 244.6

100 NSGAII NU C 15 248.7 1.63 1477 1198 0.106 0.094 0.108 245.5

100 NSGAII NU R 12 248.7 1.81 1088 881 0.082 0.000 0.103 245.8

100 SPEAII NU R 22 248.9 1.94 1558 2045 0.158 0.212 0.097 244.2

100 SPEAII U R 11 249.0 1.61 1843 885 0.079 0.000 0.105 246.8

100 NSGAII U R 15 250.1 1.90 1701 1688 0.105 0.097 0.107 246.9

100 SPEAII U C 13 250.1 1.67 1826 1234 0.093 0.000 0.108 247.2

100 NSGAII U C 18 250.2 1.49 2517 2242 0.123 0.197 0.103 246.9

10 SPEAII U R 18 251.2 2.54 1256 1959 0.066 0.100 0.055 246.0

10 NSGAII U C 12 251.7 2.90 864 695 0.019 0.000 0.028 246.4

10 SPEAII NU C 9 252.0 1.77 1303 998 0.037 0.000 0.058 249.5

10 SPEAII U C 12 252.3 2.20 1023 1044 0.043 0.000 0.053 249.8

10 NSGAII NU R 11 253.1 2.93 789 493 0.015 0.000 0.024 250.2

10 NSGAII U R 7 253.4 2.56 925 1212 0.010 0.000 0.022 250.5

10 SPEAII NU R 10 254.2 1.25 2104 2721 0.039 0.000 0.056 251.8

10 NSGAII NU C 12 254.4 2.83 1152 882 0.023 0.000 0.031 249.8

average 13.2 251.0 2.04 1416 1329 0.069 0.044 0.073 247.6

The configurations are sorted from top to bottom according to the mean time of the best strategy in the final populations. “energy” refers to the sum of energy left (in kJ) in the team at

the end of the race. “feasible” denotes the number of times (out of 30) that a run resulted in a feasible solution. Highlighted are race times faster than previously known ones.

transition strategies and into the inner problem of finding
good pacing strategies for given transition strategies. We
are now extending this by using problem-specific variation
operators and multi-objective algorithms for the inner and outer
problem.

In total, we are considering 4 ∗ 2 ∗ 2 ∗ 3 ∗ 4 = 192
configurations:

• four variation operator combinations: NU-C, NU-R, U-C,
U-R (see Section 3)
• one population size of the outer algorithm (µ = 10) and two

of the inner algorithm (µ = 10 and µ = 100)
• a two-dimensional and a five-dimensional formulation of the

race time minimization problem
• three inner algorithms (NSGAII, SPEA2, MO-CMA-ES)

and four outer algorithms (NSGAII, SPEA2, GREEDY,
GREEDY+RANDOM)

Just as before, our computation budget per run is two million
evaluations, and we perform 30 independent runs of each
configuration.

4.2. Results
First, let us have a brief look at the qualitative differences
between different configurations. Exemplarily, we list in Table 3

the outcomes of two single optimization runs. Case 1 is the output
of a run that used NSGA-II as the inner and outer algorithm,
while Case 2 used MO-CMA-ES as the inner algorithm and
GREEDY as the outer algorithm. The differences are significant.
In the first case, the final strategies are very diverse in race time

TABLE 3 | Exemplary outputs of the nested optimization.

Example Race time Energy per cyclist Transition strategy

Case 1 253.26
∑

= 2,155 31211223323323

269.04
∑

= 37,021 221112112312321312

275.24
∑

= 49,665 221112112312321312

279.24
∑

= 52,052 221112112312321312

286.46
∑

= 72,934 31211223323323

302.34
∑

= 106,353 221112112312321312

356.46
∑

= 188,660 31211223323323

385.74
∑

= 209,108 221112112312321312

Case 2 252.10 411, 53, 63, 0 2233133213121112

252.70 82, 78, 75, 0 1233133213121113

253.70 1209, 57, 0, 60 2233133213121112

253.70 1003, 41, 46, 0 1233133213121113

254.10 3498, 47, 52, 0 1233133213121113

254.30 2622, 54, 58, 0 2233133213121112

254.50 3814, 42, 44, 0 1233133213121113

254.70 4035, 46, 52, 0 2233133213121112

Case 1: NSGAII as inner algorithm (µ = 100), and as outer algorithm, optimizing two

objectives. Case 2: MO-CMA-ES as inner algorithm (µ = 100), and GREEDY as outer

algorithm, optimizing five objectives. Notes: duplicates are removed, race time in seconds,

energy values in kJ, pacings omitted.

and remaining energy. For a team coach, this spread in race times
by over 2 min (for a 4-min race) might be very confusing. In
contrast to this, the solutions in the second case are grouped
significantly closer together with times varying less than 3s. Based
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on the energy left in the team, it appears that MO-CMA-ES
succeeded in creating pacing strategies that completely exhaust
the cyclists. This was not as apparent in the first case.

Next, we can report that all multi-objective bi-level
approaches reliably produce feasible race strategies: 5744
of the 5760 experiments resulted in at least one feasible race
strategy. No particular configuration has stood out as particularly
unreliable. The observed 99.72% reliability to get feasible race
strategies is an important improvement over the previously
achieved <50%. At least from a practicality point of view, the
nestedness results in algorithms that can be used in the field.

When it comes to the four variation operator combinations,
all four appear to perform comparably across the remaining 48
combinations. When NU is used, then the best race strategies are
slightly better on average, however, this comes at the cost of an
increased variation in the results:

Combination Mean of the mean Mean of the min.

race time (stdev) race time (stdev)

NU-C 254.9 (5.70) 250.6 (3.23)
NU-R 254.6 (6.15) 250.4 (4.05)
U-C 255.4 (4.36) 251.0 (3.08)
U-R 254.9 (4.34) 250.8 (2.76)

In this first observation, the averaging effect blurs important
details. In Figure 2 we therefore show the configurations
sorted according to performance. Interestingly, there are always
combinations that result in strategies that are not competitive in
a real-world situation (see Figure 2A). The average performance
is dominated by the configurations that involve the combination
NU-R, with NU-C being a relatively close second. Despite this
order, we can see in Figure 2B that the other variation operator
combinations can be competitive as well.

But which configurations are the best performing ones?
Following the previous investigations, we list in Table 4 the
configurations that resulted in minimal race times of ≤ 246.1s,
which was the benchmark to beat. In summary, we can see that
NU-R as a variation operator combination perform the best. For
the outer algorithm, an increased pressure toward the race time
minimization appears to be useful.

MO-CMA-ES does not appear in Table 4. In general, its
configurations performed just at an average level, neither very
good nor very bad. This is interesting, as we have previously seen
in Table 3 how effective it is at using up the energy of the team.
We conjecture that this capability has been a disadvantage, as it
pushed the pacing strategy part of the race strategy too much
near local optima from which the outer algorithms had trouble
escaping.

Also, it is interesting to note that the five-objective
formulations performed not as well as the two-objective ones.
This might be due to the inadequacy of the algorithms for higher
dimensional spaces, andmany-objective optimization algorithms
might be more suitable here (see 19, 20, for recent surveys).
Another problem is that multi-objective algorithms explore by
nature the entire objective space, in an attempt to achieve a
good approximation of the true set of trade-offs. This, however,

is in contrast to the small part of the objective space that is
actually of interest to the team coach. An alternative approach
here would be to incorporate the preference more explicitly. In
general, techniques to do this have been investigated for over
decade [21], they have also recently been brought into the context
of many-objective optimization [22].

Coming back to our single level approach, we have to
remark that we might not be using the full potential of this
approach as the constraints are handled inefficiently by our
penalty. We noticed that a direct consideration of the energy
levels of the riders inside a variation operator is difficult, as
the race is simulated. An improvement here might be the use
of a repair operator. The design of such an operator is not
straightforward, as the problem cannot be decomposed and this
operator would have to quickly consider roughly 17 decision
variables without letting the solution quality deteriorate too
much.

To conclude, we have seen that the nesting of algorithms
yielded feasible solutions reliably. The previously best known
solution for this problem resulted in a race time of 246.11 s. We
improved upon this with race times of 244.24 s (Section 3.1).
Needless to say, such a gap in solution quality can make the
difference between no medal and a gold medal.

For the record, the following is our best solution found, which
is an improvement by 1.87 s over the previous best:

final race time: 244.24

remaining energy: 245

strategy: 313121212121131123

powers: 1194 550 741 200 794 977 928 200

561 455 237 1229 808 208 200 631 200 1177

5. SUMMARY

In this article, we addressed the problem of designing fast
team strategies for track cycling. In addition to the traditional
minimization of the race times, we considered the amount of
energy that the riders have left at the end of the race. For the team
coach this extension has the benefit that a diverse set of strategies
can be investigated through the multi-objective space. Also, the
coach will see the trade-offs between fast strategies and slightly
slower ones, where the latter allow the team to conserve energy
for future races and to recover faster.

To solve this multi-objective problem, we applied different
state-of-the-art algorithms with problem-specific variation
operators in two different ways. In the first approach, we used
them in their standard way.We quickly noticed that computation
time was wasted by investigating “slow” parts of the objective
space. Also, feasible solutions were created in less than 50% of the
time. To deal with these problems, we nested a biased algorithm
multi-objective algorithm (with the convergence criterion based
on race time minimization) inside the standard one in the second
approach.

Although the inner algorithms explored portions of the search
space that are not of interest to the team coach (i.e., slow
strategies are found), the increased diversity and bias paid off,
and faster race times were found with our nested multi-objective

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 October 2016 | Volume 2 | Article 17

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Wagner Optimizing Team Track Pursuit Cycling

A B

FIGURE 2 | Results of 48 configurations when the variation operator combinations NU-C, NU-R, U-C, and U-R are used. (A) Sorted according to the mean

race time (in s) of fastest strategy. Shown are all 192 means. (B) Sorted according to the minimal race time (in s) of fastest strategy. Excerpt shows race times ≤ 250 s.

TABLE 4 | Best configurations with race times ≤ 246.1s, which was the best result to beat from Jordan and Kroeger [10].

Inner µ Variation operators d Inner algorithm Outer algorithm Mean time Min. time Energy left

100 NU-R 2 NSGAII GREEDY 249.3 245.0 4587

100 NU-R 2 SPEA2 SPEA2 249.5 245.2 5893

100 NU-R 2 NSGAII GREEDY+RANDOM 249.8 245.5 6400

100 NU-R 2 NSGAII NSGAII 249.9 245.6 4108

10 NU-R 2 NSGAII GREEDY+RANDOM 249.9 245.6 6163

10 NU-R 2 NSGAII GREEDY 250.1 245.8 4697

100 NU-C 2 NSGAII GREEDY+RANDOM 250.2 245.8 5227

10 NU-R 2 SPEA2 GREEDY+RANDOM 250.3 245.8 8511

100 NU-R 2 SPEA2 GREEDY 250.3 245.8 8985

100 U-R 2 SPEA2 NSGAII 251.0 245.2 5349

100 U-C 2 NSGAII GREEDY 251.6 245.2 8772

100 U-C 2 SPEA2 GREEDY+RANDOM 251.9 245.2 6927

100 U-C 2 NSGAII NSGAII 252.2 245.8 8541

The configurations are sorted based on their mean performance.

approach than with the regular multi-objective approach. In
particular we improve the previous best known race strategy
by 1.87 s.

Future work on this problem will go into three different
directions. First, we will investigate more systematically the
conditions under which nesting multi-objective algorithms
can be beneficial in general, which might include theoretical
investigations. The insights gained there might lead toward
general recommendations for hierarchical programming.
Second, we will validate and fine-tune the model using real races
to increase the accuracy of the predictions. Third, we will explore
the conversion of the research into a decision support tool for
team coaches. This includes increased computational speed,
fine-tuning of the algorithms, and the support for interactive
optimization.

The fitness function, the code, and the results have
been made publicly available: http://cs.adelaide.edu.au/~optlog/
research/combinatorial.php.
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