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SUMMARY

To optimize shoot growth and structure of cereals, we need to understand the genetic components control-

ling initiation and elongation. While measuring total shoot growth at high throughput using 2D imaging

has progressed, recovering the 3D shoot structure of small grain cereals at a large scale is still challenging.

Here, we present a method for measuring defined individual leaves of cereals, such as wheat and barley,

using few images. Plant shoot modelling over time was used to measure the initiation and elongation of

leaves in a bi-parental barley mapping population under low and high soil salinity. We detected quantitative

trait loci (QTL) related to shoot growth per se, using both simple 2D total shoot measurements and our

approach of measuring individual leaves. In addition, we detected QTL specific to leaf elongation and not to

total shoot size. Of particular importance was the detection of a QTL on chromosome 3H specific to the

early responses of leaf elongation to salt stress, a locus that could not be detected without the computer

vision tools developed in this study.

Keywords: 3D modelling, phenotyping, leaf elongation, cereals, shoot architecture, quantitative trait locus

(QTL), salinity, technical advance.

INTRODUCTION

Small grain cereals are the staple food for the majority of

the world’s population, with a combined harvest of 1.6 bil-

lion tons in 2016 for rice, wheat and barley alone (http://

www.fao.org/faostat/). To ensure sufficient cereal produc-

tion for a growing population, the current rate of yield

improvement in cereals has to grow by more than 35%

(Tester and Langridge, 2010). Modern cultivars will need to

combine superior stress tolerance with a high yield poten-

tial. Gains in yield stability and yield potential in the future

will rely on improved resource use efficiency and optimized

shoot growth (Sheehy et al., 2001; Parry et al., 2011;

Reynolds et al., 2011; Sheehy and Mitchell, 2015). Improv-

ing shoot growth and shoot structure to, for example,

improve light interception and canopy structure requires an

understanding of the physiological processes involved, the

influence of the environment and the underlying genetic

control. Large-scale studies of shoot growth are thus

essential.
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Recent advances in plant phenotyping technology now

make it possible to measure shoot growth at high through-

put, thus enabling forward genetic screens. However, most

high-throughput approaches so far used 2D imaging and

treated the plant shoot as a single object (Campbell et al.,

2015, 2017; Al-Tamimi et al., 2016; Feldman et al., 2017;

Muraya et al., 2017). Studies analyzing shoot morphology

in detail and at high throughput have focused on large

plants with a fairly simple architecture, like maize (Cabrera-

Bosquet et al., 2016; Santos and Rodrigues, 2016; Zhang

et al., 2017) or young dicotyledons (Golbach et al., 2016;

Scharr et al., 2016; Liu et al., 2017). Recovering the shoot

morphology of small grain cereals, however, is a lot more

challenging, due to their thin, flexible leaves that often

twist along their longitudinal axis and have an irregular 3D

shoot structure.

Previous studies modelling the 3D structure of plants,

such as wheat and rice, have relied on either sophisticated

imaging instruments such as LIDAR (Dornbusch et al.,

2012; Paulus et al., 2014; Vadez et al., 2015; McCormick

et al., 2016), or the acquisition of up to hundreds of images

(Frolov et al., 2016; Nguyen et al., 2016; Pound et al., 2016)

and, to our knowledge, none of these approaches has been

employed at high throughput over time. Silhouette carving

is a common approach, generating a model by finding the

intersection of the back-projections of the silhouette of the

plant in each view (Gibbs et al., 2017), in some cases fol-

lowed by segmenting that model into individual leaves. Sil-

houette carving often needs hundreds of images, especially

for complex structures. As a result, image acquisition can be

time consuming (Frolov et al., 2016; Nguyen et al., 2016) and

thus becomes a limiting factor. Our approach is significantly

different from techniques used thus far because it requires

only a few images (five in this study) and is therefore feasible

at high throughput with short imaging times, while process-

ing can run during non-imaging periods. Using a small num-

ber of images, our approach generates a large number of

potential 3D leaf models that are plausible given the acquired

set of images before selecting the most likely model with the

fewest number of leaves.

To demonstrate the applicability of our approach for

high-throughput research, we performed structural analy-

ses of barley shoots of a mapping population to measure

leaf initiation and elongation over time. Moreover, we

studied the genetic mechanisms underlying the effects of

salt stress on shoot growth and leaf elongation. We were

able to detect QTL common to both shoot growth using 2D

imaging and leaf elongation using structural analysis, vali-

dating our approach. More importantly, we detected novel

QTL and candidate genes for leaf specific traits. Shoot

growth of small grain cereals can now be dissected into its

components to identify underlying genetic mechanisms of

growth of individual leaves, and the maintenance of their

growth under salt stress. Our technique could have a

significant impact in the understanding of shoot growth

and structure, its genetic control, and how it is influenced

by different environmental stresses.

RESULTS

Leaf tracking can be achieved with a small number of

images

Our method was designed for the 3D reconstruction of

plant shoots from multiple images. Due to the thin, feature-

less leaves of cereal shoots, and their relatively uniform

colour, accurate reconstruction is infeasible using standard

feature matching techniques. Hence, it is common to apply

silhouette carving approaches (Gibbs et al., 2017), which

only require identification of the pixels belonging to the

plant in each image. However, as there are many 3D

objects which will produce the same silhouette in an

image, these approaches can require a large number of

images to determine the correct structure. If too few

images are available, the results of silhouette carving will

include spurious structures not present in the actual plant.

In this study, we demonstrate that from a small set of

images it is possible to reconstruct and track shoot struc-

ture using only the silhouette of the plant in each view, by

applying prior knowledge of plant structure to determine

the most likely structure from the possible 3D shapes that

match the silhouettes. To find the most likely 3D plant

model given the five input images, we used a generate-

and-test method which generated plausible 3D plant mod-

els and evaluated them against the image set to determine

the optimal reconstruction.

The process followed five key steps outlined below and

detailed in Experimental Procedures.

1 Camera Calibration: Recovering the 3D shape of an object

(e.g. leaf) visible in multiple images requires camera

calibration to determine the position, orientation, and

intrinsic parameters of the cameras which captured the

images. Camera calibration was achieved with a calibra-

tion object with chess board patterns at 90-degree angles

captured in all camera views (Figure S1). Alternatively,

smaller targets that display easily recognized patterns at

a variety of orientations can be used. (Figure S1).

2 Extracting 2D structure: The goal of the reconstruction

process was to obtain a 3D path describing the axis of

each leaf. This allowed for measurements of leaf length

and angle. A set of 2D paths extracted from the silhou-

ette for each view were used as estimates of the projec-

tion of the set of 3D leaf axes. First, pixels belonging to

the plant were identified using a classifier (Figure 1a,b),

before identifying axis points on the leaves and the 2D

width and orientation of the leaves at these points.

These axis points were then connected to form a set of

2D paths covering each leaf in each image (Figure 1c).
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Figure 1. Image processing steps to generate 3D

shoot models and track leaves over time. (a) Exam-

ple RGB input image and (b) resulting image after

pixel classification with white being identified as

plant. (c) 2D segments fitted to leaves to generate

(d) 2D paths along leaf axes, connecting disconnect

points. (e) Path between end points and basepoints

were established to generate individual leaf mod-

els. (f, g) Impossible leaf models, contradicting typi-

cal leaf angles and gravity were rejected. (h–n)
Using 3D models of the same plants on subsequent

imaging dates, individual leaves were labelled and

traced over time.
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3 Extracting 3D structure: We identified possible matching

2D segments in images from different views and used

triangulation to determine the 3D position of points

along the matched segments. This generated a set of

3D segments which were then connected in a graph

structure (Figure 1d). By randomly traversing this graph,

we generated a set of possible 3D leaf models (Fig-

ure 1e). Impossible leaf models were rejected, such as

models consisting of a descending segment flanked by

ascending segments either side (Figure 1f,g).

4 Plant reconstruction: Using the plausible individual leaf

models, we generated a large number of possible plant

models (100 000). We then evaluated these plant mod-

els and selected the best model based on the overlap

with the silhouettes extracted from the input images,

the number of leaves used, and the total leaf curvature.

5 Tracking leaf growth: We then compared leaf position,

length, shape and growth between 3D models of the

same plant on consecutive dates. This allowed identifi-

cation of individual leaves (first, second leaf, etc.) as

they emerged and enabled tracking of leaves over time

(Figure 1h–n). At this stage, leaves can be identified by

their order of appearance. The input images, however,

are not sufficient to identify whether leaves belong to

the main tiller or secondary tillers.

Recovering shoot structure of barley provides novel traits

for dissection of growth

To validate the image analysis proposed here for recover-

ing shoot structure, we compared digital and manual mea-

surements of total and individual leaf length (Figure S2),

after manually determining the identity of each leaf in the

digital results. For both wheat and barley, we get a high

correlation between the manual and digital measurements

of leaf length (R2 between 0.97 and 0.99). The digital mea-

surements tend to slightly underestimate leaf length,

which is an issue of occlusion by the pot where the loca-

tion of the shoot base has to be estimated. Overall, the

method presented here provides high quality estimates of

leaf length for thin-leaved cereals (Figures S2 and S3) and

is suitable for measuring shoot growth at the leaf level.

To compare the shoot growth of parents of a bi-parental

barley mapping population, Mundah and Keel, we fitted

smoothing splines to overall shoot area (projected shoot

area, PSA), total leaf length and individual leaf lengths

over time. We then derived absolute growth rate (AGR)

and the relative growth rate (RGR) from the smoothed

curves (Figure 2c,e,g). Overall, Mundah showed a more

prolific shoot growth compared with Keel as evident by

the larger overall PSA and PSA AGR during the imaging

period (Figure 2c,e). While Keel appeared to have a larger

PSA RGR up until 20 days after planting (DAP), the RGR of

Mundah was slightly higher than that of Keel for the period

between 20 and 27 DAP (Figure 2g), ultimately leading to a

larger final shoot size. Next, we analyzed the shoot struc-

ture in more detail using our approach, to gain insights

into the traits responsible for the observed differences in

shoot growth between the cultivars. For example, when

analyzing the length of leaf 4, Mundah had a longer leaf 4

compared with Keel (Figure 2d). The AGR for total leaf

length was also increased for Mundah compared with

Keel, this increase became more evident towards the later

growth stages, from 24 DAP (Figure 2f). Regarding PSA

AGR, this trait differed between the two cultivars already at

18 DAP (Figure 2e). This suggests that leaf length is not

the only determinant of shoot size, but other factors, such

as leaf width may also be important. Leaf number is

another key driver for shoot size, and Keel had more leaves

compared with Mundah (Figure 2h). Therefore, the smaller

shoot size of Keel is likely to be due to shorter leaves, and

potentially smaller leaf width, not less leaves. The pheno-

typic differences between the cultivars in shoot growth

and its component traits suggested the presence of genetic

differences, which we set out to explore further.

Effects of soil salinity on leaf elongation and initiation

over time

We investigated the power of our approach to measure

shoot growth responses under stress conditions. As soil

salinity is known to have an immediate effect on shoot

growth (Munns and Tester, 2008), the aim was to dissect

shoot growth reduction under salt stress into the compo-

nents of leaf initiation and leaf elongation. To achieve this, a

bi-parental mapping population of recombinant inbred lines

(RIL) from a Mundah 9 Keel cross was grown under low

(control; 0 mM NaCl) and high soil salinities (salt; 200 mM

NaCl). Using PSA as a measure for total shoot size, the effect

of salinity on plant growth became evident by a reduced PSA

in salt compared with control conditions less than a week

after salt application (Figure 3). At the completion of imag-

ing, mean PSA of the salt-stressed plants was reduced by

approximately 15% compared with control plants, and the

highest salt-stressed PSA values were approximately 25%

lower than those for the largest control plants.

To test the feasibility of applying our approach to

recover plant structure at high throughput, we extracted

structural information for the lines of the Mundah 9 Keel

RIL population under control and salt stress. We were able

to monitor individual leaf development, and measure leaf

elongation during the imaging period from 16 to 28 DAP

(Figure 4). At the start of imaging, leaves 1 and 2 were fully

expanded, while leaf 3 was still growing, reaching a pla-

teau at about 23 DAP. Salt stress was applied to one indi-

vidual of a pair of the same genotype at 20 DAP, when leaf

4 had emerged in most plants. As expected, the mean

length of leaf 4 was smaller in salt-stressed plants com-

pared with the control (43.9 cm – salt, 47.3 cm – control),

an effect also seen for later developing leaves. The fifth
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Figure 2. Comparison of traits extracted from 2D

imaging and 3D modelling for Mundah and Keel

barley (Hordeum vulgare) plants. (a) Original RGB

image of an example plant next to the (b) corre-

sponding 3D model with individually labelled

leaves. Traits extracted from 2D imaging include

smoothed projected shoot area (PSA; c), smoothed

absolute growth rate (AGR, e) and smoothed rela-

tive growth rates (RGR, g). 3D modelling and leaf

tracking enables (d) measurement of individual leaf

length, (f) smoothed total length of leaves per plant

and (h) number of leaves. Individual plants are

depicted in thin lines, thicker lines are loess

smooths representing the average trends for Mun-

dah (blue) and Keel (red).

© 2019 The Authors
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leaf to emerge (emerging leaf 5; EL5) in the majority of

plants was the first leaf of tiller 1, not leaf 5 on the main til-

ler, and therefore explaining the shorter overall size of EL5

compared with leaf 4. The mean length of EL5 was appar-

ently less affected by high salinity than the length of sub-

sequent leaves, possibly due to its overall shorter length.

The following leaves to emerge (EL6, EL7 and EL8), how-

ever, displayed a clear reduction in mean length under salt

compared with control conditions. In addition to leaf elon-

gation, we also observed that leaf initiation was affected

by salt stress. A higher number of plants had eight or more

leaves initiated under control conditions compared with

salt-treated plants. Overall, our approach provided new

metrics of previously uncharacterized traits, leaf elongation

and initiation, which can be further used to identify the

genetic mechanisms controlling shoot growth and struc-

ture under control and stress conditions.

QTL mapping reveals overlap and distinction between

genetic control of whole-shoot growth, leaf elongation

and leaf initiation

To dissect the genetic basis of shoot growth, we fitted

smoothing splines to PSA, total leaf length and individual

leaf lengths over time. We then calculated smoothed

values for PSA (PSA.smooth) in control and salt for the

time after salt application. In addition, we calculated daily

AGR and RGR for PSA and total and mean leaf length

(total.length.smooth, mean.length.smooth) from 21 to

25 DAP, as well as AGR and RGR over each of the intervals

21–24 and 24–28 DAP (Table S1). Number of leaves (num.

leaves) and leaf 4 length (L4.length.smooth) were tested

for individual days only (Table S1). These derived traits

maintained data at the individual plant level and were used

in subsequent analyses. All traits that showed sufficient

genetic variation evidenced by a heritability greater than

0.1 (Table S2) underwent QTL analysis.

In total, we detected over 60 significant QTL across all

seven chromosomes (Tables S3–S5), with some QTL

located directly adjacent to each other, most likely repre-

senting the same locus. The low limit of detection (LOD)

scores for some QTL are reflective of the whole genome

average interval mapping (WGAIM) method to detect and

quantify smaller effect QTL for population sizes such as

the one used here. We observed that the number of QTL

detected differed greatly between the traits analyzed. Most

strikingly, when using PSA.smooth as an input trait, only a

single QTL on chromosome 2H was detected. By contrast,

numerous QTL were detected when using PSA.s-

mooth.AGR or PSA.smooth.RGR (Table S3). Several of the

QTL for PSA.smooth.AGR and PSA.smooth.RGR had

higher LOD scores than the PSA.smooth QTL and also

detected novel candidate genes, highlighting the impor-

tance of applying growth models. While some QTL were

stable over time, many QTL were transient and only

Figure 3. Effect of 200 mM NaCl in soil solution on

shoot growth in the Mundah 9 Keel barley (Hor-

deum vulgare) mapping population. The trends in

the smoothed projected shoot area (PSA) for con-

trol and salt-treated individual plants of the Mun-

dah 3 Keel mapping population during the period

of imaging. The blue lines are the loess smooths of

the trends for the individual plants and represent

the average trends for the control and salt-treated

plants. Salt application occurred at 20 days after

planting (DAP).

© 2019 The Authors
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appeared at individual time points. In addition, we

detected a greater number of QTL under salinity compared

with control conditions (47 salt, 18 control). Most salt

related QTL for PSA.smooth.AGR and PSA.smooth.RGR

were found at 24 DAP, while the majority of QTL for

L4.length.smooth appeared earlier, at 22 and 23 DAP, with

the two largest effect QTL observed at 22 DAP (Table S3).

As mentioned above, QTL analysis for PSA.smooth only

detected a single QTL. The QTL on the short arm of chromo-

some 2H at 34.25 cM for PSA.smooth at 24 and 28 DAP was

also detected for PSA.smooth.AGR during the early time

intervals between 21 and 24 DAP (Figure 5, Table S3) with a

significant QTL for PSA.smooth.RGR in close proximity

(33.43–33.62 cM), possibly representing the same locus.

Figure 4. Effect of 200 mM NaCl in soil solution on individual leaf initiation and leaf elongation in the Mundah 9 Keel barley (Hordeum vulgare) mapping popu-

lation. Smoothed length of individual leaves for each plant are depicted over time for control and salt-treated plants. Leaves 1–4 (L1–L4) were leaves on the main

tiller, leaves emerging after leaf 4 could be on a side tiller or main tiller and are thus labelled as emerging leaf (EL) for differentiation. The fifth leaf to emerge

(emerging leaf 5; EL5) in the majority of plants was the first leaf of tiller 1. For the majority of plants, EL6 corresponded to the second leaf of the first side tiller,

EL7 to leaf 5 on the main tiller and EL8 to the first leaf of the second side tiller, respectively. The blue lines are the loess smooths of the trends for the individual

plants and represent the average trends for the control and salt-treated plants. Salt application occurred at 20 days after planting (DAP).

© 2019 The Authors
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Overall, the genomic region appears to play an important

role in the control of shoot growth per se, with LOD scores

between 3.4 and 6.7 and the Mundah allele having a positive

effect on shoot growth. Analysis of the annotated genes

underlying the genetic region of the QTL at 34.25 cM, found

the well known developmental gene pseudo-response regu-

lator Photoperiod-H1 (Ppd-H1) (Table S5) which was con-

firmed to be segregating within the Mundah 9 Keel RIL

population by using a Ppd-H1 specific marker. A QTL for

L4.length.smooth under control at 21 DAP was also mapped

to 33.43 cM on chromosome 2H, however, this QTL had a

negative effect, with the allele for increased leaf 4 length

coming from Keel. There were several QTL at other locations

which had negative effects for PSA.smooth.RGR. On chro-

mosome 7H, between 177.93 cM and 180.42 cM, we

detected two adjacent QTL for PSA.smooth.RGR for 22–23,
23–24 and 21–24 DAP (Figure 5). Both QTL had high LOD

scores (4.5 for 177.93–180.24 cM, 6.3 for 180.24 –180.42 cM),

each accounting for approximately 5% of the genetic varia-

tion (Table S3). Several transcription factors and an auxin-

related gene were found underlying this genetic region

(Table S5), but require further fine mapping.

When analyzing the growth patterns of the parents Mun-

dah and Keel, we observed similarities but also differences

between the AGR curves for PSA and total leaf length,

which could reveal differences in their genetic control.

When examining QTL for leaf length specific traits, we

found a QTL co-located with another well known develop-

mental gene, FLOWERING LOCUS T. The QTL on chromo-

some 1H for total.length.smooth (117.22–119.78 cM) under

salt at 24 DAP shares its flanking marker with a QTL at

119.78 cM for mean.length.smooth under control conditions

at 21 and 24 DAP (119.78–120.21 cM) (Figure 5, Table S5).

This QTL was only detected when analyzing leaf length

specific traits, but not for any of the PSA-related traits

(Table S4). On chromosome 3H, we also detected a QTL

region specific to salinity response for leaf length-related

traits. Four traits, total.length.smooth, total.length.

smooth.AGR, L4.length.smooth and num.leaves, were

mapped between 67.56 and 69.50 cM (Figure 5, Table S3).

For all traits, the positive allele was from Mundah. This

chromosomal region contains several dozen annotated

genes (Table S5), with no obvious candidate gene.

The second salinity-specific QTL region on chromosome

3H was found between 166.09 and 167.40 cM (Figure 5),

with significant LOD scores for num.leaves, total.length.s-

mooth and total.length.smooth.AGR at multiple time

points (Table S3). Three annotated genes were found in

this region (Table S5), with a potassium transporter family

protein a possible candidate for the observed differences

Figure 5. QTL map of 2D and 3D imaging traits highlighting selected QTL mapped in the Mundah 9 Keel barley (Hordeum vulgare) mapping population. QTL

are indicated with left and right borders. QTL indicated in green were detected under control conditions, QTL indicated in red were detected in salinity. The y-

axis scale is in cM.

© 2019 The Authors
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in salinity tolerance. In addition to the QTL for both leaf

length traits and leaf number, there were also QTL speci-

fic to either leaf length or leaf number, such as QTL for

total.length.smooth on chromosome 2HL at 9.13 cM as

well as QTL for num.leaves on chromosome 5H between

51.83 and 56.80 cM (Tables S3 and S4).

When analyzing QTL specific to the length of leaf 4, the

leaf emerging as salt was applied, the QTL with the highest

LOD score (6.5) was found on chromosome 3H between

184.35 and 184.54 cM (Figure 5, Table S3). There was a posi-

tive effect from the Mundah allele, with an average increased

leaf 4 length of 2.2 cm. Analyzing the latest release of the

barley genome, we found six annotated genes between the

flanking markers (Table S5). Two of the annotated genes

(unknown function; ABC transporter G family member) have

extremely low expression according to the Barley Genome

Explorer (http://apex.ipk-gatersleben.de/apex), while expres-

sion of the cytochrome P450 superfamily protein is only

detectable in grains, making these three genes unlikely can-

didates for a salt responsive leaf elongation QTL at vegeta-

tive growth. The remaining three candidates underlying this

QTL included two expansin B2 genes and a glucan endo-1,3-

beta-glucosidase. All three genes were expressed in seed-

lings and members of these two protein families are known

to be directly involved in cell expansion and growth. Since

this QTL was only detected 2 days after salt application

(Table S3), it is possible that this locus plays a role in the

early adaptation to salinity stress, and thus making these

candidate genes interesting targets for future studies into

salt-specific growth responses.

DISCUSSION

To further improve our knowledge of plant shoot growth, we

need new high-throughput methods to analyze and dissect

shoot structure, enabling forward genetics studies. Unlike

rigid and feature rich objects, plant shoots pose unique chal-

lenges, with nearly uniform colour, and thin, flexible leaves.

Different approaches have been employed to address these

issues and generate 3D models of plant shoots (Gibbs et al.,

2017). Most focused on plants with simple structures, such

as Arabidopsis, fairly rigid dicotyledons, or near-symmetrical

monocotyledons like maize (Liu et al., 2017; Muraya et al.,

2017; Zhang et al., 2017). Only few studies have tackled the

challenging task of reconstructing 3D models of wheat, bar-

ley or rice and have either focused on very young plants

using skeletonisation (Cai and Miklavcic, 2012; Frolov et al.,

2016) or used many dozens of images to produce a 3D vol-

ume model (Pound et al., 2014).

As a result of the varying approaches to 3D reconstruction,

the resulting 3D models differ in the traits that can be

extracted. In many cases, the result of 3D reconstruction is a

volume or surface model of the shoot, describing the 3D

space the plant occupies. These types of model are suitable

to measure total leaf area, leaf angle distribution and leaf

area distribution (Gibbs et al., 2017). However, they still treat

the shoot as a single object without detailed information on

individual leaves. Others dissect the 3D volume or surface

model into sub-components, such as leaf and stem, but this

has mainly been focused on dicotyledons (Paproki et al.,

2012; Golbach et al., 2016; Liu et al., 2017). Here, we take an

approach, where we generate shoot models describing the

3D path of individual leaves in barley best describing the

small number of input images. As a result, we can measure

total leaf length, individual leaf length and leaf angle over

time. The principles employed in this study also have the

potential to be transferred to different species and plant

types (see Experimental procedures).

We demonstrated the feasibility of our approach to

recover the structure of small grain cereals by analyzing the

shoot structure of hundreds of barley recombinant inbred

lines (RILs). We investigated the effects of salinity on shoot

growth and structure and confirmed that salinity not only

impacts leaf elongation, but also leaf initiation, indicated by

shorter and less leaves in the salt-stressed plants (Figures 3

and 4). Although this type of response is known (Munns and

Tester, 2008), the underlying genetics are not understood

yet, primarily due to insufficient phenotyping methods.

Recent studies have shown the potential of using whole-

shoot phenotyping approaches for measuring growth and

growth responses to environmental stresses, such as salin-

ity, to elucidate the genetic architecture of shoot develop-

ment (Campbell et al., 2015, 2017; Al-Tamimi et al., 2016).

In this study, two genetic regions linked to well character-

ized developmental regulators, Ppd-H1 and FLOWERING

LOCUS T, were detected. Ppd-H1 and its role in barley

development and leaf size has been described previously

(Wang et al., 2010; Maurer et al., 2015; Digel et al., 2016;

Neumann et al., 2017; Alqudah et al., 2018). Although the

strongest LOD scores for Ppd-H1 were found under control

conditions in our seedling-stage experiment (Table S3)

and other studies focused on leaf size and biomass per se

(Digel et al., 2016; Neumann et al., 2017; Alqudah et al.,

2018), the same locus has been reported to increase yield

under salinity in a barley nested association mapping

(NAM) population (Saade et al., 2016). While the Ppd-H1

locus was consistent over multiple time points, other QTL

appeared to be more transient.

The transient nature of many QTL has been described in

previous phenotyping experiments (Al-Tamimi et al., 2016;

Feldman et al., 2017; Muraya et al., 2017; Neumann et al.,

2017), and highlights the importance of time course mea-

surements. Analyzing the growth trajectories of rice during

early seedling development and tillering allowed the dissec-

tion of the genetic control of these different developmental

stages (Campbell et al., 2017). In addition, the ability to mea-

sure the growth response of rice immediately after salinity

application enabled the identification of several loci linked to

signaling genes, which were transient in nature (Al-Tamimi
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et al., 2016). The appearance and disappearance of QTL

observed in this study and others (Al-Tamimi et al., 2016;

Feldman et al., 2017; Muraya et al., 2017), may also explain

why replication of QTL between studies is often difficult. The

transient nature of QTL was highlighted here by the detec-

tion of a large effect QTL for length of leaf 4 under salinity

(Figure 5; Table S3) only 2 days after salt application. The

candidate genes for this QTL include expansins (Table S5),

which are known to play a direct role in cell expansion (Cos-

grove et al., 2002; Sampedro and Cosgrove, 2005), and could

be responsible for the increased length of leaf 4 under salt in

plants with the Mundah allele. Since the QTL was only found

at a single time point early after salt application, it is likely to

be part of the early adaptation to salinity stress, but more

comprehensive studies would be required to confirm the

role of the identified genes.

Besides the QTL associated with leaf length, we also

detected QTL for the number of leaves. Multiple of those

QTL overlapped with leaf length QTL, suggesting loci related

to shoot growth per se. However, we also found QTL specific

for leaf number (Table S4), suggesting that these loci may

play a role in leaf initiation and could offer the potential of

dissecting leaf initiation and leaf elongation from each other,

offering the potential for manipulating shoot architecture.

As expected for complex traits like leaf growth, the

genetic control for the traits we analyzed appeared to be

multi-genic with numerous QTL of small effect. Although

the multi-genic nature of shoot growth and structure poses

a challenge in identifying suitable targets for crop improve-

ment, the markers identified here have the potential to be

used in a Genomic Selection approach, to predict the

growth and salinity response of various marker combina-

tions, as recently done in rice (Campbell et al., 2017). Over-

all, the 3D modelling approach presented here offers new

opportunities to understand the complexity of shoot

growth and shoot architecture in cereals.

EXPERIMENTAL PROCEDURES

Plant material, growth conditions and salt treatment

Comparisons of digital versus manual leaf counting and leaf length
measurements were performed on 20 barley plants (Hordeum vul-
gare cv Hindmarsh) and 20 wheat plants (Triticum aestivum cv
Kukri) planted at four time points between June 2017 and July
2017 at the Australian Plant Phenomics Facility, The Plant Accelera-
tor�, South Australia (34°58017.00″S, 138°38023.00″). Plants were
grown in free-draining pots with 145 cm diameter and 190 cm
height placed inside saucers. The potting medium consisted of a
peat mix containing ready-available nutrients and slow release fer-
tilizer (Osmocote� 16-3-9+te). Pots were maintained at field capac-
ity during the growth period and digital imaging was performed as
described below. Manual leaf counting and leaf length measure-
ments were performed at eight time points in July 2017 on differ-
ent aged plants to capture a range of developmental stages. Leaf
length was measured manually from the leaf tip to the base of the
plant, including both leaf blade and leaf sheath. Automated digital

leaf length measurements (see below) were conducted on a subset
of 10 wheat and 10 barley plants of varying size.

The F2:F6 barley RILs developed through single seed decent are
from a cross between the two varieties Mundah (Yagan/
O’Connor), which is early flowering and photoperiod insensitive,
and Keel (CPI-18197/Clipper//WI-2645), which is early flowering,
but photoperiod sensitive (Collins, 1998; Barr, 2000; Long et al.,
2003). Despite this, both cultivars are monomorphic for the flower-
ing locus HvFT1. A set of 216 RILs from the mapping population
were used for a single controlled glasshouse phenotyping experi-
ment along with both parents. Six replicate plants of both parents
(Mundah and Keel) and partial replication of the Mundah 9 Keel
RIL lines with 20% duplication were used for the experiment.

Growth experiments were conducted in the Smarthouse at the
Australian Plant Phenomics Facility, The Plant Accelerator�, South
Australia (34°58017.00″S, 138°38023.00″) between March and May
2015 as previously described with minor modifications to the soil
moisture content (Takahashi et al., 2015; Tilbrook et al., 2017).
Greenhouse temperatures were maintained on a 22°C day/15°C
night cycle with no additional lighting. Three imbibed seeds were
planted into pots with a 50% (v/v) University of California (UC) Davis,
35% (v/v) Cocopeat, 15% (v/v) clay/loam potting mix on benches at
the back of the Smarthouse. Once seedlings reached two-leaf stage,
the seedlings were thinned to one evenly sized seedling per pot. At
15 DAP, seedlings were loaded onto the phenotyping system for
automated image acquisition and watering. Once loaded onto the
belt, pots were adjusted to a gravimetric water content of 17% (g/g)
and seedlings continued to grow until 19 DAP. Salt application was
performed by adding 220 ml of 0 or 340 mM NaCl to the saucer
reaching a water content of 27% (g/g) immediately after salt treat-
ment 20 DAP. Within several days, final salt concentrations of 0 and
200 mM NaCl were reached in the pots once water levels dropped
back to 17% (g/g) through evapotranspiration and were maintained
at that level until completion of the experiment 33 DAP.

Experimental design

The experiment uses the 24 Lanes by 22 Positions in the SW
Smarthouse of The Plant Accelerator�, Australian Plant Phe-
nomics Facility, which is divided into six zones, each comprising
four lanes by 22 positions. The design employed for the experi-
ment is a split-plot design in which two consecutive carts form a
main plot. The main-plot design is a nearly trend-free, partially
replicated design that assigns lines to main plots; the subplot
design merely randomizes conditions (control, salt) to the two
carts in each main plot. The design was generated using the R
package DiGGer (Coombes, 2009).

Phenotyping using RGB image capture and LemnaGrid 2D

image analysis

To assess the data generated by the ‘conventional’ high-through-
put phenotyping systems, i.e. whole-shoot image, data were
obtained by the LemnaTec 3D Scanalyzer system (LemnaTec
GmbH, Aachen, Germany) at The Plant Accelerator. Plants’ shoots
were imaged daily, from 16 DAP until 33 DAP, in an imaging
chamber using two 8-megapixel-visible/RGB cameras (Allied
Vision Technologies, Germany, GT3300C– GigE). To determine the
PSA, which has been shown to correlate with biomass (Golzarian
et al., 2011; Hairmansis et al., 2014; Honsdorf et al., 2014; Camp-
bell et al., 2015; Parent et al., 2015; Al-Tamimi et al., 2016), the
protocol from Al-Tamimi et al. (Al-Tamimi et al., 2016) was used
with minor modifications: five side views (SV) at 0, 20, 40, 60 and
80° rotation and one top view (TV) were captured. PSA was
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estimated by the sum of area SV0 + area SV80 + area TV. A sche-
matic of the data workflow from image capture to QTL analysis,
including software used, are provided in Figure S4.

Shoot 3D modelling and leaf tracking

Input data. For results in this manuscript, we used five side
view images at 20 degree rotation from each other (see above),
but the method is applicable to any number of rotated plant
images or camera placement, provided two views are available for
each leaf.

Calibration. A chess board pattern was printed on a 3D step
structure and imaged with the side view cameras at the same
angles as plants and the TV camera (Figure S1a,b). Camera intrin-
sic and extrinsic parameters were estimated using standard chess-
board camera calibration techniques. Alternatively, smaller targets
that display easily recognized patterns at a variety of orientations
can be used (Figure S1).

Extracting 2D structure. To extract 2D paths describing the
leaves, we first identified pixels belonging to the plant in each
frame with a pixel classifier. Before classification, we applied
mean-shift filtering to the images to reduce noise while preserving
edges. We then applied a linear Support Vector Machine (SVM)
classifier trained on a set of manually labelled images, using col-
our and texture-based features. The classifier output was treated
as a probability of each pixel belonging to the plant (Figure 1b). A
classifier was used instead of a simple thresholding approach to
give robustness in cases where plant and background pixels can
have similar appearance.

The features used for classification were pixel colour from the
mean-shift filtered image, and the output of a Difference of Gaus-
sian filter at multiple scales, used to detect edges in the image.
For training, a set of 10 manually labelled images were used,
which are sufficient to represent the variation in leaf appearance
over the set of plant images. OpenCV libraries were used for the
classification, and for other image processing functions performed
by the software. Small misclassified regions may appear in the
classifier output where the colour and appearance of leaves are
similar to the appearance of the pot or the background. Small
background regions misclassified as belonging to the plant in one
frame did not typically affect the reconstruction result, as the pro-
cess uses multiple images for consensus. Likewise, the recon-
struction process is able to compensate for gaps due to small
regions of plant misclassified as background. A confusion matrix
for the classifier output, tested on five images, is given in Fig-
ure S5, showing accurate identification of plant pixels.

To extract the 2D leaf structure from the classifier output, we
located pixels corresponding to points on the axis of a leaf, and
determined 2D leaf width and orientation at these points. To achieve
this, we first convolved the classifier output images with shape
masks corresponding to the expected appearance of leaf regions.
Shape masks were applied across the range of possible orientations
and scales, and pixels corresponding to local maxima in the convo-
lution results were identified as axis points, with the scale and orien-
tation of the mask which gave the strongest response at each point
used to determine the corresponding leaf width and orientation (Fig-
ure 1c). Adjacent axis points were clustered and used to define 2D
paths corresponding to segments of leaf axes in the images. Sepa-
rate segments were joined across small gaps to cover leaf areas too
thin to be identified by the pixel classifier (Figure 1c).

Extracting 3D structure. After identifying leaf segments in
each frame, we then matched segments between frames, and

triangulated corresponding axis points to determine their 3D posi-
tion. For a set of points along each 2D segment, we performed a
search along the corresponding epipolar lines in all other frames,
and found any intersections between the epipolar lines and
another 2D segment. All intersections with the same segment
were grouped, and the point in the first frame and intersection
point in the second frame were triangulated to determine the cor-
responding 3D point. The set of 3D points for a pair of 2D seg-
ments formed a 3D segment (Figure S1d). This set of extracted
segments was filtered to remove overlapping points on segments
(determined as points separated by <0.4 cm), and then to remove
very small segments with a total length of <0.4 cm.

3D segments corresponded to partial sections of leaves. These
segments were separated by gaps wherever part of a leaf was
occluded in all views, by other leaves or by the carnation frame. To
generate paths corresponding to complete leaves, we connected
this set of segments in a graph structure, and searched the graph
to find paths combining multiple segments, which could plausibly
correspond to complete leaves. To construct the graph, possible
graph edges connecting path end points and the nearest point on
another path were sorted by ascending length, and graph edges
were added in several stages. In the first stage, all edges with a
length of <1.5 cm were added to the graph. In the second stage,
edges covering larger gaps of up to 7.5 cm were added. This could
potentially include a large number of edges. To limit the size of the
graph, and therefore the processing time required to search the
graph, edges were only added in this second stage if they met cer-
tain criteria. Edges were added if the angle between an edge and
any edge already added for the same end point was >25°, if the
majority of the length of the edge did not overlap with previously
added edges, and if the majority of the length of the edge was
within the image regions covered by the plant (Figure 1d).

Having generated this graph structure, we then identified nodes
corresponding to possible end points of leaves, and nodes corre-
sponding to possible base points (i.e. points at which the leaf
meets the soil). End points were selected by taking the set of end
points for the 2D segments extracted for each frame, and finding
the node in the graph with projection into that frame closest to
each 2D segment end point. Points in this end point set which
were within the bounds of the pot were labelled as base points. If
clusters of connected segments existed which do not include a
base point, due to being separated from the main body of the
plant by a large region of occlusion, the edge adding step of the
graph-building process was repeated, this time allowing connec-
tions covering larger gaps of up to 15 cm for nodes in a discon-
nected cluster.

Leaf models were then generated by finding paths through the
graph from end points to base points. Starting from each end
point, paths were generated with a random walk through the
graph, and paths which reached a base point before reaching any
other end point were retained. For each end point, path genera-
tion was attempted 10 000 times. B-splines were fitted to these
paths to smooth the results, generating the possible individual
leaf models (Figure 1e–g). Leaf models with implausible shapes
were then detected and rejected (Figure 1f,g). Two tests were
applied to detect leaves with implausible shape. First, sharp
changes in angle between adjacent segments along the path were
detected. A leaf model was expected to have at most one large
change in angle, where the leaf blade emerges from the leaf
sheath. The number of sharp changes in angle was recorded for
each leaf model. For the second test, we assumed that, due to
gravity, the angle between segments of the leaf and the direction
of gravity will decrease monotonically with distance from the
highest point on the leaf. For each leaf, we recorded the number
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of segments which violate this assumption. For both tests, leaf
models were rejected if the measured value was greater than the
minimum value for any leaf model with the same base and end
point. Filtering was again applied to remove very similar leaf mod-
els, removing models if the maximum deviation from another leaf
model was <1.5 cm.

Plant reconstruction. A large set of possible plant models
were generated with random selection from the candidate leaf
models, and the best of these was selected as the final model.
Models were evaluated based on the amount of plant structure
covered in the image set, the number of pixels outside the plant
which were covered, and the number of leaves used. The goal
was to find a model which covered all of the visible plant using as
few leaf models as possible, and with minimal coverage of image
areas outside the plant. To determine coverage, the 2D path sets
extracted for each image were divided into non-overlapping seg-
ments, and the number of these segments intersected by the pro-
jection of a plant model into each view was counted.

The fit quality Q(L) for a given leaf set L is given by evaluating

QðLÞ ¼ jALj � bjBLj � cjCLj
where,
AL is the set of segments intersected by a leaf point
BL is the set of leaf points not intersecting any segment
CL is the set of segments intersected by more than one leaf model
b, c are weights

Generation of an individual plant model L from a candidate
set of leaf models C was performed according to the following
algorithm:

Algorithm Plant model generation

while |C | > 0 do

Remove a randomly selected leaf L from C
Set T = L + {L}

if Q(T) > Q(L) then
Set L = T
Remove all leaves with the same end point as L from C

end if

end while

The top 1% of models found after 100 000 runs of this genera-
tion algorithm were retained, and considered a likely set of good
plant reconstructions. Finally, from this set, we selected the model
with the minimum total leaf curvature, to avoid selecting a model
with unlikely deviations in leaf shape. The number of runs used
was experimentally determined to be sufficient to find a model
matching the plant. Similarly, other parameter values were chosen
to give accurate results without requiring excessive processing
time. The values can be reused for subsequent experiments in
similar imaging conditions, without requiring adjustment. In its
current form, the image classification and processing to generate
the 100 000 candidate models takes approximately 2 min with an
Intel� CoreTM i7-7700 CPU with 3.60 GHz and 32 GB RAM. Our
focus was on reducing the imaging time to eliminate the influence
of circadian rhythm on plant images and a 2-minute processing
time would allow analysis of all images on a daily basis for an
experiment of the size presented here and processing can be
achieved with a commodity desktop computer.

Tracking leaf growth. A method of matching leaves between
reconstructions of the same plant on different days was then
applied, allowing for identification of the first leaf, second leaf,

etc. This method compared leaves based on position, length,
shape, and growth properties, and found an optimal assignment
of leaf labels over time. For each leaf L on each date n, each possi-
ble assignment of a label for the subsequent date was evaluated
to assign the following cost:

MðLn ;Lnþ1Þ¼A Ln ;Lnþ1ð ÞþbB Ln ;Lnþ1ð ÞþcC Ln ;Lnþ1ð ÞþdD Ln ;Lnþ1ð Þ
where,
A(Ln,Ln+1) is the average distance between a point on Ln and the
nearest point on Ln+1, divided by the maximum of the two leaf
lengths. This penalises the overall shape change between the two
leaves.
B(Ln,Ln+1) is the difference between the angle between the up vec-
tor and a vector between the highest point on the leaf and the tip
of the leaf, evaluated for both leaves. This penalises unlikely label
assignments where a drooping leaf becomes upright on the sub-
sequent date.
C(Ln,Ln+1) measures any length increase for leaves where no
growth has been seen on at least two consecutive dates, to pena-
lise unlikely assignments where a leaf which has stopped growing
resumes growth.
D(Ln,Ln+1) is the difference between the length of leaf Ln+1 and the
predicted length of leaf Ln on date n+1, predicted from the length
difference between date n and n�1.
b, c, d are weights.

For each subsequent date, we selected the assignment which
minimises the total cost. If two leaves emerged from one imaging
date to the next, numbering was assigned randomly, apart from
leaf 4 and emerging leaf (EL) 5, since leaf 4 was consistently
longer. As it is possible that a leaf visible on one date will not be
visible on the next date due to occlusion, we also allowed the
label for a leaf to skip one or more dates, adding a penalty value E
to the total cost if a label was skipped (Figure 1h–n).

Limitations. This method was specifically designed for recon-
structing plant types with thin leaves. For such plants, we have
found that the type of model used in this method, a set of 3D
splines, provides an approximation of the plant structure that can
be reliably extracted from an image set, and used to make accu-
rate measurements of plant properties. This method will not be
suitable for plants with broad leaves, where the greater image dis-
tance between points on the edge of a leaf and the leaf axis makes
it more challenging to identify and reconstruct leaf axes, and to
determine which leaf each plant pixel belongs to. However, a
modified version of this generate-and-test method could be
applied to such plants if a more appropriate method was used for
reconstructing individual leaves, such as using feature matching
to reconstruct points on the leaves, then fitting 3D surfaces
through these points to model the leaves.

For accurate reconstruction of a leaf, this method requires that
the majority of the length of the leaf is distinct and visible in at
least two images. As such, it may not reconstruct very young
leaves which cannot yet be easily distinguished from other plant
structures. Similarly, accuracy will decline for more mature plants,
where the greater structure density makes it harder to visually dis-
tinguish individual leaves. This method is intended for recon-
structing plants in the early growth stages, and in our
experiments, we have seen accurate reconstruction of plants with
up to 14 leaves.

To identify leaves over time, the tracking component of this
method assumes that leaves will have a similar appearance
between image sets. As such, leaves may not be accurately identi-
fied if there is a large time gap between image sets being
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captured for the same plant. Ideally, new images will be captured
every day.

Phenotypic analysis

Initially for each plant, raw phenotypic measurements across days
were smoothed using cubic smoothing splines. This approach
does not make any assumptions about the shape of the temporal
trend and has been found to be useful in similar experiments
(Al-Tamimi et al., 2016). The smoothed version of each of the phe-
notypic measurements was then used to estimate various growth-
related traits of the plants on a specific day as well as estimate
RGR and AGR traits over specific time intervals between days. The
smoothing and trait computations were achieved using imageData
(Brien, 2017b) a package for the R statistical computing environ-
ment (R Core Team, 2017). These derived traits maintain data at
the individual plant level and are subsequently used as response
variables in the phenotypic and QTL analysis. In total, there were
84 responses investigated covering different traits and time inter-
vals after salt inoculation.

Each response was analyzed using a baseline linear mixed
model that accounted for spatial variation present in the Smart-
house (Brien et al., 2013) as well as appropriately modelled varia-
tion induced by the factors required for the design of the
experiment. The maximal baseline model was

y ¼ Xbþ Zuþ e (1)

where y is the response vector of values for the trait being ana-
lyzed and ordered to ensure the control treatment was followed
by the salt treatment, b is the vector of fixed effects, u is the vector
of random effects with the design matrices X and Z respectively
and e is the vector of residual effects.

The fixed effect vector, b⊤ is partitioned as follows:

½l P1 P2 P3 P4 b>zone b>posnpair b>type b>treat b>int �

where l is the overall mean, Pj, is a vector of coefficients account-
ing for additional structure in the population, bzone and bposnpair
are vectors of the linear coefficients for trend within the Smart-
house associated with zone and pairs of positions corresponding
to the main plots of the design, respectively, btype is a vector with
three parameters that correspond to the recombinant inbred (RI)
lines and the parents Mundah and Keel, respectively, btreat is a
vector with a parameter for each for salt and control, and bint is a
vector with a parameter for each type-treatment combination.

The random effects vector, u⊤, is partitioned as

u>
szone u>

sposnpair u>
dzone u>

dposnpair u>
main g>

C g>
S

� �

where ui is the subvector of effects for the ith term, which has
variance of the form h2i I. The subvectors are the coefficients of the
spline basis functions for fitting smooth trends within the Smart-
house over zones and over the east-west pairs of positions, devia-
tions from these smooth trends, and main-plot random effects
within each zone, respectively. The random effects gC and gS are
the vectors of effects for the RI lines for the control and salt treat-
ment, respectively, having variance of the form h2gCI and h2gSI,
respectively. The variance for the residual term e is a block diago-
nal matrix with two blocks corresponding to the control and salt
treatments, respectively, the blocks being of the form h2rCI and h2rSI.

Testing of model terms

For each of the maximal baseline models, residual maximum likeli-
hood estimation (REML) ratio tests were used to test the inclusion
of random terms corresponding to smooth trends and deviations

from smooth trends over zones in the Smarthouse. Non-significant
terms were removed from the model. Additionally, the principal
components (PCs) were tested for significance and removed from
the model if their Wald statistic had a P-value >0.05.

Heritability, correlation & computations

The generalized heritability for each response was calculated
using the formula derived in Cullis et al. (Cullis et al., 2006),
namely h2 ¼ 1� a=2h2g where a is the average pairwise predic-
tion error variance of cultivar effects for a treatment (control or
salt) and h2g is the genetic variance of the treatment. For each of
the traits exhibiting heritability greater than 0.1, the Best Linear
Unbiased Predictors (BLUPs) of the lines for each treatment
were then extracted from the linear mixed model of the pheno-
typic analysis. Independently for each treatment, estimated
genetic correlations were calculated for every pairwise combina-
tion of trait BLUPs (Tables S6 and S7, Figure S6) using the rcorr
function of the R library Hmisc (Harrell, 2018). The flexible linear
mixed model package ASReml-R (Butler et al., 2009) was used
for all phenotypic modelling and testing of model terms was
conducted using ASRemlPlus (Brien, 2017a), both of which are
R-packages.

Genotyping

Genomic DNA was extracted from young leaves using the phenol/
chloroform method (Rogowsky et al., 1991). DNA concentration and
quality were analyzed using a NanoDrop 1000 Spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA) and quantified
using the PicoGreen method (Ahn et al., 1996). DNA concentrations
were then normalized to 20 ng ll�1. The population was genotyped
using genotyping-by-sequencing (GBS) with libraries prepared
according to the methods described by Elshire et al. (Elshire et al.,
2011) and Poland et al. (Poland et al., 2012). Each DNA sample was
digested using two restriction enzymes, PstI and MspI, for complex-
ity reduction and was then barcoded with a unique variable length
DNA sequence adapter. Samples were multiplexed with each library
containing 95 DNA samples and a water control which was run on a
single lane of an Illumina HiSeq2000. The Illumina HiSeq raw
sequencing files were initially subjected to a quality control (QC)
assessment using the FastQC quality checking software available at
http://www.bioinformatics.babraham.ac.uk/projects/fastqc. SNP call-
ing was performed using the non-reference genome Universal Net-
work-Enabled Analysis Kit (UNEAK) protocol (Lu et al., 2013)
implemented in TASSEL v3.0.158 (Bradbury et al., 2007; Glaubitz
et al., 2014). Modules in TASSEL-GBS pipeline were executed
sequentially, and reporting logs were manually screened for errors
using custom bash scripts. Reads were trimmed to 64 bases with a
minimum tag count of five. To identify pairs of tags for SNP calling,
the error tolerance rate was set to 0.03. Only SNPs with a minor
allele frequency of 0.05 were used for further analyses.

Linkage map construction and population structure

analysis

Linkage map was constructed using R-packages R/qtl (Broman
and Sen, 2009) and R/ASMap (Taylor and Butler, 2017) available at
R (R Core Team, 2017). The initial TASSEL output identified 28,810
SNP markers which were assessed for suitability. Of these 3,784
markers which had <20% missing data were taken forward for
genetic map construction. From this subset of markers, lines with
more than 50% missing data and 20% missing allele scores were
discarded, and genetic similarity between lines and sibling relat-
edness between individuals was estimated. ‘Partial clone’ groups

© 2019 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
The Plant Journal, (2019), doi: 10.1111/tpj.14225

3D imaging for genetics of barley leaf elongation 13

http://www.bioinformatics.babraham.ac.uk/projects/fastqc


were formed by members with 85% allelic similarity, and one
member from each group with the least missing values was used
as representative for map construction. Marker segregation distor-
tion was calculated using a Bonferroni corrected P-value of 0.05 to
remove groups with higher distortion. The remaining markers
were then clustered into linkage groups and optimally ordered
using MSTmap (Wu et al., 2008) available at ASMap. Recombina-
tion rates were calculated and markers above the median recom-
bination rate for the population, using Bonferroni corrected
P < 0.05, were removed. Markers within linkage groups were re-
ordered and marker/interval statistics calculated. Markers contain-
ing significantly greater (Bonferroni corrected P < 0.05) double
recombinations in comparison to the recombinations in adjacent
intervals were removed. Finally, markers within linkage groups
were optimally ordered and genetic distances calculated. Linkage
group identification and orientation were determined by aligning
marker sequences to the barley reference sequence assembly
(Mayer et al., 2012) through an in-house BLAST portal. The final
linkage map consisted of 298 lines genotyped with 3,087 GBS
markers and 10 linkage groups. Where two markers had a distance
>30 cM, the linkage group was split in two. Total map length was
1303.86 cM with an average interval spacing of 0.42 cM.

After linkage map construction, a PC analysis using the R library
lmem.gwaser (Gutierrez et al., 2016) was conducted in order to
investigate remaining individual RIL lines with high similarity.
There was evidence of tight coupling between some individuals in
plots of the PCs suggesting that some residual relationships were
still present in the data set. As this population structure still pre-
sent within the data may affect the level of false positives in the
QTL mapping, we included the first four PCs which accounted for
around 28% of the genetic variation in the data in the phenotypic
analysis.

QTL mapping

A WGAIM approach was used for QTL analysis of the response vari-
ables (Verbyla et al., 2007, 2012), using the R package WGAIM (Tay-
lor and Verbyla, 2011), with independent analyses conducted for the
control and salt treatments. Analyses were only conducted if the
response variable showed sufficient genetic variation evidenced by
a heritability greater than 0.1. The WGAIM approach uses the com-
plete phenotypic information for both treatments, control and salt,
and ensures that parameters such as the design factors, spatial vari-
ation and population structure PCs are simultaneously estimated
with marker effects; thus increasing the power of detecting signifi-
cant interval marker trait associations (Verbyla et al., 2007). To
detect and select significant interval markers linked to the trait,
WGAIM uses a forward selection approach. This approach avoids
piecemeal scanning of individual markers and calculation of thresh-
olds by directly testing the significance of the additive genetic vari-
ance parameter using a REML ratio test. If significant, an outlier
detection method is then used to select the most likely interval mar-
ker linked to a putative QTL. This interval marker is removed from
the contiguous block and placed as a separate term in the fixed com-
ponent of the extended model. This procedure is then repeated until
the genetic variance parameter is non-significant. This algorithm
has been shown to detect and select putative QTL with a Type I fam-
ily-wise error rates below 5% and stable false discovery rates for var-
ious population and marker set sizes (Verbyla et al., 2007). Upon
completion of the algorithm, all significant QTL are summarized and
reported. This summary includes selected interval markers consid-
ered to be significant with their respective flanking markers, size of

the interval marker effect, P-value based on Z-statistic (a < 0.05), and
LOD scores for each QTL.

Candidate gene analysis

Candidate gene was identified for all the significant QTL intervals
(interval between flanking markers), using the reference sequence
of the barley genome (Mascher et al., 2017) as deposited on the
IPK Barley BLAST Server (http://webblast.ipk-gatersleben.de/barle
y_ibsc/). Custom Linux script was used to perform a BLAST search
of the GBS marker’s sequence against the pseudomolecule
sequences for each individual chromosome. After the BLAST
search, two possible scenarios occurred: (i) if a hit was obtained
for both flanking markers, then the interval was defined as the
physical coordinates between each flanking marker; and (ii) if a hit
was found for only one of the flanking markers, then an interval of
500 kb surrounding the flanking maker was used to identify the
annotated genes present in the mapping interval using BEDTools
(Quinlan and Hall, 2010).

Data and code availability

3D modelling – code is available upon request from Anton van
den Hengel R-packages used in this study have been published
and are available online.
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Additional Supporting Information may be found in the online ver-
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Figure S1. Images of example camera calibration targets and 3D
leaf segments prior to assembly of 3D image path.
Figure S2. Correlation between manual leaf length measurements
and digital measurement of leaf length in Hordeum vulgare and
Triticum aestivum plants of different growth stages.
Figure S3. Overlay of 3D leaf model of Hordeum vulgare with orig-
inal images used to create the model and 3D model projected to
unused top view image.
Figure S4. Flowchart of data processing, from image capture to
QTL analysis, including software packages used.
Figure S5. Confusion matrix for the binary SVM classifier, tested
on five manually labelled images.
Figure S6. Genetic correlation between traits, based on the corre-
lation between the Best Linear Unbiased Predictors (BLUPs) for
control and salt traits.

Table S1. Trait description – Description of all 2D and 3D traits
extracted from the image analysis and time intervals analysed for
the Hordeum vulgare mapping population.
Table S2. Heritability – Values of heritability determined for indi-
vidual traits listed in Table S1, traits with h > 0.1 were used for
QTL analysis of the Hordeum vulgare mapping population.
Table S3. Significant QTL – overview of all significant QTL with
time intervals determined by wgaim method for the Hordeum vul-
gare mapping population.
Table S4. Overview QTL – Table of all significant QTL sorted by 2D
and 3D traits and chromosome position for the Hordeum vulgare
mapping population.
Table S5. Candidate genes – List of all candidate genes identified
between the flanking markers for the respective QTL based on the
latest release of the Hordeum vulgare genome.
Table S6. Genetic correlation between traits, based on the correla-
tion between the Best Linear Unbiased Predictors (BLUPs) – con-
trol traits.
Table S7. Genetic correlation between traits, based on the correla-
tion between the Best Linear Unbiased Predictors (BLUPs) – salt
traits.
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