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Abstract: Induced modes due to discontinuities inside the waveguide are dependent on the shape
and material properties of the discontinuity. Reflection and transmission coefficients provide useful
information about material properties of discontinuities inside the waveguide. A novel non-resonant
procedure to measure the complex conductivity of narrow strips is proposed in this paper. The sample
is placed inside a rectangular waveguide which is excited by its fundamental mode. Reflection and
transmission coefficients are calculated by the assistance of the Green’s functions and enforcing
the boundary conditions. We show that resistivity only impacts one of the terms in the reflection
coefficient. The competency of the method is demonstrated with a comparison of theoretic results
and full wave modelling of method of moments and finite element methods.
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1. Introduction

Developing new methods to measure various material parameters are of prominent importance as
they enable one to perform precise measurements. Conventional methods to measure the conductivity
of materials at microwave frequencies are the cavity, reflection and transmission methods [1,2].
Cavity methods [3–12] are generally based on the pertubation theory, where the sample under test
(SUT) is placed inside a cavity and perturbs the natural modes of the cavity. Perturbations result
in the shifts in the resonant frequency fr and quality factor Q. Material properties are extracted
from the changes in fr and Q. In reflection methods [13–16], SUT is placed as the termination
of the transmission line, and the material is characterized through investigation of the reflection
coefficient. Transmission methods [1,17–22] are based on placing the object inside the transmission
line, and both transmission and reflection coefficients are used. Cavity methods [3–11] are inherently
narrowband, while reflection [13,15,16] and transimssion methods [18–21] are broadband methods.
However, cavity methods are often considered as more accurate methods for material characterizations.
Another method for measuring the permittivity and dielectric properties is recently proposed by
Geyi and colleagues [23–25]. They place the unknown material in the near field of the antenna and
use the variations in the reflection coefficient to find the dielectric constant. The limitation of the
method is that SUT has to be electrically small (much smaller than wavelength λ) so fields can be
approximated in the antenna near zone. A mode matching technique based on the transmission
methods is reported in [26].

In this paper, a method to measure the complex conductivity of the graphene and thin film
materials is proposed. The method is based on the standard reflection/transmission methods, which are
inherently broadband measurement methods. The whole aperture of the waveguide had to be covered
with the sample under test in previous transmission methods (e.g., [20]) for surface conductivity
measurement. As far as the authors are aware, this is the first time an analytic method for the
conductivity of a thin strip is proposed, and it should be useful to measure the performance of
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materials that are synthesized in a strip shape. An example of such materials is graphene produced
by reduction of the graphene oxide by laser [27,28] (although the reduction of graphene oxide hardly
produces one-atom thick 2D layers of graphene, the product is still so thin compared to the wavelength
of microwave frequencies that we can consider it as infinitely thin). The geometry of the problem in
Bogle et al. [26] is similar to this contribution. The difference between this work and [26] is that a mode
matching technique with optimisation solver was used to find the unknowns. On the other hand,
Green’s functions are used here and variational formulations are provided that are approximated with
some choice of basis functions.

The outline of the paper is as follows: initially, Section 2 provides rigorous field theory for
a conductive strip inside a rectangular waveguide. Simplified results for the impedance of the
conductive strip is discussed in Section 3 for uniform and cosinus hyperbolic distributions, and their
corresponding fields on the aperture are reported in Section 4. Numerical results from the analytic
theory are validated in Section 5 by modelling similar structure using full-wave commercial packages.
Step by step procedure to measure the surface conductivity is also proposed (four steps). A time
convention of the ejωt is assumed throughout the paper and vector quantities are presented with
bold symbols.

2. Theory

This study follows the procedure described by Collin ([29] Section 8.5) to find a reflection
coefficient due to a narrow strip in a rectangular waveguide. The difference is that we assume a finite
conductivity for the strip, while Collin assumed a perfect electric conductor (PEC) strip. We consider
a waveguide with a cross section a× b in the x − y plane as shown in Figure 1. An infinitely thin
conductive strip with width 2t and conductivity of σ is placed in x = x0 and z = 0, and is stretched from
y = 0 to y = b. It is assumed that a tranverse electric mode TE10 mode travels from −z. Electric and
magnetic fields due to this mode are denoted by Ei and H i. Presence of the strip makes discontinuity
in the waveguide, induces currents J on the strip, and scatters the wave in both directions. One way to
represent the scattered fields is to use Green’s functions which satisfy the waveguide boundary value
problem. One can write Green’s function for the scattered electric field due to a current J = J(x′)ŷ
inside rectangular waveguide as ([29], Section 5.6):

Ge = −
jωµ0

a

∞

∑
n=1

1
γn

sin
nπx

a
sin

nπx′

a
e−γn |z|ŷ, (1)

where γn is

γn = j

√
ω2µε− n2π2

a2 (2)

and defined as the complex propagation constant of mode n in the waveguide. The scattered electric
field Es is

Es(x, z) =
∫
S

Ge(x, x′) J(x′)dx′ (3)

and the total electric field inside the waveguide is E = Ei + Es. Here, we assume the TE10 mode with
the incident field

Ei = sin
πx
a

e−γ1zŷ, (4)

H i = − γ1

jωµ0
sin

πx
a

e−γ1z x̂− π

jωµ0a
cos

πx
a

e−γ1zẑ. (5)
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Because the strip is made of conductive material, so-called standard impedance boundary
conditions (SIBC) ([30], Section 2.4) are to be satisfied on the strip:

n̂× (E+ + E−) = ¯̄η · n̂× n̂× (H+ − H−), (6)

where ¯̄η is the condition tensor of the sheet. In the following, we assume an isotropic non-magnetic
sheet with conductivity of σs. Therefore, ¯̄η = (2σs)−1 ¯̄I, where ¯̄I is the identity tensor. Plus and minus
superscripts denote the field on z = 0+ or z = 0−, respectively. The tangential component of E has to
be continuous at the junction. Therefore:

E+ = E− = sin
πx
a

ŷ +
∫

Ge(x, x′)J(x′)dx′ ŷ. (7)

x

y

x0 a

b

2t

Figure 1. Geometry of the problem; thin strip of width 2t inside the rectangular waveguide.

We also find Hs by inserting Equation (1) in Equation (3), and ∇× Es = −jωµ0Hs. Tangential
components of Hs on each side of the boundary are:

Hs+
t =

1
a

∞

∑
n=1

sin
nπx

a

∫
sin

nπx′

a
J(x′)dx′ x̂, (8)

Hs−
t = −1

a

∞

∑
n=1

sin
nπx

a

∫
sin

nπx′

a
J(x′)dx′ x̂. (9)

The difference in the sign is due to the fact that one mode is propagating to z > 0 while the other
propagates to z < 0.

We juxtapose components into Equation (6):

−2 sin
πx
a
− 2

jωµ0

a

∞
∑

n=1

1
γn

sin
nπx

a
∫

sin
nπx′

a
J(x′)dx′ = − 1

2σs

2
a

∞
∑

n=1
sin

nπx
a
∫

sin
nπx′

a
J(x′)dx′ (10)

The coefficient of the non-evanescent part of the scattered Es traveling in the z < 0 would be the
reflection coefficient Γ:

Γ = − jωµ0

aγ1

∫
sin

πx′

a
J(x′)dx′. (11)

The transmission coefficient T is also equal to sum of incident wave and non-evanescent part of
scattered wave traveling towards z > 0:

T = 1− jωµ0

aγ1

∫
sin

πx′

a
J(x′)dx. (12)
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From Equation (11) and Equation (12), one finds T = Γ + 1 relationship. Therefore, we can
consider the strip discontinuity as a shunt element across a transmission line (see Figure 2). One

can also show that Zshunt = −Γ + 1
2Γ

. As a result, we find expressions for (Γ + 1)/(2Γ) in some
variational form.

Rcs(σ)

jXcs(σ)

jXa

Zshunt

Figure 2. Equivalent circuit for a conductive strip inside waveguide.

We can re-arrange Equation (10) by taking the n = 1 term out of the series, and also moving all
terms with n ≥ 2 to the right-hand side:

sin
πx
a
− jωµ0

aγ1
sin

πx
a
∫

sin
πx′

a
J(x′)dx′

=
1

2aσs

∞
∑

n=1
sin

nπx
a
∫

sin
nπx′

a
J(x′)dx′ +

∞
∑

n=2

jωµ0

aγn
sin

nπx
a
∫

sin
nπx′

a
J(x′)dx′.

(13)

The left-hand side of (13) can be factorized as (1 + Γ) sin πx
a . Following the Collin’s procedure,

we arrive at (Γ + 1)/2Γ form by multiplying both sides by J(x), integrating over x, and dividing both
sides by 2Γ. Therefore, the total shunt impedance is calculated as:

Zshunt =
aγ1

j2ωµ0
1

[
∫

sin πx
a J(x)dx]

2

{
1

2aσs

∞
∑

n=1

∫ ∫
sin nπx

a sin nπx′
a J(x′)J(x)dx′ dx

+
∞
∑

n=2

jωµ0
aγn

∫ ∫
sin nπx

a sin nπx′
a J(x′)J(x)dx dx′

}
.

(14)

By direct comparison with the analytic case solved by Collin, we can identify the terms
corresponding to the equivalent circuit proposed in Figure 2. Interestingly, the second term in (14)
is identical to the result derived by Collin for a lossless strip inside a waveguide which is called jXa.
On the other hand, Zcs is the contribution due to the material properties of the conductive strip (Rcs and
Xcs refer to the real and imaginary parts of Zcs). Thus,

Zshunt = Zcs + jXa, (15)

where

Zcs =
γ1

j4ωµ0σs

∞
∑

n=1

∫ ∫
sin nπx

a sin nπx′
a J(x′)J(x)dx′ dx[∫

sin πx
a J(x)dx

]2 , (16)

jXa =
γ1

2

∞
∑

n=2

1
γn

∫ ∫
sin nπx

a sin nπx′
a J(x)J(x′)dxdx′[∫

J(x) sin πx
a dx

]2 . (17)

It should be noted that, for a waveguide with lossless walls, γ1 is pure imaginary while γn with
n ≥ 2 are pure real numbers. This is due to the fact that the driving frequency f is chosen so that it is
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only above the cut-off frequency of the first mode and below the cut-off frequencies of all higher order
modes. As a result, we see that jXa is always pure imaginary. On the other hand, Zcs is a complex
number in general, due to complex conductivity σs of the conductive strip.

3. Current Distribution on the Strip

The formulations for Zcs and Xa in Equation (16) and Equation (17) are in the variational
forms. This implies that choosing a testing function for J(x) does not make a huge influence on
the results. Choosing an appropriate testing function, which is closer to the true current distribution,
would undoubtedly improve the accuracy of the results. Nevertheless, trying different testing functions
also assists with examining the numerical sensitivity to the choice of the testing functions.

3.1. Uniform Current

If the strip is reasonably thin t � a, a rough approximation is to assume J(x) as uniform over
the strip [29]

jX =
γ1

2

∞
∑

n=2

1
n2γn

[
sin nπx0

a sin nπt
a
]2

[
sin πx0

a sin πt
a
]2 . (18)

Collin also simplifies (18) for the case when the strip is exactly in the middle of the waveguide
(x0 = a/2)

jX =
γ1

2
csc2 πt

a

∞

∑
n=3,5,...

1
n2γn

sin2 nπt
a

. (19)

Similarly, we also find expressions for Zcs:

Zcs =
γ1

j4ωµ0σs

∞
∑

n=1

1
n2

[
sin nπx0

a sin nπt
a
]2

[
sin πx0

a sin πt
a
]2 , (20)

and, for the case of the centered strip, we have:

Zcs =
γ1

j4ωµ0σs
csc2 πt

a

∞

∑
n=1,3,...

1
n2 sin2 nπt

a
. (21)

This can be further simplified to (see Appendix A) [31]:

Zcs =
γ1

j4ωµ0σs

π2t
4a

csc2 πt
a

. (22)

3.2. Hyperbolic Cosine Distribution

A second current distribution of J(x) = J0 cosh[(x− x0)b/t]ŷ was also studied for this problem.
The motivation for such choice of testing function is to analytically model the singularity on the H
fields, especially Hz component on the edges of the strip (x → x0± t). This effect significantly increases
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J near the edges (see Figure 3 for currents on a PEC strip). By the assumption on the current J(x) as
hyper cosine distribution, we get the Zcs and jXa as

Zcs =
γ1

j4ωµ0σs

∞
∑

n=1
I2
n

I2
1

, (23)

jXa =
γ1

2

∞
∑

n=2

1
γn

I2
n

I2
1

, (24)

where

In =
∫ x+

x−
J(x) sin

nπx
a

dx =
A[sin nπx+

a + sin nπx−
a ]− B[cos nπx+

a − cos nπx−
a ]

2 exp(b)[(nπt)2 + (ab)2]
(25)

b is the scaling factor in the cosh basis function, and A, B and x± are:

A = a2bt(exp(2b)− 1), (26)

B = πat2(exp(2b) + 1), (27)

x± = x0 ± t. (28)

It should be noted that I1 is found by setting n = 1 in (25).

Figure 3. Currents on the conductive strip (x–y plane).

4. Field on the Conductive Strip

It is instrumental to study the E and H fields on the discontinuity since they provide deeper
insights into the problem. One can also check whether appropriate boundary conditions (here SIBC)
were satisfied or not.

In the previous section, we have assumed that induced current is in the form of J = J0ŷ or
J(x) = J0 cosh[(x− x0)/t]ŷ, where J0 is a complex number. One finds J0 from (11) after computing
the LHS from the results of Section 3. The scattered field Es

x is then found by using (3):

Es
x = ∑

n
Es

n sin
nπx

a
, (29)
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where Es
n is in the following form for uniform and cosh distributions, respectively:

Es
n =

γ1Γ
nγn

[
cos nπ

a (x0 − t)− cos nπ
a (x0 + t)

][
cos π

a (x0 − t)− cos π
a (x0 + t)

] , (30)

Es
n =

γ1Γ
nγn

In

I1
. (31)

5. Numerical Results

Intuitive tests can be readily performed to validate the rationality of results. If the strip is
assumed as PEC, then σs → ∞, Therefore, Equation (14) would also reduces to Equation (17). On the
other hand, Zcs goes to infinity if we presume that the strip in the waveguide aperture has very low
conductivity (σs → 0). This is equivalent to replacing Zcs with an open circuit in the equivalent circuit
(see Figure 2). Therefore, no reflections occur at zero conductivity, which resembles no discontinuity
on the aperture.

To show the competency of the method, we compare our analytic method with modelling results.
A general purpose programming tool [32] was used to find analytic results from Equations (18) and (22)
or Equations (23) and (24). We used two commercial electromagnetic packages with a finite element
method (FEM) solver [33] and method of moments (MoM) solver [34] to simulate the structures.
Two different values are chosen for the complex conductivity of the strips as 0.01− j0.01 S m−1 and
0.001− j0.001 S m−1 which are chosen close to conductivity of the graphene at X-band.

5.1. Reflection and Transmission Coefficients

Figures 4 and 5 illustrate the magnitude and phase of the reflection and transmission coefficients
caused by the conductive strip discontinuity. In the modelling, we de-embedded the excitation ports
to the plane of the discontinuity, in order to achieve the correct phase for Γ and T.
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Figure 4. Magnitude and phase of the reflection Γ and transmission coefficient T from a strip with
σ = 0.001− j0.001 S m−1.
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Figure 5. Magnitude and phase of the reflection Γ and transmission coefficient T from a strip with
σ = 0.01− j0.01 S m−1.

A good agreement between analytic and simulation results are obtained for both current
distribution (see Figures 4 and 5). However, it is evident that the Γ and T from cosh assumption
are much closer to full wave modelling results. This is best illustrated on the magnitude of T and Γ
coefficients. It is also observed that MoM simulations lie closer to the theoretical calculations.

Comparing Figures 4 and 5, we see a relatively drop in T and a jump in the Γ with an increase
in surface conductivity σs. This is expected as the higher σs causes more reflection and reduces the
transmission of the wave through the waveguide.

5.2. Fields on the Aperture

A perture fields on the strip discontinuity are examined in this subsection. Fields depicted in
Figures 6 and 7 are the total fields (incident+scattered) for a strip with 1 mm width. The frequency
is set to 10 GHz. The fields from both current approximations are close to the simulation results
when |x− x0| > 2t. Particularly, Ex and Hz components by our approximations and full-wave solver
are almost identical even on the conductive strip. Hx component by cosh approximation disagrees
slightly with results from other methods that are due to the choice of the basis function; although
such a disagreement is only observed on the conductive strip and everywhere else, they are in total
agreement. The singular like behaviour of the Hz near the edges of the strip is to make a closed loop of
H field around the strip (also see Figure 3).
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Figure 6. Fields on the aperture of the waveguide and discontinuity of conductive strip. E field at
z = 0 and H fields at z = 0+ with conductivity of strip set to σ = 0.001− j0.001 S m−1.
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Figure 7. Fields on the aperture of the waveguide and discontinuity of conductive strip. E field at
z = 0 and H fields at z = 0+ with conductivity of strip set to σ = 0.01− j0.01 S m−1.

It is interesting to see that there is a drop in Ey and a significant jump in Hx field to satisfy the
imposed boundary conditions. To understand this phenomena, we start by recalling that the ratio of Ey

and Hx at distances far from the discontinuity is set by the characteristic impedance of the waveguide
Z0 = jωµ

γ1
. For a WR90 waveguide at 10 GHz, Z0 is around 499 Ω. However, the conductivity of the

strip dictates the ratios of the transverse components of E and H by enforcing (6). In Figures 6 and 7,
1
|2σs|

is 353.53 Ω and 35.353 Ω, respectively. Therefore, comparing Figure 7 with Figure 6, a significant

drop in E and also a larger jump in Hx are needed to satisfy the boundary conditions in Figure 7.

5.3. Conductivity Estimation

In the following, we demonstrate how one can use the analytic results of Section 3 to measure
the real and imaginary part of the conductivity of a thin strip. The measurement apparatus should
basically include a vector network analyser and waveguides. The diagram in Figure 8 shows the
required steps in a typical apparatus. For the uniform current approximation, ∆ is found from

∆ =
γ1

j4ωµ0
csc2 πt

a

∞

∑
n=1,3,...

1
n2 sin2 nπt

a
, (32)

while ∆, for cosh distribution, is:

∆ =
γ1

j4ωµ0 I2
1

∞

∑
n=1

I2
n. (33)

We used the modelling results of the full-wave simulators (FEM and MoM) as the input to examine
the measurement procedure. S-parameters from the modelling packages are fed into the Matlab R©
code to estimate the values of the conductivity based on the presented theory with uniform and cosh
approximations. Figures 9 and 10 illustrate the computed conductivity by our method for a conductive
strip of 0.001− j0.001 S m−1 and 0.01− j0.01 S m−1, respectively.

Generally, the theory presented in this paper is valid for the various positions of the conductive
strip inside the waveguide and along its long side. When the strip is placed at the center of the guide,
the maximum reflection from the strip occurs. The interaction with the fundamental mode is stronger
with the conductive strip in the middle, which improves the dynamic range of the measurement
method. Further investigations are needed to explore the accuracy and sensitivity of this method to
various parameters in the apparatus.

To examine the method, conductivity of a material with ∠σs = −45 deg is swept over a range
of 0.0001 S m−1 to 10,000 S m−1. Reflection and transmission coefficients are plotted in Figure 11 at
10 GHz for a strip with a width of 2t = 1 mm, which is placed at the centre of the waveguide. Both
Γ and T change reasonably as long as the 10−4 � σs � 102 S m−1. On the other hand, they have
minimal changes if the surface conductivity is out of the specified range (it is hard to measure the
S11 � −30 dB with current status quo). This method would be most instrumental to measure the
surface conductivity of the materials in the above range.
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Calibrate the aparatus

Measurement of S−parameters

Convert S11 to the shunt
impedance Zshunt by

Zcs = Rcs + jXcs = −S11+1
2S11

− jXa

Find ∆

σ = ∆
Zcs

Figure 8. The procedure to measure the conductivity by the proposed method.
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Figure 9. Estimated conductivity for a strip with surface conductivity of (0.001− j0.001) S m−1. The
solid black line shows the expected value; (top) real part (bottom) imaginary part of surface conductivity.
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Figure 10. Estimated conductivity for a strip with surface conductivity of (0.01− j0.01) S m−1. The
solid black line shows the expected value; (top) real part; (bottom) imaginary part of surface conductivity.
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Figure 11. Variation of Γ and T coefficients with sweeping conductivity.

6. Conclusions

In this paper, a method to measure the conductivity of thin layers is proposed which is based on the
reflection and transmission of the TE modes in a rectangular waveguide. Other transmission–reflection
methods need sample under test to cover the aperture of the waveguide; however, our method needs
SUT to only cover a small portion of the cross section. An equivalent circuit of the problem is proposed
which is of assistance for intuitive understanding. We provide analytic formulas for the reflection Γ
and transmission T coefficients, and derive terms related to each component in the equivalent circuit.
Distribution of the fields and currents over the SUT are also reported. The reflection and transmission
coefficients from a resistive sheet are compared with S-parameters from the commercial software with
FEM and MoM solvers. A reasonable agreement is observed for Γ and T coefficients, as well as fields
and currents over the aperture.
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Appendix A. The Simplification of Series in Equation (21)

In Equation (21), we have a series in the form of:

S2(x) =
∞

∑
n=1,3,...

1
n2 sin2 nx, (A1)

where x = (πt/a). This series can be slow to converge under some conditions and it is useful to obtain
a closed form solution. It is recognized that this series is the difference of two infinite series containing
all terms. Thus:

S2(x) =
∞

∑
n=1,2,...

1
n2 sin2 nx− 1

4

∞

∑
k=1,2,...

1
n2 sin2 2kx = S∞(x)− 1

4
S∞(2x), (A2)
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where S∞(x) is:

S∞(x) =
∞

∑
n=1,2,...

1
n2 sin2 nx. (A3)

Using 2 sin2 z = 1− cos 2z, we find S∞(x):

S∞(x) =
1
2

∞

∑
n=1,2,...

1
n2 −

1
2

∞

∑
n=1,2,...

1
n2 cos 2nx, (A4)

where the first series is known as the Euler’s result [35]

∞

∑
n=1,2,...

1
n2 =

π2

6
. (A5)

The second series is looked up from the tables ([36], Section 1.443) with a change of variable of
x → 2x with a restriction of 0 ≤ x ≤ π/2:

∞

∑
n=1,2,...

1
n2 cos 2nx =

π2

6
− πx + x2. (A6)

Therefore:

S∞ =
1
2

(
πx− x2

)
. (A7)

Finally, using Equation (A7) twice in Equation (A2) results in

S2(x) =
∞

∑
n=1,3,...

1
n2 sin2 nx =

πx
4

, (A8)

where 0 ≤ x ≤ π/2.
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