First steps into the Unknown:

Potential field surveying as an

affective first step in exploration - A

Uno fault example South Australia,

Australia

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geophysics
[Matthew Mark Musolino]
November 2015

THE UNIVERSITY
of ADELAIDE

[FIRST STEPS INTO THE UNKNOWN: POTENTIAL FIELD SURVEYING AS AN AFFECTIVE FIRST STEP IN EXPLORATION - A UNO FAULT EXAMPLE SOUTH AUSTRALIA, AUSTRALIA]

RUNNING TITLE

Potential field surveying - Uno Fault

Abstract

The Uno Province in South Australia is a current focus of mineral exploration. The province, is bounded to the north by the Gawler Range Volcanics, a large felsic igneous province of mesoproterozoic age that overlies the palaeproerozoic basement. The nature of the boundary is postulated to be structurally controlled by the east-west trending Uno fault. However, little is known of the morphology of the fault. The fault, over time, has been continually extrapolated eastward with minimal geological rational. Information and knowledge adhering to the nature of the fault, its possible extent and the exact boundaries between geological units adjacent to it, does not yet exist. To provide new constraints on the Fault, two lines of gravity data were procured in June 2015. The lines were approximate 52 km and 27 km long, and comprised 156 stations spaced approximately 250 m to 1 km apart. It's hoped that description of the planning phases and the two transect lines of variable gravity station spacing produced a valuable replicable method for this line of work. Regional elevations changes are small (less than 150 m) so that only simple gravity reductions methods were applied and the data were tied into a reference South Australian gravity framework. The lines were designed to cross the boundary of the GRV approximately at right angles, although stations had to be collected along roads for logistical reasons. Two-dimensional modelling of the fault using representative densities for the major lithological units shows that the Uno Fault represented a clear boundary in physical properties, but the data could not determine fault from unconformity. The continuation of the fault was not detected to the east in the Siam line. Anomalous areas other than the fault were investigated and discussed including parts of the Hutchinson's group and the geometry of the Hiltaba suite. Conclusions were bounded by the uncertainties inherent in non-unique solutions. However possible explanations to gravitational trends along both lines have been stated and may aid in the continued exploration of this area for minerals.

KEYWORDS

Potential Field
Gravity Surveying
Gravity Technique
Uno Fault
2d Modelling
Gawler Volcanic Ranges
TABLE OF CONTENTS

1. INTRODUCTION3
2. GEOLOGICAL SETTING/BACKGROUND 6
2.1 Study Area 6
2.2 Gawler Volcanic Ranges 7
2.3 Uno Fault 8
2.4 Geological Units 9
2.5 Background: Gravity as an exploratory geophysical method. 10
3. GRAVITY DATA COLLECTION 12
3.1 Survey planning and rational 12
3.2 Gravity Surveying 17
4. GRAVITY DATA (RESULTS) 18
4.1 Field processing \& corrections 18
4.2 Gravity observations and results 18
5. GRAVITY INTERPRETATION 22
5.1 Modelling Assumptions 22
5.2 Modelling techniques 24
5.3 Modelling results 25
5.3.1 Buckleboo Line 25
5.3.2 Siam Line 34
6. DISCUSSION 35
6.1 Buckleboo line 35
6.2 Siam Line. 39
6.3 Remarks of methodology effectiveness 40
7. CONCLUSIONS 41
8. ACKNOWLEDGEMENTS 42
9. REFERENCES 42
10. APPENDACIES 45

List of Figures and Tables

Figure 1: Figure 1. LEFT TMI image of the Peninsula. The area boxed is where the GRV bounds the older southern units and covers the basement magnetic trends. This boundary is the suspected location of the Uno fault. There is a noticeable north to south magnetic response change. The lateral extent of the boundary from the magnetics is approx. 100km W-E. RIGHT state gravity grid shows a response but resolution is too low detect the fault.

Figure 2: Top right shows a Google Map image showing relative location of Adelaide, Kimba and Buckleboo station. Bottom Left depicts the inferred location of the fault to the mineralised areas (adapted from IRL 2014). Centre, shows the survey area and geological formations therein, as reference, Kimba can be seen bottom centre. North west is the Buckleboo line and to the north east is the Siam or 'Uno' line. Coloured dots indicate earthquake epicentres (Blue being lower magnitude and green higher) Names in red refer to discovered mineral deposits. The Uno 'fault' is boxed in red and the two black lines depict the roads the data points were taken. SARIG 2015.

Table 1:Table geological ages and densities.. 9
Figure 3 : Clockwise starting top left; Geophysical magnetic data of the Buckleboo line, geological
overlay of magnetic data of the Buckleboo line as reference, geological overlay of the Siam line as reference, magnetic data of the Siam line. SARIG 2015

Figure 4:) Buckleboo road gravity data station locations mapped across geological units with a red box highlighting the boundary/fault. Density of spacing is 1 km with three areas of 250 meter infill around areas of interest. The areas of interest can be observed in the top right figure of the magnetics. From south to north, the Hiltaba suite, Sleaford complex boundary the Hutchinson group, UGRV (upper gawler range volcanics) boundary and LGRV, UGRV boundaries. General gravity trend is shown on the bottom right. All figures provided by SARIG adapted by Matthew Musolino 2015. 15

Figure 5:Siam/Uno range gravity data station locations mapped across geological units with the red box highlighting the boundary/fault. Density of spacing is 1 km with one area of 250 meter infill around an area of interest. The area of interest is due to a prominent structure visible in the magnetics (top left). The gravity trend is shown in the bottom right. All figures provided by SARIG adapted by Matthew Musolino 2015.

Figure 6:Gravity response over the Siam line became more negative heading northwards. Change is gradual apart from data collected at 10000 m and 15000 m . These locations show a mgal response considerably more negative than the points proceeding them. North of these points however, the response is consistent. The red lines denote boundaries and their corresponding gravity readings. .20

Figure 7: Buckleboo line gravity profile in mgal. A generally more negative gravitational response southward. At 15000 m a noticeable, sharp 2 mgal change occurs. The response becomes generally most positive after this before dropping 1.8 mgal from 19500 m onwards .A general negative mgal response heading southward continues (left to right). Anomalous 4 mgal differences at 31000 m and 34000 m are observed as well as sharp negative response of 2.5 mgal at 35000 m to 36000 m . Southern Buckleboo line gravity profile shows a large 6 mgal difference between 40000 m and 45000 m occurs. Responses either side of these limits level out. Red lines depict boundaries along the black dotted stations. .21

Figure 8: Shown is the Buckleboo line split into three for 2d modelling placed over the geology described previously.

Figure 9: Buckleboo line - Northern End. X axis and lower half of Y axis is length and depth in meters respectively. Upper Y denotes mgal. The black line is the observed gravity data and the blue reflects the gravity profile created by the model. The general trend is a gradual decline southward along the Upper Gawler Range Volcanics (which extend to 750 m in depth) however there is a less uniform decline around 7000 meters near the infill, 2 mgal drop is observed .Past 15000 m there is a noticeable mgal increase.The model suggests the Sleaford complex and Hutchinson's group dip 41 degrees northwards and extend to approximately 5000 m . There are two areas of data infill $(250 \mathrm{~m})$ in the middle of the UGRV and another at the southern boundary.27

Figure 9.1 Buckleboo line (North) vertical - Vertical tabular blocks have been supplemented instead of those dipping north seen in figure 9. It can be easily visually observed that the modelled data doesn't reflect the observed data as well accurately as the dipping blocks in figure 9

Figure 10: Buckleboo line - Middle section (North to the left of the image) The Hutchinson's group dominates the middle section of the transect and is estimated at 5000 m in depth. The overall trend is a decline to the south. A slightly more negative trend is apparent between 12500 m and 20000 m displaying a 4 mgal difference, after this acute 3.5 mgal drop is observed at 20500 meters .

Figure 11: Buckleboo line Southern End - The two units in this area extend approximately 4km in depth and the model very accurately follows the observed data. a 7.5 mgal difference is observed and the gradient is quite smooth. The higher density of data points (infill) occurs around the boundary between the two groups.

Abstract

extending 2.2 km (at the deepest and the GRV thickening northward. The modelling predicts a scenario where the GRV flow went over the Conglomerate and stopped (hence the shape) the boundary between the Lincolns and Conglomerate has been moved northward to better fit the model, not much is known about the nature of the boundary.

Figure 13:Gravity model, topography, observed residual (dots) and calculated (solid line) gravity anomalies across a hydrothermally altered region 5 km south of Golden Cross. Density contrasts in kg m -
'. Locke \& DeRonde (1987)
Figure 14: Schematic diagrams showing development of a granitic pluton by gradual replenishment,
crystallization, and sinking of the floor and basal cumulates. (Wiebe \& Collins 1998).................. 38
Figure 15: Observed and modelled gravity profiles for the Kameruka granodiorte. (Richards and Collins
2004) ... 39

Figure 16: Buckleboo line showing what the data would look like with and without infill................. 41

1. INTRODUCTION

The Uno fault is believed to be a structural boundary along the south of the Lower Gawler Range Volcanics a 1592+/-3Ma year old felsic igneous province covering in excess of $500 \mathrm{~km}^{3}$ north of the town of Kimba (Figure 1) (Turner 1970; Johns \&

Solomon 1953; Thomson 1970; Allen et al. 2008). The area is of significant economic importance and exploration is currently underway proximal to the fault (Investigator Resources Limited 2014; Whitten 1963). Most information gathered about the fault was in 1970 by Turner who suggested dip directions, extent, geological structures and hypothesised links to mineralisation. However little was confirmed about the nature of the boundaries between the GRV and the underlying units (being a fault or unconformity) as well as the throw and extent of the fault.

Figure 1. LEFT TMI image of the Peninsula. The area boxed is where the GRV bounds the older southern units and covers the basement magnetic trends. This boundary is the suspected location of the Uno fault. There is a noticeable north to south magnetic response change. The lateral extent of the boundary from the magnetics is approx. 100 km W-E. RIGHT state gravity grid shows a response but resolution is too low detect the fault.

Gravity surveys have shown to be successful in detecting hydrothermal alteration, fault nature, and mineral anomalies (Locke \& Ronde 1987; Johnson and Fujita 1985; Grauch 1988) Data obtained from these types of surveys have been useful in determining stress fields and possible deposit shape (Xu et al. 2015; Yong 1994; Sibson \& Scott 1998)

However due to the nature of the method it's possible that factors including metamorphic grade, low density gradients and burial can be detrimental to accurate assessment. (Irvine \& Smith 1990)

The goal of the study is to achieve a better understanding the nature of the Uno Fault and developing an effective gravity survey method. The method is to be both efficient
and economically viable. It's believed that by collecting gravity data it'll be possible to discern structural boundaries and nature of the formations in the province. Additionally the project strives to discover whether or not gravity data and 2 d modelling is sufficient in linking mineralisation and the fault.

The current state gravity grid shows major structural bounds but is too low in base station density to discern complex or smaller features. To remedy this

Two N-S gravity surveys stretching 52 km and 27 km with differential spacing have been conducted north of Kimba. 2d models were produced from 103 and 43 points of base station data. This data, along with other geophysical data i.e. state grid magnetics, is hoped to accurately describe fault nature. The aim of investigating links to mineralisation will come from looking at potential routs of fluid flow and detecting if hydrothermal alteration is present, while also determining structural geology through geophysical modelling. Furthermore looking at known ore deposits in the area and if their ore body shapes are a reflection of fault stress will aid in linking mineralisation and the fault. The method itself (utilisation of both land based gravity and other regional magnetic data) will also be assessed in terms of efficiency and possibility for continued application.

Worldwide, industry's thirst for metals increase daily and it's important that efficient techniques for mineral exploration continue to be developed and/or practiced. It's hoped that the research methods as well as outcome will be beneficial to exploration of fault related mineralisation worldwide.

2. GEOLOGICAL SETTING/BACKGROUND

2.1 Study Area

The study area is located 490 km north west of Adelaide South Australia, Australia and deep inland of the Eyre Peninsular

Figure 2. Top right shows a Google Map image showing relative location of Adelaide, Kimba and Buckleboo station. Bottom Left depicts the inferred location of the fault to the mineralised areas (adapted from IRL 2014). Centre, shows the survey area and geological formations therein, as reference, Kimba can be seen bottom centre. North west is the Buckleboo line and to the north east is the Siam or 'Uno' line. Coloured dots indicate earthquake epicentres (Blue being lower magnitude and green higher) Names in red refer to discovered mineral deposits. The Uno 'fault' is boxed in red and the two black lines depict the roads the data points were taken. SARIG 2015

2.2 Gawler Volcanic Ranges

The Uno Fault is believed to band the southern boundary of the Gawler Range Volcanics (GRV) South Australia, Australia. The GRV have been extensively studied and the literature describes the area sufficiently. Allen et al. (2008) simply state that the area is a large interpolate igneous province that formed during mesoproterzoic supercontinent assembly. They continue by describing its dominant felsic units and short eruption timing of the volcanic events. Magma sources are suspected to be from partial melting of the lower crust beneath the semi-stable continental platform neighbouring the developing Adelaide Geosyncline. The magmas that formed the GRV were injected to the upper crust where the enrichment of volatiles promoted immense ash flow eruptions.

Two areas have been separated and defined as the upper and low zones of the GRV (Blissett et al.1993). The lower zone which is of interest in this study consists of felsic lava domes with relatively moderate spreading of felsic lavas. Ignimbrites and scattered andesitic cone volcanoes are also present. The lower volcanic zone itself is divided into two main exposures the, Chitanilga Volcanic Complexes and Glyde Hill Volcanic Complexes. The basement Chitanilga basaltic layer hosts above minors of andesites and rhyolites. The Glyde Hill Complex is composed of felsic units that have been intruded
by mineralising dykes (Blissett et al. 1993). Investigator Resources Limited (IRL) (2014) has suggested mineralising dykes are present in the Paris deposit and have a metal source of approximately 40 km in depth. Both Allen et al. (2008) and Investigator Resources Limited (2014) suggest that the area shows traits of a mega caldera.

2.3 Uno fault

Turner described the Uno Fault as a normal dip slip fault formed as a result of differential subsidence in the north, and limited by south-east trending dykes as described above and by Johns \& Solomon (1953). The inferred extent of the fault has been changed over time however there is little to no surface expression (Thomson 1970).Dip angle of the fault is suggested to be very steep and northward, although no specifics are given. (Turner 1970).SARIG's (2015) database suggests the fault timing is Archean to Early Mesoproterzoic. Results of Turners (1970) lab work on porphyroclasts and ribbons of quartz in the brecciated, flinty, quartz filled, fine grained igneous rocks proximal to the fault showed evidence that the local geology was subject to increased vertical movement rather than lateral movement. Geological and isotopic analysis determined that the rocks adjacent to the fault were not formed in-situ (Compston et al. 1966).

Economic mineral deposits formed by hydrothermal fluids close to the fault have been discussed and are currently being investigated (Figure 2 bottom left) (Investigator Resources Limited 2014; Whitten 1963)

2.4 Geological units

Referring to figure 2, The Sleaford complex (seen in aqua) comprises banded metabasalts and sediments as well as synorogenic intrusives these are visible in the Carnot Gniesses. The Dutton Suite within the Sleaford Complex houses granites and granodirites. These have undergone low grade metamorphism (Daly \& Fanning 1993). The famous Mesoproterzoic Hiltaba Suite Granites (seen in red) have intruded into this Sleaford Complex. In the north, the suite is covered by the Gawler Range Volcanics (see in in light purple). The Sleaford Complex is then overlain by the Hutchins group (seen in olive green) (Vassallo \& Wilson 2001). This complex sits between the two transects.

Several magmatic suites seen to the east collectively known as the Lincoln's Complex (seen in brown) intruded into the Hutchins group as well. (Parker 1993) The west line, north of Buckleboo runs through the Hiltaba Suite Granites, The Sleaford Complex, The Hutchinson Group and the GRV. The east line goes through the Paleoproterzoic ‘Lincoln Complex’ Gneisses , Mesoproterzoic Corunna Conglomerate and the lower GRV (SARIG 2015).

Table 1. Ages and densities of rock units in the survey area. Data from SARIG (2015) petrophysical database
*Densities approximated

Name	Age (Ma)	Mean Density $\left(\mathrm{gcm}^{-3}\right)$
Sleaford Complex	$2479+/-9 \mathrm{Ma}-2430+/-6 \mathrm{Ma}$	2.80^{*}
Hutchinson Group	${ }^{\sim} 1730-1692 \mathrm{Ma}$	2.75

Lincolns Group	$1731+/-7 \mathrm{Ma}$ (Middle Camp Granite); $\sim 1715 \mathrm{Ma}$ (Paxton Granite)	2.74
Hiltaba Suite	$1613+/-19-1575+/-7 \mathrm{Ma}$	2.68
Gawler Range Volcanics	$1592+/-3 \mathrm{Ma}$	2.65
Corunna Conglomerate	$1587+/-15 \mathrm{Ma}$	2.67^{*}

World class deposits such as The Olympic Domain have associations with some of these complexes and general area, highlighting the importance for understanding and investigation. Presence of the Hiltaba Suite granite for example is a large determining factor when deciding on exploration areas (Ferris et al. 2015)

Understanding the geological history as well as the relationships between complexes and the Uno fault will help to better exploration targeting.

2.5 Background: Gravity as an exploratory geophysical method

Gravity is a potential field method of geophysical exploration. The method can locate subsurface anomalies by detecting geological mass changes.

To do that accurately however, factors must be corrected for, these include but are not limited to; latitude, height, tidal changes, Bouguer correction, free air correction, instrument drift, terrain correction, topographic correction and moving platform correction (Dentith \& Mudge 2014; Blakely 1996;Vajk 1956)

Gravity surveys have been used in exploration to investigate areas of hydrothermal alteration, possible mineralisation zones as well as fault nature (MacLean \& Kranidiotis 1987; Locke \& Ronde 1987; Johnson and Fujita 1985;Grauch 1988; Represas et al. 2013).The effectiveness of the survey is based on design as well as physical properties of the surveyed geology such as cover and level of metamorphism (Irvine \& Smith 1990). It is also may be possible to determine stress fields and possible orientation of ore hosting bodies by gravity survey using equations outlined by Xu et al. (2015), Yong (1994) and Sibson \& Scott (1998). The gravity method in context of the project is a good start in exploring the fault due to its non-invasiveness, low cost and ease to perform. The South Australian Government also provides free magnetic data which helps to guide the design of the survey. Ideally a seismic line across the fault would yield higher detailed below ground geology.

Land based gravity surveys are comparatively cheaper than airborne surveys but do lack some airborne advantages as discussed by Bell et al. (1999). However land based surveys have proved to be effective and advantageous on their own (Lamontagne et al. 2011). The efficiency of this survey is also to be analysed. It is so that the wider scientific community can benefit from the study, mimic the surveys methods and further use what's been learnt to be efficient in their own projects.

3. GRAVITY DATA COLLECTION

3.1 Survey planning and rational

Originally the project called for a single line along Buckelboo Road. This was further expanded upon discussion with academics and industry/government professionals to best utilize the opportunity. It was decided that two transects, one to the west and one to the east would give a better indication of the continuation of the fault structure and lithological boundaries. The specific position of the transect lines were restricted to road and land access. A route perpendicular to the lithology's and structures was high priority given the 2D modelling interpretative advantageous outlined by Butler (1995) and Bott (1974). Review of Simmons 1964 methods on geological interpretation from variably spaced gravity surveys showed how excellent correlation with real world geology and modelled data can be achieved. The paper however discussed that some areas of interest were not resolved well enough and this lead to the idea of having 250 m spacing in areas of particular interest along the Buckleboo and Siam transects. By having the $1 \mathrm{~km}-250 \mathrm{~m}$ spacing technique it was hoped that a large enough area was covered in a reasonable time as well as assuring quality data acquisition.

Figure 3. Clockwise starting top left; Geophysical magnetic data of the Buckleboo line, geological overlay of magnetic data of the Buckleboo line as reference, geological overlay of the Siam line as reference, magnetic data of the Siam line. Red boxes show areas of planned infill. SARIG 2015

The South Australia grid of geophysical magnetics data guided the planning for where infill (250m) spacing was to be conducted. Figure 3 shows the magnetics and the geology overlayed for the two lines. Three areas of interest were decided upon due to magnetic features that may represent structure.

The first in the far north is thought to be lower GRV and upper GRV contact but a prominent ridge is observed through the magnetics and it was hoped that the survey may also pick up this structure. The second is the boundary between the Hutchinson Group and the GRV, this is the suggested place of the Uno fault and thus warranted infill. Finally the third is the area between the Hiltaba Suite and the Sleaford Complex that shows a large magnetic change. One area of interest was chosen for the Siam line. A prominent left to right striking magnetic line is seen and although within the GRV is suspected to be an interesting structure to investigate. The fault supposedly runs just below the line however the terrain is inhospitable to travel.

The use of both gravity and magnetics to plan out exploration reflects the work done on combined analysis by Garland (1951)

The investigation and planning lead to two survey transect plans seen in figures (4) and

Figure (4) Buckleboo road gravity data station locations mapped across geological units with a red box highlighting the boundary/fault. Density of spacing is 1 km with three areas of 250 meter infill around areas of interest. The areas of interest can be observed in the top right figure of the magnetics. From south to north, the Hiltaba suite, Sleaford complex boundary the Hutchinson group, UGRV (upper gawler range volcanics) boundary and LGRV, UGRV boundaries. General gravity trend is shown on the bottom right. All figures provided by SARIG adapted by Matthew Musolino 2015

3.2 Gravity Surveying

Two gravity survey transect routes were selected in collaboration with the South Australian Department of Development and University of Adelaide that were conducted between the $8^{\text {th }}$ and $12^{\text {th }}$ of June 2015. Using Kimba as a base the survey design used was an alternate spacing loop system.

The survey lines were made north south through Buckleboo station and Siam station, South Australia. Two Sokkia GRX1 differential GPS were set up to gather elevation data for both locations at least 6 hours prior to starting the survey. After the new UTC day, data was uploaded to AUSPOS and then used to set up the GPS to take data points and accurate elevation readings. All work was done with a Scintrex CG5 gravity meter and Kimba's absolute gravity marker served as the base station as per Morelli (1976). A tripod station was set up at a topographic high in the middle of the transect to give the most coverage for the GPS system. Motor vehicles carrying the roving unit and gravity meter were then used to traverse the line in one direction taking measurements each kilometre (or 250 m) until contact between the roving GPS and base station was lost, navigation was done using ARCGIS 9 on a Getac laptop.

The position of each reading was marked using a Hand Held GPS - TopCon FC-2500 and hand written time was taken. The base station remained in place and the same activity was conducted in the other direction until connection was lost. The Station was then moved up or down the transverse and the method was repeated. This was the case for both transects.

4. GRAVITY DATA (RESULTS)

4.1 Field processing \& corrections

Data was uploaded from the CG5 gravity meter to a computer where it was imported to a Microsoft Excel spread sheet. A series of standard corrections that utilised the loop method (Bouguer, free air, instrument drift etc) were applied to the data using a premade Microsoft excel spread sheet (the specific equations behind the spread sheets are available upon request or as by Denith \& Mudge (2014) to give a Bouguer gravity anomaly. Note that tide corrections are inbuilt to the machine and that moving platform or topographic corrections were not applied due to the nature of the survey.

4.2 Gravity observations and results

The northern most part of the Buckleboo line (figure 7) shows a generally more negative gravitational response southward for about 15000 m . At this point, a noticeable, sharp 2 mgal change occurs. After this, the response becomes increasingly positive until it drops around 1.8 mgal from 19500 onwards. The infill zone at $8000-1000 \mathrm{~m}$ showed interesting 2 mgal movements that were anomalous. The infill zone from 15000 19000 m also showed an unsmooth trend.

The middle of the Buckleboo line shows a fairly gradual decline southward with observable 4 mgal difference between 31000 m and 34000 m . At 35000 m a sharp negative 2.5 mgal shift occurs.

The south of the Buckleboo line (figure 7) shows a large 6 mgal difference between 40000 and 45000 m . At either side of these lengths the response levels out.

Gravity response over the Siam line (figure 6) became more negative heading northwards, this change happened quite gradually although data collected at 10000 m and 15000 m shows a mgal response considerably more negative than the points south of them. North of these points however, the response is consistent.

Matthew Musolino

 in mgal. A generally more negative gravitational response southward. At 15000 m a noticeable, sharp 2 mgal change occurs. The response becomes generally most positive after this before dropping 1.8 mgal from 19500m onwards .A general negative mgal response heading southward continues (left to right). Anomalous 4 mgal differences at 31000 m and 34000 m are observed as well as sharp negative response of 2.5 mgal at 35000 m to 36000 m . Southern Buckleboo line gravity profile shows a large 6 mgal difference between 40000 m and 45000 m occurs. Responses either side of these limits level out. Red lines depict boundaries along the black dotted stations.

5. GRAVITY INTERPRETATION

5.1 Modelling Assumptions

The modelling program used was Encom : Model vision. 'Notepad ++' was also required to construct the adequate files for input. All GIS work was done using ARCGIS10 and QGIS 2.8.1. Additional data acquisition i.e. densities, were provided by SARIG.

Splitting the Buckleboo line into three separate lines for modelling as seen in figure (8) was performed so that the 2 d model (that assumes no lateral movement) better reflected the path the data was taken. This ensured more accurate boundary placement. Consider a best of fit line from the north to the south. This would have a large disparity between the points where the data was taken and said line, due to the curved nature of the transect.

Topography elevation in the models was not corrected for and a flat surface is assumed. A digital elevation map (DEM) was attempted to be implemented into the model however the affect was minimal due to the reasonable flatness of the terrain and was incompatible with many of the modelling features.

Many of the units extend to extensive depths (Vassallo \& Wilson 2001; Fraser et al 2010) leading to the assumption that the gravity anomalies were very strongly influenced by the geological units modelled and not cover or deeper units. Surface
expressions of multiple units were observed in the field and thus the units are assumed to start at 0 meters in the models.

A regional was added to the data using the Encom software. The software applied a first order polynomial to the dataset to reveal the regional trend. The technique is described by Beltrao et al. (1991). Adding a regional brought all the data into line with the model and was necessary for accurately fitting the modelled data to the observed.

Densities as previously mentioned were provided by SARIG (2015) each unit was allowed a $0.05 \mathrm{~g} / \mathrm{cm}^{3}$ density change during the modelling to best fit the data. A wide spread of the densities for some units in the petrophysical histogram data strengthens the argument for this permission.

Depth extents were lenient. A 2km sway limit was imposed on values from Vassallo \& Wilson (2001). Fraser et al (2010) and drill hole data from SARIG (2015)

Dip angles had no constraints since not much is known about the dips of the formations. However throughout the modelling geological plausibility was inherent in the process.

5.2 Modelling techniques

There are many plausible geological mass distributions that can replicate the observed data. Setting tight thresholds around known information (i.e. density) was a start. The boundaries between the geological units were also thought to be very accurate and so the bodies north to south extents were first added. As Bhattacharyya (1978) describes there are two ways to conduct modelling from gravitational data. Forward modelling and inverse modelling, both were utilised in this project.

Forward modelling predicts geophysical data for specific geological structures. The forward method has the benefits of allowing the user to input known data into the model space and work around it (Zhdanov 2002). Inversion is fast, simple to implement and can give a conceptual idea of what the data may reflect underground. The inversion process, although you can set thresholds and parameters, fashions a model purely from the data. It is useful when not much is known about an area (Bhattachayya 1978). Utilisation of both methods helped to create geologically feasible models that also reflected the data sufficiently.

For (figure 9) an inversion was run on the data and a model with the best fit was found, the mathematics behind the inversion of step wise 2D gravity models are described by Nettleton (1942). The inversion morphed the physical properties and geometry of each unit (within set thresholds) and was determined solely from the observed data. This was done for all the lines. Some results were plausible while others were not, so forward modelling was employed to maintain a best fit scenario while still producing geologically plausible models. Forward modelling was aided by the geological information at hand and experience of colleges.

5.3 Modelling results

5.3.1 Buckleboo line

The first model (figure 9) suggests a thin Gawler Range Volcanics that extends 731 m in depth. With an average density set at $2.6917 \mathrm{~g} / \mathrm{cm}^{3}$. Continuing south the GRV is bounded by the Hutchinson group and Sleaford complex, the model suggests both dip at

44 degrees northward. Both are modelled down to 5 km with a density of $2.7507 \mathrm{~g} / \mathrm{cm}^{3}$ and $2.7856 \mathrm{~g} / \mathrm{cm}^{3}$ respectively. Figure (10) shows the Sleaford group and Hutchinson group at a 90 degree boundary. This is due to them sitting beside each other at this point and it's not a true traverse across each unit. (See figure 8 line 2 of 3) The Hutchinson group dominates this area but there is a section of lower GRV once again extending around 700 m .

Figure (9) Buckleboo line - Northern End. X axis and lower half of Y axis is length and depth in meters respectively. Upper Y denotes mgal. The black line is the observed gravity data and the blue reflects the gravity profile created by the model. The general trend is a gradual decline southward along the Upper Gawler Range Volcanics (which extend to 750 m in depth) however there is a less uniform decline around 7000 meters near the infill, 2 mgal drop is observed .Past 15000 m there is a noticeable mgal increase.The model suggests the Sleaford complex and Hutchinson's group dip 41 degrees northwards and extend to approximately 5000m. There are two areas of data infill (250 m) in the middle of the UGRV and another at the southern boundary.

Figure 9.1 Buckleboo line (North) vertical - Vertical tabular blocks have been supplemented instead of those dipping north seen in figure 9. It can be easily visually observed that the modelled data doesn't reflect the observed data as well accurately as the dipping blocks in figure 9

[^0]Interestingly, modelling predicts the best fit scenario requires a southward dip at 34 degrees for the Hiltaba suite. The density for the Hiltaba suite was set at $2.7088 \mathrm{~cm} / \mathrm{g}^{3}$. At the southern end of the line the Hiltaba contacts the Sleaford. The model best fitted the observed data when a 34 degree northward dip was applied to the structures starting at the 3800 m contact. In this area it's thought that the units are slightly thinner (3.5 km)

The outcomes from the modelling found that it's possible to fit reasonable geological structures to the gathered observed gravity data along the Buckleboo transect

5.3.2 Siam Line

The models predict the Lincolns complex (model density of $2.72 \mathrm{~cm} / \mathrm{g}^{3}$) extending 5 km and the boundary between it and the Coorana Conglomerate (model density of $2.67 \mathrm{~cm} / \mathrm{g}^{3}$) is moved 1.5 km northward to better fit the model. The Coorana Conglomerate's root is predicted to be variable as it approaches the GRV (model density of $2.66 \mathrm{~cm} / \mathrm{g}^{3}$). The GRV was modelled to thicken northward from 700 m to 1.8 km .

6. DISCUSSION

Ambiguity is inherent in gravity modelling and interpretation, this is owing to the nonuniqueness of gravity anomaly solutions. It is to say that many geological models of varying volumes and densities can produce the same gravitational anomaly. (Skeels 1947; Roy 1962) Due to the simplistic 2D modelling and noise levels the inferences on the data have been cautious.

6.1 Buckleboo line

The observed data and modelled data for figure (9) show some large discrepancies between one another. Shown in figure 9.1 are three 90 degree dip tabular structures for reference. A more complex, dipping geometry like that in figure 9 better conforms to the observed data and is more likely to reflect sub surface structural geology.

The First large discrepancy in figure 9 between observed and modelled data is between 7000 m and 10000 meters, it's most likely due to slender arm of LGRV cutting upwards north. The magnetics show a change and so does the base geology (figure 7). The use of gravity has been therefore affective in the accurate detection of small geological changes.

Moving southward along the same line there is the suspected area of the Uno fault. Unfortunately it's not possible to determine the type of fault it is or when the faulting occurred as kinematic information isn't displayed by gravity survey alone. Figure 2 displays epicentres of seismic activity yet the position of the epicentres do not reflect that the fault is currently
active. The work by Xu et al. (2015) on modelling stress from gravity data wasn't affective due to the fault activity data needed. It's suggested in order to assume that it's a fault rather than an unconformity surface seismic monitoring would need to be implemented. Field geology information would also be beneficial. Searching for stricken lines in quartz may be able to indicate the in-situ stress fields as well as the possibility of fault fluid flow. Additionally geochemistry work to indicate if any alteration can be detected that may reflect the presence of mineralising fluids similar in nature to those responsible for Olympic dam deposit discussed by Johnson \& McCulloch (1995) Or fluorine based fluids discussed by Agangi \& McPhie (2010)

The area is prospective for many different types of minerals (Andrews 2013). Not all important information about a landscapes mineral potential comes from positive anomalies.

Although rarer, negative anomalies can indicate local mass loss due to alteration (Lumb 1981) Locke \& DeRonde (1987) discuss a 2-4mgal drop in a hydrothermally altered zone within the Golden Cross, New Zealand. Their gravity data and models suggested that the density contrast in their survey found possible sites for gold bearing hydrothermally altered rocks (Figure 13).

Figure 13 Gravity model, topography, observed residual (dots) and calculated (solid line) gravity anomalies across a hydrothermally altered region 5 km south of Golden Cross. Density contrasts in $\mathrm{kg} \mathrm{m} \mathrm{m}^{`}$. Locke \& DeRonde (1987)

Similarly, studies by Stierman (1984) also concluded chemical alteration in suspected fault zones due to hydrothermal alteration.

It's then reasonable to suggest that the possibility for some of the anomalous negative readings at the edge of the fault (17500-19000m Figure) could possibly be due to hydrothermal alteration.

Likewise in figure 10 the negative gravity anomaly between 3750 m and 6250 m occurs in what was thought to be a homogenous unit. This area may also warrant further study to see what is producing the mass loss.

Further on down that same line the Hiltaba Suite dips southward, interestingly however in figure 11 the boundary resolves a different dip direction. The geometrical shape is hypothesized to be a magma chamber of post orogenic granites. These granites intruded $1500-1450 \mathrm{Ma}$ (Webb et al. 1986) and the shape predicted by the modelling closely resembles that of a gradual replenishing granitic pluton described by Wiebe \& Collins (1998) (Figure 14)

Figure 14 Schematic diagrams showing development of a granitic pluton by gradual replenishment, crystallization, and sinking of the floor and basal cumulates. (Wiebe \& Collins 1998)

Additionally the gravity profile of the southern end of the Buckleboo line (figure 11) that shows the Hiltaba suits connection to the Sleaford, closely resembles a model made by Richards \& Collins (2004). Their model (figure 15) shows a similar mgal shift of $4-5 \mathrm{mgal}$. The modelled gravity profile at $17.5 \mathrm{~km}-20 \mathrm{~km}$ has a response like that of the Hiltaba and Sleford boundary. The sharpness of the incline at 19 km is steeper however indicating less of a dip.
a.

Figure 15 Observed and modelled gravity profiles for the Kameruka granodiorte. (Richards and Collins 2004)

6.2 Siam line

Up to 11000 m the model accurately fits the observed data. Further on from this, The GRV's response is shadowed heavily by the regional. Meaning in this area the model response doesn't reflect the observed measurements. However thickening is assumed as that follows the observed data trend when the regional is removed. Furthermore since the original magma flowed southward it's geologically reasonable to suspect an increasing thickness closer to the source.

The Uno fault is not obviously observed in the gravity. In the area of interest there is detection of a boundary but not a fault like response (around 13000m). The infill detects two W-E structures of interest in the magnetics but they are likely to be anomalous subsurface structures and not large scale faults.

A possible reason the fault wasn't detected is that it's suspected to be between the GRV and the older groups south. The transect went across the Coorana Conglomerate, (a younger group) before intersecting one of the older groups (The Lincoln Complex). The fault could have been masked by the presence of this group which has been shown as a possibility inherent in the gravity method (Irvine \& Smith 1990). In that case we would then have to assume the faults age is older than that of the Coorana Congolomerate which has a primary age of $1587+/-15 \mathrm{Ma}$ (SARIG 2015). Not detecting the fault is in itself important information.

Further study for the Siam line would include another N-S traverse either to the West where there's a Hutchinson's Group boundary directly in contact with the GRV or to the Eat where there is a direct Lincoln's complex boundary.

6.3 Remarks on methodology effectiveness

The collection, processing and analysis of the gravity data has produced reasonable geological models that have revealed a lot about the area not previously known. Furthermore it has created many new questions and hypothesis to investigate.

Data collection was inexpensive and time effective. With the information gathered it's safe to say that the use of gravity as a geophysical exploration method is a great start when looking at an unknown area. The initial time and monetary investment is low, and it paves a path for further exploration techniques.

As for the gravity survey design itself (figure 16) shows that had infill not have been conducted within the zones of interest (shown in blue) many anomalous data points could have been missed, making inferences about the geology less reliable/robust.

7. CONCLUSIONS

Many core goals of the project have been achieved successfully and those attempted have given insight into how they may be achieved in the future.

- Nature of the fault as well as identifying boundaries of surrounding units were achieved accurately using potential field surveying
- The survey using regional magnetic data and land based gravity was an effective approach into the area due to its ease, low cost and data output.
- Unfortunately stress fields, as well as separation of fault and unconformity were unable to be confirmed purely on the designed survey, however recommendations to discover this have been suggested
- The continuation of the fault between the two transect lines is unconfirmed, the possible reasons for this have been discussed.

In all it's concluded that the survey method and technique used was affective. Potential fields have shown useful in the analysis of faults and related structures. The Uno fault is self (if a fault) has been modelled within the bounds of geological plausibility and the data served as a stepping stone for future mineral and geological exploration the area.

8.ACKNOWLEDGMENTS

Phil Health
Graham Heinson
Matthew Hutchins
Derick Hasterok

9.REFERENCES

Agangi A., Kamenetsky V. S. \& McPhie J. 2010. The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: insights from the Gawler Range Volcanics, South Australia. Chemical Geology 273, 314-325.

Allen S. R., McPhie J., Ferris G. \& Simpson C. 2008. Evolution and architecture of a large felsic Igneous Province in western Laurentia: The 1.6 Ga Gawler Range Volcanics, South Australia. Journal of Volcanology and Geothermal Research 172, 132-147.

Allen S., Simpson C., McPhie J. \& Daly S. 2003. Stratigraphy, distribution and geochemistry of widespread felsic volcanic units in the Mesoproterozoic Gawler Range Volcanics, South Australia*. Australian Journal of Earth Sciences 50, 97-112.

Andrews M. 2013. Investigator's silver lining in South Australia.
Bell R. E., Childers V. A., Arko R. A., Blankenship D. D. \& Brozena J. M. 1999. Airborne gravity and precise positioning for geologic applications. Journal of Geophysical Research: Solid Earth 104, 15281-15292.

Beltrao J., Silva J. \& Costa J. 1991. Robust polynomial fitting method for regional gravity estimation. Geophysics 56, 80-89.

Bhattacharyma B. 1978. Computer modeling in gravity and magnetic interpretation. Geophysics 43, 912929.

Blakely R. J. 1996 Potential theory in gravity and magnetic applications. Cambridge University Press.
Blissett A., Creaser R., Daly S., Flint R. \& Parker A. 1993. Gawler range volcanics. The Geology of South Australia 1, 107-124.

BOTT M. H. 1974. The geological interpretation of a gravity survey of the English Lake District and the Vale of Eden. Journal of the Geological Society 130, 309-328.

ButLer D. K. 1995. Generalized gravity gradient analysis for 2-D inversion. Geophysics 60, 1018-1028.
Compston W., Crawford A. \& Bofinger V. 1966. A radiometric estimate of the duration of sedimentation in the Adelaide Geosyncline, South Australia. Journal of the Geological Society of Australia 13, 229-276.
daly, s. J. \& fanning, c. m. 1993. Archaean. In: Drexel, J. F., Preiss, W. V. and
Dentith M. \& Mudge S. T. 2014 Geophysics for the mineral exploration geoscientist. Cambridge University Press.

Fanning C., Flint R., Parker A., Ludwig K. \& Blissett A. 1988. Refined Proterozoic evolution of the Gawler craton, South Australia, through U-Pb zircon geochronology. Precambrian Research 40, 363-386.

Ferris G. M., Schwarz M. P. \& Heither P. 2015. The Geological Framework, Distribution and Controls of Fe-Oxide Cu-Au Mineralisation in the Gawler Craton, South Australia: Part I-Geological and Tectonic Framework. Книга.

Fraser G., Blewett R., Reid A., Korsch R., Dutch R., Neumann N., Meixner A., Skirrow R., Cowley W. \& Szpunar M. 2010 Geological interpretation of deep seismic reflection and magnetotelluric line 08GA-G1: Eyre Peninsula, Gawler Craton, South Australia. South Australian seismic and MT workshop. pp. 81-95.
$G_{\text {rauch }}$ V. S. Geophysical tools for defining covered geologic fea tures: significance for disseminated gold deposits in Nevada, USA. Bicentennial Gold 88, 527-529.

INVESTIGATOR RESOURCES LIMITED. 2014. Thurlga Joint Venture with Investigator Resources Limited to explore for new Eyre Peninsula deposits [AVALIBLE ONLINE] [Viewed 31/03/2015]
http://www.adelaideresources.com.au/announcements/20140818\ Thurlga\ Joint\ Venture.pdf
INVESTIGATOR RESOURCES LIMITED. 2015. Presentation to Chief Geologist Group [AVALIABLE ONLINE] [VIEWED 01/04/2015] http://www.investres.com.au/ dbase upl/250315 Presentation to Chief Geologist Group.pdf

Irvine R. \& Smith M. 1990. Geophysical exploration for epithermal gold deposits. Journal of Geochemical Exploration 36, 375-412.

Johns R. \& Solomon M. 1953. The age of the Gawler Range Porphyry. Trans. Roy. Soc. S. Aust 76, 41-44.
Johnson I. \& Fujita M. 1985. The Hishikari gold deposit: an airborne EM discovery. CIM bulletin 78, 6166.

Johnson J. P. \& McCulloch M. T. 1995. Sources of mineralising fluids for the Olympic Dam deposit (South Australia): Sm \square Nd isotopic constraints. Chemical Geology 121, 177-199.

[^1]Locke C. \& De Ronde C. 1987. Delineation of gold-bearing hydrothermally altered rocks using gravity data-a New Zealand example. Geoexploration 24, 471-481.

Lumв J. 1981. Prospecting for geothermal resources. Geothermal Systems, Principles and Case Histories, J. Wiley \& Sons, New York, 77-108.

MacLean W. \& Kranidiotis P. 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology 82, 951-962.

Morell C. 1976. Modern standards for gravity surveys. Geophysical Journal of the Royal Astronomical Society 45, 199-199.

Nettleton L. L. 1942. Gravity and magnetic calculations. Geophysics 7, 293-310.
parker a. 1993. Kimban Orogeny. In: Drexel J., F., Preiss W. V. \& Parker A. J. eds. The Geology of South Australia, pp. 71 - 81. Geological Survey of South Australia Bulletin 54.

Represas P., Monteiro Santos F. A., Ribeiro J., Ribeiro J. A., Almeida E. P., Gonçalves R., Moreira M. \& MendesVictor L. A. 2013. Interpretation of gravity data to delineate structural features connected to lowtemperature geothermal resources at Northeastern Portugal. Journal of Applied Geophysics 92, 3038.

Richards S. \& Collins W. 2004. Growth of wedge-shaped plutons at the base of active half-grabens. Geological Society of America Special Papers 389, 309-317.

Roy A. 1962. Ambiguity in geophysical interpretation. Geophysics 27, 90-99.
South Australian Resources Information Geoserver 2015, SARIG, Available from
<sarig.pir.sa.gov.au>. [8 ${ }^{\text {th }}$ October 2015].
Sibson R. H. \& Scott J. 1998. Stress/fault controls on the containment and release of overpressured fluids: Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand. Ore Geology Reviews 13, 293-306.

Simmons G. 1964. Gravity survey and geological interpretation, northern New York. Geological Society of America Bulletin 75, 81-98.

Skeels D. C. 1947. Ambiguity in gravity interpretation. Geophysics 12, 43-56.
Stierman D. J. 1984. Geophysical and geological evidence for fracturing, water circulation and chemical alteration in granitic rocks adjacent to major strike \square slip faults. Journal of Geophysical Research: Solid Earth (1978-2012) 89, 5849-5857.

Тномson B. 1970. A review of the Precambrian and Lower Palaeozoic tectonics of South Australia. Trans. R. Soc. S. Aust 94, 193-221.

TURNER A.R.1970. Some aspects of the geology of the Gawler Ranges Volcanic Complex, South Australian Government Department of Mines 703.

Vajk R. 1956. BOUGUER CORRECTIONS WITH VARYING SURFACE DENSITY. GEOPHYSICS 21, 10041020.

Vassallo J. \& Wilson J. 2001. Structural repetition of the Hutchison Group metasediments, Eyre Peninsula, South Australia. Australian Journal of Earth Sciences 48, 331-345.

Webb A., Thomson B., Blissett A., Daly S., Flint R. \& Parker A. 1986. Geochronology of the Gawler Craton, South Australia. Australian Journal of Earth Sciences 33, 119-143.

Whitten E. T. 1963. Application of quantitative methods in the geochemical study of granitic massifs. Roy. Soc. Canada Sp. Publ. 6, 75-123.

Wiebe R. \& Collins W. 1998. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. Journal of Structural Geology 20, 1273-1289.

Xu C., Wang H.-н., Luo Z.-c., Ning J.-s. \& Liu H.-L. 2015. Multilayer stress from gravity and its tectonic implications in urban active fault zone: A case study in Shenzhen, South China. Journal of Applied Geophysics 114, 174-182.

YONG-XIONG Y. 1994. A RESEARCH ON THE CONVERSION OF GRAVITY FIELD INTO REGIONAL TECTONIC STRESS FIELD. Chinese Journal of Geophysics, p.S2.

Zhdanov M. S. 2002 Geophysical inverse theory and regularization problems. Elsevier.

APPENDIX A: BUCKLEBOO LINE AND SIAM LINE RAW DATA

The following is the raw spread sheet data for both the Buckleboo and Siam line.

Matthew Musolino Potential field surveying - Uno Fault

Buckleboo
Northing_GDA94 $6409786 \quad-10.771$ 6409078 -11.2657 $6408266-11.3354$ 6407128 -11.6218
6406188 -12.2218
$6405229-12.5104$
6404246 -12.9476
$6403443-12.8561$
6403097 -13.1751
$6402834-13.1895$
6402575 -13.2873
$6402400-13.1438$
$6402152-13.1068$
$6401863-13.3169$
$6401661 \quad-13.7316$
$6401403-13.8642$
$6401130-14.24$
$6400886-14.4155$
$6400692-14.7437$
6400487 -14.7691
$6400280-14.7564$
$6400025-14.2307$
$6399845-14.1312$
6399597 -14.206
6398754 -15.0543
6397837 -14.6512
$6397041-14.5111$
6396156 -14.1784
6395121 -14.6099
$6394828-14.1751$
6394572 -14.2253
$6394333-14.4231$
$6394100-14.1934$
$6393873-13.8707$
$6393662-13.807$
$6393441 \quad-13.8412$
$6393180-13.9731$
6392881 -13.7303
6392771 -14.384
$6392620-14.3128$
$6392510-13.8222$

6392220	-13.674
6391988	-13.8304
6391696	-12.9167
6391484	-12.8049
6391191	-13.1901
6390373	-12.985
6389376	-13.1183
6388522	-14.0506
6387426	-14.2919
6386454	-14.7566
6385495	-14.7829
6384626	-15.1892
6383804	-15.9971
6382947	-15.4927
6382457	-17.1826
6381854	-16.4448
6381158	-17.6776
6380363	-18.2986
6379823	-18.0599
6378921	-18.9629
6378252	-19.4016
6377868	-19.2989
6377583	-19.1769
6377381	-18.6372
6377045	-19.2367
6376630	-20.0994
6376396	-21.0121
6375772	-22.3049
6375029	-22.2728
6374388	-21.9017
6374246	-22.5147
6373539	-22.6546
6372612	-24.9393
6371742	-24.8931
6370950	-25.2633
6370399	-24.8475
6369993	-24.851
6368960	-2479
6368625	-236837
6368177	-2367919
6367617	-27377
637	
63	

6367143	-24.0285
6366844	-23.3946
6366575	-22.6675
6366334	-22.2986
6366120	-21.3299
6365893	-21.0943
6365653	-20.6061
6365411	-19.7543
6365167	-18.9198
6364983	-18.9081
6364101	-19.2613
6363220	-18.3308
6362368	-18.2943
6361535	-18.2379
6360665	-18.5807
6359734	-18.7425
6358849	-19.0266

Siam	
Northing_GDA94	BA_1984_mgals
6374884	-7.81124
6375955	-6.13067
6376715	-5.43429
6377747	-5.20566
6378654	-6.39667
6379648	-4.85595
6380592	-5.84476
6381635	-5.83823
6382515	-6.74023
6383417	-8.21497
6384350	-8.85205
6384706	-8.75771
6386214	-11.2977
6387092	-11.5039
6388108	-12.7438
6389050	-13.1138
6389621	-13.1325
6390423	-14.4228
6391178	-14.2351
6391983	-14.0688
6392222	-13.8927
6392485	-14.0081

6392694	-13.9653
6392875	-14.425
6393094	-14.7002
6393334	-14.7529
6393516	-14.6544
6393717	-14.418
6393897	-14.771
6394095	-14.811
6394286	-15.284
6394320	-15.3173
6394899	-15.4389
6395563	-15.6325
6396225	-15.0726
6396933	-14.9586
6397531	-14.3376
6398648	-15.0322
6399391	-14.2492
6399956	-14.6535
6400315	-14.8263
6401081	-14.311

[^0]: Figure (12) Siam line - Full section, North is to the right of the image. An approximate 12mgal gradient occurs as the response decreases to the north and into the lower GRV. The infill of 250 m spacing was in the LGRV. The Lincolns group extends 5 km while the model predicts the Coorana Conglomerate extending 2.2 km (at the deepest and the GRV thickening northward. The modelling predicts a scenario where the GRV flow went over the Conglomerate and stopped (hence the shape) the boundary between the Lincolns and Conglomerate has been moved northward to better fit the model, not much is known about the nature of the boundary.

[^1]: Lamontagne M., Thomas M., Silliker J. \& Jobin D. 2011. Detailed gravity survey to help seismic microzonation: Mapping the thickness of unconsolidated deposits in Ottawa, Canada. Journal of Applied Geophysics 75, 444-454.

