Detrital zircon geochronology of Permian – Triassic fluvial sediments of the Sydney Basin: Provenance analysis and Geomorphological effects of the Permian –Triassic Extinction

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology/Geophysics

[Michael Joshua Morton]

November 2015

DETRITAL ZIRCON GEOCHRONOLOGY OF PERMIAN – TRIASSIC FLUVIAL SEDIMENTS OF THE SYDNEY BASIN: PROVENANCE ANALYSIS AND GEOMORPHOLOGICAL EFFECTS OF THE PERMIAN –TRIASSIC EXTINCTION

DETRITAL GEOCHONOLOGY ON THE P-T BOUNDARY OF THE SYDNEY BASIN

ABSTRACT

Detrital zircons from Permian and Triassic sediments of the Sydney Basin were analysed for U-Pb geochronology to determine their provenance and to evaluate potential geomorphological effects for the Permian-Triassic mass-extinction event. Five major age peaks were obtained for the zircon U-Pb age distribution diagrams: Cryogenian (~700-620 Ma); Cambrian (~540-490 Ma); Silurian - Devonian (~440-390 Ma); Carboniferous (~360-300 Ma) and Permian - Triassic (~280-240 Ma). These age peaks reflect pulses of significant magmatism within sediment source regions. Most detrital zircons in the analysed Sydney Basin sediments are late Palaeozoic in age and are thought to be derived from the New England Fold Belt that underwent deformation during the Hunter-Bowen Orogeny at that time. The Precambrian detrital zircons were likely derived from the Beardmore micro-continent that accreted to the margin of Gondwana in the Cryogenian. Other zircon contributions can be associated with Cambrian aged basement uplifts of the Ross Orogenic Belt and Silurian – Devonian aged basement uplifts of the Lachlan Fold Belt.

The U-Pb age results from this study furthermore highlight a significant shift in provenance during the Late Permian and into the early Triassic sediments with the disappearance of Pre-Carboniferous zircon contributions in the latest Permian. This shift in provenance is thought to reflect changing river dynamics from meandering river systems to braided rivers systems with different sediment calibre transportation

i

properties. This change is associated with the mass dying of deep-rooted vegetation

during the Permian-Triassic mass extinction event.

KEYWORDS

Sydney Basin, Provenance, Permian-Triassic Boundary, Extinction event, U-Pb. Geochronology, Fluvial

TABLE OF CONTENTS

Detrital zircon geochronology of Permian – Triassic fluvial sediments of the Sydney Basin: Provenance analysis and Geomorphological effects of the Permian – Triassic
Extinction
Detrital Geochonology on the P-T boundary of the Sydney Basin
Abstract
Keywordsi
Table of Contents 1
List of Figures
List of Supplementary Figures
List of Supplementary Tables
Introduction
Geological Setting
Stratigraphy of the Sydney Basin
Northern Area
Southern Area11
Tectonic History of Sediment Source Areas
Australian Sources12
New England Fold Belt12
Lachlan Fold Belt14
New Zealand Sources14
Tuhua Orogeny14
Antarctic Sources15
Ross Orogen15
Beardmore Orogeny16
Sample Discription and Lithology
Methods
Results
NS2014002 (early - late Permian Reids Mistake Formation)22
SY2014004 (early - late Permian Wilton Formation)22
NS2014008 (late Permian - early Triassic Munmorah Conglomerate)22
SY2014010 (late Permian Coalcliff Sandstone)23
SY2014013 (late Permian - early Triassic Otford Sandstone Member)

SY2014014 (early Triassic Scarborough Sandstone)	23
Discussion	
Provenance Constraints and Sediment Geomorphology in the Late Permian	24
Provenance Constraints and Sediment Geomorphology at the P-T Boundary	
Provenance Constraints and Sediment Geomorphology into the Early Triassic	
Conclusions	
Acknowledgments	
References	
Appendix A:	40
Methods	40
Rock Crushing and Mineral Separation	40
Zircon mounting	41
LA-ICP-MS and Geochronology	42
Weighted Averages for Provenance Pie Charts	43
NS2014002 – Reids mistake formation	43
SY2014004 – Wilton Formation	44
NS2014008 – Munmorah Conglomerate	44
SY2014010 – Coalcliff Sandstone	45
SY2014013 – Otford Sandstone Member	45
SY2014014 – Scarborough Sandstone	
Raw Data	
SY2014004	
Wilton Formation	
NS2014002	
Reid's Mistake Formation	
NS2014008	49
Munmorah Conglomerate	
SY2014010	50
Coalcliff Sandstone	50
SY2014013	51
Otford Sandstone Member	
SY2014014	52
Scarborough Sandstone	52

LIST OF FIGURES

Figure 1: Generalized geologic structure of southeastern Australia, including sedimentary cover. The Sydney Basin is bound to the North by the New England Orogen and to the west by the Lachlan Orogen M.B.=Murray Basin, O.B.= Ottoway Basin, N.E.O.=New England Orogen, D.O.=Delamarian Orogen (modified from Sircombe 1999)
Figure 2: (a) Stratigraphic Log of the northeastern Sydney Basin from the Lake Macquarie/Gosford Area and (b) Stratigraphic Log of the southeastern Sydney Basin from the Wollongong Area. Samples from this study are represented by letters A-F. After (Herbert & Helby 1980; Dehghani 1994; Herbert 1995; Tye <i>et al.</i> 1996; Retallack 1999)
 1999)
Zealand data after Tulloch <i>et al.</i> (2009b)

LIST OF SUPPLEMENTARY FIGURES

Supplementary Figure 1. Weighted Average Plots of U-Pb ages using the Pb^{206}/U^{238} age estimates and standard errors (absolute). Bold lines indicate the weighted average of age

estimates that correspond to age peaks of the U-Pb Age Spectra (Figs. 6-8). Weighted	
averages were used to construct pie charts of relative provenance contribution (Fig. 9)).
Plots were constructed using Isoplot, after (Ludwig 2012). Weighted average plots of	
detrital zircons from sample NS2014002 of the early-Late Permian Reids Mistake	
Formation	43
Supplementary Figure 2. Weighted average plots of detrital zircons from sample	
SY2014004 of the early-Late Permian Wilton Formation (see caption for	
Supplementary Figure 1) Note: Beardmore and Ross Orogens were incorporated into	
'others' on the pie chart seen in figure 9a.	44
Supplementary Figure 3. Weighted average plots of detrital zircons from sample	
NS2014008 of the Late Permian-Early Triassic Munmorah Conglomerate (see caption	1
for Supplementary Figure 1)	44
Supplementary Figure 4: Weighted average plots of detrital zircons from sample	
SY2014010 of the Late Permian Coalcliff Sandstone (see caption for Supplementary	
Figure 1).	45
Supplementary Figure 5: . Weighted average plots of detrital zircons from sample	
SY2014010 of the Late Permian Coalcliff Sandstone (see caption for Supplementary	
Figure 1).	45
Supplementary Figure 6: Weighted average plots of detrital zircons from sample	
SY2014014 of the Early Triassic Scarborough Sandstone (see caption for	
Supplementary Figure 1).	46

LIST OF SUPPLEMENTARY TABLES

Supplementary Table 1: Raw U-Pb data from sample SY2014004. (*)Indicates samples	
that had a concordance threshold value < 85%	7
Supplementary Table 2: Raw U-Pb data from sample NS2014002. (*)Indicates samples	
that had a concordance threshold value < 85%	8
Supplementary Table 3: Raw U-Pb data from sample NS2014008. (*)Indicates samples	
that had a concordance threshold value < 85%	9
Supplementary Table 4: Raw U-Pb data from sample SY2014010. (*)Indicates samples	
that had a concordance threshold value < 85%	0
Supplementary Table 5: Raw U-Pb data from sample SY2014013. (*)Indicates samples	
that had a concordance threshold value < 85%	1
Supplementary Table 6: Raw U-Pb data from sample SY2014014. (*)Indicates samples	
that had a concordance threshold value < 85%	2