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Abstract

Complex networks such as social networks and biological networks represent com-

plex systems in the real world. These networks usually consist of communities

which are groups of nodes with dense connections among nodes in the same group

and sparse connections between nodes in different groups. Identifying communities

in complex networks is useful for many real-world applications.

Numerous community detection approaches have been investigated over the past

decades. Modularity is a well-known function to measure the quality of a network

division into communities. The most popular detection approach is modularity

optimization that identifies communities by finding the community division with

highest modularity over all possible community divisions of the network. Cur-

rent state-of-the-art algorithms for maximizing modularity perform well on net-

works of strong communities, which have more intra-community connections than

inter-community connections. However, these algorithms tend to get trapped in

a poor local maximum on networks with weak communities, which have more

inter-community connections than intra-community connections.

In the first part of this thesis, we develop a new algorithm for maximizing mod-

ularity in networks with weak communities. Our proposed algorithm extends

the state-of-the-art algorithm LPAm+ by introducing a method to escape local

maximum. Our algorithm follows a guided search strategy inspired by the record-

to-record travel algorithm for a trade-off between performance and complexity.

Experimental results show that our proposed algorithm, named meta-LPAm+,

outperforms state-of-the-art algorithms, in terms of modularity, on networks with

weak communities while retaining a comparable performance on networks of strong

communities.

In the second part of this thesis, we study the problem of evaluating commu-

nity detection algorithms. Evaluating the detection algorithms on networks with

known communities is important to estimate the accuracy of the algorithms and
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to compare different algorithms. Since there are currently only a small number

of real networks with known communities available, the detection algorithms are

most dominantly tested on synthetic networks with built-in community structure.

Current benchmarks, that generate networks with built-in community structure,

assign the same fraction of inter-community connections, referred to as the mix-

ing fraction, for every community in the same network and ignore the presence of

noise, or outliers. These existing benchmarks, therefore, cannot capture properties

of nodes and communities in real networks.

We address this issue by proposing a new benchmark that accounts for the hetero-

geneity in community mixing fractions and the presence of outliers. Our proposed

benchmark extends the state-of-the-art benchmark LFR by incorporating hetero-

geneous community mixing fractions and outliers. We use our new benchmark

to evaluate the performances of existing community detection algorithms. The

results show that the variation in community mixing fractions and outliers change

the performances of the detection algorithms in ways that lead to different eval-

uation results. Therefore, community detection algorithms need to be evaluated

with heterogeneous community mixing fractions and outliers for a comprehensive

view of the performances of the algorithms on real networks. The new bench-

mark is appropriate for implementing this evaluation as it provides parameters to

control the heterogeneity among community mixing fractions and the number of

outliers. Furthermore, we show that the evaluation of the detection algorithms

with heterogeneous community mixing fractions and outliers gives more accurate

estimates of the performances of the algorithms on several commonly studied real

networks than the evaluation of the algorithms with homogeneous community

mixing fractions and without outliers.
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Chapter 1

Introduction

Complex networks represent the network structure of complex systems, which are

not regular such as lattices nor purely random, in the real-world [87]. Examples of

complex networks include social networks [40], biological networks [40], scientific

collaboration networks [86], citation networks [105] and the World Wide Web

[67]. Nodes in a complex network correspond to entities of a complex system and

the links correspond to the relationships among the entities [3]. For instance,

in an online social network such as Facebook, the most popular online social

network with more than 2.2 billion people as of the fourth quarter of 2017 1,

nodes are people and links are virtual acquaintanceships among the people [118].

In a scientific collaboration network, nodes represent scientists associated with

an organization and a link between two scientists indicates that they have been

co-authors in a research article [86]. In a network of the World Wide Web, nodes

illustrate documents or web pages and links illustrate hyperlinks, or internal page

links, that point from one web page to another [67].

Many complex networks exhibit community structure where nodes tend to form

communities [40]. Communities in complex networks are informally defined as

groups of nodes where interactions between nodes in the same group are more

frequent than interactions between nodes in different groups [40]. Nodes in the

same communities share common properties or have similar roles in the network.

For example, in a social network, communities may be circles of friends [118]. In

a scientific collaboration network, communities may be groups of scientists who

regularly collaborate with other scientists in the same group [89]. In a network

of the World Wide Web, communities may correspond to groups of web pages

1 https://www.statista.com/statistics/264810.

1

https://www.statista.com/statistics/264810
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Figure 1.1: A sample network consists of three communities (in different
colors) with nodes in the same community densely connected and nodes in

different communities sparely connected.

sharing the same or relevant topic [35]. Figure 1.1 demonstrates a sample network

consisting of three communities.

Identifying communities in complex networks has many concrete applications.

Some examples of these applications include extracting knowledge about the func-

tions of network components [44], information transfer in networks [27], epidemic

prevention [57], viral marketing [123], water loss detection for water distribution

networks [113], and Web services optimization [59]. More specifically, identifying

the community structure of a network allows classifying nodes into different roles

based on their pattern of within-community and between-community connections

[44]. Packet transmission in a network can be significantly improved by providing

information about the community structure of the network to the packet routing

algorithm [27]. Grouping people in a social network, representing a population,

into communities gives a better understanding of the effects of communities on

the disease dynamics over the population and promotes more community-focused

disease outbreak prevention [57]. Identifying communities in a social network also

helps predict knowledge about the viral spreading of information over the network,

as the more communities a unit of transmissible information participates in, the

more viral it is [123]. The incoming and outgoing flows of communities in a water

distribution network allow quantifying the water losses in the network [113]. Iden-

tifying communities of the clients of a web application helps to move the content

of the web application closer to its clients to minimize the latency experienced by

the clients and the load on the Web servers [59].
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Community detection has recently become an active research topic in various dis-

ciplines such as computer science, physics and sociology [99, 36]. The revolution of

computer technology in recent years has significantly increased the availability of

network data. The large volume of network data available encourages researchers

to investigate efficient computational tools to determine the structural organiza-

tion, particularly the community structure, of the networks.

Community detection, also referred to as network clustering, is the task of group-

ing nodes of a network into a priorly unknown number of communities, by only

using the information of the network topology [36]. The partitioning of a network

into communities aims at maximizing the intra-community interactions and mini-

mizing the inter-community interactions [94]. Communities fundamentally can be

overlapped with nodes joining in more than one community at a time. However,

the scope of this thesis is limited to non-overlapping community detection, which

aims at finding disjoint communities in networks.

Researchers from different disciplines have proposed a large number of commu-

nity detection algorithms using different approaches [36, 90]. Although existing

detection approaches share similar intuitive notions of community, each detection

approach generally uses a different quantitative criterion to determine communi-

ties [38]. Some community detection algorithms classify nodes into communities

that are not covered by any quantitative community definition [38, 40].

One of the earliest algorithms which started the field of community detection

is the divisive algorithm proposed by Girvan and Newman [40]. This divisive

algorithm and other divisive algorithms [94, 39, 101] are based on the idea that a

network can be divided into communities by iteratively removing edges between

communities. Each edge in the network is, therefore, quantified by a metric called

betweenness which measures, for example, the frequency that the edge participates

in the shortest paths between all pairs of nodes [40]. The divisive algorithms

then repeatedly remove the edge with highest betweenness until no edges remain.

The resulting community division with highest modularity, which is a measure to

evaluate the quality of a community division [94], gives the community structure

of the network. As modularity is a core concept used in this thesis, it will be

explained in detail in Chapter 2.

Since modularity [94] measures the quality of a network division into communities,

the best community division of a network should be the one corresponding to the

maximum modularity value. Modularity optimization algorithms identify com-

munities by finding the community division with maximum modularity [94] over
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all possible community divisions of the network. Unfortunately, performing an

exhaustive search over all possible community divisions of a network is practically

impossible due to the large number of candidate solutions in the search space [19].

Modularity optimization algorithms [15, 45, 91, 22, 111, 33, 92, 12, 75, 71, 117],

therefore, employ a wide variety of heuristic search strategies [1] to find good ap-

proximations of the maximum modularity value. We will discuss these algorithms

in more details in the next section.

Random walk based algorithms [98, 108] identify communities by considering a

random walk process on the network. These algorithms follow the idea that a

random walker on a network is more likely to travel within communities and is

less likely to travel across communities as the communities are more well-separated.

One of the popular random walk based algorithms is the Walktrap algorithm [98]

which iteratively groups nodes into communities to minimize the distance between

each node and other nodes in its community. The distance between two nodes is

defined based on the probabilities that a random walker in the network moves

from a node to another in a given number of steps. The quality of the resulting

community divisions is measured based on modularity. Another popular random

walk based algorithm is the Infomap algorithm [108] which identifies communities

by finding the optimal community division of the network with respect to the map

equation [108, 107], an alternative measure to evaluate the quality of a community

division. The map equation will be explained later in Chapter 2 of this thesis.

Local community detection algorithms [10, 96, 21, 9, 64, 66, 49, 25, 51] identify

communities by expanding each community from a single node or an initial group

of nodes. These algorithms expand a community by iteratively adding neighboring

nodes, which satisfy a given condition, to the community. One of such conditions

is to maximize a function that measures the quality of the community. The com-

munity expansion process is continued until a stopping criterion is reached.

Some other community detection algorithms [102, 53] are also available in the lit-

erature. The label propagation algorithm (LPA) [102] is a time-efficient detection

algorithm that iteratively propagates labels of nodes over the network to identify

communities. In each iteration, each node updates its label to the one that the

maximum number of its neighbors hold. After the convergence of the algorithm,

communities are identified as groups of nodes sharing the same label. The statisti-

cal inference based algorithm proposed in [53] identifies communities by maximiz-

ing the likelihood that the network is generated by the degree-corrected stochastic

blockmodel [53], a generative model for networks with community structure.
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Among existing community detection approaches, modularity optimization has re-

ceived considerable attention of researchers in the literature [36, 38]. Furthermore,

as different detection approaches generally use different quantitative measures to

evaluate the goodness of the detected community structure, evaluating the de-

tection algorithms on networks with know communities, or simply benchmark

networks, is important to estimate the accuracy of the detection algorithms and

to compare different detection algorithms. Below, we identify two motivational

issues toward modularity optimization for community detection and benchmarks

for evaluating community detection algorithms.

1.1 Motivations

1.1.1 Modularity optimization for community detection

As briefly mentioned above, modularity optimization algorithms aim at finding

the community division with maximum modularity over all possible community

divisions of the network to identify communities [91]. However, since performing

an exhaustive search for the optimal community division is practically impossible

[19], modularity optimization algorithms employ heuristic search strategies to find

fairly good approximations of the maximum modularity value within a reasonable

execution time [91].

The first algorithm that maximizes modularity to identify communities was the

greedy optimization algorithm proposed by Newman [91]. This algorithm starts

from an initial community division where each node is in its own community. The

algorithm then iteratively merges a pair of communities that lead to the great-

est increase in modularity. The iterations stop when all communities are merged

into one community. The best community division is the resulting one with the

maximum modularity value. The Fastgreedy algorithm [22] improves the running

time of the greedy optimization of Newman [91] by using an efficient data struc-

ture and removing unnecessary calculations. The extremal optimization algorithm

proposed in [33] starts by randomly partitioning the network into two equal-size

communities. This algorithm then repeatedly moves nodes from one community

to another to improve modularity until the modularity value cannot be further

improved. Each resulting community is then regarded as a new network and the

algorithm is recursively applied on the new networks. The extremal optimiza-

tion algorithm [33] outperforms the greedy optimization algorithm [91] but has a
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higher computational complexity. The spectral optimization algorithm proposed

in [92] uses the spectral bi-partitioning method [13] that repeatedly divides the

network into two communities to maximize modularity. This algorithm performs

better than the extremal optimization algorithm [33] on large networks with a

shorter execution time. The MSG-VM (Multistep Greedy- Vertex Mover) algo-

rithm [111, 112] improves the Fastgreedy algorithm [22] by merging multiple pairs

of communities at a time and then refining the resulting communities to further

increase modularity. The MSG-VM algorithm outperforms previous algorithms

and has an efficient running time [111].

The Louvain method [15] maximizes modularity by iteratively performing two

steps. The first step initially assigns every node into its own community and then

iteratively moves each node to one of its neighboring communities that yields the

largest positive increase in modularity. The first step stops when modularity can-

not be further increased. The second step is to build a new network whose nodes

are the resulting communities from the first step. The two steps are then repeat-

edly applied to the new network until no further improvement in modularity can

be achieved. The Louvain method is a state-of-the-art algorithm for maximizing

modularity as it outperforms previous algorithms in term of computational time

while resulting in a comparable modularity value [15].

The LPAm algorithm [12] is equivalent to the first step of the Louvain method

but is expressed in an information diffusion perspective. This algorithm initially

assigns each node a unique label and then iteratively propagates labels of nodes

over the network to maximize modularity. Communities are identified as groups

of nodes with the same labels. The LPAm+ algorithm [75] improves LPAm by

iteratively combining LPAm with merging pairs of communities to avoid local

maxima. Currently, LPAm+ is considered as one of the state-of-the-art algorithms

for modularity optimization as it detects higher modularity values than existing

algorithms [75].

Other modularity optimization algorithms such as the Simulated annealing algo-

rithm [45], the Mean field algorithm [71], the Column generation algorithm [4], and

the Conformational space annealing algorithm [70] uses exhaustive search strate-

gies to search for the maximum modularity value. These algorithms, therefore,

have a high computational complexity and cannot be applied to large networks.

The approximation algorithms for maximizing modularity introduced in [32, 31]

can theoretically guarantee the quality of the detected community structure but

hardly find good near optimal solutions.
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Figure 1.2: The Karate Club network.

Figure 1.3: Communities (in different colors) in the Karate Club network.
The community division corresponds to the highest modularity value found by

the algorithm proposed in [75]
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We depict here a real network with communities discovered by modularity opti-

mization algorithms. Figure 1.2 plots the Karate Club network studied in [125].

The network consists of 34 nodes representing the members of a karate club in a

university in the United States. The edges in the network represent interactions of

the members outside the activities of the club. Due to a conflict between the club

president (node 34) and the club instructor (node 1), members in the club are ob-

served to be separated into two groups, supporting the president and the instructor

respectively. Figure 1.3 plots the community division of the Karate Club network

corresponding to the highest modularity value found by the algorithm proposed

in [75]. This community division correctly distinguishes the two observed groups

of members with further subdivisions in each group. The members of the group

supporting the president lie in the two communities on the left of the figure and

the members of the group supporting the instructor lie in the two communities on

the right.

Current state-of-the-art modularity optimization algorithms [15, 75] employ greedy

heuristic search strategies to search for the largest modularity value. These greedy

optimization algorithms can only find good approximations of the maximum mod-

ularity value when there are few local maxima, with respect to modularity, but

easily get trapped in a poor local maximum when there are many local maxima in

the search space. The state-of-the-art modularity optimization algorithms, there-

fore, perform well on networks of strong communities, which have more intra-

community connections than inter-community connections [62]. However, these

algorithms perform poorly on networks with weak communities, which have more

inter-community connections than intra-community connections.

In this thesis, we also refer to networks of strong communities as networks with

strong community structure and refer to networks with weak communities as net-

works with weak community structure.

1.1.2 Benchmarks for evaluating community detection al-

gorithms

Evaluating a detection algorithm essentially means applying the detection algo-

rithm to networks with known communities, and then comparing the identified

community division with the known community division [94, 62]. The more simi-

lar between the identified community division and the known community division,

the better the detection algorithm performs.
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Real networks with known communities [125, 79] would be ideally used for eval-

uating community detection algorithms. A reliable detection algorithm should

realize the communities observed in these networks. Unfortunately, there are only

a few real networks with known communities available and the network sizes are

small [94]. Therefore, the evaluations of the detection algorithms are mostly per-

formed on synthetic networks with built-in community structure [62], or simply

benchmark networks.

Benchmarks [47, 23, 121, 40, 28, 53, 9, 61], for generating networks with planted

community structure, are mainly differ in the generative models they use to gen-

erate the networks.

The stochastic block model [47] is a general class of random graph models with

nodes divided into communities. Links are placed between pairs of nodes with

probabilities depending only on community memberships of the nodes. The planted

partition model [23] is a realization of the stochastic block model with communities

of the same size. Nodes in the same community have a probability of connection

pin, and nodes in different communities have a probability of connection pout, with

pout < pin. The Relaxed Caveman (RC) graph model [121] can be seen as a special

realization of the planted partition model with communities formed by connecting

a set of disconnected cliques. The connection probabilities pin and pout are pro-

portional to each other and dependent on community sizes. The Girvan-Newman

(GN) benchmark [40] is a specific realization of the planted partition model with

four communities of size 32 and average node degree 16. These benchmarks, which

are based on the stochastic block model, have essentially communities of the same

size and nodes of the same degree. These features are unrealistic as real networks

are observed to have power-law distributions in node degree and community size

[11].

The degree-corrected stochastic block model [53] extends the stochastic block

model by defining the connection probabilities of nodes based on community mem-

berships and degrees of the nodes. This allows variation in node degrees within

communities. However, the degree-corrected stochastic block model fails to resem-

ble real networks because the link generation process of the model often produces

a large number of nodes with degree zero [53].

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark [61] can be seen as a

special version of the degree-corrected stochastic block model. This benchmark

determines node degrees and communities sizes from network parameters and con-

structs the networks to meet the properties of nodes and communities. Therefore,
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the LFR benchmark accounts for the heterogeneity of node degrees and commu-

nity sizes. The LFR benchmark is regarded as a state-of-the-art benchmark for

evaluating community detection algorithms [38]. Figure 1.4 illustrates a network

realization of the LFR benchmark.

Figure 1.4: A network with community structure generated by the LFR bench-
mark. Communities in the network are in different colors.

The above benchmarks [40, 61] for evaluating community detection algorithms as-

sign a fixed fraction of inter-community links, referred to as the mixing fraction,

for every community in the same network. Additionally, the current benchmarks

eliminate the presence of noise, or outliers. Outliers are defined as nodes that

randomly connect to other nodes in the network and, therefore, are not associated

with any community. Real world networks exhibit the heterogeneity in community

mixing fractions [73, 74] and the mixture of communities and outliers [66]. These

existing benchmarks, therefore, cannot capture properties of nodes and communi-

ties in real networks.
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1.2 Aims of the thesis

This thesis consists of two separate but related aims to address the above issues.

Modularity optimization in networks with weak community structure

Our first aim is to develop a new algorithm for maximizing modularity in networks

with weak community structure. To achieve this research aim, we first review the

state-of-the-art algorithm LPAm+ [75] and demonstrate its drawback of getting

trapped in a poor local maximum on networks with weak community structure.

We then introduce a method, that offers a balance between performance and run-

ning time, to overcome the local maxima issue of the LPAm+ algorithm. We next

perform extensive experiments to evaluate the performances, in term of modu-

larity, of our proposed algorithm and existing algorithms on synthetic and real

networks. We finally compare the performances, in term of detection accuracy, of

the proposed algorithm and existing algorithms on the synthetic networks.

Benchmarks for evaluating community detection algorithms with het-

erogeneous community mixing fractions and outliers

Our second aim is to develop a realistic benchmark for evaluating community de-

tection algorithms with the heterogeneous community mixing fractions and out-

liers. To accomplish this aim, we first review the state-of-the-art benchmark LFR

[65, 61]. We then introduce a method to incorporate the heterogeneity in com-

munity mixing fractions and outliers into the LFR benchmark. We next perform

extensive experiments to quantify the effects of the variation in community mix-

ing fractions and outliers on the performances of community detection algorithms.

We finally compare the evaluation of the detection algorithms with heterogeneous

community mixing fractions and outliers and the evaluation of the detection algo-

rithms with homogeneous community mixing fractions and without outliers, with

respect to reflecting the performances of the detection algorithms on real networks.

1.3 Contributions

The contributions of the research conducted in this thesis are highlighted as fol-

lows:

• A new algorithm (presented in Chapter 3), named meta-LPAm+, for maxi-

mizing modularity in networks with weak community structure
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• Extensive experiments (presented in Chapter 4) to evaluate the performances

of meta-LPAm+ and existing community detection algorithms on synthetic

and real networks

• A new benchmark (presented in Chapter 5), named GLFR, for evaluating

community detection algorithms with heterogeneous community mixing frac-

tions and outliers

• Extensive experiments (presented in Chapter 6) to quantify the effects of the

variation in community mixing fractions and outliers on the performances of

the detection algorithms

1.4 Thesis structure

This thesis is based on the content of our research papers that have been published

in peer-reviewed conferences or submitted to international journals for publication.

The remaining chapters of this thesis are organized as follows:

• Chapter 2 provides background of the research related to this thesis. This

chapter contains a summary of the existing definitions relating to community.

This chapter also discusses existing community detection algorithms that will

be used in our experiments in this thesis. Furthermore, this chapter gives

an overview of the state-of-the-art benchmarks for evaluating community

detection algorithms and measures for comparing community divisions of

networks.

• Chapter 3 presents our proposed algorithm for maximizing modularity in

networks with weak community structure. We first review the state-of-the

art algorithm LPAm+ and illustrate the local maxima problem of this algo-

rithm. We then improve the LPAm+ algorithm by introducing a method to

escape local maxima. We next extend our proposed algorithm to detect com-

munities in directed networks. As our proposed algorithm has parameters

to be specified, we perform an empirical analysis to study the dependence of

our algorithm on its parameters. This chapter also includes our analysis on

the computational complexity of the proposed algorithm.

• Chapter 4 gives extensive experiments to evaluate the performances of

our proposed algorithm and existing community detection algorithms on

synthetic and real networks.
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• Chapter 5 presents our proposed benchmark for evaluating community

detection algorithms with heterogeneous community mixing fractions and

outliers. We first review the state-of-the-art benchmark LFR as it is the

foundation of our proposed benchmark. We then present our method to in-

corporate the heterogeneity in community mixing fractions and the presence

of outliers into the LFR benchmark.

• Chapter 6 gives extensive tests to quantify the effects of the variation in

community mixing fractions and outliers on the performance of community

detection algorithms. This chapter also gives our comparative analysis on

the evaluation of the detection algorithms with heterogeneous community

mixing fractions and outliers and the evaluation of the detection algorithms

with homogeneous community mixing fractions and without outliers.

• Chapter 7 concludes this thesis with possible directions for future work.



Chapter 2

Background

This chapter provides the background of the research related to this thesis. We

first introduce general concepts of networks. We then give various quantitative

definitions of community and community structure existing in the literature. We

next describe local search strategies that are generally used by community detec-

tion algorithms to search for the best community solution over a large number

of candidate solutions. Afterward, we discuss existing community detection algo-

rithms that will be compared with our proposed algorithm (presented in Chapter

3). We finally discuss the state-of-the-art benchmarks for evaluating community

detection algorithms and measures of the similarity between community divisions

of a network.

2.1 Basic network concepts

A network, or a graph, G is a pair of sets (V,E), where V is a set of nodes and E

is a set of edges with each edge being a pair of nodes in V . Nodes are also called

vertices. Edges are also called links or connections. If each edge is an unordered

pair of nodes, the edge is undirected and the network is an undirected network.

Otherwise, if each edge is an ordered pair of nodes, the edge is directed from one

node to the other and the network is a directed network. In this case, an ordered

pair of nodes (u,v) is an edge directed from node u to node v. If each edge has an

associated numeric value called weight, the edge is weighted and the network is a

weighted network. Figure 2.1 demonstrates three examples of networks including

an undirected network, a directed network, and a weighted (undirected) network.

14
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Figure 2.1: Examples of networks

This thesis mainly focuses on undirected unweighted networks. If other types of

networks are considered, they will be explicitly stated.

In undirected networks, two nodes are neighbors, or adjacent to each other, if

there is an edge connecting the nodes. The degree of a node is the number of

edges incident on the node. The degree sequence of a network is the list of the

degrees of nodes in the network. In directed networks, a node has two types of

degree, in-degree and out-degree. The in-degree of a node is the number of directed

edges pointing to the node, called incoming edges, and the out-degree of a node is

the number of directed edges pointing from the node, called outgoing edges.

2.2 Community-related definitions

Community detection researchers commonly agree on the general concept of com-

munity, that communities are groups of nodes with dense connections within the

groups and sparse connections between the groups [40]. However, there is no com-

monly accepted quantitative definition of community [36]. Different quantitative

definitions of community have been proposed for different applications of the com-

munity definitions [38]. In many cases, communities are the final outcome of an

algorithm aiming to divide the network into groups of cohesively connected nodes

without a rigorous definition of community [40].
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2.2.1 Community

As viewed from a local perspective, communities are defined as groups of nodes in

a network with their own characteristics that possibly relate to some intermediate

neighbors but are independent from the rest of the network [9]. Definitions of

community are closely linked with the concepts of cohesive subgroups in social

network analysis [120]. These two terms, communities and cohesive subgroups,

are used to describe groups of cohesively connected nodes.

The earliest form of a cohesive subgroup is perhaps clique [78], a maximal subset

of nodes in which each node connects to all other nodes. However, the condition

of the existence of cliques in networks is extremely strict and, therefore, cliques

do not frequently appear in real networks. The concept of clique is generalized

to the notion of n-clique [77] that is a maximal subset of nodes with the distance

between any two nodes not larger than n. When n=1, the n-clique becomes a

clique because all nodes in the n-clique are adjacent to each other. It is noted that

a clique of k nodes is also called a k-clique [30, 96]. Other relaxed forms of cliques

including n-club, n-plan, k-plex and k-core can be found in [120]. The notions

of cohesive subgroups mentioned above are inadequate to describe communities

since these concepts take into account only the density of connections within the

groups but neglect the density of connections between the groups.

Let G = (V,E) be a network, where V is a set of nodes and E is the set of the

edges connecting nodes in V . The task of community detection is to divide the

set V of nodes into nc communities, c1, c2, ..., cnc , where nc is not known priorly

and each node must belong to at least one community. Two communities are

overlapped if they share at least one common node. This thesis mainly focuses on

the case of non-overlapping community detection, that is ci ∩ cj = ∅ for i 6= j and

1 ≤ i, j ≤ nc. If overlapping communities are considered, they will be explicitly

stated.

A community division C = {c1, c2, ..., cnc} of a network is also called a partition of

the network. Let A be the adjacency matrix of the network where Aij = 1 if there

is a connection between node i and node j, and Aij = 0 otherwise. Let kinti be the

number of links from node i to nodes in its community, or the internal degree of

node i with respect to its community, and kexti be the number of links from node

i to the rest of the network, or the external degree of node i. For node i ∈ c,

kinti =
∑
j∈c

Aij
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and

kexti =
∑
j /∈c

Aij.

Let ki be the total number of links connected to node i, or the degree of node i,

that is

ki = kinti + kexti .

The first quantitative notion of cohesive subgroup that takes into account both

internal connection and external connection densities of the subgroup is LS-Set

[76]. A LS-Set is a subset of nodes such that the internal degree of each node,

with respect to the subset, is greater than the external degree of the node. That

is, for any node i in a LS-Set,

kinti > kexti .

The notion of LS-Set is similar to the definition of community in [101].

The notion of community used in [102, 48] implies that a community is a group

of nodes where each node in the community has more links with nodes in its

community than with nodes in any other community. That is

kinti > max
c
{ki(c)}

where ki(c) =
∑
j∈c
Aij.

A community can also be defined based on the sharpness of the boundary between

the community and the rest of the network. In [10], a community, called a L-

shell, initially consists of only a single node and then iteratively expanded by

adding neighboring nodes to the community. The sharpness of the boundary of

the community is measured based on a metric called total emerging degree. Let

c0 be the initial community and cl be the community formed at step l. The total

emerging degree of the community formed at step l is

Kl =
∑

i∈cl−cl−1

kexti

where cl − cl−1 denotes the group of nodes that belong to cl but do not belong to

cl−1 and kexti is the external degree of node i, with respect to cl. The sharpness of

the boundary of the community formed at step l is the ratio of the total emerging

degree of the community to the total emerging degree of the community formed
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at step l − 1, which is

∆Kl
=

Kl

Kl−1

.

A community is iteratively expanded until the condition ∆Kl
≥ α, with α being

a predetermined threshold, is not satisfied. The value of α is flexibly chosen to

allow for various scales of communities. However, it is not clear which value of α

should be best taken to define communities.

In [21], the sharpness of the boundary of a community is measured based on a

metric called local modularity. Let C be the currently formed community. Let

B be the boundary of C which is the group of nodes in C having at least one

connection outside C. The local modularity of C, which is proportional to the

sharpness of the boundary B, is defined as the ratio between the number of edges

in C having at least one endpoint in B and the number of edges in the network

having at least one endpoint in B [21]. The local modularity of community C is

mathematically expressed as

R =

∑
i∈C

∑
j∈B

Aij∑
i

∑
j∈B

Aij
.

A community is iteratively expanded by adding one neighboring node at a time

to the community until its local modularity is maximized.

In [64], the authors define a community based on a fitness function that evaluates

the quality of the community. Let κintC and κextC are respectively the internal and

external degrees of the currently formed community C, where

κintC =
∑
i∈C

kinti

and

κextC =
∑
i∈C

kexti .

The Local Fitness of community C is defined as [64]

fC =
κintC

(κintC + κextC )α
,

where α is a positive-real value parameter. The value of α defines the resolution

at which communities are resolved but it is not clear which value of α should be

best taken.
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2.2.2 Community structure

From a global viewpoint, communities are defined as interrelated parts of the whole

network [36]. The community structure of a network is regarded as a network

division into communities that satisfies a certain criterion. The two most popular

criteria to define the community structure of a network are modularity [94] and

the map equation [107].

2.2.2.1 Modularity

Modularity [94], or also called Newman-Girvan modularity, is a function that

measures the goodness of a network division into communities. The basic idea of

modularity is that a random network, where nodes are randomly connected, is not

expected to have a community structure. Therefore, the quality of a community

division of a network can be asserted by the difference between the actual fraction

of edges within communities and that expected fraction of edges in an equivalent

random network.

In Newman-Girvan modularity, the equivalent random network is generated by

the random network model called the configuration model [85]. In this random

network model, each node is attached with a number of stubs, or half-edges, equal

to the degree of the node. The stubs of nodes are randomly paired with each other

to connect nodes in the network. Given an undirected unweighted network with

n nodes and m edges, the expected number of edges between node i, with degree

ki, and node j, with degree kj, in the configuration model is

Pij =
kikj
2m

.

Let A be the adjacency matrix of the network, where Aij = 1 if there is an edge

between node i and node j and, otherwise, Aij = 0. The definition of modularity

is given as follows.

Definition 1. [94] The modularity of a community division of an undirected and

unweighted network is defined as

Q =
1

2m

∑
g

∑
i,j∈g

(
Aij −

kikj
2m

)
, (2.1)

where g is a community in the network, ki and kj are the degrees of node i and

node j respectively, and m is the number of edges in the network.
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The value of modularity lies in the range from 0 to 1. If the network has a

community structure, the value of modularity is higher than zero. The larger the

modularity value, the more the number of edges within communities compared

with the expected number of the edges in an equivalent random network, and

therefore, the better the quality, or the strength, of the community structure. The

best community division of a network is, therefore, regarded as the one that gives

the maximum modularity value.

Modularity has been widely adopted as the objective function of many algorithms

to identify communities [36]. Modularity optimization is currently a state-of-the-

art approach for detecting communities [62]. However, modularity has a resolution

limit [37] that impedes the detection of small size-scale communities in networks.

2.2.2.2 The map equation

The map equation [107, 108] is another function to evaluate the quality of a com-

munity division. The fundamental of the map equation is that given a network

with nodes divided into communities, the path of a random walk through the net-

work can be represented by a sequence of codewords decoding the entered com-

munities, the visited nodes and the exits from communities of the random walker.

The codewords of communities are uniquely defined while the codewords of nodes

and the exits from communities are reused among different communities. If con-

nections within communities are dense and connections between communities are

spare, the random walk infrequently crosses different communities. Therefore, the

codewords of communities are rarely used that saves the length of the codeword

sequence describing the path of the random walk. The shorter the length of the

codeword sequence, the better the quality of the community division.

The description length of a random walk across the network is calculated from

the two terms, the Shannon information [114] of the codewords representing com-

munities and the Shannon information of the codewords representing nodes in

communities and the exits from communities of the random walker. Let c be a

community in an undirected unweighted network visited by a random walker. Let

κextc be the external degree of community c. The probability that the random

walker enters or exits community c is [54]

penterc = pexitc =
κextc

2m
.
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The probability that the random walker enters or exits any community in the

network is

penter = pexit =
∑
c

penterc =
∑
c

pexitc .

The Shannon information [114] of the codewords decoding communities is [107,

108]

H(C) = −
∑
c

penterc

penter
log

(
penterc

penter

)
. (2.2)

Let ki be the degree of node i and m be the number of edges in the network. The

probability that the random walker visits node i is [54]

pi =
ki

2m
.

The probability that the random walker moves within and exits community c is

ptravelc =
∑
i∈c

pi + pexitc .

The Shannon information of the codewords decoding the visited nodes in commu-

nity c and the exist from community c of the random walker is [107, 108]

H(c) = −
∑
i∈c

pi
ptravelc

log

(
pi

ptravelc

)
− pexitc

ptravelc

log

(
pexitc

ptravelc

)
. (2.3)

The map equation which measures the description length of a random walk across

the network is given as follows.

Definition 2. [108] The map equation of a community division in an undirected

and unweighted network is defined as

L(M) = penterH(C) +
∑
c

ptravelc H(c) (2.4)

The smaller the value of the map equation, the less frequently the random walker

moves between communities and, therefore, the better the quality of the commu-

nity structure. The best community division of a network is regarded as the one

that gives the minimum value of the map equation [108].
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The map equation has been employed as the objective function of the Infomap

algorithm [108] to identify communities. This algorithm is considered as a state-

of-the-art algorithm for detecting communities [62]. However, the map equation

suffers the resolution limit [54, 55] which implies that the optimal community

division may not recognize communities with a small ratio between the numbers

of internal links and external links.

2.2.3 Definitions in generative models

Generative models [47, 23, 65, 53] are used to generate networks with community

structure. In generative models, the community structure of a network is defined

based on the probabilities of connections between nodes in the network. Differ-

ent generative models give different definitions of community depending on the

assumption of the models on the connection probabilities of nodes.

The most popular model for networks with communities is the stochastic block

model (SMB) [47]. In this model, the connection probability of two nodes is a

function of their community memberships. Nodes in a network are divided into

K communities. Nodes in community r and nodes in community s are connected

with a probability ωrs. The network is considered to have a community structure,

or called an assortative structure, if the connection probabilities between nodes in

the same community are higher than the connection probabilities between nodes

in different communities [5, 38], which is expressed by the following condition:

min
r
{ωrr} > max

l,k
{ωlk},

for ∀ r, l, m = 1,2,..,K and l 6= k.

The planted partition model [23] is a special version of the stochastic block model.

In the planted partition model, nodes in the same community are connected with a

probability pin and nodes in different communities are connected with a probability

pout. Therefore, the community structure of a network is well defined for pin > pout.

The degree-corrected stochastic block model (DCSBM) [53] is an extension of

the stochastic block model [47] that defines the connection probability of two

nodes as a function of their community memberships and degrees. The connection

probability between node i and nodes in its community is pini . The connection

probability between node i and nodes in community c, with i /∈ c, is pouti (c). This

model implies that the community structure of a network is recovered if every
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node has a higher connection probability with nodes in the same community than

with nodes in any other community [53]. That is

pini > max
c
{pouti (c)},

for every node i.

The generative model which is implicitly employed in [65] can be seen as a simpli-

fied version of the degree-corrected stochastic block model. In this model, node i is

connected with nodes in its community with a probability pini and connected with

nodes outside its community with a probability pouti . The community structure is

constructed to satisfy the condition pini > pouti , for every node i.

2.3 Local search strategies

Local search strategies [1] are heuristic algorithms to search for an optimal so-

lution with respect to an objective function among a large number of candidate

solutions. These algorithms [1] typically start with an initial solution and then

locally perturbs the current solution to generate neighbor solutions. The changes

that may be applied to perturb a solution are defined by a neighborhood struc-

ture. The search algorithm evaluates the neighbor solutions and chooses the one

that meets a given condition to replace the current solution. The search process

is repeated until a stopping criterion is satisfied.

Let S be a solution space of all candidate solutions. Let f : S → R be an objective

function to maximize. The objective function f(s) gives a value indicating the

quality of a solution s ∈ S. The aim of the search is to find a solution s∗ ∈ S with

the maximal value of the objective function.

Definition 3. [116] A solution s∗ is a global maximum if its value given by the

objective function is higher than the given value of all solutions in the solution

space, that is, f(s∗) ≥ f(s) for ∀s ∈ S.

Definition 4. [16] A neighborhood structure is a function that assigns to every

solution s ∈ S a set of neighborhood solutions N(s) ∈ S.

Definition 5. [16] A solution s∗ is a local maximum with respect to a neighborhood

solution space N(s∗) if for ∀s ∈ N(s∗) : f(s∗) ≥ f(s).
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Figure 2.2: An example of a solution space defined by an objective function

Figure 2.2 demonstrates a one-dimension solution space landscape with the quality

of a solution defined by the objective function. The solution space consists of two

local maximums and a global maximum.

2.3.1 Hill-climbing

The simple hill-climbing algorithm is a typical local search strategy that replaces

the current solution by the first evaluated neighbor solution with a higher value in

the objective function. The algorithm terminates when it reaches a local maximum

where no neighbor solution has a higher quality. The steepest ascend hill-climbing

algorithm, also known as greedy local search strategy [109], is a variant of the sim-

ple hill-climbing algorithm. The steepest ascend hill-climbing algorithm examines

all neighbors of the current solution and then selects the neighbor with the high-

est quality to replace the current solution. The stochastic hill-climbing algorithm

[109] is similar to the steepest ascend hill-climbing algorithm but does not examine

all neighbors of the current solution. The stochastic version randomly examines

a neighbor solution of the current solution and retains the neighbor with higher

quality than the current one. The pseudo codes of the simple hill-climbing algo-

rithm, the steepest ascend hill-climbing algorithm and the stochastic hill-climbing

algorithm are respectively given in Algorithms 1, 2 and 3.
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Algorithm 1 Simple hill-climbing [109]

Input: an initial solution s0, a neighborhood structure and an objective function
f
Output: a solution s∗ that is a local optimum

1: s∗ = s0

2: while (true) do
3: s = a neighbor of s∗ that has not been evaluated
4: if f(s) > f(s∗) then
5: s∗ = s
6: end if
7: if all neighbors of s∗ are evaluated then
8: return s∗

9: end if
10: end while

Algorithm 2 Steepest ascend hill-climbing (Greedy local search) [109]

Input: an initial solution s0, a neighborhood structure and an objective function
f
Output: a solution s∗ that is a local optimum

1: s∗ = s0

2: while (true) do
3: s = the neighbor of s∗ with the highest value of f(s)
4: if f(s) > f(s∗) then
5: s∗ = s
6: else
7: return s∗

8: end if
9: end while

Algorithm 3 Stochastic hill-climbing [109]

Input: an initial solution s0, a neighborhood structure and an objective function
f
Output: a solution s∗ that is a local optimum

1: s∗ = s0

2: for a predefined number of iterations do
3: s = a randomly selected neighbor of s∗

4: if f(s) > f(s∗) then
5: s∗ = s
6: end if
7: end for
8: return s∗

The hill-climbing algorithms fall into the class of heuristic algorithms [109] that

have no mechanism to escape a local maximum. The hill-climbing algorithms can

quickly converge to a local maximum because the search continually improves the
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current solution. However, the success of the hill-climbing algorithms significantly

depends on the distribution of local maxima in the solution space. If there are

many local maxima, the hill-climbing algorithms generally get trapped in a local

maximum.

2.3.2 Simulated annealing

The simulated annealing (SA) algorithm [56] is similar to the stochastic hill-

climbing algorithm since the SA algorithm accepts a randomly evaluated neighbor

if it has a higher quality than the current one. However, the SA algorithm also

accepts the neighbor with a worse quality with a probability that is exponentially

proportional to a temperature parameter and the decrease in the quality between

the neighbor and the current solution. The temperature parameter is decreased as

the running time of the algorithm increases. Over time, the SA algorithm is less

likely to accept worse neighbors. If the temperature is decreased slowly enough,

the SA algorithm is almost certain to find the global optimum [109]. The pseudo

code of the SA algorithm is given in Algorithm 4.

Algorithm 4 Simulated annealing [56]

Input: an initial solution s0, a neighborhood structure, an objective function f ,
a mapping function from time to temperature schedule
Output: a solution s∗

1: s∗ = s0

2: for t=1 to ∞ do
3: T = schedule(t)
4: if T=0 then
5: return s∗

6: end if
7: s = a randomly chosen neighbor of s∗

8: ∆E = f(s)− f(s∗)
9: if ∆E > 0 then

10: s∗ = s
11: else
12: s∗ = s with a probability ε∆E/T

13: end if
14: end for

The SA algorithm falls into the class of meta-heuristic algorithms [106, 116] that

guide the search process to avoid being trapped in a local maximum. A meta-

heuristic algorithm escapes a local maximum by temporarily accepting neighbor

solutions with lower quality. This allows the algorithm to examine more neighbor
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solutions to find a better solution. One of the major drawbacks of the SA algorithm

is that it is considerably slow when the search space is large [16].

2.3.3 Record-to-record travel

The record-to-record travel (RRT) algorithm [34] is a variant of the simulated

annealing algorithm [56] with a different mechanism to accept worse neighbor

solutions. The RRT algorithm accepts a worse neighbor solution if the difference

between the quality of the neighbor solution and the quality of the best solution

found is less than a specific threshold. A small value of the threshold generally

gives a poor result with a short running time while a large one gives a good result

with a long running time. If the threshold is equal to zero, the RRT algorithm will

become a stochastic hill climbing algorithm which accepts only better neighbor

solutions. The algorithm stops after a predefined number of iterations without

improvement in the objective function. The pseudo code of the RRT algorithm is

given in Algorithm 5.

Algorithm 5 Record-to-Record Travel [34]

Input: an initial solution s0, a neighborhood structure, an objective function f ,
a positive deviation value DEV and the maximum number of iterations without
improvement in the objective function maxno
Output: a solution s∗

1: s = s0

2: s∗ = s
3: while t < maxno do
4: s’ = a randomly chosen neighbor of s
5: if f(s′) ≥ f(s∗)−DEV then
6: s = s′

7: t = t+1
8: end if
9: if f(s′) > f(s∗) then

10: s* = s’
11: t = 0
12: end if
13: end while

The RRT algorithm is simpler and requires less computational cost than the SA

algorithm. The RRT algorithm is also reported to outperform the SA algorithm

with much lower running time for some optimization problems [34].
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2.4 Community detection algorithms

Numerous community detection algorithms have been proposed in the literature

[36, 38]. Among the existing algorithms, the Louvain method [15] and Infomap

[107], are regarded as state-of-the-art algorithms [62]. Walktrap [98], Fastgreedy

[22], and MSG-VM [111] are also a popular methods [38]. In this section, we

review these algorithms which will be used in our experiments in Chapter 3.

2.4.1 Fastgreedy

The Fastgreedy algorithm [22], also referred to as the Clauset-Newman-Moore

(CNM) algorithm, is an efficient implementation of the greedy modularity opti-

mization algorithm proposed in [91]. The Fastgreedy algorithm initially assigns

each node in a unique community and then repeatedly joins communities in pairs

to improve modularity. The pair of communities joined at each step is selected to

lead to the largest increase (or the smallest decrease) in modularity. When the

last pair of communities is joined, the resulting community division with maximum

modularity gives the community structure. The Fastgreedy algorithm follows an

agglomerative hierarchical approach that results in a dendrogram of the network.

The dendrogram is a tree structure representing the hierarchical structure of the

joined communities. The complexity of the Fastgreedy algorithm is O(mdlog(n))

where n is the number of nodes in the network, m is the number of edges, and d

is the height of the dendrogram. An improvement of the Fastgreedy algorithm in

term of execution efficiency and scalability is proposed in [119]. The pseudocode

of the Fastgreedy algorithm is presented in Algorithm 6.

Algorithm 6 Fastgreedy [22, 91]

1: Assign each node in its own community
2: Calculate the modularity change matrix ∆Q with ∆Qij being the change in

modularity if communities i and j are merged.
3: while there are more than one community in the network do
4: Select the pair of communities i and j with the largest ∆Qij

5: Merge communities i and j
6: Store the current partition of the network
7: Update the modularity change matrix ∆Q
8: end while
9: return The stored network partition with the greatest modularity value
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2.4.2 MSG-VM

The MSG-VM (Multistep Greedy- Vertex Mover) [111, 112] is an enhanced version

of the Fastgreedy algorithm [22]. The MSG-VM algorithm consists of a commu-

nity join procedure (MSG) that joins multiple pairs of communities simultaneously

and a community refinement procedure (VM) that reassigns nodes to neighboring

communities to maximize modularity. At each iteration, the community join pro-

cedure merges all pairs of communities such that each pairwise community merging

leads to a positive change in modularity. The iterations stop when all pairwise

joins of communities yield a negative modularity change. After the convergence

of the community merging procedure, a node refinement procedure is applied to

reassign nodes to one of their neighboring communities if the node reassignment

leads to the greatest modularity improvement. The MSG-VM algorithm results in

more balancing community sizes and has a shorter execution time than the greedy

modularity optimization algorithm [111]. The pseudo codes of the MSG procedure

and the VM procedure are presented in Algorithm 7 and Algorithm 8.

Algorithm 7 Multistep Greedy (MSG) [111]

1: Assign each node in its own community
2: Calculate the modularity change matrix ∆Q with ∆Qij being the change in

modularity if communities i and j are merged.
3: while there exists at least a pair of communities i and j with ∆Qij > 0 do
4: for all pairs of communities u and v with ∆Quv > 0 in the decreasing order

of ∆Quv do
5: if communities u and v are unchanged in the current iteration then
6: Merge communities u and v
7: end if
8: end for
9: end while

2.4.3 The Louvain method

The Louvain method [15] is a two-step iterative algorithm to maximize modularity.

The first step of the Louvain method is similar to the node refinement procedure

(VM) in the MSG-VM algorithm. The first step starts with every node in its own

community and then reassigns each node, in a sequence order, to the neighbor-

ing community with the maximal (positive) modularity improvement. The node

reassignment procedure is repeated until every node stays in their own commu-

nity after an iteration. The second step of the Louvain method is to build a new
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Algorithm 8 Vertex Mover (VM) [111]

Input: An network partition
Output: The network partition with the maximal improvement in modularity

1: while true do
2: for each node u in the order of increasing degree do
3: v = the neighbor of u with the greatest change in modularity ∆Q when

reassigning u to the community of v
4: if ∆Q > 0 then
5: Move node u into the community of v
6: end if
7: end for
8: if no improvement in modularity can be achieved then
9: return the current network partition

10: end if
11: end while

network from the resulting network of the first step. Nodes in the new network

are the resulting communities of the first step and edges in the new network are

weighted by the sum of the weights of edges between the nodes in the correspond-

ing communities. The first and the second steps are then re-applied to the new

network until there is no further improvement in modularity. The Louvain method

executes in a linear time with a computational complexity of O(m) where m is the

number of edges in the original network.

2.4.4 Walktrap

The Walktrap algorithm [98] defines a distance metric between two nodes in a

network based on a random walk of a fixed length on the network. The node

distance metric is expected to be larger for two nodes in different communities

and smaller for two nodes in the same community. The node distance metric is

then generalized to a distance metric between a node and its community. The

Walktrap algorithm starts by assigning each node to a unique community. The

algorithm then repeatedly merges a pair of communities that minimizes the average

of the squared distances between each node and its community. When the last

pair of communities is merged, the algorithm results in a dendrogram representing

the hierarchical structure of the joined communities. The community division at

the hierarchical level that gives the maximum modularity value is chosen as the

community structure. The computational complexity of the Walktrap algorithm

is O(n2log(n)).
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2.4.5 Infomap

The Infomap algorithm [107] identifies communities by minimizing the map equa-

tion of the community division. This algorithm applies a similar heuristic to the

Louvain method to search for the community division with the minimum value of

the map equation. The resulting community division is then refined by moving

nodes between communities to further decrease the map equation. The Infomap

algorithm has an execution time of a few seconds for networks of the size about

10,000 nodes [107].

2.5 Evaluating community detection algorithms

Evaluating community detection algorithms basically means applying the detec-

tion algorithms to networks with known communities and quantifying their detec-

tion accuracies on these networks. The networks are generally computer-generated

by generative models, or simply benchmarks.

2.5.1 Benchmarks

The two most popular benchmarks, that generate networks with built-in commu-

nity structure, for evaluating the detection algorithms are the Girvan-Newman

benchmark [40] and the Lancichinetti-Fortunato-Radicchi benchmark [65, 61].

2.5.1.1 The Girvan-Newman benchmark

The Girvan-Newman (GN) benchmark [40] generates a network with community

structure as follows. The network is given 128 nodes divided into four communities

of the same size. Edges are independently placed between nodes in the same

community at random with probability pin and placed between nodes in different

communities at random with probability pout. The values of pin and pout are chosen

so that pin > pout and the average degree of each node is 16. This implies that

pin and pout are proportional to each other and pin + 3pout = 1
2
. The values of pin

and pout can also be indirectly defined from the average number zin of links from

each node to nodes in the same community and the average number zout of links

from each node to nodes in other communities, with zin + zout = 16. Figure 2.3

demonstrates a realization of the GN benchmark.
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Figure 2.3: A realization of the GN benchmark.

The GN benchmark is widely used as a standard benchmark in the literature [36].

However, nodes in this benchmark have similar degrees and communities have

similar sizes while real networks are observed to have heterogeneous distributions

in node degree and community size [3]. Therefore, the GN benchmark is not

a cohort representative for the general class of real networks with community

structure.

2.5.1.2 The Lancichinetti-Fortunato-Radicchi benchmark

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark [61] is an extension of

the GN benchmark that accounts for the heterogeneity in node degree and com-

munity size. In the LFR benchmark, the properties of nodes and communities are

given by network parameters. Links in the networks are generated by a construc-

tion algorithm to obtain the desired properties of nodes and communities. We

will detail the construction process of the LFR benchmark in Chapter 5 as this

benchmark is the foundation of our work in this thesis.

The LFR benchmark is the most widely used benchmark for evaluating commu-

nity detection algorithms [36, 38]. However, one of the main limitations of this
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benchmark is that communities in the benchmark are assigned the same fraction

of external links, or mixing fraction, while real networks exhibit communities with

heterogeneous mixing fractions [73, 74]. Moreover, each node in the LFR bench-

mark must belong to at least a community while real networks are observed to

contain outliers which are considered as random noise and do not associate with

any community [66].

2.5.2 Partition comparison metrics

The accuracy of a community detection algorithm on a synthetic network with

community structure is measured by the similarity between the recovered net-

work partition and the planted network partition corresponding to the community

structure [83]. Let X = (X1, X2, ..., XnX
) be the recovered network partition and

Y = (Y1, Y2, ..., YnY
) be the planted network partition, with nX and nY denoting

the numbers of communities in network partitions X and Y respectively. The

similarity between network partitions X and Y can be measured using different

approaches such as pair counting [103], [14] and information theory [82], [6].

2.5.2.1 Pair counting based metrics

The pair counting approach measures the similarity between two network parti-

tions based on the number of pairs of nodes that are classified in the same or

different communities in the two network partitions. Let N11 be the number of

pairs of nodes which are in the same community in both network partitions and

N00 be the number of pairs of nodes which are in the different communities in

both network partitions. Let N10 be the number of pairs of nodes which are in the

same community in network partition X and in different communities in network

partition Y . Let N01 be the number of pairs of nodes which are in different com-

munities in network partition X and in the same community in network partition

Y .

The Rand index [103] that measures the similarity between X and Y is defined as

R(X, Y ) =
N11 +N00

N11 +N01 +N10 +N00

,

which is the ratio of the number of node pairs that are in the same or in different

communities in both network partitions to the total number of node pairs of the
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network. The Rand index is typically limited to a narrow range of values slightly

below 1 due to the dominance of N00 in R(X, Y ) when N00 is large.

The Jaccard index [14] is similar to the Rand index but eliminates the contribution

of N00 in the similarity measure. The Jaccard index that measures the similarity

between X and Y is defined as follows:

J(X, Y ) =
N11

N11 +N01 +N10

,

which is the ratio between the number of node pairs in the same community in

both network partitions and the number of node pairs in the same community in

at least one network partition.

Pair counting based measures are often undesirable because these measures are

sensitive to certain characteristics of communities such as the number of commu-

nities and community sizes [115].

2.5.2.2 Information theory based metrics

The information theory approach measures the similarity between two network

partitions based on the Shannon information content [122] of the network par-

titions. Let nXi and nYj be the numbers of nodes in community Xi ∈ X and

community Yj ∈ Y respectively. The probability that a randomly chosen node is

in community Xi ∈ X is

P (Xi) =
nXi
N

and the probability that a randomly chosen node is in community Yj ∈ Y is

P (Yj) =
nYj
N
,

where N is the number of nodes in the network.

The Shannon information of X is

H(X) = −
nX∑
i=1

P (Xi)log(P (Xi))

= − 1

N

nX∑
i=1

nXi log(
nXi
N

) (2.5)
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The Shannon information of Y is

H(Y ) = −
nY∑
j=1

P (Yj)log(P (Yj))

= − 1

N

nY∑
i=1

nYi log(
nYi
N

) (2.6)

The probability that a randomly chosen node is in community Xi and in commu-

nity Yj is

P (Xi, Yj) =
nXYij
N

The mutual information [80, 115] of X and Y that measures the agreement between

the two network partitions is defined as

I(X, Y ) =

nX∑
i=1

nY∑
j=1

P (Xi, Yj)log

(
P (Xi, Yj)

P (Xi)P (Yj)

)

which, after simplification, is written as

I(X, Y ) =
1

N

nX∑
i=1

nY∑
j=1

nXYij log

(
nXYij .N

nXi .n
Y
j

)
(2.7)

Figure 2.4 demonstrates the mutual information I(X,Y) between two network par-

titions X and Y. Since the mutual information is not bounded by a constant value,

this metric is not often a good way to measure the similarity between two parti-

tions.

Figure 2.4: An information diagram illustrates the mutual information of X
and Y
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The normalized mutual information [6] between network partitions X and Y of a

network is defined as

NMI(X, Y ) =
2I(X, Y )

H(X) +H(Y )

= −
2
∑nX

i=1

∑nY

j=1

nXYij log(
nXY
ij .N

nX
i .n

Y
j

)∑nX

i=1

nXi log(
nX
i

N
) +

∑nY

j=1

nYj log(
nY
j

N
)

(2.8)

The normalized mutual information has a range from 0 to 1. The value of 0

indicates that the two compared network partitions are totally dissimilar while the

value of 1 indicates that the two network partitions are identical. The normalized

mutual information is intuitively adopted as a reliable metric to compare network

partitions [62].

2.6 Summary

Communities in a network are conceptually defined as groups of nodes with dense

connections within each group and spare connections between different groups.

Several quantitative definitions of community exist in the literature but none of

them is commonly accepted yet. The most successful criteria to define communi-

ties, as interrelated parts of the whole network, include modularity [94] and the

map equation [107].

The state-of-the-art algorithms for detecting communities include the Louvain

method [15], which maximizes modularity, and Infomap [108], which minimizes

the map equation. Community detection algorithms are typically evaluated on

artificial networks with built-in community structure, or simply benchmark net-

works. The state-of-the-art benchmarks, that generate benchmark networks, for

evaluating community detection algorithms include the GN benchmark [40] and

the LFR benchmark [61]. The accuracy of a detection algorithm on a benchmark

network is measured based on the similarity between the detected network parti-

tion and the planted network partition. The normalized mutual information [6] is

currently often used for comparing the network partitions.

For further details of research in community detection, readers are referred to

[99, 36, 24, 81, 124, 110, 38].



Chapter 3

Modularity Optimization in

Networks with Weak

Communities

This chapter presents our approach to develop an algorithm for maximizing modu-

larity in networks with weak community structure. It is noted that, in this thesis,

we refer networks with strong community structure to networks of communities

which have more intra-community connections than inter-community connections

and refer networks with weak community structure to networks with communities

which have more inter-community connections than intra-community connections.

First, we review the three existing algorithms, LPA [102], LPAm [12], and the

state-of-the-art algorithm LPAm+ [75], which are the foundations of our approach.

Second, we give an example demonstrating the local maxima problem of LPAm+

on networks with weak community structure. We then propose an algorithm which

extends the LPAm+ algorithm by introducing a method to overcome local max-

ima. Afterward, we extend our proposed algorithm to identify communities in

directed networks. Since the proposed algorithm has two parameters to set, we

perform an empirical analysis to investigate the dependence of the algorithm on

its parameters. Finally, we analyze the computational complexity of the proposed

algorithm to evaluate its running time. Parts of the content of this chapter have

been published in [68].

37
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3.1 Preliminaries

3.1.1 The LPA algorithm

The label propagation algorithm (LPA) [102] is known as a time-efficient method

for detecting communities. LPA identifies communities by propagating labels of

nodes over the network. LPA [102] works by initially assigning a unique label

to every node in the network. The algorithm then iteratively updates the labels

of nodes in a random sequential order. At each iteration, each node updates its

label by the label that the maximum number of its neighbors hold. If a node has

many candidate labels to update, one of the labels is chosen randomly. The label

updating rule for a node u in an undirected and unweighted network of n nodes

can be mathematically specified as

lnewu = argmax
l′u

n∑
v=1

Auvδ(l
′
u, lv),

where lnewu is the new label to be assigned to node u, l′u is a label of the neighbors

of u, v is a node in the network, lv is the label of node v, Auv is the element of the

adjacency matrix of the network representing the connection between node u and

node v, and δ is the Kronecker delta function which is 1 if lv and l′u are the same,

and 0 otherwise.

The label updating process stops when node labels remain unchanged after an iter-

ation. Communities are identified as groups of nodes holding the same labels. To

ensure the convergence of the algorithm, node labels are updated asynchronously

which means that each node updates its label based on the labels in the previous

iteration of some of its neighbors and the labels in the current iteration of the

other neighbors. LPA has a near linear time complexity of O(m), where m is the

number of edges in the network [102].

The objective function of LPA can be understood as finding the community divi-

sion of the network that maximizes the number of edges falling within communities

[12]. The trivial solution of LPA is to assign the same label to every node in the

network. This illustrates a potential drawback of LPA that the detected commu-

nity structure does not necessarily have any meaningful interpretation [12]. The

pseudo code of the LPA algorithm is presented in Algorithm 9.



Chapter 3 Modularity Optimization in Networks with Weak Communities 39

Algorithm 9 LPA [102]

1: Initialize each node with a unique label
2: while true do
3: for each node u with label l in a sequential order of nodes do
4: l′ = the neighboring label of u shared by the maximum number of the

neighbors of u
5: if l′ 6= l then
6: Assign label l′ to node u
7: end if
8: end for
9: if labels of every node remain unchanged after an iteration then

10: return the current node label assignment
11: end if
12: end while

/* Communities are groups of nodes with the same label */

3.1.2 The LPAm algorithm

The modularity-specialized label propagation algorithm (LPAm) [12] is an en-

hanced version of LPA that improves the quality of the detected community struc-

ture by propagating labels of nodes to maximize network modularity. LPAm [12]

modifies the label updating rule in LPA to drive the solution toward the maxi-

mum modularity value [94]. Starting from an initial community division, LPAm

performs a label propagation step at each iteration. The label propagation step

updates the label of each node by a label of its neighbors that leads to the maximal

increase in network modularity. Let lu be the current label of a node u, and l′u be

the new label of node u after updating. Let gu and g′u denote the communities of

nodes holding label lu and l′u respectively.

Lemma 3.1. The gain in network modularity when updating label l′u for node u is

∆Q =
1

m

∑
j∈g′u

(
Auj −

kukj
2m

)
− 1

m

∑
j∈gu−u

(
Auj −

kukj
2m

)

Proof. The gain in network modularity when updating label l′u for node u is

∆Q =
1

2m

 ∑
i,j∈g′u+u

(
Aij −

kikj
2m

)
+

∑
i,j∈gu−u

(
Aij −

kikj
2m

)
− 1

2m

∑
i,j∈g′u

(
Aij −

kikj
2m

)
+
∑
i,j∈gu

(
Aij −

kikj
2m

) , (3.1)
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where gu−u denotes the community formed by removing node u from its commu-

nity, and g′u +u denotes the community formed by adding node u into community

g′u.

We can rewrite Eq. 3.1 as

∆Q =
1

2m

 ∑
i,j∈g′u+u

(
Aij −

kikj
2m

)
−
∑
i,j∈g′u

(
Aij −

kikj
2m

)
− 1

2m

(∑
i,j∈gu

(
Aij −

kikj
2m

)
−

∑
i,j∈gu−u

(
Aij −

kikj
2m

))

or equivalently,

∆Q =
1

m

∑
j∈g′u

(
Auj −

kukj
2m

)
− 1

m

∑
j∈gu−u

(
Auj −

kukj
2m

)
(3.2)

Since the second term of Eq. 3.2 remains unchanged for every choice of label

l′u, choosing label l′u that maximizes ∆Q is equivalent to choosing label l′u that

maximizes the sum ∑
j∈g′u

(
Auj −

kukj
2m

)

Therefore, the label updating rule of LPAm can be expressed as

lnewu = argmax
l′u

n∑
v=1

(
Auv −

kukv
2m

)
δ(l′u, lv)

As LPAm employs a greedy search strategy for finding the optimal community di-

vision regarding modularity, this algorithm easily get trapped in a local maximum

of the modularity search space [75]. The pseudo code of the LPAm algorithm is

presented in Algorithm 10.

3.1.3 The LPAm+ algorithm

The advanced modularity-specialized label propagation algorithm (LPAm+) [75]

is a further improvement of LPAm. LPAm+ [75] drives LPAm out of local maxima
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Algorithm 10 LPAm [12]

1: Initialize each node with a unique label
2: while true do
3: for each node u in a sequential order of nodes do
4: l′ = the neighboring label of u with the greatest change in modularity ∆Q

when updating label l′ for node u
5: if ∆Q > 0 then
6: Assign label l′ to node u
7: end if
8: end for
9: if labels of every node remain unchanged after an iteration then

10: return the current node label assignment
11: end if
12: end while

/* Communities are groups of nodes with the same label */

by iteratively combining LPAm with merging pairs of communities that improve

network modularity the most. LPAm+ utilizes the multi-step greedy algorithm

(MSG) in [111] to merge multiple pairs of communities simultaneously at a time

[75]. After performing iterations of LPAm, two communities having labels l1 and

l2 are merged if

(∆Ql1→l2 > 0) ∧ [!∃l : (∆Ql1→l > ∆Ql1→l2) ∨ (∆Ql2→l > ∆Ql1→l2)]

with ∆Ql1→l2 denoting the gain in network modularity when community having

label l1 is merged with community having label l2. The algorithm stops when no

pair of communities can be merged to increase network modularity. Let g be the

community labeled l1 and g′ be the community labeled l2.

Lemma 3.2. The gain in network modularity when merging community labeled l1

and community labeled l2 is

∆Ql1→l2 =
1

m

(
Il1→l2 −

Dl1Dl2

2m

)
, (3.3)

where Dl1 and Dl2 are the total degree of nodes in community labeled l1 and the

total degree of nodes in community labeled l2 respectively, and Il1→l2 is the total

number of edges between these two communities.
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Proof. The gain in network modularity when merging community g labeled l1 and

community g′ labeled l2 is

∆Ql1→l2 =
1

2m

∑
i,j∈g′∪g

(
Aij −

kikj
2m

)
− 1

2m

(∑
i,j∈g′

(
Aij −

kikj
2m

)
+
∑
i,j∈g

(
Aij −

kikj
2m

))
,

where g′ ∪ g denotes the community formed by merging community labeled l1 and

community labeled l2.

After simplifying, we have

∆Ql1→l2 =
1

m

∑
i∈g

∑
j∈g′

(
Aij −

kikj
2m

)
=

1

m

(
Il1→l2 −

Dl1Dl2

2m

)

We demonstrate the pseudo code of the LPAm+ algorithm in Algorithm 11.

Algorithm 11 LPAm+ [75]

1: Assign every node into its own community
2: Maximize network modularity by LPAm
3: while ∃ a pair of communities (l1, l2) with ∆Ql1,l2 > 0 do
4: for every community pair(l1, l2) that (∆Ql1→l2 > 0) ∧ [!∃l : (∆Ql1→l >

∆Ql1→l2) ∨ (∆Ql2→l > ∆Ql1→l2)] do
5: Merge communities l1 and l2
6: end for
7: Maximize network modularity by LPAm
8: end while

/* ∆Ql1,l2 is the change in network modularity when merging community labeled ’l1’
and community labeled ’l2’
The embedded LPAm procedure do not reinitialize the community assignment */

3.2 The local maximum problem of LPAm+

We demonstrate below an example in which LPAm+ gets trapped in a poor local

maximum on networks with weak community structure. Figure 3.1a illustrates

a toy network with two intuitively divided communities (one community with

nodes in white color and the other community with nodes in dark color) and the

modularity Q is 0.2117. Applying LPAm+ to this toy network, the first round

of LPAm in LPAm+ results in a local maximum with modularity Q = 0.1097
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(Figure 3.1b), for the initial community division of nodes in their own community

and the sequence of node orders {6, 0, 9, 5, 7, 11, 10, 1, 8, 2, 3, 4} to update the node

labels. The first round of merging communities in LPAm+ further improves the

network modularity by merging community labeled ‘a’ and community labeled

‘d’, and merging community labeled ‘c’ and community labeled ‘e’ with the new

modularity value Q = 0.1607 (Figure 3.1c). Note that this modularity value is
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Figure 3.1: A toy network consists of two intuitively divided communities
with modularity Q = 0.2117 (a). The first round of LPAm in LPAm+ results in
a local maximum with modularity Q = 0.1097 (b). The first round of merging
communities in LPAm+ merges community labeled ‘a’ and community labeled
‘d’, and merges community labeled ‘c’ and community labeled ‘e’ with the new
modularity value Q = 0.1607 (c). LPAm+ gets trapped in this local maximum
because the misplaced nodes 0, 3, 6 and 9 cannot be adjusted by any other

round of LPAm or merging communities.
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still significantly below the modularity value of 0.2117 achieving in Figure 3.1a.

LPAm+ gets trapped in the local maximum Q = 0.1607 mainly due to the initially

misplaced nodes 0, 3, 6 and 9, in Figure 3.1b. These nodes are assigned to the

same community with the nodes which actually belong to different communities

with respect to the global optimal community solution. LPAm+ does not have

any mechanism to correct this misplacement of node labels and cannot adjust the

labels in any other round of LPAm or merging communities.

3.3 Meta-LPAm+: an extension of LPAm+ to

networks with weak community structure

We propose a method to overcome the drawback of LPAm+ demonstrated in the

previous section as follows. We introduce a label propagation procedure that fol-

lows a guided search strategy [16] to avoid local maxima before merging communi-

ties. The new label propagation procedure is to search for a better local maximum

than that given by LPAm to correct the misplaced nodes in the intermediate so-

lutions given by LPAm. Guided search strategies, also called meta-heuristics, can

better avoid local maxima than greedy search strategies, also called heuristics,

by temporarily accepting worse solutions to explore more thoroughly the solution

space.

The meta-heuristic employed by the new label propagation procedure is inspired

by the record-to-record travel (RRT) algorithm [34] for a balance between per-

formance and computational complexity. The RRT algorithm is a variant of the

simulated annealing (SA) algorithm [56] with a different mechanism to accept

worse solutions. The RRT algorithm accepts a worse solution if the difference

between the accepted solution and the best solution found is less than a specific

threshold. The RRT algorithm is reported to outperform the SA algorithm with

much lower running time for some optimization problems [34]. To the best of our

knowledge, the RRT algorithm has never been applied to the task of community

detection.

To escape local maxima, we first perform a label propagation step that accepts a

decrease in network modularity. In this step, the label of each node is updated

sequentially by a label of its neighbors if the decrease in network modularity is

less than a predetermined threshold DEV. The decrease in network modularity is

calculated as the difference between the current modularity value and the highest
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modularity value found. After accepting a worse solution, the new label propaga-

tion procedure performs a round of LPAm to quickly improve network modularity.

The process is repeated until the number of iterations without improvement in the

highest network modularity value found exceeds a predefined number maxno of it-

erations.

The improved LPAm+ algorithm, named meta-LPAm+, is basically an iterative

combination of the modularity-specialized label propagation algorithm LPAm in

[12], the meta-heuristic based label propagation algorithm, named meta-LPAm,

and the community merging algorithm based on the MSG algorithm in [111]. The

pseudo code of meta-LPAm and meta-LPAm+ are presented in Algorithm 12

Algorithm 12 Meta-LPAm

Input: An initial community division S, the threshold DEV and the
maximum number of iterations without improvement in modularity maxno
Output: The best found community division RECORD

1: Set RECORD = S and nno = 0
2: While nno < maxno
3: Update the label of each node sequentially by a label of its neighbors if
4: the new network modularity QS′ ≥ QRECORD −DEV
5: Maximize network modularity by LPAm
6: Set nno = nno + 1
7: If QS > QRECORD Then
8: Set RECORD = S and nno = 0
9: End if

10: End While

/* S’ is the new community division to assign to S if the node label is updated */

Algorithm 13 Meta-LPAm+

Input: The threshold DEV and the maximum number of iterations without
improvement in modularity maxno for the embedded meta-LPAm algorithm
Output: The best found community division

1: Assign every node into its own community
2: Maximize network modularity by LPAm
3: Find a better local maximum by meta-LPAm
4: While ∃ a pair of communities (l1, l2) with ∆Ql1,l2 > 0
5: Merging pairs of communities by MSG
6: Maximize network modularity by LPAm
7: Find a better local maximum by meta-LPAm
8: End While

/* ∆Ql1,l2 is the change in network modularity when merging community labeled ’l1’
and community labeled ’l2’
The LPAm and MSG algorithms do not reinitialize the community assignment */
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and Algorithm 13.

Figure 3.2 illustrates how meta-LPAm+ converges to the global maximum for

the toy network in Figure 3.1a. Meta-LPAm+ starts by applying the first round

of LPAm to produce the local maximum in Figure 3.1b. Meta-LPAm+ then

applies the first round of meta-LPAm with the input parameters DEV = 0.01
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Figure 3.2: A pathway to converge to the global maximum of meta-LPAm+
for the toy network in Figure 3.1a. Giving the community solution in Figure 3.1b
as the local maximum returned by the first round of LPAm in meta-LPAm+, the
first round of meta-LPAm in meta-LPAm+ improves this local maximum by:
first performing a label propagation step that decreases modularity by 0.0083
and the modularity is 0.1014 (a), and then performing a round of LPAm to
reach to another local maximum with modularity Q = 0.1811 (b). The first
round of merging communities in meta-LPAm+ results in the global maximum

with modularity Q = 0.2117 (c).
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and maxno = 50 to escape this local maximum by the following steps. First, the

first round of meta-LPAm performs a label propagation step that assigns label

‘e’ for node 1 and label ‘i’ for node 2 with modularity decreased by 0.0083 and

the modularity is 0.1014. The next round of LPAm embedded in meta-LPAm

then reaches to a better local maximum with modularity Q = 0.1811. The first

round of merging communities in meta-LPAm+ merges community labeled ‘a’ and

community labeled ‘i’ to increase modularity to 0.2117. The algorithm stops at

the global maximum solution because the network modularity cannot be improved

by any further round of LPAm, meta-LPAm, or merging communities.

3.4 Extending meta-LPAm+ to directed networks

Many networks in the real world, such as networks of the World Wide Web [67], are

directed. For detecting communities in directed networks, our approach follows the

principal idea that the quality of the community structure of a directed network is

measured by the difference between the total fraction of directional edges within

communities in the directed network and that expected fraction of directional

edges in an equivalent directed random network [72]. In directed networks, edge

directions affect the chance to have directed edges among nodes [81]. Therefore,

the original definition of modularity in Eq. 2.1, which ignores the directionality of

edges, is not a proper measure of the quality of community structure in directed

networks. In other words, maximizing modularity would not find the meaningful

community structure of directed networks [72].

Directed modularity [7, 72] is an extension of modularity to directed networks that

takes into account edge directions.

Definition 6. [7, 72] The directed modularity of a community division of a directed

network is defined as

Qd =
1

m

∑
g

∑
i,j∈g

(
Aij −

kouti kinj
m

)
(3.4)

where g is a community in the network, kouti is the total number of outgoing edges

from node i, kinj is the total number of incoming edges to node j, and m is the

total number of directional edges in the network.

Therefore, we extend our proposed algorithm meta-LPAm+ to the directed case

by employing directed modularity as the objective function to maximize. This
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requires only slight modifications to the changes in the objective function when

updating node labels and merging communities. For updating node labels, the

gain in directed modularity when updating label l′u for node u with label lu is

∆Qd =
1

m

∑
j∈g′u

(
Auj −

koutu kinj
m

)
+

1

m

∑
j∈g′u

(
Aju −

koutj kinu
m

)

− 1

m

∑
j∈gu−u

(
Auj −

koutu kinj
m

)
− 1

m

∑
j∈gu−u

(
Aju −

koutj kinu
m

)
, (3.5)

with gu and g′u denoting the communities of nodes holding label lu and l′u respec-

tively,

As the third term and the last term in Eq. 3.5 are unchanged for any choice of

g′u, the rule for updating node labels in the directed network that leads to the

maximal increase in directed modularity can be written as

lnewu = argmax
l′u

n∑
v=1

((
Auv −

koutu kinv
m

)
+

(
Avu −

koutv kinu
m

))
δ(l′u, lv),

where l′u is a label of neighbors of u and lv is the label of node v.

For merging communities, the gain in directed modularity when merging commu-

nity g labeled l1 and community g′ labeled l2 is

∆Qd
l1→l2 =

1

m

∑
i∈g

∑
j∈g′

(
Aij −

kouti kinj
2m

)
+

1

m

∑
i∈g

∑
j∈g′

(
Aji −

kini k
out
j

2m

)

or, equivalently,

∆Qd
l1→l2 =

1

m

(
Il1→l2 −

Dout
l1
Din
l2

m

)
+

1

m

(
Il2→l1 −

Dout
l2
Din
l1

m

)
,

with Il1→l2 denoting the total number of directional edges from community labeled

l1 to community labeled l2, and Dout
l1

and Din
l2

are the total numbers of outgoing

edges from nodes in community labeled l1 and incoming edges to nodes in com-

munity labeled l2 respectively.
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3.5 Setting parameters

As with many other meta-heuristics [116], our proposed algorithm meta-LPAm+

has parameters to guide the search process. The values of the parameters DEV

and maxno of meta-LPAm+ determine the trade-off between performance, in term

of modularity, and running time of the algorithm. For example, while LPAm+

finds the global optimal solution for the toy network in Figure 3.1a about 50

times out of 100 runs with randomized initial solutions, the number of times that

meta-LPAm+ finds the global maximum depends on the setting of the parameters.

Meta-LPAm+ finds the global maximum about 70 times over 100 runs for DEV =

0.01 and maxno = 10. However, for DEV = 0.1 and maxno = 10, meta-LPAm+

finds the global maximum in almost all of the 100 runs of the algorithm. Therefore,

determining the dependence of meta-LPAm+ on its parameters DEV and maxno is

important to locate near optimal values of the parameters for use in the algorithm.

Meta-LPAm+ drives the LPAm+ algorithm [75] out of a local maximum by per-

forming the meta-LPAm algorithm. In each iteration, the meta-LPAm algorithm

first randomly perturbs the current local maximum solution and then greedily im-

proves the perturbed solution to find a better local maximum than the previous

one. The perturbation amount is mainly defined by the parameter DEV while the

iteration time is mainly defined by the parameter maxno. For a given a value of

DEV , the larger the value of maxno, the longer the iteration time is. The longer

the iteration time, the more likely it is that meta-LPAm+ finds a better solution

since the algorithm has more iterations to escape local maxima. The parameter

maxno should, therefore, be set to the value that leads to the maximum allowed

running time of the algorithm. For a given value of maxno, choosing a too small

value for DEV could cause the algorithm to explore only a small number of neigh-

bor solutions and, therefore, cannot find the best possible neighbor solution. On

the other hand, choosing a too large value for DEV could cause the algorithm to

explore too many neighborhood solutions and, therefore, cannot converge to the

best possible neighbor solution within the allowed running time.

To validate the dependence of our proposed algorithm meta-LPAm+ on the param-

eters DEV and maxno, we evaluate the proposed algorithm on artificial networks

for many combinations of these parameters. The artificial networks are gener-

ated by the Lancichinetti-Fortunato-Radicchi (LFR) benchmark [65], which is a

commonly-used benchmark to generate networks with community structure [36].

The network parameters of the LFR benchmark are given as follows: the number

of nodes in a network N = 1000; the average node degree k = 20; the maximum
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node degree kmax = 50; the minimum community size smin = 20; the maximum

community size smax = 100; the power-law exponent for the node degree sequence

γ = −2; the power-law exponent for the community size sequence β = −2, and

the fraction of external links of each node, with respect to its community, µ = 0.7.

Table 3.1 and Table 3.2 respectively show the average of network modularity ob-

tained by meta-LPAm+ and its running time on the artificial networks for the

value of maxno varying from 10 to 100 and the value of DEV varying from 0.01

to 0.1. As can be seen from the tables, for a given value of DEV , setting a larger

value for maxno generally allows the algorithm to find a higher modularity value

with additional running time. For a given value of maxno, setting a too small

or too large value for DEV generally leads to a decrease in the modularity value

found by the algorithm with respect to the modularity value found for a moderate

value of DEV . For example, given maxno = 80, the modularity value found by

the algorithm for DEV = 0.01 and DEV = 0.1 are lower than the modularity

value found for DEV = 0.05.

The results confirm that the performance of our proposed algorithm is dependent

on two parameters DEV and maxno. For the algorithm to achieve high per-

formance, the parameter maxno should be set to the value corresponding to the

largest allowed running time of the algorithm while the parameter DEV should

be set to an appropriate value that is not too small and not too large. We leave

the problem of systematically estimating near-optimal values for these parameters

for future work. In our experiments in this thesis, the values of DEV and maxno

are manually chosen based on experience.

3.6 Computational complexity

The computational complexity of meta-LPAm+ is mainly from the complexity of

the three components embedded in the algorithm: (1) the modularity-specialized

label propagation algorithm LPAm, (2) the meta-heuristic based label propagation

algorithm meta-LPAm, and (3) the community merging algorithm MSG.

One round of LPAm in meta-LPAm+ has a computational complexity of rO(m),

with r being the average number of label propagation steps required for the round

of LPAm to converge [12]. One round of meta-LPAm in meta-LPAm+ takes a

computational cost of l(O(m) + rO(m)), with l being the average number of times

that the round of meta-LPAm accepts a worse solution. The combination of LPAm
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and meta-LPAm in meta-LPAm+ thus has a computational complexity of sO(m)

with s = r + l(1 + r) being the average number of label propagation steps needed

for the round of LPAm and meta-LPAm to stop iterations. The computational

cost of one round of MSG in meta-LPAm+ is O(mlogN) [111]. Therefore, the

total computational cost of meta-LPAm+ is

s1O(m) + h(O(mlogN) + s2O(m))

where s1 is the average number of label propagation steps of the round of LPAm

and meta-LPAm before the while loop in meta-LPAm+, s2 is the average number

of label propagation steps of the round of LPAm and meta-LPAm in the while

loop, and h is the average number of iterations for the while loop.

Table 3.3 shows the values of s1, s2 and h when applying meta-LPAm+ on the LFR

benchmark networks. According to the tables, the values of s1 and s2 are almost

stable for µ ≤ 0.5, where communities generally have more intra-community links

than inter-community links, whereas the values of s1 and s2 are much larger for µ ≥
0.6, where communities have more inter-community links than intra-community

links. This evidently indicates that LPAm results in community solutions with

more misplaced nodes on networks with weak community structure leading to the

subsequent increase in the number of iterations needed for the round of LPAm

and meta-LPAm to converge.

Table 3.3: The values of s1, s2 and h when applying meta-LPAm+ on the
LFR benchmark networks.

LFR benchmark N=1000 N=5000
networks s1 s2 h s1 s2 h
µ = 0.1 154.60 0 0 157.60 152.0 1.60
µ = 0.2 156.10 0 0 158.60 152.0 2.10
µ = 0.3 156.70 45.60 0.30 159.10 152.0 2.20
µ = 0.4 159.20 76.0 0.50 166.30 152.0 2.50
µ = 0.5 162.90 106.40 0.70 170.900 152.0 2.90
µ = 0.6 212.60 107.95 0.80 262.20 152.0 3.40
µ = 0.7 1134.60 492.0 1.20 498.60 267.44 3.80
µ = 0.8 1605.90 185.0 0.40 2859.50 444.50 0.70

Table 3.4 reports the values of s1, s2, and h when applying meta-LPAm+ on the

LFR benchmark networks of different sizes for µ = 0.7 and µ = 0.8, where s1 and

s2 are expected to be maximum on the networks of the same size with different µ.

As can be seen from Table 3.4, s1 and s2 are essentially upper-bounded by N and a

small fraction (about 1
10

) of N respectively. Therefore, we can safely set s1 = O(N)
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Table 3.4: The values of s1, s2 and h when applying meta-LPAm+ on the
LFR benchmark networks of different sizes for µ = 0.7 and µ = 0.8.

LFR benchmark µ = 0.7 µ = 0.8
networks s1 s2 h s1 s2 h
N=1000 1208.32 395.67 1.05 1535.29 114.35 0.18
N=2000 998.69 412.10 2.58 2069.66 98.35 0.11
N=3000 775.20 324.07 3.04 2313.99 280.67 0.34
N=4000 654.94 280.86 3.42 2694.37 364.51 0.52
N=5000 543.48 266.60 3.74 3317.09 464.60 0.77
N=6000 503.91 241.29 4.09 3599.37 650.20 1.23
N=7000 503.76 230.22 4.24 3674.05 828.16 1.54
N=8000 512.91 224.34 4.39 4106.22 874.32 1.99
N=9000 503.21 219.22 4.68 4479.50 773.13 2.20
N=10000 499.88 218.94 4.84 4810.25 793.28 2.69

and s2 = O(N). The values of h are almost bounded by a small constant and

therefore h can be estimated to be log(n), the depth of the dendrogram describing

the hierarchical decomposition of a network with balanced hierarchical community

structure into communities [75]. Therefore, the total computational complexity of

meta-LPAm+ is

O(mN) + logN(O(mlogN) +O(mN))

or equivalently, O(mN logN).

3.7 Summary

In this chapter, we proposed a new algorithm for maximizing modularity in net-

works with weak community structure, where communities have more inter-community

connections than intra-community connections. Our proposed algorithm, called

meta-LPAm+, extends the state-of-the-art algorithm LPAm+ [75] by introducing

a method to escape local maxima.

The LPAm+ algorithm maximizes modularity by iteratively performing two pro-

cedures: the first procedure is to propagate labels of nodes over the network to

greedily maximize modularity and the second procedure is to merge communities

to further improve modularity. We identified that LPAm+ easily results in a poor

local maximum on networks with weak community structure because the com-

munity merging procedure cannot efficiently drive the algorithm out of the local

maximum reached by the label propagation procedure.
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Our proposed algorithm overcomes this drawback of LPAm+ by introducing a

method to escape local maxima before merging communities. Our method follows

a guided search strategy, or meta-heuristic, inspired by the record-to-record travel

algorithm [34] for a balance between performance and running time. To apply our

algorithm to directed networks, we employed directed modularity [7, 72] as the

objective function to maximize in the algorithm. Our algorithm is dependent on

two parameters, DEV and maxno. For the algorithm to yield high performance,

maxno is suggested to set to the value that leads to the maximum allowed running

time of the algorithm while DEV needs to be chosen carefully, not too small or

too large. Given certain parameter values, our algorithm achieves a computational

complexity of O(mN logN) where m is the number of edges and N is the number

of nodes in the network.

It is noted that our proposed algorithm has a limitation, called the resolution limit

[37], which is induced by using modularity to evaluate the quality of community

divisions. Modularity is basically the sum of individual components, with each

component being the difference between the fraction of edges in a community and

that expected fraction of edges in an equivalent random network [94]. The optimal

modularity value, therefore, depends on the choice of the best trade-off between the

number of communities and the contribution values of the individual components.

When several existing smaller communities could form a larger community to give a

higher contribution to modularity, modularity optimization favors the community

division with the larger one. This implies that actual communities of small sizes

may not be resolved, especially in large networks with heterogeneous community

sizes [62].

To solve the resolution limit of modularity optimization, one of the possible ways

is to rescale the network topology to increase the contributions of small size-scale

communities to modularity. The authors in [8] propose a rescaling method that

assigns to each node a self-edge with the edge weights given by a parameter. This

rescaling method increases the total weight of edges in a community more signif-

icantly than that expected value in the random case [8]. The weighted network

topology is then used to determine the community structure by optimizing the

weighted version of modularity [88]. Small size-scale communities are more likely

to be identified as they have larger contributions to the weighted modularity value.

In [60], the authors rescale a network by assigning more weight to the edges in

the same community than to the edges across different communities. The edges

are iteratively re-weighted based on random walk processes over the network with

the walk length defined by a parameter. In [127], the authors suggest a rescaling
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method that adds new edges within communities and removing edges across dif-

ferent communities. The edges are added or removed based on logical inferences

from the existing connections between nodes. Rescaling network topology helps

avoiding the resolution limit of modularity optimization as it rewards the com-

munity division with smaller communities. However, the question that arises is

that which resolution scale should be best representative for the community struc-

ture of a network. Furthermore, when a resolution scale is chosen to depict the

community structure of a network, it should introduce a new scale limit beyond

which communities cannot be resolved. This suggests that more solid solutions

than these network rescaling methods needs to be investigated to better resolve

the resolution limit of modularity.

In addition to the resolution limit, our algorithm often results in different modular-

ity values for different runs since it makes many random choices during execution.

The algorithm also may not always achieve the best possible performance since its

near optimal parameter values need to be manually located.



Chapter 4

Performance Evaluation

This chapter describes the evaluation of the algorithm presented in the previous

chapter. We first introduce the experiment setting. We then compare the perfor-

mances of the proposed algorithm and existing community detection algorithms,

in term of modularity, on synthetic and real networks. Finally, we further compare

the performances of the proposed algorithm and the other algorithms, in term of

accuracy on synthetic networks, where the community structure is known. Parts

of the results in this chapter have been published in [68].

4.1 Experiment setting

The setting of the experiments in this chapter is as follows. We use the two popular

benchmarks, the Girvan-Newman (GN) benchmark [40] and the Lancichinetti-

Fortunato-Radicchi (LFR) benchmark [65, 61], to generate synthetic networks with

community structure. The GN benchmark has 128 nodes divided into four equal-

sized communities with average node degree of 16. The LFR benchmark allows

generating networks of larger sizes and power-law distributions of node degree and

community size. The LFR benchmark networks are generated for two different

network sizes, N = 1000 and N = 5000. The modularity of the generated networks

is controlled by varying the mixing parameter µ, which defines the fraction of

links from each node to nodes outside its community. µ is varied from 0.1 to 0.6

for the GN benchmark and from 0.1 to 0.8 for the LFR benchmark. The other

network parameters of the LFR benchmark include the average degree of nodes,

the maximum degree of nodes, the minimum community size, and the maximum

57
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community size are set to 20, 50, 20, and 100 respectively. The exponents of the

power-law distributions of node degree and community size are both set to -2.

As for real-world networks, we use the commonly studied real networks including

the Zachary’s karate club network [125], the Lusseau’s dolphins’ network [79], the

Political Books network [58], the American college football network [40], the Jazz

musicians network [41], the C.elegans metabolic network [50], the University email

network [46], and the PGP network [91]. The network sizes (numbers of nodes

and edges) are listed in Table 4.1.

Table 4.1: The number of nodes, denoted by n, and the number of edges,
denoted by m, of the real networks

Network n m
Karate club 34 78
Dolphins 62 159
Political books 105 441
College football 115 613
Jazz 198 2,742
C.elegans 453 2,025
E-mail 1,133 5,451
PGP 10,680 24,316

To evaluate the effectiveness of the proposed algorithm in maximizing modularity,

we compare the proposed algorithms with existing modularity optimization algo-

rithms including LPAm [12], LPAm+ [75], Fastgreedy [22, 119], MSG-VM [111],

and the Louvain method [15]. To evaluate the accuracy of the proposed algorithm

in detecting the known community structure of the synthetic networks, we com-

pare the proposed algorithms with the above algorithms and two other popular

community detection algorithms, Walktrap [98] and Infomap [108]. Our imple-

mentation of MSG-VM follows [111] closely. The implementations of Fastgreedy,

the Louvain method, Walktrap, and Infomap are provided in the public network

software library igraph [26]. The proposed algorithm uses the parameter value set-

tings which are DEV = 0.02 and maxno = 100 for networks of up to a thousand

nodes and DEV = 0.01 and maxno = 50 for networks of more than a thousand

nodes. All the other algorithms are executed with default parameter values. The

experiments are performed on a desktop PC with Intel R© CoreTM i7 @ 3.40GHz

CPU and 8GB RAM.
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4.2 Modularity

4.2.1 LPAm, LPAm+, and meta-LPAm+

To demonstrate the effectiveness of our modification on LPAm+, we first compare

the performances, in term of modularity, of LPAm, LPAm+, and meta-LPAm+

on the synthetic and real networks.

Table 4.2 shows the average of network modularity, denoted by Qavg, the maximum

of network modularity, denoted by Qmax, and the running time (in seconds), de-

noted by t, obtained by LPAm, LPAm+, and meta-LPAm+ on the GN benchmark

networks. As can be seen from the table, meta-LPAm+ obtains a higher average

modularity value than LPAm+ on the GN benchmark networks with µ ≥ 0.5,

where the network modularity is below 0.3. For example, meta-LPAm+ finds the

average modularity value of 0.238 on the GN benchmark networks with µ = 0.5

while LPAm+ finds the average modularity value of 0.220 only. The improvement

in the average of network modularity of meta-LPAm+ on LPAm+ is as significant

as the improvement of LPAm+ on LPAm, with an extra running time of less than

a second. Meta-LPAm+ and LPAm+ find similar average modularity values on

the GN benchmark networks with µ ≤ 0.4, where the network modularity is above

0.3.

Table 4.2: Comparison on the modularity values obtained by LPAm, LPAm+,
and meta-LPAm+ on the GN benchmark networks.

Network LPAm LPAm+ meta-LPAm+
Qavg Qmax t(s) Qavg Qmax t(s) Qavg Qmax t(s)

µ = 0.1 0.647 0.657 n/a 0.650 0.657 n/a 0.650 0.657 0.001
µ = 0.2 0.537 0.557 n/a 0.550 0.557 n/a 0.550 0.557 0.014
µ = 0.3 0.423 0.457 0.001 0.450 0.457 0.001 0.450 0.457 0.016
µ = 0.4 0.303 0.349 0.001 0.350 0.357 0.001 0.350 0.357 0.022
µ = 0.5 0.193 0.223 0.001 0.220 0.250 0.002 0.238 0.250 0.072
µ = 0.6 0.188 0.215 0.001 0.209 0.222 0.002 0.221 0.232 0.073

Table 4.3 and Table 4.4 show the average modularity value, the maximum modu-

larity value, and the running time achieved by LPAm, LPAm+, and meta-LPAm+

on the LFR benchmark networks with N = 1000 and N = 5000 respectively. Ac-

cording to the tables, meta-LPAm+ finds a higher average modularity value than

LPAm+ on the LFR benchmark networks with µ ≥ 0.7, corresponding to the

benchmark networks with modularity below 0.3. However, the improvement in
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Table 4.3: Comparison on the modularity values obtained by LPAm, LPAm+,
and meta-LPAm+ on the LFR benchmark networks with N=1000.

Networks LPAm LPAm+ meta-LPAm+
Qavg Qmax t(s) Qavg Qmax t(s) Qavg Qmax t(s)

µ = 0.1 0.844 0.860 0.005 0.844 0.860 0.005 0.844 0.860 0.171
µ = 0.2 0.746 0.762 0.005 0.747 0.762 0.007 0.747 0.762 0.204
µ = 0.3 0.645 0.663 0.010 0.647 0.663 0.009 0.647 0.663 0.255
µ = 0.4 0.542 0.559 0.012 0.547 0.559 0.014 0.547 0.561 0.310
µ = 0.5 0.441 0.462 0.013 0.449 0.462 0.018 0.449 0.462 0.478
µ = 0.6 0.336 0.360 0.023 0.346 0.364 0.033 0.348 0.364 0.677
µ = 0.7 0.224 0.241 0.034 0.237 0.258 0.062 0.250 0.265 3.325
µ = 0.8 0.190 0.204 0.034 0.205 0.212 0.071 0.219 0.226 2.698

Table 4.4: Comparison on the modularity values obtained by LPAm, LPAm+,
and meta-LPAm+ on the LFR benchmark networks with N=5000.

Network LPAm LPAm+ meta-LPAm+
Qavg Qmax t(s) Qavg Qmax t(s) Qavg Qmax t(s)

µ = 0.1 0.888 0.890 0.037 0.889 0.890 0.054 0.889 0.890 2.337
µ = 0.2 0.788 0.791 0.044 0.790 0.791 0.071 0.790 0.791 2.985
µ = 0.3 0.687 0.691 0.054 0.690 0.692 0.088 0.690 0.692 3.731
µ = 0.4 0.584 0.591 0.071 0.591 0.593 0.111 0.591 0.593 4.449
µ = 0.5 0.480 0.489 0.087 0.493 0.495 0.151 0.493 0.495 5.303
µ = 0.6 0.375 0.385 0.111 0.394 0.396 0.204 0.394 0.396 6.610
µ = 0.7 0.273 0.281 0.201 0.293 0.298 0.453 0.294 0.298 14.250
µ = 0.8 0.201 0.207 0.229 0.211 0.215 0.633 0.228 0.232 33.388

the average of network modularity of meta-LPAm+ over LPAm+ on the LFR

benchmark networks with N = 5000 is less significant than the improvement on

the LFR benchmark networks with N = 1000. The running time of meta-LPAm+

on the LFR benchmark networks with N = 5000 is notably longer than that of

meta-LPAm+ on the LFR benchmark networks with N = 1000 but less than a

minute. Meta-LPAm+ and LPAm+ result in similar average modularity values

on the LFR benchmark networks with µ ≤ 0.6, where the network modularity is

above 0.3.

Table 4.5 shows the performances of LPAm, LPAm+, and meta-LPAm+ on real

networks. Meta-LPAm+ and LPAm+ achieve comparable modularity values ex-

cept that meta-LPAm+ has a slight improvement in modularity over LPAm+ on

the Dolphins network and the Email network. It can be inferred that, the Dolphins
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network and the Email network have weak communities. Therefore, LPAm+ re-

sults in a poor local maximum on these networks and our modification on LPAm+

is able to escape the local maximum to improve the network modularity.

The results confirm that, by employing the meta-heuristic based label propaga-

tion procedure meta-LPAm before merging communities, our proposed algorithm

meta-LPAm+ can adjust misplaced nodes in community solutions leading to the

increase in network modularity on networks with weak community structure, where

communities have more inter-community links than intra-community links. Meta-

LPAm+ and LPAm+ achieve similar modularity values on networks with strong

community structure, where communities have more intra-community links than

inter-community links, since the greedy label propagation procedure LPAm is less

likely to result in a community solution with many misplaced nodes on these net-

works. This property of LPAm has been observed in previous works [12, 75]. The

meta-heuristic based label propagation procedure is, therefore, more or less un-

necessary on networks with strong community structure. However, it is worth ap-

plying meta-LPAm+ on these networks without prior knowledge of the strength

of the community structure because the meta-heuristic based label propagation

procedure generally requires an extra running time of only a few seconds. In our

experiments, meta-LPAm+ converges in less than a minute on networks of ten

thousands nodes. This running time is adequate for practical applications.

4.2.2 Meta-LPAm+ and other modularity optimization al-

gorithms

To show the effectiveness of our proposed algorithm meta-LPAm+ in maximizing

modularity, we further compare the performances of meta-LPAm+ to other mod-

ularity optimization algorithms, including Fastgreedy, MSG-VM, and the Louvain

method.

Table 4.6 shows the average network modularity and the maximum network mod-

ularity found by meta-LPAm+, Fastgreedy, MSG-VM, and the Louvain method

on the GN benchmark networks. As can be seen from the table, meta-LPAm+

outperforms the other algorithms on the GN benchmark networks with µ ≥ 0.4.

For example, meta-LPAm+ has the average modularity value of 0.238 on the GN

benchmark networks with µ = 0.5 while Fastgreedy, MSG-VM, and the Louvain

method have the average modularity values of 0.199, 0.221, and 0.207 respectively.

Meta-LPAm+ obtains a significantly higher modularity value than Fastgreedy and
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Table 4.6: Comparison on the modularity values obtained by meta-LPAm+,
Fastgreedy, MSG-VM, and the Louvain method on the GN benchmark networks.

Network meta-LPAm+ Fastgreedy MSG-VM Louvain
Qavg Qmax Qavg Qmax Qavg Qmax Qavg Qmax

µ = 0.1 0.650 0.657 0.647 0.656 0.650 0.657 0.650 0.657
µ = 0.2 0.550 0.557 0.544 0.557 0.550 0.557 0.550 0.557
µ = 0.3 0.450 0.457 0.436 0.453 0.450 0.457 0.450 0.457
µ = 0.4 0.350 0.357 0.307 0.348 0.344 0.356 0.345 0.357
µ = 0.5 0.238 0.250 0.199 0.221 0.212 0.235 0.207 0.225
µ = 0.6 0.221 0.232 0.190 0.205 0.203 0.215 0.200 0.218

a comparable modularity value with MSG-VM and the Louvain method on the

GN-benchmark networks with µ ≤ 0.3.

Table 4.7 and Table 4.8 show the average network modularity and the maximum

network modularity found by meta-LPAm+, Fastgreedy, MSG-VM, and the Lou-

vain method on the LFR benchmark networks with N = 1000 and N = 5000

respectively. As shown in the tables, meta-LPAm+ finds a notably higher mod-

ularity value than Fastgreedy, MSG-VM, and the Louvain method on the LFR

benchmark networks with µ ≥ 0.7. Meta-LPAm+ achieves a comparable mod-

ularity value with the Louvain method on the LFR benchmark networks with

µ ≤ 0.6.

Table 4.7: Comparison on the modularity values obtained by meta-LPAm+,
Fastgreedy, MSG-VM, and the Louvain method on the LFR benchmark net-

works with N=1000.

Network meta-LPAm+ Fastgreedy MSG-VM Louvain
Qavg Qmax Qavg Qmax Qavg Qmax Qavg Qmax

µ = 0.1 0.844 0.860 0.833 0.845 0.831 0.846 0.844 0.860
µ = 0.2 0.747 0.762 0.707 0.726 0.732 0.748 0.747 0.762
µ = 0.3 0.647 0.663 0.584 0.602 0.631 0.646 0.647 0.663
µ = 0.4 0.547 0.561 0.467 0.490 0.530 0.543 0.547 0.561
µ = 0.5 0.449 0.462 0.356 0.381 0.431 0.445 0.449 0.462
µ = 0.6 0.348 0.364 0.260 0.277 0.331 0.346 0.347 0.364
µ = 0.7 0.250 0.265 0.202 0.218 0.222 0.238 0.231 0.250
µ = 0.8 0.219 0.226 0.189 0.196 0.195 0.203 0.198 0.208
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Table 4.8: Comparison on the modularity values obtained by meta-LPAm+,
Fastgreedy, MSG-VM, and the Louvain method on the LFR benchmark net-

works with N=5000.

Network meta-LPAm+ Fastgreedy MSG-VM Louvain
Qavg Qmax Qavg Qmax Qavg Qmax Qavg Qmax

µ = 0.1 0.889 0.890 0.875 0.879 0.877 0.879 0.889 0.890
µ = 0.2 0.790 0.791 0.745 0.757 0.776 0.780 0.790 0.791
µ = 0.3 0.690 0.692 0.626 0.644 0.676 0.680 0.690 0.692
µ = 0.4 0.591 0.593 0.514 0.530 0.577 0.581 0.591 0.593
µ = 0.5 0.493 0.495 0.403 0.418 0.478 0.481 0.493 0.495
µ = 0.6 0.394 0.396 0.297 0.312 0.379 0.383 0.394 0.396
µ = 0.7 0.294 0.298 0.220 0.233 0.268 0.277 0.291 0.297
µ = 0.8 0.228 0.232 0.188 0.197 0.192 0.197 0.206 0.211

Table 4.9 shows the performances of meta-LPAm+ and the other modularity opti-

mization algorithms on the real networks. As for the real networks, meta-LPAm+

performs better than Fastgreedy and MSG-VM on all the real networks. Meta-

LPAm+ performs notably better than the Louvain method on the Dolphins net-

work, the Political books network, the C.elegans network, and the Email network

while has a comparable modularity value with the Louvain method on the other

real networks. It seems that, after performing the first step that greedily improves

network modularity at node level, meta-LPAm+ and the Louvain method produce

more misplaced nodes in the Dolphins network, the Political books network, the

C.elegans network, and the Email network than in the other networks. However,

meta-LPAm+ can further adjust the misplaced nodes in the community solutions

to improve network modularity while the Louvain method cannot.

Table 4.9: Comparison on the modularity values obtained by meta-LPAm+,
Fastgreedy, MSG-VM, and the Louvain method on the real networks.

Network meta-LPAm+ Fastgreedy MSG-VM Louvain
Qavg Qmax Qavg Qmax Qavg Qmax Qavg Qmax

Karate 0.418 0.420 0.381 0.381 0.401 0.420 0.419 0.419
Dolphins 0.526 0.529 0.495 0.495 0.522 0.522 0.519 0.519

Political books 0.527 0.527 0.502 0.502 0.520 0.521 0.520 0.520
Football 0.604 0.605 0.550 0.550 0.596 0.596 0.605 0.605

Jazz 0.445 0.445 0.439 0.439 0.444 0.445 0.443 0.443
C.elegans 0.444 0.451 0.404 0.404 0.439 0.440 0.441 0.441

Email 0.578 0.582 0.500 0.500 0.565 0.556 0.543 0.543
PGP 0.883 0.885 0.853 0.583 0.875 0.875 0.883 0.883
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The results show that our proposed algorithm meta-LPAm+ obtains the highest

modularity values among the compared algorithms on networks with weak commu-

nity structure and obtains similar or higher modularity values than the compared

algorithms on networks with strong community structure.

4.3 Accuracy on benchmarks

In this section, we compare meta-LPAm+ and the other community detection

algorithms based on their accuracies in recovering the planted community structure

in the GN benchmark networks and the LFR benchmark networks.

The accuracy of an algorithm on a synthetic network is measured based on the

similarity between the detected network partition and the planted network parti-

tion of the synthetic network. To compare the network partitions, we adopt the

normalized mutual information (NMI) [29], a commonly used metric of the sim-

ilarity between network partitions. The normalized mutual information has the

value in the range [0,1]. A value of 0 indicates that the two compared community

divisions are totally dissimilar while the value of 1 indicates that the two network

partitions are identical. The larger the normalized mutual information, the more

similar the two compared network partitions.

4.3.1 The GN benchmark

Figure 4.1 plots the normalized mutual information scores achieved by meta-

LPAm+ and the compared algorithms on the GN benchmark networks as functions

of µ. It is noted that communities in the GN benchmark networks are well-defined

for µ < 0.75 [62]. As µ increases, the community structure of the GN benchmark

networks is harder to detect. The NMI scores of meta-LPAm+ and the compared

algorithms are divided into three different sub-figures. In each sub-figure, the NMI

score of meta-LPAm+ is re-plotted to make the comparison easier. As can be seen

from the sub-figures, meta-LPAm+ performs significantly better than LPAm, Fast-

greedy, and Infomap on the GN benchmark networks. Meta-LPAm+ has a similar

NMI score with LPAm+, MSG-VM, the Louvain method, and Walktrap on the GN

benchmark networks with µ up to 0.4. However, meta-LPAm+ obtains a higher

NMI score than LPAm+, MSG-VM, the Louvain method, and Walktrap on the

GN benchmark networks with µ = 0.45 and µ = 0.5. All the algorithms almost
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fail to recover the planted community structure of the GN benchmark networks

with µ ≥ 0.55.
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Figure 4.1: Normalized mutual information scores achieved by meta-LPAm+
and the compared algorithms on the GN benchmark networks.



Chapter 4 Performance Evaluation 67

The results show that meta-LPAm+ is the best performing algorithm among the

evaluated algorithms on the GN benchmark networks.

4.3.2 The LFR benchmark

Figure 4.2 plots the NMI scores achieved by meta-LPAm+ and the compared

algorithms on the LFR benchmark networks with N = 1000 as functions of µ. It

is noted that communities in the LFR benchmark networks with N = 1000 are

well-defined for µ < (N−nmaxc )/N with nmaxc being the largest size of a community

in the networks [62]. Since we set nmaxc = 100 in our experiments, communities in

the LFR benchmark networks are well defined for µ < 0.9. As can be seen from the

figure, meta-LPAm+ gives a similar NMI score with LPAm, LPAm+, the Louvain

method, Walktrap, and Infomap for µ up to 0.60. However, meta-LPAm+ has

a higher NMI score than these algorithms on the LFR benchmark networks with

N = 1000 for µ = 0.65 and µ = 0.70.

Figure 4.3 shows the NMI scores given by meta-LPAm+ and the compared algo-

rithms on the LFR benchmark networks with N = 5000 as functions of µ. As

shown in the figure, meta-LPAm+ has a similar NMI score with LPAm+ and

the Louvain method on these benchmark networks but generally has a lower NMI

score than LPAm, Walktrap, and Infomap. The disadvantage of meta-LPAm+

with respect to LPAm, Walktrap, and Infomap on the LFR benchmark networks

with N = 5000 is likely due to the resolution limit [37] of modularity. This limita-

tion of modularity implies that the community division with maximum modularity

may not recover communities whose sizes are smaller than a specific scale com-

pared with the network size. As for the LFR benchmark networks with N = 5000,

communities generally have small size-scales. Since meta-LPAm+ finds a bet-

ter approximation of the maximum modularity value than LPAm on the LFR

benchmark with N = 5000 (see Table 4.4), meta-LPAm+ results in a lower NMI

score than LPAm. As for Walktrap and Infomap, these algorithms do not maxi-

mize modularity to identify communities and, therefore, the algorithms avoid the

limitation of modularity. Therefore, Walktrap and Infomap perform better than

meta-LPAm+ the LFR benchmark networks with N = 5000.

The results show that meta-LPAm+ outperforms the other algorithms, in term of

detection accuracy, on the LFR benchmark networks with N = 1000. However,

meta-LPAm+ performs worse than LPAm, Walktrap, and Infomap on the LFR

benchmark networks with N = 5000.
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Up to this point, we have mainly focused on the performance of meta-LPAm+
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Figure 4.2: Normalized mutual information scores achieved by meta-LPAm+
and the compared algorithms on the LFR benchmark networks with N = 1000.
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Figure 4.3: Normalized mutual information scores achieved by meta-LPAm+
and the compared algorithms on the LFR benchmark networks with N = 5000.

on undirected networks. As meta-LPAm+ can handle directed networks, we fur-

ther evaluate the performance of meta-LPAm+ for the directed case. Among the
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compared algorithms, only Infomap works with directed networks while the other

algorithms can be extended to the directed case but have not been explicitly im-

plemented. Moreover, Infomap is regarded as the state-of-the-art algorithm for

detecting communities in directed networks [62]. We therefore compare the per-

formances of meta-LPAm+ and Infomap on directed LFR benchmark networks

[61].

Figure 4.4 plots the NMI scores obtained by meta-LPAm+ and Infomap on the

directed LFR benchmark networks with N = 1000 and N = 5000 as functions

of µ. In the directed LFR benchmark networks, the parameter µ defines the

fraction of incoming links which point to each node from other nodes outside its

community [61]. The value of µ is also the fraction of outgoing links which point
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Figure 4.4: Normalized mutual information scores achieved by meta-LPAm+
and Infomap on the directed LFR benchmark networks with N = 1000 (a) and

N = 5000 (b).
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from each node to other nodes outside its community [61]. As can be seen from

the figure, the performances of meta-LPAm+ and Infomap on the directed LFR

benchmark networks are similar to the performances of these algorithms on the

undirected ones. Meta-LPAm+ performs better than Infomap on the directed LFR

benchmark networks with N = 1000 but has a lower performance than Infomap

on the directed LFR benchmark networks with N = 5000.

4.4 Summary

In this chapter, we evaluated our proposed algorithm meta-LPAm+ and existing

community detection algorithms on synthetic and real networks.

The experimental results show that meta-LPAm+ finds community divisions with

higher modularity than LPAm+ on networks with weak community structure,

where communities have more inter-community connections than intra-community

connections, while resulting in a comparable modularity value with LPAm+ on

networks with strong community structure, where communities have more intra-

community connections than inter-community connections. Meta-LPAm+ also

outperforms the other modularity optimization methods including Fastgreedy,

MSG-VM, and the Louvain method, in term of modularity, on networks with

weak community structure.

The results also show that meta-LPAm+ is the best performing algorithm, in

term of detection accuracy, on the synthetic networks of small size. However, as

the network size increases, meta-LPAm+ performs worse compared with LPAm,

Walktrap, and Infomap.



Chapter 5

A Benchmark with Community

Mixing Heterogeneity and

Outliers

This chapter presents our approach to develop a realistic benchmark for evaluating

community detection algorithms with heterogeneous community mixing fractions

and outliers. We first give an overview of the state-of-the-art benchmark LFR

[61] which is the foundation of our proposed benchmark. We then present our ex-

tensions to the LFR benchmark that incorporate the heterogeneity in community

mixing fractions and the presence of outliers. Afterward, we extend our proposed

benchmark for generating overlapping communities. Finally, we analyze the com-

putational complexity of the construction process of our proposed benchmark.

Parts of the content of this chapter have been published in [69].

5.1 Construction of the LFR benchmark

The LFR benchmark, introduced by Lancichinetti, Fortunato, and Radicchi in

[65, 61], is regarded as the state-of-the-art benchmark for evaluating community

detection algorithms [38]. This benchmark accounts for the heterogeneity of node

degree and community size. A network realization of the LFR benchmark is con-

structed as follows [65, 61]:

72
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1. The network is given a number N of nodes. The degrees of the nodes are

taken from a power-law distribution with exponent γ. The power-law distri-

bution of node degree is randomly generated such that the average degree of

nodes is k and the maximum degree of nodes is kmax.

2. The sizes of communities are taken from a power-law distribution with expo-

nent β. The power-law distribution of community size is randomly generated

such that the minimum community size is smin, the maximum community

size is smax, and the sum of all community sizes equals the number of nodes

in the network.

3. Each node shares a fraction µ of links, with respect to the total number of

links of the node, with nodes in its community and shares a fraction 1−µ of

links with nodes outside its community. Nodes are then randomly assigned

to communities under the condition that the number of internal links of

each node, with respect to its community, must not exceed the size of the

community.

4. Links among nodes in the same communities are created. This is equivalent

to generating links for a number of sub-networks with one sub-network for

each community. The number of nodes in each subnetwork is the number

of nodes in the corresponding community and the degrees of nodes in the

sub-network are the internal degrees of nodes in the community. Nodes in

each sub-network are connected by the stub-pairing algorithm which is also

referred to as the configuration model [85]. This stub-pairing algorithm can

be described as follows. Each node in the sub-network is attached with a

stub, which can be seen as a ”half” edge. All the stubs of nodes are then

randomly paired together. A link is created between two nodes if two subs

attached to the two nodes are paired. After all stubs of nodes in the sub-

network are paired, a link rewiring procedure is performed to avoid multiple

links between nodes in the sub-network [61].

5. Links between nodes in different communities are created. This is equivalent

to generating links for a new network of N nodes with the degrees of the

nodes are the external degrees of nodes in the generating network. Nodes

in the new network are connected by the configuration model [85]. A link

rewiring procedure is then performed to avoid links between nodes in the

same community.
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Table 5.1: Network parameters of the LFR benchmark.

Parameter Description

N Number of nodes

k Average degree of nodes
kmax Maximum degree of nodes
smin Minimum size of communities
smax Maximum size of communities
γ Power-law exponent for node degree sequence
β Power-law exponent for community size sequence
µ Mixing parameter

Algorithm 14 Steps in the LFR algorithm [61] to generate benchmark networks,
with homogeneous community mixing fractions and without outliers

1: Generate N nodes and, for each node, determine the node degree from the
three parameters k, kmax and γ.

2: Generate the communities using smin, smax and β.
3: For each node, determine the numbers of internal links and external links from
µ.

4: Generate links connecting nodes in the same communities to match the num-
bers of internal links of nodes determined in step 3.

5: Generate links connecting nodes in different communities to match the num-
bers of external links of nodes determined in step 3.

Figure 5.1: A realization of the LFR benchmark.
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We summarize the network parameters of the LFR benchmark in Table 5.1 and

the steps of the LFR algorithm in Algorithm 14 as these details are crucial to

understanding our extensions to the LFR benchmark. Figure 5.1 illustrates a

realization of the LFR benchmark with the network size of 128 nodes.

5.2 GLFR: a generalization of LFR with het-

erogeneous community mixing fractions and

outliers

5.2.1 Incorporating community mixing heterogeneity

In this section, we extend the LFR benchmark by incorporating the heterogeneity

in community mixing fractions. Our main extension of the LFR benchmark is to

replace the single mixing parameters µ in Table 5.1 with a set of different mixing

parameters {µ1, . . . , µm} for community 1, . . . ,m in the benchmark network. For

community c with mixing fraction µc, nodes in community c have the same fraction

µc of external links and the same fraction 1− µc of internal links. Therefore, the

mixing fraction of a community is also the fraction of external links for every node

in the community. There are several conditions that µ1, . . . , µm need to meet for

them to be valid mixing fractions in our generalized LFR model with community

mixing heterogeneity. We list and discuss them below.

Condition 1. (Average Mixing Fraction) We would like the average mixing

fraction to remain as µ so that our model reduces to the LFR benchmark as a

special case. For this purpose, the mixing fractions of communities are taken from

a uniform distribution in the range of µ−∆µ to µ+ ∆µ.

Condition 2. (Well-defined Community) The mixing fraction of a community

makes sense only if the community is well defined. The condition for the existence

of community c is [62]

pini > pouti

for every node i in the community, where pini is the connection probability between

node i and other nodes in community c, and pouti is the connection probability

between node i and nodes outside community c. Let ki, k
int
i and kexti be the total

degree, the internal degree and the external degree of node i respectively. Let κc

be the total degree of nodes in community c, and κ is the total degree of nodes in
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the whole network. The following lemma gives the condition for µc to be a valid

mixing parameter.

Lemma 5.1. For a community c with a mixing parameter µc, total node degree κ

and total internal node degree κc to be well-defined, the condition on µc is

µc <
κ− κc
κ

Proof. We start with the standard definitions for pini and pouti in [62]

pini =
kinti

κc

and

pouti =
kexti

κ− κc
,

The condition pini > pouti becomes

kinti

κc
>

kexti

κ− κc
. (5.1)

As µc is the fraction of external links of node i, we have

kinti = (1− µc)ki (5.2)

and

kexti = µcki (5.3)

Substituting (5.2) and (5.3) into (5.1), the condition pini > pouti is equivalent to

(1− µc)
κc

>
µc

κ− κc
⇒ µc <

κ− κc
κ

As shown in Lemma 5.1, a community c exists only if the mixing fraction µc is

smaller than the ratio between the total degree of nodes outside the community

and the total degree of nodes in the network. This ratio is also the maximum

value that can be assigned to the mixing fraction µc. As different communities

may have different κc, they will have different upper-bound on µc. For the sake of

simplicity, in our generalized benchmark, we use the same maximum valid value

µmax for the mixing fractions of every community in the network, which is defined
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as

µmax =
κ− κmax

κ
,

where κmax is the largest total degree of nodes in a community in the network

Condition 3. (Non-negative Mixing Fraction) The mixing fractions µc > 0

for all communities c is to ensure the connectivity of the communities. This is a

trivial condition but is crucial for generating a valid network. In our generalized

benchmark, we use a common lower bound µmin = 0.025 for all communities.

Combining conditions 1, 2, and 3, the mixing fractions of communities in the

network are generated from a uniform distribution in the range [max(µmin, µ −
∆µ),min(µmax, µ + ∆µ)] with the average µ of the mixing fractions. Our gener-

alized benchmark takes an additional parameter ∆µ, named mixing heterogeneity

parameter, in addition to those in Table 5.1.

The steps to generate benchmark networks with heterogeneous community mixing

fractions are summarized in Algorithm 15. The main differences between Algo-

rithm 14 and Algorithm 15 are in steps 3 and 4 where different community mixing

fractions are introduced.

Algorithm 15 Steps in our GLFR algorithm to generate benchmark networks
with heterogeneous community mixing fractions

1: Generate N nodes and, for each node, determine the node degree from the
three parameters k, kmax and γ.

2: Generate the communities using smin, smax and β.
3: For each community c, determine the mixing parameter µc from a uniform

distribution on the support [max(µmin, µ −∆µ),min(µmax, µ + ∆µ)] with the
average µ of the mixing parameters.

4: For each node in community c, determine the numbers of internal links and
external links from µc.

5: Generate links connecting nodes in the same communities to match the num-
bers of internal links of nodes determined in step 4.

6: Generate links connecting nodes in different communities to match the num-
bers of external links of nodes determined in step 4.

The proposed benchmark GLFR allows us to control the heterogeneity of the

mixing fractions of communities by the parameter ∆µ. For ∆µ = 0, all the mixing

fractions of communities are fixed by µ and the generated graphs are the same

as the ones produced by the LFR benchmark. The greater ∆µ, the more diverse

the mixing fractions of communities. The ambiguity of community structure is

controlled mainly by the parameter µ. A network with a larger µ generally has

more links, on average, between communities than with a smaller µ, and therefore,
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the built-in communities with a larger µ are often harder to detect than with a

smaller µ.

Figure 5.2 illustrates the distribution of the mixing fractions of communities in

networks with N = 1000 and µ = 0.5 for different ∆µ. We observe that our exten-

sion to the LFR benchmark generates a rich heterogeneity among the community

mixing fractions. The fraction of external links of every node in a community is

expected to be assigned the mixing fraction of the community. However, since

the number of the possible values of the fraction of external links of a node is

limited and dependent on the node degree, the fraction of external links of a node
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Figure 5.2: Distribution of the mixing fractions of communities in networks
with N = 1000 and µ = 0.5.
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with N = 1000 and µ = 0.5.
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Figure 5.4: (Color online) A realization of the GLFR benchmark, with pa-
rameters N = 128, k = 16, kmax = 32, µ = 0.2, and ∆µ = 0.2. The network
consists of five communities represented by different colors. The community

mixing fractions are heterogeneously distributed.

is assigned the possible value closest to the mixing fraction of its associated com-

munity. The distribution of the fractions of external links of nodes in networks

with N = 1000 and µ = 0.5 is demonstrated in Figure 5.3. Again we observe a

large variety of fractions of external links among the nodes. Note that the original

LFR benchmark provides only a single mixing value and corresponds to the case

where ∆µ = 0 in our generalized LFR model. Figure 5.4 shows a realization of

the GLFR benchmark with heterogeneous community mixing fractions.

5.2.2 Incorporating outliers

In this section, we extend our proposed benchmark GLFR to incorporate the

presence of outliers. We introduce a new network parameter ns to control the

number of outliers in the network. The network size, in term of the total number

of nodes in the network, is, therefore, the sum of the number N of nodes in

communities and the number ns of outliers. Each outlier has a fraction µs of

links to nodes in communities and a fraction 1 − µs of links to other outliers.
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Edges in the networks are randomly created by the stub-pairing method, or the

configuration model [85], to match the numbers of internal links and external

links of nodes in communities and the numbers of internal links and external

links outliers. Internal links and external links of outliers are defined with respect

to the group of the outliers. The following requirements need to be satisfied to

ensure random connections among outliers and between outliers and the rest of

the network.

Condition 4. (Random connections) The connection probability, pini , between

outlier i and other outliers is equal to the connection probability, pouti , between

the outlier and nodes in communities. Let κs be the total degree of outliers in the

network and κ be sum of the total degree of nodes in communities and the total

degree of outliers in the network. The condition pini = pouti is satisfied for

µs =
κ− κs
κ

. (5.4)

The proof that pini = pouti for the value of µs given by Equation 5.4 is similar to

the proof of Lemma 5.1.

Condition 5. (Internal and external degrees of outliers) The total external

degree of nodes in communities must not be smaller than the total external degree

of outliers, that is ∑
c

µcκc ≥ µsκs,

where c is a community in the network, µc is the mixing fraction, or the fractions

of external links, of community c and κc is the total degree of nodes in community

c.

This condition is to guarantee that condition 4 can be satisfied so that all external

links of outliers are connected to nodes in communities.

The proposed benchmark GLFR has an additional parameter ns, to those existing

in the benchmark, which controls the number of outliers in the network. The

GLFR benchmark, therefore, allows evaluating the performance of community

detection algorithm as a function of the number of outliers. When ns is set to 0,

the generated networks consist of only nodes in communities.

The steps to generate networks with heterogeneous community mixing fractions

and outliers are summarized in Algorithm 16. The main difference between Algo-

rithm 16 and Algorithm 15 is in steps 1, 5, and 7 where outliers are introduced.

Figure 5.5 shows a realization of the GLFR benchmark with outliers.



Chapter 5 A Benchmark with Community Mixing Heterogeneity and Outliers 81

Algorithm 16 Steps in our GLFR algorithm to generate benchmark networks
with community mixing heterogeneity and outliers

1: Generate N + ns nodes and, for each node, determine the node degree from
the three parameters k, kmax and γ.

2: Generate the communities for N nodes (randomly selected) using smin, smax
and β.

3: For each community c, determine the mixing parameter µc from a uniform
distribution on the support [max(µmin, µ −∆µ),min(µmax, µ + ∆µ)] with the
average µ of the mixing parameters.

4: For each node in community c, determine the numbers of internal links and
external links from µc.

5: For each node that has not been assigned into any community, determine the
numbers of internal links and external links, with respect to the group of these
nodes, using the equation (5.4).

6: Generate links connecting nodes in the same communities to match the num-
bers of internal links of the nodes determined in step 4.

7: Generate links connecting nodes without community membership to match
the numbers of internal links of the nodes determined in step 5.

8: Generate links connecting nodes in the network to match the numbers of ex-
ternal links of nodes determined in steps 4 and 5.

Figure 5.5: (Color online) A realization of the GLFR benchmark, with N =
128, k = 16, kmax = 32, µ = 0.1, ∆µ = 0, and ns = 10. The network consists of

five communities (in different colors) and ten outliers (in white color).
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5.3 Extending GLFR to overlapping communi-

ties

Real networks may have overlapping communities [96], with nodes belonging to

more than one community at a time. This feature of real networks has been

introduced in the LFR benchmark [61]. However, so far, we have not explained how

to allow nodes to have multiple community memberships in our GLFR benchmark.

In this section, we extend our GLFR benchmark to overlapping communities as

follows.

We generate communities with overlapping nodes using a procedure as in the LFR

benchmark [61]. We first assign the numbers of community memberships for N

nodes. The number of overlapping nodes is determined by parameter on, with on ≤
N . For simplicity, we assume that overlapping nodes have the same number, which

is determined by parameter om, of community memberships. Community sizes are

randomly generated to satisfy the constraint that the sum of the community sizes

must equal the sum of the numbers of community memberships of nodes, that is

nc∑
i=1

sci = on ∗ om +N − on,

where nc is the number of communities to be generated and sci is the size of

community ci. Nodes are then assigned to communities using the configuration

model [85] as follows. Each non-overlapping node is attached with a stub and

each overlapping node is attached with a number om of stubs. Each community

is attached with a number sci of stubs. Nodes are connected to communities by

randomly pairing stubs of nodes and stubs of communities. A node is assigned

into a community if a stub of the node and a stub of the community are paired

together. After all stubs of nodes and communities are paired, a link rewriting

procedure is performed to avoid multiple links between a node and a community

[61].

Since overlapping nodes are assigned into multiple communities, we need to deter-

mine the numbers of internal links and external links of these nodes. The numbers

of internal links and external links of each overlapping node are defined from all

the mixing fractions of its associated communities. Let i be an overlapping node

and {c1, c2, .., cmi
} be the set of communities associated with node i, where mi is

the number of the associated communities. Let ki be the degree of node i and κcj
be the total degree of community cj. The number of links (including internal links
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and external links) that node i shares with community ci is chosen to be

ki(cj) =
κcj∑mi

l=1

κcl
ki.

Since each community has a different mixing fraction, the number of external links

that node i shares with community cj is

kexti (cj) = µcjki(cj),

where µcj is the mixing fraction of community cj.

We can rewrite kexti (cj) as

kexti (cj) =
µcjκcj∑mi

l=1

κcl
ki.

Therefore, the total number of external links of node i is

kexti =

∑mi

l=1

µclκcl∑mi

l=1

κcl
ki. (5.5)

The number of internal links that node i shares with community cj is

kinti (cj) = ki(cj)− kexti (cj),

, or equivalently,

kinti (cj) =
(1− µcj)κcj∑mi

l=1

κcl
ki. (5.6)

As now we have determined the number of external links of each overlapping

node and the numbers of internal links that each node shares with its associated

communities, we need to modify the construction process of GLFR to match the

numbers of internal links and external links of the nodes. This involves steps 4 and

5 of the construction process of the LFR benchmark. Step 4 is to generate links

among nodes in the same communities. This step is equivalent to generating links

for sub-networks with one sub-network for each community. The degree of nodes

in each sub-network are the internal degrees of the nodes that are assigned for the

corresponding community, calculated from Equation (5.6). Step 5 is to generate
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links among nodes in different communities. This step is equivalent to generating

a new network of N nodes with the degrees of the nodes being the external degrees

of nodes in the generating networks, calculated from Equation (5.5).

Table 5.2: Network parameters of the GLFR benchmark.

Parameter Description

N Number of nodes

k Average degree of nodes
kmax Maximum degree of nodes
smin Minimum size of communities
smax Maximum size of communities
γ Power-law exponent for node degree sequence
β Power-law exponent for community size sequence
µ Average mixing parameter

∆µ Community mixing heterogeneity parameter
ns Number of outliers
on Number of overlapping nodes
om Number of communities associated with each overlapping node

Algorithm 17 Steps in our GLFR algorithm to generate overlapping benchmark
networks with heterogeneous community mixing fractions and outliers

1: Generate N + ns nodes and, for each node, determine the node degree from
the three parameters k, kmax, γ.

2: Determine the numbers of community memberships for N nodes from the two
parameters on and om.

3: Generate the communities for N nodes (randomly selected) to match the num-
ber of community memberships of each node using smin, smax, β.

4: For each community c, determine the mixing parameter µc from a uniform
distribution on the support [max(µmin, µ −∆µ),min(µmax, µ + ∆µ)] with the
average µ of the mixing parameters.

5: For each node in community c, determine the numbers of internal links, with
respect to the community, using the equation (5.6) and external links using
the equation (5.5).

6: For each node that has not been assigned into any community, determine the
numbers of internal links and external links, with respect to the group of these
nodes, using the equation (5.4).

7: Generate links connecting nodes in the same communities to match the num-
bers of internal links of the nodes determined in step 5.

8: Generate links connecting nodes without community membership to match
the numbers of internal links of the nodes determined in step 6.

9: Generate links connecting nodes in the network to match the numbers of ex-
ternal links of nodes determined in steps 5 and 6.
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The steps of the GLFR algorithm to generate networks with heterogeneous com-

munity mixing fractions, outliers, and overlapping communities are summarized in

Algorithm 17. The main differences between Algorithm 17 and Algorithm 16 are

in steps 2, 3, and 5 where overlapping nodes are involved. The network parameters

of the GLFR benchmark are summarized in Table 5.2.

5.4 Computational complexity
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Figure 5.6: (Color online) Running time of the GLFR algorithm for different
∆µ (a) and for different ns (b) as a function of the number of nodes N . The

mixing parameter µ is set equal to 0.5.
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The computational complexity of the GLFR algorithm is mainly calculated from

steps 7, 8, and 9 in Algorithm 17 where links between nodes are created. In these

steps, the links are created using the configuration model which takes a linear run-

ning time as in the LFR benchmark [61]. The steps of generating heterogeneous

community mixing fractions and outliers in the GLFR algorithm does not intro-

duce more complexity into the algorithm. The complexity of the GLFR algorithm

is, therefore, O(m) with m being the number of links in the networks [61]. Figure

5.6 demonstrates the running time of the GLFR algorithm which scales linearly

with the number of nodes in the network, or interchangeably the number of links

for sparse networks.

5.5 Summary

In this chapter, we proposed a new benchmark for evaluating community detec-

tion algorithms with heterogeneous community mixing fractions and outliers. Our

proposed benchmark extends the state-of-the-art benchmark LFR [65, 61] by in-

corporating the heterogeneity in community mixing fractions and the presence of

outliers.

Our proposed benchmark generates a network by performing a sequence of nine

construction steps. The first six steps of the construction algorithm are to deter-

mine the properties of nodes and communities from network parameters. While

the LFR benchmark assigns the same mixing fraction to every community in the

network, our proposed benchmark assigns different mixing fractions to different

communities. Furthermore, while the LFR benchmark assigns each node to at

least a community, our proposed benchmark allows generating outliers which have

no community membership. We determined five conditions on community mixing

fractions and outliers to guarantee the validity of the community structure. The

last three steps of the construction algorithm are to generate links between nodes

in the same communities, links between outliers, and links between nodes in dif-

ferent communities and outliers by the configuration model [85]. The proposed

benchmark has two additional network parameters, to those existing in the LFR

benchmark, to control the variation in community mixing fractions and the num-

ber of outliers. The new benchmark therefore allows evaluating the performance

of community detection algorithms as a function of the heterogeneity among com-

munity mixing fractions and the number of outliers.
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It should be noted, however, our model basically follows the Stochastic Block

Model (SBM) [47] which involves dividing nodes into blocks, or groups, and using

an independent stochastic link formation process to construct the network. The

network construction process, therefore, cannot closely resemble the complex gen-

erative process of real networks and the synthetic networks lacks many features

of the real ones. Some of these missing features include the presence of motifs,

or link patterns that frequently occur in networks [84], high network transitivity

[17], the correlations of node degrees [11], and the hierarchical structure of (possi-

ble) overlapping communities [2]. Furthermore, our proposed benchmark assumes

that the mixing fractions of communities follow a uniform distribution which may

not always hold for a wide range of real networks. Our proposed benchmark also

assumes that communities in a network to be static over time while real networks

change over time through the addition or deletion of nodes and links [11].

The lack of the realistic characteristics in our model may neglect the challenges

that community detection algorithms need to overcome on real networks. The

detection algorithms, therefore, can easily recover communities in synthetic net-

works but hardly find communities in real ones. This is partially demonstrated

by the strong disagreements between the communities identified by the detection

algorithms and the communities observed by node information, or meta-data, in

many real networks [97]. However, note that these strong disagreements may also

be due to incorrect data handling [97]. As evaluating the reliability of observed

communities, or ground-truths, in real networks is difficult, incorporating more

realistic properties of real networks into benchmarks could make the tests of com-

munity detection algorithms more reliable. A possible way for doing this is to

replace the employed SBM model by other more realistic models such as the hier-

archical network model [104], the growing network model [52], or the BA model

[95].



Chapter 6

Experimental Analysis

This chapter presents our experimental analysis to quantify the effects of the

variation in community mixing fractions and outliers on the performances of com-

munity detection algorithms. This chapter also provides our quantitative analysis

to compare the evaluation of the detection algorithms on the proposed benchmark

GLFR presented in the previous chapter, with heterogeneous community mixing

fractions and outliers, and the evaluation of the algorithms on the state-of-the-

art benchmark LFR [65, 61], with homogeneous community mixing fractions and

without outliers, with respect to reflecting the performances of the algorithms on

real networks. Parts of the results in this chapter have been published in [69].

6.1 Experiment setting

The experiment setting is as follows. We evaluate the following community de-

tection algorithms on the LFR benchmark and our GLFR benchmark: the label

propagation algorithm (LPA) [102], the modularity-specialized label propagation

algorithm (LPAm) [12], Fastgreedy [22, 119], the Louvain method [15], Infomap

[108], and Walktrap [98]. We use two different network sizes, N = 1000 and

N = 5000, to generate synthetic networks of small and large sizes respectively.

The other network parameters include the average degree of nodes k, the max-

imum degree of nodes kmax, the minimum community size smin, the maximum

community size smax, the exponents γ and β are set as follows: k = 20, kmax = 50,

smin = 20, smax = 100, γ = −2 and β = −2. The performance, in term of detec-

tion accuracy, of the tested algorithms are measured by the Normalized Mutual

88



Chapter 6 Experimental Analysis 89

Information (NMI) [29], a measure of the similarity between two partitions of a

network based on information theory.

6.2 Effects of the variation in community mixing

fractions and outliers on community detec-

tion methods

6.2.1 Variation in community mixing fractions

To quantify the impact of the variation in community mixing fractions on the

performances of the tested algorithms, we set the parameter ∆µ of the GLFR

benchmark to 0.3.

Figure 6.1 and Figure 6.2 shows the performances of the tested methods on the

LFR benchmark and the GLFR benchmark with ∆µ = 0.3 for N = 1000 and N =

5000 respectively, as functions of µ. The performances of the original Fastgreedy

algorithm [22], the Louvain method, and Infomap on the LFR benchmark have

previously been reported in [62]. As can be seen from the figures, the performances

of the tested methods change in different ways as the mixing fraction varies among

communities. For example, as detailed in Table 6.1, the performance of LPAm on

networks with N = 1000 and µ = 0.6 decreases significantly from 0.94 on the LFR

benchmark to 0.65 on the GLFR benchmark while the performance of Walktrap

decreases less significantly from 0.88 to 0.74. The performance of the Louvain

method on networks with N = 5000 and µ = 0.5 declines from 0.92 on LFR to

0.84 on GLFR while the performance of LPA drops more rapidly from 1.0 to 0.69,

as detailed in Table 6.2.

LPAm and Walktrap exchange their relative orders in which the methods are

ranked based on their performances between the LFR benchmark and the GLFR

benchmark for N = 1000 and µ = 0.6. The Louvain method and LPA swap their

relative performance ranking orders between the benchmarks for N = 5000 and

µ = 0.5. The exchange in the relative performance ranking orders of the methods

could affect the decision to select a particular detecting algorithm because an algo-

rithm with higher performance is more likely to be selected to detect communities

than an algorithm with lower performance.
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Figure 6.1: (Color online) Performances of the tested methods on the LFR
benchmark (A) and the GLFR benchamrk with ∆µ = 0.3 (B) for N = 1000.

Each data point is the average over 100 network realizations.
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Figure 6.2: (Color online) Performances of the tested methods on the LFR
benchmark (A) and the the GLFR benchmark with ∆µ = 0.3 (B) for N = 5000.

Each data point is the average over 100 network realizations.

To explain the change in the relative performance ranking orders of the tested

methods, we plot in Figure 6.3 the performances of LPAm and Walktrap on the

GLFR benchmark with N = 1000 as functions of µ and ∆µ. As can be seen

from the figure, the performance of LPAm on the networks with N = 1000 and

µ = 0.6, where the dashed line is plotted, falls more rapidly than the performance

of Walktrap does as ∆µ increases. This is due to the reason that LPAm is more

sensitive to community mixing fractions greater than 0.6 than Walktrap. Since

LPAm merges nodes into communities to greedily improve network modularity,

this algorithm easily gets stuck in a poor local maximum for the large values of
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Table 6.1: Performances (NMI) of the tested methods on the LFR benchmark
and the GLFR benchmark with ∆µ = 0.3 for N = 1000, µ = 0.5 and µ = 0.6

Method
N = 1000, µ = 0.5 N = 1000, µ = 0.6

LFR
GLFR,

LFR
GLFR,

∆µ = 0.3 ∆µ = 0.3
LPAm 0.99 0.82 0.94 0.65

Walktrap 1.00 0.85 0.88 0.74
Louvain 0.99 0.81 0.94 0.65
Infomap 1.00 0.86 1.00 0.64

LPA 0.87 0.68 0.02 0.43
Fastgreedy 0.59 0.58 0.40 0.42

Table 6.2: Performances (NMI) of the tested methods on the LFR benchmark
and the GLFR benchmark with ∆µ = 0.3 for N = 5000, µ = 0.5 and µ = 0.6

Method
N = 5000, µ = 0.5 N = 5000, µ = 0.6

LFR
GLFR,

LFR
GLFR,

∆µ = 0.3 ∆µ = 0.3
LPAm 0.99 0.92 0.99 0.79

Walktrap 0.99 0.87 0.95 0.79
Louvain 0.92 0.84 0.90 0.72
Infomap 1.00 0.99 1.00 0.88

LPA 1.00 0.69 0.99 0.45
Fastgreedy 0.58 0.56 0.43 0.42

community mixing fractions. This is the local maxima problem of LPAm as shown

in [75, 68]. Whereas, Walktrap is less affected by the local maxima problem since

this algorithm iteratively merges nodes into communities based on the structural

similarities among nodes and chooses the network partition with the highest mod-

ularity value obtained during the community merging process as the community

structure. Recall that LFR is a specific realization of GLFR with ∆µ = 0. This

explains why LPAm and Walktrap exchange their relative performance ranking

orders between the benchmarks for N = 1000 and µ = 0.6. The exchange of the

relative performance ranking orders of the Louvain method and LPA between the

benchmarks appears to result from the different sensitivities of the methods on

community mixing fractions with large values.

The experimental results show that the performances of many existing community

detection algorithms respond asymmetrically to the variation in community mix-

ing fractions. The heterogeneity of community mixing fractions can also re-rank
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Figure 6.3: (Color online) Performances of LPAm and Walktrap on the GLFR
benchmark with N = 1000 as functions of µ and ∆µ.

the relative performance orders of the methods. As the mixing fractions of com-

munities in real networks are likely more heterogeneous than homogeneous, it is

important to perform the heterogeneous community mixing tests on benchmarks

in order to comprehensively compare community detection methods.

6.2.2 Outliers

To quantify the impacts of outliers on the performances of the detection algo-

rithms, we set the number ns of outliers in the GLFR benchmark to 30% of the

number N of nodes in communities, which means ns = 300 for N = 1000 and

ns = 1500 for N = 5000. Since the tested algorithms have no feature to sepa-

rate outliers from nodes in communities, the detected community division should

ideally have each outlier in its own community or have all outliers grouped into a

single community. Here we assume that the best community division found by the

tested algorithms contains a single community of all outliers in the network. The
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performances of the tested algorithms on the benchmarks are, therefore, evaluated

based on the similarity between the detected community division and the planted

community division in which the group of outliers forms as a pseudo-community.

Figure 6.4 and Figure 6.5 plot the performances of the evaluated algorithms on the

LFR benchmark and the GLFR benchmark for N = 1000 and N = 5000 respec-

tively, as functions of µ. It is noted that the performances of the tested methods

on the GLFR benchmark are not available for µ = 0.05 since the validity of the

community structure is not preserved for this value of µ. As can be seen from the

figures, the evaluation of the algorithms on the LFR benchmark, without outliers,

cannot discriminate the performances of the algorithms for µ < 0.5 since all the

algorithms, except Fastgreedy, obtain comparable performances. Furthermore, for

µ < 0.5, all the algorithms almost achieve the highest possible performances and,

therefore, there is no room for performance improvement. Whereas, the evalua-

tion of the algorithms on the GLFR benchmark, with outliers, visibly separate

the performances of the algorithms into different groups. Walktrap achieves the

highest performance among the algorithms for µ < 0.5. Infomap has the second

highest performance while LPAm and the Louvain method perform worse than

Infomap, as detailed in Table 6.3.

The results show that the presence of outliers degrades the performances of some

algorithms, such as LPAm, more significantly than others, such as Walktrap. The

effects of outliers on the performances of LPAm and Walktrap are due to the

same reasons as the effects of the variation in community mixing fractions on

the performances. When outliers are presented in the network, communities are

highly connected to each other through outliers. Since LPAm greedily maximizes

modularity to identify communities, this algorithm tends to result in a poor lo-

cal maximum modularity value, as observed in [75, 68]. However, as Walktrap

groups nodes into communities based on their structural similarities and outliers

are highly structural similar, this algorithm tends to place outliers into a single

pseudo community. Therefore, the performance of LPAm is more sensitive to

outliers than the performance of Walktrap.

Furthermore, the results show that outliers reveal a potential gap, which was

not found in previous work [100, 62], between the achieved performance and the

highest possible performance of each algorithm. This suggests a room for potential

performance improvement of the algorithms which could be implemented by taking

into account the presence of outliers.
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Figure 6.4: (Color online) Performances of the tested methods on the LFR
benchmark (a) and the GLFR benchmark with ns = 300 (b) for N = 1000.

Each data point is the average over 100 network realizations.
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Figure 6.5: (Color online) Performances of the tested methods on the LFR
benchmark (a) and the GLFR benchmark with ns = 1500 (b) for N = 5000.

Each data point is the average over 100 network realizations.

As the evaluations of the algorithm with outliers and without outliers lead to

different evaluation results, it is important to evaluate the algorithms with outliers

to get a comprehensive view of the performances of the algorithms on real networks.
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Table 6.3: Performances (NMI) of the tested methods on the LFR benchmark
and the GLFR benchmark with µ = 0.3 for N = 1000 and N = 5000.

Method
N=1000, µ = 0.3 N=5000, µ = 0.3

LFR
GLFR, LFR GLFR,
ns = 150 ns = 750

LPAm 1.0 0.88 1.0 0.90
Walktrap 1.0 0.92 1.0 0.94
Louvain 1.0 0.87 0.96 0.86
Infomap 1.0 0.89 1.0 0.91

LPA 1.0 0.88 1.0 0.90
Fastgreedy 0.78 0.69 0.60 0.59

6.3 Comparisons between tests using GLFR and

using LFR

In this section, we compare the goodness of the test of the detection algorithms

with heterogeneous community mixing fractions and outliers, conducted on the

GLFR benchmark, and the test of the algorithms with homogeneous community

mixing fractions and without outliers, conducted on the LFR benchmark, with

respect to reflecting the performances of the algorithms on real networks.

As there is no available metric to measure the difference between the performances

of community detection algorithms on benchmarks and the performances that

would be expected on real networks, we present our approach to derive a metric

in order to compare the evaluation of the detection algorithms using GLFR and

the evaluation of the detection algorithms using LFR. The performance of an

algorithm running on a network with known communities is measured by the

normalized mutual information (NMI). For synthetic network a and real network

b with ground truth, the distance between the performance of algorithm CDi can

be measured by calculating the absolute difference in the NMI scores:

da,b(CDi) = |NMI(Ai, A)−NMI(Bi, B)|

where Ai and Bi are the network partitions detected by method CDi on synthetic

network a and real network b respectively, A is the planted community structure

in synthetic network a and B is the ground truth in real network b.

In real networks, we do not know exactly the ground truth data to compute the

NMI(Bi, B) as required in da,b. Therefore, we use the approximate ground truth
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in real networks as the reference to determine the approximate distance between

the performances. The approximate ground truth in a real network with strong

community structure [86], where communities are well separated, can be safely

obtained by finding the optimal network partition with respect to a well-known

community structure quality function such as modularity [92] or the map equa-

tion [108]. Since modularity is widely used as the objective function of many

algorithms to detect communities [36], we define the approximate ground truth in

a real network as the network partition with the highest modularity value found

by existing community detection algorithms when applied on the real network.

Therefore, the approximate distance between the performance of algorithm CDi

on synthetic network a and real network b with approximate ground truth B̃ can

be measured by

d̃a,b(CDi) = |NMI(Ai, A)−NMI(Bi, B̃)|

A good evaluation of algorithm CDi on a synthetic network should produce a sim-

ilar performance for the algorithm on the real network resembled by the synthetic

network. The evaluation of algorithm CDi, therefore, should have low d̃a,b(CDi).

As d̃a,b(CDi) gets close to 0, the performance of algorithm CDi on the synthetic

network gets approximately close to the performance on the real network. We

can generalize the approximate distance for an algorithm to be the average of the

approximate distances of n algorithms as follows.

Definition 7. Let CD1, CD2, .., CDn be n community detection methods. The

approximate distance between their performance on synthetic network a and the

performance that would be expected on real network b is

d̃a,b(CD1, .., CDn) =

∑n
i=1 |NMI(Ai, A)−NMI(Bi, B̃)|

n
,

where Ai and Bi are the network partitions detected by method CDi on synthetic

network a and real network b respectively, A is the planted community structure

in synthetic network a and B̃ is the approximate ground truth in real network b.

Using our proposed metric d̃a,b, we compare the evaluation of the detection al-

gorithms on the LFR benchmark and the evaluation of the detection algorithms

on the GLFR benchmark. The performances of these algorithms on several com-

monly studied real networks are used as the references to calculate d̃a,b. The real

networks include the C.elegans metabolic network (C.elegans) [50], the University

email network (E-mail) [46], the Jazz musicians network (Jazz) [41] and the Pretty
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Good Privacy web of trust social network network (PGP) [18]. For the C.elegans

metabolic network, the University email network, and the Jazz musicians network,

we calculate d̃a,b using the performances of the tested algorithms on the synthetic

networks with N = 1000 since these real networks are of small sizes with respect

to the number of nodes (approximately 1000 nodes or less). For the PGP network,

we calculate d̃a,b using the performances of the tested algorithms on the synthetic

networks with N = 5000 because this real network is of large size with regard

to the number of nodes (approximately 5000 nodes or more). The approximate

ground truth community structure in the real networks we choose to be the network

partition with the highest modularity value detected by the advanced modularity-

specialized label propagation algorithm (LPAm+) [75] since this algorithm has the

best performance with respect to network modularity among existing community

detection algorithms as reported in [75, 68]. The network sizes and the highest

modularity found by LPAm+ in the real networks are listed in Table 6.4.

Table 6.4: The number n of nodes, the number m of links, and the highest
modularity Qmax found in the real networks

Network n m Qmax

Jazz 198 2742 0.445
C.elegans 453 2025 0.451
E-mail 1133 5451 0.582
PGP 10680 24316 0.885

6.3.1 Heterogeneous community mixing versus homoge-

neous community mixing tests

Figure 6.6 shows the values of d̃a,b of the evaluation of the detection algorithms

on the LFR benchmark and the evaluation on the GLFR benchmark with ∆µ

ranging from 0.1 to 0.3 as functions of µ. According to the figure, the more the

variation in community mixing fractions, the smaller the value of d̃a,b obtained by

the evaluation on the GLFR benchmark, for µ from about 0.3 to 0.7. The smallest

value of d̃a,b of the evaluation on the GLFR benchmark is lower than the smallest

value of d̃a,b of the evaluation on the LFR benchmark for all the real networks, as

detailed in Table 6.5. For example, the smallest value of d̃a,b of the evaluation on

the GLFR benchmark for the Jazz network is approximately 0.12 for µ = 0.50 and

∆µ = 0.3 while the smallest value of d̃a,b of the evaluation on the LFR benchmark

is approximately 0.21 for µ = 0.3. The smallest value of d̃a,b of the evaluation on
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Figure 6.6: (Color online) Values of d̃a,b of the evaluation on the LFR bench-
mark and the evaluation on the GLFR benchmark with heterogeneous commu-

nity mixing fractions for four commonly studied real networks.
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Table 6.5: The smallest values of d̃a,b of the evaluation on the LFR benchmark
and the evaluation on the GLFR benchmark with corresponding values of µ and

∆µ.

Network
LFR GLFR

smallest
µ

smallest
µ ∆µ

d̃a,b d̃a,b
Jazz 0.21 0.30 0.12 0.50 0.3
C.elegans 0.20 0.65 0.09 0.60 0.2
E-mail 0.21 0.65 0.06 0.60 0.3
PGP 0.20 0.65 0.16 0.50 0.3

the GLFR benchmark for the C.elegans network is about 0.09 for µ = 0.6 and

∆µ = 0.2 while the smallest value of d̃a,b of the evaluation on the LFR benchmark

is about 0.20 for µ = 0.65.

The results clearly show that the evaluation of the detection methods on the GLFR

benchmark, with heterogeneous community mixing fractions, better reflects the

performances that would be expected on real networks than the evaluation of

the algorithms on the LFR benchmark, with homogeneous community mixing

fractions.

6.3.2 Tests with outliers versus without outliers

Figure 6.7 shows the values of d̃a,b of the evaluation of the detection algorithms on

the LFR benchmark and the evaluation of the detection algorithms on the GLFR

benchmark with ns ranging from 5% to 15% of N as functions of µ. As can be

seen from the figure, the evaluation on the GLFR benchmark networks generally

produces a smaller value of d̃a,b than the evaluation on the LFR benchmark net-

works, with the same network parameter values. The larger the number of outliers,

the smaller the value of d̃a,b that is given by the evaluation on the GLFR bench-

mark networks, except for µ > 0.6. The smallest value of d̃a,b of the test on the

GLFR benchmark is lower than the smallest value of d̃a,b of the test on the LFR

benchmark for all the real networks, as detailed in Table 6.6. For instance, the

test on the GLFR benchmark for the Jazz network produces the smallest value of

d̃a,b of approximately 0.13 for µ = 0.15 and ns = 150 while the test on the LFR

benchmark produces the smallest value of d̃a,b of approximately 0.21 for µ = 0.30.

The smallest value of d̃a,b achieved by the test on the GLFR benchmark for the

C.elegans network is approximately 0.16 for µ = 0.65 and ns = 150 while the
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Figure 6.7: (Color online) Values of d̃a,b of the evaluation on the LFR bench-
mark and the evaluation on the GLFR benchmark with outliers for four com-

monly studied real networks.
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Table 6.6: The smallest values of d̃a,b of the evaluation on the LFR benchmark
and the evaluation on the GLFR benchmark with corresponding values of µ and

ns.

Network
LFR GLFR

smallest
µ

smallest
µ ns

d̃a,b d̃a,b
Jazz 0.21 0.30 0.13 0.15 150
C.elegans 0.20 0.65 0.16 0.65 150
E-mail 0.21 0.65 0.17 0.65 150
PGP 0.20 0.65 0.13 0.15 750

smallest value of d̃a,b achieved by the test on the LFR benchmark is about 0.20

for µ = 0.65.

The results indicate that the tests of the detection algorithms on the GLFR

benchmark, with outliers, more closely resemble the performances that would be

achieved on real networks than the tests on the LFR benchmark, without outliers.

6.4 Summary

In this chapter, we first evaluated existing community detection algorithms on

our proposed benchmark to quantify the effects of the variation in community

mixing fractions and outliers on the performances of the detection algorithms.

The evaluated algorithms include LPA [102], LPAm [12], Fastgreedy [22, 119], the

Louvain method [15], Infomap [108], and Walktrap [98]. We found that that the

variation in community mixing fractions changes the performances of different de-

tection algorithms in different ways that exchange the performance ranking orders

of some detection algorithms. We also found that the evaluation of the detection

algorithms with outliers better discriminates the performances of the detection

algorithms than the evaluation of the algorithms without outliers. The presence

of outliers in networks poses more difficult performance tests to the detection al-

gorithms that reveals a gap between the achieved performance and the highest

possible performance of the detection algorithms.

We then compare the evaluation of the detection algorithms on our proposed

benchmark and the evaluation of the algorithms on the LFR benchmark, with

respect to reflecting the performances of the algorithms on real networks. We pro-

posed a metric, named d̃a,b, that measures the approximate distance between the
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performances of the detection algorithms on a benchmark network and the perfor-

mances that would be expected a real network. The closer to 0 the value of d̃a,b,

the closer the performances of the detection algorithms on the synthetic network

and the performances of the algorithms on the real network. In our comparisons,

the value of d̃a,b is calculated for four commonly studied real networks, including

the C.elegans network [50], the E-mail network [46], the Jazz [41] and the PGP

network [18]. The results show that the smallest value of d̃a,b of the evaluation of

the detection algorithms with heterogeneous community mixing fractions is lower

than that of the evaluation of the detection algorithms with homogeneous com-

munity mixing fractions for all the real networks. The results also show that the

smallest value of d̃a,b of the evaluation of the detection algorithms with outliers is

lower than that of the evaluation of the detection algorithms without outliers for

all the real networks.



Chapter 7

Conclusions

In this thesis, we presented two major contributions towards community detection,

one for detecting communities using modularity optimization and one for evalu-

ating community detection algorithms. Firstly, we proposed a new algorithm for

maximizing modularity to identify communities in networks with weak community

structure. Secondly, we proposed a new benchmark for evaluating community de-

tection algorithms with heterogeneous community mixing fractions and outliers.

The results from this thesis have been published in two peer-reviewed conference

papers [68, 69]. We also currently have one manuscript accepted for publica-

tion and another one under revision for quality international journals. Below, we

summarize our main contributions and suggest directions for future research in

community detection.

7.1 Summary of the contributions

Modularity optimization in networks with weak community structure

We proposed a new modularity optimization algorithm, called meta-LPAm+,

which is based on the state-of-the-art algorithm LPAm+ [75]. Our proposed al-

gorithm basically consists of three iterative steps with the first and third steps

derived from the LPAm+ algorithm, as summarized in Algorithm 12 and Algo-

rithm 13. The first step of the proposed algorithm propagates labels of nodes

over the network following a greedy search strategy to maximize modularity. The

second step of the proposed algorithm propagates node labels following a guided

search strategy to avoid local maxima reached by the first step. The guided search

103
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strategy employed by the second step is inspired by the record-to-record travel al-

gorithm [34] for a balance between performance and running time. The third step

of our proposed algorithm merges communities resulting from the second step to

further improve modularity.

Our proposed algorithm outperforms state-of-the-art algorithms, in term of modu-

larity, on networks with weak community structure, where communities have more

inter-community connections than intra-community connections, while preserving

a comparable performance on networks with strong community structure, where

communities have more intra-community connections than inter-community con-

nections, as shown in Table 4.2 to Table 4.9. The proposed algorithm performs

best compared with state-of-the-art algorithms, in term of detection accuracy, on

synthetic networks of small size, as shown in Figure 4.1 and Figure 4.2. However,

as the network size increases, the proposed algorithm performs worse compared

with three other algorithms including LPAm [12], Walktrap [98], and Infomap

[108], as shown in Figure 4.3. Therefore, the proposed algorithm serves as an

effective complement to existing detection algorithms to identify communities in

networks. The implementation of the proposed algorithm can be freely downloaded

at https://github.com/badungle/meta-LPAm plus.

A benchmark for evaluating community detection algorithms with het-

erogeneous community mixing fractions and outliers

We proposed a new benchmark, called GLFR, that extends the state-of-the-art

benchmark LFR [65, 61] by incorporating the heterogeneity of community mixing

fractions and the presence of outliers. Our proposed benchmark generates a net-

work with community structure following a sequence of nine construction steps,

as summarized in Algorithm 17. The first six steps of the construction algorithm

are to determine properties for nodes, outliers, and communities in the network

from parameters. Different from the LFR benchmark, which assigns the same

fraction of inter-community links, or mixing fraction, to every community in the

network and eliminates outliers, our proposed benchmark assigns different mixing

fractions to different communities and introduces outliers to the network. The

variation in community mixing fractions and the number of outliers are controlled

by two additional parameters, to those exist in the LFR benchmark. The valid-

ity of the community structure is guaranteed by five additional conditions on the

mixing fractions of communities and outliers. The last three steps of the construc-

tion algorithm are to generate links among nodes in the same communities, links

https://github.com/badungle/meta-LPAm_plus
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among outliers, and links among nodes in different communities and outliers in

the network.

We evaluated existing community detection algorithms on our proposed bench-

mark GLFR. The results show that the variation in community mixing fractions

and the presence of outliers changes the performances of the detection algorithms

in different ways, for example, decreasing the performances of some algorithms

more significantly than other algorithms, as illustrated in Figure 6.1, Figure 6.2,

Figure 6.4, and Figure 6.5. This distorts the evaluation results and gives different

impressions of the performances of the algorithms on real networks. Therefore,

it is important to evaluate the algorithms with heterogeneous community mixing

fractions and outliers for a comprehensive understanding of the performances of

the algorithms on real networks. Our new benchmark is suitable for this purpose

as it provides parameters to control the heterogeneity among community mixing

fractions and the number of outliers.

Moreover, we performed a comparative analysis between the evaluation of the

detection algorithms with heterogeneous community mixing fractions and out-

liers and the evaluation of the algorithms with homogeneous community mixing

fractions and without outliers, with respect to reflecting the performances of the

algorithms on several commonly studied real networks. The comparisons are made

based on our proposed metric, denoted as d̃a,b, that measures the difference be-

tween the performances of the detection algorithms on a synthetic network and

the performances that would be expected on a real network. The results show that

the evaluation of the detection algorithms with heterogeneous community mixing

fractions better reflects the performances of the algorithms on these real networks

than the evaluation of the algorithms with homogeneous community mixing frac-

tions, as indicated in Table 6.5. The results also show that the evaluation of the

detection algorithms with outliers more closely resembles the performances of the

algorithms on the real networks than the evaluation of the algorithms without

outliers, as indicated in Table 6.6. Therefore, evaluating the detection algorithms

with heterogeneous community mixing fractions and outliers provides more ac-

curate estimates of the performances of the algorithms on these real networks

than evaluating the algorithms with homogeneous community mixing fractions

and without outliers. The implementation of the proposed benchmark can be

freely downloaded at https://github.com/badungle/GLFR .

https://github.com/badungle/GLFR 
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7.2 Future work

Even though this thesis made several significant contributions to research in com-

munity detection, some limitations remain that offer directions for future research,

as discussed below.

1. Systematic parameter estimation for meta-LPAm+. Our proposed

algorithm meta-LPAm+ is dependent on the two parameters DEV and

maxno. The parameter DEV represents the largest allowed decrease in

modularity, with respect to the highest modularity value found, and the pa-

rameter maxno represents the largest allowed number of iterations without

improvement in the highest modularity value found. Choosing near-optimal

values of DEV and maxno for use in meta-LPAm+ is important for this

algorithm to achieve the best performance. However, it is not clear how to

systematically choose the near-optimal values of DEV and maxno for a given

network dataset. Until now, they are manually selected based on empirical

analysis on artificial networks.

2. Improving the stability of meta-LPAm+. One of the important draw-

backs of our proposed algorithm meta-LPAm+ is that the modularity values

obtained by this algorithm are not stable for different runs since there are

many heuristic choices to be made during the iterations of the algorithm.

The highest modularity value is therefore not guaranteed to achieve most of

the time. Improving the stability of meta-LPAm+ would be an interesting

direction for further work. One of the possible approaches in this direction

is to search for the consensus of community divisions with high modularity

[126].

3. Resolving the resolution limit of modularity. Meta-LPAm+ follows

the modularity optimization approach that maximizes modularity to identify

communities. However, modularity has its own limitations [37, 42, 63, 93]

that will also appear in our algorithm. For example, the resolution limit [37]

of modularity will prevent the detection of small size-scale communities. This

is a long-standing problem of modularity that still remains open for future

investigations. Recent studies in this direction include [8, 60, 127, 20].

4. Extending the GLFR benchmark by incorporating a statistical dis-

tribution of community mixing fractions. Our proposed benchmark

GLFR currently assumes that community mixing fractions are uniformly
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distributed within a certain range of values. However, a uniform distribu-

tion of community mixing fractions seems not always to occur in a wide

range of real networks [3]. Future research may explore a statistical distri-

bution of community mixing fractions in real networks and incorporate the

statistical distribution of community mixing fractions into the GLFR bench-

mark. This would help develop a more realistic benchmark for evaluating

community detection algorithms with the realistic distribution of community

mixing fractions.

5. Extending the GLFR benchmark by incorporating dynamic com-

munities. Our proposed benchmark GLFR currently assumes that commu-

nities in networks to be static over time. However, real networks change over

time through the addition or deletion of nodes and edges [11] and, therefore,

communities may grow or shrink [43]. Extending the GLFR benchmark for

evaluating community detection algorithms with evolving communities is a

promising direction for further studies.

6. Outliers detection in networks with community structure. Our pro-

posed benchmark GLFR allows generating networks with community struc-

ture and outliers. However, existing community detection algorithms have

no mechanism for dealing with outliers along with communities in networks.

One possible avenue for future research is to develop community detection

algorithms that are able to separate outliers from communities. We believe

that this opens new opportunities for the development of more efficient com-

munity detection algorithms.
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[50] Hawoong Jeong, BÃ¡lint Tombor, RÃ c©ka Albert, Zoltan N Oltvai, and A-
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