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Abstract

Compressive sensing (CS) has underpinned recent developments in data compression

and signal acquisition systems. The goal of CS is to recover a high dimensional sparse

signal from a few measurements. Recent progress in CS has attempted to further

reduce the measurements by employing signal structures. This thesis presents a novel

structured sparsity model, namely, adaptive Markov random field (MRF) to effectively

extract the signal structures. The adaptive MRF achieves two desirable properties:

flexibility—the ability to represent a wide range of structures—and adaptability—being

adaptive to any structures. However, most existing work can only achieve one of these

two properties. Previous MRF-based methods offer high flexibility but cannot adapt

to new signal structures, while the data-adaptive based methods assume limited

signal structures. Therefore, the contribution of this thesis is the novel and efficient

signal recovery methods for CS.

We propose to leverage the adaptability of the MRF by refining the MRF parame-

ters based on a point estimate of the latent sparse signal, and then the sparse signal is

estimated based on the resulting MRF. This method is termed Two-step-Adaptive MRF.

To maximize the adaptability, we also propose a new sparse signal estimation method

that estimates the sparse signal, support, and noise parameters jointly. The point

estimation of the latent sparse signals underpins the performance of MRF parameter

estimation, but it cannot depict the statistical uncertainty of the latent sparse signals,

which can lead to inaccurate parameter estimations, and thus limit the ultimate signal

recovery performance.

Therefore, we reformulate the parameter estimation problem to offer better gener-

alization over the latent sparse signals. We propose to obtain the MRF parameters

from given measurements by solving a maximum marginal likelihood (MML) prob-

lem. The resulting MML problem allows the MRF parameters to be estimated from

measurements directly in one step; thus, we term this method One-step-Adaptive MRF.

To solve the MML problem efficiently, we propose to approximate the MRF model

with the product of two simpler distributions which enables closed-form solutions

for all unknown variables with low computational cost.
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Extensive experiments on three real-world datasets demonstrate the promising

performance of Two-steps-Adaptive MRF. One-step-Adaptive MRF further improves

over the state-of-the-art methods. Motivated by this, we apply One-step-Adaptive

MRF to collaborative-representation based classifications (CRCs) to extract the under-

lying information that can help identify the class label of the corresponding query

sample.

CRCs have offered state-of-the-art performance in wearable sensor-based human

activity recognition when training samples are limited. Existing work is based on the

shortest Euclidean distance to a query sample, which can be susceptible to noise and

correlation in the training samples. To improve robustness, we employ the adaptive

MRF to extract the underlying structure of a representation vector directly from the

query sample to improve discriminative power, because the underlying structure

is unique to its corresponding query sample and independent of the quality of the

training samples. The adaptive MRF can be customized to further reduce to the

correlation in the training samples. Extensive experiments on two real-world datasets

demonstrate the promising performance of the proposed method.
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Chapter 1

Introduction

1.1 Compressive Sensing

Compressive sensing (CS) provides an advanced sampling strategy that acquires

high-dimensional signals under a sampling rate lower than the Nyquist’s bandwidth

(twice of the signal’s Fourier bandwidth) [1], [2]. It has been the core development

of new image acquisition and signal compression, where the resulting Nyquist rate

is deemed too high for storage and transmission, and when acquiring each sample

becomes financially prohibitive. CS has led to many developments for the new signal

acquisition and sensing systems in several fields, i.e. remote sensing [3]–[5], medical

imaging [6]–[9], and wireless communication [10]–[12].

To realize the sub-Nyquist rate, CS aims at recovering a high dimensional, sparse

signal x ∈ RN that contains a few k non-zero coefficients from a few noisy linear

measurements y ∈ RM where M� N. Because of the limited number of measure-

ments, the signal recovery in CS is often an ill-posed problem (i.e. the solution space

is infinite); thus, it necessitates an appropriate prior knowledge about the signal rep-

resentation to achieve a good reconstruction result. By using the sparsity of the signal

as a prior knowledge in signal recovery, standard CS algorithms can recover a sparse

signal x from O(k log N/k) noisy measurements [2], which is the minimum number

of measurements required. Recent research in CS focus primarily on achieving the

lowest number of measurements required.

To further reduce the number of measurements required, people started to exploit

the underlying structure (i.e., interdependencies or correlations) of the coefficients in

a sparse signal in addition to the simple sparsity [13], [14]. However, each image and
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signal processing task often employs different types of sparse signal representations.

For example, natural image processing employs the sparse signal representation of

the image in the wavelet or DCT domain. Meanwhile, Fourier representation is often

used in audio signal processing. A number of research attempted to find a structured

sparsity model that is flexible enough to represent the broad range of the underlying

structures in different sparse signal representations. To this end, two dominant classes

of structured sparsity models have been studied [13], [14] including deterministic

structured sparsity [15]–[28] and probabilistic structured sparsity models [29]–[44].

The deterministic structured sparsity models often assume prior knowledge about

the geometrical structure of sparse signals. For example, block sparsity models as-

sume the locations and sizes of the coefficient blocks in a sparse signal that they seek

to recover [15]–[20]. Hierarchical sparsity models assume that the signal coefficients

are organized as a tree structure [21]–[24]. For this case, the required number of

measurements can achieve the information-theoretical optimum O(k) [13]. However,

many signals do not follow the assumed block or tree structure. To circumvent this

loss of flexibility, one line of work exploits graph sparsity [25]–[28]. Their flexibility,

however, comes at the cost of expensive parameter tuning, e.g., the number of con-

nected components, maximum accumulated graph weight, and sparsity level. These

parameters are often unknown in practice. Moreover, most of these deterministic

structured sparsity models exclude all the signals that violate their assumptions about

the geometrical structure from the solution space [13], [27].

To avoid excluding signals and to achieve the small number of measurements,

Cevher et al. [29] proposed the concept of probabilistic RIP and used Markov random

fields (MRFs) to model the structure of sparse signals. The MRFs have high flexibility

and expressiveness for modelling a wide variety of signal structures. This opens up a

new line of work [29]–[36], where an MRF is employed to represent the underlying

structure of the sparse signals. The MRF represents the underlying structure by

defining a probability distribution over an undirected graph. The parameters and

the underlying graph of the MRFs are learned from extensive training examples.

Therefore, the performance of the MRF is constrained by the information in the

training examples. These methods can fail to capture the new underlying structure of

the sparse signal, which are different from the those of the training examples; thus,
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they lack the adaptability to model a new signal structure.

To address the lack of adaptability problem, one line of research [37]–[44] has

developed a data-adaptive model without the necessity for training. The majority

of this type of research resorts to clustered sparsity models [37]–[41] where a mix-

ture model such as beta-Bernoulli or Gaussian-Gamma is employed to model signal

distributions. The mixture models allow the model parameters to be adaptively

updated with closed-form formulations. However, this work assumes that the sparse

signals exhibit clustered structure, i.e., the non-zero coefficients of the sparse signals

group into clusters. Hence, the clustered sparsity models are not as flexible as the

MRFs. Among these data-adaptive models, the works [42]–[44] model the cluster

structure with MRFs, but these MRFs contain only the pairwise potentials. Although

the parameters of pairwise potentials can be adaptively estimated, the underlying

graph of the MRF is fixed and cannot be adapted for new structures of the sparse

signals.

Ultimately, the key to effectively exploiting the underlying structure of sparse

signals is to develop a structured sparsity model that is not only able to represent a

wide range of the underlying structure of sparse signals, but also able to adapt for

new signal structures. However, most of the existing research achieves only one of

these two properties. Therefore, our motivation is to develop a new data-adaptive

model that has the flexibility to capture the broad range of signal structures and the

adaptability to adjust for new signal structures.

1.2 Flexibility and adaptability

The structure of the sparse representation can be diverse across different applications.

Moreover, the signals from the same data sources can exhibit a large variability

between them. Therefore, to represent the variety of the signal structures, a desirable

structured sparsity model should possess two important properties:

• Flexibility —the ability to represent a wide range of structures;
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 (Fixed 𝛳, 𝒢, +  )  

+  denotes other parameters (e.g. noise) aside from structured sparsity model

 (Fixed 𝛳 , 𝒢, + )  

FIGURE 1.1: Flexibility and adaptability comparison between our Adaptive-MRF
and the existing structured CS algorithms.

• Adaptability—the ability to adapt for any sparse signal structure, according to

given measurements.

To achieve these two properties, we propose to leverage the adaptability of a

Markov random field (MRF) [29]–[36]. The MRF represents the structure of signals

with a graphical model. A Boltzmann machine (BM) is used as the probability

distribution because of its ability to model different signal distributions. Thus, we

aim to adapt the MRF parameters including BM parameters and the underlying graph

of the MRF for any signal structures; thus, termed adaptive MRF.

The comparison of flexibility and adaptability between our approaches and the

existing structured CS algorithms is shown in Figure 1.1. The proposed method

inherits flexibility from the MRF and adaptability from the adaptive estimation

mechanism. Hence, unlike the existing MRF approaches, our adaptive MRF can

adapt its underlying graph and BM parameters to fit any signal structure. Unlike

the existing data-adaptive model-based approaches such as the clustered sparsity

model-based methods [37]–[44], our MRF model is more flexible and can adapt its

underlying graph.

With the adaptability and flexibility properties, the proposed adaptive MRF

can extract the salient information about the signal structure to provide a good

prior knowledge for signal recovery. As a result, it can potentially improve the
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performance of sparse signals recovery when the signal recovery is performed under

a very low sampling rate (high compression) and under high noise corruption (high

noise tolerance).

1.3 Contributions and thesis outline

The contributions of this thesis are the novel and efficient adaptive-MRF to models

structure sparsity for signal recovery in CS. We propose two new adaptive MRF-

based approaches to recover sparse signals by using the adaptive MRF as the prior

knowledge in signal recovery, namely Two-steps-Adaptive MRF and One-step-Adaptive

MRF (presented in Chapter 3 and 4 ) which is then applied to develop a new Adaptive

MRF-based classification method in Chapter 5. This work has led to two submitted

journal articles [45], [46].

We present our contribution in more details in the following paragraphs.

1.3.1 Two-steps-Adaptive MRF

We propose to leverage the adaptability of the MRF that has been proven for its

flexibility to capture different signal structures. To realize adaptability, the MRF

parameters are adaptively estimated based on the point estimate of the latent sparse

signals. To maximize adaptability, we also propose a new algorithm for sparse signal

estimation that is able to jointly and iteratively estimate the support and the sparse

signal, noise and signal parameters. Experiments on three real-world datasets demon-

strate the effectiveness of our framework over state-of-the-art methods (see Chapter

3).

1.3.2 One-step-Adaptive MRF

The point estimation of the latent sparse signals underpins the performance of MRF

parameter estimation in the Two-step-Adaptive. However, the point estimation can-

not depict the statistical uncertainty of the latent signals. To capture the uncertainty,

we reformulate the MRF parameter estimation into a maximum marginal likelihood

(MML) problem. We propose to approximate the MRF distribution with a product

of two simpler distributions to enable closed-form solutions for all the unknown
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variables with low computational cost. Extensive experiments on three real-world

datasets demonstrate the superior performance of the proposed One-step-Adaptive

MRF over state-of-the-art methods (Chapter 4).

1.3.3 Adaptive MRF-based classification

Collaborative representation-based classifications (CRCs) have enabled state-of-the-

art performance in wearable sensor-based human activity recognition, when training

samples are limited. Most of the existing methods are based on a shortest Euclidean

distance, which can be susceptible to noise and correlation in the training samples.

We propose to employ One-step-Adaptive MRF to extract the underlying structure

of the representation vector to help identify the class label, which improves the

discriminative power of the classifier. The adaptive MRF can be customized to fur-

ther reduce the ambiguity due to the correlated training samples. With adaptive

MRF, the classification performance improves over that of competitors (see Chapter 5).

1.3.4 The improved sparse signal recovery performance

Our adaptive MRF can potentially improve the compressibility and noise tolerance

performance of sparse signal recovery. We evaluate the performance in four aspects:

compressibility, noise tolerance, runtime, and classification robustness, as evidenced

by extensive experiments:

1.3.4.1 Better compressibility.

The adaptive MRF can offer a good prior knowledge for sparse signal recovery,

which results in improved signal recovery accuracy across different sampling rates.

Two-step-Adaptive MRF offers promising results across different sampling rates in

recovering many sparse signal representations in Figure 3.11. With the improved

parameter estimation, One-step-Adaptive MRF yields a significant improvement in

signal recovery accuracy across different sampling rates and achieves state-of-the-art

performance, as demonstrated in Figure 4.6.
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1.3.4.2 Better noise tolerance.

The adaptive MRF can offer better differentiation between the true signal information

and noise. The Two-step-Adaptive MRF offers promising results across different

noise levels in recovering many sparse signal representations, as shown in Figure 3.15.

With the improved MRF parameter estimation, One-step-Adaptive MRF achieves a

significant improvement which leads to state-of-the-art performance, as shown in

Figure 4.10.

1.3.4.3 Better runtime.

Our adaptive MRF-based approaches, the Two-step-Adaptive MRF and One-step-

Adaptive MRF, require less runtime than the existing MRF based-methods such

as [31], [32] as shown in Figure 3.16 and 4.11 because our designed algorithms either

require less algorithm complexity or fewer iterations to converge to a stable result.

Two-step-Adaptive MRF requires less complexity than [32] in the worst case scenario

(see Section 3.5) and fewer iterations to converge than [31] (see Section 3.10). With the

improved MRF parameter estimation, One-step-Adaptive MRF has significantly less

complexity and runtime than the Two-step-Adaptive MRF (see Section 4.4).

1.3.4.4 Higher classification robustness.

Our adaptive MRF-based classification improves the robustness of CRCs in wearable

sensor-based human activity recognition when the number of training samples is

small. The adaptive MR can extract the underlying structure of a representation

vector from a query sample. The underlying structure can help identify the class label

and is independent of the quality of the training data which can be noisy and corre-

lated across different classes. Our adaptive MRF-based classification demonstrates

high tolerance against ambiguity due to noise and correlation among training data

over other classification methods (e.g., Figure 5.7).

Moreover, because our Two-step-Adaptive MRF and One-step-Adaptive MRF

adaptively estimate the MRF parameters based on given measurements, they do not

require any model training. Thus, this removes the requirement for the storage and
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computing process for training a model, by default. The proposed approach requires

the computer memory only for a measurement matrix used in the sampling process

of CS and the parameter settings which are scalar values, e.g. the cardinality for an

edge set and the adaptive MRF, the maximum number of iterations for the algorithm

terminating criterion, and scalar initial values for noise and signal variance. Therefore,

the proposed approaches require less memory than the existing MRF-based methods

and can be desirable for many real-world applications that have memory constraints.

In conclusion, we have discussed our key motivation to develop the adaptive

MRF and the new sparse signal recovery approaches to flexibly capture and employ

the underlying structure of sparse signals to improve the compressibility and noise

tolerance performance. In Chapter 2, we will discuss structured compressive sensing,

specifically, recovery with deterministic structured sparsity models and probabilistic

structured sparsity models, and elaborates the associated sampling complexity for

each class of the structured sparsity models. We will also provide a review about the

inference and learning techniques of MRFs, as well as the collaborative representation-

based classifications. The summary of this thesis and future work are provided in

Chapter 6.
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Chapter 2

Structured Compressive Sensing

2.1 Introduction

The goal of compressive sensing (CS) is to recover a high dimensional signal from a

few measurements. Recent research in CS focuses primarily on reducing the number

of measurements. To achieve this, people started to exploit the structure of the latent

sparse signal, i.e. the interdependency or correlations of the coefficients in the sparse

signal. Two main classes of structure sparsity models that have been studied to

efficiently exploit the signal structures include deterministic structured sparsity models

that impose prior knowledge about the geometrical structure of sparse signals, e.g.

group sparsity models, hierarchical sparsity models, and graph sparsity models [15]–

[28]; and probabilistic structured sparsity models that employ flexible graphical models

to capture the signal structure, e.g. Markov random fields (MRFs). Some of the

probabilistic structured sparsity models can adapt for new signal signals, i.e. clustered

structured sparsity models [29]–[42]. Therefore, one of the foci of this chapter is to

give insight into the underlying assumptions and respective limitations of these

two classes of structure sparsity models that lead to limited flexibility to capture

different signal structures. Our proposed adaptive MRF leverages the flexibility and

adaptability of these probabilistic models. Then, we provide background regarding

the inference and learning of the MRFs and the application of sparse signal recovery

to classification.

We highlight the following discussions covered by this chapter:

Signal recovery using deterministic structure sparsity models is presented to

explain why the deterministic structured sparsity models lack the flexibility to
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model signal structures. Three different examples of signal recovery algorithms

with group sparsity models, hierarchical sparsity models, and graph sparsity

models are also provided. The discussion is in Section 2.2.1.

Then, signal recovery using probabilistic structure sparsity models is presented.

How the probabilistic structured sparsity models improve the flexibility in

modelling signal structures is explained. Three examples of signal recovery

algorithms with graphical structured sparsity and clustered structured sparsity

models are provided in Section 2.2.2.

We turn to the relationship between sample complexity and the structured

sparsity model. The discussion on how the deterministic structured sparsity

models achieve the low sample complexity by reducing the feasible set is in

Section 2.3.1. The relationship can be shown by the connection between the

restricted isometry property (RIP) and the sample complexity.

Unlike the deterministic structured sparsity models, the probabilistic structured

sparsity models can reduce the sample complexity without restricting the feasi-

ble set. However, the sample complexity can be reduced only if the underlying

information in the training samples is representative of the testing samples. The

sample complexity of the probabilistic models is analyzed through the notion

of the probabilistic RIP. These discussions are provided in Section 2.3.3.

We provide background on the Markov random fields (MRFs) that have been

used in our proposed method in Chapters 3 and 4 for their flexibility to capture

different signal structures. We also review the graphical model inference and

learning on MRFs and a graphical model learning algorithm that has been used

for achieving adaptive MRF. The review is in Section 2.4.

Then, the application of sparse signal recovery to classification is discussed.

We discuss three classification methods, i.e. sparse representation based clas-

sification (SRC), collaborative representation based classification (CRC), and

probabilistic collaborative representation based classification (ProCRC) in Sec-

tion 2.5. Finally, a summary of this chapter is presented in Section 2.6.
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The following sections are organized as follows: we discuss the structured sparse

signal recovery in Section 2.2. Then, the discussion on the corresponding sample

complexity is provided in Section 2.3. Our revision on Markov random fields is in

Section 2.4. Finally, we review the classification methods based on sparse signal

recovery, i.e., SRCs, CRCs, and ProCRC in Section 2.5.

2.2 Structured sparse signal recovery problem

The goal of compressive sensing is to recover a sparse signal x ∈ RN from noisy

linear measurements y ∈ RM where M� N, i.e.

y = Ax + n, (2.1)

where A ∈ RM×N represents a random measurement matrix, and n represents a

small perturbation where M� N. Here, the sparse signal x is defined as a signal that

possesses a few k non-zero coefficients, lying in ambient dimensionality. The problem

of recovering sparse signal x is ill-posted (i.e. the solution space is infinite); thus, it

necessitates an appropriate prior on sparse signals to effectively reduce the solution

space. Sparsity of the signal is a commonly used prior in sparse signal recovery. The

model for sparsity is defined as

x ∈ Uk = {x : ||x||0 ≤ k}. (2.2)

Given the prior of the signal sparsity, the signal recovery can be formulated as the

following optimization problem:

x̂ = min
x∈RN

||x||0 subject to ||y− Ax||2 ≤ ε (2.3)

where the regularization term ||x||0 depicts the sparsity of x, and ε is a small value

that bounds the deviation of measurements due to noise corruption. ε = 0 in the

noiseless case. With the sparsity assumption, the cardinality of the solution space is

reduced to the number of subspaces in Uk, i.e. (N
k ). However, solving the l0-problem
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is NP-hard [47]. A common approach is to approximate l0-norm with l1-norm to

depict the sparsity of the solution signal.

The structure of sparse signals can be employed as a prior in addition to simple

sparsity to restrict the solution space. Most of the existing studies [15]–[42], [48]

employ the signal structure as a criterion to select the candidate signals in the solu-

tion space [13], [25]–[28], [48]. Alternatively, the regularization term with a special

function is used to enforce the structure of the solution signals according to the prior

knowledge about the signal structure, [15]–[17], [28]–[42]. With the smaller solution

space, the minimum measurements, defined as sample complexity, for successful

recovery can be further reduced [13], as will be discussed in Section 2.3.

The two classes of structured sparsity models are explored in the following.

2.2.1 Signal recovery with deterministic structured sparsity models

The deterministic structured sparsity models assume prior knowledge about the

geometrical structures of sparse signals in addition to their sparsity. Formally, the

models are represented as a union of k-dimensionality subspaces [13], [14], [49]: let

xΩ represent the coefficients of x chosen according to the set Ω ⊆ {1, ..., N} and ΩC

denote the complement of Ω.

Definition 2.2.1. A structured sparsity model Mk is defined as the union of mk

canonical k-dimensional subspaces:

x ∈ Mk =
mk⋃

m=1

Sm where Sm = {x : xΩm ∈ Rk, xΩC
m
= 0}. (2.4)

where {Ω1, ..., Ωmk} is the set containing all allowed supports, with |Ωm| = k for each

m = 1, ..., mk, and each subspace Sm contains all signals x with supp(x) ⊆ Ωm [13].

It can be seen that a structured sparsity modelMk contains mk subspaces only.

Each subspace is the set of sparse signals whose support exhibits a certain pattern

defined by Ωm. As a result, the structured sparsity modelMk restricts the number

of subspaces from (N
k ) to mk, and thus, it limits the number of candidate solutions.

Different configurations ofMk can vary the number of subspaces. The deterministic

structured sparsity model is often imposed as a constraint in the optimization problem
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to solve for sparse signals:

x̂ = min
x∈RN

||y− Ax||2 subject to x ∈ Mk, (2.5)

where the structured sparsity model is defined through Mk. If the configuration

of the structured sparsity model is simple, the constraint of the structured sparsity

model can be replaced with a regularization term to induce a structured sparsity in

the candidate sparse signal solution. However, if the configuration of the structured

sparsity model is complicated, solving the constrained optimization problem Eq. (2.5)

directly can be difficult. A group of research [13], [25], [27], [48] resorted to recovering

the signal with greedy approaches such as CoSAMP [50], IHT [51], and obtained

candidate sparse signals from the best k-term structured sparse approximation [13],

[25], [27], [48]. The best k-term structured sparse approximation aims to search for the

k-sparse signal candidate inMk that minimizes Euclidean distance to an intermediate

estimate of the latent sparse signals [13], [25] ( see Section 2.2.1.2).

However, the sparsity-induced regularization as well as the best k-term struc-

tured sparse approximation does not necessarily offer good candidate sparse signals,

especially when the underlying structure of the sparse signals to be reconstructed is

different from the assumed geometrical structure. Also, the best k-term structured

sparse approximation can be inaccurate, if the assumed geometrical structure im-

posed onMk is too restrictive. Thus, the deterministic structured sparsity model

could perform poorly in such cases. Many deterministic structured sparsity models

have been developed to accommodate with different sparse signal structures. Such

structured sparsity models can be grouped into three broad classes:

• Group/Block sparsity models [15]–[20] assume that signal coefficients in one

group/block have to be either all zero or all non-zero. This property has

been enforced by l1/l2 norms in early research, and has been extended to

overlapping group-sparsity. Recently, the research [38]–[42] proposes cluster

sparsity models which are improved from the group sparsity model by enabling

adaptive parameter estimation, given the measurements.

• Hierarchical sparsity models [21]–[24] represent signal coefficients as trees.
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For example, the wavelet transformation of a piecewise smooth signal often

exhibits the tree structure, where a zero parent node implies zero offspring

nodes [21]–[23]. Another example is the k-sparse rooted sub-tree model [24],

where only non-zero element nodes form a sub-tree.

• Graph sparsity models [25]–[28] organize signal coefficients in a general graph,

thus are able to represent various types of sparsity patterns, including the above

group along with hierarchical sparsity models. Initially, graph sparsity models

are employed as sparsity-induced regularization to capture the overlapping-

group sparsity pattern [25], [26]. Recently, a weighted graph sparsity model [27],

[28] has been employed where the candidate structured sparse signal is obtained

from the best k-term structured sparse approximation [13].

However, group/block and hierarchical sparsity models only fit signals with

assumed structures, thus they are considered as lacking the flexibility to cope with

different signal structures. Graph sparsity models have better flexibility, however, its

flexibility could come with the cost of expensive parameter tuning [13]. Moreover,

these models cannot adapt for different signal structures, once the models have been

tuned. The following algorithms are provided as examples of signal recovery using

three different deterministic structured sparsity models: (i) the group-lasso [52] is

used as an example for signal recovery with the group sparsity models; (ii) MBCS [13],

[53] is the example for signal recovery with hierarchical sparsity model; and (iii)

GraphCoSaMP [27], [48] is the example of signal recovery with the graph sparsity

model.

2.2.1.1 Group-lasso

In group-lasso [52], [54], [55], it is assumed that the sparse signals exhibit a group

structure where all coefficients within the same group become zero/nonzero simul-

taneously. The group structure in sparse signal x can be modelled through the mix

l2,1-regularization function. Let mk denote the total number of groups. xm is a sub-

vector associated with the mth group containing sparse coefficients that are entirely

zero/non-zero. Am is the sub-matrix whose columns are chosen from A according to

the coefficients in the sub-vector xm. The sparse signal recovery can be formulated as
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the following convex optimization problem:

x̂ = min
x∈RN

1
2
||y−

mk

∑
m=1

Amxm||2 + γ
mk

∑
m=1
||xm||2. (2.6)

where γ is the constant controlling the sparsity level of sparse signals. This convex

optimization problem can be solved efficiently using a block coordinate descend.

With this technique, the sparse signal is calculated by performing the following

updates in each iteration:

x̂m =





0, if ||Amrm||2 ≤ γ

(
AT

m Am + γ
||x̂m|| I

)−1
AT

mrm, otherwise.
(2.7)

where rm = y−∑j 6=m Ajxj.

Lasso is an efficient approach to recover a sparse signal with a group structure [52].

However, it should be noted that not every signal exhibits the group structure. Next,

we will explore examples of the hierarchical and the graph structured sparsity models

that can model more flexible signal structures.

2.2.1.2 MBCS with tree-sparsity model

MBCS [13], [53] offers a general signal recovery framework that allows any structured

sparsity model to be integrated into a fast CS recovery algorithm such as CoSaMP [13],

[25]. In this example, the tree-sparsity model is used to represent a sparse signal

structure. The tree-sparsity model assumes that the coefficients of a k-sparse signal

can be modelled with a binary tree where only k non-zero coefficients can form rooted

subtrees. Each variation of k-rooted subtrees represents a subspace. Thus, the tree-

sparsity model is defined as [13], [53]:

Tk = {x : xΩ ⊂ Rk, xΩC = 0 where |Ω| = k,

Ω forms a connected subtree}.
(2.8)

The tree sparsity model is employed to define the solution space. MBCS obtains

the candidate signal with tree structure from the best k-term structured sparse ap-

proximation [13]. The best k-term structured sparse approximation is obtained by
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Algorithm 2.1 MBCS with tree-sparsity model.
Input: Measurements y, a measurement matrix A, the expected sparsity level k, and
the algorithm for tree-structured sparse approximation M.
Initialization : x̂ = 0, d = y.

while a stopping criterion is not satisfied do
1. Form signal residual estimate:

e← ATd;
2. Prune residual estimate according to tree structure:

Ω← supp(M(e, k));
3. Merge supports:

T ← Ω ∪ supp(x̂);
4.Form signal estimate:

bT ← A†
Ty, bTC = 0;

5. Prune signal estimate according to tree structure
x←M(b, k);

6. Update measurement residual:
d← y− Ax;

end while
Output: Recovered x̂.

solving the following optimization problem:

xTk = min
x̄∈Tk

||x− x̄||2 (2.9)

that aims to search for x̄ ∈ Tk, which has the shortest Euclidean distance to an

intermediate estimation of x. The optimization problem in Eq. (2.9) can be solved

efficiently with the condensing sort and select algorithms [13], [56]. CoSaMP [50] is

employed to recover sparse signals where the candidate structured sparse signals are

obtained from the best k-term structured sparse approximation. The whole process

of the model based CoSAMP is summarized in Algorithm 2.1 where M(·, ·) is the

algorithm that can solve the optimization problem in Eq. (2.9).

MBCS has a flexible framework to employ any sparsity model; however, a new

sparsity model has to be redesigned every time when the assumptions of the geomet-

rical structure of the sparse signal are changed. Moreover, the performance of the

best k-term structured sparse approximation crucially depends on the configuration

of the sparsity model Tk. As a result, the best k-term structured sparse approximation

Eq. 2.9 does not necessarily provide a good approximation, especially, either when

the structure of the intermediate estimate x is different from the assumed geometrical

structure in the sparsity model Tk, or when the sparsity model Tk is restrictive.
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2.2.1.3 Graph-CoSaMP

Graph-CoSaMP [25], [27], [48] employs a graph sparsity model that can flexibly

model many signal structures aside from the assumed block or tree structure. Graph-

CoSaMP uses a weighted graph model whose configuration is achieved by adjusting

a set of parameters; thus, unlike MBCS, the weight graph does not need to be totally

redesigned for a new signal structure every time. Let s denote signal support, and

S ⊆ [N] is the corresponding index set. G = (V, E) denotes the underlying graph.

The desired configuration of the weighted graph model is achieved through adjusting

the following parameters.

• k the total sparsity of S

• g is the maximum number of connected components formed by the forest F

corresponding to S.

• B is the bound of the total weight w(F) of edges in the forest F corresponding

to S.

Let γ(H) be the number of the connected components in a graph H. The weighted

graph modelWG,k,g,B is defined as

WG,k,g,B = {S : S ⊆ [N], |S| = k and there is a F ⊆ G

with VF = S, γ(F) = g, and w(F) ≤ B}.
(2.10)

Since the graph sparsity model cannot be directly mapped into a regularization

function, these approaches [25], [27], [48] resort to searching for the best k-term

structured sparse approximation in the structured sparsity model by solving the opti-

mization problem Eq. (2.9) where the solution space is defined by the weighted graph

model Eq. (2.10). However, solving this optimization problem exactly is NP-hard for

the weighted graph model. To circumvent this problem, an approximation-tolerant

framework is used instead of Eq. (2.9). The approximation-tolerant framework re-

quires two algorithms with the following complementary approximation guarantees:

Tail approximation: Find an S ∈ WG,k,g,B such that

||x−M(x, S)||2 ≤ cT min
S′∈WG,k,g,B

||x−M(x, S′)||2 (2.11)



18 Chapter 2. Structured Compressive Sensing

Algorithm 2.2 Graph-CoSAMP (GCoSaMP).
Input: Measurements y, a measurement matrix A, and parameters to configure the
weight graph modelWG,k,g,B —G,B,k, and g— and number of iteration t.
Initialization : x̂ = 0.

for i← 1, ..., t do
1.Form signal residual estimate:

r ← AT(y− Ax̂);
2.Merge the supports with head approximation:

Ω← supp(x̂) ∪HEADAPPROX’(r, G, k, g, B);
3. Form signal estimate

bΩ ← A†
Ωy, bΩC = 0;

4. Obtain the supports with tail approximation:
S← TAILAPPROX’(b, G, k, g, B);

5. Form signal estimate with the new support:
x̂S ← bS;

end for
Output: Recovered x̂.

Head approximation: Find an S ∈ WG,k,g,B such that

||M(x, S)||2 ≤ cH min
S′∈WG,k,g,B

||M(x, S′)||2 (2.12)

where M(x, S) is the function that sets all coefficients in x that are not specified in the

index set S to zero.

It is shown in [27] that these two approximations Eq. (2.11) and Eq. (2.12) can be

solved based on connection to the prize-collecting Steiner tree problem (PCST). Both

approximations Eq. (2.11) and Eq. (2.12) are to be modified to a formalization of the

PCST problem that can be solved with extant algorithms. For more details on how

the two approximations are solved, we refer the reader to the full papers [27], [48].

The whole process of Graph-CoSaMP is summarized in Algorithm 2.2.

Graph-CoSaMP [25], [27], [48] is so far a novel and effective signal recovery

approach that employs the flexible weighted graph model to capture the signal

structure. However, it should be noted that tuning the required parameters in both the

weighted graph model and Graph-CoSaMP is not easy. This includes the underlying

graph G, the bound of total graph weight B, signal sparsity k, and the maximum

number of connected components g, which are often unknown. More importantly,

Graph-CoSaMP employs the similar best k-term structured sparse approximation as
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MBCS. Thus, Graph-CoSaMP has the same problem as MBCS. That is, it can falsely

exclude a good candidate signal, either when the testing signal x is different from the

assumed geometrical structure, or when the assumed geometrical structures specified

by the weighted graph model are too limited.

2.2.2 Signal recovery with probabilistic structured sparsity models

To flexibly represent various signal structures and avoid false exclusion of candidate

signals, a group of research [29]–[42] resorts to employing the probabilistic structured

sparsity models and a Bayesian approach for recovering sparse signals. In this setting,

the non-zero coefficients in xs are assumed to be a realization of an iid multivariate

Gaussian with zero mean and covariance matrix Σxs where s ∈ {0, 1}N is the binary

support of x, such that si = 1 when xi 6= 0 and si = 0 when xi = 0. Based on the

observation model Eq. (2.1), the measurements are assumed to be corrupted by an iid

Gaussian noise with zero mean and variance σn. The observation likelihood model

given the measurements y can be formulated as

p(y|xs, s; σn) = N (Asxs, σn I). (2.13)

The structure of the sparse signal is modelled through the signal support. Hence, the

probability of the support p(s) is a prior. Our objective is to recover the sparse signals

from solving a maximum a posteriori (MAP) problem:

{x̂, ŝ} = max
x∈RN ,s∈{0, 1}N

p(xs, s|y) ∝ p(y|xs, s)p(xs|s)p(s). (2.14)

Given the probabilistic model for the support p(s) in Eq. (2.14), most of the

existing approaches [29]–[33], [35], [36] solve for the support s and the sparse signal

x, separately. This is done by performing the following non-recursive two-step

estimation shown in Algorithm 2.3.

The support estimation problem Eq. (2.15) is analogous to the best k-term struc-

tured sparsity approximation Eq. (2.9) of the deterministic approaches. The estimated

support identifies the subspace of the sparse signal solution. Unlike the best k-term

structured sparsity approximation, this support estimation only searches for the
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Algorithm 2.3 Non-recursive two-steps estimation for solving Eq. (2.14)
Input: Measurements y, random matrix A, and the involved model parameters for
p(s) and p(y|s).

1. The support is estimated from solving MAP problem:

ŝ = max
s∈{0, 1}N

p(s|y) ∝ p(y|s)p(s), (2.15)

2. Given the support, the sparse signal is obtained from solving the MAP problem
Eq. (2.14).

Output: Recovered x̂.

candidate that provides the highest posterior density without imposing a constraint

on the geometrical structure of the solution sparse signal. Therefore, this probabilistic

approach can avoid false exclusion problems, which is a major advantage over the

deterministic approaches. With recent advances in computer visions, many efficient

probabilistic models with the high flexibility and tremendous representation power

have been developed. Most of these models capture the underlying structure of

training examples.

We briefly discuss three broad classes of these probabilistic models in the following

paragraphs:

• Markov random fields (MRFs) have been exploited for their flexibility to model

various types of signal structures [29]–[36]. Most of the MRFs employed in

these works consists of pairwise and unary potentials which are powerful

enough to represent a variety of sparse signal structures. The parameters and

the underlying graph of MRFs are learned from training data. Many researches

have been developed to efficiently learn a fully connected MRF models (see

Section 2.4.2). While the representation power of MRF is high in general, the

performance of trained MRFs are limited to the representativeness of training

data.

• Deep learning networks (DNN) can be used either (i) to model the underlying

structure of the latent sparse signal or (ii) to decode the information of the

sparse signals from a few measurements [57]–[62]. For the former case (i),

Restricted Boltzmann machine [57]–[59] is often used to model signal structures.

Its modelling performance can be leveraged by adding hidden units. For
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the latter cases (ii), the encoders of autoencoders [60]–[62] are employed to

compress a sparse signal. Given a few measurements, the sparse signals can be

reconstructed from the decoder of the autoencoders. Compared to the MRFs,

DNNs require much more amount of training data.

• Clustered-sparsity models are extended from the deterministic group/block

structure sparsity models. Clustered-sparsity models assume that the non-zero

coefficients group in clusters [37]–[44]. Mixture models, such as Gaussian-

Bernoulli [38], [39] or Gaussian-inverse Gamma [40], [41], are used to model

the sparse solution. Among these works, the approaches in [42]–[44] employ

MRFs, but these MRFs contains only pairwise potential. The model parameters

of these mixture models can be estimated directly from the measurements using

EM algorithms [63]. Compared to the MRFs and DNNs, the clustered-sparsity

models are more adaptive to the test signals as they do not rely on any training

data. However, due to the limited signal structure assumption, the clustered

sparsity models lack the flexibility to represent different signal structures aside

from assumed clustered structures.

These probabilistic structured sparsity models have different advantages and

disadvantages. Although MRFs and DNNs can flexibly represent different sparse

signals, the quality of the learned MRFs and DNNs rely on the amount of training

examples. Although MRFs do not require as many training examples as DNNs, the

trained MRFs are effective only when those of training data can well represent the

structure of testing data. The clustered-sparsity model does not require any training

as its model parameters can be estimated from measurements directly. Nonetheless,

the clustered sparsity models have two important limitations due to the limited signal

structure assumption—it is not as flexible as the MRF or DNNs, and its underlying

graph is fixed and cannot adapt to a new structure. However, the structure of the

sparse representation can be diverse across different applications. Moreover, the

signals from the same data sources can exhibit a large variability between them.

This become the motivation to our proposed adaptive MRF with high flexibility and

adaptability to capture different signal structures without relying on any training

data, as presented in Chapter 3 and Chapter 4.
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The theoretical and experimental discussions in this chapter and subsequent

chapters will focus on the MRF and the clustered-sparsity models, which are directly

related to the improvement of our proposed adaptive MRF. It is worth mentioning

that our objective and respective model are significantly departed from the DNNs;

the objective of our approach is to leverage the flexibility and adaptability of an

probabilistic model. Thus, our approach does not require any training examples to

estimate the adaptive MRF, but these DNNs require extensive training examples to

learn the DNN. Without training phase, our proposed model can be flexibly applied

to any pairs of measurement matrices and the sparse signal transformation, but the

DNNs require specific training settings suitable for different measurement matrices

and the sparse signal transformation [60].

If the probabilistic structured sparsity model is ineffective, the support estimation

Eq. (2.15) suggests that the performance could be similar to when none of the model

is used. This is because the probabilistic structured sparsity models does not put

any restriction on the solution spaces. Thus, using the probabilistic structured spar-

sity models are still much less restrictive than the deterministic structured sparsity

models.

Despite the advantage over the deterministic structured sparsity models, solving

the MAP problem of the support estimation Eq. (2.15) exactly is, nonetheless, com-

putationally expensive, i.e., it requires exhaustive calculation to compute the value

of p(s|y) ∝ p(y|s)p(s) for every possible support. The existing studies proposed

different methods to estimate the supports efficiently. In the following, we explore

signal recovery with probabilistic structured sparsity models. We will focus on two

main types of probabilistic structured sparsity models [29], [64] that have been used

as the prior p(s): the clustered sparsity models [37]–[42] and the graphical sparsity

models [29]–[33], [35], [36]. Gibbs [31] and MAP-OMP [32] are examples of signal

recovery with a graphical sparsity model. Bernoulli [39] is an example of signal

recovery with a clustered sparsity model.
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2.2.2.1 Gibbs

The work in [31] is an early work that employs a Markov random field (MRF) as

the graphical sparsity model for its flexibility in capturing a wide variety of signal

structures. This work follows the non-recursive two-step estimation (Algorithm 2.3):

(i) first, it obtains the support from solving Eq. (2.15), and (ii) given the support, the

sparse signal is obtained from solving the MAP problem Eq. (2.14). Since a Gibbs

sampling approach is employed to solve Eq. (2.15), this work has been referred to as

Gibbs in [32] and in this literature as well.

This approach employs an MRF to capture the support distribution as the prior.

The MRF captures the support distribution by defining a probability over an undi-

rected graph G = (V , E) with a node set V and set of undirected edges E . In the

MRF, a Boltzmann machine (BM) is employed to model the support distribution p(s),

defined as:

p(s) =
1
Z

exp


∑

i∈V
bisi + ∑

(i,j)∈E
wi,jsisj


 , (2.16)

where Z is the normalizing constant. Here, each bi defines the bias toward zero for

each support coefficient si; meanwhile, wi,j characterizes the interaction between each

pair of support coefficients si, sj whose connection is defined by the edge set E . The

parameters and structures of the MRF are learned from abundant training examples

in the training phase.

This work proposes to solve this MAP problem with a Gibbs sampling technique

where the simulated annealing [65] is employed to search for the support that maxi-

mizes the posterior distribution, while the value of the posterior distribution for each

immediate support estimate is calculated based on a Gibbs sampling approach [66].

The process of solving MAP problems with Gibbs sampling and simulated annealing

is summarized in Algorithm 2.4. In the Gibbs sampling procedure, the transition

probability for the ith node that changes its value from si to s+i at temperature T is

given by

p(si → s+i |s−i, y) =
(

1 + exp
(
−

∆Ey
T

))−1
(2.17)

where s−i = [si]j∈[N]\i denotes the vector that contains all the support coefficients

except si, and ∆Ey = Ey(si, s−i)− Ey(s+i , s−i) is the difference in energy in the next
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and the current iteration in the transition probability. The Sherman-Morrison formula

is employed to facilitate the computation for the transition probability:

∆Ey =
1
2

α(yTC−1
y ai)

2

1 + αaT
i C−1

y ai
− 1

2
log (1 + αaT

i C−1
y ai) + (s+i − si)

(
∑
j 6=i

wij + bi

)
, (2.18)

where α = 1
2 (s

+
i − si)[Σxs ]i,i and [Σxs ]i,i is the variance of the ith sparse signal

coefficient, and Cy is the covariance matrix of a Gaussian density function for p(s|y).
If a new state is accepted, the covariance matrix is updated as follows:

C+
y
−1

= C−1
y − αC−1

y ai(1 + αaT
i C−1

y ai)
−1aT

i C−1
y , (2.19)

where C0
y = σn I + ∑N

i=1[Σxs ]i,iaiaT
i .

Although the Gibbs sampling [66] is known to be an efficient approach to solving

the MAP problem [31]; it can suffer severely from slow convergence and stick at

a local minima [32], [67]. As a consequence, this work requires high runtime in

general. Because the two step estimation is non-recursive (see Algorithm 2.3), the

error due to the local minima problem in support estimation can be accumulated

into the sparse signal estimation step. The error accumulation and slow convergence

problems become obvious when using Gibbs [31] to estimate a sparse signal in the

Two-step-Adaptive MRF, as shown in the convergence of the recovery accuracy and

runtime, Figures 3.9 and 3.10, where Gibbs requires the highest number of iterations

and provides low accuracy.

2.2.2.2 MAP-OMP

Similar to Gibbs, MAP-OMP [32] solves for sparse signals using the non-recursive

two-step estimation (Algorithm 2.3) where the probability distribution of the signal

support is modeled with the graphical sparsity model Eq. (2.16). Nevertheless, MAP-

OMP [32] proposed heuristic approaches to solve the MAP problem Eq. (2.15), where

the parameters and the underlying graph of the MRF are learned from abundant

training examples in the training phase.

The proposed heuristic approach attempts to solve the MAP problem Eq. (2.15) by

searching for the group of support coefficients that maximize the objective function of
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Algorithm 2.4 Support estimation using Gibbs sampling.
Input: Measurements y, a measurement matrix A, and BM parameters
{Wi,j, bi}(i,j)∈E ,i∈V and underlying graph of the MRF G = {V , E}, σn, and Σxs .
Initialization : s = s0 and t = 1.

for t = 1, ..., tmax do
1. Assign a temperature value:

T ← temperature (t/tmax);
2. Pick the next support
for i = 1, ..., N do

Pick a binary value for each s+i at random;
end for
3. Computing transition probability and update support
for i = 1, ..., N do

Computing p(si → s+i |s−i, y; T) Eq. (2.17)
if p(si → s+i |s−i, y; T) ≥ random(0, 1) then

Accept the new state si = s+i and update C+
y Eq. (2.19).

end if
end for

end for
Output: Recovered support s.

Eq. (2.15). However, instead of calculating the objective function in Eq. (2.15) exactly,

MAP-OMP searches for the support that maximizes a pseudo function approximating

the conditional distribution of a chosen support coefficient given other supports and

measurements p(si|sk, y):

q(i, sk) =
1

2σn
yT Ask Q−1

sk AT
sk y− 1

2
ln (det (Qsk)) + 2bi + 2 ∑

j
wi,jsk

j −
1
2

ln ([Σxsk ]i,i)

∝ ln (p(si|sk, y))
(2.20)

where Qsk = AT
sk Ask + σnΣ−1

xsk
. The entire procedure is illustrated in Algorithm 2.5.

The procedure performs until the value of p(ŝk|y) in the current iteration decreases.

Notice that unlike Gibbs [31], MAP-OMP employs the sparsity of signals as the

prior to update the support and is thus more efficient than Gibbs [32]. MAP-OMP

is a very efficient MRF-based approach that has consistently yielded state-of-the-

art results in recovery accuracy to date. Nevertheless, similar to Gibbs [31], the

non-recursive two-step estimation (Algorithm 2.3) is prone to two problems: (i) it

can be time-consuming in performing support estimation, and then, sparse signal

estimation, and (ii) the error in the support estimation step can propagate to the sparse

signal estimation, where the error cannot be fixed later. Note that the MAP-OMP
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Algorithm 2.5 MAP-OMP.
Input: Measurements y, a measurement matrix A, and the BM parameters
{Wi,j, bi}(i,j)∈E ,i∈V and the underlying graph of the MRF G = {V , E}, σn, and Σxs .

Initialization : ŝ = −1N×1, Ŝ = ∅, and t = 1.
repeat

1. Pick the next support vector
for i 6∈ Sk−1 do

Sk ← Ŝk−1 ∪ î

sk
j =

{
ŝk−1

j , j 6= î

1, j = î
.

Evaluate q(i, sk) using Eq. (2.20)
end for
2. Search for the coefficient that maximizes the distribution
î← maxi∈N {q(i, sk)}
3. Merge the new non-zero index to the existing index set

Ŝk ← Ŝk−1 ∪ î, ŝk
j =

{
ŝk−1

j , j 6= î

1, j = î
.

4. Increase iteration
t = t + 1.

until p(ŝk|y) ≤ p(ŝk−1|y).
Output: Recovered support ŝ.

has to calculate Eq. 2.20 up to N times in each iteration to pick up the next support

vector and search for the coefficient that maximizes the distribution, which can cause

high computation when k becomes large. The runtime problem becomes obvious

when using MAP-OMP to estimate the sparse signal in the Two-step-Adaptive MRF

framework, as shown in our experimental results in Figures 3.9 and 3.10.

More importantly, in both of these MRF-based approaches, the MRF is obtained

from training and cannot adapt for new signal structures. Thus, their performance

can deteriorate obviously when the structure of the testing signals is different from

those of the training signals. Next, we explore an example of signal recovery using

the clustered sparsity model that can be adaptive to testing signals.

2.2.2.3 Bernoulli

The work in [39] exploits the structure of the sparse signals through the clustered

sparsity model. A beta-Bernoulli model is used to model the distribution of the signal

coefficients that are assumed to cluster in groups. Thus, we refer to the clustered

sparsity model and the method in [39] as Bernoulli in our study. The model is defined
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as follows:

p(si|bi) = Bernoulli(si|bi), where bi = bk, with bk ∼ Beta(α, β) ∀i ∈Nk. (2.21)

where α and β are constants with appropriate settings. Each bi enforces bias toward

zero to each coefficient in each overlapping neighborhood Nk to exhibit clustering

structure. Unlike the previous MRF, the beta-Bernoulli model is only suitable for

modelling the sparse signals whose coefficients are grouped into clusters.

Although this model is not as flexible as the MRF, the conjugate property of

the beta-Bernoulli model allows an efficient expectation maximization (EM) tech-

nique [63] to estimate the support s as well as the model parameters bi. Let λ = {s, t}
denote the set of the unknown variables, and Θ = {b1, ..., bN} denote the set of the

unknown parameters. To estimate the parameters, the following MAP problem is

considered [39]:

max
θ

p(y|Θ) =
∫

p(y, λ|Θ)dλ (2.22)

which can be solved efficiently with a variational expectation maximization (EM)

method [63] by introducing qλ(λ) and qΘ(Θ). Eq. (2.22) can be rewritten in log-

likelihood as

ln p(y; Θ) ∝ F(qλ(λ), qΘ(Θ)) + KL(qλ(λ), qΘ(Θ)||p(λ, Θ|y)), (2.23)

where

F(qλ(λ), qΘ(Θ)) =
∫

qλ(λ), qΘ(Θ) ln
p(λ, Θ|y)

qλ(λ), qΘ(Θ)
dλ (2.24)

and the Kullback-Leibler divergence KL(·||·) is always greater than or equal to zero.

Since the left hand-side of Eq. 2.23 is independent of λ and Θ, maximizing

F(qλ(λ), qΘ(Θ)) with respect to qλ and qΘ is equivalent to maximizing KL. There-

fore, qλ and qΘ represent approximations to the posterior distribution p(λ, Θ|y).
qλ and qΘ are estimated by performing the following expectation-maximization

steps [63]:
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• Expectation step updates the random variables λ with the following rules.

qt+1
λi

(λi) ∝ exp 〈ln p(λi, y|Θ)〉qt
Θ
(Θ), ∏j 6=i qλj(λj)

(2.25)

and qλ(λ) = ∏N
i=1 qλi

(λi). The sparse signal and the support can be updated

in the expectation step. The update for support is:

qt+1(si) ∝ exp 〈ln p(s|b)p(y|s, x)〉qt
b(b)q

t
x(x)qt

s\si
(s\si) (2.26)

Then,

ŝi =
q(si = 1)

q(si = 1) + q(si = 0)
(2.27)

where q(si = 0) = exp 〈ln(1− bi)〉qbi(bi)
and q(si = 1) = exp(−σn(yTy +

〈x2
i 〉aT

i ai − 2x̂iaT
i (y−∑i>j aj x̂j ŝj))) exp 〈ln(bi)〉qbi(bi)

.

The sparse signal is updated as follows:

qt+1(x) ∝ exp 〈ln p(x)p(y|s, x)〉qt
s(s)

(2.28)

Then, p(x|y) is a Gaussian distribution N (µt
p, Ct

p
−1
)

x̂ = µt
p. (2.29)

where ut
p = σ̂nC−1

t ŜATy and Ct
p = Σ̂t + σ̂n〈SAT AS〉qs(s) where σ̂n and Σ̂t are

predefined noise and signal variance.

• Maximization step updates the parameters Θ with the following update rules:

qt+1
Θi

(Θi) ∝ p(Θ) exp (〈ln p(λ, y|Θ)〉qt
λ
(λ). (2.30)

The model parameters are updated in maximization steps. They are calculated

by performing the following updates.

qt+1(b) ∝ exp 〈ln p(s|b)p(b)〉qt
s(s)

= Beta(b|α̂, β̂) (2.31)

where α̂ = α + ∑i∈Nk
ŝi and β̂ = β + |Nk| −∑i∈Nk

ŝi.
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From this example, the model parameters can be adapted to testing signals and can

effectively estimate the support with closed-form update formulations. However,

beta-Bernoulli are only suitable for these signals with a clustering structure. This

becomes the motivation of our research: to bring adaptability to the MRF, which has

a higher flexibility to capture the broad range of the structure of sparse signals.

2.3 Sample complexity

Sample complexity represents the minimum number of measurements that is re-

quired to achieve successful signal recovery in CS. This section discusses how the

sample complexity can be reduced with deterministic and probabilistic structured

sparsity models. First, we discuss the relationship between the sample complexity

and the restricted isometry property (RIP) in Section 2.3.1. Here, we are only inter-

ested in RIP for the sub-Gaussian matrix. Then, we provide the example results of

sample complexity with deterministic structured sparsity models in Section 2.3.2.

The relationship between the sample complexity and probabilistic RIP is discussed

in Section 2.3.3. The sample complexity with using probabilistic structured sparsity

models is then discussed in Section 2.3.4.

2.3.1 Sample complexity and restricted isometry property (RIP)

To guarantee that a sparse signal can be successfully recovered in CS, two important

properties are held by the linear compression: (i) there is a unique solution— Ax1 6=
Ax2 for all sparse signal pairs x1, x2—,and (ii) that the linear compression can stably

embed under bounded noise—the Euclidean distance between each pair of k-sparse

signals are preserved by linear projections. To guarantee this, the measurement matrix

A involved in the linear compression must satisfy the restricted isometry property

(RIP) that ensures the two properties. The definition of the RIP is as follows:

Definition 2.3.1. Let A be an M×N matrix. A satisfies a restricted isometry property

(RIP) of order k, if there exists a bounded restricted isometry constant δk ∈ (0, 1) such

that

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22, (2.32)
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for all sparse signals x ∈ Uk.

There are certain types of matrices that are known to satisfy RIP. Sub-Gaussian

matrices are a group of random matrices that satisfy RIP with overwhelming probabil-

ity [68], if the number of measurements M meets a requirement of sample complexity.

The relationship between the sample complexity and the RIP of sub-Gaussian matri-

ces is as follows:

Theorem 2.3.1. ( [68] , Theorem 5.2). For any fixed sparse signal x, if the sub-Gaussian

random matrix A satisfies the following concentration inequality:

P
(
|||Ax||22 − ||x|||22| < ε||x||22]

)
≥ 1− 2e−cεM/2, (2.33)

then the matrix A satisfies RIP with probability of at least 1− 2
(

12
δk

)k
e
−cδk M

2 .

Then, a measurement matrix A will satisfy the RIP for all sparse signals with a

probability higher than 1− 2L
(

12
δk

)k
e
−cδk M

2 [49], where L is the cardinality of the sparse

signal space, if M complies with the following requirement for sample complexity,

i.e. [49]

M ≥ 2
cδk

(
log(2L) + k log

(
12
δk

)
− t
)

, (2.34)

for any t > 0.

The sample complexity can be generalized as O(k + log L) [49]. The cardinality

of the simple sparsity model Eq.(2.2) is L = (N
k ). From the Stirling formulation [49],

L = (N
k ) ≤

(Ne
k

)k
. Then, O(k + log L) = O(k + k log(N

k )) ≈ O(k log(N
k )). This opens

up a direction to reduce the sample complexity by restricting the cardinality of signal

space L.

This direction is employed to reduce the sample complexity for deterministic

structured sparsity models.

2.3.2 Reducing sample complexity with deterministic structured sparsity

models

Deterministic structured sparsity models impose additional geometrical assumptions

to restrict the cardinality of signal space L. In the following, we provide examples of
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sample complexity and the reduced cardinality with each deterministic structured

sparsity model that has been discussed in Section 2.2.1:

• Block sparse/group sparsity model [13] reduces the sparse signal space by

assuming that the sparse signal x ∈ RN can be reshaped into a matrix X of size

n×mk that has p entirely non-zero columns. The sparsity of X is k (= np). A

set of mk-block sparse signals is defined as follows [13]:

Bs = {X = [x1, ...xmk ] ∈ Rn×mk : xi ∈ Rn for i ∈ Ω, and xj = 0, otherwise,

Ω ⊂ [mk], and |Ω| = k}
(2.35)

From definition, the cardinality of the k-block sparse signal set is reduced to

|Bs| = (mk
p ) = (N/n

k/n ) <
(

eN/n
k/n

)k/n
. With the cardinality, the sample complexity

is O( k
n log(N

k )) [13].

• Hierarchical structured sparsity model [13], [49] reduces the sparse signal

space by assuming that non-zero coefficients in x can be constrained to form a

tree-structure. The model is defined in Eq. (2.9) where all elements in a sparse

signal x form binary tree, and only k non-zero coefficients can form a rooted

subtree. Each subtree with k nodes defines a subspace. The total number of

subspaces is bounded by the total number of different trees with k nodes, which

is the Catalan number Ck =
1

k+1 (
2k
k ) ≤

(2e)k

k+1 . With the reduced cardinality, the

sample complexity is M = O(k + k log(2e)− log(k + 1)) ≈ O(2k) [13], [49].

• Graph sparsity model [27], [48] reduces the sparse signal space by assuming

that the sparsity of x can be constrained with the weighted graph model de-

fined by Eq. (2.10). The cardinality of the set of the weighted graph model

is bounded by the total sparsity of signal k, the maximum number of con-

nected components g formed by the forest in the graph G, and the bound

of the total weight w(F) corresponding to the edges in the forest, which are

less than (N
g )(

B+k−g−1
g )ρ(G)k−g(2k−g

s−1 ) [27]. Hence, the sample complexity O(k +
k(log ρ(G) + log B

k ) + g log N
g ). The full derivation of the cardinality of the

model is referred to [27].
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It can be seen that the sample complexity has been greatly reduced with the

deterministic structured sparsity models. However, as we have discussed, for the

examples of signal recovery using deterministic models in Section 2.2.1, imposing

geometrical assumptions can cause some good candidate signals to be excluded

from solution spaces, especially when the structure of the testing signals is different

from the assumed geometrical structure. Therefore, many studies [29]–[42] resort to

probabilistic structured sparsity models that focuses on the likelihood of the signal

structure rather than the exact geometrical structure of the signal.

In the following, we discuss how the sample complexity can be reduced by the

probabilistic structured sparsity models.

2.3.3 Sample complexity and probabilistic RIP (PRIP)

The prior probability distribution of sparse signals helps identify where the important

information lies in the solution space in signal recovery. Cevher et al. [29] introduced

the following lemma that establishes the relationship between the signal probability

and the sample complexity:

Lemma 2.3.2. ( [29] , Lemma 1.). Suppose that δk ∈ [0, 1] are given, and the signal x is

generated by a known probabilistic model P . Let Ωk,ε ⊆ Uk denote the smallest set of support

for which the probability that a k-sparse signal x has supp(x) /∈ Ωk,ε is less than ε, and denote

the cardinality of the support set as D = |Ωk,ε|. A sub-Gaussian random matrix A ∈ RM×N

satisfies the (k, ε)-PRIP with a probability of at least 1− e−c2 M, if M ≥ c1(k + log(D)),

where c1, c2 > 0 depends only on the PRIP constant δk,

where the definition of the probabilistic RIP (PRIP) is as follows.

Definition 2.3.2. [29] A matrix A satisfies (k, ε)-PRIP, if there exists a constant δk > 0,

such that for a k-sparse signal x generated by a specified probabilistic signal model P ,

the random matrix A satisfies RIP with a probability of at least 1− ε over the signal

probability space.

The extra condition of the support set Ωk,ε in Lemma 2.3.3 is crucial to reducing

the sample complexity. It implies that the support set Ωk,ε does not need to con-

tain every support from the probabilistic model P ; however, only those that have
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high likelihood [29]. If this condition is satisfied, then RIP holds with the similar

requirement of sample complexity, i.e., O(k + log(D)) where D is the cardinality of

the support set Ωk,ε.

2.3.4 Reducing sample complexity with probabilistic structured sparsity

models

In practice, the probabilistic model P of sparse signals is often unknown. Previous

studies [29]–[42] either assume clustered sparsity models suitable for many signal

applications [37]–[42], or they employ the flexible graphical sparsity model from

training data [29]–[36]. In the following, we provide examples of how the sample com-

plexity is reduced with a clustered sparsity model and discuss the sample complexity

by using graphical sparsity models.

• Clustered sparsity model [29]. Suppose that non-zero coefficients of k-sparse

signals follow a homogeneous Poisson process with rate λ = − log( ε
k )N−α. Nα

is the duration where a non-zero coefficient occurs, and α� 1, since non-zero

coefficients cluster together. The probability of the first non-zero coefficient

occurs within the distance Nα is 1− ε
k , and then, the probability for the next k− 1

non-zero coefficients to occur within the next Nα(k−1) is (1− ε
k )

k−1. Thus, this

forms a set of supports Ωk,ε with cardinality Nαk, with the probability (1− ε
k )

k,

which is higher than (1− ε). With such cardinality, the sample complexity

becomes O(k + αk log(N)) ≈ O(k) as α� 1.

• Graphical sparsity model [29]–[36]. These research papers [29]–[36] employ

Markov random fields (MRFs) as the structured sparsity model. Unlike the

clustered sparsity models, they do not have any geometrical assumptions about

the clustering of signal coefficients. Since the geometrical structure is not strictly

defined, quantifying the cardinality of the support set Ωk,ε is difficult. To our

knowledge, the analytical results for the sample complexity reduced by this

model is still very limited. Hence, in the following we provide a discussion of

the sample complexity when using MRF based on Lemma 2.3.3.
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Let p(·; Θ̂G) denote the probability distribution of the MRF with parameters Θ̂G

and underlying graph G. According to [29]–[36], the parameters of the MRF are

learned from solving the following maximum likelihood estimation problem:

Θ̂G = max
ΘG

p(D|ΘG). (2.36)

D is the set of training data. It is assumed that this MRF can well represent the

true probability model of support signals of the testing signals, i.e. s ∼ p(·|ΘG).
Following the support estimation process Eq. (2.15) in [29]–[36], the candidate

supports can be sampled from the posterior distribution. The support set Ωk,ε

is defined as:

Ωk,ε = {s̄ ∈ {0, 1}N : s̄ ∼ p(s|y) ∝ p(y|s)p(s|Θ̂G)}. (2.37)

Calculating the number of candidates is, however, difficult, since the analytical

form of the posterior distribution p(s|y) cannot be obtained; thus, the credible

interval cannot be quantified. One can resort to finding the confidence inter-

val [69]; however, finding the confidence interval requires the true parameters

of p(s|y) to be known. Meanwhile, in practice, these candidates are obtained

from solving Eq. (2.15) with MAP estimators that often provide a few solu-

tions [29]–[36]. Thus, the support set can be further restricted according to the

estimators employed for solving the supports, i.e.

Ω̃k,ε = {s̄ ∈ {0, 1}N : s̄ = Estimator(p(y|s)p(s|Θ̂G))}, (2.38)

Thus, if the estimator yields a small, constant number of solutions, the sample

complexity can be reduced to the optimal theoretical complexity O(k), as |Ω̃k,ε|
is a small constant.

Notice that this resulting sample complexity relies on the assumption that the

training data D can well represent the testing signals, and the learned MRF

model is thus representative of the true signal probability distribution. However,

if the testing signals are different from those training signals, the learned MRF
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model does not necessarily represent the true signal probability distribution.

As a result, the support set Ω̃k,ε fails to capture the support of the testing signal,

which violates the extra condition on the support set Ω̃k,ε in Lemma 2.3.3. As

the structured prior is no longer informative, the sparse signal recovery only

relies on the simple sparsity as the prior knowledge. This will result in the

requirement on the sample complexity to be as high as for the non-structured

cases, i.e., O(k log N
k ).

Data-adaptive models, such as our adaptive MRF (see Chapters 3 and 4), can

be used to address this problem, as our adaptive MRF is employed to capture

the structure of testing signal. In Chapter 3, we will discuss the essence of

data-adaptive prior and the connection between the data-adaptive prior and

the sample complexity.

2.4 Markov random fields

So far, we have discussed an application of Markov random fields (MRFs) for signal

recovery in CS. The MRFs have been used to model the distribution of the sup-

port. Graphical model inferences and learning are two important mechanisms to

infer/encode the information in the MRFs. The graphical model inference can be used

to solve the support estimation Eq. (2.15). Graphical model learning is employed

to learn the MRF parameters, as Eq. (2.36). The choice of graphical model inference

and learning are important to construct an efficient signal recovery, especially for

the proposed signal recovery method in Chapter 3. In the following, we provide

background on the MRFs, including the graphical model inferences and learning.

MRFs [70] provide a principled framework to represent the interdependency or

correlation among subsets of random variables [71], [72]. They have played a crucial

role in extensive image processing and computer vision tasks, such as image denois-

ing [73], segmentation [74] , super-resolution [75] , inpainting [76], etc. The MRFs are

an undirected graph G = (V , E) that consists of sets of nodes V and undirected edges

E , and holds two important properties: (1) the positive joint probability, i.e., p(S) > 0,

and (2) local Markov property, i.e., Si ⊥ SV\i|SNi where Ni denotes the set of neigh-

bors of node i in the graph G. Let S be a set of random variables where each SCi is



36 Chapter 2. Structured Compressive Sensing

a random variables vector in clique1 Ci ∈ G. According the Hammersley-Clifford

theorem [77], Gibbs distributions, that is the family of distributions satisfying the

local Markov property, can be factorized into the following forms:

p(S) =
1
Z ∏

Ci∈G
f (SCi ; θCi), (2.39)

where Z is a normalizing constant. Z = ∑s ∏Ci∈G f (sCi ; θCi). f (SCi ; θCi) denotes the

factor associated with random variables in each clique Ci where θCi is the parameter

of the MRFs in each clique.

2.4.1 Inference

Inference in graphical models is a task to infer the information in hidden variables

SH, given observed variables SO. Two common types of inference task are:

• (1) to compute ŝ that maximizes the posterior probability p(SH |SO), i.e.,

ŝ = max
s

p(sH |sO), (2.40)

which is called maximum a posteriori (MAP) estimation; and

• (2) to compute the marginal distribution over a single hidden node i or sets of

hidden nodes, i.e., let D denote the index of the nodes of interest

p(sD|sO) = ∑
i∈V\D

p(s1, ...s|V||sO). (2.41)

It should be noted that the computational cost of Eq.(2.40) and Eq.(2.41) grow

exponentially with the number of nodes. If the vector s ∈ {0, 1}N is a binary vec-

tor, then the computational complexity is proportional to 2N . Efficient algorithms

have been developed to improve the computational complexity in graphical model

inference.

Generally, graphical model inference can be categorized into: (1) exact inference

and (2) approximate inference. In exact inference, the marginal distribution over each

group of node variables is analytically computed. Belief propagation is a standard

1A clique is defined as a fully connected subset of nodes in a graph.
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example of algorithms for solving exact inference. It is efficient for a certain class

of graphical models such as tree-structured models, except when there are cycles

formed within the underlying graph [78], since the computational complexity grows

with the tree width of the graph. There are polynomial time algorithms for certain

classes of MRFs [79], [80]. Still, performing exact inference may not be feasible in

practice.

For this reason, approximate inference approaches are preferred. Two common

types of approximate inference algorithms are (1) sampling methods and (2) variational

methods. The idea of a sampling method is to approximate the marginal distribution

with samples. Since the distribution of the graphical model is often flexible and can-

not be sampled directly, the sampling usually relies on methods such as Markov chain

Monte Carlo (MCMC) to generate samples from a simpler distribution that approxi-

mates the more complicate one. Gibbs sampling is an alternative to MCMC; however,

it can suffer from slow convergence [67]. Simulated annealing is an interesting alter-

native as it has global convergence properties [81]. However, these sampling-based

methods can be computationally expensive under certain conditions [67]. Variational

algorithms [82] improve the computational complexity by employing a simpler dis-

tribution, where inference can be performed easily, than the underlying distribution

of graphical model. The surrogate distribution, however, is restricted to the family of

distributions that closely resembles the underlying distribution.

In Chapter 3, our approach requires us to perform inference on an MRF to esti-

mate a signal support from an MAP problem Eq. (3.20). This MAP problem can be

solved using any inference technique mentioned previously. Here, we employ an

approximate inference technique [83] for its low computational complexity, especially

when the underlying graph of the MRF contains cycles.

2.4.2 Learning

Given the underlying graph, the parameters of an MRF are learned from a given set

of training data. Let D = {s[1], ..., s[D]} be a set of training data (T is the number of

training data); θG = {θCi}Ci∈G is the set of parameters corresponding to the graph G.

One of the most popular criteria for parameter learning is to solve the maximum a
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posteriori problem:

θG = max
θG

p(θG |D) ∝ p(D|θG)p(θG) =
D

∏
d=1

p(sd|θG)p(θG), (2.42)

where s[1], ..., s[D] are assumed to be drawn from an iid distribution. If the prior

p(θG) is assumed to be a uniform distribution, the MAP problem is reduced to a

maximum likelihood (ML) problem. Given the probability distribution of the MRF

Eq. (2.39), the ML problem can be written in logarithmic form as follows:

θG = max
θG

D

∑
d=1

log p(sd|θG) =
D

∑
d=1

log
f (sd|θC1 , ..., θCg)

∑c f (c|θC1 , ..., θCg)
. (2.43)

The estimation of the model parameters are obtained by performing gradient de-

scends. The gradient of the objective function is:

∂ log p(s|θC1 , ..., θCg)

∂θCi

=
∂ log f (s|θC1 , ..., θCg)

∂θCi

−∑
c

p(c|θC1 , ..., θCg)
∂ log f (c|θC1 , ..., θCg)

∂θCi

.

(2.44)

The second term in the right-hand side in Eq. (2.44) is the expected derivative of the

logarithm of the probability. Calculating the expected derivative requires performing

the difficult inference to compute the marginal probability, which is often computa-

tionally expensive. A number of alternative learning criteria have been developed to

address this problem, including the maximum pseudo-likelihood [84], contrastive

divergence [85], discriminative training of energy-based methods [86], and score

matching [87]. These methods proposed different approaches to address the problem

of estimating the normalizing term in the MRFs. The pseudo-likelihood [84] employs

the conditional independence property of MRFs to factorize p(s|θG) into the product

of marginal distribution over a small group of nodes in each clique p({si}i∈Ci
|θCi),

which involves only a small number of the parameters. If the normalizing term can

be calculated, this approach is efficient. However, if undirected graphical models

can have high tree width, calculating the normalizing term is intractable, except in

the Gaussian case. Contrastive divergence [85] is proposed to employ the MCMC

approximation to the estimation of the non-normalized models, which may be quite
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poor [88]. Discriminative training of energy-based methods [86] enable the develop-

ment of an alternative to learn the parameters from the non-normalized graphical

models with a wide family of loss functions, and provide a sufficient condition that

the loss function must satisfy so that its minimization will make the system approach

the desirable behavior. Meanwhile, score matching [87] is proposed to replace the

ML problem Eq. (2.43) by minimizing the expected squared distance between the

gradient of the log-density given by the model and the gradient of the log-density of

the observed data.

Pseudo-likelihood [84] is used in our work (Chapter 3) since this approach can learn

the MRF parameters efficiently, especially when the underlying graph of the MRF is

sparse. Pseudo-likelihood [84] assumes that si and sj are conditionally independent

given the neighborhood of si, and resort to maximize ∏d ∏i p(sd
i |sd

Ni
, θG), where sd

Ni

are the neighbors of the node si, i.e.

θG = max
θG

D

∏
d=1

N

∏
i=1

p(sd
i |sd

Ni
, θG). (2.45)

According to the Boltzmann machine Eq. (2.43), p(sd
i |sd

Ni
, θG) is written as

p(sd
i |sd

Ni
, {wi,j, bi}ij∈E ,i∈V ) =

1
Z(sd

Ni
; {wi,j, bi})

exp (sd
i bi + ∑

j∈Ni

sd
i wi,jsd

j ). (2.46)

where {wi,j} and {bi} are the pairwise and unary parameters corresponding to the

Boltzmann machine. Then, the corresponding negative logarithmic function is de-

fined as:

lPL({wi,j, bi}ij∈E ,i∈V ) =
1
D

D

∑
d

N

∑
i=1

(sd
i bi + ∑

j∈Ni

sd
i wi,jsd

j )−
1
D

D

∑
d

N

∑
i=1

log Z(sd
Ni

; {wi,j, bi}).

(2.47)



40 Chapter 2. Structured Compressive Sensing

Gradient descent is obtained to minimize this log-likelihood function. The gradient

learning equation for the unary and pairwise parameters are:

bi(t + 1) = bi(t) + ρ

(
1
D

D

∑
d

sd
i + 1− 1

D

D

∑
d

(
2

1 + exp−2(bi(t) + ∑j∈Ni
wi,j(t)sd

j )

))
;

wi,j(t + 1) = wi,j(t) + ρ

(
1
D

D

∑
d

2sd
i sd

j +
1
D

D

∑
d

sd
i +

1
D

D

∑
d

sd
j − Td

i,j

)
;

(2.48)

where,

Ti,j =
1
D

D

∑
d

(
2sn

j

1 + exp−2(bi(t) + ∑j∈Ni
wi,j(t)sd

j )

)
+

1
D

D

∑
d

(
2sn

i

1 + exp−2(bj(t) + ∑i∈Nj
wi,j(t)sd

i )

)
.

(2.49)

It can be seen that the computation at every gradient step only involves sum-

mation over scalar value; and thus is tractable. In our work, the MRF is adaptively

estimated based on an intermediate estimate of the sparse signals. Thus, the underly-

ing graph of MRF is often sparse. Therefore, pseudo-likelihood is a suitable choice

for our work.

2.5 Collaborative representation-based classification

The discriminative nature of signal representation can be employed to perform

classification. A group of researchers [89] proposed a classification method that is

based on collaborating multiple training samples from all classes; thus, this type of

signal recovery-based classification approach is commonly referred to as collaborative

representation-based classification (CRC). The main application of CRC is on face

recognition. Nevertheless, it can be suitable for other applications that (i) have a small

number of training samples and (ii) cannot learn the model or perform inference over

the learned model [89]–[92]. In this section, we provide background on CRC and

relevant techniques that are developed based on the CRC framework.

CRC aims at predicting the class label of a query sample y in a collaborative

representation setting, i.e. it is assumed that the query y can be approximately rep-

resented by the linear combination of all training samples in the sample matrix A,

i.e. y = Ax + n where x is an underlying representation vector and n is a small
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perturbation. The training samples in the sample matrix A are sorted according to

class labels. Specifically, the sample matrix A is defined as.

A = [A1, ..., AC], (2.50)

where A1, ..., AC are sorted according to their labels. Each Ac ∈ Rm×nc is a sub-matrix

containing nc training samples associated with the cth class, and C is the total number

of classes. The goal is to recover a representation vector x given the noisy query

sample. CRC recovers the shortest Euclidean distance to the query sample.

A similar line of research was first introduced in [90], which assumes that the rep-

resentation vector x is sparse, termed sparse representation-based classification (SRC).

Although Zhang et al. [89] argued that the important key to achieving good result is

due to the use of collaborative representations rather than the sparsity assumption,

the role of sparsity is important to increase the robustness in classification, espe-

cially when the query samples contain outliers [89], or when the number of training

samples is significantly high [89], [90], [92]. Many modifications of CRC/SRC have

been proposed [93]–[98]. For example, the work in [93], [94] proposed employing

multiple regularization terms both SRC and CRC, as a function to control sparsity

in the representation vector. However, these works are mainly developed for vision

applications and often assume the good condition of training samples with high

visual quality and clear visible distinctions across different classes.

In wearable based-human activity recognition, the training data are not guar-

anteed to be noise-free. Despite this, the CRC/SRC offers state-of-the-art perfor-

mance [91], [99]–[101]. Zhang et al. [91], [99] employs SRC to recognize daily human

activities using a wearable sensing device attached to the waist of fourteen partic-

ipants. However, the location of the sensors could impact the recognition; thus,

in [99], they proposed to co-recognize the sensor locations and human activities

with using a Bayesian SRC. In [100], both CRC and SRC have been used to test the

effectiveness of a decision-level fusion approach, where both CRC and SRC offer

similar results, but SRC requires higher computational cost. Although CRCs and

SRCs have shown promising classification performance in many applications, their

intrinsic classification mechanism remains unclear. Recently, ProCRC [98] offers a
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probabilistic interpretation of CRCs and proposes to maximize the likelihood that a

test sample belongs to each of the multiple classes. This significantly improves the

classification performance of CRCs in vision applications.

Therefore, in the following, we provide examples of three famous, state-of-the-art

algorithms, i.e. the SRC, CRC, and ProCRC methods.

2.5.1 Sparse representation-based classification (l1-based method)

In SRC [90], the representation vector is reconstructed by solving the following

l1−minimization problem :

x̂ = min
x∈RN

1
σn
||Ax− y||2 + ||x||1; (2.51)

With the resulting representation vector, the classification is performed by choosing

the class label that minimizes the residual error.

l∗(y) = min
c∈[C]
||y− Ac x̂c||2. (2.52)

2.5.2 Collaborative representation-based classification (l2-based method)

Collaborative representation-based classification (CRC) [89] aims to find the class

label that minimizes the least square error:

x̂ = min
x∈RN

||Ax− y||2 + λ||x||2; (2.53)

where λ is the regularization parameter. The l2−regularization has two roles: (i) it

makes the least square solution stable, and (ii) it introduces certain amount of sparsity

to the solution x̂ that is much weaker than employing l1−norm. The solution to

Eq. (2.53) can be analytically derived as

x̂ = (AT A + λI)−1ATy, (2.54)

Let P = (AT A+ λI)−1AT that is independent of y. Clearly, P can be pre-calculated as

a projection matrix. This makes the signal recovery very fast. Then, the classification
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is performed by searching for the class that has the minimum residual as follows:

l∗(y) = min
i
{ri}, (2.55)

where ri =
||y−Aixi ||2
||xi ||2 .

CRC [89] is a very efficient method for face recognition, i.e. it can offer comparable

recovery accuracy to SRC, with much faster computing time. It is shown in [89]

that using only the l2− regularization, the minimum error can be achieved. Let

e = ||y− Ax̂||22 denotes the error corresponding to the least square regularization,

and x̂ is the least square solution,

e = ||y− Acxc||22 + ||Acxc − Ax||22. (2.56)

The error in the first term e1 = ||y− Acxc||2 cannot be reduced since it is proportional

to noise in the measurements. Meanwhile, the error in the second term e2 = ||Acxc −
Ax||2 can be further improved. The minimum error is e1 which occurs when e2 = 0

, or when ∑j 6=c Ajxj = 0, which is bounded by the performance of the least square

Eq. 2.53. Thus, only the l2 can lead to the minimum error.

Next we will explore the ProCRC that elaborates the probabilistic interpretation

of CRC and brings an important regularization term into the least square regular-

ization, i.e., ||Acxc − Ax||2 which is shown to significantly improve the classification

performance in [98].

2.5.3 Probabilistic collaborative representation-based classification

ProCRC [98] aims to solve for the signal x that maximizes the probability of label of y

equal to the cth class which is the following MAP problem:

max
x∈RN

p(l(y) = c) (2.57)

where the probability of the label of y is equal to a class c is defined as

p(l(y) = c) =p(l(y) ∈ LA)p(l(Ax) = c|l(Ax) ∈ LA)

∝ exp−(||y− Ax||2 + λ||x||2 + γ||Ax− Acxc)||2,
(2.58)
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where γ is a regularization constant. However, the classification by the maximal

p(l(y) = c) can become unstable and less discriminative [98]. ProCRC resorts to

maximizing the joint probability p(l(y) = 1, ..., l(y) = C). Applying the logarithmic

operator

max
x∈RN

{||y− Ax||2 + λ||x||2 + γ
C ∑C

c=1 ||Ax− Acxc)||2}. (2.59)

This has the following closed form solution x̂ = Ty, where

T =

(
AT A +

γ

C

C

∑
c=1

ĀT
c Āc + λI

)−1

AT. (2.60)

Given the solution x̂, the probability p(l(y) = c) is employed to perform classification:

p(l(y) = c) ∝ exp−(||y− Ax||2 + λ||x||2 + γ

C
||Ax− Acxc)||2), (2.61)

where (||y− Ax||2 + λ||x||2) is the same for all classes; thus, this term can be omitted

in computing p(l(y) = c), i.e.

pc = exp−(||Ax− Acxc)||2). (2.62)

The classification rule can be formulated as

l(y) = max
c
{pc}. (2.63)

It can be seen that the two main improvements in ProCRC over CRC are (i) the

ProCRC contains the additional term (Ax− Acxc) in Eq. (2.59) to jointly maximize

the likelihood that a test sample belongs to each of the multiple classes, and (ii) The

classifier uses Eq. (2.62) which is the same as the additional term (Ax− Acxc); thus,

it can directly search for the class label from the optimal representation vector. It has

been shown that these two differences in ProCRC lead to better performance than

CRC in multiple recognition tasks [98].

Despite a number of variations of CRCs and SRCs, e.g. [89], [90], [92]–[95],

[98], these methods often rely on finding the representation vectors that minimize
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||y − Ax||2 or ||Ax − Acxc||2. However, if two sets of training samples Ai and Aj

are similar or correlated, the predicted label can be misclassified as the other class.

Nevertheless, correlation between training samples is a common problem in wearable-

sensor-based human activity recognition. This is because each activity is a combi-

nation of body motions. To address this problem, we are motivated to extract the

underlying information in the query sample as a prior in signal recovery. The under-

lying structure can offer information that is related to the class of the query sample.

Here, we provide more details on the correlated training samples problem and how

we approach and address the problem in Chapter 5.

2.6 Summary

This chapter presents a review of many algorithms for structured sparse signal

recovery in compressive sensing. Two classes of structured sparsity models have

been studied, namely, the deterministic structured sparsity models, and the probabilistic

structured sparsity models. The deterministic model represents the geometrical

structure of the signals in a union of sparse subspaces (see Section 2.2.1); however,

the assumption about signal geometrical structure is limited to some groups of

sparse signals. To address this problem, the probabilistic structured sparsity models

represent the signal structure through the probability distribution of signals (see

Section 2.2.2).

The theoretical guarantee of the sample complexity for the deterministic model

can be directly derived based on the restricted isometry properties. The examples of

how to reduce the sample complexity with deterministic models have been presented

in Section 2.3.1. The sample complexity can achieve the theoretical optimum O(k)
with the assumed block and tree structure. Meanwhile, the sample complexity of

the probabilistic structured sparsity model is analyzed based on the probabilistic

restricted isometric properties. The examples of how to reduce the sample complexity

with this class of structured sparsity model are also explored (see Section 2.3.4).

The existing results demonstrate the potential to reduce the sample complexity to a

theoretical optimum O(k) without imposing any geometrical structure assumptions.

However, this is under the condition that the candidate supports encoded from a
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trained probabilistic model can well represent the true signal. This condition could

be violated, if the training signals are not representative enough. To address this

problem, Chapter 3 and Chapter 4 will present a solution to employ our proposed

adaptive MRF that has sufficiently high flexibility to capture new signal structures.

This chapter also provides a background review on the inference and learning

in Markov random fields (Section 2.4) that have been used in our proposed method.

Also, we review the sparse representation-based classification and briefly discuss the

problems with the existing approaches that can be addressed by our adaptive MRF

approach in Section 2.5. The application of our adaptive MRF to classification will be

presented in Chapter 5.
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Chapter 3

Adaptive Markov Random Fields

for Structured CS

3.1 Introduction

The exploitation of intrinsic structures of sparse signals underpins the recent progress

in compressive sensing (CS). The key to exploiting signal structures is to employ

structured sparsity models that have the two desirable properties: flexibility—the

ability to fit a wide range of signals with diverse structures, and adaptability —being

adaptive to actual signal structures. In the previous chapter, we have reviewed the

two main classes of structure sparsity models: the deterministic and the probabilistic

structured sparsity models. Deterministic structured sparsity models often assume

prior knowledge about the geometrical structure of the sparse signals such as group

or tree structure. Thus, these models lack the flexibility to capture different types of

signal structures. The probabilistic structure sparsity models, e.g. Markov random

fields (MRFs), have the flexibility to model a wide variety of signal structures, but

the MRF parameters are obtained from training and cannot adapt for new signal

structures. Thus, their performance is constrained by the information in the training

data. Meanwhile, the clustered sparsity models can adapt the model parameters for

a new sparse signal, but they assume there are limited signal structures such as a

cluster structure. As a result, the clustered sparsity models are not as flexible as the

MRFs. Therefore, these existing structure sparsity models can only achieve one of the

two desirable properties; either flexibility or adaptability.

To achieve the two desirable properties, we propose to leverage the adaptability of
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Adaptive MRF
1st 2nd 3rd Final

MRF’s Unary
potential

Sum of MRF’s
Pairwise
potential

Error maps

Recon. Images

28.32 dB 32.70 dB 32.85 dB 32.95 dB
(The higher the PSNR the better)

(A) Intermediate and final results.

Fixed MRF

30.15 dB

(B) Final result.

FIGURE 3.1: Comparison of the effect of an Adaptive MRF prior and a Fixed MRF
prior on a sample MNIST data: The first (top) and second rows include the unary
potential at each image pixel and the sum of the pairwise potentials of the adjacent
pixels. The third and fourth rows include reconstructed images and error maps. Our
adaptive MRF is much more attuned to the image structure (digit 2). However, the
fixed MRF only focuses on the region (the disk shape) where all the digits appear.

an MRF. MRFs represent the structure of signals by defining a probability distribution

over an undirected graph. A Boltzmann machine (BM) is used as the probability

distribution of the MRF because of its flexibility to model different signal distributions.

To realize the adaptability, we enable the parameter estimation for the MRF where

both the BM parameters and the underlying graph of the MRF are estimated, based

on an intermediate estimate of the latent sparse signal. Thus, the estimated MRF

parameters are adapted to represent the underlying structure of the latent signal.

Figure 3.1A demonstrates the improved performance by employing the adap-

tive MRF versus the trained MRF as a prior in recovering a sample MNIST image

(no. 2). The evolution of the intermediate estimates of the adaptive MRF and the

reconstructed images are provided in the 1st-3rd columns, and their final results are

provided in the 4th column. Meanwhile, the trained MRF is fixed throughout the
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signal recovery process. The trained MRF and the reconstructed images are provided

in the last column, denoted fixed MRF. The first (top) and the second rows show the

resulting unary potential and the pairwise potentials. The third and fourth rows show

the error maps with respect to the ground truth image no. 2 and the intermediate

estimates of images. It is clear that the adaptive MRF improves the quality of the

estimated image in each iteration, as the MRF parameters are refined: the unary

and pairwise potentials of the adaptive MRF are adjusted to fit the digit number 2,

as opposed to recovering the sparse signal with a fixed MRF which cannot adapt

throughout the signal recovery process. The fixed MRF captures the universal pattern

of all the training, which appears as a disk shape, where all the digits appear. As a

result, the adaptive MRF provides higher reconstruction quality, both numerically

and visually, than the fixed MRF.

To exploit an MRF as a prior in signal recovery, most existing MRF methods

such as [30]–[32], [34] are based on the non-recursive two-step approach (see Algo-

rithm 2.3), that is, it estimates the support first, and then, estimates the sparse signal.

However, this can cause high computational time, and any error in the first step

can propagate to the second step and can not be minimized later. Moreover, these

methods employ homogeneous noise and signal parameters from the training data,

which do not necessarily represent the actual parameters of the testing signals well.

To address these problems, we propose to estimate the sparse signal, support,

noise parameters, and sparse signal parameters jointly and iteratively, based on the

adapted MRF. However, by doing this, the whole signal estimation becomes a non-

convex optimization problem over discrete and continuous variables (see Eq.(3.8))—

support, sparse signals, noise and signal parameters —which is very difficult to solve

in general. To tackle this non-convex problem, we propose to apply a latent Bayes

model [102], [103] to provide a new formulation (see Eq.(3.10)), which can be reduced

into several subproblems by using alternative minimization optimization scheme.

With the structured sparsity prior being considered, we derive several new formula-

tions to solve for the sparse signal, support, and signal covariance with maximum

a posteriori (MAP) estimation. To estimate the support efficiently, we propose to

approximate the non-linear, pairwise potentials in the resulting MAP problem into
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linear, unary potentials. This brings in the closed-form solutions for estimating sparse

signal, noise and signal parameters. Meanwhile, the support estimation problem can

be solved efficiently with any off-the-shelf MAP inference tools.

Therefore, we propose to leverage the adaptability of the MRF and develop a

new sparse signal estimation to obtain the sparse signals with the adapted MRF. We

highlight the contribution of this chapter as follows:

1. Two-step-Adaptive MRF framework to adaptively estimate an MRF to fit any

signal structure. To realize adaptability, both the BM parameters and the un-

derlying graph are updated based on an estimated sparse signal. Then, our

sparse signal estimation exploits the adapted MRF as a prior to improve the

estimation accuracy. The Two-step-Adaptive MRF framework is discussed

in Section 3.3. The superior performance of the proposed adaptive MRF is

provided in Section 3.6.5.

2. New sparse signal estimation algorithm to jointly and iteratively estimate the sup-

port and the sparse signal, noise and signal parameters. We achieve this by

employing a latent Bayes model [102], [103] to provide a new formulation (see

Eq.(3.10)) that can be solved efficiently with alternative minimization optimiza-

tion. With the structure of sparse signals being considered, we derive several

new formulations to solve for the sparse signal, support, and signal covari-

ance with maximum a posteriori (MAP) estimation. We compare the proposed

sparse signal estimation that solves the new formulation Eq.(3.10) against the

existing schemes [31], [32] that solve Eq.(3.8) in the Two-step-Adaptive MRF

framework. Our approach offers better reconstruction accuracy and runtime

(see Section 3.6.6).

3. Theoretical result to demonstrate the essence of adaptive support prior and the

connection between an adaptive support prior and probabilistic RIP in Sec-

tion 3.4. It shows that if the adapted support prior converges to the distribution

of the test signal, it guarantees that the feasible set contain the test signal. Then,

the sample complexity of O(k) can be achieved.



3.2. Graphical Compressive Sensing 51

4. We evaluate the performance of the proposed algorithm with three benchmark

datasets: i) MNIST, ii) CMU-IDB, and iii) CIFAR-10. To observe the performance

in exploiting different signal structures, we study the reconstruction of sparse

signals in the spatial domain and standard bases—wavelet, discrete cosine

transform (DCT), and principal component analysis (PCA) bases. The results

demonstrate promising performance in terms of accuracy in recovering the

sparse signal, with a moderate runtime (see Section 3.6.7).

The following sections are organized as follows: Section 3.2 presents the sig-

nal model for graphical compressive sensing. Section 3.3 addresses the proposed

Two-step-Adaptive MRF. The new sparse signal estimation and the corresponding

optimization process are provided in Section 3.3.3. Then, the computational complex-

ity is discussed in Section 3.5. To this end, extensive experiments and analysis on

three benchmark datasets are provided in Section 3.6.

3.2 Graphical Compressive Sensing

In this study, we capture the structure of sparse signal x by modeling its support

explicitly. Let s ∈ {−1, 1}N indicate the support of x such that si = 1 when xi 6= 0

and si = −1 when xi = 0. Let xs ∈ Rk denote the non-zero coefficients of the k-sparse

x. Our goal is to estimate s and xs from the linear measurements y corrupted by

additive noise n as follows,

y = Asxs + n. (3.1)

Here As is the matrix with k columns selected from the matrix A according to non-

zero coefficients specified by s, and n is the Gaussian white noise, i.e., n ∼ N (0, σn I)

where σn is the noise variance and I denotes an identity matrix with a proper size.

The corresponding likelihood over y can thus be formulated as

p(y|xs; σn) = N (Asxs, σn I). (3.2)

Each observed measurement yi can be seen a noisy linear combination of non-

zero sparse signal coefficients that are projected on the matrix atoms. The inter-

dependencies among coefficients can be modelled through the prior of support s.
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Specifically, we impose a graphical sparsity prior on xs and s (Section 3.2.1). Subse-

quently, we show how to recovery the sparse signal x from the measurements y by

our new adaptive MRF inference (Section 3.3).

3.2.1 Graphical sparsity prior

The sparse signals often exhibit an arbitrary and complex statistical dependency

between the sparse signal coefficients [32], [34]. The MRFs are flexible and expressive

enough to capture complex dependency by defining the probabilistic distribution over

an undirected graph [72], [104]. Let G = (V , E) represents the undirected graph where

V is a set of nodes (each representing a variable) and E is a set of undirected edges.

Let ΘG =
{
Wi(·; ξ i),Wi,j(·; ξ(i,j)

}
i∈V ,(i,j)∈E

denote the set of potential parameters

associated with the probability distribution defined on an MRF to represent local

dependency among the nodes in the undirected graph G. Therefore, by configuring

the edges in the edge set E as well as the corresponding potentials ΘG , the MRF is

capable of representing a wide range of signals with diverse structures [105], which

include most of the geometrical structures, e.g. block and tree structures. To model

the structure of sparse signals, we impose a graphical sparsity prior on xs and s as

follows.

First, we define the prior of support s based on MRFs. Each coefficient si of the

support s is mapped onto each node i ∈ V . Given the graph G, the probability of the

support p(s; ΘG) can be represented as follows with a normalization constant Z,

1
Z

exp


∑

i∈V
Wi(si; ξ i) + ∑

(i,j)∈E
Wi,j(si, sj; ξ(i,j))


 , (3.3)

whereW(·)(·; ξ(·)) is commonly assumed to be a linear function with respect to ξ(·),

e.g.Wi(si; ξ i) = ξ isi andWi,j(si, sj; ξ(i,j)) = ξ(i,j)sisj. With the linear potentials, the

probability distribution Eq.(3.3) is often called a Boltzmann machine (BM). Hence, the

parameter set contains the BM parameters ΘG =
{

ξ(i), ξ(i,j)
}

i∈V ,(i,j)∈E
. The first group

of BM parameters defines the bias (e.g., confidence) potential to each si; while the

second group characterizes the pairwise interaction between two variable nodes, e.g.

ξ(i,j) weights dependency between si, sj.
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In addition, we assume x comes from a Gaussian distribution N (0, Σx) where Σx

denote sparse signal covariance which is a diagonal matrix. Given s, the probability

of non-zero coefficients is defined as

p(xs|s) = N (0, Σx,s) (3.4)

where Σx,s denotes the covariance of non-zero coefficients according to s. Then,

p(xs|s)p(s; ΘG) forms the graphical sparsity prior in this study. To reduce the com-

putation in estimating the sparse signal variance, Σx,s is assumed to be a diagonal

matrix whose diagonal entry is chosen from Σx.

3.3 Two-step-Adaptive MRF

Provided that the optimum parameters σ̂n, Σ̂x,s, Θ̂, and Ĝ are given beforehand, the

latent xs and s can be estimated by solving a maximum a posteriori (MAP) problem:

max
xs,s

p(xs, s|y) ∝ p(y|xs; σ̂n)p(xs|s; Σ̂x,s)p(s; Θ̂G). (3.5)

However, these parameters are often unknown in real applications. Some previous

work obtains both of the BM parameters and the underlying graph of the MRF from

the training data [31]–[33]. While these parameters can well represent the common

characteristics among training data, they fail to adapt to testing data as shown in the

preliminary results in Figure 3.1B. On the contrary, with adaptive MRF, the quality

of the reconstructed image is obviously improved because the adapted MRF keeps

reducing the reconstruction error in each iteration.

Motivated by this result, we propose a Two-step-Adaptive MRF to adaptively es-

timate all the parameters—the BM parameters ΘG and the underlying graph G of the

MRF, and noise and signal parameters σn and Σx,s— according to the measurements.

Our objective is, therefore, to estimate these unknowns—s, σn, Σx,s, and ΘG— from
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the measurements by solving

max
s,σn,Σx,s,ΘG

p(s, σn, Σx,s, ΘG |y) ∝

∫
p(y|xs, σn)p(xs|s, Σx,s)p(s|ΘĜ)dxs,

(3.6)

which intrinsically maximizes the likelihood of measurements over all the model

parameters, as well as the support. Solving Eq. (3.6) directly is intractable. To

circumvent this problem, we reduce Eq. (3.6) into two subproblems as follows.

3.3.1 Sparse signal estimation

Given the MRF parameters Θ̂G and Ĝ, we first infer other parameters from the

measurements by solving

max
s,σn,Σx,s

p(s, σn, Σx,s|y, Θ̂Ĝ) ∝

∫
p(y|xs, σn)p(xs|s, Σx,s)p(s|Θ̂Ĝ)dxs.

(3.7)

The optimization problem in Eq. (3.7) can be equally reformulated as [32], [106] :

min
s,σn,Σx,s

− log
∫

p(y|xs, σn)p(xs|s, Σx,s)p(s, Θ̂Ĝ)dxs ≡

1
2

yT(σn + AsΣx,s AT
s )
−1y +

1
2

log |σn I + AsΣx,s AT
s |

− log p(s|Θ̂Ĝ).

(3.8)

The existing work [30]–[32] employed the two step-non-recursive approach [30], [107]:

first, they attempt to solve Eq. (3.8) for the support. Given the resulting support, they

still have to estimate x from Eq. (3.5). However, this can cause error accumulation

problem since the error in the first step cannot be minimized in the second step.

Moreover, the support estimation problem in Eq. (3.8) is non-convex over discrete

and continuous variables—support, noise and signal parameters—which is difficult

to solve in general. Even after fixing s, the remaining problem of Eq. (3.8) is still

non-convex, and there are no closed-form solutions for σn and Σx,s. Therefore, these

works [30]–[32] resorts to employ the noise and signal parameters from training data.
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To tackle this non-convex problem, we propose to use a strict upper bound of

Eq. (3.8) based on a latent Bayes model [102], [103]:

yT(σn + AsΣx,s AT
s )
−1y

= inf
xs

1
σn

(y− Asxs)
T(y− Asxs) + xT

s Σ−1
x,s xs.

(3.9)

With this bound, the cost function Eq. (3.8) can be transformed into a new cost

function as

L(xs, s, σn, Σx,s) =
1

2σn
(y− Asxs)

T(y− Asxs) +
1
2

xT
s Σ−1

x,s xs +
1
2

log |σn I + AsΣx,s AT
s |

− log p(s; Θ̂Ĝ).
(3.10)

It can be proved that the resulting support, noise variance, and non-zero coeffi-

cients’ covariance—s, σn, Σx,s—from Eq. (3.10) are equivalent to that from solving

Eq. (3.8) [102], [103]. This enables the closed-form solutions for s, σn and Σx,s. More-

over, x, s, σn, and Σx,s are jointly estimated in a single framework.

Note that the structured sparsity prior is not considered in the previous latent

Bayes model [102], [103]. Since optimizing Eq. (3.10) involves several unknown

variables, we apply an alternative minimization scheme to reduce the optimization

problem into several subproblems. With structured sparsity prior being considered,

we derive several new formulations for the sub-optimization problems to efficiently

estimate sparse signal, support, and signal covariance. The details on the optimiza-

tion are provided in Section 3.3.3.1.

3.3.2 MRF parameter estimation

Given the estimates of sparse signal, support, noise variance, and non-zero coef-

ficients’ covariance, i.e. x̂s, ŝ, σ̂n, Σ̂x,s, we estimate the MRFs parameters given the
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FIGURE 3.2: Visualization of the two-step framework

measurements by maximizing the likelihood function:

p(ΘG |y) ∝
∫

p(y|xs, σn)p(xs|s, Σx,s)pG(s|ΘG)dxs

= p(y|ŝ, σ̂n, Σ̂x,s)p(ŝ|ΘG) ∝ p(ŝ|ΘG),
(3.11)

where the likelihood is approximated by the point-wise maximum. If Ĝ is given, the

BM parameters are obtained from solving the following maximum likelihood (ML)

problem Eq. (3.12):

Θ̂Ĝ = max
ΘĜ

p(ŝ|ΘĜ) (3.12)

which encourages ΘĜ (i.e. the graphical sparsity prior) to be adaptive to the dis-

tribution of the latent support signal. This ML can be solved by many graphical

model learning approaches such as the maximum pseudo-likelihood [84], contrastive

divergence [85], and discriminative training of energy-based methods [86]. The graph

G can be estimated from structured learning approaches such as score-based learn-

ing [72]. However, performing the structure learning every iteration could result

in extremely high computation. Thus, we update the graph with a graph update

procedure. The details on solving ML for the parameters and graph update procedure

are provided in Section 3.3.3.2.A.

The estimation problems Eq. (3.10) in Section 3.3.1 and Eq. (3.12) in Section 3.3.2

are then alternatively optimized until convergence. Figure 3.2 illustrates the pro-

posed Two-step-Adaptive MRF. The estimated sparse signal is able to refine the MRF

parameters, while the refined MRF parameters result in more accurate sparse signal

recovery. After these two processes iterate until they converge, we obtain the final

result.
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3.3.3 Optimization

In this section, we will first focus on solving the sparse signal estimation problem

in Eq. (3.10), given the MRF. Then, we will focus on the MRF parameter estimation

based on the estimated sparse signal (3.12).

3.3.3.1 Sparse signal estimation

Here, we mainly focus on optimizing Eq. (3.10) to obtain all involved unknown

variables, given the parameters Θ̂Ĝ and the underlying graph Ĝ, as follows:

{x̂, ŝ, σ̂n, Σ̂x,s} = min
xs,s,σn,Σx,s

L(x, s, σn, Σx,s). (3.13)

Since the optimization problem Eq. (3.13) involves several unknown variables, we

apply an alternative minimization scheme to reduce the problem Eq. (3.13) into sev-

eral subproblems, each of which involves only one variable and often can be solved

directly. With the structured sparsity prior being considered, we present several

formulations for the estimation of sparse signal, noise and signal parameters which

gain the closed-form solutions. To estimate the support efficiently, we propose to

further approximate non-linear, pairwise potentials in the resulting subproblem into

linear, unary potentials. These subproblems are then optimized until convergence

using alternating optimization scheme.

3.3.3.1.A Optimization over support s Given the estimates of sparse signal, sup-

port, and non-zero coefficients’ covariance—x, σn, and Σx,s, the subproblem over the

support s can be given as

min
s∈{−1,1}N

1
2σn

xT
s AT

s Asxs −
1
σn

yT Asxs +
1
2

xT
s Σ−1

x,s xs

+
1
2

log |σn I + AsΣx,s AT
s | − log p(s; Θ̂Ĝ).

(3.14)

The minimization problem in Eq. (3.14) can be viewed as an MAP problem over a

graphical model. Solving Eq. (3.14) is computationally extensive because the logarith-

mic and the pairwise terms require an exhaustive search over all possible support
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patterns. In particular, when the coefficients of the estimated sparse signals x are all

non-zero, so the first term xT
s AT

s Asxs becomes a fully connected graph. To address

these problems, we derive a new support estimation formulation Eq.(3.20) where

the logarithmic and quadratic terms are approximated into linear functions (unary

potentials) with respect to the support.

To approximate the logarithmic term, we use the upper bound of the determinant

of a positive definite matrix, which is the determinant of the diagonal entries of

(σn I + AsΣx,s AT
s ), i.e.

log |σn I + AsΣx,s AT
s | ≤ ∑

i∈V
log[Σx]i,i + log[(σnΣ−1

x + AT A)]i,i, (3.15)

where V is the index set of non-zero sparse coefficients. The notation [M]i,i refers to

the i−th diagonal entry of the matrix M. Then, we employ the Hadarmard product

to explicitly represent the support. Let v ∈ {0, 1}N be a binary variable vector that is

the result from mapping each coefficient of s to binary values 0 and 1, i.e., if si > 0,

then vi = 1; otherwise, vi = 0. We exploit Hadamard product properties to extract v

by transforming the following terms:

xT
s AT

s Asxs = (x� v)T AT A(x� v) = vTXT AT AXv

xT
s Σ−1

x,s xs = (x� v)TΣ−1
x (x� v) = vTXTΣ−1

x Xv.

1
σn

yT Asxs =
1
σn

yT A(x� v) =
1
σn

yT AXv.

(3.16)

Then, the optimization problem in Eq. (3.14) can be equivalently formulated as

min
v∈{0,1}N

1
2σn

vT(XT AT AX + σnXTΣ−1
x X)v

+ (− 1
σn

yT AX + pT + qT)v− log p(2v− 1; Θ̂Ĝ),
(3.17)

where v = 1
2 (s + 1) , p = 1

2 log(diag {Σx}); q = 1
2 log

(
diag

{
σnΣ−1

x + Q
})

; Q is a

diagonal matrix whose diagonal entries are the diagonal entries of AT A; and X is a

diagonal matrix with diagonal coefficients from x. The cost function of Eq. (3.17) is

the upper bound of Eq. (3.14).
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To avoid causing a fully connected graph when the coefficients in x are all non-

zero, we exploit the fact that the measurement matrix A satisfies the restricted iso-

metric property and is thus nearly orthogonal [108]:

||A∗s As − I||2→2 ≤ δs, (3.18)

where I is an identity matrix with an appropriate size, || · ||2→2 is the operator norm, δs

is a small value corresponding restricted isometric constant, and A∗ is the Hermitian

transpose of A. Hence, the first term in Eq. (3.17) can be approximated as follows:

vT(XT AT AX + σnXTΣ−1
x X)v = vTXT(I + σnΣ−1

x )Xv, (3.19)

Thus, the signal support s is estimated by solving the following optimization problem:

min
v∈{0,1}N

(
1

2σn
rT − 1

σn
yT AX + pT + qT)v

− log p(2v− 1; Θ̂Ĝ),

(3.20)

where r is a vector containing the diagonal entry of the matrix (XT(I + σnΣ−1
x )X). As

the pairwise terms in Eq.(3.18) reduces to a unary term, the Eq. (3.20) is much faster

to evaluate. The terms ( 1
2σn

rT − 1
σn

yT AX + pT + qT)v in Eq. (3.20) can be viewed

as the unary terms ; meanwhile, pĜ(2v− 1; Θ̂Ĝ) is a typical MRF (see Section 3.2.1).

Therefore, Eq. (3.20) can be effectively solved by any off-the-shelf inference tools, e.g.,

dual decomposition [109], TWRS [110], ADLP [111]. The computational complexity

for solving Eq.(3.20) depends only on the tree width of the updated MRF defined by

Θ̂Ĝ (see Section 3.5). Therefore, the optimization problem Eq. (3.20) is much faster to

evaluate than Eq. (3.14).

3.3.3.1.B Optimization over non-zero signal coefficient variance Σx,s We start

by calculating the covariance of sparse signal Σx, then the covariance of non-zero

coefficients Σx,s is found by choosing the diagonal member of Σx according to s. Let

ν ∈ RN
+ be a vector whose members are the diagonal entry of Σx. Given x, s, and σn,
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we have the sub-problem over Σx as

min
ν

1
2

xTΣ−1
x x +

1
2

log |σn I + AVΣxV T AT|, (3.21)

where V is a diagonal matrix with diagonal coefficients from v = 1
2 (s + 1). From the

sub-optimization over Σx Eq. (3.21), we let ν be a vector of the diagonal entry in Σx.

Given x, s, and σn, we have the following optimization problem over Σx

min
ν

1
2

xTΣ−1
x x +

1
2

log |σn I + A′Σx A′T|, (3.22)

where A′ = AV is the product between A and V to suppress the columns associated

with zero elements in x. The first term in (3.22) is convex over ν, while the second

term is concave over ν. We will transform the second term into a convex function by

first decomposing the logarithm term as follows:

log |σn I + A′Σx A′T| = log |Σ−1
x +

1
σn

A′TA′|+ log |σn I|+ log |Σx|. (3.23)

Let β be a point-wise inverse of the vector ν, i.e., β = ν�−1. We use a conjugate func-

tion to find a strict upper bound of the concave function g(β) = log |Σ−1
x + 1

σn
A′T A′|,

as follows, ∀αi ≥ 0,

g(β) ≤ αT β− g∗(β), (3.24)

where g∗(β) is the concave conjugate function of g(β) and α = [α1, ..., αK]
T. The

equation (3.24) holds when

αk = ∇βk
log |Σx

−1 +
1
σn

A′T A′| = Tr
[

eT
k (Σ

−1
x +

1
σn

A′T A′)−1ek

]
. (3.25)

Thus, α = diag{(Σ−1
x + 1

σn
A′T A′)−1}. Substituting Eq.(3.24) into Eq.(3.22) and using

Eq.(3.23), we have the subproblem as follows:

min
ν

xTΣ−1
x x + αT β + log |Σx| =

N

∑
i=1

((
x2

i + αi
)

ν−1
i + log νi

)
. (3.26)
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Because νi > 0, the update of νi is

νnew
i = x2

i + αi. (3.27)

αi is the i-th entry of vector α = diag{(Σ′−1
x + 1

σn
V T AT AV)−1}, and Σ′

x is the resulted

Σx in the previous iteration. Then, Σx,s is a diagonal matrix where each diagonal

coefficient νnew
i is chosen according to s.

3.3.3.1.C Optimization over noise variance σn Given the estimates of sparse sig-

nal, support, and non-zero coefficients’ covariance—xs, s and Σx,s, we have the

sub-problem over σn

min
σn

1
2σn

(y− Asxs)
T(y− Asxs) +

1
2

log |σn I + AsΣx,s AT
s |. (3.28)

From the sub-optimization over σn Eq.(3.28). Let λ = σn1 be a vector where each

element is noise variance σn. Given Σx,s, x, and s, the optimization Eq.(3.28) is

reformulated as

min
λ

1
2σn
||y− Asxs||2 +

1
2

log |diag{λ}+ AsΣx,s AT
s |. (3.29)

The concave function h(λ) = log |diag{λ}+ AsΣx,s AT
s | is transformed into a convex

function which is its upper bound, using a conjugate function. Let h∗(λ) be the

concave conjugate function of h(λ) as follows:

h(λ) = log |diag{λ}+ AsΣx,s AT
s | ≤ ηTλ− h∗(λ), ∀ ≥ 0. (3.30)

The equation (3.30) holds when

ηk = ∇λk log |diag{λ}+ AsΣx,s AT
s | = Tr

[
eT

k (diag{λ}+ AsΣx,s AT
s )
−1ek

]
. (3.31)

Thus, we have η = diag{(diag{λ}+ AsΣx,s AT
s )
−1}.
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Algorithm 3.6 Sparse signal estimation.
Input: measurements y, a measurement matrix A, and the BM parameters ΘG and
the underlying graph of the MRF G.
Initialization : Σx = IN×N , σn = 1, and x = 0

while A stopping criterion is not satisfied do
1. Update the support s by solving Eq. (3.20)
2. Update the covariance matrix Σx,s as Eq. (3.27)
3. Update the noise variance σn as Eq. (3.33)
4. Update the sparse signal xs as Eq. (3.35)

end while
Output: x whose non-zero coefficients are from xs.

Substituting (3.30) into (3.29), we obtain the following reformulated sub-problem

over λ:

min
λ

1
σn

(y− Asxs)
T(y− Asxs) + ηTλ =

M

∑
i=1

(
b2

i
λi

+ λiηi

)
, (3.32)

where bi denotes the i−th entry of b = y− Asxs. Because λ > 0, we obtain λnew
i =√

b2
i

ηi
. Thus, this gives rise to a closed-form solution for σn as

σnew
n =

1
M

M

∑
i=1

√
b2

i
ηi

(3.33)

where ηi is the i-th entry of vector η = diag{(σn I + AsΣx,s AT
s )
−1}, and bi is the i-th

entry of b = y− Asxs.

3.3.3.1.D Optimization over non-zero signal coefficients xs Given the estimates

of support, noise variance, and non-zero coefficients’ covariance—s, σn, and Σx,s, the

subproblem for xs is

min
xs

1
σn

(y− Asxs)
T(y− Asxs) + xT

s Σ−1
x,s xs, (3.34)

which shows a closed-form updated equation as

xnew
s = (σnΣ−1

x,s + AT
s As)

−1As
Ty. (3.35)

How to solve Eq. (3.13) is summarized in Algorithm 3.6 where the sparse signal,

support , and noise and signal parameters are jointly estimated in a unified framework.
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FIGURE 3.3: Example of how the graph is updated

In Algorithm 3.6, we solve the support estimation problem Eq. (3.20) in step 1 by

performing graphical inference using the belief propagation implemented by [83].

Next, we turn to the MRF parameters estimation Eq.(3.12) to update the MRF

parameters—-the BM parameters and the underlying graph.

3.3.3.2 MRF parameters estimation

This section focuses on solving the MRF parameter estimation problem Eq.(3.12) to

update the BM parameters and the underlying graph. Given the point estimates of

sparse signals, we calculate a binary vector d whose coefficients correspond to the

high-energy coefficients of the resulting sparse signal x. Notice that d is not necessarily

similar to the intermediate estimate support s, thus, preventing overfitting to the

previous estimated MRF parameters.

3.3.3.2.A Graph update procedure In practice, we can simplify the graph estima-

tion task, as suggested in [27], by forming a graph according to non-zero coefficients

or high energy coefficients in sparse signals, which carry information about signal

structure. Let d ∈ {−1, 1}N be a binary vector whose coefficients correspond to the

high-energy coefficients of the resulting sparse signal x. di = 1 indicates that xi has a

high-energy coefficient, and di = −1 indicates that xi has a negligible value. Here,

each coefficient in d is mapped to each node in the graph, and each node di only

forms edges to adjacent nodes with a positive value within a radius of neighborhood

Ni.

Figure 3.3 illustrates how each edge in the graph is updated for capturing the two-

dimensional structure in an image. Each pixel is mapped onto a node in the graph.

Let di be the node of interest and Ei denote a local edge set where Ei ∈ E . Edges are
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Algorithm 3.7 Graph update procedure G
Input: Binary vector d.
Initialization : Ei = ∅ ∀i = 1, ..., N, E = ∅, and the node set contains the
node where each of which corresponds to each coefficient in the binary vector
V = {d1, ..., dN} .

for i = 1, ..., N do
for each j ∈Ni do

Include the edge (i, j), if dj = 1 and the edge (j, i) 6∈ E is not present
Ei = Ei

⋃
(i, j) .

end for
E = E ⋃ Ei.

end for
Output: G = (V , E).

established by connecting a node di to adjacent nodes with value ’1’ located within a

radius of neighborhood Ni covering 8-neighborhood. As the adjacent nodes dj−1, dj,

and dj+1 are equal to one, the edges (i, j− 1), (i, j), and (i, j + 1) are included into the

local edge set of the node Ei. If all adjacent nodes in the radius of the neighborhood of

di have the value −1, Ei is an empty set. Algorithm 3.7 summarizes the graph update

procedure. The graph update does not require high computation and has higher

flexibility and adaptability than using a fixed neighborhood graph in the clustered

structure sparsity models [37]–[44] where every node is connected to all adjacent

nodes in each neighborhood.

3.3.3.2.B BM parameter estimation Given the binary vector d and the graph

G, we solve the MAP problem (3.12) using the pseudo-likelihood algorithm [84],

[112] which requires low computation and is suitable for adaptively estimating

the BM parameters. In pseudo-likelihood [84], it is assumed that di and dj are

conditionally independent given the neighborhood of di. Thus, the work [84] aims

to maximize ∏i p(di|dEi , ΘG), where dEi are the adjacent neighbors connected to the

node di through edges defined by a local edge set Ei:

θG = max
θG

N

∏
i=1

p(di|dEi , ΘG), (3.36)

where p(di|dEi , {γi,j, γi}(i,j)∈E ,i∈V ) =
1

Z(dEi ; {γi,j, γi})
exp (diγi + ∑

(i,j)∈Ei

diγi,jdj).
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Algorithm 3.8 Two-step-Adaptive Markov Random Field (TA-MRF).
Input: Measurements y and random matrix A
Initialization: Get x from Algorithm 3.6 where step 1 is removed and replaced with
a fixed s = 1

while A stopping criterion is not satisfied do
1. Obtain a binary vector d from thresholding each of x, i.e., di = 1, if abs(xi) >

mean(abs(x)),
and di = −1 otherwise;

2. Calculate G from d following Algorithm 3.7;
3. Learn ΘG from d and G by solving Eq. (3.12);
4. Update x by solving Eq.(3.13) with Algorithm 3.6;

end while
Output: Recovered xrec.

{γi,j} and {γi} are the pairwise and unary parameters in the Boltzmann machine. To

estimate these parameters, a gradient descent is employed. The gradient function to

update each parameter is defined as follows:

γi(t + 1) = γi(t) + ρ

(
di + 1−

(
2

1 + exp−2(γi(t) + ∑(i,j)∈Ei
γi,j(t)dj)

))
;

γi,j(t + 1) = γi,j(t) + ρ
(
2didj + di + dj − Ti,j

)
,

(3.37)

where

Ti,j =

(
2dj

1 + exp−2(γi(t) + ∑(i,j)∈Ei
γi,j(t)dj)

)
+

(
2di

1 + exp−2(γj(t) + ∑(i,j)∈Ei
γi,j(t)di)

)
.

For more details on the background and derivation, we refer readers to Chapter 2.4.2.

Given Algorithm 3.6 to update sparse signals, the whole Two-step-Adaptive MRF

is summarized in Algorithm 3.8 where the MRF parameter estimation is performed

in steps 2 and 3. Notice that the underlying graph in step 2 is estimated based on

the binary vector d from step 1 that truncates the negligible sparse signal coefficients

in x to zero. Thus, the underlying graph of the MRF captures the structure of high

energy coefficients in x, which can be different from the intermediate estimates of the

support in Algorithm 3.6. The alternative minimization scheme reduces the objective

functions—-the MRF parameter estimation and sparse signal estimation in Algorithm

3.8—in each iteration. The objective functions can be proved to be bounded from

below. Thus, the Two-step-Adaptive MRF converges well as [102]. To confirm this,
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we also provide empirical convergence of Two-steps-Adaptive MRF in Section 3.6.8.

3.4 The essence of the adaptive signal prior to guarantee PRIP.

The goal of adaptive MRF is to adaptively estimate the MRF for the actual structure

of sparse signal. Here, we propose the Theorem 3.4.2 that reveals the connection

between adaptive support prior and probabilistic RIP (PRIP) [29], for achieving

the theoretical optimal sample complexity. At first, we will review the PRIP [29]

(Lemma 2.3.3). Then, Theorem 3.4.2 will be presented.

Let x denote a ground truth k-sparse signal whose support ŝ = supp(x) is gener-

ated by a known probabilistic model P . Ωk,ε denotes the smallest set of candidate

support captured by a learned modelM.

Lemma 3.4.1. [29] . If the probability that the true support can be represent by a candidate

support in Ωk,ε is higher than 1− ε, i.e. p(ŝ ∈ Ωk,ε) > 1− ε, a sub-Gaussian random

matrix A ∈ RM×N satisfies the (k, ε)-PRIP with probability at least 1− e−c2 M with M ≥
c1(k + log(|Ωk,ε|)), where c1, c2 > 0 depends only on the PRIP constant δk ∈ [0, 1].

Notice that the members Ωk,ε are chosen based on the support prior modelM,

e.g. an MRF learned from training. However, ifM is learned based on the training

data that cannot well represent the testing signals, then the necessary condition of

the lemma can be violated.

To address this problem, we propose the concept of adaptive support prior to

realize the Ωk,ε that can well represent the test signal. To do this, we study a se-

quence of random support vector S1, ..., Sn corresponding to the adapted support

priorM1, ...,Mn such as Eq. (3.3).

Theorem 3.4.2. For a fixed ground truth support ŝ = supp(x), if S1, ..., Sn converges to ŝ in

distribution, i.e. limn→∞Mn(Sn) = P(ŝ), then we can show that limn→∞ p(ŝ ∈ Ωn
k ) = 1

where Ωn
k is the ball containing the random variable support Sn with center c and radius 2ε.

Proof. Since ŝ is a fixed ground truth support, then convergence in distribu-

tion implies convergence in probability. That is, if limn→∞Mn(Sn) = P(ŝ), then

limn→∞ p(||Sn − ŝ|| < ε) = 1. Given that Ωn
k is the ball containing the ensembles
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of the random variable support Sn with center c and radius 2ε, then ŝ ∈ Ωn
k with

probability one.

Theorem 3.4.2 suggests that if the adapted support modelMn(Sn) can represent

the true probability P , it is guaranteed that the set Ωn
k always contain a candidate

support that truly represents the ground truth support (i.e. ε = 0). The smallest

size of Ωn
k is one. Therefore, the minimum measurements can achieve the theoretical

sampling complexity, i.e. M ≥ c1(k + log(|Ωk,0|)) where |Ωk,0| is smallest (e.g. |Ωn
k | =

1). Thus, M ≈ O(k).

3.5 Algorithm Complexity

The dominant computation of the proposed method is the computation in the sparse

signal estimation algorithm (Algorithm 3.6) involving the computation of:

1. Matrix inversion with complexity ofO(N3 + M3 + k̂3) from the signal coefficient

variance estimation Eq. (3.27), in noise estimation Eq. (3.33); and in estimating

the sparse coefficient Eq. (3.35);

2. Matrix production from the support estimation (3.20), the signal coefficient vari-

ance estimation Eq. (3.27), in noise estimation Eq. (3.33); and in estimating the

sparse coefficient Eq. (3.35) that has a complexity of O(5N2 + 2N2M + MN +

5N), O(N2M + 3N2 + 3N), O(M2k̂ + Mk̂ + 4M), andO(Mk̂2 + Mk̂ + k̂2 + 2k),

respectively;

3. Support estimation Eq. (3.20) . The complexity of support estimation Eq. (3.20)

using the belief propagation algorithm based on MAP LP-relaxations[83] is

O(tmax|E |), where |E | = N|N| and N is the largest set of neighboring nodes

{Ni}. tmax denotes the maximum number of iterations for performing the belief

propagation. If N covers only two adjacent nodes such as in a chain graph, |N|
can be very small. For this special case, O(tmax N|N|) = O(2tmax N).

The computational complexity of the proposed sparse signal estimation is O(N3 +

M3 + k̂3 + 8N2 + 4N2M + M2N + 3MN + tmax N|N|). The computational complexity

can be reduced toO(2M3 + 2MN2 + 4M2N + 5N2 + MN + tmax N|N|) by employing
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off-line computation for AT A and a matrix inversion property:

(Σ′−1
x +

1
σn

V T AT AV)−1 = Σ′x−

Σ′xV T AT(σn I + AVΣ′
xV T AT)−1AVΣ′x.

(3.38)

Meanwhile, the value of ATy needs to be computed only once and can be reused. The

computational complexity depends not only on the dimension of the signals but also

the structure of the graph G.

In comparison with existing MRF-based methods which are MAP-OMP [32]

and Gibbs[31] that solves Eq. (3.8), the complexity of our method can be seen as

higher in general. The complexity of MAP-OMP [32] is O(N(k̂3 + k̂2 + M2k̂ + Mk̂))

where O(N(k̂3)) corresponds to computing the matrix inversion of size k̂× k̂ and

the rest O(N(k̂2 + M2k̂ + Mk̂)) corresponds to the computation of matrix multipli-

cations. These two matrix operations are performed up to N times in each iteration

(see Section 2.2.2.2). In the worst case scenarios, where the estimated sparse signal

contains all non-zero elements k̂ = N, the computational complexity can approach

O(N4 + M2N2 + N3 + MN2) per iteration, which is one order higher than ours. Mean-

while, the complexity of Gibbs [31] is O(k̂N2 + N2) which can rise to O(N3 + N2)

as the Gibbs sampling approach requires O(k̂N2) to update the covariance matrix

Eq. (2.19) for the chosen k̂ support coefficients and O(N2) to calculate the vector mul-

tiplication for N support coefficients (see Section 2.2.2.1). Despite having the lowest

computational cost in each iteration, the convergence of Gibbs sampling can be very

slow. This problem becomes more obvious when applying MAP-OMP and Gibbs

to estimate sparse signals in the Two-step-Adaptive MRF framework. We compare

the performance of our sparse signal estimation against those of MAP-OMP [32] and

Gibbs [31] in Section 3.10. It can be seen that our runtime per iteration is moderately

stable, compared with the other two methods. The runtime of MAP-OMP increases

obviously in recovering wavelet sparse representation of CMU-IDB and CIFAR-10.

Meanwhile, Gibbs converges very slowly.

The computation of Algorithm 3.6 is included in step 4 of Algorithm 3.8 (our

Two-step-Adaptive MRF). The total runtime performance of our Two-step-Adaptive
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(A) Ground-truth digit images (B) The image pixels decay

FIGURE 3.4: MINST. (A) The ground truth handwritten digit images. (B) The pixel
coefficient’s decay.

MRF is provided in Figure 3.16. It can be seen that the runtime of our method is

moderate among all methods.

3.6 Experimental Results and Analysis

In this section, we study the performance of the proposed Two-step-Adaptive MRF

through performing three different experiments: (i) to study the effectiveness of the

adaptive mechanism, we study the performance of the adaptive MRF in comparison

with using a fixed MRF that is learned from training samples in Section 3.6.5; (ii)

then, we study the performance of our proposed sparse signal estimation that solves

Eq. (3.13) in comparison with the existing MRF-based methods [32] and [31] that

solve Eq. (3.8) in a two-step framework in Section 3.6.6; (iii) we compare the perfor-

mance of the proposed Two-step-Adaptive MRF with state-of-the-art competitors

in compressibility, noise tolerance, and runtime in Section 3.6.7; and (iv) finally, we

study the empirical convergence of the proposed algorithm in Section 3.6.8.

We test the performance on three datasets— MNIST [113], CMU-IDB [114], and

CIFAR-10 [115]— which exhibit different characteristics, detailed in Section 3.6.1. The

experiment setting, comparison methods, and evaluation criteria are given in Section

3.6.2, 3.6.3, and 3.6.4.

3.6.1 Dataset

We evaluate the performance on three datasets— MNIST [113], CMU-IDB [114], and

CIFAR-10 [115]— which exhibit different characteristics: i) MNIST handwritten digit

images [113] contain few lines and are strictly sparse where the clustering of the

non-zero coefficients is structured in a long-continued line; ii) the CMU-IDB face
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(A) Ground truth face images (B) Sparse coefficients decay

(C) Wavelet signal (D) DCT signal (E) PCA signal

FIGURE 3.5: CMU-IDB. (A) The ground truth face images; (B) The decay of sparse
signal coefficients in wavelet, PCA and DCT domains. Examples of (C) the wavelet

signal, (D) DCT signal, and (E) PCA signal.

images [114] contain facial features which have dense spatial information and are

more diverse than the MNIST images; iii) the CIFAR-10 natural images [115] are more

diverse and less synthesized than the previous two datasets. They reflect performance

on typical images. The test images selected from each dataset for the experiment are

shown in Figures 3.4A, 3.5A, and 3.6A.

The MNIST digit images are strictly sparse, as shown in the pixel decay curve

Figure 3.4B. The compression process can be applied onto the signals directly. How-

ever, the images from CMU-IDB and CIFAR-10 datasets are not sparse. Their sparse

representation can be obtained by transforming these images into an appropriate

basis. Here, we exploit i) wavelet transform, ii) discrete cosine transform (DCT), and

iii) principal component analysis (PCA) to obtain these sparse representations. Exam-

ples of the sparse representations in wavelet, DCT, and PCA domains of CMU-IDB

and CIFAR-10 images are in Figures 3.5C, 3.5D, 3.5E and Figures 3.6C, 3.6D, 3.6E,

respectively. Note that all these signal representations are compressible, except the

signal representations of CIFAR-10 images in the PCA domain. The PCA signal is

very dense; thus, it violates the sparsity assumption of compressive sensing. As a

result, we omit the discussion of CIFAR-10 images in the PCA domain, and focus on

the results of six sets of images: (1) the MNIST digit images in the spatial domain, (2)

CMU-IDB images in the PCA domain, (3) CMU-IDB images in the wavelet domain,
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(A) Ground truth natural images (B) Sparse coefficients decay

(C) Wavelet signal (D) DCT signal (E) PCA signal

FIGURE 3.6: CIFAR-10. (A) The ground truth natural images. (B) The decay of
sparse signal coefficients in wavelet, PCA and DCT domains. Examples of (C) the

wavelet signal, (D) DCT signal, and (E) PCA signal.

(4) CMU-IDB images in the DCT domain, (5) CIFAR images in the wavelet domain,

and (6) CIFAR images in the DCT domain.

3.6.2 Experimental settings

In the compression, the sparse signal x is sampled by a random Bernoulli matrix A

to generate the linear measurements y. The recovery performance is tested across

different sampling rates (M/N), i.e., 0.2, 0.25, 0.3, 0.35, and 0.4. To simulate the noise

corruption on the measurements, four different levels of Gaussian white noise are

added into the measurements y, which results in the signal to noise ratio (SNR) being

5 dB, 10 dB, 20 dB, and 30 dB. Note that at the lowest SNR (5 dB), the measurements

are mostly corrupted by noise. Thus, the lowest SNR indicates the highest noise

corruption1.

Algorithm Setting. The proposed Two-step-Adaptive MRF (Algorithm 3.8: the

main algorithm) will stop when the minimum update difference of x from step 4 is

less than 10−3, or when the iteration reaches 5 iterations. In step 2, to capture the

2-D structure in wavelet and handwritten images, Ni is set to cover 8 neighboring

nodes. Meanwhile, to capture the 1-D structure of DCT and PCA signals, Ni is set

to cover the two adjacent nodes of the ith node. In step 3, the maximum iteration

1The noise level (in SNR) from 5 dB to 30 dB indicates the highest to the lowest noise corruption
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for gradient descent to estimate the BM parameters is set to 20. In step 4, the sparse

signal estimation is performed by Algorithm 3.6 which is set to terminate when the

minimum update difference of xs is less than 10−3, or when the iteration reaches

200. The minimum update difference between the two consecutive estimates of x is

defined as

η =
||xnew − x||2
||x||2

. (3.39)

3.6.3 Comparison methods

The performance of our method is compared with 8 state-of-the-art competitors:

• Existing MRF-based methods: MAP-OMP2 [32], Gibbs2 [31] —whose sup-

port estimations are based on solving the optimization problem Eq.(3.8) with

heuristic and stochastic approaches;

• Clustering structured sparsity-based methods: Bernoulli3[39] and Pairwise

MRF3 [42];

• Graph sparsity-based methods: GCoSamp [27] and StructOMP [25]

• Sparsity-based methods: a Bayesian-based method RLPHCS[103] and a stan-

dard signal recovery method OMP[106].

• We use the oracle estimator suggested in [32] that uses the ground truth support

to estimate the signal (via Eq. (3.35)). Note that all other methods do not have

access to the ground truth support. The oracle estimator has this unfair advan-

tage, and we use it to show the best possible result using ground truth support

with homogeneous noise parameters.

All of the comparison methods, except Pairwise MRF [42], are implemented by the

code of the authors with tuned parameters to the best performance. For Pairwise MRF,

we implemented the code ourselves. We set the Pairwise MRF algorithm to terminate

when the minimum update difference is less than 10−3, or when the iteration reaches

200.
2The graphical model, noise and signal variance parameters, provided to MAP-OMP and Gibbs, is

from training data.
3For both Bernoulli and Pairwise MRF , we use the same setting for neighboring set Ni, as described

in Algorithm Setting in Section 3.6.2
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FIGURE 3.7: Comparison of Adaptive-MRF versus Fixed-MRF under noise level
(SNR) of 30 dB on MNIST images; PCA, wavelet, and DCT signals of CMU-IDB

images; and wavelet, and DCT signals of CIFAR-10 images.

3.6.4 Evaluation criterion

We demonstrate the proposed Two-step-Adaptive MRF performance on recovery

accuracy, noise tolerance, and runtime performance. The recovery accuracy is evalu-

ated by the peak signal to noise ratio (PSNR). To evaluate the runtime performance,

we provide the total runtime curves across different sampling rates (M/N).

3.6.5 Effectiveness of the proposed adaptive MRF

To demonstrate the improved performance of the proposed adaptive MRF, we com-

pare the performance of the Two-step-Adaptive MRF when the MRF is adaptive

versus when the MRF is fixed. When we describe that the MRF as fixed, we mean the

sparse signal estimation (Algorithm 3.6) exploits an MRF whose underlying graph

and parameters are obtained from training (off-line), thus, is fixed throughout the

signal recovery process. Thus, the performance of the Two-step-Adaptive MRF when

using adaptive MRF is denoted as Adaptive-MRF; meanwhile, the performance of

the Two-step-Adaptive MRF when using a fixed MRF is denoted as the Fixed-MRF.
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3

(A) Accuracy (B) Runtime

FIGURE 3.8: Solving Eq. (3.10) (our Two-step-Adaptive MRF) vs solving Eq. (3.8)
directly (Adaptive-Gibbs and Adaptive-MAP-OMP): (A) recovery accuracy and (B)
total runtime on 6 sets of images: (1) the MNIST images, (2)(3)(4) CMU-IDB images
in wavelet, DCT, and PCA domains, and (5)(6) CIFAR-10 images in wavelet and

DCT domains. The sampling rate is 0.3 and noise level (SNR) is 30 dB.

Figure 3.7 shows the bar graph of the average PSNR value across different sampling

rates on the three datasets—MNIST, CMU-IDB, and CIFAR-10— at noise level (SNR)

of 30 dB. It is clear that the Adaptive MRF outperforms the Fixed-MRF in all cases,

especially when the sampling rate (M/N) is higher than 0.2. On MNIST images, the

Adaptive MRF outperforms the Fixed-MRF by at least 2 dB. On CMU-IDB images,

the Adaptive MRF outperforms the Fixed-MRF by at least 2 dB in recovering the

wavelet images, 3 dB in recovering the PCA signals, and 2 dB in recovering the DCT

signals. On CIFAR-10 images, the Adaptive MRF outperforms the Fixed-MRF by at

least 0.5 dB in recovering the wavelet signals and 2 dB in recovering the DCT signals.

3.6.6 Effectiveness of the proposed sparse signal estimation

In this section, we demonstrate the effectiveness of our sparse signal estimation to

obtain the sparse signal from solving the new optimization problem Eq. (3.10) whose

cost function is the upper bound approximation of Eq. (3.8). Here, we compare the

performance of our sparse signal estimation against Gibbs [31] and MAP-OMP [32]

that attempt to solve Eq. (3.8) directly with the stochastic and heuristic approaches.

All the algorithms are tested in the same two-step framework setting: first, the MRF

parameters are adaptively estimated based on an estimated sparse signal, and then

the sparse signal is estimated by each algorithm given the resulting MRF. Thus, we

compare our Two-step-Adaptive MRF against Adaptive-Gibbs (Gibbs + the two-step
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3

FIGURE 3.9: Convergence of accuracy: Solving Eq. (3.10) (our Adaptive-MRF) vs
solving Eq. (3.8) directly (Adaptive-Gibbs and Adaptive-MAP-OMP) on MNIST
images; PCA, wavelet, and DCT signals of CMU-IDB images; and wavelet, and DCT

signals of CIFAR-10 images. Sampling rate is 0.3 and noise level (SNR) is 30 dB.

framework) and Adaptive-MAP-OMP (MAP-OMP + the two-step framework). The

two-step framework performs at the main-loop which is set to terminate when its

iterations reach 3. The sparse signal estimation performs at the inner-loop which is

set to terminate when its iterations reach 1000, or when minimum update differences

between two consecutive estimates of x are less than 10−5.

Figure 3.8 illustrates the recovery performance across six sets of images (no. 1-6):

no. (1) denotes the set of the MNIST images ; no. (2)(3)(4) denote the sets of sparse

representation of CMU-IDB images in the wavelet, DCT, and PCA domains; and

no. (5)(6) denote the sets of sparse representation of CIFAR-10 natural images in the

wavelet and DCT domains. The performance is tested at the sampling rate and noise

level (SNR) of 0.3 and 30 dB, respectively. It is clear that Two-step-Adaptive MRF

requires the least runtime and provides the highest accuracy in all cases. Adaptive-

MAP-OMP and Adaptive-Gibbs have their performance improved in comparison

when using the trained MRF (see Figure 3.11). This suggests that the adaptive MRF

helps improve the performance of these algorithms as well.

Figure 3.9 and 3.10 further examine the convergence in terms of recovery accuracy

and runtime of the proposed Two-step-Adaptive MRF against Adaptive-Gibbs and
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FIGURE 3.10: Executing time per iteration: Solving Eq. (3.10) (our Adaptive-MRF)
vs solving Eq. (3.8) directly (Adaptive-Gibbs and Adaptive-MAP-OMP) on MNIST
images; PCA, wavelet, and DCT signals of CMU-IDB images; and wavelet, and DCT

signals of CIFAR-10 images. Sampling rate is 0.3 and noise level (SNR) is 30 dB.

Adaptive-MAP-OMP on MNIST, CMU-IBD, and CIFAR-10 datasets. These results

are averaged over 10 images in each image set. iterations on the horizontal axis of

each graph denotes the total iterations that the sparse signal estimation performs

throughout the two-step framework. Here, we measure the recovery accuracy and

runtime in the process of the sparse signal estimation, which is recursively performed

by the two-step framework.

In Figure 3.9, our Two-step-Adaptive MRF achieves the highest accuracy and

requires many fewer iterations to converge. Note that there are three ripples on

the accuracy curves of both the proposed Two-step-Adaptive MRF and Adaptive-

MAP-OMP, according to the setting to execute the main-loop 3 times. All these

curves contain spikes and downward curves in addition to these ripples. Because

all these methods only try to achieve a point estimate, the resulting accuracy can be

slightly unstable. The proposed sparse signal estimation in Two-step-Adaptive MRF

jointly and recursively estimates the sparse signal and support; thus, the proposed

Two-step-Adaptive MRF is more stable than the others. It is slightly unstable in

recovering CMU-IDB images in the wavelet domain and in recovering CIFAR-10

images in the DCT domain. Meanwhile, the sparse signal estimations in Adaptive-

MAP-OMP and Adaptive-Gibbs are non-recursive. The error in support estimation
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can be accumulated in the sparse signal estimation (Algorithm 2.3). These methods

are prone to error accumulation problems. The recovery accuracy curves of Adaptive-

Gibbs are much worse than the others because the Gibbs samplings [31] can get stuck

in a local minima [32], [67]. Meanwhile, the recovery accuracy curves of Adaptive-

MAP-OMP gradually decrease in many cases such as in recovering CMU-IDB images

in the wavelet and DCT domains, and CIFAR-10 images in the DCT domain.

In Figure 3.10, the proposed Two-step-Adaptive MRF converges the fastest and

requires the least runtime. Conversely, the runtime accumulation of Adaptive-MAP-

OMP and Adaptive-Gibbs are extremely high. The runtime of Adaptive-MAP-OMP

increases sharply while performing each support estimation. Meanwhile, Adaptive-

Gibbs suffers severely from slow convergence. This demonstrates the superior per-

formance of the proposed sparse signal estimation in Two-step-Adaptive MRF. The

ending of each ripple does not appear as a sharp vertical drop because they are

resulted from averaging over 10 images.

3.6.7 Performance evaluation

In this section, we compare the performance of the proposed Two-step-Adaptive

MRF with several state-of-the-art CS methods.

3.6.7.1 Compressibility.

In this section, we evaluate the performance in terms of compressibility by perform-

ing sparse signal recovery across different sampling rates (M/N). Figure 3.11 shows

the average PNSR curves across different sampling rates on the three datasets, when

the noise level (SNR) is 30 dB. The Two-step-Adaptive MRF offers the highest perfor-

mance in most cases:

On MNIST, the proposed Two-step-Adaptive MRF yields the best performance.

The proposed Two-step-Adaptive MRF exceeds the second best method by at least

0.5 dB, when the sampling rate is higher than 0.25. The other structured CS methods

such as the MAP-OMP, Pairwise MRF, Bernoulli, and GCoSamp, also offer good

performance and outperform the methods that do not employ signal structures such
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FIGURE 3.11: Compressibility. The PSNR curves across different sampling rates on
three datasets: MNIST images; PCA, wavelet, and DCT signals of CMU-IDB images;
and wavelet, and DCT signals of CIFAR-10 images. The noise level (SNR) is 30 dB.

as OMP and RLPHCS. This is mainly because the handwritten images of the MNIST

dataset contain only lines and strokes which are highly structured and repetitive;

thus, the underlying structure can be exploited by many structured CS algorithms.

On CMU-IDB, the proposed Two-step-Adaptive MRF offers the highest perfor-

mance. When the sampling rate is higher than 0.25, the proposed Two-step-Adaptive

MRF exceeds the second best method by at least 1 dB in the wavelet domain and

0.25 in the DCT domain. Meanwhile, for the sparse signal recovery in PCA domain,

the proposed Two-step-Adaptive MRF provides comparable result to RLPHCS and

GCoSamp that achieve the highest performance, but when the sampling rate is lower

than 0.3 (less measurements), the proposed method outperforms the others by at

least 0.25 dB. However, the other structured CS methods are only comparable with

OMP and RLPHCS in most cases. This could be because the CMU-IDB face images

contain more information with higher diversity than the MNIST images. With higher

flexibility and adaptability, the proposed Two-step-Adaptive MRF can utilize the
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underlying structure of these sparse representations more effectively than the other

structured CS methods.

On CIFAR-10, most of the structured CS methods, except the Two-step-Adaptive

MRF, are beaten by OMP and RLPHCS. When the sampling rate is higher than 0.25,

the proposed Two-step-Adaptive MRF exceeds the second best method by at least

1 dB in the wavelet domain and 0.25 dB in the DCT domain. The natural images of

CIFAR-10 contain higher information which is less structured and more diverse than

the two previous datasets. As the underlying structure of the sparse representation

of CIFAR-10 are more challenging, many structured CS methods fail to capture the

underlying structure of the sparse representation. With better flexibility and adapt-

ability, the Two-step-Adaptive MRF is able to capture the underlying structure; thus,

it outperforms the other structured CS methods.

With higher flexibility and adaptability, the Two-step-Adaptive MRF outperforms

the other methods across different datasets. To further demonstrate the superior

performance of the proposed Two-step-Adaptive MRF (TA-MRF), we show the visual

results of a MNIST handwritten digit image, a CMU-IDB face image, and a CIFAR-10

natural image in Figure 3.12, Figure 3.13, and Figure 3.14, respectively. The Two-step-

Adaptive MRF gives rise to the best results, which contain more details and less noise

than its competitors. The full visual results are provided in Appendix A.1.

3.6.7.2 Noise tolerance.

To test the noise tolerance performance, we evaluate performance of the Two-step-

Adaptive MRF across different noise levels (in SNR). Figure 3.15 provides the average

PNSR curves across different noise levels on the three datasets, when the sampling

rate is set to 0.3. Because the Two-step-Adaptive MRF employs the flexible and

adaptive prior, it outperforms the other methods across different datasets, i.e. MNIST,

CMU-IDB, and CIFAR-10, in most cases:

On MNIST, the proposed Two-step-Adaptive MRF outperforms the other methods

in most cases. When the SNR is higher than 10 dB, the Two-step-Adaptive MRF
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OMP RLPHCS GCOSAMP Bernoulli Pairwise MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

12.49 dB 18.40 dB 21.96 dB 30.26 dB 40.36 dB 41.69 dB 40.48 dB 42.22 dB

12.99 dB 16.14 dB 32.93 dB 27.62 dB 31.51 dB 42.42 dB 41.88 dB 43.55 dB

34.00 dB 22.87 dB 26.87 dB 23.59 dB 42.30 dB 43.35 dB 41.56 dB 45.56 dB

FIGURE 3.12: Visual results of the selected MNIST handwritten digit images by
the top eight most competitive methods, i.e. OMP, RLPHCS, GCOSAMP, Bernoulli,
Pairwise, MAP-OMP, and the proposed Fixed-MRF and TA-MRF, at M/N = 0.3,

SNR = 30 dB.

OMP RLPHCS GCOSAMP Bernoulli Pairwise MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

30.37 dB 32.11 dB 29.58 dB 27.65 dB 21.92 dB 29.67 dB 31.47 dB 32.91 dB

28.96 dB 30.63 dB 28.14 dB 30.51, dB 20.11 dB 28.22 dB 21.25 dB 31.62 dB

28.19 dB 30.01 dB 26.10 dB 25.79 dB 20.52 dB 28.58 dB 28.15 dB 31.48 dB

FIGURE 3.13: Visual results of the selected CMU-IDB face images from sparse signal
recovery in the PCA domain by the top eight most competitive methods, i.e. OMP,
RLPHCS, GCOSAMP, Bernoulli, Pairwise, MAP-OMP, and the proposed Fixed-MRF

and TA-MRF, at M/N = 0.3, SNR = 30 dB.

OMP RLPHCS GCOSAMP Bernoulli Pairwise MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

20.50 dB 18.36 dB 4.31 dB 16.55 dB 12.48 dB 16.31 dB 23.09 dB 23.15 dB

16.39 dB 14.56 dB 9.64 dB 17.57 dB 10.30 dB 14.84 dB 17.65 dB 18.14 dB

15.02 dB 15.05 dB 8.10 dB 13.25 dB 11.93 dB 13.66 dB 17.37 dB 17.96 dB

FIGURE 3.14: Visual results of the selected CIFAR-10 natural images from sparse
signal recovery in the wavelet domain by the top eight most competitive methods,
i.e. OMP, RLPHCS, GCOSAMP, Bernoulli, Pairwise, MAP-OMP, and the proposed

Fixed-MRF and TA-MRF, at M/N = 0.3, SNR = 30 dB.
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FIGURE 3.15: Noise Tolerance. The PSNR curves across different noise levels (SNR)
on three datasets: MNIST images; PCA, wavelet, and DCT signals of CMU-IDB
images; and wavelet, and DCT signals of CIFAR-10 images. The sampling rate is 0.3.

outperforms the second best method by at least 2 dB. The other structured CS methods

perform well with the MNIST images with the handwritten patterns that are more

repetitive and structured than the face images of CMU-IDB and the natural images of

CIFAR-10.

On CMU-IDB, the proposed Two-step-Adaptive MRF outperforms the other

methods in most cases. It exceeds the second best method by at least 0.25 dB in the

wavelet domain, 0.5 dB in the PCA domains, and 0.25 dB in the DCT domain, when

the noise is higher than 10 dB. Due to the dense information in the face images of

CMU-IDB, the sparse representation is more diverse and less structured. Therefore,

the other structured CS methods only perform as well as the non-structured CS

approaches, i.e. OMP and RLPHCS.

On CIFAR-10, the proposed Two-step-Adaptive MRF outperforms the other meth-

ods in most cases. It exceeds the second best method by 0.25 dB in the DCT domain

when the noise is higher than 10 dB. Nevertheless, in the recovery of the sparse
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representation of CIFAR-10 images in the wavelet domain, Two-step-Adaptive MRF

is beaten by OMP and RLPHCS when noise level ≤ 20 dB, where it provides the

third best performance on the signal recovery in the wavelet domain. Meanwhile,

the other structured CS methods perform much worse (at least 2 dB lower than the

Two-step-Adaptive MRF when the noise level ≥ 10 dB). This could be because the

natural images from CIFAR-10 are more diverse and less structured than the two

previous datasets. Nevertheless, when the SNR becomes higher ( > 20 dB), the

measurements contain less noise; thus, the Two-step-Adaptive MRF outperforms

RLPHCS and OMP.

Therefore, with higher flexibility and adaptability, the Two-step-Adaptive MRF

outperforms the other methods across different noise levels in most cases. Neverthe-

less, the low noise tolerance in recovering the sparse representation of CIFAR-10 in the

wavelet domain indicates the limited performance of the MRF parameter estimation

in the Two-step-Adaptive MRF. More details and discussion regarding this problem

are provided in Section 3.8. Our investigation indicates that this problem can be

caused by the fact that the MRF parameter estimation fails to improve the sparse

signal recovery. This is mainly because the MRF parameter estimation relies on the

point estimate of sparse signals, which can lead to inaccurate parameter estimation.

As a result, the Two-step-Adaptive MRF becomes less competitive than the methods

that do not employ signal structures.

3.6.7.3 Runtime performance.

In this section, we study the runtime of the proposed Two-step-Adaptive MRF in

comparison with the competitors by observing the runtime performance across dif-

ferent sampling rates (M/N). All the methods were implemented by 64-bit MATLAB

R2016b and were executed on a PC with Intel Core i7-4770 CPU and 16GB of RAM.

Figure 3.16 provides runtime performance across different sampling rates (M/N) on

the three datasets. The noise level (SNR) is 30 dB:

On MINST handwritten images, the average runtime of our Two-step-Adaptive

MRF is faster than MAP-OMP, StructOMP, and Gibbs, but slower than structured CS



3.6. Experimental Results and Analysis 83

FIGURE 3.16: Runtime performance. Runtime curves across different sampling rates
on three datasets: MNIST images; PCA, wavelet, and DCT signals of CMU-IDB
images; and wavelet, and DCT signals of CIFAR-10 images. The noise level (SNR) is

30 dB.

approaches— Pairwise MRF, Bernoulli, and GCoSAMP—and the non-structured CS

approaches—OMP and RLPHCS.

For CMU-IDB and CIFAR-10 datasets, our runtime performance is much better

than many structured CS algorithms. The runtime performance is similar across the

wavelet, DCT, and PCA domains, i.e., the proposed Two-step-Adaptive MRF is faster

than MAP-OMP, Gibbs, Bernoulli, and StructOMP. The proposed Two-step-Adaptive

MRF is comparable to Pairwise MRF and slower than GCOSAMP, OMP, and RLPHCS.

Note that OMP and RLPHCS require less computation because they do not exploit

the signal structure. GCoSAMP is a fast algorithm, but the accuracy is much lower.

Therefore, this demonstrates that the Two-step-Adaptive MRF offers a moderate

runtime performance in most cases.

3.6.8 Empirical convergence

In this section, we verify the convergence of the Two-step-Adaptive MRF through

the decay of the recovery error percentage (%) with respective to the ground truth.
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M=N =0.30 M=N =0.35 M=N =0.40

FIGURE 3.17: Convergence of the Two-step-Adaptive MRF in the percentage of the
recovery error at the sampling rate and noise level (SNR) of 0.3 and 30 dB on MNIST
images; the PCA, wavelet, and DCT signals of CMU-IDB images; and the wavelet,

and DCT signals of CIFAR-10 images.

Our Two-step-Adaptive MRF aims to solve Eq. (3.6) by solving two sub-problems, i.e.

optimizing Eq. (3.10) and Eq. (3.12). Given a fixed support s, the optimization problem

Eq. (3.10) is convex [102], [103]. Given the estimated support, the sub-optimization

problem Eq.(3.12) to estimate the MRF parameters is also convex. Thus, the cost

function Eq. (3.12) keeps decreasing. Although both the Eq. (3.10) and Eq. (3.12)

are convex; they do not necessarily imply the Eq. (3.6). Therefore, to confirm that

the algorithm converges, we provide the empirical convergence. The empirical

convergence is demonstrated by the recovery error in each iteration in Figure 3.17.

The noise level is 30 dB. We can see that in most cases, Adaptive-MRF converges after

iterate for 3 times.

3.7 Conclusion

We propose a new adaptive MRF-based CS method with the flexibility to capture and

adapt for any signal structures. To flexibly capture different signal structures, a full

Boltzmann machine is employed to model the signal distribution. To realize an adap-

tive MRF, the MRF parameters (both the BM parameters and underlying graph) are

adaptively estimated based on the intermediate estimation of the sparse signals. To

maximize adaptability, a new sparse signal estimation is proposed to jointly estimate
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(A) Point estimation accuracy (B) Comparison with the other image sets

FIGURE 3.18: Examining the cause of low performance in the signal recovery of
the wavelet images (CIFAR-10) when the noise level is 10 dB. Sampling rate is 0.3:
(A) the point estimation accuracy on the wavelet images, and (B) the estimation
accuracy comparison with the other image sets. The low performance is caused by

the majority of point estimates failing to improve after the 2nd iteration.

the sparse signal, support, signal and noise parameters. Extensive experiments on the

three real-world datasets demonstrates the promising performance of the proposed

method.

3.8 Discussion

We have demonstrated the performance of the Two-step-Adaptive MRF with three

different experiments. The Two-step-Adaptive MRF provides good performance

in many experiments. Nevertheless, we also notice the problem of the low noise

tolerance of the proposed Two-step-Adaptive MRF on the recovery of sparse repre-

sentation of CIFAR-10 images in the wavelet domain with moderate to high noise

corruption ( noise level in SNR < 15 dB) in Figure 3.15.

To examine this problem, Figure 3.18A provides the point estimation performance

on ten CIFAR-10 signals (images) in the wavelet domain. Only a few point estimates

improve after the second iteration. This indicates that the majority of the adapted

MRF parameters do not improve the sparse signal estimation. Figure 3.18B compares

the performance on CIFAR-10 images in the wavelet domain with the performance

on the other image sets, where the proposed Two-step-Adaptive MRF performs

well: MNIST images, CMU-IDB images in the PCA domain, CMU-IDB images in the
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FIGURE 3.19: Comparison of the recovery improvement by the new method and
the Two-step-Adaptive MRF. Noise level is 10 dB. Sampling rate is 0.3.

wavelet domain, and CIFAR-10 images in the DCT domain. The overall performance

on CIFAR-10 is lower than the other two datasets, which could be improved with

the adapted MRF parameters in the Two-step-Adaptive MRF. The MRF parameter

estimation depends on the point estimation of the latent sparse signals. However, the

majority of the point estimates do not achieve high PSNR on recovering the sparse

representation of CIFAR-10 images in wavelet domain, which leads to inaccurate

parameter estimation. These point estimates do not necessarily represent the latent

sparse signals well. As a result, the Two-step-Adaptive MRF has limited performance

because of how the MRF parameters are estimated.

To address this problem, we reformulate the MRF parameter estimation into a

maximum marginal likelihood problem in Chapter 4 that estimates the MRF param-

eters directly from the measurements to better depict the statistical uncertainty of

the latent sparse signals. Figure 3.19 compares the signal estimation improvement

using the new method and the Two-step-Adaptive MRF. The new method can further

improve the overall performance by at least 3 dB from the Two-step-Adaptive MRF.
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Chapter 4

One-step Adaptive MRF for

Structured CS

4.1 Introduction

Previously, we have proposed an adaptive Markov random field (MRF) and devel-

oped the Two-step-Adaptive MRF that can adaptively estimate both the parameters

and the underlying graph of the MRF. A full Boltzmann machine (BM) with both pair-

wise and unary potentials is employed to model signal distribution. Consequently,

adaptive MRF has a higher flexibility and adaptability to capture and adapt to any

signal structures, compared with all the previous structured sparsity models [29]–[33],

[35], [36], [38]–[42]. To adaptively estimate an MRF for a signal structure, this method

employs two major estimation steps—i) sparse signal estimation, and ii) based on

the resulting sparse signal, the MRF parameters estimation which includes the BM

parameters and the underlying graph of MRF estimations. However, Two-step-Adaptive

MRF has two main problems:

• The estimated MRF parameters do not always capture the underlying structure

of the entire signal population: the MRF parameter estimation is based on the

point estimation of the latent sparse signal. The point estimate cannot depict

the statistical uncertainty of the latent sparse signals.

• High computational cost: the Two-step-Adaptive MRF performs the two estima-

tion steps, MRF estimation and signal estimation iteratively, until convergence.

Thus, the total cumulative computational cost is high.
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                 Reconstruction with adaptive MRF prior

Input: Compressed measurements y           Output: Sparse signal x̂
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FIGURE 4.1: Comparison between the two frameworks. Our One-step-Adaptive
MRF estimates the parameters from measurements based on Bayesian estimation
directly, while the Two-step-Adaptive MRF [45] estimates the parameters based on

the estimation of sparse signal.

To address these problems, we propose to take a Bayesian approach to provide

a better generalization over the latent sparse signals. This process is shown in

comparison with the Two-step-Adaptive MRF in Figure 4.1. Instead of finding a

point estimate for a sparse signal, the proposed approach captures the statistical

uncertainty by considering the marginal likelihood for the model parameters given

the measurements. The marginal likelihood is obtained by integrating out all the

unknown variables, which can be seen as weighted averaging with the probability of

each variation of sparse signal from the entire population. Thus, this offers better

generalization to the underlying structure of the sparse signals population. As the

latent sparse signals are integrated out, the MRF parameters are estimated directly

from the measurements in one step. Thus, the proposed method is referred to as

One-step-Adaptive MRF.

To implement this, we first approximate the BM with a new MRF distribution

which is the product of two simpler priors, i.e., the Bernoulli model [39] and the

pairwise MRF [42] to enable a closed-form update for MRF parameter estimation.

The Bernoulli model represents the bias toward zero for each signal coefficient, while

the pairwise MRF represents the correlation between these coefficients. Then, the

parameters of the new MRF distribution are estimated directly from the measure-

ments by solving a maximum marginal likelihood (MML) problem. More importantly,

the estimation of all the unknown variables resulting from the MML problem gains

closed-form updates with low computational cost.
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(A) Signal recovery improvement (B) Learning improvement

FIGURE 4.2: Performance comparison between One-step-Adaptive MRF (proposed)
and Two-step-Adaptive MRF in (A) signal recovery and (B) MRF parameter esti-
mation improvement (measured by the KL-divergence of the estimated MRF with
respect to the ground truth distribution). Our One-step approach is able to minimize

recovery errors and KL-divergence further.

Figure 4.2 compares the effectiveness of the proposed One-step-Adaptive MRF

versus the Two-step-Adaptive MRF 1in signal recovery and the MRF parameter

estimation on 1000 synthesized sparse signals sampled from a known distribution.

The accuracy of MRF parameter estimation is measured by the KL-divergence with

respect to the ground truth. As the Two-step-Adaptive MRF estimates the MRF

parameters based on the point estimation of sparse signals, it often converges too

early, thus, limits the ultimate recovery accuracy. On the contrary, the proposed

One-step-Adaptive MRF can minimize the recovery error and KL-divergence further

due to its better generalization. Extensive experiments demonstrate the superior

performance of the proposed One-step-Adaptive MRF. In summary, this chapter

makes the following contributions:

1. We propose a new MRF distribution that approximates the Boltzmann machine

(BM) of MRFs to enable closed-form updates for the MRF parameters with

a low computational cost. To achieve this, the proposed MRF distribution is

the product between a Bernoulli model and a pairwise MRF. It offers the best

approximation to the BM as compared with using the Bernoulli model [39] or

the pairwise MRF [42] alone (see Section 4.5.5).

1Here, the recovery accuracy and KL-divergence of Two-step-Adaptive is measured at the main
algorithm, rather than at the subroutine (signal estimation).
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2. With the proposed MRF distribution, we propose One-step-adaptive MRF

to better generalize the sparse signal population, by solving the maximum

marginal likelihood (MML) problem to obtain the MRF parameters from given

measurements. We employ a variational expectation maximization (EM) [116]

to efficiently solve the MML problem. Thus, we improve (i) the generalization

in MRF estimation and (ii) the runtime as the estimation for all the unknown

variables gains closed-form updates (see Section 4.5.6).

3. We demonstrate state-of-the-art recovery performance on three benchmark

datasets: i) MNIST, ii) CMU-IDB, and iii) CIFAR-10 images in terms of recovery

accuracy, noise tolerance, and runtime performance (see Section 4.5).

In the following, we provide the observation model for the MRF based structured

CS in Section 4.2. Then, we discuss how signal structure is modelled with a general

MRF, and present the proposed MRF distribution in Section 4.2.1. Subsequently, we

show how to infer the MRF parameters from compressed measurements based on a

Bayesian estimation approach, where the inference is done by applying a variational

EM [116] (see Section 4.3). Details about the optimization for each unknown is

provided in Section 4.3.2. To this end, the algorithm complexity of the proposed

One-step-Adaptive MRF is presented and compared with that of Two-step-Adaptive

MRF in Section 4.4. Experimental results to demonstrate the performance of the

proposed One-step-Adaptive MRF are provided in Section 4.5.

4.2 Graphical compressive sensing

Inspired by [39], we decompose the sparse signal x ∈ RN into a support vector

s ∈ {0, 1}N with a scale vector t ∈ RN , which can be denoted as x = t � s. The

support vector s indicates the position of non-zero coefficients in the sparse signal x.

Thus, our goal is to recover t and s from the following linear observation model

y = A(t� s) + n, (4.1)
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where A ∈ RM×N is the measurement matrix, and the measurements y is corrupted

by additive Gaussian white noise n with the noise precision σ−1
n . Thus, the corre-

sponding observation likelihood can be formulated as

p(y|t, s; σn) = N (A(t� s), σ−1
n I). (4.2)

where I is an identity matrix with proper size. Generally, given some appropriate

prior models, e.g., p(t) and p(s), the latent t and s can be inferred by solving the

following MAP problem

{t̂, ŝ} = max
t,s

p(t, s|y) ∝ (y|t, s)p(t)p(s). (4.3)

In the following sections, we will discuss the prior models p(t) and p(s), respectively.

4.2.1 Markov random field based support prior

Since MRFs are flexible and expressive enough to model complex dependency, the

majority of the existing works [29]–[33], [35], [36] employ the MRF to capture the

underlying structure of a sparse representation through its support s. The MRF

represents the dependency between the support coefficients by defining the probabil-

ity distribution over an undirected graph. Let G = {V, E} denotes the underlying

undirected graph of the MRF, where V and E are the set of nodes and undirected

edges in G. Each coefficient is mapped one-to-one to a node in the graph G. The

probability distribution is defined as a Boltzmann machine (BM):

p(s) =
1
Z ∏

c
∏

i∈Nc

exp(siδ
c
i + si ∑

j∈Ei

γc
ijsj) (4.4)

where Z(·) is a normalizing constant; {δc
i , γc

ij} are local parameters that model the

interaction among signal coefficients. δc
i defines bias toward zero potential (e.g.,

confidence) for each si and γc
ij weights the dependency between si and its adjacent

sj ∀j ∈ Ei defined by the local edge set Ei, where the edge set E = {Ei}i∈V . The

neighborhood set Nc defines how these parameters are shared among the support

coefficients.
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An important key for applying the MRFs is to estimate the parameters {δc
i , γc

ij}
in Eq. (4.4). Generally, these model parameters are learned from the training data.

However, the learned model cannot adapt for new signal structures. Meanwhile, the

Two-step-Adaptive MRF estimates these parameters based on a point estimate of the

sparse signal, which is required to perform both the parameter estimation and sparse

signal estimation in every iteration. However, this can lead to high computation.

To address this problem, we propose to approximate the BM Eq.(4.4) with a new

probability distribution. Inspired by [117], we assume conditional independence

between each node, given its adjacent nodes. Thus, the joint distribution is written

as the product of conditional probabilities. Then, we approximate each conditional

probability distribution with the product of two simpler distributions. Each of

them corresponds to the unary and pairwise potentials in the BM distribution. The

proposed MRF distribution for support s is given as

p(s) = ∏
c

∏
i∈Nc

p(si|sEi , θc
i ) (4.5)

where log(p(si|sEi , θc
i )) ∝ φu(si|θu

i ) + φp(si|sEi θ
p
i )),

and φu(si|θu
i ) = log(pu(si|θu

i )), φp(si|sEi , θ
p
i ) = log(pp(si|sEi ; θ

p
i )).

Here, p(si|sEi , θc
i ) is the conditional distribution of a support si given sEi where

sEi = [sj]j∈Ei contains the support coefficients connected to the node si with the

edges specified by Ei. Then, it is approximated with the product of pu(si|θu
i ) and

pp(si|sEi , θ
p
i ) which are associated with the unary φu(·) and pairwise φp(·) potentials.

The superscript u and p denote the parameters/distributions belonging to the unary

and pairwise potentials. In the following, we will introduce the specific forms of

pu(si|θu
i ) and pp(si|sEi , θ

p
i ).

Unary potential. To control local sparsity in a fixed-size neighboring region, we

employ the Bernoulli model [39] where every support coefficient in the neighboring

region shares a common parameter bc, i.e., ∀i ∈Nc

pu(si|bi) = Bernoulli(si|bi) with bi = bc ∼ Beta(α, β). (4.6)

bc defines the tendency toward non-zero according to the setting of α and β. The
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neighborhood set Nc defines support coefficients that share the same unary parame-

ters bc. Therefore, the distribution pu(si) alone only reflects the bias toward zero on

support coefficients within a neighborhood but cannot reflect the interaction that the

support coefficients have towards each other.

Pairwise potential. To reflect the interaction between the support coefficients,

we employ the pairwise MRF [42], where the connection between the ith support

coefficient and the other coefficients is defined by Ei. The pairwise MRF is defined as

pp(si|sEi , wi) =
1

Q(wi, sEi)
exp(siwi ∑

j∈Ei

sj), (4.7)

where wi weights the dependency between si and other non-zero coefficients defined

by Ei. The edge set E = {Ei} defines a whole pairwise connection between nodes

in the underlying graph G. Here, the normalizing constant Q(·) is in a closed-form

formulation, i.e., Q(wi, sEi) = 2cosh(wi ∑j∈Ei
sj).

With the defined probability distributions associated with the unary and pairwise

potentials, we represent the proposed MRF distribution of s as

p(s|b, w) = ∏
c

∏
i∈Nc

pu(si|bc)pp(si|sEi , wi) = ∏
c

p(sNc |bc, wNc), (4.8)

where ∀i ∈Nc

pu(si|bi) = Bernoulli(si|bi) with bi = bc ∼ Beta(α, β);

pp(si|sEi , wi) =
1

Z(wi, sEi)
exp(siwi ∑

j∈Ei

sj).

sNc = [si]i∈Nc and wNc = [wi]i∈Nc represent the vector of support coefficients and

pairwise parameters in Nc.

Because the distributions associated with the unary and pairwise potentials are

separately modelled in Eq. (4.8), their parameters can be separately estimated. This

benefits simplifying the following MRF parameter estimation using a variational EM

in Section 4.3; The parameters of the Bernoulli model obtain a closed-form solution in

inference, and the parameters of a pairwise MRF are obtained by solving an MML

problem, which also results in a closed-form formulation. More details will be further

clarified in Section 4.3.
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The proposed MRF distribution Eq. (4.8) can be viewed as a surrogate for the

BM Eq. (4.4) where δc
i = δc ∀i ∈ Nc and γc

ij = γi ∀j ∈ Ei. The effectiveness of the

proposed MRF distribution in approximating the BM is measured by the Kullback-

Leibler (KL) divergence between them. This result is compared with that of some

existing approximation schemes [39], [42]. The results are provided in Section 4.5.5.

The KL-divergence of the proposed MRF distribution is smaller than that of other

existing schemes. Thus, the proposed MRF distribution Eq. (4.8) can well approximate

the BM.

4.2.2 The signal scale prior

In connection with the support model, we impose statistical models onto the signal

scale coefficients in each neighborhood site. Specifically, let tNc = [ti]i∈Nc be a vector

of scale coefficients in Nc. We impose an iid Gaussian distribution as a prior of the

scale coefficients tNc . Gamma distribution is used as a hyperprior over the Gaussian

variance σti:

p(tNc ; σt
c) = ∏

i∈Nc

N (ti|0, σt
−1
i I) with σti = σt

c ∼ Gamma(v, ξ) ∀i ∈Nc.

(4.9)

σt
c is the signal precision shared among the scale coefficients in Nc, and I is an

identity matrix with a proper size. v and ξ are constant with appropriate settings [42],

[118]. This model weakly imposes structure among the scale coefficients in Nc to help

control the sparsity level, in addition to the bias toward zero from the unary term.

4.2.3 The hyperprior for noise precision

As we assume that the small perturbation to the measurements n is Gaussian white

noise, the Gamma prior is imposed on σn to facilitate the inference of noise precision

σn.

σn ∼ Gamma(v0, ξ0). (4.10)
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4.3 One-step-Adaptive MRF

With the hyperpriors p(bc; α, β), p(σt
c; v, ξ), and p(σn; v0, ξ0), the posterior of the

latent sparse signal scale t and support s, given the measurements y is defined as

p(t, s|y, Θ)

∝ p(y|t, s, Θ)p(t, s|Θ)p(Θ)

= p(y|t, s, σn)∏
c

p(tNc , sNc |σt
c, bc, wc)∏

c
p(σt

c; v, ξ)p(bc; α, β)p(σn; v0, ξ0).

(4.11)

where p(tNc , sNc |σt
c, bc, wc) = p(tNc |σt

c)p(sNc |bc, wc) and Θ = {σn, σt, b, w}; σt =

[σt
c], b = [bc], w = [wNc ]. Most existing MRF-based methods [29]–[33], [35], [36]

estimate the model parameters Θ with training samples. However, the resulting

Θ cannot adapt for actual sparse signals. The two-step method in [45] adaptively

estimates Θ based on the point estimation of sparse signals. However, the point

estimation cannot capture the statistical uncertainty of the latent sparse signal, which

can lead to inaccurate parameter estimation. To address this problem, we estimate Θ

directly from the noisy measurements with a statistical inference process described in

the following section. Then, given Θ, the sparse signal is estimated by solving MAP

Eq.(4.3).

4.3.1 Model parameter estimation with variational EM

Our objective is to adaptively estimate the unknown parameters Θ directly from

measurements y. With the hyperprior imposed on σn, σt , and b, these unknowns can

be considered as the unknown random variables; meanwhile, w is the only unknown

parameter. Thus, we aim to solve the following maximum marginal likelihood (MML)

problem

max
w

ln p(y|w) ∝
∫

ln p(y, Λ|w)dΛ. (4.12)

where Λ = {t, s, σn, σt, b} is the set of all unknown variables. To solve this MML

problem, all the unknown variables in Λ are to be integrated out. Since calculat-

ing the integral in Eq. (4.12) is intractable, we resort to the variational expectation

maximization (EM) [116] to estimate the unknown parameters. In the variational
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EM [116], the integral problem is addressed by introducing the pseudo probabilities

of the unknown variables q(Λ). The log likelihood in Eq. (4.12) is reformulated as:

ln p(y; w) = F(q, w) + KL(q||p), (4.13)

with

F(q, w) =
∫

q(Λ) ln
p(y, Λ; w)

q(Λ)
dΛ (4.14)

and

KL(q||p) = −
∫

q(Λ) ln
p(Λ|y; w)

q(Λ)
dΛ, (4.15)

where KL(q||p) is the Kullback-Leibler divergence between p(y|Λ, w) and q(Λ).

Since KL(q||p) ≥ 0, it holds that F(q, w) is the lower bound of ln p(y|w). Therefore,

we turn to maximize the lower bound F(q, w), by iteratively performing [116]:

• Expectation: It is assumed that q(Λ) has a factorized form, that is, q(Λ) =

q(σn)q(t)q(s)∏c q(σt
c)∏c q(bc). The optimal distribution of one of the latent

variables Λp follows [116]:

q̂(Λp) = 〈p(y, Λ; w)〉q(Λ\Λp)
, (4.16)

• Maximization: Given q̂(Λ), calculated from the VB-E step, the unknown pa-

rameter w is estimated by solving the following optimization problem:

ŵ = arg max
w

F(q̂(Λ), w), (4.17)

where 〈 f (·)〉Λ\Λp
represents the expectation of f (·) with respect to the distribution

q(Λ\Λp) where Λ\Λp represents the set Λ without Λp.

As a result, each unknown variable in Λ = {t, s, σn, σt, b} is calculated by approxi-

mating the true posterior p(y, Λ|w) in Eq. (4.16) (the Expectation step). As t and s are

estimated in the Expectation step, there is no needed to solve MAP Eq. (4.3). The up-

dating rules for each parameter in w are calculated by maximizing the lower bound
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F(q, w) Eq. (4.17) (the Maximization step). Due to the conditional independence

assumption, each wi can be estimated separately.

4.3.2 Optimization

In this part, we give the optimization details for all unknown variables. In the

following, the updates from 4.3.2.1 to 4.3.2.5 belong to the expectation step, while

the update in 4.3.2.6 is the maximization step. To better fit the specific signal structure,

we update the underlying graph which is the edge set E = {Ei} in 4.3.2.7. Here,

we can employ the graph update technique from Chapter 3 since it requires low

computation.

4.3.2.1 Estimation for sparse signal scale t

Given the update parameters and variables ( i.e., σ̂t, ŝ and σ̂n), and according to

Eq.(4.16), we obtain the following update equation for estimation of t:

q̂(t) ∝ 〈p(y|t, s; σn)p(t; σt)〉q(Λ\t). (4.18)

Substituting the prior of coefficient scale t Eq. (4.9) and the likelihood of the

measurements Eq. (4.2) into Eq. (4.18), we obtain a Gaussian distribution N (ut, C−1
t )

with mean ut and covariance Ct:

ut = σ̂nC−1
t ŜATy

Ct = Σ̂t + σ̂n〈SAT AS〉q(s),
(4.19)

where S = diag(s); ŝ is the update value of s from previous iteration; 〈SAT AS〉q(s) =
(AT A)� (ŝŝT +diag(ŝ� (1− ŝ))); and Σ̂t = diag([σ̂1, ..., σ̂N ]). Therefore, the update

for t is as follows:

t̂ = ut. (4.20)
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4.3.2.2 Estimation for signal support s

Given σ̂t, σ̂n, t̂, ŵ, ŝ, and {Êi} from the previous iteration, the log posterior probability

of each element of s is given as

q̂(si) ∝ 〈p(y|t, s; σn)p(s|w, b)〉q(Λ\si)
. (4.21)

The probability when si = 1 is given as

ln q̂(si = 1) ∝ −σn(yTy + 〈t2
i 〉aT

i ai − 2t̂iaT
i (y−∑

i>j
aj t̂j ŝj)))

+ wi ∑
j∈Êi

ẑj − ln(2 cosh(wi ∑
j∈Êi

ẑj)) + 〈ln(pu(si = 1)|bc)〉q(bc),
(4.22)

The probability when si = 0 is given as

ln q̂(si = 0) ∝− wi ∑
j∈Êi

ẑj − ln(2 cosh(wi ∑
j∈Êi

ẑj))

+ 〈ln(pu(si = 0|bc))〉q(bc)
,

(4.23)

where ẑi = 2ŝi − 1, and 〈t2
i 〉 ∝ t̂2

i + var(t̂i). var(t̂i) is the variance of t̂i which can be

obtained from Eq. (4.19), i.e., var(t̂i) = diag{inv(Ct)}i,i. The update for 〈ln(pu(si =

1))〉q(bc) and 〈ln(pu(si = 0))〉q(bc)
are given in Eq. (4.27).

The update of si is given as its expectation which is as follows:

ŝi =
q̂(si = 1)

q̂(si = 1) + q̂(si = 0)
(4.24)

Then, update ẑi = 2ŝi − 1 and update x̂ = t̂� ŝ.

4.3.2.3 Estimation for unary potentials pu(si|bj=c)

For each bc,

q̂(bc) ∝〈∏
j

∏
i∈Nj

pu(si|bj)p(bj; α, β)〉q(Λ\bj=c)

∝Beta(α̂, β̂),

(4.25)

which calculates expectation over all unknown random variables, except every term

that involves with bc. Since Bernoulli and Beta distributions are a conjugate pair, the
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posterior hyperparameters are given as

α̂ = α + ∑
i∈Nc

ŝi

β̂ = β + |Nc| − ∑
i∈Nc

ŝi,
(4.26)

Thus, we have

〈ln(pu(si = 1|bc))〉q(bc) = ψ(α̂)− ψ(α̂ + β̂)

〈ln(pu(si = 0|bc))〉q(bc) = ψ(β̂)− ψ(α̂ + β̂),
(4.27)

where ψ(x) = (d/dx) ln Γ(x).

4.3.2.4 Estimation for sparse signal variance σt
c

The estimation for σtc is obtained as follows:

q(σt
c) ∝ 〈∏

j
∏

i∈Nj

p(ti|σt
j)p(σt

j; v, ξ)〉q(Λ\σt
j=c)

∝ Gamma(v̂, ξ̂).

(4.28)

The Gaussian and Gamma distributions are a conjugate pair. The posterior hyperpa-

rameters are given as follows:

v̂ = v +
|Nc|

2

ξ̂ = ξ +
∑i∈Nc

(t̂2
i + var(t̂i))

2
.

(4.29)

The update for σt
c is therefore: ∀i ∈Nc,

σ̂ti = σ̂t
c =

v̂

ξ̂
. (4.30)

Then, Σ̂t is updated by plugging in the value of its diagonal entries from σ̂t1, ..., σ̂tN .
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4.3.2.5 Estimation for noise variance σn

Given t̂, ŝ, the estimation for σn is obtained according to Eq. (4.17)

q̂(σn) ∝ 〈p(σn|v0, ξ0)p(y|t, s, σn)〉q(Λ\σn)

∝ Gamma(v̂0, ξ̂0)

(4.31)

With the conjugate property, the hyperparameters of the posterior distribution are

given as follows:

v̂0 = v0 +
M
2

ξ̂0 = ξ0 +
〈‖ y− A(t� s) ‖2〉q(t),q(s)

2
.

(4.32)

Given t̂ and s, the expectation is as follows:

〈‖ y− A(t� s) ‖2〉q(t),q(s)
= yTy− 2(t̂� ŝ)T ATy + 1T[〈ssT〉 � 〈ttT〉 � 〈AT A〉]1

(4.33)

where 〈ssT〉 = ŝŝT + diag(ŝ� (1− ŝ)) and 〈ttT〉 = t̂t̂T
+ Σ̂t. The update for σn is

therefore:

σ̂n =
v̂0

ξ̂0
. (4.34)

4.3.2.6 Estimation for pairwise parameters w

Give the updated ẑ,{Êi} the estimation for each wi is obtained by solving the follow-

ing problem:

ŵi = arg max
wi
〈ln pp(zi; wi)〉q(zi)

≡ ẑiwi ∑
j∈Êi

ẑj

− ln(exp(wi ∑
j∈Êi

ẑj) + exp(−wi ∑
j∈Êi

ẑj)).

(4.35)

Take the gradient with respect to wi, and equate it to zero, the update of wi is as

follows:

ŵi =
1

2 ∑j∈Êi
zj

ln
(

1 + ẑi

1− ẑi

)
. (4.36)
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Algorithm 4.9 Edge update procedure E = {Ei}
Input: Binary vector d.
Initialization : Ei = ∅ ∀i = 1, ..., N, and E = ∅ .

for i = 1, ..., N do
for each j ∈Ni do

If dj = 1 and the edge (j, i) is not present, establish the edge (i, j) by
including the index j of the node dj to the local edge set Ei:
Ei = Ei

⋃
j .

end for
E = E

⋃ Ei.
end for

Output: The updated edge set E.

Algorithm 4.10 One-step-Adaptive MRF (OA-MRF).
Input: A measurement signal y, A, {Ei}initialized.
Initialization: Σt = IN×N , σn = 1, s = 1 , w = 0 and t = 0;

while A stopping criterion is not satisfied do
1. Estimate t̂ as Eq. (4.20);
2. Estimate ŝ by Eq. (4.24) ;
3. Estimate b̂ as Eq. (4.27) ;
4. Estimate σ̂n as Eq. (4.34) ;
5. Estimate σ̂t as Eq. (4.30);
6. Estimate ŵ as Eq. (4.36);
7. Update the edge set {Ei}N

i=1;
end while

Output: Recovered x = t� s.

4.3.2.7 Edge set update

Inspired by [45], we can update the underlying graph (i.e., edges set) constructed

based on the non-zero coefficient of the support ŝ. Since ŝi has a continuous value,

the binary support vector for ŝ is obtained by introducing an appropriate threshold

over ŝ [37], [39], [45]: Let d be a binary vector indicating non-zero elements in ŝ, and

Tŝ = ∑N
i abs(ŝi)

N be the mean value of ŝ; Specifically, we update d as follows:

d̂i =





1, if abs(ŝi) > Tŝ

0, otherwise.
(4.37)

Given the binary support vector d, each of the binary coefficients is mapped to

each node in a graph G, and each edge is established from one node to other non-zero

nodes within a predefined neighborhood Ni. The update procedure is summarized

in Algorithm 4.9.
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How to solve Eq. (4.12) is summarized in Algorithm 4.10, where the update

equations to calculate the expectation for the latent variables t, s, σn, σt, and b in

the Expectation Step are in 4.3.2.1 to 4.3.2.5 , and the update equation to solve a

maximization problem for the unknown parameter w in the Maximization Step is

in 4.3.2.6. Finally, the edge set E that constitutes a whole pairwise connection in the

graph G is updated. These update rules are performed iteratively until convergence.

In most cases, the convergence of the variational EM algorithm is guaranteed [116].

4.4 Algorithm Complexity

All the update steps in Algorithm 4.10 are in closed-form solutions, where most

require matrix-vector product operations. The matrix inversion in Step 1 (Eq. (4.19))

in Algorithm 4.10 has the dominant computational cost. The total computational

complexity isO(N3 + 2MN2 + 11N2 + 5MN + (9+ 4N)N + M + k0 + k1) which can

be reduced to O(M3 + 3MN2 + 2M2N + 7N2 + MN + 4N).

The computational complexity of O(N3 + 2MN2 + 11N2 + 5MN + (9 + 4N)N +

M + k0 + k1) consists of:

1. O(N3) is associated with the matrix inversion that is performed to update the

value of Ct of size N × N in the signal scale estimation Eq. (4.19);

2. The matrix-vector production: (1) the estimation for the sparse signal scale

Eq. (4.19) that calculates µt and Ct which requires O(N2 + MN + 2N) and

O(MN2 + 3N2 + 2N); (2) the estimation of the support Eq. (4.24) that requires

O(N2 + 3MN + 4NN + M) ; (3) the estimation for the sparse signal variance

Eq. (4.30) which requires O(3N) ; and (4) the estimation for the noise variance

Eq. (4.33) which requires O(MN2 + 6N2 + MN + M + 2N);

3. The rest O(k0) is from vector product operations, and O(k1) is from updating

the graph, both of which are linear in N, which is the size of the sparse signal

vector.

The computation of the matrix inversion dominates the other computational costs.

The computation for matrix inversion can be reduced, however, with the trade-off of

performing more vector-matrix multiplications, which will be discussed as follows:
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The matrix inversionO(N3) can be reduced toO(M3) where M� N by applying

the matrix inverse property. With the matrix property, Eq. (4.19) can be rewritten as

C−1
t = P−1 − P−1ŜT AT(σ−1

n I + AŜP−1ŜT AT)−1ASP−1, (4.38)

where P = Σt + σn
(
diag(ŝ� (1− ŝ))� (AT A)

)
is a diagonal matrix whose inverse

can be computed easily. The complexity is reduced to O(M3), where M� N.

The cost of matrix production is another dominant cost. The cost can be reduced

by computing AT A offline, and reusing ATy and yTy which are required to calculate

only once. With the matrix property (4.38), the total cost of matrix multiplication is

O(MN2 + 3M2N + 2MN + 8N2 + (9 + 4N)N + M). Therefore, the total complexity

is reduced to O(M3 + MN2 + 3M2N + 2MN + 8N2 + (9 + 4N)N + M + k0 + k1) ≈
O(M3 + MN2 + 3M2N + 2MN + 8N2) where M� N.

This complexity is much less than that of the Two-step-Adaptive MRF (see Sec-

tion 3.5). The complexity of the Two-step-Adaptive MRF is O(c1(2M3 + 4MN2 +

3M2N + 4N2 + MN) + c1|E |+ C(G)) per iteration which consists of the computa-

tional complexity from sparse recovery O(c1(2M3 + 4MN2 + 3M2N + 4N2 + MN)),

the support estimation O(c1|E|), and the MRF parameter estimation O(C(E)). |E| is
the cardinality of the edge set in the graph, and c1 is the number of iterations in which

that sparse recovery is performed. Therefore, unlike the Two-step-Adaptive MRF,

the proposed One-step-Adaptive MRF estimates the support and MRF parameters

without performing additional subroutines, i.e., firstly, we estimate the support based

on the expectation value Eq.(4.24) which is in a closed-form solution, rather than

performing support inference. Secondly, with the proposed MRF distribution, we

can update the MRF parameters with two closed-form solutions Eq.(4.27) and (4.36),

rather than executing MRF parameter estimation as a subroutine.
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(A) Selected MINST images and the decay of pixel coefficients

(B) Selected CMU-IDB images and the decay of sparse coefficients

(C) Selected CIFAR-10 images and the decay of sparse coefficients.

FIGURE 4.3: The ground truth images and the decay of sparse coefficients of (A)
MNIST, (B) CMU-IDB, and (C) CIFAR-10 databases.

4.5 Experiment

In this section, we study the effectiveness of the proposed MRF distribution and

the proposed One-step-Adaptive MRF through performing three different experi-

ments: (i) we demonstrate the effectiveness of the proposed MRF distribution in

approximating the original BM in comparison with the existing approximation

schemes in Section 4.5.5; (ii) to study the improved performance due to the one-

step approach, we demonstrate the effectiveness of the proposed one-step versus

the two-step approaches in Section 4.5.6; and (iii) ultimately, the performance of the

One-step-Adaptive MRF is shown in comparison with state-of-the-art algorithms in

Section 4.5.7.

The details about the datasets, experiment settings, comparison methods, and

evaluation criteria are described in the following sections.
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4.5.1 Datasets

In this section, we evaluate the performance of the proposed One-step-Adaptive MRF

on the three benchmark datasets— MNIST [113], CMU-IDB [114], and CIFAR-10 [115]

(which are also used in Chapter 3.6.1 consistently). The test images selected for the

experiment are shown in Figure 4.3. We employ the same compression process and

linear transformations as described in Chapter 3.6.1. Therefore, we pay attention

to the experiment results of (1) the MNIST digit images in the spatial domain, (2)

CMU-IDB images in the PCA domain, (3) CMU-IDB images in the wavelet domain, (4)

CMU-IDB images in the DCT domain, (5) CIFAR images in the wavelet domain, and

(6) CIFAR images in the DCT domain, and we omit the discussion of the CIFAR-10

images in the PCA domain as the PCA signals are not sparse. All the reconstructed

images are provided in Appendix A.2.

4.5.2 Experiment Setting

We employ the same experimental setting as the previous chapter (Section 3.6.2),

i.e., in compression, the sparse signal x is sampled by a random Bernoulli matrix

A to generate the linear measurements y. The compression ratios (M/N) are set

to 0.2, 0.25, 0.3, 0.35, and 0.4 to show their impact on the accuracy and run time at

different measurement sizes. To simulate the noise corruption on measurements,

three different levels of Gaussian white noise are added into y, which results in the

signal to noise ratio (SNR) of x to be 30 dB, 20 dB, 10 dB, and 5 dB. Please note that

at the lowest SNR (5 dB), the measurements are mostly corrupted by noise; thus,

the lowest SNR indicates the highest noise corruption. All the experiments were

implemented by 64-bit MATLAB R2016b and were executed on a PC with Intel Core

i7-4770 CPU and 16GB of RAM.

Algorithm setting: One-step-Adaptive MRF is initialized as follows: the hyper-

parameters v and ξ in Eq. (4.29) and v0 and ξ0 in Eq. (4.32) are set to 10−6. The initial

value for α and β is set according to [39]. The edge set E = {Ei} is initialized as an

empty set. For 2D signals, i.e., handwritten images and sparse representation in the

wavelet domain, Nc and each Ni are set to cover 8-neighbors of each node. For 1D
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signals, i.e., sparse signal representations in the PCA and DCT domains, Nc and each

Ni are set to cover two adjacent nodes. The algorithm stops when the minimum

update difference, i.e. ||x
prev−xnew||2
||xprev||2 , is less than 10−3, or when the iteration reaches 200.

4.5.3 Comparison methods

The performance of the proposed One-step-Adaptive MRF is compared with 7 state-

of-the-art competitors:

• Adaptive MRF based method: Two-step-Adaptive MRF (TA-MRF) [45] and

Pairwise MRF [42]2 ;

• MRF-based methods (Non-Adaptive): MAP-OMP [32] and Gibbs [31] 3;

• Cluster sparsity-based methods: Bernoulli model [39]4;

• Sparsity-based methods: a Bayesian method RLPHCS[103] and a standard

recovery method OMP[106].

• The oracle estimator [32] that employs the ground truth support in estimating the

sparse signal (via Eq. (4.20)) shows the best possible result using ground truth

support with homogeneous noise parameters. Note that all the other methods

do not have access to the ground truth support. The oracle estimator has this

unfair advantage.

All of the comparison methods, except Pairwise MRF [42], are implemented using the

code of the authors with tuned parameters for the best performance. The Pairwise

MRF is coded by ourselves and uses the same setting for N and terminating criterion

as the proposed One-step-Adaptive MRF.

4.5.4 Evaluation criterion

We demonstrate the proposed One-step-Adaptive MRF performance on recovery

accuracy and runtime performance. Similar to Chapter 3.6, the recovery accuracy

2For both TA-MRF and Pairwise MRF, we use the same setting for neighboring set Ni, as described
in Algorithm Setting in Section 4.5.2

3The graphical model, noise and signal variance parameters provided to MAP-OMP and Gibbs are
from the training data.

4We use the same setting for neighboring set Ni, as described in Algorithm Setting in Section 4.5.2
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Averaged KL-divergence between
Sparsity Our distribution Bernoulli [39] Pairwise [42]

(k) Eq. (4.5) Eq. (4.6) Eq. (4.7)
& the BM Eq. (4.4) & the BM Eq. (4.4) & the BM Eq. (4.4)

10 0.0020 0.0281 3.0179
20 0.0025 0.0617 2.1777
30 0.0026 0.1103 1.4552

(A) Approximating the original BM across different sparsity levels.

Num. Averaged KL-divergence between
of edges Our distribution Bernoulli [39] Pairwise [42]

(N) Eq. (4.5) Eq. (4.6) Eq. (4.7)
& the BM Eq. (4.4) & the BM Eq. (4.4) & the BM Eq. (4.4)

2†N? 0.0036 0.0671 0.7409
10†N? 0.0125 0.0781 0.5337
20†N? 0.0743 0.1219 0.1039

†2, 10, and 20 are the number of pairwise edges connecting to each node.
?N is the signal dimension

(B) Approximating the original BM across different numbers of edges.

TABLE 4.1: Effectiveness of the proposed MRF distribution Eq. (4.5) in approximat-
ing the original BM vs. existing approximation schemes: the Bernoulli model [39]
Eq. (4.6), and the pairwise MRF [42] Eq. (4.7) across (a) different sparsity levels and

(b) different numbers of edges.

is evaluated by the peak signal to noise ratio (PSNR). We consider the total runtime

required by each algorithm across different sampling rates (M/N).

4.5.5 Effectiveness of the proposed distribution for the MRF

This section demonstrates the effectiveness of the proposed MRF distribution Eq. (4.5)

in approximating the Boltzmann machine (BM) Eq. (4.4) by measuring the KL-

divergence between these two distributions. The effectiveness of the proposed dis-

tribution is compared with those of some existing approximation schemes, i.e., the

Bernoulli model [39] Eq. (4.6) and the pairwise MRF [42] Eq. (4.7). Table 4.1A and

Table 4.1B demonstrate the approximation to the BM across different configurations:

(i) sparsity levels, k = 10, 20, 30, and (ii) number of edges, 2N, 10N, 20N. The

KL-divergence is averaged over 1000 empirical distributions.

Table 4.1A provides the effectiveness in approximating BM across different spar-

sity levels (k): 10, 20, and 30. Each sparsity is induced by tuning the unary parameters.

The unary parameters are randomly from N (µb, 1) with µb = −2.5,−2, and −1.5,
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each of which enforces a different sparsity level. The pairwise parameters are ran-

domly selected from N (−0.1, 1). Clearly, the KL-divergence of the proposed MRF

distribution much smaller by at least one order of magnitude and three orders of

magnitude in comparison with the Bernoulli model and the Pairwise MRF.

Table 4.1B provides the effectiveness in approximating the BM across different

numbers of edges (|E|): 2N, 10N, 20N where 2, 10, and 20 are the number of pairwise

edges connecting to each node, and N is the total number of nodes corresponding

to N support coefficients. Here, both the unary and the pairwise parameters are

randomly selected from N (·, 1) with mean of -1 and -0.3, respectively. The proposed

MRF distribution provides the smallest KL-divergence in all cases. The KL-divergence

of the proposed MRF distribution is, at most, 17% and 3% of the Bernoulli model

and the Pairwise MRF when |E| < 20N. When |E| = 20N, our KL-divergence is

approximately 60% and 70% of the Bernoulli model and the Pairwise MRF. These two

experiments demonstrate that with unary and pairwise parts, the proposed MRF dis-

tribution Eq. (4.5) can best approximate the BM (4.4) across different configurations.

4.5.6 Effectiveness of MRF parameter estimation: One-step vs Two-step

We compare the effectiveness of the proposed One-step-Adaptive MRF versus the

Two-step-Adaptive MRF 5 in estimating MRF parameters for 10,000 signals sampled

from 10 distributions. The effectiveness is evaluated by the parameter estimation,

measured by the KL-divergence between the estimated model and the ground truth,

and the final performance, measured by the F1-score, recovery accuracy, and runtime.

Figures 4.4 and 4.5 show the results across different sampling rates (M/N) and

noise levels (in the SNR). In Figure 4.4, the KL divergence of the proposed One-step-

Adaptive MRF is less than 25% of the Two-step-Adaptive MRF. Our approach also

yields at least a 5% higher F1-score6, with 2 dB higher accuracy with a lower runtime.

Although the proposed One-step-Adaptive MRF uses more iterations to converge,

its total runtime is much lower than the Two-step-Adaptive approach that has to

perform MRF estimations and sparse signal estimations in each iteration. In Figure

5Here, the recovery accuracy and KL-divergence of the Two-step-Adaptive approach is measured at
the main algorithm, rather than at the subroutine (signal estimation).

6For the proposed One-step-Adaptive MRF, the F1-score is calculated from the binary support
obtained from Eq. (4.37).



4.5. Experiment 109

(A) MRF parameter estimation (B) Support estimation

(C) Sparse Signal Recovery (D) Runtime

FIGURE 4.4: Effectiveness of the MRF parameter estimation by the proposed One-
step-Adaptive MRF vs Two-step-Adaptive MRF [45] across different sampling rates:
(a) quality of MRF parameters estimation, (b) accuracy of support estimation, (c)
accuracy of sparse signal recovery, and (d) average runtime per iteration. Noise

level (SNR) is 30 dB.

4.5, the KL divergence of the proposed One-step-Adaptive MRF is less than 30% of

the Two-step-Adaptive MRF. Our approach also yields at least a 5% higher F1-score3

and 3 dB higher accuracy with less runtime. Thus, the proposed One-step-Adaptive

MRF offers more efficient MRF parameter estimation than the Two-step-Adaptive

MRF.

4.5.7 Performance Evaluation

4.5.7.1 Compressibility.

This section demonstrates the compressibility performance of the proposed One-

step-Adaptive MRF. We evaluate the recovery performance across different sampling

rates (M/N). Figure 4.6 shows the average PNSR curves across different sampling
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(A) MRF parameter estimation (B) Support estimation

(C) Sparse Signal Recovery (D) Runtime

FIGURE 4.5: Effectiveness of the MRF parameter estimation by the proposed One-
step-Adaptive MRF vs Two-step-Adaptive MRF [45] across different noise levels:
(a) quality of MRF parameter estimation, (b) accuracy of support estimation, (c)
accuracy of sparse signal recovery, and (d) average runtime per iterations. Sampling

rate is 0.3.

rates on the six image sets, when the noise level (SNR) is 30 dB. The proposed One-

step-Adaptive MRF offers the highest performance in most cases. Because both the

proposed One-step-Adaptive MRF and Two-step-Adaptive MRF employs the flexible

and adaptive prior, they outperform the other methods across different datasets of

images with different types of signal structures, i.e. MNIST, CMU-IDB, and CIFAR-10.

With the improved parameter estimation, the proposed One-step-Adaptive MRF

yields the highest performance, which is higher than the Two-step-Adaptive MRF,

across different datasets: for MNIST, the proposed One-step-Adaptive MRF exceeds

the second most competitive method by at least 2 dB, when the sampling rate is

higher than 0.25. For CMU-IDB, it exceeds the second most competitive method by

at least 1 dB in the wavelet domain, 0.5 dB in the PCA domains and 2 dB in the DCT

domain when the sampling rate is higher than 0.25. For CIFAR-10, it exceeds the
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FIGURE 4.6: Compressibility. The PSNR curves across different sampling rates on
three datasets. The noise level (SNR) is 30 dB.

second most competitive method by at least 0.25 dB in the wavelet domain and 2

dB in the DCT domain. With the improved adaptive MRF parameter estimation, the

proposed One-step-Adaptive MRF yields the highest performance.

The visual results of the proposed method on a MNIST handwritten digit image, a

CMU-IDB face image, and a CIFAR-10 natural image are provided in Figures 4.7, 4.8,

and 4.9. The sampling rates are 0.3. The proposed One-step-Adaptive MRF clearly

gives rise to the best results with more detail and less noise than its competitors. The

full visual results are in Appendix A.2.

4.5.7.2 Noise tolerance.

This section demonstrates the noise tolerance performance. We test the performance

of the proposed One-step-Adaptive MRF across different noise levels (in the SNR).

Figure 4.10 provides the average PNSR curves across different noise levels on six

image sets. The sampling rate (M/N) is set to 0.3. The proposed One-step-Adaptive

MRF outperforms the other comparison methods in most cases.
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OMP RLPHCS Bernoulli Pairwise MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

12.49 dB 18.40 dB 30.26 dB 40.36 dB 41.69 dB 42.22 dB 44.25 dB

12.99 dB 16.14 dB 27.62 dB 31.51 dB 42.42 dB 43.55 dB 45.17 dB

12.24 dB 19.83 dB 22.85 dB 35.85 dB 40.48 dB 40.12 dB 42.91 dB

FIGURE 4.7: Visual results of the selected MNIST handwritten digit images by the
top seven most competitive methods, i.e. OMP, RLPHCS, Bernoulli, Pairwise MRF,

MAP-OMP, TA-MRF, and the proposed OA-MRF, at M/N = 0.3, SNR = 30 dB.

OMP RLPHCS Bernoulli Pairwise MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

30.37 dB 32.11 dB 27.65 dB 21.92 dB 29.67 dB 32.91 dB 33.44 dB

28.96 dB 30.63 dB 30.51, dB 20.11 dB 28.22 dB 31.62 dB 32.20 dB

28.19 dB 30.01 dB 25.79 dB 20.52 dB 28.58 dB 31.48 dB 33.18 dB

FIGURE 4.8: Visual results of the selected CMU-IDB face images from sparse signal
recovery in the PCA domain by the top seven most competitive methods, i.e. OMP,
RLPHCS, Bernoulli, Pairwise MRF, MAP-OMP, TA-MRF, and the proposed OA-MRF,

at M/N = 0.3, SNR = 30 dB.

OMP RLPHCS Bernoulli Pairwise MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

20.50 dB 18.36 dB 16.55 dB 12.48 dB 16.31 dB 23.15 dB 23.52 dB

18.37 dB 17.84 dB 17.07 dB 14.40 dB 15.87 dB 19.27 dB 19.86 dB

15.02 dB 15.05 dB 13.25 dB 11.93 dB 13.66 dB 17.96 dB 18.233 dB

FIGURE 4.9: Visual results of the selected CIFAR-10 from sparse signal recovery in
the wavelet domain by the top seven most competitive methods, i.e. OMP, RLPHCS,
Bernoulli, Pairwise MRF, MAP-OMP, TA-MRF, and the proposed OA-MRF, at M/N

= 0.3, SNR = 30 dB.
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FIGURE 4.10: Noise Tolerance. The PSNR curves across different noise levels (SNR)
on three datasets. The sampling rate is 0.3.

Because both the proposed One-step-Adaptive MRF and the Two-step-Adaptive

MRF employ the flexible and adaptive prior, they outperform the other structured

and non-structured CS methods. With the improved MRF parameter estimation, the

proposed One-step-Adaptive MRF significantly improves the performance of the

Two-step-Adaptive MRF as well as outperforms the other methods across different

datasets: On MNIST images, the proposed One-step-Adaptive MRF outperforms

the second best method by at least 2 dB. For CMU-IDB, it exceeds the second best

method by at least 2 dB in the wavelet domain, 1 dB in the PCA domains, and 1 dB in

the DCT domain. For CIFAR-10, it exceeds the second best method by at least 1 dB in

the wavelet domain and 2 dB in the DCT domain.

Note that for the recovery of MNIST images and CIFAR-10 images in the DCT

domain, the proposed One-step-Adaptive MRF even outperforms the oracle estimator.

This is because the proposed One-step-Adaptive MRF enables heterogeneous noise

parameters, which are obtained from the adaptive noise estimation, whereas the
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FIGURE 4.11: Runtime performance. Runtime curves across different sampling rates
on three datasets. The noise level (SNR) is 30 dB.

oracle estimator uses homogenous noise parameters, which are obtained from the

training data. This indicates that the adaptive mechanism provides a good prior

to help identify signal information from noisy measurements. The proposed One-

step-Adaptive MRF is more tolerant to noise than the Two-step-Adaptive MRF in

most cases. This demonstrates that with improved adaptive parameter estimation,

the proposed One-step-Adaptive MRF is able to achieve superior noise tolerance

performance.

4.5.7.3 Runtime.

In this section, we study the runtime of the proposed One-step-Adaptive MRF in

comparison with other competitors by observing the runtime performance across

different sampling rates (M/N). Figure 4.11 provides the runtime performance at

different sampling rates on the three datasets (the noise level is 30 dB.): On MINST, the
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average runtime of the proposed One-step-Adaptive MRF is moderate compared with

the others. It is faster than the Two-step-Adaptive MRF, MAP-OMP, and Pairwise-

MRF; is comparable to RLPHCS; but is slower than Bernoulli and OMP. For CMU-IDB

and CIFAR-10, the runtime performance of the proposed One-step-Adaptive MRF is

much better than many structured CS methods. The runtime performance is similar

across the wavelet, DCT, and PCA domains, i.e., the proposed One-step-Adaptive

MRF is faster than the Two-step-Adaptive MRF, MAP-OMP, Bernoulli, and Pairwise

MRF. Its runtime is comparable with RLPHCS and only slower than OMP. Note that

OMP and RLPHCS require low computation in general because they do not exploit

the structure in sparse signal coefficients.

This demonstrates that the proposed One-step-Adaptive MRF has a moderate

runtime in most cases, and its runtime performance is obviously improved from that

of the Two-step-Adaptive MRF.

4.6 Conclusion

We have presented a novel one-step Markov random field (MRF) based structured

CS to adaptively estimate the MRF parameters from a few measurements. A very

recent method estimates the MRF parameters from a point estimation of the sparse

signals. However, the point estimation cannot depict the statistical uncertainty of

the latent sparse signals. Therefore, we propose to estimate the MRF parameters

from the measurement by solving a maximum marginal likelihood. The marginal

likelihood is obtained from averaging over all the sparse signal population, thus, it

generalizes over all the latent sparse signals more effectively. A new MRF distribu-

tion is proposed to enable closed-form formulations to estimate the MRF parameters.

Extensive experiments demonstrate the performance of the two novel components of

the proposed One-step-Adaptive MRF—the new MRF distribution and the one-step

approach. First, the proposed MRF distribution best approximates the Boltzmann

machine in comparison with some of the existing approximation schemes. Second,

we conduct experiments that demonstrate the superior performance in the MRF

parameter estimation of the proposed one-step method over the two-step method on

synthesized data. Finally, we demonstrates the overall performance in comparison
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with the state-of-the-arts in compressibility, noise tolerance, and runtime. The pro-

posed One-step-Adaptive MRF can achieve the best performance in most cases and

with using a moderate runtime.
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Chapter 5

Application to Human Activity

Recognition

We have proposed an adaptive Markov random field (MRF) that offers high flexibility

to capture and adapt for any structure of the sparse signals. The MRF parameter

estimation underpins the performance of the proposed adaptive MRF. In the previous

chapter, we proposed the One-step-Adaptive MRF that estimates the MRF parameters

from measurements directly by solving a maximum marginal likelihood problem.

As the marginal likelihood can effectively depict the statistical uncertainly of the

latent sparse signals, the resulting adapted MRF parameters can well generalize the

underlying structure of the entire sparse signal population, which leads to state-of-

the-art performance over existing methods [29]–[33], [35], [36], [38]–[42]. Therefore,

the underlying structure of the sparse signals extracted from the measurements offers

a good prior knowledge for sparse signal recovery.

One-step-Adaptive MRF can be useful for many applications related to sparse

signal recovery. Among many applications, collaborative-representation based clas-

sifications (CRCs) can directly benefit from One-step-Adaptive MRF to extract the

underlying structure directly from the query sample which can be a good indication

of the class label. The underlying structure brings the new information that is unique

to its corresponding query sample and independent of the quality of the training

samples. Motivated by this, this chapter presents an application of the proposed

One-step-Adaptive MRF to improve the performance of CRCs.

CRCs have offered state-of-the-art performance in many applications, including
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wearable sensor-based human activity recognition, when the training samples are lim-

ited. Most of the existing methods are based on the shortest Euclidean distance from

a query sample to each group of training data. These methods can be susceptible to

noise and correlation in the training samples. To improve the robustness, we propose

to employ the adaptive MRF to extract the underlying structure of the representation

vector from the query sample. The underlying structure offers additional information

that can be a good indication of the class and is unique to the corresponding query

sample. Thus, it can improve the discriminative power of the classifier. We apply

the proposed One-step-Adaptive MRF to effectively estimate the adaptive MRF from

the given query sample. The adaptive MRF can be customized to further reduce the

ambiguity due to the correlation in the training samples. With adaptive MRF, the

classification performance significantly improves.

5.1 Introduction

Human activity recognition has played a crucial role in behavioral monitoring and

human-computer interactions driven by a wide variety of applications, ranging from

health care and assistive technology [119]–[126] to underground mining [127], [128].

With the increasing interest in healthcare applications fueled by the Internet of Things

(IoT), daily human activity recognition technologies have received much attention

to realize robust and continuous health monitoring [122]. Among many the human

activity recognition technologies, wearable sensor systems have the main advantages

of being unobtrusive, privacy-preserving, maintenance free, and economical in power

consumption and size. Therefore, some human activity recognition research has

been conducted, based on wearable sensor technologies suitable for acquiring salient

information about gestures and body motions, without having direct contact with

users/objects of interest. Human activity recognition based on wearable sensors is,

however, a challenging task, since it often has to handle streams of data with a large

variability, either due to the changes in human body behaviors or noises in the system.

The difficulty of recognition is multiplied, especially when the amount of training

data is small, which is a typical situation when obtaining large training samples

is not financially viable [129], [130] or when a low sampling rate is employed to
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limit the power consumption in parsimonious and self-powered systems [131], [132].

Consequently, this can lead to overfitting to a small number of training samples that

can either be noisy or correlated with one another, since each activity is a combination

of body motions and movements.

To effectively recognize human activities, many researchers have developed

robust classification approaches. Parametric classification approaches such as support

vector machines (SVMs) have been dominating the field of pattern recognition for

their ability to extract the salient information through learning a model from the

training samples [133]. However, when the number of training samples is small, these

parametric approaches often become overfitting. To avoid the overfitting problem,

researchers resort to non-parametric approaches [89]–[92], [98]–[101], [133]–[135] that

employ the training samples to predict the class labels directly, without learning a

classification model. Among these methods, the collaborative representation-based

classifications (CRCs) offer state-of-the-art performance in many applications [89],

[91], [98]–[101]. The performance of the CRCs depends on the reconstruction of a

representation vector x that is used to identify the class label. Given a query sample,

the representation vector x is obtained from solving the following linear model:

y = Ax + n (5.1)

where n represents a small perturbation in the query sample. The samples matrix A

contains all the training samples from different activity classes sorted according to

the class labels:

A = [A1, ..., AC], (5.2)

where Ac = [ac
i , ..., ac

i+nc−1] ∈ RM×nc contains training samples of the cth class label.

CRC aims to recover the representation vector that has the shortest Euclidean distance

to the query sample y.

A similar approach to CRCs employs the sparsity as a prior knowledge in the

recovery of the representation vector x to increase robustness in the classification,

especially when the query sample is noisy [89]. This method is commonly known as

sparse representation-based classifications (SRCs). Although CRCs and SRCs have
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(A) UCI-HAR (B) Hospital dataset

FIGURE 5.1: Examples of the correlation level between (feature extracted) training
samples sorted according to the class labels in the UCI-HAR and the Hospital dataset.

50 training samples per class.

been developed for vision applications, both methods have been applied to many

applications, including wearable based-human activity recognition. In wearable

based-human activity recognition, the training data are not guaranteed to be noise-

free. Despite this, the general CRCs and SRCs offer state-of-the-art performance [91],

[99]–[101]. Although CRCs and SRCs have shown promising results in these chal-

lenging applications, their intrinsic classification mechanism remains unclear. A

recently developed ProCRC [98] offers the probabilistic interpretation of the CRCs

and proposes jointly maximizing the likelihood that a test sample belongs to each

of the multiple classes. To achieve this, ProCRC [98] aims at recovering the repre-

sentation vector that minimizes the linear approximation residual across different

classes ( i.e. ||Ax− Acxc||2 ∀c ∈ {1, ..., C} in Eq. (2.59)), and provides the shortest

Euclidean distance to the query. So far, ProCRC offers state-of-the-art performance in

vision applications. However, when training samples from two or more classes are

correlated, none of these methods, i.e. CRCs, SRCs, and ProCRC, has a mechanism to

help discriminate these training samples from each other; as a result, the classification

can be inaccurate.

Figure 5.1 demonstrates the examples of correlation in (feature extracted) training

samples sorted according to the class labels. The training samples of the activities that

involve similar body motions are more correlated; meanwhile, the training samples of

the activities that involves different body motions are less correlated. For example, in
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FIGURE 5.2: Relationship between the training samples and the representation
vectors in the linear observation model (5.1). The partition of training samples
can be used to customize our adaptive-MRF to capture the local correlation among
coefficients of the representation vectors in each class, and disconnect the underlying

graph in the MRF across different classes.

the UCI-HAR dataset Sitting and Lying and Standing are highly correlated. Meanwhile,

in the Hospital dataset [136], multiple pairs of activities are weakly correlated to

one another, e.g., Sitting is weakly correlated to many classes, e.g. Lying, Sit down,

and Walking, since many older hospitalized volunteers participate in collecting the

Hospital dataset.

To address this problem, we propose employing the underlying structure of the

representation vector extracted from the query. The underlying structure offers addi-

tional information that can be a good indicator of the class label of the corresponding

query sample. The underlying structure brings new information that is unique to its

corresponding query sample and independent of the quality of the training samples.

Thus, the underlying structure can improve the discriminative power of the classifier.

We apply the proposed One-step-Adaptive MRF in Chapter 4 to extract the underly-

ing structure of the representation vector effectively and capture it with the adaptive

MRF. The adaptive MRF can be customized according to the partition of the training

samples to further reduce the ambiguity due to the correlated training samples.

To implement this, we first group the representation vector according to the

partition of training samples to reduce the ambiguity due to the correlation in the
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training samples. Figure 5.2 demonstrates the group in the representation vectors

and the corresponding training samples in the linear observation model Eq. (5.1).

Then, our adaptive-MRF is applied to capture the local correlation or dependency

in each group of the representation coefficients, e.g., xNc = [xi; ...; xi+nc−1] ∈ Rnc

associated with the training samples Ac = [ac
i , ..., ac

i+nc−1] ∈ RM×nc in the cth class,

where x = [xN1 ; ...; xNC ]. To represent the underlying structure among the coefficients

xi, ..., xi+nc−1, an MRF is employed. The parameters of the MRF are the pairwise

parameters {wc
i , ..., wc

nc−1} and the unary parameter bc. The pairwise parameters

represent the interaction among the coefficients; meanwhile, the unary parameters

provide the bias toward zero. The MRF parameters are adaptively estimated, based

on a given query sample. These parameters represent the underlying structure of

the representation vector that can be seen as the weights assigned to emphasize each

group of training samples, according to the query. Then, the MRF is used as a prior

in the recovery of the representation vector.

To efficiently reconstruct the representation vector and estimate the MRF parame-

ters, we apply One-step-Adaptive MRF to perform the classification task. We propose

a new adaptive-MRF-based classification method where the adaptive MRF is used

as a prior in recovering the representation vector x. To evaluate the performance of

the proposed classification, we employ the UCI-HAR and the Hospital dataset in

Figure 5.1 to demonstrate the performance in two different scenarios: (i) the UCI-HAR

dataset is employed to demonstrate the scenario when training samples across differ-

ent activities are highly correlated, and (ii) the Hospital dataset is used to demonstrate

the scenario when training samples from different activities are weakly correlated.

Based on our experiments on these two real-world datasets, and with the evaluation

based on sample-based classification and activity-based label misalignment measures,

our proposed method offers state-of-the-art performance across the different numbers

of training samples.

5.2 Related works

To facilitate discussion, we review the following related non-parametric and paramet-

ric classification techniques in this research:
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Parametric approaches

• i)SVMs [133], [137], [138] is an efficient parametric classifier that is associated

with learning for an appropriate hyperplane that maximizes the margin between

two classes. The hyperplane is learned over the training samples. SVMs employ

the learned hyperplanes to determine the class labels given the query sample.

• ii) CNN [136], [139], [140] has been adopted to HAR for its deep architecture and

the variety of processing units that can effectively extract the salient features rep-

resenting the signals. The features extracted from the CNN are task-dependent

and non-handcrafted [136], [139]. So far, CNN has offered state-of-the-art recog-

nition performance because the learned CNN is able to extract the underlying

correlation in the training samples. It also yields discriminative power, since

the CNN is learned using the training samples with the respective class labels.

SVMs and CNN-based classifiers are very efficient parametric classifiers. These

two methods rely on tremendous training samples. However, when training samples

are small, their respective model learning can suffer severely from overfitting prob-

lems [89], [141], [142]. To address this approach, non-parametric classifiers are shown

to be an alternative approach to these models [98].

Non-Parametric approaches

• i) kNNs [134] are based on the principle that the samples in a dataset will

generally exist in close proximity to other samples that have similar properties.

They determine the classes of the query samples based on the most frequent

class labels of the k nearest training samples. To improve the robustness when

training samples are correlated, k is often chosen to be small [135]. However,

if k is too small, the classifier can be sensitive to noise in training and query

samples.

• CRCs [89], [93] and their variations SRCs [90]–[92] and ProCRC [98] predict a

class label of a given query sample y based on solving a linear problem y = Ax

for a representation vector x, where each column in A collects a training sample

from different classes. CRCs employ l2-norm regularization to weakly impose

sparsity on representation vectors. SRC employs l1-norm regularization, which
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strongly imposes sparsity on the representation vectors. This often improves

robustness against any noise in the query sample [90]–[92]. However, when

training samples are correlated, the solution x is not necessary sparse [89],

[93], [98]. ProCRC [98] offers state-of-the-art performance by exploiting the

likelihood between the query sample and each group of training samples. The

review of CRCs, SRCs, and ProCRC [98] is provided in Chapter 2.

Although these non-parametric classifiers are able to address the overfitting problem,

a kNN that relies on the number of neighboring samples is often highly sensitive

to noise in both the query and the training samples. Meanwhile, CRCs, SRCs, and

ProCRC are more robust [89], [90], [93], [98] since they are based on the shortest

Euclidean distances between the query and all the training samples. SRCs are more

robust than CRCs against noise, whilst CRCs and ProCRC can better reconstruct the

representation vector when the training samples are correlated [89], [98]. Neverthe-

less, none of these methods has a mechanism to discriminate these training samples

directly. Unlike these methods, our approach can exploit the underlying structure of

the representation vector, and improve discriminative performance by customizing

the underlying graph of the MRF to unlink the correlation between representation

coefficients from different classes.

5.3 Graphical collaborative representation

To model the underlying structure in the representation vector x, we model the

underlying structure through the support coefficients of the representation vector.

Inspired by the One-step-Adaptive MRF (Chapter 4), the representation vector x

is decomposed into a support vector s ∈ {0, 1}N and a scale vector t ∈ RN , i.e.,

x = t� s. Thus, our goal is to recover t and s from the following linear observation

model

y = A(t� s) + n, (5.3)

where A = [A1, ..., AC] ∈ RM×N is a matrix where all the training samples are

sorted according to the class label 1, ..., C. The query sample y is corrupted by

additive Gaussian white noise n with the noise precision σ−1
n . Thus, the corresponding
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observation likelihood can be formulated as

p(y|t, s; σn) = N (A(t� s), σ−1
n I). (5.4)

where I is an identity matrix with proper size. Generally, given some appropriate

prior models, e.g., p(t) and p(s), the latent t and s can be inferred by solving the

following MAP problem

{t̂, ŝ} = max
t,s

p(t, s|y) ∝ (y|t, s)p(t)p(s). (5.5)

In the following sections, we will discuss the prior models p(t) and p(s), respectively.

5.3.1 Adaptive-MRF

To reduce ambiguity due to correlation in the training samples, we can further cus-

tomize the underlying graph of the MRF to disconnect the representation coefficients

corresponding to the partition of the training samples. Let us first consider the group

of the representation coefficients xNc = [xi; ...; xi+nc−1] ∈ Rnc that is associated with

the training samples Ac = [ac
i , ..., ac

i+nc−1] ∈ RM×nc in the cth. Here, xNc = tNc � sNc .

The coefficient members in tNc and sNc are allowed to share the MRF parameters

{wc
i }i∈Nc

, bc within the cth class only. The MRF Eq. (4.2.1) can be customized to model

the local dependency among support coefficients as follows:

p(s|b, w)

=
C

∏
c=1

p(sNc |bc, wc) =
C

∏
c=1

∏
i∈Nc

pc
u(si; bc)pc

p(si; wc
i )

= ∏
i∈N1

p1
u(si; b1)p1

p(si; w1
i ) · ... · ∏

i∈Nc

pc
u(si; bc)pc

p(si; wc
i ) · ... · ∏

i∈NC

pC
u (si; bC)pC

p (si; wc
i )

(5.6)

where ∀i ∈Nc,

pc
u(si; bc) = Bernoulli(si|bc) with bc ∼ Beta(α, β);

pc
p(si; wc

i ) =
1

Z(wc
i , {sj}j∈Ei

)
exp(si ∑

j∈Ei

wc
i sj).
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for all c = 1, ..., C. The unary term pc
u(·) provides the bias toward zero that influences

only the supports within the same neighbor. Meanwhile, the pairwise term pc
p(·)

represents the interaction between them. Thus, we restrict the pairwise edge to

connect with the coefficients from the same class only, i.e., Ei ⊆Nc \ si. Note that the

cardinality of Nc is equal to the number of training samples in each class.

In connection with the support model, we impose a statistical model onto the

signal scale coefficients corresponding to the cth class label as tc to weakly induce the

structure among them:

p(tNc ; σt
c) = ∏

i∈Nc

N (ti|0, σt
c I) (5.7)

where σt
c denotes the variance of scale coefficients in Nc, and I is an identity ma-

trix with proper size. To facilitate the computation, we impose the hyperprior, i.e.

p(σn; v0, ξ0), for the noise variance σn in Eq. (4.10). We also impose the hyperprior

for the unary and signal scale parameters, i.e. bc and σt
c from Eq. (4.6) and Eq. (4.9),

i.e. p(bc; α, β) and p(σt
c; v, ξ) respectively.

5.4 Adaptive MRF-based classification

With all these corresponding hyperpriors, and the given support and signal scale

models from Eq. (5.3.1) and (5.7), our objective is to reconstruct signal scale and

support, i.e. t and s, given the query sample y by solving the following maximum a

posteriori (MAP) problem:

(t̂, ŝ) =max
s,t

p(t, s|y, Θ) ∝ p(y|t, s, Θ)p(t, s|Θ)p(Θ)

= p(y, t, s|Θ)
C

∏
c=1

p(σt
c; v, ξ)p(bc; α, β)p(σn; v0, ξ0).

(5.8)

where

p(y, t,s|Θ) = p(y|t, s, σn)
C

∏
c=1

p(tNc |σt
c)

C

∏
c=1

p(sNc |bc, wNc)

∝ exp

(
− 1

σn
||y− A(t� s)||22 −

C

∑
c=1

∑
i∈Nc

1
σtc t2

i +
C

∑
c=1

∑
i∈Nc

(bcsi + si ∑
j∈Nc\i

wc
i sj)

)
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and Θ = {σn, σt, b, w}; σt = [σt
c], b = [bc], w = [wNc ]; wNc = [wc

i ]i∈Nc , tNc =

[ti]i∈Nc and sNc = [si]i∈Nc . To extract the underlying structure of the representation

vector, we estimate the model parameters Θ directly from the query. To achieve

this, we estimate the MRF parameters by solving the following maximum marginal

likelihood problem, where the latent variable s, t will be integrated out. Then, given

Θ, the representation vector is estimated by solving MAP Eq.(5.8).

5.4.1 MRF parameter estimation with variational EM

With the hyperpriors imposed on σn, σt , and b in Θ, these random variables can be

considered as latent variables. w is the only unknown parameter. Thus, we group

these latent variables into a set, denoted as Λ, i.e. Λ = {t, s, σn, σt, b}. The unknown

parameter w can be estimated by solving a maximum marginal likelihood (MML)

problem: max
w

ln p(y|w) ∝
∫

ln p(y, Λ|w)dΛ. To solve this MML problems, all the la-

tent variables in Λ are to be integrated out. Since calculating the integral is intractable,

we employ the same variational EM [116] technique provided in Section 4.3.1 to solve

the MML problem. All the unknown variables in Λ are calculated through approxi-

mating the true posterior p(y, Λ|w) in Expectation step. As t and s are estimated in

this Expectation step, we do not have to solve MAP Eq. (5.8). The estimation for the

unknown parameters w are calculated by maximizing the lower bound F(q, w) in

Maximization step. All the updating rules in Expectation and Maximization steps

are derived in a similar fashion to those of the One-step-Adaptive MRF, except that

the edge set is set to include only variable nodes in its local neighborhood Nc, i.e.,

Ei ⊆Nc \ si, in Algorithm 4.9. Therefore, we refer to Section 4.3.2 for the details and

derivation for each update rule.

5.4.2 Adaptive-MRF-based Classifier

After we employ the variational EM process described in Section 4.3 to recover the

support s and sparse signal scale vector t, the solution for the representation vector

is obtained by performing piece-wise product between them, i.e., x̂ = t̂� ŝ. Given

the solution representation vector x, we apply a similar technique to CRC to find the
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Algorithm 5.11 Adaptive-MRF-based classification
Input: Test sampling vector y and the matrix A containing the training sample sorted
in order, according to the class labels.

1. Recover the representation vector x̂ by solving t̂ and ŝ from the following MAP
problem Eq. 5.8 using One-step-Adaptive MRF algorithm 4.10:

(t̂, ŝ) = max
s,t

p(t, s, |y, Θ) ∝ p(y, t, s|Θ)p(σn; v0, ξ0)
C

∏
c=1

p(σt
c; v, ξ)

C

∏
c=1

p(bc; α, β)

(5.10)
where

p(y, t,s|Θ) = p(y|t, s, σn)
C

∏
c=1

p(tNc |σt
c)

C

∏
c=1

p(sNc |bc, wNc)

∝ exp

(
− 1

σn
||y− A(t� s)||22 −

C

∑
c=1

∑
i∈Nc

1
σtc t2

i +
C

∑
c=1

∑
i∈Nc

(bcsi + si ∑
j∈Nc\i

wc
i sj)

)

The edge set is set to include only variable nodes in the local neighborhood Nc, i.e.,
Ei ⊆Nc \ si, in Algorithm 4.9. Then, x̂ = ŝ� t̂.
2. Given the solution x̂, the output class label of query signal y is found by

ĉ = min
c∈{1, ..., C}

{rc}, where rc =
||y− Ac x̂c||2
||xc||2

. (5.11)

Output: The class label ĉ.

label of the query sample y:

ĉ = min
c
||y− Acxc||. (5.9)

The process of Adaptive-MRF-based classification is summarized in Algorithm 5.11.

Compared with the existing work, namely CRC, ProCRC, and SRC, our objective

function Eq. 5.8 is most similar to CRC Eq. (2.53), except that it contains the addi-

tional terms associated with the MRF distribution, such as
(

bcsi + si ∑j∈Nc\i wc
i sj

)
, to

capture the underlying structure of the representation vector x. These two terms can

be seen as the weights assigned to emphasize each class of training samples. As all

the MRF are directly estimated from the query samples, the information gained from

the query sample helps to recognize the class that has the highest approximation to

the query sample. Additionally, to reduce ambiguity due to the correlation between

each group of training samples, we separate the MRF parameters according to the

group of the training samples. Unlike the ProCRC, we do not try to minimize the
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residual of the approximated linear combination corresponding to each class ( i.e.

||Ax− Acxc||2 ∀c ∈ {1, ..., C} in Eq. (2.59)) as that can impose a wrong influence, if

a pair of training sample groups, Ai and Aj, are correlated. Thus, the recognition

can provide an ambiguous result as either the class label i or j can be recognized as

the activity label. Compared with SRC, the employed MRF prior is more flexible

than the sparsity l1 norm as in SRC (Eq. (2.51)), especially when the columns in A are

correlated to one another; thus, the representation vector x is not sparse.

5.5 Algorithm complexity

The algorithm complexity is dominated by the computation of the One-step-Adaptive

MRF executed to reconstruct x, i.e., O(N3 + 2MN2 + 11N2 + 5MN + (9 + 4N)N +

M + k0 + k1) ≈ O(N3 + 2MN2 + 11N2 + 5MN) which can be reduced to O(2N2 +

3MN) per iteration where p0 is a constant, by setting the noise variance σn and the

signal scale variance Σ−1
t to some appropriate values. As a result, some of the matrices

associated with the noise and the signal scale variances can be computed offline, as

described below.

According to Section 4.4, it is clear that the computation is dominated by the

matrix inversion and the matrix production are performed during the estimation

of the sparse signal scale Eq. (4.19). The computation cost for Eq. (4.19) is O(N3 +

MN2 + 4N2 + 3N). With the appropriate value for the noise variance σn and the

signal scale variance Σ−1
t , we approximate the matrix inversion for Ct in Eq. (4.19)

as follows: ut = σ̂nC−1
t ŜATy ≈ σ̂nŜC̃−1

t ŜATy, where C̃−1
t = Σ̂t + σ̂n AT A, which

can be calculated offline. Meanwhile, ATy is required to be computed only once,

and AT A can be computed offline. Therefore, the computational cost is reduced

to O(N2 + 2N). Given the noise and signal variance, it is unnecessary to compute

Eq. (4.33) and Eq. (4.30). Meanwhile, the estimation of the support Eq. (4.24) requires

only O(N2 + 3MN + 4NN + M) ≈ O(N2 + 3MN). Hence, these two dominant

computations are completely removed. Thus, the total computational complexity can

be reduced toO(2N2 + 3MN) per iteration. In Section 5.6.7, the runtime performance

of our method is provided. It is shown that the our algorithm performs classification
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with an affordable runtime—it performs in under 0.002 second for a query sample in

practice.

5.6 Experiment

To demonstrate and verify the performance of the proposed Adaptive MRF-based

classification, we conduct three different experiments: (i) to demonstrate the effective-

ness of our Adaptive MRF-based classification across different numbers of training

samples, we evaluate the performance using traditional sample-based classification

measures in Section 5.6.5; (ii) to provide an in-depth analysis of the performance of the

proposed method, we provide activity-based misalignment measures in Section 5.6.6;

(iii) we investigate the runtime performance to demonstrate the expected efficiency

of our method in Section 5.6.7.

The details about the datasets (e.g. the UCI-HAR and Hospital datasets), experi-

ment settings, the comparison methods , and evaluation criterion (e.g. sample-based

classification measures and activity-based misalignment) are described in the follow-

ing sections.

5.6.1 Datasets

In this section, we evaluate the performance of our Adaptive MRF-based classification

on the two real-world datasets: UCI-HAR [143] and Hospital dataset [136]. These

datasets are different in trial setting, activity duration, class frequencies, as well as

the level of correlation within the training samples across different activities.

UCI-HAR. The UCI-HAR dataset records the daily activities of thirty volunteers

within the age bracket 19-48 years. Each volunteer is asked to perform five activities,

i.e., walking, climbing up/down stairs, sitting, standing, and lying. A smartphone

(Samsung Galaxy SII) with an embedded accelerator and gyroscope is worn at the

waist of each volunteer where the tri-axial linear acceleration and the tri-axial angular

velocity are acquired at the sampling rate of 50 Hz. The obtained dataset has been

randomly selected into training and query sets where 70% and 30% of the volunteers

were selected for generating the training and the query samples, respectively.



5.6. Experiment 131

(A) UCI-HAR (B) Hospital Dataset

FIGURE 5.3: The class distributions in the UCI-HAR and the Hospital dataset. The
class distribution in the UCI-HAR is well balanced. Meanwhile, the class imbalance

is more pronounced in the Hospital dataset.

Hospital dataset. The Hospital dataset records seven activities from twelve vol-

unteers hospitalized older patients, i.e. lying, stand up, sitting, walking, lie down, sit

down and get up. The trial in [136] employed only those volunteers who are 65 years

or older, living at home, and able to consent to the study and mobilize independently.

A single inertial sensor (Bosh BMI160) with an integrated accelerator and gyroscope

sensor unit of 24 mm in diameter and 7 mm in thickness is used to collect the tri-axial

linear acceleration and the tri-axial angular velocity at the sampling rate of 20 Hz.

The data from the first eight volunteers are used in the training phase; meanwhile,

the data from the last three volunteers are used in the testing phase.

Figure 5.3 shows the class distributions of the two datasets. Notably, the class

imbalance problem is more pronounced in the Hospital dataset than in the UCI-HAR.

However, in our experimental setting (see Section 5.6.4), we chose an equal number of

training samples for each class to form a small training set, which reduces the impact

of the class imbalance problem in the training phase. Therefore, the class imbalanced

problem impacts more on the testing phase. We address this problem by using a

weighted measure (e.g. the weighted F1-score) to balance the score across different

activities in proportion to the number of test samples. Nevertheless, the ambiguity

problem due to the correlation between training samples cannot be reduced by this

setting since the correlation between them is caused by the similarity in the body

motions between different activities.
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5.6.2 Experiment setting

To show the performance of the proposed method, we demonstrate the recognition

performance across different numbers of training samples. To do so, we perform the

following steps.

Feature extraction and selection. To demonstrate the classification performance,

we employ a standard set of features that have been used commonly in wearable

sensor-based human activity recognition. In calculating these features, we follow the

direction in [91]. The window size is set up to 4×(Sampling Rate) with 50% overlap-

ping. To extract the features from the UCI-HAR, a window of size 2.56×(Sampling

Rate) with 50% overlapping is employed; meanwhile, the window size is set to

4×(Sampling Rate) with 50% overlapping for extracting the features in the Hospital

dataset.

We employ the hand-craft features commonly used in human activities recog-

nition. To extract information based on body movement in different activities, we

employ the statistical features and probabilistic features that summarize the statistical

information regarding the underlying activities within a window duration. The

statistical features are the mean, median, variance, standard deviation, root mean

square value, and interquartile range, and the probabilistic features are the correlation,

entropy, skewness, and kurtosis. To capture the instantaneous changes of the body

motions within a window duration, we extract transient behavior-based features, i.e.

the first and the second order derivative, and zero crossing. Frequency-based features

are obtained to summarize the frequency of the movements corresponding to each

activity. The following list provides the features considered in this study:

• Statistical features—the mean, median, variance, standard deviation, root mean

square value, interquartile range;

• Probabilistic features—the correlation, entropy, skewness, kurtosis;

• Transient behavior-based features—the first and the second order derivative,

and zero crossing;

• Frequency-based features—the energy in frequency domain, spectral energy,

dominant frequency;
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The total number of these features is ninety-six (16× 6). The top fifty features are

selected based on the sequential forward selection, which is reported in [132], [144] as

a very effective feature selection method for wearable sensor-based human activity

recognition. These extracted features are used in our classification approach and all

the comparison methods, except the CNN [139] which requires a special setting for

the feature size.

Removing outlier in training samples and constructing the training sets. In

HAR, the data acquired from sensors are often noisy. Some of the training samples

cannot accurately represent the corresponding activity class labels. These outliers

can be detected by a clustering technique [145] where it is assumed that training

samples corresponding to the same class are organized into clusters. The outliers

are those samples that depart from the cluster and are closer in proximity to the

samples from the other class. This outlier can be measured by a euclidean distance

between a training sample of interest and the other samples from the same class. To

achieve this, we employ a classification technique similar to CRC [89], but without l2

regularization, to remove those training samples, described as follows:

Given a samples matrix Ã = [Ã1, ..., ÃC] ∈ RM × N collecting features extracted

from training samples where ãc
i ∈ RM is the ith training samples in the cth class label;

N is the total number of samples; M is the number of features used to represent each

training sample. We identify a training sample in Ã as an outlier, if it is misclassified

as the other class. For example, given a training sample ãl
i labeled as the lth class,

we will classify this training sample as the outlier, if its representation vector x̂ is

obtained from

x̂ = min
x∈RN

||Ãx− ãl
i ||2, (5.12)

and provides the class label c∗ 6= l where c∗ = min
c∈[C]
||Ãc x̂c − ãl

i ||2 is the class that has

the closest euclidean distance to ãl
i .

Once all the outliers are removed, we use the representative training samples to

construct the multiple training sets to demonstrate the recognition performance of all

the candidate algorithms. Our main objective for the experiments is to evaluate the

classification performance across different numbers of training samples. To construct

training sets with multiple sizes, we randomly select 10, 20, 30, 40, and 50 training
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samples per class from the entire set of training samples. For each selection, the

training samples are randomly picked 100 times to provide a stable performance

result. Nevertheless, notice that the correlation between training samples cannot be

reduced by this setting, since the correlation between them is caused by the similarity

between body movements in different activities. An example of how training samples

are correlated is shown Figure 5.1 where 50 training samples per class are randomly

selected to form a training set. Here, only approximately 4% and 12% of training

samples in the UCI-HAR and the Hospital datasets are removed.

Algorithm setting. The initialization of the proposed Adaptive-MRF classification

is set as follows: (i) the noise and signal parameters, σn and Σt, are set to 10−10 and

10−12; (ii) the edge set E = {Ei} is initialized as an empty set, while N forces each

set Ei to include only the nodes in the same neighborhood, i.e., for Ei corresponds

the ith node in the cth class label, N = Nc \ si. Here, the setting for Nc is Nc =

{si− nc
2

, ..., si+ nc
2
} is set to consider the relationship between the nc coefficients in the

(1-D) representation vector x, corresponding to the training samples in the cth class

label Ac, i.e. ac
1, ..., ac

nc
. Here, |Nc| = nc is equal to the number of training samples.

(iii) The algorithm will stop when the minimum update difference between two

consecutive estimates, defined as ||x
prev−xnew||2
||xprev||2 , is less than 10−3, or when the number

of iterations reaches 200.

5.6.3 Comparison methods

The performance of our method is compared with 6 state-of-the arts competitors:

• Non-parametric approaches: (i) CRC [89], (ii) ProCRC [98] , (iii) SRC [91], (iv)

kNN [134];

• Parametric approaches: (v) SVM [137] and (vi) CNN [139].

All of these comparison methods are implemented using the code of the authors

with tuned parameters to the best performance. This is except for the implementation

for SRC [91] that are not accessible. We implemented SRC ourselves by following the

suggestions in [91], which recommends using the l1-magic package [146] to solve

for sparse signals and set the noise parameter σn in Eq. (2.51) to 0.03. For CNN [139],
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although CNN employs raw training samples, we specifically chose from the same

set of training samples used in other algorithms.

5.6.4 Evaluation criterion

We mainly evaluate the proposed Adaptive MRF based on (i) the traditional sample-

based classification measures and (ii) the activity-based misalignment measures. The

details of each type of measure are described as follows:

Sample-based classification measures. This evaluation approach is a standard

measure to compare different classification approaches. We expect our adaptive-MRF

based approach to achieve high performance, especially when the training samples

are small, and demonstrate better performance than the existing works. We employ

two-widely used sample-based classification metrics, i.e. the weighted F-measure

(FW) and accuracy. Because of the uneven number of activities contained in the

sequences of query samples, we adopted the weighted F-measure [136] where the

F1-score is weighted according to the proportion of the number of query samples

corresponding to each activity:

FW =
C

∑
c=1

w̄c fc where fc = 2
pcrc

pc + rc
× 100. (5.13)

c is the class index; w̄c = ntest
c /Ntest with ntest

c the number of query samples in

the cthclass, Ntest the total number of query samples; pi denotes precision while ri

represents recall. Notice that these sample-based classification measures (weighted

F-measure (FW) and accuracy) only measure the number of misses and hits in query

samples; however, it cannot quantify the misalignment of the predicted activity

sequences, e.g., the loss of duration, and the delays in predicting activities.

Activity-based misalignment measure. We employ the activity misalignment

measures [147] to verify the quality of the predicted activity sequences. These mea-

sures are capable of measuring artifacts such as activity fragmentation, merging, and

transitions as shown in Figure 5.4. These measures provide deeper insight into the

quality of the predicted sequences. For example, fragmentation and substitution can be

used to evaluate the level of miss classifications within a class. Meanwhile, the correct

prediction of the class boundaries can be demonstrated by underfill and overfill.
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Predicted
Ground Truth        Underfill    Fragmentation             Substitution             Overfill            

FIGURE 5.4: Demonstration of different types of misalignments. Different colors rep-
resent different class of activities. Four activity-based misalignments are illustrated
here: Fragmentation, Overfill, Underfill, and Substitution. The first and the second row
show the ground truth and the predicted activity labels obtained from a classifier.

Gray denotes the interruptions from other classes.

Since the two datasets do not have a Null class, we specifically employ the follow-

ing activity misalignment measures: (i) Fragmentation denotes the error of predicting

a wrong class in between an uninterrupted activity class; (ii) Overfill/underfill indicates

the error when the start and stop of the predicted sequence is earlier/later than the

actual time; (iii) Substitution represents the error when an activity is misclassified as

a different class. Along with these measurements, we report True Positives (TP) and

True Negatives (TN) in relation to the ground truth class labels.

5.6.5 Sample-based classification performance

In this section, we evaluate the performance of the proposed method with the stan-

dard sample-based classification measures. Figure 5.5 and 5.6 provide the overall

classification performance across different number of training samples of the UCI-

HAR and Hospital datasets, respectively. The classification performance is shown in

FW-score and recognition accuracy. Clearly, our approach yields the best performance

in most cases, which is more pronounced for the UCI-HAD dataset than the Hospital

dataset. This is because the performance from all the competitors drops obviously in

the UCI-HAD dataset since the training samples in the UCI-HAD dataset are more

correlated, than those of the Hospital dataset. Furthermore, our approach consis-

tently offers an FW-score of over 80%, although the training samples are as small as

10 samples per class. This indicates that our approach is more robust than the other

algorithms.

Figure 5.7 and 5.8 demonstrates class-specific activity recognition results for

the UCI-HAD and the Hospital datasets. For each dataset, we provide the result at
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Samples/class(A) Weighted F1-score (B) Recognition accuracy

FIGURE 5.5: Sample-based classification performance, i.e. weighted F1-score and
recognition accuracy, across different numbers of training samples on UCI-HAR.

(A) Weighted F1-score (B) Recognition accuracy

FIGURE 5.6: Sample-based classification performance, i.e. weighted F1-score and
recognition accuracy, across different numbers of training samples on Hospital

dataset.

the two extremes : (A) when there are 10 and (B) 50 training samples per class. In

most cases, almost every activity benefits from our adaptive-MRF prior that improve

discriminative power in the representation vector recovery. When the number of

training samples per class is small (ten samples per class in particular), the adaptive-

MRF prior offers a clear performance improvement over CRC, as well as other

methods in recognizing activity classes whose training samples are highly correlated

to one another (e.g. Sitting, Lying, and Standing in the UCI-HAR) . In such case, our

method produces the largest information gains. For example, the F1-score is 98%,

73%, and 77% for Sitting, Lying, and Standing when only 10×5 training samples
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(A) 10 Training samples per class (B) 50 Training samples per class

FIGURE 5.7: UCI-HAR dataset. Class-specific recognition performance by F1-score
across different classes.

(A) 10 Training samples per class (B) 50 Training samples per class

FIGURE 5.8: Hospital dataset. Class-specific recognition performance measured by
F1-score across different classes.

from UCI-HAR are used. This suggests that the adaptive-MRF prior is crucial for

improving discriminative power against ambiguity due to the correlation in training

samples. Finally, this improves the ultimate classification performance when the

number of training samples are small. We observe that adaptive-MRF prior helps

improve the overall classification performance consistently across different number of

training samples (see Figure 5.5 and 5.6). This suggests that the adaptive-MRF prior

helps improve the overall classification performance especially when the number

of training samples is small. When the training samples per class increases to fifty,

many algorithms improve their performance to a level that is comparable (though

still inferior) to our adaptive-MRF prior.
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5.6.6 Activity-based misalignment performance

In this section, we demonstrate the performance in the predicted sequences of human

activities by using the activity-based misalignment measures. Figure 5.9 and 5.10

demonstrates the activity-based misalignment performance on UCI-HAR and Hospi-

tal dataset, respectively. For each dataset, we provide the result at the two extreme

settings—(A) when there are 10 training samples per class and (B) 50 training samples

per class are used. Clearly, our approach achieves the highest percentage of TN and

TP, while providing the lowest percentage of artifacts—Fragmentation, Substitution,

and Overfill/underfill in both datasets and with all cases of the number of training

samples. Its high performance is more obvious when the number of training samples

is extremely small—10 samples per class—and when the training samples are highly

correlated. In such cases, for example, our approach is 6.9% better in terms of artifacts

(Fragmentation, Substitution, and Overfill/underfill), and 3.5%×2 better in TN + TP than

ProCRC which is the second best performing CRC-based approach in the UCI-HAR.

Our approach also yield the best results in the Hospital dataset. Our approach offers

0.7% better in terms of artifacts (Fragmentation, Substitution, and Overfill/underfill), and

0.3%×2 better in TN + TP than SVM which is the second best performing classifier

in the Hospital dataset. This consistent misalignment performance verifies that our

proposed classification can provide high quality in predicting sequences of human

activities when the amount of training samples is limited.

5.6.7 Runtime performance

To show the efficiency of the proposed method, we report the total runtime across

different numbers of training samples. The number of training samples is associated

with N, which contributes to most of the computational cost (see Section 5.5 for the

algorithm complexity). Figure 5.11 demonstrates the average runtime for each query

sample where the runtime of all the candidate classification approach is compared

across different numbers of training samples. It can be seen that the curve of our
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(A) 10 training samples per class (B) 50 training samples per class

FIGURE 5.9: Activity-based misalignment performance on the UCI-HAR dataset at
two extreme numbers of training samples, i.e. 10 and 50 training samples per class.

(A) 10 Training samples per class (B) 50 Training samples per class

FIGURE 5.10: Activity-based misalignment performance on the Hospital dataset at
two extreme numbers of training samples, i.e. 10 and 50 training samples per class.
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FIGURE 5.11: Runtime performance across different numbers of training samples
on the UCI-HAR dataset and the Hospital dataset. The size of features is set to 50.

total runtime is moderate and aligned with the other algorithm. Moreover, it is stable

across different numbers of training samples (under 0.0002 seconds). The runtime of

our proposed approach is much less (one tenth of SRC’s) than the one of SRC that is

over ≥ 0.002 seconds. Therefore, the runtime performance result suggests that the

runtime of our algorithm can be affordable in practice.

5.7 Summary

In this section, we have presented a new graphical-based classification that improves

the robustness of the collaborative representation-based classification. We propose

to employ the adaptive MRF to capture the underlying structure of the representa-

tion vectors from a query sample. The underlying structure offers the additional

information that is related to the class of the corresponding query sample, which

helps improve discriminative power. The adaptive MRF can be customized accord-

ing to the partition of the training samples to further reduce the ambiguity due to

correlated training samples. We apply the One-step-Adaptive MRF to efficiently

estimate the MRF parameters from the given query. Extensive experiments on the

two real-world datasets demonstrates the promising classification performance of the

proposed classification method.
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Chapter 6

Conclusion

6.1 Summary

Compressive sensing (CS) is an advanced signal sensing technique that acquires

high dimensional signals from a few measurements. Recent research in CS attempts

to further reduce the number of measurements by employing signal structures. In

this thesis, we propose a novel structured sparsity model, adaptive Markov random

field (MRF), that has two desirable properties: (i) flexibility—the ability to represent

a wide range of signal structures and (ii)adaptability—being able to adapt for any

signal structures. However, most of the existing methods are only able to achieve

one of these two properties. The existing MRF-based methods inherit flexibility

from a learned MRF, but cannot adapt for a new signal structure. Meanwhile, the

data-adaptive models are able to adapt their model parameters, but they assume

limited signal structures. Hence, the main contribution of this thesis is the novel and

efficient recovery methods for CS.

In Chapter 3, we proposed an adaptive MRF and developed a Two-step-Adaptive

MRF that leverages the adaptability of the MRF by adjusting the parameters and

the underlying graph of the MRF according to the given measurements. To realize

adaptability, the MRF parameters are estimated based on the point estimate of the

latent sparse signals. Then, the sparse signal is estimated using the resulting MRF as

the prior. To maximize adaptability, we also propose a new sparse signal estimation

method to jointly and recursively estimate the sparse signal, support, and noise

parameters. Extensive experiments on three real-world datasets demonstrate the

promising results of the proposed adaptive-MRF-based method. The point estimation
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of sparse signals underpins the performance of the MRF parameters estimation for the

Two-step-Adaptive MRF. However, the point estimation cannot depict the statistical

uncertainty of the latent sparse signals.

In Chapter 4, we proposed a One-step-Adaptive MRF that considers the statis-

tical uncertainty of the latent sparse signals. We reformulate the MRF parameter

estimation into a maximum marginal likelihood problem that solves for the MRF

parameters directly from the measurements. The marginal likelihood is obtained

from averaging all over the latent sparse signal population; thus, it offers better

generalization over the Two-step-Adaptive MRF. Experiments on three real-world

image datasets demonstrate the superior performance of the One-step-Adaptive MRF

than the Two-step-Adaptive MRF and the state-of-the-art methods.

The adaptive MRF, as well as the One-step-Adaptive MRF, have significantly

improved the performance of sparse signal recovery. They can be applied to many

applications related to sparse signal recovery to exploit the underlying structure of

the latent sparse representation as a prior in sparse signal recovery. Among many

applications, collaborative-representation based classifications (CRCs) can directly

benefit from the One-step-Adaptive MRF to extract the underlying structure directly

from the query sample which can be a good indicator of the class label.

In Chapter 5, we apply adaptive MRF to improve the robustness of the CRCs in

wearable sensors-based human activity recognition, when the training samples are

limited. Most of the existing methods are based on the shortest Euclidean distance

from a query sample to the training samples, which, however, can be susceptible to

noise and correlation in the training samples. To address this problem, we proposed to

extract the underlying structure of representation vector from the query sample which

can be a good indicative of the class label; thus, this helps improve the discriminative

power of the classifier. To reduce the ambiguity due to the correlated training samples,

the adaptive MRF can be customized according to the training samples to reduce

the correlation between different classes. The proposed One-step-Adaptive MRF is

applied to extract the underlying structure and capture it with the adaptive MRF.

Experiments on two real-world datasets demonstrate the promising performance of

the Adaptive-MRF-based classification.
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6.2 Future research directions

Based on our contributions and motivation, we see the following potential directions

to develop new research fields:

6.2.1 Adaptive and deep structured sparsity model

Our thesis has demonstrated the benefits of employing adaptive Markov random

fields (MRF) as the structured sparsity model to improve the performance of sparse

signal recovery in compressive sensing (CS). Due to the flexibility and adaptability

of the proposed adaptive MRF, our adaptive MRF can capture and adapt to various

types of signal structures. Deep neural networks [148] have been a powerful tool to

capture the underlying structure in various types of data with deep representation

in many applications such as image denoising [149], image classification [148], and

image super-resolution [150]. The deep neural networks such as stacking denoising

auto-encoder [60], deep residual network [61], and convolutional neural network [62]

have been applied to compressive sensing. However, the performance of these works

are still constrained by the information in the training data. Therefore, we suggest a

new research direction, which is to integrate the deep neural network architectures

into the adaptive structured CS to create a new structured sparsity model that is

adaptive and flexible with higher order representation of the neural network. To

achieve this goal, one may have to address two important questions: (i) how to

adaptively updating the structure and parameters of a deep neural network given

a few compressed measurements and (ii) how to keep the computational cost low.

One may consider updating only some parts of the neural network structure and

parameters according to the given measurements. However, many research questions

still open for further investigation; for example, how to decide at what condition the

neural network should be updated for the new signal structure? Also, to adaptively

estimate only some parts of the neural network, what parts or layers of the deep

neural network should be fixed and what parts should be updated? Alternatively, to

keep the computational cost low at the testing phase, one may consider using transfer

learning [151] to adapt the deep structured sparsity model offline.
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6.2.2 Adaptive-MRF based CS for large size images

Although the computational complexity and runtime of the proposed Two-step and

One-step Adaptive-MRF in Chapter 3 and 4 are lower than many existing MRF-based

approaches, their computational costs are still deemed too high for recovering a

large-size image. To improve the proposed Two-step-Adaptive MRF, new techniques

may be developed to improve the MRF parameter estimation and the sparse signal

estimation process which involves the support estimation as well as the sparse signal

recovery. To improve MRF parameter estimation and graphical model inference, one

may consider techniques that are developed for large scale problem such as [152]

and [153], respectively. For the sparse signal recovery, one can resort to employing a

generalized approximate message passing (GAMP) [154] that is able to adaptively

and recursively estimate the sparse signal, support, noise and signal parameters

with low computational cost, which has shown to be very efficient for large-scale

problems. The method in [154] can also be employed to improve the scalability of

the proposed One-step Adaptive-MRF. However, the approach in [154] employs the

Bernoulli-Gaussian model as the structured sparsity prior in signal recovery. The

Bernoulli-Gaussian model is a special case of our MRF. To employ this signal recovery

framework and use it with an adaptive MRF, a new approximation for the posterior

distribution of support given measurements and new equations for updating the

MRF parameters need to be derived. With lower complexity, our proposed methods

can be useful for many CS applications involved with high dimensional signals.

6.2.3 Volumetric (3D) structure

Most of the existing MRF methods and the proposed adaptive MRF can be exploited

to capture the structure of 1D signals and 2D images because the highest order

of the MRFs is pairwise. One may consider extending our work to higher order

MRFs [155], [156] can be more flexible to model the relationship between voxels which

can be useful for many high level 3D imaging applications, such as integral imaging,

holography, 3D scene reconstruction and 3D object recognition. This direction can be

an alternative to realize an adaptive and deep structured sparsity model, instead of

using the deep neural networks.
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The main contribution of this thesis is the proposed adaptive MRF and the

adaptive-MRF-based structured CS algorithms. Our research effort demonstrates

the potential to achieve high sparse signal recovery performance by extracting the

underlying structure of the latent sparse signal structures from the measurements.

This opens up a new direction to exploit signal structure and to further improve the

adaptability of many existing powerful models for the ultimate performance.
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Appendix A

Additional Visual results

A.1 Additional Results for Two-step-Adaptive MRF

In this section, we provide full visual results of the proposed Two-step-Adaptive MRF

(TA-MRF) on three real-world datasets, i.e. MNIST, CMU-IDB, and CIFAR-10 images

at the sampling rates of 0.3 and the noise level (SNR) of 30 dB. Here we provide

the visual results from the reconstruction of sparse representation in handwritten

digits in Figure A.1; the reconstruction of sparse representation in PCA, wavelet

and DCT domains for CMU-IDB images are provided in Figure A.2, A.3, and A.4;

and, the reconstruction of sparse representation in wavelet and DCT domains of

CIFAR-10 images are provided in Figure A.5 and A.6. Our Two-step-Adaptive MRF

can yield competitive reconstruction results over different sparse representation. Our

Two-step-Adaptive MRF can provide the highest reconstruction quality across in

most cases:

• MNIST images. The proposed One-step-Adaptive MRF provides the highest

PSNR improvement of 2.99 dB over the second most competitive method on

digit no. 2 in Figure A.1.

• CMU-IDB images. In the PCA domain, the proposed One-step-Adaptive MRF

yields the highest PSNR improvement of 1.47 dB over the second most competi-

tive method in the 2nd and 8th row from the top of Figure A.2. In the wavelet

domain, the proposed method yields the highest PSNR improvement of 1.28

dB over the second most competitive method in the 1st row from the top of

Figure A.3. In the DCT domain, the proposed method yields the highest PSNR
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improvement of 0.71 dB over the second most competitive method in the 9th

row from the top of Figure A.4.

• CIFAR-10 images. In the wavelet domain, the proposed One-step-Adaptive

MRF yields the highest PSNR improvement of 2.91 dB over the second most

competitive method in the 3rd row from the top of Figure A.5. In the DCT

domain, the proposed method provides the highest PSNR improvement of 1.62

dB over the second most competitive method in the 4th row from the top of

Figure A.6. For completeness, the reconstruction results of CIFAR-10 images in

PCA domain are provided in Figure A.7 where all the algorithms provide poor

results due to the lack of sparsity in the PCA signal representation.

In conclusion, these visual results (Figure A.1- Figure A.6) are consistent with the

compressibility performance in Figure 3.11 in Chapter 3, where our proposed method

offers the highest numerical result in most cases.
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OMP RLPHCS StructOMP GCOSAMP Bernoulli Pairwise Gibbs MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

12.49 dB 18.40 dB 13.30 dB 21.96 dB 30.26 dB 40.36 dB 20.50 dB 41.69 dB 40.48 dB 42.22 dB

40.57 dB 47.75 dB 17.05 dB 50.30 dB 46.79 dB 46.00 dB 19.62 dB 46.24 dB 44.63 dB 53.29 dB

36.52 dB 29.57 dB 14.22 dB 31.50 dB 39.37 dB 42.76 dB 17.78 dB 24.93 dB 41.07 dB 44.36 dB

37.16 dB 40.06 dB 14.43 dB 39.72 dB 39.18 dB 44.63 dB 18.16 dB 44.66 dB 41.89 dB 46.45 dB

12.99 dB 16.14 dB 13.01 dB 32.93 dB 27.62 dB 31.51 dB 17.85 dB 42.42 dB 41.88 dB 43.55 dB

37.48 dB 43.82 dB 15.51 dB 40.05 dB 44.14 dB 42.48 dB 18.17 dB 25.96 dB 44.42 dB 43.30 dB

34.00 dB 22.87 dB 14.53 dB 26.87 dB 23.59 dB 42.30 dB 20.68 dB 43.35 dB 41.56 dB 45.56 dB

37.65 dB 41.30 dB 14.56 dB 42.21 dB 40.18 dB 43.40 dB 19.01 dB 44.31 dB 42.16 dB 46.50 dB

12.24 dB 19.83 dB 12.26 dB 22.39 dB 22.85 dB 35.85 dB 18.00 dB 40.48 dB 32.92 dB 40.12 dB

31.97 dB 27.78 dB 12.58 dB 30.98 dB 31.13 dB 34.91 dB 17.99 dB 40.81 dB 39.12 dB 42.68 dB

FIGURE A.1: Visual results of MNIST handwritten digit images (at M/N = 0.3, SNR
= 30 dB).
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OMP RLPHCS StructOMP GCOSAMP Bernoulli Pairwise Gibbs MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

30.08 dB 30.85 dB 19.81 dB 30.13 dB 31.95 dB 20.55 dB 23.94 dB 28.94 dB 23.75 dB 31.40 dB

32.32 dB 32.86 dB 26.68 dB 31.39 dB 28.25 dB 26.47 dB 26.40 dB 31.42 dB 29.65 dB 34.33 dB

30.80 dB 32.25 dB 19.35 dB 28.09 dB 31.33 dB 24.03 dB 24.77 dB 29.56 dB 31.67 dB 32.90 dB

30.37 dB 32.11 dB 21.50 dB 29.58 dB 27.65 dB 21.92 dB 25.23 dB 29.67 dB 31.47 dB 32.91 dB

28.96 dB 30.63 dB 22.16 dB 28.14 dB 30.51, dB 20.11 dB 23.35 dB 28.22 dB 21.25 dB 31.62 dB

29.99 dB 31.49 dB 22.81 dB 31.88 dB 28.84 dB 20.69 dB 23.24 dB 28.98 dB 30.33 dB 32.27 dB

29.65 dB 31.47 dB 23.56 dB 27.76 dB 30.33 dB 22.61 dB 26.25 dB 28.45 dB 18.40 31.58 dB

28.19 dB 30.01 dB 19.52 dB 26.10 dB 25.79 dB 20.52 dB 23.39 dB 28.58 dB 28.15 dB 31.48 dB

28.60 dB 30.12 dB 18.83 dB 31.54 dB 28.69 dB 20.80 dB 22.62 dB 28.56 dB 29.59 dB 31.91 dB

31.68 dB 32.10 dB 20.43 dB 32.20 dB 29.14 dB 23.89 dB 24.13 dB 29.83 dB 27.31 dB 33.0 dB

FIGURE A.2: Visual results of CMU-IDB face images from PCA sparse signal recon-
struction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS StructOMP GCOSAMP Bernoulli Pairwise Gibbs MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

17.83 dB 17.49 dB 8.52 dB 14.71 dB 16.96 dB 14.91 dB 5.78 dB 17.61 dB 16.48 dB 19.42 dB

19.83 dB 20.95 dB 11.69 dB 17.47 dB 20.03 dB 19.13 dB 7.81 dB 19.06 dB 19.89 dB 21.34 dB

15.08 dB 16.97 dB 8.49 dB 13.99 dB 14.56 dB 14.97 dB 6.69 dB 16.08 dB 15.46 dB 17.18 dB

15.94 dB 15.65 dB 7.93 dB 13.47 dB 17.41 dB 14.10 dB 5.88 dB 16.66 dB 14.70 dB 17.30 dB

16.61 dB 17.82 dB 8.80 dB 15.23 dB 18.25 dB 16.12 dB 6.19 dB 16.68 dB 17.08 dB 18.97 dB

16.74 dB 16.52 dB 8.63 dB 14.27 dB 14.76 dB 15.85 dB 6.03 dB 17.49 dB 15.26 dB 18.15 dB

16.91 dB 17.28 dB 8.58 dB 14.68 dB 19.50 dB 15.50 dB 4.94 dB 17.8 dB 16.06 dB 18.91 dB

14.04 dB 16.06 dB 7.19 dB 11.85 dB 13.76 dB 13.81 dB 4.74 dB 14.48 dB 16.71 dB 15.41 dB

16.91 dB 16.59 dB 8.11 dB 15.25 dB 16.02 dB 15.77 dB 5.36 dB 17.45 dB 16.29 dB 18.44 dB

17.30 dB 17.60 dB 10.26 dB 15.73 dB 15.11 dB 15.63 dB 6.80 dB 17.30 dB 15.95 dB 18.98 dB

FIGURE A.3: Visual results of CMU-IDB face images from wavelet sparse signal
reconstruction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS StructOMP GCOSAMP Bernoulli Pairwise Gibbs MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

19.65 dB 20.86 dB 8.66 dB 20.19 dB 17.46 dB 17.86 dB 11.95 dB 21.05 dB 19.72 dB 21.14 dB

23.85 dB 24.40 dB 11.97 dB 23.45 dB 20.32 dB 21.08 dB 16.99 dB 24.97 dB 20.25 dB 24.74 dB

18.50 dB 20.31 dB 8.69 dB 20.20 dB 18.95 dB 18.55 dB 12.59 dB 20.25 dB 16.93 dB 20.29 dB

18.34 dB 18.85 dB 8.09 dB 18.89 dB 18.62 dB 16.29 dB 11.65 dB 21.10 dB 17.31 dB 20.86 dB

19.05 dB 19.22 dB 9.07 dB 17.35 dB 16.79 dB 17.22 dB 12.74 dB 19.89 dB 17.99 dB 19.52 dB

16.96 dB 18.41 dB 8.99 dB 17.99 dB 16.40 dB 16.42 dB 13.04 dB 18.64 dB 16.51 dB 19.00 dB

17.35 dB 19.74 dB 8.62 dB 18.00 dB 16.39 dB 17.09 dB 11.93 dB 19.39 dB 17.70 dB 19.93 dB

18.03 dB 18.73 dB 7.34 dB 17.23 dB 16.54 dB 15.27 dB 11.24 dB 19.58 dB 16.10 dB 19.71 dB

18.51 dB 18.75 dB 7.86 dB 15.94 dB 16.58 dB 14.15 dB 9.92 dB 20.11 dB 18.02 dB 20.23 dB

17.85 dB 18.61 dB 10.54 dB 14.04 dB 18.18 dB 18.18 dB 14.42 dB 20.0 dB 15.12 dB 19.42 dB

FIGURE A.4: Visual results of CMU-IDB face images from DCT sparse signal recon-
struction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS StructOMP GCOSAMP Bernoulli Pairwise Gibbs MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

20.50 dB 18.36 dB 2.46 dB 4.31 dB 16.55 dB 12.48 dB 1.17 dB 16.31 dB 23.09 dB 23.15 dB

16.32 dB 15.37 dB 2.66 dB 13.46 dB 15.15 dB 12.79 dB 1.98 dB 16.31 dB 23.09 dB 18.35 dB

19.04 dB 19.09 dB 2.96 dB 6.85 dB 17.95 dB 14.09 dB 1.59 dB 17.68 dB 18.72 dB 22.00 dB

18.19 dB 16.52 dB 2.69 dB 6.79 dB 19.06 dB 13.25 dB 2.67 dB 14.25 dB 16.78 dB 19.29 dB

18.47 dB 17.42 dB 2.71 dB 4.67 dB 20.39 dB 12.96 dB 1.19 dB 14.86 dB 19.20 dB 19.52 dB

18.37 dB 17.84 dB 3.41 dB 11.74 dB 17.07 dB 14.40 dB 1.58 dB 15.87 dB 20.47 dB 19.27 dB

16.39 dB 14.56 dB 3.19 dB 9.64 dB 17.57 dB 10.30 dB 1.82 dB 14.84 dB 17.65 dB 18.14 dB

15.02 dB 15.05 dB 3.70 dB 8.10 dB 13.25 dB 11.93 dB 4.26 dB 13.66 dB 17.37 dB 17.96 dB

24.04 dB 23.62 dB 4.75 dB 16.01 dB 22.28 dB 18.50 dB 6.09 dB 22.48 dB 24.27 dB 24.46 dB

19.32 dB 19.79 dB 4.69 dB 17.63 dB 18.72 dB 16.20 dB 5.29 dB 18.65 dB 21.09 dB 21.12 dB

FIGURE A.5: Visual results of CIFAR-10 natural images from wavelet sparse signal
reconstruction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS StructOMP GCOSAMP Bernoulli Pairwise Gibbs MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

19.30 dB 18.03 dB 2.42 dB 16.78 dB 15.51 dB 14.12 dB 11.01 dB 16.50 dB 16.69 dB 20.08 dB

16.09 dB 15.87 dB 2.58 dB 16.94 dB 16.56 dB 13.55 dB 10.57 dB 14.33 dB 13.20 dB 18.33 dB

20.12 dB 19.51 dB 2.83 dB 16.88 dB 19.39 dB 14.95 dB 13.11 dB 16.73 dB 19.62 dB 20.81 dB

15.32 dB 15.41 dB 2.76 dB 14.51 dB 13.47 dB 13.71 dB 7.76 dB 14.18 dB 15.53 dB 17.15 dB

18.66 dB 18.82 dB 2.62 dB 19.12 dB 16.16 dB 14.13 dB 10.46 dB 17.31 dB 15.91 dB 19.71 dB

15.56 dB 15.57 dB 3.30 dB 14.09 dB 12.43 dB 11.63 dB 8.68 dB 13.31 dB 14.35 dB 16.81 dB

18.57 dB 18.17 dB 3.20 dB 11.16 dB 20.03 dB 14.36 dB 7.70 dB 15.74 dB 15.09 dB 19.05 dB

14.77 dB 15.51 dB 3.70 dB 13.13 dB 17.95 dB 13.53 dB 9.80 dB 13.86 dB 13.33 dB 16.90 dB

23.38 dB 22.98 dB 4.68 dB 23.39 dB 22.90 dB 17.24 dB 14.70 dB 20.71 dB 22.21 dB 23.59 dB

19.39 dB 20.96 dB 4.59 dB 18.86 dB 19.19 dB 17.00 dB 12.68 dB 17.21 dB 20.87 dB 21.14 dB

FIGURE A.6: Visual results of CIFAR-10 natural images from DCT sparse signal
reconstruction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS StructOMP GCOSAMP Bernoulli Pairwise Gibbs MAP-OMP Fixed-MRF TA-MRF Ground
MRF (Ours) (Ours) Truth

2.98 dB 0.76 dB 2.54 dB 0.73 dB 1.23 dB 0.91 dB 2.80 dB 2.83 dB 1.07 dB 0.57 dB

2.10 dB 0.86 dB 2.69 dB 0.73 dB 1.56 dB 0.05 dB 2.77 dB 2.29 dB 0.44 dB 0.26 dB

1.56 dB 1.45 dB 2.79 dB 1.07 dB 1.13 dB 0.28 dB 3.03 dB 0.76 dB 0.76 dB 0.33 dB

1.77 dB 1.25 dB 2.79 dB 0.28 dB 1.02 dB 0.30 dB 2.79 dB 2.06 dB 0.31 dB 0.04 dB

0.86 dB 1.11 dB 2.48 dB 0.97 dB 1.46 dB 0.05 dB 2.74 dB 0.98 dB 0.49 dB 0.03 dB

1.71 dB 1.66 dB 3.38 dB 1.69 dB 1.38 dB 0.62 dB 3.46 dB 1.54 dB 0.03 dB 0.67 dB

0.65 dB 1.77 dB 2.98 dB 1.15 dB 0.47 dB 0.58 dB 3.03 dB 0.75 dB 0.48 dB 0.37 dB

0.69 dB 2.31 dB 3.90 dB 2.03 dB 1.15 dB 1.28 dB 4.04 dB 0.69 dB 0.05 dB 1.16 dB

0.11 dB 3.20 dB 4.91 dB 2.72 dB 0.83 dB 2.02 dB 5.38 dB 0.53 dB 1.24 dB 1.95 dB

0.12 dB 3.01 dB 4.53 dB 3.08 dB 0.81 dB 2.41 dB 4.61 dB 0.70 dB 1.56 dB 2.31 dB

FIGURE A.7: Every algorithm fails in reconstruction of the CIFAR-10 natural images
in the PCA domain (at M/N = 0.3, SNR = 30 dB).
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A.2 Additional visual results for One-step-Adaptive MRF

In this section, we provide full visual results of the proposed One-step-Adaptive

MRF (OA-MRF) on three real-world datasets, i.e. MNIST, CMU-IDB, and CIFAR-10

images at the sampling rate of 0.3 and the noise level (SNR) of 30 dB. Here, the

visual results from the reconstruction of sparse representation of MNIST handwritten

images are provided in Figure A.8; the visual results from the reconstruction of sparse

representation in the PCA, wavelet, and DCT domains for CMU-IDB images are

provided in Figure A.9, A.10, and A.11. The visual results from the reconstruction

of sparse representation in the wavelet and DCT domains of CIFAR-10 images are

provided in Figure A.12 and A.13. Our One-step-Adaptive MRF can yield competitive

reconstruction results over different sparse representation. It can provide the highest

reconstruction quality across in most cases:

• MNIST images. The proposed One-step-Adaptive MRF provides the highest

PSNR improvement of 5.13 dB over the second most competitive method on

digit no. 5 in Figure A.8.

• CMU-IDB images. In the PCA domain, the proposed One-step-Adaptive MRF

yields the highest PSNR improvement of 2.4 dB over the second most competi-

tive method in the 7th row from the top of Figure A.9. In the wavelet domain,

the proposed method yields the highest PSNR improvement of 2.54 dB over the

second most competitive method in the 2nd row from the top of Figure A.10. In

the DCT domain, the proposed method yields the highest PSNR improvement

of 2.15 dB over the second most competitive method in the 8th row from the top

of Figure A.11.

• CIFAR-10 images. In the wavelet domain, the proposed One-step-Adaptive

MRF yields the highest PSNR improvement of 1.73 dB over the second most

competitive method in the 10th row from the top of Figure A.12. In the DCT

domain, the proposed method provides the highest PSNR improvement of 2.50

dB over the second most competitive method in the 3rd row from the top of

Figure A.13. For completeness reasons, the reconstruction results of CIFAR-10



A.2. Additional visual results for One-step-Adaptive MRF 159

images in the PCA domain are provided in Figure A.14 where all the algorithms

provide poor results due to the lack of sparsity in the PCA signal representation.

Therefore, these visual results (Figure A.8-A.13) are consistent with the compress-

ibility performance in Figure 4.6 in Chapter 4, where the proposed One-step-Adaptive

MRF offers the highest numerical result in most cases.
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

12.49 dB 18.40 dB 30.26 dB 40.36 dB 20.50 dB 41.69 dB 42.22 dB 44.25 dB

40.57 dB 47.75 dB 46.79 dB 46.00 dB 19.62 dB 46.24 dB 53.29 dB 54.76 dB

36.52 dB 29.57 dB 39.37 dB 42.76 dB 17.78 dB 24.93 dB 44.36 dB 46.12 dB

37.16 dB 40.06 dB 39.18 dB 44.63 dB 18.16 dB 44.66 dB 46.45 dB 48.50 dB

12.99 dB 16.14 dB 27.62 dB 31.51 dB 17.85 dB 42.42 dB 43.55 dB 45.17 dB

37.48 dB 43.82 dB 44.14 dB 42.48 dB 18.17 dB 25.96 dB 43.30 dB 49.74 dB

34.00 dB 22.87 dB 23.59 dB 42.30 dB 20.68 dB 43.35 dB 45.56 dB 45.38 dB

37.65 dB 41.30 dB 40.18 dB 43.40 dB 19.01 dB 44.31 dB 46.50 dB 47.09 dB

12.24 dB 19.83 dB 22.85 dB 35.85 dB 18.00 dB 40.48 dB 40.12 dB 42.91 dB

31.97 dB 27.78 dB 31.13 dB 34.91 dB 17.99 dB 40.81 dB 42.68 dB 44.86 dB

FIGURE A.8: Visual results of MNIST handwritten digit images (at M/N = 0.3, SNR
= 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

30.08 dB 30.85 dB 31.95 dB 20.55 dB 23.94 dB 28.94 dB 31.39 dB 32.46 dB

32.32 dB 32.86 dB 28.25 dB 26.47 dB 26.40 dB 31.42 dB 34.33 dB 34.82 dB

30.80 dB 32.25 dB 31.33 dB 24.03 dB 24.77 dB 29.56 dB 32.90 dB 33.26 dB

30.37 dB 32.11 dB 27.65 dB 21.92 dB 25.23 dB 29.67 dB 32.91 dB 33.44 dB

28.96 dB 30.63 dB 30.51, dB 20.11 dB 23.35 dB 28.22 dB 31.62 dB 32.20 dB

29.99 dB 31.49 dB 28.84 dB 20.69 dB 23.24 dB 28.98 dB 32.27 dB 31.87 dB

29.65 dB 31.47 dB 30.33 dB 22.61 dB 26.25 dB 28.45 dB 31.58 dB 33.98 dB

28.19 dB 30.01 dB 25.79 dB 20.52 dB 23.39 dB 28.58 dB 31.48 dB 33.18 dB

28.60 dB 30.12 dB 28.69 dB 20.80 dB 22.62 dB 28.56 dB 31.91 dB 33.52 dB

31.68 dB 32.10 dB 29.14 dB 23.89 dB 24.13 dB 29.83 dB 33.07 dB 34.15 dB

FIGURE A.9: Visual results of CMU-IDB face images from PCA sparse signal recon-
struction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

17.83 dB 17.49 dB 16.96 dB 14.91 dB 5.78 dB 17.61 dB 19.42 dB 19.81 dB

19.83 dB 20.95 dB 20.03 dB 19.13 dB 7.81 dB 19.06 dB 21.34 dB 23.88 dB

15.08 dB 16.97 dB 14.56 dB 14.97 dB 6.69 dB 16.08 dB 17.18 dB 19.387 dB

15.94 dB 15.65 dB 17.41 dB 14.10 dB 5.88 dB 16.66 dB 17.30 dB 19.01 dB

16.61 dB 17.82 dB 18.25 dB 16.12 dB 6.19 dB 16.68 dB 18.97 dB 20.37 dB

16.74 dB 16.52 dB 14.76 dB 15.85 dB 6.03 dB 17.49 dB 18.15 dB 18.70 dB

16.91 dB 17.28 dB 19.50 dB 15.50 dB 4.94 dB 17.8 dB 18.91 dB 19.16 dB

14.04 dB 16.06 dB 13.76 dB 13.81 dB 4.74 dB 14.48 dB 15.41 dB 17.53 dB

16.91 dB 16.59 dB 16.02 dB 15.77 dB 5.36 dB 17.45 dB 18.44 dB 19.75 dB

17.30 dB 17.60 dB 15.11 dB 15.63 dB 6.80 dB 17.30 dB 18.98 dB 20.38 dB

FIGURE A.10: Visual results of CMU-IDB face images from wavelet sparse signal
reconstruction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

19.65 dB 20.86 dB 17.46 dB 17.86 dB 11.95 dB 21.05 dB 21.14 dB 22.42 dB

23.85 dB 24.40 dB 20.32 dB 21.08 dB 16.99 dB 24.97 dB 24.74 dB 25.42 dB

18.50 dB 20.31 dB 18.95 dB 18.55 dB 12.59 dB 20.25 dB 20.29 dB 22.15 dB

18.34 dB 18.85 dB 18.62 dB 16.29 dB 11.65 dB 21.10 dB 20.86 dB 21.99 dB

19.05 dB 19.22 dB 16.79 dB 17.22 dB 12.74 dB 19.89 dB 19.52 dB 21.16 dB

16.96 dB 18.41 dB 16.40 dB 16.42 dB 13.04 dB 18.64 dB 19.00 dB 20.27 dB

17.35 dB 19.74 dB 16.39 dB 17.09 dB 11.93 dB 19.39 dB 19.93 dB 21.69 dB

18.03 dB 18.73 dB 16.54 dB 15.27 dB 11.24 dB 19.58 dB 19.71 dB 21.73 dB

18.51 dB 18.75 dB 16.58 dB 14.15 dB 9.92 dB 20.11 dB 20.23 dB 20.70 dB

17.85 dB 18.61 dB 18.18 dB 18.18 dB 14.42 dB 20.0 dB 19.42 dB 21.19 dB

FIGURE A.11: Visual results of CMU-IDB face images from DCT sparse signal
reconstruction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

20.50 dB 18.36 dB 16.55 dB 12.48 dB 1.17 dB 16.31 dB 23.15 dB 23.52 dB

16.32 dB 15.37 dB 15.15 dB 12.79 dB 1.98 dB 16.31 dB 18.35 dB 18.80 dB

19.04 dB 19.09 dB 17.95 dB 14.09 dB 1.59 dB 17.68 dB 22.00 dB 22.87 dB

18.19 dB 16.52 dB 19.06 dB 13.25 dB 2.67 dB 14.25 dB 19.29 dB 18.638 dB

18.47 dB 17.42 dB 20.39 dB 12.96 dB 1.19 dB 14.86 dB 19.52 dB 19.90 dB

18.37 dB 17.84 dB 17.07 dB 14.40 dB 1.58 dB 15.87 dB 19.27 dB 19.86 dB

16.39 dB 14.56 dB 17.57 dB 10.30 dB 1.82 dB 14.84 dB 18.14 dB 18.13 dB

15.02 dB 15.05 dB 13.25 dB 11.93 dB 4.26 dB 13.66 dB 17.96 dB 18.233 dB

24.04 dB 23.62 dB 22.28 dB 18.50 dB 6.09 dB 22.48 dB 24.46 dB 26.23 dB

19.32 dB 19.79 dB 18.72 dB 16.20 dB 5.29 dB 18.65 dB 21.12 dB 22.28 dB

FIGURE A.12: Visual results of CIFAR-10 from wavelet sparse signal reconstruction
(at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

19.30 dB 18.03 dB 15.51 dB 14.12 dB 11.01 dB 16.50 dB 20.08 dB 20.64 dB

16.09 dB 15.87 dB 16.56 dB 13.55 dB 10.57 dB 14.33 dB 18.33 dB 19.64 dB

20.12 dB 19.51 dB 19.39 dB 14.95 dB 13.11 dB 16.73 dB 20.81 dB 23.31 dB

15.32 dB 15.41 dB 13.47 dB 13.71 dB 7.76 dB 14.18 dB 17.15 dB 17.89 dB

18.66 dB 18.82 dB 16.16 dB 14.13 dB 10.46 dB 17.31 dB 19.71 dB 20.82 dB

15.56 dB 15.57 dB 12.43 dB 11.63 dB 8.68 dB 13.31 dB 16.81 dB 18.90 dB

18.57 dB 18.17 dB 20.03 dB 14.36 dB 7.70 dB 15.74 dB 19.05 dB 20.85 dB

14.77 dB 15.51 dB 17.95 dB 13.53 dB 9.80 dB 13.86 dB 16.90 dB 19.59 dB

23.38 dB 22.98 dB 22.90 dB 17.24 dB 14.70 dB 20.71 dB 23.59 dB 24.36 dB

19.39 dB 20.96 dB 19.19 dB 17.00 dB 12.68 dB 17.21 dB 21.14 dB 23.24 dB

FIGURE A.13: Visual results of CIFAR-10 natural images from DCT sparse signal
reconstruction (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) (Ours) Truth

2.98 dB 0.76 dB 1.23 dB 0.91 dB 2.80 dB 2.83 dB 1.07 dB 0.57 dB 1.24 dB

2.10 dB 0.86 dB 1.56 dB 0.05 dB 2.77 dB 2.29 dB 0.44 dB 0.26 dB 0.76 dB

1.56 dB 1.45 dB 1.13 dB 0.28 dB 3.03 dB 0.76 dB 0.76 dB 0.33 dB 0.47 dB

1.77 dB 1.25 dB 1.02 dB 0.30 dB 2.79 dB 2.06 dB 0.31 dB 0.04 dB 0.75 dB

0.86 dB 1.11 dB 1.46 dB 0.05 dB 2.74 dB 0.98 dB 0.49 dB 0.03 dB 0.45 dB

1.71 dB 1.66 dB 1.38 dB 0.62 dB 3.46 dB 1.54 dB 0.03 dB 0.67 dB 0.03 dB

0.65 dB 1.77 dB 0.47 dB 0.58 dB 3.03 dB 0.75 dB 0.48 dB 0.37 dB 0.42 dB

0.69 dB 2.31 dB 1.15 dB 1.28 dB 4.04 dB 0.69 dB 0.05 dB 1.16 dB 0.77 dB

0.11 dB 3.20 dB 0.83 dB 2.02 dB 5.38 dB 0.53 dB 1.24 dB 1.95 dB 1.22 dB

0.12 dB 3.01 dB 0.81 dB 2.41 dB 4.61 dB 0.70 dB 1.56 dB 2.31 dB 1.66 dB

FIGURE A.14: Every algorithm fails in reconstruction of the CIFAR-10 natural
images in the PCA domain (at M/N = 0.3, SNR = 30 dB).
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