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The terahertz band holds a potential for point-to-point short-range wireless communi-
cations at sub-terabit speed. To realize this potential, supporting antennas must have a
wide bandwidth to sustain high data rate and must have high gain and low dissipation
to compensate for the free space path loss that scales quadratically with frequency.
Here we propose an all-dielectric rod antenna array with high radiation efficiency,
high gain, and wide bandwidth. The proposed array is integral to a low-loss pho-
tonic crystal waveguide platform, and intrinsic silicon is the only constituent material
for both the antenna and the feed to maintain the simplicity, compactness, and effi-
ciency. Effective medium theory plays a key role in the antenna performance and
integrability. An experimental validation with continuous-wave terahertz electronic
systems confirms the minimum gain of 20 dBi across 315–390 GHz. A demonstration
shows that a pair of such identical rod array antennas can handle bit-error-free trans-
mission at the speed up to 10 Gbit/s. Further development of this antenna will build
critical components for future terahertz communication systems. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5023787

I. INTRODUCTION

Research activities in terahertz communications have become intensive in recent years.1 This
is in response to the congestion at lower microwave and millimeter-wave frequency bands due to
the exponential growth of wireless devices and associated high-quality multimedia. According to
Shannon theorem, moving to higher frequencies offers wider bandwidth and thus higher channel
capacities. Conceptually, a single terahertz band within an atmospheric transmission window can
carry over 100-Gbit/s wireless data across a few hundreds of metres.1 Indeed, terahertz links cannot
replace existing mobile communication channels because of the stringent alignment of a transmitter-
receiver pair at higher frequencies. However, such high-capacity links are in demand to serve between
fixed base stations of future mobile networks, within large data centres, at data kiosks, and for intra-
/inter-chip communications. One major challenge toward terahertz communications lies in radiating
antennas that must have high directivity to compensate free-space path loss, high efficiency to preserve
precious terahertz power, and wide bandwidth to support large channel capacity.

At terahertz frequencies, metals can no longer be considered as quasi-perfect electric conduc-
tors. Ohmic loss is non-negligible, particularly when oscillations of surface currents are involved,
as in resonant metallic antennas. Despite that, nearly all existing terahertz antennas were made of
metals.2 Additionally, these antennas typically co-locate and cooperate with either electronic3,4 or
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photonic5 sources, and as such the designability of the antennas and the functionality of the platform
are limited. For terahertz communication demonstrations, high-gain radiation is supported by aug-
menting parabolic reflectors, lenses, or horns.6–8 While the bandwidth, gain, and efficiency of these
components are attractive, their size and shape greatly limit the integrability. Recent studies employed
compact dielectric resonator antennas to mitigate or eliminate Ohmic loss in metallic antennas.9–11

However, the gain and bandwidth were relatively limited. As an alternative, non-resonant planar
travelling-wave antennas promise integrability, wideband performance, and low dissipation.

In principle, a single tapered dielectric rod antenna12,13 can be employed to achieve high-gain
radiation. This type of antenna gradually leaks a guided mode into free space to form a large effective
aperture. Such a rod antenna possesses broad bandwidth, high gain, low insertion loss, and frequency-
independent radiation pattern. The feed for a rod antenna can be a dielectric waveguide.14,15 So far,
all terahertz-range implementations were in the form of a single rod fed by a horn antenna or a
local source.16–18 Achieving high radiation gain can be accomplished by extending the rod length.
However, this method is restricted by the fragility of the long tapering. To put this into perspective,
a numerical estimation suggests a rod length of over 50 mm or 55 wavelengths to attain the gain of
20 dBi at 330 GHz (see the supplementary material). An alternative means to attaining high gain is
to employ an array of multiple rod antennas to increase an effective aperture size. Such arrays were
implemented for millimeter waves,19–21 but the feed networks were complicated and not scalable to
the terahertz range. Additionally, those rod antenna arrays were with limited density and expandability
due to a large feed extent.

In this article, we present an array of dielectric rod antennas to support wireless communications at
terahertz frequencies between 300 and 400 GHz. This antenna array is designed to work in conjunction
with a photonic crystal waveguide platform. High radiation gain can be realized from a number of rod
antennas, together forming a large effective aperture. This array is fed by a flaring dielectric waveguide
to reduce the complexity of the feed network and to accommodate the array density and scalability. The
feed length can be greatly shortened by the use of an effective medium to correct the wavefronts across
the aperture. The entire structure, comprising the antenna array and the photonic crystal platform, can
be built all at once on a single dielectric material. This integrated structure simplifies the fabrication
process and fully complies with the restrictions imposed by micro-fabrication technology. Since
both the feeding photonic crystal waveguide and antenna are all-dielectric, Ohmic loss associated
with metals is entirely eliminated. Importantly, the design consolidates knowledge from both the
microwave and optics domains with the involvement of dielectric rod antenna, photonic crystal
waveguide, and effective medium.

II. DESIGN PRINCIPLE

A. Overview

As shown in Fig. 1, the proposed antenna is established as a part of the free-standing photonic
crystal platform. The structure comprises a photonic crystal waveguide, a planar horn or flaring
section, an effective medium, and an array of tapered dielectric rod antennas. These planar components
work together to couple a guided mode with free-space radiation. All the components are defined
into a 200-µm thick silicon slab in the form of air through-holes. This silicon is intrinsic and float-
zone and thus exhibits very small dissipation loss22 in the terahertz range, i.e., tan δ ≈ 0.000 02 at
1 THz. It suggests that the antenna efficiency is close to 100%. The bulk refractive index of silicon is
around 3.418 in this frequency range.22 A high contrast between the refractive indices of bulk silicon
and free space results in strong wave confinement and overall compact structure. Furthermore, the
contrast yields an effective medium with a potentially large variation in the effective index, which
can accommodate a wide range of artificial dielectric components. In this section, we discuss each
component in Fig. 1 in detail. All the simulations are carried out by using CST Microwave Studio.

The feed employs an existing low-loss photonic crystal waveguide that supports a dominant
transverse-electric (TE) mode with an electric field in-plane and a magnetic field out-of-plane.23 This
TE mode is present between 315 and 336 GHz, within which the waves are tightly confined in plane
by the photonic-bandgap effect and out of plane by the total-internal reflection. The attenuation in this

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-010891
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FIG. 1. Render of optimal dielectric rod antenna array and feed. Visible in this image from left to right are the photonic
crystal waveguide, flaring section, effective medium, and tapered rod array. All the dimensions are given in the supplementary
material.

waveguide is less than 0.1 dB/cm. In order to feed an array of dielectric rod antennas, this waveguide
flares into a planar dielectric waveguide that supports a TE0 mode with an electric field in the
x direction. The photonic crystal remains alongside the flaring section to prohibit in-plane leakage.24

The mode conversion between the photonic crystal waveguide and the planar dielectric waveguide
is with negligible insertion loss. It should be noted that the two TE modes are distinctive due to
different naming conventions. By definition, only the former has an electric-field component in the
propagation direction. For the planar dielectric waveguide, all modes are slow-wave with evanescent
field out of plane.

This flared-out planar dielectric waveguide feeds an array of identical dielectric rod antennas.
Each rod antenna loosely operates in its HE11 mode and is spaced apart from an adjacent one by
200 µm. The rods are tapered such that the guided mode gradually leaks into free space in both
transversal directions. Given the spacing of the rod array, grating lobes can be expected around
1.5 THz, well above the frequency range of interest. Since this feed scheme entails no sophisticated
power dividers, the rod antennas can be closely packed and readily expandable. Typically, a larger
aperture size would translate directly to a larger antenna gain.25 However, the validity of this relation
is limited to some extent. As the aperture grows larger, in-plane cylindrical waves become obvious
in the flaring section. In other words, a wave travelling from the photonic crystal waveguide to each
dielectric rod antenna acquires a distinctive phase delay due to different path lengths. This leads to a
diverging beam in free space. As a consequence, the achievable gain saturates at around 12–15 dBi
for a given tapered rod length. A possible solution is to increase the ratio between the length and
the width of the flaring section to reduce the difference in the path lengths. However, the approach
obviously undermines the compactness of the feed.

In principle, a lens should be inserted between the flaring section and the rod array to equalize
the phase delay for different paths, i.e., stronger delay on-axis and weaker delay for longer diverging
paths off-axis. Based on this requirement, we adopt effective medium theory to perform this lensing
function without introducing additional materials or fabrication steps. The framework of an effective
medium has been realized to create different devices, as, for example, a gradient-index lens for
free-space terahertz waves,26 a planar Luneburg lens,27 and even an optical cloak.28 For our work, a
two-dimensional array of subwavelength cylindrical air thru-holes is created into the planar dielectric
waveguide, and the effective modal index of this waveguide can be controlled via the hole density.
Thus, spatial phase variation across the aperture can be produced. Reflection at the lens-waveguide
interfaces should be minimal to avoid additional insertion losses and gain variation with frequency.

B. Effective medium in dielectric waveguide

First, we consider the effective permittivity εeff of bulk silicon perforated by an array of cylindrical
air holes. For the propagation mode under consideration, the electric-field polarization is always
perpendicular to the axis of these air holes. In this case, the 2D Maxwell-Garnett approximation

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-010891
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establishes that29

εeff = n2
eff = ε si

(ε0 + ε si) + (ε0 − ε si)ζd

(ε0 + ε si) − (ε0 − ε si)ζd
, (1)

where ζd is a fill factor, ε0 = 1 is the relative permittivity of free space, and ε si = n2
si = 11.68 is the

relative permittivity of silicon, which is constant in the terahertz range. For a square lattice of air
holes, the fill factor ζd can be calculated from πd2/(4a2), where d is the diameter of an air hole and
a is the lattice constant, i.e., the distance between the centers of adjacent holes. This approximation is
valid when the hole array is in the subwavelength regime, i.e., the lattice constant a is much smaller
than the shortest wavelength of guided waves. Under this assumption, diffraction and bandgap effects
do not play a role. It is noteworthy that this effective medium inherits its non-dispersion from bulk
silicon.

Then, we consider the relevant mode of propagation inside the planar silicon waveguide, and
how this mode is affected by the presence of subwavelength air holes. Between 300 and 400 GHz,
the dielectric waveguide made of a 200-µm thick silicon slab can support two TE modes, namely,
TE0 and TE1, the former of which has no cutoff frequency and the latter has its cutoff at 241 GHz.
However, only the fundamental mode is of interest here since the TE1 mode is asymmetric and thus
cannot be excited by the photonic crystal waveguide. The propagation constant β of TE modes in
this free-standing planar dielectric waveguide, as shown in the inset of Fig. 2, can be expressed in
the transcendental form as30

tan2
{

t
2

√
(neff k0)2 − β2 −

mπ
2

}
=

β2 − k2
0

(neff k0)2 − β2
, (2)

where k0 is the free-space wavenumber, t = 200 µm is the waveguide thickness, m = 0 is the fun-
damental propagation mode, and neff is the effective refractive index of the constituent dielectric
materials. For bulk silicon, neff equals 3.418, while neff for perforated silicon can be obtained from
Eq. (1). Based on Eq. (2), at 400 GHz, the wavelength of the TE0 mode inside an unperforated silicon
slab equals 240 µm. Thus, the lattice constant of air holes must be less than 120 µm to maintain the
validity of effective medium approximation. In the following designs, the lattice constant is 100 µm
or less. For this choice of lattice constant, the first bandgap appears at around 470 GHz, well above
the frequency range of interest.

Figure 2(a) shows how the dispersion relation of the planar waveguide changes with the diameter
of air holes with a lattice constant of 100 µm. It can be seen that the guided mode remains below the
light line with no free-space coupling. In addition, Fig. 2(b) shows the corresponding effective modal

FIG. 2. Effect of the subwavelength hole array on the guided mode. (a) Dispersion relation for the TE0 mode inside the planar
dielectric waveguide. The lattice constant a of the hole array is set to 100 µm, while the hole diameter d varies between 0 µm
and 90 µm with a step size of 10 µm. The results are obtained by using Eq. (2) with an assumption of homogeneous material.
This assumption excludes the bandgap effect that occurs around 470 GHz due to the periodicity of the hole array. (Inset) A
planar dielectric waveguide in free space with a square lattice of air holes. (b) Corresponding effective modal indices nwg = β/k0
for the TE0 mode. The analytical results are from Eq. (2), while the numerical results are from CST Microwave Studio.
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indices, nwg = β/k0, which will be used in designing the effective medium for phase correction. It is
clear that the modal index decreases with an increase in the hole size. In addition, this modal index
is dispersive as a consequence of the guided mode, i.e., higher frequency components experience
slightly larger effective refractive index due to tighter field confinement. However, within the fre-
quency range of interest between 300 and 400 GHz, the dispersion is moderate, and the following
calculations assume frequency-independent modal indices taken at 330 GHz. Figure 2(b) also pro-
vides a comparison with numerical results that show general agreement. The deviation between the
analytical and numerical results, particularly for large hole diameters, is because of the Fabry-Perot
effect inside the simulated waveguide. The reflections arise since the wave impedance of the ports
matches that of the mode in the silicon slab, but not in the effective medium.

C. Design of effective lens

An effective lens can be designed based on the relation between the hole diameter and the effective
modal index. The phase distribution of this lens necessary to compensate the phase difference due to
wave propagation in the flaring section is given as

φlens(x)= nwg,d=0k0(
√

F2 + x2 − F) + φ0 , (3)

where nwg,d =0 is the modal index of the dielectric waveguide without a hole array, F is the focal
length, and φ0 is an arbitrary phase constant. It is noteworthy that engineering phase convention is
adopted throughout. Equation (3) assumes a fixed modal index over the flaring section for simplicity.
Practically, this modal index varies along the propagation or z axis due to the evolution of the guided
mode, as discussed in Sec. II A. The focal length F can be adjusted around the flare length to
compensate this spatial modal index variation. The phase offset φ0 enforces negative phase values
associated with phase retardation inside the lens. Equation (3) implies that this lens induces strongest
phase delay in the center where x = 0.

On the other hand, the phase response available from the effective medium is given as

φavail =−nwg,dk0l , (4)

where nwg,d is the modal index of the dielectric waveguide loaded with an array of air holes with a
diameter d and l is the length of this effective lens along the z axis. This phase response can be tailored
to match the phase requirement in Eq. (3) by varying either the modal index nwg,d or the length l. The
latter option implies a constant index contrast across the aperture, and thus a considerable Fabry-Perot
effect. Thus, we opt for the former option to fix the length l but vary the hole diameter d along the
x direction, as illustrated in Fig. 3. The smallest hole diameter dmin locates around x = 0 to induce
a strongest delay, while the largest hole diameter dmax locates on the edges. The physical length l

FIG. 3. Effective lens for wavefront correction. Waves emerging from the photonic crystal waveguide diverge as they propagate
through the flaring section. These diverging waves can be collimated by using the effective lens made of an array of cylindrical
air holes.
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FIG. 4. Effective lens design for an optimal rod antenna array. (a) Phase profiles for the lens at 330 GHz. The analytical phase
profile is obtained from Eq. (3), while the numerical phase is obtained from CST Microwave Studio across the flare end. The
three curves overlap nearly completely. (b) Required modal indices calculated from Eq. (7), and modal indices available from
the effective medium. (c) Corresponding hole diameters rounded to the nearest integers. (d) Reflectance at the lens-waveguide
interface. This reflectance is calculated from [nwg,d=0 − nwg,d (x)]2/[nwg,d=0 + nwg,d (x)]2.

of this effective lens can be determined from these two hole sizes—dmin limited by the fabrication
and dmax limited by the acceptable impedance mismatch with the solid dielectric waveguide. The
maximum phase difference available from the two hole extrema must satisfy the maximum phase
difference required by Eq. (3). Thus,

l =
nwg,d=0k0(

√
F2 + x2

max − F)

(nwg,dmin − nwg,dmax )k0
. (5)

The number of air holes along the z axis thus equals N = l/a, rounded to the nearest integer. The phase
constant φ0 in Eq. (3) must be equal to the phase accumulation along the z axis at x = 0, or

φ0 =−nwg,dmin k0Na . (6)

Finally, the required modal index as a function of the position x can be calculated by equating Eqs. (3)
and (4),

nwg,d(x)=−
φlens(x)
k0Na

, (7)

and the corresponding hole diameter at each discrete x location can be found from the relation
discussed in Sec. II B. Notably, provided that the guided mode is approximately nondispersive,
this phase correction approach works in broadband due to the true time delay of the effective lens.
Figure 4(a) shows that the phase profile available from the effective medium can track well with
the required phase profile, despite the discretization of hole diameters in a 1-µm step. In Figs. 4(b)
and 4(c), the modal index profile, together with the corresponding hole diameter profile, suggests a
strongest delay and a minimal index contrast at x = 0. This configuration results in negligible reflection
around the central axis of the lens, as shown in Fig. 4(d).

III. ANTENNA CHARACTERISTICS

The optimal rod antenna array, including the effective lens and the waveguide feed, is fabricated
at once by deep reactive-ion etching. This process forms vertical air holes and gaps through a silicon
wafer of 200 µm thick. Figure 5(a) shows one fabricated sample. All the components are precisely
developed. Particularly, the smallest and largest holes with diameters of 20 µm and 144 µm can be
co-fabricated in a single run. The photonic crystal waveguide, excluding the flaring part, extends to
8.2 mm for handling purposes. The tapered dielectric waveguide of 3.0 mm long on the opposite
end of the antenna can insert into and couple with a WR-3 hollow rectangular waveguide, which
is the output port of the measurement setup. Through this tapered waveguide, the dominant TE10
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FIG. 5. Fabricated antenna arrays. (a) Optimal antenna array with an aperture width of 8 mm and a rod length of 8 mm. [(b)
and (c)] Nonoptimal antenna arrays without and with effective lens for comparison. The aperture width is 5.7 mm and the rod
length is 8 mm. For all antennas, the sharp tail on the left couples with a hollow rectangular waveguide of the measurement
system. The images are with the same scale, but subject to different camera perspectives. The dimensions of all antenna arrays
are available in the supplementary material.

mode in the rectangular waveguide gradually converts to the fundamental mode inside the photonic
crystal waveguide with less than 0.2 dB insertion loss, i.e., 95.5% coupling efficiency, across the
spectral band of interest (see the supplementary material).23 Shown in Figs. 5(b) and 5(c) are other
two nonoptimal antenna arrays to observe the performance of the effective lens.

The fabricated antenna arrays are characterized for their frequency-dependent gains and radiation
patterns in the E- and H-planes, i.e., xz- and yz-planes, respectively. A diagram for the measurement
setup is illustrated in Fig. 6. The signal generator delivers a continuous wave that is tuned around
40 GHz. This signal is directly fed into a 9×multiplier. The resulting terahertz signal ranging between
300 and 390 GHz excites the antenna under test. A WR-3 diagonal horn antenna is used at the
receiver side instead of a standard conical horn antenna to reduce standing waves in free space.
The transmitting and receiving antennas are separated by 300 mm. Connected to the receiving horn

FIG. 6. Measurement system based on terahertz electronics. This system is used for the gain and radiation-pattern measure-
ments for all antenna designs. SG: signal generator, SA: spectrum analyzer, Tx: transmitter, Rx: receiver, LO: local oscillator,
RF: radio (terahertz) frequency, and IF: intermediate (microwave) frequency.

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-010891
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antenna, the mixer with a built-in 36× multiplier works together with the spectrum analyzer to
down-convert the received terahertz signal to a microwave signal. Absorbers are placed around the
antenna pair to minimize reflections. The gain of the antenna under test is calibrated with a reference
standard conical horn antenna. The radiation pattern measurement is carried out with an automated
system at an angular step size of 1◦. Waveguide twists are employed to access the orthogonal plane
for the radiation pattern measurement.

A. Comparison of antenna gain

This section presents a comparative study on the radiation gains of the three antennas, including
the optimal array in Fig. 5(a) and the nonoptimal arrays without and with effective lens in Figs. 5(b)
and 5(c). The effective lens for the nonoptimal rod array has a linear variation in the hole diameters,
and thus the phase distribution approximates Eq. (3). In addition, the aperture width for the nonoptimal
arrays is 5.7 mm, succeeded by the optimal one of 8.0 mm. Figure 7 shows the gain profiles obtained
from the measurement and simulation with general agreement. Some discrepancies are caused by
nonideal alignment, spurious reflections, and higher-order modes in the rectangular waveguide. All
the results account for the insertion loss in the 8-mm photonic crystal waveguide. Thus, all the antennas
exhibit a lower cutoff at around 315 GHz due to the absence of guided modes in the waveguide below
this frequency.23 The noise floor yields the artificial gain level in the measurement around 300 GHz.
Good matching between the antennas and the feed is evident from the simulated return loss that is
higher than 10 dB within the frequency band of interest.

Among the three designs, the nonoptimal rod antenna array with no lensing shows the lowest
performance with the gain varying strongly around 10 dBi. Without phase correction, diverging
waves are incident on the tapered rod array at oblique angles. This results in strong interference in the
forward direction and thus gain variation as a function of frequency. Interestingly, the maximum gain
for this antenna is roughly the same level as that obtained from a single rod antenna with the same
rod length of 8 mm (see the supplementary material). Once the effective lens is incorporated, the
maximum gain of this nonoptimal design is significantly improved from about 13 dBi to 19 dBi. A
dip can be observed around 340–360 GHz due to the lens performance. Based on the rigorous design
discussed in Sec. II, the optimal antenna array can achieve the gain of 22 dBi at maximum, and
roughly above 20 dBi across 315–390 GHz. The lower range is limited by the cutoff of the photonic
crystal waveguide, while the upper range is limited by the measurement setup. Thus, the 3-dB gain
bandwidth is at least 21%. The measurable gain performance of the optimal design is close to that of
a standard conical horn antenna, marked at around 22 dBi.

FIG. 7. Absolute-gain profiles for different antennas from measurement (a) and simulation (b). These profiles account for the
insertion loss of the feeding photonic crystal waveguide of 8.2 mm.

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-010891
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B. Near-field and far-field characteristics of optimal antenna

This section considers only the optimal design with an emphasis on its near- and far-field charac-
teristics. Figure 8 shows numerically resolved field distributions inside the antennas without and with
the effective lens. As evident from both the amplitude and phase distributions in Figs. 8(a) and 8(c),
the wave emerging from the photonic crystal waveguide evolves into a cylindrical wave inside the
flare. This cylindrical wave continues to diverge in free space. Additionally, strong interference can
be observed because the wave excites the rod array at oblique angles. The presence of the effective
lens in Figs. 8(b) and 8(d) clearly equalizes the phase front and collimates the radiated beam. In this
case, the interference is minimal since all the dielectric rod antennas operate in their intended mode.
No diffraction is imposed by this effective lens due to the subwavelength packing of hole arrays. In
addition, reflections inside the lens are not observable, as the majority of energy concentrates around
the propagation axis, where the index mismatch is minimal. A comparison of phase profiles across
the aperture in Fig. 8(e) confirms that the effective lens reduces the aperture phase difference from
about 15 rad or 2.4λ to merely 1 rad or 0.16λ.

The near-field characteristics of those antennas translate to the far-field radiation patterns in Fig. 9.
Two different frequencies at 330 and 360 GHz illustrate the beam stability across the bandwidth of
interest. As can be seen in Figs. 9(a)–9(d), the optimal antenna without the effective lens exhibits
non-directional radiation patterns. Strong destructive interference diminishes the radiation toward the
endfire at 0◦, and thus there is no clearly defined main lobe. Sidelobes can be observed both in the
E- and H-planes. In Figs. 9(e)–9(h), the effective lens plays a central role for this rod antenna array
to attain the beam quality. For this antenna, the main lobe resembles a fan beam with angular beam
widths in the E- and H-planes of 6◦ and 32◦, respectively. A wider beam in the H-plane is due to the
limited aperture size out of plane. For a comparison, a standard horn antenna with a similar gain has

FIG. 8. Field distributions inside optimal antennas at 330 GHz. [(a) and (b)] Instantaneous amplitude of the tangential electric-
field component for antennas without and with effective lens, respectively. The amplitude plots are in logarithmic scale and
normalized to the same factor. [(c) and (d)] Corresponding phase distributions of the Ex component for the antennas in (a)
and (b), respectively. The phase inside the photonic crystal is not meaningful due to the lack of propagation modes therein.
(e) Phase profiles across the aperture of the two antennas. Note that the phase profile for the case with no lens differs from
that in Fig. 4(a), as they are taken at different planes along the z axis.
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FIG. 9. Normalized radiation patterns at 330 GHz (left) and 360 GHz (right). [(a)–(d)] Simulated patterns for optimal design
without effective lens. [(e)–(h)] Simulated and measured patterns for optimal design with effective lens. The measurement is
with an angular resolution of 1◦.

the beam width of about 11◦ in both planes. The sidelobe levels in the E- and H-plane are well below
�10 dB and �15 dB, respectively. The lack of grating lobes in the H-plane implies no leakage of the
mode inside the effective lens. Notably the measured patterns are nearly indistinguishable from the
numerical estimations.

IV. SHORT-RANGE WIRELESS COMMUNICATIONS

This section demonstrates the use of the optimal dielectric rod antenna arrays for wireless com-
munications. Since the antennas are broadband and directional, they can be used for point-to-point
transmission with a high data rate. Figure 10 illustrates the transceiver setup for bit-error-rate (BER)
testing and 4K-resolution video transmission. On the transmitter side, optical signals from two tunable
near-infrared lasers are modulated by on-off keying (OOK) with Gbit/s data from either a pulse-pattern
generator or a 4K video player. The modulated optical signals are then amplified by an EDFA and
downconverted by a UTC-PD into the terahertz regime at the beating frequency of 343 GHz. The
resulting terahertz carrier modulated with the digital data is then radiated by the rod antenna array
into free space. On the receiver side, an identical rod antenna array captures the radiation and feeds
into a SBD to extract the data via envelope detection. The demodulated signal is then amplified by



051707-11 Withayachumnankul et al. APL Photonics 3, 051707 (2018)

FIG. 10. Transceiver chain for short-range wireless communications. Both the bit-error-rate measurement and 4K-resolution
video transmission use the same terahertz source from the beating frequency of the two near-infrared lasers. The antenna
pair is fully aligned and polarization-matched. Attn: attenuator, Amp: amplifier, PPG: pulse-pattern generator, Mod: optical
modulator, EDFA: erbium-doped fiber amplifier, UTC-PD: uni-travelling carrier photodiode, Tx: transmitter, Rx: receiver,
SBD: Schottky barrier diode, Scope: oscilloscope, and BERT: bit-error-rate tester.

a preamplifier and reshaped by a limiting amplifier. The eye diagram and bit error rate of the trans-
mitted signal are then measured by using an oscilloscope and a bit-error tester, respectively. For the
4K-resolution video transmission, the signal is digitally converted and displayed on a television.

The antenna pair is separated by 3 mm for transmitting and receiving 10 Gbit/s data. Figure 11(a)
shows the BER as a function of the transmitted power at the UTC-PD. It is clear that error-free

FIG. 11. Wireless communications at 343 GHz. (a) BER as a function of the transmitted power at the data rate of 10 Gbit/s.
The threshold for error-free transmission is at BER = 10�11. (b) Measured eye diagram at a data rate of 10 Gbit/s with error-free
transmission. (c) Uncompressed 4K-resolution video at 6 Gbit/s being transmitted and received by the antenna pair (see the
video file in the supplementary material).

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-010891
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transmission, i.e., BER < 10�11, across this distance can be attained when the power is larger than
32 µW. A corresponding eye diagram in Fig. 11(b) is clearly open for the 10-Gbit/s data. This maxi-
mum data rate is limited by the output power of the UTC-PD. The antenna separation is increased to
7 mm for transmission of uncompressed 4K video signal at the bit rate of 6 Gbit/s. Figure 11(c)
depicts a still image of this successful error-free video transmission (see the video file in the
supplementary material). It should be noted that the transmission distance is largely limited by the
available transmission power.

V. CONCLUSION

We have proposed and experimentally validated a series of dielectric rod antenna arrays fed
by a photonic crystal waveguide. An all-dielectric route eliminates Ohmic loss that is accentuated
by resonant metallic antennas at this frequency range. Critical to this antenna array is the use of an
effective medium to equalize the phase front across a large aperture size. As a result, the optimal design
attains a gain of over 20 dBi and a stable radiation pattern across the 21% bandwidth between 315 and
390 GHz, limited by the measurement system. While the gain and bandwidth performance is close to
that of a standard horn antenna, this entire dielectric rod antenna array, together with the waveguide
feed, is fully planar and can be fabricated onto a single silicon wafer at once. The experiments
demonstrate error-free transmission at the data rate of 10 Gbit/s via OOK. This antenna implementa-
tion can potentially benefit a short distance link between multi-channel parallelly aligned transceivers
and can be used for line scanning of objects. The design is readily scalable for a larger radiation gain
by expanding the aperture size, and it can also be scalable to other frequency ranges. The antennas
and waveguides can also be scaled to operate in other atmospheric windows within the terahertz
range. However, the atmospheric attenuation, free-space path loss, and available source power will
determine the transmission range, which in turn dictates possible communication applications. This
design contributes to a future terahertz integrated platform on photonic crystal waveguides toward
short-range communications with a high data rate.

SUPPLEMENTARY MATERIAL

See supplementary material for more details on the radiation gain profiles of additional rod
antennas and the dimensions of the rod antenna arrays described in Fig. 5. The coupling between the
photonic crystal waveguide and the WR-3 hollow rectangular waveguide is elaborated therein.

ACKNOWLEDGMENTS

We wish to acknowledge support from the following grants: Core Research for Evolutional
Science and Technology (CREST) program, Japan Science and Technology Agency (JST) (No.
JPMJCR1534); Grant-in-Aid for Scientific Research, the Ministry of Education, Culture, Sports,
Science and Technology of Japan (No. 17H01064); Australian Research Council Discovery Projects
(Nos. ARC DP170101922 and DP180103561). We thank Xiongbin Yu, Yuki Kimura, and Yousuke
Nishida for their assistance in experiments.
1 T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat.

Photonics 10, 371–379 (2016).
2 P. U. Jepsen and S. R. Keiding, “Radiation patterns from lens-coupled terahertz antennas,” Opt. Lett. 20, 807 (1995).
3 K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch

antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5, 613–618 (2015).
4 S. Diebold, S. Nakai, K. Nishio, J. Kim, K. Tsuruda, T. Mukai, M. Fujita, and T. Nagatsuma, “Modeling and simulation of

terahertz resonant tunneling diode-based circuits,” IEEE Trans. Terahertz Sci. Technol. 6(5), 716–723 (2016).
5 N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic

photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
6 C. Wang, B. Lu, C. Lin, Q. Chen, L. Miao, X. Deng, and J. Zhang, “0.34-THz wireless link based on high-order modulation

for future wireless local area network applications,” IEEE Trans. Terahertz Sci. Technol. 4, 75–85 (2014).
7 I. Kallfass, F. Boes, T. Messinger, J. Antes, A. Inam, U. Lewark, A. Tessmann, and R. Henneberger, “64 Gbit/s transmission

over 850 m fixed wireless link at 240 GHz carrier frequency,” J. Infrared, Millimeter, Terahertz Waves 36, 221–233 (2015).
8 T. Nagatsuma, K. Oogimoto, Y. Inubushi, and J. Hirokawa, “Practical considerations of terahertz communications for short

distance applications,” Nano Commun. Networks 10, 1–12 (2016).

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-010891
ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-010891
https://doi.org/10.1038/nphoton.2016.65
https://doi.org/10.1038/nphoton.2016.65
https://doi.org/10.1364/ol.20.000807
https://doi.org/10.1109/tthz.2015.2441740
https://doi.org/10.1109/tthz.2016.2592180
https://doi.org/10.1109/tthz.2015.2395417
https://doi.org/10.1109/tthz.2013.2293119
https://doi.org/10.1007/s10762-014-0140-6
https://doi.org/10.1016/j.nancom.2016.07.005


051707-13 Withayachumnankul et al. APL Photonics 3, 051707 (2018)

9 D. Hou, W. Hong, W.-L. Goh, J. Chen, Y.-Z. Xiong, S. Hu, and M. Madihian, “D-band on-chip higher-order-mode dielectric-
resonator antennas fed by half-mode cavity in CMOS technology,” IEEE Trans. Antennas Propag. Mag. 56, 80–89 (2014).

10 X.-D. Deng, Y. Li, C. Liu, W. Wu, and Y.-Z. Xiong, “340 GHz on-chip 3-D antenna with 10 dBi gain and 80% radiation
efficiency,” IEEE Trans. Terahertz Sci. Technol. 5, 619–627 (2015).

11 W. Withayachumnankul, R. Yamada, C. Fumeaux, M. Fujita, and T. Nagatsuma, “All-dielectric integration of dielectric
resonator antenna and photonic crystal waveguide,” Opt. Express 25, 14706 (2017).

12 G. E. Mueller and W. A. Tyrrell, “Polyrod antennas,” Bell Syst. Tech. J. 26, 837–851 (1947).
13 S. Kobayashi, R. Mittra, and R. Lampe, “Dielectric tapered rod antennas for millimeter-wave applications,” IEEE Trans.

Antennas Propag. 30, 54–58 (1982).
14 A. Patrovsky and K. Wu, “94-GHz planar dielectric rod antenna with substrate integrated image guide (SIIG) feeding,”

IEEE Antennas Wireless Propag. Lett. 5, 435–437 (2006).
15 N. Ghassemi and K. Wu, “Planar dielectric rod antenna for gigabyte chip-to-chip communication,” IEEE Trans. Antennas

Propag. 60, 4924–4928 (2012).
16 A. Rivera-Lavado, S. Preu, L. E. Garcia-Munoz, A. Generalov, J. M. de Paz, G. Dohler, D. Lioubtchenko,

M. Mendez-Aller, F. Sedlmeir, M. Schneidereit, H. G. L. Schwefel, S. Malzer, D. Segovia-Vargas, and A. V. Raisanen,
“Dielectric rod waveguide antenna as THz emitter for photomixing devices,” IEEE Trans. Antennas Propag. 63, 882–890
(2015).

17 S. M. Hanham, T. S. Bird, B. F. Johnston, A. D. Hellicar, and R. A. Minasian, “A 600 GHz dielectric rod antenna,” in 3rd
European Conference on Antennas and Propagation (EuCAP) (IEEE, 2009), pp. 1645–1647.

18 A. A. Generalov, J. A. Haimakainen, D. V. Lioubtchenko, and A. V. Raisanen, “Wide band mm- and sub-mm-wave dielectric
rod waveguide antenna,” IEEE Trans. Terahertz Sci. Technol. 4, 568–574 (2014).

19 J. Pousi, D. Lioubtchenko, S. Dudorov, and A. Raisanen, “High permittivity dielectric rod waveguide as an antenna array
element for millimeter waves,” IEEE Trans. Antennas Propag. 58, 714–719 (2010).

20 R. Kazemi, A. E. Fathy, and R. A. Sadeghzadeh, “Dielectric rod antenna array with substrate integrated waveguide planar
feed network for wideband applications,” IEEE Trans. Antennas Propag. 60, 1312–1319 (2012).
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