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19 Abstract

20 Fungi are key functional components of ecosystems (e.g. decomposers, symbionts), 

21 but are rarely included in restoration monitoring programs. Many fungi occur 

22 belowground, making them difficult to observe directly, but are observable with 

23 environmental DNA (eDNA) methods. Although eDNA approaches have been 

24 proposed as ecological monitoring tools for microbial diversity, their application to 

25 restoration projects is very limited. We used eDNA metabarcoding of fungal ITS 

26 barcodes on soil collected across a 10-year restoration chronosequence to explore 

27 fungal responses to restoration. We observed a dramatic shift in the fungal 

28 community towards that of the natural fungal community after just 10 years of active 

29 native plant revegetation. Agaricomycetes and other Basidiomycota – involved in 

30 wood decay and ectomycorrhizal symbiosis – increased in rarefied sequence 

31 abundance in older restored sites. Ascomycota dominated the fungal community, but 

32 decreased in rarefied sequence abundance across the restoration chronosequence. 

33 Our results highlight eDNA metabarcoding as a useful restoration monitoring tool 

34 that allows quantification of changes in important fungal indicator groups linked with 

35 functional recovery and, being underground, are normally omitted in restoration 

36 monitoring. 

37

38

39 Keywords: ecosystem function; eDNA; genomics; land degradation; microbiome; 

40 restoration genomics

41
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42 1. Introduction

43 Land clearing and unsustainable land use are driving a global land degradation crisis 

44 (Gibbs and Salmon 2015; Nkonya et al. 2016). Ecological restoration is employed as 

45 the primary intervention to repair degraded land, largely to re-instate functional 

46 ecosystems and native biodiversity (Suding et al. 2015). Effective and targeted 

47 restoration is required, in combination with accurate biological monitoring, to achieve 

48 these restoration goals (Collen and Nicholson 2014).

49 Terrestrial ecosystems consist of aboveground and belowground 

50 components that interact to shape ecological communities (Wardle et al. 2004). 

51 Plants influence the composition of belowground biota, and in turn, belowground 

52 biota feedback to influence plants. For example, fungi contribute major ecological 

53 functions such as decomposition and nutrient cycling, especially carbon and soil 

54 aggregation (Avis et al. 2017; Morriën et al. 2017). Mycorrhizal fungi can influence 

55 the status of soil nutrients, and also the establishment, diversity and succession of 

56 plants (Cavagnaro et al. 2005; Kulmatiski et al. 2008). Therefore, understanding the 

57 dynamics of fungal communities is important to influencing ecosystem functions 

58 (Gehring et al. 2014), and as such should be a key focus point of ecological 

59 restoration.

60 Fungi are large components of the biodiversity in many soil ecosystems, 

61 even in species-poor plant communities (Taylor et al. 2014). The diversity and 

62 community dynamics of soil fungi are often linked to soil physical, chemical, and 

63 biological properties (e.g. age, pH, nutrient levels) (Guo et al. 2016; Moon et al. 

64 2016; Trivedi et al. 2016; Zechmeister-Boltenstern et al. 2011). These soil properties 

65 are often influenced by vegetation cover, land-use, and revegetation practices. As 

66 such, assessing changes in the fungal community during ecological restoration is an 
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67 important part of determining the return of functional ecosystems and native 

68 biodiversity to restoration sites – key indicators of restoration success (Harris 2009). 

69 Despite the potential for revegetation to influence fungal diversity, few restoration 

70 projects have monitored changes in the fungal community, and used the fungal data 

71 as part of the assessment of restoration progress and success (Harris 2003).

72 A primary reason why fungi often go unmonitored in restoration is that many 

73 are belowground and microscopic, making them difficult to observe in situ. However, 

74 with next generation sequencing approaches, researchers can now efficiently and 

75 accurately assess such highly diverse and cryptic biological communities (Lindahl et 

76 al. 2013). High-throughput amplicon sequencing of environmental DNA (eDNA) – 

77 metabarcoding – can identify and quantify the biological sources of genetic material 

78 (Barnes and Turner 2015; Corlett 2017; Ji et al. 2013). As such, metabarcoding has 

79 been put forward as a cost-effective, efficient and easy-to-standardise approach that 

80 can be used to survey and monitor even the most cryptic biodiversity. Metabarcoding 

81 has already proven to be an effective and efficient method to survey soil bacterial 

82 and fungal microbiomes (Rime et al. 2015; Taberlet et al. 2012). However, there are 

83 few examples of using metabarcoding to explore changes in biodiversity in a 

84 restoration context (Gellie et al. 2017b; Mills et al. 2017).  

85 In this study, we tested the hypothesis that replanting the native plant 

86 community into an ex-pasture will lead to restoration of the fungal community. To test 

87 this hypothesis, we used metabarcoding to explore the soil fungal community across 

88 a 10-year revegetation chronosequence, including samples from remnant sites (the 

89 revegetation reference sites), and cleared sites. We analysed these samples to 

90 address the following questions: (i) Does native overstory revegetation alter the soil 

91 fungal community? (ii) Which functional groups of fungi are indicators of the different 
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92 stages of revegetation? (iii) How do soil physicochemical parameters respond to 

93 revegetation, and do these changes associate with the fungal community?

94

95 2. Material and Methods

96 2.1  Site description and sampling

97 Our study system was an active restoration site at Mt Bold, a water catchment 

98 reserve of the Mt Lofty Ranges in South Australia (35.07˚S, 138.42˚E), described in 

99 detail in Gellie et al. (2017b). This catchment was dominated by open eucalypt 

100 woodland, but has been cleared and grazed from early in the 20th century. Grazing 

101 ceased in 2003, restoration began in 2005, and the restoration goal was to recreate 

102 the local Eucalyptus leucoxylon grassy woodland community, as found in the 

103 remnant, reference sites (Remnant A and B). Prior to 2005, Remnant A was 

104 minimally cleared and had low-density grazing, and remnant B was protected from 

105 clearing and had minimal human impact. Each reference site is in close proximity to 

106 the restoration site (<1km). 

107 Revegetation methods were consistent across the study system. This 

108 included the use of the same site preparation method (i.e. shallow surface rip), plant 

109 species mix (i.e. replanting the same subset of over-story and mid-story plant 

110 species present in the local woodland community), timing (i.e. late winter planting), 

111 and maintenance (i.e. fencing to exclude livestock, annual grass slashing, woody 

112 weed removal). The sites restored between 6 and 10 years ago were revegetated 

113 with the same local, native plant species, including the overstory South Australian 

114 blue gum (E. leucoxylon) and manna gum (E. viminalis), and a shrub layer that 

115 included golden wattle (Acacia pycnantha), sticky hop bush (Dodonaea viscosa) and 
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116 sweet bursaria (Bursaria spinosa ssp. spinosa). Remnant A had weed control, and 

117 remnant B was managed for conservation.

118 In January 2015, we sampled soil from three randomly selected 25 x 25 m 

119 quadrats at each of seven sites, including sites restored 6, 7, 8 and 10 years before 

120 sampling, a cleared site, and the two remnant, reference sites (the restoration 

121 reference sites; remnant A and B in Gellie et al.2017b), giving a total of 21 quadrats. 

122 Soil was sampled from the 0-10 and 20-30 cm soil horizons at each quadrat. The 

123 data used for this work was generated from the Biomes of Australian Soil 

124 Environments (BASE) database workflow, and is downloadable as OTU abundance 

125 tables from the BASE download portal (samples 102.100.100/19281 – 19322). 

126 Below we briefly describe the BASE methods, which are described in detail in Bissett 

127 et al. (2016). Sampling was conducted as part of the Biomes of Australian Soil 

128 Environments (BASE) project according to the protocol described in Bissett et al. 

129 (2016). Briefly, nine soil samples per quadrat were pooled into a sterile plastic bag, 

130 homogenised using a sterilised trowel, and frozen on site in sterile 50 mL falcon 

131 tubes – hereafter the replicates (n = 42). 300 g of homogenised soil was also 

132 sampled for soil physicochemical analysis, quantifying soil moisture, ammonium, 

133 nitrate, available phosphorus, sulphur, organic carbon, and soil pH (H20).

134

135 2.2 Genomic analyses

136 DNA extraction and sequence analysis were conducted according to the methods 

137 described in Bissett et al. (2016). Briefly, soil DNA was extracted in triplicate using 

138 MoBio PowerSoil extraction kits according to manufacturer’s instructions, together 

139 with extraction blank controls. We PCR-amplified the fungal internal transcribed 

140 spacer (ITS) region for each replicate with negative controls using primers ITS1F 
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141 (Gardes and Bruns 1993) and ITS4 (White et al. 1990). PCR products were 

142 screened for negative control contamination with gel electrophoresis, purified using 

143 the Agencourt AMPure XP bead PCR product purification kit as per manufacturer’s 

144 instructions, concentration normalised to 10 nM, and sized on an Agilent Bioanalyze. 

145 Equal volumes of products were pooled, diluted to 4 nM and sequenced on the 

146 Illumina MiSEQ platform with MiSeq Reagent Kit v3 600 cycle chemistry, to produce 

147 300bp paired end reads.

148 Read analysis was also done as per Bissett et al. (2016) as part of the BASE 

149 dataset analysis. Briefly, the ITS1 region was extracted from Illumina R1 reads using 

150 ITSx (Bengtsson-Palme et al. 2013) and Operational Taxonomic Units (OTUs) 

151 clustered at 97% sequence similarity between ITS1 reads using USEARCH 

152 v8.0.1517 (Edgar 2010). OTUs were classified against the UNITE v7.0 fungal 

153 database (Koljalg et al. 2013), using the Wang classifier (Wang et al. 2007) in 

154 MOTHUR. We discarded OTUs not identified as belonging to fungi, unidentified at 

155 the phylum level, or having <100 reads across the full BASE dataset (>900 samples) 

156 as in Gellie et al. (2017b). 

157

158 2.3 Statistics

159 We used R v 3.3.2 (R Core Team) for all statistical analyses. OTU abundance was 

160 rarefied to the replicate with the lowest number of reads (49,724 reads for 0-10 and 

161 51,138 reads for 20-30 cm soil samples, respectively) with the rarefy function in 

162 vegan v 2.4-3 (Oksanen et al. 2017). OTU richness was measured using the Chao 1 

163 nonparametric richness estimator. Diversity was estimated as the effective number 

164 of species (Jost 2006) using the Shannon-Wiener index (H) and the Gini-Simpson 

165 index (D), where the Shannon-Wiener index and Gini-Simpson index were 
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166 transformed by using the formula exp(H) and 1/(1-D), respectively, to evaluate the 

167 true diversity of the fungal community.

168 Differences in rarefied abundances of the sequence reads, OTU richness, 

169 diversity indices, phyla, classes and soil characteristics across the restoration sites 

170 (i.e. the restoration chronosequence), soil depths, and the interaction between 

171 restoration site and soil depth were analysed using a multifactor permuted analysis 

172 of variance (PERMANOVA) with the aovp function implemented in lmPerm 2.1.0 

173 package with 5,000 permutations.

174 The effect of the restoration sites on fungal composition was visualised using 

175 non-metric multidimensional scaling (NMDS) ordinations using Bray-Curtis (rarefied 

176 abundance) and Jaccard (presence-absence) dissimilarity matrices, which were 

177 generated with vegan’s vegdist, metaMDS, stressplot and ordiplot functions 

178 (Oksanen et al. 2017). Differences in fungal community composition across the 

179 restoration chronosequence and soil depths were tested using ANOSIM analysis 

180 (999 permutations) on Bray-Curtis dissimilarity matrices with the anosim function in 

181 vegan, estimating R values, where R close to 1 indicates high separation between 

182 groups (e.g. between restoration sites) and R close to 0 indicates little separation 

183 between groups. 

184 Distance-based redundancy analyses (db-RDA) were run to visualize the 

185 relationships between soil physical and chemical variables and fungal community 

186 composition based on Bray-Curtis and Jaccard distances. The ordistep function with 

187 the forward procedure in the vegan package was used to select the soil physical and 

188 chemical variables that best predicted the differences in fungal community structure. 

189 The selected variables were then used to build a constrained ordination plot. This 

190 procedure selects predictor variables that significantly improve model fit using a 
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191 permutation test with the permutest function, keeping the strongest variable in the 

192 model, and repeats this process until no further predictor significantly improves the 

193 model fit. 

194 Indicator species analysis was run using the multipatt function implemented in 

195 the indicspecies package with 99,999 permutations. P value correction for multiple 

196 testing was run using the fdrtool function implemented in the fdrtool package 

197 (Strimmer 2008) with a false discovery rate of 10% (q <0.10). 

198 We analysed fungal trophic mode and guild with FUNGuild v1.0 

199 (https://github.com/UMNFuN/FUNGuild) (Nguyen et al. 2016). FUNGuild v1.0 is a flat 

200 database that contains a total of 9,476 entries, with 66% at the genus level and 34% 

201 at the species level (Nguyen et al. 2016). Fungal OTU tables with OTUs in rows, 

202 samples in columns, and a ‘taxonomy’ column were inputs (at 

203 http://www.stbates.org/guilds/app.php). Outputs included the original OTU table, 

204 sorted by sequence abundance, with trophic mode, guild, and confidence data. 

205 Trophic modes for all rarefied OTUs were accepted if the match confidence was 

206 ‘highly probable’ or ‘probable’. We then determined the fungal functional value of 

207 each restoration site according to the methods described in Avis et al. (2017) and 

208 Dighton (2003). Differences in rarefied abundance, richness of different trophic 

209 modes, functional values and saprophyte:symbiotroph across the restoration sites 

210 and soil depths were determined using multifactor PERMANOVAs with 5,000 

211 permutations in LmPerm 2.1.0 package. 

212

213 3. Results

214 3.1 Fungal diversity and community composition

https://github.com/UMNFuN/FUNGuild)
http://www.stbates.org/guilds/app.php
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215 We generated a total of 4,993,144 ITS fungal raw sequence reads (118,884 ± 

216 42,210 SD per replicate) across the 42 replicates (Table 1). A total of 4,955,680 

217 fungal sequences (117,430 ± 42,164 SD per replicate) remained for further analysis 

218 after quality filtering. No significant differences in read abundance were observed 

219 across the restoration chronosequence (Table 1). The number of fungal operational 

220 taxonomic units (OTUs) was lower in the 20-30 cm than the 0-10 cm soil horizon 

221 (observed and Chao 1; Table 1). Richness also varied significantly across the 

222 restoration chronosequence, but did not correspond with time since revegetation 

223 (Table 1). The effective species number based on Shannon’s and Simpson’s 

224 diversity did not vary significantly across the restoration chronosequence or soil 

225 depths (Table 1). 

226 We observed clear directional changes in the fungal community across the 

227 restoration chronosequence (Figs. 1, Fig. A1, Supplementary material). Recently 

228 revegetated sites had fungal communities similar to cleared sites, and older 

229 revegetated sites were similar to remnant sites. The ANOSIM showed that the fungal 

230 community differed significantly across the restoration sites based on Bray-Curtis 

231 dissimilarity (R = 0.772, P < 0.001) and Jaccard dissimilarity (R = 0.650, P < 0.001). 

232 The fungal communities were dominated by four phyla at 0-10 cm and five 

233 phyla at 20-30 cm (each with >1.0% of the total number of sequences), representing 

234 98.9% and 99.9% of the sequence reads respectively (Fig. A2, Table A1). Of the 

235 dominant phyla, Ascomycota was the most abundant, followed by Basidiomycota. 

236 Across all sites, the total percentage of Ascomycota was 55.67% and 46.34%, and 

237 Basidiomycota was 39.80% to 45.24%, at 0-10 and 20-30 cm respectively.

238 Ascomycota, Glomeromycota and Rozellomycota exhibited significant 

239 decreases in rarefied sequence abundance across the restoration chronosequence, 
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240 and Basidiomycota showed a significant increase (Fig. A2, Table 2). Shannon’s 

241 diversity of the phyla Basidiomycota and Glomeromycota changed significantly, but 

242 showed no directional changes with the restoration chronosequence and no 

243 significant changes with soil depth, with only Chytridiomycota showing a significant 

244 increase in diversity from 0-10 to 20-30 cm (Table 2).

245 A total of 6.05% and 8.81% of total sequence reads at 0-10 and 20-30 cm 

246 depths, respectively, were unclassified at the class level. The classes 

247 Eurotiomycetes and Sordariomycetes (both Ascomycota) were most abundant at 

248 cleared sites, and both decreased in abundance significantly with time since 

249 revegetation (Fig. A3, Table 2). Agaricomycetes (Basidiomycota) and Leotiomycetes 

250 (Ascomycota) were the dominant classes at remnant and older restoration sites, and 

251 both showed a pattern of increasing abundance with time since revegetation.

252

253 3.2 Indicator and guild analysis

254 Indicator species analysis revealed 26 and 42 fungal OTUs (each with >0.1% of the 

255 total number of sequences in all samples) were associated with the restoration 

256 chronosequence at 0-10 and 20-30 cm soil, respectively (q <0.10; Figs. 2, 3), and 

257 largely formed distinct indicator species assemblages across the restoration sites. 

258 Indicator genera, trophic modes and guilds for remnant and older revegetation sites 

259 were similar, and were different from the younger restoration and cleared sites. For 

260 example, OTUs in the genera Chloridium, Paecilomyces and Ruhlandiella (all 

261 Ascomycota) were associated with cleared sites at both soil depths, while OTUs in 

262 the genera Clavulina, Tomentella (both Basidiomycota) and Archaeorhizomyces 

263 (Ascomycota) were characteristic of remnant and older restoration sites (Figs. 2, 3). 

264 OTUs in the Paecilomyces and Phialemonium genera had high rarefied abundance 
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265 and indicator values in cleared sites at 0-10 and 20-30 cm soil depths, respectively, 

266 and these genera are known saprotrophs. While OTUs in the Tomentella and 

267 Clavulina genera had higher rarefied abundance in remnant and older restoration 

268 sites, and these genera are known ectomycorrhizal symbiotrophs.

269 Trophic modes were successfully assigned to 69% and 62% of the fungal 

270 OTUs at 0-10 and 20-30 cm soil depths, respectively. After trophic modes assigned 

271 with ‘possible’ confidence were removed, we obtained four dominant trophic modes 

272 (each mode >2% of total remaining OTUs), which included 62% and 58% of the 

273 rarefied sequences at 0-10 and 20-30 cm soil depth across all restoration sites. 

274 Rarefied abundance of all trophic modes, and richness of saprotrophs, pathotrophs 

275 and pathotrophs-saprotrophs, varied significantly across the restoration 

276 chronosequence, with only pathotroph richness showing a significant directional 

277 trend in decreasing abundance across the restoration sites (Table A4, Fig. A4). The 

278 ratio of saprotroph to symbiotroph OTUs in cleared sites was generally lower than 

279 restored and remnant sites at the 0-10 cm soil depth, while the opposite trend 

280 appeared at the 20-30 cm soil depth (Table A3, Fig. A4). The functional values were 

281 significantly higher at the 0-10 cm than that at 20-30 cm soil depth, and varied 

282 significantly across the restoration chronosequence but showed no pattern with time 

283 since restoration (Table A3, Fig. A4).

284

285 3.3 Soil physicochemical effects

286 Notable changes in soil physical and chemical characteristics were observed across 

287 the restoration chronosequence (Tables A5, A6). Soil nitrate and phosphorous 

288 significantly decreased with time since restoration, and organic carbon and sulphur 

289 significantly increased. Phosphorous, organic carbon, ammonium and sulphur 
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290 significantly decreased with depth. The fungal community strongly associated with 

291 soil physical and chemical variables (Figs A5, A6). Seven soil variables explained 

292 63.70% of the variance in fungal community (F7,34 = 8.524, P < 0.001). Of these 

293 seven variables, nitrate, soil moisture, phosphorous and organic carbon were the 

294 variables that best explained variance in the fungal community (Fig. A5), explaining 

295 46.87% of the variance (F4,37 = 8.159, P < 0.001). 

296

297 4. Discussion

298 We used eDNA metabarcoding to demonstrate a significant shift towards a restored 

299 state in the soil fungal community after just 10 years of active restoration of a retired 

300 pasture. Our study is consistent with previous work on fungal communities, that has 

301 shown them to change with ecological processes such as soil development with the 

302 retreat of glaciers (Rime et al. 2015) and the emergence of islands (Clemmensen et 

303 al. 2013). However, the dramatic shift in the natural fungal community over the 

304 decade we observed in our study is in contrast with these previous studies where 

305 changes occurred over decades to millennia. Here we also show that active 

306 replanting of native vegetation can clearly lead to the return of important functional 

307 groups of fungi, including lower rarefied abundance of pathotrophs and saprotrophs 

308 (especially those in phylum Ascomycota) and increases in symbiotrophs (particularly 

309 ectomycorrhizas in phylum Basidiomycota). Fungal OTU richness did not correspond 

310 with time since revegetation, indicating that fungal community composition rather 

311 than the number of fungal taxa responded to restoration. Our study indicates that 

312 quantifying changes in the fungal community has great potential to be a robust 

313 diagnostic tool in demonstrating the success trajectory of restoration practices, as 

314 has been shown in allied areas of ecology (Thomsen and Willerslev 2015; Valentini 
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315 et al. 2016). Our results strongly support the case for using eDNA metabarcoding as 

316 a functionally relevant monitoring tool of restoration projects.

317 Previous work has shown that fungal communities often show a 

318 corresponding shift with changing vegetation communities, with most studies 

319 focussing on natural ecological changes (e.g. succession) (Clemmensen et al. 2013; 

320 Li et al. 2013; Rime et al. 2015). It is rare for changes in fungal communities to be 

321 monitored or manipulated as part of the restoration process (Avis et al. 2017; Prober 

322 et al. 2015). Recent work has shown that inoculating soils as part of the restoration 

323 process can have strong impacts on the plant community (Delgado-Baquerizo et al. 

324 2016; Soliveres et al. 2016; Wubs et al. 2016), carbon uptake by fungi increases 

325 independently of fungal biomass and bacterial-to-fungal ratios (Morriën et al. 2017), 

326 grass cover of sand dunes associates with fungal diversity (Zuo et al. 2016), and 

327 replanting riparian zones can restore bacterial-to-fungal activity ratios (Mackay et al. 

328 2016). However, few studies have characterised the return of fungal microbial 

329 communities or key functional groups with restoration (Avis et al. 2016), and we 

330 suggest that the lack of studies is due to the difficulty in studying changes in fungal 

331 communities without eDNA approaches, such as the metabarcoding method we 

332 employed. 

333 Ascomycota and Basidiomycota were the two most abundant phyla in our 

334 study, and both showed clear changes in rarefied abundance across the restoration 

335 chronosequence, particularly in the 0-10 cm soil horizon. Basidiomycota, particularly 

336 symbiotrophs in the class Agaricomycetes, increased in rarefied abundance across 

337 the restoration chronosequence. In contrast, OTUs assigned as saprotrophs within 

338 Ascomycota showed a pattern of decreasing rarefied abundance. Such trends are 

339 consistent with studies on degraded land, including low nutrient content soil and 
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340 managed lands such as rice paddies (Burton et al. 2016; Corneo et al. 2014), alpine 

341 grasslands (Pellissier et al. 2014) and oak forest soils (Varela et al. 2015). 

342 Supporting our results, Gourmelon et al. (2016) showed that a larger representation 

343 of Ascomycota in the fungal community can be an indicator of ecosystem 

344 degradation, however more work is clearly needed to explore changes in this phylum 

345 in more detail. The class Agaricomycetes (phylum Basidiomycota) is widespread in 

346 many terrestrial ecosystems, and is involved in the decay of wood and is a common 

347 ectomycorrhizal symbiont of forest trees (Bonfante and Genre 2010). In our study, 

348 symbiotrophs in Agaricomycetes were characteristic at remnant and older restoration 

349 sites and showed a significant increase in rarefied abundance across the restoration 

350 chronosequence. These results suggest that Agaricomycetes may also be a good 

351 indicator of restoration success in woodland and forest systems. 

352 Indicator species and trophic mode analysis identified several OTUs that were 

353 characteristic with time since restoration, although they generally clustered within 

354 study sites. For example, an OTU in the genus Chloridium (OTU141; phylum 

355 Ascomycota, class Sordariomycetes, trophic mode symbiotroph, guild 

356 ectomycorrhiza) was associated with the cleared sites at both soil depths, 

357 particularly in the 20-30 cm soil horizon (up to 4% of total fungal rarefied 

358 abundance). An OTU in the genus Clavulina (OTU93; phylum Basidiomycota, class 

359 Agaricomycetes, trophic mode symbiotroph, guild ectomycorrhiza) was associated 

360 with remnant vegetation at both soil depths. Identifying ectomycorrhizas at higher 

361 rarefied abundance in remnant and older restoration sites is supported by their 

362 known association with forest and woodland tree species (Brundrett 2009). However, 

363 with limited taxonomic and functional knowledge, the roles of the indicator fungi we 
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364 identified in the restoration of the woodland ecosystem require further exploration, 

365 but our approach holds promise as a diagnostic tool. 

366 Using field observations of macrofungi, Avis et al. (2017) derived functional 

367 values and saprophyte to symbiotroph ratios as indicators of restoration success. 

368 These approaches did not follow clear patterns across our restoration 

369 chronosequence. We observed higher functional values and saprotroph to 

370 symbiotroph ratios at the 0-10 cm than at the 20-30 cm soil depth, indicating that 

371 revegetation may be having a stronger influence on shallow soil depths than deeper 

372 soil depth. Further, and in contrast to our community and indicator taxon analyses, 

373 the functional values and saprophyte to symbiotroph ratios did shift significantly, but 

374 did not show any clear trends across our restoration chronosequence. We suggest 

375 that future work should attempt to better integrate these field macrofungi approaches 

376 with eDNA metabarcoding, as both approaches have benefits and problems. For 

377 example, the field identification method suffers from ascertainment biases as it is 

378 restricted to only sampling present macrofungi. Assigning function to fungi identified 

379 with eDNA metabarcoding is problematic as it relies on external database curation.

380 We observed soil nitrate and phosphorous concentrations to significantly 

381 decrease, and organic carbon concentration to significantly increase, across the 

382 revegetation chronosequence. These edaphic changes are consistent with 

383 expectations of the rehabilitation of pastoral lands (Cramer et al. 2008; Cunningham 

384 et al. 2015). These soil characteristics were also strong predictors of changes in the 

385 fungal community, which supports the general expectation that these soil 

386 physicochemical properties strongly shape changes in the soil fungal community 

387 (Zumsteg et al. 2011; Zuo et al. 2016). Such abiotic soil responses are expected to 

388 associate with restoration, but importantly are also expected to be strong drivers of 
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389 fungal community structuring in soils (Tedersoo et al. 2014), as supported by our 

390 results. For example, changes in vegetation should effectively modify the resource 

391 availability and microclimate in soils, in which heterotrophic microbial communities 

392 (e.g. fungi) will respond (McGuire et al. 2012; Zak et al. 2003). 

393 The development of environmental DNA sequencing methods offers 

394 extraordinary scientific and practical opportunities for better understanding soil fungal 

395 dynamics, changes in functional diversity, and biodiversity diagnosis. However, 

396 additional work is required to address some technical limitations of this approach. 

397 For example, overcoming methodological biases, standardisation of methods, and 

398 further methodological development for additional taxonomic groups require careful 

399 consideration. Indeed, read abundance is commonly interpreted as biological 

400 abundance, but read abundance is only an approximate quantification of biological 

401 abundance and should be interpreted with caution (Amend et al. 2010). Better 

402 understanding of functional diversity at lower taxonomic levels (e.g. genus) is 

403 important to determine symbioses and trophic interactions (e.g. changes in the 

404 rhizosphere during the restoration process) (Requena et al. 2001). Extending soil 

405 assessments to include the study of metaproteogenomics has potential to yield high-

406 resolution functional data about these changing communities that cannot be derived 

407 by eDNA metabarcoding (Seifert et al. 2013; Wilmes et al. 2015). Such an approach 

408 can provide information on the biological activities of species within the community 

409 such as carbon conversion, metal contamination metabolism, and niche partitioning, 

410 by linking genomic sequences with functional proteins (Bastida et al. 2016; Gillan et 

411 al. 2015; Knief et al. 2012). 

412

413 5. Conclusions
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414 The evidence we report here suggests that, at least in our study system, replanting 

415 native vegetation can bring about a dramatic shift in the fungal community towards 

416 that of the natural fungal community. Further, we demonstrate these soil microbiome 

417 changes with high-throughput amplicon sequencing, which holds great promise to be 

418 an efficient and standardisable tool to monitor and predict functional restoration 

419 processes. Many questions do remain, such as how plant functional diversity 

420 influences the fungal community? Which abiotic factors play the principal roles in 

421 driving fungal dynamics? How the fungal community changes through time (e.g. 

422 diurnal, seasonal)? From a monitoring perspective, when would interventions be 

423 indicated based on such monitoring data? Answering such questions requires an 

424 improved understanding of the link between abiotic factors and fungal community 

425 dynamics with restoration practice. With modest investments into the knowledge 

426 gaps, restoration science could embrace such novel technology and become a more 

427 efficient and targeted practice. 

428
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687 Table 1. Richness and diversity indices of rarefied fungal abundance data across the restoration chronosequence assessed by 

688 permuted analysis of variance (PERMANOVA), with P values < 0.05 in bold. 

OTUsa (±SD) Diversityb (±SD)
Site Depth (cm)

Observed Chao 1 Shannon Simpson
Cleared 0-10 413 ± 26 477 ± 36 51.67 ± 12.09 17.70 ± 7.01
6 year 0-10 283 ± 58 304 ± 64 36.29 ± 33.00 15.44 ± 16.39
7 year 0-10 400 ± 114 432 ± 121 43.51 ± 14.37 17.89 ± 5.79
8 year 0-10 437 ± 136 484 ± 144 50.85 ± 21.50 16.84 ± 12.27
10 year 0-10 331 ± 11 370 ± 39 46.36 ± 13.58 17.14 ± 4.65
Remnant A 0-10 406 ± 49 446 ± 63 46.66 ± 21.69 17.31 ± 9.81
Remnant B 0-10 270 ± 81 295 ± 80 41.90 ± 11.89 16.68 ± 6.11

Cleared 20-30 303 ± 74 361 ± 54 48.39 ± 11.09 20.78 ± 3.02
6 year 20-30 231 ± 47 273 ± 47 32.24 ± 22.14 13.26 ± 12.57
7 year 20-30 309 ± 78 332 ± 81 48.73 ± 16.22 21.90 ± 4.74
8 year 20-30 277 ± 87 329 ± 103 36.62 ± 20.46 13.15 ± 11.72
10 year 20-30 335 ± 59 368 ± 72 65.12 ± 11.03 28.13 ± 6.26
Remnant A 20-30 332 ± 55 359 ± 60 54.87 ± 28.61 20.83 ± 18.35
Remnant B 20-30 218 ± 57 258 ± 43 31.50 ± 1.28 14.99 ± 0.21

Site 0.017 0.006 0.355 0.817
Depth <0.001 0.001 1.000 0.581PERMANOVA P values
Site x Depth 0.654 0.718 0.783 0.926

689 a The richness is calculated using the OTU number and Chao's species richness estimator (Chao 1).
690 b The diversity is effective number of species based on Shannon-Wiener H (Shannon) and Gini-Simpson's D indices (Simpson).
691
692
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693 Table 2. Effects of restoration site and soil depth on rarefied abundance and diversity of fungal phyla and dominant classes 

694 assessed by permuted analysis of variance (PERMANOVA), with P values < 0.05 in bold.

Rarefied abundance Shannon’s diversity
Taxon

Site Direction 
of effect Depth Direction 

of effect
Site x 
Depth Site Direction of 

effect Depth Direction of 
effect

Site x 
Depth 

Ascomycota <0.001 Decreasing  0.069 0.234 0.055 0.843 0.841
Archaeorhizomycetes 0.015 Variable 0.060 0.632 0.215 0.067 0.556
Dothideomycetes 0.013 Decreasing  0.114 0.815 0.636 0.027 Decreasing 0.628
Eurotiomycetes <0.001 Decreasing  <0.001 Decreasing 0.093 <0.001 Increasing 0.980 0.216
Leotiomycetes <0.001 Increasing  1.000 0.109 0.004 Variable 0.040 Decreasing 0.307
Pezizomycetes <0.001 Variable  0.521 1.000 0.007 Variable 0.129 0.335
Sordariomycetes <0.001 Decreasing  <0.001 Decreasing 0.379 0.331 0.961 0.780
Incertae_sedis 0.029 Variable  <0.001 Increasing 0.438 0.099 0.039 Decreasing 0.491

Basidiomycota <0.001 Increasing  0.062 0.301 0.127  0.451 0.118
Agaricomycetes <0.001 Increasing  0.152 0.739 0.059 0.843 0.436
Tremellomycetes 0.623  1.000 0.256 0.024 Decreasing 0.076 0.541

Glomeromycota <0.001 Decreasing  0.026 Increasing 0.452 0.010 Variable  0.556 0.383
Rozellomycota <0.001 Decreasing  0.053 0.144 0.224  0.706 0.143
Zygomycota  0.090  0.001 Increasing 0.816 0.174  0.136 0.693
Chytridiomycota  0.013 Variable  0.143 0.524 0.170  <0.001 Increasing 0.480
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696

697 Fig. 1 Non-metric multidimensional scaling (NMDS) plot of the fungal 

698 community. NMDS of dissimilarity of the restoration chronosequence sites based on 

699 a Bray-Curtis distance matrix of rarefied fungal OTU abundances. 

700

701 Single column figure

702
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703

704 Fig. 2 Fungal indicator OTU plot across the restoration chronosequence in the 

705 0-10 cm soil horizon. Indicator species analysis plots showing taxa, trophic modes 

706 and guilds associated with the restoration chronosequence sites at q < 0.10. The 

707 bars represent the relative abundance of each indicator OTU. The size of each circle 

708 represents the association strength (i.e. indicator values), where 0-0.25 = no 

709 association; 0.25-0.50 = weak association ; 0.50-0.75 = association ; 0.75-1.00 = 

710 strong association.

711

712 1.5 column figure

713
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714

715 Fig. 3 Fungal indicator OTU plot across the restoration chronosequence in the 

716 20-30 cm soil horizon. Indicator species analysis plots showing taxa, trophic modes 

717 and guilds associated with the restoration chronosequence sites at q < 0.10. The 

718 bars represent the relative abundance of each indicator OTU. The size of each circle 

719 represents the association strength (i.e. indicator values), where 0-0.25 = no 

720 association; 0.25-0.50 = weak association ; 0.50-0.75 = association ; 0.75-1.00 = 

721 strong association.

722

723 2 column figure

724



1 SUPPLEMENTARY MATERIAL 

2 Table A1 Rarefied abundances of the dominant fungal phyla at 0-10 and 20-30 cm depths, respectively.

Phylum Depth (cm) Cleared 6 years ago 7 years ago 8 years ago 10 years ago Remnant A Remnant B
Ascomycota 0-10 81.45% 66.21% 47.99% 51.01% 55.67% 34.51% 52.88%
Basidiomycota 0-10 11.03% 26.75% 47.28% 45.78% 39.81% 63.00% 44.93%
Rozellomycota 0-10 2.69% 4.51% 2.19% 0.34% 0.74% 0.23% 0.24%
Zygomycota 0-10 2.84% 1.11% 1.54% 2.09% 3.09% 1.56% 1.11%
Rare 0-10 1.99% 1.42% 1.01% 0.77% 0.69% 0.69% 0.85%

Ascomycota 20-30 56.77% 54.76% 43.23% 43.27% 57.11% 41.34% 28.57%
Basidiomycota 20-30 28.78% 32.62% 44.32% 52.69% 37.02% 54.39% 66.85%
Glomeromycota 20-30 3.24% 1.32% 0.97% 1.02% 1.50% 1.05% 0.73%
Rozellomycota 20-30 4.82% 8.20% 9.08% 0.21% 0.27% 0.15% 0.15%
Zygomycota 20-30 6.25% 3.06% 2.33% 2.61% 3.98% 2.88% 3.68%
Rare 20-30 0.13% 0.04% 0.07% 0.20% 0.12% 0.19% 0.02%

3



4 Table A2 Rarefied abundances of the dominant fungal classes at 0-10 and 20-30 cm depths, respectively.

Class Depth (cm) Cleared 6 years ago 7 years ago 8 years ago 10 years ago Remnant A Remnant B
Agaricomycetes 0-10 6.65% 19.03% 44.54% 42.84% 33.88% 55.78% 40.74%
Archaeorhizomycetes 0-10 0.18% 0.00% 0.20% 1.40% 2.54% 4.11% 3.96%
Dothideomycetes 0-10 8.17% 8.01% 3.05% 3.49% 5.37% 2.06% 3.88%
Eurotiomycetes 0-10 30.32% 11.51% 10.27% 12.06% 12.35% 10.87% 7.78%
Leotiomycetes 0-10 2.03% 1.79% 0.82% 2.58% 15.08% 2.43% 15.39%
Pezizomycetes 0-10 1.27% 21.06% 21.04% 4.84% 2.75% 4.19% 4.14%
Sordariomycetes 0-10 34.73% 18.79% 9.27% 17.30% 12.61% 6.53% 10.24%
Tremellomycetes 0-10 2.67% 5.80% 2.13% 2.02% 5.30% 3.26% 3.38%
Incertae sedis 0-10 3.52% 1.36% 1.72% 2.41% 3.54% 1.72% 1.20%
rare 0-10 2.84% 3.38% 1.55% 1.40% 1.41% 1.16% 1.07%
unclassified 0-10 7.60% 9.25% 5.41% 9.69% 5.17% 7.89% 8.22%

Agaricomycetes 20-30 9.96% 27.87% 39.65% 48.26% 33.76% 51.14% 59.23%
Archaeorhizomycetes 20-30 0.04% 0.01% 1.62% 4.14% 8.72% 7.14% 2.20%
Dothideomycetes 20-30 8.38% 4.34% 3.37% 2.56% 1.39% 1.76% 1.65%
Eurotiomycetes 20-30 16.85% 6.20% 9.83% 8.17% 11.39% 7.09% 4.22%
Leotiomycetes 20-30 1.02% 1.00% 1.30% 6.72% 13.03% 7.26% 7.07%
Pezizomycetes 20-30 0.57% 23.73% 14.90% 0.91% 3.23% 3.64% 0.58%
Sordariomycetes 20-30 18.97% 11.39% 6.97% 9.91% 6.47% 6.45% 6.79%
Tremellomycetes 20-30 10.19% 3.90% 2.75% 2.38% 1.37% 1.41% 2.17%
Incertae sedis 20-30 12.77% 3.35% 2.50% 2.98% 4.59% 2.97% 4.49%
rare 20-30 2.12% 0.73% 1.87% 2.18% 0.89% 1.17% 0.43%
unclassified 20-30 19.13% 17.49% 15.25% 11.78% 15.15% 9.96% 11.18%

5



6 Table A3 Raw sequences, quality-filtered sequences, saprotroph to symbiotroph ratio and functional value across the restoration 

7 chronosequence assessed by permuted analysis of variance (PERMANOVA), with P values < 0.05 in bold. 

Site Depth (cm) Raw sequences (±SD) Quality-filtered sequences (±SD) Saprotroph:Symbiotroph (± SD) Functional value (± SD)
Cleared 0-10 166,722 ± 84,085 165,053 ± 84,070 2.12 ± 0.07 34.64 ± 0.02
6 years ago 0-10 153,554 ± 13,957 151,747 ± 13,901 2.45 ± 0.09 31.25 ± 1.45
7 years ago 0-10 104,829 ± 14,952 103,436 ± 14,639 2.42 ± 0.03 34.01 ± 2.15
8 years ago 0-10 126,580 ± 49,086 124,515 ± 48,603 2.84 ± 0.05 34.17 ± 3.16
10 years ago 0-10  89,381 ± 41,232  88,053 ± 41,364 3.55 ± 0.01 31.72 ± 1.11
Remnant A 0-10 123,173 ± 44,255 121,163 ± 44,655 2.35 ± 0.02 33.94 ± 1.03
Remnant B 0-10 109,122 ± 4,868 107,154 ± 5,394 2.45 ± 0.02 30.23 ± 2.57

Cleared 20-30 148,605 ± 23,156 147,674 ± 23,370 2.23 ± 0.02 31.10 ± 2.19
6 years ago 20-30 132,175 ± 6,225 130,987 ± 6,168 1.75 ± 0.04 29.62 ± 1.21
7 years ago 20-30  83,263 ± 3,646  82,164 ± 3,972 1.81 ± 0.02 31.08 ± 1.53
8 years ago 20-30  97,826 ± 38,196  96,867 ± 38,279 2.15 ± 0.04 30.68 ± 2.99
10 years ago 20-30 122,997 ± 48,767 121,414 ± 48,833 1.80 ± 0.02 31.73 ± 1.73
Remnant A 20-30  80,713 ± 25,282  79,354 ± 24,953 2.19 ± 0.02 32.21 ± 1.04
Remnant B 20-30 125,440 ± 65,941 124,447 ± 66,100 1.55 ± 0.05 28.22 ± 2.68

Site 0.091 0.088 0.497 0.016
Depth 0.194 0.270 <0.001 0.001PERMANOVA 

P values Site x Depth 0.598 0.704 0.412 0.084
8



9 Table A4 Effect of restoration chronosequence sites and soil depths on trophic modes assessed by permuted analysis of variance 

10 (PERMANOVA), with P values < 0.05 in bold.

Rarefied abundance Richness 
Trophic modes

Site Direction 
of effect Depth Site x Depth Site Direction 

of effect Depth Direction 
of effect Site x Depth 

Symbiotroph <0.001 Variable 0.368 0.825 0.028 Variable 0.187 0.788
Saprotroph <0.001 Variable 0.581 0.357 0.004 Variable <0.001 Decreasing 0.609
Pathotroph-Saprotroph <0.001 Variable 0.077 0.544 0.004 Variable <0.001 Decreasing 1.000
Pathotroph <0.001 Decreasing 0.221 0.354 0.008 Variable <0.001 Decreasing 0.125

11
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13 Table A5 Soil characteristic values across restoration chronosequence sites. Mean values and standard deviations are provided (n 

14 = 3 for each site).

Site Depth
(cm)

Nitrate 
(mg/Kg)

Phosphorus 
(mg/Kg)

Ammonium 
(mg/Kg)

Sulphur 
(mg/Kg)

Organic 
carbon (%)

pH (H2O) Soil moisture (%)

Cleared 0-10 16.00 ± 2.00 20.67 ± 4.41 6.67 ± 0.88 5.23 ± 0.13 3.15 ± 0.23 5.60 ± 0.06 2.49 ± 0.11
6 years ago 0-10 7.67 ± 0.88 11.33 ± 0.67 10.33 ± 1.20 4.90 ± 0.35 2.98 ± 0.16 5.63 ± 0.03 2.33 ± 0.23
7 years ago 0-10 7.33 ± 3.28 16.00 ± 1.15 7.00 ± 1.00 7.03 ± 0.68 4.87 ± 0.09 5.67 ± 0.07 3.96 ± 0.34
8 years ago 0-10 0.83 ± 0.17 8.33 ± 1.86 12.67 ± 1.86 4.27 ± 0.46 3.03 ± 0.62 5.80 ± 0.12 2.63 ± 0.33
10 years ago 0-10 3.00 ± 0.58 11.00 ± 1.00 7.00 ± 2.08 5.57 ± 0.52 4.15 ± 0.19 5.30 ± 0.06 2.64 ± 0.22
Remnant A 0-10 1.17 ± 0.44 11.00 ± 2.08 12.33 ± 2.73 5.53 ± 0.87 4.27 ± 0.23 6.10 ± 0.32 4.26 ± 1.04
Remnant B 0-10 3.00 ± 0.58 8.00 ± 0.00 6.33 ± 1.20 6.87 ± 1.11 3.74 ± 0.18 6.17 ± 0.24 3.34 ± 0.35

Cleared 20-30 12.67 ± 3.79 17.00 ± 6.56 <1 2.40 ± 0.36 1.46 ± 0.28 5.70 ± 0.26 4.66 ± 1.56
6 years ago 20-30 4.00 ± 1.73 7.33 ± 0.58 5.67 ± 3.51 2.50 ± 0.70 1.38 ± 0.14 6.10 ± 0.17 3.55 ± 0.69
7 years ago 20-30 6.67 ± 3.06 6.67 ± 0.58 2.67 ± 0.58 3.73 ± 1.29 2.03 ± 0.52 6.10 ± 0.10 2.41 ± 0.89
8 years ago 20-30 3.33 ± 1.53 3.33 ± 0.58 8.33 ± 3.21 2.43 ± 0.32 1.18 ± 0.02 5.63 ± 0.06 1.78 ± 0.30
10 years ago 20-30 1.67 ± 0.58 4.00 ± 0.00 3.00 ± 1.00 2.47 ± 0.06 1.97 ± 0.25 5.87 ± 0.15 2.59 ± 0.26
Remnant A 20-30 4.00 ± 2.83 4.33 ± 0.58 4.33 ± 0.58 3.50 ± 0.66 2.09 ± 0.56 5.73 ± 0.15 3.82 ± 0.81
Remnant B 20-30 2.67 ± 0.58 4.33 ± 0.58 5.33 ± 4.93 3.83 ± 1.36 2.00 ± 0.46 5.73 ± 0.12 4.16 ± 0.45

15
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18 Table A6 Effect of restoration chronosequence sites and soil depths on soil characteristics assessed by permuted analysis of 

19 variance (PERMANOVA), with P values < 0.05 in bold.

Variable Site Direction of effect Depth Direction of effect Site x Depth
Nitrate  <0.001 Decreasing   0.380 0.339
Phosphorous  <0.001 Decreasing   <0.001 Decreasing 0.686
Organic Carbon  <0.001 Increasing  <0.001 Decreasing 0.223
pH (H2O)    <0.001 Variable   0.619 0.880
Soil moisture  0.027 Variable   0.980 0.010
Ammonium  0.006 Variable  <0.001 Decreasing 0.577
Sulphur   <0.001 Increasing  <0.001 Decreasing 0.894

20



21

22 Figure A1 Non-metric multidimensional scaling plots of dissimilarity of the 

23 restoration chronosequence sites based on Jaccard distance matrix of rarefied 

24 fungal ITS OTU abundances. 

25



26

27 Figure A2 Stackplot showing changes in rarefied abundance of fungal phyla. 

28 Rarefied abundances of the dominant fungal phyla and rare fungi at (a) 0-10 cm and 

29 (b) 20-30 cm depths across the restoration chronosequence.

30



31

32 Figure A3 Stackplot showing changes in rarefied abundance of fungal classes. 

33 Rarefied abundances of the dominant fungal classes and rare fungi at (a) 0-10 cm 

34 and (b) 20-30 cm depths across the restoration chronosequence.



35

36 Figure A4 Stackplot showing changes in trophic modes across the restoration 

37 chronosequence. Rarefied abundances (a) and richness (b) of the dominant trophic 

38 modes across the restoration chronosequence.

39



40

41 Figure A5 Distance based redundancy analysis (db-RDA) of the soil 

42 physicochemical variables and fungal community based on Bray-Curtis distance 



43 matrix of fungal ITS OTUs. The db-RDA ordination is shown before (a) and after (b) 

44 variable selection tests.



45

46 Figure A6 Distance based redundancy analysis (db-RDA) of soil physicochemical 

47 variables to explain variation in the fungal community based on Jaccard distance 

48 matrix of fungal ITS OTUs. 

49


