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SUü}TÀRY

In thls thesis !Ie lnvestigate grouPs of even order

contalnlng. an lnvolutlon whose centraLLzer l-s f somorphlc to

GL(2r3). The aim of the research !ras to glve an elementary proof

(that ls, wlthout the use of character theory) that the only such

groups wfth the addl t lonal proPerty of havl-ng no subgrouP of

lndex 2 are the sinple groups PSL(3'3) and Mtt'

Followl-ng the lntroductton, chapter one consLsts of a

few prellmlnary general results together wlth some Propertles of

the group GL(z ,3) .

In chapter two we prove a few results about a group G

satisfying the above two propertles. In partlcular rre show that

there are four posstbtlfties for the structure of the normaLLzet

of a group of order 3 contaLned l-n the centrallzer of an

Lnvolution. Each of Èhese cases 1s dealt wlth seperately in the

ensuing chapÈers.
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INTRODI'ClION

Lf G 1s a group of even order' then G contal-ns an

eÍement of .otder 2. Such an elemenÈ ls called an lnvolutlon. It

was Brauer who first reallsed the lnportance of lnvolutlons in

finite groups of even order. Durlng the late forties Brauer had

observed that some very slnple propertl-es of involutions can be

used to prove some surprlslngly strong results concernlng the

structure of groups of even order. Uslng such results Fowler l-n

his thesís (t111) gave a characterLzaElon of the groups SL(2,2n)

in terms of lnvolutl-ons. In these groups the centtallzet of an

involution l-s an abellan 2 - group. Fowler proved Èhat thls

property actually characterLzes SL(2r2o). (The centraLlzer of an

element x ín a group G ls def l-ned to be CG (x) = {g e G 1 xg =

cx) ).
The following result apPeared ín a paper by Brauer and

Fowler in 1955 (t51).

"If G Ls a

1f

group of

n=g/m then

even order g which contains m

there exists a proper normal

a subgroup of the

¡ ,, (n+2). rn
2

involutfons and

subgroup L of G

symmeÈric group

particular lC:ll

such that G/L is isomorphic to

on t letters wf th t = 2 ot t

2 ox lc:ll ( [n@l l"
2

If G is simple then L must be trlvial and g ( ¡tr (n+2)11
2

Let z be any lnvolutlon of G. Then I C:Cr(") | J m g/n, hence n

2

Thls ytelds the following result.
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"There exl s ts only a fLntte number of slmple grouPs G

whl-ch contaLn an lnvolutlon z such that the centtalLzer C"(z) of

z ln G ls l-somorphlc to any glven group"'

Thls result suggested to Brauer the posslbltty of

classlfylng slmple groups of even order tn terms of the structure

of the centr aIlzet of an lnvolutLon. This ProPosal has come to

be known as Brauer-s programme. Thts rdas explicttly proposed fn

a talk he gave at the Internatlonal Congress l-n Amsterdam in L954

(t2l). \

By a result of Feit and ThomPson (t101) all non-abelian

contal-n involutions.slmple groups have even order and hence

This result striktngly relnf orced Brauer-s contentlon that the

structure of a simple group is intlmately connected \^'1th lts

involutions.

As an example of this programme Brauer announced the

following theorern ( t2]).

"suppose G is a grouP of

the f ollowing condl-tlons.

(1 ) G contains an ínvolutlon

isomorPhíc to GL(2'q).

(2) If c l-s an element of the

ca(c) = c"(z)'
(3) c' = G

f1

finlte order r¿hlch satisfies

z whose centraLlzer Cr(z) is

centre of Cr(z), t.hen

(3) then G 1s lsomorPhf c to

addltlonal case that G can be

order 792O.

c * 1,

Tn. q

PSL(3,9). If

isomorphlc to

Thi s

then PSL(2 , q)

-1 (4), q

3, we haveq

the

was

the

sinple Mathieu grouP of

the flrst classlfication sinple groups other

proof dld not aPpear

of

Ln terms of involutl-ons. The

2



unÈ11 1966 when

ln t4l.
"Let G

(1) There

Brauer proved the following more general result

be a flnite group whlch satisfles the condltlons

exlsts an lnvolutlon z of G whose centraLtzer

C"(z) is lsomorphtc with

where L l-s a subgroup of

a group of

the centre

the form

z(GL(2,c))

cL(2 , s) /t'
and where

(2)

e = -I (4)

The group G

lle then have

does not have a norrnal subgroup of lndex 2

one of the cases.

(a) ç ! PGL(3,q), PSL(3,q) or s.L(3,q)

(b) G ls lsonorphic to a dírect product of PSL(3,q) wlth a

cyclic group of order 3, 9 = I (3), q f 1 (9)

(c) c 4 Mtt the Mathieu group of order 7920."

After elementary prelíminaríes Èhe proof ls divided into

2 cases accordlng to whether q3 llCl or not. In both cases the

theory of blocks is heavily used. The first case ís concluded by

appealing to a prevl-ous characterisation of PSL(3,g). The second

case is reduced to five nuneríca1 cases. Four of these cannot

occur whereas the ftfth ylelds Mtt.

I{e note that this theorem relles heavily on the theory

of characters and in fact almost all early characterLzatl-ons also

rely on character Èheory. trrle illustrate with a few examples.

In 1959 Suzuki generaLized both Fowler-s result (gtven

above) and a result of Brauer, Suzuki and I,Ia11 (t6l). He gave a

group theoretical characterl-zatlon of the 1 - dlnenslonal

unimodular ltnear fractional group SL(2,2n). The maln theorem in

lLTl sÈates.

"Let G be a finíte group of even order. If the

ceritral-lzer of any ÍnvolutLon ín G l-s always abelfan then \se have

3



one of the followlng three Posslbllltles.

(1) Sylow 2-subgrouPs of G are cycllc

(2) A SyLout 2-subgroup of G ls normal

(3) G ls a dlrect product of two groups L and A where L 1s

. one of the llnear groups St(2 r2o) and À ls an abeltan

gtónp of odd order."

The proof begins by assumlng the theorem false and then

studylng a group G of smallest order contradlct.lon the theorem.

Some propertles of G concernlng Sylow 2-subgroups and

centrall zera are proved. Then considbring a nore general group

satisfylng weaker condltlons, its structure and characters are

studied and a fornula for its order Ls derlved. Applylng thls

formula to the group G leads to a contradiction.

In a second paper on linear groups, in the same year,

Suzuki gave a characterl-zation of the 2 - dinenslonal linear

fractional groups over a fleld of characterlstic 2 by properties

of involutlons. This result is a counterpart to a sLmilar

characterization of these Sroups over a field of order 9, q = -l

(4) glven by Brauer (as stated above). suzukl- proves the

followl-ng theorem (t171).

"Let G be a f inite group of even order attd z an

involution of G. If the centraLtzer of z tn G is isomorphic wlth

the centraLlzer of an LnvolutLon ln the 1l-neat fractional group

GO ln 2 varLables over a f leld F of q elements' q even, âDd if

every involution of G is conJugaÈe to z, then G is lsomorphtc to

GO, with one exceptlon. The excepttonal case occurs when q = 2

and in this case hre have G 3 LF( 3,2) or G g 46."

Àfter an analysls of the structure of the centralLzer of

an lnvolution, the case q = 2 ts easlly settled by naklng use of

4



prevl-ous reaults. For the caae q ) 2 both the maln theorern of

the first paper on lLnear groups above and'fte order formula are

used several times. Then after a comPllcated study of lts

structure and characters, G ls shown to have a subgrouP M of

order q3 (q . l)2 (q + 1) and lndex q2 f q + 1. rn fact M ls the

norm aLIzer of an elementary abellan group P of orde r q,2. G ls

represented as a pertnutatlon group on the set B

,the q' + q + 1 conJugateB of P; G is doubly

Also G ls shown to contain a subgroup L of order

whlch consfsts of

transLtl-ve on B

not conjugaÈe

the points

q,2

to P. Suzukl- con6trucÈs a projectlve plane ln whlch

are elements of B and the 1lnes are the conjugates of L. Further

a pol-nt lies on a line tf and only Lf. the subgroups lnt ersect

non-trivtally. This ls shown Èo be a Desarguesl-an plane. This

enables Suzuki to tdentify G wlth the 1lnear fractional group and

complete the proof.

Finally rde mentLon a characteri zatLon of MtZ gf ven by

t{ong (t191) in terms of centrallzers of involutlons.

Speclfically he proves the following theorem.

"Let C(20) be the centrall-zex ln MtZ of an lnvolutlon zO

in the centre of a Sylow 2 - subgroup of MtZ. Let G be a fl-nl-te

group such that

(1) G contalns an lnvolution z whose centrallzer C"(z) in G

l-s lsomorphic to C(26).

(2) G does not contaLn 3 mutually non-conjugate lnvolutlons.

Then etÈher G ls lsomorphlc wlth MtZ or G has a unlque

nontrfvial normal subgroup N. In the latter case N is elementary

abelLan of order 8 and G/N l-s f.somorphLc with the sirnple SrouP

cL(3,2) of order 168.

The theorem Ls proved by means of computations r,vlth

5



characterB. ln particular, ln one of the caaea considered, G 1s

shown to be a slnple SrouP whose order le the saue a8 that of

Mtz. By a result of Stanton ([16]), G ls lsomorphlc to Mtz.

I^Ie should norJ ltke to mentlon somethtng about the known

flnlte slmple groups. By early thl's century the fanl-11-es of

classlcal sinple groups over a fl-ntte fleld had been discovered,

plus two exceptlonal fanilLes found by Dickson (see Diokson-s

book on llnear grouPs ( t 9 ] )). These togeÈher wtth the groups of

prlme order, the alternating groups and the five Mathleu groups

were the onIY known simPle grouPs.

Mathieu dlscovered his groups around 1860 in the search

for htghly transltive permuÈatlon groups. There are tIÙo 5-

transl_tive groups of degrees L2 and 24 denoted by Mtz and Mz4

respectively. The grouPs M11, MZZ and MZI are the natural one or

two point stabilizers; Mtt and MZI are both 4-transitlve, while

Mzz Ls 3-transltlve. They include the only known 4 and 5-

transitlve permutation grouPs aPart from the symmetrl-c and

alternatlng groups which are trivl-a1 exceptLons' The 5 grouPs

are all sluple and rePresent the flrst sporadlc simple grouPs'

Remarkably it took over a hundred years for the sixth sporadlc

sirnple group to be discovered.

In 1955 the f irst simple groups since Dickson-s time

were dlscovered by Chevalley. These fa11 lnto a framework whlch

nord includes all known inf inite f a¡nl-lies, the alternating groups

being the only exception. Stelnberg and others were then able to

construct the "twisted" groups as the flxed polnÈ subgroups of

certain automorphlsms of these groups. These Sroups are

collectlvely kno¡¡n as the groups of Lle type'

!le list the lnfinite fanilles be1ow. The groups llsted

6



may not

obtain a

central

be slnple; a central subgroup needs to be f acÈored ouÈ to

slnple group. The lnteger d denotes the order of thls

subg r oup.

Knosn Flnite Slmple Groupg

dG

z
P

I

IAn, n >

An(c)

Bn(q), n

Cn(q), n

Dn(q), n

c2(c)

F4(t)

E6(q)

r7(e)

n6(e)
2^lrr(q),

2trr(q),

2orr(q),

3n4(s)

2cr(t),
214(s),

2n6(e)

5

>1

>2
>3

n>1

q= 22m*. I

n>3

32n*1

(n

(2,

+ I

n

q - 1)

1)

1)

1)

1)

1)

1, q + 1)

1)

q * 1)

q

(2, q

(4, q

1

1

(3'

(2,

I

(n +

1

(4,

1

1

1

(3,

q

q

qn+

q

q 22mt'1

NOTE: An(q) should not be confused with the alternatl-ng groups

An. Also 
^n(q)/Z 

€ pSL(n,q) (where Z Is the central subgroup).

I{e also have the 26 sporadic sinple groups, so named

since they do not belong to any infinte fanfly. They are lfsted

below. The slxth sporadic sfmple group J1 was discovered by

7



Janko ln tgZO (t141). Ir rdas found when Janko trled to ellnl-nate

a partlcular Possfbtlfty fox the centtalLzer of an lnvolutlon 1n

a flntte sinple group. The otherB were dlscovered ln the

followlng flfteen Years.

Known Fl-irl-te SiuPle GrouPg

G

Mtt

Mtz

Mzz

vzl
Mz4

J1

J2

J3

J4

RS

Mc

Suz

Ru

He

Ly

ON

.1

.2

.3

14(22)

M(23)

24,

26.

27.

2i.
2lo .

23.

27.

27.

22L.
31.

29.

27.

2L3 .

2L4 .

zLO .

28.

29.

ORDER OF G

32.5. 11

33. 5. rl

32. 5. 7. tl

32.5. 7.11. 23

33. 5. 7 . 11. 23

3. 5. 7.11. 19

33. 52.7

35. 5. :r7. 19

22L .

zLB .

zLO .

2L7 .

2L8.
23

33. 5. 7.113. 23. 29.
37.43

32.53. 7.11

36.53. 11

37. 52. 7.11. 13

33. 53. 7 . 13. 29

33. 52.73. L7

37. s6.7.11. 31. 37. 67

34 . 5. 73. 11. 19. 31

39. 54. 72.11. 13. 23

36. 53. 7 . 11. 23

37. 53. 7. 11. 23

39. 52.7.11. 23

313. 52. 7.11. 13. L7.

I



G

Knosn FinLÈe SLr¡ le Groups (cont).

ORDER OF G

t4(2 4)'

F 5

F3

F2

F

221.
29

2L5 .

2r4.

24L.

316. 52. 73. r1. 13. 23.

310. 53. 72.13. 19. 31

36.56. 7.11. 19

I

19.

1 of this

class of

313. 56. 72.
23.31. 47

11. 13. 17 .

determining

a lemma of

be applied;

Thonpson-s

246. 320. 59. 76. LLz.133.
t7 . 19. 23. 31. 4r. 47 . 59. 7r

The above list ls believed to be the complete 1íst of

all finlte slnple groups. Although many have been characterlzed

by centrali zers of involutions relying heavlly on character

theory, tt is of lnterest to see 1f more elementary proof s can be

given. In parËicular, proofs without using the theory of

characters.

I.Ie renark that the main application of characters is to

Now lf the structure of thedetermine the order of the grouP.

group is not too complicated there are

this order. If there 1s one class of

other rdays of

Bender

and 1f

(t11)

there

(also see chapÈer

ís tnore than one

lnvo lut i ons

thesls) can

lnvolutions,

0rder Formula can be used.

An example of a

theory is gLven by Bender.

the simple groups PSL(2,7)

enough

Bender

charactetízation without character

he glves a characterization ofIn t1l
and A6 1n

lnvolutions. In this paper he proves

determlne the order of these groups. (In this case Èhe order is

to complete the charactertzatton)-

studies Janko-s flrst simple grouP

terEs of centrallzers of

a lemma whlch he uses to

In thls saue paPer

partlcular

9

J1 and ln



deternfnes l-ts order usfng theee elementary technlques.

The purpose of. thls thesls 1s to uae these ldeas to give

a characterLzatlor- of the elnple 8roup8 PSL(3r3) and Mtt ln terma

of centrall zeÊa of lnvolutlons. Spectf 1ca11y r¡Ie Prove the

followfng.

TEEOREI{

Let G be a ftnite group of even order with the following

properties

(a) G has no subgrouP of index

(b) G possesses an involutfon z whose centraltzex C"(z) in G

1s isomorphtc to GL(2,3).

Then G ls lsomorphic to PSL(3,3) or Mtt'

For the earller proof of thts result (due to Brauer and

I{ong) uslng character theory see t 13 l.

The proof of this theoreu uses Bender-s lemma many

tl-mes. I{e sha11 therefore make a few remarks concernLng the

1emma. To use the lemma we need to choose a suitable "large"

subgroup II of the group G and count the nuuber of lnvolutions in

each coset of I{ in G. From thl-s Ire can determlne the number of

Lnvolutlons ln G. This fact, together with Èhe structure of the

centra]-lzet of an lnvolution and the fact that there ls only one

class of involutions in G enables us to determl-ne the order of G.

In order to count the number of involutions ln each

coset we make use of the followlng observatl-ons.

Let u be an lnvolutlon of G-II and conslder the coset Hu.

Let v e llu be an involutl,on, v = hu for some h ln II; thls l-rnplles

h=vu.

N or¡

hu = (vrr)u = uvuu = uv = (vu)-l = h-l

10



Thus u lnve rt I h.

Conversly suppose u lnverts an element h of H' hu = h-1

Then v = hu ls an lnvolutlon of the coset Hu slnce

2v huhu = hhu = hh-l = 1

. Thus the number of elements ln the coset Hu is equal to

the number of elements of H inverted by u. All of these

belong in the subgroup HrtHu. Thus a knowledge -of H^Hu

to deterDlne the number of involutions 1n the coset Hu.

To conclude this introduction Í¡e

of our theorem. SuPPose'G is

give a brief outline of

the proof

saÈisfies

order 3 ln

a finite group which

the assumptious of the theorem. Let x be an element of

elements

may help

C"(z). After some inltlal results

that Nr((x)) has a normal 2-complement A'

possibillties f or the structure of A' Each of

about G r,/e prove

There are four

these is treated

seperately in a different chapter'

In chapÈer 3, A 9 23, here ú/e prove the existence of â

certain type of subgroup M. The subgroup M satisfles the

conditions:

(i) (lr'rl, 6) = I

(íi) lnr(u)l rs even'

and M is chosen maximal subject to (i) and (ii). There are

varl-ous possibiliÈíes for Nç(M), many of r¡hich are elinlnated by

using Bender-s 1emma. I.Ie eventually obtain a Possible order for

G and then show that G is sharply 3-transitive in lts action on

the Sylow 5-subgroups. A conÈradictíon is obtained by

considerlng the structure of the subgroup fixing two letters'

In the other cases af ter proving more propertíes of G we

choose a subgrouP H, apPly Bender-s lemma and obtain the order of

G. Once the order is obtained !re proceed dif f erently ín each

11



caae. In chapter 4, ¡ € 23 x Z3 x 23, tt l-e trf vlal to obtaln a

contradictlon. The caBe A non-abellan of order 27 ylelds the

group PSL(3,3) whlch ls fdentlffed uslng a paPer of Brauer's

(I3I), rhfs Ls done ln chapter 5. In the f1na1 chapter A e

2,3 x 1.,3. Bef ore identf fylng the grouP Iùe flrst need to show that

1È has a "úbgtonp of lndex 11, which Ls done uslng generaÈors and

relatfons. Once we have thle subgroup If,e rePresent G on the

cosets. Thls leads to an ldenÈifLcatlon of G wl-th Mtt.

t2
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CEAPTER ONE

ASSUMED RESULTS AND PROPERTTES OF GL(2,3)

rrrl-th a few as6umed resulte whlch ¡¿f11 be usedI^le begln

at varlous places

slnple consequence

argument.

l-n the proof of our

of Sylow-s theorem,

theorem. The flrst 1s a

tt 1s know aa the Frattlnl

( t 12l

H<G
Theoren (1.3.7))

and P is a Sylow p subgroup of H, then G

The next two results are slmple appllcatlons of the

transf er homomorphlsn.

BURNS IDE - S TRANSFER TIIEOREM

If P ls

G has a normal p

a Sylow p - subgroup of G and Nc(P) = Cç(P)

complement.

then

PROOF

Sl-nce Nç(P) = cc(P), P J z(Nc(P)),

follows by Theorem 7.4.3 of (t121).

the result nord

TIIOMPSONS TRANSFER

Suppose G

is a subgroup such

lnvolutlon in G 1s

The next

TIIEOREM ( [ 13 ] Lenna xII. B. 2.)

L s a group w t th no subgroup of l-ndex 2 and R

the I C:n I f" twice an odd number. Then any

conJugaÈe to any involutlon fn R.

two results are not readlly found in the

1l-Èerature¡ wê therefore include a proof.

LEMMA (1.2)

Suppose z ls an lnvolutl-on normaLLzLng a subgroup H of G

rsith the property that C"(z) = 1. Then z Lnverts H, that ls

13



hz h-l for all h e H, H ls abell-an and H has odd order'

PROOF

Thls

all

-1

that

have

h-l,

zh2z

-1 e

Conslder the map O: H Ð H deflned by O: h t) h-

map well-deflned as z normalLzes H ao that zhz e H

h e H.

If e(h1) e (hZ) f or some hl, h2 e II then hl :1

L zhz.

for

zÞ.lz

that 1s

1
h2

h2 by definltl-on of 0. But then -1 -1z}:rl:.2 - = hthZ -2,

rüe conclude that hchthz ,1( z ). And

therefore

because c"(z) 1

The map l- s

e II then there exls ts hl e Il

h-1. Takl-ng

whence ht-t

first result.

ZeHthen

\
1 and hence onto.

the inverse

zhlz zhz.

such that e(hf ) = h-1

of thl-s expres slon r.7e

Equat lng gives hz =

I

Let h

-1is hl -zl:,

"ht- 
1 

"h1

TZ

h

whlch ls the

(h1h2)

And as

whi ch irnp 1i e s

fî. II

But then hz = h-l

has odd order.

LEMMA (1.3)

LeT M

inverÈed by an

Then N

PROOF

Let n e

Let hl, h

-1 = (:n1in2)z

-1(h1h2) ^ =

-'r -1h1 -hz
_1 -1have hl - hz -1 -1h 2 h1

hr"
-1 h

hz"
-1

1 IúC

zar^dC

(M) (z) -

h 2

that II Ls abelian.

has even order then II coDtains an involutlon

h, so that h e C"(z) a contradiction'

be a subgrouP of

h say.

Thus II

odd order in G. SuPPose M 1s

c(M) = u.

m e M then (rr-1zn)n(n-1zn)

as z tttverts M and nmn

invo lutlon

c(M) = 
"a*o

Nc(M) and

-t(rrr-1rr-1¡no-lr(nmn-1)t' =n

L4

-1 ¿M



Thus (t-1"n)n(rr-l rrr) 4 n-l = zmz henc e(zn-L 'n)rn(n 
l'n'¡ = m that

1s n-L rn, c ca(n). Thfe 1s true for all n e M, therefore

n-l r, . e CG(M) = M and ao o-\.n e l'lz, whleh ls true f or all n c

NC(M). It follows that þI(z) ls a nornal subgroup of Nc(M)' As M

has odd o rð.er 1z) is a sylo w 2 - subgroup of M(z) so the Frattlnl

argunent yfelds Nc(M) = M(z)N*U1r,r¡((z)) = 
"t"q(u¡(z)'

The followlng formula waa discovered by Brauer and Èhe.

result has been genera]-]-zed by I.Iielandt 1n (t181) (for which

Brauer-s result ls a speeial case); 1È ls know as the Brauer-

l,Itelandt formula.

TIIE BRAUER.I{IELANDT FORMULA

suppose Aut (Il)

f. denote the
1

Then f o2h = f 1

group g0

points

For

G, H of odd

<01,e2> e3

H by e;,1 =

order h and

e e Let
1 2

3

H<Let

a4

fixed l-n 210

conÈains

number of

fzrr

s ince

followlng forn.

CORALLARY

our purposes we require this formula l-n the

lc"{v) l2lnl=lc"("r) I lc"('z) I lc"(v3) |

(1.4)

LeÈ 1I be a subgroup of G of odd order and suPpose Nç(II)

contal-ns a 4 group V (v1,v2),v3 vl v2

Then:

it is

The followl-ng lemma l-s Proved

crucial for our theorem we shal1

by Bender in (t1l).

include proof.

BENDER-S LEMMA

LeËGbea

where J denotes the

Furthermore define

group with a subgrouP

set of lnvolutlons in

H such that l.l I >

G

Jo = ser of u e J-H such that Inun Jl

15
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b number of cosets Hg
n

r>0
c = nunber of u e Jl such

l.rl
lc:ttl

# n such that ltten .I I

that c"(u) # 1.

r.

=rl

= c * the

1, so h

(1)

(2)

(3)

PROOF

Flrstly

numberofu€J,

Letue

If ,rh =

= k; also uh e

i nvo lu tl ons

To

lc:nl = 1 +

l¡l lc:nl
SLnce l.l I

of Jl

NoÈe that l.f o I = ob' Then

l.l'l = l¡nsl + bl + Zbz + 3bg +

bl = c t t< I tt I f or some non-negat lve lnt eger k

bl <

(1) Ls obvlous. For (2) note that bl

such that C"(u) = 1.

J, be such that C"(u) = 1

uk for some hrk c H, then hk'le Ct(u)

J 1'
such

prove (3)

b0+bl+

= l.rnnl -
lc:ul = f

Therefore

rhar c"{uh)

note that

bZ hence

1-b0+b2

lc:ttl

(1)

+3b¿+

rh, for h e H, are distinct

1 (2) now follorda.

us lng

+ 2bz

fbr = l¡l
So that

lc:ttl

b1

and as

f-1(l¡anl 1 bo+bz+2b3+ 3b4 + ...)-1-bO-b2-b3-...

Èhe lnequalltY f olloIùs.

notatl0n def tned in this lemma ¡ct11 be f lxed
bo>o

All

Èhroughout thls Èhesis. This lemma

one clas s of lnvo lut tons r ln tht s

alternate expresslon for f

1s used when the grouP G has

case Ire have the followlng

16



f l.rl
lc:ttl

I lc:c.(Ð1
lc:ttl

lcl/lc

1

(") | IG

lcl/lttl
= lul 1

lc.{r) I

so f = ltt I - 1, where z ls an involutlon of G.
lc.{z) I

In chapter 3 we show that the grouP concerqed is a

sharply 3-transltlve Perrnutatlon group in whlch the subgroup

fixfng trdo letters l-s isomorphlc wlth SL(2 r3). The following

lemrna shows that no such group extsìs. This resulË appears ln

Passman-s book on Permutatl-on grouPs (t15]). I^Ie sha11 lnclude

the proof since 1t ls an interestlng one.

LEMLÍA (1.5)

Suppose G ls a sharply 3-transitíve permutatlon group on

a setl2, süppose also that 3 | lCg* l where 0 r* are two polnÈs Ln

-C)-. Then GO* has precisely one subgroup of order 3.

PROOF

Let urv be tldo distinct elemerits of order 3 ln G0*.

These elementa flx O and * but no other polnt as G 1s sharply 3-

trarisltl-ve; therefore they have the form

u = (0)(*)(1 2 3)...

v = (0)(*)(1 a b)... with a,b f 2,3 respectlvely.

Choose g e G wlth g = (1)(2 3)... Then ug = (1 3 2)".

The element ,ttB f lxes the three points 1r 2 anð, 3 so as G is

sharply 3-transltlve thls element l-s trl-via1, hence ug = u-1.

Nor¿ g must send the pol-nts flxed by u to the points

-1fixed by ü-r, hence g permutes the set {0r*}. Slnce g already

has 1 fixed polnt nanely 1, we must have

r7



c

Now

h

3)...
G wf th

(0,*)(1)(2

choose h e

(i 3 3: :>

Then t -1,rh f ixes the three pol-nts 1, a and b, hence

,-lrrh = I so that uh = v. Sl-nce u f v, h t 1. Now h must send

the pol-nts fixed by u to the points flxed by v and hence Permutes

the set iO,*Ì. Since h already has one f lxed point, naneiy I rrre

three pointsmust have h = (0,*)(1)... But now C and h agree on

and hence are equal. Thts Yields'

v uh = ug = u-1'

Thus Go* must contain precisely one subgroup of order 3.

The group PSL(3,3) occurs ln chapter 5; a paper of

Brauer-s (t31) is used to idenÈify tt. In this paper Brauer

considers a set of postulates for a grouP G which permits hin to

define a projective plane 7Ì ín terms of G. G has a natural

represenÈation by collineations of TI-. These postulates are the

following.

(I) G contains a 4-grouP V, V = (v,v1), v2 = vvli and there

exists an element of G which permutes the l-nvolutlons of

v.

(II) There exist subgrouPs M and M* f 1 of G with the

(rrr)

subset

subset

fo1lowÍng ProPertles

(a) M and M* have the sarne order

(b) c6(v) < Nc(M) and cç(v) < Nc(M*)

(c) MrrM* = M^cç(v) = u*/t c6(v) = f

All lnvolutlons of Cç(v)-(v) are conjugate in Cç(v)'

I,Ie have the following definitions' A point p 1s a

of G of the form p = g-1.'Mg r¡tth g e G' A 11ne r is a

of G of Èhe form r = g-lvlt*g with E e G. The point p

18



liee on the 11ne r' Lf.

point's and llnes. For

r(r) :

Under

Ø rne plane 7T 1s the set of all

elernenttofGthe mapping

of 7la colllneatlon

1t 1s shown that
*

*M2

Èhese aasumptl-ons
*ÌfrxM2andM =MI

Ìf rì Cç(v1)

= M*rì ca(v1)

I = lurl = lur*l =

PI,pÞ

P^r
a flxed

r Þ tt 1e

lrur* |

*

wher. Mi

M

"r*
l"r

I"I e

Every

Then

and

and

(rv)
(v)

2Il_

q

also need Èhe following trdo postulates

lc:uc^(v)l (
u

2q +q+1

class of Ca(v) conJugate elemerits of l'l

ne have the following result whlch 1s

meet" Ml.

Theorem (4D)

of t3l.

LEMMA (1.6)

The grouP

is cyclic, GO/K is

odd order.

G has a chief serl-es G >

l-somorphtc wfth PGL(3'q) or PSL(3,q) and K has

cO ) K > 1 r¡here C/GO

For q f I (3) the grouPs PGL(3,q)

In chapter 6 we have occasfon to

in terms of generators and relatlons. The

be used (t8l).

LEMMA (1 .7 )

Let

satlsfy the

R3

and PSL(3,q) col-nclde.

consider groups defined

followlng results will

G be a group generated by the elements R and S which

following relatlons

s3 = (RS)4

Then G ls the slmple grouP

(n-1s)4 = 1

PSL(2,7) of order 168.

19



LEMMA

saÈlsfy

(r)
(r.1)

Then G

for the

(rl)
Then G

LEMMA (1.9) r

Let G be a group satisfytng either of Èhe conditlons

(f) G is generated by the elements r' m' n which satlsfy the

following relations
11 3 1r ( rn)

Let G be a group generated by the elenen.ts R and S whfch

one of the followlng relatfons

R3 = s4 = (ns)5 = (R-1s-1ns)2 = 1 or

R4 = s5 = (ns¡2 = (n-15¡5 = 1

1s fsomorphlc to 46.

To ldenttfy M11 tn chapter 6 we use the followlng result;

flrst part see [8] for Èhe second see Í71 Page 151.

G = <(1,2,3,4 15,6,7 18r9,10r11)r(3,7,L1-r8)(4,10,5r6,))

1s lsomorphtc to Mtt.

Since the centraLlzer of an lnvolutl-on of a group 1n our

4n5
m

4t andmr mû=a2

theorem l-s l-somorphlc Èo GL(2r3) w'e sha11 need to know aome of

lts properties. I^Ie state Èhese without proof.

Let Co = GL(z,3), then Cg l-s a grouP

Its centre Z(CO) = (zg) has order 2t CO

quaternlon subgroup Qg which is therefore

SL(2,3) Ls the unique subgroup of lndex

quaternl-on Sylow 2-subgroup.

Let S0 be a Sylow 2-subgroup of CO.

dihedral and SO has subgroups of lndex 2

4or order 48 2

contaLns a unique

CO, and

and has

is seml--

cycllc,

XO ls a

3 ,

quaternion and dihedral of order 8; and NCO(SO) S If0

wher. V0 l-s a 4= xovo

dihedral

normal ln

2l-n C 0

Then SO

whi ch are

Sylow 3-subgroup of CO then N6r(X9)

group of CO. Also rde have NCO(VO) fs

20
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Theelement6ofCg.(26)haveorders2,3,4,6and8and

thelr centralfzerB 1n Co have orderE 416r8r6 and 8 respectlvely'

The elements of c6-(zg) each form a slngle conJugacy class ln cg

th.e lengths of these classea are 12r816 and I respectlvely. In

partfcular Co-(zg) contalns L2 lnvolutlons. The elements of

order I form tI'7o classes both contalnlng 6 elements; an

element of order I is not conjugate l-n Cg to lts l-nverse'

Finally Qg contalns all elements of order 4 ln CO'

sL(2 r3) also contains a1l elements of .order 3 and c0 Ls generated

by l-ts lnvolutLons.

I{e conclude thls chapter wLth the fol1owlng notation

whlch ls fixed thoughout Èh1s thesis'

I,le denote by G a group satlsfylng the conditions of our

theorem and z Ls an involuÈion of G whose centra]. lzer in G l-s

isomorphlc to GL(2,3). Let Ç = cr(z), s be a sylow 2-subgroup of

C and a the unlque quaternlon subgroup of C ' Let t be an

involution of C-(z) and denote by V the 4-grouP <zrt2.' Finally

let X be a subgroup of order 3 tn c lnverted by t. (!te note that

there are Èwo posstble choices for such a subgroup x).

2l



CEÀPTER TIJO

PRELII,ÍINARY RESULTS

Thts chapter consists of a few baslc proPertles of the

group G. !ùe begln wl-th an easy lemma.

LEMMA 2.r>

Nc(s) S and so S is a Sylow 2-subgroup of G

PROOF

As z(s) = (z), 1z) char s sò (z) <l Nc(s). Therefore

Nc(S) < NG,((z)) = C. It follows now that tla(S) = S'

The next result concerns the eonjugacy of lnvolutlons l-n

G.

LEUMA (2.2)

The group G has one class of involutions.

PROOF

Flrstly by assumption G has no subgroup of Índex 2.

Secondly as S 1s a Sylow 2-subgroup of G, lC:Ql fs twice an odd

number. So any involution in G l-s conjugate to an involution in

a by Thonpsons Transfer Theorem. Slnce Q conÈains only one

involution z, all involutions of G are conjugate to z, the lemma

f o11ows.

The following result deals with the conjugacy of

elements of order 3 centraLl- zed by involutlons.

LEMMA (2.3)

The elements of G of order 3 centta1-ized by some

lnvolution form a slngle conjugacy c1ass.

22



PROOF

- Let b be an elenent of order 3 ln G centralfzed by an

Lnvolutlon v. By lemma (2.2) z = v8 for aome E in G. So as

b . cc(v), 68 " cc(.,r8) = c

And as the elenenÈB of order 3 1n C form a single conJugacy class

the elernent s of order 3 1n G ceritr artz ed by some lnvolutionJ-n C,

form a slngle conJugacy class l-n G.

I{e also deterrnine the number of conjugacy classes of

elements of order 4, 6 and I ln G.

LEUMA (2.4)

The elenents

conJugacy class. There

G.

PROOF

involution and so Ls
,CG(b') sone conjugate

of elements of order

order 4.

of order 4 and 6 tn G each form a single

are two classes of elements of order I 1n

Let b be an element of order 4

conJugate to z by

of b ts contained ln

4, G must have one

tThen b' is an

(2.2). As b e

C has one class

of elements of

in G.

lemma

C. As

class

The same reasonl,ng applles

an l-nvolution and C has one class of

tf b has order 6 s Lnce b3 i s

elements of order 6.

Suppose now

b ls contaLned ln C

8, G has at uost two

cannot be conJugate to

for some g in G. Then

Lnverse; suppose
g - b-4 whlch is

that b has order B. Then some conjugate of

As C has two classes of elements of order

classes of elements of order 8.

Conslder b e C, b an element of order 8 I.Ie claim b

let bg = b-l

that is g e

Theref ore b

so andl-ts

(b4) o
zc)

C. However b Ls not conjugaÈe to lts fnverse in C

23
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1s not conJugate to
classes of elements

The next

6tructurea for the

the cent ra]-Lzer of an lnvolutlon. Each

conaidered seperately.

We have Cc(X) A(z) and

I.Ie conclude that G has two

there are four possible

1t s invers e l_n G.

of order 8.

lemma shows that

normaLtzer ln G of a subgroup

of these

of order 3 Ln

caaes must be

LEMMA (2.5)

eleuentary abelian

27. Furthermore A

of order 3r9 or

AV where A fs either

non-abellan of order

Nc(X) =

27 or Ls

PROOF

Let R be a Sylow 2-subgroup of Cc(X) contal_ntng
Sinc" CR(z) SCCç(X¡(z) = CC(X) ts cycltc of order 6, C*(z)
and hence R = (z) (either z e z(R) or z Ls centtaLrzeð.
elemenr of z(x)ll ). As (z) 1s a Sylo w ,2-subgroup of cc(X),
has a normal 2-complement rA say, by Theorem 7 .6.1 of ,tL2l.

(z).

(z)

by an

cc(x)

Thu s

Cc(X) = A(z). Furrher A < Nc(X) and Ua(X) = AV.

Actfng on A by the 4-group v !re have, by the Brauer-
I"Iielandt formula, that

lel = lco<")l lco(zt) I lco{t¡l
(since C4(V) = 1)

Now co(z) has order 3 and co(zt) and cA(r) have order I
or 3 ( l¡.1 uetng odd)r so A has possibre orders 3, 9 or 27. rn
the first two cases A 1s elementary abellan and in the latter
case A 1s elther elemenÈary abelian or non-abelfan of orde t 27.

I',Ie 1is t the f our possible cases to be considered.
(A) A=23

(B) A - Z3xZ3xZ3

Case

Case

24



Case (C) A non-abe1lan of order 27

Case(D) AÉZtxZ3

I.¡e conclude wtth a result on a proper non-trlvlal normal

subgroup of G, tf there ls one.

LEMMA (2.6)

Elther G ts slnple or a proper non-trlvlal normal

subgroup has ordet 27.

PROOF

Suppose G l-s

normal subgroup of G.

lnvolutLon and hence

not slmple, 1et

Tf L has even

all LnvolutLons

L be a proper non-trívfal

order then 1t contalns an

by lemma (2.2). As C is

ln partLcular S ( L. The

L (tn

by the

generaÈed by its l-nvolutlons C

FrattLnl argument ylelds, sLnce

fact of c) by lemma (2.L) that

S is a Sylow 2-subgroup of

<L and

G tNc(S). I'lhence G

L has odd order.

L

same lemma a contradictlon. IIence

Actl-ng on L by the 4-group V we have

lll = lcl(z)l lc"(zr)l lcL(r)l
And as z - zt t l-n G,

lc"{r)l = lcr(zt)l = lcr{t)l
and theref ore lr,l = 27 .

3
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CtrAPTER TEREE

CASE (A) L =23

throughout thls chapter suppose that NG(X) =

It f ollor¡s f rom Sylow-s theorem that X ls

s,tbgroup of G and hence G has one class of elements

The followlng lemma 1s easlly proved.

LEMMA (3.1 )

The group G is sinple.

PROOF

If G contaLned a proper non-trivial

would have order 27 by lemma (2.6). As G

xv.

a Sylow 3-

of order 3.

s ubg r oup of such order G

The following

subgroup of G.

normal subgroup L, L

does not contain a

i s slnple.

lemma shor¿s the existence of a certain

It is the norma1-tzer of thls subgroup

f or us ln determining the order of G.

t yPe

Ëhat

of

w111 be Ímportant

LEMMA (3.2)

There exists a subgroup M or order m such that (nr6)

and I na{u) I r" even.

PROOF

Consider the set {"x i x

of involutlons x for which zx has

e J i. I^Ie determlne the number

order 1, 2, 3, 4 or 6

There l-s one

where the order l- s 2

Let zx have

1

for whlch zx has order 1 and 12

l-nvolutlons of C-(z)).

Thus z tr.vert.s zx and every

Suppose z

l-nverts kany lnvolution

involutlon

(nanely the

order 3.

elemenË of order 3 inverted by z Ls of thls form.

inverts k elements of order 3. Then

elements of order 3 by lemma (2.2).

26
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l C:Ca("*) I elements of order 3 each l-nverted by 6 lnvolutlons and

aa there are l¡l tnvoluÈ1ons, r{e have tl.¡l = 6.23 l.¡l; that fs, k

48. Thus z trtverta 48 elemenÈs or order 3. Sinllarly z

fnverts 24 and 48 elemen.ts of order 4 and 6 respectlvely.

therefore the number of Lnvolutlons x for whfch zx has order 1,

21 3, 4 or 6 ls

1+L2+48+ 24 + 48 = 133 = 7.I9.

l-nvolutlon x, l"*l = o wlth (nr6)

then l¡l = 7.I9 ¡¡hence

For any other 1. 9o

lf there axe no such x

lcl = 24.3. 7. 19

In this case 1et P be a Sylow 19-subgroup of G. Then

lca{p)ll7.Lg and as llurqr¡l = 18 = 2.32 and lua{r)l ts odd,

lNc(P)113.7.rg. Ilence24 llc:wa{e)land so lc:na{r)l =24.* wrth

x a dtvlsor of 3.7. As 24 = 16 = -3 (19), -3* = 1 (19) by

Sylow-s theorem. Now x = 1, 3, 7 ot 2l none of whlch satlsfy

thl-s congruence. Hence there exl s ts an involuÈion x for r¡hlch

l*"1 = n and (nr6) = 1. The subgroup lzx) satisfl-es the 1emma.

Let lvf be a subgroup as ln the prevlous lemma such that M

is maximal subject to these condLtions. That is, lf M ( MO wlth

(lt"tolr0¡ = 1 and lnr{Mo)l even then M = MO. we may assume z e

NG(M). I^Ie gather together a few properÈl-es of M 1n the next

1 emma .

LEMMA (3.3)

(a) z inverts M and M ls abellan

(b)

(c)

(d)

(e)

cc(M)

Nc(M)

c. (¡r)

If g e

M

= McnU( u) (z)

= M f or all ¡
G-Nc(M) then

#eM and hence tlc(<F>) < Nc(M)

MnvE

27
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PROOF

, Since (tr6)

Therefore (a) follows

prlne to

M forces

slnce z

C learly z

6. So aB

B I no element of 'Mll can centralfze

by lemma (1.2).

normalizes CG(M) and the order of CG(lf) ts

abellan, the naxLnallty of

(c) f ollows by lenma (1.3)

z

cc( M) M whlch fs

lnverts M and Cc(M)

M< u M befng

(b). Now

M.

Let ¡ " Ull; sJ-nce z lnverÈ"F, z e NC(<F>) and c. (y)as

{ Nc,atrtr, z e Nc(cc(f )). As l¡ cannot cent ta1-Lze an elenent ofI

order 2 or 3 rhe order of cc(F) ts prine to 6. so as M cr(¡)
andthe maxinallty of M t-np11es aa(f) = M. Now M { N6(<¡.r>)

Nc(<lr>) ( Nc(M), hence ¡se have (d).

Finally, ler g e G-Nç(M) and suppose M^Mg + 1.

MrìMg, x f 1. Then there exists y " ull such that x =

ca(x) = ca(>')g whlch by (d) ylelds M = u8; rhar is g

Thts ls a contradl-ctLon and hence M fr MB = 1.

In the followl,ng two lemmas we determlne

posstbflltfes for the ûormaLtzer of M ln G. In two

cases a posslble order for G 1s obtalned.

Letxe

yc. Now

e Nç(M).

varl-ous

of these

LEMMA (3.4)

!Je have the followlng posslbtlities for the norm aILzer

of. M in G:

(a)

(b)

(c)

(d)

(e)

A Sylow 2-subgroup of NG(M) Ls quaternion

lu.{r'r)l = 2.3. 7

lna{r'r)l = 2.m

lna{r.r)l = z2.s

lU6(M)l= 22.t3 and tn rhis case Èhe order of c ls
z4 .l .s2 .r3
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PROOF

As NG(M) cannot contaln a 4-group (by Èheorerns (6.2.2)
and (5.3.16) of [L2]) a sylow 2-subgroup is eiÈher quaternlon or
cyclic. The former case ts (a), so we may assume a sylow z-

"TOtroup of Nc(M) fs cyclf-c.

Suppose firstty 3llua(M)1. Then ¡llcNq(M¡ (z)l sfnce
lur{u) | lul lcNU{r"r) (z)l by lemma (3.3) (c), and as cnq{u) (z) <

C' Cnq(U) (z) must be cycllc of order 6. Thus lna{u)l = 2.3.n.
The normaLrzer of a subgroup of order 3 in NG(M) is

cycllc of order 6, l-ts index ln N"(M)trs Èheref ore m and sylow-s
theorem yieldsm= 1(3). And as (116) = l etthern= 7 whichl-s
(b) or m > 13.

rn thl-s latter case we can apply Bender-s lemma to Il

NG(M). I{e fírst calculate f.,

f. Inl 6n I m-B

lc.{")l 48 I
Also l¡n ul = m as H contaL,ns m involutions.

Let p be a prine dfvlsor of m and p be a Sylow p_

subgroup of H. rÈ Ls easily seen, by sylow-s theorem, that p ls
a sylow p-subgroup of M, and hence l-s the onry sylow p-subgroup
of H (slnce tt ls Èhe only sylow p-subgroup of M by lemma (3.3)
(a)). Let x be an element of H of order p, so thaÈ x e p and

hence x e M. Thus for any prime drvísor p of m, an element x of
H of order p is conÈained tn M.

Let u be an l-nvolution of G-H and conslder H rl Hu.

Suppose a prl-me dlvl-sor p of m divides the order of H rl Hu. Then

H^ Hu coritaLns an element, x sây, of order p. Now both x and xü

are elements of order p ln H and hence, by Èhe prevLous paragraph

are contained ln M. It fo11orùs that x e M /l Mu which contradícts
lemna (3.3) (e). Thus no prtme drvr,sor of m dLvides ln n Ht l .

1
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I^lhence ltt n H"l l6 and H rì Hu is cycl1c.

Suppose u lnverts z. Elther u l-nvertg only (z), Ln

whl-ch caae u " JZ or u lnverta another non-trlvial element of H

and ln Èh1s caae u l-nverts II 
^ 

Hu whlch wtll be cycllc of order

6' and "9 u, e J6. As z Ls cent raLlzed by L2 lnvolutl-ons of G-H

ar^d. z has m conJugates Ln M r¡e have

ltrl + t.lul = L2.m = 22.3.m

Now suppo6e u l-nverts X (whtch rùe may

u cen.trallzes z

aa sume belongs l-n

Nc(x), ln addttlon toH). As NC (X) = XV =

ÍnverÈing X, so u ¿ J

G-II and X has m conJugates

l¡Ol = 6.n = 2.3.

It follows that

Sl-nce X 1s Lnverted by l-nvolutlons of

ln Il we have

m

thus b2

Now let

of lI. In partLcular

an element of order 3

6

2.3 .m;

=3nandb6=m

u e J1r so that u

l.l, I

l-nverts no non-trfvLal element

an Lnvolutfon of II. As

of G whlch Ls contafned

Thus c = 0 and b1 = 2.3.m

Summarl-zíngr wê

f n-8

-,
I

l.¡ n gl = m,

b2 = 3.m, b6

b1 = 2'3'n'k

zero (n * 0).

By Bender-s

bl = 2.3.n.k

u cannot centraLLze

H, 1s centtaLlzed by only one lnvolution

Ln llr wê have C"(u) - 1 f or all u . Jl.

.k, k a non-negat l-ve Lnt eger.

have

m,

l-n

, k a non-negatlve Lnteger and all other

b n are

lemma \{e

(n

have

+3nf5n)8

n-8
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1

m-8

3k < z2 .12
5

andsok=

The number

l¡l = m +

22. m

therefore 3k < z2z2
n-8

2

As

ytelds

!Jhence

modulo

m 13, ao<1
5

¿

2<6 thatfsk<2

0 or 1

of lnvolutions in G ls

2 3.n.k + 2.3

z4 .1.n. (13 +

then

.m

m + 2.3.m n(13 + 6k),

6k).

(n,6) 1, m = 13.

is congruent to 9

have shown that if

I^lhence lc I =

Suppose k = 0

lcl = z4.l .tl

I,Ie have 0 <
n-8

< 25. As (n,6) = | and m = I (3) there are three possible values

for rn, namely 13,19 or 25. Sl-nce lna(M)l = 2.3.4, M is a Sylow

subgroup of G (tn all cases). This immediately excludes m = 13'

The index of NG(M) 1n G ls 23.L3, so by Sylow-s theorem 23.13 =

I (p) where p = 5 or 19. Ilowever this congruence ytelds 103 = 0

(p) and, as 103 1s prf me, thls l-s a contradtction. Thus k = 1

and lcl = 24.1.19.n. rn this case 3 < ,U 2 which
n-B

m < 15, theref ore 13 I m ! 15. 6o as

lcl = 24.1.13.19.

However NG(M) has lndex 23.19 which

13 conÈradLctlng Sylow-s theorem. I^Ie

rllr,ra(M)l rhen m = 7 ar-d lNc(M)l =2.3.7-

Now assume 3 does not divide the order of NG(M)' There

are then three caaes to consider, namely

Ittr(u)l = 2-m,22.m or 23'm' The first ls (c)' l
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Suppos e

each Lnvolutfon

lNa{u)l - 23.^. As a*ç,u¡(z) 1s cycllc of order

of Nc(M).

Nc(M) l-s

(r,6) = 1

therefore

Applylng

Thus the

trlvfal.

of NG(M) centralLzes only one Sylow 2-subgroup

lntersectlon of dlstinct Sylow 2-subgroups of

It follows that m = 1 (8). This comblned wlth

lnplles n ) 17.

Let It = Nc(M).

f =g-
lc.{") I

and l¡ n ul

Let u be an

the sane reasonlng as

=m

Bender-s lemrna to H. Flrstly

= n-6

-,6
1

I{e

8n
48

aPply

1

Lnvo1ution of

above lu n Hul I 8,

3.r and. thus

conslder H l.ì Hu. By

II r.t Itu f s cyclLe.

by an lnvolutlon. So

J 4. IIence \de have

m

c:n and

and

No element of order B ís lnverted

if u lnverts an Lnvolutfon elther u e JZ or

l.r 2

If

subgroup of

contains rn

l;¿l

| + l.lal = 12.n = 22.3.^

u inverts a subgroup of order 4 then u " J4. Now a

order 4 ls Lnverted by 4 involutions of G-Il and as H

subgroups of order 4,

4.m 22.m

l:rl = 2

bz = 22'

Bender-s

m and

lemma

b4=m

rüe have

bt < g (n * 22.m + 3.n) 22 .m- m = z4 .3m 5
n-6

In partlcular this gives

o < 243.- 5.n
:ñ=3,-

r¡hich yl-e1ds n <

Ftnally consider lua{u)l = 22

case the lntersecÈion of dlstinct Sylow

trivía1, so that m = 1 (4). As (n'6)

.m. As for

2 - subgr oup s

= 1 we have

the prevlous

of Nc(ì'f) 1s

32
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13. The former case

lemma applled to It E

f =4t 1

48

' and l¡nul
It Ls easlly Bhown, as above,

Also we have c = 0 and therefor" bl

1s (d) and ln the latter rJe can use Bender-s

Nc(M). I^Ie have

n- 12

T2

= lll

integer. All other

By Bender-s

L 22.m.kt1

bo are zeto (n * 0).

lemma

t= 2'.m and b4 = n.

k a non-negatlve

values for rtr,

of G ln all

by Sylow-s

case m = 25

that

that b

22.m.k
2

L2

m-I2

5.mt

(n + 22.m* 3.n) 22.m ID

therefore Z4.u < 5
n- 12

In parÈLcular 0 < z5 .z
Ãî.

which yields n < 31r âs n ) 13, so 13 ( n ( 31.

As (nr6) = 1 and m = 1 (4) there are 4 posslble

namely 13, 17, 25 or 29.

The number of lnvolutl,ons l_n G 1s

l¡l = m f 22.m.k + 23.n + 22.^

= m.(13 + 4k),

whence lc I = z4 .2.n. (13 + 4k)

Slnce l}{a(M)l = 22.m, l"t is a Sylow subgroup

cases. The index of Nc(M) in c is 22.1.(tl + 4k) so

theorem z2.l.1tS + 4k) Ê I (n). (This lnctudes rhe

by lemna (3.3) (e)).

Ftrstly rùe assume n ) L7. Then 1 < 1 so
m-L2 5

5

22 k< *
5

0<k<3whlch yfelds

5
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rf. m Ê 17 then z2.l1tz

L2 (1 7 ), a contradlctlon.

rf m = 25 then z2.l(tl

15 (25), a coritradictlon.

If n = 29 \re flnd that

the order of G ls z4.l .L7,2g. t.le

uslng Sylow-s theorem. Let P

clearly cc(P) = P. As l¡'ut (P) I

that 3.29 divLdes the l-ndex of N

3.29.x wl-th x a dlvlsor of 24.

by Sylow-s Èheorem. As x = 1,

satlsfy the congruence' m + 29.

F 1na11Y rJe as sume m =

a Sylow 3-subgrouP of

22.t3.(13+4k) which ls

theorem. Thls lnPlles k

order of c 1s z4.l-52-13,

+ 4k) = 1 (17) whl-ch inpl1es k =

+ 4k) = I (25) whLch lnplles k =

k = | (29 ) and hence k I Thu s

can easily

be a Sylow

ellninate thls case

16, ln.{r)l
17-subgroup of G.

lz4.tl , ir f o11ows

I.J e have lc:uc(P)l

Since 2 (L7), 2x = 1 (17)

and none of these2 4, I or 16

3 and hence Lndex

congruent to module 3

whl-ch is the flnal case

G(P). in G.

2.29 =

13, and reca11 that I ua{u) I

z2.tz. rn thls case z2.u < z5.l 5 and we get o

z2.z (13 + 4k) = I (13) which vields k = 3 (13),

16.

22. Now

k 3 or

<kf_
and so

The order of c ls 24.2.13.(13 + 4k). The norm a1-rzer of

G has order 22

1

= 0 (3) and hence k 3

by Sylow-s

Whence the

(e), and the

lemma is proved.

I^Ie observe

Sylow 5-subgroup

has order z3.l.s2

LEMMA

of

and

If a Sylow

= z3.l.sZ and

2-subgroup

lcl = z4.l-s

in case (e), using Sylow-6 theorem' that a

G 1s elementary abell-an and íts norma1-l-zet

hence a Sylow 2-subgrouP 1s quaternlon'

of NG(M) is quaternion then

ln.{u)l
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1 or 3 and C¡lq(u)(")

respectively.

An l-nvolutlon cent taLtzes only one quaternion subgroup.

dlstinct Sylow 2-subgrouPs is

have (mr6) = 1 and theref ore In >

Nc(M)

cons ider II.'ì Hu. As

m divides I nn nu I so

PROOF

lur{u)l
23.e.n

= lullc
where

e=3

c.

Nq( M ¡ (z)

Suppose a Sylow 2-subgroup of Nc(M)

I tv lemma (3.3) (c),

l-s quaternfon. As

rre have lua{u)l =

e Qg or St(2,3)

to a and so to H

both cases cs(z)

of order 4 ln H.

subgroup of H and

have in this case

Therefore Èhe intersection of.

Èrlvial and thus m = 1 (8). I.le

We noril apply Bender-s lemma to the subgroup H

Flrstly f Inl 1
e.m-6

lc.{r)l 48 6

and l¡n nl = m.

Let u be an involution of G-H and

in the previous lemma no prime divisor of

lnn Hull23.e.

L7.

All elements of

Suppose

contains

u centtaLlzes

precísely one

possibfllties for

subgroup of order

If e = 1

thus u " J4. As II

that l.l4l = 12.n =

4 ln C,

then u

1 = 8.e.m

order 4 in

zi then u e

Lnvolution.

u inverts a

can invert

C belong

C. In

Therefore there are l2

u. As every lnvolutÍon of C-12) tnverts a

subgroup

no other

contal-ns

22 .3..;

then cr(z)

m lnvolutions hre

thus

€

b4 = 3.¡n.

SL(2,3) contains all subgroups of

of order 3 and 2

If

order 3 in

subgroups

1+1+2 +

So u also

order 6 lnof

4+4

Lnvert s 2 subgroups

C"(z). This implies that u lnverts

L2 elements of II so u " J LZ. If u inverts an

or 4 1n H it also inverts an involution of H,element of order 3
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hence l'lrrl L2.m 2 2

lwhene=

btZ = n(I

all other

and t = 0

l-emna Ì{e have

+ 32.m.r * 11.n (1

6 lrzt 2nr) m 2mr.
em- 6

em-6

e.L7

.3.n; thus bl2 = t

1 and t e 0 when e = 3, then

n(l r)

invert a non-trlvfal element of It

Let

b4=

ff. u

r=

3nr and btZ

e J'' u canno t

qnd 1t follows easl-1y that C"(u) = 1 f or all u . J1. So c

?
and b1 = 2'-e.m.k, k a non-negatlve lnteger'

Summa xtzl-ng rùe have

t = en-6
6

l.¡nttl =m,

b4=3nr,
negatl-ve Lnteger and

andr=lore=3

By Bender-s

< 6 (t
em-6

0

Ibn

t"

r), b1 = 2t.e.m.k., k a non-

are zero (n f 0); where, e =

1
b r)) 3.rn.r n(1 r)

Therefore 23...k <

z3.u < 23.e.k (

6 (L2 2r) 1 2r

> L7 and so 1 < 1 therefore

2r

Since m > em ¿ em-6 I 1

we have 6 (L2
11

2r) 1 2r

thus k < < 1 which gfves k 0. Hence b 0
1

To

Lnequall ty:

0<

det ernLne an upperbound on m !7e use the followlng

6

"F6
whích solving for m gives m < 78

6< _6J2 - 1

11

6
I

(L2 2t) I

36

(1 + 2r).e



When e

3 when 3 and r

m< 78

condltlon m =

or 25.

i s 22 .r3 .m,

This gives

order of G

The number of involutlons ln

l.ll = m + 12.m.r + 12.n (1

I^thence lcl = 24.2.13.n.

The index of the norlnallzer

r) 13.n.

Sylow 3-subgroup of G

3 by Sylow's theorem.

1, r = 1 and (1 + 2r)e 3.

= Q. Hence ln both caaes.

= 26, thus m < 25, and

Àlso (1 + 2r)e

3

1 (8) ytelds the t!¡o posslble values f or D, m

17 ( rn < 25. The

T7

c ls

of a

1 modulowhlch ls congruent to

m = 1 (3) and as 17 =-

i s z4 .g .s2 .tl.

2 (3), n must be 25. Ilence the

4 2Flnally the Índex of Nc(M) in G is
2 e. 5

2'3J3 and as M ls a Sylow 5-subgroup of G, Sylow's theorem
e

yields 2'3'r3 = 1 (5) whlch inplies e = 3 (5). Hence e = 3 and

I n, {u) | = 23 .3.52 , complet ing the proof of the lemma'

I,le make Èhe followlng observatlons for M fn the previous

1emna. If M ls cyclic of orde r 52 then l¿.ut (M) | = Z2.S (lemna

(5.4.1) of [12]), and as cr(M) = M bv lemma (3'3) (b)'

lUr{U)llZ2.S2 which is not the case. Thus M ls elemenEary

abellan of orde r 52. A1so, usfng Sylow-s theorem, tt is easl1y

shown that the normalLzer of a Sylow 13-subgroup of G has order

Z2.tZ r¡hich ls precl-sely case (e) of lemma (3.4).

I,Ie sha11 now determine the number of involutions ln G fn

terms of some parameters. This expression will be usef ul in a

later 1emma.

If x e J and zx e MB for some g ln G, then as z and x

e
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both Lnvert zx lemma (3.3) (d) shows thaE z, x c Nc(Mg) (slnce MB

has the BaIne propertfee as M).' By lemma (3.3) (c)'

whlch therefore contalne m Lnvolutlons.

Nc( Ms)

(z)1. so 1f

number of Lnvolutlons x ln J for whfch zx e ( !rs)# ls m

If z e Nc(Ms) then "E-'" Nc(M) so that ,g'' =

MscNq,(yB¡(z)

r e M. Then z = "fg Êo

Thue the

1.

,Y fot

that fg = c e C. Now MPg = Mc

only conJugates of M of the form

by conJugatlon on the conJugatese c Slnce C acts

some

lnplles YB =

Mc for some c

of M ln G and

of conlugates

1emma.

LEUMA (3.6)

l.rl

Mc So z lnverts

Ehe stablLlzer of M is CM = a*ar(M)(z), the number

of M under this action l-s lC : C Nq(M)

'a"Uau¡(z)l 
= r then z Lnverts

Thus there exists (n

zx belongs ln a conJugate

that lzxl = n wLth (n, 6)

for which zx has order 1

conjugates of M24 .3
r

1) 24:t l-nvolutlons x such that
r

ofM Thfs ls true for

133

anyxeJsuch

lnvolutions x

the followlng

1. So as there are

3 4 or 6 we have

#

2 ,

133 + E
t

(ni 4)24 .3
ri

where lr'r¡l = mt, la**,ui¡(z)l = rl, the Mt satlsfy the same

properrles as Ìf (and hence satlsf y lemmas (3.3), (3.4) and (3.5))

and the su¡nmatLon 1s over the distÍncÈ conJugate classes of

subgroups with the same Propertles as M.

tr{e sha11 use this lenma to elimlnate cases (b) (c) and

(d) of lemma (3.4) where M 1s chosen to have maximal order. The

remaLning cases glve us the order of G'

LEIíMA (3.7)

The order of G is Z4.l .S2.tZ. Furthermore the
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nornaLLzers of the Sylow 5

and z2.tl reBpectlvely.

PROOF

and 13-eubgroups have ordere Z3.Z.S2

Tf the lemma Ls false then there exlsts a subgroup M of

G such

(r)
(rl)
(1ir)
( rv)

U

I.Ie no t.e Èhat r

Ir Ls

tha t

(lul,o¡ = I

lna{u)l r" even

M has maxlmal order subject

M satl-sfles case (b), (c) or

By lem¡na (3.6) rre have

l¡l = 133 + E(n'. Ð24-¡L rr

r =ÐJnl -1)

to (r) and (1r) and

.(d) of lemma (3.4)

D
C

Ir

rL

> 0.

easily

rï ) 2

(nl -1 )
2

133 + 48r, where

seen usi-ng lemma (3.4) that r ls an

w111 be posstble to

ellninate the cases

are also the possible

that 133 + 48r = 0 (n)

conÈ radl ct ion.

Lnteger. Also for all i, therefore

By the uaxLmality of m, n'r S m for all 1.

I'le first show m > 25, so that 1t

apply Bender-s lemma. To do thls tte need to

m = 5r 7, 11, 13, L7, 19 or 23. (These

values f or each n;). trIe will use the f act

(that is rll.ll) to determl-ne r.

Suppose firstly m = 5. Then

' 5.Df'l {) = t+ = z,

and 133 + 48r = 0 (5) inplies ¡ = 4 (5), a

If m = 7 then r ( 2 + (7-1) = 5,
2

39
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1npl1es ¡ ã 0 (7), a contradlctlon (as r ) 0).

I{e have shown m

lemma (3.4). In all

Ther e f ore

m

I,Ie use t.hls fact to

Tf m = 11

e1iulnaÈ e

then r (

¿ 1 1, and . rherefor. I Nc(M) | 2.m by

cases M 1e a Sylow subgroup of G

l c: n.{u) I zj--il¿l = I (n).

the remainlng cases.

5 + (11-1) - 10 and 133 t 48r = o
2

(11) lnplles r

and I c: ttr( M) | =

m f 11.

If m =

(11) ao r = I

.3.47 whLch f s

This ytelds

con'gruent to

l.rl 5L7 LL.47

6 modulo 1 1. Thus

=8
2 3

13 rhen r ( 10 + (13-1) 16 and 133 + 48r = 0
2

(13) lnplies r = 4

z3.l.s2 = 2 (13),

I,Ihen m =

so t = 4. Now l¡l

* 13.

r (16 + (17-1) =

24 + (19-1)
2

5 13 and lc:r.¡c(Ìr) |

24 and ¡ = 16 (17) so

2(13)

so m

L7,
2

rhar r = 16. Then l¡l =

a contradlctlon.
Ifm=19rthen

17 .5 3 and lcttlc(M)l z3 .z.sl L4 (17),

0 (1 9) l-rnplles

lc:N.(M)l = 23

r = 0 (19) so that r =

.3.5.11 = 9 (19), so m

23, r ( 33 +Ftnally tf m =

33, and 133 + 48r =

19. Then l¡l = 5.11.19 and

* le.
(23-1) = 44 and 133 + 4gr

2

r

=0
l.¡l

l.¡l

(23) lnplf es ¡ E L4

l c:tt.(u) l

lc:r.rc(M)l

I'Ie shall also

I,Ie have Ê <
2

= 5.7 .23 ,

= 23.83 ,

(23),

=23

= z3.g.ag

ellnlnate

= 56 and

14 or 37.

L2 (23).

L4 (23) so

In the first case

And 1n the second

m t 23.

25 In the saue !ray.

0 (25) 1np11es a =

.3.5.7 =

60 t

E

the case m =

133 + 48r =

4 (25) Ëo t = 4, 29 or 54. The f lrst case gives l.l I
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lc:n.(M)l = z3.l.tg

lc:n.(M)l = z3.t.øt

s2.to9 and lc:ua(r'r)l

to the subgroup H =

ç-- lul -t
lc.{") |

Let u be an

prevl.ous

element

reas onlng

of II then u

and so b2 2.3.m

a non-negative

b1 =

As m ¿

Thts all shows that n >

In the second l¡ I E S2.Ol and

Flnally r ã 54 Lnplles lJl =

1s congruent to 16 modulo 25.

29. I.Ie nord apply Bender-s lemma

= 12 (25).

-= 14 (25).

= 23.¡.rog

Nc( t{). Flrstly

= 2-m -l = ^-24 and l¡ n nl
48 24

In

Lnvolutl-on of G-H

lnrr Hull2, so if

" J2. It fol1oìs

and consider H rì Hu. By

u inverts a non-t rlvlal

that l.l2l = I2.n = 22.3.^

It l-s easily seen

lnteger. BY

24

m-24
2.rn.k < (n + 2.3.n) 2.3.m

that c = 0, so Èheref ore b

Bender-s 1emma.

2.3.m

I 2.rn.k, k

z3 .3.7^
m-24

therefore k < 22 .r7 3

29, L

m-24

m-24 5

k<

Ilence

tr{e can also

3 T4

use this lnequallty to determl-ne an

partfcular it gives

3,

prine to 6

31,35, 37,

u
5

99
5

13.0<k<

upperbound

0

for m. In
I< 2' .3.7Ã4

which ytelds m < 52 so 29

tnplies the following elghÈ

(n < 51. And n being

posstbtlities for m: 29,

43, 47 or 49.

The number of fnvolutlons in G 1s
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l¡l E m Ì 2.rn.k î 22.3.^ = m (13 +

Hence lc I = 24 .3.^. (13 . + 2k) . .

If m Ls a prlme porler then M 1s a

t
as Nc(M) has lndex 2".3 (13 + 2k), Sylow-s

. 23.g(rl * 2k) = I (rn) thus 48k =

2 k).

Sylorr subgroup of G so

theorem ytelds

311 (n).

G has a normal 23-complement by

lemma (3.1). Thencontradictl-ng

to 6 modulo 23. Thus m t Zg.

311 (31) whlch lnplles k = 20

I^Ie use thLs congruence to elLninaÈe moBt of. the above

cases.

If m

and hence k

Let P

= 29 rhen 48k = -311 (29) whlch tnplies k = 5 (29)

5 as o < k < 13 Thus lcl = 24.2.23.29

be a Sylow 23-s,rUgro,r| of c; then Cc(P) = p and

= 2.tL so lna{p)112.23. I.te musr have ¡na{r)l =| ¡,ut (P) |

2.23 else

Burnsides

lc:u.{r)l

22

Nc(P)

Transfer

z3 .l .zg

m = 31

cc(P) and

Theoren,

i s congruent

then 48k =If

(31), a contradiction.

rf m = 37 rhen 48k = 311 (37) inpll-es k = 2 (37) so

rhar k = 2 ara lcl = 24.2.17.37.

Ilowever 1n thLs case the index of NG(X) ts 22.t7.37

whl-ch Ls congruent to 2 modulo 3 contradictlng Sylow-s theorem.

In the last f our cases, as 0 < k < 13, k cannot satisfy

the requlred congruence. For when m = 41,43,47 or 49 k Ls

congruent to 20r 4Lr 18 or l7 respecÈlve1y modulo m (The lasÈ

congruence applies because of lemma (3.3) (e)).

I,te are thus left wfth the case m = 35. To ellmlnate

this value of m, we use the f.act that l.l I = 133 + 48r so thaÈ

l.ll = -11 (48). And as l¡l = 5.7.(13 + 2k) we have

5.7(13 + 2k) = -11 (48) whlch irnplles k = 5 (12). However the

above lnequality for k wlth m = 35 gives

42



0 k < zzsJ
35-24

contradlctLon.

Thts has all shown that cases (b) (c) and (d) of lemma

(3.4) doee not apply f or NG(M) when ìl f s chosen to have maximal

order. So caae (a) or (e) applles (tn fact cese (a) must apply)

and l-n both casea the conclusfon of the lemma holds.

s 3 < 5, a

Bef ore obtal-nlng

to remark thaÈ fÈ 1s noÈ

the flnal contradl-ction we should ltke

posslble to elimlnate G by countlng Èhe

conjugacy classes of G.

(2.3) and (2,.4) there is one class each

, 4 ^nd 6 and trdo classes of elements of

that there ls one class of element.s

of order 13 form three classes. Let

conjugacy class of G, | = 1,

number of elements

By

of elements

order 8. It

lemuas

in the

(2.2) ,

of ordet 2, 3

ls easy to show

and the eleueritsof order 5,

2

xï denote a representaÈLve from each

11. In the table \^re list the orders of the centraLtzet

ln G of each respreaentative and the order of its conjugacy

clas s .

lx¡ I I c"(x¡ ) | lc:c"(x..) I

1

2

3

4

5

6

8

8

13

24

24

2.

23

52

2.

23

23

13

13

13

.t.s2.r¡ 1

s2 .tz
z3 .s2.ts

2.3 .s2 .t3

z4 .z.ts
z3 .s2 .tz

2.3 .52 .tt
2.3.s2.t1

z4 .1.s2

z4.z.s2

z4 .2.s2

3

3

3

13

13
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Sumnlng the number of elements ín the

of G we find the totel to be 24.1.52.L3, whlch

order of G.

conJugacy classes

ls preclsely the

contradlctfon wt11 be obtatned once we have the

followlng lemma.

LEMMA (3.8)

The group G fs a sharply 3-transitlve permutatlon group

subgroup fixing two letters fs isomorphlc toof degree

sL(2,3).

PROOF

26 and the

I^Ie will consider G as a permutation group 1n Lts actlon
(by conJugation) on the sylow 5-subgroups of c. But before dolng

Èhis we need to make a few observations.

Let M be a Sylow 5-subgroup of G lnverted by z. By

lemma (3.3) (c), Nc(M) = 
"a"0.(M)(r) 

and a"U( M)(.) has index 2 f n

C (¡ecause of lemma (3.7)) so a"U(u¡(z) = SL(2,3).

Let u e C a**(U¡(z). Then z tnverrs rhe Sylow 5-

subgroup Mu and Mu f M. Thus each involutlon lnverts at least

two Sylow 5-subgroups of G. I^le show Ln fact that each lnvolution

lnverts exactly trùo Sylow 5-subgroups of G.

slnce Nr(M) contal-ns 52 involutLons and as there are

2.L3 Sylor¿ 5-subgroups, the set of involutlons contal-ned tn the

normaLlzers of the Sylow 5-subgroups (counting repetltions) has

order Z.S2.tZ. As thls is twlce the number of lnvolutfons, each

involution inverts preclsely two Sylov 5-subgroups of G.

As above, z l-nverts both M and Mt, so that:

Nc(M) = 
".*q( u¡(z)
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Nc(Mu)

(z) and

e qua 1.

Let rr

utcucr(ru¡(z)

arq("u¡(z) areAs cnq{u)

they are

unl q ue

ind ex 5

cãnnot, invert Mu else w e Nc(n) n NC(M") t*q(u¡(z)'
NG(M) contal-ns a 4- group (z rw). Thus no two f nvolutlons of NG(M)

l-nvert the same Sylow 5-subgroup besldes M. As therË "te 52

Sylow 5-subgroups besldes M, and NG(M) contains 52 lnvolutlons,

any two Sylow 5-subgroups are lnverted by a unfque l-nvolutl,on.

Let T be the set of Sylow 5-subgroups of G, so T has

order 26. The group G acts by conJugation on T and under thls

actl-on G ls transitlve by Sylow-s theoren.

For l'1 e T, GM = NG(M) 1s the stabLl-j-zer of the point M.

Now Nc(M) acts by conjugatlon on T-{M}. If M1 e T-{t't}, the

sÈabt1-Lzet of Ml under thls actlon 1s

Nc(M)Mr = Nc(M) 
^ 

Nc(M1) = atE(M)(t) where v 1s the

and

c

Therefore Nc(M) l.ì

be an lnvolution

both subgroups of lndex 2 tn C

Nc ( Mu) c Nq( M) (").

#zlnvert inB M, w Then rJ

And so

on T and as the

fact sharply 3-

involution invertLng both M and ìlt. As a*ar(M)(t) has

2 ío NG(M), Ml has 52 conJugates fn T-{u}. And as T-{M}

contal-ns prectsely 52 elenents, NC(M) ls transltl-ve on T-{Mi.

Now NC(M)U, = ara.(U¡(v) acts by conjugatLon on T-{M,Mt}.

For I'lZ e T-{t'trM1} the stabLLLzer of l"l2 under this actl-on is

a*U(M)(v)Ml = a"rr,u¡(v) n Nc(M2) = 1' (as an ÍnvolutLon Lnverts

exactly trüo Sylow 5-subgroups). Slnce I a*q(U¡(v) | = 24, MZ has

24 conjugates ln T-{M,M1}. And as T-{M,M1} contaLns 24 elements,

Nq( r"r¡(v) Ls

It
transLtive on T-{M,Mr}.

follows that G l-s 3-transltive

sÈabj-LLzer of 3 poínts is trlvial, G ls ln

transitive.
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The stabll'-zer of the two polnts M and Ml Ls

whLch 1e Lsomorphfc to SL(2,3) and .we have the result.

ttq(u¡(v)

Now G satleflee the hypotheees of lemma (1.5), therefore

by l-ts concluslon the eubgroup flxlng two letters contains

e.xactly one subgroup of order 3. Ilowever SL(213) contaLns f our

eubgroups of order 3, rùe conclude that there does not exLst a

group G satlsfylng the asaumption that NG(X) E XV.
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A, ! zrxz3xz3 and

LCt A

CEAPTER FOUR

CASE (B) ¡ € z3xzt

Throughout

A4

1

A=A

^2
thre e

tLzA3 A
1

LEM}IA

xZ 3

thts chapter

Nc(x)..

Co(z) (=X)' Lz

L2 x 43. LeÈ

a3 in c by lemma (2.3). Also

lemmas concern the structure of

(4.1)

z-t-ztl-nN

Buppose that Nc(X) ÀV where

A;

cO(zt) and A3 = cA(t), then

= (a;), I = 1, 2r.3; al

put N = Nc(A). The first

N.

x

PROOF

! cc(r8) C. So A1

hence conjugate Ln C.

By lemma (2.2) z ¡8 for some g

and A3

So for

ln N.

are Sylow

some c c C

ln G. As A

3-subgroups

, A1 = 438",

3<
of C

and

rg

cc(r),
and

tgc =

and A1

A:8

"C=2.
Repl-aclng gc by g we have, for some g e G' z =

= A¡9.

Now A ( CC(n¡) (A belng an abelfan group contal-ning A3)

lnplies ¡8 S_ Ca(A3g) = Cc(41 ). Thus A and ¡8 are Sylow 3-

subgroups of CG(41) and because Cç(41) has a normal Sylow 3-

subgroup (1enna (2.5))'

in N. Slnilarly z - zt

A = A8; that l-s E e N. As z = t8, z - È

LEMMA (4.2)

V ls a Sylow 2-subgrouP of N.

PROOF

úle first make the followl-ng observation: as C 
^ 

N

Nc(X)=Xv,CÂN=XV.no rm aLLzes CA( z) X and
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Let R be a Sylow 2-subgroup of N contalnlng V. Tf.

R > V, NR(V) >

we may suppose z e z(Nn(V)). However now NR(v)

contradtctlon, and rJe coDclude thet R = V.

<C^NsXVa

. As V Ls a Sylow 2-subgroup of N and (z), (t) <t Y,z - t

fn NN(V) by lL2l theorem (7.1.1) since they are conJugate ln N.

rr follows from cN(v) = v and Aut (v) d 53 that NN(v)/.v: 23.

Let M be a subgroup of order 3 tn N¡(V) so that NN(V) = MV. ff M

= (m> then u permutes the Lnvolutfons of V and MV É A4. As MV <

N, AMV < N. I'le can in f act say more *than thls.

LEMMA

N AMV.

PROOF

Clearly m pernutes

permutes the l-nvolutlons z, zt

Let L = AMV. It ls

classes of A
# Ln L; namely All

representatives

the elements altaZ and 
"3 

as tt

and t

easy to determlne the conjugacY

has four elasses of lengths 4, 4, 6

alaZ^3, ("1"2^3)-L, a1 and aLazand L2 with

respecÈlvely.

Suppose by way

22. 34. r with r ) 1. As

than 6 conJugates Ln N.

of contradictlon that L < N

In:c"(a1)l - ltq:¿,(ùl = 6r,

have ^L conjugate

Then ltl I =

al has more

to a¡a1a3 orI^I e

H of order

(a1aZa3)

of order

conJugates.

Let

contaLns a subgroup

K on the cosets of

L2 Lsonorphic

as lr:nl = 3,

ordet 36 which

to MV. Representing

K/I lsomorphlc to a

cafino t

= Z (AM)-1 since (a 1a2a3) and so centrall-zes AM a group

3 4 Therefore al ls conJugate to a1az

rf follows Ëhat lNl = z2-25.

K = N/4. Then K Ls a group of

ln N and has 18

H we have,
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subgroup of S3 where I 1s the lnteraectlon of the conJugates of H

Ln K. Becauae lr/rI I 6 and K haa order 36, 0l lrl. Also lrI lrz

(I belng a subgroup of H), theref ore lf I = 6 or L2. Now ¡¡ É A4

does not contaln a nornal eubgroup of order 6, so I has order L2

and f = II. Ilence Il 4 K. As H contaLns a norual Sylow 2-subgrouP

V, v { K and K/V has order 9. Ilowever CK(V) = $ and lAut(v) | =

6 so l X/V l dlvfdes 6 , a contradiction. This completes the proof

of the 1emma.

l{e can no\d determl,ne the order of a Sylow 3-subgrouP of

LEMMA (4.4)

NG(AM) = AM and so AM 1s a Sylow 3-subgroup of G. Also

a Sylow 3-subgroup of G contalns a unl-que abelfan subgroup of

ordex 27.

PROOF

G

hence normal 1n NG(AM), thus N s

the only abellan subgrouP

characteristlc in AM and

N. As ¡/n I A.4, Nc(AM)n ¡l

= AM. IÈ follows that NG(AM) = AM and the remainlng parts of the

lemma follor¡ eas1lY.

The f ollowing lemma l-s eas lly proved.

LEMMA (4.5)

The subgroup (a1a2a3) ls not lnverted by an involution.

PROOF

Slnce c¡(M) has order 3, À is

of order 27 ln AM. It is therefore

As (a, a Za3) is in fact a

argument ytelds that NC((aLa2"¡))

c(AM)

Sylow 3-subgrouP of

= z(^l'4), Al'1 < ca(a taza3) and

Cr(a1a2a3) by lemma (4.4)- The Frattini

49
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lrlhtch because of leuma (4 -4),

Thus aIa2a.. 1s not conJugate to

1up11es NC(( ^t"2"¡)) Cr(a t^Z^3)

Let Y = CA(M)M = (a1a2a3)xM and let Z = N¡(Y). Then Z =

(m,aLaZa3, â1^Z-L) ts non-abelLan of order 27. (Thls ls verlfled

ÞV a slnple computatlon uslng the fact that no lnvolutlon

normalizes (alaZag)). úfith the help of the normal1-zex NG(Z) we

shal1 determine the conjugacy classes of elements of order 3 fn

G. But first a lenma concerning the order of NG(Z)'

LEMMA (4.6)

Nc( z) has odd order.

PROOF

As (ataZa3) = z(z), (a¡a2a3) <

ca(a ,a2a3) by lemma (4.5). Thus I Na{z) I is odd as I cc( aLaza3) |

is odd.

LEMMA (4 .7 >

m ís lnverted by an involution but m l'G a1.

PROOF

Suppose tD is conjugate to al in G, so that m = "18 
f or

some g in G. Then Ca(n) = B(v) where B = AB and (v) = ('z)8. As

Y < Ca(n), clearly Y ( B and B ( Cc(Y) B being abelian' Also

cc(y) < ca(n) = B(v) and as Y is not centralized by an

lnvolurton, \re have Cc(Y) = B. Thus B ( Nc(Y) so Na(Y) < Nc(B),

and as Z < Nç(Y), Z ( Nc(B). Then ZB ls a 3-group of Nc(B) whtch

properly contafns Z. It must therefore be a Sylow 3-subgroup of

G. Now Z:nas index 3 tn ZB and so is nornal 1n ZB, which tnplles

rhar zB < Nc(z). Also AM < Nç(Z) as well, slnce Z < Lvl.

Now Cc(Z) < Cç(Y) = B as Y 1 Z; therefore Cç(Z) =

Its lnverse.
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(a1aZ83) = Z(Z). Ae Z 1s non-abe1lan of order 27, AuÈ( ,l-s a

{2,3}-group. (For Lf r l-s an automorphisn of Z th.e s an

smautomorphlsrD of Z(Z) and Z/Z(Z)' both of whose au h1

groupB are {2,3I - groups). Thus NG(Z) ts a 3-group by lemma

(+.6). However this glves Na(Z) = AM = BZ, so thar AM contalns

two abellan subgroups of ordet 27, Dâmely A and B, contradictfng

lemma (4.4). Thus m /. cal.
I^Ie know v 1s norItr aLIzed by a dthedral group and also by

M. As cc(v) = v and Aut(V) ¿ S3 ne get Nc(v)/V ¿' S3' Thus

**E(M)(M) 3 S3 and hence m ls invertdd by an l-nvolution.

LEMMÀ (4.8)

I{ehavem Ga'a2.

PROOF

Let P be a Sylow 3-subgrouP of Ca(n) containing Y and

argunenÈ Na((n)) =suppose P = Y. BY the Frattlni

ca(n)"*Ur(<n>)(P), so P ls normaLízed by

v say. If Ct(v) = I then v inverts

particular inverts aya2a3 contrary

centralizes some subgrouP of order 3

of order 3, namely (n), (ata2a3),

an involutlon of Na((n))'

P (lenma (1.2)) and ln

to lemma (4.5). So v

ln P. No¡^r P has four

n)

-1

and

aLa2a3m and mal a2

(. a ra ra'subgroups

<(ar a2a3)

(a1a2a3)-1n

lnvo lution.

conJugate

However (m) l-s inverted

-1 rn). Ànd as ,"1-1"3
no subgrouP of order

Thus Y < P.

If P has order

(a1aZ^3)

3 in P is central-ízed bY an

34 then (n) ls its centre and so r,ri11 be

by Sylow-s theorem and lemma (4.4)'

by an involutf on while (ata Za3) is not.
to

Thus P has order 33.

As (ara 2a3) is not conjugate to the other subgroups in
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Y

(m,aLa2a3) I

<l P'

z(P) and

elementary abellan bY

f or 6ome g in G, hence

seen ln the prooî. of.

1t follows that IP,<^LaZ"g)l I. Thus

P mus t be abellan of order 33, and hence

lemma (4.4). By Sylow-s theorem PC < AM

PB = ,{ and therefore mB e A. I,le have

lemma (4.3) that Lll has four conjugacy

knor¿ the

order 27.

(araz^3)

classes in N with representaÈl-ves ala2a3' (a1a 2^3)-1 , a1 and

aLa2. So as

lemmas (4.5)

ara2'

ts not conjugate to the flrst three elements by

and (4.7) 1t l-s conjugate to the last, that 1s m
G

the order of ð rde shall need to

and of a non-abelian subgroup of

Èwo lemmas.t{e determlne these normalLzexs in the next

m

To calculate

normaLLzer of (atar)

LEMMA (4 .9 )

I{e have Nc((aya2)) A<r>.

PROOF

By lemmas (4.7) and (4-8) Ca(a1a2) has odd order. Since

A is a Sylow 3-subgroup of Cç(a:-aZ) and *aCr(ât al)(A) =

atq(a, aa¡(A) = A, Cç(a La2) has a normal 3-complenent L

Burnside-s Transfer Theorem. Theref ore CG(a1a2) =

Na((aLaZ)) = AL<t>.

Assume by way of contradíction that L f 1' No

involution can centraL|rze any element of Lll , therefore C"(t) = 1'

Also t lnverts (a1), hence C(a¡)¡(t) = l. As t normalizes (a1)1,

1t follows that t inverts it and ln Particular that (at)L Ls

abellan. Ilowever C"(a1) = 1 which is a contradictlon, and the

lemma fo11ows.

s ây, by

AL and
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LEÌ'IMA (4.10)

The normalLzer of a non-abellan grouP of ordex 27 is a

Sylow 3-subgroup of G.

PROOF

It is enough to conaider the norma1-Lzer of a non-abelian

group L of order 27 1n AM because of lemma (4.4). If

L A (a1a Za3) = I then AM = L(a1a 2a3), but th en Z(L)< a1a2'a3) is a

subgroup of order 9 tn Z(AM). Thus (a1aZa3) f- L and hence

(aya2a3) <

is a {2,31 - group so ls NG(L). Tf NG(L) contains an involution

then NC((aLaZa¡)) does also, contradictlng lemma (4.5).

Therefore N6(L) ls a 3-group and hence is a Sylow 3-subgroup of

G.

The slmpltctty of G is noÍI trlvially proved.

LEMMA (4.11 )

The group G is slmple.

PROOF

By lemma (2.6) a proper non-trlvial subgroup L of G' tf

one exlsts, has order 27. By lemmas (4.3) and (4.10) a subgroup

of order 27 fs not nornal in G. Thus G must be slnple.

I{e have no\ù enough infornation to be able Èo determine

the order of G, which we no\r do.

LEMMA (4.L2)

The order

PROOF

of c is z4.z4.l

AM as the subgroup for appllcatlon ofChoose H
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Bender- I lemma flre tly

f = l¡tl
lc.{r) I

respectlvely. Since

no element of order 9

L6

u. Therefore because

Hull27. rfHlìnüts

u ls an lnvolutlon tt normallzes H^H

= fl (lemna (4.4)), H/ì Hu ( H, so lu n

abellan of or der 27 , by lemm a (4.1 0),

3-subgroup of G which therefore cannot

an abellan group.

Suppose u lnverts 41. Then

norm aILzes A as A < AV; thus H /ì Ilu =

81

48
1

III

Also H has odd order and therefore contalns no lnvolut. l-ons; that

ls l¡ n nl - o.

Let u be an Lnvolutl-on of G and consl-der H ñ Hu. Since

Nc (H)

no n-

its normallzer ls a Sylow

Hu iscontain u. Thus H 
^

ue Nc(("r)) AV and so u

A. In thls case u inverts

a subgroup of order 9 fn H and so u " J9. The same applies to

all conjugates of a1 in A. If u lnverts aLa2 then u e

NC((a1a2)) = A<t> (lenna (4.9)). Agaln u normall-zes A and u e

Jg. The same applies to all conjugates of ala2 in A. I,Ie have

that if u inverts an element of Ãll then u normallzes A and u e

J9.

Now consider the elements of H-4. In H-A there are

three conjugate classes of subgroups wLth respresentatlves (m),

(arn) and ("t-1r); the orders of these subgroups are 3, 9 and g

(.tt) a1a2a3 and (ar 1*)3 = (ata2a3)-1,3

is inverted by an

e H-A

fnvolutlon because of

lemma (4.5).

is conjugate

ln thls case,

of H-<b> then

Thus lf. an element b ls Lnverted

Hrt 3 or 9. If

u inverts a subgroup of order

be (aLa2a3,b).

Thus u " J3.

In partlcular u lnverts aya2a3 a contradl-ction'

to m . As c11(b) =

Hu has order

(a1a 2a3,b) and H ,'ì Hu

u l-nverÈs

9 ín HnHu

by u then b

ls abell-an,

a subgroup

which wt11
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S l-nce

(4.9) and ha s

Also

3.

m l-s lnverted lnvolutlons by lemmas (4.8)

9.9 3
4 , thus b

27 and

3

27 lnvolutLons

in

bv9
H'A ' l.r, I

and

33.9 conJugateg

as N contal,ns

Tf u. Jl then u Lnverts

If u centralLzes an element of Lll

l-nverts a subg r oup

of II - A

of order 9 1n A,

no elemenÈ

for all u

integer.

ls

Thus

centraLl-zed

c = 0 and

.k < 16. (2.¡3 + z3 .s) - 33
11

918
11

so therefore C¡(u) = 1. Also

by an lnvolutlon so Cg(u) = 1

bt = 34.k, k a non-negatlve

no non-trLvlal element of H

then u normalfzes A and so

are

,

l'1, I

3

ao b9

eJ 1

I,I e summatlze what we have so far:

11
f.

16

l¡ n nl =

b3 = 33'

bl = ¡4't

0

b 39

k a non-negatLve integer and all other

information on k we apply Bender-s lemma.

b n

zeto (n f 0).

To get

bl =34

Therefore k <

hence, k = 0

The

l.rl

918
891

or 1.

number of

= ¡4.t + 3

Lnvolutlons in G ls
4 + 33

3k).33 (4 +

I,le norü see that k mus t

whence the order of G 1s

Now that we have tht s

be 1 else l.l I is even. Thus l¡ I

z4.l4.l and the lemma l-s proved.

order it fs easy to obtain a

33.7,
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cont radl ct lon

of. G. Then lc.{r) I

: Na(P) |

=8El

lg odd and

and lc :

(7), we

= I or

uslng Sylow-s Èheorem. Let P be a Sylow 7-subgroup

Aur(P) g 26, lNc(Pillz.z4.t.
Therefore

4

e8

z3 I lc

As 2
3

Nc(P) | -

have by

32 x r¡lth x a dtvisor

Sylow-etheoremxBlof 2.3

(7).

2.34 .7 or 7

It follows that x 2.34 and rherefore lxc(p)l

In the f 1rsÈ case as G ls

Lsomorphlc Ëo a subgrouP of Ag.

cannot occur. In the second case

Burnslde-s Transfer Theorem that

contradLctÍng the slmPllcltY of

slmple and I c:Na{r) I

However 34 I lAg l, so

8, G ls

thls case

group G satlsfytng the assumptLons of thts

c(P), whlch lnplles bY

nornal 7 -conplement,

there does not exist a

chaP t e r.

Nc(P)

Ghasa

c. Thus

c
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CEAPTER PIVE

CASE (c) A NON-ABELIAN OF ORDER 27

Throughout thfs

fs non-abelian of order

At = z(A) and Nc(A)

3-subgroup of G.

Let Al = C¡(z) (=X), 
^2

Al 
^Z 

43. Also ler Ai = (ai), f
lemma (2.3). The first lemma ts

LEMMA

chapter suppose that NG(X)

27andA<Nc(x).

= CA(zt) and A

= 1, 2, 3ri al

easily proved.

3

AV where A

= CA(t) ttren A =

a2 a3.ln c by

AV; fr follows that A is a Sylow

PROOF

Sinc" Al f s

non-abelian of order

thus na(A) = AV.

For later
between a1, aZ and a3. Sfnce

and therefore A- = Z(A) = A1.

Ia2,a31 " orll and we may assume

Ía2,a3l = al....(*).

It 1s easfly verlfied
ln Na(A) wlth representatives

of the classes are 2, 6, 6 and

a normal subgroup of order 3 in A and A is
27, At = z(A). As z(A) char A { Nc(A), z(L)

Nc(z(A)) = AV. Also as A ( AV, AV I Nc(A)

calculat ions we determLne a relationshtp

has order 9 tt ls abelian
a2 and a3 do not commute

^ 
/ z(^)

So as

#thaÈ A has four conjugacy classes
a1t

I2

a2ta3 and aL^2a3i the lengths

respectively. Together with
the next lenma thls shows that G has two crasses of elements of
order 3 with representative" 

"l and aLa2a3.

aLa2a3 1s fnverted but not cent raLIzeð, by an

LEMMA

a=
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lnvolutlon.

PROOF

Uslng the relatlon (*) Iùe easfly check that z fnverÈs a.

suppose a 1s centrallzed by an lnvolutfon, v aay, then a ls
c'onJugate to al by lemma (2.3). so Na((a)) = Ã< z,v) wher e (z,v)

le a 4-Eroup (we may choose v to centtarLze z), and Ã is a normal

subgroup of order 33. As a1 . Nc((a)), a1 e Ã so thai c¡(z) =

(at). But then v must Lnvert al and ao v. NG((a1)). However

Nc(("t)) = Av does not contaLn an .LnvolutLon centralf zLng a.

Thls contradlctl-on shows that a is not centtaLLzed by an

l-nvolutlon.

The next four lemmas concern the normaLLzers in G of
varlous subgroups of A.

LEMMA (5.3)

I{e have NC ( (a1 r a) ) A(z).

PROOF

The subgroup (a1ra) contar-ns four subgroups of order 3

namely (a1), (a), (a1a) and (a1-1a) the last 3 belng conJugate 1n
A- so (a1) fs the only subgroup of order 3 in (a1ra) centraLLzed

"r 
tr 

2t ^3t

by an

= AV.

Nc((ar,a))

LEMMA (5.4)

lnvolutLon (1enna ( 5.2)). Therefore Nç((ar,a)) ( Nc((rr))
Now A and z rrormalLze (a1ra) but as "t = (.1" 2^3)t =

-'l= al -^2

= L(z).

a3 þ (a1,a)r t A. Nc((a1,a)). Therefore-1

Ite have N.((a2)) ( Nc((a' a2)).

The 4-group v normalrzes (a2) and as az is conjugate to

PROOF
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a1, lla(( ^Z)) 
ê ÃV where ¡ 1e a normal Sylow 3-subgroup of

Nc(( ^Z)) of ordet 27. As al centralLzee ^2, 
(a1,ar) ( Nc((^2))'

ao (a1, a2) ( î' As 1a1,a2) has lndex 3 1n T r(a1,a2) ls norual 1n

Ã ttrus Ã ( NC((af ,aZ)). AÊ V also norm aLlzes (ai, 
^2), NC(( ^Z)) !

Nc((a1,a2)).

Let b e A, b = ^Zn for n " NG((a1))' Then

Na((b)) = Nc((^z))t ( 
"a(("r,"2))t

= Nc(("1t,a2n))

= Nc((a1,b)).
-1 -1As the conjugates

^l-L ^2 and ^L-L ^2
reasoning aPPlíes

of

-1 ,

^Z ln Nç((at)) are ã2, az al^2, aLaz

Nc(( al taz>). The samerùe have N

1f rre replace
^(<b>) <
u

aZ by a3.

LEMMA (5.5)

Nc((a1,a2))

on (a1ra2).

PROOF

N by lemma (5.4)),

lenma (5.1)) so l-t

in N (because of

33. Now as ltll =

lcro{t)l = z4.l =

= (a1, a2)Cç(t).

a^ cannot have 6 conJugates
z

nust have 8. Thus lul = 24.

(a1, 
^2).cG(t), also t ls f ixed-Point-f ree

Clearly t lnverts (a1,^2)' As CC((a¡,a2)) (

cr(a1)nc"(a2) = (a1, 
^z), cc((a1,ar)) = (a1' 

^2)' Therefore by

lemma (1.3) NC((a¡ta2)) = (a1, a2>. CNC"((a, ,a.)) (t)'

Put N = Nc((a1rã1.)); we have Av 1 N and a2 has 6

conjugates in AV. All conJugates of ^2 in N are contal-ned 1n

]T(a1,^Z)" which has order 8' So slnce

lnl = lr.r:cx(az)llc¡(a2)l = 2.33.1n:c.(a2)l (as c.(a2) S

l("r,az)cN(t)l = l(ar,a2)l lc"{t)l = l2lc*(t)1,

lca{t)1, and theref ore C¡(t) = Cc(t)' Hence N
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LEIÍMA (5.6)

PROOF

Sylow

S ylow

lemma

by way

3-subgroup

3- sub gr oup

of cç(a)

of G and

N.((a)) (a1rarz).

As al centraLlze.s a, p = (a1ra) ( Cç(a). If P 1s not a

then a Ls contalned ln Èhe centre of a

6o wl11 be conJugate to al contl.al.y to

1s a Sylow 3-subgroup of CG(a). Assume

that P ( Ca(a).

"aar(")Ít) = taq,a)(P) = P' ao bY

Cr(a) has a normal 3-compleuent, M

Uslng lemma (5.3)

Burnsl-de-s Transf er Theoreu

say, M f 1.

ao no l-nvolution

Also no

of H lnverts a

(5.2). Therefore P

of contradictlon

Sl-nce z l-nverts a, Na((a)) = CC((a))(z) whlch therefore
has order 2.32.m (lUl = n); let H = Ua((a)). By lemma (5.3)

NU((a1ra)) = (a1-ta2z) whlch has l-ndex m ln H, therefore by

Sylow-s theorem m = 1 (3).

By the proof of lemna (5.3) (ar) ls rhe only subgroup of

1a1, a) cent rarLzeð, by an lnvolutl-on. so each sylow 3-subgroup

of H contains exacËly one subgroup of order 3 centralizeð, by an

lnvolutlon; they must all be conJugate to (a1) in H and there are

m of them. It 1s easl1y seen that NX((a1)) = Cg((a1)) = (.a1ra>z)

1

lnvolution of H invert" "r-1" = a2a3 for suppose

so and let (a2a3)v a3 -1 a2 -1 for some lnvolution v of H.

Then

"3 
- 1 

^2-L aV(^z^3)t = (at 1")t = ("1-1)

(at 1¡vr-1- (at 1)t" 
3-r^2

v

-1 1

whfch fmplles that "1t
paragraph. Slnllar1y a

lnvolutl-on of II. Thus

a1

= âl-1, contradlctlng the previous

1a = .1-1a2a3 l-s not inverted by an

no element b of H-(a) of order 3 is
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fnverted by an lnvolutlon of H.

As l"f char ca(a) { H, M { H

and a6 cr(z) = Ir z Lnverta M and M

Hence also L = M(a) is abellan, and L <l H as both M

nornal 1n II.

Therefore z normallzes M

1s abellan by lemma (1.2).

and (a) are

Because L 1s abellan L <

centralizes a and M, so

be cr(a) ñ cc(M)

(a1,a)M 6 cc(M)

M(a) = L,

cc(r) Lthus Cc(L)

r- f.

L and hence

x " u{1, âs z fnverts x, z e

tla((x)), z rtormallzes Ca(x). No element

therefore Cr(x) is

Nc((x)). Since Cç(x) <

of Ca(x)il ".otraLLzes z,

abelian (1enma

Now as Ca(x) ts

(1.2)). Slnce L 1s abellan and

abellan a1so, Cç(x) < Cc(L)xe

L

e Mfl

c.(r)u

L, L < Cç(x).

Thus Ca(x) = L for aII x " utl .

For u e G-II rùe clalm M r'ì Mu = 1. SupPose not and let x

Mü, x f 1. Then x = yu f or some y " ull, and so Ca(x) =

r¿hich Lrnplles by the prevlous Paragraph, L = Lt, that ls u

However as (a) char L, belng a normal Sylow 3-subgrouP'

Nc(t). So Nc(t) < E. Thus u e Il a contradictlon.

Iüe shall apply Bender-s lemma to H; note that II =

= L C"(z). Firstly.

f = lHl I = lrn f = 3m-8,
lc.{z)l 48 I

L(arrz)

and l¡ n ul = 3n.

Let u be an involutlon of G-II and consl-der Il Â Hu. We

can apply the reasoning fû lemma (3.4) to show Èhat 1f

pllff n Hul, where p is a prlme divisor of m, then M fì Mu f 1.
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rr follows rhar p I Inn n"l and ao lnn Hull232.

suppose 1n fact ln n Hul = 2.32. Then u centrallzes

some lnvoluÈlon v 1n H fl Hu as there are an odd number of

l-nvolutLons f n H l-\ Hu. Let a be the Sylow 3-eubgroup of Hfi Hu,

then u nornaL!zes a (stnce u normallzes H 
^ 

Hu and a <t

H n ltu); also v norma1-Lzes a. Theref ore NG(Q) contal-ns the 4-

group (urv). However Q 1s con jugate to (at ra), thl-s conçradÍcts

lemma (5.3) so lu n u"l * 2.32.

Suppose u inverÈs a subgroup of order 3 ín H. If u

lnverts another subgroup of H of oràer 3 then u will lnvert a

subgroup of order 9 1n H. Thls subgrouP contains a and so u ln

partlcular Lnverts a, a contradLctlon. Therefore u can only

l-nverÈ one subgroup of order 3.

Suppose u Lnverts (ar-1a)

inverts an involutl-on then H r-l Hu has

(or (a1a))

of If neiËher

Tf

of order

(1.2)),

contal-ns

{ = Lr213

t hen

an l-nvolution

thl-s case.

(a1-1a)

tt (lemma

(alrarz).

correct; thus

) then II rì Hu

s ay i

ea ch

(or (ara)).

order 6. But

l-nverted by

u. J3 ln

If u also

is elther centraLtzed or

of. vhl-ch 1s

u lnverts ("1

9 else u normaLLzes

60 lun Hull2.3.

three lnvolutlons z'L

have order 6 and are

cannot contaln a subgroup

l-t and r¡111 1n fact Lnvert

The centrall-zer c"(a1)

1 3. the elements2 alz't

of

G-H. Therefor. "1 ls Lnverted by 18 lnvolutLous which also

centraLLze an lnvolutlon of H. As a1 Ls Lnverted by 18

involutLon l-nvertlng a1 ln fact l-nverts alnvolutlons, any

subgroup of order

Lnverted by 6 ínvolutLons

thus u e J6 in thls case.

Suppose no\{

ln M;

that u lnverts an lnvolutlon v of H, either

u inverts only (v) ln which case u " J2 or u

element of H -(v) and then u lnverts a subgrouP

lnverts another

of order 6 and u

6
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. J6. In thls latter case u Lnverts a eubgroup of order 3.

Therefore the lnvolutlons of J6 are all the lnvolutlons Lnvertl4g

a subgroup of order 3 whlch le conJugate to (a1) 1n H. As (a1)

has m conJugates 1n I{ and 1s lnverted by 18 l-nvolutlons of G-H.

. l.lUl = 18.m = 2.32.m

and b6 = 3.m

An fnvolutlon of H ls Lnverted by L2 lnvolutlons. of G-H

and has 3n conJugates, therefore

l;zl + l.lul = 12.3.n = z2.z'.r,
thus llZl = 2.32.m and b2 = 32.t. '

The subgroups (ata) and (a1-1a)

ln G are inverted by 3m involutLons none

and as there are m conJugates

l.ltl = 2.3.m.n = 2.3-

so b3 = 2.^2 ,

Norv let u. Jl so that u l-nverts no non-trivial element

of H and conslder C"(u). Thts w111 have order 3 tf tt 1s not

trivlal. Suppose u central-l-zes (ar) so that u " CG("f ) = A'(z).

Now the three subgroups Ln (ar ra) of order 3 other than (a1) are

conJugate Ln h1z). So as (a) is lnverted by three involutlons of

A,1ù, the subgroups (a1a) and (a1-1a) are each l-nverted by three

involutions of A(z), these involutions are all distinct. Since

A,(z) contalns g Lnvolutlons each one lnverts some subgroup of

order 3 fn It. Thus C"(u) = l for all u e Jl and so c = 0. Ilence
,bl = 2.3t.m.k, k a non-negatlve Lnteger.

bef-ng conJugate to (a)

of whl-ch belong l-n H'

I.Ie sumuattze what

3rn-8

-t

of each in H,

2
m

we have so fat:

b 6

f
8

l.¡nnl = 3r,

bz = 32 'n, b3 2.^2 ,
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b

bt

are zexo

To

= 2.32 .m

=-m2+
3n- 8

(-r2+
3-rn{

Clearly

Therefor" j- <
3n- 8

LEMMA (s.7 )

The order

and as m = 1 (3) also,

49,

2.32.m.k, k a non-negatlve l-nteger and all other

(n # 0).

determLne b lwe use Bender-s lenma.

.m + 22^2 + 3.5n)-32.m-2n2-3,

n

b 1
k< 8

3n- B

(3n + 32

hence, 3k< -mz +2mr-52
3n- I

+

1 + 58
F-a

rc2
3 3n- 8

(n,6) =

and -m

1 m 7

1 2<
13

hence 3k < -49
13

+1+ 58

13

yielding k ( å tn,r" k
3

0 and bl 0

The number of involutions in G is

l.ll = 3.n * 2.32.m + 2.3.m2 + 2.32.m

= 3.n.(13 + 2n)

¡¡hence lcl = z4.g3.rn.(13 + 2rn).

By lemma (5.1) the norma1-l-zer of a Sylow 3-subgroup has

orde, 22 .33 , so the l-ndex i s 22.n.(L3 + 2n). Sylow-s theorem

gfves then 22.^.(13 + 2m) = I (3). However as m = 1 (3)

22.n.(13 + 2n) = O (3), this contradiction compleÈes the proof of

the lemma.

trle nord have enough lnformation to be able to determine

the order of G, thís 1s done in the next 1emna.

of c is z4.z3.rl.
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f = lttllcþT
AÍso as H contaLns

Let u be

PROOF

I^Ie uae

determlne lcl.

Now

Bender-s lemma wlth H Nc (A) Nc((rt)) to

Flrstly

-1 22.r3 -1 -1

27 -dlnvolutlons,

l-nvolutlon of II

and a.

5
4

2
4

an

l.rn ul = 27.

G-H. Reca1l that A has four

classes l-n H wlth representatl-ves a 1r 42, a3

cIass.cannoÈ lnvert any element of the fl-rst

As Na((a)) = (a1,a,z) (lentE (5.6)) which ls contaíned

in H, the normaLLzers of all conjugates of (a) 1n H are contafned

l-n Il. Thus u cannot invert a conJugate of a Ln H; and so

conJugates of a2 and a3 ln It are the only elements of All r¡hlch

can be inverted by u.

The con jugates of a2 in II are aZ, ^2-l t a1a2t ^1-l ^2,
a1a2-1, and r1-1 ^z-I. Suppose u inverts 1a2); then u cannot

l-nvert a conjugate of a2 besldes aZ and ^2-L, else u lnverts

1,atra2) and in partlcular inverts a1. As u lnverts (ar) it

nornallzes (ayra2) by lemma (5.4), If u inverts a conJugate of

a3 Ëhen u also normallzes (a1, 
"3) by the remarks followlng lemma

(5.4). But then u normalizes A whlch ls not true. Thus u cannot

invert another subgroup of order 3. For the same reason tf u

lnverts (a3) then u cannot lnvert another subgroup of order 3 ln

H.

(a1ra2rzt) rshl-ch contal-ns 3

conJugacy

Clearly u

I,le have C"(a2)

and N"((a2)) = (a1, a2)Y

by 12 lnvolutions of H.

contalns 15. So 1a2)

I nvo lut i ons

is invertedr^rhf ch

As (a
2>

l-s fnverted by 6lnvolutlons of

is l-nverted by 18 involutions it

G-II.

Nc((^z)) = Ãv =

ßz ¡ ^-1, ¡ ã2ûz e

(a1, a2 r n)V ¡chere (n) c¡(t). The

-1 -1 -1a2'm -z-1a2t -zinvolutl-ons a2
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(a2) and belong to G-tl. These are therefore all the lnvolutlons

of G-H l-nvert{ng (a2). Slnce mz centraLlzes t, tt also

centraLtzes a subgroup of order 3 ln (arra2), (r) say (sfnce the

4-group (t, mz) act6 on Ã). Thus EZ centralLzes the lnvolutLons

8., rt and r-1t of H. I.Ie have (a1, a2ttì < H /t HInz and 1n fact

(a1, artt)l H /t Ht", 1t follows that mz " J 6. It 1s easlly

G-H lnvertingchecked that rrz is conJugate to

H. So tf mz

all l-nvolutLons of

az bY

of Il,

lnvolutLons of G-H

of H and therefore

of H are conJugate

The same

Lnvolutl-on *rh of H

lnvert a further 3

Thus

say

all

Lnvolutl-ons

these l-nvolutlons

an element of

hthen (mz) cent rall-zes

centraLlzes the lnvolutl-on v

l-nver t l-ng

belong ln

ln Il to t

the

(ar)

J6.

as rt

I,le note that
* -1= t' and r ' t t t-l

argument applles Lf. u lnverts (a3)r so üre have

however the l-nvolutl-ons of Hagain that u 
" 

J6. In thls case

centrallzir.g u are conjugate to zË ln H. !te have thaÈ tf u

inverts a subgroup of order 3 ln H then u " J6.

Now suppose u lnverts (t). Elther u only inverts (t),

Ln whlch case u e J2, or u fnverts sone other subgroup of H. If.

u f-nverts an element of order 3 then u " J6. If it inverts an

l-nvolutlon v sây, then vt nust have order 3 or 6 and ls

centra1-lzed by u. Suppose the order l-s 3; then (vt) is conJugate

to (a2) or (a3) Ln II. Therefor. Nc((vt)) f NC((a'vt)) and so

NC((a1,vt>) contains the 4-group (t ru). Thus u inverts some

subgroup of, order 3 l-n (a1rvt) and agaln u " J6. If vt has order

6 the previous argument applied to (vt)2 shors that u Lnverts a

subgroup of order 3 and so u " J6.

Thus tf u inverts a conjugate of t l-n Il el-ther u " JZ or

u fnverts a subgroup of order 3 Ln H and u . J6. The same

reasonl-ng applles to zt.
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suppose f1na11y that u lnverts a conJugate of z ln H.

Then u cannot l-nvert an element of order 3 for rde have seen l-n

this caae that u fnverts only conJugates of t or zt ln H' Nor

can it cent taLLze another lnvolutfon for thls would tnPlY' as

"bo.re 
that u f nverts a subgroup of order 3. Thus u e J2.

I{e can nolt determlne the order of J 2 and J6 '
' All lnvolutfons of G-H lnverting a subgroup of order 3

ln II belong to J6 and these yield all the l-nvolutlons of J6' The

only subgroups of order 3 in H inverted by lnvolutlons of G-H are

conJugates of (a2) and (a3) ln H. There are 6 such subgroups

each inverted by 6 l-nvolutLons of G-H. Theref ore l.l6 I

22.12 anð, so b6 = 2.3.

An lnvolution of G-H centrali zlrlg a conJugate of t ls

either contained ln J2 or J6. Suppose kl of these are contained

l_n J6. As È is cent xaLlzed by 6 Lnvolutlons of G-H, 0 ( k. ( 6-

Also suppose kZ lnvolutions of G-H centrallzLng zt are contained

ln J6i 0 ( kZ ( 6. Then as t and zt each have 9 conjugates 1n H

and since each Lnvolutfon of J6 "entraLtzes 
3 LnvolutLons of II we

have

kl.9 + k2.9 ¡(kr + kz)

thaË

3

l.lul = 2

Thus

or ztt

2
centraLtzes

centralized

a

zts by 6 Lnvolutlons of G-H and has 9

lnH

= 6.6 =

l.ru I

But we knor¡

henc. kl =

conJugate

invo lut I on

As

conjugates

l.r

If
2l 6. 9 2.3

k2=

of

of J

2.32 
,

eve ry

in H

6.

this lnplles that kl + kZ = 12 and

lnvolutlon of G-H centrallzLng a

ls contalneil 1n J6. Hence an

conjugate of z tn II.

e

3 aod thus bz = 33.

cannot centtaLlze aû Lnvolutlon of H'u Jl then u

67



nor can tt centtaltze an

centtaLlzea b c H, b o1.

remark6 followlng lemma

order 3 l-n (a1,b). Thus

therefore b1 = 22.33-k, k

order 3 ln H. For auppose u

then u " Nc(("t,b>) by the

must Lnvert some subgroup of

element of

order 3,

(5.4 ) and u

c"(u) = 1 all u " Jl¡ so c =

lnteger.

0 and r

I
for

a non-negaË1ve

Sunmar Lzl-rrg rJe have:

5f=

l'¡nnl = 27

b2 = 33, b6 = 2'3, bl = 
'.''t3'u, 

k a non-negative

lnteger and all other b,, are zero (n * 0).

By Bender-s lemma

br = z2-g3-u < 4 (33 + 33 + 2-3.5) 33 2.3
5

whlch l-np1l-es k < 57 oI
180

The number of involutions in G is

l¡l = 33 + 2-33 + 22.22

= 32 .L3

whence the order of G ls Z4.Z3.rl

Ite easily prove the following lemrna.

LEMMA (5.8)

The group G is sinple.

PROOF

( 1, so k = 0 and b

If G is not simple then bY

trlvl-a1 normal subgroup has order 27.

order is

s l-np 1e .

lemma (2.6) a proper non-

However a subgroup of this

not normal ln G by lemma (5.1). ü¡e conclude thaÈ G is

It 1s norù posstble to identifY G
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THEOREM

lf. G 1s a group satisfylng the assumptlons of thls

chapter then G 1s lsomorphlc to PSL(3,3).

PROOF

!üe show that G satl-sfles the

whlch are 1l-sted preceeding lemma (1.6).

Firstly G contains the 4-group

po6tulates made 1n [3],

V. Next r âs V is 'abelian

< C and V < cc(t), so V fs contafned fn aV

c and also one of Ca(t), Dz

dihedral group Dt

D2 as z(D1) = (z)

(V) (ln'.: vl = 2

of

and

iz(D2) = (t).

I12)r w€ must

permutes the

Let

and by lernma

In C

by t and <b> +

3-subgroup of

<b1> = cr(z) =

Put M

Therefore es

say. Noy

(D1, DZ) lNc
have Nc(v) /v z S3. So there l-s an elenent whlch

(I) fs satisfied.

so M 
^ 

Cc(t) = I

of order 3 ínverted

a non-abe1lan Sylow

! = <b1,b2,b3) where

cB(r).

lnvolutlons

M = (a1ra2)

(s.5) cc(r)
there l-s a

<b>, <b2> = CU(zÈ)
* = (b1,b2); M* has

and cc(r) < Nc(M*)

subgroup, (b) say,

(a1). Now ttr((b)) = BV wlth B

order 3 norü aLl-zed bvv

and

the
3

of V. Thus postulate

; M is l-nverted by t

< Nc(M).

A1s o

Dr f

<b

same order as M and clearly
*

M r\ cc(r) 1

(v)
(a1)

( Cc(zt) by fL2l theorem

Now

M* ( Nc((b2)) =

5.3.16. So (y) = (a2)

conslder M/'\ M*, as M t M* if M/\ M* * 1 then Mrì M*

has order 3. But then (y) ls normaltzed by V, so as M rl C

*
É u*n C =(b1) and t is fixed-polnt-free on M and M t MTì M

*

<b 2

Nç((a2)) = ÃV, so
*

M particular

= (a1), a<bt> < Ã. But then <bt> = CV(z) = (a1), that ls <bl>

contradlctl-on, and hence posÈu1ate (II) is satisfied.

Postulate (III) we alreadY have.
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posrulare (IV) Ls rrtvfal aa lC:UCr(t)l E lC:U"{U¡l E 13

and 9,2 + q + | r 32 + 3 + r - 13.

Ffnalry we conslder posturate (v). As a1 has g

conJugates 1n Nr(M) - lrcc(t) all of whlch lie fn t{ll , we see rhat
c.G(t) te transitive on vÍ whlch Ls a stronger statement then (v).

Thus by lemma (1.6) the group G has a chr.ef eerf es

G ¿ co > K 2- l where clco fs cvcrlc, cg/r ! psl,(3,3) aùd K rs a

normal eubgroup of odd order. As lCl = lpSl(3,3)l we mugt have
GO = G, K = 1 and ç ã pSL(3r3).
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CEÀPTER SIX

CASE (p) Ac Z3XZ3

Throughout thls
¿- z3xz3 and A < Nc(x).

' Let co(z) = (a1)

chapter Buppose that NG(X) AV where A

and cO(zt) = 1a

to be non-trtvtal) 8o that CA(t) = 1 and

le.mma (1.2) ; A = (a1r^Z). Note thaÈ

The structure of N = NG(A) 1s determlned ln the first

may suppo6e

lnverts A bY

lenma (2.3).

1euma.

whlch has order 2.32. It

Z> (whtch Iüe

therefore t

al -c a2 by

LE M },IA

grouP.

Now as

name Ly 23 .32 ,23

¡l// ¡=4, al

As cc(al)

N

has at mos

= A,(z) ( N,

t 8 conJugates

c*(a1) = cr(a1)

AcN(r) has ordet Z4-32 and so A 1s a SYlow 3-

subgroup of G.

PROOF

since cc(A) < ca(a1) fì ca(a2), cc(A) = A, and as t

lnverts A, N = ACr(t) bY lernma (1'3)'

I^Ie show that v is not a sylow 2-subgroup of N. By the

proof of lemma (4.1) z aÍLð. zt are conjugate ln N. So tf V 1s a

Sylow 2-subgroup of N, by t12l theorem (7.7.L), N has one class

of lnvolutlons. But then z and t would be conJugate l-n N

contrary to the fact that CO(z) has order 3 while CA(t) 1s

trivlal. Thus a sylow 2-subgroup of N has order 8 or 16 i Lf Èhe

order Ls 8 a Sylow 2-subgrouP Ls dihedral slnce tt contal-ns a 4-

N = ACN(t) there are four Posstble orders for N

33 ,24.32 , ot 24.13.

All conJugates of .1 ln N 1ie in Ãll , therefore as

1n N, rhus ltt:c¡(a1) | ! 8.

follows that lnl < 24.32- Thts condltlon e1l-nLnates the
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3 3 and 2 3 3posBlbtlLtLee 2 3

We prove norJ that the element I of order 3 l-n G f orm a

stngle conJugacY clas s.

The subgroup R = C"(t) ts a Sylow 2-subgrouP of order 8

or 16 (whf ch contalns V); in el-ther case Z(R) - (t) and z -'-zt'

As N¡(V) ! Dg there is an lnvolutlon v e R wlth zY = zE.

As cO(z) = (ar), CA(zt) = 1ar) and zY = zt, (a1)v =

(a2), wlthout loss we may assum. alt = a2' Then "1tt = al = ^2u'
so 1a1a2)v = ,Lu^2u = aZaL = aLa¡rr that ls aLaZ e Cç(v)' By

lemm a (2.3) ^L^z al ln G and as (aya2)z = ^L^2-l also ^L^z-I
a1 in G. Slnce (a1), 1a2), (a ta2) and (a1a2-1> are the only

subgroups of order 3 Ín A and A ls a sylow 3-subgroup of G (slnce

1t Ls a sylow 3-subgroup of N) the assertLon fol1oaIs.

4

Nor¡ 1et a . All , then A ! ca(a). By the previous

paragraph al = ag for some g e G' Then

48

À

( Cc(")s = cr(ag) = cc(tr) = þr(z)'

e N. Therefore al ls conjugate

so has B conjugates ln N.

8.2.32. = 24.12 and the lemma ls

Thus AB

elenents

that

of Ãll

ls g

and

in N to all

Thus ltll =

proved.

elemenÈs of
I r.r:c*(ar) I I c*(a1) I

hle note ÈhaÈ by the proof of thls lemma the

order 3 in G form a single conjugacy class'

LEMMA (6.2)

The order

PROOF

of c fs z4.z2.s.tt.

Bender-s lenma 1s used to determine lC I wlth Il N

z4 .r2 -L

Ffrstly

f 1

24.3

72
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I^]e have H = ACH(t) and CH(t) le a Sylow 2-eubgroup of H

of order 16 by lemma (6.1); C"(t) hae 2 cLasses of lnvolutlons

with representatlves t and z. As t and z ate not conJugate ln H,

H has 2 classes of Lnvolutlons wlth represenÈatLves t and z.

Slnce t has 9 conJugates and z t.as 12, II contaLns 2L l-nvolutlons,

t,herefore l¡ n ttl = 2L.

By the proof of lemma (6.1) the subgrouPs of order 3 ln

II are conJugaÈe 1n H. As NC(("f )) = AV <

of every subgroup of order 3 in H is conÈained in H.

Let u be an lnvolutlons oT G-H and consider It n Hu.

Slnce u does noÈ norm al-lze A, A fì 6u ( A, and tf L l1 Au is not

trlvial

by the

AnAu =

H th en

say. But noIJ

centtaLtzes at

at most one

elements of

most one l-nvoluÈlon

lt has order 3. As A^Au

prevlous paragraph. Thus

1) which shows that H 
^ 

Hu

Suppose u centralizes 2

u centraLLzes (vtvr) which

u ceritralizes the

ls normall-zed by u, A 
^ 

Au = 1

A n (II fì Ht) = 1 (as A /t Hu <

1s a 2-group.

involutlons, vl and vZ say¡ of

contalns a unlque lnvolutlon v

4-group (vt,v) of H. Thus u

of H. Slnce every involution

of CG(È)-(t) inverts exactly one subgroup of order 4, u inverts

subgroup of order 4 1n H. It follows that the

H lnverted by u form cycllc subgroups of order 1, 2

or 4.

If u inverts z, then u cannot. Lnvert an element of H of

order 4 else Cr(z) = AlV contains an element of ordeÊ 4, so u e

J2.

An elenent of order 4 1s l-nverted by 4 lnvo1uÈLons,

these involuÈLons be long

cy c 11c

1n the same Sylow 2-subgroup of G. Nor¡

3cE(t) = R has

inverted by 4

subgroups of ordet 4, one of

involutLons of H, the other two are each

these is

inverted
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bv4
G-H,

and

thus

lnvolutlons

If u l-nverts

of G-H.

t Ir
As t ls centrallzed by 8 f.nvolutlons of

also lnverts a subgroup of H of order 4

ueJ 4'
As

l.r

b4

As

t has 9

4l = 8.9

= 2.32 .

conJugatee ln H

= z3 .12;
t

z ts centrallzed by 6 lnvolutl-ons of G-II an.d has L2

conJugates in II

ltrl =

and so b2

By

b1

= 22.12.

Bender-s lenma we have

< 1 (zr + bz + 3b4)
2

6.t2 z3 .g2

I,Ie can also determlne

I b2 b4

(19 b2 + b¿)

= ! (rg 36 + 18)

and henc" bl = 0.

Thus l¡ I = 3.7 + 23.32 + 23.32 = 3.5.11 and the order of c is

z4 .12 .s.tt.

The proof of the following lemma Ls the same as that of

lemma (3.1)."

LEMMA (6.3)

The group G is sirnple.

Using Sylow-s theorem we

of the normal|zer of Èhe Sylow 5

these normalLzers are Frobenlus

easfly determlne the sÈructure

and Sylow 1 1-subgroups of G;

groups of ordet 2O and

the conJugacy classes of

55

1

2

1

2

2

respectively.

there are 9 in

2, 3, 4, 5 and

Gll ,

all. There is one class each of elements of order

6 the elements of order 8 and 11 each form two
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clasaea.

I^Ie shall need the f ollowlng .result.

LEMMA (6.4)

The lntersectlon of two distinct Sylow 3-subgroupB of G

ls trivLal.

PROOF

Let A and B be t\ilo

f 1. Then c

Sylow 3-subgroups of G and

6(a) = A(v) = B(v) where

No¡¡ B i n<*'> and as A l- s

e A /.ì B, a

Lnvolution centrall zlng

Sylow 3-subgroup of A(v)

thenA^B=1.

a

supPose a

v Ls an

a normal

and B has order 9, A B. So Lf. A f B

To tdenttfy G rde use the permutatlon

the cosets of a subgroup of lndex 11. lle

subgroup exlsts ln the followlng two lemmas.

respresentatlon on

sho¡¿ that such a

LEMMA (6.5)

The group G contains a subgroup of l-ndex 22 isomorphlc

ro 46.

PROOF

I'Ie have the followLng: A ls a Sylow 3-subgroup of G

l-nverted by the involuÈlon t, N = ACN(t) and C¡(t) ts a Sylow 2-

subgroup of G. Recall that Lf (r) is a subgroup of A of order 3

then Nc((r)) ( N (see the proof of lemua (6.2)).

Now all Sylow 2-subgroups of CG(t) contal-n the unlque

quaternion groupr sây Q6 { CG(t). LeË R be a Sylow 2-subgroup of

cc(t), R * cN(E), ao that R n cN(t) = Q9. Let D be dihedral of

order 8 Ln R; then QOfì D ls cyelfc of order 4. Put QO^ D =

(x), then *2 = t, x normall_zes A buÈ D does not.
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else D < N.

a2

r*

Let

a. Now r

ar l-s

ab x, t

Iart] lb,rl
a -1

s and xs

Let D z (arb) arb lnvolutlone of D wlth ab = x; arb d N

Also "* = ""b- rb = bab E a.abab - at, and bx = bt.

A E (r) x (s). Ae x normalTzee A. we may suppose rx

= sx and t*t È rt - t-l, therefore 6x - r-1.

I'I e have the followlng relations

= b2 - t2 = 13 = 83 = x4 = I,
x ât, bx = bÈ,

x1

*2

"trt

axrxaxr*axrx

atsas-1"t2 
"

a

= [r's]
-1=fL À,
-1=r

1

C ons id er

(ar)t-l t

Lnverted by

the elements ar and as. S lnce
-'l -1 -1= f -taf . f 't = f .tat =

the Lnvolutl-on r-1t. As the

I'

("t)-1, 
'

only elements of

4r 5 or 6, these

as has posstble

so a . Nc((r)) < N a

for the same reason ("")2

-'tr 'e

Gll inverted by an lnvolutlon have orders 2r 3,

are the only posstble orders of ar. Sl,nilarly

orders 2r 3, 4r 5 or 6.

T-f (at)2 = I then

contradLctl-on. Therefore (^r)2

+ 1.

If(ar)3=lthen

1 = (ararar)x

râ -1r

+ andI

at aat saÈ I

-1

Therefore at - a

So as (at)2 - 1,

Thus If (ar)3 =

Stnilarly ("")3

at aas as

1

1""""-1 = "-1(asas)s.
(as)4 = 1.

then (as¡4 = 1.

I frnplf es (ar¡4 = 1.

76



4Assume nord that (ar)

t r (arararar)x

! 1 t then

axr*ax rx"*r*a*r*

Therefore s

So as(s

I.Ie a 1s o

-1 3
)

atsatsatBats
-1 -1aa ^egag ^aB

""-1(asas)sas
= ""-1 ( asas ) sa

1, (as¡6 - 1

from these steps

-1

have

1

So that s

If sasas

Therefore a e Ca(s)

= a(s-1"")a(s-1as),
-1"" e Ca(a). Also

1 then (s

and as C

t e ca(a), so ("-1as)t = """-1 "

= (sasas)2.

-1t)s(as) = s, that Ls aa e Cç(s).

^(s) ( N, a € N a contradlctLon.
U

C6(a) and sas 1."-1 
"" = sasas e Ca(a) a6 wel1.

Now("")6=lylelds

| = a(sasas)a(sasas)

Thus sasas has order 2.

Now

(ts-Las¡2 = t"-lasts-1as

= 6asas

So as sasas has order 2, ts-las has order 4 and

slnce ts-las l-s also an elenent of Ca(a) tts square ls equal

to a. That. Ls sasas = a whtch lnplles (t")3 = 1.

Thus lf (ar)4 - 1 then ("")3 = 1.

Simllarly (as)4 = I 1np11es ("t)3 = 1.

Now assume (ar¡5 = 1. The preceedlng arguments shor¡

rhar ("")3 # 1 and (as)4 t 1.

Suppose ("")6 = 1.!Íe have

-1 -1sas '6 'as
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I E ( ararararar)x

atsatsatBatsaÈB

-l -1atsag'a6aB ^ag

t,asas-1""""-1á"

asas 1""""-1"", the element asas-1r"""-1"" l-nverts s

lnverÈs s).

xxxxxxxxxxa--ratararar

I

Therefore t

(that 1s t

Also as (r")6

atsas- 1""""- 1

which on cancellatlon

t = sasasasas

1 sasasasas

1 equatlng wlth the above ylelds

solvlng for t yields

-1 -1asas

a8 =

and

-1 as

Soast2=1 we have

-1 -1^as tasas -1 -1 -1 -1sasasasas as asas ,

and after slmpllftcation ylelds

= (asasas 1""-1r)"-1

Thus asas""-1""-1" Ls

Multiplytng by the previous

asasa"-1""-1t.asas
-1asasasasas as

6 -1 -1 -1(as) s a8 a.as as

-1a asas,

(asas""-1as-1a).

also an element Ínvertlng s.

element invertlng s gives

-1 Iasas aa

s

¡¡hich must be an element centrall zLng s, thus "-1""." e Cç(s)

¡shich Lnplies sâ e Ca(s).

Now A ls a normal Sylow 3-subgroup of Ca(s); therefore

as st ha" order 3, "â e A and then s e Aa. Thus s e A 
^ 

Aa which

1np1-ies by lemma (6.4) that A = Aa and so a e N, a contradictLon.

!Je conclude that 1f (".)5 = 1 then ("")5 = 1.

Also (as)

Finally

5 1 inplles (ar)

suppose ("t)6 1

7B

5 1.

all cases have been



ellnlnated except (t")6 1.

Now

I (aratarararar)x

Therefore a

at6atsatBataatsats

-1 -1 -1a6 ^esas tasas 'as

= ("-1asas-t)"(sas 1""), and so

ls easlly shown, uslng ("")6 = fIt

"* r*"*r*a xrXaXrXax rxa*rx

I -1as as e .c.(a).

that "-1"sas 
t h.",

order 3.

(s

Also ("r)2

-1""""-1)sasa = as

a(s-1r"""-1¡"
I I

s asas

Nc(B).

Thls 1np1Les, because s has order

subgroup of Nç(B), that s e B. Thus

A = B. Ho¡uever a normalizes B,

= sasa has order 3 sLnce (sa) 6

-1 -1tag '.s -1 -1asaa .sasa

1. Slnce

-1 -'ls 'asas ^ and sasa commute. If sasa e (s-1""""-1> then sasa e

Ca(a) so that

s.sâ = sasa = a(sasa).a = asas sâ.s, thus sâ e

I^Ie have aeen however that thls
-1 -1(s ^asas'>

3-subgroup of G.

Slnce a centralLzes "-1""""-1, " normalizes B. Now

-1 -¡ -1 -1a ^asas.sasa = s'as ^a e B and so asas e B.

Therefore slnce

(sasa)s = "-1(sasa)s = asas e B

and ("-lasas-1)" = "-1("-1""""-1¡S 
- sasa G B, s c

l-npll-esaeN.Thus

= (sasa, 
"-1""""-1> l-s a

cc(s).

sasa ¿

Sylow

3andB

s e An

thaÈ is

is a nornal Sylow 3-

B and by lemma ( 6.4 )

a normaLLzes A, a

order 6 and hencecontradLctLon. Therefore ar cannot have
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neither can 46.

Thue !¡e have the followl-ng posBibtlltl-es

(1) (ar¡3 - (as)4 ' I

(ff) (ar)4 = (as)3 - 1 and

(tlr) (ar)5 = (as)5 - 1

The same reaBonlng applfes

So by lnterchangtng r and s and also

are four cages to consl-der, namely:

(I) (ar¡3 = (as)4 = (br)3 = (bs)

to the elements br and bs.

a and b if neceas 4Êy, there

and

1

4

(II) (ar¡3 = (as)4 = (br)4 = (b")3

(III) (ar)3 = (as)4 = (b.)5 = (bs)5

(IV) (ar)5 = (as)5 = (br)5 = (bs)5

I

I

I

1

1

CASE (I) ("t)3 = (r")4

ar and S

1I

r-1abr =

1r

= (¡r)3 * (b")4

= br ; then

and

SLnce ararar

rbr

Therefore RS

(RS)

whl-ch has order

3

xr therefore
4

brbrbr

ba(rar)ab

(rar)x

rxaxrx

sats.

arbr = esats and

= asaÈsasats

-1 -1= asas ^as 'as

= as(a"-1)4"t"4-as
-1 -1= as a8 ,

2, thus

= 1.

LeI R

R3 = S

n-ls =

(n-1s)

2

I

1

(RS)4
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But now

S has order 1.68,

by lemma (1.7) the eubgroup G genereted by R and
a contradfctt on aa I I lel.

-1Ro ^so

("r)3

RoE

so

E (as)4 - (br)4 = (bs)3

br and SO i ar ; then
3=1

t-1b"r = (x-1¡r so

I

and

SLnce ararar =

rar

Theref o r e

Ro so

=1

brbrbrbr,

ab(rbrbr)ba

( rbrbr ¡ 
x- I

,f tb*-l 
''*-l 6*-l ,*-l

"-1bt"-1bt"-1

"-lbsbs-1

(Ro tro)o

whLch has order 3, so

Not¡ let ft =

= brar

= bs-lbsbs-1

= be-1bs(bs-1)3sbsb

= bs-1bs-lbsb

- (bs-1)3"b.bsb
-1E s ^b

(Rosd3 I
-1 -1R s and S0 S

ROSO. Therefore = 1 also S3

*O-lSO-1tO-t RO-1Sg, therefore

-1
0 Then R has the same

I

0

R3order as

No¡¡ RS =

(ns)4 = 1.

And n-ls = soRoSo-l

(R-15¡4 = 1

ro
-t

S9 r So

so agafn the subgroup of G generated by R and s has r
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order 168, a contradl-ctlon.

anå

CASE (III) (ar)3 = (as)4 - (br)5 = (b")5

and$=baithen

1

= (rb)a therefore (RS)5

r-1 aabarba

r- 1 barba

.-I*-1,*-I

,-1""-1*-1
-1r ^st,

(u)x(v)

LetR=ar

R3=54=
RS = arba

1

1

v

r and

and s.

also n-1s-1ns

whích has order 2, therefore (R-1s-1ns)2 = I

So by lemna (1.8) (i) the subgroup of G generated by R

and S is isomorphlc wlth 46.

CAS E (rv) ("")5 (br)5 (bs)s 1

(rs)x(r-1 s)

,-1 " ; then

,r3 = v3 = [urv] = l,

ux = (rs)x = rx sx = "t-1 =

and vx = (r-1 s)x = (t-1 )x sx = s

Also u and v are l-nverted bY the

where u =

( ar ) 5 =

Ile have

A (r)x(s)

rsandv=

precisely the relations

reasonlng applies ¡vlth u'

(au)3 = (".t)4 = 1

and (au, ba) ! A6 -

(au)5 = (av)5 =

1r-1 = (rs¡-1 = ,r-1

l-nvolutl-on t. These are

-1r 's

sarisf ied by

v replacing

then (b")5

s so all the above

Thus tf

=1

r

Suppose

(b")5 =

then

( b.') 5

b then

= ( b.r) 5

tha t
1

Let RO = *-1. and S0

to2 = I
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and R 2_*-1.*-1r_"*-1*-1l' 6 tr = er-1 t, whfch has order
0

2, therefore

*04 =

Also ROSO E

. (Roso)

And *o"o

x-1rb = barb

1l¡

-1 -1x tr x trb

"*-1x-1rb
strb

-1sr !

I

5

("t)b,

2

so

1

therefore

whLch has order 5,

Now let R

R4 = 55 =

And

and S

a

br,

sx(r-1¡x5x¡x
-1 -1r ^s ^bt.t

(rs)-rt
,r-1b

-1(bu) ',

(Ro2So)x

Èherefore (RO

-1 and S=Ro

so)5

RoSo then

1

RS = *O-tROSO = SO, so

(ns)2 = 1

n-1s = RgR6Sg = ng256, therefore

(n-15¡5 = 1.

So by lemna (1.8) (if) the subgrouP of G generated by R

ls lsomorphic to 46.

As all cases have been consl-dered we conclude that G has

subgroup lsomorphtc to A6 rshLch has index 22 Ln G.

LEMMA (6.6)

The group G possesses a subgroup of lndex 11.
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PROOF

By lemma (6.5) G has a aubgroup, H say, lsomorphlc to

46. Let D be a dfhedral group of II wLth Z(D) - (t) and let A be

a Sylow 3-subgroup of H Lnverted by t. Ìhen H = <D,A>. If QO 16

the unlque quaternfon subgroup of Ca(t) then Q normalLzes D and

also a norm allzes A (lemna (6.1)). Theref ore Q ( Nc(It) and as G

1s slnple we must have NG(H) = HQ whl-ch has index 11.

Finally rde can identlf y G.

TTIEOREM

If G 1s a group satisfying the assumptions of thls

chapter--then G-ls isomorphtc to Mtt.

PROOF

By the prevl-ous lemma G has a subgroup of index 11.

Representing G on the cosets of this subgroup then, âs G ls

sinple, G is isomorphic to a subgroup of Att.

By the structure of the normalizers of a Sylow 5 and

Sylow 1l-subgroup of G, r're see thet G possesses elements r, m and

n of orders 11, 5 and 4 respectlvely satlsfytng the relatlons

rü = x4 and mn = m2.

We may suppose

r = (1 2 3 4 5 6 7 8 9 10 11) ;

then t4 = (1 5 g 2 6 10 3 7 11 4 S)

and hre may asaume

6 7 8 9 10 11
10 3 7 11 4 I

4)(3 9 11 I 7)

)

(2 6 10

m=,L2345\r 5 g z 6

rE as

5

r 4s ince then required.

10 4 3
a4 a5 b1

(2 5
e2

6
a3

9
b2

11 8
b3 b4 1,,a1

Let n

B4



then rt E (at

which then equals

Therefore (af a2

and (br b2 b3 b4

(N.ote that tf (af

(at a2 a3 aa "S)
numbers ) .

determl-ned.

.3 ^4 ar)(b1 b2 b

= (2 6 4 s 10)(3

a4"S)=(2645

= (3 11 7 9 B) or

a3 a4 tS) = (2 6

g b¿ bs),
11 7 9 8).

10) or (3 11 7 9 8)

(2 6 4 5 10)

4 5 10) then

other cycle of these f lve

^2
2

m

aj

bs)

a2

(645102)orany

If. (at a2 a3 a4 "S) = (3 11 7 9 8)

and (bf bZ b3 b4 bS) = (2 6 4 5 10) ; then considered as

ordered 5-tuples there are 5 choices f or (at a2 a3 a4 rS) and 5

for (bf bZ b3 b4 bS) which lnp1l-es 25 possibilitles for n.

Ilowever in all these cases n is an odd permutation. Thus

(ata2a3a4"S)=(264510)

and (br bz b3 b4 bS) (3 11 7 9 B)

(considered as permutations).

There are 25 choices for n. Hor¿ever for a fixed n,

conjugating by po\^rers of m ylelds all the elements of order 4 in

Na((n)) taking m to ^2, so in fact there are only 5 cases to

conslder.

Fix bl = 3 then the ordered 5-tup1e

Successfvely take a1 2,

4 a5) is deterrnl-ned; this yields all 5 cases, which

(br b2 b3 b4 bs)

6, 4, 5 and

is

10

so(aI aZ a3 a

rde list:

(a) n =

(b) n =

(c) n =

(d) n =

(e) n =

(4 10 s 6)(7

(2 6 5 4)(7 I
(2 4 6 10)(7

(2 s 10 6)(7

(2 10 4 s)(7

9

8

I

I

9 11)

11)

9 11)

9 11)

9 11)8
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cAsE (a)

Let n

(1 10 11)(2 I 3

not contaln an

s 6 e 4)(7),

element of

,r t^
1

(2 10 4 5)(3 I 7 9), rhen rnl =

whfch has order 21. However G does

order 2I thus n * (4 10 5 6)(7 8 9 1I).

CÁS E (b)

(1 2 I 3

contain

CASE (c)

(1 6 e

(246

Let nl = ,,tt = (3 8 7 g)(4 lO 5 6), rhen rnl =

1O 11)(4 6 9 5)(7) which has order 12 and as c does nor

an element of thís order n # (2 6 5 4)(7 8 9 11).

Let tl = .rta = (2 6

10 11)(2 I 3)(4)(s)(7)

r0)(7 I e 11).

7 9) then rrl

order 15 so nf

s 4)(3 8

whLch has

cASE (d)

Let r1

the subgroup of

as lcl = lurrl,

= nD (3 7

G generaÈed

l"f 11'

11 8)(4 10 5 6). By lemma

by r and nl is isomorphlc to

(1.e)(ii)

Mt t and

¡2(r-

CASE (e)

Let

(1 6 Lr)(2 7 3)(4)(5)(8

followLng relations hold between

1ro1)3

tl = nD =

r11 = 15 = r14

(26

9 1o)

5 4)(3 7

which has

r, m and r1

= 1,

11 8),

order 3

then ttI =

. Thus the

rE = t4 and mnl = ^2.
Therefore by lemma (1.9)(i) tne subgroup

by r, m and n1 is Lsomorphfc to Mtt and hence G is

Mtt. This completes the proof of the theorem.

of G generated

isomorphic to
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