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SUMMARY

In this thesis we 1nvestigate groups of even order
containing an involution whose centralizer 1is isomorphic to
GL(2,3). Tﬁe aim of the research was to give an elementary proof
(that 1is, without the use of character theory) that the only such
groups with the additional property of having no subgroup of
index 2 are the simple groups PSL(3,3) and M;,.

Following the introduction: chapter one consists of a
few preliminary general results together with some properties of
the group GL(2,3).

In chapter two we prove a few results about a group G
satisfying the above two properties. In particular we show that
there are four possibilities for the structure of the normalizer
of a group of order 3 contained in the centralizer of an

involution. Each of these cases 1is dealt with seperately in the

ensuing chapters.
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INTRODUCTION

If G 1s a group of even order, then G contalins an
element of order 2. Such an element is called an involution. It
was Brauer who first realised the importance of involutions in
finite groups of even order. During the late forties Brauer had
observed that some very simple properties of involutions can be
used to prove some surprisingly strPng results concerning the
structure of groups of even order. Using such results Fowler 1in
his thesis ([11]) gave a characterization of the groups SL(2,2™)
in terms of involutions. In these groups the centralizer of an
involution is an abelian 2 - group. Fowler proved that this
property actually characterizes SL(2,2™). (The centralizer of an
element x in a group G 1s defined to be CG (x) = {g e G1 xg =
gx}).

The following result appeared in a paper by Brauer and
Fowler in 1955 ([5]).

"If G is a group of even order g which contains m
involutions and 1f n=g/m then there exists a proper normal

subgroup L of G such that G/L is isomorphic to a subgroup of the

symmetric group on t letters with t = 2 or t < n_iﬂiz). In
2
particular |G:L| = 2 or [G:L]| < [n(ﬂ+2)]!"
2

If G is simple then L must be trivial and g < [n (n+2) 4,
2

Let z be any involution of G. Then IG:CG(Z)I.S m = g/n, hence n
+ 2,

< ICG(Z)I so g < []CG(Z)l(ICG(z)I
2

This yields the following result.



"There exists only a finite number of simple groups G
which contain an involution z such that the centralizer CG(z) of
z in G is isomorphic to any given group”.

This result suggested to Brauer the possiblity of
cléssifying simple groups of even order in terms of the structure
of the centralizer of an involution. This proposal has come to
be known as Brauer's programme. This was explicitly proﬂosed in

a talk he gave at the International Congress in Amsterdam in 1954

([21>- .

By a result of Feit and Thompson ([10]1) all nonmabelian
simple groups have even order and hence contain involutions.
This result strikingly reinforced Brauer”s contention that the
structure of a simple group is intimately connected with 1its
involutions.

As an example of this programme Brauer announced the
following theorem ([2]).

"Suppose G is a group of finite order which satisfies
the following conditions.

(1) C contains an involution z whose centralizer CG(z) is
isomorphic to GL(2,q).
(2) If ¢ 1s an element of the centre of C,(z), ¢ # 1, then

CG(c) = CG(z).

(3) G~ =G

If q = -1 (4), q # 1 (3) then G 1s isomorphic to
PSL(3,q). If q = 3, we have the additional case that G can be
isomorphic to the simple Mathieu group of order 7920.

This was the first classification of simple groups other

then PSL(2,q) in terms of involutions. The proof did not appear



untlil 1966 when Brauer proved the following more general result

in [4].
"Let G be a finite group which satisfies the conditions
(1) There exists an involutionm z of G whose centralizer
Cg(z) 1s isomorphic with a group of the form GL(2,q)/L
where L 1s a subgroup of the centre Z(GL(2,q)) and where
qQ = -1 (4)
(2) The group G does not have a normal subgroup of index 2.
We then have one of the cases.
(a) G ¥ PGL(3,q), PSL(3,q) or SL(3,q)
(b) G 1s isomorphic to a direct product of PSL(3,q) with a
cyclic group of order 3, q =1 (3), q # 1 (9)
(c) e = My the Mathieu group of order 7920."
After elementary preliminaries the proof is divided into
2 cases according to whether q3 | 16| or not. 1In both cases the
theory of blocks is heavily used. The first case is concluded by
appealing to a previous characterisation of PSL(3,q). The second
case 1s reduced to five numerical cases. Four of these cannot

occur whereas the fifth yields M;;.

We note that this theorem relies heavily on the theory
of characters and in fact almost all early characterizations also
rely on character theory. We illustrate with a few examples.

In 1959 Suzukl generalized both Fowler”s result (given
above) and a result of Brauer, Suzuki and Wall ([6]). He gave a
group theoretical characterization of the 1 - dimensional
unimodular linear fractional group SL(2,2%). The main theorem in
{17] states.

Let G be a finite group of even order. If the

centralizer of any involution in G is always abelian then we have



one of the following three possibilities.

(1) Sylow 2-subgroups of G are cyclic
(2) A Sylow 2-subgroup of G is normal
(3) G is a direct product of two groups L and A where L 1is

one of the linear groups SL(2,2™) and A is an abelian

gréup of odd order.”

The proof begins by assuming the theorem false ayd then
studying a group G of smallest order contradiction the theorem.
Some properties of G concerning Sylow 2-subgroups and
centralizers are proved. Then considering a more general group
satisfying weaker conditions, its structure and characters are
studied and a formula for its order is derived. Applying this
formula to the group G leads to a contradiction.

In a second paper on linear groups, Iin the same year,
Suzuki gave a characterization of the 2 - dimensional linear
fractional groups over a fileld of characteristic 2 by properties
of involutionmns. This result is a counterpart to a similar
characterization of these groups over a field of order q, q = -1
(4) given by Brauer (as stated above). Suzuki proves the
following theorem ([17]).

"Let G be a finite group of evem order and z an
involution of G. If the centralizer of z in G is isomorphic with
the centralizer of an 1involution in the linear fractional group
Gg In 2 variables over a field F of q elements, q even, and if
every involution of G is conjugate to z, then G is isomorphic to
GO, with one exception. The exceptional case occurs when q = 2
and in this case we have G £ LF(3,2) or G ¥ A6."

After an analysis of the structure of the centralizer of

an involution, the case q = 2 is easily settled by making use of



previous results. For the case q > 2 both the main theorem of
the first paper on linear groups above and-its order formula are
used several times. Then after a complicated study of 1its
structure and characters, G 1s shown to have a subgroup M of
order q3 (q - 1)2 (q + 1) and index q2 + q+ 1. In fact M is the
normalizer of an elementary abelian group P of order q2. G 1s
represented as a permutation group on the set B which consists of
the q2 + q + 1 conjugates of P; G is doubly transitive on B.
Also G 1is shown to contain a subgroup L of order q2 not conjugate
to P. Suzukil constructs a projective\plane in which the points
are elements of B and the lines are the conjugates of L. Further
a point lies on a line if and only if the subgroups intersect
non-trivially. This is shown to be a Desarguesian plane. This
enables Suzuki to identify G with the linear fractional group and
complete the proof.

Finally we mention a characterization of M12 given by
Wong ([19]) in terms of centralizers of involutions.
Specifically he proves the following theorem.

"Let C(zo) be the centralizer in M12 of an involution zj
in the centre of a Sylow 2 - subgroup of Mio2- Let G be a finite
group such that
(1) G contains an 1involution 2z whose centralizer CG(z) in G

is isomorphic toC(zOL
(2) G does not contain 3 mutually non-conjugate involutions.

Then either G is isomorphic with M12 or G has a unilque
nontrivial normal subgroup N. In the latter case N is elementary
abelian of order 8 and G/N is isomorphic with the simple group
GL(3,2) of order 168.

The theorem 1s proved by means of computations with



characters. In particular, in one of the cases congsldered, G 1is
shown to be a simple group whose order is the same as that of
Mg By a result of Stanton ([16]), G 1is isomorphic to Mj,.

We should now like to mention something about the known
finite simple groups. By early this century the families of
classical simple groups over a finite fileld had been discovered,
plus two exceptional families found by Dickson (see Diokson’s
book on linear groups ([9]))- These together with the groups of
prime order, the alternating groups and the five Mathieu groups
were the only known simple groups. )

Mathieu discovered his groups around 1860 in the search
for highly transitive permutation groups. There are two 5-
transitive groups of degrees 12 and 24 denoted by My, and Moy,
respectively. The groups M;;, My, and M,5 are the natural one or
two point stabilizers; M;; and M,3 are both 4-transitive, while
My, is 3-transitive. They include the only known 4 and 5-
transitive permutation groups apart from the symmetric and
alternating groups which are trivial exceptions. The 5 groups
are all simple and represent the first sporadic simple groups.
Remarkably it took over a hundred years for the sixth sporadic
simple group to be discovered.

In 1955 the first simple groups since Dickson’s time
were discovered by Chevalley. These fall into a framework which
now includes all known infinite families, the altermating groups
being the only exception. Steinberg and others were then able to
construct the "twisted” groups as the fixed point subgroups of
certain automorphisms of these groups. These groups are
collectively known as the groups of Lie type.

We 1list the infinite families below. The groups listed



obtain a simple group.

may not be simple; a central subgroup needs to be factored out to
central

The Iinteger d denotes the order of this
subgroup.

Known Finite Simple Groups

¢ d
z, 1
An, n > 5 1
An(q) (n+ 1, q - 1)
Bn(q), n > 1 (2, ¢ - 1)
Cn(q), n > 2 (2, q - 1)
Dn(gq), n > 3 (4, q™ = 1)
Gy(q) 1
Fu(q) 1
Eg(q) (3, q - 1)
Ey(q) (2, ¢ - 1)
Eg(q) 1
2pn(q), n > 1 (n + 1, g + 1)
2Bn(d), q = 22m + 1 1
2Dn(q), n > 3 (4, q™ + 1)
>, (q) 1
2G2(q), q = 32m + 1 1
2F4(q)’ q = 22m + 1 1
2Eg (q) (3, q + 1)
NOTE:

An.

An(q) should not be confused with the alternating groups
Also An(q)/2 ¥ PSL(n,q)

(where Z 1is

the central subgroup).
We also have the 26 sporadic simple groups,

so named
since they do not belong to any infinte family.
below.

They are listed
The sixth sporadic simple group J; was discovered by
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Janko in 1966 ([14]). It was found when Janko tried to eliminate
a particular possibility for the centralizer of an involution 1n
a finite simple group. The others were discovered 1in the
following fifteen years.

Known Finite Simple Groups

c ORDER OF €
My 24, 32, 5. 11 .
M, 26, 33, 5. 11
My, 27. 32, 5. 7. 11
My 27,32, 5. 7. 11. 23
My 210, 33, 5, 7. 11. 23
Jq 23. 3. 5. 7. 11. 19
Iy 27, 33, 52, 7
Jg 27, 3%, 5. 17. 19
94 221 33, 5, 7. 113, 23. 29.
31. 37. 43
HS 29. 32, 53, 7. 11
Mc 27, 36, 53, 11
Suz 213, 37, 52, 7. 11. 13
Ru 214, 33, 53, 7. 13. 29
He 210, 33, 52, 73, 17
Ly 28, 37, 56, 7. 11. 31. 37. 67
ON 29. 34, 5, 73. 11. 19. 31
1 221, 39, 54, 72, 11. 13. 23
.2 218, 36 53, 7. 11. 23
.3 210, 37, 53, 7. 11. 23
M(22) 217, 39, 52, 7. 11. 23
M(23) 218 313 52 7, 11.13.17.



Known Finite Simple Groups (cont).

[ ORDER OF G

M(24) 221 316 52 73 11, 13. 23.
29

Fs | 215, 310, 53, 72, 13, 19. 31

Fji 914 36 56 7. 11. 19

F, 241 313 56 72 711,13, 17.
19. 23, 31. 47 ’

F, 246 320 59 76 112 133,

17. 19. 23. 31. 41. 47. 59. 71

The above list is believed to be the complete list of
all finite simple groups. Although many have been characterized
by centralizers of involutions relying heavily on character
theory, 1t is of interest to see if more elementary proofs can be
given. In particular, proofs without using the theory of
characters.

We remark that the main application of characters is to
determine the order of the group. Now if the structure of the
group is not too complicated there are other ways of determining
this order. If there is one class of involutions a lemma of
Bender ([1]) (also see chapter 1 of this thesis) can be applied;
and 1f there is more than one class of involutions, Thompson’s
Order Formula can be used.

An example of a characterization without character
theory is given by Bender. In [l] he gives a characterization of
the simple groups PSL(2,7) and Ag in terms of centralizers of
involutions. In this paper he proves a lemma which he uses to
determine the order of these groups. (In this case the order is
enough to complete the characterization). In this same paper

Bender studies Janko”s first simple group Jl and in particular



determines its order using these elementary techniques.

The purpose of this thesis 1s to use these ideas to give
a characterization of the simple groups PSL(3,3) and M;; in terms
of centralizers of involutions. Specifically we prove the

following.

THEOREM

Let G be a finite group of even order with the following
properties
(a) G has no subgroup of index 2'~
(b) G possesses an involution z whose centralizer CG(z) in G

is isomorphic to GL(2,3).

Then G is isomorphic to PSL(3,3) or Mll'

For the earlier proof of this result (due to Brauer and
Wong) using character theory see [13].

The proof of this theorem uses Bender’s lemma many
times. We shall therefore make a few remarks concerning the
lemma. To use the lemma we need to choose a suitable "large”
subgroup H of the group G and count the number of involutions in
each coset of H in G. From this we can determine the number of
involutions 1in G. This fact, together with the structure of the
centralizer of an involution and the fact that there 1is only one
class of involutions in G enables us to determine the order of G.

In order to count the number of involutions 1in each

coset we make use of the following observations.

Let u be an involution of G-H and consider the coset Hu.

Let v e Hu be an involution, v = hu for some h in H; this implies
h = vu.

Now

hY = (vu)Y = uvuu = uv = (vu)~1l = h-1

10



Thus u Iinverts h.

Conversly suppose u inverts an element h of H, hY = h_1
Then v = hu is an involution of the coset Hu since
vZ = huhu = hhY = bR = 1

Thus the number of elements in the coset Hu is equal to
the number of elements of H inverted by u. All of these
elements belong in the subgroup HAHY. Thus a knowledge pf HA HY
may help to determine the number of involutions 1in the coset Hu.

To conclude this introduction we give a brief outline of
the proof of our theorem. Suppose G is a finite group which
satisfies the assumptious of the theorem. Let x be an element of
order 3 in CG(z). After some initial results about G we prove
that NG(<X>) has a normal 2-complement A. There are four
possibilities for the structure of A. Each of these is treated
seperately in a different chapter.

In chapter 3, A o Z4, here we prove the existence of a
certain type of subgroup M. The subgroup M satisfies the
conditions:

(i) (IMl, 6) =1

(ii) ING(M)l is even,
and M is chosen maximal subject to (i) and (ii). There are
various possibilities for NG(M), many of which are eliminated by
using Bender’s lemma. We eventually obtain a possible order for
G and then show that G is sharply 3-transitive in its action on
the Sylow 5-subgroups. A contradiction 1is obtained by
considering the structure of the subgroup fixing two letters.

In the other cases after proving more properties of G we
choose a subgroup H, apply Bender’s lemma and obtain the order of

G. Once the order is obtained we proceed differently in each

11



case. In chapter 4, A -4 Z3 x Zq X 29, it is trivial to obtain a
contradiction. The case A non—abelian of order 27 yilelds the
group PSL(3,3) which 1s i{dentified using a paper of Brauer’s
([3]), this 1s done in chapter 5. In the final chapter A o
23 X Z,. Before identifying the group we first need to show that
it has a sﬁbgroup of index 11, which is done using generators and
relations. Once we have this subgroup we represent q on the

cosets. This leads to an identification of G with Mll'

12



CHAPTER ONE

ASSUMED RESULTS AND PROPERTIES OF GL(2,3)

We begin with a few assumed results which will be used
at various places in the proof of our theorem. The first is a
simple consequence of Sylow’s theorem, it 1s know as the Frattini

argument.

LEMMA (1.1) ([12] Theorem (1.3.7))

If H 4 G and P is a Sylow p - subgroup of H, then G =
NG(P)H.
The next two results are simple applications of the

transfer homomorphism.

BURNSIDE“S TRANSFER THEOREM

If P is a Sylow p - subgroup of G and NG(P) = CG(P) then

G has a normal p - complement.

PROOF
Since NG(P) = CG(P), P < Z(NG(P)), the result now

follows by Theorem 7.4.3 of ([12]).

THOMPSONS TRANSFER THEOREM ([13] Lemma XII. 8. 2.)

Suppose G 1s a group with no subgroup of index 2 and R
is a subgroup such the |G:R| 15 twice an odd number. Then any
involution in G 1s conjugate to any involution in R.

The next two results are not readily found in the

literature, we therefore include a proof.

LEMMA (1.2)

Suppose z is an involution normalizing a subgroup H of G

with the property that CH(z) = 1, Then 2z inverts H, that is

13



h? = h_1 for all h e H, H is abelian and H has odd order.

PROOF

Consider the map 6: H > H defined by 6: h v h_lzhz.
This map 1s well-defined as z normalizes H s0 that zhz e H, for
all h e H;

If 6(h;) = 0(h,) for some hy, h, ¢ H then h;7'zhyz =

1

hz—lzhzz by definition of 6. But then zhlhz— = hlhz_lz, that is

hy 2—1 e CH(Z)' And because CH(z) = 1 we conclude that hy = h,.

-

The map is therefore 1 - 1 and hence onto.

Let h e H then there exists h; e H such that G(hl) = h-1

_]_.

]

that is hl_lzhlz h Taking the inverse of this expression we

1

have zh; “zh; = h whence hl—lzhlz = zhz. Equating gives h% =

h—l, which is the first result.

Let h h2 e H then

1
(hyhp)™l = (hyhy)® = % hp® = hy 77 hy
And as (hlhz)_l = hz—1 hl"1 we have hl—1 hz—1 = hz_1 hy
which implies that H is abelian.

If H has even order then H contains an involution h say.
But then h% = h—1 = h, so that h e CH(Z) a contradiction. Thus H

has odd order.

LEMMA (1.3)

Let M be a subgroup of odd order in G. Suppose M 1is
inverted by an involution z and CG(M) = M.

Then N, (M) = Mch(M)(z).

PROOF

1 1

Let n e N (M) and m e M then (n ‘*zn)m(n *zn) =

n_lz(nmn_l)zn = n-l(nm-ln—l)n as z inverts M and nmn—1 e M.

14
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Thus (n—lzn)m(n_lzn) = m—1 = zmz hence(zn-lzn)m(n_lznz) = m that
is n_lznz e CG(m). This 1is true for all m e M, therefore
n—lznz e CG(M) = M and so n—lzn e Mz, which 1s true for all n ¢

NG(M). It follows that M<z> is a normal subgroup of NG(M). As M
has odd order <z> is a Sylow 2 - subgroup of M<{z> so the Frattini
argument ylelds NG(M) = M<Z>NNGLM)(<Z>) = MCN&(M)(ZL

The following formula was discovered by Brauer and the

result has been generalized by Wielandt in ([18]) (for which
Brauer' s result is a special case); 1t 1s know as the Brauer-—

-~

Wielandt formula.

THE BRAUER-WIELANDT FORMULA

Let H < G, H of odd order h and suppose Aut (H) contains
a & - group 84 = <91,92> 8, = 9,68,. Let f, denote the number of
fixed points in H by 6,,1 =0, 1, 2, 3. Then fozh = f1f2f3.

For our purposes we require this formula 1in the

following form.

CORALLARY (1.4)

Let H be a subgroup of G of odd order and suppose NG(H)
contains a 4 - group V = <v1,v2>,v3 = VyVy
Then:

The following lemma is proved by Bemder in ([1]). since

it is crucial for our theorem we shall include proof.

BENDER”S LEMMA

Let G be a group with a subgroup H such that 1J] > |G:H|
where J denotes the set of involutions in G.
Furthermore define

J, = set of u e J-H such that |Hum™ J| = n

15



bn = number of cosets Hg # H such that lHgnJ| = n

¢ = number of u e J; such that CH(u) # 1.

=150
|G:H|
Note that lJnl = nb, Then
(1) |31 = [3nH| + by + 2b, + 3by + ...
(2) b, = c + k|H| for some non—-negative integer k
-1
(3) by < £71 (1JaH| + by + 2b3 + 3b, + ...) -1 -by —bg
PROOF

-~

c + the

Firstly (1) is obvious. For (2) note that b,
number of u ¢ J, such that CH(u) = 1.

Let u e J, be such that CH(u) =1

1f ul = uK for some h,k e H, then hk~le CH(u) =1, so h

h o Jl' Therefore uh, for h e H, are distinct

= k; also u
involutions of J, such that CH(uh) =1 3 (2) now follows.

To prove (3) note that

lg:Hl = 1 + by + by + by ... hence using (1)
|3l - le:H| = |[JAH| = 1 - by + by + 2b3 + 3b, + ...
Since |J| - lc:H| = £ lG:H|

£ (1L + by + by + by + by + ...)

£b; = |13l - 1G:H| - £(1 + by + by + by *+ ...)
So that

- g1 oy - R T
b, = £ - (lJnH] 1 - by + by + 2b3 + 3b, + ...)-1-bg=by~-by-...

and as bj > 0 the inequality follows.

All notation defined in this lemma will be fixed
throughout this thesis. This lemma 1s used when the group G has
one class of involutions, in this case we have the following

alternate expression for £

16



R -1
lG:n| G:H|
= lel/lc (=)l _ 4
lel/1ul
- lul
Icg(z) |
So f = lml _ 1, where z is an involution of G.
lcg(2) ]

In chapter 3 we show that the group concerned is a
sharply 3-transitive permutation group in which the subgroup
fixing two letters is isomorphic with SL(2,3). The following
lemma shows that no such group exists. This result appears in
Passman’s book on permutation groups ([15]). We shall include

the proof since it 1s an interesting one.

LEMMA (1.5)

Suppose G 1s a sharply 3-transitive permutation group on
a setfl, suppose also that 3 ||G0*| where 0, are two points in

Ly . Then G4 has precisely one subgroup of order 3.

PROOF
Let u,v be two distinct elements of order 3 in GO*'
These elements fix O and * but no other point as G is sharply 3-

transitive; therefore they have the form

(0)(*)(1 2 3)...

u

(0)(*)(1 a b)... with a,b # 2,3 respectively.

v
Choose g e G with g = (1)(2 3)... Then uf = (1 3 2)...
The element uu® fixes the three points 1, 2 and 3 so as G is
sharply 3-transitive this element is trivial, hence ud = o .
Now g must send the points fixed by u to the points
1

fixed by u °, hence g permutes the set {0,*}. Since g already

has 1 fixed point namely 1, we must have

17



g = (0,*)(1)(2 3)...

Now choose h e G with

Then v luP fixes the three points 1, a and b, hence
v—luyh = 1 so that uP = v. Since u # v, h # 1. Now h must send
the points fixed by u to the points fixed by v and hence permutes
the set {0,%¥}. Since h already has one fixed point, namely 1 we
must have h = (0,*)(1)... But now g and h agree on three points
and hence are equal. This yields.

v = ul = uB8 = u7l.

Thus Gpx must contain precisely one subgroup of order 3.

The group PSL(3,3) occurs in chapter 5; a paper of
Brauer's ([3]) is used to identify 1it. In this paper Brauer
considers a set of postulates for a group G which permits him to
define a projective plane TV in terms of G. G has a natural
representation by collineations of TT . These postulates are the
following.

(1) G contains a 4-group V, V = <v,v1>, Vg = VVy; and there
exists an element of G which permutes the involutions of

V.

(1I1) There exist subgroups M and M* # 1 of G with the
following properties

(a) M and M* have the same order

(b) Cg(v) < Ng(M) and Cg(v) < Ng(u™)

(¢) MAM* = MACL(v) = M'ACg(v) = 1
(I11) All involutions of Cg(v)-<v> are conjugate in CG(V%

We have the following definitions. A point p 1s a

subset of G of the form p = g—lng with g e G. A line r is a

subset of G of the form r = g—lvM*g with g e G. The point p
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l1ies on the line r, if pnAnr = ¢ The planeTl is the set of all
points and lines. For a fixed element t of G the mapping

r(t) : p P pt, rP rt is a collineation of TT .

Under these assumptions 1t is shown that

M

*
MyxMy and M = My xM,”
where M, = MhCG(vi)
* *
and M;© =M N Ci(vy) i=1,2
* *
and Myl = 1Myl = IMy | = IMy | = g

We also need the following two postulates

«

(1V) le:MCg(v)| < >+ O T 1

(V) Every class of CG(v) conjugate elements of M meets M;.
Then we have the following result which is Theorem (4D)

of [3].

LEMMA (1.6)

The group G has a chief series G > Gp 2 K > 1 where G/GO
is ecyclice, GO/K is isomorphic with PGL(3,q) or PSL(3,q) and K has
odd order.

For q # 1 (3) the groups PGL(3,q) and PSL(3,q) coincide.

In chapter 6 we have occasion to consider groups defined
in terms of generators and relations. The following results will

be used ([8]).

LEMMA (1.7)

Let G be a group generated by the elements R and S which
satisfy the following relations
R3 = 3 = (rs)4 = (r7IsHH =1

Then G 1is the simple group PSL(2,7) of order 168.
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LEMMA (1.8)

Let G be a group generated by the elements R and 5§ which
satisfy one of the following relations
(1) g3 = g% = (rs)? = (R71s71Rs)2 = 1 or

(RS)2 = (r71s)? =1

(i1) R* = g3
Then G 1is 1somorphic to A6'
To identify M;, in chapter 6 we use the following result;

for the first part see [8] for the second see [7] page 151.

LEMMA (1.9)

-

Let G be a group satisfying either of the conditions
(1) G is generated by the elements r, m, n which satisfy the

following relations

r11 = m5 = n4 = (rn)3 =1

™ = r4 and m" = n?

(1i1) G = <(1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6,)>
Then G is i1somorphic to My,-

Since the centralizer of an involution of a group in our
theorem is isomorphic to GL(2,3) we shall need to know some of
its properties. We state these without proof.

Let Cgy = GL(2,3), then Co 1s a group or order 48 = 24.3;
its centre Z(CO) = <zo> has order 2; Co contains a unique
quaternion subgroup Qpy which 1is therefore normal in Cg, and
SL(2,3) is the unique subgroup of index 2 in Cy and has
quaternion Sylow 2-subgroup.

Let 535 be a Sylow 2-subgroup of Cy. Then S5 is semi-
dihedral and S, has subgroups of 1index 2 which are cyclic,
quaternion and dihedral of order 8; and NCO(SO) = SO' If X0 is a
Sylow 3-subgroup of Cy then NCO(XO) = XyVg where Vg5 1is a 4 -

group of Cy. Also we have NCO(VO) is dihedral or order 8.
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The elements of Co—<z0> have orders 2,3,4,6 and 8 and
their centralizers in C5 have orders 4,6,8,6 and 8 respectively.
The elements of CO—<zo> each form a single conjugacy class in Cj,
the lengths of these classes are 12,8,6 and 8 respectively. 1In
p;rticular CO—<zo> contains 12 involutions. The elements of
order 8 form two classes both containing 6 elements; and an
element of order 8 1s not conjugate 1in CO to 1ts 1inverse.

Finally QO contains all elements of order 4 1in CO,
SL(2,3) also contains all elements of order 3 and Co is generated
by its 1involutions.

We conclude this chapter with the following notation
which is fixed thoughout thils thesis.

We denote by G a group satisfying the conditions of our
theorem and z 1s an involution of G whose centralizer in G 1is
isomorphic to GL(2,3). Let C = CG(z), S be a Sylow 2-subgroup of
C and Q the unique quaternion subgroup of C. Let t be an
involution of C-<z> and denote by V the 4-group z,t>. Finally
let X be a subgroup of order 3 in C inverted by t. (We note that

there are two possible choices for such a subgroup X).
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CHAPTER TWO

PRELIMINARY RESULTS

This chapter consists of a few basic properties of the

group G. We begin with an easy lemma.

LEMMA (2.1)

N-(S) = S and so S is a Sylow 2-subgroup of G.

PROOF
As 2(S) = <z>, <z> char 8 so <z> 4 Ng(S). Therefore
Ng(S) £ Ng(<£z>) = C. It follows now that N,(8) = s.

The next result concerns the conjugacy of involutions in

LEMMA (2.2)

The group G has one class of involutions.

PROOF

Firstly by assumption G has no subgroup of index 2.
Secondly as S is a Sylow 2-subgroup of G, |G:Ql 1s twice an odd
number. So any involution in G 1s conjugate to an involution in
Q by Thompsons Transfer Theorem. Since Q contains only one
involution z, all involutions of G are conjugate to z, the lemma
folldws.

The following result deals with the conjugacy of

elements of order 3 centralized by involutilons.

LEMMA (2.3)

The elements of G of order 3 centralized by some

involution form a single conjugacy class.
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PROOF

Let b be an element of order 3 in G centralized by an
involution v. By lemma (2.2) z = v8 for some g In G. So as

b e Co(v), b8 e C.(vB) = ¢C
And as the elements of order 3 in C form a single conjugacy class
in C, the elements of order 3 1in G centralized by some involution
form a single conjugacy class ip G.

We also determine the number of conjugacy classes of

elements of order 4, 6 and 8 in G.

LEMMA (2.4)

The elements of order 4 and 6 in G each form a single
conjugacy class. There are two classes of elements of order 8 in

G.

PROOF

Let b be an element of order 4 in G. Then b? is an
involution and so is conjugate to z by lemma (2.2). As b e
CG(bz) some conjugate of b is contained in C. As C has one class
of elements of order 4, G must have one class of elements of
order 4.

The same reasoning applies 1if b has order 6 since b3 is
an involution and C has one class of elements of order 6.

Suppose now that b has order 8. Then some conjugate of
b 1s contained in C. As C has two classes of elements of order
8, G has at most two classes of elements of order 8.

Consider b e C, b an element of order 8. We claim b
cannot be conjugate to its inverse; suppose so and let b8 = p~1
-4

for some g in G. Then (b4)g = b which is z8 = z; that is g e

C. However b is not conjugate to its inverse in C. Therefore b
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is not conjugate to its inverse in G. We conclude that G has two
classes of elements of order 8.

The next lemma shows that there are four possible
structures for the normalizer in G of a subgroup of order 3 in
the centralizer of an involution. Each of these cases must be

considered seperately.

LEMMA (2.5)

We have CG(X) = A<z> and NG(X) = AV where A is either
elementary abelian of order 3,9 or 27 or 1is non-abelian of order

27. Furthermore A 4 NG(X).

PROOF

Let R be a Sylow 2-subgroup of Ce(X) containing <zD.
Since CR(z) SCCG(X)(Z) = CC(X) is cyclic of order 6, CR(z) = <z>
and hence R = <z> (either z e Z(R) or z 1is centralized by an
element of Z(R)#). As <z> is a Sylow 2-subgroup of Ce(X), Cx(X)
has a normal 2-complement,A say, by Theorem 7.6.1 of [12]. Thus
Cg(X) = A<z>. Further A 4 No(X) and NG(X) = AV,

Acting on A by the b-group V we have, by the Brauer-
Wielandt formula, that

Al = lc,(2)llc, (zt)llc, ()]

(since CA(V) = 1)

Now CA(z) has order 3 and CA(zt) and CA(t) have order 1
or 3 (|A| being odd), so A has possible orders 3, 9 or 27. 1In
the first two cases A is elementary abelian and in the latter
case A is either elementary abelian or non—abelian of order 27.

We list the four possible cases to be considered.

Case (A) A = Z3

Case (B) A = Z3xZ3xZ3
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Case (C) A non—abelian of order 27
Case (D) A = Z3xZ3
We conclude with a result on a proper mon-trivial normal

subgroup of G, if there is one.

LEMMA (2.6)

Either G is simple or a proper non—-trivial normal
subgroup has order 27. ‘
PROOF

Suppose G is not simple, letﬁL be a proper non—trivial
normal subgroup of G. If L has even order then it contains an
involution and hence all involutions by lemma (2.2). As C is
generated by its involutions C < L and in particular § < L. The
Frattini argument yields, since S is a Sylow 2-subgroup of L (in
fact of G) by lemma (2.1) that G = LNG(S). Whence G = L by the
same lemma a contradiction. Hence L has odd order.
Acting on L by the 4-group V we have

Ll = lcp ()l legCzedlley (edl .
And as z ~ zt ~ t in G,

lcp ()| = leg(zed)l = leg(e)l = 3,

and therefore |L| = 27 .
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CHAPTER THREE

CASE (A) A =2,

Throughout this chapter suppose that NG(X) = XV.
It follows from Sylow’ s theorem that X is a Sylow 3-
subgroup of G and hence G has one class of elements of order 3.

The following lemma 1s easily proved.

LEMMA (3.1)

The group G is simple.

PROOF

If G contained a proper non—-trivial normal subgroup L, L
would have order 27 by lemma (2.6). As G does not contain a
subgroup of such order G is simple.

The following lemma shows the existence of a certain
type of subgroup of G. It is the normalizer of thils subgroup

that will be important for us in determining the order of G.

LEMMA (3.2)

There exists a subgroup M or order m such that (m,6) = 1

and ING(M)I is even.

PROOF

Consider the set {zx ; x e J}. We determine the number
of Involutions x for which zx has order 1, 2, 3, 4 or 6.

There 1s one involutlion for which zx has order 1 and 12
where the order 1s 2 (namely the involutions of C-<z>).

Let zx have order 3. Thus z inverts zx and every
element of order 3 1inverted by z 1s of this form. Suppose z
inverts k elements of order 3. Then any involution inverts k

elements of order 3 by lemma (2.2). Because there are 23|J| =
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IG:CG(zx)I elements of order 3 each inverted by 6 involutlions and
as there ére ]3] involutions, we have k|J| = 6.23 |J|; that is, k
= 48. Thus z 1inverts 48 elements or order 3. Similarly =z
inverts 24 and 48 elements of order 4 and 6 respectively.
Therefore the number of involutions x for which zx has order 1,
2, 3, 4 or 6 is

1 + 12 + 48 + 24 + 48 = 133 = 7.19.

For any other involution x, |zx| = n with (n,6) = 1. 8o
if there are no such x then |J| = 7.12 whence
lg] = 2%. 3. 7. 19

In this case let P be a Sylow 19-subgroup of G. Then

|Cg(P)I17.19 and as lAut(P)| = 18 = 2.3%2 and INg(P)| 1s odd,
INg(P)[13.7.19. Hence 2% |16:N(B)| and so |G:Ng(B)| = 2%.x with
x a divisor of 3.7. As 2% = 16 = -3 (19), -3x = 1 (19) by
Sylow” s theorem. Now x =1, 3, 7 or 21 none of which satisfy

this congruence. Hence there exists an involution x for which
|xz|] = n and (n,6) = 1. The subgroup <zx> satisfies the lemma.
Let M be a subgroup as in the previous lemma such that M
is maximal subject to these conditions. That 1s, 1f M < My with
(|M0|,6) = 1 and |NG(M0)| even then M = Mj. We may assume Z €
NG(M). We gather together a few propertlies of M 1in the next

lemma.

LEMMA (3.3)

(a) z inverts M and M is abelian

(b) Co(M) = M

(c) Ng(M) = MOy () (2)

(d) CG(F) = M for all H e M# and hence NG(<H>) < NG(M)

(e) If g e G-NG(M) then M n M8 =1
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PROOF

Since (m,6) = 1 no element of M' can centralize z.
Therefore (a) follows by lemma (1.2).

Clearly z normalizes CG(M) and the order of CG(M) is
prime to 6. So as M < CG(M), M being abelian, the maximality of
M forces CG(M) = M, which 1s (b). Now (c) follows by lemma (1.3)
since z inverts M and CG(M) = M,

Let F e M#; since z 1nvertsH, zZ e NG(<r>) and as CG(H)
4 NG(<F>)’ zZ e NG(CG(F))' Asra cannot centralize an element of
order 2 or 3 the order of CG(F) is }rime to 6. S0 as M < CG(P)
the maximality of M implies CG(r) = M. ©Now M (¢ NG(<F>) and
NG(<H>) < NG(M), hence we have (d).

Finally, let g e G-No(M) and suppose MAME # 1. Let x e
MAME, x # 1. Then there exists y e M# such that x = y8&, Now
Ce(x) = Co(y)® which by (d) yields M = M8; that is g e No(M).
This is a contradiction and hence M M8 = 1.

In the following two lemmas we determine various
possibilities for the normalizer of M in G. In two of these

cases a possible order for G is obtained.

LEMMA (3.4)

We have the following possibilities for the normalizer

of M 1n G:

(a) A Sylow 2~subgroup of NG(M) is quaternion

(b) INo(M)| = 2. 3. 7

(e) IN,(M)| = 2.m

(d) INg ()| = 22.5

(e) |NG(M)|= 22.13 and in this case the order of G is

24.3.52,13
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PROOF

As NG(M) cannot contain a 4-group (by theorems (6.2.2)
and (5.3.16) of [12]) a Sylow 2-subgroup 1s either quaternion or
cyclic. The former case 1s (a), so we may assume a Sylow 2-
subgroup of NG(M) 1s cyclic.

Suppose firstly 3||NG(M)|. Then 3IICNG(M) (z)| since
ING(M)l = IMIICNG(M) (z)| by lemma (3.3) (c), and as CNG(M) (z) <
Ci, CNG(M) (z) must be cyclic of order 6. Thus |NG(M)| = 2.3.m.

The normalizer of a subgroup of order 3 in NG(M) is
cyclic of order 6, its index 1in NG(M)kis therefore m and Sylow”s
theorem ylelds m = 1(3). And as (ny6) =1 either m = 7 which 1s
(b) or m > 13.

In this latter case we can apply Bender” s lemma to H =

NG(M). We first calculate f,

f o= B4 -1 = 6m  _ 1 _ m—8
lce(2) | 48 8
Also |J NN H| = m as H contains n involutions.

Let p be a prime divisor of m and P be a Sylow p-
subgroup of H. It is easily seen, by Sylow’s theorem, that P {is
a Sylow p-subgroup of M, and hence is the only Sylow p-subgroup
of H (since it is the only Sylow p-subgroup of M by lemma (3.3)
(a)). Let x be an element of H of order p, so that x e P and
hence x e M. Thus for any prime divisor p of m, an element x of
H of order p is contained in M.

Let u be an involution of G-H and consider H M HY,
Suppose a prime divisor p of m divides the order of HA HY. Then
HMN HY contains an element, x say, of order p. Now both x and xY
are elements of order p in H and hence, by the previous paragraph
are contained in M. It follows that x e M N\ MY which contradicts

lemma (3.3) (e). Thus no prime divisor of m divides |lH A BY].
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Whence |H A HY||6 and H~A HY 1s cyclic.

Suppose u 1inverts z. Either u inverts only <z>,.in
which case u e J2 or u inverts another non-trivial element of H
and in this case u inverts H A HY which will be cyclic of order
6 and 80 u e J6' As z 1s centralized by 12 involutions of G-H
and z has m conjugates in M we have

13,1 + 131 = 12.0 = 22.3.m

Now suppose u inverts X (which we may assume belongs in
H). As NC(X) = XV = NG(X), u centralizes z 1in addition to
inverting X, so u e J6. Since X 1s 1nverted by involutions of
G-H and X has m conjugates in H we have

|J6| = 6.m = 2.3.m

It follows that

|J2| = 2.3.m;

thus b, = 3m and by = m

Now let u e Jl, so that u inverts no non—~trivial element
of H. In particular u cannot centralize an involution of H. As
an element of order 3 in H, 1s centralized by only one involution
of G which 1s contained in H, we have CH(u) = 1 for all u e Jl'
Thus ¢ = 0 and bl = 2.3.m.k, k a non-negative integer.

Summarizing, we have

8

’

| H| = m,

b, = 3.m, bg = m,

1

b1 2.3.m.k, k a non-negative iInteger and all other

b are zero (n # 0).
By Bender”s lemma we have
b; = 2.3.m.k < 8 (m + 3m + 5m) - 3m - m

m—-8
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= 23.32.m - 22. m
m—8
therefore 3k < 2232 - 2.
m—-8
As m > 13, _]_‘__Siso
m—8 5
3k < 22,32, -2 < 6, that is k < 2
5
and so k = 0 or 1.

The number of involutions in G is
jJl = m + 2.3.m.k + 2.3.m + 2.3.m = m(1l3 + 6k),
Whence |G| = 2%.3.m.(13 + 6k).

Suppose k = 0 then

lgl = 24.3.13.m
We have 0 < 22.32, - 2 which ylields m < 25, so 13 { m
m— 8

< 25. As (m,6) =1 and m = 1 (3) there are three possible values
for m, namely 13, 19 or 25. Since ING(M)I = 2.3.m, M is a Sylow
subgroup of G (in all cases). This immediately excludes m = 13.

The index of NG(M) in G is 23.13, so by Sylow” s theorem 23. 13 =

1 (p) where p = 5 or 19. However this congruence yields 103 = 0

(p) and, as 103 1is prime, this is a contradiction. Thus k 1

and lcl = 2%.3.19.m. In this case 3 < 22:32 - 2 which
m-8

yields m < 15, therefore 13 < m £ 15. S0 as (m,6) = 1, m = 13.
Whence |G| = 2%4.3.13.19.

However NG(M) has index 23. 19 which is congruent to 9
modulo 13 contradicting Sylow’s theorem. We have shown that 1if
3||NG(M)| then m = 7 and |NG(M)| = 2.3.7.

Now assume 3 does not divide the order of N;(M). There
are then three cases to consider, namely

ING(M)l = 2.m, 22 . m or 23.m. The first is (c).
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Suppose |NG(M)| = 23.m. As CNGKM)(Z) is cyclic of order
8, each involution of NG(M) centralizes only one Sylow 2-subgroup
of NG(M). Thus the intersection of distinct Sylow 2-subgroups of
NG(M) is trivial. It follows that m = 1 (8). This combined with
(m,6) =1 implies m > 17.

Let H = N,o(M). We apply Bender”s lemma to H. Firstly

¢ =8l _ 1 - 8m _; - m—6
lce(2) | 48 6
and |J A H| = m.

Let u be an involution of G-H and consider H A HY. By

the same reasoning as above |H N HY|[ |8, and HAHY 1is cyclic.

No element of order 8 is inverted by an involution. So
if u inverts an involution either u e Jy or J4- Hence we have

|J2| + |J4| = 12.m = 22.3.m

If u inverts a subgroup of order 4 then u e Js. Now a

subgroup of order 4 is inverted by 4 involutions of G-H and as H

contains m subgroups of order 4,

|J4| = 4.m = 22.m.
therefore |J2| = 23.pn and thus
by = 22. m and by, = m

Applying Bender’s lemma we have

by <_£_ (m + 22.m + 3.m) - 22.m-m = 24,30 - 5.m
m-6 m-6

In particular this gives

which yields m < 16, a contradiction.
Finally consider lNG(M)I - 22.m. As for the previous

case the intersection of distinct Sylow 2-subgroups of NG(M) is

trivial, so that m = 1 (4). As (m,6) = 1 we have m = 5 or m 2
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13. The former case 18 (d) and in the latter we can use Bender’s

lemma applied to H = NG(M). We have

£ =40 _ 5 m-12
48 12
and |J n H| = m

It 1s easlly shown, as above, that b2 = 22.m and b4 = m.
Also we have ¢ = 0 and therefore b, = 22.m.k, k a non-negative
integer. All other b are zero (n # 0). ‘

By Bender”s lemma

b; = 22 . m.k ¢ 12 (m + 22 .m0 & 3.m) - 22.m - m
m—-12

=25.3.m - S.m,
m—12

therefore 2%.kx < 25.3 - 5

In particular 0 < 25.3 -5
m-12

which yields m < 31, as m > 13, so 13 < m < 31.
As (m,6) = 1 and m = 1 (4) there are 4 possible values for m,
namely 13, 17, 25 or 29.

The number of involutions in G is

3] = m + 22.n.k + 23,0 + 22,0

= m.(13 + 4k),
whence |G| = 24.3.m.(13 + 4k)

Since |NG(M)| = 22.m, M is a Sylow subgroup of G in all
cases. The index of N,o(M) in G 1is 22.3.(13 + 4k) so by Sylow’s

theoren 22.3.(13 + 4k) =1 (m). (This 1ncludes the case m = 25

by lemma (3.3) (e)).

Firstly we assume m > 17. Then < i so that
m-12 5
22,k < 223 -5
5

which yields 0 < k < 3.
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If m = 17 then 22.3(13 + 4k) = 1 (17) which implies k

12 (17), a contradiction.

If m = 25 then 22.3(13 + 4k) 1 (25) which fmplies k

15 (25), a contradiction.

If m = 29 we find that k 1 (29) and hence k = 1. Thus
the order of G 1s 24.3.17.29. We can easily eliminate this case
using Sylow” s theorem. Let P be a Sylow 17—subgrodp of G.
Clearly C4(P) = P. As lAut (P)| = 16, INg(P)[12%.17, 1t follows
that 3.29 divides the index of NG(PX in G. We have IG:NG(P)I =
3.99.x with x a divisor of 2%. Since 2.29 = 2 (17), 2x = 1 (17)
by Sylow’ s theorem. As x =1, 2, 4, 8 or 16 and none of these
satisfy the congruence, m # 29.

Finally we assume m = 13, and recall that |NG(M)| =
22.13. In this case 22.k < 22.3 - 5 and we get 0 < k < 22. Now
22.3 (13 + 4k) =1 (13) which yields k ¥ 3 (13), and so k = 3 or
16.

The order of G 1is 24.3.13.(13 + 4k). The normalizer of
a Sylow 3-subgroup of G has order 22. 3 and hence 1ndex
22.13.(13+4k) which is congruent to 1 module 3 by Sylow's
theoremn. This implies k = 0 (3) and hence k = 3 Whence the
order of G 1is 24.3.52.13, which is the final case (e), and the
lemma is proved.

We observe in case (e), using Sylow’ s theorem, that a
Sylow 5-subgroup of G is elementary abelian and its normalizer

has order 23.3.52 and hence a Sylow 2-subgroup 1s quaternion.

LEMMA (3.5)

If a Sylow 2-subgroup of NG(M) is quaternion then

INg(M)| = 93.3.52 and el = 24.3.52.13,
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PROOF

Suppose a Sylow 2-subgroup of NG(M) is quaternion. As
ING(M)I = IMIICNG(M) (z) | by lemma (3.3) (c), we have ING(M)l =
23.e.m where e = 1 or 3 and CNG(M)(Z) = Qg or SL(2,3)
respectively.

An involution centralizes only one quatermion subgroup.
Therefore the intersection of distinct Sylow 2-subgroups 1is
trivial and thus m = 1 (8). We have (m,6) = 1 and therefore m >
17.

o

We now apply Bender”s lemma to the subgroup H = NG(M).

Firstly £ = |u| -1 =28.e.m = 1 = e.m-6
lco(2) | 48 6
and |J A H| = m.

Let u be an involution of G-H and consider HMN HY. As
in the previous lemma no prime divisor of m divides |[HA HY| so
lH A HY[ 23 .

All elements of order 4 in C belong to Q and so to H.
Suppose u centralizes z; then u e C. In both cases CH(Z)
contains precisely one 1involution. Therefore there are 12
possibilities for u. As every involution of C-<z> 1inverts a
subgroup of order 4 in C, u inverts a subgroup of order 4 in H.

If e = 1 then u can invert no other subgroup of H and
thus u e J,. As H contains m involutions we have in this case
that 1340 = 12.m = 22.3.m; thus b, = 3.m.

If e = 3 then CH(z) ¢ SL(2,3) contains all subgroups of
order 3 in C. So u also inverts 2 subgroups of order 3 and 2
subgroups of order 6 1in CH(Z)‘ This implies that u inverts
1+1+2 +4+ 4 =12 elements of H so u e Jy;,.- If u inverts an

element of order 3 or 4 in H it also inverts an involution of H,
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hence |J12| = 12.m = 22.3.m; thus b12 = m.

Let r =1 when e = 1 and r = 0 when e = 3, then

b4 = 3mr and b12 L m(l i r)

If u e Jl’ u cannot invert a non-trivial element of H
and it follows easily that CH(“) = 1 for all u e J,. So ¢ =0
and b; = 23.e.m.k, k a non—-negative integer.

Summarizing we have

£ = em—6,
6
|J A H] = m, .
b, = 3mr , byo = m(l - r), by = 23.e.m.k., k a non-
negative integer and all other b are zero (n # 0); where, e =1
and r =1 or e= 3 and r = 0.

By Bender’s lemma we have

b, < 6 (m + 32.m.r + 11.m (1 - 1)) - 3.m.r - w(l - r)

em—6
- 6 (12m - 2mr) - m - 2mr.
em—-6
Therefore 23.e.k < _° (12 - 2r) - 1 - 2r.
em—6

Since m > 17, em > e.17 > 17 and so I ¢l therefore

emn—6 11
we have 23.x < 23.e.x < 6 (12 - 2r) - 1 - 2r
11
<6.12 -1 < 6,
11

thus k < 6 < 1 which gives k = 0. Hence b; = 0.
8

To determine an upperbound on m we use the following

inequality:

0< 6 (12 - 2r) - 1 - 2r
em—6

which solving for m gives m < 78
(1 + 2r).e
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When e = 1, r = 1 and (1 + 2r)e = 3. Also (1 + 2r)e =

3 when e = 3 and r = 0. Hence in both cases.
m ¢ 18 = 26, thus m < 25, and 17 < m < 25. The
3

condition m = 1 (8) yields the two possible values for m, m = 17
or 25.

The number of involutions in G is

|Jl = m + 12.m.xr + 12.m (1 - r) = 13.m.

Whence |G| = 2%.3.13.m.

The index of the normalizef of a Sylow 3—-subgroup of G

is 22J3.m, which 1s congruent to 1 modulo 3 by Sylow’s theorem.

This gives m = 1 (3) and as 17 2 (3), m must be 25. Hence the

order of G 1is 24.3.52.13.

4 2 -
Finally the 1index of NG(M) in G 1is i 2 3.5 g% =
- el

2.3.13

e

and as M 1s a Sylow 5-subgroup of G, Sylow’ s theorem

yields 2.3.13 = (5) which implies e = 3 (5). Hence e = 3 and
e

ING(M)I = 23.3.52, completing the proof of the lemma.

We make the following observations for M in the previous

lemma. If M is cyclic of order 52 then lAut (M)] = 22,5 (lemma
(5.4.1) of [12]), and as CG(M) = M by lemma (3.3) (b),
ING(M)||22.52 which 1is not the case. Thus M 1s elementary

abelian of order 52, Also, using Sylow” s theorem, it is easily
shown that the normalizer of a Sylow 13-subgroup of G has order
22.13 which is precisely case (e) of lemma (3.4).

We shall now determine the number of involutions in G in

terms of some parameters. This expression will be useful in a

later lemma.

If x e J and zx e M8 for some g in G, then as z and x
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both invert zx lemma (3.3) (d) shows that z, x e NG(Mg) (since MB
has the sBame properties as M).- By lemma (3.3) (o), NG(Mg) =
MgCNG(Mg)(z) which therefore contains m involutions. Thus the
number of involutions x 1in J for which 2z2x e (Mg)# is m - 1.
1f z e NG(Mg) then zgle NG(M) so that z§‘= 2 for

some p e M. Then z = z[' so that ps = c e C. Now MP8& = M€
implies M8 = M, So z inverts only conjugates of M of the form
MS for some ¢ e C. Since C acts by conjugation on the conjugates
of M in G and the stabilizer of M is Cy = CNG(M)(Z)’ the number

«

of conjugates of M under this action is lc : CNG(M%Z)L So 1f

|CN (M)(z)l = r then z inverts 24.3 conjugates of M.
G , T
Thus there exists (m - 1) %féﬁ involutions x such that
r

#

zx belongs in a conjugate of M". This 1is true for any x e J such
that |zx| = n with (n, 6) = 1. So as there are 133 involutions x
for which zx has order 1, 2, 3, 4 or 6 we have the following

lemma.

LEMMA (3.6)

|I1 = 133 + 3= (my -1)2%.3
L -

Ty

where [M{|l = mi, lCNGiML)(Z)I = r;, the M{ satisfy the same
properties as M (and hence satisfy lemmas (3.3), (3.4) and (3.5))
and the summation 1s over the distinct conjugate classes of
subgroups with the same properties as M.

We shall use this lemma to eliminate cases (b) (c) and

(d) of lemma (3.4) where M 1is chosen to have maximal order. The

remaining cases give us the order of G.

LEMMA (3.7)

The order of G 1s 24.352.13. Furthermore the

38



normalizers of the Sylow 5 and 13-subgroups have orders 23.3.52
and 22.13 respectively.
PROOF

If the lemma 1s false then there exists a subgroup M of

G such that

(1) (Iml,6) =1

(11) ING(M)l is even

(11i1) M has maximal order subject to (i) and (1ii) and
(1iv) M satisfies case (b), (c¢) or\(d) of lemma (3.4)

By lemma (3.6) we have

[3] = 133 + Z:(ml = 1)24.3 = 133 + 48r, where
L rL
. m -1
L =

L

We note that r > 0.
It is easily seen using lemma (3.4) that r 1is an

integer. Also ry 2 2 for all i, therefore

. <2(m; -1)
=4 >

By the maximality of m, m{ £ m for all i.

We first show m > 25, so that 1t will be possible to
apply Bender s lemma. To do this we need to eliminate the cases
m =5, 7, 11, 13, 17, 19 or 23. (These are also the possible
values for each m;). We will use the fact that 133 + 48r = 0 (m)

(that is mllJ|) to determine r.

Suppose firstly m = 5. Then

T <§:ﬁ2£.:}) =2-1 - 2,
T 2 2

and 133 + 48r 0 (5) implies r = 4 (5), a contradiction.

If m

7 then r < 2 + €ZZ1) = 5, and 133 + 48r = 0 (7)
2
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implies r = 0 (7), a contradiction (as r > 0).

We have shown m > 11, and therefore ING(M)l = 2.m by
lemma (3.4).

In all cases M 1is8 a Sylow subgroup of G.
Therefore
le:Ng(m)| = 23.3.13] =1 (m).
m
We use this fact to eliminate the remaining cases.
If m = 11 then r < 5 + (L1=1) = 10 and 133 + 48r = 0
2
(11) implies r =

= 8 (11) so r

= 8. This yields |J| = 517 = 11.47
and IG:NG(M)l = 23,3.47 which is congruent to 6 modulo 11. Thus
m £ 11.

If m = 13 then r < 10 + (L%fl) = 16 and 133 + 48r = 0

(13) implies r = 4 (13) so r = 4. Now |J| = 5213 and |G:Ng(M)| =

23.3.52 = 2 (13), so m # 13.

When m = 17, r <16 + (LZZ1)

= 24 and r =
2

= 16 (17) so
that r = 16.

Then |J| = 17.53 and lG:No(M) | = 23.3.53 = 14 (17),
a contradiction.
If m = 19, then r < 24 + (12=1) = 33, and 133 + 48r =
2
0 (19) implies r = 0 (19) so that r = 19. Then |J| = 5.11.19 and
le:Ng(m)l = 23.3.5.11 = 9 (19), so m # 19.
Finally 1f m = 23, r < 33 + (2321) - 44 and 133 + 48r
2
=0 (23) implies r = 14 (23), so r = 14 or 37. 1In the first case
|31 = 5.7.23, le:Ng(M)| = 23.3.5.7 = 12 (23). And in the second
|31 = 23.83, [G:Ng(M)| = 23.3.83 = 14 (23) so m # 23.
We shall also eliminate the case m = 25 in the same way.
We have r < 44 + (25-1) = 56 and 133 + 48r = 0 (25) implies r =
2
4 (25) so r = 4, 29 or 54. The first case gives |J] = 52.13 and
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le:Ng ()| = 23.3.13 = 12 (25). 1In the second |J| = 52.61 and

lG:Ng(M) | = 23.3.61 14 (25). Finally r = 54 implies |J| =

23.3.109 1s congruent to 16 modulo 25.

52.109 and |G:Ng(M)|
This all shows that m > 29. We now apply Bender”s lemma

to the subgroup H = NG(M). Firstly
lHl ;- 2m 3 - 2224 404 |JA | = o

£f =
lcq(z) ] 48 24

Let u be an involution of G-H and consider HA HY. By
previous reasoning |H AN HY| 2, so if u inverts a non-trivial
element of H then u e J,. It follows that |J,| = 12.m = 2%.3.m
and so by = 2.3.m.

It is easily seen that ¢ = 0, so therefore b1 = 2.m.k, k

a non—negative integer. By Bender's lemma.

b, = 2.m.k < 2% (m + 2.3.m) - 2.3.m
m-24
=23.3.7m - 2.3.n
m—24
therefore k < 22-3-7 - 3
m-24
As m > 29, 1 < .l, thus
m—24 5
k < 22.3.7 -3 = 69 < 10 = 14
5 5 5

Hence 0 < k < 13.
We can also use this 1inequality to determine an

upperbound for m. In particular it gives

which yields m < 52 so 29 {m < 51. And m being prime to 6
implies the following eight possibilities for m: 29, 31, 35, 37,
43, 47 or 49.

The number of involutions in G 1s
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|J] = m + 2.k + 22.3.m = m (13 + 2k).

Hence |G| = 2%.3.m. (13. + 2k)..

Ifmis a prime power then M 1s a Sylow subgroup of G so
as NG(M) has index 23.3 (13 + 2k), Sylow's theorem yilelds

23.3(13 + 2k) = 1 (m) thus 48k = - 311 (m).

We use this congruence to eliminate most of the above

cases.
If m = 29 then 48k = -311 (29) which implies k = 5 (29)
and hence k = 5 as 0 < k < 13 Thus 16| = 2%.3.23.29
Let P be a Sylow 23—subgrou} of G ; then CG(P) = P and
|Aut (P)| = 22 = 2.11 so [Ng(P)|[2.23. We must have [N (P)| =

2.23 else NG(P) = CG(P) and G has a normal 23-complement by
Burnsides Transfer Theorem, contradicting lemma (3.1). Then
IG:NG(P)I = 23.3.29 is congruent to 6 modulo 23. Thus m # 29.

If m = 31 then 48k = - 311 (31) which implies k = 20

(31), a contradiction.

If m = 37 then 48k - 311 (37) implies k = 2 (37) so
that k = 2 and 16| = 2%4.3.17.37.
However 1in this case the index of NG(X) is 22,17.37
which is congruent to 2 modulo 3 contradicting Sylow™s theorem.
In the last four cases, as 0 < k < 13, k cannot satisfy
the required congruence. For when m = 41, 43, 47 or 49 %k is

congruent to 20, 41, 18 or 17 respectively modulo m (The last

congruence applies because of lemma (3.3) (e)).

We are thus left with the case m = 35. To eliminate
this value of m, we use the fact that |J| = 133 + 48r so that
|J] = -11 (48). And as |J| = 5.7.(13 + 2k) we have

5.7(13 + 2k) = -11 (48) which implies k 5 (12). However the

above inequality for k with m = 35 gives
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3.7 - 3 < 5, a contradiction.

This has all shown that cases (b) (¢) and (d) of lemma
(3.4) does not apply for NG(M) when M is chosen to have maximal
order. So case (a) or (e) applies (in fact case (a) must apply)
and in both cases the conclusion of the lemma holds.

Before obtaining the final contradiction we should like
to remark that 1t 1s not possible to eliminate G by counéing the
number of elements in the conjugacy classes of G.

By lemmas (2.2), (2.3) and (%.4) there is one class each
of elements of order 2, 3, 4 and 6 and two classes of elements of
order 8. It is easy to show that there 1s one class of elements
of order 5, and the elements of order 13 form three classes. Let
x, denote a representative from each conjugacy class of G, i = 1,
2, 4.4, 11, In the table we 1list the orders of the centralizer
in G of each respresentative and the order of its conjugacy

class.

Ix; | lce(x) ] le:co(xi)]
1 24.3.52.13 1

2 24,3 52,13

3 2.3 23.52,13
4 23 2.3.52,13
5 52 2%4.3.13

6 2.3 23.52 .13
8 23 2.3.52.13
8 23 2.3.52.13
13 13 2%4.3.52
13 13 2%4.3.52
13 13 24.3.52

43



Summing the number of elements in the conjugacy classes
of G we find the total to be 24.3.52.13, which is precisely the

order of G.

A contradiction will be obtained once we have the

following lemma.

LEMMA (3.8)

The group G 1s a sharply 3-transitive permutation group
of degree 26 and the subgroup fixing two letters 1is isomorphic to

SL(2,3).

PROOF

We will comsider G as a permutation group in its action
(by conjugation) on the Sylow 5-subgroups of G. But before doing
this we need to make a few observations.

Let M be a Sylow 5-subgroup of G 1nverted by =z. By
lemma (3.3) (c), NG(M) = MCNG(M)(Z) and CNG(M)(Z) has index 2 in
C (because of lemma (3.7)) so CNG(M)(Z) ¥ SL(2,3).

Let u e C - CN&KM)(Z)' Then z inverts the Sylow 5-
subgroup M"Y and MY # M. Thus each involution inverts at least
two Sylow 5-subgroups of G. We show in fact that each involution
inverts exactly two Sylow 5-subgroups of G.

Since NG(M) contains 52 involutions and as there are
2.13 Sylow 5-subgroups, the set of involutions contained in the
normalizers of the Sylow 5-subgroups (counting repetitions) has
order 2.52J3. As this 1s twice the number of involutions, each
involution inverts precisely two Sylow 5-subgroups of G.

As above, z inverts both M and MY, so that:

No(M) = McNCT(M)(z)
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and NG(M“) = MUCNG(MU)(Z)
As CNG(M)(Z) and CNG(Mu)(z) are both subgroups of index 2 in C
they are equal. Therefore NG(M)I\ NG(Mu) = CNG(M)(ZL

Let w be an invo}ution inverting M, w # z. Then w
cannot invert MY else w e NG(M)tﬁ NG(MU) = CNG(M)(Z)' And so
NG(M) contains a 4-group <z,w>. Thus no two involutions of NG(M)
invert the same Sylow 5-subgroup besides M. As there are 52
Sylow 5-subgroups besides M, and NG(M) contains 52 involutions,
any two Sylow 5-subgroups are 1nvertgd by a unique involution.

Let T be the set of Sylow 5-subgroups of G, so T has
order 26. The group G acts by conjugation on T and under this
action G 1s transitive by Sylow’s theorem.

For M e T, Gy = NG(M) is the stabilizer of the point M.
Now N (M) acts by conjugation on T-{M}. TIf M; e T-{M}, the
stabilizer of M, under this action is

NG(M)MI = NG(M)IW NG(Ml) = CNG(M)(V) where v 1s the
unique involution inverting both M and M,. As CNG(M)(V) has
index 52 in NG(M), M, has 52 conjugates in T-{M}. And as T-{M}
contains precisely 52 elements, NG(M) i1s transitive on T-{M}.

Now NG(M)M| = CNG(M)(V) acts by conjugation on T-{M,M;}.
For M, e T—{M,Ml} the stabilizer of M, under this action 1is
CNQ(M)(V)Mz CNG(M)(v)r\ NG(MZ) = 1, (as an involution 1inverts
exactly two Sylow 5-subgroups). Since | CNG(M)(V)I = 24, My has
24 conjugates in T—{M,Ml}. And as T-{M,Ml} contains 24 elements,
CNG(M)(V) is transitive on T—{M,Ml}-

It follows that G 1is 3-transitive on T and as the

stabilizer of 3 points 1is trivial, G is 1in fact sharply 3-

transitive.
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The stabilizer of the two points M and M, is CNG(M)(V)
which 1s isomorphic to SL(2,3) and we have the result.

Now G satisfies the hypotheses of lemma (l1.5), therefore
by 1its conclusion the subgroup fixing two letters contains
exactly one subgroup of order 3. However SL(2,3) contains four
subgroups of order 3, we conclude that there does not exist a

group G satisfying the assumption that NG(X) = XV.
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CHAPTER FOUR

CASE (B) A ¥ Z3XZyXZg

Throughout this chapter suppose that NG(X) = AV where

¥ Z4xZ4xZ5 and A 4 N (X).

>
[

Let A, = CA(z) (=X), Ay, = CA(zt) and Ay = CA(t), then
A=A Ay Ay = A; x Ay x Aj. Let Ay = <a;>, 1 =1, 2,.3; aj ~
ag ~ ajg in G by lemma (2.3). Also put N = NG(A). The first

three lemmas concern the structure of N.

~

LEMMA (4.1)

Z ~ t ~ zt in N

PROOF
By lemma (2.2) z = t8 for some g in G. As Aj < Cq(t),

A3g < CG(tg) = C. So Ay and Ay are Sylow 3-subgroups of C and

hence conjugate 1in C. So for some ¢ ¢ C, A = A3gc’ and t8¢ =
z¢ = z. Replacing gc by g we have, for some g e G, z = t8 and Aq
= g

A3 .

Now A < CG(AS) (A being an abelian group containing A3)
implies A8 < CG(A3g) = CG(AI)' Thus A and A& are Sylow 3-
subgroups of CG(Al) and because C;(A;) has a normal Sylow 3-
subgroup (lemma (2.5)), A = A8; that 1is g e N. As z = tg, z ~ t

in N. Similarly z . =zt in N.

LEMMA (4.2)

V is a Sylow 2-subgroup of N.

PROOF

We first make the following observation: as C N N

normalizes CA(z) = X and NC(X) = XV, CN N = XV.
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Let R be a Sylow 2-subgroup of N containing V. If
R >V, NR(V) > V and as all involutions in V are conjugate in N
We may suppose Zz e Z(NR(V)). ~However now NR(V) € CANAN=XV a
contradiction, and we conclude that R = V.

As V 1s a Sylow 2-subgroup of N and <z>, <t> 4 V,z ~ t
in NN(V) by [12] theorem (7.1.1) since they are conjugate 1in N.
It follows from Cy(V) = V and Aut (V) € S5 that Ng(V)/V ¥ 2z5.
Let M be a subgroup of order 3 in Ny(V) so that NN(V) = MV. If M

=

= <m> then m permutes the involutions of V and MV A,. As MV <

N, AMV < N. We can in fact say more than this.

LEMMA (4.3)

N = AMV.

PROOF

Clearly m permutes the elements aj,ag and a5 as 1t
permutes the involutions z, zt and t.

Let L = AMV. It is easy to determine the conjugacy

# #

classes of A" in L; namely A" has four classes of lengths 4, 4, 6
and 12 with representatives ajajaj, (alaza3)_1, a; and aja,
respectively.

Suppose by way of contradiction that L < N. Then INl =
22. 34. r withr > 1. As IN:CN(al)I = |N:A<z>)} = 61, a; has more
than 6 conjugates in N. We cannot have aj conjugate to ajajaz or
(alaza3)_1 since <ajajsay> = Z(AM) and so centralizes AM a group
of order 3%, Therefore a; 1s conjugate to aja, in N and has 18
conjugates. If follows that |N| = 22.35.

Let K = N/A. Then K is a group of order 36 which

contains a subgroup H of order 12 isomorphic to MV. Representing

K on the cosets of H we have, as |K:H| = 3, K/I 1somorphic to a
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subgroup ofS3 where I 1s the Iintersection of the conjugates of H
in K. Because |XK/I|] 6 and K has-order 36, 61]|I]. Also |I]]|12
(I being a subgroup of H), therefore |I| = 6 or 12. Now H A,
does not contain a normal subgroup of order 6, so I has order 12
and T = H. Hence H 4 K. As H contains a normal Sylow 2-subgroup
V, V 4K and K/V has order 9. However CK(V) =V and |Aut(V)]| =
6 so |K/V]| divides 6, a contradiction. This completes the proof
of the lemma.

We can now determine the order of a Sylow 3-subgroup of

-

LEMMA (4.4)

NG(AM) = AM and so AM 1s a Sylow 3—-subgroup of G. Also
a Sylow 3-subgroup of G contains a unique abelian subgroup of

order 27.

PROOF

Since CA(M) has order 3, A is the only abelian subgroup
of order 27 in AM. It is therefore characteristic in AM and
hence normal in NG(AM), thus NG(AM) < N. As N/A ¥ Ay, NG(AM)f\N
= AM. It follows that NG(AM) = AM and the remaining parts of the
lemma follow easily.

The following lemma is easily proved.

LEMMA (4.5)

The subgroup <ala2a3> is not inverted by an involution.

PROOF
As <alaza3> = Z(AM), AM < CG(a1a2a3) and is in fact a
Sylow 3-subgroup of CG(ala2a3) by lemma (4.4). The Frattini

argument ylelds that NG(<a1a2a3>) = CG(alaZa3)NNG(<a,a;a3>)(AM)'
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Which because of lemma ‘4.4), implies NG(<a182a3>) = CG(alaza3L
Thus ajajsaq is not conjugate to 1its inverse.

Let Y = CA(M)M = {ajajay>xM and let Z = NN(Y). Then Z =
{m,ajajajy, a1a2—1> is non-abelian of order 27. (This 1s verified
by a simple computation using the fact that no involution
normalizes <ajajsaj3>). With the help of the normalizer NG(Z) we
shall determine the conjugacy classes of elements of order 3 in

G. But first a lemma concerning the order of NG(Z%

LEMMA (4.6)

NG(Z) has odd order.

PROOF
As <a1a2a3> = 2(z), <ajagajz> 4 Ng(Z2) so No(Z) <
Cg{ajajgasg) by lemma (4.5). Thus |NG(Z)| is odd as ICG(alaza3)|

is odd.

LEMMA (4.7)

m is inverted by an involution but m { G 31-

PROOF

Suppose m is comnjugate to a; in G, so that m = alg for
some g in G. Then Cg;(m) = B<v> where B = AB and <v> = <z>B, As
Y < Cg(m), clearly Y < B and B { Cg(Y) B being abelian. Also
cg(Y) < CG(m) = B<v> and as Y is not centralized by an
involution, we have CG(Y) = B. Thus B 4 Ng(Y) so NG(Y) £ Nao(B),
and as Z < NG(Y), z < NG(B). Then ZB is a 3-group of NG(B) which
properly contains Z. It must therefore be a Sylow 3-subgroup of
G. Now Z has index 3 in ZB and so is normal in ZB, which implies
that ZB < NG(Z). Also AM < Ng(Z) as well, since Z £ AM.

Now Cg(z) < Cg(Y) = B as Y < Z3 therefore Cg(2) =
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<a1a2a3> = Z(Z). As Z is non-abelian of order 27, Aut(Z) Ads a
{2,3}-group. (For 1if r is an automorphism of Z then it is an
automorphism of Z(Z) and Z2/2(Z2), both of whose autdmorphiém
groups are {2,3} - groups). Thus N;(Z) is a 3-group by lemnma
(4.6). However this gives.NG(Z) = AM = BZ, so that AM contains
two abelian subgroups of order 27, namely A and B, contradicting

lemma (4.4). Thus m { ca1-

We know V 1is normalized by a dihedral group and also by
ad

M. As CG(V) = V and Aut(Vv) ¥ S3 we get NG(V)/V = S, Thus

~ . «
NNG(M)(M) = S3 and hence m is inverted by an involution.

LEMMA (4.8)

We have m ~G ajaj-

PROOF
Let P be a Sylow 3-subgroup of CG(m) containing Y and
suppose P = Y, By the Frattinl argument NG(<1n>) =

CG(m)NNG#<m>)(P)’ so P 1is no?malized by an involution of NG(<m>),

v say. If CP(V) = 1 then v inverts P (lemma (1.2)) and in
particular inverts ajaja3 contrary to lemma (4.5). So v
centralizes some subgroup of order 3 in P. Now P has four

subgroups of order 3, namely <m>, <alaza3>, (alaza3m> and
<(alaza3)_1m>. And as ma1—1a3 = ajazagm and mal_laz =
(a132a3)—1m no subgroup of order 3 in P is centralized by an
involution. Thus Y < P.

If P has order 34 then <m> is its centre and so will be
conjugate to <a1a2a3> by Sylow”s theorem and lemma (4.4).
However <m)Y is inverted by an involution while <a1a2a3> is not.

Thus P has order 33-

As <a1a2a3> is not conjugate to the other subgroups in
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Y, <a1a2a3> q P, it follows that [P,<ala2a3>] = 1, Thus
<m,a1a2a3> < Z(P) and P must be abelian of order 33, and hence
elementary abelian by lemma (4.4). By Sylow’s theorem P& < AM
for some g in G, hence P8 = A and therefore m& e A. We have
seen in the proof of lemma (4.3) that A# has four conjugacy
classes in N with representatives ajajajy, (alaza3)_1, a; and
ajag. So as m is not conjugate to the first three elements by

lemmas (4.5) and (4.7) it 1is conjugate to the last, that is m "4

alaz.
To calculate the order of 6 we shall need to know the

normalizer of <alaz> and of a non-abelian subgroup of order 27.

We determine these normalizers in the next two lemmas.

LEMMA (4.9)

We have NG(<a1a2>) = A<t>.

PROOF

By lemmas (4.7) and (4.8) C,(ajajy) has odd order. Since
A is a Sylow 3-subgroup of Cg(ajas) and NCG(ala:)(A) =
CNq(a|aa)(A) = A, CG(alaZ) has a normal 3-complement L say, by
Burnside’s Transfer Theorem. Therefore Cg(ajay) = AL and
NG(<3132>) = AL<t>.

Assume by way of contradiction that L F 1. No
involution can centralize any element of L#, therefore CL(t) = 1.
Also t inverts <a1>, hence C(a.)L(t) = 1. As t normalizes <a1>L
it follows that t inverts it and in particular that <a1>L is
abelian. However CL(al) = 1 which is a contradiction, and the

lemma follows.
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LEMMA (4.10)

The normalizer of a non-abelian group of order 27 is a

Sylow 3-subgroup of G.

PROOF

It is enough to consider the normalizer of a non—-abelian
group L of order 27 4in AM because of lemma (4.4). If
LN <a1a2a3> =1 then AM = L<ajajas>, but then Z(L)<a1a253> is a
subgroup of order 9 in Z(AM). Thus <ajasaz?> < L and hence
<alaza3> 4 L. It follows that NG(Ll < NG(<a1a2a3>). As Aut (L)
is a {2,3} - group so is Ng(L). 1If NG(L) contains an involution
then NG(<alaza3>) does also, contradicting lemma (4.5).
Therefore NG(L) is a 3-group and hence is a Sylow 3-subgroup of
G.

The simplicity of G is now trivially proved.

LEMMA (4.11)

The group G is simple.

PROOF
By lemma (2.6) a proper non—-trivial subgroup L of G, if
one exlsts, has order 27. By lemmas (4.3) and (4.10) a subgroup

of order 27 is not normal in G. Thus G must be simple.

We have now enough information to be able to determine

the order of G, which we now do.

LEMMA (4.12)

The order of G is 24.34.7.

PROOF

Choose H = AM as the subgroup for application of
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Bender“s lemma firstly

|H |

lco(2) | 48 16
Also H has odd order and therefore contalns no involutilons; that
is |J A H| = 0.

Let u be an involution of G and consider HA HY. Since
u is an involution it normalizes HA H". Therefore because NG(H)
= H (lemma (4.4)), HnA HY < H, so |HN HY|[27. IfHA HY is non-
abelian of order 27, by lemma (4.10), its normalizer is a Sylow
3-subgroup of G which therefore cannot contain u. Thus HN HY is
an abelian group.

Suppose u inverts a;. Then u e No(<a;>) = AV and so u
normalizes A as A 4 AV; thus HMN HY = A. In this case u inverts
a subgroup of order 9 in H and so u e Jg. The same applies to
all conjugates of aj; in A. If u inverts aja, then u e
NG(<ala2>) = A<t> (lemma (4.9)). Again u normalizes A and u e
Jg. The same applies to all conjugates of a a, in A. We have
R

that 1if u inverts an element of then u normalizes A and u e

Jg.

Now consider the elements of H-A. In H-A there are
three conjugate classes of subgroups with respresentatives <m>,
<a1m> and <a1—1m>; the orders of these subgroups are 3, 9 and 9

3 _ -1 .3 _ -1
respectively. Since (alm) = ajajgaj and (a; "m) = (a1a2a3) s
no element of order 9 is inverted by an involution because of
lemma (4.5). Thus if an element b e H-A is inverted by u then b
is conjugate to m. As CH(b) = <ajajaj,b> and H A HY 1s abelian,
in this case, HA HY has order 3 or 9. 1If u inverts a subgroup
of H-<b> then u inverts a subgroup of order 9 in HAHY which will
be <ajajaj,b>. In particular u inverts ajajaj 2 contradiction.

Thus u e J3.
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Since m is inverted by 9 involutions by lemmas (4.8) and

4

(4.9) and has 9 conjugates in H-A, |J3| = 9.9 =37, thus bg = 33.

Also as N contains 27 involutions |J9| = 27 and so b9 =

If u e J; then u inverts no non—-trivial element of H.
If u centralizes an element of A#, then u normalizes A and so
inverts a subgroup of order 9 in A, so therefore CA(u) = 1. Also
no element of H ~ A is centralized by an involution so CH(u) =1
for all u e Jy. Thus ¢ = 0 and bl = 34.k, k a non-negative
integer.

We summarize what we have so far:

£ =11
16
[ H|] =0
= 33 =
bl = 34.k, k a non—-negative integer and all other bn are

zero (n # 0).
To get information on k we apply Bender”s lemma.

b, = 34k < 16,(2.33 + 23.3) - 33 - 3

11
918
11
Therefore k < 918 ¢ 2,
891
hence, k = 0 or 1.

The number of involutions in G 1is

34k + 3% 4+ 33

| g1

33 (4 + 3k).

We now see that k must be 1 else |J] is even. Thus |J|
= 33.7, whence the order of G 1is 2%.3%.7 and the lemnma is proved.

Now that we have this order it 1s easy to obtain a
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contradiction using Sylow’ s theorem. Let P be a Sylow 7-subgroup

4

of G. Then as |CL(P)| 1s odd and Aut(P) ? 2., INg(R)I12.3%.7.

Therefore 23||G: NG(P)Iand lG : NG(P)|= 23.x with x a divisor

of 2.34. As 23 = 8§ =21 (7), we have by Sylow”s theorem x ® 1

4 and therefore |NG(P)| =

(?). It follows that x = 1 or 2.3
2.34.7 or 7

In the first case as G is simple and IG:NG(P)l = 8, G is
isomorphic to a subgroup of A8. However 34Y|A8|, so this case
cannot occur. In the second case NG(P) = CG(P), which implies by
Burnside’s Transfer Theorem that G has a normal 7-complement,

contradicting the simplicity of G. Thus there does not exist a

group G satisfying the assumptions of this chapter.
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CHAPTER FIVE

CASE (C) A NON-ABELIAN OF ORDER 27

Throughout this chapter suppose that NG(X) = AV where A
is non-abelian of order 27 and A d NG(X).

Let Al = CA(z) (=X), A, = CA(zt) and Ay = Cp,(t) then A =

it

Al Ay Ag. Also let Ay = <ap>, 1 1, 2, 3,; 4] ~ ag ~ a3z 1n G by

lemma (2.3). The first lemma is easily proved.

LEMMA (5.1)

-

A1 = Z(A) and NG(A) = AV; 1t follows that A is a Sylow

3-subgroup of G.

PROOF

Since A1 is a normal subgroup of order 3 in A and A is
non-abelian of order 27, Ay = Z(A). As Z(A) char A 4 NG(A), Z(4A)
4 NG(A) and No(A) < NG(Z(A)) = AV. Also as A ¢ AV, AV < No(A)
thus NG(A) = AV.

For later calculations we determine a relationship
between a;, ao and ag. Since A/Z(A) has order 9 it 1s abelian
and therefore A” = Z(A) = Ai. So as a, and a3 do not commute

#

[az,a3] e Ay" and we may assune

[az,a3] = aj....(*).

It is easily verified that A# has four conjugacy classes
in NG(A) with representatives aj, a,y,as and ajajag; the lengths
of the classes are 2, 6, 6 and 12 respectively. Together with

the next lemma this shows that G has two classes of elements of

order 3 with representatives a, and ajajzag.

LEMMA (5.2)

a = ajagaz is inverted but not centralized by an
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involution.

PROOF

Using the relation (*) we easily check that z inverts a.
Suppose a 1s centralized by an involution, v say, then a 1is
conjugate to a; by lemma (2.3). So No(<a>) = A<z,v> where <z,v>
i1s a 4-group (we may choose v to centralize z), and A 1s a normal
subgroup of order 33, As a; e No(<ad>), a; e A so that Cx(z) =
<a1>. But then v must invert a; and so v e NG(<a1>). However
NG(<al>) = AV does not contain an }nvolution centralizing a.
This contradiction shows that a 1s not centralized by an
involution.

The next four lemmas concern the normalizers in G of

various subgroups of A.

LEMMA (5.3)

We have NG(<a1,a>) = A<z>.

PROOF

The subgroup <a1,a> contains four subgroups of order 3
namely <a;>, <a>, <aja> and <a1_1a> the last 3 being conjugate in
A. so <a;> 1s the only subgroup of order 3 in <aj;,a> centralized
by an involution (lemma (5.2)). Therefore NG(<a1,a>) < NG(<a1>)
= AV. Now A and z normalize <al,a> but as af = (a1a2a3)t =
alta?_ta3t = a1—1a2—1a3 £ <a;,a>, t ¢ No(<ap,a>). Therefore

No(<a,,ad) = A<z>.

LEMMA (5.4)

We have NG(<a2>) < NG(<al,a2>).

PROOF

The 4-group V normalizes {ay> and as a, 1s conjugate to
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aj, NG(<32>) = AV where 5 18 a normal Sylow 3-subgroup of
NG(<a2>) of order 27. As a; centralizes a,, <al,a2> < NG(<a2>5,
50 <al,az> < A As <a1,a2> has index 31JIK,<81,82> is normal in
X thus & < NG(<a1,a2>). As V also normalizes <aj,a,>, NG(<32>) <
NG(<a1,a2>).

Let b e A, b = a2n for n e NG(<a1>). Then

Ng(<b>) = Ni(Ka,»)™ < Ng(<ap,ap»)"

NG(<a1n,a2n>)

= NG(<ar,b>).
As the conjugates of a, in NG(<a1>) are a,, a2_1, ajag, alaz-l,
al-laz and al—laz—l, we have NG(<b>) < NG(<a1,a2>). The same

reasoning applies 1f we replace a, by ag-.

LEMMA (5.5)

NG(<a1,a2>) = <a1,a2>.CG(t), also t is fixed-point—-free

on <a1,a2>.

PROOF

Clearly t 1inverts <a1,a2>. As CG(<a1,a2>) <
CG(al)nCG(aZ) = <a,, a2>, CG(<a1,az>) = <a1, a2>. Therefore by
lemma (1.3) NG(<al,a2>) = <ajq, a2> CNQ(<a|saz>)(t)'

Put N = NG(<al,a2>); we have AV < N and a, has 6
conjugates in AV. All conjugates of aq in N are contained in

#

<al,a2> which has order 8. So since
IN] = |N:CN(a2)||CN(32)| = 2.33.|N:CG(32)| (as CG(aZ) <
N by lemma (5.4)), a, cannot have 6 conjugates in N (because of

lemma (5.1)) so 1t must have 8. Thus IN| = 24.33. Now as |N| =

|<aq,a,>Cu(t)] = I<ay,ap>llegCe)l = 3%leg(e)l, legte)l = 2%4.3

|CG(t)|, and therefore CN(t) = CG(t). Hence N = <a1,a2>CG(t).
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LEMMA (5.6)

NG(<a>) = <al,a,z>.

PROOF

As a,; centralizes a, P = {a;,a> < Cg(a). If P is not a
Sylow 3-subgroup of CG(a) then a 18 contained in the centre of a
Sylow 3-subgroup of G and so will be conjugate to a; contrary to
lemma (5.2). Therefore P is a Sylow 3-subgroup of CG(a): Assume
by way of contradiction that P < CG(aL

Using lemma (5.3) NCGia)SP) = CCG(a)(P) = P, 80 by
Burnsides Transfer Theorem CG(a) has a normal 3-complement, M
say, M # 1.

Since z inverts a, NG(<a>) = CG(<a>)<z> which therefore
has order 2.32.m (IM] = m); let H = NG(<a>). By lemma (5.3)
Ny(<a;,a>) = <aj;,a,z> which has index m 1in H, therefore by
Sylow”s theorem m = 1 (3).

By the proof of lemma (5.3) <a1> is the only subgroup of
{a;, a> centralized by an involution. So each Sylow 3-subgroup
of H contains exactly one subgroup of order 3 centralized by an
involution; they must all be conjugate to <a1> in H and there are
m of them. It is easlily seen that NH(<a1>) = CH(<a1>) = <aj,a,z>
80 no involution of H inverts aj.

Also no involution of H inverts al_la = aja, for suppose
so and let (aza3)v = a3_1a2-1 for some 1nvolution v of H.

Then

as"laz—l = (a2a3)V - (al—la)v = (al—l)v aV

- N N - -1 -

- (al 1)Va 1= (al l)Va3 132 al l,
which 1implies that alv = al_l, contradicting the previous
paragraph. Similarly aja = a1_1a2a3 is not 1inverted by an

involution of H. Thus no element b of H-<a)> of order 3 1is
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inverted by an involution of H.
As M char CG(a) 4 H, M

and as CM(Z) =1,

Hence also L M<a> i1s abelian,

normal in H.

Because L 1s abelian L ¢ CG(L).

centralizes a and M, so

b e Ch(a) N Cy(M)

<al ,a>M N CG(M)

M<a> = L,

I

thus C,(L) L and hence C,(L) =

If x e M#, as z inverts x, z e N,(<x>).

NG(<x>), z normalizes CG(x). No

Therefore z normalizes M

4 H.

z inverts M and M is abelian by lemma (1.2).

and L 4 H as both M and <a> are

If b e CG(L) then b

L.
Since CG(x) 4
element of CG(x)# centralizes z,

Since L 1s abelian and

therefore CG(x) is abelian (lemma (1.2)).

x e L, LK CG(x).

=L for all x e M#.

L. Thus CG(x)
For u ¢ G-H we claim M N

e MN MY, x # 1. Then x =

CG(y)u which implies by the previous paragraph, L =

Now as CG(x) is abelian also, C;(x) < CG(L)

]

MY = 1. Suppose not and let x

u i -
y" for some y e M", and so CG(x) =
LY, that 1is u

e NG(L). However as <a> char L, being a normal Sylow 3-subgroup,
<a> NG(L). So NG(L) £ H. Thus u e H a contradiction.

We shall apply Bender s lemma to H; note that H =
L(al,z> = T CH(Z)' Firstly.

£ = g -1 EEP -1 = 3m—8,

lcg(2) ] 48 8

and |J N H| = 3m.

Let u be an involution of G-H and consider HNn HY. We
can apply the reasoning in lemma (3.4) to show that 1if
pllE M HY|, where p is a prime divisor of m, then MN MY # 1.
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It follows that p [ |H AN HY| and so |HA Hu||2.32.

Suppose in fact |H AN Y| = 2.32, Then u centralizes
some involution v in H/NA HY as there are an odd number of
involutions in HMA HY. Let Q be the Sylow 3-subgroup of HNnHY,
then u normalizes Q (since u normalizes HA HY and Q 4
HnN HY); also v normalizes Q. Therefore NG(Q) contains the 4-
group <u,v>. However Q 1s conjugate to <a1,a>, this contradicts
lemma (5.3) so |HMN HY| # 2.32,

Suppose u inverts a subgroup of order 3 in H. If u
inverts another subgroup of H of order 3 then u will invert a
subgroup of order 9 in H. This subgroup contains a and so u in
particular inverts a, a contradiction. Therefore u can only
invert one subgroup of order 3.

Suppose u 1nverts <a1_1a> (or <ajad). If u also
inverts an involution then HA HY"Y has order 6. But then <al—la>
(or <aja>) 1is either centralized or inverted by an involution
of H neither of which 1is correct; thus u e J3 In this case.

If u inverts <al> then HMA HY cannot contain a subgroup

of order 9 else unormalizes it and will in fact invert it (lemma

(1.2)), so |HMA HY]]2.3. The centralizer Cy(a;) = <aj,a,z>
contains three involutions 2z} say i =1, 2, 3. the elements a;z
i = 1,2,3 have order 6 and are each inverted by 6 involutions of

G-H. Therefore aq is inverted by 18 1involutions which also
centralize an 1involution of H. As a,; 1is inverted by 18
involutions, any involution inverting a; in fact 1inverts a
subgroup of order 6 in M; thus u e Jg in this case.

Suppose now that u inverts an involution v of H, either
u inverts only <v> in which case u e Jy9 or u inverts another

element of H -<v> and then u inverts a subgroup of order 6 and u
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e Jg- In this latter case u inverts a subgroup of order 3.
Therefore the involutions of Jg are all the involutions Iinverting
a subgroup of order 3 which is conjugate to <a1> in H. As <ay>
has m conjugates in H and is inverted by 18 involutions of G-H.
131 = 18.m = 2.3%.m
and bg = 3.m
An involution of H is inverted by 12 involutiomns of G-H

and has 3m conjugates, therefore

]
N

13,1 + 1Jgl = 12.3.m
thus 13,1 = 2.3%.n and b, = 3%.n.

The subgroups <ala> and <a1_1a> being conjugate to <a>
in G are inverted by 3m involutions none of which belong in H,
and as there are m conjugates of each in H,

1351 = 2.3.m.m = 2.3.m®
so b3 = 2.m°,

Now let u e Jl so that u inverts no non—-trivial element
of H and consider CH(u). This will have order 3 if it 1s not
trivial. Suppose u centralizes <a1> so that u e CG(al) = A<Lz>.
Now the three subgroups 1in <a1,a> of order 3 other than <a1> are
conjugate in A<z>. So as <a> is inverted by three involutions of
A<z>, the subgroups <aj;a> and <a1—1a> are each inverted by three
involutions of A<z>, these involutions are all distinct. ©Since
A<z> contains 9 involutions each one inverts some subgroup of
order 3 in H. Thus CH(u) =1 for all u ¢ J; and so ¢ = 0. Hence
b, = 2.32.m.k, k a non-negative integer.

1

We summarize what we have so far:

£f = 3m—8,
8
|3 H| = 3m,
b2 = 32.m, b3 = 2 m2, b6 = 3.m



b, = 232.m4g k a non-negative integer and all other

1

b are zero (ﬁ # 0).

To determine b1 Wwe use Bender“s lemma.

b, = 2.32.mk < 8 (3m + 3%.m + 2202 + 3.5m)-3%2.0-2n2-3m

3m—-8
hence, 3k ¢ -m? + 2m + 52
3m-8
2 L
= -m + _2_ + 57,)
3m-8 3 3m-8
< -m2 + 1 + 58
3m-8 3m-8
Clearly (m,6) = 1 and as m = 1 (3) also, m > 7.
Therefore L < _i and -m? < 49,
3m-8 13
hence 3k < —*2 + 1 + 28
13 13

yielding k < 2 thus k = 0 and b; = O.
3

The number of involutions in G is

3] 3.m + 2.32.m + 2.3.m%2 + 2.32.p

3.m.(13 + 2m)
whence |G| = 24.33.m.(13 + 2m).

By lemma (5.1) the normalizer of a Sylow 3-subgroup has
order 22.33, so the index 1is 22.m.(13 + 2m). Sylow” s theorem

gives then 22%.m.(13 + 2m) = 1 (3). However as m = 1 (3)

22.m&13 + 2m) 0 (3), this contradiction completes the proof of
the lemma.

We now have enough informationm to be able to determine

the order of G, this 1s done in the next lemma.

LEMMA (5.7)

The order of G is 24.33.13.
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PROOF

We use Bender s lemma with H NG(A) = NG(<al>) to

determine |G|. Firstly

£=_|u -1 = 22.33 -1 = 9 -1 = 5
ICG(z) . 48 4 4
Also as H contains 27 involutions, g H| = 27.

Let u be an involution of G-H. Recall that A# has four
conjugacy classes in H with representatives ay;, ap, aé and a.
Clearly u cannot invert any element of the first class.

As NG(<a>) = <aj,a,z> (lemma (5.6)) which 1s contained
in H, the normalizers of all conjugates of <a> in H are contained
in H. Thus u cannot invert a conjugate of a in H; and so
conjugates of a, and a5 in H are the only elements of A# which
can be inverted by u.

The conjugates of a, in H are a,, a, ~, aja,, al_laz,
alaz_l, and al—laz_l. Suppose u inverts <az>; then u cannot
invert a conjugate of a, besides a, and az_l, else u inverts
<a1,a2> and in particular inverts aj. As u 1inverts <a2> it
normalizes <al,a2> by lemma (5.4), If u inverts a conjugate of
ag then u also normalizes <a1, a3> by the remarks following lemma
(5.4). But then u normalizes A which 1s not true. Thus u cannot
invert another subgroup of order 3. For the same reason if u
inverts <a3> then u cannot invert another subgroup of order 3 1in
H.

We have CH(aZ) = <a1,a2,zt> which contains 3 involutions
and NH(<a2>) = <a1,a2>V which contains 15. So <a2> is inverted
by 12 involutions of H. As <a2> is inverted by 18 involutions it
is inverted by 6 involutions of G-H.

Now N;(Kay>) = AV = <aj;,ay,m>V where <m> = Cg(t). The

involutions mz, m-lz, apmz, az—lmz, azm_lz and az—lm_lz invert
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<a2> and belong to G-H. These are therefore all the involutions
of G-H inverting <a2>. Since mz centralizes t, it also
centralizes a subgroup of order 3 1in <a1,a2>, <r> say (since the
b-group <t, mz> acts on A). Thus mz centralizes the involutions

t, rt and 1

t of H. We have <a1,a2,t> < HN H™Z and in fact
<a1,a2,t> = HMN Hmz’ it follows that mz e J6. It 1s easily
checked that mz is conjugate to all involutions of G-H inverting
a, by an element of H. So 1f mz centralizes the involution v say

h

of H, then (mz)h centralizes the involution v" of H. Thus all

involutions of G-H 1nverting <a2> invert a further 3 1involutions
of H and therefore belong in J6' We note that these 1involutions
1 =+

t = t% .

of H are conjugate in H to t as rt = t¥ and r~

The same argument applies 1if u inverts <a3>, so we have
again that u e Jg. In this case however the involutions of H
centralizing u are conjugate to zt in H. We have that 1if u
inverts a subgroup of order 3 in H then u e Jg-

Now suppose u Inverts <t>. Either u only inverts <t>,
in which case u e JZ’ or u inverts some other subgroup of H. 1If
u inverts an element of order 3 then u e Jge If it inverts an
involution v say, then vt must have order 3 or 6 and 1s
centralized by u. Suppose the order is 3; then <vt> is conjugate
to <a2> or <a3> in H. Therefore NG(<vt>) < NG(<a1,vt>) and so
NG(<a1,vt>) contains the 4-group <t,ud. Thus u inverts some
subgroup of order 3 in <a;,vt> and again u e Jg. If vt has order
6 the previous argument applied to (vt)2 shows that u inverts a
subgroup of order 3 and so u e Jg.

Thus if u inverts a conjugate of t in H elther u e J2 or

u inverts a subgroup of order 3 1in H and u e Je- The same

reasoning applies to =zt.
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Suppose finally that u inverts a conjugate of z 1n H.
Then u cannot invert an element of order 3 for we have seen in
this case that u inverts only conjugates of t or zt in H. Nor
can it centralize another involution for this would imply, as
above that u inverts a subgroup of order 3. Thus u e J2.

We can now determine the order of J, and Jg.

All involutions of G-H inverting a subgroup of order 3
in H belong to J¢ and these yield all the involutions of Jg. The
only subgroups of order 3 im H inverged by involutions of G-H are
conjugates of <ay> and <a3> in H. There are 6 such subgroups
each inverted by 6 involutions of G-H. Therefore |J6l = 6.6 =
22,32 and so bg = 2.3.

An involution of G-H centralizing a conjugate of t 1is
either contained in J, or Jg. Suppose k, of these are contained
in Jg. As t is centralized by 6 involutions of G-H, 0 < ky £ 6.
Also suppose ky involutions of G-H centralizing zt are contained
in Jg; 0 < ky < 6. Then as t and zt each have 9 conjugates in H

and since each involution ofJ6 centralizes 3 involutions of H we

have
13,1 = k129 * k99 = 3(k, + k,)
6 . 1 2
But we know that lJ.] = 22.32, this implies that k, + k, = 12 and
6 1 2

hence k; = ky = 6. Thus every involution of G-H centralizing a
conjugate of t or zt in H 1is contained in Jg. Hence an
involution of J2 centralizes a conjugate of z 1in H.

As z 1s centralized by 6 involutions of G-H and has 9

conjugates in H

13,1 6. 9 = 2.3 and thus b, = 33,

If u e J; then u cannot centralize an involution of H,
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nor can it centralize an element of order 3 in H. For suppose u
centralizes b e H, b of order 3, then u e NG(<a1,b>) by the
remarks following lemma (5.4) and u must invert some subgroup of
order 3 in <a,;,b>. Thus CH(u) =1 for all u e J;, s0 ¢ = 0 and
therefore b; = 22.33.k, k a.non—negative integer.

Summarizing we have:

b2 = 33, b6 = 2.3, b, = 22.33.k, k a non—-negative
integer and all other b are zero (n # 0).

By Bender“s lemma

22.33 k¢4 (33 + 33 + 2.3.5) - 33 - 2.3
5

b,

which implies k < 37 <1, so k = 0 and b1 = 0.
180

The number of involutions in G is

1J] = 33 + 2.33 + 22 32

32,13
whence the order of G is 24.33.13

We easily prove the following lemma.

LEMMA (5.8)

The group G is simple.

PROOF

If G is not simple then by lemma (2.6) a proper non-
trivial normal subgroup has order 27. However a subgroup of this
order is not normal inmn G by lemma (5.1). We conclude that G is
simple.

It is now possible to identify G.
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THEOREM
If G 4s a graup satisfying the assumptions of this

chapter then G 1s isomorphic to PSL(3,3).

PROOF

We show that G satisfies the postulates made in [3],
which are listed preceeding lemma (1.6).

Firstly G contains the 4—-group V. Next, as V is abe1ian
V<Cand V< C(t), so V 1s contained in a dihedral group D, of
C and also one of C,(t), Dy say. Now D; £ Dy as Z(Dj) = <z> and
Z(Dy) = <t>. Therefore as <Dj, Dy> < Ng(V) (IDpir vl = 2 1 =
1,2), we must have NG(V)/V . S3. So there is an element which
permutes the involutions of V. Thus postulate (I) 1s satisfied.

Let M = <a1,a2> ; M is inverted by t so M N CG(t) =1
and by lemma (5.5) Cg(t) < NG(M)-

In C there is a subgroup, <b> say, of order 3 inverted
by t and <b> # <a;>. Now NG(<b>) = BV with B a non—-abelian Sylow
3-subgroup of order 3 normalized by V. Also B = <b1,b2,b3> where
<b;> = Cx(z) = <b>, <by> = Cp(zt) and <bgy> = CB(t).

Put M* = <b1,b2>; M* has the same order as M and clearly

M¥*A Cg(t) = 1 and Cg(t) < Ng(m™).

Consider M N M*, as M # M* if MA M* # 1 then M M*

<y> has order 3. But then y> is normalized by V, so as M C
<a(> # M*f\ C =<b;> and t is fixed-point-free on M and M*, M N M*
{ Cg(zt) by [12] theorem 5.3.16. So y> = <ay> = <b2>.

Now

M* < Ng(<bp>) = Ng(<ap>) = KV, so M" £ X, in particular
<b;> £ A. But then <by> = Cx(z) = <ay>, that is <by> = <aj;>, a

contradiction, and hence postulate (II) is satisfied.

Postulate (III) we already have.
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Postulate (IV) 1is trivial as IG:MCG(t)I = IG:NG(M)I = 13

2 43 +1 =13,

and q2 + q+1 =3
Finally we consider postulate (V). As a; has 8
conjugates 1in No(M) = MCG(t) all of which 1ie in M#, we see that

Cg(t) is transitive on m?

which 1is a stronger statement then (V).

Thus by lemma (l1.6) the group G has a chief series
€2 Gy 2K >1 where G/Gg 15 cyclic, Go/K £ PSL(3,3) and K is a
normal subgroup of odd order. As |G| = IPSL(3,3)| we must have

Gp = G, K =1 and 6 £ PSL(3,3).
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CHAPTER SIX

CASE (D) A ¥ Z,XZ,4

Throughout this chapter suppose that NG(X) = AV where A
N Z3xZ3 and A 4 NG(X).
Let CA(z) = <a;> and CA(zt) = <a,> (which we may suppose

to be non—-trivial) so that CA(t) = 1 and therefore t inverts A by

lemma (1.2) ; A <a1,az>. Note that a; ~; ap; by lemma (2.3).

The structure of N = NG(A) is determined in the first lemma.

LEMMA (6.1) 5
N = ACN(t) has order 2[*.32 and so A is a Sylow 3-

subgroup of G.

PROOF

Since CG(A) < CG(al)f\ CG(aZ)’ CG(A) = A, and as t
inverts A, N = ACN(t) by lemma (1.3).

We show that V is not a Sylow 2-subgroup of N. By the
proof of lemma (4.1) z and zt are conjugate in N. So 1f V is a
Sylow 2-subgroup of N, by [12] theoremn (7.7.1), N has one class
of involutions. But then z and t would be conjugate in N
contrary to the fact that CA(z) has order 3 while CA(t) is
trivial. Thus a Sylow 2-subgroup of N has order 8 or 16 ; 1f the
order is 8 a Sylow 2-subgroup is dihedral since it contains a 4-
group.

Now as N = ACN(t) there are four possible orders for N
namely 23.32,23.33,24.32, or 2%.33.

All conjugates of ay in N 1lie 1in A#, therefore as
|A#|=8, a; has at most 8 conjugates in N, thus IN:CN(al)I < 8.
As CG(al) = A<z> < N, CN(al) = CG(al) which has order 2.32. 1t

follows that |N| < 24.32. This condition eliminates the
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4 .3

3 .33,

possibilities 23.3 and 2
We prove now that the elements of order 3 1in G form a
single conjugacy class.

The subgroup R = CN(t) is a Sylow 2-subgroup of order 8

or 16 (wvhich contains V); in either case Z(R) = <t> and z ~pzt.

As NR(V) o Dg there ijs an involution v e R with z’' = zt.
As C,(z) = <a;>, Cu(zt) = {a,> and zV = zt, <a1>v =
1
<a2>, without loss we may assume alv = aj. Then alv = a; = a2v,
v _ v, VvV _ =
so (alaz) = aj ajy = ajsa; = ajapy, that 1s aja, e CG(v). By

lemma (2.3) a;a, ~ a; in G and as (alaz)z = alaz_1 also alaz_1 ~
a; in G. Since <ay>, <ay>, <aja,> and <a1a2—1> are the only
subgroups of order 3 in A and A is a Sylow 3-subgroup of G (since
it 1s a Sylow 3-subgroup of N) the assertion follows.

A#

Now let a e ,

then A < CG(a). By the previous
paragraph a; = a8 for some g € G. Then

AB < C (a)B = Co(aB) = Co(ap) = A<z,
Thus A8 = A that 1s g e N. Therefore a; 1Is conjugate in N to all
elements of A# and so has 8 conjugates 1in N. Thus |[N| =
IN:CN(a1)||CN(a1)| = 8.2.32, = 24.32 3nd the lemma is proved.

We note that by the proof of thils lemma the elements of

order 3 in G form a single conjugacy class.

LEMMA (6.2)

The order of G 1is 24.32.5.11.

PROOF
Bender” s lemma 1s used to determine || with H = N.
Firstly

f = H
[C(;(z)l 24.5
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We have H = ACH(t) and CH(t) is a Sylow 2-subgroup of H
of order 16 by lemma (6.1) ; CH(;) has 2 classes of involutions
with representatives t and z. As t and z are not conjugate in H,
H has 2 classes of involutions with representatives t and z.
Since t has 9 conjugates and z has 12, H contains 21 involutions,
therefore |J N H| = 21.

By the proof of lemma (6.1) the subgroups of order 3 in
H are conjugate 1In H. As NG(<a1>) = AV < H, the normalizer in G
of every subgroup of order 3 in H is contained in H.

Let u be an involutions of G-H and consider H N HY.
Since u does not normalize A, AN AY < A, and 1f AN AY is not
trivial 1t has order 3. As AnAY is normalized by u, AN AY =1
by the previous paragraph. Thus AN (H A HY) =1 (as An HY ¢
ANAY = 1) which shows that HA HY is a 2-group.

Suppose u centralizes 2 involutions, Vi and vy say, of
H, then u centralizes <v1v2> which contains a unique involution v
say. But now u centralizes the 4-group <v1,v> of H. Thus u
centralizes at most one involution of H. Since every 1involution
of CG(t)—<t> inverts exactly one subgroup of order 4, u inverts
at most one subgroup of order 4 in H. It follows that the

elements of H inverted by u form cyclic subgroups of order 1, 2

or 4.

If u inverts z, then u cannot invert an element of H of
order 4 else CH(z) = A1V contains an element of order 4, so u e
Jqe.

An element of order 4 is inverted by 4 involutions,
these involutions belong in the same Sylow 2-subgroup of G. Now
CH(t) = R has 3 cyclic subgroups of order 4, one of these 1is

inverted by 4 involutions of H, the other two are each iInverted
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by 4 involutions of G-H. As t 1s centralized by 8 involutions of
G-H, if u Iinverts t, it also Iinverts a subgroup of H of order 4
and u e J4.

As t has 9 conjugates 1in H,

la,1 = 8.9 = 23.32%;
thus b, = 2.32,

As z 185 centralized by 6 involutions of G-H and has 12
conjugates in H,

15,1 = 6.12 = 23.32
and so by = 22.32.

By Bender“s lemma we have

] -
b, <,3_ (21 + by, + 3b,) = 1 = b, = by,

1 -
= N (19 b, + b4)

=1 (19 - 36 + 18) = L
2 2

and hence b1 = 0.
Thus 131 = 3.7 + 23.32 + 23,32 = 3.5.11 and the order of G is
24.32.5.11.

The proof of the following lemma 1s the same as that of

lemma (3.1). -

LEMMA (6.3)

The group G is simple.

Using Sylow”s theorem we easily determine the structure
of the normalizer of the Sylow 5 and Sylow ll-subgroups of G;
these normalizers are Frobenius groups of order 20 and 55
respectively. We can also determline the conjugacy classes of G#,

there are 9 in all. There is one class each of elements of order

2, 3, 4, 5 and 6; the elements of order 8 and 11 each form two
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classes.

We shall need the following result.

LEMMA (6.4)

The intersection of two distinct Sylow 3-subgroups of G

1s trivial.

PROOF

Let A and B be two Sylow 3-subgroups of G and suppose a
e AN B, a £ 1. Then CG(a) = A<v> = B<Kv> where v 1is an
involution centralizing a. Now B £ A<v> and as A is a normal
Sylow 3-subgroup of A<v> and B has order 9, A = B. So if A # B
then AN B = 1.

To identify G we use the permutation respresentation on
the cosets of a subgroup of index 11. We show that such a

subgroup exists in the following two lemmas.

LEMMA (6.5)

The group G contains a subgroup of index 22 isomorphic

to A6.

PROOF

We have the following: A 1s a Sylow 3-subgroup of G
inverted by the involution t, N = ACN(t) and CN(t) is a Sylow 2-
subgroup of G. Recall that if <r> is a subgroup of A of order 3
then NG(<r>) < N (see the proof of lemma (6.2)).

Now all Sylow 2-subgroups of CG(t) contain the unique
quaternion group, say Qg 4 CG(t). Let R be a Sylow 2-subgroup of
Cg(t), R £ Cy(t), so that R A Cyx(t) = Q3. Let D be dihedral of
order 8 in R; then Qg D is cyclic of order 4. Put Qg D =

<x>, then x2 = t, x normalizes A but D does not.
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Let D = <a,b> a,b involutions of D with ab = x; a,b d N

ab_ _b
a

else D < N. Also a* = a’ = bab = a.abab = at, and b* = bt.

Let A = <r> x <s>. As x normalizes A we may suppose r¥

1 -1

L -
X t = r7!, therefore sX = r~1,

= s. Now rX = sX and rX =r
We have the following relations
a2 = b2 = t2 = 3 = g3 = 44 = 1,
ab = x, x“ =t, a¥ = at, b¥X = bt,

la,t] = [b,t] = [r,s] =1,

rt = g~1 , a8 = r_l,

r¥* = g and s¥* = r_1 )

Consider the elements ar and as. Since

(arf;lt = r ltar. r"lt = r"leart = r~la = (ar)~ 1,

ar 1s inverted by the involution r-lt. As the only elements of

#

G" inverted by an Iinvolution have orders 2, 3, 4, 5 or 6, these

are the only possible orders of ar. Similarly as has possible
orders 2, 3, 4, 5 or 6.

If (ar)? = 1 then r? = r"! 50 a e Ng(<r>) < N a
contradiction. Therefore (ar)2 # 1 and for the same reason (as)2

# 1.
If (ar)3 = 1 then

1 = (ararar)¥

= axrxaxrxaxrx

= atsatsats

1_.2

= atsas “at‘s

= atsas-las

s~ 1 1 - s-l(asas)s.

Therefore at = asas
So'as (at)2 = 1, (as)4 =1,

3 _ 4
Thus 1f (ar)” = 1 then (as) = 1.

Similarly (as)3 = 1 implies (ar)4 = 1.
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Assume now that (ar)4 = 1, then

1 = (arararar)®

X_ X X _ X _ X _X X_X
= a'rararar

= atsatsatsats

= as lasas las

= as—l(asas)sas

1 - as—l(asas)sa

Therefore s~
So as(s_l)3 =1, (as)6 =1

We also have from these steps

1 = a(s_las)a(s_las), A
So that s las a Cs(a). Also t e Cg(a), so (s_las)t = sas” ! e
Cg(a) and sas l.s las = sasas e Cg(a) as well.

Now (as)6 = 1 yields

1 = a(sasas)a(sasas) = (sasas)z.

If sasas = 1 then (s_la)s(as) = g, that 1s as e CG(s).

Therefore a e CG(S) and as CG(S) N, a € N a contradiction.

Thus sasas has order 2.

Now

-1

(ts_las)2 = ts ‘asts “as

= sas ‘s las

sasas

So as sasas has order 2, ts~ 1

since ts—1
to a. That 1is sasas = a which implies (as)3 = 1.
4 3
Thus if (ar) = 1 then (as)” = 1.

Similarly (as)4 = 1 implies (ar)3 = 1.

as has order 4 and

as 1s also an element of CG(a) its square is equal

Now assume (ar)5 = 1, The preceeding arguments show

that (as)3 # 1 and (as)4 # 1.

Suppose (as)6 = 1l.We have
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1 = (ararararar)X

X X _ X X _X X _X X X
=axrarararar

= atsatsatsatsats

lasas las

asas las

= atsas

= tasas” !

1 1 1 1

Therefore t = asas ~asas ~as,the element asas ~asas ~as inverts s

(that 1s t inverts s).
Also as (as)6 = 1 equating with the above yields
1

atsas lasas”las = asasasasasas,

which on cancellation and solving for t yields

- -1_ -1 -1
t = sasasasas as asas .
So as tZ = 1 we have
1 = sasasasas las lasas lsasasasas las lasas™!,

and after simplification yilelds

1 1

s = (asasas_ as_la)s—l(asasas_ as”la)y.

Thus asasas_las_la is also an element inverting s.

Multiplying by the previous element inverting s gives

1 1

1,571 asas "as

asasas a.asas

asasasasas las

(as)6s—1as_1a.as-1as

= s lasas,

which must be an element centralizing s, thus s—l

asas e CG(s)
which implies s? e CG(SL
Now A is a normal Sylow 3-subgroup of CG(s); therefore
as s? has order 3, s?2 ¢ A and then s e A%2. Thus s e AN A? which
implies by lemma (6.4) that A = A2 and so a e N, a contradiction.
We conclude that {if (ar)5 = 1 then (as)5 = 1.

Also (as)5 = 1 implies (ar)5 =1,

Finally suppose (ar)6 = 13 all cases have been
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eliminated except (as)6 = 1,

Now

1 (arararararar)¥®

X
= aXp XX XX XX p X g XpXq XX

= atsatsatsatsatsats

-1 1 —1a

= as ~asas ~—asas s

lisas™! e -C,(a).

1

Therefore a = (s_lasas—l)a(sas_las), and so s

It 1is easlily shown, using (as)6 =1, that s~ asas” ! has

order 3.

Also (sa)2 = gasa has order 3 since (sa)6 = 1. Since

(s—lasas_l)Sasa = as lag l.s7lasas l.sasa

1

= a(s” asas-l)a

swlasas-l,

s lasas™! and sasa commute. If sasa e <s"lasas~ 1> then sasa e

CG(a) so that

s.s2 = sagsa = a(sasa).a = asas = s2.s, thus s? e CG(s).
We have seen however that this implies a e N. Thus sasa ¢
<s lasas™!> and it follows that B = <sasa, s lasas™1> 1s a Sylow

3-subgroup of G.

Since a centrallzes S_lasas_l, a normalizes B. Now

s lasadlsasa = s las 'a e B and so asas e B.
Therefore since

(sasa)® = s~ l(sasa)s = asas e B

and (s-lasas_l)S = s—l(s_lasas_l)g = sasa € B, s e

NG(B).

This implies, because s has order 3 and B is a normal Sylow 3-
subgroup of NG(B), that s e B. Thus s e AN B and by lemma (6.4)
A = B. However a normalizes B, that 1s a normalizes A, a

contradiction. Therefore ar cannot have order 6 and hence
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neither can as.

Thus we have the following possibilities

(1) (ar)3 = (as)? =1
(11) (ar)? = (as)3 = 1 and
(111) (ar)? = (as)” =1

The same reasoning applies to the elements br and bs.
So by interchanging r and s and also a and b 1f necessary, there

are four cases to consider, namely:

(1) (ar)3 = (as)* = (br)3 = (vs)4 =1
(11) (ar)3 = (as)* = (br)? = (bs)F =1
(I11) (ar)3 = (as)? = (br)® = (bs)? = 1 and
(IV) (ar)? = (as)” = (br)? = (bs)> =1
CASE (I (ar)3 = (as)? = (br)3 = (bs)4 =1

Let R = ar and S = br ; then

R3 = 53 =1
and R™ls = r"labr = xT therefore
(R™1s)4 =1
Since ararar = brbrbr
rbr = ba(rar)abdb
= (rar)¥X
= rXgXpX

= sats.

Therefore RS = arbr = asats and

(RS)2 asatsasats

1 1

= asas ~as ~-as

-1y4

as(as sasa.as
-1_ -1
= ag ~as ,

which has order 2, thus

(RS)4* = 1.
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But now by lemma (1.7) the subgroup G generated by R and

S has order 168, a contradiction as 711¢|.

CASE (I1) (ar)3 = (as)4 = (br)4 = (bs)3 = 1

Let Ryg = br and Sop = ar ; then
R04 - So3 = 1
and RO_IS0 = r lpar = (x" )T so

(Ro"1sgy% =1

Since ararar = brbrbrbr,
rar = ab(rbrbr)ba -
-1
= (rbrbr)*¥

= s lbts lprg~l
= s lbsbs~!
Therefore
ROSO = brar
=~ bs lbsbs!
= bs—lbs(bs_1)3sbsb
= bs lps lpsh
= (bs™1)3sb.bsb
= s 1p
which has order 3, so (RySp3 = 1
Now let R = Ro—lso_l and S = So_l. Then R has the same
order as RpSp- Therefore R3 =1 also s3 = 1.
Now RS = Ry"1g "ls -1 = Ry !sy, therefore
(RS)* = 1,
And R71lg = SOROSO_I = rogy , SO
(R71g)4 = 3

So again the subgroup of G generated by R and S has
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order 168, a contradiction.

CASE (III) (ar)3 = (as)? = (br)> = (bs)? =1

Let R = ar and S = ba ; then
rR3 = g4 =1

arba = (rb)2 therefore (RS)5 =1

and RS
also R"1s"lrs = r~laabarba

r lbarba

I

il eyt
= r lgx 1x71
= r_lst,
which has order 2, therefore (R—ls_lRS)2 =1
So by lemma (1.8) (i) the subgroup of G generated by R

and S is isomorphic with A6'

CASE (IV) (ar)3 = (as)d = (br)? = (bs)” =1

We have

A = <r>x<{s> = <rsdx<r ls> = <udx<vd

where u = rs and v = r s ; then
u3 = v3 = [u,v] =1,
u¥ = (rs)¥ = r¥X gX = srYl = r7lg =y
and v¥ = (r_ls)x = (r~1)x gx = s™lr-1 = (rs)"1 =y 1
Also u and v are inverted by the involution ¢t. These are

precisely the relations satisfied by r and s so all the above
reasoning applies with u, v replacing r and s. Thus 1f

(au)3 = (av)% = 1 then (bu)> = (bv)> =1

and <au,ba> % Ag- Suppose then that

(bu)? = (bv)? = 1.

(au)’ = (av)?

Let Rg = x—lr and So = b then

So
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and RO2 = x lrx"ly = gx 1x"lr = str = sr”lt, which has order
2, therefore
4 -
Ro 1.
Also RgSp = x lrb = bardb = (ar)b, s0

(RpSg)°> = 1.

And Ry255 = x 1r x7lrb
= sx 1x71rb
= strb
= sr_lbt,
therefore (ROZSO)x = sX(r~l)XpX¢X
= r g7 lpe.t
= (rs)—lb
= ulp
= (bu)71,
which has order 5, therefore (R0250)5 = 1.

Now let R = RO_1 and § = RySy ;3 then

R = 83 = 1,
- r.-1 _
RS = RO ROSO = SO, so
(RS)2 =1
And R™1s = RyRgSy = Rp2Sgp, therefore

(R™1s)? = 1.
So by lemma (1.8) (ii) the subgroup of G generated by R

and S is isomorphic to Ag4-

As all cases have been considered we conclude that G has

a subgroup isomorphic to Ag which has index 22 in G.

LEMMA (6.6)

The group G possesses a subgroup of index 11.
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PROOF

By lemma (6.5) G has a subgroup, H say, isomorphic to
Ag. Let D be a dihedral group of H with Z(D) = <t> and let A be
a Sylow 3-subgroup of H inverted by t. Then H = <D,A>. If Qo is
the unique quaternion subgroup of C,(t) then Q normalizes D and
also Q normélizes A (lemma (6.1)). Therefore Q < NG(H) and as G
is simple we must have NG(H) = HQ which has index 11.

Finally we can identify G.

THEOREM

-

If G 1s a group satisfying the assumptions of this

chapter-then G is isomorphic to Myq-

PROOF

By the previous lemma G has a subgroup of index 11.
Representing G on the cosets of this subgroup then, as G 1is
simple, G is isomorphic to a subgroup of All'

By the structure of the normalizers of a Sylow 5 and
Sylow 11-subgroup of G, we see that G possesses elements r, m and

n of orders 11, 5 and 4 respectively satisfying the relations

r® = % and n? = m2.

We may suppose
r = (123456789 10 11) ;
then rd = (15926103711 4 8)
and we may assume
m = (1 3456 8 9 10 11)
1 9 2 61 7 11 4 8

2 7
5 03

= (256 10 4)(3 9 11 8 7)

4

m = r* as required.

since then r

Let n = (2 5 6 104 3 9 11 8 7

al a2 33 a4 a5 bl b2 b3 b4 b5)
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then n" = (a; a, a3 a, ag)(b; by by b, bg),
which then equals m? = (2 6 4 5 10)(3 11 7 9 8).
Yherefore (a1 ap; ag a; ag) = (2 6 4 5 10) or (3 11 7 9 8)
and (by by by by bg) = (3 11 7 9 8) or (2 6 4 5 10)
(Note that 1if (a; a; aj a, ag) = (2 6 4 5 10) then
(a1 ap, aj a& a5) = (6 4 510 2) or any other cycle of these five
numbers) .

If (a) a9 a3 a, ag) = (3 11 7 9 8)
and (b, by by by b5) = (2 6 4 5 10) ; then considered as
ordered 5-tuples there are 5 choices for (a1 ap aj a, ag) and 5
for (b; b, by by, b5) which dimplies 25 possibilities for n.
However in all these cases n is an odd permutation. Thus

(a; ag aj ay as) = (2 6 4 5 10)
and (b; by by by, bg) = (3 11 7 9 8)
(considered as permutations).

There are 25 choices for n. However for a fixed n,
conjugating by powers of m yields all the elements of order 4 in

2, so in fact there are only 5 cases to

NG(<m>) taking m to m
consider.

Fix by = 3 then the ordered 5-tuple (b; by b3 by bg) is
determined. Successively take a; = 2, 6, 4, 5 and 10

so(al ap ajz a, ag) is determined; this yields all 5 cases, which

we list:
(a) n= (4105 6)(7 8 9 11)
(b) n=(26354)(7 89 11)
(c) n= (246 10)(7 8 9 11)
(d) n= (2510 6)(7 89 11)
(e) n= (210 4 5)(7 8 9 11)
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@]

AS

=

(a)
Let n, = n® = (2 10 4 5)(3 8 7 9), then rn; =

(1 10 11)(2 8 3 56 9 4)(7), which has order 21. However G does

not contain an element of order 21 thus n # (4 10 5 6)(7 8 9 11).

AS

@]
=

(b)

A
Let n; = n® = (3 8 7 9)(4 10 5 6), then rn; =

(1 28310 11)(4 6 9 5)(7) which has order 12 and as G does not

contain an element of this order n # (2 6 5 4)(7 8 9 11).

CASE (c)

Let n; = nﬁl = (2 6 5 4)(3 8 7 9) then rn; =

(1 6 9 10 11)(2 8 3)(4)(5)(7) which has order 15 so nf

(2 4 6 10)(7 8 9 11).

@]

ASE (d)

Let n; = n™ = (3 7 11 8)(4 10 5 6). By lemma (1.9)(ii)

the subgroup of G generated by r and ny; is isomorphic to M;, and

as |G| = |M11|, G = Mll‘

Let n; = n® = (2 6 5 4)(3 7 11 8), tl;en rn, =
(L 6 11)(2 7 3)(4)(5)(8 9 10) which has order 3. Thus the
following relations hold between r, m and n,.

rll = p’ = nl4 = (rn1)3 =1,

r® = r% and w1 = n2.

Therefore by lemma (1.9)(i) the subgroup of G generated
by r, m and n; is isomorphic to M;, and hence G is isomorphic to

M;,. This completes the proof of the theorem.
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