AN ELEMENTARY CHARACTERIZATION OF

THE SIMPLE GROUPS PSL(3,3)

AND \underline{M}_{11} IN TERMS OF THE

CENTRALIZER OF AN INVOLUTION

BY

JOHN DOYLE, BS. (HONS)(ADELAIDE).

A thesis submitted to the University of Adelaide in January, 1984 for the degree of Master of Science. The research was undertaken in the Department of Pure Mathematics at the University of Adelaide.

TABLE OF CONTENTS

PAGE

SUMMARY (1)
SIGNED STATEMENT (11)
ACKNOWLEDGEMENTS (11i)
INTRODUCTION1
CHAPTER 1 : ASSUMED RESULTS AND PROPERTIES OF GL(2, 3) 13
CHAPTER 2 : PRELIMINARY RESULTS 22
CHAPTER 3 : $\operatorname{CASE}(A), A \cong Z_{3}$ 26
CHAPTER 4 : CASE (B), $A \cong Z_{3} \times Z_{3} \times Z_{3}$ 47
CHAPTER 5 : CASE (C), A NON-ABELIAN OF ORDER 27 57
CHAPTER 6 : CASE (D), $A \cong Z_{3} \times Z_{3}$ 71
BIBLIOGRAPHY 87

SUMMARY

In this thesis we investigate groups of even order containing an involution whose centralizer is isomorphic to GL(2,3). The aim of the research was to give an elementary proof (that is, without the use of character theory) that the only such groups with the additional property of having no subgroup of Index 2 are the simple groups $\operatorname{PSL}(3,3)$ and M_{11}.

Following the introduction, chapter one consists of a few preliminary general results together with some properties of the group GL(2,3).

In chapter two we prove a few results about a group G satisfying the above two properties. In particular we show that there are four possibilities for the structure of the normalizer of a group of order 3 contained in the centralizer of an involution. Each of these cases is dealt with seperately in the ensuing chapters.

STATEMENT

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge and belief, contains no material previously published or written by another person, except when due reference is made in the text of this thesis.

JOHN DOYLE

Name

 I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Date
29-1-1-85 Signed :

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Date :
.29-1-8. -8 Signed :

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. D.L. Parrott for many simplications in the arguments I used and especially for suggesting the problem in the first place.

INTRODUCTION

If G is a group of even order, then G contains an element of order 2. Such an element is called an involution. It was Brauer whofirst realised the importance of involutions in finite groups of even order. During the late forties Brauer had observed that some very simple properties of involutions can be used to prove some surprisingly strong results concerning the structure of groups of even order. Using such results fowler in his thesis ([11]) gave a characterization of the groups $S L\left(2,2^{n}\right)$ in terms of involutions. In these groups the centralizer of an involution is an abelian 2 group. Fowler proved that this property actually characterizes $S L\left(2,2^{n}\right)$. (The centralizer of an
 $g x\}$).

The following result appeared in a paper by Brauer and Fowler in 1955 ([5]).
"If G is a group of even order g which contains m involutions and $1 f(n=g / m$ then there exists a proper normal subgroup L of G such that G / L is isomorphic to a subgroup of the symmetric group on t letters with $t=2$ or $t<n \frac{(n+2)}{2}$. In particular $|G: L|=2$ or $|G: L|<\left[n \frac{(n+2)}{2}\right]!"$

If G is simple then L must be trivial and $g<\left[n \frac{(n+2)}{2}\right]$!
Let z be any involution of G. Then $\left|G: C_{G}(z)\right| \leq m=g / n$, hence n $\leq\left|C_{G}(z)\right|$ so $g \leq\left[\left\lvert\, C_{G} \frac{(z) \mid\left(\left|C_{G}(z)\right|+2\right)}{2}\right.\right]!$

This yields the following result.
"There exists only a finite number of simple groups G which contain an involution z such that the centralizer $C_{G}(z)$ of z in G is isomorphic to any given group".

This result suggested to Brauer the possiblity of classifying simple groups of even order in terms of the structure of the centralizer of an involution. This proposal has come to be known as Brauer's programme. This was explicitly proposed in a talk he gave at the International Congress in Amsterdam in 1954 ([2]).

By a result of Feit and Thompson ([10]) all non-abelian simple groups have even order and hence contain involutions. This result strikingly reinforced Brauer's contention that the structure of a simple group is intimately connected with its involutions.

As an example of this programme Brauer announced the following theorem ([2]).
"Suppose G is a group of finite order which satisfies the following conditions.
(1) G contains an involution z whose centralizer $C_{G}(z)$ is isomorphic to $G L(2, q)$.

If c is an element of the centre of $C_{G}(z), c \neq 1$, then
$C_{G}(c)=C_{G}(z)$.
(3)
$G^{-}=G$
If $q \equiv-1$ (4), q (\ddagger (3) then G is isomorphic to PSL(3, q). If $q=3$, we have the additional case that G can be isomorphic to the simple Mathieu group of order 7920 .

This was the first classification of simple groups other then $P S L(2, q)$ in terms of involutions. The proof did not appear
until 1966 when Brauer proved the following more general result in [4].
"Let G be a finite group which satisfies the conditions
(1)

There exists an involution z of G wose centralizer $C_{G}(z)$ is isomorphic with a group of the form $G(2, q) / L$ where L is a subgroup of the centre $Z(G L(2, q))$ and where $\mathrm{q} \equiv-1(4)$

The group G does not have a normal subgroup of index 2 . We then have one of the cases.
(a) $\quad G \cong \operatorname{PGL}(3, q), \operatorname{PSL}(3, q) \operatorname{or} \operatorname{SL}(3, q)$
(b) G is isomorphic to a direct product of PSL(3,q) with a cyclic group of order $3, ~ q \equiv 1$ (3), q $\neq 1$ (9)
(c) $\quad G \cong M_{11}$ the Mathieu group of order 7920."

After elementary preliminaries the proof is divided into 2 cases according to whether $q^{3}| | G \mid$ or not. In both cases the theory of blocks is heavily used. The first case is concluded by appealing to a previous characterisation of PSL(3,q). The second case is reduced to five numerical cases. Four of these cannot occur whereas the fifth yields M_{11}.

We note that this theorem relies heavily on the theory of characters and in fact almost all early characterizations also rely on character theory. We illustrate with a few examples.

In 1959 Suzuki generalized both Fowler's result (given above) and a result of Brauer, Suzuki and Wall ([6]). He gave a group theoretical characterization of the 1 - dimensional unimodular linear fractional group $S L\left(2,2^{n}\right)$. The main theorem in [17] states.
"Let G be a finite group of even order. If the centralizer of any involution in G is always abelian then we have
one of the following three possibilities.
(1)

Sylow 2-subgroups of G are cyclic
(2)

A Sylow 2-subgroup of G is normal
(3)

G is a direct product of two groups L and A where Lis one of the linear groups $S\left(2,2^{n}\right)$ and A is an abelian group of odd order."

The proof begins by assuming the theorem false and then studying a group G of smallest order contradiction the theorem. Some properties of G concerning Sylow $2-s u b g r o u p s$ and centralizers are proved. Then considering a more general group satisfying weaker conditions, its structure and characters are studied and a formula for its order is derived. Applying this formula to the group G leads to a contradiction.

In a second paper on linear groups, in the same year, Suzuki gave a characterization of the 2-dimensional inear fractional groups over a field of characteristic 2 by properties of involutions. This result is a counterpart to a similar characterization of these groups over a field of order $q, q \equiv-1$ (4) given by Brauer (as stated above). Suzuki proves the following theorem ([17]).
"Let G be a finite group of even order and z an involution of G. If the centralizer of z in G is isomorphic with the centralizer of an involution in the linear fractional group $G_{0} 1 n^{2}$ variables over a field F of q elements, q even, and if every involution of G is conjugate to z, then G is isomorphic to G_{0}, with one exception. The exceptional case occurs when $q=2$ and in this case we have $G \cong \operatorname{LF}(3,2)$ or $G \cong A_{6}{ }^{\circ}$ "

After an analysis of the structure of the centralizer of an involution, the case $q=2$ is easily settled by making use of
previous results. For the case $q>2$ both themain theorem of the first paper on linear groups above and its order formula are used several times. Then after a complicated study of its structure and characters, G is shown to have a subgroup M of order $q^{3}(q-1)^{2}(q+1)$ and index $q^{2}+q+1$. Infact Mis the normalizer of an elementary abelian group poforder q. m^{2} (is represented as a permutation group on the set B which constists of the $q^{2}+q+1$ conjugates of P; G is doubly transitive on B. Also Gis shownto contain a subgroup Loforder q ${ }^{2}$ not conjugate to P. Suzuki constructs a projective plane in which the points are elements of B and the lines are the conjugates of L. Further a point lies on a line if and only if the subgroups intersect non-trivially. This is shown to be a Desarguesian plane. This enables Suzuki to identify G with the linear fractional group and complete the proof.

Finally we mention a characterization of M_{12} given by Wong ([19]) interms of centralizers of involutions. Specifically he proves the following theorem.
"Let $C\left(z_{0}\right)$ be the centralizer in M_{12} of an involution z_{0} in the centre of a Sylow 2 - subgroup of M12. Let G be a finite group such that
(1) G contains an involution z whose centralizer $C_{G}(z)$ in G
is isomorphic to $C\left(z_{0}\right)$.
G does not contain 3 mutually non-conjugate involutions.
Then either G is isomorphic with M12 or G has a unique nontrivial normal subgroup N. In the latter case N is elementary abelian of order 8 and G / N is isomorphic with the simple group GL(3,2) of order 168.

The theorem is proved by means of computations with
characters. In particular, in one of the cases considered, G is shown to be a simple group whose order is the same as that of M_{12}. By a result of Stanton ([16]), G is isomorphic to M12.

We should now like to mention something about the known finite simple groups. By early this century the families of classical simple groups over a finite field had been discovered, plus two exceptional families found by Dickson (see Diokson's book on linear groups ([9])). These together with the groups of prime order, the alternating groups and the five Mathieu groups were the only known simple groups.

Mathieu discovered his groups around 1860 in the search for highly transitive permutation groups. There are two 5transitive groups of degrees 12 and 24 denoted by M_{12} and M_{24} respectively. The groups M_{11}, M_{22} and M_{23} are the natural one or two point stabilizers; M_{11} and M_{23} are both 4-transitive, while M_{22} is 3 -transitive. They include the only known 4 and 5 transitive permutation groups apart from the symmetric and alternating groups which are trivial exceptions. The 5 groups are all simple and represent the first sporadic simple groups. Remarkably it took over a hundred years for the sixth sporadic simple group to be discovered.

In 1955 the first simple groups since Dickson's time were discovered by Chevalley. These fall into a framework which now includes all known infinite families, the alternating groups being the only exception. Steinberg and others were then able to construct the "twisted" groups as the fixed point subgroups of certain automorphisms of these groups. Thesegroups are collectively known as the groups of Lie type.

We list the infinite families below. The groups listed
may not be simple; a central subgroup needs to be factored out to obtain a simple group. The integer d denotes the order of this central subgroup.

Known Finite Simple Groups

$$
\begin{aligned}
& \underline{G} \\
& Z_{p} \\
& \text { An, } n \geq 5 \quad 1 \\
& \text { An (q) } \quad(\mathrm{n}+1, \mathrm{q}-1) \\
& \mathrm{Bn}(\mathrm{q}), \mathrm{n}>1 \quad(2, \mathrm{q}-1) \\
& \mathrm{Cn}(\mathrm{q}), \mathrm{n}>2 \quad(2, \mathrm{q}-1) \\
& \mathrm{Dn}(\mathrm{q}), \mathrm{n}>3 \quad\left(4, \mathrm{q}^{\mathrm{n}}-1\right) \\
& \mathrm{G}_{2}(\mathrm{q}) \quad 1 \\
& \mathrm{~F}_{4}(\mathrm{q}) \quad 1 \\
& \mathrm{E}_{6}(\mathrm{q}) \quad(3, \mathrm{q}-1) \\
& \mathrm{E}_{7}(\mathrm{q}) \quad(2, \mathrm{q}-1) \\
& \mathrm{E}_{\mathrm{g}}(\mathrm{q}) \quad 1 \\
& { }^{2} \operatorname{An}(q), n>1 \quad(n+1, q+1) \\
& 2 \mathrm{Bn}(\mathrm{q}), \mathrm{q}=2^{2 \mathrm{~m}}+1 \quad 1 \\
& { }^{2} \mathrm{Dn}_{\mathrm{n}}(\mathrm{q}), \mathrm{n}>3 \quad\left(4, \mathrm{q}^{\mathrm{n}}+1\right) \\
& { }^{3} \mathrm{D}_{4}(\mathrm{q}) \quad 1 \\
& { }^{2} \mathrm{G}_{2}(\mathrm{q}), \mathrm{q}=3^{2 \mathrm{~m}+1} \quad 1 \\
& { }^{2} \mathrm{~F}_{4}(\mathrm{q}), \mathrm{q}=2^{2 \mathrm{~m}}+1 \quad 1 \\
& { }^{2} \mathrm{E}_{6}(\mathrm{q}) \quad(3, \mathrm{q}+1)
\end{aligned}
$$

NOTE: $\quad A n(q)$ should not be confused with the alternating groups An. Also $\operatorname{An}(q) / Z \cong \operatorname{PSL}(n, q)$ (where Z is the central subgroup).

We also have the 26 sporadic simple groups, so named since they do not belong to any infinte family. They are listed below. The sixth sporadic simple group J ${ }_{1}$ was discovered by

Jankoin 1966 ([14]). It was found when Janko tried to eliminate a particular possibility for the centralizer of an involution in a finite simple group. The others were discovered in the following fifteen years.

Known Finite Simple Groups

G	ORDER OF G
M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$
$\mathrm{M}_{1} 2$	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$
$\mathrm{M}_{2} 2$	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
M_{23}	$2^{\text {7 }}$. $3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
M_{24}	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
J_{1}	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$
J_{3}	$2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$
J_{4}	$\begin{aligned} & 2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29 . \\ & 31 \cdot 37 \cdot 43 \end{aligned}$
HS	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$
Mc	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 11$
Suz	$2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
Ru	$2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29$
He	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$
Ly	$2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$
ON	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 19 \cdot 31$
. 1	$2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$
. 2	$2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$
. 3	$2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$
M (22)	$2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 23$
M (23)	$2^{18} \cdot 3^{13} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$

\underline{G}
$M(24)$
F_{5}
F_{3}
F_{2}
F_{1}
ORDER OF
$2^{21} \cdot 3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 23$.
29
$2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$
$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$
$2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot$
$19 \cdot 23 \cdot 31 \cdot 47$
$2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot$
$17 \cdot 19 \cdot 23 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

The above list is believed to be the complete list of all finite simple groups. Although many have been characterized by centralizers of involutions relying heavily on character theory, it is of interest to see if more elementary proofs can be given. In particular, proofs without using the theory of characters.

We remark that the main application of characters is to determine the order of the group. Now if the structure of the group is not too complicated there are other ways of determining this order. If there is one class of involutions a lemma of Bender ([1]) (also see chapter lof this thesis) can be applied; and if there is more than one class of involutions, Thompson's Order Formula can be used.

An example of a characterization without character theory is given by Bender. In [1] he gives a characterization of the simple groups PSL(2,7) and A_{6} in terms of centralizers of involutions. In this paper he proves a lemma which he uses to determine the order of these groups. (In this case the order is enough to complete the characterization). In this same paper Bender studies Jankós first simple group J ${ }_{1}$ andin particular
determines its order using these elementary techniques.
The purpose of this thesis is to use these ideas to give a characterization of the simple groups PSL(3,3) and M11 in terms of centralizers of involutions. Specifically we prove the following.

THEOREM

Let G be a finite group of even order with the following properties
(a) G has no subgroup of index 2,
(b) \quad (possesses an involution z whose centralizer $C_{G}(z)$ in G
is isomorphic to $\operatorname{GL}(2,3)$.
Then G is isomorphic to $\operatorname{PSL}(3,3)$ or M_{11}.
For the earlier proof of this result (due to Brauer and Wong) using character theory see [13].

The proof of this theorem uses Bender's lemma many times. We shall therefore make a few remarks concerning the lemma. To use the lemma we need to choose a suitable "large" subgroup H of the group G and count the number of involutions in each coset of H in G. From this we can determine the number of involutions in G. This fact, together with the structure of the centralizer of an involution and the fact that there is only one class of involutions in G enables us to determine the order of G.

In order to count the number of involutions in each coset we make use of the following observations.

Let u be an involution of $G-H$ and consider the coset H. Let $v e h u$ be an involution, $v=h u$ for some h in H this implies $h=v u$.

Now
$h^{u}=(v u)^{u}=u v u u=u v=(v u)^{-1}=h^{-1}$

Thus u inverts h.
Conversly suppose u inverts an element h of $H, h^{u}=h^{-1}$
Then $v=h u$ is an involution of the coset $H u$ since
$v^{2}=h u h u=h h^{u}=h h^{-1}=1$
Thus the number of elements in the coset H is equal to the number of elements of H inverted by u. All of these elements belong in the subgroup $H \cap H^{u}$. Thus a knowledge of $H \cap H^{u}$ may helpto determine the number of involutions in the coset H .

To conclude this introduction we give a brief outline of the proof of our theorem. Suppose` $\mathrm{G}_{\mathrm{f}} \mathrm{is}$ a finite group which satisfies the assumptious of the theorem. Let x be an element of order 3 in $C_{G}(z)$. After some initial results about G we prove that $N_{G}(\langle x\rangle)$ has a normal $2-\operatorname{complement~A.~There~are~four~}$ possibilities for the structure of A. Each of these is treated seperately in a different chapter.

In chapter $3, A \cong Z_{3}$, here we prove the existence of a certain type of subgroup M. The subgroup M satisfies the conditions:
(i) $\quad(|M|, 6)=1$
(ii) $\left|N_{G}(M)\right|$ is even,
and M is chosen maximal subject to (i) and (ii). There are various possibilities for $N_{G}(M)$, many of which are eliminated by using Bender's lemma. We eventually obtain a possible order for
 the Sylow 5-subgroups. A contradiction is obtained by considering the structure of the subgroup fixing two letters.

In the other cases after proving more properties of G we choose a subgroup H, apply Bender ${ }^{-}$s lemma and obtain the order of G. Once the order is obtained we proceed differently in each
 contradiction. The case A non-abelian of order 27 yields the group $\operatorname{PSL}(3,3)$ which is identified using a paper of Brauer's ([3]), this is done in chapter 5. In the final chapter A N $Z_{3} \times Z_{3}$. Before identifying the group we first need to show that it has a subgroup of index 11 , which is done using generators and relations. Once we have this subgroup we represent G on the cosets. This leads to an identification of G with M_{11}.

We begin with a few assumed results which will be used at various places in the proof of our theorem. Thefirst is a simple consequence of Sylow's theorem, it is know as the frattini argument.

LEMMA (1.1) ([12] Theorem (1.3.7))
If $H \triangleleft G$ and P is a Sylow P subgroup of H, then $G=$ $N_{G}(P) H$.

The next two results are simple applications of the transfer homomorphism.

BURNSIDE'S TRANSFER THEOREM

If P is a Sylow $p-$ subgroup of G and $N_{G}(P)=C_{G}(P)$ then G has a normal p - complement.

$\underline{\text { PROOF }}$

Since $N_{G}(P)=C_{G}(P), P \leq Z\left(N_{G}(P)\right)$, the result now follows by Theorem 7.4.3 of ([12]).

THOMPSONS TRANSFER THEOREM ([13] Lemma XII. 8. 2.)
Suppose Gis a group with no subgroup of index 2 and R is a subgroup such the $|G: R|$ is twice an odd number. Then any involution in G is conjugate to any involution in R.

The next two results are not readily found in the literature, we therefore include a proof.

LEMMA (1.2)
Suppose zis an involution normalizing a subgroup H of G with the property that $C_{H}(z)=1$. Then z inverts H, that is
$h^{z}=h^{-1}$ for all $h e H, H$ is abelian and H has odd order.

PROOF

Consider the map $\theta: H \rightarrow H$ defined by $\theta: h \quad h^{-1} z h z$. This map is well-defined as z normalizes H so that zhze H, for a 11 h e H .

If $\theta\left(h_{1}\right)=\theta\left(h_{2}\right)$ for some h_{1}, h_{2} e H then $h_{1}{ }^{-1} z h_{1} z=$ $h_{2}{ }^{-1} z_{2} z$ by definition of θ. But then $z h_{1} h_{2}{ }^{-1}=h_{1} h_{2}^{-1} z$, that is $h_{1} h_{2}{ }^{-1} \in C_{H}(z)$. And because $C_{H}(z)=1$ we concludethat $h_{1}=h_{2}$. The map is therefore $1-1$ and hence onto.

Let heH then there exists h_{1} e H such that $\theta\left(h_{1}\right)=h^{-1}$ that is $h_{1}{ }^{-1} z_{h_{1}} z=h^{-1}$. Taking the inverse of this expression we have $\mathrm{zh}_{1}{ }^{-1} \mathrm{zh}_{1}=\mathrm{h}$ whence $\mathrm{h}_{1}{ }^{-1} \mathrm{zh}_{1} \mathrm{z}=\mathrm{zhz}$. Equating gives $h^{2}=$ h^{-1}, which is the first result.

Let h_{1}, h_{2} e H then
$\left(h_{1} h_{2}\right)^{-1}=\left(h_{1} h_{2}\right)^{z}=h_{1} z h_{2}=h_{1}^{-1} h_{2}^{-1}$
And as $\left(h_{1} h_{2}\right)^{-1}=h_{2}^{-1} h_{1}{ }^{-1}$ we have $h_{1}^{-1} h_{2}{ }^{-1}=h_{2}^{-1} h_{1}{ }^{-1}$ which implies that H is abelian.

If H has even order then H contains an involution h say. But then $h^{z}=h^{-1}=h$, so that $h e C_{H}(z)$ a contradiction. Thus H has odd order.

LEMMA (1.3)
Let M be a subgroup of odd order in G. Suppose M is inverted by an involution z and $C_{G}(M)=M$.

Then $N_{G}(M)=M C_{N_{G}}(M)(z)$.

PROOF

Let $n e N_{G}(M)$ and $m \in M$ then $\left(n^{-1} z n\right) m\left(n^{-1} z n\right)=$ $n^{-1} z\left(n n^{-1}\right) z n=n^{-1}\left(n_{n}^{-1} n^{-1}\right) n$ as z inverts M and $n n^{-1}$ e M.

Thus $\left(n^{-1} z n\right) m\left(n^{-1} z n\right)=m^{-1}=z m z$ hence($\left.z n^{-1} z n\right) m\left(n^{-1} z n z\right)=m$ that is $n^{-1} z n z e C_{G}(m)$. This is true for all m e M, therefore $n^{-1} z \operatorname{ziz} C_{G}(M)=M$ and so $n^{-1} z n e m z$ whichistruefor all $n \in$ $N_{G}(M)$. It follows that $M\langle z\rangle$ is a normal subgroup of $N_{G}(M)$. As M has odd order $\langle z\rangle$ is a S ylow $2-$ subgroup of $M\langle z\rangle$ so the frattini argument yields $N_{G}(M)=M\langle z\rangle N_{N_{G}}(M)(\langle z\rangle)=M C_{N_{G}}(M)(z)$.
The following formula was discovered by Brauer and the .
result has been generalized by Wielandt in ([18]) (for which Brauer's result is a special case); it is know as the BrauerWielandt formula.

THE BRAUER-WIELANDT FORMULA
Let $H \leq G, H$ of odd order h and suppose Aut (H) contains a $4-$ group $\theta_{0}=\left\langle\theta_{1}, \theta_{2}\right\rangle \quad \theta_{3}=\theta_{1} \theta_{2}$. Let fidenote the number of fixed points in H by $\theta_{i}, i=0,1,2,3$. Then for $h^{2}=f_{1} f_{2} f_{3}$.

For our purposes we require this formula in the following form.

CORALLARY (1.4)

Let H be a subgroup of G of odd order and suppose $N_{G}(H)$ contains a $4-$ group $V=\left\langle v_{1}, v_{2}\right\rangle, v_{3}=v_{1} v_{2}$

Then:
$\left|C_{H}(V)\right|^{2}|H|=\left|C_{H}\left(v_{1}\right)\right|\left|C_{H}\left(v_{2}\right)\right|\left|C_{H}\left(v_{3}\right)\right|$
The following lemma is proved by Bender in ([1]). since it is crucial for our theorem we shall include proof.

BENDER'S LEMMA

Let G be a group with a subgroup H such that $|J|>|G: H|$ where J denotes the set of involutions in G.

Furthermore define

$$
J_{n}=\operatorname{set} \text { of } u \in J-H \text { such that }|H u \cap J|=n
$$

$b_{n}=n u m b e r$ of cosets $H g \neq H$ such that $|\mathrm{Hg} \cap \mathrm{J}|=n$ $c=$ number of u e J_{1} such that $C_{H}(u) \neq 1$.
$f=\frac{|J|}{|G: H|}-1>0$
Note that $\left|J_{n}\right|=n b_{n}$ Then
(1)
$|J|=|J \cap H|+b_{1}+2 b_{2}+3 b_{3}+\ldots$
(2)
$b_{1}=c+k|H|$ for some non-negative integer k.
$b_{1}<f^{-1}\left(|J \cap H|+b_{2}+2 b_{3}+3 b_{4}+\ldots\right)-1-b_{2}-b_{3} \cdots$

PROOF

Firstly (1) is obvious. For (2) note that $b_{1}=c+t h e$ number of ue J, such that $C_{H}(u)=1$.

Let $u \in J$, be such that $C_{H}(u)=1$
If $u^{h}=u^{k}$ for some $h, k \in H$, then $h k^{-1} \in C_{H}(u)=1$, so h $=k$; also u^{h} e J_{1}. Therefore u^{h}, for h e H, aredistinct involutions of J_{1} such that $C_{H}\left(u^{h}\right)=1$; (2) now follows.

To prove (3) note that
$|G: H|=1+b_{0}+b_{1}+b_{2} \ldots$ hence using (1)
$|J|-|G: H|=|J \cap H|-1-b_{0}+b_{2}+2 b_{3}+3 b_{4}+\ldots$
Since $|J|-|G: H|=f|G: H|$
$=\mathrm{f}\left(1+\mathrm{b}_{0}+\mathrm{b}_{1}+\mathrm{b}_{2}+\mathrm{b}_{3}+\ldots\right)$
$f b_{1}=|J|-|G: H|-f\left(1+b_{0}+b_{2}+b_{3}+\ldots\right)$
So that
$b_{1}=f^{-1}\left(|J \cap H|-1-b_{0}+b_{2}+2 b_{3}+3 b_{4}+\ldots\right)-1-b_{0}-b_{2}-b_{3}-\ldots$ and as $b_{0} \geq 0$ the inequality follows.

All notation defined in this lemma will be fixed throughout this thesis. This lemma is used when the group G has one class of involutions, in this case we have the following alternate expression for f

$$
\begin{aligned}
f=\frac{|J|}{|G: H|}-1 & =\frac{\mid G: C}{|G: H|}-1 \\
& =\frac{|G| / \mid C}{|G| /|H|}-1 \\
& =\frac{|H|}{\left|C_{G}(z)\right|}-1
\end{aligned}
$$

so $f=\frac{|H|}{\left|C_{G}(z)\right|}-1$, where z is an involution of G.
In chapter 3 we show that the group concerned is a
 fixing two letters is isomorphic with $\operatorname{sL}(2,3)$. The following lemma shows that no such group exisis. This result appears in Passman's book on permutation groups ([15]). We shall include the proof since it is an interesting one.

LEMMA (1.5)
Suppose G is a sharply 3-transitive permutation group on a set Ω, suppose alsothat $3\left\|\|_{0 *} \mid\right.$ where 0 ,* are two pointsin ـ. Then G_{0} * has precisely one subgroup of order 3.

PROOF

Let u, v be two distinct elements of order 3 in G_{0} * These elements fix 0 and * but no other point as G is sharply $3-$ transitive; therefore they have the form
$u=(0)(*)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \ldots$
$\mathrm{v}=(0)(*)(1 \mathrm{a} b) \ldots$ with $\mathrm{a}, \mathrm{b} \neq 2,3$ respectively.
Choose ge G with $g=(1)\left(\begin{array}{ll}2 & 3\end{array}\right) \ldots$ Then $u^{g}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) \ldots$ The element u^{g} fixes the three points 1,2 and 3 so as G is sharply 3 -transitive this element is trivial, hence $u^{g}=u^{-1}$.

Now g must send the points fixed by u to the points fixed by u^{-1}, hence g permutes the set $\{0, *\}$. Since g already has 1 fixed point namely 1 , we must have
$\mathrm{g}=(0, *)(1)(23) \ldots$
Now choose he G with
$h=\left(\begin{array}{cccc}1 & 2 & 3 . & \cdot \\ 1 & a & b\end{array}\right)$
Then $v^{-1} u^{h}$ fixes the three points 1 , a and b, hence $v^{-1} u^{h}=1$ so that $u^{h}=v$. Since $u \neq v, h \neq 1$. Now h must send the points fixed by u to the points fixed by v and hence permutes the set $\{0, *\}$. Since h already has one fixed point, nameiy 1 we must have $h=(0, *)(1) \ldots$ But now g and hagree on three points and hence are equal. This yields.

$$
v=u^{h}=u^{g}=u^{-1}
$$

Thus $G_{0 *}$ must contain precisely one subgroup of order 3 .
The group PSL(3, 3) occurs in chapter 5; a paper of Brauer's ([3]) is used to identify it. In this paper Brauer considers a set of postulates for a group G which permits him to define a projective plane \boldsymbol{T} in terms of G. G has a natural representation by collineations of $T T$. These postulates are the following.

G contains a 4 -group $v, V=\left\langle v, v_{1}\right\rangle, v_{2}=v_{1}$; and there exists an element of G which permutes the involutions of V.

There exist subgroups M and $M^{*} \neq 1$ of G with the following properties
(a) M and $M^{*} h a v e$ the same order
(b) $C_{G}(v) \leq N_{G}(M)$ and $C_{G}(v) \leq N_{G}\left(M^{*}\right)$
(c) $M \cap M^{*}=M \cap C_{G}(v)=M^{*} \cap C_{G}(v)=1$
(III)

All involutions of $C_{G}(v)-\langle v\rangle$ are conjugate in $C_{G}(v)$.
We have the following definitions. A point p is a subset of G of the form $p=g^{-1} v M g$ with $g \in G$. A line r is a subset of G of the form $r=g^{-1} \mathrm{vM}^{*} g$ with $g \in G$. The point p
lies on the line r, if $p \cap r=\varnothing$ The plane \mathbb{T} is the set of all points and lines. For a fixed element t of G the mapping $r(t): p H p^{t}, r \not r r^{t}$ is a collineation of T.

Under these assumptions it is shown that $M=M_{1} \times M_{2}$ and $M^{*}=M_{1}{ }^{*} \times M_{2}{ }^{*}$
where $\quad M_{i}=M \cap C_{G}\left(v_{i}\right)$
and $M_{i}^{*}=M^{*} \cap C_{G}\left(v_{1}\right) \quad i=1,2$
and $\quad\left|M_{1}\right|=\left|M_{2}\right|=\left|M_{1}{ }^{*}\right|=\left|M_{2}{ }^{*}\right|=q$
We also need the following two postulates
(IV)
$\left|G: M C_{G}(v)\right| \leq q^{2}+q+1$
(V)

Every class of $C_{G}(v)$ conjugate elements of meets M_{1}.
Then we have the following result which is Theorem (4D) of [3].

LEMMA (1.6)
The group G has a chief series $G \geq G_{0} \geq K \geq 1$ where G / G_{0} is cycifc, G_{0} / K is isomorphic with $\operatorname{PGL}(3, q)$ or $\operatorname{PSL}(3, q)$ and K has odd order.

For q (${ }^{(1)}$ (3) the groups PGL(3, q) and PSL(3, q) coincide. In chapter 6 we have occasion to consider groups defined in terms of generators and relations. The following results will be used ([8]).

LEMMA (1.7)
Let G be a group generated by the elements R and S which satisfy the following relations

$$
R^{3}=S^{3}=(R S)^{4}=\left(R^{-1} S\right)^{4}=1
$$

Then G is the simple group $P S L(2,7)$ of order 168.

Let G be a group generated by the elementir and S which satisfy one of the following relations
(1) $\quad R^{3}=S^{4}=(R S)^{5}=\left(R^{-1} S^{-1} R S\right)^{2}=1$ or
(i1) $\quad R^{4}=S^{5}=(R S)^{2}=\left(R^{-1} S\right)^{5}=1$
Then G is isomorphic to A_{6}.
To identify M_{1} in chapter 6 we use the following result;
for the first part see [8] for the second see [7] page 151.

LEMMA (1.9)
Let G be a group satisfying either of the conditions
(i) Gis generated by the elements r, m, whichsatisfy the following relations

$$
\begin{align*}
& r^{11}=m^{5}=n^{4}=(r n)^{3}=1 \\
& r^{m}=r^{4} \text { and } m^{n}=m^{2} \\
& G=\langle(1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6,)\rangle \tag{ii}
\end{align*}
$$

Then G is isomorphic to M_{11}.
Since the centralizer of an involution of a group in our theorem is isomorphic to GL(2, 3) we shall need to know some of its properties. We state these without proof.

Let $C_{0}=G L(2,3)$, then C_{0} is a group or order $48=2^{4} .3$; its centre $Z\left(C_{0}\right)=\left\langle z_{0}\right\rangle$ has order $2 ; \quad C_{0}$ contains a unique quaternion subgroup Q_{0} which is therefore normal in C_{0}, and SL(2, 3) is the unique subgroup of index 2 in C_{0} and has quaternion Sylow 2-subgroup.

Let S_{0} be a Sylow 2-subgroup of C_{0}. Then S_{0} is semidihedral and S_{0} has subgroups of index 2 which are cyclic, quaternion and dihedral of order 8; and $N_{C_{0}}\left(S_{0}\right)=S_{0}$. If X_{0} is a Sylow 3 - subgroup of C_{0} then $N_{C_{0}}\left(X_{0}\right)=X_{0} V_{0}$ where V_{0} is a 4 group of C_{0}. Also we have $N_{C_{0}}\left(V_{0}\right)$ is dihedral or order 8.

The elements of $\mathrm{C}_{0}-\left\langle\mathrm{z}_{0}\right\rangle$ have orders $2,3,4,6$ and 8 and their centralizers in C_{0} have orders $4,6,8,6$ and 8 respectively. The elements of $C_{0}-\left\langle z_{0}\right\rangle$ each form a single conjugacy ciass in C_{0} the lengths of these classes are $12,8,6$ and 8 respectively. In particular $C_{0}-\left\langle z_{0}\right\rangle$ contains 12 involutions. The elements of order 8 form two classes both containing 6 elements; and an element of order 8 is not conjugate in C_{0} to its inverse.

Finally Q_{0} contains all elements of order 4 in C_{0}, SL(2, 3) also contains all elements of order 3 and C_{0} is generated by its involutions.

We conclude this chapter with the following notation which is fixed thoughout this thesis.

We denote by G a group satisfying the conditions of our theorem and z is an involution of G whose centralizer in G is isomorphic to $G L(2,3)$. Let $C=C_{G}(z)$, S be a Sylow $2-s u b g r o u p$ of C and Q the unique quaternion subgroup of C. Let t be an involution of $C-\langle z\rangle$ and denote by V the $4-g r o u p\langle z, t\rangle$. Finally let X be a subgroup of order 3 in C inverted by t. (We note that there are two possible choices for such a subgroup X).

PRELIMINARY RESULTS

This chapter consists of a few basic properties of the group G. We begin with an easy lemma.

LEMMA (2.1)
$N_{G}(S)=S$ and so S is a Sylow 2-subgroup of G.

PROOF
As $Z(S)=\langle z\rangle,\langle z\rangle$ char S sò $\langle z\rangle \triangleleft N_{G}(S)$. Therefore
$N_{G}(S) \leq N_{G}(\langle z\rangle)=C$. It follows now that $N_{G}(S)=S$.
The next result concerns the conjugacy of involutions in G .

LEMMA (2.2)
The group G has one class of involutions.

PROOF
Firstly by assumption G has no subgroup of index 2 .
 number. So any involution in G is conjugate to an involution in Q by Thompsons Transfer Theorem. Since Q contains only one involution z, all involutions of G are conjugate to z, the lemma follows.

The following result deals with the conjugacy of elements of order 3 centralized by involutions.

LEMMA (2.3)
The elements of G of order 3 centralized by some involution form a single conjugacy class.

Let b be an element of order 3 in G centralized by an 1nvolution v. By lemma (2.2) $z=v^{\text {g for }}$ fomeg in G. So as
$b e C_{G}(v), \quad b^{g} \quad$ e $C_{G}\left(v^{g}\right)=C$
And as the elements of order 3 in C formatingle conjugacy class in C, the elements of order 3 in G centralized by some involution form a single conjugacy class in G.

We also determine the number of conjugacy classes of elements of order 4,6 and 8 in G.

LEMMA (2.4)
The elements of order 4 and 6 in G each form a single conjugacy class. There are two classes of elements of order 8 in G

PROOF

Let b be an element of order 4 in G. Then b^{2} is an involution and so is conjugate to z by lemma (2.2). As be $C_{G}\left(b^{2}\right)$ some conjugate of b is contained in C. As C has one class of elements of order 4, G must have one class of elements of order 4.

The same reasoning applies if b has order 6 since b^{3} is an involution and C has one class of elements of order 6.

Suppose now that b has order 8. Then some conjugate of bis containedin C. As C has two classes of elements of order 8, G has at most two classes of elements of order 8.

Consider be C, b an element of order 8. We claim b cannot be conjugate to its inverse; suppose so and let bg = b-1 for some g in G. Then $\left(b^{4}\right)^{g}=b^{-4}$ which is $z^{g}=z$; that is $g e$ C. However bis not conjugate to its inverseinc. Therefore b
is not conjugate to its inverse in G. We conclude that G has two classes of elements of order 8.

The next lemma shows that there are four possible structures for the normalizer in G of a subgroup of order 3 in the centralizer of an involution. Each of these cases must be considered seperately.

LEMMA (2.5)
We have $C_{G}(X)=A\langle z\rangle$ and $N_{G}(X)=A V$ where A is either elementary abelian of order 3,9 or 27 or is non-abelian of order 27. Furthermore $A \triangleleft \quad N_{G}(X)$.

PR00F

Let R be a Sylow 2-subgroup of $C_{G}(X)$ containing $\langle z\rangle$. Since $C_{R}(z) \leq C_{C} C_{G}(X)(z)=C_{C}(X)$ is cyclic of order $6, C_{R}(z)=\langle z\rangle$ and hence $R=\langle z\rangle$ (either $z \in Z(R)$ or z is centralized by an element of $Z(R)^{\text {非 }}$). As $\langle z\rangle$ is a Sylow 2-subgroup of $C_{G}(X), C_{G}(X)$ has a normal 2-complement, A say, by Theorem 7.6.1 of [12]. Thus $C_{G}(X)=A\langle z\rangle$. Further $A \triangleleft N_{G}(X)$ and $N_{G}(X)=A V$.

Acting on A by the $4-g r o u p ~ V e h a v e, ~ b y ~ t h e ~ B r a u e r-~$ Wielandt formula, that
$|A|=\left|C_{A}(z)\right|\left|C_{A}(z t)\right|\left|C_{A}(t)\right|$
(since $C_{A}(V)=1$)
Now $C_{A}(z)$ has order 3 and $C_{A}(z t)$ and $C_{A}(t)$ have order 1 or 3 (|A| being odd), so A has possible orders 3, 9 or 27. In the first two cases A is elementary abelian andin the latter case A is either elementary abelian or non-abelian of order 27 .

We list the four possible cases to be considered.
Case (A) $\quad A=Z_{3}$
Case (B) $\quad A=Z_{3} \times Z_{3} \times Z_{3}$

Case (C) A non-abelian of order 27
Case (D) $\quad A=Z_{3} \times Z_{3}$
We conclude with a result on a proper non-trivial normal subgroup of G, if thereis one.

LEMMA (2.6)
Either G is simple or a proper non-trivial normal subgroup has order 27.

PROOF

Suppose G is not simple, let L be a proper non-trivial normal subgroup of G. If L has even order then it contains an involution and hence all involutions by lemma(2.2). As C is generated by its involutions $C \leq L$ andin particular $S \leq L . \quad$ The Frattini argument yields, since S is a Sylow 2-subgroup of (in fact of G) by lemma (2.1) that $G=L N_{G}(S)$. Whence $G=L$ by the same lemma contradiction. Hence L has odd order.

Acting on L by the 4 -group V we have

$$
|L|=\left|C_{L}(z)\right|\left|C_{L}(z t)\right|\left|C_{L}(t)\right|
$$

And as $z \sim z t \sim t \ln G$,

$$
\left|C_{L}(z)\right|=\left|C_{L}(z t)\right|=\left|C_{L}(t)\right|=3,
$$

and therefore $|L|=27$.
$\underline{C A S E}(\mathrm{~A}) \quad$ A \tilde{E}_{3}
Throughout this chapter suppose that $N_{G}(X)=X V$.
It follows from Sylow's theorem that X is a Sylow 3subgroup of G and hence G has one class of elements of order 3 . The following lemma is easily proved.

LEMMA (3.1)

The group G is simple.

PROOF

If G contained a proper non-trivial normal subgroup L, L would have order 27 by lemma (2.6). As G does not contain a subgroup of such order G is simple.

The following lemma shows the existence of a certain type of subgroup of G. It is the normalizer of this subgroup that will be important for us indetermining the order of G.

LEMMA (3.2)
There exists a subgroup M or order m such that $(m, 6)=1$ and $\left|N_{G}(M)\right|$ is even.

PROOF

Consider the set $\{\mathrm{zx} ; \mathrm{x} e \mathrm{~J}\}$. We determine the number of involutions f for which zx has order $1,2,3,4$ or 6 .

There is one involution for which $z x$ has order 1 and 12 where the order is 2 (namely the involutions of $C-\langle z\rangle$).

Let zx have order 3. Thus z inverts zx and every element of order 3 inverted by z is of this form. Suppose z inverts k elements of order 3. Then any involution inverts k elements of order 3 by lemma (2.2). Because there are $2^{3}|J|=$
|G:C ${ }_{G}(z x) \mid$ elements of order 3 each inverted by 6 involutions and as there are $|J|$ involutions, we have $k|J|=6.2^{3}|J| ; ~ t h a t ~ i s, k$ = 48. Thus z inverts 48 elements or order 3. Similarly z Inverts 24 and 48 elements of order 4 and 6 respectively. Therefore the number of involutions x for which zx has order 1 , 2, 3, 4 or 6 is

$$
1+12+48+24+48=133=7.19
$$

For any other involution $x,|z x|=n$ with $(n, 6)=1 . \quad$ So if there are no such x then $|J|=7.19$, whence
$|G|=2^{4} \cdot 3.7 .19$
In this case let P be a Sylow 19-subgroup of G. Then $\left|C_{G}(P)\right| \mid 7.19$ and as $|A u t(P)|=18=2.3^{2}$ and $\left|N_{G}(P)\right|$ is odd, $\left|N_{G}(P)\right| \mid 3.7 .19$. Hence $2^{4}| | G: N_{G}(P) \mid$ and so $\left|G: N_{G}(P)\right|=2^{4}$.x with x a divisor of 3.7. As $2^{4}=16 \equiv-3$ (19) , $-3 \mathrm{x} \equiv 1$ (19) by Sylow's theorem. Now $x=1,3,7$ or 21 none of which satisfy this congruence. Hence there exists an involution for which $|x z|=n$ and $(n, 6)=1$. The subgroup $\langle z x\rangle$ satisfies the lemma.

Let M be a subgroup as in the previous lemma such that M is maximal subject to these conditions. That is, if $M \leq M_{0}$ with $\left(\left|M_{0}\right|, 6\right)=1$ and $\left|N_{G}\left(M_{0}\right)\right|$ even then $M=M_{0}$. We may assume $z \in$ $N_{G}(M)$. We gather together a few properties of M in the next 1emma.

LEMMA (3.3)
(a) $\quad z$ inverts M and M is abelian
(b) $\quad C_{G}(M)=M$
(c) $\quad N_{G}(M)=M C_{N_{G}}(M) \quad(z)$
(d) $\quad C_{G}(\mu)=M$ for all $\mu \in M^{\#}$ andhence $N_{G}(\langle\mu\rangle) \leq N_{G}(M)$
(e) If g e $G-N_{G}(M)$ then $M \cap M^{g}=1$

Since $(m, 6)=1$ no element of $M^{\#}$ can centralize z. Therefore (a) follows by lemma (1.2).

Clearly z normalizes $C_{G}(M)$ and the order of $C_{G}(M)$ is prime to 6. So as $M \leq C_{G}(M), M$ being abelian, the maximality of M forces $C_{G}(M)=M$ which is (b). Now (c) follows by lemma (1.3) since z inverts M and $C_{G}(M)=M$.

Let $\mu \in M^{\#} ;$ since zinverts $\mu, z e N_{G}(\langle\mu\rangle)$ and as $C_{G}\langle\mu\rangle$ $\triangleleft N_{G}(\langle\mu\rangle), z e N_{G}\left(C_{G}(\mu)\right)$. As μ cannot centralize an element of order 2 or 3 the order of $C_{G}(\mu)$ is prime to 6. So as $M \leq C_{G}(\mu)$ the maximality of M implies $C_{G}(\mu)=M . \quad$ Now $M \triangleleft N_{G}(\langle\mu\rangle)$ and $N_{G}(\langle\mu\rangle) \leq N_{G}(M)$, hence we have (d).

Finally, let $g \in G-N_{G}(M)$ and suppose $M \cap M g \neq 1$. Let $x e$ $M \cap M^{g}, x \neq 1$. Then there exists y e $M^{\text {非 }}$ such that $x=y$. Now $C_{G}(x)=C_{G}(y)^{g}$ which by (d) yields $M=M^{g}$; that is ge $N_{G}(M)$. This is a contradiction and hence $M \cap M^{g}=1$.

In the following two lemmas we determine various possibilities for the normalizer of M in G. In two of these cases a possible order for G is obtained.

LEMMA (3.4)
We have the following possibilities for the normalizer of $M \operatorname{InG}$:
(a) A Sylow 2-subgroup of $N_{G}(M)$ is quaternion
(b) $\quad\left|N_{G}(M)\right|=2.3 .7$
(c) $\quad\left|N_{G}(M)\right|=2$.m
(d) $\quad\left|N_{G}(M)\right|=22.5$
(e) $\quad\left|N_{G}(M)\right|=2^{2} .13$ and in this case the order of G is $2^{4} \cdot 3 \cdot 5^{2} .13$

As $N_{G}(M)$ cannot contain a $4-$ group (by theorems (6.2.2) and (5.3.16) of [12]) a Sylow $2-\mathrm{subgroup}$ is either quaternion or cyclic. The former case is (a), so we may assume a Sylow 2subgroup of $N_{G}(M)$ is cycilc.

Suppose firstly $3\left|\left|N_{G}(M)\right|\right.$. Then 3$|\left|C_{N_{G}}(M)(z)\right|$ since $\left|N_{G}(M)\right|=|M|\left|C_{N_{G}}(M)(z)\right|$ by $1 \operatorname{emma}(3.3)(c)$, andas $C_{N_{G}}(M)(z)<$ C, $C_{N_{G}}(M)(z)$ must becyclic of order 6. \quad Thus $\left|N_{G}(M)\right|=2.3$.m.

The normalizer of a subgroup of order 3 in $N_{G}(M)$ is cyclic of order 6, its index in $N_{G}(M)$ is thereforemand Sylow's theorem yieldsm $\equiv 1(3)$. And as $(m, 6)=1$ either m $=7$ which is (b) or m ≥ 13.

In this latter case we can apply Bender's lemmato $H=$ $N_{G}(M)$. We first calculate f,
$\mathrm{f}=\frac{|\mathrm{H}|}{\left|\mathrm{C}_{\mathrm{G}}(z)\right|}-1=\frac{6 \mathrm{~m}}{48}-1=\frac{\mathrm{m}-8}{8}$
Also $|J \cap H|=m$ as H contains m involutions.
Let p be a prime divisor of m and P be a Sylow psubgroup of H. It is easily seen, by Sylow's theorem, that P is a Sylow p-subgroup of M, and hence is the only Sylow p-subgroup of H (since it is the only Sylow p-subgroup of M by lemma (3.3) (a)). Let x be an element of H of order p, so that $x e p$ and hence x e M. Thus for any prime divisor pof m, an element of H of order pis containedin M.

Let u be an involution of $G-H$ and consider $H \cap H^{u}$. Suppose a prime divisor pof m divides the order of $H \cap H^{u}$. Then $H \cap H^{u}$ contains an element, x say, of order p. Now both x and x^{u} are elements of order p in H and hence, by the previous paragraph are containedin M. It follows that x e M M^{u} which contradicts

Whence $\mid \mathrm{H} \cap \mathrm{H}^{\mathrm{u}} \| 6$ and $\mathrm{H} \cap \mathrm{H}^{\mathrm{u}}$ is cyclic.
Suppose u inverts z. Either u inverts only <z>, in which case ue J_{2} or inverts another non-trivial element of H and in this case u inverts $H \cap H^{u}$ which will be cyclic of order 6 and sous J_{6}. As z is centralized by 12 involutions of $G-H$ and z has m conjugates in M we have
$\left|J_{2}\right|+\left|J_{6}\right|=12 \cdot \mathrm{~m}=2^{2} \cdot 3 \cdot \mathrm{~m}$
Now suppose u inverts X (which we may assume belongs in H). As $N_{C}(X)=X V=N_{G}(X)$, u centralizes z in addition to inverting X, so u e J_{6}. Since X is inverted by involutions of G-H and X has m conjugates in H we have
$\left|J_{6}\right|=6 . m=2.3 . m$
It follows that
$\left|J_{2}\right|=2.3 . \mathrm{m} ;$
thus $b_{2}=3 \mathrm{~m}$ and $b_{6}=m$
Now let ue J_{1}, so that u inverts no non-trivial element of H. In particular cannot centralize an involution of H. As an element of order 3 in H, is centralized by only one involution of G which is contained in H, we have $C_{H}(u)=1$ for all u J_{1}. Thus $c=0$ and $b_{1}=2.3 . m . k, k$ non-negative integer.

Summarizing, we have
$\mathrm{f}=\frac{\mathrm{m}-8}{8}$,
$|J \cap H|=m$,
$b_{2}=3 . m, \quad b_{6}=m$,
$b_{1}=2.3 . m \cdot k, \quad k$ non-negative integer and all other b_{n} arezero $(n \neq 0)$.

By Bender's lemma we have
$b_{1}=2.3 . m \cdot k \underset{m-8}{<}(m+3 m+5 m)-3 m-m$
therefore $3 k<\frac{2^{2} 3^{2}}{m-8}-2$.
As $m \geq 13, \frac{1}{m-8} \leq \frac{1}{5}$ so
$3 k<\frac{2^{2} \cdot 3^{2}}{5}-2<6$, that is $k<2$
and so $k=0$ or 1 .
The number of involutions in \mathcal{A} is
$|\mathrm{J}|=\mathrm{m}+2.3 . \mathrm{m} \cdot \mathrm{k}+2.3 \cdot \mathrm{~m}+2.3 \cdot \mathrm{~m}=\mathrm{m}(13+6 \mathrm{k})$,
Whence $|G|=2^{4} \cdot 3 . \mathrm{m} \cdot(13+6 \mathrm{k})$.
Suppose $k=0$ then
$|G|=2^{4} \cdot 3.13 . \mathrm{m}$
We have $0<\frac{2^{2} \cdot 3^{2}}{m-8} . \quad-2$ which yields m≤ 25, so $13 \leq m$
≤ 25. As $(m, 6)=1$ and $m \equiv 1(3)$ there are three possible values form, namely 13 , 19 or 25. Since $\left|N_{G}(M)\right|=2.3 . m, M$ is a Sylow subgroup of G (in all cases). This immediately excludes m = 13 . The index of $N_{G}(M)$ in G is $2^{3} .13$, so by Sylow's theorem $2^{3} \cdot 13 \equiv$ 1 (p) where $p=5$ or 19 . However this congruence yields $103 \equiv 0$ (p) and, as 103 is prime, this is a contradiction. Thus k $=1$ and $|G|=2^{4} \cdot 3.19$.m. In this case $3 \leq \frac{2^{2} \cdot 3^{2}}{m-8}-2$ which yields m ≤ 15, therefore $13 \leq m \leq 15$. So as $(m, 6)=1, m=13$. Whence $|G|=2^{4}$.3.13.19.

However $N_{G}(M)$ has index 2^{3}. 19 which is congruent to 9 modulo 13 contradicting Sylow's theorem. We have shown that if $3\left|\left|N_{G}(M)\right|\right.$ then $m=7$ and $| N_{G}(M) \mid=2.3 .7$.

Now assume 3 does not divide the order of $N_{G}(M)$. There are then three cases to consider, namely

$$
\left|N_{G}(M)\right|=2 \cdot m, 2^{2} \cdot m \text { or } 2^{3} \cdot m . \quad \text { The first is }(c)
$$

Suppose $\left|N_{G}(M)\right|=2^{3}$.m. As $C_{N_{G}(M)}(z)$ is cyclic of order 8, each involution of $N_{G}(M)$ centralizes only one Sylow 2-subgroup of $N_{G}(M)$. Thus the intersection of distinct Sylow 2-subgroups of $N_{G}(M)$ is trivial. It follows that $m \equiv 1$ (8). This combined with $(m, 6)=1$ implies $m \geq 17$.

Let $H=N_{G}(M)$. We apply Bender's lemma to H. Firstly
$\mathrm{f}=\frac{|\mathrm{H}|}{\left|\mathrm{C}_{\mathrm{G}}(\mathrm{z})\right|}-1=\frac{8 \mathrm{~m}}{48}-1=\frac{\mathrm{m}-6}{6}$,
and $|J \cap H|=m$.
Let u be an involution of $G=H$ and consider $H \cap H^{u}$. By the same reasoning as above $\left|H \cap H^{u}\right| 8$, and $H \cap H^{u}$ is cycifc.

No element of order 8 is inverted by an involution. So if u inverts an involution either $u \in J_{2}$ or J_{4}. Hence we have $\left|\mathrm{J}_{2}\right|+\left|\mathrm{J}_{4}\right|=12 \cdot \mathrm{~m}=2^{2} .3 . \mathrm{m}$
If u inverts a subgroup of order 4 then $u \in J_{4}$. Now a subgroup of order 4 is inverted by 4 involutions of $G-H$ and as H contains m subgroups of order 4,

$$
\left|J_{4}\right|=4 \cdot \mathrm{~m}=2^{2} \cdot \mathrm{~m}
$$

therefore $\left|J_{2}\right|=2^{3}$.m and thus
$b_{2}=2^{2}$. m and $b_{4}=m$
Applying Bender's lemma we have
$\mathrm{b}_{1}<\frac{6}{\mathrm{~m}-6}\left(\mathrm{~m}+2^{2} \cdot \mathrm{~m}+3 \cdot \mathrm{~m}\right)-2^{2} \cdot \mathrm{~m}-\mathrm{m}=\frac{2^{4} \cdot 3 \mathrm{~m}}{\mathrm{~m}-6}-5 \cdot \mathrm{~m}$
In particular this gives
$0<\frac{2^{4} 3 . m}{m-6}-5 . m$
which yields m <16, a contradiction.
Finally consider $\left|N_{G}(M)\right|=2^{2}$.m. As for the previous case the intersection of distinct Sylow 2-subgroups of $N_{G}(M)$ is trivial, so that m m (4). As $(m, 6)=1$ we have m $=5$ or m \geq
13. The former case is (d) and in the latter we can use Bender's lemma applied to $H=N_{G}(M)$. We have

$$
f=\frac{4 m}{48}-1=\frac{m-12}{12}
$$

and $|J \cap H|=m$
It is easily shown, as above, that $b_{2}=2^{2}$.mand $b_{4}=m$. Also we have $c=0$ and therefore $b_{1}=2^{2} . m \cdot k, \quad k$ a non-negative integer. All other b_{n} are zero $(n \neq 0)$.

By Bender"s lemma

$$
\begin{aligned}
b_{1}=2^{2} \cdot m \cdot k & <\frac{12}{m-12}\left(m+2^{2} \cdot m+3 \cdot m\right)-2^{2} \cdot m-m \\
& =\frac{2^{5} \cdot 3 \cdot m}{m-12}-5 \cdot m,
\end{aligned}
$$

therefore $2^{4} \cdot k<\frac{2^{5} \cdot 3}{m-12}-5$
In particular $0<\frac{2^{5} \cdot 3}{m-12}-5$
which yields $m \leq 31$, as $m \geq 13$, so $13 \leq m \leq 31$.
As $(m, 6)=1$ and $m \equiv 1$ (4) there are 4 possible values for m, namely $13,17,25$ or 29 .

The number of involutions in G is

$$
\begin{aligned}
& |J|=m+2^{2} \cdot m \cdot k+2^{3} \cdot m+2^{2} \cdot m \\
& =m \cdot(13+4 k)
\end{aligned}
$$

whence $|G|=2^{4} .3 . m \cdot(13+4 k)$

$$
\text { Since }\left|N_{G}(M)\right|=2^{2} . m, M \text { is a Sylow subgroup of Gin all }
$$

cases. The index of $N_{G}(M)$ in G is $2^{2} \cdot 3 \cdot(13+4 k)$ so by $S y l^{-1} s$ theorem $2^{2} \cdot 3 .(13+4 k) \equiv 1$ (m). (This 1ncludes the case m $=25$ by 1 emma (3.3) (e)).

First1y we assume $m \geq 17$. Then $\frac{1}{m-12} \leq \frac{1}{5}$ so that $2^{2} \cdot k<\frac{2^{5} 3}{5}-5$
which yields $0 \leq k \leq 3$.

If $m=17$ then $2^{2} .3(13+4 k) \equiv 1(17)$ which implies $k \equiv$ 12 (17), a contradiction.

If m $=25$ then $2^{2} .3(13+4 k) \equiv 1(25)$ which implies \equiv 15 (25), a contradiction.

If $m=29$ we find that $k \equiv 1$ (29) and hence $k=1$. Thus the order of Gis $2^{4} .3 .17 .29$. We can easily eliminate this case using Sylow's theorem. Let P be a Sylow li-subgroup of G. Clearly $C_{G}(P)=P$ As $|A u t(P)|=16,\left|N_{G}(P)\right| \mid 2^{4} .17$, it follows that 3.29 divides the index of $N_{G}(P)$ in G. We have $\left|G: N_{G}(P)\right|=$ 3.29.x with x a divisor of 2^{4}. Since $2.29 \equiv 2(17), 2 x \equiv 1$ (17) by Sylows theorem. As $x=1,2,4,8$ or 16 and none of these satisfy the congruence, $m \neq 29$.

Finally we assume $m=13$, and recall that $\left|N_{G}(M)\right|=$ 22.13. In this case $2^{2} \cdot \mathrm{k}<2^{5} .3-5$ and we get $0 \leq k \leq 22$. Now $2^{2} .3(13+4 k) \equiv 1(13)$ which yields $\equiv 3(13)$, and so $k=3$ or 16.

The order of G is $24.3 .13 .(13+4 k)$. The normalizer of a Sylow 3 - subgroup of G has order 2^{2}. 3 and hence index $2^{2} .13 .(13+4 k)$ which is congruent to 1 module 3 by Sylows theorem. This implies $k \equiv 0$ (3) and hence $k=3$. Whence the order of G is $2^{4} \cdot 3.5^{2} .13$, which is the final case (e), and the lemma is proved.

We observe in case (e), using Sylow's theorem, that a Sylow 5-subgroup of G is elementary abelian andits normalizer has order $2^{3} \cdot 3.5^{2}$ and hence a Sylow 2 -subgroup is quaternion.

LEMMA (3.5)
If a Sylow 2-subgroup of $N_{G}(M)$ is quaternion then $\left|N_{G}(M)\right|=2^{3} \cdot 3 \cdot 5^{2}$ and $|G|=2^{4} \cdot 3 \cdot 5^{2} \cdot 13$.

Suppose a Sylow 2-subgroup of $N_{G}(M)$ is quaternion. As
$\left|N_{G}(M)\right|=|M|\left|C_{N_{G}}(M)(z)\right|$ by $1 \mathrm{emma}(3.3)(c)$, we have $\left|N_{G}(M)\right|=$ 2^{3}.e.m where $\quad=1$ or 3 and $C_{N_{G}(M)}(z) \cong Q_{8}$ or $\operatorname{SL}(2,3)$ respectively.

An involution centralizes only one quaternion subgroup. Therefore the intersection of distinct sylow 2-subgroups is trivial and thus $m \equiv 1$ (8). We have $(m, 6)=1$ and therefore $m \geq$ 17.

We now apply Bender's lemma to the subgroup $H=N_{G}(M)$.
Firstly $f=\frac{|H|}{\left|C_{G}(z)\right|}-1=\frac{8 \cdot e \cdot m}{48}-1=\frac{e \cdot m-6}{6}$
and $|J \cap H|=m$.
Let u be an involution of $G-H$ and consider $H \cap H^{u}$. As
 $\left|\mathrm{H} \cap \mathrm{H}^{\mathrm{u}}\right| \mid 2^{3}$.e.

All elements of order 4 in C belong to Q and so to H. Suppose u centralizes z; then u C. In both cases $\mathrm{C}_{\mathrm{H}}(\mathrm{z})$ contains precisely one involution. Therefore there are 12 possibilities for u. As every involution of C-〈z> inverts a subgroup of order 4 in C, u inverts a subgroup of order 4 in H.

If $e=1$ then u can invert no other subgroup of H and thus $u \in J_{4}$. As H contains m involutions we have in this case that $\left|J_{4}\right|=12 . m=2^{2} .3 . \mathrm{m} ;$ thus $b_{4}=3 . m$.

$$
\text { If } e=3 \text { then } C_{H}(z) \cong \operatorname{SL}(2,3) \text { contains all subgroups of }
$$

order 3 in $C . S o u$ also 1 nverts 2 subgroups of order 3 and 2 subgroups of order 6 in $C_{H}(z)$. This implies that u inverts $1+1+2+4+4=12$ elements of H so $u \in J_{12}$. If u inverts an element of order 3 or 4 in H it also inverts an involution of H,
hence $\left|J_{12}\right|=12 . m=2^{2} .3 . \mathrm{m} ;$ thus $b_{12}=\mathrm{m}$.
Let $r=1$ when $e=1$ and $r=0$ when $e=3$, then
$b_{4}=3 \mathrm{mr}$ and $\mathrm{b}_{12}=\mathrm{m}(1-\mathrm{r})$
If u e J_{1}, u cannotinvert a non-trivial element of H and it follows easily that $\mathrm{C}_{\mathrm{H}}(\mathrm{u})=1$ for all ue J_{1}. So $\mathrm{c}=0$ and $b_{1}=2^{3}$.e.m.k, k a non-negative integer.

Summarizing we have
$\mathrm{f}=\frac{\mathrm{em}-6}{6}$,
$|\mathrm{J} \cap \mathrm{H}|=\mathrm{m}$,
$b_{4}=3 \mathrm{mr}, \quad b_{12}=m(1-r), \quad b_{1}=2^{3} \cdot \mathrm{e} \cdot \mathrm{m} . \mathrm{k} ., \mathrm{k}$ a nonnegative integer and allother b_{n} are zero ($n \neq 0$); where, e = 1 and $r=1$ or $e=3$ and $r=0$.

By Bender's lemma we have
$\mathrm{b}_{1}<\frac{6}{\mathrm{em}-6}\left(\mathrm{~m}+3^{2} \cdot \mathrm{~m} \cdot \mathrm{r}+11 \cdot \mathrm{~m}(1-\mathrm{r})\right)-3 \cdot \mathrm{~m} \cdot \mathrm{r}-\mathrm{m}(1-\mathrm{r})$
$=\frac{6}{e m-6}(12 m-2 m r)-m-2 m r$.
Therefore $2^{3} \cdot \mathrm{e} \cdot \mathrm{k}<\frac{6}{\mathrm{em}-6}(12-2 r)-1-2 \mathrm{r}$.
Sincem ≥ 17, em $\geq e .17 \geq 17$ and so $\frac{1}{e m-6} \leq \frac{1}{11}$ therefore we have $2^{3} \cdot \mathrm{k} \leq 2^{3} \cdot \mathrm{e} \cdot \mathrm{k} \leq \frac{6}{11}(12-2 \mathrm{r})-1-2 \mathrm{r}$

$$
\leq \frac{6.12}{11}-1<6,
$$

thus $k<\frac{6}{8}<1$ which gives $k=0$. Hence $b_{1}=0$.
To determine an upperbound on m we use the following inequality:

$$
\begin{aligned}
& 0<\frac{6}{e^{m-6}}(12-2 r)-1-2 r \\
& \text { which solving form gives } \left.m<\frac{78}{(1+2 r}\right) \cdot e
\end{aligned}
$$

When $e=1, \quad r=1$ and $(1+2 r) e=3$. Also $(1+2 r) e=$
3 when $e=3$ and $r=0$. Hence in both cases.
$m<\frac{78}{3}=26$, thus $m \leq 25$, and $17 \leq m \leq 25$. The condition m $\equiv 1$ (8) yields the two possible values form,m=17 or 25.

The number of involutions in Gis
$|J|=m+12 . \mathrm{m} \cdot \mathrm{r}+12 . \mathrm{m}(1-\mathrm{r})=13 . \mathrm{m}$.
Whence $|G|=2^{4} .3 .13 . \mathrm{m}$.
The index of the normalizer of a Sylow 3-subgroup of G is $2^{2} .13 . m$, which is congruent to 1 modulo 3 by sylow's theorem. This gives m $\equiv 1$ (3) and as $17 \equiv 2$ (3), most be 25 . Hence the order of G is $2^{4} \cdot 3.5^{2} .13$.

Finally the index of $N_{G}(M)$ in G is $\frac{2 \frac{4}{2} \cdot 3 \cdot 5^{2} 13}{2^{3} \cdot e \cdot 5^{2}}=$ 2.3.13 and as M 1s a Sylow 5-subgroup of G, Sylow's theorem yields $\frac{2.3 .13}{e} \equiv 1$ (5) which implies e $\equiv 3$ (5). Hence e $=3$ and $\left|N_{G}(M)\right|=2^{3} .3 .5^{2}$, completing the proof of the lemma. We make the following observations for M in the previous lemma. If M is cyclic of order 5^{2} then $|A u t(M)|=2^{2} .5$ (1 emma (5.4.1) of [12]), and as $C_{G}(M)=M$ by lemma (3.3) (b), $\left|N_{G}(M)\right| \mid 2^{2} .5^{2}$ which is not the case. Thus M is elementary abelian of order 5 ${ }^{2}$. Also, using Sylow's theorem, it is easily
 $2^{2} .13$ which is precisely case (e) of lemma (3.4).

We shall now determine the number of involutions in G in terms of some parameters. This expression will be useful in a later lemma.

If $x e J$ and $z x e M^{\prime}$ for some g in G, then as z and x
both invert $z x$ lemma (3.3) (d) shows that z, x e $N_{G}\left(M^{g}\right)$ (since M^{g} has the same properties as M). By lemma (3.3) (c), $N_{G}\left(M^{g}\right)=$ $M^{g} C_{N_{G}\left(M^{\prime}\right)}(z)$ which therefore contains minvolutions. Thus the number of involutions x in J for which $z x$ ($\left.\mathrm{M}^{\mathrm{g}}\right)^{\text {\# }}$ is m -1 .

If z e $N_{G}\left(M^{g}\right)$ then $z^{g^{-1}}$ e $N_{G}(M)$ so that $z^{-1}=z^{\mu}$ for
 implies $M^{g}=M^{c}$. So z inverts only conjugates of M of the form M^{c} for some $c e c$. Since C acts by conjugation on the conjugates of M in G and the stabilizer of M is $C_{M}=C_{N_{G}(M)}(z)$, the number of conjugates of M under this action is $\left|C: C_{N_{G}}(M)(z)\right|$. Soif $\left|C_{N_{G}(M)}(z)\right|=r$ then z inverts $\frac{2^{4} \cdot 3}{r}$ conjugates of M.

Thus there exists $(m-1) \frac{2^{4} .3}{r}$ involutions x such that $z x$ belongs in a conjugate of $M^{\#}$. This is true for any x e J such that $|z x|=n$ with $(n, 6)=1$. So as there are 133 involutions x for which zx has order 1, $2,3,4$ or 6 we have the following 1emma.

LEMMA (3.6)

$$
|J|=133+\sum_{i}\left(m_{i}-1\right) \frac{24.3}{r_{i}}
$$

where $\left|M_{i}\right|=m_{i}, \quad\left|C_{N_{G}\left(M_{i}\right)}(z)\right|=r_{i}$, the M_{i} satisfy the same properties as M (and hence satisfy lemmas (3.3), (3.4) and (3.5)) and the summation is over the distinct conjugate classes of subgroups with the same properties as M.

We shali use this lemma to eliminate cases (b) (c) and (d) of lemma (3.4) where M is chosen to have maximal order. The remaining cases give us the order of G.

LEMMA (3.7)
The order of G is $2^{4} .3 .5^{2} .13$. Furthermore the
normalizers of the Sylow 5 and 13 -subgroups have orders $2^{3} \cdot 3.5^{2}$ and $2^{2} .13$ respectively.

PR00F
If the lemma is false then there exists a subgroup M of G such that
(i)
$(|M|, 6)=1$
(11) $\quad\left|N_{G}(M)\right|$ is even
(iii) M has maximal order subject to (i) and (ii) and
(iv) M satisfies case (b), (c) or (d) of lemma (3.4)

By lemma (3.6) we have
$|\mathrm{J}|=133+\sum_{i}\left(m_{i}-1\right) \frac{2^{4} \cdot 3}{r_{i}}=133+48 \mathrm{r}$, where
$r=\sum_{i} \frac{m_{i}-1}{r_{i}}$
We note that $r>0$.
It is easily seen using lemma (3.4) that ris an
integer. Also $r_{i} \geq 2$ for all 1 , therefore
$r \leq \sum_{i} \frac{\left(m_{i}-1\right)}{2}$

By the maximality of m, mi $\leq m$ for all i.
We first show m ≥ 25, so that $1 t$ will be possible to apply Bender's lemma. To do this we need to eliminate the cases $m=5,7,11,13,17,19$ or 23. (These are also the possible values for each m_{i}). We willuse thefact that $133+48 \mathrm{r} \equiv 0$ (m) (that is $m\|\|\|$) to determine .

Suppose firstly m=5. Then
$r \leq \sum_{i} \frac{\left(m_{i}-1\right)}{2}=\frac{5-1}{2}=2$,
and $133+48 r \equiv 0(5)$ implies $r \equiv 4$ (5), a contradiction.
If $m=7$ then $r \leq 2+\frac{(7-1)}{2}=5$, and $133+48 r \equiv 0$
implies $\mathrm{r} \equiv 0(7)$, a contradiction (as $\mathrm{r}>0$).
We have shown $m \geq 11$, and therefore $\left|N_{G}(M)\right|=2 . m \quad b y$ lemma (3.4). In all cases M is a Sylow subgroup of G. Therefore

$$
\left|G: N_{G}(M)\right|=\frac{2^{3} \cdot 3 \cdot|J|}{m} \equiv 1(m) .
$$

We use this fact to eliminate the remaining cases.
If $m=11$ then $r \leq 5+\frac{(11-1)}{2}=10$ and $133+48 r \equiv 0$
 and $\left|G: N_{G}(M)\right|=2^{3} .3 .47$ which is congruent to 6 modulo 11 . Thus m $\neq 11$.

$$
\text { If } m=13 \text { then } r \leq 10+\frac{(13-1)}{2}=16 \text { and } 133+48 r \equiv 0
$$

(13) 1mplies $r \equiv 4$ (13) so $r=4$. Now $|J|=5^{2} 13$ and $\left|G: N_{G}(M)\right|=$ $2^{3} \cdot 3.5^{2} \equiv 2(13)$, so $m \neq 13$.

When $\mathrm{m}=17, \mathrm{r} \leq 16+\frac{(17-1)}{2}=24$ and $\mathrm{r} \equiv 16$ (17) so
that $r=16$. Then $|J|=17.53$ and $\left|G: N_{G}(M)\right|=2^{3} .3 .53 \equiv 14$ (17), a contradiction.

If $m=19$, then $r \leq 24+\frac{(19-1)}{2}=33$, and $133+48 \mathrm{r} \equiv$
0 (19) implies $\mathrm{r} \equiv 0(19)$ so that $\mathrm{r}=19$. Then $|\mathrm{J}|=5.11 .19$ and $\left|G: N_{G}(M)\right|=2^{3} \cdot 3 \cdot 5 \cdot 11 \equiv 9(19)$, somp19.

Finally if $m=23, r \leq 33+\frac{(23-1)}{2}=44$ and $133+48 r$
 $|J|=5.7 .23,\left|G: N_{G}(M)\right|=2^{3} .3 .5 .7 \equiv 12$ (23). Andinthe second $|\mathrm{J}|=23.83,\left|G: N_{G}(M)\right|=2^{3} .3 .83=14(23)$ som $\neq 23$.

We shall also eliminate the casem = 25 in the same way. We haver $\leq 44+\frac{(25-1)}{2}=56$ and $133+48 \mathrm{r} \equiv 0(25)$ implies $\mathrm{r} \equiv$ 4 (25) so $r=4,29$ or 54. The first case gives $|J|=5^{2} .13$ and
$\left|G: N_{G}(M)\right|=2^{3} .3 .13=12$ (25). In the second $|J|=5^{2} .61$ and $\left|G: N_{G}(M)\right|=2^{3} .3 .61 \equiv 14$ (25). Finally $\mathrm{F}=54$ implies $|\mathrm{J}|=$ $5^{2} .109$ and $\left|G: N_{G}(M)\right|=2^{3} .3 .109$ is congruent to 16 modulo 25.

This all shows that $m \geq 29$. We now apply Bender's lemma to the subgroup $H=N_{G}(M)$. Firstly

$$
f=\frac{|H|}{\left|C_{G}(z)\right|}-1=\frac{2 \cdot m}{48}-1=\frac{m-24}{24} \text { and }|J \cap H|=m
$$

Let u be an involution of $G-H$ and consider $H \cap H$. By previous reasoning $\mid \mathrm{H} \cap \mathrm{H}^{\mathrm{u}} \| \mathrm{\mid}$, so if u inverts a non-trivial element of H then $u \in J_{2}$. It follows that $\left|J_{2}\right|=12 . m=2^{2} .3 . \mathrm{m}$ and so $b_{2}=2.3 . m$.

It is easily seen that $c=0$, so therefore $b_{1}=2 . m . k$, k a non-negative integer. By Bender's lemma.

$$
\begin{aligned}
\mathrm{b}_{1}=2 \cdot \mathrm{~m} \cdot \mathrm{k} & <\frac{24}{\mathrm{~m}-24}(\mathrm{~m}+2.3 \cdot \mathrm{~m})-2.3 \cdot \mathrm{~m} \\
& =\frac{2^{3} \cdot 3 \cdot 7 \mathrm{~m}}{\mathrm{~m}-24}-2.3 \cdot \mathrm{~m}
\end{aligned}
$$

therefore $k<\frac{2^{2} \cdot 3.7}{m-24}-3$
As $m \geq 29, \frac{1}{m-24} \leq \frac{1}{5}$, thus
$\mathrm{k}<\frac{2^{2} \cdot 3 \cdot 7}{5}-3=\frac{69}{5}<\frac{70}{5}=14$
Hence $0 \leq k \leq 13$.
We can also use this inequality to determine an upperbound for m. In particular it gives

$$
0<\frac{2^{2} \cdot 3.7}{m-24}-3
$$

which yields m<52 so $29 \leq m \leq 51$. And m being prime to 6 implies the following eight possibilities for m: 29, 31, 35, 37, 43,47 or 49.

The number of involutions in G is
$|J|=m+2 \cdot m \cdot k+2^{2} \cdot 3 \cdot m=m(13+2 k)$.
Hence $|G|=2^{4} .3 . \mathrm{m} .(13 .+2 k)$.
If mis a prime power then M is a Sylow subgroup of G so as $N_{G}(M)$ has index $2^{3} .3(13+2 k)$, Sylow's theorem yields
$2^{3} .3(13+2 k) \equiv 1(m) t h u s 48 k \equiv-311(m)$.
We use this congruence to eliminate most of the above cases.

If m $=29$ then $48 \mathrm{k} \equiv-311$ (29) which 1mplies $k \equiv 5$ (29) and hence $k=5$ as $0 \leq k \leq 13$ Thus $|G|=2^{4} .3 .23 .29$

Let P be a Sylow 23-subgroup of G; then $C_{G}(P)=P$ and \mid Aut $(P) \mid=22=2.11$ so $\left|N_{G}(P)\right| \mid 2.23$. We must have $\left|N_{G}(P)\right|=$ 2.23 else $N_{G}(P)=C_{G}(P)$ and G has a normal 23-complement by Burnsides Transfer Theorem, contradicting lemma (3.1). Then $\left|G: \mathbb{N}_{G}(P)\right|=2^{3} .3 .29$ is congruent to $6 \operatorname{modulo} 23$. Thus m $\neq 29$.

If m = 31 then $48 \mathrm{k} \equiv-311$ (31) which implies $k \equiv 20$ (31), a contradiction.

If m = 37 then $48 \mathrm{k} \equiv-311$ (37) implies $k \equiv 2(37)$ so that $k=2$ and $|G|=2^{4} \cdot 3.17 .37$.

However in this case the index of $N_{G}(X)$ is 2^{2}.17.37 which is congruent to 2 modulo 3 contradicting Sylow's theorem.

In the last four cases, as $0 \leq k \leq 13, k$ cannot satisfy the required congruence. For when $m=41,43,47$ or 49 k is congruent to $20,41,18$ or 17 respectively modulo m (The last congruence applies because of lemma (3.3) (e)).

We are thus left with the case m = 35. To eliminate this value of m, we use the fact that $|J|=133+48 \mathrm{r}$ so that $|\mathrm{J}| \equiv-11$ (48). And as $|J|=5.7 .(13+2 k)$ we have $5.7(13+2 k) \equiv-11(48)$ which implies $k \equiv 5(12)$. However the above inequality for k with $m=35$ gives
$0 \leq k<\frac{2^{2} \cdot 3 \cdot 7}{35-24}-3<5$, a contradiction.
This has all shown that cases (b) (c) and (d) of lemma (3.4) does not apply for N_{G} (M) when M is chosen to have maximal order. Socase (a) or (e) applies (in factcase (a) must apply) and in both cases the conclusion of the lemma holds.

Before obtaining the final contradiction we should like to remark that it is not possible to eliminate G by counting the number of elements in the conjugacy classes of G.

By lemmas (2.2), (2.3) and (2.4) there is one class each of elements of order 2, 3, 4 and 6 and two classes of elements of order 8. It is easy to show that there is one class of elements of order 5, and the elements of order 13 form three classes. Let x_{i} denote a representative from each conjugacy class of $G, i=1$, $2, \ldots, 11 . \operatorname{In}$ the table we list the orders of the centralizer in G of each respresentative and the order of its conjugacy class.

$\left\|x_{i}\right\|$	$\left\|C_{G}\left(x_{i}\right)\right\|$	$\left\|G: C_{G}\left(x_{i}\right)\right\|$
1	$2^{4} \cdot 3 \cdot 5^{2} \cdot 13$	1
2	$2^{4} \cdot 3$	$5^{2} \cdot 13$
3	2.3	$2^{3} \cdot 5^{2} \cdot 13$
4	2^{3}	$2 \cdot 3 \cdot 5^{2} \cdot 13$
5	5^{2}	$2^{4} \cdot 3 \cdot 13$
6	2.3	$2^{3} \cdot 5^{2} \cdot 13$
8	2^{3}	$2 \cdot 3 \cdot 5^{2} \cdot 13$
8	2^{3}	$2 \cdot 3 \cdot 5^{2} \cdot 13$
13	13	$2^{4} \cdot 3 \cdot 5^{2}$
13	13	$2^{4} \cdot 3 \cdot 5^{2}$
13	$24.3 \cdot 5^{2}$	

Summing the number of elements in the conjugacy classes of G we find the total to be $2^{4} \cdot 3.5^{2} .13$, which is precisely the order of G.

A contradiction will be obtained once we have the following lemma.

LEMMA (3.8)

The group G is a sharply 3 -transitive permutation group of degree 26 and the subgroup fixing two letters is isomorphic to SL(2,3).

PROOF

We will consider G as a permutation group in its action (by conjugation) on the Sylow 5-subgroups of G. But before doing this we need to make a few observations.

Let M be a Sylow $5-s u b g r o u p$ of G inverted by $z \quad B y$ 1emma (3.3) (c), $N_{G}(M)=M C_{N_{G}}(M)(z)$ and $C_{N_{G}}(M)(z)$ has index 2 in C (because of lemma (3.7)) so $C_{N_{G}(M)}(z) \cong S L(2,3)$.

Let u e $C-C_{N_{G}(M)}(z)$. Then z inverts the Sylow 5subgroup M^{u} and $M^{u} \neq M$. Thus each involution inverts at least two Sylow 5-subgroups of G. We show in fact that each involution 1nverts exactly two Sylow 5-subgroups of G.

Since $N_{G}(M)$ contains 5^{2} involutions and as there are 2.13 Sylow 5-subgroups, the set of involutions containedin the normalizers of the Sylow 5-subgroups (counting repetitions) has order 2.52.13. As this is twice the number of involutions, each involution inverts precisely two Sylow 5-subgroups of G.

As above, z inverts both M and M^{u}, so that:
$N_{G}(M)=M C_{N_{G}(M)}(z)$
and

$$
N_{G}\left(M^{u}\right)=M^{u} C_{N_{G}}\left(M^{u}\right)(z)
$$

As $C_{N_{G}(M)}(z)$ and $C_{N_{G}\left(M^{u}\right)}(z)$ are both subgroups of index 2 in C they are equal. Therefore $N_{G}(M) \cap N_{G}\left(M^{u}\right)=C_{N_{G}(M)}(z)$.

Let w be an involution inverting M, $w \neq z$. Then w cannot invert M^{u} else we $N_{G}(M) \cap N_{G}\left(M^{U}\right)=C_{N_{G}(M)}(z)$. And so $N_{G}(M)$ contains a 4 -group $\langle z, w\rangle$. Thus no two involutions of $N_{G}(M)$ invert the same sylow 5-subgroup besides M. As there are 5^{2} Sylow 5-subgroups besides M, and $N_{G}(M)$ contains 5^{2} involutions, any two Sylow 5-subgroups are inverted by a unique involution.

Let T be the set of Sylow 5-subgroups of G, so T has order 26. The group G acts by conjugation on T and under this action G is transitive by Sylow's theorem.

For $M \in T, G_{M}=N_{G}(M)$ is the stabilizer of the point M. Now $N_{G}(M)$ acts by conjugation on $T-\{M\}$. If $M_{1} \in T-\{M\}$, the stabilizer of M_{1} under this action is

$$
N_{G}(M)_{M_{1}}=N_{G}(M) \cap N_{G}\left(M_{1}\right)=C_{N_{G}(M)}(v) \text { where } v \text { is the }
$$ unique involution inverting both M and M_{1}. As $C_{N_{G}(M)}(v)$ has index 5^{2} in $N_{G}(M), M_{1}$ has 5^{2} conjugates in $T-\{M\}$. Andas $T-\{M\}$ contains precisely 5^{2} elements, $N_{G}(M)$ is transitive on $T-\{M\}$.

Now $N_{G}(M)_{M_{1}}=C_{N_{G}(M)}(v)$ acts by conjugation on $T-\left\{M, M_{1}\right\}$. For M_{2} e $T-\left\{M_{1} M_{1}\right\}$ the stabilizer of M_{2} under this action is $C_{N_{G}(M)}(v)_{M_{2}}=C_{N_{G}}(M)(v) \cap N_{G}\left(M_{2}\right)=1$, (as an involution inverts exactly two Sylow 5-subgroups). Since $\left|C_{N_{G}(M)}(v)\right|=24, M_{2}$ has 24 conjugates in $T-\left\{M, M_{1}\right\}$. And as $T-\left\{M, M_{1}\right\}$ contains 24 elements, $C_{N_{G}}(M)(v)$ is transitive on $T-\left\{M, M_{1}\right\}$.

It follows that G is 3 -transitive on T and as the stabilizer of 3 points is trivial, G is in fact sharply $3-$ transitive.

The stabilizer of the two points M and M_{1} is $C_{N_{G}}(M)(v)$ which is isomorphic to $S L(2,3)$ and we have the result.

Now G satisfies the hypotheses of lemma (1.5), therefore by its conclusion the subgroup fixing two letters contains exactly one subgroup of order 3. However $\mathrm{SL}(2,3)$ contains four subgroups of order 3, we conclude that there does not exist a group G satisfying the assumption that $N_{G}(X)=X V$.

CASE (B) $A \cong Z_{3} \times Z_{3} \times Z_{3}$
Throughout this chapter suppose that $N_{G}(X)=A V$ where $A \xlongequal{\cong} \mathrm{Z}_{3} \mathrm{XZ}_{3} \times \mathrm{Z}_{3}$ and $\mathrm{A} 4 \mathrm{~N}_{\mathrm{G}}(\mathrm{X})$.

Let $A_{1}=C_{A}(z)(=X), A_{2}=C_{A}(z t)$ and $A_{3}=C_{A}(t)$, then
$A=A_{1} A_{2} A_{3}=A_{1} \times A_{2} \times A_{3} . \quad$ Let $A_{i}=\left\langle a_{i}\right\rangle, i=1,2,3 ; a_{1} \sim$ $\mathrm{a}_{2} \sim_{3}$ in $\mathrm{a}_{3} \mathrm{by}$ lemma (2.3). Also put $N=\mathrm{N}_{\mathrm{G}}(\mathrm{A})$. Thefirst three lemmas concern the structure of N.

LEMMA (4.1)
$z \sim t \sim z t i n N$

PROOF

By 1emma (2.2) $z=t^{\text {g }}$ for someg in G. As $A_{3} \leq C_{G}(t)$, $A_{3} \mathrm{~g} \leq \mathrm{C}_{\mathrm{G}}\left(\mathrm{t}^{\mathrm{g}}\right)=\mathrm{C}$. So A_{1} and A_{3} are Sylow $3-\mathrm{subgroups}$ of C and hence conjugate in C. So for some cec, $A_{1}=A_{3} g c$, and $t^{g c}=$ $z^{c}=z$. Replacing gc by g we have, for some ge $G, z=t g$ and A_{1} $=A_{3} \mathrm{~g}$.

Now $A \leq C_{G}\left(A_{3}\right)$ (A being an abelian group containing A_{3}) implies $A^{g} \leq C_{G}\left(A_{3}{ }^{g}\right)=C_{G}\left(A_{1}\right)$. Thus A and A^{g} are $S y l o w$ subgroups of $\mathrm{C}_{\mathrm{G}}\left(\mathrm{A}_{1}\right)$ and because $\mathrm{C}_{\mathrm{G}}\left(\mathrm{A}_{1}\right)$ has a normal Sylow 3-
 in N. Similarly z~ ztinN.

LEMMA (4.2)
V is a Sylow 2-subgroup of N.

PR00F
We first make the following observation: as $C \cap N$ normalizes $C_{A}(z)=X$ and $N_{C}(X)=X V, C \cap N=X V$.

Let R be a Sylow 2-subgroup of N containing V. If $R>V, N_{R}(V)>V$ and as alifinvolutions in V are conjugatein N we may suppose ze $\mathrm{Z}\left(\mathrm{N}_{\mathrm{R}}(\mathrm{V})\right)$. However now $\mathrm{N}_{\mathrm{R}}(\mathrm{V}) \leq \mathrm{C} \cap \mathrm{N}=\mathrm{XV}$ a contradiction, and we conclude that $R=V$.

As V is a Sylow 2-subgroup of N and $\langle z\rangle,\langle t\rangle\langle V, z \sim t$ $\operatorname{In} N_{N}(V) \quad b y[12]$ theorem (7.1.1) since they are conjugate in N. It followsfrom $C_{N}(V)=V$ and $\operatorname{Aut}(V) \cong S_{3}$ that $N_{N}(V) / V \cong Z_{3}$. Let M be a subgroup of order 3 in $N_{N}(V)$ so that $N_{N}(V)=M V$. If M $=\langle m\rangle$ then mpermutes the involutions of V and $M V \cong A_{4}$. As MV \leq $N, A M V \leq N . W e c a n i n f a c t s a y m o r e ~ t h a n t h i s$.

LEMMA (4.3)

$$
\mathrm{N}=\mathrm{AMV}
$$

PROOF

Clearly m permutes the elements a_{1}, a_{2} and a_{3} as $1 t$ permutes the involutions $z, z t$ and t.

Let $L=A M V$. It is easy to determine the conjugacy classes of $A^{\#}$ in L; namely $A^{\#}$ has four classes of lengths 4, 4, 6 and 12 with representatives $a_{1} a_{2} a_{3}, \quad\left(a_{1} a_{2} a_{3}\right)^{-1}$, a_{1} and $a_{1} a_{2}$ respectively.

Suppose by way of contradiction that $L<N$. Then $|N|=$ $2^{2} \cdot 3^{4} \cdot \mathrm{r}$ with r\rangle 1. As $\left|\mathrm{N}: \mathrm{C}_{\mathrm{N}}\left(\mathrm{a}_{1}\right)\right|=|\mathrm{N}: \mathrm{A}\langle\mathrm{z}\rangle|=6 \mathrm{r}, \mathrm{a}_{1} \mathrm{has}$ more than 6 conjugates in N. We cannot have a_{1} conjugate to $a_{1} a_{2} a_{3}$ or $\left(\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right)^{-1}$ since $\left\langle\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right\rangle=\mathrm{Z}(\mathrm{AM})$ and so centralizes AM a group of order 3^{4}. Therefore a_{1} is conjugate to $a_{1} a_{2}$ in N and has 18 conjugates. If follows that $|N|=2^{2} .3^{5}$.

Let $K=N / A$ Then K is a group of order 36 which contains a subgroup H of order 12 isomorphic to MV. Representing K on the cosets of H we have, as $|K: H|=3, K / I$ isomorphic to a
subgroup of S_{3} where i is the intersection of the conjugates of H in K. Because $|K / I| \mid 6$ and K has order $36,6| | I \mid$. Also |I||12 (I being a subgroup of H), therefore $|I|=6$ or 12 . Now $\mathrm{H}_{\mathrm{K}} \mathrm{A}_{4}$ does not contain a normal subgroup of order 6, so l has order 12 and $I=H$. Hence $H \varangle K$. As H contains a normal Sylow 2-subgroup V, $V \triangleleft K$ and K / V has order 9 . However $C_{K}(V)=V$ and $|A u t(V)|=$ 6 so $|K / V|$ divides 6 , a contradiction. This completes the proof of the lemma.

We can now determine the order of a Sylow 3-subgroup of G.

LEMMA (4.4)

$N_{G}(A M)=A M$ and so $A M$ is a Sylow 3-subgroup of G. Also a Sylow 3-subgroup of G contains a unique abelian subgroup of order 27.

PROOF

Since $C_{A}(M)$ has order 3 , A is the only abelian subgroup of order 27 in $A M$. It is therefore characteristic in $A M$ and hence normal in $N_{G}(A M)$, thus $N_{G}(A M) \leq N$. As $N / A \cong A_{4}, N_{G}(A M) \cap N$ $=A M$. It follows that $N_{G}(A M)=A M$ and the remaining parts of the lemma follow easily.

The following lemma is easily proved.

LEMMA (4.5)
The subgroup <a $\left.{ }_{1} a_{2} a_{3}\right\rangle$ is not inverted by an involution.

PROOF

As $\left\langle a_{1} a_{2} a_{3}\right\rangle=Z(A M), A M \leq C_{G}\left(a_{1} a_{2} a_{3}\right)$ and is in fact a Sylow 3-subgroup of $C_{G}\left(a_{1} a_{2} a_{3}\right)$ by lemma (4.4). The Frattini argument yields that $N_{G}\left(\left\langle a_{1} a_{2} a_{3}\right\rangle\right)=C_{G}\left(a_{1} a_{2} a_{3}\right) N_{N_{G}}\left(\left\langle a_{1} a_{2} a_{3}\right\rangle\right)(A M)$.

Which because of lemma (4.4), implies $N_{G}\left(\left\langle a_{1} a_{2} a_{3}\right\rangle\right)=C_{G}\left(a_{1} a_{2} a_{3}\right)$. Thus $a_{1} a_{2} a_{3}$ is not conjugate to its inverse.

Let $Y=C_{A}(M) M=\left\langle a_{1} a_{2} a_{3}\right\rangle x M$ and let $Z=N_{N}(Y)$. Then $Z=$ $\left\langle m, a_{1} a_{2} a_{3}, a_{1} a_{2}^{-1}\right\rangle$ is non-abelian of order 27. (This is verified by a simple computation using the fact that no involution normalizes <a $\left.\operatorname{la}_{2} \mathrm{a}_{3}\right\rangle$). With the helpof the normalizer $\mathrm{N}_{\mathrm{G}}(\mathrm{Z})$ we shall determine the conjugacy classes of elements of order in G. But first a lemma concerning the order of $N_{G}(Z)$.

LEMMA (4.6)
$N_{G}(Z)$ has odd order.

PROOF
As $\left\langle\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right\rangle=\mathrm{Z}(\mathrm{Z}),\left\langle\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right\rangle \quad 4 \mathrm{~N}_{\mathrm{G}}(\mathrm{Z})$ so $\mathrm{N}_{\mathrm{G}}(\mathrm{Z}) \leq$ $C_{G}\left\langle a_{1} a_{2} a_{3}\right\rangle$ by 1 emma(4.5). Thus $\left|N_{G}(Z)\right|$ is odd as $\left|C_{G}\left(a_{1} a_{2} a_{3}\right)\right|$ is odd.

LEMMA (4.7)
m is inverted by an involution but $m \&{ }_{G} a_{1}$.

PROOF

Suppose mis conjugate to a_{1} in G, sothat $m=\mathrm{a}_{1} \mathrm{~g}$ for someg in G. Then $C_{G}(m)=B\langle v\rangle$ where $B=A g$ and $\langle v\rangle=\langle z\rangle$, As $Y \leq \quad C_{G}(m), \quad$ clearly $Y \leq B$ and $B \leq \quad C_{G}(Y) B$ being abelian. Also $C_{G}(Y) \leq C_{G}(m)=B\langle v\rangle$ and as Y is not centralized by an involution, we have $C_{G}(Y)=B$. Thus B $\& N_{G}(Y)$ so $N_{G}(Y) \leq N_{G}(B)$, and as $Z \leq N_{G}(Y), Z \leq N_{G}(B)$. Then $Z B$ is a $3-$ group of $N_{G}(B)$ which properly contains Z. It must therefore be a Sylow 3-subgroup of G. Now Z has index 3 in $Z B$ and so is normalin $Z B$, whichimplies that $Z B \leq N_{G}(Z)$. A1so $A M \leq N_{G}(Z)$ as well, since $Z \leq A M$.

Now $C_{G}(Z) \leq C_{G}(Y)=B$ as $Y \leq Z$ therefore $C_{G}(Z)=$
$\left\langle a_{1} a_{2} a_{3}\right\rangle=Z(Z)$. As Z is non-abelian of order 27, Aut (Z) 1 L a $\{2,3\}-g r o u p$. (For if ris an automorphism of Z then it is an automorphism of $Z(Z)$ and $Z / Z(Z)$, both of whose automorphism groups are $\{2,3\}$ - groups). Thus $N_{G}(Z)$ is a 3 -group by lemma (4.6). However this gives $N_{G}(Z)=A M=B Z$, so that AM contains two abelian subgroups of order 27 , namely A and B, contradicting 1emma (4.4). Thus m $\not \subset \mathrm{G}^{\mathrm{a}} 1^{\circ}$.

We know V is normalized by a dihedral group and also by M. As $C_{G}(V)=V$ and $A u t(V) \cong S_{3}$ we get $N_{G}(V) / V \cong S_{3}$. Thus $N_{N_{G}(M)}(M) \cong S_{3}$ and hence mis invertèd by an involution.

LEMMA (4.8)

$$
\text { We have } m \sim_{G} a_{1} a_{2} .
$$

PROOF
Let P be a Sylow 3-subgroup of $C_{G}(m)$ containing Y and suppose $P=$ Y. By the Frattini argument $N_{G}(\langle m\rangle)=$ $C_{G}(m) N_{N_{G}}(\langle m\rangle)(P)$, so P is normalized by an involution of $N_{G}(\langle m\rangle)$, v say. If $C_{P}(v)=1$ then v inverts P (1emma (1.2)) and in particular inverts $a_{1} \mathrm{a}_{2} \mathrm{a}_{3}$ contrary to lemma (4.5). So v centralizes some subgroup of order 3 in P. Now P has four subgroups of order 3, namely $\langle m\rangle,\left\langle a_{1} a_{2} a_{3}\right\rangle,\left\langle a_{1} a_{2} a_{3} m\right\rangle$ and $\left\langle\left(a_{1} a_{2} a_{3}\right)^{-1} m\right\rangle$. And as $m_{1}^{-1} a_{3}=a_{1} a_{2} a_{3} m \quad a n d \quad m_{1}^{-1} a_{2}=$ $\left(\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right)^{-1} \mathrm{~m}$ no subgroup of order 3 in P is centralized by an involution. Thus Y < P.

If P has order 3^{4} then $\langle m\rangle$ is its centre and so will be conjugate to $\left\langle\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right\rangle \mathrm{by}$ Sylow's theorem and lemma (4.4).
 Thus Phas order 3^{3}.

As $\left\langle\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right\rangle$ is not conjugate to the other subgroups in

Y, $\left\langle a_{1} a_{2} a_{3}\right\rangle$ \downarrow P, it follows that $\left[P,\left\langle a_{1} a_{2} a_{3}\right\rangle\right]=1$. Thus $\left\langle m, a_{1} a_{2} a_{3}\right\rangle \leq Z(P)$ and P must be abellan of order 3^{3}, and hence
 for some g in G, hence $p g=A$ and therefore $m^{g} \quad \varepsilon \quad A$. We have seen in the proof of lemma (4.3) that $A^{\#}$ has four conjugacy classes in N with representatives $a_{1} a_{2} a_{3}, \quad\left(a_{1} a_{2} a_{3}\right)^{-1}, a_{1}$ and $a_{1} a_{2}$. So as mis not conjugate to the first three elements by lemmas (4.5) and (4.7) it is conjugate to the last, that is m ~G $a_{1}{ }_{2}$.

To calculate the order of G we shall need to know the normalizer of $\left\langle a_{1} a_{2}\right\rangle$ and of $\begin{gathered}\text { non-abelian subgroup of order } 27 .\end{gathered}$ We determine these normalizers in the next two lemmas.

LEMMA (4.9)
We have $N_{G}\left(\left\langle a_{1} a_{2}\right\rangle\right)=A\langle t\rangle$.

PROOF
By lemmas (4.7) and (4.8) $C_{G}\left(a_{1} a_{2}\right)$ has oddorder. Since A is a Sylow 3 -subgroup of $C_{G}\left(a_{1} a_{2}\right)$ and $N_{C_{G}}\left(a_{1} a_{2}\right)(A)=$ $C_{N_{G}}\left(a_{1} a_{2}\right)(A)=A, \quad C_{G}\left(a_{1} a_{2}\right)$ has a normal 3-complement L say, by Burnside-s Transfer Theorem. Therefore $C_{G}\left(a_{1} a_{2}\right)=A L$ and $N_{G}\left(\left\langle a_{1} a_{2}\right\rangle\right)=A L\langle t\rangle$.

Assume by way of contradiction that $L \neq 1$. No involution can centralize any element of $L^{\#}$, therefore $C_{L}(t)=1$. Alsotinverts $\left\langle a_{1}\right\rangle$, hence $C_{\left\langle a_{1}\right\rangle L}(t)=1$. As tiormalizes $\left\langle a_{1}\right\rangle L$ it follows that inverts it and in particular that $\left\langle a_{1}\right\rangle L$ is abelian. However $C_{L}\left(a_{1}\right)=1$ which is a contradiction, and the lemma follows.

The normalizer of a non-abelian group of order 27 is a Sylow 3-subgroup of G.

PROOF

It is enough to consider the normalizer of a non-abelian group L of order 27 in AM because of lemma (4.4). If $L \cap\left\langle a_{1} a_{2} a_{3}\right\rangle=1$ then $A M=L\left\langle a_{1} a_{2} a_{3}\right\rangle$, but then $Z(L)\left\langle a_{1} a_{2} a_{3}\right\rangle$ is a subgroup of order 9 in $Z(A M)$. Thus $\left\langle a_{1} a_{2} a_{3}\right\rangle \leq$ and hence $\left\langle a_{1} a_{2} a_{3}\right\rangle \triangleleft$ L. It follows that $N_{G}(L), ~ \leq N_{G}\left(\left\langle a_{1} a_{2} a_{3}\right\rangle\right)$. As Aut (L) is a $\{2,3\}-\operatorname{lroup}$ so is $N_{G}(L)$. If $N_{G}(L)$ contains an involution then $N_{G}\left(\left\langle\operatorname{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right\rangle\right)$ does also, contradicting lemma (4.5). Therefore $N_{G}(L)$ is a $3-$ group and hence is a Sylow $3-\mathrm{subgroup}$ of G.

The simplicity of G is now trivially proved.

LEMMA (4.11)
The group G is simple.

PROOF
By lemma (2.6) a proper non-trivial subgroup Lof G, if one exists, has order 27. By lemmas (4.3) and (4.10) a subgroup of order 27 is not normal in G. Thus G must be simple.

We have now enough information to be able to determine the order of G, which we now do.

LEMMA (4.12)
The ordex of G is $2^{4} \cdot 3^{4} \cdot 7$.

PROOF
Choose $H=A M$ as the subgroup for application of

Bender"s lemma firstly
$f=\frac{|H|}{\left|C_{G}(z)\right|}-1=\frac{81}{48}-1=\frac{11}{16}$
Also H has odd order and therefore contains no involutions; that is $|J \cap H|=0$.

Let u be an involution of G and consider $H \boldsymbol{H}^{u}$. Since u is an involution it normalizes $H \cap H^{u}$. Therefore because $N_{G}(H)$
 abelian of order 27 , by lemma (4.10), its normalizer is a Sylow 3-subgroup of G which therefore cannot contain u. Thus $H \cap H^{u}$ is an abelian group.

Suppose u inverts a_{1}. Then u e $N_{G}\left(\left\langle a_{1}\right\rangle\right)=A V$ and sou normalizes A as $A \triangleleft A V ;$ thus $H \cap H^{u}=A$. In this case u inverts a subgroup of order 9 in H and sou u J. The same applies to
 $N_{G}\left(\left\langle a_{1} a_{2}\right\rangle\right)=A\langle t\rangle(1 e m m a(4.9))$. Again u normalizes A and u \in J. The same applies to all conjugates of $\mathrm{a}_{1} \mathrm{a}_{2}$ in A. We have that if u inverts an element of $A^{\#}$ then u normalizes A and u e J_{9}.

Now consider the elements of $H-A$. In $H-A$ there are three conjugate classes of subgroups with respresentatives 〈m〉, $\left\langle a_{1} m\right\rangle$ and $\left\langle a_{1}{ }^{-1} m\right\rangle$; the orders of these subgroups are 3,9 and 9 respectively. Since $\left(a_{1} m\right)^{3}=a_{1} a_{2} a_{3}$ and $\left(a_{1}^{-1} m\right)^{3}=\left(a_{1} a_{2} a_{3}\right)^{-1}$, no element of order 9 is inverted by an involution because of 1emma (4.5). Thus if an element be $H-A$ is inverted by uthen b is conjugate tom. As $C_{H}(b)=\left\langle a_{1} a_{2} a_{3}, b\right\rangle$ and $H \cap H \quad$ is abelian, in this case, $H \cap H^{u} h a s$ order 3 or 9 . If u inverts a subgroup of $H-\langle b\rangle$ then u inverts a subgroup of order 9 in $H \cap H^{u}$ which will be $\left\langle\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}, \mathrm{~b}\right\rangle$. In particular u inverts $\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}$ a contradiction. Thus $u \in J_{3}$.

Since m is inverted by 9 involutions by lemmas (4.8) and (4.9) and has 9 conjugates in $H-A,\left|J_{3}\right|=9.9=3^{4}, t h u s b_{3}=3^{3}$. Also as N contains 27 involutions $\left|J_{9}\right|=27$ and so $b_{9}=$ 3.

If $u \in J_{1}$ then u inverts no non-trivial element of H. If u centralizes an element of $A^{\#}$, then u normalizes A and so inverts a subgroup of order 9 in A, so therefore $C_{A}(u)=1$. Also no element of H - A is centralized by an involution so $C_{H}(u)=1$ for all ue J_{1}. Thus $c=0$ and $b_{1}=3^{4} \cdot k, k$ a non-negative integer.

We summarize what we have so far:
$\mathrm{f}=\frac{11}{16}$
$|\mathrm{J} \cap \mathrm{H}|=0$
$b_{3}=3^{3}, \quad b_{9}=3$
$b_{1}=3^{4} \cdot k, k$ non-negative integer and all other b_{n} are zero ($n \neq 0$).

To get information on k we apply Bender's lemma.
$b_{1}=3^{4} \cdot k<\frac{16}{11} \cdot\left(2 \cdot 3^{3}+2^{3} \cdot 3\right)-3^{3}-3$
$=\frac{918}{11}$
Therefore $k<\frac{918}{891}<2$,
hence, $k=0$ or 1 .
The number of involutions in G is

$$
\begin{aligned}
|J| & =3^{4} \cdot k+3^{4}+3^{3} \\
& =3^{3}(4+3 k)
\end{aligned}
$$

We now see that mast be lelse $|J|$ is even. Thus $|J|$ $=3^{3} .7$, whence the order of G is $2^{4} \cdot 3^{4} .7$ and the 1 emma is proved. Now that we have this order it is easy to obtain a
contradiction using Sylows theorem. Let P be a Sylow 7 -subgroup of G. Then as $\left|C_{G}(P)\right|$ is odd and $A u t(P) \cong Z_{6},\left|N_{G}(P)\right| \mid 2.3^{4.7 .}$ Therefore $2^{3}| | G: N_{G}(P) \mid$ and $\left|G: N_{G}(P)\right|=2^{3}$. xithex adivisor of 2.3^{4}. As $2^{3}=8=1$ (7), we have by Sylow's theorem \quad (1 (7). It follows that $x=1$ or 2.3^{4} and therefore $\left|N_{G}(P)\right|=$ $2.3^{4} .7$ or 7

In thefirst case as G is simple and $\left|G: N_{G}(P)\right|=8$, G is isomorphic to a subgroup of A_{8}. However $3^{4} / \|_{8} \mid$, so this case cannot occur. In the second case $N_{G}(P)=C_{G}(P)$, which implies by Burnsidés Transfer Theorem that G has a normal 7-complement, contradicting the simplicity of G. Thus there does not exist a group G satisfying the assumptions of this chapter.

CHAPTER PIVE

CASE (C) A NON-ABELIAN OF ORDER 27

Throughout this chapter suppose that $N_{G}(X)=A V$ where A is non-abelian of order 27 and $A \triangleleft N_{G}(X)$.

Let $A_{1}=C_{A}(z)(=X), A_{2}=C_{A}(z t)$ and $A_{3}=C_{A}(t)$ then $A=$ $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$. A1solet $\mathrm{A}_{i}=\left\langle\mathrm{a}_{\mathrm{i}}\right\rangle, 1=1,2,3, \dot{\mathrm{a}} \mathrm{a}_{1} \sim \mathrm{a}_{2} \sim \mathrm{a}_{3}$ in in by lemma (2.3). The first lemma is easily proved.

LEMMA (5.1)
$A_{1}=Z(A)$ and $N_{G}(A)=A V$ it follows that A is a Sylow 3-subgroup of G.

PR00F

Since A_{1} is a normal subgroup of order 3 in A and A is non-abelian of order $27, A_{1}=Z(A)$. As $Z(A) \operatorname{char} A \& N_{G}(A), Z(A)$ $\triangleleft N_{G}(A)$ and $N_{G}(A) \leq N_{G}(Z(A))=A V$. Also as A $\Delta A V, A V \leq N_{G}(A)$ thus $N_{G}(A)=A V$.

For later calculations we determine a relationship between a_{1}, a_{2} and a_{3}. Since $A / Z(A)$ has order 9 it is abelian and therefore $A^{-}=Z(A)=A_{1}$. So as a and a ${ }_{3}$ do not commute $\left[a_{2}, a_{3}\right]$ e $A_{1}{ }^{\#}$ and we may assume

$$
\left[a_{2}, a_{3}\right]=a_{1} \ldots(*)
$$

It is easily verified that $A^{\#}$ has four conjugacy classes in $N_{G}(A)$ with representatives a_{1}, a_{2}, a_{3} and $a_{1} a_{2} a_{3}$; the lengths of the classes are 2, 6, 6 and 12 respectively. Together with the next lemma this shows that G has two classes of elements of order 3 with representatives a_{1} and $a_{1} a_{2} a_{3}$.

LEMMA (5.2)
$a=a_{1} a_{2} a_{3}$ is inverted but not centralized by an

PROOF

Using the relation (*) we easily check that z inverts a. Suppose a is centralized, by an involution, v say, then a is conjugate to a_{1} by lemma (2.3). So $N_{G}(\langle a\rangle)=\bar{A}\langle z, v\rangle$ where $\langle z, v\rangle$ is a 4 -group (we may choose v to centralize z), and \bar{A} is a normal subgroup of order 3^{3}. As a_{1} e $N_{G}(\langle a\rangle)$, a_{1} e $\overline{\mathrm{A}}$ so that $C_{\mathbb{A}}(z)=$ $\left\langle a_{1}\right\rangle$. But then v must invert a_{1} and so $v \in N_{G}\left(\left\langle a_{1}\right\rangle\right)$. However $N_{G}\left(\left\langle a_{1}\right\rangle\right)=A V$ does not contain an involution centralizing a. This contradiction shows that a is not centralized by an involution.

The next four lemmas concern the normalizers in \quad of various subgroups of A.

LEMMA (5.3)
We have $N_{G}\left(\left\langle a_{1}, a\right\rangle\right)=A\langle z\rangle$.

PROOF

The subgroup <a a_{1}, $\left.a\right\rangle$ contains four subgroups of order 3 namely $\left\langle a_{1}\right\rangle,\langle a\rangle,\left\langle a_{1} a\right\rangle$ and $\left\langle a_{1}{ }^{-1} a\right\rangle$ the last 3 being conjugate in A. so $\left\langle a_{1}\right\rangle$ is the only subgroup of order 3 in $\left\langle a_{1}, a\right\rangle$ centralized by an involution (lemma (5.2)). Therefore $N_{G}\left(\left\langle a_{1}, a\right\rangle\right) \leq N_{G}\left(\left\langle a_{1}\right\rangle\right)$ = AV. Now A and z normalize 〈a a_{1}, $\left.a\right\rangle$ but as $\mathrm{a}^{\mathrm{t}}=\left(\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right)^{\mathrm{t}}=$ $a_{1}{ }^{t} a_{2}{ }^{t} a_{3}{ }^{t}=a_{1}{ }^{-1} a_{2}{ }^{-1} a_{3} k\left\langle a_{1}, a\right\rangle, t \& N_{G}\left(\left\langle a_{1}, a\right\rangle\right)$. Therefore $N_{G}\left(\left\langle a_{1}, a\right\rangle\right)=A\langle z\rangle$.

LEMMA (5.4)

We have $N_{G}\left(\left\langle a_{2}\right\rangle\right) \leq N_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right)$.

PROOF

The 4 -group V normalizes $\left\langle a_{2}\right\rangle$ and as a_{2} is conjugate to
$a_{1}, \quad N_{G}\left(\left\langle a_{2}\right\rangle\right)=\bar{A} V$ where \bar{A} is a normal Sylow 3-subgroup of $N_{G}\left(\left\langle a_{2}\right\rangle\right)$ of order 27. As a_{1} centralizes $a_{2},\left\langle a_{1}, a_{2}\right\rangle \leq N_{G}\left(\left\langle a_{2}\right\rangle\right)$, so $\left\langle a_{1}, a_{2}\right\rangle \leq \bar{A}$ As $\left\langle a_{1}, a_{2}\right\rangle$ has index 3 in $\mathbb{A},\left\langle a_{1}, a_{2}\right\rangle$ is normalin $\overline{\mathrm{A}}$ thus $\overline{\mathrm{A}} \leq \mathrm{N}_{\mathrm{G}}\left(\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle\right)$. As V also normalizes $\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle, \mathrm{N}_{\mathrm{G}}\left(\left\langle\mathrm{a}_{2}\right\rangle\right) \leq$ $N_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right)$.

$$
\begin{aligned}
& \text { Let } b e A, b=a_{2}{ }^{n} \text { for } n \in N_{G}\left(\left\langle a_{1}\right\rangle\right) \text {. Then } \\
& \begin{aligned}
N_{G}(\langle b\rangle)=N_{G}\left(\left\langle a_{2}\right\rangle\right)^{n} & \leq N_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right)^{n} \\
& =N_{G}\left(\left\langle a_{1}{ }^{n}, a_{2}{ }^{n}\right\rangle\right) \\
& =N_{G}\left(\left\langle a_{1}, b\right\rangle\right) .
\end{aligned}
\end{aligned}
$$

As the conjugates of a_{2} in $N_{G}\left(\left\langle a_{1}\right\rangle\right)$ are $a_{2}, a_{2}^{-1}, a_{1} a_{2}, a_{1} a_{2}^{-1}$, $a_{1}{ }^{-1} a_{2}$ and $a_{1}{ }^{-1} a_{2}{ }^{-1}$, we have $N_{G}(\langle b\rangle) \leq N_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right)$. The same reasoning applies if we replace a_{2} by a_{3}.

LEMMA (5.5)

$$
N_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right)=\left\langle a_{1}, a_{2}\right\rangle . C_{G}(t) \text {, also } t \text { is fixed-point-free }
$$

on $\left\langle a_{1}, a_{2}\right\rangle$.

PROOF

Clearly t inverts $\left\langle a_{1}, a_{2}\right\rangle$. As $C_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right) \leq$ $C_{G}\left(a_{1}\right) \cap C_{G}\left(a_{2}\right)=\left\langle a_{1}, a_{2}\right\rangle, C_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right)=\left\langle a_{1}, a_{2}\right\rangle . \quad$ Therefore by $\operatorname{lemma}(1.3) N_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right)=\left\langle a_{1}, a_{2}\right\rangle C_{N_{G}}\left(\left\langle a_{1}, a_{2}\right\rangle\right)(t)$.

Put $N=N_{G}\left(\left\langle a_{1}, a_{2}\right\rangle\right)$; we have $A V \leq N$ and a_{2} has 6 conjugates in $A V$. All conjugates of a_{2} in N are contained in $\left\langle a_{1}, a_{2}\right\rangle^{\text {非 }}$ which has order 8 . So since

$$
|N|=\left|N: C_{N}\left(a_{2}\right)\right|\left|C_{N}\left(a_{2}\right)\right|=2 \cdot 3^{3} \cdot\left|N: C_{G}\left(a_{2}\right)\right| \quad\left(\text { as } C_{G}\left(a_{2}\right) \leq\right.
$$

N by lemma (5.4)), a_{2} cannot have 6 conjugates in (because of lemma (5.1)) so 1 t must have 8. Thus $|N|=2^{4} \cdot 3^{3}$. Now as $|N|=$ $\left|\left\langle a_{1}, a_{2}\right\rangle C_{N}(t)\right|=\left|\left\langle a_{1}, a_{2}\right\rangle\right|\left|C_{N}(t)\right|=3^{2}\left|C_{N}(t)\right|,\left|C_{N}(t)\right|=2^{4} .3=$ $\left|C_{G}(t)\right|$, and therefore $C_{N}(t)=C_{G}(t)$. Hence $N=\left\langle a_{1}, a_{2}\right\rangle C_{G}(t)$.

$$
{ }^{N_{G}}(\langle a\rangle)=\left\langle a_{1}, a, z\right\rangle .
$$

PROOF

As a_{1} centralizes $a, P=\left\langle a_{1}, a\right\rangle \leq C_{G}(a)$. If P is not a Sylow 3 -subgroup of $C_{G}(a)$ then a is contained in the centre of a Sylow 3-subgroup of G and so will be conjugate to a contrary to 1emma (5.2). Therefore P is a Sylow 3-subgroup of C_{G} (a): Assume by way of contradiction that $P<C_{G}(a)$.

Using lemma (5.3) $\mathrm{N}_{\mathrm{C}_{G}(\mathrm{a})}(\mathrm{P})=\mathrm{C}_{\mathrm{C}_{G}(\mathrm{a})}(\mathrm{P})=\mathrm{P}$, so by Burnsidés Transfer Theorem $C_{G}(a)$ has a normal 3-complement, M say, $M \neq 1$.

Since z inverts $a, N_{G}(\langle a\rangle)=C_{G}(\langle a\rangle)\langle z\rangle$ which therefore has order $2.3^{2} \cdot m(|M|=m)$; let $H=N_{G}(\langle a\rangle)$. By 1emma (5.3) $N_{H}\left(\left\langle a_{1}, a\right\rangle\right)=\left\langle a_{1}, a, z\right\rangle \quad w h i c h$ has index min H, therefore by Sylow's theorem m = 1 (3).

By the proof of lemma (5.3) $\left\langle\mathrm{a}_{1}\right\rangle$ is the only subgroup of $\left\langle a_{1}\right.$, $\left.a\right\rangle$ centralized by an involution. So each Sylow 3-subgroup of H contains exactly one subgroup of order 3 centralized by an involution; they must all be conjugate to $\left\langle\mathrm{a}_{1}\right\rangle$ in H and there are m of them. It is easily seen that $N_{H}\left(\left\langle a_{1}\right\rangle\right)=C_{H}\left(\left\langle a_{1}\right\rangle\right)=\left\langle a_{1}, a, z\right\rangle$ so no involution of H inverts a_{1}.

Also no involution of H inverts $a_{1}{ }^{-1} a=a_{2} a_{3}$ for suppose so and let $\left(a_{2} a_{3}\right)^{v}=a_{3}^{-1} a_{2}{ }^{-1}$ for some involution v of H.

Then

$$
\begin{aligned}
a_{3}^{-1} a_{2} & =\left(a_{2} a_{3}\right)^{v}=\left(a_{1}-1 a^{-1}\right)^{v}=\left(a_{1}-1\right)^{v} a^{v} \\
& =\left(a_{1}^{-1}\right)^{v_{a}}-1=\left(a_{1}^{-1}\right)^{v_{a_{3}}}
\end{aligned}
$$

which implies that $a_{1} v=a_{1}{ }^{-1}$, contradicting the previous paragraph. Similarly $a_{1} a=a_{1}{ }^{-1} a_{2} a_{3}$ is not inverted by an Involution of H. Thus no element bof $H-\langle a\rangle$ of order 3 is

Inverted by an involution of H.
As M char $C_{G}(a) \triangleleft H, M \triangleleft H$. Thereforez normalizes M and as $C_{M}(z)=1, z$ inverts M and M is abelian by lemma (1.2). Hence also $L=M\langle a\rangle$ is abelian, and $L \triangleleft H$ as both M and $\langle a\rangle$ are normal in H.

Because L is abelian $L \leq C_{G}(L)$. If be $C_{G}(L)$ then b centralizes a and M so
$b e C_{G}(a) \cap C_{G}(M)$
$=\left\langle a_{1}, a\right\rangle M \cap C_{G}(M)$
$=\mathrm{M}\langle\mathrm{a}\rangle=\mathrm{L}$,
thus $C_{G}(L) \leq L$ and hence $C_{G}(L)=L$.
If $x \in M^{\#}$, as z inverts $x, z \in N_{G}(\langle x\rangle)$. Since $C_{G}(x) \triangleleft$ $N_{G}(\langle x\rangle), \quad z$ normalizes $C_{G}(x)$. No element of $C_{G}(x)^{\#}$ centralizes z, therefore $C_{G}(x)$ is abelian (lemma (1.2)). Since L is abelian and $x \in L, L \leq C_{G}(x)$. Now as $C_{G}(x)$ is abelian also, $C_{G}(x) \leq C_{G}(L)=$ L. Thus $C_{G}(x)=L$ for all x e $M^{\#}$.

For u e $G-H$ we claim $M \cap M^{u}=1$. Suppose not and let x e $M \cap M^{u}, x \neq 1$. Then $x=y^{u}$ for some y e $M^{\#}$, and so $C_{G}(x)=$ $C_{G}(y)^{u}$ which implies by the previous paragraph, $L=L^{u}$, that is u e $N_{G}(L)$. However as 〈a〉char L, being a normal Sylow 3-subgroup, $\langle a\rangle \triangleleft N_{G}(L)$. So $N_{G}(L) \leq H . \quad$ Thus u e H a contradiction.

We shall apply Bender's lemma to H; note that $H=$ $\mathrm{L}\left\langle\mathrm{a}_{1}, \mathrm{z}\right\rangle=\mathrm{L} \mathrm{C}_{\mathrm{H}}(\mathrm{z})$. Firstly.

$$
f=\frac{|H|}{\left|C_{G}(z)\right|}-1=\frac{18 m}{48}-1=\frac{3 m-8}{8},
$$

and $|\mathrm{J} \cap \mathrm{H}|=3 \mathrm{~m}$.
Let u be an involution of $G-H$ and consider $H \cap H^{u}$. We can apply the reasoning in lemma (3.4) to show that if $\mathrm{p}\left|\left|\mathrm{H} \cap \mathrm{H}^{\mathrm{u}}\right|\right.$, where p is a prime divisor of m, then $\mathrm{M} \cap \mathrm{M}^{\mathrm{u}} \neq 1$.

It follows that $p\left|\left|H \cap H^{u}\right|\right.$ and so $| H \cap H^{u}| | 2.3^{2}$ ．
Suppose in fact $\left|\mathrm{H} \cap \mathrm{H}^{\mathrm{u}}\right|=2.3^{2}$ ．Then u centralizes some involution v in $H \cap H^{u}$ as there are an odd number of involutions in $H \cap H^{u}$ ．Let Q be the Sylow 3－subgroup of $H \mathcal{H}^{u}$ ， tḥen u normalizes Q（since u normalizes $H \cap H$ and $Q \quad \triangleleft$ $H \cap H^{u}$ ）；also v normalizes Q ．Therefore $N_{G}(Q)$ contains the 4－ group 〈u，v〉．However Q is conjugate to 〈a $\left.{ }_{1}, a\right\rangle$ ，this confradicts lemma（5．3）so $\left|\mathrm{H}^{\circ} \cap \mathrm{H}^{\mathrm{u}}\right| \neq 2.3^{2}$ ．

Suppose u inverts a subgroup of order 3 in H ．If u inverts another subgroup of H of order 3 then u will invert a subgroup of order 9 in H ．This subgroup contains a and so in particular fnerts a，a contradiction．Therefore u can only invert one subgroup of order 3 ．

Suppose u inverts $\left\langle a_{1}{ }^{-1} a\right\rangle\left(o r\left\langle a{ }_{1}{ }^{\text {}}\right\rangle\right.$ ）．If u also inverts an involution then $H \cap H^{u}$ has order 6．But then $\left\langle a_{1}{ }^{-1} a\right\rangle$ （or $\left\langle a_{1} a\right\rangle$ ）is either centralized or inverted by an involution of H neither of which is correct；thus $u \in J_{3}$ in this case．

If u inverts $\left\langle a_{1}\right\rangle$ then $H \cap H^{u}$ cannot contain a subgroup of order 9 else u normalizes it and will infact invertit（lemma （1．2）），so $\left|\mathrm{H} \cap \mathrm{H}^{\mathrm{u}}\right| \mid 2.3$ ．The centralizer $\mathrm{C}_{\mathrm{H}}\left(\mathrm{a}_{1}\right)=\left\langle\mathrm{a}_{1}, \mathrm{a}, \mathrm{z}\right\rangle$ contains three involutions z_{i} say $i=1$ ， 2 ， 3 ．the elements $a_{1} z_{i}$ i $=1,2,3$ have order 6 and are each inverted by 6 involutions of G－H．Therefore a_{1} is inverted by 18 involutions which also centralize an involution of H ．As a_{1} is inverted by 18 involutions，any involution inverting a_{1} in fact inverts a subgroup of order 6 in M ；thus u e J_{6} in this case．

Suppose now that u inverts an involution v of H ，either u inverts only 〈v＞in which case u e J_{2} or u inverts another element of $H-\langle v\rangle$ and then u inverts a subgroup of order 6 and u
e J_{6}. In this latter case u inverts a subgroup of order 3 . Therefore the involutions of J_{6} are all the involutions inverting a subgroup of order 3 which is conjugateto <a $\left.{ }_{1}\right\rangle 1 n \mathrm{H} . \mathrm{As}\left\langle\mathrm{a}_{1}\right\rangle$ has m conjugates in H and is inverted by 18 involutions of $G-H$.

$$
\left|J_{6}\right|=18 \cdot \mathrm{~m}=2 \cdot 3^{2} \cdot \mathrm{~m}
$$

and

$$
b_{6}=3 . \text { m }
$$

An involution of H is inverted by 12 involutions of $G-H$ and has 3 m conjugates, therefore

$$
\begin{array}{ll}
& \left|J_{2}\right|+\left|J_{6}\right|=12 \cdot 3 \cdot m=2^{2} \cdot 3^{2} \cdot m, \\
\text { thus } \quad & \left|J_{2}\right|=2 \cdot 3^{2} \cdot m \text { and } b_{2}=3^{2} \cdot m \cdot \\
& \text { The subgroups }\left\langle a_{1} a\right\rangle \text { and }\left\langle a_{1}-1 a\right\rangle \text { being conjugate to<a〉 }
\end{array}
$$ in G are inverted by 3 m involutions none of which belong in H, and as there are m conjugates of each in H,

$$
\left|\mathrm{J}_{3}\right|=2 \cdot 3 \cdot \mathrm{~m} \cdot \mathrm{~m}=2 \cdot 3 \cdot \mathrm{~m}^{2}
$$

so $\quad b_{3}=2 \cdot m^{2}$,
Now let $u \in J_{1}$ so that u inverts no non-trivial element of H and consider $C_{H}(u)$. This will have order 3 if it is not trivial. Suppose u centralizes $\left\langle\mathrm{a}_{1}\right\rangle$ so that u e $\mathrm{C}_{\mathrm{G}}\left(\mathrm{a}_{1}\right)=\mathrm{A}\langle\mathrm{z}\rangle$ 。 Now the three subgroups in $\left\langle a_{1}, a\right\rangle$ of order 3 other than $\left\langle a_{1}\right\rangle$ are conjugate in $A\langle z\rangle$. So as $\langle a\rangle$ is inverted by three involutions of $A\langle z\rangle$, the s ubgroups $\left\langle a_{1} a\right\rangle$ and $\left\langle a_{1}{ }^{-1} a\right\rangle$ are each inverted by three involutions of $A\langle z\rangle$, these involutions are alldistinct. Since $A\langle z\rangle$ contains 9 involutions each one inverts some subgroup of order 3 in H. Thus $C_{H}(u)=1$ for allu $u J_{1}$ and so $c=0$. Hence $b_{1}=2.3^{2} . m \cdot k, k$ a non-negative integer.

We summarize what we have so far:

$$
\mathrm{f}=\frac{3 \mathrm{~m}-8}{8}
$$

$|\mathrm{J} \cap \mathrm{H}|=3 \mathrm{~m}$,
$b_{2}=3^{2} \cdot m, b_{3}=2 \cdot \mathrm{~m}^{2}, b_{6}=3 \cdot \mathrm{~m}$
$b_{1}=2.3^{2}$. .m.k, k a non-negative integer and allother b_{n} are zero ($n \neq 0$).

To determine b_{1} we use Bender's lemma.
$b_{1}=2.3^{2} \cdot m \cdot k<\frac{8}{3 m-8}\left(3 m+3^{2} \cdot m+2^{2} m^{2}+3.5 m\right)-3^{2} \cdot m-2 m^{2}-3 m$
hence, $\quad 3 k<\frac{-m^{2}+2 m+52}{3 m-8}$
$=\frac{-m^{2}}{3 m-8}+\frac{2}{3}+\frac{57 \frac{1}{3}}{3 m-8}$
$<\frac{-m^{2}}{3 m-8}+1+\frac{58}{3 m-8}$
Clearly $(m, 6)=1$ and as $m \equiv 1$ (3) also, m ≥ 7. Therefore $\frac{1}{3 m-8} \leq \frac{1}{13}$ and $-\mathrm{m}^{2} \leq 49$, hence $3 k<\frac{-49}{13}+1+\frac{58}{13}$
yielding $k<\frac{2}{3}$ thus $k=0$ and $b_{1}=0$.
The number of involutions in G is

$$
\begin{aligned}
|J| & =3 \cdot m+2 \cdot 3^{2} \cdot m+2 \cdot 3 \cdot m^{2}+2 \cdot 3^{2} \cdot m \\
& =3 \cdot m \cdot(13+2 m)
\end{aligned}
$$

whence $|G|=2^{4} \cdot 3^{3} \cdot \mathrm{~m} \cdot(13+2 \mathrm{~m})$.
By lemma (5.1) the normalizer of a Sylow 3-subgroup has order $2^{2} .3^{3}$, so the index is 2^{2}.m. (13 + 2 m$)$. Sylow's theorem gives then 2^{2}.m. (13 + 2 m) $\equiv 1$ (3). However as m $\equiv 1$ (3) 2^{2}.m. (13 $\left.+2 m\right) \equiv 0(3)$, this contradiction completes the proof of the lemma.

We now have enough information to be able to determine the order of G, this is done in the next lemma.

LEMMA (5.7)
The order of G is $2^{4} \cdot 3^{3} \cdot 13$.

We use Bender's lemma with $H=N_{G}(A)=N_{G}\left(\left\langle a_{1}\right\rangle\right)$ to determine $|G|$. Firstly

$$
f=\frac{|\mathrm{H}|}{\left|\mathrm{C}_{\mathrm{G}}(\mathrm{z})\right|}-1=\frac{2^{2} \cdot 3^{3}}{48}-1=\frac{9}{4}-1=\frac{5}{4}
$$

Aiso as H contains 27 involutions, $|J \cap H|=27$.
Let u be an involution of G-H. Recall that $A^{\#}$ has four conjugacy classes in H with representatives a_{1}, a_{2}, a_{3} and a. Clearly u cannot invert any element of the first class.

As $N_{G}(\langle a\rangle)=\left\langle a_{1}, a, z\right\rangle(1 e m m a(5.6))$ whichis contained in H, the normalizers of all conjugates of 〈a> in H are contained in H. Thus u cannot invert a conjugate of a in H and so conjugates of a_{2} and a_{3} in H are the only elements of $A^{\text {非 }}$ which can be inverted by u.

The conjugates of a_{2} in H are $a_{2}, a_{2}^{-1}, a_{1} a_{2}, a_{1}^{-1} a_{2}$, $a_{1} a_{2}{ }^{-1}$, and $a_{1}^{-1} a_{2}{ }^{-1}$. Suppose u inverts < $\left.a_{2}\right\rangle$; then u cannot invert a conjugate of a_{2} besides a_{2} and $a_{2}{ }^{-1}$, else u inverts $\left\langle a_{1}, a_{2}\right\rangle$ and in particular inverts a_{1}. As u inverts $\left\langle a_{2}\right\rangle$ it normalizes $\left\langle a_{1}, a_{2}\right\rangle$ by lemma (5.4), If u inverts a conjugate of a_{3} then u also normalizes <a $\left.a_{1}, a_{3}\right\rangle$ by the remarks following lemma (5.4). But then u normalizes A which is not true. Thus u cannot invert another subgroup of order 3. For the samereason if u inverts $\left\langle a_{3}\right\rangle$ then u cannot invert another subgroup of order 3 in H.

We have $C_{H}\left(a_{2}\right)=\left\langle a_{1}, a_{2}, z t\right\rangle$ which contains 3 involutions and $N_{H}\left(\left\langle a_{2}\right\rangle\right)=\left\langle a_{1}, a_{2}\right\rangle V$ which contains 15 . So $\left\langle\mathrm{a}_{2}\right\rangle$ is inverted by 12 involutions of H. As $\left\langle\mathrm{a}_{2}\right\rangle$ is inverted by 18 involutions it is inverted by 6 involutions of $G-H$.

Now $N_{G}\left(\left\langle a_{2}\right\rangle\right)=\bar{A} V=\left\langle a_{1}, a_{2}, m\right\rangle V$ where $\langle m\rangle=C_{A}(t)$. The

$\left\langle a_{2}\right\rangle$ and belong to $G-H$. These are therefore all the involutions of $G-H$ inverting $\left\langle a_{2}\right\rangle$. Since mzentralizest, it also centralizes a subgroup of order 3 in $\left\langle a_{1}, a_{2}\right\rangle$, $\langle r\rangle$ say (since the 4-group $\langle t, m z\rangle$ acts on \bar{A}). Thus mz centralizes the involutions t., rt and $r^{-1} t$ of H. We have $\left\langle a_{1}, a_{2}, t\right\rangle \leq H \cap H^{m z}$ and in fact $\left\langle a_{1}, a_{2}, t\right\rangle=H \cap H^{m z}$, it follows that mze J ${ }_{6}$. It is easily checked that mzis conjugate to all involutions of $G-H$ inverting a_{2} by an element of H. So if mz centralizes the involution v say of H, then (mz) ${ }^{h}$ centralizes the involution v^{h} of H. Thus all involutions of $G-H$ inverting $\left\langle a_{2}\right\rangle$ invert a further 3 involutions of H and therefore belong in J_{6}. We note that these involutions of H are conjugate in H to t as $r t=t^{r}$ and $r^{-1} t^{\prime}=t^{-1}$.

The same argument applies if u inverts $\left\langle a_{3}\right\rangle$, so we have again that u e J_{6}. In this case however the involutions of H centralizing u are conjugate to zt in H. We have that if u inverts a subgroup of order 3 in H then $u \in J_{6}$.

Now suppose u Inverts $\langle t\rangle$. Either u only inverts $\langle t\rangle$, in which case ue J_{2}, or u inverts some other subgroup of H. If u inverts an element of order 3 then u e J_{6}. If it inverts an involution v say, then vt must have order 3 or 6 and is centralized by u. Suppose the order is 3; then 〈vt〉is conjugate to $\left\langle a_{2}\right\rangle$ or $\left\langle a_{3}\right\rangle$ in H. Therefore $N_{G}(\langle v t\rangle) \leq N_{G}\left(\left\langle a_{1}, v t\right\rangle\right)$ and so $N_{G}\left(\left\langle a_{1}, v t\right\rangle\right)$ contains the $4-$ group $\langle t, u\rangle$. Thus u inverts some subgroup of order 3 in $\left\langle a_{1}\right.$, vt> and again $u \in J_{6}$. If vt has order 6 the previous argument applied to (vt) ${ }^{2}$ shows that u inverts a subgroup of order 3 and so u \boldsymbol{e}_{6}.

Thus if u inverts a conjugate of t in H efther u J_{2} or u inverts a subgroup of order 3 in H and $u \quad \mathrm{~J}_{6}$. The same reasoning applies to $z t$.

Suppose finally that u inverts a conjugate of z in H. Then u cannot invert an element of order 3 for we have seen in this case that u inverts only conjugates of or ztin H. Nor can it centralize another involution for this would imply, as

We can now determine the order of J_{2} and J_{6}.
All involutions of $G-H$ inverting a subgroup of order 3 in H belong to J_{6} and these yield all the involutions of J_{6}. The on ly subgroups of order 3 in H inverted by involutions of $G-H$ are conjugates of $\left\langle\mathrm{a}_{2}\right\rangle$ and $\left\langle\mathrm{a}_{3}\right\rangle$ in H. There are 6 such subgroups each inverted by 6 involutions of $G-H$. Therefore $\left|J_{6}\right|=6.6=$ $2^{2} \cdot 3^{2}$ and so $b_{6}=2.3$.

An involution of $G-H$ centralizing a conjugate of is either contained in J_{2} or J_{6}. Suppose k_{1} of these are contained in J_{6}. As t is centralized by 6 involutions of $G-H, 0 \leq k \leq 6$. Also suppose k_{2} involutions of $G-H$ centralizing $z t$ are contained in $J_{6} ; 0 \leq k_{2} \leq 6$. Then as t and zt each have 9 conjugates in H and since each involution of J_{6} centralizes 3 involutions of H we have

$$
\left|J_{6}\right|=k_{1} \frac{.9+k_{2}}{3} \cdot 9=3\left(k_{1}+k_{2}\right)
$$

But we know that $\left|J_{6}\right|=2^{2} .3^{2}$, this implies that $k_{1}+k_{2}=12$ and hence $k_{1}=k_{2}=6$. Thus every involution of G-H centralizing a conjugate of t or zt in H is contained in J_{6}. Hence an involution of J_{2} centralizes a conjugate of z in H.

As z is centralized by 6 involutions of $G-H$ and has 9 conjugates in H

$$
\begin{aligned}
& \left|J_{2}\right|=6.9=2.3^{3} \text { and thus } b_{2}=3^{3} \\
& \text { If } u \in J_{1} \text { then } u \text { cannot centralize an involution of } H,
\end{aligned}
$$

nor can it centralize an element of order 3 in H. For suppose u centralizes $b e H, b$ of order 3 , then u e $N_{G}\left(\left\langle a_{1}, b\right\rangle\right) b y$ the remarks following lemma (5.4) and umet invert some subgroup of order 3 in $\left\langle a_{1}, b\right\rangle$. Thus $C_{H}(u)=1$ for all u f_{1}, so $c=0$ and therefore $b_{1}=2^{2} .3^{3} \cdot k, k$ non-negative integer.

Summarizing we have:

$$
\mathrm{f}=\frac{5}{4}
$$

$|\mathrm{J} \cap \mathrm{H}|=27$
$b_{2}=3^{3}, b_{6}=2.3, b_{1}=2^{2} \cdot 3^{3} \cdot k, \quad k$ a non-negative
integer and all other b_{n} are zero $(n \neq 0)$.
By Bender's lemma

$$
b_{1}=2^{2} \cdot 3^{3} \cdot k<\frac{4}{5}\left(3^{3}+3^{3}+2 \cdot 3 \cdot 5\right)-3^{3}-2 \cdot 3
$$

which implies $k<\frac{57}{180}<1$, so $k=0$ and $b_{1}=0$.
The number of involutions in G is

$$
\begin{aligned}
|J| & =3^{3}+2 \cdot 3^{3}+2^{2} \cdot 3^{2} \\
& =3^{2} \cdot 13
\end{aligned}
$$

whence the order of G is $2^{4} \cdot 3^{3} .13$
We easily prove the following lemma.

LEMMA (5.8)
The group G is simple.

PR00F
If G is not simple then by lemma (2.6) a proper nontrivial normal subgroup has order 27. However a subgroup of this order is not normal in G by lemma (5.1). We conclude that G is simple.

It is now possible to identify G.

If G is a graup satisfying the assumptions of this chapter then G is isomorphic to $\operatorname{PSL}(3,3)$.

PROOF

We show that G satisfies the postulates made in [3], which are listed preceeding lemma (1.6).

Firstly G contains the 4-group V. Next, as V is abelian $V \leq C$ and $V \leq C_{G}(t)$, so is containedin a dihedral group D_{1} of C and also one of $C_{G}(t), D_{2}$ say. Now $D_{1} \neq D_{2}$ as $Z\left(D_{1}\right)=\langle z\rangle$ and $Z\left(D_{2}\right)=\langle t\rangle$. Therefore as $\left\langle D_{1}, D_{2}\right\rangle \leq N_{G}(V)\left(\left|D_{i}: V\right|=2 \quad i=\right.$ 1, 2), we must have $N_{G}(V) / V \cong S_{3}$. So thereis an element which permutes the involutions of V. Thus postulate (I) is satisfied.

Let $M=\left\langle a_{1}, a_{2}\right\rangle ; M$ is inverted by t so $M \cap C_{G}(t)=1$ and by 1 emma $(5.5) C_{G}(t) \leq N_{G}(M)$.

In C there is a subgroup, $\langle b\rangle$ say, of order 3 inverted by t and $\langle b\rangle \neq\left\langle a_{1}\right\rangle$. Now $N_{G}(\langle b\rangle)=B V$ with B a non-abelian sylow $3-s u b g r o u p$ of order 3 normalized by V. Also $B=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ where $\left\langle b_{1}\right\rangle=C_{B}(z)=\langle b\rangle,\left\langle b_{2}\right\rangle=C_{B}(z t)$ and $\left\langle b_{3}\right\rangle=C_{B}(t)$.

Put $M^{*}=\left\langle b_{1}, b_{2}\right\rangle ; M^{*}$ has the same order as M and clearly $M^{*} \cap C_{G}(t)=1$ and $C_{G}(t) \leq N_{G}\left(M^{*}\right)$.

Consider $M \cap M^{*}$, as $M \neq M^{*}$ if $M \cap M^{*} \neq 1$ then $M \cap M^{*}=$ $\langle y\rangle$ has order 3. But then $\langle y\rangle$ is normalized by V, so as $M \cap C=$ $\left\langle a_{1}\right\rangle \neq M^{*} \cap C=\left\langle b_{1}\right\rangle$ andtisfixed-point-freeon M and $M^{*}, M \cap M^{*}$ $\leq C_{G}(z t)$ by [12] theorem 5.3.16. So $\langle y\rangle=\left\langle a_{2}\right\rangle=\left\langle b_{2}\right\rangle$.

Now
$M^{*} \leq N_{G}\left(\left\langle b_{2}\right\rangle\right)=N_{G}\left(\left\langle a_{2}\right\rangle\right)=\bar{A} V$, so $M^{*} \leq \bar{A}$, in particular $\left\langle b_{1}\right\rangle \leq \bar{A}$. But then $\left\langle b_{1}\right\rangle=C_{\bar{A}}(z)=\left\langle a_{1}\right\rangle$, that is $\left\langle b_{1}\right\rangle=\left\langle a_{1}\right\rangle$, a contradiction, and hence postulate (II) is satisfied.

Postulate (III) we already have.

Postulate (IV) is trivial as $\left|G: \mathrm{MC}_{\mathrm{G}}(\mathrm{t})\right|=\left|G: N_{G}(M)\right|=13$ and $q^{2}+q+1=3^{2}+3+1=13$.

Finally we consider postulate (V). As a_{1} has 8 conjugates in $N_{G}(M)=M C_{G}(t)$ all of which lie in M, we seethat $C_{G}(t)$ is transitive on $M^{\#}$ which is a stronger statement then (V).

Thus by lemma (1.6) the group G has a chief series $G \geq G_{0} \geq K \geq 1$ where G / G_{0} is cyclic, $G_{0} / K \cong \operatorname{PSL}(3,3)$ and K is a normal subgroup of odd order. As $|G|=|P S L(3,3)|$ we must have $G_{0}=G, K=1$ and $G \cong \operatorname{PSL}(3,3)$.

CASE (D) A 슬 $Z_{3} X Z_{3}$
Throughout this chapter suppose that $N_{G}(X)=A V$ where A $\cong \quad Z_{3} \times Z_{3}$ and $A \& N_{G}(X)$.

Let $C_{A}(z)=\left\langle a_{1}\right\rangle$ and $C_{A}(z t)=\left\langle a_{2}\right\rangle$ (which we may suppose to be non-trivial) so that $C_{A}(t)=1$ and therefore t inverts A by 1emma (1.2) ; $A=\left\langle a_{1}, a_{2}\right\rangle$. Note that $a_{1} \sim_{G} a_{2}$ by lemma (2.3). The structure of $N=N_{G}(A)$ is determined in the first lemma.

LEMMA (6.1)
$N=A C_{N}(t)$ has order $2^{4} \cdot 3^{2}$ and so A is a Sylow 3-
subgroup of G.

PROOF
Since $C_{G}(A) \leq C_{G}\left(a_{1}\right) \cap C_{G}\left(a_{2}\right), C_{G}(A)=A$, and as t inverts $A, N=A C_{N}(t)$ by 1emma (1.3).

We show that V is not a Sylow 2-subgroup of N. By the proof of lemma (4.1) z and zt are conjugate in N. So if V is a Sylow 2-subgroup of N, by [12] theorem (7.7.1), N has one class of involutions. But then z and t would be conjugate in N contrary to the fact that $C_{A}(z)$ has order 3 while $C_{A}(t)$ is trivial. Thus a Sylow 2-subgroup of N has order 8 or 16 ; if the order is 8 a Sylow 2 -subgroup is dihedral since it contains a 4group.

Now as $N=A C_{N}(t)$ there are four possible ordersfor N namely $2^{3} \cdot 3^{2}, 2^{3} \cdot 3^{3}, 2^{4} \cdot 3^{2}$, or $2^{4} \cdot 3^{3}$.

All conjugates of ${ }^{a_{1}}$ in N iie in A, therefore as $\left|A^{\#}\right|=8$, a_{1} has at most 8 conjugates in $N, t h u s\left|N: C_{N}\left(a_{1}\right)\right| \leq 8$. As $C_{G}\left(a_{1}\right)=A\langle z\rangle \leq N, C_{N}\left(a_{1}\right)=C_{G}\left(a_{1}\right)$ which has order 2.32. It follows that $|N| \leq 2^{4} .3^{2}$. This condition eliminates the
possibilities $2^{3} \cdot 3^{3}$ and $2^{4} \cdot 3^{3}$.
We prove now that the elements of order 3 in G form a single conjugacy class.

The subgroup $R=C_{N}(t)$ is a Sylow 2-subgroup of order 8 or 16 (which contains V); in either case $Z(R)=\langle t\rangle$ and $z \sim R^{z t}$. As $N_{R}(V) \cong D_{8}$ thereis an involution $v e R$ with $z^{v}=z t$.

As $C_{A}(z)=\left\langle a_{1}\right\rangle, C_{A}(z t)=\left\langle a_{2}\right\rangle$ and $z^{v}=z t,\left\langle a_{1}\right\rangle^{v}=$ $\left\langle a_{2}\right\rangle$, without loss we may assume $a_{1} v=a_{2}$. Then $a_{1} v^{2}=a_{1}=a_{2}{ }^{v}$, so $\left(a_{1} a_{2}\right)^{v}=a_{1} v_{a_{2}} v=a_{2} a_{1}=a_{1} a_{2}$, that is $a_{1} a_{2}$ e $C_{G}(v)$. By lemma (2.3) $a_{1} a_{2} \sim a_{1}$ ing and as $\left(a_{1} a_{2}\right)^{z}=a_{1} a_{2}^{-1}$ also $a_{1} a_{2}^{-1} \sim$ a_{1} in G. Since $\left\langle a_{1}\right\rangle,\left\langle a_{2}\right\rangle,\left\langle a_{1} a_{2}\right\rangle$ and $\left\langle a_{1} a_{2}{ }^{-1}\right\rangle$ are the only subgroups of order 3 in A and A is a Sylow 3 -subgroup of G (since it is a Sylow 3-subgroup of N) the assertion follows.

Now let a e A^{\sharp}, then $A \leq C_{G}(a)$. By the previous paragraph $a_{1}=a^{g}$ for some $g \in G$. Then

$$
A^{g} \leq C_{G}(a)^{g}=C_{G}\left(a^{g}\right)=C_{G}\left(a_{1}\right)=A\langle z\rangle
$$

Thus $A^{g}=A$ that is $g e N$. Therefore ${ }^{\prime}$ is conjugate in N to all elements of $A^{\#}$ and so has 8 conjugates in N. Thus $|N|=$ $\left|N: C_{N}\left(a_{1}\right)\right|\left|C_{N}\left(a_{1}\right)\right|=8.2 .3^{2} .=2^{4} .3^{2}$ and the 1 emma is proved.

We note that by the proof of this lemma the elements of order 3 in G form a single conjugacy class.

LEMMA (6.2)
The order of G is $2^{4} \cdot 3^{2} \cdot 5.11$.

PROOF

Bender s lemma is used to determine $|G|$ with $H=N$. Firsty

$$
f=\frac{|H|}{\left|C_{G}(z)\right|}-1=\frac{2^{4} \cdot 3^{2}}{2^{4} \cdot 3} \quad-1=2
$$

We have $H=A C_{H}(t)$ and $C_{H}(t)$ is a Sylow 2-subgroup of H of order 16 by 1 emma (6.1) ; $C_{H}(t)$ has 2 classes of involutions with representatives t and z. As t and z are not conjugate in H, H has 2 classes of involutions with representatives t and z. Since t has 9 conjugates and z has 12 , H contains 21 involutions, therefore $|\mathrm{J} \cap \mathrm{H}|=21$.

By the proof of lemma (6.1) the subgroups of order 3 in Hareconjugate in H. As $N_{G}\left(\left\langle a_{1}\right\rangle\right)=A V \leq H$, the normalizer in G of every subgroup of order 3 in H is contained in H.

Let u be an involutions of $G-H$ and consider $H \cap H^{u}$. Since u does not normalize $A, A \cap A^{u}<A$, and if $A \cap A^{u}$ is not trivial it has order 3. As $A \cap A^{u}$ is normalized by $u, A \cap A^{u}=1$ by the previous paragraph. Thus $A \cap\left(H \cap H^{u}\right)=1\left(a s A \cap H^{u} \leq\right.$ $A \cap A^{u}=1$) which shows that $H \cap H^{u}$ is a 2 -group.

Suppose u centralizes 2 involutions, v_{1} and v_{2} say, of H, then u centralizes $\left\langle v_{1} v_{2}\right\rangle$ which contains a unique involution v say. But now u centralizes the $4-\mathrm{group}\left\langle\mathrm{v}_{1}\right.$, v$\rangle$ of H . Thus u centralizes at most one involution of H. Since every involution of $C_{G}(t)-\langle t\rangle$ inverts exactly one subgroup of order 4 , u inverts at most one subgroup of order 4 in H. It follows that the elements of H inverted by form cyclic subgroups of order 1,2 or 4.

If u inverts z, then u cannot invert an element of H of order 4 else $C_{H}(z)=A_{1} V$ contains an element of order 4 , so u e J_{2} 。

An element of order 4 is inverted by 4 involutions, these involutions belong in the same Sylow $2-s u b g r o u p$ of G. Now $C_{H}(t)=R$ has 3 cyclic subgroups of order 4 , one of these is inverted by 4 involutions of H, the other two are each inverted
by 4 involutions of $G-H$. As tis centralized by 8 involutions of G-H, if u invertst, it also inverts a subgoupof H of order 4 and u e J_{4}.

As t has 9 conjugates in H,

$$
\left|J_{4}\right|=8 \cdot 9=2^{3} \cdot 3^{2}
$$

thus

$$
b_{4}=2.3^{2}
$$

As z is centralized by 6 involutions of $G-H$ and has 12 conjugates in H,

$$
\left|J_{2}\right|=6.12=2^{3} \cdot 3^{2}
$$

and so

$$
b_{2}=2^{2} \cdot 3^{2}
$$

By Benders lemma we have

$$
\begin{aligned}
\mathrm{b}_{1} & <\frac{1}{2}\left(21+\mathrm{b}_{2}+3 \mathrm{~b}_{4}\right)-1-\mathrm{b}_{2}-\mathrm{b}_{4} \\
& =\frac{1}{2}\left(19-\mathrm{b}_{2}+\mathrm{b}_{4}\right) \\
& =\frac{1}{2}(19-36+18)=\frac{1}{2}
\end{aligned}
$$

and hence $b_{1}=0$.
Thus $|J|=3.7+2^{3 .} .3^{2}+2^{3} .3^{2}=3.5 .11$ and the order of G is $2^{4} \cdot 3^{2} \cdot 5 \cdot 11$.

The proof of the following lemma is the same as that of 1emma (3.1).

LEMMA (6.3)
The group G is simple.
Using Sylow's theorem we easily determine the structure of the normalizer of the Sylow 5 and Sylow li-subgroups of G these normalizers are Frobenfus groups of order 20 and 55 respectively. We can also determine the conjugacy classes of G^{\sharp}, there are 9 in all. There is one class each of elements of order 2, 3, 4, 5 and 6; the elements of order 8 and 11 each form two

We shall need the following result.

LEMMA (6.4)
The intersection of two distinct Sylow 3-subgroups of G is trivial.

PROOF
Let A and B be two Sylow 3-subgroups of G and suppose a e $A \cap B, a \neq 1$. Then $C_{G}(a)=A\langle v\rangle=B\langle v\rangle$ where v is an involution centralizing a. Now $B \leq A\langle v\rangle$ and as A is a normal Sylow 3-subgroup of $A\langle v\rangle$ and B has order $9, A=B . \operatorname{Sof} A \neq B$ then $A \cap B=1$.

To identify G we use the permutation respresentation on the cosets of a subgroup of index ll. We show that such a subgroup exists in the following two lemmas.

LEMMA (6.5)
The group G contains a subgroup of index 22 isomorphic to A_{6}.

PROOF
We have the following: A is a Sylow 3-subgroup of G inverted by the involution $t, N=A C_{N}(t)$ and $C_{N}(t)$ is a $\operatorname{sylow} 2-$ subgroup of G. Recall that if 〈r〉is a subgroup of A of order 3 then $N_{G}(\langle r\rangle) \leq N($ see the proof of lemma (6.2)).

Now all Sylow $2-\mathrm{subgroups}$ of $\mathrm{C}_{\mathrm{G}}(\mathrm{t})$ contain the unique quaternion group, say $Q_{0} \triangleleft C_{G}(t)$. Let R be a Sylow 2-subgroup of $C_{G}(t), R \neq C_{N}(t)$, so that $R \cap C_{N}(t)=Q_{0}$. Let D be dihedral of order 8 in R; then $Q_{0} \cap D$ is cyclic of order 4. Put $Q_{0} \cap D=$ $\langle x\rangle$, then $x^{2}=t, x$ normalizes A but D does not.

Let $D=\langle a, b\rangle a, b$ involutions of D with $a b=x ; a, b \notin N$ else D \leq N. Also $a^{x}=a^{a b}=a^{b}=b a b=a \cdot a b a b=a t, a n d b^{x}=b t$.

Let $A=\langle r\rangle x\langle s\rangle$. As x normalizes A we may suppose r^{x} $=s$. Now $r^{x^{2}}=s^{x}$ and $r^{x^{2}}=r^{t}=r^{-1}$, therefore $s^{x}=r^{-1}$.

We have the following relations
$a^{2}=b^{2}=t^{2}=r^{3}=s^{3}=x^{4}=1$,
$a b=x, x^{2}=t, a^{x}=a t, b^{x}=b t$,
$[a, t]=[b, t]=[r, s]=1$,
$r^{t}=s^{-1}, s^{t}=r^{-1}$,
$\mathbf{r}^{\mathbf{x}}=\mathbf{s}$ and $\mathrm{s}^{\mathbf{x}}=\mathrm{r}^{-1}$
Consider the elements ar and as. Since
$(a r)^{r^{-1}} t=r^{-1} t a r . r^{-1} t=r^{-1} t a t=r^{-1} a=(a r)^{-1}$, ar is inverted by the involution r^{-1} t. As the only elements of G inverted by an involution have orders $2,3,4,5$ or 6 , these are the only possible orders of ar. Similarly as has possible orders $2,3,4,5$ or 6 .

$$
\text { If }(a r)^{2}=1 \text { then } r^{a}=r^{-1} \text { so a e } N_{G}(\langle r\rangle) \leq N a
$$ contradiction. Therefore (ar) ${ }^{2} \neq 1$ and for the same reason (as) ${ }^{2}$ $\neq 1$.

$$
\begin{aligned}
\text { If } & (\text { ar })^{3}=1 \text { then } \\
1 & =(\text { ararar })^{x} \\
& =a^{x_{r}} x^{x_{r}} x_{a} x_{r} x \\
& =\text { atsatsats } \\
& =\operatorname{atsas}^{-1} a t^{2} s \\
& =\text { atsas }^{-1} a s
\end{aligned}
$$

Therefore at $=s^{-1}$ asas ${ }^{-1}=s^{-1}$ (asas)s.
So as (at) ${ }^{2}=1,(\text { as })^{4}=1$.
Thus if $(\text { ar })^{3}=1$ then $(\text { as })^{4}=1$.
Similarly $(a s)^{3}=1$ implies $(a r)^{4}=1$.

Assume now that $(\mathrm{ar})^{4}=1$, then

$$
\begin{aligned}
1 & =(\text { arararar })^{x} \\
& =a^{x} r^{x} a^{x} r^{x} a^{x} r^{x} a^{x} r^{x} \\
& =\text { atsatsatsats } \\
& =a s^{-1} a s a s^{-1} a s \\
& =a s^{-1}(\text { asas }) s a s
\end{aligned}
$$

Therefore $s^{-1}=a^{-1}($ asas) $s a$
So as $\left(s^{-1}\right)^{3}=1,(a s)^{6}=1$
We also have from these steps

$$
1=a\left(s^{-1} a s\right) a\left(s^{-1} a s\right),
$$

So that s^{-1} as $\in C_{G}(a)$. Also $t \in C_{G}(a)$, so $\left(s^{-1} a s\right)^{t}=s a s^{-1} e$ $C_{G}(a)$ and sas ${ }^{-1} . s^{-1}$ as $=$ sasase $C_{G}(a)$ as well.

Now (as) ${ }^{6}=1$ yields
$1=a(s a s a s) a(s a s a s)=(\text { sasas })^{2}$.
If sasas $=1$ then $\left(s^{-1} a\right) s(a s)=s$, that is as e $C_{G}(s)$. Therefore a $\quad C_{G}(s)$ and as $C_{G}(s) \leq N, ~ a \in N$ a contradiction. Thus sasas has order 2.

Now
$\left(t s^{-1} a s\right)^{2}=t s^{-1} a s t s^{-1} a s$
$=\mathrm{sas}^{-1} \mathrm{~s}^{-1} \mathrm{as}$
= sasas
So as sasas has order $2, t^{-1}$ as has order 4 and since ts ${ }^{-1}$ as is also an element of $C_{G}(a)$ its square is equal to a. That is sasas $=$ a which implies $(a s)^{3}=1$.

Thus if $(a r)^{4}=1$ then $(a s)^{3}=1$.
Similarly (as) ${ }^{4}=1$ implies $(a r)^{3}=1$.
Now assume $(a r)^{5}=1$. The preceeding arguments show that $(a s)^{3} \neq 1$ and $(a s)^{4} \neq 1$.

Suppose (as) ${ }^{6}=1$. We have
$1=(\text { ararararar })^{x}$

= atsatsatsatsats
$=$ atsas $^{-1}$ asas $^{-1}$ as
$=$ tasas $^{-1}$ asas $^{-1}$ as
Therefore $t=$ asas $^{-1}$ asas $^{-1}$ as, the element asas ${ }^{-1}$ asas ${ }^{-1}$ as inverts s (that is inverts s).

Also as (as) ${ }^{6}=1$ equating with the above yields
atsas ${ }^{-1}$ asas $^{-1}$ as $=$ asasasasasas ,
which on cancellation and solving for t yields
$t=$ sasasasas $^{-1}$ as $^{-1}$ asas $^{-1}$.
So as $t^{2}=1$ we have
$1=$ sasasasas $^{-1}$ as $^{-1}$ asas $^{-1}$ sasasasas ${ }^{-1}$ as $^{-1}$ asas $^{-1}$,
and after simplification yields
$s=\left(a s a s a s^{-1} \operatorname{as}^{-1} a\right) s^{-1}\left(\right.$ asasas ${ }^{-1}$ as $\left.^{-1} a\right)$.
Thus asasas ${ }^{-1} \mathrm{as}^{-1}$ a is also an element inverting . Multiplying by the previous element inverting sives
asasas ${ }^{-1}$ as $^{-1}$ a.asas ${ }^{-1}$ asas $^{-1}$ as
= asasasasas ${ }^{-1}$ as
$=(a s)^{6} s^{-1} \mathrm{as}^{-1} \mathrm{a} \cdot \mathrm{as}^{-1} \mathrm{as}$
$=s^{-1}$ asas,
which must be an element centralizing s, thus s^{-1} asas $\in C_{G}(s)$ which implies s^{a} e $C_{G}(s)$.

Now A is a normal Sylow 3-subgroup of $C_{G}(s)$; therefore as $s^{a} h a s$ order $3, s^{a}$ e A and then $s e A^{a}$. Thus se $A \cap A^{a}$ which implies by lemma (6.4) that $A=A^{a}$ and so a e N, a contradiction.

We conclude that if (ar) ${ }^{5}=1$ then (as $)^{5}=1$.
Also (as) ${ }^{5}=1$ implies (ar) ${ }^{5}=1$.
Finally suppose $(\text { ar })^{6}=1$; all cases have been
eliminated except (as) ${ }^{6}=1$.
Now

$$
\begin{aligned}
1 & =(\text { arararararar })^{x} \\
& =a^{x_{r}} x_{a} x_{r} x_{a} x_{r} x_{a} x_{r} x_{a} x_{r} x_{a} x_{r} x^{\prime} \\
& =\text { atsatsatsatsatsats } \\
& =a s^{-1} \text { asas }{ }^{-1} \text { asas }{ }^{-1} \text { as }
\end{aligned}
$$

Therefore $a=\left(s^{-1}\right.$ asas $\left.{ }^{-1}\right) a\left(s a s^{-1} a s\right)$, and so s^{-1} asas ${ }^{-1}$ e $C_{G}(a)$.
It is easily shown, using (as $)^{6}=1$, that s^{-1} asas $^{-1}$ has order 3.

$$
\begin{aligned}
\text { Also }(s a)^{2} & =\text { sasa has order } 3 \text { since }(s a)^{6}=1 . \text { Since } \\
\left(s^{-1} \text { asas }^{-1}\right)^{\text {sasa }} & =a^{-1} \text { as }^{-1} \cdot s^{-1} \text { asas }^{-1} \cdot s a s a \\
& =a\left(s^{-1} \text { asas }^{-1}\right) a \\
& =s^{-1} \text { asas }^{-1}
\end{aligned}
$$

$s^{-1} \operatorname{asas}^{-1}$ and sasa commute. If sasa e $\left\langle s^{-1} \operatorname{asas}^{-1}\right\rangle$ then sasa e C_{G} (a) so that

$$
s \cdot s^{a}=s a s a=a(s a s a) \cdot a=a s a s=s^{a} \cdot s, \text { thus } s^{a} \text { e } C_{G}(s)
$$

We have seen however that this implies a e N. Thus sasa d $\left\langle s^{-1}\right.$ asas $\left.^{-1}\right\rangle$ and it follows that $B=\left\langle s a s a, s^{-1}\right.$ asas $\left.^{-1}\right\rangle$ is a Sylow 3-subgroup of G.

Since a centralizes s^{-1} asas $^{-1}$, a normalizes B. Now
s^{-1} asas.sasa $=s^{-1} \mathrm{as}^{-1} a$ e B and so asas e B.
Therefore since
$\left(\right.$ sasa) ${ }^{s}=s^{-1}($ sasa) $s=$ asas e B
and $\left(s^{-1} \text { asas }^{-1}\right)^{s}=s^{-1}\left(s^{-1} \text { asas }^{-1}\right)^{\beta}=$ sasa \& B, $\mathrm{s}^{\text {e }}$ N_{G} (B).

This implies, because s has order 3 and Bis a normal Sylow 3subgroup of $N_{G}(B)$, that $s e B$. Thus $s e A \cap B$ and by lemma(6.4) $A=B$, However a normalizes B, that is a normalizes A, a contradiction. Therefore ar cannot have order 6 and hence
neither can as.
Thus we have the following possibilities
(1) $\quad(\text { ar })^{3}=(\text { as })^{4}=1$
(ii) $\quad(\text { ar })^{4}=(\text { as })^{3}=1$ and
(111) $\quad(\text { ar })^{5}=(\text { as })^{5}=1$

The same reasoning applies to the elements br and bs. So by interchanging r and s and also and bif necessary., there are four cases to consider, namely:

$$
\begin{equation*}
(\mathrm{ar})^{3}=(\mathrm{as})^{4}=(\mathrm{br})^{3}=(\mathrm{bs})^{4}=1 \tag{I}
\end{equation*}
$$

(II) $\quad(\text { ar })^{3}=(a s)^{4}=(b r)^{4}=(b s)^{3}=1$
(III) $\quad(a r)^{3}=(a s)^{4}=(b r)^{5}=(b s)^{5}=1$ and
(IV)

$$
(a r)^{5}=(a s)^{5}=(b r)^{5}=(b s)^{5}=1
$$

CASE (I) (ar) ${ }^{3}=(\mathrm{as})^{4}=(\mathrm{br})^{3}=(\mathrm{bs})^{4}=1$
Let $R=a r$ and $S=b r$; then

$$
R^{3}=s^{3}=1
$$

and

$$
R^{-1} S=r^{-1} a b r=x^{r} \text { therefore }
$$

$$
\left(R^{-1} S\right)^{4}=1
$$

Since ararar $=$ brbrbr

$$
\begin{aligned}
r b r & =b a(r a r) a b \\
& =(r a r)^{x} \\
& =r^{x} a^{x_{r}} \\
& =s a t s
\end{aligned}
$$

Therefore $R S=a r b r=$ asats and

$$
\begin{aligned}
(\mathrm{RS})^{2} & =\text { asatsasats } \\
& =\text { asas }{ }^{-1} \mathrm{as}^{-1} \text { as } \\
& =\text { as }\left(a s^{-1}\right)^{4} \text { sasa.as } \\
& =\text { as }^{-1} \mathrm{as}^{-1}
\end{aligned}
$$

which has order 2, thus

$$
(R S)^{4}=1
$$

But now by lemma (1.7) the subgroup G generated by R and S has order 1.68, a contradiction as $7 \||G|$.

CASE (II) $(a r)^{3}=(a s)^{4}=(b r)^{4}=(b s)^{3}=1$
Let $R_{0}=b r$ and $S_{0} \dot{=} a r$; then
$R_{0}{ }^{4}=S_{0}{ }^{3}=1$
and

$$
R_{0}^{-1} S_{0}=r^{-1} \text { bar }=\left(x^{-1}\right)^{r} \text { so }
$$

$$
\left(R_{0}^{-1} S_{0}\right)^{4}=1
$$

Since

$$
\begin{aligned}
\text { ararat } & =b r b r b r b r, \\
& =a b(r b r b r) b a \\
& =(r b r b r)^{x^{-1}} \\
& =r^{-1} b^{-1} r^{-1} b^{x^{-1}} r^{x^{-1}} \\
& =s^{-1} b t s^{-1} b t s^{-1} \\
& =s^{-1} b s b s^{-1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathrm{R}_{0} \mathrm{~S}_{0} & =\mathrm{brar} \\
& =b s^{-1} \mathrm{bsbs} \\
& =b s^{-1} \mathrm{bs}(\mathrm{bs} \\
& \left.=b s^{-1}\right)^{3} s b s b s^{-1} b s b \\
& =\left(b s^{-1}\right)^{3} s b \cdot b s b \\
& =s^{-1} b
\end{aligned}
$$

which has order 3 , so $\left(R_{0} S_{0}\right)^{3}=1$
Now let $R=R_{0}{ }^{-1} S_{0}{ }^{-1}$ and $S=S_{0}{ }^{-1}$. Then R has the same order as $R_{0} S_{0}$. Therefore $R^{3}=1$ also $S^{3}=1$.
Now RS $=R_{0}{ }^{-1} S_{0}{ }^{-1} S_{0}{ }^{-1}=R_{0}{ }^{-1} S_{0}$, therefore
$(\mathrm{RS})^{4}=1$.
And $R^{-1} S=S_{0} R_{0} S_{0}^{-1}=r_{0} S_{0}^{-1}$, so
$\left(R^{-1} S\right)^{4}=1$
So again the subgroup of G generated by R and S has
order 168 , a contradiction.

CASE (III) $(\mathrm{ar})^{3}=(\mathrm{as})^{4}=(\mathrm{br})^{5}=(\mathrm{bs})^{5}=1$
Let $R=a r$ and $S=b a$ then
$R^{3}=S^{4}=1$
and $\quad R S=a r b a=(r b)^{a}$ therefore $(R S)^{5}=1$
also $\quad R^{-1} S^{-1} R S=r^{-1}$ aabarba

$$
\begin{aligned}
& =r^{-1} \mathrm{barba} \\
& =\mathrm{r}^{-1} \mathrm{x}^{-1} \mathrm{rx}^{-1} \\
& =\mathrm{r}^{-1} \mathrm{sx}^{-1} \mathrm{x}^{-1} \\
& =\mathrm{r}^{-1} \mathrm{st}
\end{aligned}
$$

which has order 2 , therefore $\left(R^{-1} S^{-1} R S\right)^{2}=1$
So by lemma (1.8) (i) the subgroup of G generated by R and S is isomorphic with A_{6}.

CASE (IV) (ar) $=(\mathrm{as})^{5}=(\mathrm{br})^{5}=(\mathrm{bs})^{5}=1$
We have
$A=\langle r\rangle x\langle s\rangle=\langle r s\rangle x\left\langle r^{-1} s\right\rangle=\langle u\rangle x\langle v\rangle$
where $u=r s$ and $v=r^{-1} s$; then

$$
\begin{aligned}
& u^{3}=v^{3}=[u, v]=1 \\
& \mathbf{u}^{x}=(r s)^{x}=r^{x} s^{x}=s r^{-1}=r^{-1} s=v
\end{aligned}
$$

and $v^{x}=\left(r^{-1} s\right)^{x}=\left(r^{-1}\right)^{x} s^{x}=s^{-1} r^{-1}=(r s)^{-1}=u^{-1}$

Also u and v are inverted by the involution t. These are precisely the relations satisfied by rand so all the above reasoning applies with u, v replacing r and s. Thus if
$(a u)^{3}=(a v)^{4}=1$ then $(b u)^{5}=(b v)^{5}=1$
and $\langle a u, b a\rangle \cong A_{6}$. Suppose then that
$(a u)^{5}=(a v)^{5}=(b u)^{5}=(b v)^{5}=1$.
Let $R_{0}=x^{-1} r$ and $S_{0}=b$ then
$s_{0}{ }^{2}=1$
and $R_{0}^{2}=x^{-1} r x^{-1} r=s x^{-1} x^{-1} r=s t r=s r^{-1} t$, which has order

2, therefore.

$$
R_{0}^{4}=1
$$

A1so

$$
R_{0} S_{0}=x^{-1} r b=b a r b=(a r)^{b}, \text { so }
$$

$$
\left(R_{0} S_{0}\right)^{5}=1
$$

And $\quad R_{0}{ }^{2} S_{0}=x^{-1} r x^{-1} r b$

$$
\begin{aligned}
& =s x^{-1} x^{-1} r b \\
& =s t r b \\
& =s r^{-1} b t
\end{aligned}
$$

therefore $\left(R_{0}{ }^{2} S_{0}\right)^{x}=s^{x}\left(r^{-1}\right)^{x_{b}}{ }_{t} x$

$$
\begin{aligned}
& =r^{-1} s^{-1} b t \cdot t \\
& =(r s)^{-1} b \\
& =u^{-1} b \\
& =(b u)^{-1}
\end{aligned}
$$

which has order 5 , therefore $\left(R_{0}{ }^{2} S_{0}\right)^{5}=1$.

$$
\text { Now let } R=R_{0}^{-1} \text { and } S=R_{0} S_{0} ; \text { then }
$$

$R^{4}=S^{5}=1$,
$R S=R_{0}{ }^{-1} R_{0} S_{0}=S_{0}$, so
$(R S)^{2}=1$
And
$R^{-1} S=R_{0} R_{0} S_{0}=R_{0}{ }^{2} S_{0}$, therefore
$\left(R^{-1} S\right)^{5}=1$.
So by lemma (1.8) (ii) the subgroup of G generated by R
and S is isomorphic to A_{6}.
As all cases have been considered we conclude that G has
a subgroup isomorphic to A_{6} which has index 22 in G.

LEMMA (6.6)
The group G possesses a subgroup of index 11.

By lemma (6.5) G has a subgroup, H say, isomorphic to A_{6}. Let D be a dihedral group of H with $Z(D)=\langle t\rangle$ and let A be a Sylow $3-\mathrm{subgroup}$ of H inverted by t . Then $\mathrm{H}=\langle\mathrm{D}, \mathrm{A}\rangle$. If Q_{0} is the unique quaternion subgroup of $C_{G}(t)$ then Q normalizes D and also Q normalizes $A(1 e m m a(6.1))$. Therefore $Q \leq N_{G}(H)$ and as G is simple we must have $N_{G}(H)=H Q$ which has index 11 . Finally we can identify G.

THEOREM

If G is a group satisfying the assumptions of this chapter then G is isomorphic to M_{11}.

PROOF

By the previous lemma G has a subgroup of index 11 . Representing G on the cosets of this subgroup then, as G is simple, G is isomorphic to a subgroup of A_{11}.

By the structure of the normalizers of a Sylow 5 and Sylow li-subgroup of G, we seethat G possesses elements r, mand n of orders 11,5 and 4 respectively satisfying the relations

$$
r^{m}=r^{4} \text { and } m^{n}=m^{2}
$$

We may suppose

$$
\mathbf{r}=\left(\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array}\right) ;
$$

then $\quad r^{4}=\left(\begin{array}{lllllllllll}1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 11 & 4 & 8\end{array}\right)$
and we may assume

$$
\begin{aligned}
\mathrm{m} & =\left(\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 11 & 4 & 8
\end{array}\right) \\
& =\left(\begin{array}{llllllll}
2 & 5 & 6 & 10 & 4
\end{array}\right)\left(\begin{array}{llllll}
3 & 9 & 11 & 8 & 7
\end{array}\right)
\end{aligned}
$$

since then $r^{m}=r^{4}$ as required.
Let $\quad n=\left(\begin{array}{llllllllll}2 & 5 & 6 & 10 & 4 & 3 & 9 & 11 & 8 & 7 \\ a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5}\end{array}\right)$
then $\quad m^{n}=\left(\begin{array}{llllllll}a_{1} & a_{2} & a_{3} & a_{4} & a_{5}\end{array}\right)\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right)$,
which then equals $\mathrm{m}^{2}=\left(\begin{array}{lllll}2 & 6 & 4 & 5 & 10\end{array}\right)\left(\begin{array}{lllll}3 & 11 & 7 & 9 & 8\end{array}\right)$.
Therefore ($\left.a_{1} a_{2} a_{3} a_{4} a_{5}\right)=\left(\begin{array}{llllll}2 & 6 & 4 & 5 & 10\end{array}\right)$ or $\left(\begin{array}{llllll}3 & 11 & 7 & 9 & 8\end{array}\right)$
and $\left(b_{1} b_{2} \quad b_{3} \quad b_{4} \quad b_{5}\right)=\left(\begin{array}{lllll}3 & 11 & 7 & 9 & 8\end{array}\right)$ or $\left(\begin{array}{lllll}2 & 6 & 4 & 5 & 10\end{array}\right)$
(Note that if $\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right)=\left(\begin{array}{lllll}2 & 6 & 4 & 5 & 10\end{array}\right)$ then
$\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right)=\left(\begin{array}{llll}6 & 4 & 5 & 2\end{array}\right)$ or any other cycle of thesefive numbers).

$$
\text { If }\left(a_{1} a_{2} \quad a_{3} a_{4} \quad a_{5}\right)=\left(\begin{array}{lllll}
3 & 11 & 7 & 9 & 8
\end{array}\right)
$$

and $\quad\left(b_{1} b_{2} b_{3} b_{4} \quad b_{5}\right)=\left(\begin{array}{llllll}2 & 6 & 4 & 5 & 10\end{array}\right) ;$ then considered as ordered 5 -tuples there are 5 choicesfor ($a_{1} a_{2} a_{3} a_{4} a_{5}$) and 5 for ($b_{1} b_{2} \quad b_{3} \quad b_{4} \quad b_{5}$) which implies 25 possibilities for n. However in all these cases n is an odd permutation. Thus

$$
\left(\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}\right)=\left(\begin{array}{lllll}
2 & 6 & 4 & 5 & 10
\end{array}\right)
$$

and

$$
\left(\begin{array}{lllll}
\mathrm{b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} & \mathrm{~b}_{4} & \mathrm{~b}_{5}
\end{array}\right)=\left(\begin{array}{lllll}
3 & 11 & 7 & 9 & 8
\end{array}\right)
$$

(considered as permutations).
There are 25 choices for n. However for a fixed n, conjugating by powers of mields all the elements of order 4 in $N_{G}(\langle m\rangle)$ taking m to m^{2}, so in fact there are only 5 cases to consider.

Fix $b_{1}=3$ then the ordered 5 -tuple ($\left.b_{1} b_{2} b_{3} b_{4} b_{5}\right)$ is determined. \quad Successively take $\mathrm{a}_{1}=2,6,4,5$ and 10 so($\left.a_{1} a_{2} a_{3} a_{4} a_{5}\right)$ is determined; this yields all 5 cases, which we list:
(a) $\quad n=\left(\begin{array}{llll}4 & 10 & 5 & 6\end{array}\right)\left(\begin{array}{llll}7 & 8 & 9 & 11\end{array}\right)$
(b) $\quad n=\left(\begin{array}{llll}2 & 6 & 5 & 4\end{array}\right)\left(\begin{array}{llll}7 & 8 & 9 & 11\end{array}\right)$
(c) $\quad n=\left(\begin{array}{llll}2 & 4 & 6 & 10\end{array}\right)\left(\begin{array}{llll}7 & 8 & 9 & 1\end{array}\right)$
(d) $\quad n=\left(\begin{array}{llll}2 & 5 & 10 & 6\end{array}\right)\left(\begin{array}{llll}7 & 8 & 9 & 11\end{array}\right)$
(e) $\quad n=\left(\begin{array}{llll}2 & 10 & 4 & 5\end{array}\right)\left(\begin{array}{llll}7 & 8 & 9 & 11\end{array}\right)$

Let $n_{1}=n^{2}=\left(\begin{array}{llllll}2 & 10 & 4 & 5\end{array}\right)\left(\begin{array}{llll}3 & 8 & 7 & 9\end{array}\right)$, then $\quad \mathrm{nn}_{1}=$
 not contain an element of order 21 thus $n \neq\left(\begin{array}{lll}4 & 10 & 5\end{array}\right)(7811)$.

CȦSE (b)

Let $n_{1}=\mathrm{n}^{\mathrm{m}^{2}}=\left(\begin{array}{llll}3 & 8 & 7 & 9\end{array}\right)\left(\begin{array}{llll}4 & 10 & 5 & 6\end{array}\right)$, then rn $=$ $\left(\begin{array}{lllllll}1 & 2 & 8 & 3 & 1 & 0 & 1\end{array}\right)\left(\begin{array}{llll}4 & 6 & 9 & 5\end{array}\right)(7)$ which has order 12 and as G does not contain an element of this order $n \neq\left(\begin{array}{llll}2 & 6 & 5 & 4\end{array}\right)\left(\begin{array}{lll}7 & 8 & 9\end{array}\right)$.

CASE (c)

Let $\mathrm{n}_{1}=\mathrm{n}^{\mathrm{m}^{2}}=\left(\begin{array}{llll}2 & 6 & 5 & 4\end{array}\right)\left(\begin{array}{llll}3 & 8 & 7 & 9\end{array}\right)$ then $\mathrm{rn}_{1}=$ $\left(\begin{array}{lllll}1 & 6 & 9 & 10 & 11\end{array}\right)\left(\begin{array}{lll}2 & 8 & 3\end{array}\right)(4)(5)(7)$ which has order 15 so $n \neq$ $\left(\begin{array}{llll}2 & 4 & 6 & 10\end{array}\right)\left(\begin{array}{llll}7 & 8 & 9 & 11\end{array}\right)$.

CASE (d)

Let $n_{1}=n^{m}=\left(\begin{array}{llll}3 & 7 & 11 & 8\end{array}\right)\left(\begin{array}{llll}4 & 10 & 5 & 6\end{array}\right)$. By lemma (1.9) (ii) the subgroup of G generated by r and n_{1} is isomorphic to M_{11} and as $|G|=\left|M_{11}\right|, G \cong M_{11}$.

CASE (e)

Let $n_{1}=n^{m}=\left(\begin{array}{llll}2 & 6 & 5\end{array}\right)\left(\begin{array}{llll}3 & 7 & 1 & 8\end{array}\right)$, then rn $=$
 following relations hold between r, m and n_{1}.

$$
\begin{aligned}
& \mathrm{r}^{11}=\mathrm{m}^{5}=\mathrm{n}_{1}^{4}=\left(\mathrm{r} \mathrm{n}_{1}\right)^{3}=1 \\
& \mathrm{r}^{\mathrm{m}}=\mathrm{r}^{4} \text { and } \mathrm{m}^{\mathrm{n}}=\mathrm{m}^{2}
\end{aligned}
$$

Therefore by lemma (1.9)(i) the subgroup of G generated by r, m and ${ }^{n} 1$ is isomorphic to M_{11} and hence G is isomorphic to M_{11}. This completes the proof of the theorem.
[1] Bender, H. : Finite groups with large subgroups. Ill. Jour. Math., 18 (1974) 223-228.
[2] Brauer, R. : On the structure of groups of finite order., Proc. Internat. Congr. Math. Amsterdam 1954 , I. 209-217 (Noordhoff/N. Ho11and, 1957).

Brauer, R. On finite Desarguesian planes, I. Math. Zeit., 90 (1965) 117-123.
[4] Brauer, R. : On finite Desarguesian planes, II. Math. Zeit., 91 (1966) 124-151.

Coxeter, H.S.M., and Moser, W.O.J. : Generators and relations for discrete groups. Springer - Verlag (Berlin, Heidelberg, New York 1980).
[9] Dickson, L.E. : Linear groups with an exposition of the Galois field theory, 1901, Dover (New York, 1958).
[10] Feit, W., and Thompson, J.G.: Solvability of groups of odd order. Pac. Jour. Math., 13 (1963), 775-1029.
[11] Fowler, K.A. : Thesis, University of Michigan (1951).
Gorenstein, D. Finite groups. Chelsea publishing company (New York, 1980).
[13] Huppert, B., and Blackburn, N. : Finite groups III Springer - Verlag (Berifn, Heidelberg, New York, 1982).
[14] Janko, Z. : A new finite simple group with abelian Sylow 2-subgroups and its characterization. Jour. Alg. 3 (1966) $147-186$.
[15] Passman, D.S.: Permutation groups. W.A. Benjamin, Inc. (New York, Amsterdam, 1968).
[16] Stanton, R. : The Mathieu groups Can. Jour. Math 3 (1951) 164-174.
[17] Suzuki, M. : On characterizations of linear groups I, II. Trans. Amer. Math. Soc. 92 (1959) 191-219.
[18] Wielandt, H. : Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endichen Gruppe, Math. Zeit., 73 (1960), 146 - 158 .
[19] Wong, W.J. : A characterization of the Mathieu group M_{12}. Math. Zeit., 84 (1964) 378 - 388 .

