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Abstract

Since the year 2000 there has been a growing interest in an area known as body-worn

communications for diverse applications ranging from healthcare to security. An in-

tegral component of body-worn devices are antennas which facilitate transmission of

pertinent information about the user such as location. The focus of this thesis is on

the antennas, which in the context of body-centric communications are also known as

body-worn or wearable antennas.

Prior to designing body-worn antennas there are some subsidiary issues that must be

addressed. One of these subsidiary issues is realizing a robust and reliable connection

between rigid and flexible devices. This issue must be addressed as textile antennas

will be interfaced with rigid electronic devices when viewed from a holistic system

perspective. Consequently, this thesis investigates connection strategies and proposes

implementations realized solely from textile materials that can connect rigid and flexi-

ble devices.

The second subsidiary issue is related to antenna ground planes. Ground planes for

wearable antennas are likely to be bent, given the inherent curvature of the human

body. In this regard it is important to appreciate the effects of conformal ground planes

on the performance of body-worn antennas, which is an issue that is addressed in this

thesis.

The final pragmatic issue that must be addressed for wearable antennas is user com-

fort. The issue of user comfort can best be understood by considering the extent of

the ground plane. Generally, to isolate the antenna from the deleterious effect of the

human body, a ground plane is used. The most common method of realizing ground

planes for body-worn antennas is to use metalized fabrics, which are available with

high conductivity. However, conductive fabric ground planes can be uncomfortable,

especially if extended ground planes are used to enhance the isolation between the

antenna and the human body. Combining conductive fabrics and conductive embroi-

dered structures which are realized through conductive yarns is an attractive option to

enhance the wearability of extended ground planes. This hybrid approach is attractive

as conductive yarns tend to be less intrusive than conductive fabrics. A challenge in us-

ing computerized embroidery however is the accurate characterization and modeling
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Abstract

of conductive embroidered structures. The two aforementioned issues are addressed

in this thesis through the use of scattering experiments and introduction of an effective

modeling parameter.

Focusing now on the antennas themselves, it is generally accepted that the design of

body-worn antennas is a challenging task. Primarily, the design of body-worn anten-

nas is quite demanding as the antenna performance must be insensitive to the effect

of the human body, which is a very lossy and complicated propagation medium. An

additional consideration is the potential deformation of the antenna geometry which

will depend on where the antenna is placed on the human body. To ensure robust per-

formance, the aforementioned factors must be accounted for in the design phase of the

antenna.

Consequently, it is vital to select appropriate antenna topologies for body-worn appli-

cations. Radiating cavities, or more specifically closed and semi-closed cavity anten-

nas are attractive for wearable applications as they are robust to environmental effects

and exhibit high performance with a simple fabrication process. However, closed and

semi-closed cavity antennas can be rather large, which can inhibit their deployment

for body-worn scenarios. Additionally, realizing dual-band or multi-band closed and

semi-closed cavity antennas is challenging as the operating frequency is determined

by fixed ratios. In regards to the these challenges, this thesis proposes and validates

the following solutions:

1. A new miniaturized low-profile semi-closed UHF cavity antenna is proposed and

experimentally validated. This new topology is shown to be robust to the effects

of the human body and mechanical deformations. A salient feature of this an-

tenna is the exploitation of computerized embroidery to realize the cavity walls.

2. A new dual-band cavity antenna is realized by the integration of two similar

radiating elements operating as equivalent magnetic currents into a single cavity.

The antenna is targeted to cover the lower and upper microwave ISM bands. The

incorporation of a planar feeding element and a largely independent control of

both the lower and upper microwave ISM bands is an attractive feature of this

design.

As previously mentioned, obtaining steady performance for body-worn antennas un-

der adverse environmental conditions is a challenging task. One method to deal with
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Abstract

this issue is to utilize frequency reconfigurable antennas. In this context this thesis

presents a new proof-of-concept frequency reconfigurable cavity-backed slot antenna.

An attractive feature of this antenna is that the reconfiguration elements, i.e varactors,

are embedded inside the cavity structure which helps to insulate them from adverse ex-

ternal forces. Additionally, the proposed antenna can be impedance matched through

a planar feeding mechanism over a large fractional tuning range of 20% without re-

quiring lumped matching elements.

Overall, this thesis holistically investigates a range of issues related to the realization

and utilization of wearable antennas for body-worn applications. Thus the contribu-

tions of this thesis lay a strong foundation for future wearable antenna deployment.
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Typesetting
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that was interfaced with LATEX 2ε. All images have been created using MATLAB and

Inkscape.

Spelling

American English spelling conventions have been adopted in this thesis.

Referencing

The Harvard referencing style has been utilized in this thesis.
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This thesis has adopted the International System of Units (SI Units).
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