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Abstract The luminosity determination for the ATLAS
detector at the LHC during pp collisions at

√
s = 8 TeV

in 2012 is presented. The evaluation of the luminosity scale
is performed using several luminometers, and comparisons
between these luminosity detectors are made to assess the
accuracy, consistency and long-term stability of the results.
A luminosity uncertainty of δL/L = ±1.9% is obtained for
the 22.7 fb−1 of pp collision data delivered to ATLAS at√

s = 8 TeV in 2012.

1 Introduction

An accurate measurement of the delivered luminosity is a
key component of the ATLAS [1] physics programme. For
cross-section measurements, the uncertainty in the delivered
luminosity is often one of the major systematic uncertain-
ties. Searches for, and eventual discoveries of, physical phe-
nomena beyond the Standard Model also rely on accurate
information about the delivered luminosity to evaluate back-
ground levels and determine sensitivity to the signatures of
new phenomena.

This paper describes the measurement of the luminosity
delivered to the ATLAS detector at the LHC in pp collisions
at a centre-of-mass energy of

√
s = 8 TeV during 2012.

It is structured as follows. The strategy for measuring and
calibrating the luminosity is outlined in Sect. 2, followed in
Sect. 3 by a brief description of the detectors and algorithms
used for luminosity determination. The absolute calibration
of these algorithms by the van der Meer (vdM) method [2],
which must be carried out under specially tailored beam con-
ditions, is described in Sect. 4; the associated systematic
uncertainties are detailed in Sect. 5. The comparison of the
relative response of several independent luminometers dur-
ing physics running reveals that significant time- and rate-
dependent effects impacted the performance of the ATLAS
bunch-by-bunch luminometers during the 2012 run (Sect. 6).
Therefore this absolute vdM calibration cannot be invoked as
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is. Instead, it must be transferred, at one point in time and
using an independent relative-luminosity monitor, from the
low-luminosity regime of vdM scans to the high-luminosity
conditions typical of routine physics running. Additional cor-
rections must be applied over the course of the 2012 data-
taking period to compensate for detector aging (Sect. 7). The
various contributions to the systematic uncertainty affecting
the integrated luminosity delivered to ATLAS in 2012 are
recapitulated in Sect. 8, and the final results are summarized
in Sect. 9.

2 Luminosity-determination methodology

The analysis presented in this paper closely parallels, and
where necessary expands, the one used to determine the lumi-
nosity in pp collisions at

√
s = 7 TeV [3].

The bunch luminosity Lb produced by a single pair of
colliding bunches can be expressed as

Lb = μ fr

σinel
, (1)

where the pile-up parameter μ is the average number of
inelastic interactions per bunch crossing, fr is the bunch rev-
olution frequency, and σinel is the pp inelastic cross-section.
The total instantaneous luminosity is given by

L =
nb∑

b = 1

Lb = nb 〈Lb〉 = nb
〈μ〉 fr

σinel
.

Here the sum runs over the nb bunch pairs colliding at the
interaction point (IP), 〈Lb〉 is the mean bunch luminosity
and 〈μ〉 is the bunch-averaged pile-up parameter. Table 1
highlights the operational conditions of the LHC during Run
1 from 2010 to 2012. Compared to previous years, operat-
ing conditions did not vary significantly during 2012, with
typically 1368 bunches colliding and a peak instantaneous
luminosity delivered by the LHC at the start of a fill of
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Table 1 Selected LHC parameters for pp collisions at
√

s = 7 TeV
in 2010 and 2011, and at

√
s = 8 TeV in 2012. Values shown are rep-

resentative of the best accelerator performance during normal physics
operation

Parameter 2010 2011 2012

Number of bunch
pairs colliding (nb)

348 1331 1380

Bunch spacing (ns) 150 50 50

Typical bunch
population (1011

protons)

0.9 1.2 1.7

Peak luminosity
Lpeak (1033 cm−2 s−1)

0.2 3.6 7.7

Peak number of
inelastic
interactions per
crossing

∼5 ∼20 ∼40

Average number of
interactions per
crossing
(luminosity
weighted)

∼2 ∼9 ∼21

Total integrated
luminosity
delivered

47 pb−1 5.5 fb−1 23 fb−1

Lpeak ≈ 6–8 × 1033 cm−2 s−1, on the average three times
higher than in 2011.

ATLAS monitors the delivered luminosity by measuring
μvis, the visible interaction rate per bunch crossing, with a
variety of independent detectors and using several different
algorithms (Sect. 3). The bunch luminosity can then be writ-
ten as

Lb = μvis fr

σvis
, (2)

where μvis = ε μ, ε is the efficiency of the detector and algo-
rithm under consideration, and the visible cross-section for
that same detector and algorithm is defined by σvis ≡ ε σinel.
Since μvis is a directly measurable quantity, the calibration
of the luminosity scale for a particular detector and algo-
rithm amounts to determining the visible cross-section σvis.
This calibration, described in detail in Sect. 4, is performed
using dedicated beam-separation scans, where the absolute
luminosity can be inferred from direct measurements of the
beam parameters [2,4]. This known luminosity is then com-
bined with the simultaneously measured interaction rate μvis

to extract σvis.
A fundamental ingredient of the ATLAS strategy to assess

and control the systematic uncertainties affecting the absolute
luminosity determination is to compare the measurements of
several luminometers, most of which use more than one algo-
rithm to determine the luminosity. These multiple detectors
and algorithms are characterized by significantly different

acceptance, response to pile-up, and sensitivity to instrumen-
tal effects and to beam-induced backgrounds. Since the cal-
ibration of the absolute luminosity scale is carried out only
two or three times per year, this calibration must either remain
constant over extended periods of time and under different
machine conditions, or be corrected for long-term drifts. The
level of consistency across the various methods, over the
full range of luminosities and beam conditions, and across
many months of LHC operation, provides a direct test of the
accuracy and stability of the results. A full discussion of the
systematic uncertainties is presented in Sects. 5–8.

The information needed for physics analyses is the inte-
grated luminosity for some well-defined data samples. The
basic time unit for storing ATLAS luminosity information
for physics use is the luminosity block (LB). The bound-
aries of each LB are defined by the ATLAS central trigger
processor (CTP), and in general the duration of each LB is
approximately one minute. Configuration changes, such as a
trigger prescale adjustment, prompt a luminosity-block tran-
sition, and data are analysed assuming that each luminosity
block contains data taken under uniform conditions, includ-
ing luminosity. For each LB, the instantaneous luminosity
from each detector and algorithm, averaged over the lumi-
nosity block, is stored in a relational database along with
a variety of general ATLAS data-quality information. To
define a data sample for physics, quality criteria are applied to
select LBs where conditions are acceptable; then the instanta-
neous luminosity in that LB is multiplied by the LB duration
to provide the integrated luminosity delivered in that LB.
Additional corrections can be made for trigger deadtime and
trigger prescale factors, which are also recorded on a per-
LB basis. Adding up the integrated luminosity delivered in
a specific set of luminosity blocks provides the integrated
luminosity of the entire data sample.

3 Luminosity detectors and algorithms

The ATLAS detector is discussed in detail in Ref. [1]. The
two primary luminometers, the BCM (Beam Conditions
Monitor) and LUCID (LUminosity measurement using a
Cherenkov Integrating Detector), both make deadtime-free,
bunch-by-bunch luminosity measurements (Sect. 3.1). These
are compared with the results of the track-counting method
(Sect. 3.2), a new approach developed by ATLAS which
monitors the multiplicity of charged particles produced in
randomly selected colliding-bunch crossings, and is essen-
tial to assess the calibration-transfer correction from the
vdM to the high-luminosity regime. Additional methods have
been developed to disentangle the relative long-term drifts
and run-to-run variations between the BCM, LUCID and
track-counting measurements during high-luminosity run-
ning, thereby reducing the associated systematic uncertain-
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ties to the sub-percent level. These techniques measure the
total instantaneous luminosity, summed over all bunches,
by monitoring detector currents sensitive to average parti-
cle fluxes through the ATLAS calorimeters, or by reporting
fluences observed in radiation-monitoring equipment; they
are described in Sect. 3.3.

3.1 Dedicated bunch-by-bunch luminometers

The BCM consists of four 8 × 8 mm2 diamond sensors
arranged around the beampipe in a cross pattern at z =
±1.84 m on each side of the ATLAS IP.1 If one of the sensors
produces a signal over a preset threshold, a hit is recorded
for that bunch crossing, thereby providing a low-acceptance
bunch-by-bunch luminosity signal at |η| = 4.2 with sub-
nanosecond time resolution. The horizontal and vertical pairs
of BCM sensors are read out separately, leading to two lumi-
nosity measurements labelled BCMH and BCMV respec-
tively. Because the thresholds, efficiencies and noise levels
may exhibit small differences between BCMH and BCMV,
these two measurements are treated for calibration and mon-
itoring purposes as being produced by independent devices,
although the overall response of the two devices is expected
to be very similar.

LUCID is a Cherenkov detector specifically designed to
measure the luminosity in ATLAS. Sixteen aluminium tubes
originally filled with C4F10 gas surround the beampipe on
each side of the IP at a distance of 17 m, covering the pseudo-
rapidity range 5.6 < |η| < 6.0. For most of 2012, the LUCID
tubes were operated under vacuum to reduce the sensitivity
of the device, thereby mitigating pile-up effects and provid-
ing a wider operational dynamic range. In this configuration,
Cherenkov photons are produced only in the quartz windows
that separate the gas volumes from the photomultiplier tubes
(PMTs) situated at the back of the detector. If one of the
LUCID PMTs produces a signal over a preset threshold, that
tube records a hit for that bunch crossing.

Each colliding-bunch pair is identified numerically by a
bunch-crossing identifier (BCID) which labels each of the
3564 possible 25 ns slots in one full revolution of the nomi-
nal LHC fill pattern. Both BCM and LUCID are fast detectors
with electronics capable of reading out the diamond-sensor
and PMT hit patterns separately for each bunch crossing,
thereby making full use of the available statistics. These
FPGA-based front-end electronics run autonomously from
the main data acquisition system, and are not affected by any

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the centre of the detector, and the z-axis
along the beam line. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
beam line. The pseudorapidity is defined in terms of the polar angle θ

as η = − ln tan(θ/2).

deadtime imposed by the CTP.2 They execute in real time
several different online algorithms, characterized by diverse
efficiencies, background sensitivities, and linearity charac-
teristics [5].

The BCM and LUCID detectors consist of two symmetric
arms placed in the forward (“A”) and backward (“C”) direc-
tion from the IP, which can also be treated as independent
devices. The baseline luminosity algorithm is an inclusive
hit requirement, known as the EventOR algorithm, which
requires that at least one hit be recorded anywhere in the
detector considered. Assuming that the number of interac-
tions in a bunch crossing obeys a Poisson distribution, the
probability of observing an event which satisfies the Even-
tOR criteria can be computed as

PEventOR (μOR
vis ) = NOR/NBC = 1 − e−μOR

vis . (3)

Here the raw event count NOR is the number of bunch cross-
ings, during a given time interval, in which at least one pp
interaction satisfies the event-selection criteria of the OR
algorithm under consideration, and NBC is the total num-
ber of bunch crossings during the same interval. Solving for
μvis in terms of the event-counting rate yields

μOR
vis = − ln

(
1 − NOR

NBC

)
. (4)

When μvis � 1, event counting algorithms lose sensitivity
as fewer and fewer bunch crossings in a given time inter-
val report zero observed interactions. In the limit where
NOR/NBC = 1, event counting algorithms can no longer be
used to determine the interaction rate μvis: this is referred
to as saturation. The sensitivity of the LUCID detector
is high enough (even without gas in the tubes) that the
LUCID_EventOR algorithm saturates in a one-minute inter-
val at around 20 interactions per crossing, while the single-
arm inclusive LUCID_EventA and LUCID_EventC algo-
rithms can be used up to around 30 interactions per crossing.
The lower acceptance of the BCM detector allowed event
counting to remain viable for all of 2012.

3.2 Tracker-based luminosity algorithms

The ATLAS inner detector (ID) measures the trajectories of
charged particles over the pseudorapidity range |η| < 2.5
and the full azimuth. It consists [1] of a silicon pixel detec-
tor (Pixel), a silicon micro-strip detector (SCT) and a straw-
tube transition-radiation detector (TRT). Charged particles
are reconstructed as tracks using an inside-out algorithm,

2 The CTP inhibits triggers (causing deadtime) for a variety of reasons,
but especially for several bunch crossings after a triggered event to allow
time for the detector readout to conclude. Any new triggers which occur
during this time are ignored.
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which starts with three-point seeds from the silicon detectors
and then adds hits using a combinatoric Kalman filter [6].

The luminosity is assumed to be proportional to the num-
ber of reconstructed charged-particle tracks, with the vis-
ible interaction rate μvis taken as the number of tracks per
bunch crossing averaged over a given time window (typically
a luminosity block). In standard physics operation, silicon-
detector data are recorded in a dedicated partial-event stream
using a random trigger at a typical rate of 100 Hz, sampling
each colliding-bunch pair with equal probability. Although a
bunch-by-bunch luminosity measurement is possible in prin-
ciple, over 1300 bunches were colliding in ATLAS for most
of 2012, so that in practice only the bunch-integrated lumi-
nosity can be determined with percent-level statistical pre-
cision in a given luminosity block. During vdM scans, Pixel
and SCT data are similarly routed to a dedicated data stream
for a subset of the colliding-bunch pairs at a typical rate of 5
kHz per BCID, thereby allowing the bunch-by-bunch deter-
mination of σvis.

For the luminosity measurements presented in this paper,
charged-particle track reconstruction uses hits from the sili-
con detectors only. Reconstructed tracks are required to have
at least nine silicon hits, zero holes3 in the Pixel detector
and transverse momentum in excess of 0.9 GeV. Further-
more, the absolute transverse impact parameter with respect
to the luminous centroid [7] is required to be no larger than
seven times its uncertainty, as determined from the covari-
ance matrix of the fit.

This default track selection makes no attempt to distin-
guish tracks originating from primary vertices from those
produced in secondary interactions, as the yields of both
are expected to be proportional to the luminosity. Previous
studies of track reconstruction in ATLAS show that in low
pile-up conditions (μ ≤ 1) and with a track selection looser
than the above-described default, single-beam backgrounds
remain well below the per-mille level [8]. However, for pile-
up parameters typical of 2012 physics running, tracks formed
from random hit combinations, known as fake tracks, can
become significant [9]. The track selection above is expected
to be robust against such non-linearities, as demonstrated by
analysing simulated events of overlaid inelastic pp interac-
tions produced using the PYTHIA 8 Monte Carlo event gen-
erator [10]. In the simulation, the fraction of fake tracks per
event can be parameterized as a function of the true pile-up
parameter, yielding a fake-track fraction of less than 0.2% at
μ = 20 for the default track selection. In data, this fake-track
contamination is subtracted from the measured track multi-

3 In this context, a hole is counted when a hit is expected in an active
sensor located on the track trajectory between the first and the last hit
associated with this track, but no such hit is found. If the corresponding
sensor is known to be inactive and therefore not expected to provide a
hit, no hole is counted.

plicity using the simulation-based parameterization with, as
input, the 〈μ〉 value reported by the BCMH_EventOR lumi-
nosity algorithm. An uncertainty equal to half the correction
is assigned to the measured track multiplicity to account for
possible systematic differences between data and simulation.

Biases in the track-counting luminosity measurement can
arise from μ-dependent effects in the track reconstruction
or selection requirements, which would change the reported
track-counting yield per collision between the low pile-up
vdM-calibration regime and the high-μ regime typical of
physics data-taking. Short- and long-term variations in the
track reconstruction and selection efficiency can also arise
from changing ID conditions, for example because of tem-
porarily disabled silicon readout modules. In general, looser
track selections are less sensitive to such fluctuations in
instrumental coverage; however, they typically suffer from
larger fake-track contamination.

To assess the impact of such potential biases, several
looser track selections, or working points (WP), are inves-
tigated. Most are found to be consistent with the default
working point once the uncertainty affecting the simulation-
based fake-track subtraction is accounted for. In the case
where the Pixel-hole requirement is relaxed from zero to no
more than one, a moderate difference in excess of the fake-
subtraction uncertainty is observed in the data. This work-
ing point, labelled “Pixel holes ≤1”, is used as an alternative
algorithm when evaluating the systematic uncertainties asso-
ciated with track-counting luminosity measurements.

In order to all but eliminate fake-track backgrounds and
minimize the associated μ-dependence, another alternative
is to remove the impact-parameter requirement and use
the resulting superset of tracks as input to the primary-
vertex reconstruction algorithm. Those tracks which, after
the vertex-reconstruction fit, have a non-negligible probabil-
ity of being associated to any primary vertex are counted to
provide an alternative luminosity measurement. In the simu-
lation, the performance of this “vertex-associated” working
point is comparable, in terms of fake-track fraction and other
residual non-linearities, to that of the default and “Pixel holes
≤1” track selections discussed above.

3.3 Bunch-integrating detectors

Additional algorithms, sensitive to the instantaneous lumi-
nosity summed over all bunches, provide relative-luminosity
monitoring on time scales of a few seconds rather than of a
bunch crossing, allowing independent checks of the linear-
ity and long-term stability of the BCM, LUCID and track-
counting algorithms. The first technique measures the parti-
cle flux from pp collisions as reflected in the current drawn
by the PMTs of the hadronic calorimeter (TileCal). This flux,
which is proportional to the instantaneous luminosity, is also
monitored by the total ionization current flowing through a
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well-chosen set of liquid-argon (LAr) calorimeter cells. A
third technique, using Medipix radiation monitors, measures
the average particle flux observed in these devices.

3.3.1 Photomultiplier currents in the central hadronic
calorimeter

The TileCal [11] is constructed from plastic-tile scintilla-
tors as the active medium and from steel absorber plates. It
covers the pseudorapidity range |η| < 1.7 and consists of a
long central cylindrical barrel and two smaller extended bar-
rels, one on each side of the long barrel. Each of these three
cylinders is divided azimuthally into 64 modules and seg-
mented into three radial sampling layers. Cells are defined in
each layer according to a projective geometry, and each cell
is connected by optical fibres to two photomultiplier tubes.
The current drawn by each PMT is proportional to the total
number of particles interacting in a given TileCal cell, and
provides a signal proportional to the luminosity summed over
all the colliding bunches. This current is monitored by an
integrator system with a time constant of 10 ms and is sensi-
tive to currents from 0.1 nA to 1.2 µA. The calibration and
the monitoring of the linearity of the integrator electronics
are ensured by a dedicated high-precision current-injection
system.

The collision-induced PMT current depends on the pseu-
dorapidity of the cell considered and on the radial sampling
in which it is located. The cells most sensitive to luminosity
variations are located near |η| ≈ 1.25; at a given pseudora-
pidity, the current is largest in the innermost sampling layer,
because the hadronic showers are progressively absorbed as
they expand in the middle and outer radial layers. Long-term
variations of the TileCal response are monitored, and cor-
rected if appropriate [3], by injecting a laser pulse directly
into the PMT, as well as by integrating the counting rate
from a 137Cs radioactive source that circulates between the
calorimeter cells during calibration runs.

The TileCal luminosity measurement is not directly cal-
ibrated by the vdM procedure, both because its slow and
asynchronous readout is not optimized to keep in step with
the scan protocol, and because the luminosity is too low
during the scan for many of its cells to provide accurate
measurements. Instead, the TileCal luminosity calibration
is performed in two steps. The PMT currents, corrected
for electronics pedestals and for non-collision backgrounds4

and averaged over the most sensitive cells, are first cross-
calibrated to the absolute luminosity reported by the BCM
during the April 2012 vdM scan session (Sect. 4). Since
these high-sensitivity cells would incur radiation damage at
the highest luminosities encountered during 2012, thereby

4 For each LHC fill, the currents are baseline-corrected using data
recorded shortly before the LHC beams are brought into collision.

requiring large calibration corrections, their luminosity scale
is transferred, during an early intermediate-luminosity run
and on a cell-by-cell basis, to the currents measured in the
remaining cells (the sensitivities of which are insufficient
under the low-luminosity conditions of vdM scans). The
luminosity reported in any other physics run is then com-
puted as the average, over the usable cells, of the individual
cell luminosities, determined by multiplying the baseline-
subtracted PMT current from that cell by the corresponding
calibration constant.

3.3.2 LAr-gap currents

The electromagnetic endcap (EMEC) and forward (FCal)
calorimeters are sampling devices that cover the pseudo-
rapidity ranges of, respectively, 1.5 < |η| < 3.2 and
3.2 < |η| < 4.9. They are housed in the two endcap cryostats
along with the hadronic endcap calorimeters.

The EMECs consist of accordion-shaped lead/stainless-
steel absorbers interspersed with honeycomb-insulated elec-
trodes that distribute the high voltage (HV) to the LAr-filled
gaps where the ionization electrons drift, and that collect the
associated electrical signal by capacitive coupling. In order
to keep the electric field across each LAr gap constant over
time, the HV supplies are regulated such that any voltage
drop induced by the particle flux through a given HV sector
is counterbalanced by a continuous injection of electrical cur-
rent. The value of this current is proportional to the particle
flux and thereby provides a relative-luminosity measurement
using the EMEC HV line considered.

Both forward calorimeters are divided longitudinally into
three modules. Each of these consists of a metallic absorber
matrix (copper in the first module, tungsten elsewhere) con-
taining cylindrical electrodes arranged parallel to the beam
axis. The electrodes are formed by a copper (or tungsten)
tube, into which a rod of slightly smaller diameter is inserted.
This rod, in turn, is positioned concentrically using a heli-
cally wound radiation-hard plastic fibre, which also serves to
electrically isolate the anode rod from the cathode tube. The
remaining small annular gap is filled with LAr as the active
medium. Only the first sampling is used for luminosity mea-
surements. It is divided into 16 azimuthal sectors, each fed
by 4 independent HV lines. As in the EMEC, the HV system
provides a stable electric field across the LAr gaps and the
current drawn from each line is directly proportional to the
average particle flux through the corresponding FCal cells.

After correction for electronic pedestals and single-beam
backgrounds, the observed currents are assumed to be pro-
portional to the luminosity summed over all bunches; the
validity of this assumption is assessed in Sect. 6. The EMEC
and FCal gap currents cannot be calibrated during a vdM scan,
because the instantaneous luminosity during these scans
remains below the sensitivity of the current-measurement
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circuitry. Instead, the calibration constant associated with an
individual HV line is evaluated as the ratio of the absolute
luminosity reported by the baseline bunch-by-bunch lumi-
nosity algorithm (BCMH_EventOR) and integrated over one
high-luminosity reference physics run, to the HV current
drawn through that line, pedestal-subtracted and integrated
over exactly the same time interval. This is done for each
usable HV line independently. The luminosity reported in
any other physics run by either the EMEC or the FCal, sep-
arately for the A and C detector arms, is then computed as
the average, over the usable cells, of the individual HV-line
luminosities.

3.3.3 Hit counting in the Medipix system

The Medipix (MPX) detectors are hybrid silicon pixel
devices, which are distributed around the ATLAS detec-
tor [12] and are primarily used to monitor radiation con-
ditions in the experimental hall. Each of these 12 devices
consists of a 2 cm2 silicon sensor matrix, segmented in
256 × 256 cells and bump-bonded to a readout chip. Each
pixel in the matrix counts hits from individual particle inter-
actions observed during a software-triggered “frame”, which
integrates over 5–120 s, depending upon the typical particle
flux at the location of the detector considered. In order to
provide calibrated luminosity measurements, the total num-
ber of pixel clusters observed in each sensor is counted and
scaled to the TileCal luminosity in the same reference run as
the EMEC and FCal. The six MPX detectors with the highest
counting rate are analysed in this fashion for the 2012 running
period; their mutual consistency is discussed in Sect. 6.

The hit-counting algorithm described above is primar-
ily sensitive to charged particles. The MPX detectors offer
the additional capability to detect thermal neutrons via
6Li(n, α)3H reactions in a 6LiF converter layer. This neutron-
counting rate provides a further measure of the luminosity,
which is consistent with, but statistically inferior to, the MPX
hit counting measurement [12].

4 Absolute luminosity calibration by the van der Meer
method

In order to use the measured interaction rateμvis as a luminos-
ity monitor, each detector and algorithm must be calibrated
by determining its visible cross-section σvis. The primary cal-
ibration technique to determine the absolute luminosity scale
of each bunch-by-bunch luminosity detector and algorithm
employs dedicated vdM scans to infer the delivered luminos-
ity at one point in time from the measurable parameters of
the colliding bunches. By comparing the known luminosity
delivered in the vdM scan to the visible interaction rate μvis,
the visible cross-section can be determined from Eq. (2).

This section is organized as follows. The formalism of the
van der Meer method is recalled in Sect. 4.1, followed in
Sect. 4.2 by a description of the vdM-calibration datasets
collected during the 2012 running period. The step-by-
step determination of the visible cross-section is outlined
in Sect. 4.3, and each ingredient is discussed in detail in
Sects. 4.4–4.10. The resulting absolute calibrations of the
bunch-by-bunch luminometers, as applicable to the low-
luminosity conditions of vdM scans, are summarized in
Sect. 4.11.

4.1 Absolute luminosity from measured beam parameters

In terms of colliding-beam parameters, the bunch luminosity
Lb is given by

Lb = fr n1n2

∫
ρ̂1(x, y) ρ̂2(x, y) dx dy, (5)

where the beams are assumed to collide with zero crossing
angle, n1n2 is the bunch-population product and ρ̂1(2)(x, y)

is the normalized particle density in the transverse (x–y)
plane of beam 1 (2) at the IP. With the standard assump-
tion that the particle densities can be factorized into inde-
pendent horizontal and vertical component distributions,
ρ̂(x, y) = ρx (x) ρy(y), Eq. (5) can be rewritten as

Lb = fr n1n2 �x (ρx1, ρx2)�y(ρy1, ρy2), (6)

where

�x (ρx1, ρx2) =
∫

ρx1(x) ρx2(x) dx

is the beam-overlap integral in the x direction (with an anal-
ogous definition in the y direction). In the method proposed
by van der Meer [2], the overlap integral (for example in the
x direction) can be calculated as

�x (ρx1, ρx2) = Rx (0)∫
Rx (δ) dδ

, (7)

where Rx (δ) is the luminosity (at this stage in arbitrary units)
measured during a horizontal scan at the time the two beams
are separated horizontally by the distance δ, and δ = 0 repre-
sents the case of zero beam separation. Because the luminos-
ity Rx (δ) is normalized to that at zero separation Rx (0), any
quantity proportional to the luminosity (such as μvis) can be
substituted in Eq. (7) in place of R.

Defining the horizontal convolved beam size �x [7,13] as

�x = 1√
2π

∫
Rx (δ) dδ

Rx (0)
, (8)
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and similarly for �y , the bunch luminosity in Eq. (6) can be
rewritten as

Lb = frn1n2

2π�x�y
, (9)

which allows the absolute bunch luminosity to be determined
from the revolution frequency fr , the bunch-population prod-
uct n1n2, and the product �x�y which is measured directly
during a pair of orthogonal vdM (beam-separation) scans.
In the case where the luminosity curve Rx (δ) is Gaussian,
�x coincides with the standard deviation of that distribution.
It is important to note that the vdM method does not rely
on any particular functional form of Rx (δ): the quantities �x

and �y can be determined for any observed luminosity curve
from Eq. (8) and used with Eq. (9) to determine the absolute
luminosity at δ = 0.

In the more general case where the factorization assump-
tion breaks down, i.e. when the particle densities [or more
precisely the dependence of the luminosity on the beam sep-
aration (δx , δy)] cannot be factorized into a product of uncor-
related x and y components, the formalism can be extended
to yield [4]

�x�y = 1

2π

∫
Rx,y(δx , δy) dδx dδy

Rx,y(0, 0)
, (10)

with Eq. (9) remaining formally unaffected. Luminosity cal-
ibration in the presence of non-factorizable bunch-density
distributions is discussed extensively in Sect. 4.8.

The measured product of the transverse convolved beam
sizes �x�y is directly related to the reference specific lumi-
nosity:5

Lspec ≡ Lb

n1n2
= fr

2π�x�y

which, together with the bunch currents, determines the abso-
lute luminosity scale. To calibrate a given luminosity algo-
rithm, one can equate the absolute luminosity computed from
beam parameters using Eq. (9) to that measured according to
Eq. (2) to get

σvis = μMAX
vis

2π �x�y

n1n2
, (11)

where μMAX
vis is the visible interaction rate per bunch crossing

reported at the peak of the scan curve by that particular algo-
rithm. Equation (11) provides a direct calibration of the visi-
ble cross-section σvis for each algorithm in terms of the peak

5 The specific luminosity is defined as the luminosity per bunch and
per unit bunch-population product [7].

visible interaction rate μMAX
vis , the product of the convolved

beam widths �x�y , and the bunch-population product n1n2.
In the presence of a significant crossing angle in one of

the scan planes, the formalism becomes considerably more
involved [14], but the conclusions remain unaltered and
Eqs. (8)–(11) remain valid. The non-zero vertical crossing
angle in some scan sessions widens the luminosity curve by
a factor that depends on the bunch length, the transverse beam
size and the crossing angle, but reduces the peak luminosity
by the same factor. The corresponding increase in the mea-
sured value of �y is exactly compensated by the decrease in
μMAX

vis , so that no correction for the crossing angle is needed
in the determination of σvis.

4.2 Luminosity-scan datasets

The beam conditions during vdM scans are different from
those in normal physics operation, with lower bunch inten-
sities and only a few tens of widely spaced bunches circulat-
ing. These conditions are optimized to reduce various sys-
tematic uncertainties in the calibration procedure [7]. Three
scan sessions were performed during 2012: in April, July, and
November (Table 2). The April scans were performed with
nominal collision optics (β� = 0.6 m), which minimizes the
accelerator set-up time but yields conditions which are inad-
equate for achieving the best possible calibration accuracy.6

The July and November scans were performed using dedi-
cated vdM-scan optics with β� = 11 m, in order to increase
the transverse beam sizes while retaining a sufficiently high
collision rate even in the tails of the scans. This strategy lim-
its the impact of the vertex-position resolution on the non-
factorization analysis, which is detailed in Sect. 4.8, and also
reduces potential μ-dependent calibration biases. In addi-
tion, the observation of large non-factorization effects in the
April and July scan data motivated, for the November scan,
a dedicated set-up of the LHC injector chain [16] to produce
more Gaussian and less correlated transverse beam profiles.

Since the luminosity can be different for each colliding-
bunch pair, both because the beam sizes differ from bunch to
bunch and because the bunch populations n1 and n2 can each
vary by up to ±10%, the determination of �x and �y and the
measurement of μMAX

vis are performed independently for each
colliding-bunch pair. As a result, and taking the November
session as an example, each scan set provides 29 independent
measurements of σvis, allowing detailed consistency checks.

6 The β function describes the single-particle motion and determines
the variation of the beam envelope along the beam trajectory. It is cal-
culated from the focusing properties of the magnetic lattice (see for
example Ref. [15]). The symbol β� denotes the value of the β function
at the IP.
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Table 2 Summary of the main characteristics of the 2012 vdM scans
performed at the ATLAS interaction point. The nominal tranverse beam
size is computed using the nominal LHC emittance (εN = 3.75 μm-
radians). The actual transverse emittance and single-beam size are esti-
mated by combining the convolved transverse widths measured in the

first scan of each session with the nominal IP β-function. The values
of the luminosity/bunch and of μ are given for zero beam separation
during the first scan. The specific luminosity decreases by 6–17% over
the duration of a given scan session

Scan labels I–III IV–IX X–XV

Date 16 April 2012 19 July 2012 22, 24 November 2012

LHC fill number 2520 2855, 2856 3311, 3316

Total number of bunches per beam 48 48 39

Number of bunches colliding in ATLAS 35 35 29

Typical number of protons per bunch n1,2 0.6 × 1011 0.9 × 1011 0.9 × 1011

Nominal β-function at the IP (β�) (m) 0.6 11 11

Nominal transverse single-beam size σ nom
b (µm) 23 98 98

Actual transverse emittance εN (µm-radians) 2.3 3.2 3.1

Actual transverse single-beam size σb (µm) 18 91 89

Actual transverse luminous size σL (≈ σb/
√

2) (µm) 13 65 63

Nominal vertical half crossing-angle (μrad) ±145 0 0

Typical luminosity/bunch (μb−1 s−1) 0.8 0.09 0.09

Pile-up parameter μ (interactions/crossing) 5.2 0.6 0.6

Scan sequence 3 sets of centred x + y
scans (I–III)

4 sets of centred x + y
scans (IV–VI, VIII)
plus 2 sets of x + y
off-axis scans (VII,
IX)

4 sets of centred x + y
scans (X, XI, XIV,
XV) plus 2 sets of
x + y off-axis scans
(XII, XIII)

Total scan steps per plane 25 25 (sets IV–VII) 25

17 (sets VIII–IX)

Maximum beam separation ±6σ nom
b ±6σ nom

b ±6σ nom
b

Scan duration per step (s) 20 30 30

To further test the reproducibility of the calibration pro-
cedure, multiple centred-scan7 sets, each consisting of one
horizontal scan and one vertical scan, are executed in the
same scan session. In November for instance, two sets of
centred scans (X and XI) were performed in quick succes-
sion, followed by two sets of off-axis scans (XII and XIII),
where the beams were separated by 340 and 200 µm respec-
tively in the non-scanning direction. A third set of centred
scans (XIV) was then performed as a reproducibility check.
A fourth centred scan set (XV) was carried out approximately
one day later in a different LHC fill.

The variation of the calibration results between individ-
ual scan sets in a given scan session is used to quantify the
reproducibility of the optimal relative beam position, the con-
volved beam sizes, and the visible cross-sections. The repro-
ducibility and consistency of the visible cross-section results
across the April, July and November scan sessions provide
a measure of the long-term stability of the response of each
detector, and are used to assess potential systematic biases

7 A centred (or on-axis) beam-separation scan is one where the beams
are kept centred on each other in the transverse direction orthogonal to
the scan axis. An offset (or off-axis) scan is one where the beams are
partially separated in the non-scanning direction.

in the vdM-calibration technique under different accelerator
conditions.

4.3 vdM-scan analysis methodology

The 2012 vdM scans were used to derive calibrations for
the LUCID_EventOR, BCM_EventOR and track-counting
algorithms. Since there are two distinct BCM readouts,
calibrations are determined separately for the horizontal
(BCMH) and vertical (BCMV) detector pairs. Similarly, the
fully inclusive (EventOR) and single-arm inclusive (EventA,
EventC) algorithms are calibrated independently. For the
April scan session, the dedicated track-counting event stream
(Sect. 3.2) used the same random trigger as during physics
operation. For the July and November sessions, where the
typical event rate was lower by an order of magnitude, track
counting was performed on events triggered by the ATLAS
Minimum Bias Trigger Scintillator (MBTS) [1]. Corrections
for MBTS trigger inefficiency and for CTP-induced deadtime
are applied, at each scan step separately, when calculating the
average number of tracks per event.

For each individual algorithm, the vdM data are analysed
in the same manner. The specific visible interaction rate
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μvis/(n1n2) is measured, for each colliding-bunch pair, as
a function of the nominal beam separation (i.e. the separa-
tion specified by the LHC control system) in two orthogonal
scan directions (x and y). The value of μvis is determined
from the raw counting rate using the formalism described in
Sect. 3.1 or 3.2. The specific interaction rate is used so that
the calculation of �x and �y properly takes into account the
bunch-current variation during the scan; the measurement of
the bunch-population product n1n2 is detailed in Sect. 4.10.

Figure 1 shows examples of horizontal-scan curves mea-
sured for a single BCID using two different algorithms. At
each scan step, the visible interaction rate μvis is first cor-
rected for afterglow, instrumental noise and beam-halo back-
grounds as described in Sect. 4.4, and the nominal beam sep-
aration is rescaled using the calibrated beam-separation scale
(Sect. 4.5). The impact of orbit drifts is addressed in Sect. 4.6,
and that of beam–beam deflections and of the dynamic-β
effect is discussed in Sect. 4.7. For each BCID and each
scan independently, a characteristic function is fitted to the
corrected data; the peak of the fitted function provides a mea-
surement of μMAX

vis , while the convolved width � is computed
from the integral of the function using Eq. (8). Depending on
the beam conditions, this function can be a single-Gaussian
function plus a constant term, a double-Gaussian function
plus a constant term, a Gaussian function times a polynomial
(plus a constant term), or other variations. As described in
Sect. 5, the differences between the results extracted using
different characteristic functions are taken into account as a
systematic uncertainty in the calibration result.

The combination of one horizontal (x) scan and one ver-
tical (y) scan is the minimum needed to perform a mea-
surement of σvis. In principle, while the μMAX

vis parameter is
detector- and algorithm-specific, the convolved widths �x

and �y , which together specify the head-on reference lumi-
nosity, do not need to be determined using that same detector
and algorithm. In practice, it is convenient to extract all the
parameters associated with a given algorithm consistently
from a single set of scan curves, and the average value of
μMAX

vis between the two scan planes is used. The correlations
between the fitted values of μMAX

vis , �x and �y are taken into
account when evaluating the statistical uncertainty affecting
σvis.

Each BCID should yield the same measured σvis value,
and so the average over all BCIDs is taken as the σvis mea-
surement for the scan set under consideration. The bunch-to-
bunch consistency of the visible cross-section for a given
luminosity algorithm, as well as the level of agreement
between � values measured by different detectors and algo-
rithms in a given scan set, are discussed in Sect. 5 as part of
the systematic uncertainty.

Once visible cross-sections have been determined from
each scan set as described above, two beam-dynamical
effects must be considered (and if appropriate corrected
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Fig. 1 Beam-separation dependence of the specific visible interaction
rate measured using the a LUCID_EventOR and b BCMH_EventOR
algorithms during horizontal scan X, before (red circles) and after (pur-
ple squares) afterglow, noise and single-beam background subtraction.
The subtracted contributions are shown as triangles. The scan curves
are fitted to a Gaussian function multiplied by a sixth-order polynomial,
plus a constant

for), both associated with the shape of the colliding bunches
in transverse phase space: non-factorization and emittance
growth. These are discussed in Sects. 4.8 and 4.9 respectively.

4.4 Background subtraction

The vdM calibration procedure is affected by three distinct
background contributions to the luminosity signal: afterglow,
instrumental noise, and single-beam backgrounds.

As detailed in Refs. [3,5], both the LUCID and BCM
detectors observe some small activity in the BCIDs immedi-
ately following a collision, which in later BCIDs decays to
a baseline value with several different time constants. This
afterglow is most likely caused by photons from nuclear de-
excitation, which in turn is induced by the hadronic cascades
initiated by pp collision products. For a given bunch pat-
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tern, the afterglow level is observed to be proportional to the
luminosity in the colliding-bunch slots. During vdM scans, it
lies three to four orders of magnitude below the luminosity
signal, but reaches a few tenths of a percent during physics
running because of the much denser bunch pattern.

Instrumental noise is, under normal circumstances, a few
times smaller than the single-beam backgrounds, and remains
negligible except at the largest beam separations. However,
during a one-month period in late 2012 that includes the
November vdM scans, the A arm of both BCM detectors
was affected by high-rate electronic noise corresponding to
about 0.5% (1%) of the visible interaction rate, at the peak of
the scan, in the BCMH (BCMV) diamond sensors (Fig. 1b).
This temporary perturbation, the cause of which could not
be identified, disappeared a few days after the scan session.
Nonetheless, it was large enough that a careful subtraction
procedure had to be implemented in order for this noise not
to bias the fit of the BCM luminosity-scan curves.

Since afterglow and instrumental noise both induce ran-
dom hits at a rate that varies slowly from one BCID to the
next, they are subtracted together from the raw visible inter-
action rate μvis in each colliding-bunch slot. Their combined
magnitude is estimated using the rate measured in the imme-
diately preceding bunch slot, assuming that the variation of
the afterglow level from one bunch slot to the next can be
neglected.

A third background contribution arises from activity cor-
related with the passage of a single beam through the detec-
tor. This activity is attributed to a combination of shower
debris from beam–gas interactions and from beam-tail parti-
cles that populate the beam halo and impinge on the luminos-
ity detectors in time with the circulating bunch. It is observed
to be proportional to the bunch population, can differ slightly
between beams 1 and 2, but is otherwise uniform for all
bunches in a given beam. The total single-beam background
in a colliding-bunch slot is estimated by measuring the single-
beam rates in unpaired bunches (after subtracting the after-
glow and noise as done for colliding-bunch slots), separately
for beam 1 and beam 2, rescaling them by the ratio of the
bunch populations in the unpaired and colliding bunches,
and summing the contributions from the two beams. This
background typically amounts to 2 × 10−4 (8 × 10−4) of
the luminosity at the peak of the scan for the LUCID (BCM)
EventOR algorithms. Because it depends neither on the lumi-
nosity nor on the beam separation, it can become comparable
to the actual luminosity in the tails of the scans.

4.5 Determination of the absolute beam-separation scale

Another key input to the vdM scan technique is the knowl-
edge of the beam separation at each scan step. The ability to
measure � depends upon knowing the absolute distance by
which the beams are separated during the vdM scan, which
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Fig. 2 Length-scale calibration scan for the x direction of beam 2.
Shown is the measured displacement of the luminous centroid as a
function of the expected displacement based on the corrector bump
amplitude. The line is a linear fit to the data, and the residual is shown
in the bottom panel. Error bars are statistical only

is controlled by a set of closed orbit bumps8 applied locally
near the ATLAS IP. To determine this beam-separation scale,
dedicated calibration measurements were performed close in
time to the April and July scan sessions using the same optical
configuration at the interaction point. Such length-scale scans
are performed by displacing both beams transversely by five
steps over a range of up to ±3σ nom

b , at each step keeping the
beams well centred on each other in the scanning plane. The
actual displacement of the luminous region can then be mea-
sured with high accuracy using the primary-vertex position
reconstructed by the ATLAS tracking detectors. Since each
of the four bump amplitudes (two beams in two transverse
directions) depends on different magnet and lattice functions,
the length-scale calibration scans are performed so that each
of these four calibration constants can be extracted indepen-
dently. The July 2012 calibration data for the horizontal bump
of beam 2 are presented in Fig. 2. The scale factor which
relates the nominal beam displacement to the measured dis-
placement of the luminous centroid is given by the slope of
the fitted straight line; the intercept is irrelevant.

Since the coefficients relating magnet currents to beam
displacements depend on the interaction-region optics, the
absolute length scale depends on the β� setting and must

8 A closed orbit bump is a local distortion of the beam orbit that is
implemented using pairs of steering dipoles located on either side of
the affected region. In this particular case, these bumps are tuned to
offset the trajectory of either beam parallel to itself at the IP, in either
the horizontal or the vertical direction.
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Table 3 Length-scale calibrations at the ATLAS interaction point at√
s = 8 TeV. Values shown are the ratio of the beam displacement mea-

sured by ATLAS using the average primary-vertex position, to the nom-
inal displacement entered into the accelerator control system. Ratios are

shown for each individual beam in both planes, as well as for the beam-
separation scale that determines that of the convolved beam sizes in the
vdM scan. The uncertainties are statistical only

Calibration session(s) April 2012 July 2012 (applicable to November)
β� 0.6 m 11 m

Horizontal Vertical Horizontal Vertical

Displacement scale

Beam 1 0.9882 ± 0.0008 0.9881 ± 0.0008 0.9970 ± 0.0004 0.9961 ± 0.0006

Beam 2 0.9822 ± 0.0008 0.9897 ± 0.0009 0.9964 ± 0.0004 0.9951 ± 0.0004

Separation scale 0.9852 ± 0.0006 0.9889 ± 0.0006 0.9967 ± 0.0003 0.9956 ± 0.0004

be recalibrated when the latter changes. The results of the
2012 length-scale calibrations are summarized in Table 3.
Because the beam-separation scans discussed in Sect. 4.2
are performed by displacing the two beams symmetrically
in opposite directions, the relevant scale factor in the deter-
mination of � is the average of the scale factors for beam
1 and beam 2 in each plane. A total correction of −2.57%
(−0.77%) is applied to the convolved-width product �x�y

and to the visible cross-sections measured during the April
(July and November) 2012 vdM scans.

4.6 Orbit-drift corrections

Transverse drifts of the individual beam orbits at the IP dur-
ing a scan session can distort the luminosity-scan curves and,
if large enough, bias the determination of the overlap inte-
grals and/or of the peak interaction rate. Such effects are
monitored by extrapolating to the IP beam-orbit segments
measured using beam-position monitors (BPMs) located in
the LHC arcs [17], where the beam trajectories should remain
unaffected by the vdM closed-orbit bumps across the IP. This
procedure is applied to each beam separately and provides
measurements of the relative drift of the two beams during
the scan session, which are used to correct the beam separa-
tion at each scan step as well as between the x and y scans.
The resulting impact on the visible cross-section varies from
one scan set to the next; it does not exceed ±0.6% in any
2012 scan set, except for scan set X where the orbits drifted
rapidly enough for the correction to reach +1.1%.

4.7 Beam–beam corrections

When charged-particle bunches collide, the electromagnetic
field generated by a bunch in beam 1 distorts the individ-
ual particle trajectories in the corresponding bunch of beam
2 (and vice-versa). This so-called beam–beam interaction
affects the scan data in two ways.

First, when the bunches are not exactly centred on each
other in the x–y plane, their electromagnetic repulsion

induces a mutual angular kick [18] of a fraction of a micro-
radian and modulates the actual transverse separation at the
IP in a manner that depends on the separation itself. The
phenomenon is well known from e+e− colliders and has
been observed at the LHC at a level consistent with predic-
tions [17]. If left unaccounted for, these beam–beam deflec-
tions would bias the measurement of the overlap integrals in
a manner that depends on the bunch parameters.

The second phenomenon, called dynamic β [19], arises
from the mutual defocusing of the two colliding bunches:
this effect is conceptually analogous to inserting a small
quadrupole at the collision point. The resulting fractional
change in β�, or equivalently the optical demagnification
between the LHC arcs and the collision point, varies with
the transverse beam separation, slightly modifying, at each
scan step, the effective beam separation in both planes (and
thereby also the collision rate), and resulting in a distortion
of the shape of the vdM scan curves.

The amplitude and the beam-separation dependence of
both effects depend similarly on the beam energy, the
tunes9 and the unperturbed β-functions, as well as on the
bunch intensities and transverse beam sizes. The beam–beam
deflections and associated orbit distortions are calculated
analytically [13] assuming elliptical Gaussian beams that col-
lide in ATLAS only. For a typical bunch, the peak angular
kick during the November 2012 scans is about ±0.25µrad,
and the corresponding peak increase in relative beam sepa-
ration amounts to ±1.7µm. The MAD-X optics code [20]
is used to validate this analytical calculation, and to verify
that higher-order dynamical effects (such as the orbit shifts
induced at other collision points by beam–beam deflections
at the ATLAS IP) result in negligible corrections to the ana-
lytical prediction.

The dynamic evolution of β� during the scan is modelled
using the MAD-X simulation assuming bunch parameters
representative of the May 2011 vdM scan [3], and then scaled

9 The tune of a storage ring is defined as the betatron phase advance
per turn, or equivalently as the number of betatron oscillations over one
full ring circumference.
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using the beam energies, the β� settings, as well as the mea-
sured intensities and convolved beam sizes of each colliding-
bunch pair. The correction function is intrinsically indepen-
dent of whether the bunches collide in ATLAS only, or also at
other LHC interaction points [19]. For the November session,
the peak-to-peak β� variation during a scan is about 1.1%.

At each scan step, the predicted deflection-induced change
in beam separation is added to the nominal beam separa-
tion, and the dynamic-β effect is accounted for by rescaling
both the effective beam separation and the measured visible
interaction rate to reflect the beam-separation dependence
of the IP β-functions. Comparing the results of the 2012
scan analysis without and with beam–beam corrections, it is
found that the visible cross-sections are increased by 1.2–
1.8% by the deflection correction, and reduced by 0.2–0.3%
by the dynamic-β correction. The net combined effect of
these beam–beam corrections is a 0.9–1.5% increase of the
visible cross-sections, depending on the scan set considered.

4.8 Non-factorization effects

The original vdM formalism [2] explicitly assumes that the
particle densities in each bunch can be factorized into inde-
pendent horizontal and vertical components, such that the
term 1/2π�x�y in Eq. (9) fully describes the overlap integral
of the two beams. If this factorization assumption is violated,
the horizontal (vertical) convolved beam width �x (�y) is no
longer independent of the vertical (horizontal) beam separa-
tion δy (δx ); similarly, the transverse luminous size [7] in one
plane (σxL or σyL), as extracted from the spatial distribution
of reconstructed collision vertices, depends on the separation
in the other plane. The generalized vdM formalism summa-
rized by Eq. (10) correctly handles such two-dimensional
luminosity distributions, provided the dependence of these
distributions on the beam separation in the transverse plane
is known with sufficient accuracy.

Non-factorization effects are unambiguously observed in
some of the 2012 scan sessions, both from significant dif-
ferences in �x (�y) between a standard scan and an off-
axis scan, during which the beams are partially separated in
the non-scanning plane (Sect. 4.8.1), and from the δx (δy)
dependence of σyL (σxL) during a standard horizontal (ver-
tical) scan (Sect. 4.8.2). Non-factorization effects can also
be quantified, albeit with more restrictive assumptions, by
performing a simultaneous fit to horizontal and vertical vdM
scan curves using a non-factorizable function to describe the
simultaneous dependence of the luminosity on the x and y
beam separation (Sect. 4.8.3).

A large part of the scan-to-scan irreproducibility observed
during the April and July scan sessions can be attributed
to non-factorization effects, as discussed for ATLAS in
Sect. 4.8.4 below and as independently reported by the LHCb
Collaboration [21]. The strength of the effect varies widely

across vdM scan sessions, differs somewhat from one bunch
to the next and evolves with time within one LHC fill. Overall,
the body of available observations can be explained neither
by residual linear x–y coupling in the LHC optics [3,22], nor
by crossing-angle or beam–beam effects; instead, it points to
non-linear transverse correlations in the phase space of the
individual bunches. This phenomenon was never envisaged
at previous colliders, and was considered for the first time
at the LHC [3] as a possible source of systematic uncer-
tainty in the absolute luminosity scale. More recently, the
non-factorizability of individual bunch density distributions
was demonstrated directly by an LHCb beam–gas imaging
analysis [21].

4.8.1 Off-axis vdM scans

An unambiguous signature of non-factorization can be pro-
vided by comparing the transverse convolved width mea-
sured during centred (or on-axis) vdM scans with the same
quantity extracted from an offset (or off-axis) scan, i.e. one
where the two beams are significantly separated in the direc-
tion orthogonal to that of the scan. This is illustrated in
Fig. 3a. The beams remained vertically centred on each other
during the first three horizontal scans (the first horizontal
scan) of LHC fill 2855 (fill 2856), and were separated verti-
cally by approximately 340µm (roughly 4σb) during the last
horizontal scan in each fill. In both fills, the horizontal con-
volved beam size is significantly larger when the beams are
vertically separated, demonstrating that the horizontal lumi-
nosity distribution depends on the vertical beam separation,
i.e. that the horizontal and vertical luminosity distributions
do not factorize.

The same measurement was carried out during the Novem-
ber scan session: the beams remained vertically centred on
each other during the first, second and last scans (Fig. 3b),
and were separated vertically by about 340 (200)µm dur-
ing the third (fourth) scan. The horizontal convolved beam
size increases with time at an approximately constant rate,
reflecting transverse-emittance growth. No significant devia-
tion from this trend is observed when the beams are separated
vertically, suggesting that the horizontal luminosity distribu-
tion is independent of the vertical beam separation, i.e. that
during the November scan session the horizontal and vertical
luminosity distributions approximately factorize.

4.8.2 Determination of single-beam parameters from
luminous-region and luminosity-scan data

While a single off-axis scan can provide convincing evi-
dence for non-factorization, it samples only one thin slice
in the (δx , δy) beam-separation space and is therefore insuf-
ficient to fully determine the two-dimensional luminosity
distribution. Characterizing the latter by performing an x–
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Fig. 3 Time evolution of the horizontal convolved beam size �x
for five different colliding-bunch pairs (BCIDs), measured using the
LUCID_EventOR luminosity algorithm during the a July andbNovem-
ber 2012 vdM-scan sessions

y grid scan (rather than two one-dimensional x and y scans)
would be prohibitively expensive in terms of beam time,
as well as limited by potential emittance-growth biases.
The strategy, therefore, is to retain the standard vdM tech-
nique (which assumes factorization) as the baseline calibra-
tion method, and to use the data to constrain possible non-
factorization biases. In the absence of input from beam–gas
imaging (which requires a vertex-position resolution within
the reach of LHCb only), the most powerful approach so far
has been the modelling of the simultaneous beam-separation-
dependence of the luminosity and of the luminous-region
geometry. In this procedure, the parameters describing the
transverse proton-density distribution of individual bunches
are determined by fitting the evolution, during vdM scans, not
only of the luminosity itself but also of the position, orienta-
tion and shape of its spatial distribution, as reflected by that
of reconstructed pp-collision vertices [23]. Luminosity pro-

files are then generated for simulated vdM scans using these
fitted single-beam parameters, and analysed in the same fash-
ion as real vdM scan data. The impact of non-factorization
on the absolute luminosity scale is quantified by the ratio
RNF of the “measured” luminosity extracted from the one-
dimensional simulated luminosity profiles using the standard
vdM method, to the “true” luminosity from the computed
four-dimensional (x , y, z, t) overlap integral [7] of the single-
bunch distributions at zero beam separation. This technique
is closely related to beam–beam imaging [7,24,25], with the
notable difference that it is much less sensitive to the vertex-
position resolution because it is used only to estimate a small
fractional correction to the overlap integral, rather than its
full value.

The luminous region is modelled by a three-dimensional
(3D) ellipsoid [7]. Its parameters are extracted, at each scan
step, from an unbinned maximum-likelihood fit of a 3D Gaus-
sian function to the spatial distribution of the reconstructed
primary vertices that were collected, at the corresponding
beam separation, from the limited subset of colliding-bunch
pairs monitored by the high-rate, dedicated ID-only data
stream (Sect. 3.2). The vertex-position resolution, which is
somewhat larger (smaller) than the transverse luminous size
during scan sets I–III (scan sets IV–XV), is determined from
the data as part of the fitting procedure [23]. It potentially
impacts the reported horizontal and vertical luminous sizes,
but not the measured position, orientation nor length of the
luminous ellipsoid.

The single-bunch proton-density distributions ρB(x, y, z)
are parameterized, independently for each beam B (B = 1,
2), as the non-factorizable sum of up to three 3D Gaussian
or super-Gaussian [26] distributions (Ga, Gb, Gc) with arbi-
trary widths and orientations [27,28]:

ρB = waB×GaB+(1−waB)[wbB×GbB+(1−wbB)×GcB] ,

where the weights wa(b)B , (1−wa(b)B) add up to one by con-
struction. The overlap integral of these density distributions,
which allows for a crossing angle in both planes, is evaluated
at each scan step to predict the produced luminosity and the
geometry of the luminous region for a given set of bunch
parameters. This calculation takes into account the impact,
on the relevant observables, of the luminosity backgrounds,
orbit drifts and beam–beam corrections. The bunch parame-
ters are then adjusted, by means of a χ2-minimization proce-
dure, to provide the best possible description of the centroid
position, the orientation and the resolution-corrected widths
of the luminous region measured at each step of a given set of
on-axis x and y scans. Such a fit is illustrated in Fig. 4 for one
of the horizontal scans in the July 2012 session. The good-
ness of fit is satisfactory (χ2 = 1.3 per degree of freedom),
even if some systematic deviations are apparent in the tails of
the scan. The strong horizontal-separation dependence of the
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Fig. 4 Beam-separation dependence of the luminosity and of a sub-
set of luminous-region parameters during horizontal vdM scan IV. The
points represent a the specific visible interaction rate (or equivalently

the specific luminosity), b the horizontal position of the luminous cen-
troid, c, d the horizontal and vertical luminous widths σxL and σyL.
The red line is the result of the fit described in the text

vertical luminous size (Fig. 4d) confirms the presence of sig-
nificant non-factorization effects, as already established from
the off-axis luminosity data for that scan session (Fig. 3a).

This procedure is applied to all 2012 vdM scan sets,
and the results are summarized in Fig. 5. The luminosity
extracted from the standard vdM analysis with the assump-
tion that factorization is valid, is larger than that com-
puted from the reconstructed single-bunch parameters. This
implies that neglecting non-factorization effects in the vdM
calibration leads to overestimating the absolute luminos-
ity scale (or equivalently underestimating the visible cross-
section) by up to 3% (4.5%) in the April (July) scan session.
Non-factorization biases remain below 0.8% in the Novem-
ber scans, thanks to bunch-tailoring in the LHC injector
chain [16]. These observations are consistent, in terms both
of absolute magnitude and of time evolution within a scan
session, with those reported by LHCb [21] and CMS [29,30]
in the same fills.

4.8.3 Non-factorizable vdM fits to luminosity-scan data

A second approach, which does not use luminous-region
data, performs a combined fit of the measured beam-
separation dependence of the specific visible interaction rate
to horizontal- and vertical-scan data simultaneously, in order
to determine the overlap integral(s) defined by either Eq. (8)
or Eq. (10). Considered fit functions include factorizable or
non-factorizable combinations of two-dimensional Gaussian
or other functions (super-Gaussian, Gaussian times polyno-
mial) where the (non-)factorizability between the two scan
directions is imposed by construction.

The fractional difference between σvis values extracted
from such factorizable and non-factorizable fits, i.e. the mul-
tiplicative correction factor to be applied to visible cross-
sections extracted from a standard vdM analysis, is consis-
tent with the equivalent ratio RNF extracted from the analysis
of Sect. 4.8.2 within 0.5% or less for all scan sets. Com-
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Fig. 5 Ratio RNF of the
luminosity determined by the
vdM method assuming
factorization, to that evaluated
from the overlap integral of the
reconstructed single-bunch
profiles at the peak of each scan
set. The results are colour-coded
by scan session. Each point
corresponds to one
colliding-bunch pair in the
dedicated ID-only stream. The
statistical errors are smaller than
the symbols
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bined with the results of the off-axis scans, this confirms that
while the April and July vdM analyses require substantial
non-factorization corrections, non-factorization biases dur-
ing the November scan session remain small.

4.8.4 Non-factorization corrections and scan-to-scan
consistency

Non-factorization corrections significantly improve the repro-
ducibility of the calibration results (Fig. 6). Within a given
LHC fill and in the absence of non-factorization correc-
tions, the visible cross-section increases with time, as also
observed at other IPs in the same fills [21,29], suggest-
ing that the underlying non-linear correlations evolve over

time. Applying the non-factorization corrections extracted
from the luminous-region analysis dramatically improves
the scan-to-scan consistency within the April and July scan
sessions, as well as from one session to the next. The
1.0–1.4% inconsistency between the fully corrected cross-
sections (black circles) in scan sets I–III and in later scans,
as well as the difference between fills 2855 and 2856 in the
July session, are discussed in Sect. 4.11.

4.9 Emittance-growth correction

The vdM scan formalism assumes that both convolved beam
sizes �x , �y (and therefore the transverse emittances of each
beam) remain constant, both during a single x or y scan and
in the interval between the horizontal scan and the associated
vertical scan.

Emittance growth within a scan would manifest itself by a
slight distortion of the scan curve. The associated systematic
uncertainty, determined from pseudo-scans simulated with
the observed level of emittance growth, was found to be neg-
ligible.

Emittance growth between scans manifests itself by a
slight increase of the measured value of � from one scan to
the next, and by a simultaneous decrease in specific lumi-
nosity. Each scan set requires 40–60 min, during which
time the convolved beam sizes each grow by 1–2%, and
the peak specific interaction rate decreases accordingly as
1/(�x�y). This is illustrated in Fig. 7, which displays the �x

and μMAX
vis /(n1n2) values measured by the BCMH_EventOR

algorithm during scan sets XI, XIV and XV. For each BCID,
the convolved beam sizes increase, and the peak specific
interaction rate decreases, from scan XI to scan XIV; since
scan XV took place very early in the following fill, the cor-
responding transverse beam sizes (specific rates) are smaller
(larger) than for the previous scan sets.
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Fig. 7 Bunch-by-bunch a horizontal convolved beam size and b peak
specific interaction rate measured in scan sets XI, XIV, and XV for the
BCMH_EventOR algorithm. The vertical lines represent the weighted

average over colliding-bunch pairs for each scan set separately. The
error bars are statistical only, and are approximately the size of the
marker

If the horizontal and vertical emittances grow at identi-
cal rates, the procedure described in Sect. 4.3 remains valid
without any need for correction, provided that the decrease
in peak rate is fully accounted for by the increase in (�x�y),
and that the peak specific interaction rate in Eq. (11) is com-
puted as the average of the specific rates at the peak of the
horizontal and the vertical scan:

μMAX
vis /n1n2 = (μMAX

vis /n1n2)x + (μMAX
vis /n1n2)y

2
.

The horizontal-emittance growth rate is measured from
the bunch-by-bunch difference in fitted convolved width
between two consecutive horizontal scans in the same LHC
fill, and similarly for the vertical emittance. For LHC fill
3311 (scan sets X–XIV), these measurements reveal that the
horizontal convolved width grew 1.5–2 times faster than the
vertical width. The potential bias associated with unequal
horizontal and vertical growth rates can be corrected for by
interpolating the measured values of �x , �y and μMAX

vis to a
common reference time, assuming that all three observables
evolve linearly with time. This reference time is in principle
arbitrary: it can be, for instance, the peak of the x scan (in
which case only �y needs to be interpolated), or the peak
of the y scan, or any other value. The visible cross-section,
computed from Eq. (11) using measured values projected
to a common reference time, should be independent of the
reference time chosen.

Applying this procedure to the November scan session
results in fractional corrections to σvis of 1.38, 0.22 and
0.04% for scan sets X, XI and XIV, respectively. The cor-
rection for scan set X is exceptionally large because opera-
tional difficulties forced an abnormally long delay (almost
two hours) between the horizontal scan and the vertical scan,
exacerbating the impact of the unequal horizontal and verti-
cal growth rates; its magnitude is validated by the noticeable
improvement it brings to the scan-to-scan reproducibility of
σvis.

No correction is available for scan set XV, as no other scans
were performed in LHC fill 3316. However, in that case the
delay between the x and y scans was short enough, and the
consistency of the resulting σvis values with those in scan
sets XI and XIV sufficiently good (Fig. 6), that this missing
correction is small enough to be covered by the systematic
uncertainties discussed in Sects. 5.2.6 and 5.2.8.

Applying the same procedure to the July scan ses-
sion yields emittance-growth corrections below 0.3% in all
cases. However, the above-described correction procedure
is, strictly speaking, applicable only when non-factorization
effects are small enough to be neglected. When the factor-
ization hypothesis no longer holds, the very concept of sepa-
rating horizontal and vertical emittance growth is ill-defined.
In addition, the time evolution of the fitted one-dimensional
convolved widths and of the associated peak specific rates is
presumably more influenced by the progressive dilution, over
time, of the non-factorization effects discussed in Sect. 4.8
above. Therefore, and given that the non-factorization cor-
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Table 4 Systematic
uncertainties affecting the
bunch-population product n1n2
during the 2012 vdM scans

Scan set number I–III IV–VII VIII–IX X–XIV XV

LHC fill number 2520 2855 2856 3311 3316

Fractional systematic uncertainty (%)

Total intensity scale (DCCT) 0.26 0.21 0.21 0.22 0.23

Bunch-by-bunch fraction (FBCT) 0.03 0.04 0.04 0.04 0.04

Ghost charge (LHCb beam–gas) 0.04 0.03 0.04 0.04 0.02

Satellites (longitudinal density monitor) 0.07 0.02 0.03 0.01 <0.01

Total 0.27 0.22 0.22 0.24 0.23

rections applied to scan sets I–VIII (Fig. 5) are up to ten
times larger than a typical emittance-growth correction, no
such correction is applied to the April and July scan results;
an appropriately conservative systematic uncertainty must be
assigned instead.

4.10 Bunch-population determination

The bunch-population measurements are performed by the
LHC Bunch-Current Normalization Working Group and
have been described in detail in Refs. [21,27,31–33]. A brief
summary of the analysis is presented here. The fractional
uncertainties affecting the bunch-population product (n1n2)
are summarized in Table 4.

The LHC bunch currents are determined in a multi-step
process due to the different capabilities of the available
instrumentation. First, the total intensity of each beam is
monitored by two identical and redundant DC current trans-
formers (DCCT), which are high-accuracy devices but have
no ability to distinguish individual bunch populations. Each
beam is also monitored by two fast beam-current transform-
ers (FBCT), which measure relative bunch currents individ-
ually for each of the 3564 nominal 25 ns slots in each beam;
these fractional bunch populations are converted into abso-
lute bunch currents using the overall current scale provided
by the DCCT. Finally, corrections are applied to account for
out-of-time charge present in a given BCID but not colliding
at the interaction point.

A precision current source with a relative accuracy of
0.05% is used to calibrate the DCCT at regular intervals.
An exhaustive analysis of the various sources of system-
atic uncertainty in the absolute scale of the DCCT, including
in particular residual non-linearities, long-term stability and
dependence on beam conditions, is documented in Ref. [31].
In practice, the uncertainty depends on the beam intensity
and the acquisition conditions, and must be evaluated on a
fill-by-fill basis; it typically translates into a 0.2–0.3% uncer-
tainty in the absolute luminosity scale.

Because of the highly demanding bandwidth specifica-
tions dictated by single-bunch current measurements, the
FBCT response is potentially sensitive to the frequency spec-

trum radiated by the circulating bunches, timing adjust-
ments with respect to the RF phase, and bunch-to-bunch
intensity or length variations. Dedicated laboratory mea-
surements and beam experiments, comparisons with the
response of other bunch-aware beam instrumentation (such
as the ATLAS beam pick-up timing system), as well as
the imposition of constraints on the bunch-to-bunch con-
sistency of the measured visible cross-sections, resulted in
a <0.04% systematic luminosity-calibration uncertainty in
the luminosity scale arising from the relative-intensity mea-
surements [27,32].

Additional corrections to the bunch-by-bunch population
are made to correct for ghost charge and satellite bunches.
Ghost charge refers to protons that are present in nomi-
nally empty bunch slots at a level below the FBCT thresh-
old (and hence invisible), but which still contribute to the
current measured by the more accurate DCCT. Highly pre-
cise measurements of these tiny currents (normally at most a
few per mille of the total intensity) have been achieved [27]
by comparing the number of beam–gas vertices recon-
structed by LHCb in nominally empty bunch slots, to that
in non-colliding bunches whose current is easily measur-
able. For the 2012 luminosity-calibration fills, the ghost-
charge correction to the bunch-population product ranges
from −0.21 to −0.65%; its systematic uncertainty is domi-
nated by that affecting the LHCb trigger efficiency for beam–
gas events.

Satellite bunches describe out-of-time protons present in
collision bunch slots that are measured by the FBCT, but
that remain captured in an RF bucket at least one period
(2.5 ns) away from the nominally filled LHC bucket. As
such, they experience at most long-range encounters with
the nominally filled bunches in the other beam. The best
measurements are obtained using the longitudinal density
monitor. This instrument uses avalanche photodiodes with
90 ps timing resolution to compare the number of infrared
synchrotron-radiation photons originating from satellite RF
buckets, to that from the nominally filled buckets. The correc-
tions to the bunch-population product range from −0.03 to
−0.65%, with the lowest satellite fraction achieved in scans
X–XV. The measurement techniques, as well as the associ-
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ated corrections and systematic uncertainties, are detailed in
Ref. [33].

4.11 Calibration results

4.11.1 Summary of calibration corrections

With the exception of the noise and single-beam back-
ground subtractions (which depend on the location, geom-
etry and instrumental response of individual subdetectors),
all the above corrections to the vdM-calibrated visible cross-
sections are intrinsically independent of the luminometer
and luminosity algorithm considered. The beam-separation
scale, as well as the orbit-drift and beam–beam corrections,
impact the effective beam separation at each scan step; the
non-factorization and emittance-growth corrections depend
on the properties of each colliding bunch-pair and on their
time evolution over the course of a fill; and corrections to the
bunch-population product translate into an overall scale fac-
tor that is common to all scan sets within a given LHC fill. The
mutual consistency of these corrections was explicitly ver-
ified for the LUCID_EventOR and BCM_EventOR visible
cross-sections, for which independently determined correc-
tions are in excellent agreement. As the other algorithms (in
particular track counting) are statistically less precise during
vdM scans, their visible cross-sections are corrected using
scale factors extracted from the LUCID_EventOR scan anal-
ysis.

The dominant correction in scan sets I–VIII (Fig. 8) is
associated with non-factorization; it is also the most uncer-
tain, because it is sensitive to the vertex-position resolution,
especially in scan sets I–III where the transverse luminous
size is significantly smaller than the resolution. In contrast,
non-factorization corrections are moderate in scan sets X–
XV, suggesting a correspondingly minor contribution to the
systematic uncertainty for the November scan session.

The next largest correction in scan sets I–III is that of the
beam-separation scale, which, because of different β� set-
tings, is uncorrelated between the April session and the other
two sessions, and fully correlated across scan sets IV–XV
(Sect. 5.1.3). The correction to the bunch-population prod-
uct is equally shared among FBCT, ghost-charge and satellite
corrections in scan sets I–III, and dominated by the ghost-
charge subtraction in scans IV–XV. This correction is uncor-
related between scan sessions, but fully correlated between
scan sets in the same fill.

Of comparable magnitude across all scan sets, and par-
tially correlated between them, is the beam–beam correc-
tion; its systematic uncertainty is moderate and can be calcu-
lated reliably (Sect. 5.2.3). The uncertainties associated with
orbit drifts (Sect. 5.2.1) and emittance growth (Sect. 5.2.6)
are small, except for scan set X where these corrections are
largest.
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Fig. 8 Luminometer-independent corrections to the visible cross-
sections calibrated by the van der Meer method, averaged over all col-
liding bunches and displayed separately for each scan set. The length–
scale, beam–beam, non-factorization and bunch–population corrections
are discussed in Sects. 4.5, 4.7, 4.8 and 4.10, respectively. The orbit–drift
(Sect. 4.6) and emittance–growth (Sect. 4.9) corrections are combined
for clarity, and their cumulative effect is displayed as “beam evolution”.
The sum of all corrections is shown, for each scan set, by the red line

4.11.2 Consistency of vdM calibrations across 2012 scan
sessions

The relative stability of vdM calibrations, across scan sets
within a scan session and from one scan session to the next,
can be quantified by the ratio Sk

calib, j of the visible cross-
section for luminosity algorithm k (k = BCMH_EventOR,
BCMV_EventOR, LUCID_EventA,…) in a given scan set j
to that in a reference scan set, arbitrarily chosen as scan set
XIV:

Sk
calib, j = σ k

vis, j/σ
k
vis, XIV .

The ratio Sk
calib, j is presented in Fig. 9a for a subset of BCM,

LUCID and track-counting algorithms. Several features are
apparent.

• The visible cross-section associated with the LUCID_
EventA algorithm drops significantly between the April
and July scan sessions, and then again between July and
November.

• For each algorithm separately, the σvisvariation across scan
sets within a given LHC fill (scan sets I–III, IV–VI and X–
XIV) remains below 0.5%, except for scan set X which
stands out by 1%.

• The absolute calibrations of the BCMH_EventOR and
track-counting algorithms are stable to better than ±0.8%
across scan sets IV–VI and X–XV, with the inconsistency
being again dominated by scan set X.
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Fig. 9 a Stability of absolutely calibrated visible cross-sections across
scan sets, as quantified by the ratio of the visible cross-section in a given
scan set to that of the same luminosity algorithm in scan set XIV. b
Relative instrumental stability of different luminosity algorithms across
scan sets, as quantified by the ratio shown in a for a given algorithm,
divided by the same ratio for the default track-counting algorithm

• Between scan sets IV–VI and X–XV, the calibrations of the
track counting, BCMH_EventOR and BCMV_EventOR
algorithms drop on the average by 0.5, 0.6 and 1.7%
respectively.

• The calibrations of the BCM_EventOR (track-counting)
algorithm in scan sets I–III and VIII are lower by up to
1.4% (2%) compared to the other scan sets. This structure,
which is best visible in Fig. 6, is highly correlated across
all algorithms. Since the corresponding luminosity detec-
tors use very different technologies, this particular feature
cannot be caused by luminometer instrumental effects.

In order to separate purely instrumental drifts in the
ATLAS luminometers from vdM-calibration inconsistencies
linked to other sources (such as accelerator parameters or
beam conditions), Fig. 9b shows the variation, across scan
sets j , of the double ratio

Sk
instr, j=Sk

calib, j/Strack counting
calib, j = σ k

vis, j/σ
k
vis, XIV

σ
track counting
vis, j /σ

track counting
vis, XIV

,

which quantifies the stability of algorithm k relative to that of
the default track-counting algorithm. Track counting is cho-
sen as the reference here because it is the bunch-by-bunch
algorithm whose absolute calibration is the most stable over
time (Figs. 6 and 9a), and that displays the best stability rel-
ative to all bunch-integrating luminosity algorithms during
physics running across the entire 2012 running period (this is
demonstrated in Sect. 6.1). By construction, the instrumental-
stability parameter Sk

instr, j is sensitive only to instrumental
effects, because the corrections described in Sects. 4.5–4.10
are intrinsically independent of the luminosity algorithm con-
sidered. The following features emerge.

• For each algorithm individually, the instrumental stability
is typically better than 0.5% within each scan session.

• The instrumental stability of both the “Pixel holes ≤1”
selection and the vertex-associated track selection (not
shown) is better than 0.2% across all scan sets.

• Relative to track counting, the LUCID efficiency drops
by 3.5% between the April and July scan sessions, and
by an additional 2.2% between July and November. This
degradation is understood to be caused by PMT aging.

• The BCMH_EventOR efficiency increases by about
0.7% with respect to that of track counting between the
April and July sessions, and then remains stable to within
0.2–0.4% across the July and November sessions. In con-
trast, the efficiency of the BCMV_EventOR algorithm
compared to that of track counting increases by about
1.3% from April to July, and drops back to its original
level by the November session. These long-term varia-
tions in the response of various subsets of diamond sen-
sors in the low-luminosity regime of vdM scans are pos-
sibly related to subtle solid-state physics effects arising
from the combination of radiation damage during physics
running [3,34] and of partial annealing during beam-off
and low-luminosity periods. Aging effects of comparable
magnitude are observed at high luminosity (Sect. 6).

• Given the 0.7% relative stability, between scan sets I–III
and IV–VI, of the track-counting and BCMH_EventOR
calibrations (Fig. 9b), the 1.4–2.0% discrepancy, between
the April and July vdM-scan sessions, that affects the
absolute calibrations of both the BCMH_EventOR and
the track-counting algorithms (Fig. 9a) cannot be primar-
ily instrumental in nature. The actual cause could not be
identified with certainty. Since the transverse luminous
size σL in the April session (Table 2) is approximately
three times smaller than the vertex-position resolution, a
plausible scenario is that a small error in the estimated
resolution biases the reconstructed luminous size in such
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a way as to underestimate the non-factorization correc-
tions RNF, and thereby the visible cross-sections, in scan
sets I–III.

• Similarly, the 1.3% discrepancy, between scan sets IV–
VI and scan set VIII, of the absolute calibrations of all
algorithms (Fig. 9a) cannot be instrumental either. Here
however, the luminous size is 1.5 times larger than the
resolution: resolution biases (if any) should be noticeably
smaller than in the April scan session. But as scan sets
IV–VIII were carried out in two consecutive LHC fills
under very similar beam conditions, such biases should
impact scan sets IV–VI and VIII in the same manner.

4.11.3 Final visible cross-sections for bunch-by-bunch
luminosity algorithms

The percent-level inconsistencies of the absolute calibrations
between April and July and within the July session itself, as
well as the excellent internal consistency of the November
results for all algorithms (Fig. 9a), suggest that the Novem-
ber calibrations are the most reliable. In addition, the calibra-
tions extracted from scan sets I–VIII are affected by several
large adjustments that in some cases partially cancel (Fig. 8);
of these the most uncertain are the non-factorization cor-
rections, which affect the November scans much less. The
cumulated magnitude of the corrections is also smallest for
scan sets XI–XV (scan set X suffers from larger orbit-drift
and emittance-growth corrections because of the long delay
between the x and y scans).

The combination of these arguments suggests that the vis-
ible cross-sections, averaged over all colliding bunches in
each scan set and then averaged over scan sets XI–XV, should
be adopted as the best estimate σ vis of the absolute luminos-
ity scale at the time of, and applicable to the beam conditions
during, the November 2012 vdM session. Table 5 lists the σ vis

values for the main luminosity algorithms considered in this
paper; the associated systematic uncertainties are detailed
in Sect. 5. Transferring the BCM and LUCID calibrations
to the high-luminosity regime of routine physics operation,
and accounting for time-dependent variations in luminome-
ter response over the course of the 2012 running period, is
addressed in Sect. 7.3.

5 van der Meer calibration uncertainties

This section details the systematic uncertainties affecting the
visible cross-sections reported in Table 5. The contributions
from instrumental effects (Sect. 5.1) are comparable in mag-
nitude to those associated with beam conditions (Sect. 5.2),
while those from the bunch-population product (Sect. 5.3)
are about three times smaller. A summary is presented in
Table 6.

Table 5 Visible cross-sections averaged over scan sets XI–XV

Luminosity algorithm σ vis (mb) Statistical
uncertainty
(%)

BCMH_EventOR 5.0541 0.05

BCMV_EventOR 5.0202 0.06

LUCID_EventOR 35.316 0.02

LUCID_EventA 23.073 0.02

LUCID_EventC 20.422 0.02

Track counting (Pixel holes ≤1) 243.19 0.14

Track counting (default) 241.27 0.14

Track counting (vertex-associated) 226.24 0.14

Table 6 Fractional systematic uncertainties affecting the visible cross-
section σ vis averaged over vdM scan sets XI–XV (November 2012)

Source Uncertainty (%)

Reference specific luminosity 0.50

Noise and background subtraction 0.30

Length-scale calibration 0.40

Absolute ID length scale 0.30

Subtotal, instrumental effects 0.77

Orbit drifts 0.10

Beam-position jitter 0.20

Beam–beam corrections 0.28

Fit model 0.50

Non-factorization correction 0.50

Emittance-growth correction 0.10

Bunch-by-bunch σvis consistency 0.23

Scan-to-scan consistency 0.31

Subtotal, beam conditions 0.89

Bunch-population product 0.24

Total 1.20

5.1 Instrumental effects

5.1.1 Reference specific luminosity

For simplicity, the visible cross-section extracted from vdM
scans for a given luminometer utilizes the specific luminos-
ity measured by that same luminometer. Since this quantity
depends only on the convolved beam sizes, consistent results
should be reported by all detectors and algorithms for a given
scan set.

Figure 10 compares the Lspec values measured by two
independent luminosity algorithms in three consecutive scan
sets. Bunch-to-bunch variations of the specific luminosity are
typically 5–10% (Fig. 10a), reflecting bunch-to-bunch differ-
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Fig. 10 a Bunch-by-bunch specific luminosity for scan sets XI, XIV
and XV determined using the BCMH_EventOR algorithm. b Bunch-
by-bunch ratio of theLspec values reported by the BCMH_EventOR and

LUCID_EventOR algorithms. The vertical lines indicate the weighted
average over BCIDs for the three scan sets separately. The error bars
represent statistical uncertainties only

ences in transverse emittance also seen during normal physics
fills. A systematic reduction in Lspec can be observed from
scan XI to scan XIV, caused by emittance growth over the
duration of the fill. Although the two algorithms appear sta-
tistically consistent for each bunch pair separately (Fig. 10b),
their bunch-averaged ratio systematically differs from unity
by a small amount. The largest such discrepancy in scan sets
XI–XV among the BCM, LUCID and track-counting algo-
rithms amounts to 0.5% and is adopted as the systematic
uncertainty associated with the choice of reference specific-
luminosity value.

5.1.2 Noise and background subtraction

To assess possible uncertainties in the default subtraction
scheme, an alternative fit is performed to data without apply-
ing the background-correction procedure of Sect. 4.4, but
interpreting the constant (i.e. separation-independent) term
in the fitting function as the sum of instrumental noise
and single-beam backgrounds. The maximum difference
observed between these two background treatments, aver-
aged over scan sets XI–XV, amounts to less than 0.3%
(0.02%) for the BCMH_EventOR (LUCID_EventOR) algo-
rithm. A systematic uncertainty of ±0.3% is thus assigned
to the background-subtraction procedure during vdM scans.

5.1.3 Length-scale calibration

The length scale of each scan step enters the extraction
of �x,y and hence directly affects the absolute luminosity

scale. The corresponding calibration procedure is described
in Sect. 4.5. Combining in quadrature the statistical errors in
the horizontal and vertical beam-separation scales (Table 3)
yields a statistical uncertainty of ±0.08% in the length-scale
product.

The residual non-linearity visible in Fig. 2, and also
observed in length-scale calibration scans performed in 2011,
could be caused either by the power converters that drive the
steering correctors forming the closed-orbit bumps, by the
response of the steering correctors themselves, or by mag-
netic imperfections (higher multipole components) at large
betatron amplitudes in the quadrupoles located within those
orbit bumps. The potential impact of such a non-linearity on
the luminosity calibration is estimated to be less than 0.05%.

Another potential source of bias is associated with orbit
drifts. These were monitored during each of the four length-
scale scans using the method outlined in Sect. 4.6, revealing
no significant drift. Small inconsistencies in the transverse
beam positions extrapolated to the IP from the BPMs in the
left and right arcs are used to set an upper limit on the potential
orbit drift, during each scan, of the beam being calibrated,
resulting in an overall ±0.4% uncertainty in the length-scale
product and therefore in the visible cross-section.

5.1.4 Absolute length scale of the inner detector

The determination of the beam-separation scale is based on
comparing the scan step requested by the LHC control sys-
tem with the actual transverse displacement of the luminous
centroid measured by ATLAS. This measurement relies on
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the length scale of the ATLAS inner detector tracking system
(primarily the Pixel detector) being correct in measuring dis-
placements of vertex positions away from the centre of the
detector. The determination of the uncertainty in this absolute
length scale is described in Ref. [3]; its impact amounts to a
systematic uncertainty of ±0.3% in the visible cross-section.

5.2 Beam conditions

5.2.1 Orbit drifts during vdM scans

The systematic uncertainty associated with orbit drifts is
taken as half of the correction described in Sect. 4.6, averaged
over scan sets XI–XV. It translates into a ±0.1% systematic
uncertainty in σ vis. Because the sign and amplitude of the
orbit drifts vary over time, this uncertainty is uncorrelated
with that affecting the length-scale calibration.

5.2.2 Beam-position jitter

At each step of a scan, the actual beam separation may be
affected by random deviations of the beam positions from
their nominal settings, which in turn induce fluctuations in
the luminosity measured at each scan point. The magni-
tude of this potential jitter was evaluated from the variation
between consecutive measurements, a few seconds apart, of
the relative beam separation at the IP extracted from single-
beam orbits measured by BPMs in the nearby LHC arcs and
extrapolated to the IP (Sect. 4.6). The typical jitter in trans-
verse beam separation observed during the November scan
session amounts to 0.75µm RMS. The resulting systematic
uncertainty in σvis is obtained by random Gaussian smear-
ing of the nominal separation by this amount, independently
at each scan step, in a series of simulated scans. The RMS
of the resulting fluctuations in fitted visible cross-section
yields a ±0.2% systematic uncertainty associated with beam-
position jitter.

5.2.3 Beam–beam corrections

For given values of the bunch intensity and transverse
convolved beam sizes, which are precisely measured, the
deflection-induced orbit distortion and the relative variation
of β� are both proportional to β� itself; they also depend on
the fractional tune. Assigning a ±20% uncertainty to each
β-function value at the IP and a ±0.01 upper limit to each
tune variation results in a ±0.28% uncertainty in σvis. This
uncertainty is computed with the conservative assumption
that β-function and tune uncertainties are correlated between
the horizontal and vertical planes, but uncorrelated between
the two LHC rings.

5.2.4 Fit model

The choice of the fit function is arbitrary, but guided by
the requirement that the fit provides faithful measurements
of the integral under the luminosity-scan curve and of the
rate at zero beam separation. The choice of functional form
therefore depends on the underlying shapes of the collid-
ing bunches, as manifested in the beam-separation depen-
dence of the luminosity. Scan sets I–VIII are best modelled
using a double Gaussian function plus a constant. The beam
shapes are different in scan sets X–XV [16]: here the best
fit is obtained using a Gaussian function multiplied by a
sixth-order polynomial. Additional fits are performed with
different model assumptions: a super-Gaussian function, and
a Gaussian function multiplied by a fourth-order polynomial
(plus a constant term in all cases). The maximum fractional
difference between the results of these different fits, across
scan sets XI–XV and across the BCM, LUCID and track-
counting algorithms, amounts to 0.5%. This value is assigned
as the uncertainty associated with the fit model.

5.2.5 Non-factorization correction

The non-factorization corrections extracted from the luminous-
region analysis (Sect. 4.8.2) and the non-factorizable vdM fits
(Sect. 4.8.3), are consistent to within 0.5% or less in all scan
sets. This value is chosen as the systematic uncertainty asso-
ciated with non-factorization biases in the November scans.

5.2.6 Emittance-growth correction

The uncertainty in the correction described in Sect. 4.9 is
estimated as the largest difference in the scan-averaged cor-
rection for extreme choices of reference times, and amounts
to ±0.1% in σ vis.

5.2.7 Consistency of bunch-by-bunch visible cross-sections

The calibratedσvis value associated with a given luminometer
and algorithm should be a universal scale factor independent
of beam conditions or BCID. The variation in σvis across
colliding-bunch pairs in a given scan set, as well as between
scan sets, is used to quantify the reproducibility and stability
of the calibration procedure during a scan session.

The comparison of Fig. 11a, b for scan sets XI, XIV and
XV suggests that some of the σvis variation from one bunch
pair to the next is not statistical in nature, but rather correlated
across bunch slots. The non-statistical component of this
variation, i.e. the difference in quadrature between the RMS
bunch-by-bunch variation of σvis within a given scan set and
the average statistical uncertainty affecting a single-BCID
σvis measurement, is taken as a systematic uncertainty in the
calibration technique. The largest such difference across scan
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Fig. 11 Bunch-by-bunch σvis values measured in scan sets XI, XIV,
and XV for the a LUCID_EventOR and b BCMH_EventOR algo-
rithm. The error bars are statistical only. The vertical lines represent the
weighted average over colliding-bunch pairs, separately for each scan

set. The shaded band indicates a ±0.4% variation from the average,
which is the sum in quadrature of the systematic uncertainties associ-
ated with bunch-by-bunch and scan-to-scan σvis consistency

sets XI–XV, evaluated using the measured LUCID_EventOR
visible cross-section, amounts to 0.23%. The RMS bunch-
by-bunch fluctuation of the BCM cross-sections is, in all
cases but one, slightly smaller than the corresponding bunch-
averaged statistical uncertainty, indicating that the statistical
sensitivity of the BCM algorithms is insufficient to provide
a reliable estimate of this uncertainty; the LUCID result is
therefore adopted as a measure of the σvis bunch-by-bunch
consistency.

5.2.8 Scan-to-scan reproducibility

The reproducibility of the visible cross-sections across the
selected November scan sets, as illustrated in Fig. 9a, is used
as a measure of the residual inconsistencies potentially asso-
ciated with imperfect correction procedures and unidentified
sources of non-reproducibility. The largest such difference in
visible cross-section between scan sets XI–XV, as reported
by any of the BCM_EventOR, LUCID_EventOR or track-
counting algorithms, amounts to ±0.31%.

5.3 Bunch-population product

The determination of this uncertainty (±0.24%) is discussed
in Sect. 4.10 and summarized in Table 4.

5.4 Summary of van der Meer calibration uncertainties

The systematic uncertainties affecting the November 2012
vdM calibration are summarized in Table 6; they apply
equally to all vdM-calibrated luminosity algorithms. The sta-
tistical uncertainties, in contrast, are algorithm dependent
(Table 5), but small by comparison.

The uncertainties affecting the April and July 2012 cal-
ibrations have not been evaluated in detail. Most of them
would be of comparable magnitude to their November coun-
terparts, except for additional sizeable contributions from
the non-factorization effects and scan-to-scan inconsisten-
cies discussed in Sect. 4.11.

6 Consistency of relative-luminosity measurements
during physics running

The calibration of σ vis was performed at only a few points
in time (Table 2), and at values of μ low compared to the
pile-up levels routinely encountered during physics opera-
tion (Fig. 12). In this section, the stability of the luminos-
ity measurement over the 2012 high-luminosity data sam-
ple is characterized from two distinct viewpoints: time sta-
bility of the relative response of various luminosity algo-
rithms across the entire running period (Sect. 6.1), and lin-
earity of the calibrated luminosity values with respect to
the actual pile-up parameter μ (Sect. 6.2). The relative con-
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Fig. 12 History of the peak bunch-averaged pile-up parameter 〈μ〉 dur-
ing 2012, restricted to stable-beam periods

sistency across all available luminosity detectors and algo-
rithms is used to assess the robustness of the results and to
quantify systematic variations in the response of the various
luminometers.

6.1 Relative stability of luminosity measurements over time

6.1.1 Consistency within individual luminometer
subsystems

Figure 13a illustrates the internal consistency of the lumi-
nosity values reported by independent bunch-by-bunch algo-
rithms during the 2012 running period, noise- and afterglow-
subtracted as described in Sect. 4.4, then summed over all
colliding bunches and integrated over the stable-beam period
in each ATLAS run. In order to better illustrate their rel-
ative time evolution, these run-integrated luminosity ratios
are shown anchored, i.e. normalized to the corresponding
ratio in a high-luminosity run close in time to the November
vdM-scan session.

During most of 2012, the ratio of the luminosity values
reported by the horizontal and vertical pairs of BCM sen-
sors is stable within a ±0.4% envelope, with the notable
exception of a sharp −0.6% step, lasting approximately
one month, during which the BCM was affected by elec-
tronic noise (Sect. 4.4). While during physics operation the
noise itself has a negligible impact on the measured lumi-
nosity, its onset was accompanied by step changes in the
response of individual diamond sensors; similar efficiency
shifts in the opposite direction were observed when the
noise disappeared, a few days after the November vdM
session.

The history of the luminosity ratio between the A and C
arms of LUCID exhibits two distinct bands, each with a peak-
to-peak scatter of up to ±0.8% and separated by 1.5% on the

average. The step change in late June 2012 is associated with
turning off two PMTs in the C arm, which were drawing
excessive current. To mitigate the impact of this operational
change on the LUCID performance, the LUCID luminosity
before (after) this step change is determined using the April
(November) 2012 vdM calibrations.

While relative efficiency variations among individual
BCM sensors, or between the two LUCID arms, can be
monitored using such internal luminosity ratios, quantify-
ing the associated shifts in their absolute calibration requires
an external reference. This can be provided, for instance, by
the calorimeter- or MPX-based hit-counting luminosity algo-
rithms presented in Sect. 3.3. Among these, the best internal
performance is offered by the EMEC and the TileCal: in the
high-luminosity regime, both achieve an arm-to-arm con-
sistency better than ±0.4% across the 2012 running period
(Fig. 13b). The two FCal arms display a relative drift of about
1% which is highly correlated among all channels in each
arm. The run-to-run spread of the MPX luminosity ratios
(Fig. 13c) lies in the 2% range.

While calorimeter algorithms lack sensitivity in the vdM-
calibration regime, the track-counting method can be abso-
lutely calibrated with a precision comparable to that of
the BCM and LUCID algorithms (Table 5). As demon-
strated below, it also offers competitive precision for the run-
integrated luminosity10 during physics operation, thereby
providing additional constraints on the performance of the
other bunch-by-bunch algorithms.

Figure 14 displays the history of the luminosity reported
by the two alternative track-counting working points intro-
duced in Sect. 3.2, normalized to that from the default WP.
In contrast to what is presented in Fig. 13, these ratios are
not anchored, but directly reflect the relative response of the
three algorithms as calibrated in the November 2012 vdM-
scan session. While the three working points are consistent
within 0.2% at the very beginning of the 2012 running period
(which corresponds to the April vdM-scan session), count-
ing vertex-associated tracks results, during most of the year,
in a luminosity value lower by about 1.3% compared to the
other two WPs. Comparison with the history of the mean
pile-up parameter (Fig. 12) suggests that this inconsistency
is not time-related but μ-dependent, as further discussed in
Sect. 6.2.

6.1.2 Consistency between luminometer subsystems

Figure 15 shows the ratio of the integrated luminosity per
ATLAS run as measured by a variety of luminosity algo-

10 Except for vdM-scan sessions, track–counting-based luminosity
measurements on shorter time scales (a few luminosity blocks), or on
a bunch-by-bunch basis, are statistically limited by the available data-
acquisition bandwidth.
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Fig. 13 a History of the ratio of the integrated luminosi-
ties per run reported by the BCM inclusive–OR algorithms
(BCMV_EventOR/BCMH_EventOR) and by the LUCID single-arm
algorithms (LUCID_EventA/LUCID_EventC), during routine physics
operation at high luminosity.bHistory of the ratio of the integrated lumi-
nosities per run reported by the A and C arms of the electromagnetic
endcap (EMEC), hadronic (TileCal) and forward (FCal) calorimeters.

c History of the ratio of the integrated luminosities per run reported by
five of the six individual MPX sensors, to that reported by the sixth sen-
sor in the same run. In all figures, each point shows the ratio for a single
run relative to that in a reference run taken on November 25, 2012 (LHC
fill 3323). Statistical uncertainties are negligible. The vertical arrows
indicate the time of the November 2012 vdM scan session

rithms, to that reported by the TileCal. Even though a sys-
tematic trend between the LAr and TileCal measurements is
apparent, the calorimeter algorithms are consistent to better
than ±0.7%. The TileCal luminosity is consistent with that
from the default track-counting algorithm to within ±0.4%
or less.

In contrast, both BCM and LUCID exhibit significant
variations in response over the course of 2012, which vary
from channel to channel and are attributed to, respectively,
radiation-induced lattice defects and PMT aging. Among
these, the BCMH_EventOR algorithm exhibits the least
severe deviation from its response at the time of the Novem-
ber vdM-scan session. Its long-term drift is, however, large
enough to warrant a time-dependent response correction that

is based on one of the more stable relative-luminosity moni-
tors shown in Fig. 15, and that is described in Sect. 7.3.2.

6.2 µ dependence

As the pile-up response of a given luminosity algorithm
is determined by the instrumental characteristics of the
luminometer considered, the BCMH_EventOR and BCMV_
EventOR algorithms are expected to exhibit little μ-depen-
dence with respect to each other, even if both may be affected
by a common non-linearity with respect to the actual instan-
taneous luminosity. The same applies to ratios of luminosity
values reported independently by the A and C arms of FCal,
EMEC, LUCID and TileCal.
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Fig. 14 History of the integrated-luminosity values reported by the two
alternative track-counting methods, normalized to that from the default
track selection, each as absolutely calibrated by the vdM method. Each
point represents the mean over a single ATLAS run. The error bars
reflect the systematic uncertainty associated with the simulation-based
fake-track subtraction. No track-counting data are available prior to the
first vdM-scan session (16 April 2012)

In contrast, the track-counting luminosities obtained using
the three track selections defined in Sect. 3.2 exhibit a notice-
able relative non-linearity (Fig. 16a). The pattern is consistent
with that observed in Fig. 14. At very low μ, the three work-
ing points are fully consistent, as expected from having been
vdM-calibrated at μ ∼ 0.5. As μ increases, loosening the
pixel-hole requirement on the selected tracks results, after
fake-track subtraction, in a residual positive non-linearity
of at most 0.7% in the reported 〈μ〉 value. In contrast, the
vertex-associated track count exhibits, also after fake-track
correction, a negative non-linearity with respect to the default
WP, which peaks at −1.3% and then decreases in magnitude.
Even though the simulation should account for the pile-up
dependence of the fake-track fraction and of the track- and
vertex-reconstruction efficiencies, it fails to explain the rela-
tive μ-dependence observed in the data between the three
track-counting selections. The onset of the discrepancies
appears to lie in the range 2 < μ < 10. However, only
very limited data, all from a single run with a small number
of isolated bunches, are available in that μ range, so that no
firm conclusions can be drawn. A conservative approach is
therefore adopted: the observed discrepancy between track-
counting WPs is used as a data-driven upper limit on a poten-
tial bias affecting the absolute track-based luminosity scale in
the high-μ regime. The impact of this systematic uncertainty
is discussed in Sect. 7.3.1.

In the absence of any absolute linearity reference, poten-
tial pile–up-dependent biases in the high-μ regime can be
constrained by the relative μ-dependence of the luminos-
ity values reported by luminometers based on very different
technologies (Fig. 16b). The relative non-linearity between
the BCMH_EventOR and the TileCal (the default track-

counting) algorithm does not exceed ±0.3% (±0.5%) over
the 〈μ〉 range accessible in this run; the root causes of the rela-
tive μ-dependence between these three luminometers remain
under investigation. An extensive analysis of the more severe
LUCID non-linearity indicates that under typical physics
operating conditions, the large currents drawn by the LUCID
PMTs significantly distort their response.

The run-averaged pile-up parameter changes from one run
to the next, because of variations both in the initial luminosity
and in the duration of LHC fills. Therefore, the larger the
relative μ-dependence between two algorithms, the larger
the fill-to-fill fluctuations in the ratio of the run-integrated
luminosities reported by these two algorithms. This effect
contributes significantly to the point-to-point scatter that is
apparent in Fig. 15.

7 Luminosity determination during physics running

To determine the integrated luminosity used in ATLAS
physics analyses, a single bunch-by-bunch algorithm is
selected as the baseline to provide the central value for
a certain time range (Sect. 7.1). The corresponding vdM-
calibrated luminosity values are first background-subtracted
(Sect. 7.2), and then corrected for rate- and time-dependent
biases that impact high-luminosity operation (Sect. 7.3). The
consistency of the various ATLAS luminosity measurements
after all corrections is quantified in Sect. 7.4, together with
the associated systematic uncertainty.

7.1 Baseline luminosity algorithm

The choice of algorithm is determined in part by the repro-
ducibility and long-term stability of its absolute calibration.
Figure 9 shows that in this respect, the BCMH_EventOR
and track-counting algorithms perform noticeably better than
BCMV_EventOR and LUCID. Studies of relative stabil-
ity during physics running (Fig. 15) and of μ dependence
(Fig. 16b) lead to the same conclusion. As track count-
ing is active only during stable-beam operation and is sta-
tistically marginal at the luminosity-block level, it is not
suitable for use as a baseline algorithm, but it is retained
as a reference method to assess systematic biases. The
BCMH_EventOR algorithm supplies the absolute luminosity
during most of the 2012 running period; it is supplemented
by the LUCID_EventA algorithm during the few runs where
the BCM is not available, and which represent less than 1%
of the 2012 integrated luminosity.

7.2 Background subtraction

During high-luminosity physics running, instrumental noise
and single-beam backgrounds become negligible by com-
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Fig. 15 History of the luminosity per run, compared to the value mea-
sured by TileCal, for a bunch-integrating, b BCM and track-counting,
and cLUCID algorithms, during routine physics operation at high lumi-
nosity. Each point shows for a single run the mean deviation from a ref-
erence run taken on November 25, 2012 (LHC fill 3323). The EMEC,
FCal and TileCal values are computed using the average of the luminosi-

ties reported by the A and C arms of the corresponding calorimeter; the
MPX values reflect the average over the six sensors. The step in LUCID
response is moderate thanks to the use of the April calibration for the
LUCID data recorded before July. The vertical arrows indicate the time
of the November vdM scan session

parison to the luminosity; only afterglow remains as a sig-
nificant background. With a 2012 bunch spacing of 50 ns
and typically over 1000 colliding bunches, it reaches a fairly
stable equilibrium after the first few bunches in a train. It
is observed to scale with the instantaneous luminosity and
typically amounts to 0.2–0.5% of the luminosity signal.

The bunch-by-bunch noise- and afterglow-subtraction
procedure described in Sect. 4.4 is applied to all BCM and
LUCID luminosity determinations. Since the afterglow level
in the BCID immediately following a colliding-bunch slot
may differ from that in the second BCID after this slot (i.e. in
the next colliding-bunch slot), BCIDs at the end of a bunch
train were used to evaluate a possible bias in the method.
This study suggests that the subtraction over-corrects the

BCMH_EventOR luminosity by approximately 0.2%. A sys-
tematic uncertainty of ±0.2% is therefore assigned to the
afterglow correction.

7.3 Corrections to the absolute calibration in the
high-luminosity regime

Extrapolating the curves of Fig. 16b to very low 〈μ〉 sug-
gests that for some algorithms, the vdM-based luminosity
scale may not be directly applicable in the pile-up regime
typical of physics operation. Percent-level corrections are
indeed required (Sect. 7.3.1) to transfer, at one point in
time, the absolute calibration of BCM and LUCID from
the low-luminosity regime of vdM scans (μ ∼ 0.5, L ∼
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Fig. 16 a Ratio of the bunch-averaged pile-up parameter 〈μ〉 reported
using different track-counting working points, to that from the default
WP, as a function of the 〈μ〉 value obtained using the default WP. The
data are averaged over all stable-beam runs.bFractional deviation of the
bunch-averaged pile-up parameter 〈μ〉, obtained using different algo-
rithms, from the TileCal value, as a function of 〈μ〉TileCal, during a
physics run selected to cover the widest possible 〈μ〉 range. The data
are normalized such that all algorithms yield the same integrated lumi-
nosity in the run considered

2×1030 cm−2s−1) to that of routine physics operation (μ ∼
20–25, L > 1033 cm−2s−1). In addition, a time-dependent
correction (Sect. 7.3.2) must be applied to the luminosity of
the baseline algorithm to compensate for the long-term drifts
apparent in Fig. 15.

7.3.1 Calibration transfer from the vdM regime to physics
conditions

The history of the instantaneous-luminosity values reported
during part of the November vdM-scan session by the track-
counting and LUCID_EventA algorithms, relative to the
BCMH_EventOR algorithm and using the calibrations listed

in Table 5, is presented in Fig. 17a. The ratio of the default
track-counting (LUCID) luminosity integrated over several
hours immediately before and after scan set XV, to that from
the BCMH_EventOR algorithm, is consistent with unity
within 0.5% (0.4%). The run-integrated luminosity values
associated, in that same fill, with the other two track selec-
tions (not shown) are consistent with the default track selec-
tion within less than one per mille.

However, at high luminosity these ratios differ from unity
by several percent (Fig. 17b), with all BCM (LUCID) algo-
rithms reporting a lower (higher) luminosity compared to
the track-counting method. In addition, the vertex-associated
track selection is no longer consistent with the other two, as
discussed in Sect. 6.

To provide consistent luminosity measurements, all algo-
rithms must be corrected to some common absolute scale
in the high-luminosity regime. As calorimeter-based lumi-
nometers lack sensitivity in the vdM-scan regime, only track
counting remains to quantify the relative shifts in response
of the BCM and LUCID algorithms between the vdM-scan
and high-luminosity regimes. First, the run-to-run fluctua-
tions in Fig. 17b are smoothed by parameterizing the lumi-
nosity ratios as a linear function of the cumulative integrated-
luminosity fraction, used here as a proxy for calendar time.
Then, for each BCM algorithm and for a given track selec-
tion, the difference between the fitted ratio in the high-
luminosity reference fill where the calibration transfer is
performed (LHC fill 3323), and the corresponding run-
integrated luminosity ratio under vdM conditions (LHC fill
3316), quantifies the shift in the BCM luminosity scale with
respect to track counting. The same procedure is applied to
LUCID.

The results are summarized in Table 7 for the default
track selection. The BCMH_EventOR efficiency drops by
2.5% with respect to track counting. Naively extrapolating
the relative μ-dependence of these two algorithms from the
high-μ regime (Fig. 16b) to μ ∼ 0.5 predicts a shift of
1.3%, about half of the effect observed.11 Similarly, the
μ-dependence of LUCID_EventC predicts a 3% increase
in response when going from the vdM-scan regime to the
high-luminosity regime, while the measured step amounts to
+3.9%. These observations suggest that while the measured
relative μ-dependence of the three algorithms is consistent
with the signs of the calibration shifts and appears to account
for a large fraction of their magnitude, other effects also play a
role. For instance, studies of the CMS diamond sensors [34]
suggest that the response of the BCM may depend on the

11 Since the mechanisms driving the μ-dependence are neither well
characterized nor understood, and in the absence of sufficient data link-
ing the μ range in routine physics operation (Fig. 16b) to that in the
vdM-scan regime (μ ∼ 0.5), such an extrapolation is indicative only:
it cannot be relied upon for a quantitative evaluation of the calibration-
transfer correction.

123



Eur. Phys. J. C (2016) 76 :653 Page 29 of 45 653

Elapsed time [s]
0 5000 10000 15000 20000 25000

B
C

M
H

_E
ve

nt
O

R
In

st
 / 

L
A

lg
or

ith
m

In
st

L

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
Track Counting

LUCID_EventA

ATLAS

=8 TeV; LHC Fill 3316s

(a)

Cumulative integrated-luminosity fraction
0.75 0.8 0.85 0.9 0.95 1

R
ef

er
en

ce
 / 

L
T

ra
ck

s
L

0.9

0.95

1

1.05

1.1
 1 Pixel Holes / BCMH_EventOR≤

Default / BCMH_EventOR
Vertex Associated / BCMH_EventOR

 1 Pixel Holes / LUCID_EventA≤
Default / LUCID_EventA

Vertex Associated / LUCID_EventA

ATLAS

=8 TeVs

vdM calibration

(b)

Fig. 17 a History of the ratio of the instantaneous luminosity reported
by the default track-counting and LUCID_EventA algorithms to that
from the BCMH_EventOR algorithm under vdM-scan conditions, dur-
ing LHC fill 3316. The gap corresponds to scan set XV. The error bars
are statistical. b Evolution of the ratio of the integrated luminosity per
run reported by the three track-counting algorithms to that from the
BCMH_EventOR and LUCID_EventA algorithms, in the few weeks in
late 2012 during which the BCM response is approximately constant,
as a function of the cumulative delivered luminosity (normalized to the
2012 total). Each point shows the ratio for a single high-luminosity run.
The dashed lines are straight-line fits to the data. The reference run
(LHC fill 3323) took place the day following the November vdM-scan
session, which is indicated by the star

total instantaneous collision rate (i.e. on the product of 〈μ〉
and the total number of colliding bunches) through a polar-
ization mechanism associated with radiation-induced lattice
defects.

The track-counting results lie between BCM and LUCID,
and using the track scale as a proxy for the true scale is
consistent to within 0.5% with taking the average scale from
all the algorithms listed in Table 7. The choice of which
track selection to use as reference is somewhat arbitrary. The
default working point appears as the natural choice given that

Table 7 Measured fractional shift in luminosity scale between the vdM-
scan regime (LHC fill 3316) and a nearby high-luminosity ATLAS
run (LHC fill 3323), using the default track-counting algorithm as the
reference. The errors shown are statistical only; they are dominated by
track-counting statistics in the vdM-scan fill, and are therefore fully
correlated across the four ratios

Luminosity algorithm Calibration shift w.r.t.
track counting (%)

BCMH_eventOR −2.5 ± 0.1

BCMV_eventOR −2.9 ± 0.1

LUCID_eventA +3.5 ± 0.1

LUCID_eventC +3.9 ± 0.1

it exhibits the smallest relative μ-dependence with respect to
TileCal, suffers from the smallest uncertainty arising from the
simulation-based fake-track subtraction, and lies between the
extremes of the three track selections.

The systematic uncertainty in the calibration-transfer
corrections of Table 7 is estimated to be ±1.4%. It is
dominated by the 1.3% inconsistency (Figs. 16a, 17b)
between the default and the vertex-associated track selec-
tions. Additional contributions arise from the small incon-
sistency between the BCM-based and track-based luminos-
ity measurements during the vdM-scan fill (0.5%), from a
small deadtime correction that affects the vdM-scan track-
counting data only (0.2%), and from the track-counting statis-
tics during the vdM-scan fill (0.1%). The slight integrated-
luminosity (or time) dependence of the BCM to track-
counting luminosity ratio visible in Fig. 17b is accounted
for as part of the long-term drift correction, discussed
next.

7.3.2 Long-term drift correction

The second step in transferring the vdM-based calibrations
to an arbitrary high-luminosity physics run consists in cor-
recting for the long-term drifts apparent in Fig. 15, using one
of the more stable monitors (EMEC, FCal, TileCal or track
counting) as a reference. The absolute luminosity scale of the
selected reference monitor is first anchored to that of BCM
(or LUCID) in the high-luminosity reference run where the
calibration transfer is performed (LHC fill 3323). The run-
by-run luminosity ratio of the considered bunch-by-bunch
algorithm to the chosen reference is then parameterized as
a function of the cumulative integrated-luminosity fraction.
This choice of variable, instead of calendar time, is inspired
by (but not dependent upon) the assumption that detector
aging increases smoothly with integrated radiation dose; it
also simplifies the analysis by eliminating the gaps between
running periods (Fig. 15). A two-segment, piece-wise lin-
ear fit is used to smooth the run-to-run fluctuations, with
one segment covering the entire year except for the BCM
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Fig. 18 History of the fractional difference in integrated luminosity per
run a between the BCMH_EventOR and the TileCal algorithm, and b
between the BCMV_EventOR and the default track-counting algorithm.
Each point shows the mean difference for a single run compared to that
in the reference run (LHC fill 3323) in which the calibration transfer is
performed. The lines represent the fit discussed in the text. The vertical
arrow indicates the time of the reference run

noise period, and the second, shorter segment accounting for
the gain shift during that same noise period (Fig. 18). This
empirical parameterization yields a satisfactory description
of the entire data set. It provides a run-by-run correction to the
instantaneous luminosity reported by each BCM or LUCID
algorithm: a positive (negative) value of the fit function in
a given ATLAS run results in a downwards (upwards) lumi-
nosity adjustment for every luminosity block in that run. This
implies that the absolute luminosity scale in each LHC fill is
effectively carried by the reference monitor, while the time-
and BCID-dependence of the luminosity during that same fill
continues to be provided by the bunch-by-bunch algorithm
considered.

The net impact of this procedure on the integrated lumi-
nosity for the entire 2012 running period is documented in

Table 8. The TileCal- and track–counting-based corrections
are effectively indistinguishable; the former is chosen for the
central value because of the slightly smaller run-to-run scatter
of the BCM/TileCal luminosity ratio. The largest difference
between reference monitors amounts to 0.3%, and reflects
the relative slope between the FCal and TileCal algorithms
in Fig. 15a. This value is taken as the systematic uncertainty
in the long-term drift correction.

7.4 Consistency of ATLAS luminosity measurements after
all corrections

A global check of the consistency of the corrections described
in Sects. 7.2 and 7.3 is provided by the comparison of
the 2012 integrated-luminosity values reported by different
bunch-by-bunch algorithms. For high-luminosity runs (β� =
0.6 m and at least 1050 colliding bunches) under stable-beam
conditions, after background subtraction, calibration trans-
fer and long-term drift correction of the BCM and LUCID
data, the integrated luminosity reported by BCMV_EventOR
agrees with that from the BCMH_EventOR baseline within
0.01%. For the subset of such runs where both LUCID and
BCM deliver valid luminosity data, which corresponds to
about 91% of the 2012 integrated luminosity, both single-arm
LUCID algorithms agree with the BCMH_EventOR baseline
within 0.5%. It should be stressed, however, that these BCM-
and LUCID-based luminosity determinations are correlated,
because they were all drift-corrected to the same reference.

The internal consistency of the absolute luminosity mea-
surements at

√
s = 8 TeV in the high-luminosity regime is

illustrated in Fig. 19. The run-to-run fluctuations reflect the
combined impact of the relative μ-dependence of the various
algorithms, of imperfectly corrected medium-term drifts and
of other sources of non-reproducibility. With the exception of
some of the LUCID data, they remain within a ±0.5% band,
which provides a measure of the systematic uncertainty asso-
ciated with the run-to-run consistency of independent lumi-
nosity measurements.

8 Total luminosity uncertainty for the 2012 pp run

Table 9 regroups the contributions to the total uncertainty
in the luminosity values provided for physics analyses. The
vdM-calibration uncertainties are detailed in Tables 5 and 6.
The afterglow subtraction, the calibration transfer from the
vdM-scan to the high-luminosity regime and the long-term
drift correction applied to the bunch-by-bunch luminometers
are described in Sects. 7.2, 7.3.1 and 7.3.2 respectively. The
run-to-run consistency of the ATLAS luminosity measure-
ments is assessed in Sect. 7.4. The resulting total uncertainty
amounts to ±1.9%.
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Table 8 Impact of the long-term drift correction on the 2012 integrated luminosity

Reference algorithm Fractional change in integrated luminosity [%]

BCMH_EventOR BCMV_EventOR LUCID_EventA LUCID_EventC

EMEC −0.59 −1.26 −0.70 −0.49

FCal −0.70 −1.36 −0.68 −0.52

TileCal −0.44 −1.09 −0.54 −0.26

Track counting −0.45 −1.12 −0.57 −0.34
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Fig. 19 History of the fractional difference in run-integrated luminos-
ity between the TileCal algorithm and the drift-corrected a BCM and b
LUCID and MPX algorithms. The results of the other possible reference
monitors (EMEC, FCal and track counting) are taken from Fig. 15 and
included here for comparison. Each point shows the mean difference
for a single run compared to that in the reference fill indicated by the
arrow. The dashed horizontal lines delimit a ±0.5% window around
zero

9 Summary

The ATLAS luminosity scale for the 2012 LHC run has been
calibrated using data from dedicated beam-separation scans,
also known as van der Meer scans. The vdM-calibration

Table 9 Relative uncertainty in the calibrated luminosity scale, broken
down by source

Uncertainty source δL/L [%]

van der Meer calibration 1.2

Afterglow subtraction 0.2

Calibration transfer from
vdM-scan to high-luminosity regime

1.4

Long-term drift correction 0.3

Run-to-run consistency 0.5

Total 1.9

uncertainty is smaller than for the 2011 data set [3], thanks
to improved control of beam-dynamical effects (beam–beam
deflections, dynamic β, non-factorization) and to a refined
analysis of the non-reproducibility of beam conditions (orbit
drift, emittance growth). The total systematic uncertainty in
the delivered luminosity is no longer dominated by vdM-
calibration uncertainties. The largest contribution arises from
instrumental effects that require the transfer of the abso-
lute luminosity scale from the low-rate vdM-scan regime to
the high-luminosity conditions of routine physics operation;
residual run-to-run and long-term inconsistencies between
independent luminosity measurements also contribute sig-
nificantly.

The combination of these systematic uncertainties results
in a final uncertainty of δL/L = ±1.9% in the luminosity
measured by ATLAS during pp collisions at

√
s = 8 TeV

for the 22.7 fb−1 of data delivered to ATLAS in 2012. This
uncertainty applies to the high-luminosity data sample and
any subset thereof, but not necessarily to a few special runs
taken under very low pile-up conditions, such as those dedi-
cated to elastic-scattering measurements: the latter require a
separate analysis tailored to their specific experimental con-
ditions.
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E. Rizvi78, C. Rizzi13, S. H. Robertson89,l, A. Robichaud-Veronneau89, D. Robinson30, J. E. M. Robinson44, A. Robson55,
C. Roda125a,125b, Y. Rodina87, A. Rodriguez Perez13, D. Rodriguez Rodriguez167, S. Roe32, C. S. Rogan59, O. Røhne120,
A. Romaniouk99, M. Romano22a,22b, S. M. Romano Saez36, E. Romero Adam167, N. Rompotis139, M. Ronzani50,
L. Roos82, E. Ros167, S. Rosati133a, K. Rosbach50, P. Rose138, O. Rosenthal142, N. -A. Rosien56, V. Rossetti147a,147b,
E. Rossi105a,105b, L. P. Rossi52a, J. H. N. Rosten30, R. Rosten139, M. Rotaru28b, I. Roth172, J. Rothberg139, D. Rousseau118,
C. R. Royon137, A. Rozanov87, Y. Rozen153, X. Ruan146c, F. Rubbo144, M. S. Rudolph159, F. Rühr50, A. Ruiz-Martinez31,
Z. Rurikova50, N. A. Rusakovich67, A. Ruschke101, H. L. Russell139, J. P. Rutherfoord7, N. Ruthmann32, Y. F. Ryabov124,
M. Rybar166, G. Rybkin118, S. Ryu6, A. Ryzhov131, G. F. Rzehorz56, A. F. Saavedra151, G. Sabato108, S. Sacerdoti29,
H. F.-W. Sadrozinski138, R. Sadykov67, F. Safai Tehrani133a, P. Saha109, M. Sahinsoy60a, M. Saimpert137, T. Saito156,
H. Sakamoto156, Y. Sakurai171, G. Salamanna135a,135b, A. Salamon134a,134b, J. E. Salazar Loyola34b, D. Salek108,
P. H. Sales De Bruin139, D. Salihagic102, A. Salnikov144, J. Salt167, D. Salvatore39a,39b, F. Salvatore150, A. Salvucci62a,
A. Salzburger32, D. Sammel50, D. Sampsonidis155, A. Sanchez105a,105b, J. Sánchez167, V. Sanchez Martinez167,
H. Sandaker120, R. L. Sandbach78, H. G. Sander85, M. Sandhoff175, C. Sandoval21, R. Sandstroem102, D. P. C. Sankey132,
M. Sannino52a,52b, A. Sansoni49, C. Santoni36, R. Santonico134a,134b, H. Santos127a, I. Santoyo Castillo150, K. Sapp126,
A. Sapronov67, J. G. Saraiva127a,127d, B. Sarrazin23, O. Sasaki68, Y. Sasaki156, K. Sato161, G. Sauvage5,*, E. Sauvan5,
G. Savage79, P. Savard159,d, C. Sawyer132, L. Sawyer81,q, J. Saxon33, C. Sbarra22a, A. Sbrizzi22a,22b, T. Scanlon80,
D. A. Scannicchio163, M. Scarcella151, V. Scarfone39a,39b, J. Schaarschmidt172, P. Schacht102, B. M. Schachtner101,

123



Eur. Phys. J. C (2016) 76 :653 Page 39 of 45 653

D. Schaefer32, R. Schaefer44, J. Schaeffer85, S. Schaepe23, S. Schaetzel60b, U. Schäfer85, A. C. Schaffer118, D. Schaile101,
R. D. Schamberger149, V. Scharf60a, V. A. Schegelsky124, D. Scheirich130, M. Schernau163, C. Schiavi52a,52b,
S. Schier138, C. Schillo50, M. Schioppa39a,39b, S. Schlenker32, K. R. Schmidt-Sommerfeld102, K. Schmieden32,
C. Schmitt85, S. Schmitt44, S. Schmitz85, B. Schneider160a, U. Schnoor50, L. Schoeffel137, A. Schoening60b,
B. D. Schoenrock92, E. Schopf23, M. Schott85, J. Schovancova8, S. Schramm51, M. Schreyer174, N. Schuh85,
M. J. Schultens23, H. -C. Schultz-Coulon60a, H. Schulz17, M. Schumacher50, B. A. Schumm138, Ph. Schune137,
A. Schwartzman144, T. A. Schwarz91, Ph. Schwegler102, H. Schweiger86, Ph. Schwemling137, R. Schwienhorst92,
J. Schwindling137, T. Schwindt23, G. Sciolla25, F. Scuri125a,125b, F. Scutti90, J. Searcy91, P. Seema23, S. C. Seidel106,
A. Seiden138, F. Seifert129, J. M. Seixas26a, G. Sekhniaidze105a, K. Sekhon91, S. J. Sekula42, D. M. Seliverstov124,*,
N. Semprini-Cesari22a,22b, C. Serfon120, L. Serin118, L. Serkin164a,164b, M. Sessa135a,135b, R. Seuster169, H. Severini114,
T. Sfiligoj77, F. Sforza32, A. Sfyrla51, E. Shabalina56, N. W. Shaikh147a,147b, L. Y. Shan35a, R. Shang166, J. T. Shank24,
M. Shapiro16, P. B. Shatalov98, K. Shaw164a,164b, S. M. Shaw86, A. Shcherbakova147a,147b, C. Y. Shehu150, P. Sherwood80,
L. Shi152,ak, S. Shimizu69, C. O. Shimmin163, M. Shimojima103, M. Shiyakova67,al, A. Shmeleva97, D. Shoaleh Saadi96,
M. J. Shochet33, S. Shojaii93a,93b, S. Shrestha112, E. Shulga99, M. A. Shupe7, P. Sicho128, A. M. Sickles166, P. E. Sidebo148,
O. Sidiropoulou174, D. Sidorov115, A. Sidoti22a,22b, F. Siegert46, Dj. Sijacki14, J. Silva127a,127d, S. B. Silverstein147a,
V. Simak129, O. Simard5, Lj. Simic14, S. Simion118, E. Simioni85, B. Simmons80, D. Simon36, M. Simon85, P. Sinervo159,
N. B. Sinev117, M. Sioli22a,22b, G. Siragusa174, S. Yu. Sivoklokov100, J. Sjölin147a,147b, T. B. Sjursen15, M. B. Skinner74,
H. P. Skottowe59, P. Skubic114, M. Slater19, T. Slavicek129, M. Slawinska108, K. Sliwa162, R. Slovak130, V. Smakhtin172,
B. H. Smart5, L. Smestad15, J. Smiesko145a, S. Yu. Smirnov99, Y. Smirnov99, L. N. Smirnova100,am, O. Smirnova83,
M. N. K. Smith37, R. W. Smith37, M. Smizanska74, K. Smolek129, A. A. Snesarev97, S. Snyder27, R. Sobie169,l, F. Socher46,
A. Soffer154, D. A. Soh152, G. Sokhrannyi77, C. A. Solans Sanchez32, M. Solar129, E. Yu. Soldatov99, U. Soldevila167,
A. A. Solodkov131, A. Soloshenko67, O. V. Solovyanov131, V. Solovyev124, P. Sommer50, H. Son162, H. Y. Song35b,an,
A. Sood16, A. Sopczak129, V. Sopko129, V. Sorin13, D. Sosa60b, C. L. Sotiropoulou125a,125b, R. Soualah164a,164c,
A. M. Soukharev110,c, D. South44, B. C. Sowden79, S. Spagnolo75a,75b, M. Spalla125a,125b, M. Spangenberg170,
F. Spanò79, D. Sperlich17, F. Spettel102, R. Spighi22a, G. Spigo32, L. A. Spiller90, M. Spousta130, R. D. St. Denis55,*,
A. Stabile93a, R. Stamen60a, S. Stamm17, E. Stanecka41, R. W. Stanek6, C. Stanescu135a, M. Stanescu-Bellu44,
M. M. Stanitzki44, S. Stapnes120, E. A. Starchenko131, G. H. Stark33, J. Stark57, P. Staroba128, P. Starovoitov60a,
S. Stärz32, R. Staszewski41, P. Steinberg27, B. Stelzer143, H. J. Stelzer32, O. Stelzer-Chilton160a, H. Stenzel54,
G. A. Stewart55, J. A. Stillings23, M. C. Stockton89, M. Stoebe89, G. Stoicea28b, P. Stolte56, S. Stonjek102, A. R. Stradling8,
A. Straessner46, M. E. Stramaglia18, J. Strandberg148, S. Strandberg147a,147b, A. Strandlie120, M. Strauss114, P. Strizenec145b,
R. Ströhmer174, D. M. Strom117, R. Stroynowski42, A. Strubig107, S. A. Stucci18, B. Stugu15, N. A. Styles44, D. Su144,
J. Su126, R. Subramaniam81, S. Suchek60a, Y. Sugaya119, M. Suk129, V. V. Sulin97, S. Sultansoy4c, T. Sumida70,
S. Sun59, X. Sun35a, J. E. Sundermann50, K. Suruliz150, G. Susinno39a,39b, M. R. Sutton150, S. Suzuki68, M. Svatos128,
M. Swiatlowski33, I. Sykora145a, T. Sykora130, D. Ta50, C. Taccini135a,135b, K. Tackmann44, J. Taenzer159, A. Taffard163,
R. Tafirout160a, N. Taiblum154, H. Takai27, R. Takashima71, T. Takeshita141, Y. Takubo68, M. Talby87, A. A. Talyshev110,c,
K. G. Tan90, J. Tanaka156, R. Tanaka118, S. Tanaka68, B. B. Tannenwald112, S. Tapia Araya34b, S. Tapprogge85,
S. Tarem153, G. F. Tartarelli93a, P. Tas130, M. Tasevsky128, T. Tashiro70, E. Tassi39a,39b, A. Tavares Delgado127a,127b,
Y. Tayalati136d, A. C. Taylor106, G. N. Taylor90, P. T. E. Taylor90, W. Taylor160b, F. A. Teischinger32, P. Teixeira-Dias79,
K. K. Temming50, D. Temple143, H. Ten Kate32, P. K. Teng152, J. J. Teoh119, F. Tepel175, S. Terada68, K. Terashi156,
J. Terron84, S. Terzo102, M. Testa49, R. J. Teuscher159,l, T. Theveneaux-Pelzer87, J. P. Thomas19, J. Thomas-Wilsker79,
E. N. Thompson37, P. D. Thompson19, A. S. Thompson55, L. A. Thomsen176, E. Thomson123, M. Thomson30,
M. J. Tibbetts16, R. E. Ticse Torres87, V. O. Tikhomirov97,ao, Yu. A. Tikhonov110,c, S. Timoshenko99, P. Tipton176,
S. Tisserant87, K. Todome158, T. Todorov5,*, S. Todorova-Nova130, J. Tojo72, S. Tokár145a, K. Tokushuku68, E. Tolley59,
L. Tomlinson86, M. Tomoto104, L. Tompkins144,ap, K. Toms106, B. Tong59, E. Torrence117, H. Torres143, E. Torró Pastor139,
J. Toth87,aq, F. Touchard87, D. R. Tovey140, T. Trefzger174, A. Tricoli27, I. M. Trigger160a, S. Trincaz-Duvoid82,
M. F. Tripiana13, W. Trischuk159, B. Trocmé57, A. Trofymov44, C. Troncon93a, M. Trottier-McDonald16, M. Trovatelli169,
L. Truong164a,164c, M. Trzebinski41, A. Trzupek41, J. C.-L. Tseng121, P. V. Tsiareshka94, G. Tsipolitis10, N. Tsirintanis9,
S. Tsiskaridze13, V. Tsiskaridze50, E. G. Tskhadadze53a, K. M. Tsui62a, I. I. Tsukerman98, V. Tsulaia16, S. Tsuno68,
D. Tsybychev149, A. Tudorache28b, V. Tudorache28b, A. N. Tuna59, S. A. Tupputi22a,22b, S. Turchikhin100,am,
D. Turecek129, D. Turgeman172, R. Turra93a,93b, A. J. Turvey42, P. M. Tuts37, M. Tyndel132, G. Ucchielli22a,22b,
I. Ueda156, R. Ueno31, M. Ughetto147a,147b, F. Ukegawa161, G. Unal32, A. Undrus27, G. Unel163, F. C. Ungaro90,
Y. Unno68, C. Unverdorben101, J. Urban145b, P. Urquijo90, P. Urrejola85, G. Usai8, A. Usanova64, L. Vacavant87,
V. Vacek129, B. Vachon89, C. Valderanis101, E. Valdes Santurio147a,147b, N. Valencic108, S. Valentinetti22a,22b, A. Valero167,

123



653 Page 40 of 45 Eur. Phys. J. C (2016) 76 :653

L. Valery13, S. Valkar130, S. Vallecorsa51, J. A. Valls Ferrer167, W. Van Den Wollenberg108, P. C. Van Der Deijl108,
R. van der Geer108, H. van der Graaf108, N. van Eldik153, P. van Gemmeren6, J. Van Nieuwkoop143, I. van Vulpen108,
M. C. van Woerden32, M. Vanadia133a,133b, W. Vandelli32, R. Vanguri123, A. Vaniachine131, P. Vankov108, G. Vardanyan177,
R. Vari133a, E. W. Varnes7, T. Varol42, D. Varouchas82, A. Vartapetian8, K. E. Varvell151, J. G. Vasquez176, F. Vazeille36,
T. Vazquez Schroeder89, J. Veatch56, L. M. Veloce159, F. Veloso127a,127c, S. Veneziano133a, A. Ventura75a,75b, M. Venturi169,
N. Venturi159, A. Venturini25, V. Vercesi122a, M. Verducci133a,133b, W. Verkerke108, J. C. Vermeulen108, A. Vest46,ar,
M. C. Vetterli143,d, O. Viazlo83, I. Vichou166,*, T. Vickey140, O. E. Vickey Boeriu140, G. H. A. Viehhauser121, S. Viel16,
L. Vigani121, R. Vigne64, M. Villa22a,22b, M. Villaplana Perez93a,93b, E. Vilucchi49, M. G. Vincter31, V. B. Vinogradov67,
C. Vittori22a,22b, I. Vivarelli150, S. Vlachos10, M. Vlasak129, M. Vogel175, P. Vokac129, G. Volpi125a,125b, M. Volpi90,
H. von der Schmitt102, E. von Toerne23, V. Vorobel130, K. Vorobev99, M. Vos167, R. Voss32, J. H. Vossebeld76, N. Vranjes14,
M. Vranjes Milosavljevic14, V. Vrba128, M. Vreeswijk108, R. Vuillermet32, I. Vukotic33, Z. Vykydal129, P. Wagner23,
W. Wagner175, H. Wahlberg73, S. Wahrmund46, J. Wakabayashi104, J. Walder74, R. Walker101, W. Walkowiak142,
V. Wallangen147a,147b, C. Wang35c, C. Wang35d,87, F. Wang173, H. Wang16, H. Wang42, J. Wang44, J. Wang151, K. Wang89,
R. Wang6, S. M. Wang152, T. Wang23, T. Wang37, W. Wang35b, X. Wang176, C. Wanotayaroj117, A. Warburton89,
C. P. Ward30, D. R. Wardrope80, A. Washbrook48, P. M. Watkins19, A. T. Watson19, M. F. Watson19, G. Watts139,
S. Watts86, B. M. Waugh80, S. Webb85, M. S. Weber18, S. W. Weber174, J. S. Webster6, A. R. Weidberg121, B. Weinert63,
J. Weingarten56, C. Weiser50, H. Weits108, P. S. Wells32, T. Wenaus27, T. Wengler32, S. Wenig32, N. Wermes23, M. Werner50,
M. D. Werner66, P. Werner32, M. Wessels60a, J. Wetter162, K. Whalen117, N. L. Whallon139, A. M. Wharton74, A. White8,
M. J. White1, R. White34b, D. Whiteson163, F. J. Wickens132, W. Wiedenmann173, M. Wielers132, P. Wienemann23,
C. Wiglesworth38, L. A. M. Wiik-Fuchs23, A. Wildauer102, F. Wilk86, H. G. Wilkens32, H. H. Williams123, S. Williams108,
C. Willis92, S. Willocq88, J. A. Wilson19, I. Wingerter-Seez5, F. Winklmeier117, O. J. Winston150, B. T. Winter23,
M. Wittgen144, J. Wittkowski101, S. J. Wollstadt85, M. W. Wolter41, H. Wolters127a,127c, B. K. Wosiek41, J. Wotschack32,
M. J. Woudstra86, K. W. Wozniak41, M. Wu57, M. Wu33, S. L. Wu173, X. Wu51, Y. Wu91, T. R. Wyatt86, B. M. Wynne48,
S. Xella38, D. Xu35a, L. Xu27, B. Yabsley151, S. Yacoob146a, R. Yakabe69, D. Yamaguchi158, Y. Yamaguchi119,
A. Yamamoto68, S. Yamamoto156, T. Yamanaka156, K. Yamauchi104, Y. Yamazaki69, Z. Yan24, H. Yang35e, H. Yang173,
Y. Yang152, Z. Yang15, W.-M. Yao16, Y. C. Yap82, Y. Yasu68, E. Yatsenko5, K. H. Yau Wong23, J. Ye42, S. Ye27,
I. Yeletskikh67, A. L. Yen59, E. Yildirim85, K. Yorita171, R. Yoshida6, K. Yoshihara123, C. Young144, C. J. S. Young32,
S. Youssef24, D. R. Yu16, J. Yu8, J. M. Yu91, J. Yu66, L. Yuan69, S. P. Y. Yuen23, I. Yusuff30,as, B. Zabinski41, R. Zaidan35d,
A. M. Zaitsev131,ae, N. Zakharchuk44, J. Zalieckas15, A. Zaman149, S. Zambito59, L. Zanello133a,133b, D. Zanzi90,
C. Zeitnitz175, M. Zeman129, A. Zemla40a, J. C. Zeng166, Q. Zeng144, K. Zengel25, O. Zenin131, T. Ženiš145a, D. Zerwas118,
D. Zhang91, F. Zhang173, G. Zhang35b,an, H. Zhang35c, J. Zhang6, L. Zhang50, R. Zhang23, R. Zhang35b,at, X. Zhang35d,
Z. Zhang118, X. Zhao42, Y. Zhao35d, Z. Zhao35b, A. Zhemchugov67, J. Zhong121, B. Zhou91, C. Zhou47, L. Zhou37,
L. Zhou42, M. Zhou149, N. Zhou35f, C. G. Zhu35d, H. Zhu35a, J. Zhu91, Y. Zhu35b, X. Zhuang35a, K. Zhukov97, A. Zibell174,
D. Zieminska63, N. I. Zimine67, C. Zimmermann85, S. Zimmermann50, Z. Zinonos56, M. Zinser85, M. Ziolkowski142,
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