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ABSTRACT 

The de‐carbonisation of electricity generation systems will be vital in mitigating the worst effects of 

global climate change. This will involve the substitution of fossil fuel based generation with 

renewable and carbon neutral energy sources such a photovoltaics, wind and biomass. 

Internationally, the use of biomass to produce electricity has maintained a market share of 

approximately 2% of total global generation over the past 20 years (Evans et al., 2010). However, for 

the biomass share of electricity generation to increase, dedicated biomass crops will likely be 

necessary on land currently used for traditional agricultural production. Understanding the returns 

required by landholders from alternative land uses such as biomass is an important first step in 

determining a) the viability of such an industry in any particular region and; b) how policy setting can 

facilitate new industries and land use change. 

The economics of land use change from agriculture to agro‐forestry based biomass production has 

been broadly examined in Australia. However, these studies have largely employed discounted cash 

flow analysis (DCF) to determine the profitability of biomass enterprises. Discounted cash flow 

analysis is an established way to value land use and management investments which accounts for 

the time value of money. However, it provides a static view and assumes passive commitment to an 

investment strategy when real world land use and management investment decisions are 

characterised by uncertainty, irreversibility, change, and adaptation. Real options analysis (ROA) has 

been proposed as a better valuation method under uncertainty and where the opportunity exists to 

delay investment decisions, pending more information. When uncertainty and flexibility are 

considered, the rates of return required for investing in a new land use can be substantially higher 

than suggested by DCF calculations. This has obvious implications for investors and policy makers 

alike. However, while investments in biomass agro‐forestry are characterised by uncertainties, risk 

and large upfront (mostly sunk) costs, the application of ROA to this land use change question in 

Australia has been scarce.  

A previous limitation to the uptake of ROA has been model complexity and dimensionality. 

Established analytical methods demand advanced mathematical skills of the practitioner and can 

only be applied to limited range of problems, as solutions only exist for rather simple situations 

considering limited sources of uncertainty. However, investments in alternative land uses, unlike 

investment questions in financial markets (to which established analytical methods were designed to 

be applied), will involve multiple sources of uncertainty such as commodity prices, spatially varying 

risks like crop yields and emerging risks such as climate change. This poses challenges to the 

application of ROA to these types of investment questions. Newer Monte Carlo simulation methods 
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provide opportunity to investigate land use change problems where investment decisions are likely 

to involve multiple sources of uncertainty, spatially variable risks such as crop yields and long 

investment horizons. 

This research aimed to adapt a Monte Carlo based ROA simulation model to investigate [1] the 

effect of multiple uncertainties on the investment decision to switch land use from agriculture to 

biomass agro‐forestry in a climatically diverse region of southern Australia, [2] Understand the effect 

of spatially varying yield uncertainty across the study area, [3] explore the role potential climate 

change may have on the returns required to encourage land use change to biomass agro‐forestry 

and [4] provide mapped estimates of viable areas for biomass agroforestry at a range of price points 

across the study area. 

The results show that the consideration of price and yield uncertainty adds substantially to the 

returns required to trigger land use change from wheat to biomass when compared to results from 

the DCF analysis. Results indicate that uncertainty over returns to agroforestry, high upfront (largely 

sunk) costs, and loss of flexibility associated with agroforestry provide the landholder with a valuable 

option to delay reforestation and wait for uncertainties to resolve. Our results showed that for the 

lower Murray study area, the value of this option can be substantial, ranging from 1.45 – 2.32 times 

the present value of expenditures (DCF break‐even point).  

Landholders often cite the lack of certainty of government policies, and the longevity of incentive 

schemes as barriers to investment in reforestation. This research investigated the effect of incentive 

payments and incentive payment uncertainty on returns required to trigger land use change. This 

research found that a $25/t CO2‐e carbon payment reduced the trigger price substantially but that 

this impact varied spatially. While the effect of an uncertain carbon payment policy was to increase 

the conversion trigger returns when compared to a fixed carbon payment, the effect of added 

uncertainty was found to be small. The small effect of payment uncertainty reflects that the 

additional payment acted more as an additional top up payment, not a main source of revenue from 

conversion to biomass. This highlights a need to understand the role of incentive payments in the 

overall revenue stream created from any land use change. For example, when a large proportion of 

revenue from land use change is reliant on government policy, not market demand, policy risks are 

higher. 

Future climate change is anticipated to be the principal source of risk affecting long term economic 

viability of rain‐fed agricultural systems. This research specifically modelled land use change from 

agriculture to biomass production in a spatially explicit framework across a broad region accounting 
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for impacts of climate change on yield variability. The effect of climate change on trigger returns 

shows substantial spatial heterogeneity not only between high and low rainfall areas as one would 

intuitively expect, but within similarly classified areas. In broad terms climate change reduced 

returns required for land use change to biomass in low and medium rainfall zones (‐76%) and 

increased them in the higher rainfall areas (25%). The results of this research show that even under 

severe climate change comparatively small areas are economically viable for conversion to biomass 

under $200/ DM t (930,986 ha), and it is not until prices exceed $200/DM t that significant areas 

become profitable for conversion to biomass (up to 2,738,463 ha).   

On an energy equivalence basis, to be competitive with an oil price of AU$41/barrel (current at the 

time of writing) biomass would have to be priced at less than AU$130/DM t. Similarly, to be 

competitive with coal at AU$68/t, the energy equivalent price of biomass would have to be less than 

AU$52/DM t. Whether or not these prices are ultimately achievable is speculative, however, for 

substantial biomass industry development to occur in the study area, the synchronisation of 

products and services derived from mallee (oil, biomass, charcoal and carbon) and the development 

of markets will be paramount. 
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CHAPTER ONE 

 Introduction 

Since the development of the United Nations Framework Conventions on Climate Change (UNFCCC), 

adopted at the Rio Earth Summit in 1992, the depth of scientific understanding regarding the effect 

that human activity is having on the  Earth’s climate systems has grown enormously (IPCC 2014). The 

scientific evidence is overwhelming, human activities are having a measurable effect on the planet’s 

climate systems (Stern, 2007). Evidence suggests that most of the observed increase in global 

average temperatures (0.61°C) since the mid-20th century is very likely due to the observed increase 

in anthropogenic greenhouse gas concentrations (IPCC, 2007). In order to mitigate the worst effects 

of climate change, the Kyoto Protocol was developed under the auspices of the UNFCCC. The main 

aim of the Kyoto Protocol is to contain emissions of the main greenhouse gases in ways that reflect 

underlying national differences in emissions, wealth and capacity (Grubb, 2004). The Australian 

Government, under Prime Minister Kevin Rudd, ratified the Kyoto Protocol in 2007, thereby 

committing Australia to limiting its emissions to 108% of their 1990 level over the 2008-2012 period 

(Howarth and Foxall, 2010). 

Australia’s total greenhouse gas emissions account for less than 1.5 percent of global emissions, 

however due to a heavy reliance on coal for electricity generation, Australia is among the top five 

largest polluters on a per capita basis (Schiermeier, 2014). In order to meet its Kyoto Protocol 

commitments, the Australian Government introduced a range of climate change mitigation policies – 

including the Mandatory Renewable Energy Target (MRET) and the Carbon Farming Initiative (CFI). 

The MRET is designed to ensure that 20 per cent of Australia’s electricity generation comes from 

renewable sources by 2020 (Valentine, 2010), and it is hoped the CFI will encourage landholders to 

generate carbon offset credits though the creation of carbon sinks, primarily on agricultural and 

pastoral lands (Van Oosterzee, 2012). A third important component of Australia’s climate change 

mitigation policy and a key driver of demand for carbon credit supplied by the CFI, was the emissions 

trading scheme (ETS). Successive Australian federal governments have dismantled the ETS. However, 

despite this, significant interest remains in using agricultural land as carbon sinks (Evans et al., 2015) 

and as a source of renewable energy (Bryan et al., 2010c), while simultaneously addressing many 

environmental issues in Australian agricultural regions .  

The development of landscapes for agricultural production has resulted, in many instances, in 

environmental degradation which has limited not only the agricultural productive capacity, but also 

the resilience of ecosystems broadly (Vitousek et al., 1997). The large scale clearing of perennial 
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native vegetation in favour of annual crops and pastures has resulted in widespread degradation of 

biological, land and water resources (Bryan et al., 2013; Millar and Roots, 2012). In the face of 

declining natural capital, long standing approaches to landscape and ecosystem management are 

gradually being replaced by  paradigms that accept that landscapes are complex social–ecological 

systems (Parrott and Meyer, 2012). In addition, society is demanding that landscapes be managed to 

produce a range of ecosystem services separate from food and fibre including carbon, water, 

biodiversity, energy and amenity. New economies and markets are emerging that are placing 

transformational pressure on the landscape (Bryan et al., 2013). Indeed, these pressures are being 

felt within traditional agricultural commodity markets with consumers increasingly demanding 

credence attributes such as food safety, animal welfare and environmental protection (Chang and 

Kristiansen, 2006). Less intensive, more diverse farming systems are often considered  by consumers 

to be more environmentally responsible, provide higher standards of animal welfare and each linked 

to safer food (Viegas et al., 2014). Despite the recognition of the need to manage landscapes as a 

mosaic of land uses, providing multiple services, there are considerable (and evolving) challenges to 

achieving these objectives.   

Australian dryland agriculture is inherently risky, with Australian farmers experiencing a much higher 

level of financial risk than any other developed country (Hutchings, 2013).There is clear evidence that 

shows that farm business margins are declining with total Australian farm debt rising exponentially 

since 1965 (Reserve Bank of Australia, 2009).This situation is not sustainable. For growers to adopt 

strategies for sustainable land management, returns from alternative land uses must be greater or at 

the very least comparable to those from traditional agricultural production (Lyle et al., 2009). Climate 

variability, and its predicted increase as a result of climate change, pose substantial additional 

economic risks to farmers which may limit their ongoing access to credit for continuing traditional 

agricultural production as well as their ability to respond to global challenges such as food security 

and environmental problems (Kandulu et al., 2012). Traditionally, landholders have employed 

enterprise diversification as a way to manage the impact of climate variability on returns (Kingwell, 

2006). New markets for services  such as carbon sequestration, biodiversity, water quality and the 

production of biomass for the purpose of electricity generation from well adapted Eucalyptus 

species,  may serve as a valuable diversification option for landholders as change occurs in societal 

expectations, increased financial pressure and increasing climate risk (Bryan et al., 2010a; Bryan et 

al., 2010c).  

Internationally, the use of biomass to produce electricity increased by an average of 13 TWh per year 

between 2000 and 2008 and has maintained a market share of approximately 2% of total global 

generation over the past 20 years (Evans et al., 2010). However, for the biomass share of electricity 
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generation to increase, dedicated biomass crops will likely be necessary on land currently used for 

traditional agricultural production. In order to address the economic competiveness of new forestry 

industries in Australia, economic analyses have been conducted on both the viability of carbon 

forestry (Crossman et al., 2010; Paterson and Bryan, 2012; Polglase et al., 2011; Polglase et al., 2013) 

and biomass with a range of climate futures and spatial extents (Bryan et al., 2010c; Rodriguez et al., 

2011; Ward and Trengove, 2004). In the case of biomass, research has indicated that large areas 

would be more profitable if used for biomass than traditional agriculture (Bryan et al., 2008a) while 

the areas available for biomass may increase given the effects of climate change (Bryan et al., 2010c). 

While the biomass industry in Australia is largely undeveloped, evidence from other countries 

suggests that despite the potential profitability of land uses such as BEG, there is an observed friction 

between land use change behaviour and economic theory (Musshoff, 2012). Indeed, low investment 

rates have been a puzzling phenomenon in a range of agricultural technologies (Hüttel et al., 2010) 

including irrigation technology (Carey and Zilberman, 2002), conservation interventions (Winter-

Nelson and Amegbeto, 1998), perennial crops and pastures varieties (Richards and Green, 2003; 

Tozer and Stokes, 2009) and precision agriculture technology (Tozer, 2009). Classical investment 

theories, such as discounted cash flow analysis (DCF), assume complete markets and information 

symmetry (Hüttel et al., 2010). As such, if a project has a positive net present value (NPV), a rational 

investor should be expected to invest. However, research to explain observed investment inertia  has 

found landholders intuitively value the option to wait for uncertainty to decrease before making 

investment decisions (Ihli et al., 2013). This poses a problem for studies that have used DCF analysis 

to determine revenues at which landholders would change land use from conventional agriculture to 

alternative land uses. Primarily, DCF does not account for uncertainty in key variables such as 

commodity prices and does not value the flexibility to wait for more information. Experimental 

studies (Ihli et al., 2013; Maart and Musshoff, 2011) show landholders make investments later than 

would otherwise be optimal under DCF rationale. This has important implications for policy made 

using estimates derived from DCF. Revenues at which DCF indicates land use conversion would be 

more profitable than current land use, and the revenues at which a landholder would actually change 

land use, can be very different. Consequently, time taken to achieve land use conversion may be far 

greater than anticipated and far more costly. This is likely to have a significant effect on the prices 

required to encourage land use conversion. It also means that forecasting land use change for 

environmental restoration by policy makers and natural resource managers is quite uncertain.   

A more recent valuation method, Real Options Analysis (ROA), has been proposed as a better model 

for explaining investor behaviour under conditions of uncertainty. ROA was adapted from methods 

for pricing financial derivatives and has been broadly applied to forestry applications including 
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optimal harvest and rotation (Gjolberg and Guttormsen, 2002; Insley, 2002; Plantinga, 1998; 

Saphores, 2001; Thorsen, 1999). In an agricultural context, ROA has been applied to organic farming 

(Irene and Konstadinos, 2009; Kuminoff and Wossink, 2010; Tanner Ehmke et al., 2004), adoption of 

precision agriculture (Tanner Ehmke et al., 2004; Tozer, 2009), expansion of agricultural enterprises 

(Hinrichs et al., 2008; Odening et al., 2005; Tozer and Stokes, 2009), the adoption of genetically 

modified crops (Nadolnyak et al., 2011) and adaptation to climate change (Hertzler, 2007; Sanderson 

et al., 2016). Fewer examples of ROA application to environmental land issues exist. Several studies 

have applied ROA to the growing of biomass for electricity generation on agricultural land (Musshoff, 

2012; Wolbert-Haverkamp and Musshoff, 2014a, b). Despite its insight, the complexity of ROA 

methods has meant that adoption has been sporadic, even in corporate settings (Regan et al., 2015) 

and several major sources of uncertainty influencing investment behaviour have remained largely  

unaddressed. 

Climate variability is the principal source of risk affecting long term economic viability of rain-fed 

agricultural systems (Kandulu et al., 2012). In addition, primary production is not only sensitive to 

annual changes but also to seasonal distribution of rainfall (Iglesias and Quiroga, 2007). Previous ROA 

studies have often used invariant yield data (Musshoff, 2012; Reeson et al., 2015; Wolbert-

Haverkamp and Musshoff, 2014a), or have accounted for production variability in stochastic 

processes modelling returns to agriculture (Isik and Yang, 2004; Sanderson et al., 2016). As a result 

temporal climate variability has been largely ignored as a major source of uncertainty influencing 

landholder decision making. 

Research using conventional economic analysis has incorporated spatial heterogeneity in primary 

productivity to understand the distribution of cost-effective land use change (Bateman, 2009; Bryan 

et al., 2008a; Crossman et al., 2011; Polglase et al., 2008a) and have found that underlying landscape 

heterogeneity is likely to influence the timing and location of land use change. The inclusion of 

heterogeneity in the biological drivers of primary productivity, until recently, has received scant 

attention in the ROA literature.  However, the acknowledgement of differing production risk profiles 

across the landscape and their inclusion into ROA modelling could help understanding of the 

contribution of a variety of sources of uncertainty to the observed reluctance to switch land use.  The 

relative contribution of different sources of risk to investment inertia is also likely to differ spatially. 

This is important for policy makers to understand as any incentives offered to promote land use 

change need to address the source(s) of uncertainty responsible for reluctance to invest, and also 

that the effects of uncertainty will likely differ across a region.  
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In addition to commodity price and yield risks, climate change is expected to pose new risks to 

agricultural production and as such presents opportunities for landholders to participate in emerging 

economies by modifying their current land use. In an Australian context, several studies (Hertzler, 

2007; Nelson et al., 2013; Sanderson et al., 2016) have used ROA to understand how climate change 

may affect land use investment decisions and timing. However, none have done this in a spatially 

explicit environment. The effects of climate change are likely to occur along a spectrum that includes 

both the benign and the catastrophic (Dobes, 2010). Modelling (IPCC, 2014; Suppiah et al., 2006) 

suggests spatial heterogeneity in climate change effects across the Australian wheat belt (Potgieter 

et al., 2013). The implication of this is that not only is climate change likely to affect the returns 

required to trigger land use change, but that the distribution of effects will vary spatially. The 

inclusion of these risks in a spatially explicit environment is important  to generate more precise 

estimates of the returns land holders will require to switch land use, regional net return values and 

potential land conversion patterns (Yemshanov et al., 2015) under a range of climate futures. 

With this background the aim of my research is to establish the potential of ROA for landholders and 

policy makers to better account for multiple sources of uncertainty in land use and land use change 

decision making. By incorporating key stochastic uncertainties associated with land use, natural 

resource managers can gain valuable insight into how uncertainties affect cost associated with 

transitioning land use away from predominantly agricultural use to multi-functional landscapes 

providing a range of ecosystem services. 

In addition to the broad aim of the thesis, my research aims to accomplish the following specific 

objectives and address several key gaps in the ROA literature, specifically: 

• ROA methods can be mathematically complex and this has resulted in ROA being technically 

inaccessible and consequently appearing to be a black box to managers. This has inhibited 

the wide adoption of ROA in land use and management decision making problems. New 

methodologies are being developed to provide simpler, more heuristic ways of incorporating 

ROA into land use and management decision making. However these methods have not been 

widely introduced to natural resource managers. Chapter 3 addresses this by introducing 

ROA as an alternative valuation method and discusses its use in land use and management 

decisions. Chapter 3 discusses the merits of various ROA methodologies and their key 

limitations. 

• A key limitation of many ROA methodologies is the failure to account for multiple, interacting 

sources of uncertainty which are important sources of risk for land holders and influence 

land use decisions. The effect of multiple sources of uncertainty of returns needed to 
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encourage land use change has been largely unaddressed in the ROA literature to date. 

Chapter 3 addresses this gap and proposes ROA combined with Monte Carlo simulation as a 

promising method that provides a cognitively accessible model with the capacity to include 

multiple sources of uncertainty into the analysis. To highlight this, the paper applies an ROA 

simulation model to a stylised land use change problem. The results are reported and their 

implications for natural resource managers and policy makers discussed. 

• Previous studies have applied ROA to land use change questions in one location and have 

made broad conclusions regarding the effects of uncertainty on land holder decision making. 

However, considerable geographical variability in production risk is often present, and an 

understanding of if and how differing locational production risk profiles effect land use 

change decisions has been lacking. Chapter 4 addresses this gap by applying a simulation-

based ROA model to examine the effects of interacting uncertainties on landholder decision 

making. In addition to commodity price uncertainty, the paper’s focus is on the effects of 

geographically varying risk at several locations across a diverse region of southern Australia. 

Incentive policies are often employed by policy makers to encourage participation in agro-

environmental programs by offsetting establishment costs or attempting to negate variability 

in returns from alternative land uses. However, given the variability in the production risk, 

incentive payments are unlikely to have a homogenous effect across any area. Chapter 4 

aims to firstly investigate payment policies that include alternative treatments of risk and 

secondly if the effect of these payments differs geographically. Chapter 4 concludes by 

discussing the implications of the research for policy makers and natural resource managers.  

• Studies using DCF to analyse land use change have frequently done so in a spatially explicit 

environment in order to better understand the distribution and patterns of possible land use 

change. The complexity of ROA methods has seen the inclusion of spatial variables largely 

ignored with only several exceptions. However, simulation based ROA models make the 

inclusion of spatial variables more feasible. The aim of Chapter 5 was to incorporate spatial 

complexity into the ROA in order to better understand the distribution effects of multiple 

sources of uncertainty across a biophysically diverse and heterogeneous agricultural region. 

Chapter 5 then examined the role of different sources of risk on land holder decision making, 

and how that differed across the region. 

• In addition to price and production risks, climate change may pose an addition source of 

uncertainty to land holders and exacerbate existing production risks thereby affecting land 

use change decisions. Previous ROA studies addressing land use and land use change under 

potential climate change scenarios have relied upon spatial analogues to provide an 

approximation of future condition. However temporal changes associated with climate 
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change cannot always be adequately captured using spatial analogues, such as the effect on 

plant growth of increased CO2 concentrations. In addition, the effects of climate change on 

production risks is likely to vary spatially and the severity of effects occur along a spectrum 

from the benign to severe. Chapter 5 aims to address this by examining the effects of 

potential climate change futures on the returns required to induce land use change from 

agriculture to biomass in a spatial framework. The inclusion of spatial variables allows for the 

chapter to be concluded by quantifying the area economically viable for land use change to 

biomass at different commodity price points. 

The thesis is structured around the specific aims listed above. Chapter 2 provides additional 

background on the potential of a biomass industry in Australia and the selection of the ROA model. 

Chapters 3-5 directly related to the specific aims above and the final chapter (6) provides an overall 

conclusion of my research and recommendations for possible future research. 

Publication details of the thesis chapters are as follows. Chapter 2 was published as a critical review 

in Journal of Environmental Management. Chapter 3 has been submitted as an original research 

paper in Land Use Policy. Chapter 4 has been submitted to Journal of Environmental Management as 

an original research paper.  
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CHAPTER TWO 

 Further context 

The purpose of this chapter is to provide additional context and background on two foundational 

settings of this thesis. The first is to outline the recent development of the tree biomass industry in 

Australia that has arisen largely in response to environmental concerns of soil erosion and 

groundwater management associated with increasing dryland salinity. Use of the biomass and other 

value adding products has been part of improving the financial viability of this perennial revegetation 

activity.  The second foundational setting is that of using Real Options Analysis (ROA) as the analysis 

method rather than more common, existing methods. Having a full appreciation of the limitations of 

existing methods and of the advantages of new ways of implementing ROA, will provide useful 

context for detail in Chapter 3. 

 Biomass industry in Australia 

Development of the modern mallee industry began in the early 1990s and was conceived as a 

pioneer woody crop industry for the wheat-belt areas of Australia, initially to be based in Western 

Australia (Bartle and Abadi, 2009). Mallee refers to a category of eucalyptus species that are 

characterised by multiple woody stems originating from an underground lignotuber (Wildy et al., 

2003). Mallee species are common across large regions of Australia, in particular, dry Mediterranean 

and semi -arid areas of southern Australia. Mallee species are slow growing and can be extremely 

long lived, with some estimates of age possibly exceeding 6000 years (Rossetto et al., 1999) and are 

extremely well adapted to Australia’s naturally low fertility soils, variable rainfall including periods of 

drought, high temperatures (Wildy et al., 2003) and a capacity to regenerate after fire . Mallee’s have 

outstanding coppicing ability and many mallee species have a high concentration of oil in their leaves 

which has been sold into small traditional markets (Bartle and Abadi, 2009).  

Unfilled markets for eucalyptus oil exist and there is potential for large-scale industrial use (Enecon, 

2001). Traditional markets for eucalyptus oil were never considered likely to generate sufficient 

revenue to alone drive a modern industry (Bartle and Abadi, 2009).  As a result, the motivation for 

investment to develop woody biomass crops for dryland agriculture in Australia over the past several 

decades has been primarily environmental (Bartle et al., 2007). The major historic use of trees within 

agriculture has been for shelter from wind for erosion control as well as stock and crop protection 

(Bartle and Abadi, 2009; Nuberg, 1998). In addition, the replacement of agricultural crops and 

pastures with deep-rooted perennial biomass species can reduce deep drainage and groundwater 

recharge (Bryan et al., 2010c), however  salinity benefits can take 20-30 years to be realised as a new 
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landscape hydrologic equilibrium is established (Bartle and Abadi, 2009). In addition, biomass 

production has been proposed as a mitigation for future climate change. This can be done through 

sequestering CO2 from the atmosphere in biomass and soils (Strengers et al., 2008), or through 

replacing electricity generated from high CO2 emitting fossil fuels with that produced from renewable 

and carbon neutral biomass (Ravindranath et al., 2006). 

Several potential pathways for developing a sustainable biomass industry have been proposed. The 

most immediately achievable is co-firing existing power stations with biomass. Biomass co-firing can 

be implemented immediately in nearly all coal-fired power plants in a relatively short period of time 

and without the need for huge investments and therefore offers the lowest cost, among the several 

technologies/options available for greenhouse gas reduction  (Basu et al., 2011). Currently a number 

of co-firing installations exist worldwide, with approximately 100 in Europe, 40 in the USA and the 

remainder in Australia and Asia (Basu et al., 2011; Koppejan and Van Loo, 2012). There are three 

primary avenues for the integration of biomass into existing power plant operations (Basu et al., 

2011): 

1. Direct co-firing 

Direct co-firing involves biomass being injected directly into the boiler furnace through the 

coal burners, or in a separate system. The level of integration into the existing plant depends 

principally on the biomass fuel characteristics. 

 

2. Indirect co-firing 

Indirect co-firing involves the installation of a completely separate biomass boiler to produce 

low-grade steam for utilization in the coal-fired power plant prior to being upgraded, 

resulting in higher conversion efficiencies. 

 

3. Gasification co-firing 

Co-firing through gasification involves the gasification of solid biomass and combustion of 

the product fuel gas in the furnace of the coal-fired boiler. 

The intensification of co-firing coal with biomass is reliant on several factors including access to 

economically viable biomass, usually in the form of forest industry residues (Rodriguez et al., 2011), 

government policies surrounding renewable energy targets and climate change mitigation, and the 

cost of fossil fuels such as coal and natural gas. However under current policy settings (REC prices) 

and global fossil fuel prices, as little as 3% of current biomass feedstocks may be economically 

available for electricity production (Rodriguez et al., 2011). 
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In addition to co-firing existing power plants with biomass, stand-alone biomass fuelled electricity 

generation has been proposed as a potential renewable energy source. It is hoped that with 

increasingly ambitious climate change mitigation policies, with a focus on electricity generation from 

renewables, such an industry could become economically viable. However, under current policies, 

the prices able to be paid for biomass by an electricity generator would be low (AU$ 30-50/t 

(Rodriguez et al., 2011) making  electricity generation from biomass alone commercially unviable (for 

landholders), even with a modest level of renewable energy credits (Bartle and Abadi, 2009). 

Integrated tree processing (ITP) has been proposed as an economically viable way to promote a 

broad scale biomass industry in Australia. An ITP plant takes coppiced, chipped mallee biomass as 

feedstock and produces a range of products including activated carbon, renewable energy and 

eucalyptus oil (Enecon, 2001). Activated carbon is used in a range of industrial applications including 

gold recovery and water treatment with worldwide demand being approximately 700,000 tonnes per 

annum (Enecon, 2001). The existing world market for eucalyptus oil is mainly for pharmaceutical and 

domestic cleaning uses and is approximately 4000 tonne per annum (Enecon, 2001), however 

research continues into processing eucalyptus oil into liquid biofuels for use in transport industries, 

including aviation (Murphy et al., 2015). One ITP plant is currently operational at Narrogin in Western 

Australia, successfully producing activated carbon, eucalyptus oil and renewable electricity. A 

schematic of the process is presented in Figure 2.1: 
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Figure 2.1– Schematic representation of the processes in an integrated tree biomass and oil 
processing plant (Adapted from Enecon, 2001). 

Significant work has been conducted in identifying suitable species of eucalypts able to improve 

natural resource management outcomes, while providing profitable alternative enterprises to land 

holders (Bennell et al., 2009; Hobbs et al., 2009; Hobbs, 2009b).  These primarily include Acacia and 

mallee Eucalyptus species. Despite impediments to the development of large scale integrated tree 

processing, there exists significant potential for such an industry if risks posed to both land holders 

and investors can be reduced and better assessed. This will involve the further expansion of markets 

for products such as eucalyptus oil and charcoal, clarity on government renewable energy policy, 

development of mature markets for ecosystem services and continued monitoring of the effects of 

climate change. 

 Choice of real options model 

The topic of available ROA methods and their application is discussed in detail in chapter 3, however 

the selection of the ROA model used as the basis for this thesis warrants additional explanation.  In 

broad terms, two methods for ROA application to land use change are available. The first involves the 

use of analytical methods such as those employed by Hertzler et al. (2013) and Sanderson et al. 

(2016). Applying analytical methods requires the solution of a partial differential equation. Analytical 
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solutions only exist for rather simple situations considering limited sources of uncertainty (Odening 

et al., 2005). However most real world investments are not simple and involve multiple, 

simultaneous risks and therefore one must turn to numerical approximation methods, including 

Monte Carlo simulation based methods and binomial tree methods. The limitation of using binomial 

trees or other lattice methods is described at length in Chapter 3. In short, binomial trees are 

restricted by what is commonly termed the curse of dimensionality, meaning the tree can quickly 

grow burdensomely large as the number of time periods and sources of uncertainty increase. As a 

result they are more suited to more simple problems with few sources of uncertainty and where the 

investment time horizon is relatively short. Despite binomial trees being far simpler to implement, 

these limitations made the methods unfeasible for this research. 

The main advantage of Monte Carlo simulation is its flexibility with respect to the stochastic 

processes used to model prices or returns and the number of risks that can potentially be included in 

the analysis. Its main disadvantage is that it is usually only applicable to European-type options 

(options that can only be exercised on the expiration date) and not to American-type options 

(options that can be exercised at any time within a predetermined time period).  However many 

investment decisions in land use and management are analogous to American-type options. In order 

to allow Monte Carlo simulation methods to calculate American-type options, Ibanez and Zapatero 

(2004) proposed a method that combines Monte Carlo simulation with backward dynamic 

programming that aims to determine the optimal investment exercise frontier.  

An important variable to consider in real options analysis is the time frame over which the 

investment can be made. The selection of an investment time horizon can be problematic. Odening 

et al. (2005) chose a 5 year time horizon over which to test the (dis)investment options in pig raising 

in Germany. The assumption of a 5 year time horizon was explained as more a tribute to the 

computational burden (Odening et al., 2005) rather than any reflection of a natural time limit, and in 

that respect was somewhat arbitrary. Indeed, situations will undoubtedly exist in which it is 

impossible to delay an investment indefinitely, for example legislative changes that will prohibit the 

investment at a future date, such as the introduction of environmental regulations or the 

termination of subsidies. The addition of an arbitrary or incorrect time horizon will affect/distort the 

exercise frontier and the optimal investment trigger (Figure 2.2). The addition of a definite 

investment horizon results in the exercise frontier of the ROA decreasing over time, reflecting the 

diminishing time value of the investment option, until it converges with the NPV investment trigger 

at the expiry date (Tubetov et al., 2013). 
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Figure 2.2 – Optimal exercise frontier for NPV and ROA showing diminishing time value of the 
investment option under the assumption of a finite investment horizon (Adapted from Tubetov et al., 
2013) 

Many investments in land use and management do not have any readily apparent natural time 

horizon. In essence, a landholder can make a decision on investment over an unrestricted time 

period.  The decision to invest in biomass or carbon can be viewed as such an investment. In the 

absence of short run policies or incentives designed to drive land use change, a land holder can make 

the decision to invest at any time depending on the comparative financial performance of the land 

use alternatives. Furthermore they have the flexibility to move between enterprises multiple times. 

For example, after the useful lifetime of a biomass plantation a land holder can re-establish the land 

in biomass or return the land to conventional agriculture depending on the economic conditions 

encountered at the time. In situations where no natural or readily apparent timeframe is available 

Tubetov et al. (2012) and Musshoff (2012) applied an option pricing method based on stochastic 

simulation and the parameterisation of investment triggers. This ROA framework can be adapted to 

incorporate multiple sources of uncertainty and therefore provides the opportunity for a more 

comprehensive treatment of risk than simply price volatility. Additionally, the model is comparatively 

computationally efficient, allowing for the incorporation of spatial variables into the ROA, an area 

seldom addressed in the ROA literature in part due to the complexity and computational burden of 

analytical real options methods. 
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 CHAPTER THREE 

The purpose of this chapter is to provide a critical review of the use of discounted cash flow methods 

in land use and management investment analysis. The chapter discusses at length previous 

applications and discusses in detail the limitations of these methods, especially under conditions of 

uncertainty and sunk cost. This chapter introduces the real options analysis as an alternative method 

for the valuation of investments in land use and management. In the previous chapter (Ch. 2), I 

discuss the reasoning behind the choice of the real options model used in this thesis. In this chapter, I 

provide a detailed summary and critique of the major real options methods presented in the 

literature, with a focus on the potential for Monte Carlo based simulation methods to incorporate 

multiple sources of uncertainty in economic analysis of land use change. In order to demonstrate this 

potential, I provide a stylised example of a Monte Carlo based simulation method applied to a land 

use change problem. The results of this modelling are analysed and the implications of the results 

obtained from real options analysis for natural resource managers and policy makers are discussed. 

Abstract 

Discounted cash flow analysis, including net present value is an established way to value land use and 

management investments which accounts for the time value of money. However, it provides a static 

view and assumes passive commitment to an investment strategy when real world land use and 

management investment decisions are characterised by uncertainty, irreversibility, change, and 

adaptation. Real options analysis has been proposed as a better valuation method under uncertainty 

and where the opportunity exists to delay investment decisions, pending more information. We 

review the use of discounted cash flow methods in land use and management and discuss their 

benefits and limitations. We then provide an overview of real options analysis, describe the main 

analytical methods, and summarize its application to land use investment decisions. The review 

concludes that uncertainty, irreversibility, and the presence of sunk costs can significantly affect the 

timing and magnitude of land use investment decisions in response to policy and economic drivers, 

and influence the cost of land use policies such as payment schemes. Real options analysis is largely 

underutilized in evaluating land use decisions, but new simulation methods offer the potential for 

overcoming current technical challenges to implementation. We provide an example of a real options 

simulation model used to evaluate an agricultural land use decision in South Australia. We conclude 

that considering option values in future policy design will provide a more realistic assessment of 

landholder investment decision making and provide insights for improved policy performance. 

Keywords: land use, real options, agriculture, planning, economic   
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 Introduction 

New markets and policies are emerging which are exerting transformational pressure on land use 

(Bryan et al., 2013). Diversification of land use—moving away from production agriculture to 

multifunctional land uses—has been recognised globally as being important for remediating 

environmental problems and enhancing the sustainability of food and fibre production (Crossman 

and Bryan, 2009; Lovell and Johnston, 2008; O’Farrell and Anderson, 2010). Many studies worldwide 

have examined the financial profitability of alternative land uses and the attractiveness of economic 

incentives through mechanisms such as payments for ecosystem services and agri-environment 

schemes (Connor et al., 2008; Hein et al., 2013; Wunder et al., 2008). Carbon forestry (Paterson and 

Bryan, 2012), biodiversity plantings (Polglase et al., 2013), the production of biofuels (Bryan et al., 

2010b; Fischer et al., 2010) and bioenergy (Bryan et al., 2010c; Schneider and McCarl, 2003) 

feedstock may all potentially provide economically viable alternatives to conventional agriculture 

under the right policy settings. However, the widespread uptake of these alternatives faces many 

challenges. Psychological inertia, the sunk cost fallacy (Ross and Staw, 1993), the status quo bias 

(Burmeister and Schade, 2007), along with other factors have all been invoked to explain the 

reluctance to change. While the decision to adopt an alternative land use or management regimes 

involve more than purely economic considerations—financial competitiveness is a key component 

(Lambin et al., 2001; Lubowski et al., 2006).  

Capital budgeting is an established process by which organisations evaluate long term investment 

decisions, typically in new plant and machinery, new products, and in research and development. 

Discounted Cash Flow (DCF) analysis is one way of evaluating investments using the concept of time 

value of money. The value of an investment depends on its propensity to generate cash flow. A 

measure of DCF—net present value (NPV)—has been used widely to assess investments (Bryan et al., 

2008a; Harper et al., 2007; Paterson and Bryan, 2012; Walsh et al., 2003). However, NPV often has 

limited ability to account for the value landholders place on managerial flexibility, or the option to 

wait for further information in the face of uncertainty and risk (Arya et al., 1998)—important 

considerations in typical land use investment decisions.  

A more recent capital budgeting method—real options analysis (ROA)—has been proposed as a 

better model for valuing investments and describing investment behaviour in the presence of 

uncertainty (Isik and Yang, 2004; Schatzki, 2003; Song et al., 2011). ROA is applicable when 

investment decisions are irreversible and where there is the opportunity to delay decisions until 

more information is gained (Fenichel et al., 2008). This review examines the use and limitations of 

DCF techniques in evaluating land use and management decisions. We review the application of ROA 
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to land use management and consider the potential for ROA to provide insights into the timing of 

land use investments.  A simulation based real options model is applied to a land use change 

problem and the implications for policy makers and land holders are discussed. 

 Discounted cash flow  

3.2.1 Concepts 
DCF analysis and the calculation of NPV is a practical and widely used method for evaluating 

agricultural and other investments (Cocks, 1965; Marra et al., 2003). It is based on a fundamental 

principle of finance— due to inflation, economic growth and risk,  a dollar today is worth more than a 

dollar tomorrow (Homer and Leibowitz, 2013). In DCF analysis, future income streams are discounted 

and expressed in present value terms (Johnson and Hope, 2012). NPV is the sum of the discounted 

annual cash flows (inflows and outflows) and is a widely used indicator of an investment’s 

profitability. Numerous metrics have been used in capital budgeting problems to evaluate 

investments based on DCF analyses and NPV including: Internal Rate of Return (IRR), Benefit-Cost 

(B/C) ratios, and payback periods (Arya et al., 1998; Baker and English, 2011). However, in its simplest 

application, a project is regarded as economically feasible if the NPV is positive as this indicates 

positive cash flow compared to a targeted rate of return over the life of the project. 

In calculating NPV, each year’s cash flow is discounted back to its present value (PV). The PV is 

calculated as: 

𝑃𝑃𝑃𝑃 =
𝑅𝑅𝑡𝑡

(1 + 𝑖𝑖)𝑡𝑡 (1) 

Where 𝑡𝑡 is the time period of the cash flow; 𝑖𝑖 is the discount rate and 𝑅𝑅𝑡𝑡 is the net cash flow in time 

period t. The NPV is the sum of all present values incoming and outgoing over the total number of 

periods 𝑁𝑁. 

𝑁𝑁𝑁𝑁𝑁𝑁 (𝑖𝑖, 𝑁𝑁) = �
𝑅𝑅𝑡𝑡

(1 + 𝑖𝑖)𝑡𝑡

𝑁𝑁

𝑡𝑡=0

 (2) 

In calculating NPV, some key variables need to be specified including inflation, taxes, and 

importantly, discount rate (Dixit and Pindyck, 1995). NPV evaluations have advantages in that they: 

are relatively simple to explain and understand; have clear and consistent decision criteria; rely on 

quantitative data, and; account for time and risk (Mun, 2006b). Another great benefit of NPV is that 

it enables the comparison of investments that involve uneven costs and returns over time. 

http://en.wikipedia.org/wiki/Discount_rate


29 
 

3.2.2 Application in land use and management 
For decades cost-benefit analyses and NPV have been used to compare streams of net benefits in 

agricultural and resource economics over time (Cocks, 1965; Nelson et al., 1996). DCF analysis has 

been used to evaluate agricultural and conservation technology and investment scenarios both in 

Australia and internationally including investment in conservation tillage (Stonehouse, 1997), 

precision agriculture (Robertson et al., 2007; Swinton and Ahmad, 1996), technology adoption 

(Marra et al., 2003), new crop  varieties and rotations (Bell et al., 2008; Doole and Pannell, 2008), 

extension programs (Robertson et al., 2009) and the value of ecosystem services and environmental 

restoration (Birch et al., 2010; Bryan and Crossman, 2013; Kaiser and Roumasset, 2002; Sathirathai 

and Barbier, 2001). Land use studies using DCF methods have often incorporated a spatially explicit 

framework to estimate the profitability of land uses such as reforestation (Bateman, 2009; Burns et 

al., 2011; Crossman et al., 2011; Lawson et al., 2008; Paterson and Bryan, 2012; Polglase et al., 2011; 

Polglase et al., 2013) and bioenergy feedstock (Bryan et al., 2010c; Bryan et al., 2008a) at a landscape 

level. Despite the widespread use of DCF methods, there are important limitations to the use of 

these methods in the analysis of land use and land use change. 

3.2.3  A critique  
 A commonly cited weakness of NPV is that it only considers the opportunity to invest as a now or 

never decision (Dixit and Pindyck, 1995). NPV analyses make implicit assumptions concerning future 

cash flow scenarios and assume management’s passive commitment to an investment strategy 

where a firm starts and completes a project without any contingencies (Trigeorgis, 1996). In reality 

an investment may become less risky into the future, interest rates may change, or the projected 

cash flows may differ from those initially forecast. These factors may have significant impacts on 

investment decisions (Trigeorgis, 1993). For the majority of capital budgeting decisions that rarely go 

beyond twenty five years, this may not pose such a significant problem (Pindyck, 2007). However,  

many  land use investments, particularly involving forestry, have significant time horizons over which 

decisions may be undertaken and benefits accrued (Ross, 1995; Van Der Werf and Peterson, 2009). A 

long time horizon exacerbates the uncertainty over an investment’s costs and benefits (Pindyck, 

2007). While firms sometimes find it wise to invest early, for example to pre-empt investment by 

competitors, generally, the cost of immediate investment must be weighed against the benefits of 

waiting for new information that will resolve or lessen uncertainties (Pindyck, 1991). The inability of 

NPV to consider an investors’ ability to wait for new information poses challenges for DCF use in 

environmental decisions with long time horizons.  

A further  critique of NPV is that it doesn’t account well for risk when investments are not easily 

reversible and expenditures cannot be fully recovered should market conditions deteriorate (Ross, 
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1995). Yet, many investments in land management are not easily, cheaply or quickly reversible. 

Related plant and equipment are subject to considerable depreciation and resale values are often 

well below purchase costs (Pindyck, 1991). To compensate for risk and uncertainty, a risk premium 

can be added to the discount rate for all future cash flows thereby creating a hurdle rate that the 

investment return must exceed in order to be considered. However, risk-adjusted hurdle rates can be 

a blunt instrument which do not always adequately account for risk. In highly uncertain 

environments, hurdle rates have been seen to be three or four times the cost of capital (Dixit, 1992), 

resulting in investment inertia (the reluctance to invest) becoming the optimal investment strategy 

(Ross, 1995). To overcome inertia, excessively large project cash flows are required (Ross, 1995) 

which can lead to underinvestment and compromise a firms competitiveness (Baker and English, 

2011). 

As a result of these limitations, DCF and NPV calculations have often failed to explain actual 

landholder investment responses, often despite favourable NPV valuations (Musshoff, 2012). While 

NPV is a good starting point to analyse the feasibility of investments in land use, where there is 

uncertainty over future cash flows, long investment horizons and investment is irreversible, the NPV 

rule systematically undervalues the benefits of waiting (Kemna, 1993). New methods such as real 

options analysis can better capture the value of flexibility and the opportunity to update decisions 

with new information and consequently may provide better models of investment behaviour. 

 Real Options Analysis 

3.3.1 Concepts 
The concept of ROA derives from markets for financial options (Borison, 2005; Mun, 2006b). Financial 

options in commodity markets are derivative securities that take their value from other financial 

securities known as the underlying asset. In brief, an option provides the right, but not the obligation, 

to buy (call option) or sell (put option) an underlying asset at a fixed price by a certain specified time 

in the future (Chance and Brooks, 2009). There are two primary option exercise styles, European and 

American. European style options can be exercised on the expiration day only, while American style 

options can be exercised at any time before or on the expiration day (Chance and Brooks, 2009). 

Myers (1977) first proposed an analogy between financial options and a firm’s real world capital 

budgeting decisions. He viewed an investment decision as a real option where the gross projected 

value of expected cash flows can be considered the underlying asset, the investment needed to 

obtain the underlying asset is the exercise (trigger or strike) price and the period over which the 

decision maker can defer investment can be considered the time to maturity.  
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Increasingly, real world capital budgeting decisions are evaluated as a set of options that unfold over 

time. Managers alter their operating strategy as new information becomes available and uncertainty 

about market conditions and future cash flows is gradually resolved. When a firm invests it gives up 

the option to make an alternative investment and incurs the opportunity cost associated with losing 

the option for investment elsewhere. Unlike traditional, static DCF approaches, the real options 

approach considers a series of decision points over an investment horizon (Miller and Waller, 2003). 

At each decision point the investor considers whether to invest, or to defer and maintain the option 

to invest later. Investments must not only have a positive NPV, but the expected returns from 

investing now must also exceed returns expected by deferring investment (Dixit and Pindyck, 1995). 

Multiple industries have used ROA to value potential investments. These investments are often 

expensive, long term, affected by multiple risks (market, political, regulatory, societal), and involve 

irreversible costs (Chvalkovská and Hrubý, 2010). Figure 3.1 shows the simplified boundaries of 

applicability for NPV and ROA. 

 
Figure 3.1– Boundaries of applicability for NPV and ROA adapted from Adner and Levinthal (2004) . 

The essence of ROA, when compared to DCF, is that the investment triggers—which define the 

critical levels of revenue at which an investor finds it optimal to enter or abandon an investment—

will be shifted upwards (downwards) if the investment involves inter-temporal opportunity costs 

(Musshoff, 2012; Seyoum and Chan, 2012).  

Many investment decisions can potentially be regarded as real options, these are outlined in Table 

3.1.  
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Table 3.1 – Summary of common options analysed in ROA (Antikarov and Copeland, 2001; Duku-
Kaakyire and Nanang, 2004; Trigeorgis, 1996; Trigeorgis and Mason, 1987): 

 

A major benefit to users of ROA lies in refocusing risk management away from simply avoiding 

negative outcomes towards actively pursuing and exploiting positive aspects of uncertainty (Nelson 

et al., 2013; Neufville, 2003). Rather than treating risk as something to be avoided, real options 

thinking encourages managers to focus less on the most-likely scenario and more on the distribution 

of possible outcomes (Triantis, 2005). Volatility can become a source of value and incorporating the 

flexibility to respond to volatility into project design allows upside potential of investments to be 

capitalized upon, more so than an investment strategy based on the most likely scenario (Triantis, 

2005). 

3.3.2 Methods 

There are three main methods used for calculating option values: partial differential equations, 

simulation, and lattice methods (Mun, 2006b), and these are introduced below.  

 

Partial differential equations 

Partial differential equations are a continuous time, analytical, mathematical approach to valuing real 

options—the most well-known being the Black-Scholes-Merton model (Dixit and Pindyck, 1994). 

Models of this type calculate options values by equating the change in option value with the change 

in the underlying asset’s value and are based on a strict set of assumptions. First, that there are 

perfect markets. Second, that the future development of an asset’s value be regarded as a random 

walk, allowing for the use of stochastic processes such as geometric Brownian motion (GBM) (Collan, 

2011).  Last, that the opportunity to invest is time continuous (Wolbert-Haverkamp and Musshoff, 

2014a).  
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The Black-Scholes-Merton formula has several limitations. Originally designed for valuing financial 

derivatives, it was never intended to value complicated derivatives such as compound options 

(Copeland and Tufano, 2004). When applied to complex real option problems with multiple sources 

of uncertainty, simplifying assumptions are often needed. For example, the Black-Scholes-Merton 

model assumes volatility to be constant over the life of the option, the returns to the project are 

normally distributed and that the projects underlying value is log-normally distributed (Gilbert, 

2004). While such simplifying assumptions may not significantly affect some valuations, they can lead 

to significantly distorted valuations and suboptimal investment decisions in many cases (Triantis, 

2003). 

The Black-Scholes-Merton model also assumes that options can be exercised only at their maturity 

date. Therefore, it is most useful for the valuation of European style options as the model requires a 

fixed decision date (Triantis, 2003; Trigeorgis, 1996). However, investment decisions related to land 

use change can often be regarded as an option which could be exercised at any time, akin to an 

American style option. In addition, many land use investment decisions are not time continuous as 

decisions relating to changing land use are often made once a year in conjunction with seasonal 

factors.  

Further, and perhaps most significantly, the mathematics behind the Black-Scholes-Merton model 

and other partial differential equations are advanced. The models often lack transparency and it is 

therefore difficult to develop sound intuition of the methods (Triantis, 2003). This has often led to 

ROA appearing to be an uncertain black-box to managers (Luehrman, 1998).  

Lattice-based methods 

Lattice-based option valuation models are numerical, time discrete models that use simpler 

mathematics to ascertain the price variation of an asset and are regarded as the most intuitive, 

generic, and flexible way to value real options (Copeland and Tufano, 2004; Cox et al., 1979; Gilbert, 

2004). Lattice models can value both European and American options, allow for changing levels in 

volatility and deal with more than one state variable (Gilbert, 2004). Typically lattice methods are 

binomial (two states) or trinomial (three states). However, quadrinomial lattices may be used for 

jump diffusion processes and pentanomial lattices for options with two combined and correlated 

underlying assets (Mun, 2006b). 

The simplest presentation of a lattice model is a binomial model (Figure 3.2). The binomial process 

allows two possible evolutions for the underlying asset’s value in each time step, up or down, with 

associated probabilities 𝑝𝑝 and 1- 𝑝𝑝. The binomial process used for modelling the future value 

distribution results in a discontinuous, quasi log-normal distribution, that given enough time steps 
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approaches the continuous distribution achieved through the Black-Scholes-Merton model using 

geometric Brownian motion (GBM) (Collan, 2011). 

 

 
Figure 3.2 – The evolution of underlying asset value in a binomial lattice (Nelson et al., 2013). 

Despite being more intuitive than continuous time models, lattice models suffer from the curse of 

dimensionality and can quickly grow burdensomely large as the number of time periods and sources 

of uncertainty increase (Gamba, 2003; Lander and Pinches, 1998). Many real world valuations require 

the modelling of  three or more state variables making the use of lattices cumbersome (Broadie and 

Glasserman, 1997; Longstaff and Schwartz, 2001). This presents a challenge to real option problems 

in land use management which are typically characterised by multiple uncertainties and long time 

frames. 

Simulation 

Simulation methods for asset pricing were introduced to finance by Boyle (1977). The simulation 

approach calculates the option value by randomly simulating the thousands of possible future 

scenarios for uncertain variables, with the most common method used being Monte Carlo simulation 

(Mun, 2006a). Monte Carlo simulation draws upon similar valuation principles as other real option 

models. A number of values for underlying uncertainties are generated based on probability 

distributions adjusted for systematic risk (Triantis, 2003). Simulation methods have been applied to 

solve real options problems commonly by creating a distribution for the future value of an asset 

(Boyle, 1977). However, there are multiple possible roles for simulation in real options models 

including obtaining inputs for other models such as price volatility, discount rates, or gaining a range 

of possible discounted cash flow outcomes (Mun, 2006b).  
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The principal advantage that Monte Carlo simulation provides over the other valuation techniques is 

its ability to deal with multiple uncertainties, particularly if they have non-standard distributions, 

changing distributions, or are correlated (Triantis, 2003). Monte-Carlo simulation is particularly useful 

for problems that exhibit path dependency, where future decisions or outcomes depend on decisions 

made at earlier points in time (Longstaff and Schwartz, 2001; Triantis, 2003).  

Until recently, the valuation of American style options with simulation was not possible (Triantis, 

2003). However recent methods that incorporate a least squares method with simulation, allow for 

the valuation of real options which are both multidimensional and American styled (Broadie and 

Glasserman, 1997; Cortazar et al., 2008; Longstaff and Schwartz, 2001).  

 Application in land use and management 

ROA has been widely used in forestry applications including optimal harvest and rotation (Gjolberg 

and Guttormsen, 2002; Insley, 2002; Plantinga, 1998; Saphores, 2001; Thorsen, 1999), processing 

capacity (Duku-Kaakyire and Nanang, 2004), and valuing forestry concessions (Rocha et al., 2006; 

Yap, 2004). In an agricultural context, ROA has been applied to organic farming (Irene and 

Konstadinos, 2009; Kuminoff and Wossink, 2010; Tanner Ehmke et al., 2004), adoption of precision 

agriculture (Tanner Ehmke et al., 2004; Tozer, 2009), expansion of agricultural enterprises (Hinrichs 

et al., 2008; Odening et al., 2005; Tozer and Stokes, 2009), the adoption of genetically modified crops 

(Nadolnyak et al., 2011) and adaptation to climate change (Hertzler, 2007). Fewer examples of 

environmental ROA applications exist, but have included investigating the option to develop 

wilderness areas (Arrow and Fisher, 1974; Chambers et al., 1994; Conrad, 2000; Conrad and Kotani, 

2005) and preserve biodiversity (Kassar and Lasserre, 2004). 

Real options theory asserts that the investment cash flows not only have to compensate for the 

investment costs but also the opportunity costs generated if the investment was postponed (Maart 

and Musshoff, 2011). The effect of the option value is to raise the threshold for a project to be 

undertaken due to greater uncertainty, thereby delaying investment relative to the NPV rule (Mason 

and Weeds, 2010). The impact of options values on investment thresholds can be substantial 

(Schatzki, 2003; Song et al., 2011). For example, Tozer (2009) found the rates of returns need to 

trigger investment in precision agriculture equipment in Western Australia were 96–156% higher 

than the NPV breakeven point.  

In addition to investment decisions, real options analysis has been used to explain disinvestment 

decisions—particularly why firms continue in the face of persistent losses. Real options demonstrates 

that psychological inertia, resulting from sunk costs and uncertainty about future payoffs, creates a 

http://en.wikipedia.org/wiki/Least_squares
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zone of inaction where the wisest response is to wait until more information is gathered (O'Brien and 

Folta, 2009). Owners may be willing to accept low levels of performance with the hope that 

conditions will improve (Gimeno et al., 1997). Traditional economic theory states that sunk costs are 

irrelevant to today’s decisions and those that violate this rule are acting irrationally. However, ROA 

suggests that in the presence of significant sunk costs, it is rational to persist and endure some 

amount of losses if there is some possibility that profitability may improve (Dixit, 1989). This has 

been demonstrated to apply to farming enterprises and land use decisions. Where previous costs are 

at least partially sunk, the price at which a farmer will exit an industry can be far below the 

breakeven price (Song et al., 2011; Tauer, 2006). To illustrate, Seyoum and Chan (2012) used ROA to 

provide an explanation for the sluggish response of wine grape farmers to declining farm revenue. 

They found that when large sunk capital expenditures and revenue uncertainty were accounted for, 

the trigger price for exiting the industry moved downwards by as much as 32% when compared to 

NPV break even revenues.  

Despite its potential insight, the complexity of ROA methods has meant that adoption has been 

sporadic, even in corporate settings (Woolley and Cannizzo, 2005). Much of the academic work using 

real options has focused on complex analytical techniques (Nelson et al., 2013; Neufville, 2003). 

However, for many users, the benefit of ROA lies not in the precise value of options, but in 

refocussing investment decisions away from purely negating losses to exploiting the opportunities 

uncertainty can provide (Triantis, 2005). For environmental policy makers, the wider use of ROA 

could be a basis to better understand adaptive landholder decision making under uncertainty.  

3.4.1 Challenges in real options modelling of land use change 
While ROA can provide useful analyses of land use change decision making processes, the modelling 

of real options problems becomes increasingly complex as additional sources of uncertainty are 

considered, particularly with partial differential equations and lattice-based methods. As the models 

become more complex there is a risk that ROA will move beyond the comprehension of policy 

makers and investors and will be considered a black box. This factor has been seen to hamper the 

uptake of ROA in corporate capital budgeting problems (Rocha et al., 2001; Saphores, 2001) and 

confined it to extractive natural resource industries and companies with sophisticated analytical tools 

(Nelson et al., 2013). Several authors have questioned the need for complex analytical methods to 

precisely estimate the value of options, instead advocating for more accessible heuristics that rank 

alternatives (Eapen, 2002; Nelson et al., 2013; Neufville, 2003). These authors argue simpler, more 

intuitive methods, such as decision trees, are needed so that uncertainty and flexibility can be more 

readily incorporated in to economic evaluations of alternative land uses.  
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Indeed, simpler methods such as decision trees provide a flexible and powerful approach for dealing 

with risk. They provide a way to measure risk exposure and allow managers to assess how they will 

react to both adverse and positive outcomes. However, decision trees are most effective assessing 

sequential and discrete risks compounding over time. Risk is addressed in phases and the risk in each 

phase is captured in the possible outcomes and the probabilities those outcomes will occur 

(Schuyler, 2001). As a result, decision trees are well suited to assess strategic investment problems 

from the perspective of an individual firm or landholder over the medium term. However, many risks 

that are faced in the real world are not discrete or sequential but are continuously present and act 

concurrently. In addition, and as discussed above, simpler methods also suffer from the curse of 

dimensionality, making the modelling of decisions with long investment horizons cumbersome, 

resulting in decision trees that are unwieldy and complex, thereby losing the intuitive appeal of the 

method. For Investment decisions that involve continuous, simultaneous risks and/or have long 

investment time horizons, simulation methods may be more appropriate (Gamba, 2003; Longstaff 

and Schwartz, 2001). 

Monte Carlo simulation methods for numerical valuation of real options, despite being more 

complex, have many inherent advantages including ease of accounting for more than one source of 

uncertainty, non-standard payoff structures, different probability distributions and excel where 

multiple risks occur simultaneously, (Longstaff and Schwartz, 2001; Schuyler, 2001).  Although other 

methods are able to generate solutions to investment problems with one or two sources of 

uncertainty and could be used to generate a numerical solution to a simplified land use change 

problem, realistic models of real world investments often require three or more state variables be 

modelled (Broadie and Glasserman, 1997). The advantages of simulation-based ROA models become 

evident as complexity is added to a decision problem. For instance, in the example below, wheat 

prices are treated as deterministic, however it is unrealistic to assume the associated returns, yields 

and cost of wheat production are deterministic. The inclusion of these factors as stochastic variables 

can be easily and quickly accommodated in a simulation model. Lattice and decision tree methods 

could conceivably be used to assess a more complex land use change problem with the use of 

methods such  as multidimensional interpolation (Kargin, 2005). However, model complexity and 

computational costs  grow exponentially with the number of state variables considered (Broadie and 

Glasserman, 1997).  

3.4.2 Unrealised opportunity: ROA simulation for policy 
Our contention is that the decision tree approach can be particularly useful for individual firms for 

understanding staged decision making, for developing strategic contingency planning on how to 

proceed and alter decisions as time and initially uncertain conditions evolve. However, to inform 
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policy where more aggregate and longer term outcomes of individual decisions are of interest, 

simulation approaches are likely to be more computationally feasible and informative, primarily 

because they offer the opportunity to understand the implications of multiple uncertainties and long 

decision time frames. ROA simulation approaches are now feasible to evaluate some core 

environmental land use policy questions such as realistic estimation of carbon sequestration supply 

from the reforestation of agricultural land or assessment of the cost of supplying feedstock to bio-

energy plants and implications for plant viability. Such issues are now commonly evaluated with NPV 

analysis and this approach provides distorted estimates of land conversion thresholds and 

consequently policy advice about supply and economic viability. Below we illustrate with a small, 

stylised example, how accounting for multiple sources of uncertainty can lead to differing 

conclusions about the cost of supplying bio-energy feed stocks. In the conclusion, we discuss how it 

would be possible to expand this analysis to understand how varying biophysical production risk 

profiles of current agricultural and tree feedstock options change threshold prices for conversion.     

 A case study 

In order to demonstrate the insight that simulation based real options models can provide, we used a 

ROA simulation method to analyse how accounting for multiple sources of risk influenced the 

threshold prices necessary to induce land use change from agriculture to bio-energy feedstock in 

southern Australia. We conclude with discussion of how ROA simulation could be expanded to 

understand comparative advantage in bioenergy feedstock production across multiple regions given 

differing biophysical production profiles and how realistic ROA based bio-energy production 

feasibility accounting, for a range of price or climate variability futures, could be implemented.  

3.5.1 Decision Scenario 
In this example, we consider a farmer’s decision to either grow wheat or a coppicing tree crop 

harvested for biomass for electricity generation (BEC) according to discounted cash flow investment 

rules (NPV) and real options analysis. We assume the farmer is located in the Mallee district of South 

Australia. This area is characterised by low rainfall (<300mm per year) and calcareous earth soils 

(Griffin et al., 1986), with winter cereal production and extensive livestock grazing being the 

dominant agricultural land uses (Bryan et al., 2009). If the farmer switches land use he is obliged to 

continue growing BEC for the useful lifetime of the plantation. After this time the farmer can either 

re-invest and continue growing BEC or return the land to wheat production. Following  Wolbert-

Haverkamp and Musshoff (2014a), we assume an infinite time horizon under consideration as the 

farmer has the option to cultivate BEC multiple times. 
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3.5.2 Data and model assumptions 
In order to compare the two land uses, gross margins (GM) for both enterprises (revenue – costs) 

were calculated. The costs associated with the cultivation of annual wheat production in South 

Australia were obtained from State Department of Agriculture gross margin guides (Rural Solutions 

SA, 2013) and average yields for the Mallee district were calculated from State Department of 

Agriculture crop and pasture reports 2002-2013 (PIRSA, 2014). Inflation adjusted historical wheat 

prices from 1970 to 2014 (The World Bank, 2014) were used to forecast the annual wheat GM in the 

stochastic wheat price model.   

3.5.3 Biomass energy price 
There currently exists no time series data for long term biomass prices for electricity generation in 

Australia. The prices for biomass in our example are derived from historical coal prices, as coal is the 

major source of fuel for electricity generation in Australia (Rodriguez et al., 2011). This process is 

explained in greater detail in appendix A.  The model parameters can be seen in Table 2. 

For the purposes of this model, the yields and variable costs associated with wheat and BEC were 

assumed to be deterministic. In the initial model, the gross margins received for wheat were also 

assumed to be deterministic. We evaluated scenarios with a fixed wheat GM, a scenario with both 

wheat GM and BEC GM treated stochastically to demonstrate the effects of deterministic versus 

single and multiple uncertainty source modelling. 

According to the NPV model, the decision to change land use from wheat to BEC is a now or never 

decision. The NPV of future returns was calculated using the expected GM of wheat (AU$ 278 ha-1) 

and the average GM of BEC (Wolbert-Haverkamp and Musshoff, 2014b).  We then calculated the 

trigger GM of BEC that a farmer would need to earn in order to switch from wheat production. This 

threshold value is usually considered to be the price at which NPV equals zero for a discount rate that 

represents the cost of borrowing (Luehrman, 1998). 

In contrast, the real options model uses stochastic processes to model the future development of the 

gross margin of BEC. The model parameters can be seen in Table 3.2. 
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Table 3.2 – Model Parameters1 (Applicable to both the NPV model and real options model) 

 

1 In variant calculations, several deterministic expected wheat GM were tested ranging from AU$178ha-1 to AU$478ha-1 

These results can be found in the technical appendix. Where expected wheat GM was treated as stochastic, their evolution 

was modelled using an ABM process, as is BEC GM. The yields of wheat and BEC are assumed deterministic.  

3.5.4 Results and Discussion 
The results show that temporal flexibility and price uncertainty has an impact on the price at which a 

landholder should consider switching land use from wheat to BEC. A farmer investing as per the NPV 

rule would convert production from wheat to BEC when the GM of BEC was equal to or higher than 

approximately AU$420 ha-1 (Table 3.3).  At this price the investment costs and the opportunity cost 

for the lost revenue of wheat is met, making BEC at least as profitable an enterprise as wheat. In 

contrast, a farmer investing according to the ROA assuming a stochastic  BEC GM and an expected 

wheat  GM of AU$278ha-1 , should not invest in a biomass crop for electricity generation until the GM 

of BEC is equal to or above approximately AU$600 ha-1(Table 3.3).  

Under stochastic wheat and BEC gross margins the prices needed to induce land use change is 

approximately AU$500 ha-1 (Table 3.3). This is significantly higher than the trigger value returned 

under the deterministic wheat GM of AU$ 278 ha-1 but not as high as the trigger price when only BEC 

price variability is considered. Considering uncertainty in wheat prices by adding stochastic wheat 

returns, introduces risk to the returns of both enterprises. This investment formulation is more 

realistic as the possibility of zero or negative returns associated with the production of wheat is 

introduced. The increased uncertainty lowers the investment trigger needed to induce land use 

change. The ability to capture the variability in multiple uncertainties in land use can significantly 

affect results and can add rigor to the results generated by ROA. While not addressed in this 

Investment cost BEC 1334 AU$ ha-1

useful lifetime BEC rotation 20 years
Annual yield BEC 7.5 green tonnes ha-1

Variable costs BEC 159.75 AU$ ha-1

Recultivation costs BEC 1200 AU$ ha-1

Mean BEC GM 244 AU$ ha-1

Annual yield wheat 1.2 tonnes ha-1

Variable costs wheat 200 AU$ ha-1

Expected wheat GM 278 AU$ ha-1

Time period considered for conversion ∞ (with annual conversion opportunity)
Stochastic process (wheat and BEC) arithmetic Brownian motion (ABM)
Discount rate 5.41%
Simulation iterations 50,000

                                      Model Parameters
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example, there is considerable scope to use simulation methods to model costs, yields and climate 

uncertainty as stochastic variables in order to increase the validity and applicability of simulation 

based models. However, caution needs to be taken as results depend significantly on the type of 

process underlying the valuation (Musshoff, 2012).The results indicate that forecasts solely based 

upon NPV valuations  could lead to unrealistic estimates of land use change and potentially 

significantly underestimate the associated costs especially if levels of uncertainty are high.  

While our example is theoretical, ROA has been shown empirically (Hinrichs et al., 2008; Isik and 

Yang, 2004; Schatzki, 2003; Seyoum and Chan, 2012) to have explanatory value, distinct from other 

behavioural factors (risk aversion, personal preference), for the often observed reluctance of 

landholders to invest/disinvest in alternative agricultural enterprises and land uses (Musshoff, 2012). 

The approach should be considered alongside other behavioural factors when considering initiatives, 

policies or programs that will rely upon or promote land use change.  The implications of ROA for 

land use policy are discussed below. 

Table 3.3 – Trigger GMs for conversion of land from wheat production using NPV and ROA 

 
Expected GM wheat (AU$ ha-1) 

 
Fixed GMW (278 AU$ ha-1) Stochastic GMW 

NPV(AU$ ha-1) 420 420 

ROA(AU$ ha-1) 600 500 

Difference between NPV and 
ROA (AU$ ha-1) 180 80 

 

 Implications for land use policy  

Globally, governments are using public policies to improve environmental outcomes such as 

greenhouse gas emissions abatement or habitat preservation (Bryan and Crossman, 2013). In an 

Australian context, several studies that have determined the economic viability of forestry under 

varying carbon price scenarios (Burns et al., 2011; Crossman et al., 2011; Lawson et al.; Polglase et 

al., 2008b; Polglase et al., 2011; Polglase et al., 2013). DCF analysis used in these studies indicates 

significant potential for carbon markets to spur profitable carbon bio-sequestration and drive 

biodiversity outcomes from the reforestation of agricultural lands. However, carbon forestry offset 
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projects will invariably involve significant upfront costs, incrementally generate revenue over 

decades, are particularly susceptible to regulatory changes and due to these risks, may not be an 

attractive investment, despite a positive NPV (Polglase et al., 2011; Polglase et al., 2013).  

Evidence provided by land use change studies using ROA show that landholders (dis)invest later than 

traditional capital budgeting models would predict (Ihli et al., 2013; Wolbert-Haverkamp and 

Musshoff, 2014a). This has important implications for agri-environment schemes that rely on price or 

quantity based mechanisms to drive change. These studies imply that under conditions of 

uncertainty and irreversibility, the rates of subsidy which are required to encourage land use change 

are likely to be significantly higher than those indicated by NPV analysis and land holders may 

participate later and at higher prices than anticipated. Furthermore, ROA indicates that not only is 

payment level important but payment time frame has implications for the effectiveness of subsidies.  

Tubetov et al. (2012) demonstrated the effect of subsidies can be improved if the payment scheme is 

time limited. The opportunity cost is reduced over time as the scheme’s termination date nears and 

the decision is moved closer to a now or never proposition (as per the NPV rule), thereby lowering 

the investment trigger.  ROA can guide policy makers on the level of incentive required and with 

incentive policy structure. 

For land managers, the consideration of variability in biophysical land attributes appears intuitive. 

While studies using NPV methods have addressed spatial heterogeneity to understand the 

distribution of cost-effective land use change (Bateman, 2009; Bryan et al., 2008a; Crossman et al., 

2011; Polglase et al., 2008a), the underlying landscape heterogeneity has been largely overlooked in 

ROA applied to land use change to date though they are likely to result in different uncertainties and 

thus conversion trigger prices across space. The diverse pattern of land resources and heterogeneity 

in many of the factors underpinning land use decisions requires that spatial complexity be 

incorporated into economic valuations (Bateman, 2009). While this may present computational 

challenges, there is scope for the incorporation of spatial data in to real options models through the 

application of high-performance computing (Bryan, 2013a). The consideration of spatial variability 

can reveal spatial patterns important for individual land holders, investors and policy makers alike. 

ROA applied at the appropriate spatial scale (at regional level for example) can provide more robust 

guidance for investment and supporting policy development. For instance, better understanding how 

comparative advantage in bioenergy feedstock production across multiple regions will affect the 

location and viability of bioenergy processing. Improved understanding of what potential trade-offs 

with agriculture are likely could influence community support for alternative industries. While 

incorporating potential climate futures can aid the understanding of the impact climate change may 

have on the biophysical processes that drive industry viability.  Simulation based models provide the 
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opportunity to incorporate spatial variables, at different scales, into ROA, an objective difficult to 

achieve with simpler, heuristic real options models. 

 Conclusion 

DCF methods have been widely used to value alternative land uses. DCF methods provide a static 

analysis that assumes investments are now or never propositions, are reversible, and management 

remains passive throughout the investment’s life. In reality, many investments can be seen as a 

series of strategic options that unfold over time. Managers often have flexibility in when and how 

investments are made, and under uncertainty this flexibility can have substantial value. Decisions in 

land use and management are characterised by multiple uncertainties and irreversibility, and involve 

sunk costs. Real options analysis can incorporate these factors into the evaluation of land use and 

management decisions. ROA has revealed that in the presence of uncertainty, landholders intuitively 

value flexibility and often (dis)invest later than suggested by DCF methods. When considering option 

values, rates of return for investing in a new land use need to be substantially higher than suggested 

by NPV calculations. This effect is magnified with greater levels of sunk costs, irreversibility, and 

uncertainty and has consequences for policy evaluation. Payment schemes or structural adjustment 

policies can be significantly under-priced when option values are not considered. Recognising the 

role of option values in landholder decisions is important for designing policies to meet 

environmental objectives and in understanding the true cost associated with motivating change in 

land use and management practice. Despite its insight, the complexity of ROA has meant that 

adoption has been sporadic, even in corporate settings. Although simpler heuristic methods do exist, 

and provide insight, their application is limited to problems with fewer sources of uncertainty and 

where risk is addressed sequentially in phases. For addressing more complex investment problems, 

new simulation approaches have emerged that are flexible, can consider multiple uncertainties, and 

are much simpler than earlier methods.  Spatial applications of ROA can now be explored given that 

computational barriers can be overcome through the use of high-performance computing 

techniques. Improved understanding of the interactions between landscape heterogeneity and 

option values will better inform policy makers’ understanding of the location, timing and extent of 

future land use investments. ROA offers significant, largely untapped potential for assessing land use 

and management decisions. 
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 CHAPTER FOUR 

In Chapter Three the potential for Monte Carlo based simulation methods to be applied to land use 

change decisions was demonstrated. Like other real options analyses of land use change, the stylised 

example in Chapter Three used deterministic (static) yield parameters. However, in reality a 

significant source of uncertainty in agricultural land use investment decisions is commodity yields. A 

significant contributing factor to yield uncertainty is the underlying biophysical factors affecting 

production. Significant spatial variability exists in biophysical determinants of production at a 

regional level, however if and how yield and price uncertainties interact has not been widely 

examined in the real options literature. Given price uncertainty effects all locations in a region 

equally, do underlying geographical differences in biophysical determinants of production effect the 

returns required to invest in a new land use over and above those calculated by discounted cash flow 

homogeneously? Or will the effect of interacting uncertainties in some locations be more 

pronounced than others? This chapter incorporates multiple uncertainties across several locations in 

an agricultural region of south eastern Australia in order to understand the effect of interacting 

uncertainties. Uncertainty has been seen to create a risk premium and often increases the returns 

required to induce investment. This chapter also examines the role supplementary payments 

(subsidies or payments for environmental services) can play in reducing the risk hurdles created by 

price uncertainty and examines if these subsidies act homogenously across the study region. 
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Abstract 

Biomass production for use in electricity generation has been promoted as having broad 

environmental benefits as well as providing a valuable diversification option for landholders. 

However, landholders often display considerable reluctance to convert land use away from 

conventional agriculture, despite indications of profitability according to discounted cash flow 

analysis (DCF). One reason may be DCF models largely neglect the effects of major uncertainties of 

price, yield and policy on landholder decision making. To examine the effects of such interacting 

uncertainties we use a simulation-based real options model. Our focus is on the effects of spatially 

varying risk across climatically diverse regions of southern Australia, and on payment policies that 

include alternative treatments of risk. Our results indicate that real options analysis provides 

valuable insight into how the premium required to motivate land use change differs with spatially-

varying risks. Furthermore, we demonstrate how incentive policies that reduce risk can reduce the 

returns required to trigger land use change, and where the magnitude of these effects may be most 

and least pronounced. The results from real options suggest potential to design lower cost spatially-

targeted policies and incentive structures through more realistic accounting of landholder risks. 
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 Introduction 

Biomass production for use in electricity generation (hereafter simply biomass) is proposed as a way 

to mitigate the effects of climate change through both direct  CO2  sequestration and carbon 

emissions abatement through the replacement of higher CO2 emitting fuels such as coal and oil 

(Bryan et al., 2008b; Evans et al., 2010; Styles and Jones, 2007). In combination with new 

technologies such as carbon-capture-and-storage in power plants, the use of biomass has been 

suggested as a viable way of achieving negative emissions (Azar et al., 2013; Obersteiner et al., 2001; 

Obersteiner et al., 2002). Economically, biomass production has been found to be potentially 

competitive with conventional agriculture (Bryan et al., 2010c; Heaton et al., 1999; Styles et al., 2008) 

as the yields associated with production of woody perennials are often less sensitive to climatic 

variables, require fewer inputs, and may provide an important diversification option for farmers 

(Coleman and Stanturf, 2006; Musshoff, 2012). Despite this, landholders have been slow in switching 

land use, particularly between agriculture and forested use, despite potential profitability (Plantinga, 

1996; Schatzki, 2003; Stavins and Jaffe, 1990). Governments have historically offered landholders 

incentives to motivate land use change (Bryan, 2013b; Yang et al., 2010), and subsidies to 

landholders have been critical in accelerating investment in biomass(Di Corato et al., 2013). The 

structure and timing of incentive payment schemes have affected both the land use change decisions 

of landholders, and the cost to industry or governments instituting the incentive policy (Wolbert-

Haverkamp and Musshoff, 2014a). 

The long term nature of an investment in perennial biomass crops necessitates capital budgeting 

techniques such as discounted cash flow analysis (DCF) to be used to evaluate such investments 

(Bryan et al., 2010d; Bryan et al., 2008b). From a DCF perspective, a profit-maximising landholder 

should invest in the land use that returns the highest net present value (NPV) (Musshoff, 2012). NPV 

assumes that the investment is reversible and expenditures can be recovered should market 

conditions deteriorate. It also assumes that investment is a now or never proposition and the 

investment opportunity instantly disappears if not immediately taken (Dixit and Pindyck, 1995). 

There are three characteristics that can reduce the suitability of NPV for evaluating such long term 

land use change decisions. First, an investment in biomass will involve substantial upfront costs that 

are at least partially, if not completely, sunk, and cannot be recouped if the investment proves 

unprofitable. Second, investments are rarely now or never propositions. Landholders often have 

significant flexibility in the timing of any land use investment, and this flexibility has value. Third, 

there is significant uncertainty over future returns (Trigeorgis, 1996). Variation and volatility  in 

commodity prices can differ significantly between crops and this affects the risk profiles of 

alternative crops, invalidating the assumption that evaluation of investments made on average prices 
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can provide an accurate basis for analysis (Reeson et al., 2015). For these reasons DCF is limited for 

evaluating future landholder investment behaviour (Wolbert-Haverkamp and Musshoff, 2014a). 

Real options analysis (ROA) has been proposed as a better model under uncertainty and flexibility 

exists to delay investment (Dixit and Pindyck, 1994). When compared with NPV, the returns required 

to induce an investment (or trigger) have been found to be higher under ROA (Schatzki, 2003). This is 

because ROA can consider opportunity costs over time in terms of the value of waiting to invest 

(Wolbert-Haverkamp and Musshoff, 2014a). Conventional dry land agricultural systems, comprising 

annual crops and livestock, provide landholders with some flexibility to respond to the uncertainties 

associated with farming enterprises. These uncertainties include future commodity prices, climatic 

conditions, input prices and other agronomic factors such as pest and disease effects. Long term land 

uses such as biomass can notionally represent a significant loss of flexibility for landholders. In 

combination with uncertainty over alternative crop performance and future revenue (often only 

accrued many years into the future), this has been seen to cause investment inertia (Musshoff, 

2012). As such, prices required to induce land use change to biomass not only need to compensate 

the landholder for the costs of establishing a plantation and the foregone returns from agriculture, 

but also for lost management flexibility and the uncertainty of returns from the new enterprise 

(Reeson et al., 2015). 

Key uncertainties influencing ROA outcome exhibit significant geographic variation (Dumortier, 2013; 

Yemshanov et al., 2015). Crop productivity varies spatially due to a combination of factors including 

variability in rainfall, temperature and soil types (Bryan et al., 2014). Research using conventional 

economic analysis has incorporated spatial heterogeneity to understand the distribution of cost-

effective land use change (Bateman, 2009; Bryan et al., 2008a; Crossman et al., 2011; Polglase et al., 

2008a) and have found that underlying landscape heterogeneity can influence the timing and 

location of land use change. While these factors have been largely overlooked in ROA applied to land 

use change to date, the limited inclusion of spatial factors in ROA has resulted in differing conversion 

threshold prices and conversion probabilities across space (Dumortier, 2013; Sanderson et al., 2016; 

Yemshanov et al., 2015).  While geographical differences in primary productivity are beginning to 

receive attention in ROA, temporal variability in primary productivity has received less attention. 

Climate variability is the principal source of risk affecting long term economic viability of rain-fed 

agricultural systems (Kandulu et al., 2012) and primary production is not only sensitive to annual 

changes but also to seasonal distribution of rainfall (Iglesias and Quiroga, 2007). ROA studies to date, 

even those addressing spatial variability, have used invariant yield data (Musshoff, 2012; Reeson et 

al., 2015; Wolbert-Haverkamp and Musshoff, 2014a), or have accounted for production variability in 

stochastic processes modelling returns to agriculture (Isik and Yang, 2004; Sanderson et al., 2016). 
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We address this firstly by considering yield as a random, variable source of risk and secondly, 

accounting for yield risk using geographically specific distributions. 

Governments have historically offered landholders incentives to motivate land use change, with 

varying success (Moon and Cocklin, 2011). The implementation of incentive programs can 

themselves introduce further uncertainty and landholders cite uncertainty over government policies 

as a barrier to involvement in agri-environmental programs (Baumber et al., 2011; Bennett and 

Cattle, 2014; Herbohn et al., 2005; Isik and Yang, 2004; Lockie and Rockloff, 2004). Additionally, the 

structure of incentive payment schemes can influence land use change decisions (Wolbert-

Haverkamp and Musshoff, 2014a). Ridier (2012) reported landholders prefer annual incentive 

payments, however if annual payments are perceived as uncertain, landholders are more likely to 

change land use (from agriculture to short rotation woody crops) if an up-front investment cost 

subsidy is offered. Previous work has shown the impact of financial incentives on ecosystem service 

provision, through their effect on land use profitability—a key driver of land use change  – is spatially 

heterogeneous (Bryan, 2013b). It is therefore conceivable that the effect of incentive payment 

uncertainty on land use change also varies spatially. Few ROA studies included the interaction 

between incentive payment uncertainty, geographically varying primary production risk and price 

risk on threshold prices required to encourage land use change.  

The aim of this study is to go beyond the consideration of commodity price uncertainty to include the 

simultaneously interacting effects of commodity price uncertainty, production yield variability, and 

landholder investment flexibility on the returns to biomass required to induce land use conversion in 

five climatically distinct locations in southern Australia. We evaluated the potential for alternate 

incentive policy (payments for below-ground carbon sequestration) to reduce uncertainty and lower 

the returns to biomass required to induce land use conversion. We analysed several scenarios that 

use incentive payments to reduce risk to landholders and reduce returns needed to see land use 

change to biomass and examined the spatially varying effects of incentive payments. Finally, we 

discuss the implications of our results for policy makers wanting to encourage biomass or other 

industries that rely on land use change away from conventional agriculture under uncertainty. 
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 Methods 

4.2.1 Study Area 

 

 
Figure 4.1 – Location of lower Murray-Darling Basin study area. 

This study focuses on the Lower Murray region in southern Australia. We compared five climatically 

distinct locations in the study area that are representative of the climatic variation found throughout 

the region (Figure 4.1). The region is climatically diverse, ranging from semi-arid in the north west to 

temperate in the south east (Bryan et al., 2010c). Annual rainfall across the region varies greatly 

(Table 4.1). Rain-fed mixed farming, consisting of the dryland winter cropping of cereals (wheat, 

barley, oats), pulses (beans, lupins, peas), oilseeds (canola) and extensive grazing of sheep (Bryan et 

al., 2011). The average farm size in the region is approximately 1000 ha (Kandulu et al., 2012).   
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Table 4.1 – Historical growing season and annual rainfall for the study location. 

 
Historical 

mean growing 

season rainfall 

(mm/year) 

Standard 

deviation (mm) 

Historical 

mean annual 

rainfall 

(mm/year) 

Standard 

deviation (mm) 

Florieton 103 61 239 88 

SA Murray 

Mallee 
125 68 278 91 

Manangatang 144 68 314 102 

Natimuk 249 83 436 97 

Wimmera 358 101 566 118 

 

4.2.2 Biomass production in Australia 

The growth of deep rooted perennial vegetation for electricity production or integrated tree 

processing is still novel in Australian agricultural landscapes. In Western Australia considerable work 

has been done to include perennial vegetation, commonly in the form of mallee Eucalypts, to 

farming systems primarily to address dry land salinity due to deep drainage issues (Bartle et al., 2007; 

Wu et al., 2007). Significant work has been conducted in identifying suitable plant species able to 

improve natural resource management outcomes, while providing profitable alternative enterprises 

to land holders (Bennell et al., 2009; Hobbs et al., 2009; Hobbs, 2009b) and primarily include Acacia 

and mallee Eucalyptus species. 

In a coppice system, once harvested, the cut stumps re-sprout to provide a subsequent crop. 

Estimates surrounding the productive lifetime of a eucalyptus stand used for short rotation coppice 

vary, but include estimates of approximately 20 – 21 years (Gabrielle et al., 2013; Hobbs, 2009a) . We 

use a useful stand lifetime of 21 years consistent with the literature and expert consultation. 

The development of a large scale biomass industry in Australia has been suggested as a resilient 

diversification option for agricultural landscapes. Integrated tree processing is seen as a promising 

development for mallee based industries in Australia as it offers a number of commercial 

opportunities including renewable energy generation, and co-products of oil and activated carbon 

(Enecon, 2001). Australia’s biomass industry is underdeveloped and large scale land use change is 

unlikely given missing markets for biomass. However, in this study we assume a more developed 

biomass industry for the purpose of examining the effect of yield, price and climate risks have on the 
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returns required to trigger land use change over and above those calculated using traditional 

valuations methods (NPV). 

4.2.3 Modelling of biomass and wheat yields  

Biomass productivity for all sites was modelled using the Carbon Sequestration from Revegetation 

Estimator (Hobbs et al., 2013). The model was derived from local climate and soils data and empirical 

measurements of biomass accumulation and hence carbon sequestration from reforestation in the 

agricultural regions of southern Australia.  The model uses multiple linear regression and forward-

stepwise regression techniques to identify the best predictors of productivity rates (Hobbs et al., 

2013). Historical annual rainfall data from 1891 to 2005 for all locations was acquired from the SILO 

data base (Jeffrey et al., 2001), and used as inputs into the biomass model in order to calculate 

biomass yield (Table 4.2). Soil data was obtained from the Australian Soil Resource Information 

System (ASRIS).  

Wheat is the most commonly cultivated crop in the study area (ABARES, 2013; Bryan et al., 2014) and 

was used to represent agricultural production. While the study area is characterised by mixed 

farming enterprises including livestock and a variety of crops (barley, oats, legumes, and oilseeds) 

diversification is primarily done for cultural reasons including disease and weed control in aid of 

increased wheat productivity (Kirkegaard et al., 1994; Kirkegaard et al., 2011). The inclusion of one 

crop to analogously represent agricultural production in a location has been previously used by 

Wolbert-Haverkamp and Musshoff (2014a) who used rye to represent agricultural production in 

Germany and Sanderson et al. (2016) who used wheat to represent dryland cropping regimes in 

South Australia. 

Annual wheat yields from 1891 to 2005 for the study areas were modelled by Kandulu et al. (2012) 

using the Agricultural Production Systems Simulator  (APSIM, Keating et al., 2003) based upon 

historical meteorological data (Table 4.2) obtained from the SILO database (Jeffrey et al., 2001). 

APSIM is a process based yield model and has been widely used and validated for Australia (Luo et 

al., 2005a; Luo et al., 2007; Luo et al., 2005b; Wang et al., 2009a; Wang et al., 2009b). 

Uncertainty associated with future biomass and wheat yields was accounted for by representing 

historical modelled yields with Project Evaluation and Review Techniques (PERT) distributions. The 

PERT distribution is characterised by its smoothness and continuity, and its greater weighting to the 

most likely values rather than to the tails (Benke and Pelizaro, 2010). PERT models have been used to 

analyse uncertainty in complex systems such as hydrology (Benke et al., 2008), land suitability 

analysis (Benke and Pelizaro, 2010), forecasting emissions from dairy farms (Benke et al., 2008), and 

to model uncertain grain yields (Dillen et al., 2010). 
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Yield data derived from the Carbon Sequestration from Revegetation Estimator (biomass) and APSIM 

(wheat) was used to specify the distributions (Table 4.2). PERT distributions are a special case of a 

scaled Beta distribution (Benke and Pelizaro, 2010) and are specified by assigning minimum, 

maximum, and most likely values (𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) to the probability function (Benke et al., 2008). 

The mean value can then be calculated as follows (as described by Benke et al. (2008));  

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 +  𝜆𝜆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝜆𝜆 + 2
 

(1) 

Where 𝜆𝜆 is the scale parameter for the height of the distribution and has a default value 𝜆𝜆 = 4.  

The mean value can then be used to calculate the shape parameters, 𝑣𝑣 and 𝑤𝑤, which are used with 

the maximum and minimum scale parameters to sample the Beta distribution. 

𝑣𝑣 =  
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)(2𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)
 

(2) 

 

𝑤𝑤 =
𝑣𝑣(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

 
(3) 

 The beta distribution is characterised by the density function; 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥𝑣𝑣−1(1 − 𝑥𝑥)𝑤𝑤−1

𝐵𝐵(𝑣𝑣,𝑤𝑤)
,   0 ≤ 𝑥𝑥 ≤ 1

0                                𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

(4) 

And the distribution function: 

𝑓𝑓(𝑥𝑥) = �
   𝐵𝐵𝑥𝑥(𝑣𝑣,𝑤𝑤)

𝐵𝐵(𝑣𝑣,𝑤𝑤)
,                      0 ≤ 𝑥𝑥 ≤ 1

 0                                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

(5) 

Most auditable accounting for carbon is done on above ground biomass, however there is an 

important below ground component that should be included. Over half of the assimilated carbon in 

agroforestry systems is eventually transported below ground via root growth and turnover, root 

exudates, and litter deposition, and therefore soils contain the major stock of carbon in the 

ecosystem (Montagnini and Nair, 2004). As such we examined policy scenarios where land holders 

received a payment for below ground carbon sequestration (the policy scenarios are outlined in 

section 4.2.8). 
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The modelling of below-ground carbon accumulation was done analogously to above-ground 

biomass productivity using the Carbon Sequestration from Revegetation Estimator (Hobbs et al., 

2013). The below-ground carbon accumulation was not treated as a stochastic variable for reasons of 

computational tractability and parsimony. The mean modelled below-ground carbon accumulation 

(tCO2-e/ha/year) from 1891 to 2005 was calculated for all locations and treated as a deterministic 

input (Table 4.2) into the ROA model in Scenarios 2 and 3. 

Table 4.2 – Modelled biomass yields, below-ground carbon sequestration and wheat yields for each 
location 1891 to 2005. 

 Florieton SA Murray Mallee Manangatang Natimuk Wimmera 

Mean modelled 
biomass yield   
(DM t/ha/year) 

1.51 2.41 2.85 5.10 10.00 

Standard deviation 
(DM t/ha/year) 0.80 1.40 1.66 2.30 4.11 

Standard deviation (%) 52.98 58.09 58.25 45.10 41.10 
      
Mean modelled 
below-ground carbon 
sequestration   
(tCO2-e /ha/year) 

1.25 1.7 2.0 4.18 7.36 

      

Mean APSIM modelled 
wheat yield (t/ha/year) 0.50 0.72 1.03 1.76 3.20 

Standard deviation  
(t/ha/year) 0.55 0.66 0.66 0.79 0.88 

Coefficient of Variation 110.29 91.02 63.54 45.00 27.36 
 
4.2.4 Commodity price time-series 
No long-term time-series data on the price of biomass in Australia exists. Coal is the most commonly 

used fuel source for electricity generation in Australia (Rodriguez et al., 2011). We used historical 

inflation-adjusted monthly coal price (Figure 4.3), 1970 – 2013 (The World Bank, 2014), as an 

analogue for biomass price in order to provide a time-series of the prices paid per gigajoule of energy 

used for electricity production. This process was adopted by Musshoff (2012) and Wolbert-

Haverkamp and Musshoff (2014a) who used long term heating oil prices to provide equivalent 

biomass prices in Germany. The monthly coal price was divided by average gross calorific value of 

brown coal (23.8 GJ/dry weight tonne(CSIRO, 2006), and multiplied by the average gross calorific 

value of Eucalyptus spp. (19.4 GJ/dry weight tonne(CSIRO, 2006).  

It is reasonable to expect that in the event of poor returns to biomass for electricity generation, 

landholders would consider alternative uses for the timber such as pulp wood or sawlogs. However, 
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alternative uses for mallee species are not readily available.  The current export chip wood industry is 

dominated by high-quality pulp species and mallee would not be suitable as very few of these species 

have proven, good-quality pulping characteristics (Bartle, 2009; Marcar, 2009) and do not grow to a 

size appropriate for sawlog production. Plantations are therefore assumed to be planted for the sole 

purpose of electricity generation. 

The modelling of the development of future biomass and wheat prices was done using the Box and 

Jenkins (1976) linear time series model. Of these models, Auto-Regressive Integrated Moving 

Average (ARIMA), is the most general class of models for forecasting a time series (Iqbal et al., 2005). 

ARIMA models have been widely used in forecasting agricultural and other commodity prices (Bessler 

and Brandt, 1981; Brandt and Bessler, 1983; Contreras et al., 2003; Dooley and Lenihan, 2005; Pope 

et al., 1979; Shahwan and Odening, 2007). The order of an ARIMA model is denoted by ARIMA(p,d,q), 

where p is the order of the autoregressive component, d is the order of differencing which is 

conducted prior to calculation using the formula (Appendix B) and q is the order of the moving 

average process. The general form of an ARIMA(p,d,q) can be written as (following Enders, 1995): 

 

𝑦𝑦𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1𝑦𝑦𝑡𝑡−1 + ⋯ + 𝑎𝑎𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜖𝜖𝑡𝑡 +  𝛽𝛽1𝜖𝜖𝑡𝑡−1 + ⋯ + 𝛽𝛽𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 (6) 

 

Where 𝑎𝑎 are the autoregressive parameters to be estimated, 𝛽𝛽 are moving average parameters to be 

estimated, 𝑦𝑦 are past observations of the original time series, and 𝜖𝜖𝑡𝑡 are unknown random errors 

that are assumed to follow a standard normal distribution. 

A major challenge when using ARIMA models for forecasting is estimating appropriate values for p, d 

and q. A detailed explanation of this process can be found in the Supporting Information. We 

modelled future price evolution with an ARIMA(0,1,1) model (zero auto regressive terms, one non-

seasonal difference to obtain time-series stationarity, one lagged forecast error in the prediction 

equation). These forecasts were based on several assumptions including the absence of significant 

shocks in the global economy, and that the structure of agricultural and energy prices and policies, 

and consumer preferences, remain unchanged (Iqbal et al., 2005). 

4.2.5 Calculation of economic returns 

The comparison of the two land use alternatives was done based on gross margin (GM) per hectare. 

GM is a widely used measure of profitability in agricultural industries. The GM represents the annual 

gross revenue per hectare for an enterprise minus the variable costs per hectare directly associated 
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with that enterprise as represented for wheat with equation 8. Annual gross revenue per hectare in 

year 𝑡𝑡 was calculated for both wheat and biomass as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡
𝑚𝑚 = 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑡𝑡 

𝑚𝑚 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡
𝑚𝑚                       𝑚𝑚 = �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  (7) 

 

The costs associated with wheat production were taken from Rural Solutions SA Farm Enterprise 

Planning Guide, 2014 (PIRSA, 2014). These include variable costs (𝑉𝑉𝑉𝑉 𝑡𝑡
𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒) routinely encountered in 

a broad-acre cropping enterprise including the costs of seed, fertiliser, chemicals, freight, and 

contract work.  The costs associated with the production of wheat varied according to rainfall zone 

but were treated as invariant over time (Table 4.3). The gross margin of wheat at time 𝑡𝑡, 𝐺𝐺𝐺𝐺 𝑡𝑡
𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 

was calculated as: 

 

𝐺𝐺𝐺𝐺 𝑡𝑡
𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑉𝑉𝑉𝑉 𝑡𝑡
𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (8) 

 

Variable costs associated with the cultivation of biomass included fertiliser (𝐹𝐹𝐹𝐹), maintenance costs 

(MC), transport (𝑇𝑇𝑇𝑇) and harvest (𝐻𝐻𝐻𝐻) and were taken from Bryan et al. (2010c). The costs associated 

with the cultivation of biomass were treated as deterministic and did not vary over time. These costs 

were summed each year (𝑡𝑡) so that: 

   

𝑉𝑉𝑉𝑉 𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑀𝑀𝑀𝑀𝑡𝑡 + 𝐹𝐹𝐹𝐹𝑡𝑡 +  𝑇𝑇𝑇𝑇𝑡𝑡 + 𝐻𝐻𝐻𝐻𝑡𝑡 (9) 

 

The GM for biomass (𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) in year 𝑡𝑡 was therefore calculated as:  

 

𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡

𝐵𝐵𝐵𝐵𝐵𝐵 −  𝑉𝑉𝑉𝑉𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵 (10) 

 

For the purposes of DCF analysis the average yield expected from biomass was calculated with the 

Carbon Sequestration from Revegetation Estimator using the average annual rainfall of each 

location. The inflation-adjusted, mean biomass price 1970 – 2013 was used as the expected price in 

the NPV calculation. The costs associated with biomass harvest and transport were averaged over 

the useful lifetime of the plantation and included in annual variable costs. Similarly, the expected 

wheat yield was taken as the average modelled APSIM yield for each location. The expected wheat 

price received was the inflation adjusted mean wheat price taken from the historical wheat price 
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time series 1970 – 2013.  As such 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐺𝐺𝐺𝐺 𝑡𝑡

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 used in the calculation of NPV indicate the 

annual average GM received at each study location. 

GM includes revenues and variable costs, however, for long-run (infinite horizon) investment 

evaluation, the occasional, periodic fixed cost of biomass planting and re-establishment must also be 

taken into account. Estimates of biomass establishment costs (𝐸𝐸𝐸𝐸) associated with the plantation of 

agricultural land vary greatly. Commodity prices, management decisions, planting methodologies, 

and biophysical parameters (e.g. soil type, terrain) all influence establishment costs for revegetation 

of agricultural land (Summers et al., 2015). Published estimates of reforestation costs for a plantation 

of Mallee eucalypts ranged from A$700–800/ha (Bartle and Abadi, 2009; Bryan et al., 2010c), to 

A$400-1200/ha (Bryan et al., 2008a), A$1500/ha (Abadi et al., 2003), and up to A$9097/ha (Summers 

et al., 2015). We assumed EC to be A$1000/ha. Estimates of costs associated with the recultivation 

(𝑅𝑅𝑅𝑅) of biomass plantations either back to agricultural production or in preparation for reinvestment 

in biomass, obtained through expert consultation, were set at A$1000/ha.  
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Table 4.3 – Model parameters (applicable for both the NPV and ROA calculations)1.  
 

    Model Parameters  

   Florieton SA Mallee Manangatang Natimuk Wimmera 

Expected wheat yields ( t/ha/year) 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑡𝑡 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 1.0 1.5 1.5 2.5 3.5 

Expected total variable costs wheat (AU$/ha/year) 𝑉𝑉𝑉𝑉 𝑡𝑡
𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 $157.00 $157.00 $157.00 $324.00 $421.00 

Expected price wheat (AU$ /t) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 $430.00 $430.00 $430.00 $430.00 $430.00 

Expected biomass yields (DM tonnes/ha/year) 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑡𝑡 
𝐵𝐵𝐵𝐵𝐵𝐵  1.51 2.4 2.85 5.05 10 

Expected total variable costs biomass (AU$/ha/year) 𝑉𝑉𝑉𝑉 𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵  $32.08 $32.08 $32.08 $57.00 $111.73 

Expected price biomass (AU$/t) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵  $88.00 $88.00 $88.00 $88.00 $88.00 

             

Biomass Establishment costs  (AU$/ha) 𝐸𝐸𝐸𝐸𝑡𝑡 $1,000         

Biomass Recultivation costs (AU$/ha) 𝑅𝑅𝑅𝑅𝑡𝑡 $1,000         

Transport cost (TC) (AU$/tonne/km) 𝑇𝑇𝑇𝑇𝑡𝑡 $0.05         

Mean distance to processing plant   55km         

Fertilizer costs (AU$/ha/year) 𝐹𝐹𝐹𝐹𝑡𝑡 $40         

Harvest Costs (AU$/t) 𝐻𝐻𝐻𝐻𝑡𝑡 $12         

Useful lifetime of biomass plantation 𝑁𝑁 21 years         

Risk free rate 𝑟𝑟 4.51% 
    

Stochastic process  ARIMA(0,1,1) 
    

 

4.2.6 Investment decision using discounted cash flow 

In DCF analysis, future income streams are discounted at an appropriate discount rate, 𝑟𝑟, and 

expressed in present value terms. The value of an investment at time = 0 is given as the difference 

between the present value of returns and the present value of expenditures, or NPV (Luehrman, 

1998). 

We calculated NPV following Wolbert-Haverkamp and Musshoff (2014a). If a landholder changed 

land use and converted their land to biomass, they will incur 𝐸𝐸𝐸𝐸 at the beginning of each useful 

lifetime. In each year of the biomass rotation the landholder will earn the expected GM of biomass 

(𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) and forgo the expected GM of wheat (𝐺𝐺𝐺𝐺𝑡𝑡

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒). At the end of a biomass rotation 𝑅𝑅𝑅𝑅 will 

be incurred. DCF analysis cannot consider a reconversion option that switches the land use back from 

biomass to wheat. Therefore the DCF analysis evaluated an investment possibility where the land 

                                                           
 
 
1 For the purposes of the DCF analysis, average expected yields for each location, were also taken from state 
Department of Agriculture farm enterprise planning guides PIRSA, 2014. Crop and Pasture Reports South 
Australia Archive. Department of Primary Industries and Regions South Australia, Adelaide.. The inflation 
adjusted, mean wheat price 1970–2013 was used as the expected wheat price in the NPV calculation. 
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holder cultivated biomass for an infinite amount of useful lifetimes and earned the average GM of 

biomass (𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵). To calculate the NPV of returns to an investment in biomass, the present value of 

returns, for an infinite time series, from biomass (𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵) must be calculated as:  

The establishment costs (𝐸𝐸𝐸𝐸) are incurred in year zero as well as in each of the following 𝑁𝑁=21 years. 

Given the finance analytical formulas for infinite series, present value of 𝐸𝐸𝐸𝐸 can be calculated as: 

 

𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸 ·  
1

𝑟𝑟(𝑝𝑝 = 𝑁𝑁)
   (12) 

Where: 

 

𝑟𝑟(𝑝𝑝 = 𝑁𝑁) = (1 + 𝑟𝑟)𝑝𝑝 − 1 

𝑝𝑝 = the number of time periods. 

 

In addition, the recultivation costs (𝑅𝑅𝑅𝑅) must be accounted for and are incurred every 𝑁𝑁 years in 

addition to 𝐸𝐸𝐸𝐸. The present value of 𝑅𝑅𝑅𝑅 was calculated as: 

 

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅 ·  
1

𝑟𝑟(𝑝𝑝 = 𝑁𝑁)
                                                                                 (13) 

If a landholder switches land use to biomass they can no longer receive the GM associated with 

wheat. As such the present value of forgone wheat GM (𝐺𝐺𝐺𝐺 𝑡𝑡
𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒) must be accounted for.  

 

𝑃𝑃𝑃𝑃𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =  𝐺𝐺𝐺𝐺𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  ·  

1
𝑟𝑟

                (14) 

The NPV of investing in biomass (𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵) can then be calculated as: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 − 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

 

                                                 (15) 

Under the DCF investment rules, the critical value (trigger value) of 𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵, at which a farmer should 

change land use from wheat, is when NPV equals zero. If the NPV is zero, the trigger GM of 

 

𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵  ·  

1
𝑟𝑟

             

 

                                                                          (11) 
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biomass, 𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗, at which a landholder should convert land use from wheat to biomass (𝐺𝐺𝐺𝐺0
𝐵𝐵𝐵𝐵𝐵𝐵∗) 

can be calculated as: 

 

𝐺𝐺𝐺𝐺0
𝐵𝐵𝐵𝐵𝐵𝐵∗ =  𝑁𝑁𝑁𝑁𝑁𝑁0 − 𝐸𝐸𝐸𝐸0 − 𝑅𝑅𝑅𝑅0 −  𝑃𝑃𝑃𝑃𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

 

(16) 

In this model, we assumed a risk-neutral investor and future revenues were discounted using a risk-

free interest rate. Risk-neutral valuation was first advocated by Cox et al. (1979) and has become 

central in options pricing theory. Their key insight, observed from other options models was that 

option values were independent of investors' risk preferences and that the same valuations will be 

obtained even when all investors are assumed to be risk-neutral. This important assumption 

simplifies the calculations by eliminating the need to estimate the risk premium in the discount rate 

(Kellogg and Charnes, 2000). The risk-free interest rate was 4.51%, calculated from the average 

nominal returns of Australian 10 year Government Bonds 1985 to 2013 adjusted for inflation over 

the same period (The Reserve Bank of Australia, 2014). 

4.2.7 Investment decision using ROA 

Two ROA methodologies are widely used in examining questions of land use and land use change. 

The first involves analytical methods such as those employed by Hertzler et al. (2013), Sanderson et 

al. (2016) which are well suited to providing advice to individual firms regarding strategic investment 

decisions, specifically the probability of investment thresholds being met in the future and the 

optimal timing of land use investment. However, these models are limited by their inability to easily 

incorporate multiple sources of uncertainty as separate stochastic processes or spatially varying risks 

(Sanderson et al., 2016). The second approach involves numerical, simulation methods such as those 

demonstrated by Musshoff (2012) and Wolbert-Haverkamp and Musshoff (2014a). These methods 

can be adapted to incorporate multiple sources of uncertainty, separate stochastic processes or 

distributions. However, these methods are limited in their ability to calculate the probability and 

optimal timing of land use change especially where there is a long investment horizon (Longstaff and 

Schwartz, 2001).  Consequently these methods are better suited to examining problems where there 

are  multiple, interacting uncertainties on the returns required to trigger land use change and can be 

readily applied to policy questions that require nuanced accounting of spatial variability. 

To value the option to convert land from wheat to biomass, we adapted a numerical, stochastic 

simulation-based real options model (Tubetov et al., 2012; Wolbert-Haverkamp and Musshoff, 

2014a, b). The parameterisation procedure for determining the test trigger gross margin is described 

in detail in Tubetov et al. (2012), Musshoff (2012) and Wolbert-Haverkamp and Musshoff (2014b). In 

short, the optimal GM of biomass at which a farmer should convert land use was found by testing a 



71 
 

number of triggers (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) and identifying the trigger returning the highest real option value. As 

the investment decision can be indefinitely postponed, the optimal conversion trigger GM conforms 

to a constant conversion trigger that remains unchanged over the entire lifetime  (𝑡𝑡 = 0, 1, … , ∞) 

(Dixit and Pindyck, 1994; Wolbert-Haverkamp and Musshoff, 2014b). This can be explained by the 

unchanged opportunity costs over time (Wolbert-Haverkamp and Musshoff, 2014b).  

To determine the trigger GM at which a farmer should convert land use under ROA, the present 

value of future returns from converting to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) were valued as an iterative series of 

ROA trigger values and random draws for values specified as uncertain (price of wheat, price of 

biomass, biomass yield, wheat yield) for each year in the 500 year time series used as a finite 

approximation to the infinite horizon conceptual model following Tubetov et al. (2012). The resulting 

approximation error is trivial (Musshoff, 2012) : 

 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  0, 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑡𝑡 = 0 ˄ GMt
BEG < GMBEG* (17a) 

In any year 𝑡𝑡, the returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) are 0 if the stochastic GM of biomass (𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) are 

lower than the trigger GM (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) being tested. The land will be used for wheat production (𝐿𝐿𝐿𝐿𝑡𝑡 =

0) and the land will remain in wheat production in the next time period (𝐿𝐿𝐿𝐿𝑡𝑡+1 = 0). 

 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  -EC ×(1+r)-t,      𝑖𝑖𝑖𝑖 LUt= 0 ˄ GMt
BEG ≥ GMBEG* (17b) 

The returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) equal the present value of the establishment costs (𝐸𝐸𝐸𝐸) if the 

land is currently being used for wheat production (𝐿𝐿𝐿𝐿𝑡𝑡 = 0) and GM of biomass in time t ( 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵)   

is higher than the biomass trigger GM(𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) being tested. In the next time period the land will be 

converted to biomass (𝐿𝐿𝐿𝐿𝑡𝑡+1 = 1). 

 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  GMt
BEG ×(1+ r)-t- GMt

wheat×(1+r)-t,       𝑖𝑖𝑖𝑖 LUt= 1 ˄ Ht < LH (17c) 

  

When land use is in biomass (𝐿𝐿𝐿𝐿𝑡𝑡 = 1) the returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) correspond to the 

present value of the stochastic GM of biomass in time t ( 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) minus the present value of the GM 

of wheat in time t (𝐺𝐺𝐺𝐺𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒). This applies when biomass harvest (𝐻𝐻𝑡𝑡 ) has not reached the last 

harvest (𝐿𝐿𝐿𝐿) within the plantation’s useful lifetime (i.e. t < 21).   
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The returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) correspond to the present value the GM of biomass in time t ( 

𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) minus the present value of the recultivation costs (RC), minus the present value of the GM 

of wheat in time t (𝐺𝐺𝐺𝐺𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒). This applies when biomass has reached the last year of its useful 

lifetime and the stochastic 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵received in the year of the last harvest (t=21) is less than the 

(𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) being tested.  As the biomass trigger GM (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) being tested is not met, the land is 

returned to wheat production in the next period (𝐿𝐿𝐿𝐿𝑡𝑡+1 = 0). 

 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  (GMt
BEG-RC-EC) ×(1+ r)-t- GMt

wheat×(1+r)-t,     𝑖𝑖𝑖𝑖 LUt=1 ˄ Ht = LH ˄ GMt
BEG ≥GMBEG* (17e) 

  

The returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) correspond to the difference between the present value of GM 

biomass in time t (𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) and the sum of the present value of recultivation costs (RC) and the 

establishment costs (EC), minus the present value of the GM of wheat in time t (𝐺𝐺𝐺𝐺𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒). This 

applies when biomass has reached the last year of its useful lifetime (t=21) and 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵received in 

the year of the last harvest (LH) is greater than the 𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ being tested.  As 𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐺𝐺∗  is met, the 

land is used for biomass in the next time period (𝐿𝐿𝐿𝐿𝑡𝑡+1 = 1) and remains in biomass for another 

rotation.                        

The option value associated with each test trigger was calculated by summing the present value of 

future investment returns 𝑅𝑅𝑡𝑡 during the planting period ( 𝑡𝑡 = 0, 1, … , ∞). The option value for each 

test trigger equals the average present value of farm returns for all simulated paths. In order to 

determine the optimal GM of biomass (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) that triggers investment, the function 𝐹𝐹0 that 

corresponds to the maximum option value can be found: 

 

𝐹𝐹0 =  � 𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗
∞

𝑡𝑡=0

→ 𝑚𝑚𝑚𝑚x! 𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ 

 

 

(18) 

In the model, a time period of 𝑡𝑡 = 500  years was observed. MS Excel and @Risk (Palisade 

Corporation, 2014) were used to run the ROA simulation model. We followed Tubetov et al. (2012), 

Wolbert-Haverkamp and Musshoff (2014a) and (2014b) and performed 50,000 simulations for each 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  (GMt
BEG-RC) ×(1+ r)-t- GMt

wheat×(1+r)-t ,    𝑖𝑖𝑖𝑖 LUt=1 ˄ Ht = LH ˄ GMt
BEG <GMBEG* (17d) 
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test trigger GM (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗). The initial test triggers were chosen from results from the NPV analysis. 

The NPV trigger (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) acts as the lower limit, while the maximum test trigger was initially 

estimated (i.e. three times the NPV trigger price). The range between the initial maximum and 

minimum values was divided into equal intervals and the intervening triggers tested. The range was 

narrowed according to the simulation results and the new range was divided into equal intervals and 

tested. This process was repeated until a small range of test triggers emerged leading to the optimal 

trigger price. 

4.2.8 Policy analysis 

In order to examine the effects of incentive policy intervention and uncertainty on the trigger prices 

required to induce land use change, we tested several policy scenarios involving incentive payments 

(Table 4.4). In the base case scenario (Scenario 1), no incentive or subsidy payment was offered. In 

Scenarios 2 and 3 we introduced a payment for below-ground carbon sequestration accumulated by 

the biomass plantation. In Scenario 2 a fixed price (“certain incentive”) for carbon of AU$25 tCO2-e/ 

ha/year was paid for below-ground carbon accumulation. In Scenario 3, incentive uncertainty was 

included through a random below-ground carbon payment. In this scenario, the landholder received 

a random carbon payment in any one year that could range between AU$0/tCO2-e/ha/year to 

AU$50/tCO2-e/ha/year, with the most likely price being AU$25/tCO2-e/ha/year. The carbon price is 

independently random and not linked to either commodity price. 

Table 4.4 – Summary of ROA scenario treatments. 

ROA scenario 

treatments 

Price 

uncertainty 

Yield 

uncertainty 

Certain incentive 

payment 

Uncertain incentive 

payment  

Scenario 1     

Scenario 2     

Scenario 3     

 Results 

The simulated time-series data and a sample of future commodity price paths can be seen in Figure 

4.2 and Figure 4.3.  
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Figure 4.2 – Derived biomass prices 1970–2013 and a sample of development of future biomass 
prices using an ARIMA(0,1,1) model in A$/t. 
 
 

 

Figure 4.3 – Wheat prices 1970–2013 and sample of development of future wheat prices using an 

ARIMA(0,1,1) in A$/t. 

Table 4.5 shows the trigger prices required to induce land use change from wheat to biomass under 

DCF and ROA in Scenario 1, the no incentive scenario. In the base case there is a significant 

difference in the GM/ha required to trigger land use change to biomass between the DCF methods 

and ROA. For example, a risk neutral landholder in the SA Murray Mallee region, who valued their 

opportunity to change land use to biomass using DCF, would convert land use at a gross margin of 

approximately A$595/ha. At this level of net returns (revenue - costs), expenditures associated with 

the cultivation of biomass, plus the opportunity cost of foregone wheat production was met. In 
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contrast, the ROA, which considers the temporal flexibility in the land use change decision, the GM 

required to induce land use change was approximately A$890/ha. The present value of returns at a 

gross margin of A$890/ha was approximately A$16,451/ha. The investment multiple (the ratio of the 

present value of returns to the present value of expenditures) required to trigger land use change in 

the SA Murray Mallee was 1.50 (Table 4.5). In other words, a landholder should only invest in 

biomass if the present value of net returns is at least 1.50 times higher than the present value of 

expenditures. 

Table 4.5 – Trigger GM/ha, critical present values of returns and investment multiples needed for 
land use conversion using DCF and ROA for Scenario 1. 

  Discounted cash flow  Real options analysis 

  Trigger 
GM/ha 

PV of 
returns/ha 

Trigger 
GM/ha 

PV of returns/ha 

Scenario 1 

Florieton 
 

$381 
  

$7,035 $810 
  

$14,972 

SA Murray 
Mallee 

 
$595 

  
$10,998 $890 

  
$16,451 

Manangatang 
 

$595 
 

$10,998 $860 
  

$15,896 

Natimuk 
 

$858 
  

$15,860 $1,660 
  

$30,684 

Wimmera 
 

$1,192 
  

$22,025 $2,760 $51,017 

      

 

Results from the SA Murray Mallee—a low rainfall environment—differed from the higher rainfall 

Wimmera area.  Under the DCF model, the conversion trigger GM/ha in the Wimmera was 

AU$1192/ ha. Under ROA this rises to AU$2760/ha, which equates to present value of returns for 

biomass of AU$51,017/ha. The investment multiple required was 2.32 reflecting the higher 

opportunity cost involved with cultivating biomass at this location. This is higher than the investment 

multiple in the drier areas of the region such as Manangatang (1.45), Natimuk (1.93) and Florieton 

(2.13).  

In Scenario 2, the effect of the fixed carbon payment of AU$25/tC02-e/ha/year for below-ground 

carbon accumulation was to reduce the trigger GM/ha in comparison to Scenario 1 (Figure 4.4). 
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However, the effect of the payment was not uniform across the region. The fixed carbon price had 

the largest effect in Florieton and Natimuk, where the trigger GM/ha reduced by 35.8 percent and 

24.1 percent when compared with Scenario 1. The carbon payment had smaller effects in the 

Wimmera, where the trigger GM/ha was reduced by 12 percent when compared to Scenario 1. 

In Figure 4.4, comparing Scenario 2 and 3 outcomes illustrates the impact of certain (Scenario 2) 

versus uncertain (Scenario 3) but equal expected-value carbon payments for below-ground carbon 

accumulation. The effect of uncertain carbon payments (Scenario 3) had the largest effect in the SA 

Murray Mallee and Manangatang, increasing the trigger GM/ha by 5.8 percent and 6.1 percent when 

compared to the fixed carbon payment Scenario 2. The effect of the uncertain carbon payment has 

least effect in the Florieton and the Wimmera, where the trigger GM/ha was raised by 3.85 percent 

and 3.29 percent, respectively. 

 

 

Figure 4.4 – Trigger gross margins and investment multiples calculated using ROA required for land 
use change from wheat to biomass in the 5 study locations in Scenario 1, 2 and 3. 

  Discussion 

4.4.1 Effect of policy on land use change 

Biomass grown from woody perennials for electricity generation may provide an economically 

feasible and environmentally-beneficial alternative to conventional agriculture both in Australia, and 

globally (Bryan et al., 2010a; Bryan et al., 2010c; Heaton et al., 1999; Ward and Trengove, 2004). In 

this study, we have shown that real option values add significantly to the GM required to trigger land 

use change from conventional agriculture to biomass, across a climatically diverse region of southern 
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Australia. We tested the effect of incentives and payment policies and geographically-varying 

production uncertainty on land use change decisions across the study area. Our results indicate that 

the structure of incentive policy and spatially-differing yield variability affects the prices needed to 

encourage land use change to biomass across the study area.  

The results for the base case scenario (no incentive payment) show that the consideration of price 

and yield uncertainty adds substantially to the GM required to trigger land use change from wheat 

to biomass when compared to results from the DCF analysis (Table 4.5) as has been found in 

previous ROA studies (Musshoff, 2012; Schatzki, 2003; Wolbert-Haverkamp and Musshoff, 2014a). 

These results reflect the present situation internationally (Lubowski et al., 2006; Smith et al., 2005) 

and in Australia (Herbohn et al., 2005) where landholder preference is to remain in agriculture, 

despite the potential profitability of alternative land uses such as forestry. While landholders cite a 

range of factors for their reluctance to convert land to agroforestry including satisfaction with 

current land uses (Herbohn et al., 2005) and conflicting land use objectives (Byron and Boutland, 

1987), our results indicate that uncertainty over returns to agroforestry, high upfront (largely sunk) 

costs, and loss of flexibility associated with agroforestry provide the landholder with a valuable 

option to delay reforestation and wait for uncertainties to resolve. Our results showed that for the 

lower Murray study area, the value of this option can be substantial, ranging from 1.45 to 2.32 times 

the present value of expenditures (DCF break-even point). 

In addition to revenue uncertainty, landholders commonly cite poor returns relative to current land 

uses, uncertainty over government policies, and the limited longevity of incentive schemes as 

barriers to investment in reforestation (Baumber et al., 2011; Bennett and Cattle, 2014; Herbohn et 

al., 2005; Isik and Yang, 2004; Lockie and Rockloff, 2004). Scenario 2 illustrates the effect including a 

fixed price for below-ground carbon accumulation to reduce conversion triggers. We found that a 

$25/t CO2-e carbon payment reduced the trigger price substantially but this effect varied across the 

study area locations (12– 36 percent compared to Scenario 1). Comparing scenarios with differing 

incentive payment variability, but the same expected value, allowed us to test payment uncertainty 

on biomass conversion triggers. While the effect of an uncertain carbon payment policy was to 

increase the conversion trigger GM when compared to a fixed carbon payment, the effect of added 

uncertainty was found to be small (3.29 – 6.06 percent compared to Scenario 1) across the study 

area. The small effect of payment uncertainty in Scenario 3 reflects that the additional payment 

acted more as an additional top up payment, not a main source of revenue from conversion of 

wheat to biomass. This highlights a need to understand the role of incentive payments in the overall 

revenue stream created from any land use change. An explanation of this small effect is that when a 
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large proportion of revenue from land use change is reliant on government policy, not market 

demand, policy risk effects are higher. Academic discussion of payments for environmental services, 

such as carbon sequestration, are often framed in terms of ‘either-or’(government payment versus 

markets), the more policy-relevant question, given our results,  may therefore concern how different 

instruments can be combined to achieve policy objectives (Engel et al., 2008) and in doing so reduce 

the effects of policy/market uncertainty for landholders. 

Our findings are consistent with survey-based studies—that risky policy environments can adversely 

affect landholder willingness to change land use (Baumber et al., 2011; Herbohn et al., 2005; Lockie 

and Rockloff, 2004). A caveat is that while our results focus on incentive price variability, there are 

many additional factors that affect landholder willingness to change land use including household 

dependency on agricultural incomes, age and education levels, the presence of a successor and the 

ability to make progressive rather than step changes to agricultural activities (Lastra-Bravo et al., 

2015). These may be hard to fully quantify from economic models alone and the magnitude of the 

effect may well be larger and more ambiguous than the impacts of incentive payment level risk that 

we assessed here (Lagerkvist, 2005).  

The results of the ROA highlight that there are regional differences in the way uncertainty regarding 

incentive payments affected land use change decisions. The magnitude of the effect of price and 

yield uncertainty varied substantially across the region.  The effects were largest in the highest 

rainfall and lowest rainfall areas—Wimmera and Florieton, respectively (Figure 4.4). The increases in 

trigger GM were smallest in the SA Murray Mallee and Manangatang. An explanation for this is the 

comparative differences in the variability of expected biomass and wheat yields across the study 

area. For example, the Wimmera is not only a higher-yielding wheat production area, but the 

variability in wheat yields is far lower than in either the SA Murray Mallee or Manangatang. As such, 

the effect of options values on opportunity cost reflected the nature of the risk and returns 

(Sanderson et al., 2016) and the opportunity cost was associated with foregoing higher wheat 

production value than in other locations. In contrast, in a less agriculturally-productive location like 

Florieton, the interaction between the burden of high establishment costs, low yields, and high 

production risk was particularly influential on potential land use economic decision-making. 

4.4.2 Implications for policy 

This study highlights some important considerations for policy makers. Firstly, it supports previous 

ROA of biomass which have shown that the addition of uncertainty, sunk cost and temporal 

flexibility can add significantly to the return needed to induce land use change away from traditional 

agriculture (Musshoff, 2012; Regan et al., 2015; Schatzki, 2003; Wolbert-Haverkamp and Musshoff, 
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2014a, b). However, it also shows that there can be significant geographical differences in the 

magnitude of the effect of uncertainty, even within the same region (Table 4.5). Given the 

substantial heterogeneity of agricultural productivity across the landscape, these results indicate 

that there are likely areas with production profiles that are better suited, economically, to the 

production of biomass. Opportunities therefore exist in targeting specific areas like the more 

variable SA Murray Mallee or Manangatang where the increased economic returns required to 

induce land use change are significantly lower (as a proportion of current agricultural returns) than 

more reliable areas such as the Wimmera. It is clear from our results, differing trigger levels across 

locations result from combined price and yield uncertainty effects and future research is required to 

analyse the relative contributions of different types of uncertainty. 

Secondly, experience from countries with more developed biomass industries have found that 

subsidies are often required to encourage the adoption of biomass (Johansson et al., 2002). 

However, previous research has indicated landholder distrust for the longevity of price based 

supports due to their susceptibility to political change (Baumber et al., 2011; Herbohn et al., 2005). 

Our results indicate that incentive payments can have a considerable effect on lowering the returns 

required to trigger investment in biomass. Developing efficient methods with which to fund long 

term annual payments may be needed.  One option worth considering is to compensate landholders 

for the environmental benefits derived from the cultivation of biomass. For example, Bryan et al. 

(2010c) estimated that a conservative estimation of the ecological benefits derived from the 

adoption of biomass in the study area could likely address 22 335 – 59 757 ha at high risk of dryland 

salinization, 0 – 276 078 ha at high risk of wind erosion, and reduce carbon emissions by 1.3 – 3.5 

million tonnes annually. Valuing these services in the form of an annual payment or allowing 

landholders to forward contract carbon sequestration to fund establishment costs could reduce the 

returns required from biomass to trigger conversion. 

Thirdly, it is clear that offering broad raging incentive payments over the entire study area may 

produce perverse outcomes. For example, the Wimmera has an absolute yield advantage in 

producing biomass when compared to Florieton. However, the incentive provided had the largest 

effect in Florieton. This has the potential to encourage biomass production in Florieton over the 

Wimmera, which may be counter to the interest of the policy maker. 

4.4.3 Innovation and limitations 

Previous real options papers (Isik and Yang, 2004; Musshoff, 2012; Reeson et al., 2015; Schatzki, 

2003; Song et al., 2011; Wolbert-Haverkamp and Musshoff, 2014a) addressing observed friction in 

land use change have concluded that the presence of price uncertainty, sunk costs, and loss of 
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flexibility delay land use change away from conventional agriculture. However few studies have 

examined if these effects are consistent across the landscape or differ according to primary 

production risk profiles. We show that the magnitude of the effects of uncertainty differs across the 

landscape, and that substantial geographical differences may exist in how these factors influence 

land use change decisions.  We demonstrate that incentive payment policies can have substantial 

effects on lowering conversion triggers needed to encourage land use change; however the effect of 

support policies can also vary considerably across the landscape due to the unique geographical 

interactions between payment policy, return uncertainty and production risks.  

Real options models are especially valuable in data-poor environments where the ability to study 

landholder behaviour through econometric approaches is limited (Yemshanov et al., 2015). Our 

results build on previous real options studies in that they go some way in accounting for not only 

price uncertainty, but also regional variability in productive capacity and production risk. These 

results are given credence through economic experiments conducted internationally that have 

shown that real options models approximate the behaviour of landholders (Ihli et al., 2013) as 

landholders demonstrably consider the value of waiting over time in experimental settings (Maart‐

Noelck and Musshoff, 2013). However, socio-demographic and farm-specific factors also affect the 

investment behaviour of landholders (Ihli et al., 2013). Yet, few economic experiments have been 

conducted in Australia in order to understand the proportional influence of socio-demographic and 

farm-specific factors in relation to the effects of price uncertainty, sunk costs and loss of flexibility.  

This is especially true in the case of emerging land uses such as biomass and carbon agroforestry. In 

the absence of data describing actual land use conversion rates, experimental data derived from 

Australian landholders would add rigour to the results presented by real options studies and this is 

an area prime for future research. 

Finally, it is important to note that the results presented here should be interpreted in the context of 

the assumptions made. Firstly, the stochastic process used for the future development of biomass 

and wheat prices, while chosen based on empirical testing, is only one of a number that could be 

used. Musshoff (2012) and Reeson et al. (2015) showed that the selection of stochastic process can 

have significant effects on the outcome of ROA. Secondly, modelled biomass yield and yield variation 

were calculated using the Carbon Sequestration from Revegetation Estimator (Hobbs et al., 2013). 

While this model is based on empirical observations from across the study area, it is not specifically 

calibrated to each location. Additionally, in many drier areas, extensive grazing of livestock is 

preferred to annual crop production due to more stable returns and suitability to climatic conditions 

(Kandulu et al., 2012). In marginal cropping areas, including livestock enterprises in the analysis may 
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be a fairer comparison, and provide a better analysis of GM needed to encourage conversion on land 

currently under permanent pasture to biomass. Furthermore, below-ground carbon accumulation 

was treated as invariant over time. In reality this would be subject to some temporal variability and 

this would have some effect on income derived from below-ground carbon payments and therefore 

the trigger GM. Additionally, while biomass may provide a valuable diversification option for 

landholders, the long term nature of such enterprises may dissuade participation and may 

contribute to income variability in the short term. This is primarily due to an enterprise such as 

biomass reducing the land available with which landholders could practice conventional 

diversification strategies to manage short term climate and market risk. This is an area that warrants 

further investigation. 

Finally, this study was done at a regional scale based upon average soil conditions expected in each 

location. However there is often significant within-field variability in yield in both high and low 

yielding locations (Robertson et al., 2008). Finer scale variability in agricultural production may offer 

substantial opportunity for the adoption of biomass at lower costs than indicated by an analysis 

conducted at regional scale (Lyle et al., 2009). 

Conclusion 

Landholders have often displayed considerable reluctance to convert land use from agricultural 

commodity production to biomass crops. Studies using ROA have found that price uncertainty, the 

effect of sunk costs, and flexibility in investment timing can somewhat account for observed 

investment inertia. We used a numerical, simulation-based real options model to investigate the 

effect these factors have in an Australian context. Consistent with previous studies, our results 

indicate that the consideration of uncertainty, irreversible establishment costs, and temporal 

flexibility significantly increased the returns required in order to trigger land use change when 

compared to DCF analysis. The present value of returns required to trigger land use change varied 

from 1.45 to 2.32 times the present value of expenditures. Our results show that it is not only the 

most agriculturally productive locations that require the highest returns to induce land use change, 

but the least agriculturally-productive locations also require high returns in order to trigger land use 

change. Although initially somewhat counterintuitive, the extremely low returns exacerbate the 

burden of high investment costs in highly-variable locations. Our model shows that complementary 

incentive policies such as payments for below-ground carbon sequestration can decrease the returns 

required to trigger land use change considerably. These results are important for policy makers as 

they emphasise the effect uncertainty has on landholder decision-making. In order to understand 

the economics of land use change, policy makers and investors in industries reliant on land use 
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change such as biomass must consider option values. Projections of land use change or incentive 

policies that fail to account for options values are likely to underperform. Additionally, the effect of 

incentives is likely to vary geographically. While this holds challenges for policy-makers in that it 

complicates the implementation of broadly applied policies, it holds promise as there are likely to be 

geographic areas appreciably more responsive to policy initiatives, where land use change is more 

readily achievable and at substantially lower cost. 
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 CHAPTER FIVE 

Abstract 

The economics of establishing perennial species as renewable energy feedstocks has been widely 

investigated as a climate change adapted diversification option for landholders, primarily using net 

present value (NPV) analysis. NPV does not account for key uncertainties likely to influence relevant 

landholder decision making. While real options analysis (ROA) is an alternative method that accounts 

for the uncertainty over future conditions and the large upfront irreversible investment involved in 

establishing perennials, there have been limited applications of ROA to evaluating land use change 

decision economics and even fewer applications considering climate change risks. Further, while the 

influence of spatially varying climate risk on biomass conversion economic has been widely 

evaluated using NPV methods, effects of spatial variability and climate on land use change have 

been scarcely assessed with ROA. In this study we applied a simulation-based ROA model to evaluate 

a landholder’s decision to convert land from agriculture to biomass. This spatially explicit model 

considers price and yield risks under baseline climate and two climate change scenarios over a 

geographically diverse farming region.  We found that underlying variability in primary productivity 

across the study area had a substantial effect on conversion thresholds required to trigger land use 

change when compared to results from NPV analysis. Areas traditionally thought of as being quite 

similar in average productive capacity can display large differences in response to the inclusion of 

production and price risks. The effects of climate change, broadly reduced returns required for land 

use change to biomass in low and medium rainfall zones and increased them in higher rainfall areas. 

Additionally, the risks posed by climate change can further exacerbate the tendency for NPV 

methods to underestimate true conversion thresholds. Our results show that even under severe 

drying and warming where crop yield variability is more affected than perennial biomass plantings, 

comparatively little of the study area is economically viable for conversion to biomass under $200/ 

DM t, and it is not until prices exceed $200/DM t that significant areas become profitable for 

biomass plantings.  We conclude that for biomass to become a valuable diversification option the 

synchronisation of products and services derived from biomass and the development of markets is 

vital. 

Keywords: Real options analysis, Climate Change, Spatial, Biomass, Economic, Australia 
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  Introduction 

De-carbonising global electricity generation is seen as key to stabilise atmospheric greenhouse gas 

levels (Edenhofer et al., 2014). Biomass production for use in electricity generation (hereafter 

biomass) is proposed as a renewable energy source that can contribute to the mitigation of climate 

change through direct  CO2  sequestration and  through the replacement of higher CO2 emitting fuels 

such as coal and oil (Bryan et al., 2008b; Evans et al., 2010; Styles and Jones, 2007). The use of 

biomass (often in the form of agricultural residues, bagasse, forestry residues) is widespread 

globally, producing 280 TWh of electricity, equivalent to 1.5% of global electricity generation per 

annum (Eisentraut and Brown, 2012). But for biomass to play a significant role in future  global 

energy supply, dedicated energy crops often grown on current agricultural land will be essential 

(Coleman and Stanturf, 2006; Evans et al., 2010). 

Economically, biomass production has been found to be potentially competitive with conventional 

agricultural enterprises as the yields associated with production of woody perennials are often less 

sensitive to climatic variables and require fewer inputs (Bryan et al., 2010c; Heaton et al., 1999; 

Styles et al., 2008). In agricultural areas with variable climate and soil, the introduction of short 

rotation woody perennial production systems that use adapted woody species could provide a 

valuable diversification option. Moreover, it may offer the opportunity to buffer seasonal and annual 

variations in rainfall that cannot be reliably used by annual crops (Hobbs, 2009a). Internationally, 

where biomass supply chains are more developed, landholders have been slow in switching land use, 

particularly between agriculture and forested use despite potential profitability (Plantinga, 1996; 

Schatzki, 2003; Stavins and Jaffe, 1990). An explanation of this perceived investment inertia is that  

financial analysis of land use change has traditionally assumed  the decision to switch land use can 

be modelled based on the Net Present Value (NPV) which compares current agricultural land uses 

with biomass  alternatives (Yemshanov et al., 2015). However, several factors are commonly omitted 

from NPV analysis. Among them are sunk investment cost, investment irreversibility, significant 

uncertainty over future returns  and flexibility in the timing of investment  (Dixit and Pindyck, 1994; 

Trigeorgis, 1996). These omitted factors influence land holder decisions (Ihli et al., 2013) and lead to 

the erroneous NPV analysis conclusion that the land currently in agriculture would be more 

profitable in other forest based land uses (Frey et al., 2013; Parks, 1995; Stavins and Jaffe, 1990). 

Real options analysis (ROA) has been proposed as a better model of investments decisions under 

conditions of uncertainty that are costly to reverse  and where significant flexibility exists to delay 

investments (Dixit and Pindyck, 1994). ROA investment triggers, defined as the levels of revenue 

required to invest in a new land use, are often higher than NPV required returns if the investment 
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involves inter-temporal opportunity costs (Musshoff, 2012). The effect of including ‘option values’ in 

investment decision analysis can be substantial (Regan et al., 2015; Schatzki, 2003). Unlike NPV 

analysis, the revenues required to trigger land use change must not only compensate the landholder 

for establishment cost and foregone returns from agriculture, but also for  lost management 

flexibility and the revenue uncertainty  from the new enterprise (Reeson et al., 2015). 

Many of the key uncertainties influencing agricultural production such as rainfall, temperature and 

soil types vary spatially (Bryan et al., 2014). Heterogeneity of these factors has been widely included 

in NPV analysis in order to understand the spatial distribution of cost-effective land use change 

(Bateman, 2009; Bryan et al., 2010a; Crossman et al., 2011) which have found that landscape 

heterogeneity is likely to affect the location and timing of land use change.  While qualitatively 

acknowledged, spatial variability has been largely overlooked in quantitative ROA of land use 

change. Limited exceptions demonstrating differing conversion threshold prices and conversion 

probabilities across space include Dumortier (2013), Yemshanov et al. (2015) and Sanderson et al. 

(2016). 

Another gap in the ROA of land use change is the effect of climate variability through time on yield. 

It has been shown to be the principal source of risk affecting long term economic viability of rain-fed 

agricultural systems in NPV assessments for semi-arid regions such as south east Australia (Kandulu 

et al., 2012). Despite NPV assessment showing that climate change is likely to provide landholders 

with additional production risks, surprisingly few studies have addressed the effect of climate 

change on agricultural land use change in a ROA framework. Hertzler (2007); Hertzler et al. (2013) 

and Sanderson et al. (2016) are exceptions. They address these factors across an agricultural region 

with ROA employing spatial transects as an analogue for temporal changes due to climate change. 

There are limitations to this approach as temporal climate change effects are only roughly 

approximated by spatial transects. They exclude, for example, accounting for changing CO2 

concentrations and their interactions with higher temperatures (Sanderson et al., 2016).  

In this study we address both the gap in broad spatial coverage and the gap in accounting for climate 

change in ROA of land use changes. This study specifically modelled land use change from agriculture 

to biomass production in a spatially explicit framework across a broad region accounting for effects 

of climate change on yield variability. The analyses allow for the assessment of regional biomass 

industry viability with calculations and spatial mappings of areas where biomass land use is 

economically viable at several price points under alternative assumptions about climate change. 
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This article is organised as follows: The next section discusses the stochastic simulation-based real 

options model applied.  This is followed by mapping the land use conversion to biomass with varying 

price and climate change assumptions. The final discussion focusses on how conclusions about 

regional biomass industry viability differ with ROA and traditional NPV analysis in the context of 

climate change futures. 

 Methods 

5.2.1 Study area  

Our study focused on the lower Murray region of southern Australia (Figure 5.1). The dominant land 

use covering 50% of the region is rain-fed mixed farming, consisting of the dryland winter cropping 

of cereals (wheat, barley, oats), pulses (beans, lupins, peas), oilseeds (canola) and grazing of sheep 

(Bryan et al., 2011). The average farm size in the region is approximately 1000 ha (Kandulu et al., 

2012).  The region is typical of semi-arid rain dependant farming regions found globally.  These 

regions, similar to our study area, cover approximately 15% of the global land area (UNEMG, 2011), 

including large areas of southern Africa, western North America and the Middle East. Such semi-arid 

areas are characterised by high rainfall variability within the growing season, between years and in 

longer-term cycles. Combined with generally low average rainfall (250 mm – 600 mm/year), rainfall 

variability is a primary risk to agricultural enterprises in these areas (Hansen et al., 2012; UNEMG, 

2011).  
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Figure 5.1 – Location map of the Lower Murray study area (adapted from Kandulu et al. (2012)). 

5.2.2 Climate scenarios 

IPCC climate change models predict average temperature increases in the study area between now 

and 2100, ranging between 1.0 and 6.0 degrees Celsius, depending on Representative Concentration 

Pathways (RCPs) (Pachauri et al., 2014). Bryan et al. (2010c) developed feasible climate change 

scenarios for the study area based on climate change modelling for southern Australia (Suppiah et 

al., 2006). We used three of the four climate scenarios developed by Bryan et al. (2010c) ( 

Table 5.1); baseline (S0), moderate drying and warming (S2) and severe drying and warming (S3). 
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Table 5.1 – Climate scenario description 

Scenario Description Temperature Rainfall 

S0 Baseline Historical mean Historical mean 

S2 Moderate 

warming/drying 

2 °C warmer 15% dryer 

S3 Severe warming/drying 4 °C warmer 25% dryer 

 

5.2.3 Representing spatial diversity 

Despite the general categorisation as semi-arid, climatic diversity is found across southern 

agricultural areas in Australia. These regions are often broadly categorised into “low”, “medium” and 

“high” rainfall zones according to mean annual rainfall for both agronomic and economic analysis. 

While the precise definition of zones is often elastic, this categorisation is a good way to broadly 

delineate areas of similar production systems, productivity and, important for this study, variable 

costs associated with crop production. In this study we use the rainfall zones as described by Rural 

Solutions (2015) in their gross margin and enterprise planning guide for the study area. They classify 

low rainfall zone as <350 mm/year, medium rainfall zone as 350 mm – 400 mm/year and high rainfall 

as >400 mm/year (Figure 5.2) in order to assign variable production costs. Inescapable production 

costs vary between regions for agronomic reasons.  This is primarily due to the intensity of the 

production systems, for example the application of nitrogen is likely to be higher in higher rainfall 

areas, sowing rates will differ and chemical use for the control of weeds and pests is typically higher 

in higher rainfall areas. 



99 
 

 

Figure 5.2 – Classification of the study area into low, medium and high rainfall zones according to 
long-term annual rainfall data (Jeffrey et al., 2001) and Rural Solutions (2015) rainfall zone 
delineations.  

In order to capture finer scale spatial variation in climate and soil, and therefore productivity, the 

study area was further categorised into 138 geographic zones of homogenous agricultural 

production potential following Bryan et al. (2010c). Each of the 138 zones represents a unique 

combination of soil type and climate characteristics drawn from 115 years of historical climate data 

taken from the SILO database (Jeffrey et al., 2001) and soil data assembled from state government 

field data (Bryan et al., 2007). 

5.2.4 Methodology overview 

The analysis involves the following steps: 

1. Calculate biomass production potential across 138 spatial units in the study area across 

climate scenarios involving time series for each spatial unit and climate scenario. 

2. Calculate wheat yield for each climate scenario for every spatial unit and a time series of 

years for each spatial unit and climate scenario. 

3. Characterise the variability in prices of wheat and biomass that together with variable yields 

create risks in returns to the two land use options. 

4. Compute and map the spatial distribution of land conversion to biomass at several price 

points and for all three climate scenarios with both NPV and ROA analysis. 
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5.2.5 Biomass production scenario 

The growth of deep rooted perennial vegetation for electricity production or integrated tree 

processing is still novel in Australian agricultural landscapes. There has been considerable analysis on 

perennial vegetation, commonly in the form of mallee eucalypts, to farming systems. The analyses 

have primarily addressed dry land salinity  issues (Bartle et al., 2007; Wu et al., 2007) or other 

natural resource management outcomes while also providing profitable alternative enterprises to 

land holders  (Bennell et al., 2009; Hobbs et al., 2009; Hobbs, 2009b). 

This analysis modelled a coppice system to produce biomass, where once harvested, the cut stumps 

re-sprout to generate a subsequent crop. The capability of eucalypts to coppice declines with age 

(Sims et al., 1999). The productive lifetime of a Eucalyptus stand used for short rotation coppice 

vary, but have been estimated to approximately 20 – 21 years (Gabrielle et al., 2013; Hobbs, 2009a) . 

We use a useful stand lifetime of 21 years consistent with the literature and expert consultation. 

In the event of poor returns to biomass for electricity generation, landholders would consider 

alternative uses for the timber such as pulp wood or sawlogs. However, alternative uses for mallee 

species are not readily available. The current export chip wood industry is dominated by high-quality 

pulp species and mallee species are not suitable as very few of these species have proven good-

quality pulping characteristics (Bartle, 2009; Marcar, 2009) and do not grow to a size appropriate for 

sawlog production. Plantations are therefore assumed to be planted for the sole purpose of biomass 

production for electricity generation. 

Australia’s biomass industry is underdeveloped, and the viability of a biomass energy plant requires 

large enough scale land use change within close proximity to ensure supply at a scale sufficient for 

economic plant operation. In this study we assume a viable biomass production facility for the 

purpose of examining the effects yield, price and climate risks have on the returns required to 

trigger land use change over and above those calculated using traditional valuations methods (NPV). 

5.2.6 Biomass productivity 

The spatial variation of biomass productivity across the study area and how it varies with climate 

was modelled using the Carbon Sequestration from Revegetation Estimator (Hobbs et al., 2013). The 

model was derived from local climate empirical measurements of biomass accumulation from the 

reforestation of Kyoto compliant (>2 m in height) native Eucalyptus species in the agricultural 

regions of southern Australia.  The model uses multiple linear regression and forward-stepwise 

regression techniques to identify the best predictors of productivity rates (Hobbs et al., 2013). 

Historical annual rainfall data from 1891 to 2005 for all locations was acquired from the SILO data 
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base (Jeffrey et al., 2001), and used as inputs into the biomass model for scenario S0. Rainfall data 

for scenarios S2 and S3 were taken from Bryan et al. (2010c), which consisted of adjusted SILO data.  

Uncertainty associated with future biomass and wheat yields was accounted for by representing 

each with standard normal distributions. While literature exists suggesting yield distributions are not 

normally distributed (Day, 1965; Gallagher, 1987; Ramirez et al., 2003) there is no consensus on how 

crop yield risk should be modelled. In fact the level of skewness is likely to depend on the availability 

of reliable data and the level of aggregation at which yields are measured (Antón, 2009). It is 

reasonable to expect yield distributions to be more symmetric at higher levels of aggregation 

(Antón, 2009). Reliable time series of yield data across the study area is scarce; therefore no reliable 

conclusions as to the shape of the distribution can be made. To aid model tractability, standard 

normal distributions were chosen. 

5.2.7 Wheat productivity 

Wheat is the most commonly cultivated crop in the study area (ABARES, 2013; Bryan et al., 2014) 

and was used as an analogue to represent agricultural production (following Wolbert-Haverkamp 

and Musshoff (2014a)) who used rye as an analogue for agricultural production). While this 

approach ignores some of the nuance of  diversification strategies available to farmers to manage 

short term climate risks, diversification is primarily done for cultural reasons including disease and 

weed control in aid of increased wheat productivity (Kirkegaard et al., 1994; Kirkegaard et al., 2011). 

We contend that the approach does not introduce major distortions in analysis. Given that changes 

in cropping mix and intensity don’t involve major capital expenditures, and are easily changed from 

year to year, they don’t require evaluation with real options. 

Annual wheat yields from 1891 to 2005 for the study areas were modelled by  Bryan et al. (2010c) 

for the three climate scenarios using the Agricultural Production Systems Simulator  (APSIM, Keating 

et al., 2003). APSIM is a process based yield model and has been widely used and validated for 

Australia (Luo et al., 2005a; Luo et al., 2007; Luo et al., 2005b; Wang et al., 2009a; Wang et al., 

2009b). Following  Bryan et al. (2010a) spatial variation was captured by classifying the study area 

into 138 geographic zones of homogenous agricultural productivity, or APSIM zones. Each APSIM 

zone is a unique combination of 14 soil types and 16 climate zones defined by overlaying climate and 

soil layers in a GIS.   

5.2.8 Commodity price time-series 

Biomass is a largely undeveloped industry in Australia and as such no long-term time-series data on 

the price of biomass in Australia exists. Coal has historically been the most commonly used fuel 
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source for electricity generation in Australia (Rodriguez et al., 2011). We used historical coal prices 

as an analogue for biomass price in order to provide a time-series of the prices paid per gigajoule of 

energy used for electricity production. This process was used by Musshoff (2012) and Wolbert-

Haverkamp and Musshoff (2014a) who use long run heating oil prices as an analogue for biomass 

prices in Germany. Inflation-adjusted monthly coal price 1970 – 2013 (The World Bank, 2014) was 

divided by average gross calorific value of brown coal (23.8 GJ/dry weight tonne (CSIRO, 2006), and 

multiplied by the average gross calorific value of Eucalyptus spp. (19.4 GJ/dry weight tonne (CSIRO, 

2006)). Monthly wheat prices 1970 – 2013 were taken from The World Bank (2014) and adjusted for 

inflation. 

Future biomass and wheat prices were modelled using a geometric Brownian motion (GBM), the 

parameters of which can be seen in Table 5.2. GBM is extensively used in real options modelling due 

to its use in the well-known Black-Scholes-Merton analytical solution for options prices (Reeson et 

al., 2015; Sanderson et al., 2016). In addition to being widely used, the GBM is a plausible non-

stationary process for commodity price modelling as the stochastic variable (prices) cannot change 

sign, meaning that in case of a positive initial value no negative values can occur (Musshoff, 2012). 

GBM  contains the Markov property, meaning that the price varies each year dependent on the last 

value observed and by a random increment based on a normal distribution which represents the 

annual price volatility (Musshoff, 2012; Reeson et al., 2015). The functional representation and 

implementation of the GBM is described further in online supplementary material. 

5.2.9 Investment decision using discounted cash flow 

In order to form a point of comparison with the ROA, the returns to biomass needed to trigger land 

use change from agriculture were calculated with NPV for each spatial unit under each of the climate 

change scenarios based on returns per hectare.  The returns presented represents the annual gross 

revenue per hectare for an enterprise minus the variable costs per hectare directly associated that 

enterprise.  

The costs associated with wheat production were taken from Rural Solutions SA Farm Enterprise 

Planning Guide, 2015 (Rural Solutions, 2015). These include variable costs routinely encountered in a 

broad-acre cropping enterprise including the costs of seed, fertiliser, chemicals, freight, and contract 

work.  The costs associated with the production of wheat varied according to rainfall zone but were 

treated as invariant over time (Table 5.2). Variable costs associated with the cultivation of biomass 

included fertiliser (𝐹𝐹𝐹𝐹), maintenance costs (MC), transport (𝑇𝑇𝑇𝑇) and harvest (𝐻𝐻𝐻𝐻) and were taken 

from Bryan et al. (2010c).  
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In addition to revenues and variable costs, fixed cost of biomass planting and re-establishment were 

taken into account. We assumed the establishment cost (EC) to be AU$1000/ha. Estimates of the 

costs associated with recultivating (𝑅𝑅𝑅𝑅) biomass plantations either back to agricultural production or 

in preparation for reinvestment in biomass, obtained through expert consultation, were set at 

AU$1000/ha.  

For the purposes of calculating the NPV, the expected yield of biomass for each APSIM zone and for 

each climate change scenario was taken to be the average yield calculated from the Carbon 

Sequestration from Revegetation Estimator. Similarly, the expected wheat yield was taken as the 

average modelled with the wheat yield simulation model APSIM yield for each APSIM zone under 

each climate change scenario. The expected wheat and biomass price received in the NPV 

calculations was the mean price taken from the respective historical commodity price time series 

1970 – 2013 (Table 5.2). 

We assumed a risk-neutral investor and future revenues were discounted using a risk-free interest 

rate of  5.41%, calculated from the average nominal returns of Australian 10 year Government Bonds 

1985 to 2013 adjusted for inflation over the same period (The Reserve Bank of Australia, 2014). 
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Table 5.2 – Overview of assumed parameters applicable to both NPV and ROA calculations 

  Low Rainfall 
Zone 

Medium 
Rainfall Zone 

High Rainfall 
Zone 

Expected total variable costs wheat 
(AU$/ha/year) 𝑉𝑉𝑉𝑉 ℎ

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒  $164 $338 $449 

Expected price wheat (AU$/t) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  $420 $420 $420 

Expected total variable costs biomass 
(AU$/ha/year) 𝑉𝑉𝑉𝑉 ℎ

𝐵𝐵𝐵𝐵𝐵𝐵  $32 $57 $112 

Expected price biomass (AU$/t) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵  $88 $88 $88 

     

Biomass establishment costs  (AU$/ha) 𝐸𝐸𝐸𝐸ℎ $1000   

Biomass recultivation costs (AU$/ha) 𝑅𝑅𝑅𝑅ℎ $1000   

Transport cost (TC) (AU$/tonne/km) 𝑇𝑇𝑇𝑇𝑡𝑡 $0.05   

Mean distance to processing plant (km)  55   

Fertilizer costs (AU$/ha/year) 𝐹𝐹𝐹𝐹ℎ $40   

Harvest costs (AU$/t) 𝐻𝐻𝐻𝐻𝑡𝑡 $12   

Useful lifetime of biomass plantation 
(years) 𝑁𝑁 21   

Risk free rate 𝑟𝑟 5.41%   

Stochastic process  GBM   

 

5.2.10 Investment decision using ROA 

We adapted a numerical, simulation-based real options model (Tubetov et al., 2012; Wolbert-

Haverkamp and Musshoff, 2014a, b) to value the option of converting land from wheat to biomass.  

The model is based on stochastic simulation of random variables and the parameterisation of the 

investment trigger. The parameterisation procedure for determining the test trigger is described in 

detail in supplementary material and by Wolbert-Haverkamp and Musshoff (2014b). The advantages 

of simulation-based ROA methods is that they are flexible and can consider multiple uncertainties 

over long times (Longstaff and Schwartz, 2001; Triantis, 2003). However, they are limited in their 

capacity to indicate optimal land use change timing and other tactical business decisions.  Analytical 

approaches such as  those used by Sanderson et al. (2016) and Hertzler et al. (2013) can provide 

information on optimal timing and some tactical decisions provided the complexities of varying 

prices, climate uncertainties and spatial variability are greatly simplified or ignored. The 
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consideration of the influence of these real complexities is the advantage of ROA and is the subject 

of this article. 

Unlike other commercial investments, a land holder has the ability to delay land use change 

indefinitely. Therefore, there is no natural time horizon to place on the valuation of the option to 

change land use. As such the model assumed an infinite investment horizon and the possibility for 

multiple re-establishments of biomass crops and possibilities to convert back to cropping at the end 

of each biomass production cycle. As a result the optimal conversion trigger return is asymptotic, 

conforming to a constant conversion trigger that remains unchanged over the entire lifetime  ((t=0,1,

…,∞ ) Dixit and Pindyck, 1994; Wolbert-Haverkamp and Musshoff, 2014b). For computational 

feasibility a long horizon is used to approximate an infinite one with this methodology. In our model, 

a time period of 𝑡𝑡 = 250  years was used. The approximation error as a result is trivial as $100,000 

discounted at 5.41% over 250 years is $0.19. To determine the trigger returns at which a farmer 

should convert land use under ROA, the present value of future returns after converting from wheat 

to biomass were valued as an iterative series of ROA trigger values and random draws for values 

(price of wheat, price of biomass, biomass yield, wheat yield) specified as uncertain for each year in 

the 250 year time series. 

 Results 

5.3.1 Regional primary productivity 

Significant spatial heterogeneity of primary productivity was evident across the study area, 

determined primarily by rainfall and soil characteristics with greatest agricultural productivity in the 

high and medium rainfall areas. Modelling of both agricultural and biomass productivity suggest 

declines in both wheat and biomass production in response to warmer and drier climate futures in 

the low and medium rainfall zones (Figure 5.3). But in the high rainfall zone, where winter crop 

production can be restricted by conditions such as waterlogging of soils and low temperatures, 

wheat yields are expected to increase slightly due to more favourable growing conditions. Biomass 

production conversely relies on year round rainfall (as opposed to growing season rainfall) and was 

expected to decline due to the overall reduction in annual rainfall in such areas. 
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Figure 5.3 — Mean wheat and biomass productivity in the low, medium and high rainfall zones of 
the study area under baseline (S0) climate and two climate change scenarios (S2 and S3) where the 
error bars depict the standard deviation.  

5.3.2 Economic returns to production for NPV analysis 

On average, across the study area, the effects of climate change were projected to reduce returns to 

both wheat and biomass, but more so for wheat as shown in Table 5.3. However, mean returns to 

agriculture in the high rainfall zone were seen to increase as a result of the more favourable growing 

conditions. In the high rainfall zone, average returns for wheat increased from $634/ha under 

baseline climate to $761/ha under climate scenario S3. 
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Table 5.3 — Summary of mean economic profitability of wheat and biomass production across the 
study area under baseline and two climate change futures. 

 S0 —Baseline S2 —Moderate warming/drying S3 —Severe warming/drying 

 Mean return 

($/ha/year) 

Mean return 

($/ha/year) ΔMean 

Mean return 

($/ha/year) ΔMean 

Wheat 373.57 315.19 -15.62% 233.28 -37.55% 

Biomass 187.41 173.50 -7.42% 128.52 -31.42% 

 

5.3.3 Returns required to trigger land use change using NPV 

The trigger returns required to induce land use change were found initially using NPV analysis for 

baseline climate and two climate change scenarios (Figure 5.4). 

 

Figure 5.4 – Returns ($/ha) from biomass required to trigger land use change from conventional 
agriculture (wheat) to biomass under NPV investment rationale for baseline climate conditions and 
two climate change scenarios. 

Clear spatial heterogeneity of trigger returns was found across the study area.  Under a baseline 

climate scenario trigger returns ranged from $123/ha to $1190/ha. Broadly, the climate change 

scenarios reduced the trigger returns across the study area. For example, the mean trigger returns 

across the study area were reduced from $500/ha under S0 to $360/ha under S3. This result held 

nearly universally in drier areas. For example, in scenario S3, the minimum returns required to 

induce land use change were reduced by $108/ha, compared to the baseline scenario S0 to $23/ha 

in the low rainfall zone.  An exception to the broad trend was found in high rainfall zones where the 
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effect of the climate change scenario was to increase the trigger returns required to induce land use 

change away from conventional agriculture. For example, the maximum trigger return under climate 

S3 increased by $331/ha to approximately $1521/ha.  

5.3.4 Returns required to trigger land use change using real options 

The returns required to trigger land use change from wheat to biomass using ROA are illustrated in 

Figure 5.5. Under S0 the trigger returns ranged from $230/ha to $1650/ha with an average of $688 

across the study area with the mean trigger return in the low rainfall zone of $410/ha being 

substantially lower than the medium rainfall zone, $750/ha, and the high rainfall zone at $1077/ha. 

In addition there was considerable variation in trigger returns within rainfall zones (Table 5.4), 

particularly in the medium rainfall zone of the study area where trigger returns ranged between 

$360/ha to $1640/ha. 

 

Figure 5.5 — Returns ($/ha) from biomass required to trigger land use change from conventional 
agriculture (wheat) to biomass using ROA under baseline climate conditions and two climate change 
scenarios. 

5.3.5 Climate change impacts on land use conversion economics 

Figure 5.5.5 illustrates the effects of potential future climate change on the trigger returns required 

to switch land use to biomass. For the moderate drying/warming scenario (S2) in the low rainfall 

zones of the study area the mean trigger return was reduced by 26.6% (Table 5.4), where the trigger 

return in the low rainfall zone declined from $410/ha in scenario S0 to $301/ha in S2. In the medium 

rainfall zone the mean trigger returns declined by 14.3% (Table 5.4), but the range in trigger returns 

across the medium rainfall areas increased from $1280/ha to $1400/ha (9.4%). By contrast, in the 
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high rainfall areas of the region, the mean trigger return increased by 23.1% (Table 5.4) from S0 to 

S2, while the range in returns increased from $1160/ha to $1760/ha (52%). 

Table 5.4 — Summary of ROA trigger returns required across the study area under baseline climate 
and two climate change futures. 

 

The severe drying and warming climate change scenario (S3) had more pronounced effects on the 

trigger returns required to induce land use change to biomass than that in S2 (Figure 5.5). 

Interestingly, the relative effect on the trigger returns in the low and medium rainfall zones of the 

study area was comparable in S3, after being substantially different in S2. In the low rainfall zone the 

mean return was reduced to $233/ha, a reduction of 43.2% when compared to that of S0 (Table 5.4), 

while the within rainfall zone range reduced from $310/ha (S2) to $250/ha (-19.4%). In the medium 

rainfall zone the mean trigger return declined to $433/ha, a reduction of 42% compared to the 

trigger return in S0 (Table 5.4), while the intra-rainfall zone range declined from $1400/ha (S2) to 

$940 (-32.9%). The trend of increasing trigger returns in the high rainfall areas continued under 

severe warming and drying with the mean trigger return increasing 33.6% over S0 to $1439/ha 

(Table 5.4). While the range in trigger returns between S2 and S3 in the high rainfall zone decreased 

by 10.2%. 

5.3.6 Comparison of real options and net present value results 

The effect of option values of the trigger returns needed for land use change was measured through 

the Investment Multiple (IM). The IM was determined by dividing the trigger return calculated using 

ROA by the trigger return calculated using NPV methods. The mean effect of climate change across 

the study area was to increase IM from 1.41 in S0, 1.54 in S2 and to 1.84 in S3. When the mean IM is 

examined by rainfall zone, differences emerge (Figure 5.6). The mean IM increased the most in the 

low rainfall zones, from S0 (1.41) to S3 (2.03).  In contrast, the medium rainfall zones and high 

rainfall zones change comparatively little between S0 and S2. Mean IM in medium rainfall zone 

increased from 1.31 (S0) to 1.47 (S2) and decreased from 1.57 (S0) to 1.53 (S2) in the high rainfall 

zones. The results for the medium and high rainfall zones diverge under a severe drying and 

warming climate scenario. The IM in the high rainfall areas increases slightly from S2 (1.53) to S3 

Rainfall Min Mean Max Median Min Mean Max Median ΔMean Min Mean Max Median ΔMean
Zone ($/ha) ($/ha) ($/ha) ($/ha) ($/ha) ($/ha) ($/ha) ($/ha) ($/ha) ($/ha) ($/ha) ($/ha)
Low 230 410 710 390 190 301 500 280 -26.60% 160 233 410 230 -43.17%
Medium 360 750 1640 655 310 643 1710 540 -14.26% 220 434 1160 320 -42.13%

High 490 1077 1650 1135 690 1326 2450 1425 23.12% 790 1439 2370 1385 33.61%

S0 —Baseline S2 —Moderate warming/drying S3 —Severe warming/drying
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(1.62). In comparison the mean IM in the medium rainfall zones increase substantially more from S2 

(1.47) to S3 (1.77).  

 

Figure 5.6 – The effect of uncertainty as measured by IM on the returns required to trigger land use 
change to biomass using ROA. An IM of 1 = no change from the trigger returns calculated under the 
NPV model. 

While spatial variability of IM could be seen across the study area as a whole, it is most apparent 

within rainfall zones and were quite pronounced between climate change scenarios (Figure 5.6).  In 

the low rainfall zone the difference between the lowest IM and the highest IM increased significantly 

from S0 (1.04 – 1.87) to S3 (1.28 – 4.61). A similar increase was evident in the medium rainfall zones 

between S0 (1.09 – 1.65) and S3 (1.13 – 3.85). Interestingly, in the high rainfall zone, the within 

rainfall zone IM range reduced between S0 (1.19 – 3.80) and S3 (1.21 – 2.21). 
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5.3.7 Viable areas for land use change to biomass 

There has been considerable theoretical assessment of options for a mallee biomass supply chain for 

both electricity production and integrated tree processing by government, industry and academia 

(Bartle, 2009; Bartle et al., 2007; Bryan et al., 2008a; Farine et al., 2012; Hobbs, 2009a; Rodriguez et 

al., 2011; Schmidt et al., 2012; Ward and Trengove, 2004). There is broad consensus that ultimately 

prices achievable per dry matter tonne (DM t) of biomass will be a key to the success of any future 

industry. Possible future prices for biomass quoted in the literature  range from AU$40/DM t (Bartle, 

2009) up to approximately  AU$300/DM t (Schmidt et al., 2012) 2.  The results in this paper present 

the conversion thresholds based on historical coal and wheat price variability, without any additional 

income from a carbon price, Renewable Energy Credits (REC), payments for potential environmental 

services or other incentive policies. As such, the results represent the returns if prices for energy 

($/GJ) were to continue to be broadly representative of  historical coal prices and biomass was to 

replace coal on a per GJ basis without the effect of other distorting price mechanisms paid for 

biomass production.  

Figure 5.7 maps the extent of land use conversion estimated with ROA over a range of biomass feed 

stock prices for baseline climate and two climate change scenarios. Given our assumptions, very 

little land use conversion could be expected across the study area at biomass prices below 

AU$100/DM t. At a price of AU$200/DM t 457,331 ha would become profitable under climate 

scenario S0 (Figure 5.7). Under the climate change scenarios, significantly more of the study area 

would meet the threshold returns at prices up to AU$200/DM t, with 693,386 ha being profitable 

under S2 and 930,986 ha profitable under S3. At a biomass price of AU$300/DM t significantly more 

areas would produce biomass returns high enough to meet the trigger returns calculated using ROA 

ranging from 2,166,398 ha under S0 to 2,738,463 ha under S3 (Figure 5.7).  

Many factors complicate forecasts of future biomass prices, including future electricity demand, 

fossil fuel prices, future food crop prices, the price of and eligibility of biomass feedstocks to receive 

REC’s  or carbon credits for below ground biomass.   However, our results show that on an energy 

equivalence basis, to be competitive with an oil price of AU$41/barrel (current at the time of 

writing) biomass would have to be priced at less than AU$130/DM t. Similarly, to be competitive 

with coal at AU$68/t, the energy equivalent price of biomass would have to be less than AU$52/DMt 

(see online support material for energy equivalent price calculation methods and data). For 

substantial biomass industry development to occur in the study area, the synchronisation of 

                                                           
2 Schmidt et al (2012) reported a price of $185/green tonne. Assuming moisture content of 39% (CSIRO, 2006) 
we report an equivalent price of $303/DM t. 
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products and services derived from mallee and the development of receiving markets is paramount 

(Huxtable et al., 2007), but currently no clear pathway exists to achieve this. 

Figure 5.7 – Areas economically viable for land use change to biomass (shown in orange), calculated 
from the ROA trigger returns at biomass prices of up to $200/DM t and up to $300/DM t. Very little 
area is viable at prices up to $100/DM t, and therefore is not displayed here.  

 Discussion  

The development of a large scale biomass industry in Australia has been suggested as a climate 

change resilient diversification option for agricultural landscapes. Currently, there are impediments 

to realising this potential. These include large reserves of accessible coal, the low cost of electricity 

generated in coal-fired power plants and uncertain greenhouse and renewable energy policy  
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(Raison, 2006). Integrated tree processing is seen as a promising way forward for mallee based 

industries in Australia as it offers a number of commercial opportunities including renewable energy 

generation, and co-products of eucalyptus oil and activated carbon (Enecon, 2001).   

Our modelling highlights that in semi-arid regions such as our study area climate change is likely to 

affect the economics of land use conversion from agriculture to biomass production by changing the 

relative productivity and yield risks of the two land uses. In the low and medium rainfall zones the 

two climate change scenarios reduced mean wheat yields and increased year-to-year yield variability 

(Figure 5.4). In these areas the returns from biomass relative to wheat improved under the climate 

change scenarios and as a result the returns needed to trigger land use change declined over the 

scenarios across much of the study area (Figure 5.4). 

In the high rainfall zone, however, the productivity of wheat increased slightly under hotter and drier 

climate scenarios in some areas where the productivity of wheat is inhibited under baseline climate 

conditions by biophysical factors such as water logging. This is exemplified in the southern Wimmera 

(south eastern regions of the study area as labelled in Figure 5.1). As a result, wheat is likely to 

become more competitive relative to biomass in high rainfall areas. 

Comparison of ROA and NPV results showed that the inclusion of uncertain returns and temporal 

flexibility in investment analysis timing adds to the returns needed to trigger land use change, 

consistent with the findings of previous ROA studies (Musshoff, 2012; Reeson et al., 2015; 

Yemshanov et al., 2015). Under baseline climate conditions, the required returns from biomass yield 

and price uncertainty to trigger land use change away from agriculture were between 104% and 

305% (mean 141%) of NPV calculated returns required to trigger change. 

Results also appear to suggest that climate change will increase variability in trigger returns required 

to induce change in the high rainfall zone. The mean returns required to trigger land use change in 

the low and medium rainfall zones were estimated to decrease with climate change.  

We found that not only is NPV likely to underestimate the returns required to trigger land use 

change as shown in previous studies (Musshoff, 2012; Reeson et al., 2015; Wolbert-Haverkamp and 

Musshoff, 2014a), but that changing risks associated with land use resulting from climate change can 

further exacerbate the tendency for NPV methods to underestimate true conversion thresholds. A 

further complicating factor for policymakers/investors is that this effect varies spatially (Figure 5.6) 

not only between high and low rainfall areas as one would intuitively expect, but within areas which 

would tend to be classified similarly on the basis of average yields (not accounting for yield 

variability). 
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5.4.1 Caveats and future directions 

The results presented here should be interpreted in relation to the key assumptions made. Firstly, 

modelling of commodity yields assumed no adaptation to climate change. Several  potential 

adaptations are currently available to landholders (e.g. changing input levels and or altered timing of 

activities), most of which are variations of existing climate risk management or are theoretical and 

require advancements beyond current technological capabilities (i.e. significant advancements in 

plant breeding). However, there is uncertainty over the actual efficacy of changes in nitrogen 

application levels, wheat cultivar or their synergistic effects on the negative effects of climate 

change (Luo et al., 2009). Such adaptive responses, to wheat production in particular, may have 

some marginal effects on the land use conversion thresholds, but most of the benefits of marginal 

adaptations within existing systems accrue with moderate climate change, and there are limits to 

their effectiveness under more severe climate changes (Howden et al., 2007). Moreover, yield 

benefits from adaptation are  likely greater under scenarios of increased rainfall reflecting that there 

are many ways of more effectively using more abundant resources, whereas there are fewer and 

less-effective options for significantly ameliorating risks when conditions become more limiting 

(Howden et al., 2007). 

Secondly, this study uses GBM to forecast future commodity price development. While precedent 

for this abound in the literature (Duku-Kaakyire and Nanang, 2004; Isik et al., 2001; Isik and Yang, 

2004; Musshoff, 2012; Schatzki, 2003; Yemshanov et al., 2015), there are certain consequences that 

should be noted. Musshoff (2012) found that the models are sensitive to the stochastic process used 

to forecast future price development. He found that the conversion trigger and investment multiple 

differed when a mean reverting process (MRP) was used in place of a GBM or arithmetic Brownian 

motion. This difference was explained by the respective process characteristics.  While prices 

fluctuate around their equilibrium level in an MRP, they can drift freely in analyses that use 

Brownian motion functions to generate price variability. The implication of this is that the free 

floating characteristics of the GBM have been found to increase the price risk posed to land holders 

in models cause delays in land use conversion under any given level of price volatility (Reeson et al., 

2015). 

Thirdly, we assume the cost of production for both biomass and wheat remain constant.  

Undoubtedly the costs of production are likely to change for both commodities. However, factors 

driving changes in costs of production of biomass and agriculture are similar and hence, likely to be 

highly correlated and as such likely to have limited influence on the results (Bryan et al., 2010c).  
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Finally the results presented here indicate the returns optimal for triggering land use change under 

conditions of uncertain prices and variable yields. Many other factors including status quo bias 

(Burmeister and Schade, 2007), differences in individual landholders’ risk aversion (Wolbert-

Haverkamp and Musshoff, 2014a) and an individual’s objective in farming  (Guillem et al., 2012) 

influences landholder decision making.  Economic experiments (Ihli et al., 2013; Maart‐Noelck and 

Musshoff, 2013) have found that farmers make irreversible investments later than NPV models 

predict, but sooner than optimal under real options values; although farmer decisions come to more 

closely approximate the real options framework with experience. Understanding the interactions 

between price and yield uncertainty and farmer typologies is an area worthy of further research. 

Conclusions 

The results presented here reaffirm that options values must be considered in land use change 

economics. However, the results demonstrate that the underlying variability in primary productivity 

has a substantial effect on the magnitude of uncertainty on the returns required to trigger land use 

change from wheat to biomass. Areas traditionally thought of as being quite similar on an average 

yield basis can display large differences in response to the inclusion of production and price risks due 

to local biophysical conditions that determine primary productivity variability. In addition, changing 

risks associated with land use, as a result of climate change, can further exacerbate the tendency for 

NPV methods to underestimate true conversion thresholds across the regions such as our study 

area. A further complicating factor for policymakers/investors is that this effect varies spatially, not 

only between high and low rainfall areas as one would intuitively expect, but within similarly 

classified areas. In broad terms climate change reduced returns required for land use change to 

biomass in low and medium rainfall zones typical of semi-arid rainfed grain farming regions and 

increased them in the higher rainfall areas.  Severe climate change is likely to reduce variability in 

returns required from biomass across the study area, but moderate climate change futures may 

exacerbate variability in returns required in medium and high rainfall zones. Our results show that 

even under severe climate change comparatively small areas are economically viable for conversion 

to biomass under $200/DM t, and it is not until prices exceed $200/DM t that significant areas 

become profitable for conversion to biomass.  Whether or not these prices are ultimately achievable 

is speculative, however, it is clear that for substantial biomass industry development to occur in the 

study area, the synchronisation of products and services derived from mallee and the development 

of markets is paramount. 
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 CHAPTER SIX 

Conclusions  

 Key finding and conclusions 

Traditional capital budgeting techniques relying on the calculation of Net Present Value (NPV) have 

shown emerging land uses may provide landholders with profitable diversification options in the 

future (Bryan et al., 2010c; Bryan et al., 2008a; Paterson and Bryan, 2012; Polglase et al., 2011; Ward 

and Trengove, 2004). However NPV methodologies have been criticised for providing unrealistic 

valuations as these models inadequately account for return uncertainty, temporal flexibility and 

sunk costs (Dixit and Pindyck, 1994; Kemna, 1993; Tozer, 2009; Trigeorgis, 1996). Real options 

analysis is an alternative valuation method with the advantage of being able to incorporate 

uncertainty into the economic analysis. A feature of previous ROA studies has been a focus on price 

uncertainty alone (Musshoff, 2012; Schatzki, 2003; Wolbert-Haverkamp and Musshoff, 2014a). Price 

uncertainty notwithstanding, climate variability is the principal source of risk affecting long term 

economic viability of rain-fed agricultural systems (Kandulu et al., 2012). However the consideration 

of temporal and spatial yield risk has been largely lacking in ROA to date. Furthermore, the potential 

future effects of climate change are likely to pose addition challenges and risks to conventional 

farming systems and is anticipated to drive substantial transformational changes to agricultural 

systems (Sanderson et al., 2016). It is clear optimal land use will be different under future climate. 

However, spatial consideration of the risks posed by climate change and faced by landholders has 

received limited attention in the ROA literature to date. 

Two methods for ROA application to land use change are apparent in the literature. One method 

involves the use of analytical methods such as those employed by Hertzler et al. (2013), Sanderson 

et al. (2016) and Schatzki (2003). These methods involve the solution of partial differential 

equations. The solution of these equations is not trivial and analytical solutions exist only for simple 

valuation problems with specific preconditions. These  include, for example, that the evaluated 

investment option has a time continuous opportunity to invest, future revenue can only follow a 

GBM and there should not be interactions between the investment option and other options, such 

as reinvestment and disinvestment options (Musshoff, 2012; Wolbert-Haverkamp and Musshoff, 

2013). However in the instance of an investment in biomass, the investment opportunity is not time 

continuous.  Landholders generally have, at most, only several opportunities a year to make a 

decision on land use due to seasonal factors and to re-invest in biomass at the end of a plantation’s 

useful lifetime. The nature of land use change decision making is such that numerical approximation 
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methods are more applicable (see Chapter 3 for a detailed discussion of relative merits of different 

numerical approximation methods).  Monte Carlo simulation methods are the most tractable way to 

currently address multiple sources of uncertainty regardless of the distributions’ complexity 

concerning the stochastic variable (Wolbert-Haverkamp and Musshoff, 2014b), and to incorporate 

this in a spatially explicit environment.  

This research highlights that there are pros and cons to the use of each ROA method (analytical, 

decision tree, Monte Carlo simulation methods) as outlined in Chapter 3, leading to the conclusion 

that there is no one ROA methodology suitable for investigating all problems.  For example, there 

are distinct advantages to analytical methods in analysing strategic investment decision making. 

However, these models do not easily incorporate multiple sources of uncertainty as separate 

stochastic processes (Sanderson et al., 2016) or spatially varying risks. This appears to limit their 

applicability to larger (geographical) scale analysis or policy development. Conversely, while 

numerical approximation methods can be adapted to incorporate multiple sources of uncertainty, 

separate stochastic processes or distributions, they have limited capacity to calculate the probability 

of and optimal timing of land use change, unless arbitrary time frames are placed upon the analysis.  

Consequently these methods are better suited to examining problems such as the effect of multiple 

interacting uncertainties on the returns required to trigger land use change. Practitioners should be 

aware that some analytical approaches will sacrifice some attainable strategic information that may 

be of key interest.  Particular issues such as optimal time to switch, require the consideration of 

multiple sources of uncertainty and nuanced accounting of spatial variability.  

The results of this research broadly agree with other real options research into land use change from 

conventional agriculture to forested land uses such as biomass. The addition of uncertainty over 

returns, flexibility in investment timing and recognising sunk costs can add significantly to the 

returns at which a landholder should optimally change land use (Musshoff, 2012; Reeson et al., 

2015; Schatzki, 2003; Wolbert-Haverkamp and Musshoff, 2014a, b).This research has added to 

previous ROA studies by extending the analysis to multiple locations and examining how strongly the 

results are influenced by the location conditions and if difference existed between locations 

(Chapter 4)  . The limited analysis of the locational effect of option values across an area can be 

mainly attributed to the difficulty in incorporating multiple sources of uncertainty to the models.  

Incorporating yield variability into a simulation model as in this thesis has facilitated the analysis of 

the effect temporal and spatial yield variability has on the risk premium required to trigger 

investment. The results show that the interaction of simultaneous price and yield risk does not act 
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homogenously across space. The present value of returns required to trigger land use change varied 

from 1.45 to 2.32 times the present value of expenditures (Chapter 4).  

Incentive policies are often employed by policy makers to encourage participation in agro-

environmental programs by offsetting establishment costs or attempting to negate variability in 

returns from alternative land uses. However the results of this research show that the effect of 

incentive payments is unlikely to be uniform geographically. This was demonstrated by the analysis 

of the effect of subsidy payments to reduce risks and therefore conversion thresholds.  In areas of 

low primary productivity, such as Florieton (chapter 4), incentive payments have a large effect as 

they provide a large stabilising role to returns, relative to more productive and less variable yield 

locations. This provides a dilemma for policy makers offering widely available incentives.  Broadly 

offered policies will likely have a positive response from landholders in low productivity areas, 

however this may result in perverse outcomes as the payment is likely to encourage land use change 

in areas which are neither economically viable nor ecologically desirable. For example, the Wimmera 

region has a distinct competitive advantage over Florieton in terms of biomass potential yield; 

however the subsidies have the greatest effect in Florieton. Notionally this would encourage land 

use change in Florieton where long term integrated tree processing may not be viable; given likely 

drying and warming as climate changes. 

Technical issues in analysing the results of ROA analysis, such as the measure of central tendency, 

may be of significance to policy makers. In Chapter 5 the mean conversion trigger was reported and 

commented upon, however in analysis involving multiple spatial units, the median may better 

represent the distribution of conversion triggers over space as the mean can be sensitive to outlier 

values.  For example, in table 5.4 (S3, medium rainfall zone) the median is significantly lower than 

the mean indicating a positively skewed distribution in that rainfall zone under that climate change 

scenario.  In this scenario and rainfall zone there are several large outliers in ROA conversion 

triggers. This is due to several spatial units being classified as medium rainfall, but on the cusp of 

being able to be classified as in the high rainfall zone. Under the severe warming and drying scenario 

these spatial units have responded in a similar fashion to the high rainfall zone as discussed in 

Chapter 5. The implication of this seemingly trivial choice of measure of central tendency may be 

quite profound for policy makers. In this scenario, a policy maker offing an incentive informed by the 

mean would be losing efficiency. In this situation, relatively little additional area would become 

viable for conversion by offering the mean trigger price when compared to the area eligible for 

conversion under the median trigger price. However, the cost difference is substantial with the 

median conversion trigger being 26 percent lower than the mean conversion trigger.  
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The results presented in Chapters 4 and 5 demonstrate that there are substantial differences 

between rainfall zones in terms of the risk premium required, over and above the NPV trigger, for 

land use change to occur. This was demonstrated by the investment multiple (IM) being highest in 

very low rainfall and also in high rainfall locations. Agricultural regions in the study have historically 

been categorised by rainfall zone, as outlined in Chapters 4 and 5. The precise definition of zones is 

often elastic; however this categorisation is generally a good way to broadly delineate areas of 

similar production systems, productivity and costs associated with crop production. However the 

results of this research also indicate that using this broad delineation in economic analysis could lead 

to biased predictions of the returns needed to witness land use change due to significant biophysical 

variability within these zones (Chapter 5). The inclusion of spatially explicit data into the ROA 

demonstrated that significant variability in trigger returns were found not only across rainfall zones 

but also amongst areas traditionally classified in the same broad zone (Chapter 5). These results 

show that not only is NPV likely to underestimate the returns required to trigger land use change as 

shown in previous studies (Musshoff, 2012; Reeson et al., 2015; Wolbert-Haverkamp and Musshoff, 

2014a), but that the effect of yield risk shows considerable spatial variation, not only between high 

and low rainfall areas as demonstrated in Chapter 4, but within similarly classified (“homogenous”) 

areas. These results show that while useful, simple spatial analogues may be too much of a 

simplification for analysing spatial variability or spatial response to price and climate risks in future 

ROA studies. Seemingly similar areas respond very differently to current production risks in terms of 

conversion thresholds and changes in production risks caused by climate change are likely to be 

complex and variable. Making comparison based on spatial-temporal transects does not account for 

this complexity and may over or underestimate the effect of current and changing production risks 

on conversion thresholds. 

Climate change may pose an additional source of uncertainty to land holders and exacerbate existing 

production risks (Asseng et al., 2011; Luo et al., 2005a; Luo et al., 2005b), thereby affecting land use 

change decisions and conversion thresholds. In broad terms, the climate change scenarios examined, 

reduced the trigger GM required for land use change to biomass in the medium and low rainfall 

zones. However, in the high rainfall areas the returns needed for land use change to occur increased 

due to the improving competitiveness of wheat as a result of improving growing conditions for 

wheat cultivation. The southern Wimmera (south eastern regions of the study area in chapter 5) 

differs from the other regions in the study area in that, although rainfall and yield potential is 

comparatively high, the soils are poorly structured and waterlogging often occurs during winter 

(Armstrong et al., 2001; McDonald and Gardner, 1987). As a result of drying, and therefore improved 

conditions for the cultivation of wheat, wheat is likely to become more competitive relative to 



128 
 

biomass in the high rainfall area and the conversion triggers will likely increase as a response. These 

results again highlight the importance of accounting for the complex interactions of spatial variables. 

Ultimately prices achievable per tonne of biomass will determine the success of any future industry 

and the extent of land use change away from conventional agriculture. Possible future prices for 

biomass in the literature range from $40/DM t (Bartle, 2009) up to $300/DM t (Schmidt et al., 2012). 

Potential future price pathways for biomass and biomass generated energy remain uncertain and 

will rely on multiple factors such as climate change mitigation policies, fossil fuel prices, demand for 

integrated tree processing products and technological developments within the energy sector. The 

results outlined in Chapter 5 show that even under conditions of severe warming and drying, 

comparatively small areas of the study area would be viable for land use change to biomass under 

$200/DM t.  This is in stark contrast to results reported in studies using NPV methods. Bryan et al. 

(2010c) and Bryan et al. (2008a) reported significant areas (in the same study area) could be viable 

for biomass at prices of approximately $50/green t 3. This result further highlights the effect of price 

and yield uncertainty on land holder decision making. Ward and Trengove (2005) report that a price 

of $47/green t ($77/DM t – $94/DM t)1 as the upper threshold that an integrated tree processing 

plant could pay for feedstock in order to maintain an internal rate of return of 15%. Initially this does 

not appear to bode well for widespread adoption of biomass as an alternative crop in the study area. 

However, unlike traditional agricultural crops, the inclusion of biomass in the form of deep rooted 

perennial plants can confer additional environmental benefits. These benefits can include reduced 

deep drainage and groundwater recharge and hence mitigate dryland salinity (Bryan et al., 2010c; 

Wang et al., 2008), stabilise eroding soils through the soil binding action of roots and reduce surface 

erosion through reducing wind speeds (Nuberg, 1998).  In addition,  a significant biomass industry 

may aid mitigation of climate change through both carbon sequestration in the form of below 

ground biomass or direct replacement of fossil fuels in electricity generation (Rodriguez et al., 2011). 

New markets and policies are emerging that may compensate landholders for the ecosystem 

services their land provides society and these markets have the potential to be transformational 

(Bryan et al., 2013).  

With the long term development of the biomass industry in mind, several issues pertaining to 

industry development policy have become apparent throughout the course of this research. 

Concerning the targeted location for the development of the industry, Chapter 5 indicates that very 

wet areas and more arid areas are likely to be viable for land use change at the lowest cost. 

                                                           
3 The results in this research report prices as $/DM t. The conversion of $/green tonne to $/DM t is dependent 
on moisture content. Assuming moisture content of between 39% and 50% this price would be equivalent to 
between $82/DM t and $100/DM t. 
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However, the nature of the land holdings in wetter areas may make it unfeasible to target these 

areas. In areas such as the Mount Lofty Ranges, land holdings are typically small introducing 

potentially high transaction costs associated with cajoling numerous land holders in to participating 

in the industry, despite the higher yields associated with biophysical determinants. In contrast, land 

holdings in more arid areas are typically much larger, often in orders of magnitude, when compared 

to high rainfall areas. While these areas are less productive, transaction costs are likely to be far 

lower as fewer land holders will need to be involved.  

An additional factor that may make targeting more arid areas wise is the opportunity for 

diversification. Kandulu et al. (2012) showed that diversification of agricultural enterprises can help 

dampen fluctuation in commodity prices and may help mitigate the potential effects of future 

climate change. However, the opportunity for ‘traditional’ diversification of agricultural enterprises 

is limited in drier parts of southern Australia as it introduces water intensive and rainfall-sensitive 

enterprises.  Conversely, higher rainfall areas can use a variety of diversification options to hedge 

against extreme losses in years with unfavourable climate, reduce the likelihood and magnitude of 

extremely low net returns while benefiting from high-returns obtained from wheat. The introduction 

of long term land uses such as biomass in to the higher rainfall areas may have perverse out comes 

for landholders.  Biomass’ inclusion to the enterprise mix could reduce a land holder’s ability to 

effectively diversify their production system as a means of dampening the effect of climate and price 

variability or farm returns. Notionally at least, this would not be an issue in drier areas and the 

addition of a profitable, climate adapted and low labour diversification option may be welcomed by 

land holders and therefore more readily accepted. This research shows  however, that for  

substantial biomass industry development to occur in the study area, multiple income streams from 

both products and services derived from mallee and the development of receiving markets will be 

needed to reach the returns required to trigger land use change to biomass based land uses. 

Currently, no clear pathway exists to achieve this. 

 Future research 

This study has focused on applying a numerical simulation based real options model to examine the 

effect of price and yield variability on the returns required for farmers to change land use from 

conventional agriculture to perennial mallee species for use in electricity generation or integrated 

tree processing. Specifically, this study has sought to quantify the effects of multiple uncertainties on 

a) conversion thresholds required to trigger land use change; b) the quantum multiple that 

interacting uncertainties adds to the NPV conversion trigger; c) if this effect varies geographically 

and if it does, how does it vary spatially; and d) how climate change uncertainties influence returns 
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from biomass needed to trigger land use change and how this varies across the landscape. Future 

work extending the results presented in this research could proceed in several ways: 

• Economic experiments conducted internationally have shown that real options models 

approximate the behaviour of landholders (Ihli et al., 2013) as landholders demonstrably 

consider the value of waiting in experimental settings (Maart‐Noelck and Musshoff, 2013). 

However, socio-demographic and farm-specific factors also affect the investment behaviour 

of landholders (Ihli et al., 2013) and these effects differ between countries (Tubetov et al., 

2013). Behavioural economic experiments could be conducted in Australia in order to 

understand the influence of socio-demographic and farm-specific factors in relation to the 

effects of price uncertainty, sunk costs and loss of flexibility.  In the absence of data 

describing actual land use conversion rates, experimental data derived from Australian 

landholders would add rigour to the results presented by real options studies and this is an 

area prime for future research. Failure to account for heterogeneous attitudes, motivations 

and variable willingness to participate, may result in further reduced investment with an 

attendant social cost (Ward et al., 2007).  

• The analysis examining climate change did not account for potential effects of climate 

change on global commodity prices or input prices. For example, in a climate changed future 

demand for ‘green’ energy may increase the prices of biomass derived electricity, or more 

variable global agriculture output may increase food prices and food price variability. The 

potential effect of climate change on global food supply and therefore commodity prices is a 

complex area with agricultural output changes likely to change differentially depending on 

crop and are likely to differ between locations. For example maize yields may decline, while 

spring wheat and soybean yields are likely to improve due to CO2 fertilisation effects (Deryng 

et al., 2014) and yields are predicted to decline in lower latitudes and generally increase in 

higher latitudes (Rosenzweig and Parry, 1994; Wheeler and von Braun, 2013). Farmers adjust 

their mix of inputs depending on the relative prices of inputs and outputs and their 

expectations about the growing season. Future research could extend the analysis presented 

in this research to examine the simultaneous effects of global climate change on not only 

biophysical conditions but market prices for input and output commodities and include the 

option for the landholder to adjust inputs according to a seasonal weather projection. 

• The effect of subsidy payments was examined in Chapter 3 of this research. In order to make 

the model tractable, a time unlimited subsidy was offered for below ground carbon 

accumulation. While feasible in the presence of extant or future carbon markets, other 
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subsidies may be important for the establishment of a biomass industry in the study area, 

such as investment subsidies. These payments are unlikely to be time unlimited. Musshoff 

(2012) and Wolbert-Haverkamp and Musshoff (2014a) state that the presence of a time 

limited subsidy may hasten land use conversion as ultimately, the opportunity costs would 

be reduced over time with the declining remaining lifetime of the subsidy payment and the 

decision to convert would be shifted more toward a ‘now-or-never-decision’.  Future 

research could examine the effects of various time limited incentive payments, however this 

would require the use of a different model to the one presented in this research, and would 

require a finite investment horizon to be implemented along the lines of Odening et al. 

(2005). It would therefore also be interesting to investigate the effects of a time limited 

investment horizon in comparison to an infinite investment horizon. 
• The research presented here uses wheat as a representation of the agricultural farming 

system in the region. While reducing the agricultural system to one regime is not without 

precedent (Sanderson et al., 2016; Wolbert-Haverkamp and Musshoff, 2014a) it is a 

simplification. Rainfed mixed farming systems, which involve livestock as well as a variety of 

crops (wheat, barley, oats, beans, lupins, peas, oilseed) of which wheat is just one, 

predominate in the study area. Kandulu et al. (2012) showed that in some locations, 

diversification of farming systems in the study area  can reduce the variability of returns 

from agriculture and help manage short-term risk due to variance in market input costs and 

commodity prices. Future research could address this by incorporating other crops in order 

to examine the effect of varying levels of diversification on the uncertainty surrounding 

agricultural returns and in turn the effect on conversion thresholds using ROA. 

• Finally, the use of ROA can be complex and daunting. While the methods undoubtedly 

provide important information for policy makers and natural resource managers, the 

complexity of the models may prove to be too much of a barrier for wide spread adoption 

and application. Specifically, the parameterisation of the models can be daunting. For 

example, the statistical analysis required to identify time-series models can require 

advanced statistical analysis and fraught, as the choice of stochastic process has been seen 

to significantly affect the results of the ROA analysis. The complexity of the parameterisation 

of the models will undoubtedly prove to be a barrier to wide spread adoption of ROA. Future 

research could investigate the feasibility of summary models to provide policy makers and 

natural resource managers with approximations of option values and estimates of ‘true’ 

conversion triggers in relation to those calculated using NPV models. 
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 APPENDIX A 

 The ROA model 

A detailed explanation of the model used in this paper can be found in Tubetov et al. (2012), 

Musshoff (2012), Wolbert-Haverkamp and Musshoff (2014a). 

 Model data and assumptions 

Eucalyptus socialis was the modelled species as it is commonly found in the Mallee areas of South 

Australia (Brooker and Kleinig, 1983). The average biomass accumulation rate of E. socialis in the 

study area is 7.5 green kg plant-1 year -1  (Hobbs and Bennell, 2005). The planting  density is assumed 

to be 1000 trees ha-1 and the useful lifetime of the plantation is 20 years (Hobbs, 2009a). Investment 

costs associated with planting an E. socialis plantation are AU$1334 ha-1 while variable costs are 

AU$159.75 ha-1 based on a yield of 7.5 green tonnes year-1 , including haulage (Hobbs, 2009a). If a 

farmer returns to agriculture after the useful lifetime of the tree crop a recultivation cost of 

AU$1200 ha-1 is incurred. 

Following Wolbert-Haverkamp and Musshoff (2014b) we assume a “normal forest” model. The 

assumption of a normal forest is made for pragmatic reasons and allows the modelled landholder to 

harvest an average yield of biomass every year. 

The costs associated with the cultivation of annual wheat production in South Australia were 

obtained from State Department of Agriculture gross margin guides (Rural Solutions SA, 2013) and 

average yields for the Mallee district were calculated from State Department of Agriculture crop and 

pasture reports 2002-2013 (PIRSA, 2014). Inflation adjusted historical wheat prices from 1970 to 

2014 (The World Bank, 2014) were used to forecast the annual wheat GM in the stochastic GM 

model and are presented in Figure 8. 
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Figure 8 – Historical GM of wheat 1970-2013. 

 

To obtain a biomass price time series, the inflation adjusted monthly coal price 1969-2014 (The 

World Bank, 2014) is divided by the average gross calorific value of black coal (GJ/fresh weight 

tonne-1) multiplied by the average gross calorific value of Eucalyptus Spp. (GJ/fresh weight tonne-1) 

(CSIRO, 2006). The coal derived biomass price is multiplied by the modelled average biomass 

accumulation rates to determine biomass revenue per hectare. The variable cost per hectare are 

subtracted from revenue per hectare to return the gross margin AU$ ha-1. The coal derived BEC gross 

margin time series can be seen in Figure 9. 

 

 

Figure 9  – Derived Historical GM of BEC 1970-2013 
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Time series analysis was used to gain information regarding the distribution attributes of the BEC 

and the wheat GM time series in order to fit the most appropriate stochastic process.  We modelled 

future prices of BEC and wheat using an arithmetic Brownian motion (ABM) , as suggested by 

Wolbert-Haverkamp and Musshoff (2014b). 

Times series stationarity was tested using both an augmented Dickey-Fuller test (Dickey and Fuller, 

1979), the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992) and a commercial 

statistical package’s (Palisade @Risk) time series analysis function. The results of these tests suggest 

the BEC and wheat time series were initially non-stationary (p =.05).  

In this model, we assume a risk neutral investor and future revenues are discounted using a risk free 

interest rate. The risk free interest rate was calculated from the average nominal returns of 

Australian 3-year Government Bonds 1995 to 2013 (The Reserve Bank of Australia, 2014) which 

equated to a discount rate of 5.41%.  

To account for unequal risk profiles of different crops or land holder preference, previous studies 

have discounted the returns of different crops independently based on the volatility of their 

respective historical returns. The enterprise with the higher volatility in returns can be viewed as a 

riskier investment, and therefore discounted at a higher rate to compensate for increased risk 

(Musshoff, 2012; Wolbert-Haverkamp and Musshoff, 2014a, b). This has not been addressed in this 

model. 

 Further results 

Several expected GMW were tested to represent current, improved and deteriorated conditions for 

wheat producers.  Expected GMW ranging from AU$178ha-1 to AU$478ha-1 were tested. In this 

model, GMW was treated as deterministic, that is, in every year of the model the farmer would 

receive the expected GMW, while the GM BEC was treated as a stochastic variable. 

As the GMW increases from AU$178ha-1 to AU$478ha-1, the conversion trigger under both the NPV 

and ROA models rises by the same magnitude (Figure 10). This is due to the GMs of wheat and BEC 

being discounted at the same rate. In this case, the change in conversion trigger, under a 

deterministic wheat price, can be seen to be influenced solely by the change in the GM of wheat. 
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Figure 10 – GMB required to trigger land use conversion from wheat following NPV analysis and ROA 
at four different test gross margins for wheat and under stochastic wheat and BEC gross margins.           
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 APPENDIX B           
 Rainfall distributions used in wheat and biomass yield forecast models 

The future stochastic yields for both wheat and biomass are modelled based on APSIM modelling 

(wheat)  and  Carbon Sequestration from Revegetation Estimator  (Hobbs et al., 2013). Frequency 

distributions of annual primary productivity (wheat and biomass) for each region were created using 

@Risk software (Palisade Corporation, 2014). Project Evaluation and Review Techniques (PERT) 

distributions were used to sample and simulate wheat and biomass production variability in the ROA 

model.  The distributions used are presented below (Figs.11 to 20). 

1.1.1 Wimmera 
 

 

Figure 11 –Distribution of modelled biomass yields for Wimmera. 

 

 

Figure 12 – Distribution of modelled wheat yields for Wimmera. 
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1.1.2 Natimuk 
 

 

Figure 13 – Distribution of modelled biomass yields for Natimuk. 

 

 

Figure 14 – Distribution of modelled wheat yields for Natimuk. 
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1.1.3 Manangatang 

 

Figure 15 – Distribution of modelled biomass yields for Manangatang. 

 

 

Figure 16 – Distribution of modelled wheat yields for Manangatang. 

1.1.4 SA Murray Mallee 
 

 

Figure 17 – Distribution of modelled biomass yields for SA Murray Mallee. 
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Figure 18 – Distribution of modelled wheat yields for SA Murray Mallee. 

 

1.1.5 Florieton 

 

Figure 19 – Distribution of modelled biomass yields for Florieton. 

 

 

Figure 20 – Distribution of modelled wheat yields for Florieton. 



147 
 

 Development of future wheat and biomass price models 

The most general class of models for forecasting a time series of variables such as biomass and 

wheat prices is the Auto Regressive Integrated Moving Average (ARIMA) (Iqbal et al., 2005). While 

other time-series processes certainly could have been used, and were tested for, initial statistical 

analysis of the data indicated that the ARIMA model was most appropriate for further investigation 

and statistical testing. The ARIMA model was determined according to four steps ; model 

specification, model estimation, diagnostic checking and forecast (Box and Jenkins, 1976; Enders, 

2008; Iqbal et al., 2005). Within this framework the forecast biomass and wheat prices were 

determined using the Box and Jenkins (1976) linear time series model. Statistical analysis was done 

using the R programming language. Model specification involved interpreting the plots of the auto 

correlation function (ACF), partial auto correlation function (PACF) and the time plot of the log, 

differenced wheat (and biomass) price time series. The auto correlation function indicated the order 

of the autoregressive components ‘q’ of the model, while the partial correlation function gave an 

indication for the parameter ‘p’. The first step was to check the stationarity of the data. The plot of 

the original time series showed a distinct decreasing trend indicating that the original time series 

was not stationary (Figure 11). The log of the original time series was taken to eliminate variance 

(Figure 12).  The time series was then differenced to stabilise the mean. 

 

Figure 21 – Wheat prices (A$) per tonne 1970-2013. 
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Figure 22– The log/differenced wheat price time series 

 

Augmented Dickey-Fuller (Dickey and Fuller, 1979) and Kwiatkowski, Phillips, Schmidt, and Shin 

(KPSS) tests were  conducted to test for the stationarity of the log differenced time series. Both tests 

indicated the log differenced time series was stationary. As the time series was differenced once the 

‘d’ component of the ARIMA(p,d,q) model used was estimated to be 1. 

Augmented Dickey-Fuller Test 

Dickey-Fuller = -6.4116, Lag order = 3, p-value = 0.01 

Alternative hypothesis: stationary 

KPSS Test for Level Stationarity 

KPSS Level = 0.0407, Truncation lag parameter = 1, p-value = 0.1 

The ACF (Figure 13) and PACF (Figure 14) were used to estimate the autoregressive parameter ‘p’ 

and the moving average component ‘q’. The correlogram of the ACF (Figure 23) of the 

log/differenced time series decreased quickly after lag 1. The value for the ‘q’ component was 

therefore estimated to be 1. 



149 
 

 

Figure 23– Correlogram showing the ACF of the log, differenced wheat price time series. 

The partial auto correlation (Figure 24) function of the log differenced wheat price time series was 

used to estimate the ‘p’ parameter. The PACF had a peak at lag 2, hence the ‘p’ parameter was 

initially estimated to be 2, however in the interest of finding a parsimonious model, ‘p’ parameters 

of 1 and 0 were also tested. We tested the different ARIMA models and inspected their forecast 

trajectories. The models were compared according to their log likelihood, Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC). 

ARIMA(0,1,1)                     

Coefficients: 

MA1 

 

0.3741 

s.e.                                0.1815 

 

Sigma2 estimated as 5834:  log likelihood=-247.53 

AIC=499.05   AICc=499.35   BIC=502.57 
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ARIMA(1,1,1)                     

Coefficients: 

AR1 MA1 

-0.3909 0.7112 

s.e.                                 0.3079   0.2342 

 

sigma2 estimated as 5625:  log likelihood=-246.78 

AIC=499.55   AICc=500.17   BIC=504.84 

 

ARIMA(2,1,1)                     

Coefficients: 

AR1 AR2 MA1 

0.7230 -0.4766 -0.6096 

s.e.                 0.1803      0.1351      0.1671 

 

sigma2 estimated as 4784:  log likelihood=-243.5 

AIC=495.01   AICc=496.06   BIC=502.05 

 

Table 1 – Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) of tested 
ARIMA models. 

Model AIC BIC 

ARIMA(0,1,1) 499.05 502.57 

ARIMA(1,1,1) 499.55 504.84 

ARIMA(2,1,1) 495.01 502.05 

 

As can be seen by the results above, adding parameters can increase the likelihood of the model, 

however in adding parameters there is the danger of over fitting (Enders, 2008). In the interest of 

parsimony, the model with the least number of parameters should ideally be chosen. Given that the 
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AIC and BIC of the ARIMA models were very similar, we chose to model future wheat prices with an 

ARIMA(0,1,1). 

 

Figure 24– Correlogram showing PACF of the log, differenced wheat price time series. 

Statistical checking of the estimated model and  diagnostic checks were applied following Metcalfe 

and Cowpertwait (2009), Iqbal et al. (2005) and Open University (2007).  Residual analysis was used 

in order to test the goodness of fit of the ARIMA(0,1,1) model (Metcalfe and Cowpertwait, 2009). 

Firstly we investigated the correlations between successive forecast errors. A correlogram of the 

forecast errors was created (Figure 25) and a Box-Ljung test (Ljung and Box, 1978) was performed on 

the forecast residuals (table3). 

Table 2 – Results of Box-Ljung test 

X-squared 14.0744 

Df (lags) 20 

p-value 0.8267 

 

The correlogram (Figure 25) shows no significant autocorrelation between lags 1 to 20 and the Box-

Ljung test p-value of 0.82 provides no evidence for non-zero autocorrelations in the forecast errors 

at lags 1 to 20. 
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Figure 25– Correlogram showing ACF of sample forecast errors of ARIMA(0,1,1) model. 

 

To investigate normality (whether the forecast errors are normally distributed with mean zero and 

constant variance) a histogram and time plot of the forecast errors were examined. If the histogram 

shows normality then the model can be considered a good fit (Iqbal et al., 2005)(Figure 26). To 

examine the variance, a time plot of the forecast errors was created (Figure 26). The results 

indicated that variance of the forecast errors appears constant. 

 

Figure 26 – Time plot of wheat time series forecast errors. 
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Figure 26 – Histogram of wheat time series forecast errors. 

 

Given the histogram of the time series (Figure 26) shows that the forecast errors are approximately 

normally distributed and the mean appears close to zero, it is therefore plausible that the forecast 

errors are normally distributed with mean zero and constant variance. As a result, the ARIMA(0,1,1) 

model seems to provide an adequate predictive model for forecasts of wheat prices.  The development 

of the model for future biomass prices was done analogously. 
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 APPENDIX C  
 Implementation of geometric Brownian motion 

Geometric Brownian motion can be calculated in discrete time as follows: 

 

𝑝𝑝𝑡𝑡 =  𝑝𝑝𝑡𝑡−𝛥𝛥𝛥𝛥  × 𝑒𝑒[�𝛼𝛼−0.5 × 𝜎𝜎2� × 𝛥𝛥𝛥𝛥 + 𝜎𝜎 × √𝛥𝛥𝛥𝛥×𝜀𝜀𝑡𝑡 ] (1) 

 

Where 𝑝𝑝𝑡𝑡 represents the commodity price at time t, 𝛼𝛼 is the drift rate, 𝜎𝜎 is the standard deviation of 

relative logarithmic change in the value of the commodity price time series and 𝜀𝜀𝑡𝑡 is a standard 

normally distributed number with a mean of zero and standard deviation of one.  

The use of GBM to model prices is not without issue. Unlike other processes a GBM has no tendency 

to revert back to a mean and values can become “explosive” (Hertzler et al., 2013; Sanderson et al., 

2016). However several studies (Carey and Zilberman, 2002; Isik et al., 2001; Isik and Yang, 2004; 

Schatzki, 1998) have noted that agricultural output prices can be represented by a GBM, while  

Postali and Picchetti (2006) provide empirical evidence that GBM can approximate oil price 

development . An alternative is to model price development as a stationary Mean-Reverting-Process 

(MRP). However , the Augmented Dickey-Fuller test  (Dickey and Fuller, 1981) was applied to analyse 

the stationarity of both commodity time series. The result of the test indicated neither time series 

was stationary. In addition, the literature states that MRP may only be able to be identified if very 

long (100 years) time series are available (Musshoff, 2012; Pindyck and Rubinfeld, 1998). In order to 

curtail the explosive nature of the GBM we follow Reeson et al. (2015) and constrain the price path 

of both wheat and biomass to prevent it going above AU$2500/t. 

 Implementation of ROA model 

We adapted a numerical, simulation based real options model presented by Tubetov et al. (2012), 

Musshoff (2012), Wolbert-Haverkamp and Musshoff (2014b). The land use regime and returns from 

biomass (denoted as BEG in equations), in any year t, were calculated as follows: 

 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  0, 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑡𝑡 = 0 ˄ GMt
BEG < GMBEG* (2a) 
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In any year 𝑡𝑡, the returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) are 0 if the stochastic GM of biomass (𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) are 

lower than the trigger GM (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) being tested. The land will be used for wheat production 

(𝐿𝐿𝐿𝐿𝑡𝑡 = 0) and the land will remain in wheat production in the next time period (𝐿𝐿𝐿𝐿𝑡𝑡+1 = 0). 

 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  -EC ×(1+r)-t,      𝑖𝑖𝑖𝑖 LUt= 0 ˄ GMt
BEG ≥ GMBEG* (2b) 

 

The returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) equal the present value of the establishment costs (𝐸𝐸𝐸𝐸) if the 

land is currently being used for wheat production (𝐿𝐿𝐿𝐿𝑡𝑡 = 0) and GM of biomass in time t ( 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵)   

is higher than the trigger GM of biomass (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) being tested. In the next time period the land will 

be converted to biomass (𝐿𝐿𝐿𝐿𝑡𝑡+1 = 1). 

 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  GMt
BEG ×(1+ r)-t- GMt

wheat×(1+r)-t,       𝑖𝑖𝑖𝑖 LUt= 1 ˄ Ht < LH (2c) 

 

When land use is biomass (𝐿𝐿𝐿𝐿𝑡𝑡 = 1) the returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) correspond to the present 

value of the stochastic GM of biomass in time t ( 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) minus the present value of the GM of 

wheat in time t (𝐺𝐺𝐺𝐺𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒). This applies when biomass harvest (𝐻𝐻𝑡𝑡 ) has not reached the last harvest 

(𝐿𝐿𝐿𝐿) within the plantation’s useful lifetime (i.e. t < 21).  

 

𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  (GMt
BEG-RC) ×(1+ r)-t- GMt

wheat×(1+r)-t ,    𝑖𝑖𝑖𝑖 LUt=1 ˄ Ht = LH ˄ GMt
BEG <GMBEG* (2d) 

 

The returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) correspond to the present value of the GM of biomass in time t ( 

𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) minus the present value of the recultivation costs (RC), minus the present value of the GM 

of wheat in time t (𝐺𝐺𝐺𝐺𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒). This applies when biomass has reached the last year of its useful 

lifetime and the stochastic 𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵received in the year of the last harvest (t=21) is less than the 

trigger GM of biomass (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) being tested.  As the trigger GM of biomass (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) is not met, 

the land is returned to wheat production in the next period (𝐿𝐿𝐿𝐿𝑡𝑡+1 = 0). 
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𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ =  (GMt
BEG-RC-EC) ×(1+ r)-t- GMt

wheat×(1+r)-t,     𝑖𝑖𝑖𝑖 LUt=1 ˄ Ht = LH ˄ GMt
BEG ≥GMBEG* (2e) 

 

The returns to biomass (𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) correspond to the difference between the present value of GM 

of biomass in time t (𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) and the sum of the present value of recultivation costs (RC) and the 

establishment costs (EC), minus the present value of the GM of wheat in time t (𝐺𝐺𝐺𝐺𝑡𝑡
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒). This 

applies when biomass has reached the last year of its useful lifetime (t=21) and GM of biomass 

(𝐺𝐺𝐺𝐺𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵) received in the year of the last harvest (LH) is greater than the trigger GM of biomass 

(𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) being tested.  As 𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗  is met, the land is used for biomass in the next time period 

(𝐿𝐿𝐿𝐿𝑡𝑡+1 = 1) and remains in biomass for another rotation.                        

The option value associated with each test trigger was calculated by summing the present value of 

future investment returns 𝑅𝑅𝑡𝑡 during the planting period ( 𝑡𝑡 = 0, 1, … , ∞). The option value for each 

test trigger equals the average present value of farm returns for all simulated paths. In order to 

determine the optimal GM of biomass (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) that triggers investment, the function 𝐹𝐹0 that 

corresponds to the maximum option value can be found: 

 

𝐹𝐹0 =  � 𝑅𝑅𝑡𝑡𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗
∞

𝑡𝑡=0

→ 𝑚𝑚𝑚𝑚x! 𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗ 

 

 

(3) 

We followed Tubetov et al. (2012) and performed 50,000 simulations for each biomass test trigger 

GM (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗). The initial test triggers were chosen from results from the NPV analysis. The NPV 

biomass trigger GM (𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵∗) acts as the lower limit, with which to start the iterative process 

outlined above.   

 Energy equivalence price calculations 

In order to compare the competitiveness of biomass with existing fossil fuel energy sources we 

calculated the energy equivalent price of biomass. 

The gross calorific value (GJ/dry t) of biomass, coal and crude oil (GJ/t) were taken from the CSIRO 

biofuels database (CSIRO, 2006) and are assumed to be as follows: 

Mallee biomass = 19 GJ/dry t 

Coal = 25 GJ/dry t 
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Crude oil = 43 GJ/ tonne of oil equivalent 

Crude oil prices are quoted in $/barrel. One standard barrel of crude oil (BBL) contains 42 US gallons 

or 159 litres. Obtaining a definitive specific gravity of crude oil is problematic. The figure varies 

between the New York Mercantile Exchange, The National Energy Board of Canada and the Mexican 

State Oil Company. The specific gravity ranges from between 840 kg/m3  and 893 kg/m3 . We 

assumed the specific gravity of oil as 881 kg/m3 . Therefore, under this assumption one barrel of oil 

weighs 140 kg. Therefore there are 7.15 barrels/ tonne of oil equivalent.  

The current price for crude oil and coal (at the time of writing) was taken from the World Bank 

Commodities Price Data (The World Bank, 2016) and converted to Australian dollars and were as 

follows: 

Crude oil = AU$41/barrel 

Coal = AU$68/t 

Given a crude oil price of AU$41/barrel; 

 AU$/tonne of oil equivalent = AU$41/barrel x 7.15 

= AU$293/ tonne of oil equivalent. 

Given an energy (GJ)/t ratio of 19:43 between biomass and crude oil, biomass would need to be 

priced below AU$129.54/DM t to be competitive with crude oil on an energy equivalence basis. 

Given a coal price of AU$68/t, and an energy (GJ)/t ratio between biomass and coal of 19:25, 

biomass would need to be priced below AU$51.63 to be competitive with coal on an energy 

equivalence basis. 
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