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Abstract 

Soil maps are fundamental for agricultural management. However, mapping 

soils is a difficult task because of their high spatial variability and the 

challenge of choosing representative field sites for soil analysis. Globally, soil 

information is becoming a prioritized agenda, due to the increasing demand 

for soil information for quantitative ecological, environmental and agronomic 

modelling. Hence, improved digital soil mapping techniques are required to 

fulfill this demand.  

The Plant Available Water-holding Capacity (PAWC) is a key soil property in 

most agricultural management activities as it determines the maximum water 

that can be readily extracted by plants. Globally, there is an increasing 

demand for spatially explicit soil PAWC data for understanding the potential 

consequences of climate change and development of adaptation strategies. 

The coarse resolution of current PAWC information limits the spatial detail of 

future predictions and decision support.  

Plant growth in water-limited Mediterranean climates is predominantly 

controlled by soil water availability. In rain-fed cropping systems, differences 

in PAWC can explain a large proportion of the spatial and temporal crop yield 

variability. The overall aim of this research was to develop a methodology to 

estimate spatial pattern of PAWC at a high spatial resolution using satellite-

based remote sensing techniques. The underlying hypothesis is that the 

spatio-temporal plant growth patterns contain integrated information about 

soil properties and plant-soil-water interaction in the profile. The objective was 

to evaluate if phenological metrics derived from MODIS-NDVI (Moderate 

Resolution Imaging Spectroradiometer Normalized Difference Vegetation 

Index) can be used to infer about PAWC. The study was conducted in the 

South Australian agricultural region, which is one of the major grain 

producing regions of the country. 

Central to facilitating the research was the design and development of a 

flexible software package (CropPhenology) to extract phenological metrics that 

are indicators of crop condition at different growth stages. The CropPhenology 

package was developed in R to be used for analyzing data for all later stages 

of the project. It is available in the public domain repository GitHub.  
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Initially, the sensitivity of remote sensing phenological metrics for differences 

in soil PAWC was assessed in a controlled situation. Phenological metrics for 

crop grown in soils of contrasting PAWC values under identical agricultural 

management were compared. The results identified potential phenological 

metrics to be used as indicators for soil PAWC. The findings support that the 

soil signal can be extracted from time-series vegetation growth dynamics.  

The research further evaluated the efficacy of the phenological metrics for 

assessment of spatio-temporal crop growth variability for management 

practices. The association between phenological metrics and management 

zones were analyzed in a South Australian cropping field. The result shows 

that phenological metrics have potential to inform about both spatial 

variability and temporal variability, highlighting a pathway towards alternative 

approaches for assessing the spatio-temporal variability in cropping fields.  

Finally, an approach was developed for spatial PAWC estimation. Multiple 

linear regression models were developed that analytically associate of the 

measured soil PAWC values with MODIS-NDVI phenological metrics. The 

PAWC map shows significant agreement with the landscape-scale soil map of 

the region with realistic detail of PAWC variability within the soil map units 

across management units. The evidence from this result indicates the 

potential of phenological metrics from satellite remote sensing for soil PAWC 

mapping at unprecedented detail over a broad regional extent. Advances in 

PAWC mapping as demonstrated in this thesis will improve models assessing 

future climate change development of adaptation strategies and will narrow 

the gap in spatial detail between regional decision making and farm-based 

precision agriculture. 
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1.1 Introduction 

Soil sustains human life on earth, supplying nutrients and water for plants. 

It is estimated that 95 % of global food production depends on soil (FAO, 

2015). With the increasing global population, projected to reach 9.7 billion in 

2050 (United Nations, 2015), and reductions in agricultural yield due to 

climate change (IPCC, 2014), global food security hinges on having sustainable 

agricultural management systems that promote productivity. Consequently, 

the demand for high resolution, up-to-date soil maps is increasing at global, 

national, regional and field scale (Hartemink, 2008, Hartemink and 

McBratney, 2008, Koch et al., 2013, Amundson et al., 2015, Folberth et al., 

2016). However, soil mapping is a difficult task due to the high spatial 

variability and the challenge of choosing representative field sampling for soil 

analysis (Ostendorf, 2011). Digital soil mapping has evolved from the 

conventional soil mapping through the use of indicative environmental factors 

to spatially predict soil properties (McBratney et al., 2003, Hempel et al., 

2008).  

Globally, consistent soil information is required for decisions in ranges of 

issues such as food production and climate change (Amundson et al., 2015, 

Arrouays et al., 2017). The global consortium GlobalSoilMap aims to produce 

a new digital soil map for selected key soil properties, such as soil organic 

carbon, electrical conductivity and Plant Available Water-holding Capacity, at 

a spatial resolution of 90m for the entire world (Sanchez et al., 2009, 

Hartemink et al., 2010, MacMillan et al., 2010). These soil maps will be 

produced by participants across the world implementing the GlobalSoilMap 

specifications. The Soil Landscape Grid of Australia (SLGA) is one example of 

continental GlobalSoilMap implementation (Grundy et al., 2015, Viscarra 

Rossel et al., 2015).  The SLGA presents Australian wide soil maps estimated 

using digital soil mapping techniques integrating historical soil data and new 

measurements (Odgers et al., 2014, Odgers et al., 2015).  

Plant Available Water-holding Capacity (PAWC) is a key soil property included 

in the GlobalSoilMap specification (MacMillan et al., 2010). It determines the 

maximum water that can be readily extracted from soils by plants. Therefore, 

PAWC is essential information in most agricultural management systems 

(Cook et al., 2008). Under similar climatic conditions plants grown in high 

PAWC soils have access to more water than plants grown in low PAWC soils. 

Temporally, PAWC also has a strong interaction with seasonal rainfall to 
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change plant growth response from season to season. PAWC therefore 

modulates the vegetation responses to changes in climatic conditions (Oliver 

et al., 2006, Wong and Asseng, 2006). Accordingly, a map of PAWC is 

recognized as a key element in the assessment of climate change impacts on 

agricultural production (Wang et al., 2009, Yang et al., 2014, Folberth et al., 

2016, Yang et al., 2016).  

In Mediterranean climates, characterized by hot, dry summers and cool, wet 

winters, plant growth is predominantly controlled by soil water availability 

(French and Schultz, 1984, Turner and Asseng, 2005). A large portion of yield 

variability experienced in rain-fed cropping systems can be explained by the 

variability in PAWC (Turner and Asseng, 2005, Wong and Asseng, 2006, 

Hayman et al., 2012, Whelan and Taylor, 2013). Hence, most of the agronomic 

management systems in these regions promote maximum water use efficiency, 

balancing the strong seasonality of rainfall with plant water requirements 

(Jacobsen et al., 2012), and this demands soil PAWC information.  

Despite the high demand for soil PAWC information, the availability of high 

resolution PAWC maps is very limited globally (Grunwald et al., 2011). This is 

largely because the field measurement of soil PAWC is very difficult and time 

consuming, as it needs repeated measurements at dry and wet seasons at a 

range of depth in the soil profile (Burk and Dalgliesh, 2013). Trying to 

overcome this limitation, numbers of researchers have produced estimated 

soil PAWC maps using single or combinations of predictive environmental 

factors at national (Poggio et al., 2010, Hong et al., 2013, Ugbaje and Reuter, 

2013), regional (Poggio et al., 2010, Padarian et al., 2014) and catchment 

(Malone et al., 2009, Poggio et al., 2010) geographic extents. While these 

methods were successful for mapping PAWC regionally, a high degree of 

uncertainty was reported in locations that had limited sampling density of the 

predictive factors. Hence, there remains a need for alternative ways of PAWC 

estimation to satisfy the need.  

Remote sensing has long been used to identify and map soil properties either 

through the use of reflectance directly from bare soil (eg. Ben-Dor et al., 2009, 

Lagacherie et al., 2010, Summers et al., 2011) or through interpretation of the 

reflectance from vegetation cover (eg. Lozano-Garcia et al., 1991, Cole and 

Boettinger, 2006, Sharma et al., 2006, Li et al., 2012, Maynard and Levi, 

2017). Due to the fact that the land surface is predominantly covered by 
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vegetation, most of the remote sensing applications in digital soil mapping 

involve vegetation indices for soil prediction.  

The effectiveness of vegetation index data for soil property prediction depends 

on the relationship between the soil property of interest and the remotely 

sensed vegetation change in response to change in that soil property (Maynard 

and Levi, 2017). Single vegetation images have used to infer temporally stable 

soil properties such as parent material (Lozano-Garcia et al., 1991, Boettinger 

et al., 2008, Eldeiry and Garcia, 2008). On the other hand, PAWC integrates 

soil-water properties over the entire rooting depth and its interaction with 

seasonality of rainfall controls the crop growth patterns. Therefore, multiple 

vegetation index data reflecting temporal vegetation change appears to be a 

promising avenue to identify a predictive spatial indicator of PAWC.  

Multi-temporal vegetation index data has been used to quantify the seasonal 

vegetation dynamics that can be used to estimate the timing of biophysical 

growth stages (phenology) (Roerink et al., 2011, Henebry and de Beurs, 2013). 

As soil PAWC is a key soil property influencing the vegetation response, it can 

be hypothesized that phenological information derived from temporal 

vegetation dynamics is related to soil PAWC. This implies that, soil PAWC 

information is concealed in the growth dynamics captured from the time-

series of vegetation index data. Therefore the potential of multi-temporal 

vegetation index data for soil PAWC mapping needs to be examined. With the 

increasing availability of remote sensing vegetation index data, this approach 

can potentially provide a new paradigm for mapping soil PAWC in agricultural 

regions.    

1.2 The aim and objective of the study  

This research has the overarching aim of developing a methodological 

framework to estimate PAWC at improved spatial resolution using less 

expensive and more robust techniques. Multi-temporal remote sensing 

vegetation index data from Moderate Resolution Imaging Spectroscopy 

(MODIS), rainfall data and existing soil PAWC data were recognized as being 

crucial inputs to achieve this aim.  

The framework was tested and implemented at different spatial scales within 

the South Australian agricultural region. This region is one of the main wheat-

producing areas in Australia (Trewin, 2006), accounting for more than 17% of 

the national wheat production in 2009-10 (Pink, 2012).The  South Australian 
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agricultural region is characterized by Mediterranean climate. The agriculture 

in the region is dominantly rain-fed mono cropping systems, wheat being the 

dominantly grown crop followed by barley (Australian Bureau of Statistics, 

2016).  

The outcome from this research can potentially provide a robust method to 

address the increasing demand for soil PAWC information. Furthermore it can 

improve the understanding of spatial and temporal variability across 

agricultural fields, which can in turn improve agricultural management 

decisions.  

The specific objectives were: 

1- To develop a methodology for analysing vegetation index data into 

quantifiable metrics that can summarize the vegetation growth 

dynamics and enable assessment of spatio-temporal growth variability 

across the cropping fields. This is central to facilitate this research 

project and the outcome can potentially help future similar projects.  

This objective involves design and development of a flexible and easy to 

use software package that extracts phenological metrics from time-

series satellite vegetation index data without lengthy pre-processing 

steps and so allow hypothetical linking of phenological metrics with 

crops biophysical growth stages.  

 

2- To gain a better understanding of the soil – climate interaction by 

analysing the relationship between the seasonal vegetation dynamics 

and rainfall data. This objective examines the sensitivity of remote 

sensing derived phenological metrics to differences in soil PAWC under 

identical agricultural management, i.e within the same cropping field. 

This objective identifies the phenological metrics that can be used as 

indicators for soil PAWC, providing a pathway towards estimation of 

soil PAWC using indicators derived from multi-temporal vegetation 

index data. 

 

3- To assess the efficacy of crop phenological metrics for crop 

management practices, addressing the spatial and temporal variability 

across cropping fields.  This can potentially lead to a new pathway for 

agricultural management zone delineation, especially in fields where 

there is no or limited yield data.  
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4- To assess the possibility of creating high resolution estimates of soil 

PAWC at a broad scale, using multi-temporal vegetation index data. 

This objective utilized archived measured soil PAWC data, remote 

sensing vegetation index data and rainfall data. It involves modelling 

the empirical relationship between the measured soil PAWC and the 

remote sensing derived phenological metrics. Producing these 

estimates can provide a new approach for PAWC estimation and 

potentially narrow down the gap in spatial detail between regional 

modelling and farm based management models. 

 

1.3 Thesis structure 

 

This thesis is divided into six chapters. The Chapters 2 to 5 are presented as 

published or submitted research papers, therefore there may be some 

repetition of material as they are written for different audiences. 

 

 

Chapter 1 

Introduction 

The first chapter (this chapter) provides the general overview of the soil 

property Plant Available Water-holding Capacity (PAWC) and highlights the 

motivation behind the research. It summarises the aim and objective of the 

study and outlines the structure of the thesis.   
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Chapter 2  

Araya, S., Ostendorf, B., Lyle, G., Lewis, M. CropPhenology: An R package for 
extracting crop phenology from time-series remotely sensed vegetation index 
imagery.  Ecological Informatics (under review)  

This chapter addresses objective one of the research. It presents a software 

package, CropPhenology, designed in the R software environment to extract 

phenological metrics from time-series of vegetation index data. The 

CropPhenology package is easy to use, allowing the user to progress from 

downloaded images to crop phenological information with only minor data pre-

processing steps. The paper further presents inference of the phenological 

metrics in relation to their corresponding physiological crop growth stages. 

Practical examples are presented to demonstrate the utility of the package in 

a Southern Australian broadacre, rain-fed cereal cropping region. The source 

code for the package is available on GitHub repository at 

https://github.com/SofanitAraya/CropPhenology. The documentation and 

practical guide for the package are included on this thesis at Appendix A and 

Appendix B, respectively 

 

Chapter 3 

Araya, S., Lyle, G., Lewis, M., and Ostendorf, B. 2016. Phenologic metrics 
derived from MODIS NDVI as indicators for Plant 
Available Water-holding Capacity. Ecological Indicators 60:1263-72. 
http://dx.doi.org/10.1016/j.ecolind.2015.09.012 

This chapter addresses objective two of the research. It assesses the usability 

of phenological metrics as indicators for soil PAWC. The study was conducted 

in two South Australian cropping fields with paired contrasting (high and low) 

PAWC soils. The phenological metrics were extracted from time series of 

MODIS vegetation indices data for 13 years (2001-2013). The paired ranked 

test analysis between the contrasting paired soils reveal that some of the 

phenological metrics show persistent differences which can, therefore, be used 

as indicators for soil PAWC. The findings of this research component were 

initially presented as a conference paper at the 20th International Congress 

on Modelling and Simulation (MODSIM2013), held in Adelaide, South 

Australia (Appendix C). 

 

https://github.com/SofanitAraya/CropPhenology
http://dx.doi.org/10.1016/j.ecolind.2015.09.012
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Chapter 4 

Araya, S., Ostendorf, B, Lyle, G., and Lewis, M.  Remote Sensing Derived 
Phenological Metrics to Assess the Spatio-Temporal Crop Yield Variability. 
Advances in Remote Sensing. (In press). 

This chapter addresses objective three of this research. It examines the 

potential of remote sensing phenological metrics for agricultural management 

purposes to assess the spatial and temporal variability in cropping fields. The 

associations between the phenological metrics and pre-defined management 

zones were statistically analysed. The result indicate strong potential of some 

of the phenological metrics to indicate site quality in cropping fields. This 

highlights a pathway towards the potential use of phenological metrics for 

agricultural management applications. The findings from this research were 

presented at the 2014 Australia National Soil Science Conference, held in 

Melbourne, Victoria. The abstract is published in the conference preceding 

under the title “Time Series analysis of Satellite Imagery to improve 

agricultural soil management” (Appendix D).  

 

 

Chapter 5 

Araya, S., Ostendorf, B, Lyle, G., and Lewis, M.  Spatial estimation of Plant 
Available Water-holding Capacity using phenological indicators.  Ecological 
Indicators. (Under review). 

Objective four is addressed in this chapter. An empirical model was developed 

to associate the phenological metrics with the measured soil PAWC values 

located across the South Australian agricultural region. The designed model 

was tested for spatial PAWC estimation across the South Australian 

agricultural region and the correspondence between the resulting PAWC map 

and the existing landscape-scale PAWC map was assessed. The estimated 

PAWC map shows an overall good correspondence with the existing landscape- 

scale PAWC map, with relatively higher detail than the existing dataset. The 

result indicated that there is a strong potential of remote sensing derived 

phenological metrics to be used for soil PAWC estimation, and thus providing 

unprecedented detail at broad spatial scale. 
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Chapter 6  

Conclusions 

The last chapter summarises the main findings of the research, its 

significance, and contributions. The key contribution of this research is the 

comprehensive methodology of utilizing the remote sensing vegetation index 

data to analyse the growth dynamics of crops to estimate soil property. Future 

research directions in this area of research are also recommended in this 

chapter.   
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Araya, S., Ostendorf, B., Lyle, G., and Lewis, M. "CropPhenology: An R package 
for extracting crop phenology from time-series remotely sensed vegetation 
index imagery." Ecological Informatics (Under review) 
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Abstract 

Remotely sensed vegetation indices to measure crop growth through 
phenological metrics have a high potential for agricultural management. 
However, implementing the analytical routines from remote sensing data 
acquisition to relating vegetation index information to in-situ plant 
development is complex to even the most experienced user. We present the 
CropPhenology package, a free, easy to use package designed in the R 
environment which allows the user to progress from downloading remote 
sensing images to crop phenology analysis with only minor pre-processing 
steps. The package computes 15 phenological metrics which can be easily 
visualised and used for successive spatio-temporal analysis. The system is 
specifically designed to identify crop growth stages by relating theoretical 
phases of crop growth to satellite-based NDVI dynamics. The metrics are 
theoretically related to Zadoks growth stages which explicitly characterise 
cereal crop growth conditions, including new leaf emergence, flowering, 
ripening, and yield. These metrics provide a systematic understanding of 
characterisation of the plant-soil-climate interactions. We present an example 
that illustrates the utility of our package in a Southern Australian broad acre, 
rain-fed cereal cropping region.   

 

Keywords: Phenological metrics; R package; MODIS; cereals; Remote sensing; 

Zadoks growth stage 

 

2.1 Introduction 

Phenology, the sequence and timing of plant developmental stages and their 

relationship with climate, provides essential information for many agricultural 

applications such as crop yield estimation (Hill and Donald, 2003, Sakamoto 

et al., 2013), enhancement of management practices (You et al., 2013) and 

digital soil mapping (Zhang et al., 2015, Araya et al., 2016, Maynard and Levi, 

2017). Conventional phenological measurement involves periodical physical 

observation of plant growth development using internationally recognized 

growth scales. Examples of these scales include the Zadoks decimal growth 

scale (Zadoks et al., 1974, GRDC, 2005) which is the most widely used and 

complete description of growth stages for cereal crops (Lee et al., 2009). Other 

frequently used scales also include Haun (Haun, 1973), which is mainly used 

for growth stage description before the booting stage, and Feekes (Large, 

1954), which focuses on the development period from start of stem elongation 

to end of flowering. These observations, however, are subjective and can vary 

between reporters, location, and time, which impedes reliable information 

exchange between farmers, advisers and researchers.  
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The Normalized Difference Vegetation Index (NDVI) is one of the most widely 

used vegetation indices derived from satellite images, which can be related to 

photosynthetic status, relative coverage and plant biomass (Smith et al., 1995, 

Mkhabela et al., 2011). Crop phenology information can be acquired from 

multi-temporal vegetation observation using such vegetation indices (Reed et 

al., 1994, Reed et al., 2009). Phenology from satellite imagery is applied in a 

wide range of agricultural applications (eg. Schnur et al., 2010, You et al., 

2013). One satellite sensor that has been extensively used to derive 

phenological information is the Moderate Resolution Imaging 

Spectroradiometer (MODIS). Applications of MODIS data include crop type 

mapping and classification (Wardlow et al., 2007, Zhong et al., 2011), global 

and regional yield estimation (Becker-Reshef et al., 2010, Kouadio et al., 2012, 

Sakamoto et al., 2013), and yield forecasting (Bolton and Friedl, 2013). Its 

high temporal frequency of acquisition makes it particularly appropriate for 

characterising crop phenology. Several phenology products have been 

developed at different spatial resolutions from the MODIS sensor.  These 

include the 500m Land Cover Dynamic Product (MCD12Q2) (Gray, 2012) and 

5.6km Australian Land Surface Phenology (Broich et al., 2015). These 

products provide valuable inputs to inform policy and decision making but 

their usefulness is dependent on the problem at hand. For example, the 

MCD12Q2 product works very well within the northern hemisphere but has 

limitations in retrieving phenology in arid, evergreen or cloudy environments 

(Ganguly et al., 2010, Gray, 2012).  

With increased availability of multi-temporal images, software tools have been 

developed to analyse these images. TIMESAT (Jönsson and Eklundh, 2004) 

and PhenoSat (Rodrigues et al., 2011, 2012) are two such software packages 

which analyse the vegetation index temporal curve through extraction of 

seasonal parameters. TIMESAT has been used for the estimation of sowing 

date using MODIS and SPOT(Satellite Pour l'Observation de la Terre) images, 

as part of a study which focused on the effect of early sowing on wheat yield 

in India (Lobell et al., 2013). TIMESAT has also been used to improve the 

accuracy of mapping abandoned agricultural land, in eight eastern Europe 

countries  (Alcantara et al., 2012). The PhenoSat software has a special focus 

on extraction of phenological metrics for double cropping  seasons and has 

the ability to select a sub-region of interest in order to reduce the data 

processed (Rodrigues et al., 2011). A comparative study of on-ground 

vegetation phenology using PhenoSat within three different environments 
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(vineyard, semi natural meadows and low shrub-lands) has shown good 

correlation particularly for start of season and maximum vegetation 

development metrics (Rodrigues et al., 2013).   

While these software tools have successfully utilised satellite imagery in crop 

management, they have several limitations. An important limitation is the lack 

of a physiological foundation of the metrics in terms of crop growth conditions: 

relationships between the derived metrics and physiological crop growth 

stages are often unclear (Song et al., 2002, Fisher et al., 2006). Phenological 

metrics are defined in different ways. TIMESAT provides 11 metrics using 

fitted functions that can be customised with a number of user-defined input 

parameters  (Lars and Per, 2010, Eklundh and Jönsson, 2015), whereas 

PhenoSat provides seven metrics using the maximum and minimum of the 

curvature change of the fitted vegetation index curve (Rodrigues et al., 2013). 

This variation in the number and definition of metrics may exist because of 

their perceived importance within their study environments and perhaps their 

complexity of derivation. Additionally, variation in the definition of these 

metrics is due to the application of different mathematical techniques to pre-

process and smooth the NDVI dynamics curve to remove measurement noise 

such as cloud or sensor errors. However, while defined differently, the 

underlying fundamental concepts of these metrics are similar. They estimate 

the start of growing season, maturity or maximum growth, and the end of the 

season or senescence. These fundamental metrics are then used to derive 

additional metrics based on the measurement of crop growth over the duration 

of season such as rate of increase and decrease, length of growing season or 

time integrated vegetation index. This group of metrics represent important 

phenological events of the plants (White et al., 1997, Hill and Donald, 2003). 

Current software packages, however, do not have a comprehensive range of 

metrics which can be used. Furthermore, they do not include additional 

metrics which have been shown to be beneficial information for agricultural 

management (Poole and Hunt, 2014). For example, the curve integral before 

maximum NDVI and after maximum NDVI can indicate the cumulative 

biomass before and after anthesis, which provides information about the crop 

yield potential and grain quality.  

The usability of the current software tools is somewhat cumbersome. For 

example, the user is required to arrange the vegetation index data into an 

array of NDVI values in a text file for input. Although there is an option of 

using the image as an input, there is still a requirement to provide a text file 
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input with a list of image file names and the number of images.  At the output 

and analysis phases, output metrics are also provided as text files, which 

require post- processing to obtain graphic representations. These processes 

make it particularly hard for new users and those who are not technically 

savvy to consider undertaking such analyses.  

The objective of this study was to build on the basics of the previous phenology 

software and develop a new easy to use freely available package. We present 

the CropPhenology package that easily extracts 15 crop phenological metrics 

from time series of satellite vegetation index images. The package builds on 

the concepts highlighted in past literature to bring together the majority of ad 

hoc metrics to provide for the user ten fundamental phenological metrics and 

five new metrics which have not been implemented previously. The package 

also incorporates a multipoint analysis tool which enables the user to plot and 

examine the NDVI dynamics curves for up to five individual pixels.  We 

demonstrate the utility of the package using a time series of MODIS imagery 

which encompasses rain-fed cereal cropping farms on the western region of 

the Eyre Peninsula in South Australia. In addition, we assess broad-scale 

predictability of the metric.  

 

2.2 Materials and Methods  

 

2.2.1 Time-series MODIS NDVI Data 

NDVI is one of the most widely used indexes applied in vegetation related 

studies as it can be related to photosynthetic status, relative coverage and 

plant biomass (Smith et al., 1995, Mkhabela et al., 2011).  The index derived 

from daily MODIS imagery is available as a sixteen-day composite data 

product at 250m spatial resolution (MOD13Q1), which is freely available for 

download from NASA (Didan, 2015). This product uses the Constrained View 

Angle Maximum Value Composite algorithm which extracts the maximum 

NDVI value for each pixel within each 16 day intervals to create a cloud-free 

composite image (Huete et al., 2002, Solano et al., 2010).  The imagery is in a 

sinusoidal projection which has to be reprojected to a cartographic coordinate 

system using the freely available MODIS Reprojection Tool (USGS, 2011).  

2.2.2 Image data pre-processing 
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The CropPhenology package does not require specific naming conventions for 

the image files or folder names that hold them. However, in order to undertake 

time series analysis the names need to represent the chronological sequence 

in alphabetic order. This flexibility allows direct use of the default file names 

of each MODIS image given by NASA at the time of downloading as image 

names incorporate year and sequential day number.   

 

2.2.3 Data extraction   

Past phenology software has utilized mathematical techniques such as 

function fitting (Jönsson and Eklundh, 2004) and temporal filtering 

(Rodrigues et al., 2011) to pre-process and smooth the NDVI dynamics curve 

before the metrics are extracted. The filters and other smoothing techniques 

have been previously used to remove the noise inherent within the raw 

unprocessed image data, particularly due to cloud and aerosol contamination 

(Reed et al., 1994, Sakamoto et al., 2005) . In previous studies, good empirical 

relationships with ground observations were found when smoothing was 

applied (Sakamoto et al., 2010). However, smoothing eliminates spatial and 

temporal variability that may be an important information source to 

understand environmental conditions that affect crop development. An 

obvious consequence of smoothing is the reduction of NDVI peaks, hence 

potentially removing crop-relevant information (Reed et al., 1994). 

Furthermore, with the implementation of improved pre-processing techniques 

such as the Maximum Value Composite algorithm used widely on MODIS 

images for the creation of composite images, these problems are less severe 

(Didan and Huete, 2006, Solano et al., 2010). Validation studies have 

suggested that the MODIS composite vegetation index shows good correlation 

with ground observation for pheonologic representation (Huete et al., 2002). 

In the CropPhenology package, we provide an option for moving average 

smoothing. In the CropPhenology package, we provide an option for moving 

average smoothing. For our example we opted to use unsmoothed vegetation 

index imagery in order to preserves detail of the curve dynamics. Further 

smoothing may affect the calculation of the metrics particularly in the 

identification of the start, maximum and end of crop growth (Reed et al., 1994). 

The consecutive NDVI values across the temporal sequence of images are 

extracted for every pixel in the image to define a space-time cube (a three-

dimensional dataset representing the time series of NDVI values (x, y, time)).  
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2.2.4 Phenological metrics extraction 

We analysed this dataset to extract the 15 phenological metrics (Figure 2.1) 

which represent the seasonal growth condition of the crop for each pixel. 

 

Figure 2.1.  The NDVI dynamics curve showing the defined phenological metrics 

(Explained in Table 2.1) 

The derivation of metrics from the NDVI dynamics curve starts by calculating 

OnsetV, OnsetT, OffsetV, OffsetT, MaxV, and MaxT (Figure 2.1) (Table 2.1). 

The derivation of MaxV and MaxT (maximum NDVI value and time of the 

maximum recoded during the growth period) is similar to the previous 

literature, but our package differs by giving users the option to employ 

smoothing algorithm (eg. Jönsson and Eklundh, 2004) or fitting time series 

curves (eg. Reed et al., 1994, Hill and Donald, 2003). Moreover, the user can 

implement other smoothing techniques prior to the CropPhenology function 

call as required. In CropPhenology, MaxV and MaxT are defined as the 

maximum NDVI value of the season and the time this value is attained.  

In the literature, Onset and Offset metrics have been estimated using 

thresholds (White et al., 1997, Eklundh and Jönsson, 2015), harmonic 

analysis (Moody and Johnson, 2001), moving averages (Reed et al., 1994, 

Duchemin et al., 1999), or inflection points (Dash et al., 2010). Threshold 

methods have often achieved improved estimation accuracy when compared to the ground 

based phenologic measurements (You et al., 2013). However, NDVI curve characteristics 

of different crop types are influenced by phenological stages during their growth period 
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(Pan et al., 2012) and complex climatic and environmental conditions. Therefore a 

threshold value has to be flexible. CropPhenology provides the option to customize 

threshold values, acknowledging that it may be important to vary threshold values 

dependent on crop type or other environmental conditions (Cong et al., 2012; You et al., 

2013) based on experimental or other evidence describing local conditions (i.e. occurrence 

of weeds).   

In CropPhenology, the threshold is mainly used to avoid spuriously high NDVI 

increases due to weed growth prior to sowing. Estimation of OnsetT is 

implemented by starting at MaxT and analysing NDVI changes between 

previous NDVI values, searching for local minima (dips) in NDVI close to the 

global maximum MaxT. The first dip below the user defined NDVI threshold is 

defined as OnsetT and hence determines OnsetV (the NDVI value at time 

Onset).  The default threshold value is 10% of the maximum NDVI. If no local 

minimum (dip) can be recognized, the point closest to MaxT below the 

threshold is identified as OnsetT. OffsetT and OffsetV are estimated similarly, 

moving forwards in time from MaxT. Conceptually, OffsetT is the time when 

the crop reaches maturity and loses all greenness. A local minimum (dip) in 

NDVI at harvest time is possible, but it is generally less distinct and occurs 

less often than during onset. 

In South Australia, with a Mediterranean climate and predominantly winter 

rainfall, the onset most often occurs between late April and early June, or 

between 7th and 12th MODIS 16 days composite imaging periods. Similarly, 

OffsetV and OffsetT are defined as the NDVI value and time at the point where 

the NDVI dynamics curve finishes its decline over the later growth period and 

calculated as the last minimum below the threshold value, starting from 

MaxT.  

Once Onset, Offset and Max are defined, nine other metrics are calculated. 

The slope of the lines connecting OnsetV and MaxV and MaxV and OffsetV on 

the curve are then defined as GreenUpSlope and BrownDownSlope metrics, 

respectively (Figure 2.1 and Table 2.1).  This is a simpler calculation than in 

TIMESAT which derives these metrics as the ratio of the difference between 

20% and 80% level of NDVI and their corresponding time differences, in the 

left and right sides of the curve, respectively (Jönsson and Eklundh, 2004). 

Table 2.1 defines the metrics and their biophysical inferences based on the 

Zadoks scale and description of crop growth and development.  
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Table 2.1.  Definition of the phenological metrics, biophysical description of growth conditions and inferred physiological growth stages on the 

Zadoks scale. 

Metrics  Definition on the NDVI curve, Formula, and 

description 

Theoretical and physiological 

inferences  

Crop growth and environmental factors description 

OnsetV 

(in NDVI value) 

NDVI value measured at the start of 
continuous positive slope over a threshold 
between successive NDVI values. The 
threshold is user defined percentage above 

the minimum NDVI value before the NDVI 
peak.  

The start of the crop growth 
measured by the development of 
leaf and canopy emergence. It 
represents early growth stages 

(seedling growth) – Zadoks growth 
stage 11-20.  

New leaf emergence depends on environmental factors of 
the season like temperature and available soil water 
(Stapper, 2007). Values are usually above 0.1, which 
represents NDVI of bare soil (Guerschman et al., 2009).   

OnsetT 

(in MODIS image time 
period) 

MODIS acquisition time when OnsetV is 

derived.   

 

The time of the start of Zadoks 

growth stage 11-20 (Seedling 
growth) representing leaf and 
canopy emergence.  

OnsetT is dependent on planting date across large areas. It 

is mainly controlled by the season break (French et al., 
1979). Low values represent an early start to plant 
establishment. 

MaxV 

(in NDVI value) 

Maximum NDVI value achieved during the 
season  

MaxV= Maximum (NDVI1 : NDVI23) 

Full canopy coverage, representing 
Anthesis/Flowering - Zadoks 
growth stage 60-69.  

High MaxV values indicate better growing season and 
productivity (Smith et al., 1995) 

MaxT 

(in MODIS imaging 
period) 

MODIS acquisition time when MaxV is 

derived.   

 

Time recorded for complete canopy 

closure (Zadoks growth stage 60-
69).  

Lower MaxT values indicate Anthesis/Flowering is achieved 

earlier.   

OffsetV 

(in NDVI value) 

NDVI value measured at the lowest slope 

below a threshold between successive NDVI 
values. The threshold is defined as the user 
defined percentage of the minimum NDVI 
value after maximum. Values are higher 

than 0.2 (Guerschman et al., 2009, Hill et 
al., 2013). 

Signifies the end of the crop growth 

period. (Zadoks growth stage 90-
99).  

 

Crop canopy has ripened. 
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OffsetT 

(in MODIS imaging 
period) 

MODIS acquisition period when OffsetV is 
derived.    

A time when the crop has ripened 
(Zadoks stage 89-99).  

Water stress and high temperatures late in the season 
cause the crop to senescence earlier (McMaster and 
Wilhelm, 2003b). 

LengthGS 

(in MODIS imaging 
period) 

The duration of time that the crop takes to 

go through all the stages of crop growth 

 𝐿𝑒𝑛𝑔𝑡ℎ𝐺𝑆 = 𝑂𝑓𝑓𝑠𝑒𝑡𝑇 − 𝑂𝑛𝑠𝑒𝑡𝑇 

Higher values indicate longer time 

between start and end of the 
season, which relates to shorter 
growth period.  

The length of growing season is influenced by the 

environmental factors that control crop growth such as 
temperature and rainfall. 

BeforeMaxT 

(in MODIS image time 
period) 

The length of time from OnsetT to the MaxT 

𝐵𝑒𝑓𝑜𝑟𝑒𝑀𝑎𝑥𝑇 = 𝑀𝑎𝑥𝑇 −  𝑂𝑛𝑠𝑒𝑡𝑇 

 

The duration of time the crop takes 
from emergence to anthesis.  

Pre-anthesis growth stages determine the number of ears 
and grain kernels produced (Satorre and Slafer, 1999, 
Acevedo et al., 2002). A short time indicates less time within 
the pre anthesis growth stages, forming lower numbers of 

ears and kernel producing lower yields (Acevedo et al., 
2002). 

AfterMaxT 

(in MODIS image time 
period) 

The length of time from MaxT and OffsetT 

𝐴𝑓𝑡𝑒𝑟𝑀𝑎𝑥𝑇 = 𝑂𝑓𝑓𝑠𝑒𝑡𝑇 −  𝑀𝑎𝑥𝑇 

 

The duration of time the crop takes 

from anthesis to ripening.  

Post anthesis growth stages determine grain filling and 

grain weight (Satorre and Slafer, 1999). A shorter time of 
post-anthesis growth relates to less time for grain filling 
resulting in low grain weight and yield(Poole and Hunt, 
2014). 

GreenUpSlope The rate at which NDVI increases from the 
OnsetV to MaxV over the time difference 
between MaxT and OnsetT 

𝐺𝑟𝑒𝑒𝑛𝑈𝑝𝑆𝑙𝑜𝑝𝑒 =
(𝑀𝑎𝑥𝑉 −  𝑂𝑛𝑠𝑒𝑡𝑉)

(𝑀𝑎𝑥𝑇 − 𝑂𝑛𝑠𝑒𝑡𝑇)
 

Measures how fast the crop 
undergoes the pre-anthesis growth 
stages to reach to MaxV.  

The pre-anthesis time is when the crop ears are formed and 
grown (Satorre and Slafer, 1999, Poole and Hunt, 2014). A 
high or steeper slope indicates a high rate of change, as 

NDVI values increase over a short time period, in the initial 
phases of development. 

BrownDownSlope 

 

The rate at which NDVI decreases from MaxV 

to OffsetV over the difference between 
OffsetT and MaxT. 

 

BrownDownSlope =
(MaxV −  OffsetV)

(OffsetT − MaxT)
 

Measurement of how fast the crop 

undergoes the post-anthesis 
growth stages to reach to its 
ripened stage.  

During the post-anthesis stages the sugars produced by 

photosynthesis are transported to fill the grain, influencing 
grain size and final yield (Poole and Hunt, 2014). A high 
value (steep slope) indicates a high reduction in NDVI over 
a short period of time, in the final phases of development. 
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TINDVI 

(in  Accumulated NDVI 
value) 

Area under the NDVI curve between OnsetT 
and OffsetT.  TINDVI 

is estimated using trapezoidal numerical 
integration. 

A measure of the biomass 
productivity of the growing season 
(Holm et al., 2003).  

High TINDVI value indicates high crop productivity (Hill 
and Donald, 2003). 

TINDVIBeforeMax 

(in Accumulated NDVI 
value ) 

Numerical integration of NDVI between 
OnsetT and MaxT. This metric indicates the 
pre-anthesis crop growth. 

 

Pre-anthesis crop canopy growth is 
important for reducing evaporation 
of water from the soil surface. High 
value shows high biomass 

cumulated before anthesis, which 
can indicate lower water 
evaporation from soil and high 
number of tillers and kernels being 

formed.  

Pre-anthesis crop growth contributes directly to yield 
through the storage of sugar produced by photosynthesis, 
which is accumulated in the stem and translocated to the 
grain after anthesis. Crops that have produced large dry 

matter before anthesis can have large yield potential. 
Alternatively, plant stress during the pre-anthesis period 
affects the amount of biomass produced and the number of 
tillers (Armstrong et al., 1996). This will affect the number 

of grains per head and the potential grain size, resulting in 
a reduction of yield potential (Fischer, 2008, Poole and 
Hunt, 2014). 

TINDVIAfterMax 

(in  Accumulated NDVI 
value ) 

Numerical integration of NDVI between MaxT 
and OffsetT. This metric indicates the post-
anthesis growth.  

 

 

High values indicate smaller 
reductions in accumulated biomass 
during the post anthesis period, 
which relate to a slower and longer 

process of grain filling and ripening. 
Small values show, faster and 
shorter process of grain filling, 
indicates low yield (Plaut et al., 

2004, Poole and Hunt, 2014).  

During post-anthesis the growth products are transported 
in to the grain and water is used efficiently. Limited water 
supply during this growth period affects the yield potential 
(Plaut et al., 2004). Large canopy crops might face difficulty 

to fill the grain due to water loss through 
evapotranspiration (Poole and Hunt, 2014). 

Asymmetry 

(in NDVI value) 

The symmetry of the NDVI curve. It 
measures which part of the growing season 

attain relatively higher accumulated NDVI 
values. 

 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 𝑇𝐼𝑁𝐷𝑉𝐼𝐵𝑒𝑓𝑜𝑟𝑒𝑀𝑎𝑥
− 𝑇𝐼𝑁𝐷𝑉𝐼𝐴𝑓𝑡𝑒𝑟𝑀𝑎𝑥 

 

 

Describes the relative crop canopy 
size before and after anthesis for 

the season. Comparison of 
Asymmetry indicates the difference 
between the establishment of a 
crop canopy and canopy ripening.  

High values indicate high biomass 
cumulated pre anthesis than post 
anthesis. 

Yield potential is best explained in terms of the number of 
grains per unit area and the size or weight of the grain 

(Poole and Hunt, 2014). However, it is more sensitive to 
number of grains produced, measured by 
TINDVIBeforeMax, than the grain weight (Acevedo et al., 
2002). Furthermore, in dry environments, the crop is often 

unable to fill the grain directly through photosynthesis due 
to water stress. This water/temperature stress can be 
measured by the lower magnitudes of TINDVIAfterMax. 
Here, a higher proportion of yield comes from pre anthesis 

stored sugar (Poole and Hunt, 2014).  



  

25 

 

2.2.5 The CropPhenology R package 

The R software (The R core team, 2015) is a free computing environment which 

is gaining considerable popularity in recent years (Tippmann, 2015). The 

CropPhenology package contains three functions; SinglePhenology for 

calculating single phenologic metrics for a single pixel, PhenoMetrics for 

calculating and mapping phenological metrics and MultiPointsPlot for 

visualising time series of NDVI.  

2.2.5.1 PhenoMetrics functions 

The PhenoMetrics inputs are described in Figure 2.2a.  The Path parameter 

determines the disk location of the time series of downloaded images.  The 

Region Of Interest (ROI) parameter requires the user to indicate if there is a 

polygon or a point shapefile to define a subset study region of the image for 

which metrics are to be calculated. If there is an ROI, the user has to set the 

ROI argument to TRUE and provide the ROI boundary as a shapefile in the 

directory specified by Path. If the user sets the ROI to FALSE, the metrics will 

be extracted for the whole image. The PhenoMetrics function has 2 optional 

parameters: Smoothing and Percentage Treshold. The smoothing parameter 

(default values is FALSE) allows the user to indicate if smoothing is desired. 

The Percentage Threshold parameter allows the user to define the threshold 

value for defining Onset and Offset of the dynamics curve (explained above). 

The Percentage Threshold value defaults to 10% if not given. The PhenoMetrics 

function then calculates the 15 phenological metrics; in the order of OnsetV, 

OnsetT, MaxV, MaxT, OffsetV, OffsetT, LengthGS, BeforeMaxT, AfterMaxT, 

GreenUpSlope, BrownDownSlope, TINDVIBeforeMax, TINDVIAfterMax, 

TINDVI, and Asymmetry. 

 

Figure 2.2.  Workflow of the functions for the CropPhenology package (a) 
PhenoMetrics function, (b) SinglePhenology function, and (c) 

MultiPointsPlot function. 
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The outputs of the metrics are shown as maps within the R software for fast 

and easy visualisation. The metrics are represented spatially by 15 raster 

images, saved in the IMG format in the same projection as the input data 

which can be viewed from a geographic information system and are also 

exported as a generically formatted ASCII text file. The ASCII file is formatted 

as text in the sequence of pixelID, X-coordinate, Y coordinate, and the metrics 

value. Each of the ASCII files is named as the metrics name, for example 

OnsetT.txt. The spatial output of the metrics is saved with file names which 

are also the same as the metric name; for example OnsetT.img. Additionally, 

an overview file is provided, named as ‘AllPixels.txt’, which lists all pixels with 

their NDVI time series data values in the format: pixel number, x and y 

coordinates of the centroid of the pixel and NDVI value.  These output metrics 

are saved in a folder which name is hard coded as “Metrics” in the directory 

specified in the Path parameter.  

2.2.5.2 SinglePhenology function 

SinglePhenology takes a time series of vegetation index values and results 

phenological metrics as an array. The function has three input parameters: 

Vegetation Index timeseries, Smoothing, and Percentage (Figure 2.2b). The 

Vegetation Index timeseries can be provided as an array, list, timeseries, or 

vector data type. Smoothing and Percentage are both optional parameters with 

default values of FALSE and 10 percent respectively. When Smoothing is set 

to TRUE, a moving average filter will be applied on the Vegetation Index curve. 

The user can also define the percentage of maximum Vegetation Index 

attained above which the Onset and Offset defined. The output is provided as 

an array of 15 values for the 15 metrics. 

2.2.5.3 MultiPointsPlot function  

The MultiPointsPlot function provides the user with the ability to visualise the 

NDVI curve by plotting the temporal sequences of NDVI values of user selected 

raster pixels. The function provides plots of a maximum of five pixels together. 

The input parameters are Path, the file path where AllPixels.txt is located, 

NumberofPixels, the number of pixels to be plotted, and the PixelId, the pixel 

Id number for each pixel (Figure 2.2c).  Pixel Id numbers can be easily located 

and accessed from the AllPixels.txt file. Visually, the function plots the pixels 

in different colours in their order in the function call: the first curve in black 

the second in red, the third in green, the fourth in blue, and the fifth in yellow. 

The plotted output allows the user to observe the spatial and temporal 

differences in relative dynamics of the vegetation index for the selected points.  
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2.3  Example of the CropPhenolgy package 

In order to illustrate the utility of the CropPhenology package we used MODIS 

MOD13Q1 imagery of the years 2001, 2003, and 2007 for a cropping region 

located on the western Eyre Peninsula of South Australia (Figure 3). The years 

were selected to represent differing rainfall amount and seasonality with 

352.4mm, 261.2mm, and 261.5mm of annual rainfall respectively. The year 

2001 had higher than average rainfall whilst the years 2003 and 2007 were 

selected because of low rainfall and differing rainfall seasonality. 2007 had 

early season dominating rainfall, with low rainfall in June, whereas in 2003 

rainfall was relatively regularly distributed with highest falls during the June 

– August. The region of interest (ROI) was set to include approximately 30 

paddocks with a total area of 131 hectares (Figure 2.3). The ROI is 

characterised by cereal cropping with some patches of natural vegetation. A 

total of 69 images, 23 images per year, were downloaded for three seasons and 

projected to the South Australian Lambert Conformal Conical projection. 

At the R console, the function can be called as follows:  

> PhenoMetrics("E:/MODIS_2001", TRUE, 15); * 

 

In this example the path E:/MODIS_2001 points to the directory that contains 

the images and ROI boundary. The Percentage Threshold (explained above) is 

defined as 15% and smoothing is set to FALSE by default. The call results in 

a computation of all 15 metrics that are saved as output rasters in the newly 

created directory E:\MODIS_2001\Metrics. The call also creates maps of the 

indices in the plot window of R. The key benefits of using phenological 

indicators as compared to the raw time series is that the method reorganises 

the information in the time series according to what is known about crop 

growth (Table 2.1) hence providing a means for a systematic comparison of 

NDVI dynamics in space and across years. This is demonstrated in Figure 2.3 

and Figure 2.4 below.  

The resulting maps of all 15 metrics for 2001, 2003, and 2007 are collated in 

Figure 2.3. The different metrics are organised in groups of three for the three 

                                            

 

 * Note: The valid path separator in R is / or \\ rather than the default windows path separator \. 
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years. This allows a comparison of patterns of crop growth as influenced by 

the different climatic conditions of the years. This figure also includes a Google 

Earth high resolution colour satellite image of the study area that shows 

patches of native vegetation and field boundaries within the ROI. As expected, 

the year with the highest rainfall (2001) had overall larger values of TINDVI 

and MaxV. These metrics are indicative of leaf area progression during the 

entire season and hence strongly related to the variability in yield and biomass 

production (Hill and Donald, 2003, Calera et al., 2004, Lyle and Ostendorf, 

2011) (see also Table 2.1). The figure also shows that some metrics (OffestV, 

OnsetV, and to some degree GreenUpSlope) show a spatial patterns that are 

time-invariant and hence less sensitive to climatic conditions. The metrics 

OffestV, OnsetV are consistently high in areas covered by native vegetation 

and are therefore good indicators for land-use differences among the fields. 

Other metrics (GreenupSlope, MaxV, and MaxT) have been shown to bear a 

significant relationship with soil conditions (Araya et al., 2016). In order to 

identify differences in soils, or in other words long-term consistent spatial 

differences, these need to characterise the responsiveness of plant growth to 

different environmental conditions. TINDVIAfterMax is indicative of leaf area 

after anthesis. This may be important for canopy management and can help 

to optimize fertilizer applications. Some metrics also appear to show a 

relatively detailed spatial pattern that seems unrelated to seasonal rainfall or 

management boundaries. In the case of OnsetT and the related metrics 

BeforeMaxT and LengthGS this may be noise arising from the difficulty of 

unambiguously identifying onset of growth.  

These simple examples show how different indices may be selected for varying 

purposes such as yield estimation, land use classification, or the identification 

of soils: these contrasting applications benefit from different groups of 

phenological metrics. For studies using phenological metrics as an indicator 

of yield, TINDVI or MaxV (Hill and Donald, 2003, Calera et al., 2004, Lyle and 

Ostendorf, 2011) may be most suitable.  In contrast, spatial patterns of soil or 

land cover do not vary strongly in time. Hence phenological metrics that are 

less dependent of rainfall are more indicative (Araya et al., 2016). The maps 

in Figure 2.3 qualitatively show the potential benefits of the approach and the 

usefulness of an easy-to-apply package to systematically quantify spatio-

temporal variability in the vegetation index and hence reduce high volume 

spatio-temporal data into a limited number of metrics with specific crop 

growth meaning.  
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Figure 2.3. The 15 phenological metrics of the example landscape for the years 
2001, 2003, 2007 in the western region of the Eyre Peninsula in South 
Australia. Included is a Google Earth image of the study area for 

reference with boundaries of the overall rgion of interest (white) 
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Figure 2.4 presents NDVI dynamics resulting from six calls of the 

MultiPointsPlot function extracting time series from cropping and native 

vegetation for all years, respectively. At the command prompt, the function 

can be called as:  

> MultiPointsPlot("E:/MODIS_2001/Metrics", 3, 18, 10, 12). 

> MultiPointsPlot("E:/MODIS_2003/Metrics", 3, 18, 10, 12) 

> MultiPointsPlot("E:/MODIS_2007/Metrics", 3, 18, 10, 12) 

 

> MultiPointsPlot("E:/MODIS_2001/Metrics", 3, 54, 75, 94) 

> MultiPointsPlot("E:/MODIS_2003/Metrics", 3, 54, 75, 94) 

> MultiPointsPlot("E:/MODIS_2007/Metrics", 3, 54, 75, 94) 

 

Here, we extract time series for 2001 at three locations (18,10,12). The 

function makes use of the file AllPixels.txt located at 

“E:/MODIS_2001/Metrics”. The second argument qualifies the number of 

pixels to be plotted (3) while the three other parameters represent PixelIds.  

These plots show the detailed dynamics of NDVI and a convenient possibility 

to comparing individual locations, here a difference within a paddock across 

years compared to native vegetation. Similar comparisons can show the 

spatial and temporal differences in crop growth for different paddocks. This 

can reveal relationships between the soil and climatic interaction through crop 

growth development.  

 

Figure 2.4. The NDVI time series curve for the three selected points for the field 
and native vegetation study areas, and GoogleEarth image of the 
study area boundaries of the native vegetation and the farm with 

selected point locations (white). 
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A further example shows the versatility of CropPhenology within the R 

programming environment. The example code below uses MODIS NDVI values 

at the location F1 (see above-Figure 2.4) and passes the time series through 

the Savitzky Golay smoothing procedure.  The code below is fully operational 

and includes installation procedure. It installs "devtools", which is required 

for GitHub downloads and "signal" for the Savitzky-Golay smoothing filter 

(‘sgolayfilt‘ function). The code applies smoothing and call the function 

‘singlePhenology‘ to computes the phenological metrics for location F1. Figure 

2.5 shows the time series plot of the row and smoothed NDVI curve together.  

> install.packages(c("signal", "devtools")) 

> lapply(c("signal", "devtools"), library, character = TRUE) 

> # install CropPhenology 

> install_github("SofanitAraya/CropPhenology") 

> # NDVI test data for location F1 

> MODIS_2015<-c(0.15, 0.1488, 0.152, 0.1526, 0.1699, 0.1634, 

0.1647, 0.1693, 0.1899 ,0.2369 ,0.2594, 0.2274, 0.2382, 0.2168, 

0.2033, 0.198, 0.183, 0.183, 0.1797, 0.1635, 0.1468, 0.1621, 0.1487) 

> # Savitzky-Golay smoothing filter 

> sg_MODIS2015 <- sgolayfilt(MODIS_2015) 

> ts.plot(ts(MODIS_2015), ts(sg_MODIS2015), col=1:2, lwd=2) 

> # Apply CropPhenology to smoothed NDVI time series  

> SinglePhenology(sg_MODIS2015)) 

> ts.plot(ts(MODIS_2015), ts(sg_MODIS2015), col=1:2, lwd=2) 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Example time series plot of raw (black) and Savitzky-Golay smoothed 

(red) MODIS NDVI for 2015 at location F1. 
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In a similar way, different smoothing and curve fitting algorithms could be 

implemented with relative ease in the R software environment for integration 

with the CropPhenology package. 

 

2.4 Corroboration  

Ground truthing of broad-scale remote sensing is difficult because of the 

logistic problems related to conduct representative field sampling at the 

spatial scale imagery (Ostendorf, 2011, Lawley et al., 2014). Irrespective, 

phenological metrics have successfully been used to estimate physiological 

events at regional scales. The time integrated NDVI (TINDVI) has proven to be 

a reliable indicator of the total biomass accumulated (Reed et al., 1994, Hill 

and Donald, 2003, Holm et al., 2003).  

In order to test CropPhenology, we obtained wheat yield statistics between 

2009-2015 for 14 cropping districts in South Australia (PIRSA, 2016). The 

cereal cropping regions and district boundaries were obtained from 

Department of Water Land and Biodiversity Conservation (DWLBC), (DWLBC 

Information Management, 2003). The MODIS imagery was masked and 

CropPhenology was applied. Figure 2.6(a) shows the resulting TINDVI raster 

for the cropping districts for 2011. The mean TINDVI value was calculated for 

all districts and years and compared with the annual yield estimates. A 

significant correlation was observed between the district crop estimate and 

TINDVI (p<0.0001, R2= 0.8, n=84) (Figure 2.6(b)). This result suggests that the 

derived metric TINDVI is an excellent indicator of crop yield.  

 

 

 

 

 

 

 

 

Figure 2.6.  Comparison of TINDVI metrics with broad-scale  crop yield statistics. 
(a) TINDVI of the cropping farms of the districts of South Australia for 
the year 2015. (b) Scatterplot comparing the mean TINDVI of the 

districts with the seasonal crop yield estimate. 

(a) (b) 
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2.5 Results and Discussion 

CropPhenology builds on past software and literature to provide a state of the 

art software package to extract phenological metrics from temporal sequences 

of images. Minimising the technical difficulties involved in the data pre-

processing and processing stages allows increased adoption of its use and 

access to new users and those who are less technically proficient.   

The CropPhenology package provides further enhancements to existing 

software. The package produces 15 raster layers, offering additional metrics 

such as Asymmetry, BeforeMaxT and AfterMaxT which can provide important 

information for crop management.  Built into the package is an ability to 

provide a spatially-explicit graphical representation of each metric for user-

defined regions of interest. The package includes pixel level visualisation of 

time series using the MultiPointsPlot function. The package can thus inform 

crop monitoring and management for specific locations and areas.    

CropPhenology assumes low NDVI during the initial growth phase after 

sprouting with a mid-season peak followed by senescence. This is a very 

typical crop growth scenario that is valid for a wide variety of crops. But there 

are some inherent limitations. The package is designed to provide a single set 

of phenological metrics and cannot automatically handle double or triple 

cropping systems. In order to obtain phenological information for multiple 

crops per year, the user has to manually separate input image sequences for 

individual growth periods as CropPhenology does not attempt to find multiple 

growing seasons. 

The package assumes that the image sequence corresponds to the 

alphabetical order of the file names. Time is treated as a discrete order of 

images. The outputs of the temporal metrics (i.e. OnsetT and OffsetT) are 

integer numbers, which the user may convert to dates if required.  This implies 

that in different parts of the globe with sowing season late in a year and 

harvest in the next year, images across years need to be collated in a single 

folder and named in sequence. Note that the MODIS imagery is named 

correctly by default. In addition, care needs to be taken to avoid dependent 

metrics in statistical analysis. For example, LengthGS is the difference 

between OffsetT and OnsetT and hence does not provide an independent 

variable. 

Several R packages have recently been developed to facilitate access of remote 

sensing data and analysis. Being in an R software environment, 
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CropPhenology can easily be integrated into a pipeline of processing using 

these tools. For example, MODIStsp package (Busetto and Ranghetti, 2016a) 

automatically downloads MODIS images as direct input of CropPhenology, 

similarly, the output raster from CropPhenology can further be analysed using 

RStoolbox package (Leutner and Horning, 2015), i.e. for  unsupervised 

classification. 

The CropPhenology package potentially enhances precision agriculture 

management by allowing improved understanding of the comprehensive 

physiological characteristics of the crop growth over space and time. Whereas 

yield mapping produces the end-result of a growing season, phenology 

characterises the pathway to the yield. It therefore complements information 

from traditional precision agriculture techniques by utilising information of 

how the plant canopy changes over time within a season and allows objective 

and quantitative interpretations of plant/climate/soil interactions. 

CropPhenology provides a comprehensive physiological characterisation of 

crop growth over space and time and hence enables users to increase 

understanding of the spatial and temporal growth variability of their crops, 

drilling down into relative plant performance in different growth stages. The 

availability of now 16 years of continuous coverage of MODIS image 

composites provides a long-term perspective of plant growth, which has 

proven useful in many applications (Wardlow and Egbert, 2008, Duveiller et 

al., 2012).  

However, farm-based adoption of phenological mapping has been limited in 

the past because cloud-free temporal satellite imagery has only been available 

at a limited spatial resolution, i.e. 250m for MODIS or 260m for MERIS and 

1000m for historic AVHRR. This consequently limits the application to broad-

acre cropping. But even in such broad-scale applications, yield mapping can 

be conducted at spatial resolutions an order magnitude higher, rendering 

spatio-temporal satellite imagery inferior. Full use of the methodology for 

farm-based management may come with increased availability of temporal 

series of higher spatial resolution multispectral imagery. Imagery is currently 

being collected by different agencies including NASA (LANDSAT), ESA 

(Sentinel), and numerous commercial providers at a range of different spatial 

resolutions. It is therefore in principle possible to obtain more detailed spatio-

temporal NDVI sequences. However, cloud and cloud shadow effects during 

the growing season limits use for phenology studies. Whilst currently spatio-

temporal imagery is costly to obtain from commercial providers, prices may 
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lower if demand increases. Furthermore, as the length of time series archives 

increases, fusing imagery from different publicly available sensors will become 

more likely (Feng et al., 2006, Fu et al., 2013). As CropPhenology will work for 

different spatial and temporal resolutions, is not limited to MODIS and it can 

be readily adopted to different imagery. 

2.6 Conclusion  

The use of remotely sensed vegetation indices to measure crop growth through 

phenological metrics has a high potential for agricultural management. 

However, the process from remote sensing data acquisition to relating 

vegetation index information to on-ground crop development is complex to 

even the most experienced user. While improvements have been made in the 

ease of access, useability and robustness of remote sensing products, fewer 

advances have been made in the software that is needed to manipulate, 

analyse and visualise these products.   

We present the CropPhenology package which is designed to extract crop 

phenology metrics from time-series vegetation index data. The package is easy 

to use allowing the user to progress from downloaded image to crop phenology 

analysis with only minor data pre-processing steps. CropPhenology provides 

an option of using the moving average filter for smoothing the vegetation index 

curve. As the source code is openly available for users with GNU license, 

modification can be done to implement other smoothing techniques that have 

been used previously.   

The package provides the user with 15 phenological metrics, which build upon 

those available from previous software and include new metrics suggested by 

the agricultural remote sensing literature.  These metrics are presented in 

raster and text data formats for user’s convenience. Furthermore, we have 

provided the theoretical biological inferences of how these metrics can be 

interpreted for crop management practices. CropPhenology was tested using 

MODIS 16-day NDVI composites but it can also be used with other imagery. 

It is freely available, on a GitHub repository for use in the R computing 

environment, which has gained popularity in recent years.   

CropPhenology also offers a function, MultiPointsPlot function that plots 

vegetation index time series at selected pixel locations. Our worked example 

illustrates the utility of our package to provide a means of observing spatial 

and temporal crop growth variability across multiple years. This provides 

important information about the environmental factors influencing crop 
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growth, potentially improving crop management. The CropPhenology package 

has been designed for cropping environments and tested in an environment 

with a distinct annual growth peak, but its generic design makes it also useful 

in other more complex environments. 

2.7 Availability of CropPhenology package  

CropPhenology is freely available from the most commonly used online 

package distributor and repository, GitHub (Chacon and Straub, 2009) at  

https://github.com/SofanitAraya/CropPhenology.  The CropPhenology 

package manual and other relevant information are also available at 

http://cropphenology.wixsite.com/package. 
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Phenologic metrics derived from MODIS 
NDVI as indicators for Plant Available 

Water-holding Capacity  
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Abstract 

Soil, an essential component of agricultural ecosystems, has high spatial 

variability. Plant growth reflects this variability in complex interactions with other 

factors such as rainfall and temperature. In the Mediterranean-type dryland 

cropping region of South Australia, water is the main driver of crop growth 

variability. Plant Available Water-holding Capacity of soil (PAWC) is the soil 

property that measures the maximum amount of plant extractable water which 

can be held in the soil. It interacts with weather conditions, governing crop growth. 

Thus understanding spatial variability of PAWC is crucial for farm and regional 

agricultural management. However, the physical measurement of PAWC is costly 

and time consuming.  

Crop phenology, the timing of plant growth and development, is influenced by 

climatic, soil, and management factors. We hypothesised that by keeping 

management and climate constant by focusing on a small geographic area, the 

dynamic response of plants is largely due to soil functions. The objective was to 

use remote sensing derived phenology to understand the complex climate-soil 

interactions.  We compared phenologic metrics of annual winter-growing crops 

from adjacent high and low PAWC soils at two farms (Whariminda and Minnipa) 

in the Eyre Peninsula, South Australia. The phenologic metrics were derived for 

13 seasons from time series of Moderate Resolution Imaging Spectroradiometer 

(MODIS) NDVI data, at 250m spatial resolution and 16 days temporal resolution. 

Wilcoxon signed rank tests were applied to assess differences in phenologic 

metrics for crops growing on low and high PAWC soils. This allowed us to rank 

phenologic metrics for use as indicators of soil PAWC.  

The results show a significantly higher GreenUpSlope (p<0.00008) and maximum 

NDVI (p<0.0004) in low PAWC soils. This indicates that crop phenology derived 

from MODIS satellite imagery may provide useful information about soil water 

conditions, which would allow improvements to the spatial detail in soil maps.  

 

Keywords: PAWC, Crop phenology, spatial variability, time series, spatio-

temporal, satellite imagery 

 

3.1 Introduction 

Soil is an essential component of agricultural ecosystems, as the primary 

supplier of nutrients and water for plants. It has high spatial variability in 

both its physical properties and chemical composition (BenDor et al., 2008, 

Grunwald, 2009). Information about the spatial variability of soil properties is 

one of the fundamental requirements for most agro-ecosystem management 

activities. However, it is impractical to satisfy the increasing demand of 

current management systems for high resolution soil data using traditional 

in-situ sampling and physical measurement techniques (Morgan et al., 2000, 

Wong et al., 2006). Researchers have successfully used broad scale soil 

information and provided systematic approaches at the level required for 
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landscape and regional planning (Crossman and Bryan, 2009, Bryan et al., 

2011), but significant uncertainty could result  when such broad scale soil 

datasets are upscaled to landscape and field levels (Bryan et al., 2011). In 

addition , broad scale regional maps were developed based on low numbers of 

field observations with very limited information about spatial 

representativeness for upscaling (Ostendorf, 2011). 

The Plant Available Water-holding Capacity (PAWC) is one of the most 

important soil properties in many agronomic management systems. PAWC, 

the ‘bucket size of the soil’ (Dalgliesh and Foale, 1998), is defined as the total 

amount of water that can be stored in the soil for plant use. This soil property 

shows significant variability at scales lower than the farming field. In arid and 

semi-arid farming regions, PAWC has been reported to be the main cause of 

crop growth variability (Oliver et al., 2006) but there is paucity of detailed 

spatial information on this critical soil property.  

Plants are affected by soil variability through complex interactions with 

climate and other factors. Remote sensing allows us to observe plant spatial 

and temporal variability, which in turn may expose soil properties. Based on 

this concept, vegetation cover has been used as a proxy in predictive soil 

property mapping. Remote sensing of vegetation reflectance has been used as 

an indicator for soil salinity (Dutkiewicz et al., 2006, Zhang et al., 2011, Setia 

et al., 2013). It has also been used to model other soil attributes such as soil 

depth and water table depth (Taylor et al., 2013). The horizon thickness of the 

soil has also shown high correlation with remote sensing derived vegetation 

cover maps (Meirik et al., 2010). Whilst these examples were successful by 

using single images, multi-temporal observations of vegetation reflectance can 

provide an additional dimension. Remotely sensed vegetation phenology has 

been used as an indicator for climate change (White et al., 1997, Kramer et 

al., 2000),  to estimate agricultural productivity (Labus et al., 2002, Hill and 

Donald, 2003, Sakamoto et al., 2013) and regional management for crop type 

mapping (Brown et al., 2013, Niazmardi et al., 2013) and many more 

applications.  

The spatio-temporal variability of crop growth and yield are main concerns for 

farm management (Basso et al., 2001, Abuzar et al., 2004). Precision 

agriculture uses this variability for matching input requirements with the 

actual need and expected productivity, to ensure sustainable and profitable 

production and minimal environmental degradation (Cook and Bramley, 

1998, Zhang et al., 2002). Advancements in precision agriculture have led to 
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requirements for soil information at increasingly fine scales (Van Alphen, 

2000, Adamchuk et al., 2004, Oliver et al., 2006, Wong and Asseng, 2006, 

Moeller et al., 2009). Soil water information, specifically PAWC, is a critical 

input for agronomic models such as Agricultural Production System sIMulator 

(APSIM) (Keating et al., 2003, Holzworth et al., 2014).  In order to use these 

models at broader scales, reliable spatial soil information is required 

(Dalgliesh et al., 2012).  

Methods to estimate PAWC include proximal sensing techniques (Viscarra 

Rossel and McBratney, 1998, Morgan et al., 2000) and inverse yield modelling 

(Morgan et al., 2000). However, these techniques are location-specific and 

need calibration for different landscapes.  The use of other readily measurable 

soil properties through pedotransfer functions has also been suggested (Rab 

et al., 2011). However these also are limited in the range of specific 

combinations of soil properties for which they are effective for predicting PAWC 

in different landscapes.   

Crop stand spatial variability is a suitable indicator of soil PAWC variability, 

especially under low rainfall conditions (Wong and Asseng, 2006, Rab et al., 

2009). Temporal crop growth variability has also been reported as a result of 

soil PAWC interaction with seasonal rainfall variability (Wong and Asseng, 

2006). These findings suggest that vegetation vigor may provide a suitable 

surrogate for PAWC. The spatial and temporal dynamics of the vegetation 

could be adequately measured by remote sensing phenological observation, as 

it has temporal consistency and is capable of quantifying vegetation vigour 

through vegetation indices. The most popularly used index in such studies 

has been Normalized Difference Vegetation Index (NDVI) (eg. Huang et al., 

2013, Petus et al., 2013).  

Phenology reflects the complex interaction of seasonality of rainfall and the 

hydrological characteristics of soils (Seghieri et al., 1995, Zhang et al., 2005). 

Hence, understanding how growth variability is affected by rainfall seasonality 

and soil PAWC interactions may allow us to use remote sensing phenology 

derived parameter as a surrogate for soil PAWC. Research suggests that 

variation between locations in the shape and other parameters of the NDVI 

dynamic curve can reveal the site-specific factors of soil, management 

practices and climate that determine crop performance (Labus et al., 2002). 

However, application of remote sensing phenological metrics to observe the 

climate-soil interaction has not previously been attempted.  
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The objective of this study was to use remote sensing phenology to understand 

the complex climate-soil interaction, with the aim of identifying phenologic 

metrics which can be used as indicators of soil PAWC at the farm field level. 

We hypothesise that in keeping management and climate constant by focusing 

on a few controlled sites, the dynamic response of plants is largely due to soil 

conditions. For this study NDVI dynamics for 14 seasons were used to 

describe the complex relationship between the soil PAWC and rainfall 

seasonality and its reflection in crop phenology metrics. This methodology 

could support growers and land managers in farm and regional level decisions. 

 

3.2 Materials and Methods 

3.2.1 Study site 

The study sites were two fields in Eyre Peninsula (EP), South Australia. The 

region is characterised by a Mediterranean climate, with cool wet winters and 

hot dry summers. The agricultural region in EP has a range of sandy to clay 

loam soils (Eyre Peninsula Agricultural Research Foundation 2011). The study 

fields are located in upper EP, near Minnipa Agricultural Research Centre, 

and in lower EP near Wharminda town (Figure 3.1). The sites were selected 

because their soil types represent wider areas of the EP region and because of 

their previously characterised soil samples (Eyre Peninsula Agricultural 

Research Foundation 2011). These fields have been studied as focus sites of 

the Eyre Peninsula Agricultural Research Foundation (EPARF) soils (Eyre 

Peninsula Agricultural Research Foundation 2011). The field at Minnipa, 

approximately 68 ha in area, is characterized by sandy loam to sandy clay 

loam soils, with the land zones of sandy rise reported to perform well in dry 

years and a shallow flat that rarely performs well regardless of crop or pasture 

choice (Latta et al., 2013). The average annual and growing season rainfall of 

the Minnipa field are 325mm and 242mm, respectively. The Wharminda field 

of approximately 75ha is characterized by siliceous sand over sodic clay soil 

with an uneven wetting nature at the beginning of growth seasons that results 

in uneven germination. The average annual and growing season rainfall in 

Wharminda are 320mm and 250mm, respectively. In both fields, wheat has 

been the most commonly sown crop followed by barley and pasture.  

 

 



  

45 

 

 

 

 

 

 

 

 

 

Figure 3.1. Location of the study area 

 

3.2.2 Datasets 

3.2.2.1 Soil data 

The soil data used for this study was sourced from APSoil, a database of 

national and international agronomically important soils (The APSIM 

initiative, 2015). It contains PAWC measurements for representative 

agricultural soils in Australia (Burk and Dalgliesh, 2008). So far, the database 

holds PAWC measurement of over 800 regionally important soils with 69 of 

them in the South Australian agricultural region (The APSIM initiative, 2015). 

Each of our study sites has a pair of soil samples from this database: APSoil-

353 and APSoil-354 (Minnipa) and APSoil-394 and APSoil-395 

(Wharminda)(Table 3.1).  

 

Table 3.1. The APSoil points at the study fields, with soil type and their PAWC 

measurements. 

 

 

  

 

 

 

 

Apsoil No. Soil type PAWC (mm) 

Minnipa 

APSoil-354 Red light sandy clay loam 209 

APSoil-353 Red sandy clay loam 57 

Wharminda 

APSoil-394 Shallow sand over clay 116 

APSoil-395 Loam over rock 95 
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3.2.2.2 Rainfall data 

The rainfall data used were daily gridded rasters with 5km resolution, 

provided by the Australian Government Bureau of Metrology (BOM) (Bureau 

of Metrology, 2015). The cumulative rainfalls were computed from the daily 

data for the corresponding 16 MODIS composite dates, for each pixel. The 

cumulative rainfall totals for each year and season were also calculated by 

summing the daily rainfalls.  

In South Australian farming regions, time of sowing is usually determined by 

rainfall at the break of the season; the farmers wait for a few rainy days in 

autumn to start sowing (French et al., 1979). During the study period (2000-

2013), the sowing date varied from May 6 (in 2009) to June 24 (in 2005) 

(EPARF, 2014). In this period, the highest annual rainfall was observed in 

2010 (407mm) and the lowest in 2006 (244mm). The highest growing season 

rainfall was recorded in 2009 (342mm) and lowest in 2008 (137mm). A 

considerable inter-seasonal variation in rainfall was also observed, from very 

erratic to evenly distributed in the winter period. 

3.2.2.3 MODIS NDVI data  

Moderate Resolution Imaging Spectroradiometer (MODIS) provides one of the 

most widely used satellite images in remote sensing phenological studies 

(Zhang et al., 2003, Sakamoto et al., 2005, Zhang et al., 2005, Clerici et al., 

2012, Yang and Zhang, 2012, Hmimina et al., 2013). Both NDVI and 

Enhanced Vegetation Index (EVI) from MODIS are the widely used indices of 

plant performance in the remote sensing literature. The saturation problem of 

NDVI at high biomass and the greater sensitivity of EVI to canopy variation 

are very well documented (Huete et al., 2002, Wardlow et al., 2007, Zhang et 

al., 2010). Despite this limitation, MODIS NDVI and EVI have been reported 

to perform similarly in crop related applications (Wardlow and Egbert, 2010). 

Moreover, both indices have comparable dynamic range and sensitivity for 

assessing spatial and temporal vegetation changes (Huete et al., 2002). As we 

are focusing on dynamic change in crop cover, both temporal and spatial, 

there should not be any difference in our observation from either NDVI or EVI, 

and MODIS NDVI was used throughout the study. 

We used sixteen-day composites of MODIS 250m-NDVI data (MOD13Q1). The 

compositing technique means that the acquisition date of a pixel may record 

vegetation conditions of any unspecified date within the period; in fact if cloud 

cover persists for the entire period, the value may be filled using a historic 

average.  Thus, the values representing the 16 day interval for each pixel may 
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not be from the same  observation dates (Solano et al., 2010, LP DAAC, 2015). 

Moreover, there may also be a mismatch in the location of successive 

observations of MODIS pixels. These grids, however, have been fitted to 

predefined grid cells. This mismatch between the gridding artifacts and the 

predefined cells may introduce bias during the compositing process and cause 

unavoidable influence on the spatial properties of the resulting composite 

image (Wolfe et al., 1998, Tan et al., 2006). Nevertheless, MODIS NDVI time 

series have shown considerable potential for revealing the general temporal 

patterns of phenology in cropping regions, despite the spatial heterogeneity 

within MODIS pixels (Hmimina et al., 2013).  

Indeed, there could be substantial variability within a MODIS pixel that is 

averaged out in the NDVI time series. However, considering the inherent trade-

off between the spatial and temporal resolution of remote sensing imagery, 

MODIS provides reliable observations of temporal changes in agricultural 

landscapes. In our case, pixels close to the PAWC measurement locations and 

within relatively homogenous soil types were taken as representative pixels.  

3.2.3 Phenologic metrics derivation 

A total of 319 MODIS NDVI 16 day composite images, between 18/02/2000 

and 18/12/2013, were downloaded (23 images per year except 2000, which 

has only 20 images). The images were then reprojected using MODIS 

Reprojection Tools (MRT) of NASA Land Processes Distribution Active Archive 

Centre (LP DAAC). The NDVI values of each pixel across the 319 images were 

extracted and re-arranged as multi-dimensional arrays of NDVI values to 

represent 14 years at 16 days intervals.  

We used unsmoothed original MODIS NDVI data, although the NDVI time 

series curves show some irregularities or noise. Several authors have used 

different smoothing and fitting techniques to reduce these irregularities on the 

NDVI time series curve, such as moving average (Reed et al., 1994, Hill and 

Donald, 2003), curve fitting (Zhang et al., 2003, Lu and Guo, 2008), and 

applying filters (Sakamoto et al., 2005). Generally, most of the smoothing and 

curve fitting techniques tend to follow the general trend and average the values 

within windows. However, smoothing and curve fitting techniques could 

significantly reduce peaks in the curves that are valid NDVI values (Reed et 

al., 1994). Consequently, we applied no smoothing and compared the raw 

NDVI curves from the selected two pixels.  
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The phenologic metrics were derived from the NDVI time series curves to 

indicate the timing and magnitude of NDVI responses for certain phenologic 

stages of the crop (Figure 3.2). The definition and interpretation of the 

phenologic metrics were partly adapted from previous works of Hill et al (2003) 

and Reed et al. (1994). Table 3.2 provides the abbreviations, names and 

definitions of the metrics derived.  

 

Table 3.2. Definitions of the phenologic metrics derived from the NDVI dynamics. 

Abbreviation Metrics  Definition 

OnsetT Time of Onset of 

greenness 

The start time of high NDVI 

OnsetV Value of NDVI at the 
time of Onset 

NDVI at OnsetT 

MaxV Maximum NDVI value Maximum NDVI  

MaxT Time of Maximum 
NDVI 

The time of maximum NDVI 

OffsetT Time of Offset of 
Greenness 

The end time of high NDVI  

OffsetV NDVI value at Offset of 
greenness  

The NDVI value at OffsetT 

GreenUpSlope Rate of NDVI increase  Slope of NDVI between OnsetT and MaxT 

BrownDownSlope Rate of NDVI decrease Slope of NDVI between MaxT and OffsetT 

TINDVI Area under the curve Integrated area of NDVI under the curve  

TINDVIBeforeMax Area under the curve 
before MaxT 

Area under the curve left of  MaxT 

TINDVIAfterMax Area under the curve 
after MaxT 

Area under the curve right of MaxT 

LengthGS Length of growing 
season 

Time between OnsetT and OffsetT 

Asymmetry 
measure 

TINDVIBeforeMax - 
TINDVIAfterMax 

Approximation of the skewness of the 
curve 
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Figure 3.2.  A diagram showing phenologic metrics used. Details and abbreviations 
are explained in the text and in Table 2. The grey curve exemplifies 

NDVI from Wharminda in 2009. 

 

The onset of greenness is the NDVI value at the time (OnsetT) when an 

increase of greenness is observed at the start of the season, as the first few 

leaves appear above the ground.  We defined it as the value at the point where 

the rate of increase in NDVI values is higher than the previous successive 

observations, during the green-up period between March and June. Likewise, 

the offset of greenness (OffsetV) was defined as the value at the time (OffetT) 

when the decline of NDVI value is high in the maturity period between October 

and December. At Offset, the crop reaches its physiological maturity, when 

most of the leaves and the grain have turned to brown. The length of growing 

season (LengthGS) was calculated as the difference between OffsetT and 

OnsetT. The highest point of the curve, the maximum NDVI (MaxV), is attained 

during the anthesis phenological stage of the crop, which is after all the leaves 

are elongated and before phenological maturity. The gradient between the 

OnsetT and the MaxT is defined as the rate of greenup (GreenUpSlope). 

Similarly, the BrownDownSlope is defined as the slope between the Offset and 

the MaxV. Hill et al (2003) defined the ratio of these two parameters, 

GreenUpSlope and BrownDownSlope, as the quality of the season, which 

measures the skewness of the curve.  They also defined the area under the 

curve as ‘Time Integrated NDVI” (TINDVI), which they have shown to be 

potentially useful as an indicator of the seasonal condition in terms of 

agricultural productivity.  In addition to TINDVI, we have also defined 

TINDVIBeforeMax and TINDVAfterMax, which are the areas under the curve 
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before MaxT and after MaxT respectively (Figure 3.2). We approximated the 

NDVI integrals as a sum of the 16-day NDVI values.  

3.2.4 Statistical analysis 

We derived phenologic metrics for each year and each observation point for 14 

years, resulting in a total of 28 paired samples for each of the 9 metrics used 

in this study (see below in Table 3). For each metric we calculated the 

difference between low and high PAWC locations and tested if the average 

difference is different from zero using the nonparametric Wilcoxon signed-

rank test.  

When multiple tests performed on a single set of data, the probability of 

identifying at least one significant result due to chance increases as the 

number of tests increases. The probability of making such a type I error due 

to multiple tests, the familywise error rate (FWER), should be addressed. In 

our analysis, nine metrics were compared from a single set of data. We applied 

the Bonferroni-Holm’s correction, which controls for the FWER by reducing 

the significance probability threshold alpha (Holm, 1979, Armstrong, 2014).   

 

3.3 Results and Discussion 

3.3.1 NDVI dynamics 

The NDVI dynamics from the study area for the years 2000- 2013 are 

presented in Figure 3.3. These dynamics show vegetation growth as influenced 

by environmental and management factors including crop type, sawing date, 

and fertilizer.  As water availability is the driving factor in the region, the NDVI 

curve largely indicates the interaction between seasonal rainfall and the soil. 

The crops attained their maximum NDVI during the August – September 

period. The NDVI gradually decreases to reach a minimum during the maturity 

period, around October. As the actual time of onset and offset varied from year 

to year, the length of growing seasons varies accordingly. 

High rainfall over a short period allows a high PAWC soil to store more water 

than a low PAWC soil, for later use by the crop. On the other hand, a relatively 

regular frequency of rainfall could possibly favour low PAWC soils, as it keeps 

on filling the profile for timely usage by the crops. The latter case could 

disfavour the high PAWC soil as the water sinks deep into the ‘big bucket’, 
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especially during the early growth period where the crop roots are not yet 

extended deeply.  

The NDVI response on the two contrasting soils from both fields showed 

considerable variability that provides insight into soil–climate interactions. 

Annually, the difference between the phenologic metrics varies depending on 

the rainfall pattern (Figure 3.3). The effect of soil PAWC is greatest when the 

season starts with good rainfall which fills the soil profile and is followed by a 

dry period. In these years plants in the high PAWC soil benefit more than those 

in the low PAWC soil.  In the Minnipa field, 2001 was one such year, with 

nearly average March - May rainfall followed by a below average July and 

August. In this year, the curve from the lower PAWC soil point shows a faster 

increase in greenness to its maximum and drops more quickly in the down 

slope than that of the high PAWC soil (Figure 3.3a).  A similar observation was 

made in the Wharminda field in 2009, when the low PAWC soil (APSoil-395) 

reached its maximum NDVI earlier than the high PAWC soil after low rainfall 

in late July- August following a wet June (Figure 3.3b).  

If the rainfall is evenly distributed throughout the growing season, even if not 

very frequent, the soil profile will be filled regularly with the rain. Thus the 

influence of the soil bucket size on plant growth is likely to be minimal.  The 

2002, 2010 and 2011 years in the Minnipa field were characterized by 

relatively evenly distributed rainfall during the growing season.  

The Minnipa field had high growing season rainfall (300mm) in 2009. However 

most of the rains were during the high temperature summer; the growing 

season started with a dry May across the whole state. Sowing started on 5th of 

May (Eyre Peninsula Farming Systems, 2009). At this time there might have 

been water in the ‘bucket’ from the March rainfall, but that may have been 

used up quickly and the crop in the ‘low bucket’ soil faced water stress (Figure 

3.3a).  

At Minnipa, the NDVI curves from the two soils points show low NDVI around 

0.3-0.4 in years with lower growing season rainfall, such as 2003, 2006, 2007 

and 2008. The differences between the two curves are small compared to the 

other years. Similarly, in Wharminda, the minimum NDVI between 0.5-0.6 

was recorded in relatively lower rainfall years during the study period such as 

2006 and 2002. However the lowest maximum NDVI in Wharminda was higher 

than that of Minnipa. 
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The year 2006, the driest year on record for the state, had very low rainfall 

over the growing season, which caused the vegetation to onset late. The NDVI 

curve of the low PAWC soil at Minnipa (APSoil-353) shows a steeper increment 

in NDVI and attains maximum vegetation earlier than the high PAWC soil 

(APSoil-354). Similarly, 2008 had relatively low growing season rainfall, 

resulting in early onset and an early peak NDVI at the low soil point (APSoil-

353). In 2004, the curves in both fields show similar onset and maximum 

NDVI for the low bucket soils. The year 2005, on the other hand, started with 

a very warm and dry March and April, resulting in very late onset. In both 

fields, the onset in the low PAWC soils was earlier than that of high PAWC soil; 

the maximum NDVI was also attained earlier than in the high PAWC soil.  
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Figure 3.3. The NDVI dynamics curves of the two soil types with 16 days cumulative rainfall for the years 2000 – 2013 in (a) Minnipa  and (b) 
Wharminda fields Shaded bars represent 16days cumulative rainfall; solid line curve represents the higher PAWC soil in fields (APSoil-
353 in Minnipa and APSoil-395 in Wharminda); dotted curve represents lower PAWC soils in both fields (APSoil-354 in Minnipa and 

(APSoil-394 in Wharminda). 

(a) (b) 
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3.3.2 Comparison of phenologic metrics   

The use of metrics makes it possible to reduce the complexity of the NDVI 

dynamics. The paired soil conditions (low and high PAWC) under the same 

management provide the basis for an objective analysis of individual metrics 

with respect to their strength as indicators for PAWC.  

The NDVI time series show significant differences between the two soils with 

contrasting PAWC. We compare the average differences (n=28) of each of the 

phenological metric pairs and assess their statistical significance. The 

difference between GreenUpSlope and MaxV is significant, followed by the 

Asymmetry measure (Table 3.3). When considered individually, also MaxT, 

MaxV, and the timing of offset show a consistent effect (Table 3.3).  

 

Table 3.3. The Wilcoxon signed-rank test result for the metrics with Mean and 
standard deviation of the difference and the Bonferroni-Holm adjusted 

threshold values. The non-significant results are highlighted in bold. 

 

Below, we assess the effect of the differences in PAWC on the individual 

phenological metrics in detail.  

Onset, Offset of NDVI and length of the growing season 

The time of onset of NDVI shows high variability between the contrasting pair 

of soils and is weak indicators of differences in soil conditions. The difference 

in OnsetT between low and high PAWC soils ranged from nearly one day (2004) 

Metrics Mean  Std. deviation p-value Bonferroni Holm-

adjusted p-value 

GreenUpSlope 0.0165966 0.0197046 0.0000720

5 

0.00079 

MaxV 0.0602071

4 

0.07161184 0.0003655 0.00366 

Asymmetry 

measure 

0.9141134 1.486209 0.008225 0.07403 

MaxT 0.5357143 1.170063 0.01647 0.13176 

OffsetT 0.3339843 0.8627308 0.04512 0.31584 

OfsetV 0.1308932 0.7417776 0.05076 0.30456 

LengthGS 0.4609813 1.330122 0.06281 0.31405 

TINDVI 0.2261187 0.6961463 0.1042 0.41680 

OnsetV 0.0043848

6 

0.03316866 0.4652 1.39560 

BrownDownSlo

pe 

0.0279674

4 

0.1362654 0.567 1.13400 

OnsetT 0.0164659

4 

1.050088 0.6918 0.69180 
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to 23 days (2005) in Minnipa, with an average difference of 11.4 days. In 

Wharminda it ranged from 4 days (2001) to 27 days (2007), with an average 

of 13 days without any significant differences in the statistical analyses.   

The time of Offset shows difference between the two soils, in most years, the 

low PAWC soils reached to offset earlier than the corresponding high PAWC 

soil (indicated as a solid line in Figure 3.4 (a)). The difference ranges from 22.6 

days (2001) to 0.21 days (2008) both in Minnipa. The Wilcoxon signed–rank 

test showed some effect (p=0.045), but the family-wise error rate lack of 

significance and hence rejecting this variable as a good indicator of soil PAWC.  

The length of the greening season is less temporarily variable, the difference 

between soils is not strongly expressed, either (Table 3). This can be largely 

explained by their high dependency on seasonal weather conditions and 

management decisions of sowing date with little influence of soil conditions.  

The NDVI values before onset and after offset of NDVI (OnsetV and OffsetV) 

are also highly variable and are not indicative of differences in soils.  

Time of Maximum NDVI  

In contrast to the timing of onset and offset, MaxT from the two contrasting 

soils shows marked differences, but the variability is high. In most of the 

years, soils with low PAWC (APSoil-353 and APSoil-395) reached their 

maximum NDVI value earlier than their corresponding high PAWC soils, 

(indicated by solid lines in Figure 3.4(b)). For example, in the Minnipa field, 

the difference between the MaxT from the two contrasting soils reached a 

maximum of 48 days in 2001. This year was characterized by a wet June and 

dry July and August. The higher PAWC soil had the advantage of supporting 

the crops using stored water from the June rainfall up to the again increasing 

rainfall in September; the low PAWC soil on the other hand reached MaxT just 

before September. A similar pattern was observed in the Wharminda field in 

2009: a good June and July followed by drier August and September, resulting 

in early anthesis or maximum NDVI in the low PAWC soil. The distribution of 

the MaxT values in the two contrasting pairs of soils do not differ significantly 

(Bonferroni Holm adjusted p=0.143) (Table 3.3). 

Maximum NDVI 

The peak NDVI values (MaxV) were observed to be consistently higher in low 

PAWC soil in most of the years (Figure 3.4(c)).  Plants on low PAWC soils 

predominantly reach their peak stage earlier and appear to be able to establish 
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relatively higher leaf area than soils with a higher PAWC. Climatic conditions, 

particularly temperature and photoperiod during peak growth periods are 

different, likely causing the crop to react different. But the number of available 

samples was too low to empirically assess interactions of temperature and 

solar irradiation. The Wilcoxon signed rank test indicated that the maximum 

NDVI values from the low PAWC soils showed statistically significantly higher 

than values from high PAWC soils (Bonferroni Holms adjusted p < 0.004) 

(Table 3.3). Thus this metric could also be a good indicator for soil PAWC 

estimation. 

Slope of NDVI during the green-up period and after peak NDVI  

The rate of increase in NDVI during the green-up period from the two soils 

shows the most consistent differences (p<0.0008). In the majority of years, 

GreenUpSlope was higher for low PAWC soils (indicated as solid line in Figure 

3.4(d)). It is also evident that the difference in the green-up slope varies 

amongst years. The highest effect can be seen in 2001. The region experienced 

heavy rainfall during June, which eased in July, followed by a dry August (see 

also Figure 3.3). Hence there was sufficient water for a rapid start with a high, 

early peak for the low PAWC soil, which later suffered from water scarcity, 

resulting in in a high green-up slope. The big bucket soil still has sufficient 

water during the later period when water becomes limited. Here, NDVI shows 

a late, yet relatively high peak and consequently this soil shows a lower green-

up slope. On the contrary, in years like 2006, Wharminda faced very low 

rainfall which equally limited both soils, reflected as low difference in 

GreenUpSlope (Figure 3.4(d)). Similarly, in Minnipa during 2009, a more 

homogeneous rainfall distribution during the growing season produced less 

difference in GreenUpSlope between high and low PAWC soils.  This provides 

evidence that this metric has some potential to elucidate differences in plant 

available water content. However, homogeneity and amount of rainfall interact 

with the NDVI response to differences in PAWC.  

The slope of NDVI between maximum NDVI and Offset of greenness, the 

BrownDownSlope on the other hand doesn’t show significant difference to 

indicate the soil PAWC. This metric is influenced by after-anthesis rainfall 

pattern and whether water is available for the crop. Thus we would expect 

some soil signal and effect of PAWC. However, there is little pattern. 

BrownDownSlope shows high variability across observation years because of 

a high dependence on seasonal rainfall patterns. Furthermore, as it is the 
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resulting effect of both the MaxT and Offset T, parallel shifting of both of these 

metrics could minimize the total effect on the BrownDownSlope.  

TINDVI 

The time integrated NDVI (TINDVI) shows high variability between the two 

soils, and no significant difference was indicated in the Wilcoxon signed rank 

test (Table 3.3). However, consistent differences were recorded across the 

observation years. This indicates that climatic conditions are the main driving 

factors for TINDVI. TINDVI has repeatedly been reported by researchers to 

show a strong correlation with the annual yield or primary production (Tucker 

et al., 1980, Hill and Donald, 2003, Mkhabela et al., 2011). The PAWC has 

also been reported to explain the yield variability across the field to a large 

extent (Oliver et al., 2006, Armstrong et al., 2009, Moeller et al., 2009). 

Accordingly, one might expect a possible significant relationship between 

TINDVI and PAWC. However, the high influence of weather on TINDVI between 

years would likely conceal the effect of PAWC on yield. Unlike our study, most 

TINDVI – yield research has been conducted in relatively large geographic 

regions. Moreover, the correlations reported showed high variability across the 

annual precipitation of the regions, with high correlation recorded in the low 

rainfall regions (Mkhabela et al., 2011). Whilst TINDVI is sensitive to yield 

differences across years, the residual effect of soil conditions is inconsistent 

suggesting that this variable is not a good indicator of soil differences 

Asymmetry measures (TINDVIBeforeMax and TINDVIAfterMax) 

There is also a noticeable asymmetry of the NDVI curve for the contrasting 

soils, as expressed by differences between TINDVIBeforeMax and 

TINDVIAfterMax. The high PAWC soils in both fields showed positive (more 

area before peak NDVI) skewness in most of the years. The NDVI curves from 

the high PAWC soil shows higher Asymmetry measure than the low PAWC soil 

(indicated by a solid line in Figure 3.4 (e)). The Wilcoxon signed rank test 

indicated that high PAWC soil has bigger area under curve before maximum 

NDVI than the low PAWC soils (p<0.01), which is consistent with above 

observations, but insignificant after correcting for family-wise error (Table 

3.3). 
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Figure 3.4. Graphs showing individual indicators for a) OffsetT, b) MaxT, c) MaxV, 
d) GreenUpSlope and e) Asymmetry measure. Solid lines indicate 
years that follow the general trend, grey dotted lines indicate years in 

which the sign of the differences is inverse, indicate years with low 
PAWC soils attain larger difference between area before and after 

maximum NDVI than that of high PAWC soil. 
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3.3.3 Interpretation of phenologic metrics   

The higher slope of NDVI between onset and maximum NDVI (higher 

GreenUpSlope) in low PAWC soils than in high PAWC soils was one of the 

results observed in our study. As the low PAWC soil contains less water to be 

used by plants than the high PAWC soil, the observed effects are consequently 

due to the water stress. Studies on crop physiology also confirm that water 

plays an important role in the timing of growth stages. Robertson et al. (1994) 

studied wheat crops under water deficit at early, mid and late phenologic 

periods and found stressed crops reached anthesis stages on average 3 to 5 

days earlier than non-stressed crops. The study also showed that early stress 

had the largest effect on developmental timing compared to mid and late 

stresses (Robertson and Giunta, 1994). Experiments done by McMaster et al. 

(2003a) also show that winter wheat and barley under half average 

precipitation reached anthesis and maturity phenologic stages 13 and 15 days 

earlier than non-stressed crops respectively. Numbers of similar experimental 

studies have assessed the effect of inadequate water availability at various 

growth stages on the growth of different crops (Angus and Moncur, 1977, 

McMaster and Wilhelm, 2003a, McMaster, 2005, McMaster et al., 2011). 

Generally, these studies indicate that the timing and duration of growth stages 

are highly influenced by water availability; faster crop growth to the next 

phenologic stage is one of the evident effects of water stress during crop 

growth. This fact has also been observed in our study as shorter time to reach 

to maximum NDVI in low PAWC soil than high PAWC soil, which results in 

higher slope between onset and Maximum NDVI. 

The numbers of kernels and spikelets are determined during the reproductive 

phase of the crop, which is from  emergence to anthesis, where the crops gain 

maximum greenness, and afterwards the spikes start turning from light green 

to a yellowish colour (Satorre and Slafer, 1999, Acevedo et al., 2002, Stapper, 

2007, Fischer, 2011). Linking this to our NDVI dynamics curve, a slow rise to 

anthesis stage gives the plant enough time to develop a higher number of 

spikes and kernels than a quick rise. Thus the low PAWC soil, which is 

characterized by low production potential, has shorter time to reach to 

maximum NDVI than the high producing high PAWC soil. The grain-filling 

physiologic phase, ranging from anthesis to maturity and harvest, is the phase 

where the potential size and final weight of the grain is determined (Satorre 

and Slafer, 1999, Kouadio et al., 2012). However, previous studies report that 

the potential grain yield is more sensitive to the number of kernels than the 
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kernel weight (Satorre and Slafer, 1999, Acevedo et al., 2002). This fact has 

also been expressed as higher Asymmetry measure metric in high PAWC soil 

(more area before maximum NDVI than after Maximum NDVI) which indicates 

longer growth period and/or high NDVI, prior to maximum NDVI (anthesis) 

than after maximum NDVI.  

Previous studies have successfully predicted yield from different part of the 

NDVI curve (area under the curve - Tucker et al., 1980, ((Eg. decreasing curve 

- Kouadio et al., 2012). In particular the decreasing section of the NDVI time-

curve has been suggested as a predictor of crop yield (Kouadio et al., 2012). 

As the low PAWC soils have lower production potential than the high PAWC 

soils, the parameter derived from the decreasing curve (BrownDownSlope) was 

expected to capture this difference. However our result shows that 

BrownDownSlope was not a strong indicator of the soil PAWC, whereas it 

shows high variability across the observation years that could be indicative of 

weather conditions. Unlike our study, the research done by Kouadio et al. 

(2012) was undertaken over large geographic areas, across different years, in 

which the results more likely reflect climatic factors than soil differences. 

Moreover, our results show that the low PAWC soil is characterized by earlier 

Maximum NDVI and earlier Offset, which shifts both endpoints of the slope, 

results a very low difference in slope. This can be seen in the idealized curves 

(Figure 3.5) as the slope of the line connecting the maximum NDVI and Offset 

from the two contrasting soils have very low difference as both points are 

shifted.  

Single-date observations of NDVI have also been popularly used as an 

indicator for yield. Studies have reported high correlations between NDVI and 

crop yield during anthesis and grain filling periods (Labus et al., 2002, 

Mkhabela et al., 2011).  Accordingly, Ren et al. (Ren et al., 2008) suggested 

the most accurate crop yield prediction to be 40 days before harvest; likewise 

Mkhabela et al (2011) reported the optimal time for prediction as one to two 

months prior to harvest. Labus et al. (2002) also report a strong relationship 

in late July and August. A similar observation was made by Lyle and Ostendorf 

(Lyle and Ostendorf) in South Australian agricultural regions, with high 

correlation of yield and NDVI in early September. Our study supports these 

findings; in the late anthesis –grain filling stage NDVI on the High PAWC soil 

appears higher than that of the low PAWC soil. This is indicated in the 

idealized curve (Figure 3.5) as the high PAWC soil attains high NDVI on part 

of the curve after Maximum NDVI.   



  

61 

 

Labus et al. (2002) reported a strong relationship between time-integrated 

NDVI and yield at both regional and farm scales. They reported variation in 

the curves among locations, such as high amplitude/short length or low 

amplitude/long length, which might produce the same integrated NDVI 

values. These variations can be due to site-specific factors such as plant 

cultivar used or other farm management practices, soil and climate.. Moreover 

they suggested that the shape and timing of the growth profile might reveal 

more about the yield as it conceals the site specific factors.  Our results 

support this idea that the earlier part of the curve such as maximum NDVI 

and parameters derived from the increasing curve could be good indicators of 

site specific conditions, particularly soil water conditions at locations were 

water is the driving force for crop growth. 

3.3.4 Summary of phenological indicators for PAWC 

Generally, the maximum NDVI value, and Greenup slope are the two metrics 

found to be good indicators of the soil PAWC. Higher Maximum NDVI (MaxV) 

and higher GreenUpSlope (GreenUpSlope) was generally associated with the 

low PAWC soils as compared with the high PAWC soil. The other metrics 

compared: Time of Onset (OnsetT), NDVI at onset (OnsetV), time of Maximum 

NDVI (MaxT), Area under the curve (TINDVI), measure of asymmetry 

(Asymmetry measure), NDVI at offset (Offset V), time of Offset of greenness 

(OffsetT), the slope between maximum NDVI and offset (BrownDownSlope), 

and length of the growth season (LengthGS) were found to be not good 

indicators for the soil PAWC.  

Even though the above mentioned metrics difference, between high and low 

PAWC, is more observable during the years with good early season rainfall 

followed by a drier growing season, the low PAWC soils showed quicker growth 

in the earlier phenologic stages. Figure 3.5 shows the idealised dynamics of 

the high and low PAWC soils. Generally, the NDVI dynamics curve reflects the 

interaction of the soil PAWC with seasonal rainfall, which naturally has high 

variability. Under identical weather and management we would expect two 

soils with different PAWC to exhibit consistently different growth patterns. Low 

PAWC soils show faster growth with a higher peak but insufficient water to 

produce good yield. Moreover the water stress hastens the plant growth rate, 

shorting growth stages and reaching high NDVI point quicker.  Our results 

also show a high PAWC soil mostly got larger area under the curve before 

maximum NDVI than after maximum NDVI.     
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Figure 3.5. The idealized NDVI curves of vegetation from high and low PAWC soils: 
red – low PAWC soil and Black – high PAWC soil. Low PAWC soils 

showed higher maximum NDVI, steeper green-up slopes, and a higher 

time-integrated NDVI.  

 

 

3.4 Conclusion 

Our study demonstrates the potential of remote sensing derived phenologic 

metrics for understanding soil PAWC variability. The results indicate that 

there are clear differences in two phenologic metrics between high and low 

PAWC soils, with higher maximum NDVI and green-up slope in low PAWC 

soils. Plants growing on ‘big-bucket’ soils tend to be able to better budget their 

available water throughout the season, producing higher yields, whilst plants 

growing on soils with limited water holding capacity seem to grow faster 

initially and then run out of water sooner. Although there is substantial 

variability in the phenologic metrics, the differences between the two soils are 

apparent irrespective of a wide range of climatic conditions and management 

during the study period.  

The results presented here have implications for the structure of future PAWC 

models based on NDVI dynamics. Inverse models of PAWC using a 

combination of the NDVI metrics identified here seem possible. There are, 

however, some factors that may obscure the PAWC signal in the NDVI time 

series. The most prominent of these may be the effect of management (i.e. 

different crop types and varieties, fertiliser and herbicide applications) and 

more research is needed.  Furthermore, localised soil variability may be 

obscured in the relatively coarse 250m pixel size of the MODIS sensor, and 

higher resolution imagery, once available, may give better results.  
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The analysis in this study is unique in that it is long-term and that the soils 

selected for comparison are under the same climatic conditions and 

management (i.e. within a field), so the influence of other factors is minimised. 

As NDVI dynamics can be used as an indicator for PAWC, we are able to 

identify relative differences in PAWC within fields from publicly available 

satellite remote sensing of vegetation.  
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Abstract 

Precision Agriculture (PA) recognizes and manages intra-field spatial 

variability to increase profitability and reduced environmental impact. Site 

Specific Crop Management (SSCM), a form of PA, subdivides a cropping field 

into uniformly manageable zones, based on quantitative measurement of yield 

limiting factors. In Mediterranean environments, the spatial and temporal 

yield variability of rain-fed cropping system is strongly influenced by the 

spatial variability of Plant Available Water-holding Capacity (PAWC) and its 

strong interaction with temporally variable seasonal rainfall. The successful 

adoption of SSCM depends on the understanding of both spatial and temporal 

variabilities in cropping fields. Remote sensing phenological metrics provide 

information about the biophysical growth conditions of crops across fields. In 

this paper, we examine the potential of phenological metrics to assess the 

spatial and temporal crop yield variability across a cropping field. The study 

was conducted in a wheat cropping field at Minnipa, South Australia. The field 

was classified into three management zones using prolonged observations 

including soil assessment and multiple year yield data. The main analytical 

steps followed in this study were: calculation of the phenological metrics using 

time series NDVI data from Moderate Resolution Imaging Spectroradiometer 

(MODIS) for 15 years (2001-2015); producing spatial trend and temporal 

variability maps of phenological metrics; and finally, assessment of 

association between the spatial patterns and temporal variability of the 

metrics with management zones of the cropping field. The spatial trend of the 

seasonal peak NDVI metric showed significant association with the 

management zone pattern. In terms of temporal variability, Time-integrated 

NDVI (TINDVI) showed higher variability in the “good” zone compared with the 

“poor” zone. This indicates that the magnitude of the seasonal peak is more 

sensitive to soil related factors across the field, whereas TINDVI is more 

sensitive to seasonal variability. The interpretation of the association between 

phenological metrics and the management zone site conditions was discussed 

in relation to soil-climate interaction. The results demonstrate the potential of 

the phenological metrics to assess the spatial and temporal growth variability 

across cropping fields and to understand the soil-climate interaction. The 

approach presented in this paper provides a pathway to utilize phenological 

metrics for precision agricultural management application. 

 

Key words: Remote sensing, crop phenology, multi-temporal images, NDVI, 

precision agriculture, spatio-temporal variability 

 

4.1 Introduction 

Precision agriculture (PA) recognizes and manages intra-field spatial 

variability with the desired outcome of increasing profitability and reduced 

environmental impact (Bramley, 2009). Site Specific Crop Management 

(SSCM) is a form of PA that focuses on managing Spatial crop yield variability 

through matching agricultural inputs with the site potential. SSCM subdivides 

a cropping field into uniformly manageable zones, based on quantitative 
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measurement of yield limiting factors (Chang et al., 2003, Mzuku et al., 2005, 

Xiang et al., 2007).  

Spatial variability in crop yield is the result of complex interaction of factors 

influencing crop growth that include soil (such as nutrients, soil water 

availability), topographical factors (such as elevation) and climatic factors 

(such as rainfall and temperature) (Corwin, 2013). In addition to their spatial 

variability, some of these factors such as climate have temporal variability, 

which causes the spatial pattern of crop yield to vary from season to season. 

The optimal choice of PA over uniform farm management requires a sound 

understanding of such temporal variability, and is well framed by Whelan et 

al. (Whelan and McBratney, 2000) as a “null hypothesis” for precision 

agriculture i.e. ‘‘Given the large temporal variation evident in crop yield relative 

to the scale of a single field, then the optimal risk aversion strategy is uniform 

management’’. The degree of variability, and whether PA can be technically 

and economically beneficial to manage the variability, are the most important 

issues to be considered (Jochinke et al., 2007). Hence, SSCM requires a 

comprehensive understanding of both spatial and temporal variability in crop 

growth. 

In Mediterranean environments like South Australia, yield variability of rain-

fed crops is often controlled by soil water availability. The soil property Plant 

Available Water-holding Capacity (PAWC) explains a high degree of intra-field 

spatial variability (Oliver et al., 2006, Oliver et al., 2009, Rab et al., 2009). 

Hence, it is suggested as a basis for management zone delineation (Oliver et 

al., 2006). However, the impact of PAWC on crop yield is highly determined by 

the seasonal rainfall. For example, high PAWC soils in dry seasons may have 

small differences in yield compared with low PAWC soils, as they rarely filled 

to their capacity. On the other hand in years with good opening rains, but with 

decreasing water availability during the growing season, large differences in 

yield may occur between high and low PAWC soils. In such way, soil PAWC 

interacts with the seasonal rainfall and controls the spatial and temporal crop 

yield variability.  

While delineation of agricultural management zones vary in terms of the 

information used, it is generally based on soil and other yield determining 

factors (Corwin, 2013), with crop yield data often the primary source of 

information. However, interpreting the temporally variable pattern of multi-

year yield maps and making use of them for PA purpose is a challenging task 

for farmers. Researchers have developed a number of different approaches to 
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analyse multiple year yield data. The use of spatial and temporal variograms, 

where the semi variance is a function of spatial lag and temporal lag 

(McBratney et al., 2007, Florin et al., 2009), and development of spatial trend 

and temporal stability maps (Blackmore et al., 2003, Gunzenhauser and 

Shanahan, 2011) are two examples of approaches for interpretation of 

multiyear yield data. However, the availability of multiple year yield data, 

representing variable climatic conditions, has also been identified as a 

limitation (Kaspar et al., 2003, Kaspar et al., 2004, Gunzenhauser and 

Shanahan, 2011). As an alternative approach, a few studies have used remote 

sensing technology to observe spatial crop yield variability (Abuzar et al., 2004, 

Anwar et al., 2009). 

Remote sensing vegetation indices have potential to assess crop growth 

variability by quantifying relative growth and health condition of the crop. The 

Normalized Difference Vegetation Index (NDVI) is one of the most widely used 

indices to quantify vegetation vigour from the spectral reflectance of 

vegetation. NDVI has been used for many crop-monitoring applications (Smith 

et al., 1995, Abuzar et al., 2004, Mkhabela et al., 2011, Lyle et al., 2013). In 

precision agriculture, NDVI has been used as a surrogate for crop yield for 

SSCM zone delineation (Basso et al., 2001, Abuzar et al., 2004, Buttafuoco et 

al., 2015). While single images are useful for yield estimation, the inter-annual 

growth variability resulting from soil-climate interaction can produce spurious 

results depending on the image date selection (Maynard and Levi, 2017). 

Multi-temporal NDVI, on the other hand, provides an additional temporal 

dimension to uncover the vegetation dynamics. Remote sensing phenology 

estimates phenological growth stages including the start of season and end of 

season from multi-temporal vegetation index data (Reed et al., 2009, Araya et 

al., 2016). The derived metrics may not necessarily correspond directly to 

conventional, ground-based phenological events, but they provide important 

information about the vegetation growth dynamics that can be associated with 

environmental factors such as soil properties [e.g. (Araya et al., 2016, Maynard 

and Levi, 2017). 

The aim of this paper is to explore the potential of remote sensing derived 

phenological metrics for assessing spatio-temporal growth variability in 

cropping fields and to understand the soil-climate interactions that strongly 

influence crop yield. The specific objective of the project was to examine the 

relationship between spatial and temporal trend of phenological metrics and 

predefined management zones, in a South Australian cropping field where 
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intra-field variability is strongly attributed to soil PAWC. The approach 

presented in this paper provides a pathway for future studies in utilizing 

phenological metrics for management zone delineation. 

4.2 Materials and Methods 

4.2.1 Study area 

The study was conducted in the rain-fed cropping region of South Australia. 

The region experiences a Mediterranean climate, with hot summers and wet 

winters with average annual rainfall of approximately 325 mm and average 

growing season (April-October) rainfall of approximately 241 mm (Bureau of 

Meteorology, 2017). In this region, sowing starts in late March to May, 

following sufficient rainfall for seeding. Following seeding, the crop 

germinates, grows and progressively increases in cover to reach peak 

greenness in September. The crops ripen and reach senescence in October 

and harvested in November. 

The study site was a field close to Minnipa town, in Upper Eyre Peninsula 

(Figure 4.1). The field is approximately 65 ha in area, predominantly cultivated 

for wheat interspersed with some years of barley and pastures. This field was 

chosen for its soil types, which are representative of those across the wider 

region. It has also been studied as a focus site for Eyre Peninsula Agricultural 

Research Foundation (EPARF), where numbers of agricultural research and 

developmental trials have been undertaken (EPARF, 2014). The field is 

characterized by sandy loam to sandy clay loam soils, with the land zones of 

sandy rises reported to perform well in dry years, and shallow flats, which 

rarely perform well regardless of crop or pasture choice (Latta et al., 2013). 
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Figure 4.1. Location map of the study area on Eyre Peninsula, South Australia 

(Source: Geoscience Australia, 2001) 

 

4.2.2 Data 

4.2.2.1 NDVI  

Derivation of crop phenological information from remote sensing imagery 

requires a high temporal frequency of images. Moderate Resolution Imaging 

Spectroradiometer (MODIS) is one of the widely used sensors for phenological 

studies. For this study, we used the 16 days composite NDVI image product 

(MOD13Q1), which has 250m spatial resolution. The MOD13Q1 product is 

derived from daily NDVI data using the Constrained View Angle Maximum 

Value Composite algorithm which extracts the maximum NDVI value for each 

pixel within each 16 day interval to create a cloud-free composite image (Huete 

et al., 2002, Vermote et al., 2002, Solano et al., 2010). A total of 345 images 

between 01/01/2001 and 18/12/2015 were downloaded from NASA Land 

Processes Distributed Active Archive Center (LP DAAC) website.  

Overlaying the farm boundary on the MODIS NDVI image, using ArcGIS 10.2.1 

software (ESRI, 2014), the area intersects 17 pixels to varying degrees. In order 

to minimize signal contamination, only the six pixels with more than 75% of 

the pixel area lying within the field boundary were considered (Figure 4.2b).  
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4.2.2.2 Management Zone map 

The farm at Minnipa has long been a focus site for research on low rainfall 

cereal crops (EPARF, 2014). Management zones in this field are well 

understood and have been delineated on the basis of a long record of scientific 

observations. The field has been subdivided into three management zones: 

good, medium and poor, using historic yield data, soil Electro Magnetic survey 

(EM38) and elevation maps (Latta et al., 2013) (Figure 4.2a). The good zone is 

characterized by red light sandy clay loam with maximum rooting depth of 80 

cm and PAWC of 108 mm. The soil type in the medium zone is red loam with 

a constrained maximum rooting depth of 60 cm and PAWC of 74 mm. The 

poor zone, in contrast, has only 40 cm maximum rooting depth with soil type 

of red sandy clay loam (Minnipa heavy) and PAWC of 57 mm (Latta et al., 2013, 

The APSIM Initiative, 2017).  

Intersecting the MODIS pixel grids with the management zone map, the pixels 

were assigned management zone values based on their relative area coverage 

in the zone map, into continuous ranks between 1 (poor zone) and 3 (good 

zone). For example, a pixel covered 50% by good and 50% by medium zones 

was assigned the zone value of 2.5, (50/100*3+50/100*2). The resulting 

management zone values for the pixels range from 2.4 to 1.43. These values 

do not represent any quantification of management values, rather they intent 

to rank the relative performance. Figure 4.2b shows the selected six pixels. 

The management ranks for these pixels are presented in Table 4.1. 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Minnipa farm (a) management zone map (Latta et al., 2013) (b) the 6 

selected pixels overlaying the management zone map. 
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4.2.3 Analysis 

4.2.3.1 Overview of the approach 

Figure 4.3 summarizes the steps followed in our analysis. Firstly, the 

phenological metrics were derived from the MODIS NDVI data, their standard 

scores were calculated, and then the temporal mean and temporal variance of 

the metrics were calculated. Finally, the correlation between the management 

zone values and the spatial trend (temporal mean) and temporal variability 

(temporal variance) of each of the metrics were assessed.  

Table 4.1. The selected MODIS pixels with the proportion of good, medium and poor 

zones and their calculated zone values 

 

 

 

 

 

 

 

Figure 4.3. Conceptual workflow of the analysis 

 

 

 % Good % Medium % poor Zone Value 

Pixel 1 53.2 0 25.9 1.86 

Pixel 2 16.7 9.9 73.2 1.43 

Pixel 3 67.3 9.7 23.0 2.44 

Pixel 4 40.1 50.3 9.4 2.30 

Pixel 5 45.7 15.9 26.5 1.96 

Pixel 6 10.3 79.8 4.1 1.95 
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4.2.3.2 Extraction of phenological metrics 

The phenological metrics were extracted using ‘CropPhenology’ package 

(Araya et al., 2017), in the R software environment (The R core team, 2015). 

Figure 4.4 shows how the phenological metrics are defined on the NDVI growth 

dynamic curve. The inferred physiological descriptions of the defined metrics 

are summarized in Table 4.2. The PhenoMetrics function of the CropPhenology 

package takes the time series of MODIS NDVI imagery and the boundary 

shape file of the study area and provides outputs of 15 phenological metrics 

in raster file format.  

Table 4.2. Description of phenologic metrics and their relation to yield 

Metrics Definition on NDVI curve and Physiological description 

OnsetT The NDVI value at the start of the growth, seedling 

OnsetV The time when Onset is achieved 

MaxV The maximum NDVI value in the season 

MaxT The time when the MaxV attained, anthesis growth stage  

OffsetV The NDVI value at the end of the season 

OffsetT The time when Offset attained, senescence growth stage 

LengthGS The length of growing season 

BeforeMaxT The length of time between Onset and MaxV 

AfterMaxT The length of time between MaxV and Offset 

GreenUpSlope The rate of increase in NDVI value between Onset and MaxV 

BrownDownSlope The rate of decrease in NDVI value between MaxV and Offset 

TINDVI The area under the NDVI curve between Onset and Offset 

TINDVIBeforeMax The area under the NDVI curve between Onset and MaxV 

TINDVIAfterMax The area under the NDVI curve between MaxV and Offset 

Asymmetry The difference between BeforeMaxTINDVI and AfterMaxTINDVI 
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Figure 4.4. Illustration of NDVI dynamics and phenological metrics 

  

For the relative values at a given pixel to be comparable across time, we 

normalized the values relative to the mean of the field, using the standard 

score (Equation (4.1)). The standard score value at the given pixel indicates 

how the pixel value deviates from the field mean in the measure of the 

standard deviation. Accordingly, we calculated the pixel’s standard score for 

each phenological metrics. Blackmore et al. (2000) have used similar 

standardization to compare the relative yields among different crops. 

The standard score of the metric values for each pixel was calculated as 

follows: 

Standard scoreijk =
(Valueijk −  meanjk)

sdjk
 

Where Standard scoreijk is a standard score value of metric K, at pixel i for 

year j, Valueijk is the value of metric k at pixel i for a year j, meanjk and sdjk is 

the mean and standard deviation of the metric k across all pixels of year j. 

 

4.2.3.3 Spatial trend and temporal variability of phenological metrics 

Spatial trend map 

The temporal mean was calculated as the average metric value, at a pixel, over 

the year of interest (Equation (4.2)). It is adapted from Blackmore (2003), who 

used it for spatial yield trend mapping. The spatial trend map of a metric 

shows the spatial variability of the average value of the metric across 

…..…………...  (Equation 4.1) 
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observation years. A total of 15 spatial trend map were created for the 15 

metrics. 

The temporal mean of a pixel is calculated as: 

Temporal meanik =
∑ (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑐𝑜𝑟𝑒 ijk)

𝑗=2001

𝑗=2015

𝑛
 

Where Temporal Meanik is the mean value of phenological metric k for the pixel 

i, standard Scoreijk is the standard score value for phenological metric k at of 

pixel i on year j, and n is the total number of observation year. 

Temporal variability map  

The temporal variability map was created using the temporal variance over the 

observation years, adopted from (Blackmore et al., 2003). Temporal variability 

is classified into two categories: inter-year variability and relative temporal 

variability (Blackmore et al., 2003). Inter-year variability is the temporal 

variability caused by the change in annual rainfall, which affects the overall 

productivity of the field. The second category described how each part of the 

field behaved relative to the other parts from year to year. In this analysis, we 

are interested in second category, which assess the relative variability of 

growth at particular pixel, over the study period. This relative temporal 

variability was calculated using a temporal variance, a modified variance 

measured in a function of time (Whelan and McBratney, 2000, Blackmore et 

al., 2003) (Equation 4.3). The temporal variance of all metrics was calculated 

for each pixel across years, to form 15 temporal variability maps, for the 15 

metrics. The temporal variance of each metric across the season revealed the 

temporal variability of the growth conditions at the various phenological 

stages. The calculated temporal variance has low values if the pixel is stable 

over time and often has values close to the mean of the observation seasons. 

On the other hand, if the metric is temporally unstable, with high values in 

some years and low values in others, its temporal variance will be high. 

The temporal variance was calculated as  

Temporal varianceik =
∑ (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑐𝑜𝑟𝑒 ijk − 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑚𝑒𝑎𝑛i)

𝑗=2015
𝑗=2001

𝑛 − 1
 

Where Temporal Varianceik is the temporal variance at pixel i of metric k, 

standard scoreijk is the standard score of metric k at pixel i for year j, temporal 

meani is the temporal mean of for pixel i and n is the number of observation 

year. 

..………..…   (Equation 4.2) 

…..(Equation 4.3) 
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4.2.3.4 Relationship between management zone and trends of phenological 

metrics 

In this study, the monotonic relationship between the management zone 

values and the trends of the 15 phenological metrics were assessed. Spearman 

rank correlation was used to test the relative direction and strength of the 

relationship between the management zone pixel values and phenological 

metrics, in R computing environment. Spearman correlation ranks the 

variables and provides the correlation coefficient, rho (ρ) that indicates the 

strength of the correlation (Wilcox, 2009).   

 

 

4.3 Results and Discussion 

4.3.1 Relationship between management zone and spatial 

trend of phenologic metrics 

The Spearman rank correlations between management zone and the spatial 

trend of phenological metrics are shown in Table 4.3. In this analysis, we have 

undertaken multiple tests on a single dataset. This can introduce the 

probability of making type I errors, family wise error rate (FWER). To address 

this problem, we used the Bonferroni correction that adjusts the significance 

level (p-value) (Armstrong, 2014), by dividing the p-value by the number of 

comparisons made, which results a new p-value of 0.0333. 

The results indicate that the spatial trend of Max Value is significantly 

correlated with the management zone values (ρ(13) = 0.82, p-value = 0.024). 

Although the associations are not significant, the GreenUpSlope and MaxT 

showed high correlation coefficients, with different directions of association. 

The Asymmetry, TINDVIBeforeMax and BeforeMaxT metrics also showed 

moderate association with the management zone values. 
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Table 4.3.  Spearman correlation coefficient and statistical significance (p value) 

of the relationship between temporal mean of phenologic metrics and 

the management zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

This result corroborates previous observations that have recognized the ability 

of NDVI to estimate crop yield (Tucker et al., 1980, Quarmby et al., 1993, 

Doraiswamy et al., 2005). Although strong associations between NDVI and 

yield have been reported at differing stages during the growth period, these 

dates are mostly around heading and flowering stages (Smith et al., 1995, 

Shanahan et al., 2001, Abuzar et al., 2004, Schut et al., 2009, Mkhabela et 

al., 2011, Tagarakis et al., 2012, Lyle et al., 2013, Peralta et al., 2016). As 

crops often attain their maximum NDVI close to heading and flowering stages 

(Sakamoto et al., 2005), the high association of MaxValue with the 

management zone can be directly linked to these observations.  

The results also show trends of increasing Max Time and decreasing of 

GreenUpSlope, moving from the poor to good management zone. As the soil 

PAWC strongly relates with yield potential in South Australia, the observed 

relationship is likely be related with water availability. Numbers of researchers 

reported that water stress has a strong influence on crop growth stages with 

evident observation of faster growth to the next growth stages in water stressed 

crops. Under similar climatic conditions, plants in low PAWC soils will likely 

to face water stress between rainfall events, as there is less water stored in the 

Metrics rho (ρ) p-value 

OnsetV -0.214 0.662 

OnsetT -0.365 0.236 

MaxV 0.821 0.024 

MaxT 0.763 0.2357 

OffsetV -0.143 0.783 

OffsetT 0.286 0.556 

LengthGS 0.364 0.139 

BeforeMaxT 0.569 0.109 

AfterMaxT 0.036 0.964 

GreenUpSlope -0.763 0.2357 

BrownDownSlope -0.179 0.7131 

TINDVI 0.346 0.139 

TINDVIBeforeMax 0.587 0.134 

TINDVIAfterMax 0.036 0.964 

Asymmetry 0.607 0.167 
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soil profile compared with the high PAWC soils. The early Maximum (low MaxT) 

can then be related to the hasten growth of the crop to anthesis due to water 

stress in the poor zone (Angus and Moncur, 1977, McMaster et al., 2005, 

Araya et al., 2013, Araya et al., 2016). This is also reflected as faster rate of 

greenness, higher GreenUpSlope, in low PAWC soil. 

Similar observations of low Max Time and high GreenUpSlope were observed 

in our previous study (Araya et al., 2016). Unlike our current approach of 

averaging values across the years, the previous study considered paired 

comparison of pixels across number of years. The pared comparison study 

showed higher Max Values in low PAWC soils than the high PAWC soils. Such 

pattern of paired comparison observed in the previous study may average out 

thorough the observation years, in the current study, to reflect average higher 

Max Value for higher PAWC soils. 

The positive moderate association of Asymmetry, TINDVIBeforeMax and 

BeforeMaxT metrics, indicated that the good zones have higher values of these 

metrics than the poor zone. Generally, this observation shows that the good 

zone experienced longer time before the NDVI peak, higher area under the 

curve between the Onset and Maximum NDVI, and higher difference between 

TINDVIBeforeMax and TINDVIAfetrMax than poor zone. These differences are 

related with the high and late NDVI peak in the good zone than the poor zone, 

which is explained above. Furthermore, the trend of TINDVIBeforeMax in our 

analysis agrees with previous field studies that confirm the strong association 

of pre-anthesis growth with yield potential, as it is the time when the number 

of grains are determined (Poole and Hunt, 2014).  

 

4.3.2 Relationship between Management Zone and Temporal 

Variability of Phenological Metrics 

The seasons considered in this study, 2001 – 2015, were characterized by 

variable rainfall amount and seasonality. The temporal variance of the 

phenological metrics measures the relative variability of the metrics across the 

variable rainfall. The Spearman correlation analysis assessed the trend of 

temporal variability of phenological metrics across management zones (Table 

4.4). 
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Table 4.4 Spearman correlation coefficients and statistical significance (p value) 

of the relationship between temporal variability of phenologic metrics 

and the management zone. 

 

 

 

 

 

 

 

 

 

 

 

The results indicate that the temporal variability of TINDVI has a significant 

positive correlation with the management zone, indicating an increase of 

temporal variability from poor to good management zones. This variability 

demonstrates the interaction of the spatial soil variability with the temporal 

rainfall seasonality. In good seasons, the spatial variability of soil PAWC 

becomes significant, as the high PAWC soils store more water than the low 

PAWC soils. However, in dry seasons there will be less difference in stored 

water between the contrasting soils. This results in larger spatial variability in 

good seasons compared with dry seasons(Oliver et al., 2006, Wong and 

Asseng, 2006). Temporally, the good zone with high PAWC soil will have higher 

variability across variable seasons than the poor zone with low PAWC soils 

(Wong and Asseng, 2006).  

Previous research has reported that TINDVI can be a good indicator for crop 

production (Tucker et al., 1980, Hill and Donald, 2003, Mkhabela et al., 2011). 

However, the sensitivity of TINDVI for crop production depends on rainfall 

seasonality; it can be a good indicator for crop production when water is the 

limiting factor for crop growth (Hill and Donald, 2003). Considering the 

profound correlation between TINDVI and yield in cropping fields, the high 

temporal variability in TINDVI in good zone than in poor zone coincide well 

with the yield data observation in the study area. Yield data from EPARF 

Metrics rho (ρ) p-value 

OnsetV 0 1 

OnsetT 0.143 0.783 

MaxV 0.214 0.662 

MaxT -0.214 0.662 

OffsetV -0.357 0.44 

OffsetT -0.786 0.048 

LengthGS 0.393 0.396 

BeforeMaxT -0.286 0.556 

AfterMaxT -0.321 0.498 

GreenUpSlope -0.25 0.595 

BrownDownSlope -0.286 0.556 

TINDVI 0.857 0.018 

TINDVIBeforeMax 0.071 0.906 

TINDVIAfterMax 0.071 0.906 

Asymmetry -0.214 0.662 

66. 
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research shows higher difference in good zone (3.1t/ha) between the dry year 

2008 and the wet year 2010 than the poor zone (2.13t/ha) (Paterson et al., 

2011, Latta et al., 2013).  

The relationship between the temporal variability of MaxV and the 

management zone showed weak correlation. We have observed in the previous 

section that the spatial trend (temporal mean) of this metrics showed a strong 

correlation with ranks. The low correlation of temporal variability with the 

management zone can be interpreted as both the good and poor zones are 

variable to a similar degree with the higher mean values from good zone than 

the poor zone. Thus, the MaxV metrics is sensitive to spatial yield variability 

than temporal variability; on the other hand, TINDVI better reflects the 

temporal yield variability.  

 

4.3.3 Summary of Indicative Phenological Metrics for Crop 

Field Management 

Generally, our analysis demonstrates the potential of phenological metrics to 

recognize the intra-field crop growth variability and to provide a 

comprehensive understanding of soil-climate interactions. Single vegetation 

index images have been successfully utilized to recognize yield variability 

across a crop field (eg . Abuzar et al., 2004). However, the single image 

approach has been criticized for lacking information on intra-seasonal growth 

dynamics (Maynard and Levi, 2017). On the other hand, multi-temporal 

images and the derived phenological metrics uncover the intra-annual 

biophysical properties of the crop across the field, as driven by soil-climate 

interaction. This potentially provides a better understanding of both inter-

annual and intra-annual variability, which is a key factor to improve 

management practices.  

Furthermore, the method presented in this analysis show the efficacy of 

phenological metrics to recognize crop growth variability without demanding 

accumulated multi-year yield data. Considering the increasing availability of 

remote sensing imagery, the spatio-temporal variability estimation using 

phenological metrics can provide valuable information for PA suitability 

assessment in areas where there is limited availability of yield data.  

Currently, MODIS is the most appropriate imagery for such analysis due to 

its high temporal resolution. However, its coarse spatial resolution limits the 

application of this method to broad acre cropping. The technology of 
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integrating the higher spatial resolution of sensors such as Landsat or 

Sentinel with the temporal resolution of MODIS to generate high 

temporal/high spatial resolution datasets (Gao et al., 2017) may allow future 

application for smaller fields. Whilst these fused spatio-temporal datasets are 

presently not available to the public at broad extents, once available, may be 

utilized at a scale typical for yield mapping in precision agriculture today. In 

such a way, this paper provides a basis for further analysis to utilize 

phenological metrics for crop management support systems.  

 

4.4 Conclusions 

 

In this study, the spatial and temporal variability of crop growth was assessed 

using remote sensing phenological metrics in relation to the relative yield 

potential of sites in the field. Phenological metrics provide information about 

the temporal and spatial variability of plant growth across cropping fields. Our 

study demonstrates the potential of satellite based phenological metrics to 

provide information about site conditions relevant for management zone 

delineation. The results of our analysis show that Time-integrated NDVI 

reflects seasonal effect on crop growth, whereas the magnitude of NDVI peak 

strongly reflects the soil quality and showed spatial variability of long-term 

site conditions across the field. 

Crop yield response to PAWC is strongly influenced by the amount and 

seasonal distribution of rainfall, which is temporally variable. The effect is 

stronger when there is sufficient rainfall to fill the soil profile at the start of 

the season and the plants are dependent on deep stored soil-water as the 

season progresses. Phenological metrics provide comprehensive insight of the 

spatio-temporal crop growth variability across the variable seasons, which 

advances our understanding of soil-climate interaction across the cropping 

field. 

The method presented here provides a pathway towards better estimation of 

spatio-temporal variability, which is vital for PA success. It can be used to 

develop future, more detailed studies to fully utilize the potential of 

phenological indicators for site characterization through unravelling the 

complex spatio- temporal soil-climate interactions. 
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Chapter 5 
 

Spatial Estimation of Plant Available 
Water-holding Capacity using phenological 

indicators 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

 

 

 

 

 

 

 

 

 

This chapter is submitted for publication as:  

 

Araya, S., Ostendorf, B., Lyle, G., and Lewis, M. "Spatial estimation of Plant 
Available Water-holding Capacity using phenological indicators" Ecological 
Indicators (Under review) 
 

  



  

89 

 

Statement of Authorship 

 
 



90 

 

  



  

91 

 

Abstract 

Plant Available Water-holding Capacity (PAWC), the measurement of the 
maximum amount of water that can be stored in the soil for plant use, is one 
of the key factors influencing crop growth in Mediterranean rain-fed farming 
systems. The conventional PAWC measurement method is expensive and time-
consuming and hence, is impractical to satisfy the increasing demand for 
high-resolution PAWC spatial data using the conventional methods. To 
overcome this problem digital soil mapping techniques use surrogates and 
pedotransfer functions to predict PAWC. However, these methods are limited 
in their ability to map PAWC variability within the mapping units. Moreover, 
high uncertainty has been reported due to poor sampling density. This study 
addresses the need for an alternative approach to create detailed spatial 
estimations of PAWC.  
Remote sensing imagery is commonly used in digital soil mapping to infer soil 
properties. Soil PAWC has strong interaction with temporally variable climatic 
factors to change vegetation response both spatially and temporally. Hence 
multi-temporal vegetation indices that quantify inter-annual and intra-annual 
vegetation change may be better suited to infer this indicator. Phenological 
metrics derived from multi-temporal vegetation indices have been widely used 
as effective summaries of vegetation response to climate. In this study, the 
suitability of phenological metrics for spatial estimation of soil PAWC is 
assessed. The study was conducted in the South Australian Agricultural 
region, which is typified by Mediterranean climate.  
Firstly, phenological metrics were extracted from Moderate Resolution Imaging 
Spectroradiometer (MODIS) NDVI data, at 250m spatial resolution and 16 
days temporal resolution, for 15 seasons (2001 – 2015). And then, a linear 
mixed effect model was developed to assess the relationship between the 
phenological metrics and PAWC measurements, at point locations dispersed 
across the study area. The model was tested for spatial prediction of PAWC 
across the study area. Then, the predicted PAWC map was verified by 
assessing its correspondence with the broad scale soil-landscape PAWC map.  
The phenological metrics Maximum NDVI, Time of Maximum NDVI, and Offset 
Value were strongly correlated with PAWC. The model predicted PAWC map 
showed good agreement in spatial pattern with fair correspondence in values 
with the soil-landscape PAWC map, with overall accuracy of 52%. The 
predicted map shows distinct variability within soil map units, which is 
impossible to assess from soil sampling or through soil-landscape mapping. 
Most importantly, the pattern in the predicted map is not influenced by 
agricultural management boundaries. This study demonstrates the strong 
potential of remote sensing derived phenological metrics as spatial indicator 
for soil PAWC and provides unprecedented spatial detail for digital soil 
mapping at broader spatial scales. Thus, it narrows the gap between regional 
modelling and farm based management models. 

Keywords: PAWC, Phenological metrics, remote sensing, Digital Soil Mapping, 

MODIS, NDVI 

Highlights:  

 Remote sensing derived phenological metrics are potential indicators of soil 

PAWC. 

 Spatial estimation of PAWC using phenological metrics is a promising 

approach. 
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5.1 Introduction 

Regions with Mediterranean climate produce about 10% of the world’s grain 

production  (Acevedo et al., 1999). This climate is defined by its low, winter 

dominant rainfall and plant growth is strongly dependant on water stored in 

the soil (Arnfield, 2016). Rain-fed cropping in these regions are susceptible to 

climate change and future climate variability is a major cause of concern 

(Huang et al., 2016, Yang et al., 2016, Schlaepfer et al., 2017). Plant Available 

Water-holding Capacity (PAWC) of the soil is a critical indicator for plant 

growth in water limiting climates as it determines the maximum water that 

can be readily extracted by plants. In rain-fed cropping systems, differences 

in PAWC can explain a large proportion of yield variability (Oliver et al., 2006, 

Wong and Asseng, 2006). PAWC is a key indicator influencing the complex 

crop responses to climate (Wong and Asseng, 2006, Lawes et al., 2009, Wang 

et al., 2009).  As such, maps of soil conditions are essential variables in 

spatially explicit climate impact studies for sustainable agricultural practices 

(Wang et al., 2009, Yang et al., 2014, Yang et al., 2016).  

Adequately mapping the distribution of soil properties is a difficult task 

because of their high spatial variability and the challenge of choosing a 

representative field sample for soil analysis. (McBratney et al., 2003, 

Grunwald et al., 2011). This has led to the use of surrogates or pedotransfer 

functions (Hong et al., 2013, Ugbaje and Reuter, 2013) to assess the spatial 

pattern of soil conditions. In particular, PAWC is difficult to assess because it 

involves drying and rewetting of soil samples (Burk and Dalgliesh, 2013). At a 

field scale, spatial yield data has improved models of PAWC (Florin et al., 

2010). At the regional scale, mapping of PAWC could be enhanced by including 

topographical variables (Malone et al., 2009, Poggio et al., 2010, Padarian et 

al., 2014). However, these regional approaches have used existing soil maps 

and have had low success in mapping PAWC spatial variability within the 

mapping units (Hong et al., 2013, Grundy et al., 2015, Viscarra Rossel et al., 

2015). High uncertainty was also reported because of limited sampling density 

(Padarian et al., 2014). Although there is increasing need for spatial data of 

PAWC is becoming increasingly more important, reliable spatial information 

of this critical soil indicator for plant growth processes is lacking. 

Remote sensing methods have been employed to directly infer soil 

characteristics from surface reflectance of multispectral imagery (Metternicht 

and Zinck, 2003, Boettinger et al., 2008), thermal imagery (Yang et al., 2015) 
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and hyperspectral imagery (Summers et al., 2011). These methods are limited 

to small spatial extents. Furthermore, the surface conditions may not be 

indicative of soil conditions throughout the soil profile (Rossel et al., 2010). In 

particular, PAWC is a soil property that integrates over the entire rooting depth 

of plants. Hence indirect methods that assess vegetation conditions may be 

better suited to infer this indicator.  

Remote sensing has long been used to quantify vegetation condition using 

vegetation indices such as the Normalized Difference Vegetation Index (NDVI) 

(Tucker et al., 1980). Single images of remote sensing vegetation indices are 

commonly used in digital soil mapping (Sharma et al., 2006, Kim et al., 2012, 

Levi and Rasmussen, 2014) . However, mapping soil properties like PAWC that 

interact with climate demands multiple observations to understand soil 

modulation of vegetation response to climate variability. Hence, multi-

temporal vegetation index data can potentially quantify inter-annual and 

intra-annual vegetation changes from which such soil properties may be 

inferred.  

Multi-temporal vegetation indices have been used to derive phenological 

indices as effective summaries of vegetation response to climate (Reed et al., 

2009, Henebry and de Beurs, 2013). Sensors that provide vegetation indices 

at sufficient temporal resolution to evaluate phenological changes include 

Advanced Very High Resolution Radiometer (AVHRR) (Reed et al., 1994, 

Hermance et al., 2007, Colditz et al., 2008), and Moderate Resolution Imaging 

Spectrometer (MODIS) (Zhang et al., 2003, Sakamoto et al., 2005, Hmimina 

et al., 2013, Ma et al., 2013).  

The time series of vegetation indices plotted across time creates a curve that 

summarizes the growth dynamics of the plant. The curve can be systematically 

analysed to extract metrics that indicate growth dynamics at the particular 

season. Some of these metrics are: onset of greenness; offset of greenness; 

maximum NDVI; and time of maximum NDVI. Although these metrics may not 

be directly comparable to the ground-based phenological events, they provide 

a very important indication of growth factors (Reed et al., 2009, Araya et al., 

2016). Remote sensing derived phenological metrics have been widely used in 

many crop related studies including estimation of biomass (Hill and Donald, 

2003), crop yield forecast (Bolton and Friedl, 2013), crop type mapping (Zhong 

et al., 2011, Foerster et al., 2012). In soil studies, remote sensing phenology 

has been used for detection of soil salinity (Zhang et al., 2015) and soil 

capability mapping (Li et al., 2012). Remote sensing phenology has also been 
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used for estimation of soil texture (Maynard and Levi, 2017) and PAWC (Araya 

et al., 2016) at field level.  

The aim of this study was to evaluate the suitability of phenological metrics 

as an indicator for spatial prediction of soil PAWC across broad spatial scales. 

The objectives were to define the empirical association of remote sensing 

derived phenological metrics with existing  PAWC estimates in the agricultural 

region of South Australia. The specific objectives were to:  

(1) develop a regression model to evaluate the relationship between PAWC 

and remote sensing phenological metrics at locations where there are 

PAWC measurements; and  

 

(2) estimate the spatial pattern of PAWC at the broad scale and 

corroborate the estimates with landscape-scale soil maps. 

 

5.2 Materials and Methods 

5.2.1 Study area 

The study was conducted in the cropping region of South Australia (Figure 

5.1). This region is characterized by dry hot summers, wet cold winters, and 

variable rainfall (Lennartson, 2005). The average minimum and maximum 

rainfalls are 205 mm and 625 mm, respectively (Bureau of Meteorology, 2017). 

Wheat and barley are the predominant grains growing in the region (PIRSA, 

2017). 
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Figure 5.1. Map of the extent of the South Australian agricultural region with 
biogeographic subregions and major cropping district names. The 
locations of measured soil PAWC sample sites are also shown across 

the region. 

 

5.2.2 Overview of the approach 

The workflow of the study is illustrated in Figure 5.2. Firstly, the maps of 

phenological metrics were extracted from MODIS NDVI images using 

CropPhenology R package (Araya et al., 2017). Secondly, the regression model 

was developed to estimate PAWC using the derived phenological metrics, 

rainfall data and soil PAWC measurement points. Thirdly, the spatial PAWC 

map of the study area was estimated. The model was visually and 

quantitatively verified by comparing the predicted PAWC map with the 

landscape-scale PAWC map of the study area. In order to assess the degree of 

agreement between the predicted PAWC map and the existing landscape-scale 

map, the uncertainty between the landscape-scale PAWC map and the soil 

data used for calibrating our model was assessed.  

croping region of South Australia, 

subdivided in to biogeographic subregions 

Location of measured soil PAWC

sample sites (APSoil)
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Figure 5.2. Overview of the approach taken in this study: dashed arrow show 
inputs, solid arrows show direction of the analysis, and double arrows 

show comparisons. 

  

5.2.3 Data 

5.2.3.1 Soils 

APSoil PAWC measurements 

APSoil is a point-based dataset of soil PAWC measurement for representative 

soil profiles (Dalgliesh et al., 2012). The APSoil database is accessible as a 

standalone product from the Agricultural Production Systems sIMulator 

(APSIM) website (The APSIM initiative, 2015) or from Australian Soil Resource 

Information System (ASRIS) website (CSIRO Land and Water, 2013). PAWC is 

defined in the APSoil database as the maximum soil water available to be 

extracted by plants and is calculated from field measurement or laboratory 

soil analysis. The practical information and the methodologies of field PAWC 

measurement are well documented by Burk et al. (2013).   
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APSoil allows the user to create modified soil profiles from the existing 

database to fit local conditions. However, local knowledge and soil-landscape 

information are required to identify the appropriate soil type from the database 

(Dalgliesh et al., 2012, Verburg et al., 2015) and spatial extrapolation to the 

area of interest from dispersed point measurements cannot give reliable 

results. For our analysis, we used the 232 available PAWC measurements from 

APSoil database, located sparsely across the study area and with values 

ranging between 14 and 282 mm (Figure 5.1).  

Soil Landscape Map of South Australia  

In South Australia, the most comprehensive documentation of spatial soil 

information is the Soil Landscape Map of South Australia, presented at the 

scale of 1:100,000 (Hall et al., 2009). It shows the distribution of 40 soil 

attributes including surface soil texture, Available Water Holding Capacity 

(AWHC), and soil type. Although this soil data has a wide range of soil attribute 

information to provide a strong foundation for regional-level resource 

management and decision-making, it has been criticized for its inadequate 

resolution for farm-scale management decisions (Summers et al., 2011).  

The AWHC attribute was calculated on a regional basis using the available 

water holding capacity estimated for different soil texture classes adapted from 

previous studies (Dent, 1981). The total AWHC is defined as the sum of the 

capacity of each layer in the profile and is therefore directly comparable with 

the PAWC estimates in the APSIM database. Based on this calculation, the 

South Australian agricultural region was classified into five AWHC classes: 

Class 1 (more than 100 mm); Class 2 (70-100 mm); Class 3 (40-70 mm); Class 

4 (20-40 mm); and Class 5(less than 20 mm). The South Australian 

agricultural region is largely covered by Class 2 and Class 3 soil landscape 

units. Class 5 and Class 4 appear mainly in the western Eyre Peninsula and 

lower Yorke Peninsula regions, whereas Class 1 occurs in the central north 

and lower east parts of the region. The soil-landscape map for attribute AWHC 

was used in this analysis and is referred to as landscape-scale PAWC map 

throughout this paper.  

5.2.3.2 Rainfall 

The daily rainfall data were downloaded as raster images of 5 km spatial 

resolution (Bureau of Meteorology, 2017). The cumulative growing season 

rainfall for the period between April and October was extracted for each of the 

APSoil measurement locations across the South Australian agricultural 
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region. Across the APSoil locations, the lowest growing season rainfall was 

around 100 mm, reported in 2006 and 2012, and the highest was around 450 

mm, reported in 2013.  

5.2.3.3 Agricultural farm boundary data 

To distinguish cropping fields from native vegetation, a farm boundary and 

detailed land cover map of the region was needed. However, this did not exist 

at the regional scale. We used the generalized land use map of the region, 

which is publicly available through the ‘Data SA’ portal (South Australian 

Government, 2017). This land use spatial layer is derived from property 

cadastre and land use data of the state (Department of Planning Transport 

and Infrastructure, 2016). For this analysis, we extracted only the agricultural 

fields and masked out the non-cropping and native vegetation regions.  

5.2.3.4 Biogeographic subregion boundary data 

The Interim Biogeographic Regionalisation for Australia (IBRA) classifies the 

land surface of Australia based on combination of major environmental factors 

that influence vegetation growth (Thackway and Cresswell, 1995, 

Environment Australia, 2000). In this project we used the subregion 

boundaries from the IBRA dataset to classify the soil PAWC measurement sites 

into regions of similar climatic and geographic regions. The data was 

downloaded from Australian Government, Department of Environment and 

Energy web site http://www.environment.gov.au/. Using the biogeographic 

subregions of IBRA we subdivided our study area into eleven subregions, with 

variable number of PAWC soil sample sites in each (Figure 5.1) 

5.2.3.5 Phenological metrics derived from MODIS NDVI 

We used the 16 days MODIS NDVI composite (MOD13Q1) for phenologic 

metric calculation. The 16 days NDVI composite (MOD13Q1) is one of the 

MODIS vegetation products computed from the daily NDVI data using 

algorithms to choose the best pixel value from all the acquisitions during the 

16 days period to avoid cloud, heavy aerosols and water effects (Didan and 

Huete, 2006, Didan, 2015). This product has a spatial resolution of 250 m and 

is freely available for download from the National Aeronautics and Space 

Administration website (NASA, 2017). We downloaded 345 MODIS NDVI 

images of the region for the period 2001- 2015. The images were then 

reprojected to the South Australian Lambert projection using MODIS 

Reprojection Tool (USGS, 2011).  

http://www.environment.gov.au/
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The phenologic metrics were extracted for APSoil PAWC measurement 

locations, using the ‘CropPhenology’ package (Araya et al., 2017)  in R software 

environment (The R core team, 2015). The CropPhenology package produces 

15 phenological metrics per season. Note that some of the phenological metrics 

are defined on the basis of the other primary metrics. For example, the length 

of growing season (LengthGS) is defined as the difference between the Offset 

Time and Onset Time. Such derived metrics will have linear associations with 

the metrics defining them and may bias the statistical analysis  (Zuur et al., 

2010)  so, to avoid such collinearity among the variables, the derived metrics 

were excluded from the model. Hence, only six metrics, Onset Time, Onset 

Value, Max Value, Max Time, Offset Value, Offset Time, were included in the 

model (Table 5.1). Figure 5.3 illustrates the NDVI growth dynamics and the 

major phenological metrics.  

 Table 5.1. Summary of the six phenological metrics, of CropPhenology 
package, used in the analysis. 

 

 

 

 

 

 

 

 

Figure 5.3. NDVI dynamics curve with major phenological metrics 

Phenological 

metric 

Description  

Onset Value NDVI value measured at the start of the growth. It is inferred 

to the seedling growth stage of the crop 

Onset Time MODIS Image acquisition date for Onset Value 

Max Value Maximum NDVI value achieved during the season. 

Max Time MODIS Image acquisition date for Max Value.  It is inferred to 

anthesis physiological growth of the crop 

Offset Value NDVI value measured at the senesce of the crop 

Offset Time MODIS Image acquisition date for Offset value. It is inferred to 

the maturity physiological stage of the crop 
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5.2.4 Modelling the relationship between soil PAWC and 

phenological metrics  

To assess the relationship between the phenological metrics and the soil 

PAWC, a multiple linear regression model was developed in R software 

environment. The model used the six phenological metrics, growing season 

rainfall, biogeographic subregion and year as explanatory variables, with 

PAWC as a dependent variable. Firstly, the distributions of the variables were 

checked for normality using the histogram and normal Q-Q plot. 

Subsequently, the appropriate transformations were applied to the skewed 

variables using the ladder of power approach, i.e. going up the ladder to square 

or cube for left skewed variables; and down the ladder to square root and cube 

root for right skewed variables (Tukey, 1977). The variables PAWC and Max 

Value were skewed to the right and left, respectively. Accordingly, PAWC and 

Max Value were transformed using a cube root and cube transformation, 

respectively. Secondly, the dependent variables were tested for collinearity 

using the ‘Variance Inflation Factor’ (VIF) function from ‘Companion to Applied 

Regression’ (‘CAR’) package (Fox and Weisberg, 2011) in R environment. The 

‘VIF’ values for all the variables were below 3, verifying negligible collinearity 

among them (Zuur et al., 2010).  

Soil has inherent spatial trend resulting from the influence of the soil forming 

environmental and climatic conditions (McBratney et al., 2003). Typically, 

soils in high rainfall regions develop to have deeper rooting depth than those 

in the low rainfall regions. Such spatial correlation may bias the complete 

spatial randomness assumption of statistical analysis, and hence needed to 

be addressed (Bivand et al., 2008).  Accordingly, the biogeographic subregion 

were included in the model to address the spatial autocorrelation effect. The 

soil PAWC sample sites were classified into 11 subregions which were defined 

based on the regional climate, geology, landform and other environmental 

factors (Environment Australia, 2000). The spatial autocorrelation of the soil 

PAWC values under each subregion was tested using Moran’s I test (Paradis, 

2017) and found to be insignificant (p>0.05).  

This analysis relates multiple year phenological metrics from the entire time 

series with a single PAWC observation. This may cause deviation from the 

independent observations assumption of statistical analysis and result in 

temporal autocorrelation effects (Waller, 2004). To control the temporal 

autocorrelation effects, the year was added as a random variable. Thus, the 

model was redesigned to be a linear mixed effect model with PAWC as the 
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dependent variable and Onset Time, Onset Value, Offset Time, Offset Value, 

Max Time, Max Value, and Growing season rainfall as the fixed factor 

independent variables and Year and Subregion as a random factor 

independent variable. The model was implemented using ‘Linear Mixed-Effects 

Models using 'Eigen' and S4’ (‘lme4’) package (Bates et al., 2015).  

To select the best fit model, we used an automated model selection function, 

‘dredge’, from ‘Multi-Model Inference’ (‘MuMIN’) package (Barton, 2016) in R 

software. The ‘dredge’ function generates a set of models with combinations of 

variables from the global model and ranks them with the selected information 

criteria. We ran the ‘dredge’ function with the global model including all the 

independent variables and ranking the models using the corrected Akaike 

Information Criterion (AIC) (Akaike, 1981, Venables and Ripley, 2002, 

Montgomery et al., 2013). Accordingly, the best model (lowest AIC) included 

only Max Value, Max Time, and Offset Value variables.  

The resulting linear mixed effect model is represented in the Equation 5.1, 

where j represents a specific APSoil PAWC measurement point, GSRF 

represents growing season rainfall, Max Value, Offset Value and Max Time 

representing the phenological metrics derived location j at a Year (eg. 2001 – 

2015), S representing a dummy variable for 11 subregions and β and 𝑎 

represent the fixed and random effects regression coefficients, respectively and 

Ԑ  represents the error term in the model. The relative effects of the predictor 

variables  to the change in the response variable (PAWC) were assessed by the 

effects plot using the  ‘Effects’ package (Fox, 2003) in R environment.  

  

𝑃𝐴𝑊𝐶𝑗

1

3 = 𝛽0 + 𝛽1(𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒𝑗)3 + 𝛽2(𝑂𝑓𝑓𝑠𝑒𝑡 𝑉𝑎𝑙𝑢𝑒𝑗) + 𝛽3(𝑀𝑎𝑥 𝑇𝑖𝑚𝑒𝑗) +

𝛽4(𝐺𝑆𝑅𝐹 ) + 𝑎1(𝑌𝑒𝑎𝑟) + 𝑎2(𝑆) + Ԑ𝑗.…………………………………….… (Equation. 5.1) 

 

In addition to the mixed effects model, we also used a linear regression model 

with interaction term to assess the interaction of growing season rainfall and 

phenological metrics for variable PAWC values.  
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5.2.5 Spatial estimation of PAWC 

The linear mixed effects model (Equation 5.1) was tested for spatial PAWC 

prediction across the cropping zone of South Australia (approximately 58,000 

km2) at 250m spatial resolution. Seasonal phenological metrics for the 

cropping region from the MODIS NDVI data for 2001-2015 using 

CropPhenology package. The growing season rainfall classes were calculated 

from rainfall data. Then, a predicted PAWC map was created using these 

datasets as inputs for the model.    

5.2.6 Corroboration  

The model prediction was corroborated by testing the correspondence between 

the predicted PAWC map and the landscape-scale PAWC map. Importantly, 

when interpreting the results of the corroboration we need to consider both 

the map uncertainty of the landscape-scale map, as well as the difficulty in 

obtaining spatially representative APSoil field measurements. Firstly, an 

exploratory statistical analysis was done to assess the level of discrepancy 

between APSoil PAWC measurements and landscape-scale PAWC map units. 

Secondly, the correspondence between the predicted PAWC map and the 

landscape-scale PAWC map was assessed.   

We generated an error matrix of all pixels in the mapped area (total population) 

to calculate indices of the mapping success: overall accuracy, producer’s 

accuracy, user’s accuracy, and kappa. The overall accuracy measures the 

percentage of pixels which have predicted PAWC values that correspond with 

the landscape-scale PAWC values. The producer’s accuracy measures how 

well the classes in the landscape-scale PAWC map are identified as the similar 

class in the predicted PAWC map. And user accuracy measures how well the 

pixels in the given classes of the predicted PAWC map corresponds with the 

similar class in the landscape-scale PAWC map. The kappa value indicates 

how well the predicted map agreed with the landscape-scale PAWC map, 

taking into account the possibility of an agreement by chance (Landis and 

Koch, 1977, Congalton and Green, 2008).  

Equally important is the visual interpretation. It is widely acknowledged that 

management strongly influences plant growth and hence NDVI. Spatial 

patterns in NDVI, therefore, often show differences across paddock boundaries 

unlike soil pattern that vary consistently regardless of paddock boundaries. 

Hence, we expect to see a spatial pattern that is unrelated to management.  
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5.3 Results 

5.3.1 Relationship between PAWC and phenological metrics 

The parameters of the linear mixed effects model (Equation 5.1) are 

summarized in Table 2. The results indicate that the relationships between 

PAWC and all the phenological metrics are statistically significant (p<0.05).  

Table 5.2. Coefficients of the linear mixed effects model showing the 

relationship between the phenological metrics and soil PAWC 

 

 

 

 

 

 

Figure 5.4. Effect plots for PAWC determinants in South Australia based on the 
Soil PAWC measurments from APSoil database and phenological 
metrics for 2001 – 2015. The shaded bands show 0.95 confidence limits 

for the effects. 

The effect plots for the model, illustrate that Max Value and Max Time have 

strong positive relationships with PAWC whereas Offset Value has negative 

Determinants Estimate Standard error P value 

Intercept 3.18 0.54 0.000 

Max Value 1.76 0.29 0.000 

Offset Value -4.91 1.54 0.002 

Max Time 0.08 

67 

0.03 0.005 

GSRF 0.00 0.74 0.458 
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relationship with PAWC (Figure 5.4). The confidence band in the plot show the 

uncertainty of the relationship. The linear regression model with interaction 

terms of phenological metrics and growing season rainfall shows the effects of 

changes in growing season rainfall in the phenological metrics response for 

variable PAWC soils (Figure 5.5). 

 

 

Figure 5.5. Effects plot of the model with interaction variables of phenological 

metrics and rainfall 

 

Figure 5.6 illustrates the difference between the NDVI dynamics of the top and 

bottom quintiles of the APSoil PAWC measurements in the South Australian 

agricultural region. Plants from the higher PAWC soils (upper quintile) attain 

higher maximum NDVI, than that on low PAWC soils. Additionally, the 

maximum NDVI of the plants on the low PAWC soils occurs earlier than plants 

on high PAWC soils.  
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Figure 5.6. Comparison of the NDVI temporal curves from the highest and lowest 

PAWC soils 

 

The diagnostic information of the mixed effects model shows that the model 

presented a reasonably good fit. The histogram of the residuals presented a 

smooth shape (Figure 5.7). The Q-Q plot shows that the measured and 

estimated values follow similar distribution. The response versus fitted values 

are rather scattered, but the plot shows a general trend. The spatial 

dependency of the residuals of the mixed effects model was tested using 

Moran’s I test and the result indicates no spatial autocorrelation was observed 

(sd=0.02, P-value=0.87). 



106 

 

Figure 5.7. Diagnostic plots of the model 

 

5.3.2 Corroboration 

 

The comparison of the existing PAWC estimates from soil cores of APSoil 

database and landscape-scale PAWC map is summarized in the boxplot 

showing the variability of APSoil PAWC values within the landscape-scale 

PAWC map categories (Figure 5.8). It indicates a good correspondence of 

magnitudes between them, illustrated with correlated mean and median 

values. However, there is very high variability within the mapped soil 

landscape units, with highest variability in Class 1 (>100 mm) and Class 2 (70 

– 100 mm). The degree of agreement between the APSoil PAWC and the 

landscape-scale PAWC map is relatively low, with Kappa coefficient of 0.13. 
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Figure 5.8. A box plot comparing PAWC from the APSoil database and the 
landscape-scale PAWC map, with means represented as a black 
dots. 

Visually, the predicted PAWC map shows a reasonable correspondence of 

spatial pattern with the landscape-scale PAWC map. In both maps, high PAWC 

values were mapped in the Mid North and northern parts of Yorke Peninsula, 

and intermediate values dominating in Northern Murray and some parts of 

Western Eyre Peninsula with low value patches at the lower part of Yorke 

Peninsula and Northern Murray (Figure 5.9 a).  Moreover, the predicted map 

shows detailed pattern within the landscape-scale PAWC map units and 

consistently maintain this variability across farm boundaries. Figure 5.10 

shows an enlargement of predicted PAWC map of a landscape in the Eyre 

Peninsula with the cropping field boundaries. The PAWC pattern persists 

crossing the fields. This indicates that the model predictions do not 

correspond to differences in management but depict long-term spatial 

differences. 

The modelled PAWC values corresponds fairly well with the broad landscape-

scale PAWC map (Table 5.3). Fifty two percent of the pixels in the predicted 

map corresponded to the correct AWHC classes in the landscape-scale PAWC 

map. The difference in the User’s accuracy among the classes indicates that 

the degree of agreement between the two maps varies from class to class. 

Classes 2 and 3 have slightly higher User accuracies, indicating relatively 

higher number of pixels in these classes were estimated to have similar range 

of values. and Generally, the 31% Kappa coefficient value shows that the 

predicted map corresponds with the landscape-scale map with 31% better 

probability than a random agreement by chance.  
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Figure 5.9. Comparison of the model estimation (a) model predicted PAWC map (b) 
the landscape-scale PAWC map of the cropping farms in SA 

agricultural region. 
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Table 5.3. Error matrix and Kappa statistic for correspondence between predicted 
PAWC map and landscape-scale PAWC map, using pixel counts of the 

entire area. 

 

 
 

Figure 5.10. Predicted PAWC map of the landscape in Eyre Peninsula 

 

Landscape-scale 

PAWC map 

Predicted PAWC map 

< 20 
(Class 5) 

20 – 40 
(Class 4) 

40 – 70 
(Class 3) 

70 – 100 
(Class 2) 

>100 
(Class 1) 

Producer 
accuracy (%) 

< 20 (Class 5) 1,517 2,161 6,011 4,541 2,752 8% 

20 – 40 (Class 4) 1,686 6,240 13,362 19,897 18,669 10% 

40 – 70 ( Class 3) 3,031 7,351 116,772 98,947 30,220 46% 

70–100 (Class 2) 1,095 2,570 50,257 158,573 49,815 60% 

>100 (Class 1) 1,200 467 2,239 13,402 70,357 80% 

User accuracy (%) 18% 33% 62% 54% 41% Kappa =0.31 

OA= 52% 
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5.4 Discussion 

5.4.1 Relationship between PAWC and phenological metrics 

Results from this study show that the phenological metrics Offset Value, Max 

Time and Max Value have significant relationships with measured soil PAWC. 

The effect plots of our mixed model (Figure 5.4) indicate that high PAWC soils 

attain higher and later NDVI peak than low PAWC soils. This result coincides 

with reports from earlier research in crop phenology about the strong 

influence of soil moisture on crop growth, with observations of faster crop 

growth to the next phenologic stage in crops under water stress (McMaster et 

al., 2011). Numerous experimental studies have shown that crops under water 

stress reach anthesis and maturity stages earlier than non-stressed plants by 

3-15 days (Angus and Moncur, 1977, Robertson and Giunta, 1994, McMaster 

et al., 2005, McMaster et al., 2008). Soil PAWC controls soil water availability. 

Plants on low PAWC soil are likely to face greater water scarcity than those of 

high PAWC due to soils’ high capacity to hold water. Early maximum NDVI for 

low PAWC was also observed in our previous study, using  MODIS NDVI based 

phenological analysis (Araya et al., 2016).  

One aspect of our earlier study (Araya et al., 2016) differs from this study. Our 

earlier research compared contrasting soils from two farms on Eyre Peninsula 

under identical management. In contrast, at the spatial scale studied in this 

paper, it is impossible to obtain information management at the field scale. 

Therefore many aspects that influence plant growth, remain uncontrolled 

factors in the analysis. At the broad scale, we can expect that farming 

practices such as fertilizer rates and crop varieties are adapted to local soil 

conditions. In our previous study (Araya et al., 2016) we found that under 

identical management NDVI peaks earlier and higher on low PAWC soils. In 

the current study, we find higher NDVI peaks in higher PAWC soils, reflecting 

a generally higher plant leaf cover.  

The effects plot of the linear regression model with interaction variables of 

phenological metrics and growing season rainfall shows that the response of 

the phenological metrics to difference in PAWC varies with variable growing 

season rainfall (Figure 5.5). The relationships between the phenological 

metrics and PAWC are weak in lower growing season rainfall (GSRF=110) and 

get stronger as the growing season rainfall increases (GSRF = 320 and 

GSRF=400). This observation reflects the strong dependence of the vegetation 

– PAWC response on rainfall amount (Lawes et al., 2009, Oliver et al., 2009, 
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Rab et al., 2009). In low rainfall seasons the spatial variability of crop growth 

across variable PAWC soils is low as both high and low PAWC soils would not 

get adequate water to support crops. In high rainfall seasons, on the other 

hand, the high PAWC soils respond with higher crop growth than the low 

PAWC soils, as they are able to store more water for supporting the crop. As 

the result of such interactions, spatial growth variability increases with 

increase in growing season rainfall and larger temporal variability occurs in 

high PAWC soils compare with low PAWC soils (Wong and Asseng, 2006).  

The interactions between rainfall, spatial soil PAWC variability, and crop 

growth can be more intricate than consideration of only the growing season 

rainfall amount. Previous studies suggested that the crop growth response to 

differences in PAWC is directly influenced not only by growing season rainfall 

amount but also by the seasonal distribution of rainfall. The impact of PAWC 

on crop growth reduces in seasons with late rainfall, and the impact increases 

with high opening rainfall that reduces late in the growing season (Oliver et 

al., 2006, Lawes et al., 2009). Hence including a wide range of intra-annual 

rainfall distributions in the analysis is important. In our case, the study period 

was limited to the availability of MODIS imagery. Although our mixed effects 

model accounts for this intra-annual variability over 15 seasons (2001-2015), 

it is obvious that increasing the time series length can improve the results. 

However, this is currently only possible by compromising on spatial 

resolution. AVHRR offers the potential to increase the length of the time-series,  

with a rather low spatial resolution of 1km. Whilst potentially increasing the 

time series, the soil variability at the small scale will be averaged out, which 

restricts the method to homogeneous regions. Although MODIS imagery 

provides soil pattern at unprecedented detail, even the 250 m pixel size may 

have a limitation in areas with topographic undulations and variability of soil-

forming processes. Image fusion and advanced sensor inter-calibration 

techniques may combine the benefits of high spatial resolution with the 

temporal frequency of different sensors (Feng et al., 2006, Fu et al., 2013) and 

hence increase the spatial resolution for both MODIS and AVHRR-based 

analysis. In spite of the limitations of this study in space and time, the results 

show that analysis of temporal dynamics of NDVI is a promising step in the 

development of high-resolution spatial indicators of soil variability, 

substantially increasing the spatial detail that is currently possible.  

Besides the amount of rainfall, the seasonal distribution of rainfall also plays 

an important role in determining the crop growth response to PAWC. A marked 
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effect of PAWC on crop growth is observed when the season is defined by high 

pre-anthesis rainfall, which fills the soil profile to its capacity, followed by 

below average late rainfall. In such seasons, the crops depend on the 

additional soil stored water for the rest of growth period. On the other hand, 

high late rainfall minimizes the effect of soil PAWC on crop growth. For future 

studies, considering intra-seasonal rainfall pattern in the model can provide 

better insight of the crop-soil interaction and may replace the random 

variables used in this study to account for spatio-temporal rainfall pattern.  

5.4.2 Corroboration 

The issue of corroboration in digital soil mapping at broad spatial scales is 

challenging. Relating soil laboratory analysis with broad-scale observations at 

the landscape-scale is inherently difficult because the spatial heterogeneity of 

soils within the landscape units remains uncertain. The choice of soil 

sampling locations is often subjective and the representativeness of point data 

in space is generally unknown (Ostendorf, 2011). This is evidenced by our 

comparison of two highly useful, but different sources of spatial soil data: the 

soil landscape map of SA and the APSoil database. The method used for 

mapping the soil PAWC in these two datasets were different.  The APSoil 

measurements were collected using field and laboratory analysis of soil 

samples (Dalgliesh and Foale, 1998). On the other hand, the soil landscape 

units were defined based on local knowledge and experience using terrain and 

air photo interpretation (Maschmedt, 2000). Comparing the two soil data 

sources showed a significant but highly variable relationship between PAWC 

measurement and the landscape-scale PAWC estimates, which reveals the 

uncertainty of the homogenous landscape unit as well as the 

representativeness of the APSoil data point. Note that soil polygons depict 

broad classes and the heterogeneity within soil units is unknown. In addition, 

the boundaries of the soil polygons that represent changes in the soil property 

are uncertain due to subtle soil property change.    

In spite of these difficulties, a comparison between the landscape-scale PAWC 

map and our model predictions shows substantial agreement (Table 5.3). 

Although, there exist differences in the degree of agreement among the soil 

PAWC classes, 52% of the classes were classified into similar categories, with 

31% more probability than would have happened by chance.  

More importantly, our predicted map shows distinct variability within soil map 

units, which is impossible to assess from soil sampling or through soil-
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landscape mapping. Whilst direct quantitative validation is impossible 

because information about true values at the landscape-scale does not exist, 

it is notable that the predicted soil pattern does not reflect farm management 

boundaries (Figure 5.10). Different varieties, seeding time or fertilization are 

factors that influence crop growth and field boundaries can be readily 

observed in many raw single-time images (Ji, 1996, Turker and Kok, 2013).  

The mapped results, however, show consistent pattern irrespective of a wide 

variety of factors that vary amongst fields. The predicted PAWC pattern from 

our model is consistent across management boundaries as would be expected 

from soil pattern, providing additional qualitative evidence that phenology can 

be used as a spatial indicator for soil mapping at higher detail than currently 

existing datasets. 

5.4.3 Phenological indicators for spatial prediction of PAWC  

The method presented in this paper shows the potential of remote sensing 

derived phenological indicators for soil PAWC prediction. The study 

demonstrates the ability of phenological metrics to provide detailed soil PAWC 

pattern at the broad spatial scale. This can potentially provide a pathway 

toward addressing the demands of high spatial resolution soil information. 

This will benefit many agronomic model applications by providing spatially 

explicit soil information for agronomic management decisions which would 

otherwise use extrapolated soil information from the available databases. 

Furthermore, it highlights a step towards a high resolution spatial modelling 

of climate-change responses that account for soil variability.  

The method presented here shows the potential of remote sensing phenological 

indicators to predict soil PAWC in the Mediterranean climate of the South 

Australian agricultural region, where plant growth strongly influenced by soil 

PAWC. This approach can be used in similar environments, however, the 

model needs calibration using measured soil PAWC points across the area of 

interest. To use remote sensing phenological indicators for spatial mapping of 

other soil properties, the relationship between the particular soil property and 

the phenological growth properties of the plants that can be identified by 

remote sensing spectral responses needs to be comprehensively considered.  
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5.5 Conclusion  

In this study, we have assessed the relationship between field measured PAWC 

and phenological metrics derived from remote sensing data, across the South 

Australian agricultural region. The results showed that the maximum NDVI 

(the greenness at anthesis), the time of maximum NDVI (the time of anthesis) 

and the NDVI value at Offset (the greenness at maturity) have strong 

relationships to soil PAWC. Generally, the high PAWC soils showed higher and 

later Maximum NDVI, and lower Onset and Offset NDVI than the low PAWC 

soils.  

Furthermore, the study provided further evidence that the crop growth 

response to differences in soil PAWC depends on the amount of growing season 

rainfall. The results from our analysis shows that the relationship between 

phenological metrics Max Value, Max Time and Offset Value showed certain 

trends with increasing of the growing season rainfall. In dry years, with low 

growing season rainfall, the crop growth response to difference in PAWC is 

weaker as compared to wet season where the crop growth response shows 

high correlation with soil PAWC. 

Our study demonstrates strong potential of remote sensing derived 

phenological metrics as indicators for soil conditions, providing 

unprecedented spatial detail for digital soil mapping at broad spatial scales. 

This study has shown that there is a consistent PAWC signal in the NDVI 

dynamics that can be utilized to develop indicators of soil condition. Hence, it 

provides an alternative approach for the future broad scale high-resolution 

soil mapping and narrows the gap in spatial detail between regional modelling 

and farm based management models. Whilst this paper used MODIS imagery 

at 250m pixel size, an increasing availability of fine-resolution satellite 

imagery and the technological advancement of image fusion techniques 

provides an encouraging future for advancing soil indicator development and 

digital soil mapping.  
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6.1 Overview of the research  

In water limited Mediterranean climates, information on the spatial 

distribution of soil Plant Available Water-holding Capacity (PAWC) is very 

important for many agricultural activities. It explains a large portion of yield 

variability across cropping fields. However, the field measurement of soil 

PAWC is very difficult and time consuming. Hence, improved digital soil 

mapping techniques are required.  

This thesis developed a methodological framework to estimate PAWC at 

improved spatial resolution using a remote sensing based approach. To 

achieve this, the research examined the potential of multi-temporal remote 

sensing vegetation index data to understand soil-climate interactions and to 

estimate soil PAWC at improved spatial resolution compared to existing 

landscape-scale maps. The objectives of this research were: (1) to design an 

easy to use tool to analyse the vegetation dynamics from multi-temporal 

remote sensing imagery; (2) to assess the use of vegetation dynamics for 

understanding the soil-crop response to differences in soil PAWC across the 

variable seasonal rainfall and to identify indicative parameters from crop 

growth dynamics for soil PAWC; (3) to assess the efficiency of phenological 

metrics to assess the spatio-temporal growth variability in cropping fields for 

agricultural management purposes; and (4) to assess the potential of multi-

temporal vegetation index data for high resolution broad scale spatial 

estimation of soil PAWC.  

These objectives have been addressed in the papers that comprise this thesis. 

The major findings and contributions of this research are summarised here. 

 

6.2 Major research contributions 

6.2.1 ‘CropPhenology’: An easy to use, new software package 

for phenological metric extraction from vegetation 

index images  

The present research provides a new software package, CropPhenology that 

was designed to extract phenological metrics from time series vegetation index 

data in the R statistical software environment. CropPhenology extracts 15 

phenological metrics directly from downloaded remotely sensed images with 

minor pre-processing steps. It also provides hypothetical inferences to the 
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corresponding crop growth stages, for ease of interpretation. The output 

metrics of the package are presented in raster format for easy integration with 

other spatial data. The package also offers a function called “MultiPointsPlot” 

to allow plotting of time series vegetation index values from different locations 

for comparison of the growth dynamics.  

The package developed, ‘CropPhenology’, and several worked examples from 

South Australian cropping regions were presented in Chapter 2 of this thesis. 

Most importantly, it was used as a tool for analyzing data for all subsequent 

stages of this research. 

The source code for CropPhenology package is available on Github repository 

at https://github.com/SofanitAraya/CropPhenology. The documentation and 

brief descriptions on how to use the package are provided in Appendix A and 

B. 

With growing availability of archive remote sensing data, application of multi-

temporal vegetation index data is increasingly being applied in many 

environmental studies. The package CropPhenology can be easily accessed, 

installed and adopted to be used as a tool for such applications including crop 

type detection, regional crop yield estimation, detection of spatio-temporal 

phenological pattern and similar crop related studies. Moreover, 

CropPhenology minimizes the technical difficulties involved in data pre-

processing and processing stages and allow adaptation to new users and those 

who are less technically proficient. Being in an increasingly popular R 

environment, CropPhenology can be easily integrate into a pipeline of 

processing. For example, CropPhenology can take input from automatic 

downloading and pre-processing packages such as MODIStsp (Busetto and 

Ranghetti, 2016b) and feed the output raster metrics as an input to a remote 

sensing processing tools such as RStoolbox (Leutner and Horning, 2017) for 

post processing such as image classification. As such CropPhenology is an 

easy-to-use tool for future crop related studies. 

 

 

 

https://github.com/SofanitAraya/CropPhenology
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6.2.2 A new approach to improve understanding of soil – 

climate interaction and to identify potential indicators 

for soil PAWC 

In cropping regions, one of the most evident indicators of differences in PAWC 

is temporal and spatial crop growth variability resulting from its strong 

interaction with rainfall seasonality. Multi-temporal vegetation index data 

allow synoptic observation and quantification of these temporal and spatial 

variabilities.  

The present research assessed the use of multi-temporal vegetation index data 

to gain an improved understanding of the soil-crop response to rainfall 

variability and to infer about soil PAWC. This approach was tested in two grain 

cropping fields in South Australia and presented in Chapter 3. To achieve this, 

phenologic metrics from time series of MODIS NDVI data (from 2000 – 2013) 

were examined for crops grown in soils of contrasting PAWC values. In order 

to exclude the agricultural management effects paired soils from the same 

cropping field were considered.  The results demonstrated that the vegetation 

dynamics can provide improved understanding of the soil-crop response for 

variable rainfall. Empirical assessment of the phenological metrics from the 

contrasting soils indicated that the phenological metrics, peak NDVI (Max 

Value), the time of peak NDVI (Max Time), and the rate of NDVI increase from 

onset to peak NDVI (GreenUpSlope) were significantly related with soil PAWC.  

The study demonstrated the existence of a signal in multi-temporal vegetation 

index data, which can be used to infer soil PAWC. These metrics are suggested 

as indicators of soil PAWC across rain-fed cropping fields. This highlighted the 

potential of the approach for future spatial soil PAWC prediction studies. 

Furthermore, the approach presented may assist future studies involving soil-

crop-climate interaction, through the use of multi-temporal vegetation index 

data to observe inter-annual and intra-annual crop growth variability with 

variable climatic conditions. 
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6.2.3 An alternative approach for understanding spatio-

temporal growth variability in cropping fields to 

improve crop management system 

Understanding of the spatial and temporal variability in crop yield is an 

essential step for advanced crop management systems. Site specific crop 

management technique uses yield data from previous years to subdivide fields 

into regions of similar production that can be managed uniformly and more 

precisely.  

Chapter 4 of the thesis tested the effectiveness of the remote sensing derived 

phenological metrics to assess the spatial and temporal variability in crop 

growth across the agricultural management zones. The associations between 

the phenological metrics and the predefined agricultural management zones, 

in a cropping field in the South Australian agricultural region were empirically 

assessed. The ranked correlation between the management zone and the 

temporal mean and variance were analysed to characterize the phenological 

metrics in terms of their capability to indicate temporal and spatial 

variabilities. The results demonstrated that the phenological metric TINDVI 

(area under the NDVI temporal curve) indicates temporal variability in crop 

growth that is sensitive to change in climatic conditions, whereas the metric 

Max Value (Maximum NDVI Value of the season) shows high sensitivity to 

spatial crop growth variability that may relate to soil condition. 

The method outlined in this chapter presents a pathway towards better 

recognition of spatio-temporal variability in crop growth across the 

agricultural  management zones using remote sensing vegetation index data. 

This alternative approach will provide valuable information to support 

precision agriculture practices, especially in areas where adoption of the 

technology is in its infancy.   

6.2.4 A new approach for spatial estimation of soil PAWC 

In Chapter 3, this thesis shows that the phenological metrics derived from 

multi-temporal vegetation index data are indicators of soil PAWC, under 

controlled climatic and management effects. The present study assessed the 

potential of the phenological metrics for spatial estimation of soil PAWC. The 

method was tested in the South Australian agricultural region and it is 

presented in Chapter 5.   
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In this part of the research, phenological metrics were calculated from MODIS 

NDVI data (MOD13Q1) for 15 years (from 2001-2015) using the 

CropPhenology package, developed in Chapter 2. The association between the 

measured PAWC values and phenological metrics and seasonal rainfall was 

modeled using a linear mixed effects model. The model was then tested for 

spatial prediction of PAWC across the entire extent of the South Australian 

rain-fed agricultural region. The model prediction was corroborated by 

assessing the correspondence between the model predicted PAWC map and 

the landscape-scale PAWC map. In spite of the differences between the model 

predicted PAWC map and the landscape-scale PAWC map in spatial scale and 

method of soil PAWC assessment, they corresponds fairly well with an overall 

accuracy of 52% and a Kappa coefficient value of 0.31. More importantly, the 

predicted map showed distinct spatial variability within soil map units, which 

has been impossible to assess from discrete soil sampling or through soil-

landscape mapping.  

Whilst direct quantitative validation of the predicted PAWC map is not possible 

because field measurement of soil PAWC at the landscape-scale does not exist, 

the predicted broad soil patterns were similar with those shown by the 

landscape-scale PAWC map. It is notable that the pattern of PAWC is 

consistent across agricultural management boundaries and that the approach 

effectively removes the dominating spatial pattern of paddocks in the satellite 

imagery, representing PAWC spatial information at previously unachievable 

spatial detail.  

This study presented a new method for spatial mapping of soil PAWC. It has 

shown that there is a consistent PAWC signal in the NDVI dynamics that can 

be utilized to develop broad-scale high-resolution indicators of soil condition. 

Thus, it narrows the gap in spatial detail between regional modelling and farm 

based management models.  

The results from the this study have demonstrated that multi-temporal 

vegetation index data can improve the digital soil mapping efforts for soil 

PAWC and possibly other soil properties after additional research. In such a 

way, the approach in this research paves a way for additional research to 

estimate other soil properties adopting similar methods. 
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6.3 Recommendation for future research 

This thesis presented and implemented remote sensing based approaches to 

estimate soil PAWC at improved spatial resolution. The study further indicates 

the prospects of future research, as outlined here. 

 

6.3.1 Improvement on CropPhenology package 

The CropPhenology package has been used successfully as a tool for the all 

components in this research. However, it may have limitations that need to be 

considered for future work. One limitation is that the package is unable to 

automatically handle double or triple cropping systems. Although it is possible 

to use the package by manually separating the input image sequences in to 

multiple growing seasons, modification of CropPhenology is required for 

automated application in environments with multiple growing seasons.  

 

6.3.2 Improved spatial scale 

The approach presented in this research demanded high temporal resolution 

vegetation index data to monitor the vegetation dynamics across the growth 

season of annual crops. Equally important, high spatial resolution vegetation 

index data is required to capture the variable nature of soil across cropping 

fields. However, remote sensing data often comes with a trade-off between 

spatial and temporal resolutions. In this research the MODIS vegetation 

product (MOD13Q1), with temporal resolution of 16 days was used for 

monitoring crop growth across the growing season. Although the use of 

MODIS vegetation index product was successful in providing improved 

resolution of soil information, its coarse spatial resolution limits its application 

to broadacre cropping. Advancement in image fusion provides a promising 

future for integrating high spatial resolution images with high temporal 

resolution images (Fu et al., 2013, Gao et al., 2017).  New research has 

demonstrated the potential of using image fusion algorithms to obtain a 

dataset with the high temporal resolution of MODIS and higher spatial 

resolution of Landsat for crop growth monitoring applications (Dong et al., 

2016). Future research is recommended to explore the method presented in 

this thesis using such fused images for estimation with high spatial resolution 

that may provide ideal soil maps for field scale agricultural management.  
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6.3.3 Adoption of the approach 

This thesis presented the use of remote sensing derived crop phenological 

metrics to estimate soil PAWC, implemented in the South Australian 

agricultural region, which is characterized by a Mediterranean climate. In 

general terms, crop variability is strongly related to soil physical properties. 

Considering such strong crop-soil relationship, the method used in this 

research may be used to estimate other soil properties. However, the efficacy 

of multi-temporal vegetation index data for assessing other soil properties 

depends on the influence of the desired soil property on vegetation growth.  

Further research is recommended to test the use of multi-temporal vegetation 

index data for prediction of other soil properties.  

A key to adoption is the availability of a vegetation indicator at high spatial 

and temporal scale. The approach is not limited to MODIS, but currently this 

sensor provides an excellent temporal resolution and extent, compromising on 

the spatial scale. Other satellite imagery is available at similar spatial spatial 

and revisit frequency (MERIS) and could be used. Different spectral bands may 

be more suitable in other parts of the world and further testing may be 

desirable. The key to a successful adoption is a) a proven definition of an 

imaging sensor to discriminate vegetation condition, b) the spatial resolution 

to match vegetation pattern in the region of interest, c) the temporal resolution 

of available imagery.  There is a variety of different sensors available that fore 

or less fulfil individual criteria. In different regions of the world different 

sensors may have different suitability to fulfil the criteria (e.g. satellite radar 

in areas of high cloud cover).   

Considering the inherent relationship between soil-stored water and plant 

phenological growth stages, there is no foreseen limitation to adopt the 

methodology to other climatic regions as long as spatio-tmporal imagery and 

suitable vegetation indices are available. The method presented in this thesis 

was implemented and tested in Mediterranean climate of South Australian 

agricultural region. However, further research is recommended to test the 

observed relationship between the phenological metrics and soil PAWC in the 

region.  
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6.3.4 Improvement in estimation accuracy 

Soil property estimation using remote sensing vegetation index data requires 

the inclusion of variable seasonal conditions, to maximize the vegetation 

response variability (Maynard and Levi, 2017). Whilst this study has 

incorporated sufficient observations for assessment of temporal variability, the 

number of years was limited to fifteen due to the availability of MODIS 

vegetation index data. Application of this method with additional years, as the 

MODIS archive continues to grow, would potentially improve results as it 

allows consideration of more climatic variability. Future research is 

recommended to test the accuracy possibly gained from increasing the 

climatic ranges through increasing number of years.  

 

6.4 Conclusion 

This thesis contributes to the development of an innovative method for the 

understanding of soil-climate-vegetation interactions and improved 

estimation of soil PAWC, in rain-fed cropping regions. The method is tested in 

the Mediterranean climatic setting of South Australia where water is the 

limiting factor for the plant growth.  

Developing a comprehensive method to assess the vegetation change for 

differences in soil PAWC using multi-temporal vegetation index data, is the 

core of this research. The approach outlined in this thesis involved extraction 

of phenological metrics from the time-series vegetation index data to obtain 

summarized information that indicate soil properties. Design and 

implementation of a new software package, “CropPhenology”, for extracting 

phenological metrics from time series vegetation index data is one of the 

significant contributions of this thesis. The package is built with minimal 

requirements for pre- and post-processing steps.   

This research successfully demonstrates the use of multi-temporal vegetation 

index data for improved understanding of the soil-climate-vegetation 

interaction and for identification of differences in PAWC. The research also 

investigated the efficiency of phenological metrics for assessing the spatio-

temporal growth variability in cropping fields, for precision agricultural 

management purposes. The method presented in this part of the research 

provides a pathway towards a better assessment of spatio-temporal growth 
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variability in cropping fields, which is a vital contribution to the success of 

precision agricultural practices. Furthermore, the research presented remote 

sensing based approach for spatial estimation of soil PAWC, using 

phenological metrics derived from multi-temporal vegetation index data and 

rainfall data. This approach was implemented and tested in South Australian 

agricultural region. The result presents a considerable achievement of this 

research and demonstrates the strong potential of remote sensing derived 

phenological metrics as spatial indicators for soil PAWC, providing 

unprecedented detail for digital soil mapping at broader spatial scales. The 

knowledge presented in this thesis contributes for future improvement of 

digital soil mapping efforts which provide high resolution soil information for 

regional and local decision makers.  
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Appendices  
 

Appendix A 

Package Documentation 

Package ‘CropPhenology’* 

September 18, 2017 

 

 
Type Package 

Title Extract phenologic metrics from timeseries vegetation index data 

Version 0.1.0 

Author Sofanit Araya 

Maintainer Sofanit Araya <sofanitgirma.araya@adelaide.edu.au> 

Description CropPhenology-package 

License GPL (>=2) 

Encoding UTF-8 

URL https://github.com/SofanitAraya/CropPhenology, 

http://cropphenology.wix.com/package 

Repository github 

Depends foreign, raster, sp (>= 1.0-13), maptools, shapefiles, 

rgdal,Rcpp, rgdal, rgeos 

SystemRequirments R (> 3.0) 

LazyLoad true 

LazyData true 

RoxygenNote 6.0.1 

 

 

R topics documented: 
CropPhenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
MultiPointsPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

PhenoMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

 

                                            

 

* This package documentation  is also available at: 

https://github.com/SofanitAraya/CropPhenology/wiki/CropPhenology-Package 

https://github.com/SofanitAraya/CropPhenology/wiki/CropPhenology-Package
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CropPhenology  Extract phenologic metrics from timeseries vegetation index data 

 

Description 

 

Extract phenological metrics from time series vegetation index data 

 
Details 

 

Introduction  
 

Multi-temporal vegetation index data can be used to get information on seasonal 
vegetation growth dynamics. This information indicates vegetation phenological 

growth stages and conditions of environmental factors influencing the vegetation 

growth. In cropping regions the crop growth dynamics observed from multi-

temporal vegetation index data has been used in applications such as crop type 

detection (Zhong et.al. 2011, Roerink et.al. 2011), regional crop yield estimation 
(Hill et.al. 2003) and many more related studies. Moreover, the long term 

vegetation dynamics can provide information about influential environmental 

factors such as soil property mapping (Araya et,al. 2016). Plotting a time series of 

vegetation index values across time creates a curve that summarises the 

vegetation dynamics (Figure 1).  

 

 
Extraction of seasonal parameters is an essential step for analysing such 
vegetation dynamics curve. CropPhenology package has been developed to 

extract phenological parameters from time series vegetation index data in 

cropping regions.  
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Overview of data processing  
 

CropPhenology has two functions: PhenoMetrics and MultiPointsPlots. 

 
PhenoMetrics:- takes the path for the time series vegetation index data and the 

vector file that defines the Area of Interest (AOI). It extracts fifteen phenological 

metrics (Figure 2) which represent the seasonal growth condition of the crop at 

each pixel for the season (Table1) . The output is presented as a raster stack of 

phenological metrics or a table of phenological metrics for point AOI.  

 
MultiPointsPlots:- provides the user with the ability to visualise the NDVI curve 

by plotting the temporal sequences of NDVI values of user selected raster pixels 

(maximum of five). This allows the user to observe the spatial and temporal 
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differences in relative dynamics of the vegetation index for the selected points 

(Figure 3). 

 
 

Author(s) Sofanit Araya, Bertram Ostendorf, Megan Lewis and Greg Lyle 

 
References 
Araya, S., Lyle, G., Lewis, M., and Ostendorf, B. 2016. Phenologic metrics derived from MODIS NDVI 

as indicators for Plant Available Water-holding Capacity. Ecological Indicators 60:1263- 1272. 

http://dx.doi.org/10.1016/j.ecolind.2015.09.012 
 
Hill, M. J. and Donald, G. E. 2003. Estimating spatio-temporal patterns of agricultural productivity 

in fragmented landscapes using AVHRR NDVI time series. Remote Sensing of Environment 
84:367- 384. http://dx.doi.org/10.1016/s0034-4257(02)00128-1 

 
Roerink, G. J., Danes, M. H. G. I., Prieto, O. G., De Wit, A. J. W., and Van Vliet, A. J. H. 2011. 

Deriving plant phenology from remote sensing. in 6th International Workshop on the Analysis 
of Multi-temporal Remote Sensing Images, Trento, Italy, P 261-264 

 

Zhong, L., Hawkins, T., Biging, G., Gong, P., 2011. A phenology-based approach to map crop types in 
the San Joaquin Valley, California. International Journal of Remote Sensing, 32, 7777-7804. 

 

 

 

 
MultiPointsPlot     Time series curves for Multiple points in the Region of Interest 

 

 

Description 

MultiPointsPlot function takes the ID for the pixels within the region of interst 

and returns, the timeseries curves from these points, ploted together. The Id 
numbers can be obtained from the txt file (AllPixels.txt) outputs. 

 

Usage 

MultiPointsPlot (path, N, Id1, Id2, Id3, Id4, Id5) 

 

 
Arguments 
path - the path whee AllPixel.txt saved 

N - number of intersted points 

Id1 - ID number for point 1 

Id2 - Id number for point 2 

Id3 - ID number for point 3 

Id4 - ID number for point 4 

Id5 - ID number for point 5 

 

 

Details 

http://dx.doi.org/10.1016/j.ecolind.2015.09.012
http://dx.doi.org/10.1016/s0034-4257(02)00128-1
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This function allows plotting time series curves from multiple points together in 

a single plot which helps understanding the growth variability across the field. 
This information allow observation of the spatial and temporal crop growth 

variability across the growth seasons, which provide important information 

about the environmental factors influencing crop growth and thus potential 

opportunities for influencing crop management (eg . Araya et al., 2016) 

The maximum number of pixels allowed plotting together are 5 points. 

 
 

Value 

Multiple time series curves together at the plot panel 

 

 
See Also 
PhenoMetrics() 

 

 

 
PhenoMetrics   Phenologic metrics from time series vegetation index data 

 

 

 

Description 

 

This function extracts 15 phenologic metrics from time series vegetaion index 
data, as raster and Ascii files. The function takes path of the vegetation index 

data and the boolean Value for BolAOI (True- if there is AOI polygon, FALSE- if 

the parameters are calculated for the whole region). 

 

Usage 
 

PhenoMetrics (Path, BolAOI, Percentage, Smoothing) 

 

Arguments 

 
Path - Text value - the path where the time series images saved 

 
BolAOI - Logical value - if there is any area of intererst or not 

 
Percentage - Optional Numeric Vlaue - percentage of minimum NDVI value at 

which the Onset and Offset is defined. The ’Percentage’ paramenter is 

optional; if not provided, a Default value of 10 will be taken. 
Smoothing - Optional logical value - if the user chooses to use smoothed curve or 

row/unsmoothed curve. If "Smoothing’ is set to TRUE, the moving 

avegare filter will be applied to the vegetation index curve. The 

default value, if not provided, is FALSE, then the unsmoothed row 

data be used for the analysis. 

 

 
Value 
 
Phenostack.img - a raster stack of 15 images of phenological metrics OnsetV, 

OnsetT, MaxV, MaxT, OffsetV, OffsetT, LengthGS, BeforeMaxT, 

AfterMaxT, GreenUpSlope, BrownDownSlope, TINDVI, 

TINDVIBeforwMax, TINDVIAfterMax, Asymmetry in the specified 
order 

 

See Also 
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MultiPointsPlot (Path, N,Id1, Id2...IdN) 

 
Examples 
 
 
# EXAMPLE – 1 
PhenoMetrics(system.file("extdata/data1", package="CropPhenology"), FALSE, 15, TRUE) 
# EXAMPLE - 2 
PhenoMetrics(system.file("extdata/data2", package="CropPhenology"), TRUE) 

 
 

 

 

 

 
 

Index 
_Topic Curve 
MultiPointsPlot, 4 

_Topic Phenology, 
PhenoMetrics, 5 

_Topic Time-series 
PhenoMetrics, 5 

_Topic curves 
MultiPointsPlot, 4 

_Topic from 
MultiPointsPlot, 4 

_Topic image, 
PhenoMetrics, 5 

_Topic multiple 
MultiPointsPlot, 4 

_Topic package 
CropPhenology, 2 

_Topic points 
MultiPointsPlot, 4 

_Topic remote 
PhenoMetrics, 5 

_Topic satellite 
PhenoMetrics, 5 

_Topic sensing, 
PhenoMetrics, 5 

_Topic time-series 
MultiPointsPlot, 4 
CropPhenology, 2 

MultiPointsPlot, 4 

PhenoMetrics, 5 

SinglePhenology, 6 
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Appendix B 

Practical guide of CropPhenology package 

This appendix provide steps and few example scripts on how to use the 

CropPhenology package. 

1- How to install CropPhenology package 

 

In order to install packages from GitHub repository, the package 

‘Devtools’ is required to be in the R library.  

> install.packages("Devtools") 

> library (Devtools) 

> install_github(“SofanitAraya/CropPhenology”) 

> library(CropPhenology) 

 

2- How to ran PhenoMetrics function 

Two example datasets are embedded in the package. Two examples are shown 

here with and without Area of Interest (AOI). 

(a) Without AOI 

> PhenoMetrics(“E://Data1”, FALSE, 15, FALSE) 

 

Where the path where the Vegetation index image files are saved at 

“E:/Data1”, the required threshold level for Onset and Offset 

definition is 15%, and no AOI and smoothing required. 

The result is saved under E://Data1//Matrics 

- PhenoStack.img – the raster stack of 15 phenological metrics 

images.  

- AllPixels.csv – the time series vegetation index values for all 

pixels  
 (b) With AOI 

> PhenoMetrics(“E://Data2”, TRUE, 15, TRUE) 

 

Where the path where the Vegetation index image files and the 

boundary of the AOI are saved at “E:/Data2”, the required threshold 

level for Onset and Offset definition is 15%, and smoothing required. 

The results are saved under E:/Data2/Matrics/  

- PhenoStack.img – the raster stack of 15 phenological metrics 

images.  

- AllPixels.csv – the time series NDVI values for all pixels  

3- How to ran MultiPointsPlots function 

> MultiPointsPlots(“E://Data2//Metrics”,3,13,5,7) 

Where the csv file for the time series data is located at 
“E://Data2//Metrics”. 

The result plots curves from 3 points with id 13, 5 and 7.  
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Appendix C  
Paper presented at  20th International Congress on Modelling and Simulation, Adelaide, Australia, 

1–6 December 2013, www.mssanz.org.au/modsim2013 (p1896 -1902) 
http://www.mssanz.org.au/modsim2013/H15/araya.pdf 

Statement of Authorship 

http://www.mssanz.org.au/modsim2013
http://www.mssanz.org.au/modsim2013/H15/araya.pdf
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a Spatial Information Group, School of Earth and Environmental Sciences, University of Adelaide 
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Abstract 

Maintaining agricultural productivity into the future is one of the most important 

goals of our society. The world’s vast grain production areas in arid environments 
have a high sensitivity to climate change, thus demanding accurate future 

predictions. Management and decision making depends on an understanding of 

complex spatial and temporal interactions between rainfall, temperature and soils, 

but detailed soil information is extremely costly and generally unavailable. 

Crop phenology, the timing of plant growth and developmental stages, is the 
combined response to environmental factors such as soil, water and temperature. 

Crop phenology plays an important role in crop growth models and agronomic 

management. In Mediterranean environments like South Australia, water is the 

driving factor for crop growth. In these rain-fed farming systems, water availability 

largely depends on rainfall amount and seasonality and the capacity of the soil to 

retain rainfall inputs and hence make water available for crops. Plant Available 
Water Capacity of soil (PAWC) is an important measure of the spatial and temporal 

variability of crop growth and yield, but there is a paucity of detailed maps at a 

management relevant spatial resolution and extent. 

In this study, different phenological metrics derived from MODIS NDVI imagery 

were assessed over sites of known PAWC and cropping history. We used the 
metrics: 

 NDVI at the onset of greenness (Onset) and time of Onset (OnsetT) 

 NDVI at peak greenness (MaxV) and time of maximum greenness (MaxT) 
The length of the growing season (WidthGS) 

 Rate of greenup (GURate) 
The green up rate of the curve (GU-rate) showed the most consistent difference 

between soils of different PAWC. The Rate of Green up is higher for the soil points 

with relatively low PAWC. Some of the variability in the difference between sites 

with low and high PAWC can be explained with rainfall amount and seasonality 
but the relationship is complex. The results indicate that the crop phenology 

derived from MODIS satellite imagery is consistently different and may therefore 

provide useful information about site conditions, which would allow 

improvements to the spatial detail in soil maps. 

 
Keywords: Digital Soil Mapping (DSM), remote sensing, satellite imagery, spatio-
temporal 
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1. INTRODUCTION 
Soil information is very important information for policy making and various 

environmental practices. Most global and regional environmental models need soil 

information as one of the input parameters (Asseng et al., 1998, Henderson et al., 

2005). Missing this information at the global or local scale leads to uncertainty in 

the basic sustainability decision makings (FAO et al., 2009). 

Field measurements of plant available water capacity (PAWC) are expensive and 
time consuming (Morgan et al., 2000) and there is the need to estimate PAWC 

through relatively easily measurable soil properties (Mullins, 1981, Morgan et al., 

2000, Jiang et al., 2008). Seasonal variability of the crop growth is theoretically 

related to PAWC variability but it is difficult to extract this information because of 

the number of factors that influence dynamics of water availability and crop 
growth. 

Vegetation condition and crop growth timing is strongly influenced by underlying 

soil conditions. The spatial variability of soil PAWC and its interaction with the 

rainfall seasonality is considered a major cause of the growth variability 

(McDonald, 2006, Oliver et al., 2006, Wong et al., 2006a, Wong et al., 2006b). In 

turn, improved understanding of the growth dynamics may allow inferences about 
the soil’s water condition. 

Vegetation phenology, the timing and seasonality of the plant growth stages, could 

be a useful indicator of different environmental factors including soil (Reed et al., 

1994, Zhang et al., 2003). In non-irrigated agricultural area, phenological 

phenomena reflect how plants respond to short term weather events (Reed et al., 
1994). 

The Normalized Difference Vegetation Index (NDVI) has been used in many 

vegetation phenologic studies, including global land cover classification (Lloyd, 

1990, DeFries et al., 1995), crop classification (Wardlow et al., 2007, Wardlow et 

al., 2008, Sun et al., 2012), and agricultural productivity estimation (Hill et al., 

2003, Kouadio et al., 2012). Moderate Resolution Imaging Spectroscopy (MODIS), 
mounted on the NASA Earth Observation System’s Terra Spacecraft, provides 

vegetation indices with the resolution of 250m – 1km. The NDVI data from MODIS 

is one of the most widely used satellite images for time series analysis (Rodrigues 

et al., 2011). Despite the usefulness of MODIS NDVI for understanding of the plant 

and environmental conditions, little evidence exists if NDVI dynamics can be used 
as a spatial indicator for environmental factors that control the plant growth such 

as soil conditions. 

In this paper we assess plant dynamics within two cropping paddocks in different 

climate zones that have marked differences in PAWC and area sufficiently large to 

be used with MODIS imagery. We have derived phenological metrics from the time 

series MODIS NDVI images are used to explore the seasonal variation of vegetation 
and its interaction with the climatic conditions to examine the response of the soil 

PAWC to different rainfall amount and seasonality. 

 

2. MATERIALS AND METHODS 

 

The study was carried out on two paddocks around Wharminda and Minnipa 
towns in the upper Eyre Peninsula, South Australia. The sites were selected for 

their setting with the soil types which may represent wider area coverage of the 

Eyre Peninsula region (Eyre Peninsula Farming Systems, 2009). Both of these 

farms have been studied as the focus site of the Eyre Peninsula Agricultural 

Research Foundation (EPARF) (Eyre Peninsula Agricultural Research Foundation 
2011). Average annual and growing season rainfall is 325mm and 242mm, 

respectively. 

The paddock around Wharminda (Wharminda Paddock) is situated at 33°9'30"S, 

136°19'47"E. It is characterized by siliceous sand over sodic clay soil, which 

approximately represent 455,000 ha area of the Eyre Peninsula (Eyre Peninsula 

Agricultural Research Foundation 2011). These sands are reported to be a 
challenge for the farmers due to their uneven wetting nature at the beginning of 
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the growth seasons. This uneven wetting is worse in the deep sand soils. It results 

in uneven germination at the beginning of the growing season (Eyre Peninsula 
Farming Systems, 2009). The Minnipa Paddock, N1 at Minnipa Agricultural 

Center (MAC) is located at 32°48'47"S, 135°9'55"E. 

 

3. DATASETS 

 

MODIS NDVI data (MOD13Q1 16 days composites) was used to estimate 
phenological indices. The imagery is available from NASA’s Earth Observing 

System (EOS), with ground resolution of 250m. These composites were calculated 

using Constrained View angle – Maximum Value Composite (CV-MVC) and 

Maximum Value Composite (MVC) techniques (Solano et al., 2010). The MODIS 

NDVI data is available since 2000. Thus we will have 273 images (23 images per 
year except 2000 at which only 20 images available). 

 

Rainfall data (daily gridded data with 5km resolution) was provided by the 

Australian Government Bureau of Metrology (BOM).  

Soil data from APSoil was used in this study. The APSoil was developed for regional 

use with the Agricultural Production Systems Simulator (APSIM) (The APSIM 
initiative). The APSoil database is a point based soil characterization. There are 

around 69 points in the South Australian Agricultural region. The points used in 

this study are #394 and #395 from Wharminda and #354 and #353 from Minnipa 

stations, respectively.  

 
The paddocks were zoned based on 

yield and Electro Magnetic Survey 

(EM38) surveys (Eyre Peninsula 

Agricultural Research Foundation 

2011) . The representative soil 

points were taken from the zones of 
both paddocks. Table 1 shows the 

PAWC measurement of these soil 

points and the soil type at the 

location. The closest pixels to these soil points were chosen and the NDVI time 

series data were extracted for those pixels. The chosen pixels are within the 
representing zones and are the closest possible pixels for the soil points. Moreover, 

the pair soil points are within the same paddock, which means that the compared 

MODIS time series are under the same management with constant seeding and 

fertilser rates.   

 

3.1. Phenological metrics 
We evaluated five different phenological metrics that may be used as indicators 

for biophysical conditions (Figure1): Onset of greenness, time of Onset of 

greenness, Maximum greenness, time of maximum greenness, offset of greenness, 

and time of offset of greenness. 

In this study, the onset of greenness was defined as the point where the highest 

slope observed between two 
consecutive NDVI values, on 

the period of March – June. 

The maximum greenness is 

the highest NDVI value and 

loosely correlated with the 
phenologic period of 

Anthesis. The offset of 

greenness (Offset) and time 

of offset (OffsetT) are defined 

as a point at which the crop 

loses its greenness and gets 
ready for harvest. This point 

Paddock at Wharminda 

Apsoil ID PAWC Soil Type 

394 166mm Shallow sand over clay 

395 95mm Loam over roack 

Paddock at Minnipa  

353 57mm Red Sandy Clay Loam 

 209mm Red Light Sandy Clay Loam 

Table 1. Soil points at the study sites 

Figure 1. Phenological metrics used in this study 
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is defined as the point where lowest slope observed in the time series curve. This 

phenologic event loosely corresponds to the Maturity phenologic stage. Similarly, 
the time of offset is defined as the time when the offset of greenness is recorded. 

The length of the growing season (LengthGS) is defined as the duration of the 

period between the Onset of greenness and offset of greenness. The rate of greenup 

(GURate) is defined as the rate at which the NDVI increased from onset to the 

maximum greenness. It is calculated as the slop of the straight line between the 

onset of greenness and the maximum NDVI i.e (Maximum NDVI-Onset of 
greenness)/ (time of maximum greenness-time of onset). 

 

4. RESULTS 

 

A comparison of time series of NDVI of twelve years (2000 – 2011) at the soil sites 
in both stations shows noticeable differences (Figure 2). In Wharminda paddock, 

the MaxV for all the years from Pixel 395 (low PAWC) was higher than that of Pixel 

394. Maximum NDVI was also observed to appear 15 – 30 days earlier than that 

of 394. Similarly the OnsetT also showed marked differences. In most of the years 

both Onset of greenness and maximum NDVI were earlier at low PAWC. However 

the difference is not consistent in all the years.  
Similarly, in Minnipa paddock, the region with low PAWC (Pixel 353) was 

characterized by a higher maximum in most of the years. Onset of greenness and 

maximum NDVI was also observed to be earlier at low PAWC.  

The Rate of Greenness (GURate) depends on the onset of greenness and the timing 

and magnitude of the maximum NDVI. The soil points with relatively lower PAWC, 
Pixel 395 (Wharminda Paddock) and Pixel 353 (Minnipa paddock), have a higher 

GURate compared with their corresponding points. However, GURate differed 

markedly between years, possibly related to rainfall amount and seasonality. 

 

 
Figure 2 Time series of NDVI at (a) Minnipa and (b) Wharminda. The darker lines 

show NDVI of pixels with high PAWC. 
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4.1. Relationship between Phenologic metrics and rainfall amount and 

seasonality 
 

The rainfall seasonality interacting with PAWC reflects differences in the 

vegetation growth. This is exemplified for Wharminda in Figure 3. The illustration 

compares 16 days cumulative rainfall variability with the difference of the rate of 

vegetation growth between the two representing pixels. Reflecting rainfall 

seasonality and amount, NDVI around the soil points showed substantial 
variability. On both paddocks, locations with lower PAWC (Pixel 395 of Wharminda 

and Pixel 353 of Minnipa) show a faster increase of NDVI compared to locations 

with higher PAWC. 

NDVI of Pixel 395 generally peaks earlier than that of Pixel 394 (Figure 3). In some 

years (e.g. 2006 and 2007), the rainfall was more dominant in the earlier seasons. 
Early rainfall filled the soil profile to support the vegetation growth during the low 

rainfall season. The greater water holding capacity of the sandy soil supports 

faster plant growth than the loam over clay soil. 

 
Figure 3 Time series of NDVI and rainfall at Wharminda. The darker lines show 

NDVI of pixels with high PAWC. 
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In the year 2006, rainfall was dominated towards the warmest summer seasons, 

which may be lost through evaporation due to the high temperature during the 

summer season. The April-May rainfall was low, following the fair rainfall in the 

beginning of May. The NDVI of Pixel 395 sets to onsets before the vegetation at 

Pixel 394. The year 2007 was also with very low rainfall throughout the growing 

season. The vegetation in both soil type reached to Onset at a similar time, 

followed by steep NDVI increment in the loam soil as a result of low June and July 

rainfall. The years 2008 and 2009 were characterized with lower early rainfall in 

April and May, results early onset and maximum greenness for the vegetation from 

Loam soil (Figure 3). 

5. DISCUSSION AND CONCLUSIONS 

 

The PAWC is a controlling factor for vegetation growth in dryland agriculture, 

especially in arid and semiarid farming area like South Australia and determines 
phenological events. Understanding how growth variability is affected by rainfall 

seasonality and soil PAWC interactions may allow us to work towards inverse 

modeling schemes that infer about soil conditions based on the spatio-temporal 

differences in satellite imagery. Growth dynamics can be quantified as variability 

of the phenological stages including the time of maximum NDVI (MaxT), time of 
Onset (OnsetT) and combined effect on the rate of growth (GURate).  

The GURate was observed to be higher in low PAWC corresponding with an earlier 

onset and higher maximum NDVI than the relatively higher PAWC soils. This 

corresponds with observations by Robertson etal., (1994) who studied wheat crop 

under water deficit during early, mid and late phenologic periods and found that 

the timing of heading phenologic stage is highly affected by the water deficit. The 
stressed crop (Robertson et al., 1994) reached heading and anthesis stages 

approximately 5 and 3 days earlier than the nonstressed crops. Moreover, the 

study showed that the early stress had the largest effect on developmental timing 

comparing to the mid and late stresses (Robertson et al., 1994). Numbers of 

similar experimental research works have been done to assess the effect of 

inadequate water availability, at various growth stages, on the growth of different 
crops. These research projects indicate that the timing of growth stages and 

duration are highly influenced by water availability. Faster crop growth rate is one 

of the evident effects of water stress during crop growth (McMaster et al., 2003, 

McMASTER, 2005, McMaster et al., 2011). 

The low PAWC soils in both paddocks meant that these soils stored less water and 
at the time of water scarcity, the soil with higher storage capacity could sustain 

plant growth compared to low PAWC soils. Thus the vegetation on low PAWC soil 

faces water stress earlier than the high PAWC soils, which cause the vegetation to 

accelerate growth to the next growth stages. This can be seen a fast raising curve 

in the NDVI time series curve, which is measured as GURate for the lower PAWC 

soils. 
Comparing the differences in the growth stages, the maximum is observed at the 

time maximum NDVI (MaxT). These agreed with the observation made by previous 

researchers (Angus et al., 1977, Robertson et al., 1994, McMaster et al., 2003, 

Brisson et al., 2005, McMaster et al., 2008) on the fact that the water deficit 

affected the anthesis phenological stage, which could loosely correspond to the 
maximum NDVI (MaxV and MaxT), is more than the other stages. At Wharminda 

we also observe a higher nutrient concentration in the shallow loam, producing a 

higher establishment rate and higher initial biomass without yield improvement 

(Eyre Peninsula Farming Systems, 2009). Potential improvements in inverse 

modeling of yield may come from focusing on the later part of the season to 

distinguish bucket size from other growth factors that influence leaf area 
development. NDVI during the earlier part of the season may be more strongly 

influenced by moisture content and nutrient concentrations in the upper soil 

layers rather than the total available water. 

There appears to be a strong soil-related signal in the NDVI dynamics. However, 

the complexity of soil rainfall interactions may require a very large sample size to 
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allow for an automated extraction of site conditions from the time series of NDVI 

for empirical models. Furthermore, there is substantial variability within a MODIS 
pixel that is averaged out in the NDVI time series and higher resolution imagery 

may be useful to assess this spatial variability. Another factor that needs to be 

considered is the scale issue of having a single soil sample that may or may not 

be representative (Ostendorf, 2011). 

The results presented here allow suggestion for the structure of future PAWC 

models based on NDVI dynamics. Inverse models of PAWC from NDVI should 
include the rate of greening and the relative timing of the peak NDVI with a 

stronger consideration of the later part of the season. Whilst there is potential, 

validation using larger sets of soil core data needs to carefully evaluate if the soil 

samples are truly representative of a paddock area at the size of the MODIS pixel. 

Though, this technique can potentially used to zone paddocks based on the 
MODIS NDVI time series growth pattern. 
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Abstract 

Soil is natural resource with high spatial variability. Plants growth reflects this 

variability in complex interactions with other factors. Precision agriculture is 

based on utilising crop growth variability data and, in its simplest terms, 

delineates zones with similar productivity so that the most suitable management 

approach can be implemented. However, pattern of variability may vary 

considerably from year to year. This adds a level of complexity for management. 

In Mediterranean-type dryland cropping region of South Australia, water is 

reported to be the main cause of crop growth variability. Plant Available Water 

holding Capacity (PAWC) of soil measures the maximum amount of water which 

could be held in the soil. It has a strong interaction with weather condition, which 

governs crop growth variability. We hypothesise that by keeping management and 

climate constant by focusing on a small geographic area, the dynamic response of 

plants is largely due to soil functions. This study demonstrates the use of high 

temporal frequency satellite imagery for paddock zoning in the south Australian 

agricultural region. The research aims to use time series clustering of NDVI data 

for zoning of two paddocks in the upper EyrePenninsula. Pixel level clustering 

analysis was carried out on the time series Moderate Resolution Imaging 

Spectroscopy (MODIS) NDVI data, of 250m spatial resolution biweekly images. The 

result shows classification of the paddock into zones of similar dynamics, 

indicative of differences in plant-soil-climate interactions. This suggests that time 

series of MODIS-NDVI imagery provide a tool to assess spatial heterogeneity of 

soils-plant-climate interactions.  
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