

Identification of Mitogenic Factors in Bovine Whey

A thesis submitted to the University of Adelaide, South Australia, for the degree of Doctor of Philosophy

by

Mary-Louise Rogers, B. Ag Sc. (Hons 1 Animal Sciences) (Adel.)

Department of Medicine, University of Adelaide, South Australia. January 2003

TABLE OF CONTENTS

TABLE OF CONTENTSii
TABLE OF FIGURES vi
ABBREVIATIONSviii
ABSTRACTX
STATEMENT xii
ACKNOWLEDGMENTSxiii
PUBLICATIONS FROM THESIS xiv
CHAPTER One: Introduction and Literature Review1
1.1 Introduction2
1.2 Cell-growth Promoting Agents in Bovine Milk2
1.3 Polypeptide Growth factors4
1.3.1 Insulin-like growth factors of bovine milk
1.3.2 Other growth factors of bovine milk
1.3.2.1 Transforming growth factor-betas12
1.3.2.2 Platelet-derived growth factor
1.4 Other Bioactive Peptides from Proteins Found in Bovine Milk
1.5 Lactoferrin
1.6 Isolation of Bioactive Proteins from Bovine Milk
Table 1.1 Classification, properties and distribution of bovine milk proteins 36
Table 1.2 Characteristics of growth factors found in bovine milk
CHAPTER Two: General Materials and Methods
2.1 Materials
2.1.1 Recombinant growth factors
2.1.2 Cells
2.1.3 Antibodies
2.1.4 Reagents
2.2 Methods 41

2.2.1 Production of whey extract
2.2.2 Cell culture
2.2.3 Cell growth assay 43
2.2.4 Gel-filtration
2.2.5 Protein measurement
CHAPTER Three: Cell-growth Promotion by Whey Extract
3.1 Introduction
3.2 Materials and Methods 50
3.2.1 Promotion of cell growth by whey and whey extract
3.2.2 Cell growth in whey extract compared to recombinant growth factors
3.2.3 Cell growth in the presence of gel-filtration fractions
3.2.4 Epithelial cell growth inhibition produced by gel-filtration fractions
3.3 Results
3.3.1 Cell growth in response to whey and whey extract
3.3.2 Cell growth by whey extract compared with pure growth factors
3.3.3 Bioactivity of gel-filtration fractions of whey extract
3.4 Discussion
CHAPTER Four: Platelet-Derived Growth factor in Bovine Whey
4.1 Introduction
4.1 Introduction
4.2 Materials and Methods
4.2 Materials and Methods
4.2 Materials and Methods. 86 4.2.1 BALB/c 3T3 cell growth in gel-filtration fractions of whey extract 86 4.2.2 PDGF radioreceptor assay 86
4.2 Materials and Methods.864.2.1 BALB/c 3T3 cell growth in gel-filtration fractions of whey extract864.2.2 PDGF radioreceptor assay864.2.3 PDGF immunoblots88
4.2 Materials and Methods.864.2.1 BALB/c 3T3 cell growth in gel-filtration fractions of whey extract864.2.2 PDGF radioreceptor assay864.2.3 PDGF immunoblots884.2.4 Immuno-neutralisation of PDGF induced BALB/c 3T3 cell growth89
4.2 Materials and Methods.864.2.1 BALB/c 3T3 cell growth in gel-filtration fractions of whey extract864.2.2 PDGF radioreceptor assay864.2.3 PDGF immunoblots884.2.4 Immuno-neutralisation of PDGF induced BALB/c 3T3 cell growth.894.3 Results90
4.2 Materials and Methods.864.2.1 BALB/c 3T3 cell growth in gel-filtration fractions of whey extract864.2.2 PDGF radioreceptor assay864.2.3 PDGF immunoblots.884.2.4 Immuno-neutralisation of PDGF induced BALB/c 3T3 cell growth.894.3 Results.904.3.1 Detection of PDGF-like activity by radioreceptor assays.90
4.2 Materials and Methods.864.2.1 BALB/c 3T3 cell growth in gel-filtration fractions of whey extract864.2.2 PDGF radioreceptor assay864.2.3 PDGF immunoblots884.2.4 Immuno-neutralisation of PDGF induced BALB/c 3T3 cell growth894.3 Results904.3.1 Detection of PDGF-like activity by radioreceptor assays904.3.2 Identification of PDGF by immunoblotting90

iii

CHAPTER Five: Heparin-binding Factors in Bovine Whey	
5.1 Introduction	
5.2 Materials and Methods	
5.2.1 Heparin-Sepharose chromatography	
5.2.2 Cell-growth assays	
5.2.3 Radioreceptor assays	
5.2.4 FGF immunoblots	
5.2.5 Polyacrylamide gel electrophoresis	
5.3 Results	
5.3.1 Heparin-affinity chromatography.	
5.3.2 Cell-growth activity of heparin-binding whey fractions	
5.3.3 Verification of FGF activity by radioreceptor assay	
5.3.4 Detection of FGF by immunoblotting	
5.3.5 SDS-PAGE of heparin-binding whey fractions	
5.3.6 Cell-growth activity of heparin-binding whey fractions	
5.4 Discussion	
CHAPTER Six: Transforming Growth Factor-Beta in Bovine Whe	ey 126
6.1. Introduction	
6.2 Materials and Methods	
6.2.1 TGF-β bioassay	
6.2.2 Preparation milk and whey samples	
6.2.3 Stability of latent TGF- β in whey extract	
6.2.4 Gel-filtration	
6.2.5 Purification of TGF-β	
6.2.6 SDS-polyacrylamide gel electrophoresis	
6.2.7 Sequence analysis	
6.2.8 Protein measurements	
6.2.9 Neutralising TGF-β bioactivity	136
6.3 Results	
6.3.1 Latent TGF- β like activity in bovine milk and whey	
Table 6.1 TGF- β activity in bovine milk and cheese whey	
6.3.2 Latent TGF- β in whey extract	141
6.3.3 Stability of latent TGF-β	

Table 6.2 Stability of whey-derived latent TGF- β
Table 6.3 Effect of heparin on whey-derived TGF- β activity
6.3.4 Fractionation of latent TGF- β by gel-filtration
6.3.5 Purification of TGF-β146
Table 6.4 Purification of TGF- β from bovine cheese whey
6.3.6 Neutralisation of TGF-β bioactivity149
Table 6.5 Neutralising the effect of TGF- β purified from bovine whey
6.4 Discussion
CHAPTER Seven: Epidermal Growth Factor-Like Activity in Bovine Whey 162
7.1 Introduction
7.2 Materials and Methods 176
7.2.1 EGF radioreceptor assays 176
7.2.2 Ultrafiltration of whey extract
7.2.3 Heparin-Sepharose chromatography of permeate
7.2.4 Partial purification of EGF-like activity from whey extract
7.2.5 SDS-polyacrylamide gel electrophoresis182
7.3 Results
7.3.1 EGF-like activity recovered from whey extract
7.3.2 Concentration of whey EGF-like activity by ultrafiltration
7.3.3 Heparin-affinity of whey EGF-like activity191
7.3.4 Partial purification of EGF-like activity of whey extract
Table 7.1 Purification of EGF-like activity from whey extract
7.4 Discussion 199
CHAPTER Eight: Conclusion 204
8.1 Summary of Thesis and Future Work205
8.1.1 Growth factor concentrations in whey extract
Table 8.1 Concentration of growth factors in bovine whey extract and whey 205
8.1.2 Cell growth studies with whey extract 206
8.1.3 Platelet-derived growth factor
8.1.4 Fibroblast growth factor
8.1.5 Transforming growth factor-betas
8.1.6 Epidermal growth factor
REFERENCES

TABLE OF FIGURES*

Figure 2.1 Isolation of whey extract from bovine cheese whey	42
Figure 3.1 Growth of BALB/c 3T3 cells in response to whey and whey extract	55
Figure 3.2 Growth of cells in response to whey extract	56
Figure 3.3 Growth of epithelial cells in response to whey extract	57
Figure 3.4 Growth of cells in response to whey extract compared to PDGF	60
Figure 3.5 Growth of cells in response to whey extract compared to TGF- β 1	61
Figure 3.6 Growth of cells in response to whey extract compared to EGF	62
Figure 3.7 Growth of cells in response to whey extract compared to FGF	63
Figure 3.8 Growth of cells in response to whey extract compared to IGF	64
Figure 3.9 Growth of L6 myoblasts from gel-filtration fractions of whey extract	66
Figure 3.10 Growth of BALB/c 3T3 cells from gel-filtration fractions	67
Figure 3.11 Growth of skin fibroblasts from gel-filtration fractions	68
Figure 3.12 Inhibition of MDCK growth by gel-filtration fractions	69
Figure 3.13 Inhibition of IEC growth by gel-filtration fractions	70
Figure 4.1 PDGF and BALB/c 3T3 activity from acid gel-filtration fractions	91
Figure 4.2 PDGF activity in whey extract detected by RRA and immunoblotting	92
Figure 4.3 Quantification of PDGF in whey extract	94
Figure 4.4 Effect of anti-PDGF on the BALB/c 3T3 response to whey extract	96
Figure 5.1 FPLC profile of heparin-Sepharose chromatography of whey extract	114
Figure 5.2 Growth of BALB/c 3T3 cells in response to heparin-affinity fractions	116

vi

Figure 5.3 Radioreceptor assays of heparin-affinity fractions of whey extract	117
Figure 5.4 Immunoblotting of heparin-affinity fractions	119
Figure 5.5 SDS-PAGE analysis of heparin-affinity fractions	121
Figure 5.6 Growth of cells produced by fractions without heparin-binding factors	122
Figure 6.1 Purification of TGF- β from bovine cheese whey	135
Figure 6.2 Inhibition of Mv1Lu cell growth by bovine cheese whey	140
Figure 6.3 TGF- β activity in neutral and acid Superose 6 fractions	144
Figure 6.4 TGF- β activity in neutral and acid Superose 12 fractions	145
Figure 6.5 Step E of the purification of TGF- β from bovine cheese whey	147
Figure 6.6 SDS-PAGE analysis of purified TGF- β from bovine cheese whey	150
Figure 6.7 Neutralising the Mv1Lu cell growth inhibitory activity of whey	152
Figure 6.8 BALB/c 3T3 response to whey extract neutralised with anti-TGF- β	154
Figure 7.1 Partial purification of bovine EGF from whey extract	181
Figure 7.2 Standard curves for EGF assays	184
Figure 7.3 EGF-like activity and BALB/c 3T3 bioactivity of whey extract	185
Figure 7.4 EGF activity of pooled acid gel-filtration fractions of whey extract	187
Figure 7.5 EGF and BALB/c 3T3 cell activity of low molecular weight fraction	189
Figure 7.6 EGF and BALB/c 3T3 cell activity of high molecular weight fraction	190
Figure 7.7 Heparin-affinity analysis of EGF-like activity from whey extract	193
Figure 7.8 EGF activity and RP-HPLC of low molecular weight fraction	194
Figure 7.9 Further purification of EGF-like activity from whey extract	196
Figure 7.10 SDS-PAGE analysis of partially purified EGF from whey extract	198

*FIGURE TITLES HAVE BEEN ABBREVIATED

vii

ABBREVIATIONS

α ₂ -Μ	alpha two-macroglobulin
A 214 nm	absorbance at 214 nm
A 280 nm	absorbance at 280 nm
A431	human epidermoid carcinoma cell line
AG2804	simian virus 40-transformed human lung fibroblasts
BALB/c 3T3	mouse BALB/c 3T3 embryo fibroblasts
BHK-21	baby hamster kidney fibroblasts
BSA	bovine serum albumin
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DMEM	Dulbecco's modified minimal essential Eagles Medium
DNA	deoxyribonucleic acid
EGF	epidermal growth factor
EGFR	EGF receptor
FBS	fetal bovine serum
FGF	fibroblast growth factor
FGFR	fibroblast growth factor receptor
FPLC	fast protein liquid chromatography
h	hour
HB-EGF	heparin binding growth factor
HBSS	HEPES-buffered saline
HER/ erbB	human EGF receptor/ EGF receptor
HFBA	heptafluorobutyric acid

HPLC	high pressure liquid chromatography
HSPG	heparan sulphate proteoglycans
IEC-6	rat small intestinal epithelial cells
IGF	insulin-like growth factor
IgG	immunoglobulin G
L6	rat L6 skeletal muscle myoblasts
LAP	latency associated peptide
LTBP	latent TGF-β binding protein
MDCK	canine kidney epithelial cells
min	minute
Mr	molecular weight
Mv1Lu	mink lung epithelial cells
PAGE	polyacrylamide gel electrophoresis
PDGF	platelet-derived growth factor
PDGF-Ra	platelet derived growth factor receptor alpha
PDGF-R β	platelet derived growth factor receptor beta
RRA	radioreceptor assay
SDS	sodium dodecyl sulphate
SPARC	secreted protein, acidic and rich in cysteine
TFA	trifluoroacetic acid
TGF-β	transforming growth factor-beta
TGF-α	transforming growth factor alpha
Tris	tris (hydroxymethyl) aminomethane

This list excludes nomenclature of amino acids, chemical elements and SI units.

ix

÷

ABSTRACT

Bovine milk contains factors that can support the growth of cells in culture. However, milk growth factors are at very low concentrations and not easily purified and investigated. Cation-exchange chromatography of cheese whey was shown by Francis *et al.* (1995) to produce a mixture of whey proteins with enriched growth factor activity (termed whey extract). In the current thesis, growth factors and binding proteins of bovine milk that have not been extensively investigated are done so using whey extract as the starting material.

Initially, whey extract was shown to contain more than one type of growth factor and to support the *in-vitro* growth of mesodermal-derived cells (such as BALB/c 3T3 cells) but inhibit epithelial cell growth. Gel-filtration experiments showed that mitogens and epithelial cell growth inhibitors present in whey extract are attached to high molecular weight whey proteins and are released from such associations under acid conditions.

Platelet-derived growth factor (PDGF) was identified and measured in acid gelfiltration fractions of whey extract. There was only a small amount of PDGF found in whey extract and this was predominantly the PDGF-BB isoform. Importantly, PDGF did not account for the majority of the BALB/c 3T3 bioactivity of whey extract. PDGF was associated with a high molecular weight whey protein that conferred latency on this factor and was released from this association under acid conditions. The PDGF binding protein was not identified, but appeared not to be related to known PDGF binding proteins.

A small amount of fibroblast growth factor (FGF)-1 and FGF-2 was detected in bovine whey extract and is the first report of FGF in bovine milk. However, when FGF

х

was removed from whey extract there was no significant effect on its BALB/c 3T3 cell bioactivity.

The epithelial cell growth inhibitory activity found in whey extract was identified as transforming growth factor-beta (TGF- β). The bulk of TGF- β in bovine whey and whey extract was latent and could be activated by acid. Over 85% of this activity shown to be TGF- β 2. An 80 kDa latent TGF- β complex present in whey extract was identified and is the first description of this size complex in a biological fluid. TGF- β was a significant contributor to the BALB/C 3T3 bioactivity of acid treated whey extract. However, neither TGF- β or any other growth factor known to be present in bovine milk could account for all the BALB/C 3T3 bioactivity of whey extract. Epidermal growth factor (EGF) has previously not been purified from bovine milk. In the current thesis, an EGF-like molecule was identified in bovine whey extract and may be a major contributor to the BALB/c 3T3 bioactivity of whey extract. Heparin affinity chromatography showed that the EGF-activity of whey extract was a betacellulin-like molecule.

The results of this thesis show bovine whey extract contain small amounts of active growth factors and large amounts of latent mitogens that can be activated by acid treatment. It is also concluded that in addition to the known levels of IGF, the major growth factors in bovine whey are TGF- β and to a lesser extent PDGF. FGF appears to be a minor bovine whey growth factor. Preliminary results show an EGF-like molecule may be a major BALB/c 3T3 cell mitogen of whey extract.

xi

STATEMENT

This thesis contains no material that has been accepted for the award of any other degree or diploma at any university or other tertiary institution, and to the best of my knowledge, it contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

I give consent to this copy of my thesis when deposited in the University library, being available for loan and photocopying.

Mary-Louise Rogers

January 21 2003

ACKNOWLEDGMENTS

I Thank my supervisors Dr David Belford and Dr Ole Wiebkin and the Department of Medicine, Adelaide University. This work was supported by The Adelaide University postgraduate scholarship and a supplementary scholarship provided by the Co-Operative Research Centre for Tissue Growth and Repair. I thank the CSIRO Division of Health Sciences and Nutrition, Adelaide, South Australia for the provision of laboratory facilities. I also thank the CSIRO Division of Food Science and Technology, Melbourne, Highett, Victoria for carrying out the production of whey extract and large scale fractionation of whey extract and making it available for use in this current research. In particular, I acknowledge the helpful discussions with Dr Geoff Regester and the assistance of Dr Geoff Smithers.

I thank Geoff Francis for his advice and encouragement in the protein purification work. I also acknowledge the helpful technical assistance in cell culture and protein purification work by Helen Webb, Ilka Preibe, Sarah Tiley and others based at the CSIRO division of Health Sciences and Nutrition, Adelaide, South Australia.

I also thank Professor John Wallace and Dr Briony Forbes of the department of Biochemistry, Molecular Biosciences, Adelaide University for their encouragement to persist and publish this thesis.

I finally thank my family, friends and work colleagues for their support throughout.

PUBLICATIONS FROM THESIS

Refereed Journal Articles

Rogers M-L, Belford DA, Francis GL, Ballard FJ. (1995) Identification of fibroblast growth factors in bovine cheese whey *Journal of Dairy Research* **62** (3) 501-507

Belford DA, Rogers M-L, Regester GO, Francis GL, Liepe IJ, Priebe IK, Ballard FJ. (1995) Milk-derived Growth factors as Serum Supplements for the Growth of Fibroblast and Epithelial Cells *In Vitro Cell. Dev. Biol.* **31** (10) 752-760

Rogers M-L, Goddard C, Regester GO, Ballard FJ, Belford DA. (1996) Latent transforming growth factor- β activity in bovine milk: concentration, stability and molecular weight forms *Journal of Endocrinology* **151** (1) 77-86

Belford DA, Rogers M-L, Francis GL, Payne C, Ballard FJ, Goddard C. (1997) Plateletderived growth factor, insulin-like growth factors and transforming growth factor- β do not account for the cell growth activity present in bovine milk *Journal of Endocrinology* **154** (1) 45-55

Abstracts

Rogers M-L, Belford DA, Francis GL, Ballard FJ. (1994) Identification of Fibroblast Growth Factors in Bovine Cheese Whey, 19th Lorne Protein Structure and Function Conference, 6-10th February 1994, Lorne, Victoria, Australia.

Rogers M-L, Belford DA, Goddard C, Ballard FJ. (1995) Latent Transforming Growth Factor-Beta In Bovine Milk 20th Lorne Protein Structure and Function Conference, 4-9th February 1995, Lorne, Victoria, Australia.*

Rogers M-L, Belford DA, Goddard C, Ballard FJ. (1995) Transforming Growth Factor-Beta Activity In Bovine Milk 14th Joint Meeting of British Endocrine Societies/ 1st Joint Meeting with The European Federation of Endocrine Societies, The Journal of Endocrinology 144 (Supplement 51)

Belford DA, Rogers M-L, Goddard C, Ballard FJ. (1995) Milk derived growth factor: Isolation, Characterisation and *in-vitro* Activity in the Cells of Wound Repair. International Symposium on Growth Factors and Wound Repair: Basic Science and Potential Clinical Applications September 28 - October 1 1995, Boston Massachusetts USA.

* Awarded student poster prize at 20th Lorne Protein Structure and Function Conference 1995, Lorne, Victoria, Australia.

Patent

Belford DA, Rogers M-L, Francis GL, Regester GO, Smithers GW, Ballard FJ. (1994) Improved Cell Growth Promoting Preparations from Milk and Milk by-products *Patent Specification AU95/00237*Australian Industrial Property Organisation, Woden, A.C.T., Australia.