

Ĩ

ESTABLISHMENT OF LYSOGENY IN COLIPHAGE 186

Thesis submitted for the degree of Doctor of Philosophy at the University of Adelaide

by

Petra Neufing B.A., grad.dip.ed., B.Sc. (hons.)

September 1997

CONTENT

'e

SUMMARY STATEMENT ACKNOWLEDGMENTS	4 7 8
CHAPTER 1 : Introduction 1.1 TEMPERATE PHAGES CHOOSE TO DEVELOP EITHER LYTICALLY OR LYSOGENICALLY	9
 1.2 ESTABLISHMENT OF LYSOGENY IN PHAGES WITH BACK-TO-BACK LYTIC/LYSOGENIC PROMOTERS. 1.2.1 Establishment of lysogeny in Lambda. 1.2.1.1 Early Lambda genes involved during lytic and lysogenic development. 1.2.1.2 CI and Cro perpetuate the lysogenic and lytic states respectively. 1.2.1.3 CII mediates the transition from the "lytic" type state to the lysogenic state. 1.2.1.4 Control of CII. 1.2.1.4.1 At the level of transcription 1.2.1.4.2 Post transcriptionally 1.2.1.4.4 Post translation 1.2.1.4 Post translationally 1.2.2 Establishment of lysogeny in other phages with back to back lytic/lysogenic 	10 10 11 12 14 14 15 15 16 18
1.2.2.1 Establishment of lysogeny in Salmonella typhimurium specific phage P22	19 20
1.2.2.3 Establishment of lysogeny in phage \$80	21
 1.3 ESTABLISHMENT OF LYSOGENY IN PHAGES WITH FACE-TO-FACE LYTIC/LYSOGENIC PROMOTERS	21 22 23 27 27 27 28
2.1 INTRODUCTION	30
 2.2 RESULTS. 2.2.1 Defining the CII-binding site. 2.2.2 The <i>c</i>IV476 mutation abolishes CII binding. 2.2.3 Identification of other putative CII DNA-binding sites in the 186 genome. 	30 30 31 31
 2.3 DISCUSSION 2.3.1 Model of DNA binding by CII 2.3.3 Identification of a putative CII DNA-binding sequence in \$\$\phi\$R67 	32 32 33
CHAPTER 3 : CII activates a leftward promoter p_E upstream of p_L 3.1 INTRODUCTION	35
3.2 RESULTS 3.2.1 CII activates a leftward promoter p_E 3.2.2 The start site of the p_E transcript is mapped by primer extension 3.2.3 Activated p_E increases leftward transcription past p_R 3.2.4 The p_E promoter is repressed by CI	35 35 35 36 36

3.3 DISCUSSION 3.3.1 Role of p_E in establishing lysogeny 3.3.2 The p_R -cro- p_{RE} and p_R -apl- p_E arrangements of lambda and 186 3.3.3 CI repression of p_E	37 37 38 39
CHAPTER 4 : Lysogenic transcription in the face of <i>p</i> R 4.1 INTRODUCTION	40
4.2 RESULTS. 4.2.1 p_L activity is context dependent. 4.2.2 Construction of p_R - and p_L - mutants 4.2.3 p_E is 13 fold more active than p_L . 4.2.4 The activities of p_E and p_L are additive 4.2.5 Transcription from p_E is inhibited less by p_R than is transcription from p_L 4.2.6 In the face of p_R transcription the combined activities of p_E and p_L are more inhibited than is the activity of p_E alone	40 40 42 42 43 43 43
4.3 DISCUSSION. 4.3.1 Why is p_E activity less inhibited than is p_L by converging p_R transcription ? 4.3.1 Polymerases at p_R , p_L and p_E are not expected to interfere with each other at	44 44
the level of K _B	46
than at $p_{\rm E}$	46
differently	47
$p_{\rm R}$ but not by leftward transcription from $p_{\rm E}$?	48 49 50 50
CHAPTER 5 : Apl and CII act in concert to repress 5.1 INTRODUCTION	51
5.2 RESULTS 5.2.1 p_E (in the presence of p_L) inhibits transcription from p_R 1.5 fold 5.2.2 CII and Apl act in concert to decrease p_R transcription 5.2.3 The presence of Apl slightly increases transcription of the lysogenic operon (beyond p_R) during establishment	51 51 53 53
5.3 DISCUSSION	54
1ysogeny	54
lysogeny 5.3.3 An anti- <i>apl</i> type mechanism similar to that proposed for <i>cro</i> in the case of Lambda (Spiegelmann et al., 1972) does not exist in 186	55 56
CHAPTER 6 : Concluding Remarks	
6.1 THE CLOSELY RELATED PHAGES 186 AND P2 ESTABLISH LYSOGENY DIFFERENTLY	57
6.1.1 P2 does not possess a CII-like function yet is able to establish lysogeny at similar frequencies than 186	57
6.2 THE ESSENTIALLY UNRELATED PHAGES 186 AND LAMBDA EMPLOY SIMILAR STRATEGIES TO ESTABLISH LYSOGENY	59

6.2.1 DNA binding by the CII functions of 186 and Lambda 6.2.2 Strategies used by Lambda and 186 CII in establishing lysogeny	59 60 62
0.2.5 Control of 180 CII	02
CHAPTER 7 : Materials and procedures	
7.1 MATERIALS	64
7.1.1 Bacteria	64
7.1.2 Bacterionhage	64
7.1.2 Diactoriophagen	64
7.1.5 Transmission $7.1.4$ Chromosomal single copy $lacZ$ fusions	71
7.1.4 Chromosoniai single copy <i>iuc2</i> rasions	72
7.1.5 Oligonacionale printer sequences	72
7.1.7 Chemicals	73
7.1.7 Chemicals	74
7.1.7.2 General chemicals	77
7.1.7.4 Calid media	77
7.1.7.4 Solid media	70
7.1.7.5 General bullers	70
7.1.7.6 DNA markers	19
	70
7.2 PROCEDURES	79
7.2.1 Phage and bacterial procedures	79
7.2.1.1 Storage of bacterial and phage stocks	79
7.2.1.2 Growth of bacterial strains	80
7.2.1.3 Lambda phage stocks	80
7.2.1.4 Phage assays	81
7.2.1.5 Construction of chromosomal copy <i>lacZ</i> fusions	81
7.2.1.6 Transformation by CaCl ₂	82
7.2.1.7 Transformation by electroporation	83
7.2.2 DNA manipulations	83
7.2.2 Ditri manipulations	83
7.2.2.2 Small scale isolation of plasmid DNA	83
7.2.2.2 Sinan scale isolation of plasmid DIVA	85
7.2.2.4 Phanal Chloroform extraction	85
7.2.2.4 Phenoi Chloroforni extraction	05
7.2.2.5 Restriction enzyme digestions	05
7.2.2.6 Agarose gel electrophoresis	00
7.2.2.7 Polisning DNA ends	00
7.2.2.7.1 With the Klenow fragment of E. coli DNA polymerase 1	80
7.2.2.7.2 With bacteriophage 14 polymerase	80
7.2.2.7.3 With pfu	8/
7.2.2.8 Reactions with alkaline phosphatase	87
7.2.2.9 Purification of DNA fragment from agarose	87
7.2.2.10 DNA ligations	87
7.2.2.12 PCR from a single colony	88
7.2.2.13 Sequencing reactions	88
7.2.3 DNase I footprinting	88
7.2.4 Primer extension analysis	89
7.2.5 Mutagenesis with mega primer	90
	01
7.2.6 β-galactosidase assay	91
APPENDIX	
Neufing, P.J., Shearwin, K.E., Camerotto, J., and Egan, J.B. (1996) The CII protein	
of bacteriophage 186 establishes lysogeny by activating a promoter upstream of the	
lysogenic promoter. Mol. Microbiol. 21: 751-761	92
BIBLIOGRAPHY	93

÷

3

SUMMARY

Coliphage 186 chooses to develop either lytically or lysogenically. The studies reported in this thesis were aimed at understanding how this phage establishes lysogeny.

The developmental decision in 186 occurs at the level of the lytic (p_R) and lysogenic (p_L) promoters.Transcription from either promoter is at the expense of the other. Thus transcription from p_L results in the production of the CI protein, which represses p_R , while transcription from p_R expresses the Apl protein which can repress p_L (Dodd *et al.*, 1990). Evidence from *galK* transcriptional promoter fusions has shown that the lytic promoter (p_R) is considerably more active than the lysogenic promoter (p_L) (Dodd *et al.*, 1990). Moreover, as a consequence of the face-to-face arrangement of p_R and p_L , p_L transcription is inhibited by converging p_R transcription. Yet during the establishment of lysogeny, the phage must theoretically progress from a state where p_L is repressed by Apl and interfered with by actively transcribing p_R , to the stable lysogenic state of autogenous control whereby CI repression of p_R allows p_L activity and thereby maintenance transcription of *c*I. The 186 *c*II gene has previously been shown to be required for the establishment of lysogeny and is expected to mediate this transition.

CII contains a potential helix-turn-helix DNA-binding motif suggesting that it may act as a transcriptional regulator. As a prelude to defining the mechanism of action of CII previous work had identified that CII could specifically bind to a minimal 165 bp DNA fragment of 186 which spanned the *apl/c*II intergenic region . In the present study, the CII DNA binding site within this region was identified by DNase I footprint. CII was found to bind to inverted repeat sequences separated by two turns of the helix which are located at the 5' terminus of the *c*II gene.

4

Location of the CII-binding site upstream of p_L suggested that CII may establish lysogeny by activating an alternative lysogenic promoter in this region. Results obtained from transcriptional *lacZ* reporter fusions confirmed that CII functions as a transcriptional activator and primer extension was used to map the start site of this CII dependent (p_E) transcript to the *apl/c*II intergenic region. Since results from transcriptional reporter fusions show that the p_E transcript extends into the lysogenic operon past p_R it is presumed that transcription from p_E expresses CI which leads to repression of p_R and relief of the inhibition of p_L by p_R , thus allowing maintenance transcription of *c*I. As the integrase gene (*int*) is part of the same operon as *c*I, it is also presumed that p_E transcription produces Int thus facilitating integration of the phage genome into the bacterial chromosome. It is of interest to note that p_E does not remain fully active throughout establishment since it is subject to direct negative feedback by CI.

In 186 both lysogenic promoters transcribe in the face of p_R yet while the p_R/p_L combination cannot establish lysogeny the $p_R/(p_L+p_E)$ promoter combination is proficient in establishment. Various single copy *lacZ* promoter fusions were constructed to determine why p_E+p_L is more proficient at establishing lysogeny in the face of p_R than p_L alone. Results from this study show that p_E is a significantly stronger promoter than p_L and is less inhibited by converging transcription from p_R . Since the activities of p_L and p_E are additive it was therefore expected that p_E+p_L would be even more proficient than p_E alone in extending transcripts beyond p_R . Contrary to expectation however, the p_E/p_R combination was able to extend a greater number of transcripts beyond p_R than the $p_R/(p_L+p_E)$ combination. Presumably, interfering complexes generated by the opposing transcription from p_R and p_L block the elongation of a small proportion of p_E transcripts.

Promoters initiating converging transcription such as p_R and p_E are expected to interfere with each others activities. p_R transcription has been shown to interfere with p_E but does p_E activity interfere with p_R transcription ? Results from *lacZ* reporter constructs monitoring p_R activity in the presence or absence of active CII indicate that p_E transcription is able to inhibit p_R transcription. This may be an efficient means for 186 to dampen p_R activity before CI represses p_R directly.

Establishment of lysogeny in 186 occurs in the presence of Apl. Since Apl binds in the p_R/p_L region and represses transcription from p_R and p_L it was of interest to determine how Apl would alter the flow of lytic and lysogenic transcription during the establishment of lysogeny. Results from transcriptional reporter studies used to address this question indicate that Apl acts in concert with p_E to increase cI transcription, by reducing interfering transcription from p_R .

STATEMENT

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying

ACKNOWLEDGMENTS

I wish to express my gratitude to :

- the academic staff of the Biochemistry department for making this department a first class learning environment, and allowing me to be part of it,

- Barry Egan for his enthusiastic supervision, his honesty, his relentless perfectionism, for letting me make my own mistakes, focussing me on the question I was asking, teaching me to frame that question and for always striving to one day catch that elusive champagne cork !

- Ian Dodd and Keith Shearwin, for talking about their ideas and reasons why, for their logical problem solving skills, for being a wealth of knowledge to tap into at any time, and for showing me what being efficient really means,

- Tina, Michael, David, Rob, Rachel, Eloise and Daniel for their friendship, support, co-operation and for providing the daily entertainment,

- the Biochem. support staff, Jan, Jackie, Sheila, Judy, Ros, Serge and Brian for making daily life a breeze and going out of their way to help,

- Wayne Tilley and Bill Kalionis for believing in me and for being patient understanding and supportive,

- my fellow sufferers Lynn and Cathy for being fellow sufferers and convincing me that it wasn't so bad,

- my family for their support and for putting up with me,

- my most heartfelt thanks goes to Anthony for sharing my enthusiasm for the complexity within simplicity of 186, for putting up with me this last year but most of all for his love, understanding and emotional support.