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Abstract

Recent advances in microfabrication technologies and electronics have led to a vast

reduction in sizes and power consumption of electronic circuitry. This has revolu-

tionized the field of wireless sensor networks, and in particular, Internet-of-Things,

with a booming number of applications that enable the capabilities of autonomous

sensing and monitoring. However, the implementation of such applications has been

hindered by the slow development of scalable energy sources which provides po-

wer for operation. Batteries, which are the most common energy sources, have not

kept pace with the demand of these developments. The challenge to provide po-

wer for microelectronic devices has, therefore, driven several innovations in vibration

energy harvesting - a technology that has been flourished in recent years as a possi-

ble alternative to provide continuous energy for autonomous operation. During the

last decade, a significant number of microscale vibratory energy harvesters has been

fabricated using active materials (piezoelectric, ferroelectric and magnetoelectric) or

exploiting the electromechanical coupling mechanisms (electromagnetic and electro-

static) to harvest energy from mechanical stimuli or ambient vibrations. Such trans-

duction mechanisms have both benefits and limitations that vary depending on the

employed technology and the targeted application. For miniaturization, electrostatic

systems are favorable due to their compatibility with MEMS fabrication processes. In

addition, electrostatic systems with pre-charged electrets can autonomously harvest

energy to energize microelectronic devices such as wireless sensors and actuators.

Hence, this transduction mechanism is selected as the topic of this research.

The main focus of this research is the analytical modeling approach that provi-

des insights into the operating mechanism and trade-off involved when designing

an electret-based microgenerator. Sinusoidal excitations which resemble ambient vi-

bration stimuli were considered in this research. The modeling process was, firstly,

v



undertaken for a simple case when the vibration amplitude is small, and then exten-

ded and generalized for an arbitrary sinusoidal vibration. Under these conditions,

an electret-based can be modeled as a sawtooth voltage source in series with an equi-

valent internal resistance, or a current source. These models were validated using a

simulation-based method presented in the literature and showed good agreements. A

performance optimization was also carried out by employing the proposed analytical

model combined with voltage breakdown phenomenon and the limitation of material

properties. However, a fully functional micro power generator driven by vibrations

has yet to be demonstrated.

In summary, the research has expanded the capability of analytical modeling and

understanding of electret-based microgenerators. These can be used in further studies

and optimizations to achieve the ultimate goal of autonomous operation.
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