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Abstract 

 

Single-pass leucine-rich (LRR) repeat transmembrane proteins contain a diverse number of 

repeating motifs of approximately 24 amino acid residues with a large number being conserved 

leucines. Flrt expression is observed in the developing embryo in important developmental regions such 

as the central nervous system and developing skeletal muscle. Knockout of Flrt3 during embryogenesis 

results in early embryonic lethality making in vivo analysis of endogenous Flrt3 function difficult. No cell 

based model exists for studying Flrt function. Flrt family members have previously been shown to 

interact with FgfR1 and 2, with the Flrt1 FgfR1 interaction resulting in an increase in FgfR1 signalling 

activity. Immunofluorescent microscopy reveals that Flrt3 from mouse (Mus musculus) co-localises with 

FgfR1 both intracellularly and at the plasma membrane, with the interaction resulting in a trend of 

increased FgfR1 signalling being observed, and phosphorylation of tyrosine residues within Flrt3. An 

attempt was made to identify domains of the protein important in the trend of increased FgfR1 

signalling, but no domains could be identified as contributing to this outcome. 

To study endogenous Flrt3 function, the P19 embryonic carcinoma retinoic acid-induced neural 

differentiation model was used, and the results showed a rapid and robust induction of Flrt3 mRNA and 

protein expression. A region of the promoter between 4 kb and 6 kb upstream of the Flrt3 start site was 

found to be partially responsible for the induction of Flrt3. Interestingly, this response element was not 

within a region of promoter that showed conservation among higher-order mammals. An effect of 

increased Flrt3 expression during neural differentiation was observed, resulting in decreased MAPK 

pathway activation. Induction of Flrt3 is found to occur prior to that of Sox1, accepted to be one of the 

first genes up-regulated in early neurectoderm differentiation, yet was found to be not solely responsible 

for the induction of Sox1. The individual cell expression of Flrt3 and Sox1 was analysed by 

immunofluorescence, although it did not reveal details regarding induction of Sox1 in cells with 

increased Flrt3 expression.  

The potential for a common feature of single-pass LRR transmembrane proteins to function as 

modulators of receptor signalling during embryonic development was investigated, using Lrrtm3 and 

FgfR1 as an example. Lrrtm3 was investigated as a modulator of FgfR1 signalling due to overlapping 

region of expression with FgfR1 in the developing embryo. Lrrtm3 was found to co-localise and form an 

interaction with FgfR1, with this interaction resulting in an increase in FgfR1 signalling. 
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The data obtained in this thesis provides further insight into not only the role of the Flrt protein 

family as FgfR1 modulators, but potentially identifies a role for similar, if not all single-pass LRR 

transmembrane proteins as regulators of receptor signalling during embryonic development. While the 

results of Chapter 3 and 5 were obtained using a protein over-expression system, the first model for 

studying endogenous Flrt3 was identified and characterised in Chapter 4, providing the opportunity to 

study Flrt3 function during development with protein expression levels closely resembling those that are 

found in the embryo. 
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1. Introduction 

 

1.1 Leucine-rich Repeat Proteins 

 

Throughout the mammalian genome, a large number of protein families exist that are defined by 

specific protein modules encoded within their sequence. The leucine-rich repeat (LRR) family contains a 

motif consisting of approximately 24 amino acids (aa), with a high percentage of conserved leucine 

residues arranged in the general consensus sequence L X X L X X L X L X X N X L X X L p X X o F X X 

where L is leucine, X is any amino acid, N is asparagine, o is a non-polar residue and lower case letters 

indicate more than 30% conservation [1]. This motif typically occurs as a repeat structure that can vary 

in number.  Despite the varying number of repeats, this structure produces a hydrophobic concave 

surface that favours protein-protein interactions [2] [3] (Figure 1).  

 

Figure 1: 3D crystal structures of LRR proteins. The LRR domains are shown in blue, with flanking regions that are an 
integral part of the LRR domain but do not correspond to LRR motifs shown in grey, and other structures shown in magenta. 
(a) RI, (b) TAP and (c) dynein LC1. Adapted from [3]. 

 

LRR proteins perform a wide variety of functions and occur in many different cellular locations, 

with proteins containing the motif present within the cell including the cytoplasm, at the cell membrane 

or secreted into the extracellular space. Structural and functional diversity within the LRR family is 

caused by a different number of motif repeats (Figure 1) and the inclusion of various other domains 

within the protein that can affect its localisation and/or function. Extracellular, membrane-bound LRR 

proteins can be GPI-anchored or transmembrane proteins with the majority of transmembrane proteins 

occurring in single pass transmembrane subfamilies.   

 

The LRR single pass transmembrane proteins contain an N-terminal extracellular LRR motif 

surrounded by N- and C-terminal cysteine-rich flanking sequences, a hydrophobic transmembrane 

sequence and a short cytoplasmic C-terminal tail (Figure 2).  
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Figure 2. Single-pass transmembrane protein families: Schematic diagram showing the secondary structure of the mouse 
single pass leucine-rich repeat (LRR) transmembrane protein families. Numbers indicate number of family members. 

 

Variation between families occurs by different numbers of LRR repeats and the inclusion of 

other additional domains such as fibronectin-like domains and immunoglobulin-like domains, situated 

between the transmembrane domain and the LRRs.  The extracellular positioning and LRR hydrophobic 

concave surface gives the single pass transmembrane LRR proteins a probable role in cell-cell 

adhesion and/or cell signalling [4]. 

 

1.1.1 Flrt family 

 

The molecular function of LRR membrane proteins in not well understood. One of the best 

studied LRR membrane families is the Flrt family. It contains three members; Flrt1, 2 and 3, which share 

a conserved secondary structure of a short intracellular tail, a single transmembrane domain, a 

fibronectin-like domain and ten LRRs surrounded by C and N-terminal cysteine flanking regions [5]. Flrt 

proteins are glycosylated type I transmembrane proteins expressed at cell membranes [5]. No complete 

crystal structures are available for any of the Flrt members, but the structure of the LRR domain of Flrt3 

has been solved [6]. All Flrts show highly specific expression during mouse embryonic development, 

with expression of Flrt1 present at the compartmental boundaries of the brain from days 9 to 11 dpc, 

and Flrt2 expressed in the developing sclerotome [5]. From day 6 dpc, Flrt3 shows a highly-regulated 

pattern of expression in mid-gestation mouse embryos, with specific domains of expression localised to 

the midbrain/hindbrain boundary, apical ectodermal ridge (AER) and the developing somites [5] (Figure 

3).  
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Figure 3. Expression of Flrt3 during somite development: In situ hybridisations of 9.5 dpc (A) and higher magnification of 
the developing somites from in situ hybridisations of 10.5 dpc (B) and 11 dpc (C) mouse embryos with a riboprobe for Flrt3. i–
iii are sections of the embryo in panel B and iv of the embryo in panel C with the approximate planes of section shown by 
yellow lines. vfb - hypothalamic region of the ventral forebrain; mhb - midbrain/hindbrain boundary; fmb - forebrain/midbrain 
boundary; aer - apical ectodermal ridge [5]. 

 

Neural expression analysis in mouse embryos at 9.5 dpc and 10.5 dpc showed Flrt3 expression 

at the midbrain/hindbrain (MHB) boundary and the forebrain/midbrain boundary. Mesodermal 

expression of Flrt3 from 8 dpc to 11 dpc in newly formed somites occurs throughout the inner edge of 

the somitic epithelium but is stronger dorsally, with more mature somites showing decreased epithelial 

expression and an increase in expression at the somitic lips. Strong expression occurs in the 

dermomyotome and myotome in the ventral lip at the interlimb level at 11 dpc. The AER on the 

developing limb bud displays Flrt3 expression from 10.5 dpc [5]. This expression pattern is also seen in 

E12 rat [7]. Post-natal expression of Flrt3 is present in the adult hippocampus [7]. Initial expression 

studies of Xenopus Flrt3 showed expression at the midbrain/hindbrain boundary in gastrulae, matching 

expression in the mouse in this region [8]. 
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Protein function can vary depending on where the protein is localised. Being transmembrane 

proteins, the Flrt family are possibly present within the plasma membrane, exposed to the extracellular 

environment, or within an intracellular membrane, where its function could be vastly different. Flrt3 is 

found not only at the plasma membrane in over-expression and endogenous assays, but also in 

intracellular vesicular membranes as a result of various post-translational modifications occurring to the 

protein, such as glycosylation. This is evident by the different sized proteins detected in Western blots. 

These differ from the predicted molecular weight of 72.9 kDa (http://www.ncbi.nlm.nih.gov/protein/ 

AAH52043.1) [7, 9] (Figure 4). 

 

Figure 4. Flrt3 is localised to the plasma and intracellular membranes in dorsal root ganglion (DRG): The E15 rat cortical 
neuron cell surface proteins were biotinylated in vitro. Both biotinylated (BIOT) and cytosolic (CYTO) protein samples were 
analysed by Western blot. A sample DRG lysate (DRG CONT) was included as a control for immunostaining. Loading control 
of GAPDH was used. n=3 Adapted from [7]. 

 

Several LRR proteins, including chaoptin and tartan, function in intercellular adhesion or the 

formation of tissue boundaries, exhibiting homotypic cell adhesion properties. As Flrt3 is expressed at 

the plasma membrane, and at brain compartmental boundaries, a role in cell adhesion was investigated 

[10-13]. Binding of Xenopus laevis Flrt3 (xFlrt3) to other xFlrt3 proteins was observed by Karaulanov et 

al. (2006), and interestingly, xFlrt3 was shown to also bind human Flrt1 (hFlrt1) and Flrt2 (hFlrt2). Flrt 

self-interactions were also shown to result in a homotypic cell sorting phenotype using cells co-over-

expressing eGFP and xFlrt3. This cell sorting phenotype was also observed with Flrt2 [10] (Figure 5). 
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Figure 5: Over-expression of Flrt proteins causes cell sorting. (A–C) HEK-293T cells were co-transfected with enhanced 
green fluorescent protein (EGFP) and Xenopus FLRT3 (xFLRT3) or human FLRT2 (hFLRT2) expression plasmids. 
Fluorescence and bright-field images of confluent monolayers were taken 60 h after transfection. (D–G) FLRT-mediated cell 
sorting does not require substrate adhesion. 24 h after transfection with Xenopus FLRT3 and EGFP, HEK-293T cells were 
dissociated, mixed 1:1 with non-transfected cells, re-plated on agarose and photographed after 20 h (D,E) or aggregated in 
suspension and photographed after 48 h (F,G). Empty vector transfections served as sorting controls (A,D,F). Scale bars, 200 
µm [10]. 

 

Cells co-over-expressing eGFP and xFlrt3, or hFlrt2, grown in either monolayer, aggregation or 

on agar gave rise to a homotypic cell sorting phenotype. It was observed that cells in the centre of the 

clusters were the brightest, indicating Flrt dose-dependent changes in cell-cell adhesion [10].   
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The role of Flrt3 in mature neural cells has been investigated by a number of groups [7, 9, 14, 

15]. Documented cases of its involvement in both neural growth and repair exist, with Tanabe et al. 

being the first group to provide evidence of a role for Flrt3 as a nerve regeneration-associated gene 

[14]. Using a microarray comparing gene profiles of dorsal root ganglia (DRG) 7-days post-transection 

to healthy adult DRG, Flrt3 showed a 9.5-fold up-regulation, confirmed by Northern blot and in situ 

hybridisation analysis [14] (Figure 6).  

 

Figure 6. The Flrt3 gene is induced in DRG neurons by axotomy: a) Northern blot analysis shows mRNA expression of 
Flrt3 in uninjured embryonic day 15 (E15), uninjured post-natal day 3 (P3), adult contralateral (Con) and adult axotomized 
(Axo) L4-6 mouse dorsal root ganglion (DRG) neurons. Samples were collected 7 days after axotomy. Relative signal intensity 
for indicated bands is reported at the bottom of each lane. The ethidium bromide staining pattern of the 18S ribosomal RNA is 
shown to demonstrate the quantity of RNA loaded, and size markers are shown on the left. b) In situ hybridisation shows the 
localisation of Flrt3 transcripts in the fluoro-gold-labelled axotomized DRG (arrowheads) and little mRNA expression in control 
DRG sections. Scale bar, 50 μm. Adapted from [14]. 
 

This is the second largest change in gene expression observed, only 0.1-fold smaller than the 

gene with the largest change in expression (9.5-fold vs 9.6-fold for fibroblast growth factor inducible-14) 

[14].  

 

Robinson et al. went on to show that the increase in Flrt3 mRNA was not caused by 

inflammation, but specifically axotomy. They confirmed the results of Tanabe et al. and discovered that 
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levels of Flrt3 mRNA were drastically increased to their maximal levels after just 24 h post-injury, with 

these levels maintained over the 7-day period investigated (Figure 7) [7]. 

 

Figure 7. Flrt3 mRNA is up-regulated in DRG neurons by axotomy and not by inflammation: Northern blot analysis 
showed that Flrt3 mRNA was up-regulated in adult rat L4–L5 DRG after peripheral inflammation and sciatic nerve lesion. L4–
L5 DRGs were taken over a time course (h = hour; d = day) after peripheral inflammation (by CFA injection into the hind paw) 
and after sciatic nerve lesion [7]. 

  

While Figure 6 shows that Flrt3 levels increase upon nerve injury, it also shows the levels of 

Flrt3 in both embryonic and neonatal mice compared to adult mice. It can be seen that the DRG of a 

E15 mouse shows a 1.7-fold increase in Flrt3 expression by Northern blot compared to neonatal and 

adult mice, which show very similar expression. This adds to the Flrt3 expression seen by Haines et al. 

observed in Figure 3 [5]. While we do see an increase in mRNA levels, this doesn’t appear to lead to an 

increase in Flrt3 protein levels [7]. 

 

Given previous data, including that from Figure 6 and 7, experiments to analyse the role of Flrt3 

protein function in neurite outgrowth were undertaken [7, 9, 14]. By growing cerebellar granular cells 

from post-natal day 8 (P8) rat pups on a confluent layer of Flrt3-expressing or control CHO cells in a 

neurite outgrowth assay, differences were observed [9] (Figure 8). 

 

Figure 8. FLRT3 promotes neurite outgrowth from primary cultured cerebellar granule neurons: (a) Expression of HA-
FLRT3 in Flp-in CHO cells. (b) Representative image of cerebellar granule neurons of P8 rat pups plated on control CHO and 
FLRT3-CHO cells. The images are reversed to enhance contrast. (c) Neurite length of at least 150 neurons per each condition 
in three independent experiments is presented as the mean neurite length. ***p < 0:001; one-way ANOVA. Scale bar, 50 µm 
[9]. 
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When grown on CHO cells over-expressing Flrt3 (Figure 8. a, b FLRT3-CHO), neurite 

outgrowth of the cerebellar granular neurons is increased compared to the control (CHO) after 24 h. 

Mean neurite length of neurons grown on the control CHO cells was 59.1 ± 1.9 µm, which is 

significantly less than neurons grown on Flrt3 over-expressing  CHO cells, which had a mean neurite 

length of 72 ± 2.6 µm [9].  

 

It appears that Flrt3 within the neuron is also important for neurite outgrowth. Using antisense 

knockdown of Flrt3 protein in in vitro assays on dorsal root ganglia, Robinson et al. showed a 44% 

decrease in neurite outgrowth length and a 43% decrease in the number of neurite outgrowths 

compared to sense oligonucleotide control cells [7] (Figure 9). 

 

Figure 9. Flrt3 promotes neurite outgrowth: (A) Fixed dorsal root ganglion neuronal cells in vitro 24 h after application of 
sense or antisense oligonucleotides and immunostained for the pan-neuronal marker PGP9.5. Scale bar = 250 µm. (B + C) 
Antisense knockdown of FLRT3 protein in dorsal root ganglion neuronal cells in culture resulted in a significant reduction in 
both maximum neurite length (B) and number (C) (mean values ± SEM are shown). *** P < 0.001, two-way ANOVA. (D) Fixed 
dorsal root ganglion neuronal cells in vitro 24 h after application of GFP- or FLRT3 over-expressing HSV-1 virus and 
immunostained for the pan-neuronal marker PGP9.5. Scale bar = 250 µm. (E + F) Over-expression of FLRT3 by HSV-1 in 
dorsal root ganglion neuronal cells in vitro resulted in a significant increase in both maximum neurite length (E) and number 
(F) (mean values ± SEM are shown). *** P < 0.001, ** P < 0.01—two-tailed Mann–Whitney test. Adapted from [7]. 

 

The key role of Flrt3 in neurite length and number was confirmed by the over-expression of Flrt3 

in DRG (Figure 9 D – F). With the over-expression of Flrt3, maximum neurite length increased by 51% 

and the number of neurites increased by 65% compared to control cells [7]. 

 

Not only does Flrt3 increase maximum neurite length and the number of neurites, it also 

appears to be important in the direction of neurite extension. Evidence of a cleavage event adjacent to 

the transmembrane domain of the Flrt in over-expression systems was first seen by Haines et al., 
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resulting in the discovery of a short C-terminal sequence species and confirmed by Yamagashi, et al. 

(data not shown) [5, 15]. Extracellular domains (ECDs) of each Flrt protein were found in the total cell 

lysate (TCL) and shed in the cell culture media of over-expressing HEK-293T cells, while the presence 

of short C-terminal species in the TCL was also shown (data not shown) [15]. This cleavage even was 

also observed in dissociated embryonic cortical neurons isolated from E16.5 embryos and grown for 6 

days in vitro, which express endogenous Flrt proteins [15] (Figure 10). 

 

Figure 10: Detection of shed FLRT1–3 ECDs in 6 DIV conditioned media of E16.5 cortical neurons. FLRT1–3 ECDs are visible 
in blots probed with anti-ECD antibodies (upper panels) but not with anti-ICD antibodies (lower panels). The positions of full-
length FLRT2 (arrow) and of a non-specific band (asterisk) are indicated. Adapted from [15]. 

 

Using alkaline phosphatase fused soluble Flrt ECDs, binding assays in HEK-293T cells 

revealed that the ECDs of Flrt3 could bind to full-length Flrt3 as well as Netrin receptor Unc5B, which 

had both been shown to previously interact with full-length Flrt3 (data not shown) [10, 11]. Together with 

the data shown above by Karaulanov et al. (2006), strongly suggests that the homotypic cell sorting 

phenotype observed here is facilitated by the Flrt3 ECD.  It had been previously found that Netrin-1 

binds to and acts as repulsive guidance cue for path-finding axons [16]. Therefore, using stripe assays 

and E15.5 hippocampal neurons, the effect of Flrt3 binding to Unc5B-positive extending axons was 

investigated. This found that Flrt3, like Netrin-1, act as repulsive guidance cue for path-finding axons 

[15] (Figure 11).  
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Figure 11: Stripe assays with FLRT2/3 ECDs and hippocampal neurons. (A–C) E15.5 hippocampal neurons were grown 
on stripes containing (A) control Fc preincubated with control Fc (green) against control Fc (black), (B) FLRT3-Fc preincubated 
with control Fc (green) against control Fc (black), (C) FLRT3-Fc preincubated with Unc5B-ECD-Fc (green) against control Fc 
(black). Cells were stained with anti-Tau1 antibodies to visualize axons (red). The location of the faintly stained green stripes 
is indicated by alternating stripes on the left side of each image. FLRT2/3-Fc had repulsive effects on both axons and soma 
(see Supplementary Figure S5). Scale bar: 100 mm. (D, E) Images were digitalized and the percentage of Tau1þ pixels on 
green stripes was quantified. (D) Maximal repulsion by FLRT2-Fc and FLRT3-Fc without dilution with control Fc. (E) Inhibition 
of FLRT3-induced repulsion by preincubation with the respective Unc5-ECD-Fc proteins (n=3 independent experiments, 
**P<0.01, ***P<0.001, t-test). Adapted from [15]. 

 

 This data provided the first direct evidence of a role for Flrt3 in spatial arrangement of neurons 

in the developing embryonic brain through neurite extension. 

 

 Further evidence exists that Flrt3 is a key protein in neuron function. Latrophilin3 (LPHN3) is a 

member of the G-coupled protein receptor latrophilin family. LPHN3 is expressed predominantly in the 

CNS, and is known to mediate the exocytotic effect of black widow spider venom on synaptic terminals 

[17]. Evidence is gathering for a role of latrophilins in the function of neural circuits, with LPHN3 

mutations linked to attention deficit hyperactive disorder [18]. Investigation of potential ligands of LPHN3 

revealed that Flrt3 can interact directly and in trans as a post-synaptic protein. Using post-natal 

hippocampal cells, knockdown of Flrt3 by shRNA resulted in a 34% reduction in synapse density and a 

17% reduction in synapse area by immunofluorescence, while shRNA-resistant Flrt3 transfected cells 

rescued these reductions [19] (Figure 12).  
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Figure 12: Flrt3 regulates glutamatergic synapse number. (a) Hippocampal neuron cultures were electroporated with GFP 
control plasmid (GFP), a plasmid encoding shFlrt3 and GFP (shFlrt3), or the shFlrt3 plasmid plus an shFlrt3-resistant Flrt3-
myc expression construct (Rescue) and were fixed and immunostained for VGlut1 (green), PSD95 (red), and GFP (blue) at 14 
days in vitro. (b) Synapse density was reduced by shFlrt3 and returned to control levels in the rescue condition (GFP 1.00 ± 
0.08, n=35; shFlrt3 0.66 ± 0.06, n=33; rescue 0.96 ± 0.09, n=34; analysis of variance [ANOVA] p < 0.01, significant post hoc 
comparisons shown on graph). (c) Synapse area was slightly reduced by shFlrt3 (GFP 1.00 ± 0.05, n=35; shFlrt3 0.83 ± 0.04, 
n=33; rescue 0.98 ± 0.06, n=34; ANOVA p < 0.05, significant post hoc comparisons shown on graph). Adapted from [19].  
 

Knockdown of Flrt3 also resulted in the reduction of dendritic spines in granule cells and 

consequently negatively regulated synapse formation onto these cells [19].  It is thought that a possible 

explanation for the interaction between Flrt3 and LPHN3 is to stabilise LPHN3 and allow signal 

transduction within the pre-synaptic neuron [20]. 

 

The role of Flrt3 in earlier stages of development is yet to be elucidated. Flrt3 expression is first 

seen at E9.5, yet the above studies use much later time-points (E15.5). Such highly regulated and 

distinct expression patterns imply an important role, yet this question has been poorly addressed. The 

regions of expression of Flrt3 in the developing embryo are reliant on proper signalling function to allow 

for viable development. Fgf signalling is a critical signalling pathway involved in the formation and 

patterning of the midbrain and hindbrain by the organising centre and the boundary, while facilitating the 

tissue patterning of the developing limb bud in the proximodistal axis from the AER. Expression of Flrt3 
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in Xenopus in various species at the MHB and AER, paired with Lrrtm3 expression at the AER, 

suggested a role for particular LRR proteins in the regulation of Fgf signalling. 

 

1.2 Fibroblast Growth Factor Receptors 

 

Fibroblast growth factor receptor 1 (FgfR1) is a member of the fibroblast growth factor receptor 

(FgfR) family that contains four members and seven isoforms. FgfRs are involved in proliferation, 

migration, differentiation and survival of cells, especially in the CNS [21], and play an important role in 

somitogenesis [22]. FgfR1 contains three extracellular immunoglobulin-like domains and a cytoplasmic 

tyrosine kinase domain. The receptor binds 15 of the 23 Fgf ligands [23] in a complex with heparin 

sulphate (HS), resulting in dimerisation of two FgfR molecules. This leads to autophosphorylation of 

intracellular tyrosine residues and activation of the intracellular tyrosine kinase domain, resulting in the 

activation of downstream signalling through the MAPK (predominantly, associated with proliferation and 

differentiation [24]), PI3K (associated with cell survival [24]) and phospholipase C (PLC, associated with 

cell morphology and migration [24]) activation through a series of adapter proteins [25] (Figure 13).  
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Figure 13. Schematic diagram showing the FGFR signalling network: The signal transduction network downstream of 
fibroblast growth factor (FGF) receptors (FGFRs), along with negative regulators. Following ligand binding and receptor 
dimerization, the kinase domains transphosphorylate each other, leading to the docking of adaptor proteins and the activation 
of four key downstream pathways: RAS-RAF-MAPK, PI3K-AKT, signal transducer and activator of transcription (STAT) and 
phospholipase Cγ (PLCγ) (green). Signalling can be negatively regulated at several levels by receptor internalisation or the 
induction of negative regulators, including FGFR-like 1 (FGFRL1), SEF, Sprouty (SPRY), CBL, MAPK phosphatase 1 (MKP1) 
and MKP3 (brown). These regulators may modulate ligand binding (FGFRL1 and SEF) or interfere with intracellular signalling, 
principally through modulation of the MAPK pathway. DAG, diacylglycerol; FRS2α, FGFR substrate 2α; GRB2, growth factor 
receptor-bound 2; IP3, inositol triphosphate; P, phosphorylation; PIP2, phosphatidylinositol-4,5-biphosphate; PKC, protein 
kinase C; Sos, son of sevenless [25]. 
 

With control over so many important cellular decisions via a number of pathways, regulation of 

Fgf signalling is vital for the proper cell growth and function during development. Two key components 

regulating Fgf signalling are FRS2α and Sprouty. FRS2α plays a dual role in Fgf signalling; in the 

presence of Fgf ligand, FRS2α initially activates downstream signalling, but later represses the 

signalling in a feedback loop. During stimulation, FRS2α undergoes tyrosine phosphorylation, followed 

by tyrosine phosphorylation of Shp2, causing complex formation with Grb2. This complex interacts with 

Sos and propagates Fgf signalling within the cell through the MAPK pathway. It has also been shown to 

allow phosphorylation of docking protein Gab1, which binds constitutively with Grb2 in complex with 

FRS2α, leading to the recruitment of PI-3K and activation of the Akt pathway. In FRS2α’s role to 
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negatively regulate Fgf signalling, Grb2 bound to tyrosine phosphorylated FRS2α forms a complex with 

Cbl, a ubiquitin ligase, and results in ubiquitination of FgfR and FRS2α. Also, through threonine 

phosphorylation of FRS2α, recruitment of Grb2 is decreased and MAPK signalling is attenuated. 

Threonine phosphorylation of FRS2α can be a result of EGF, insulin or PDGF stimulation, and growth 

factors or hormones that do not result in tyrosine phosphorylation of FRS2α [26] (Figure 14). 

 

Figure 14. FGF signaling pathway: A wiring diagram depicting signaling pathways downstream of FGFR including the 
pathways that are dependent upon tyrosine phosphorylation of FRS2α following FGF-stimulation (green arrows). The negative 
signals that are mediated by or impinge upon FRS2α are marked by red arrows. Also shown, heterologous control of FGF 
signaling by growth factors (i.e. insulin, EGF) or G-protein coupled agonists (i.e. LPA, carbachol) that stimulate threonine 
phosphorylation of FRS2α [26]. 

 

Sprouty is an antagonist of Fgf signalling and binds to FRS2α (Figure 13), inhibiting the 

propagation of Fgf signalling via the MAPK pathway. Fgf stimulation causes an increase in expression 

of Sprouty in an ERK-dependent manner and Y55 phosphorylation [27, 28]. Upon phosphorylation, 

Sprouty translocates to the plasma membrane and co-localises with Grb2, where it inhibits the 

interaction between Grb2 with FRS2, and Shp2, resulting in the down-regulating Fgf signalling [29]. 

 

1.3 Fgf Signalling and Development 

1.3.1 Limb development 

Fgf signalling plays a critical role in limb bud formation, with signalling vital for the function of 

the AER. The AER is a specialised tissue formed on the distal tip of the vertebrate limb bud, essential 

for limb proximodistal patterning and functions by producing signalling molecules that act on the 

adjacent mesenchyme tissue [30]. Ligands Fgf2, Fgf4, Fgf8 and Fgf9 are expressed in the AER, with 
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receptors FgfR1 and FgfR2 expressed in the adjacent nascent limb bud mesenchyme [30]. To 

demonstrate the importance of Fgf signalling in the function of the AER in limb bud development, 

removal of the AER and replacement with heparin beads soaked in recombinant Fgf protein, such as 

Fgf4, leads to the normal formation of a functional limb [31]. Knockout of individual Fgf ligands and FgfR 

in the AER result in malformation of the limb and showed some functional redundancy between Fgfs 

and FgfRs [32].  

 

1.3.2 Central nervous system development 

The midbrain-hindbrain organiser (MHO), also known as the isthmus, located at the boundary 

between the midbrain and hindbrain, controls the development and patterning of these 2 parts of the 

brain. Conditional knockout of Fgf8 results in the midbrain and anterior hindbrain not forming, 

demonstrating the importance of Fgf signalling in the MHO [33]. Fgf8 is thought to act through FgfR1, 

with expression of FgfR1 identified throughout the entire neural tube; overlapping with Fgf8 expression, 

the ventral midbrain and floor plate, and the ventral hindbrain in the formation of the MHB [34, 35] 

(Figure 15).  

 

Figure 15. Schematic drawing of brain vesicles: Patterning of the vertebrate brain occurs immediately after the closure of 
the neural tube. Fgf8 signal from the isthmus and signals to the midbrain (mes) and hindbrain (met) through FgfR1, resulting 
in specific tissue fate by the expression of specific transcription factors within different neural compartments. tel=telencephalon, 
di=diencephalon, mes=mesencephalon, met=metencephalon, mye=myelencephalon, pros=prosencephalon, 
rhomb=rhombomeres,  [35]. 

 

In situ analysis has confirmed the presence of FgfR1 in the blastocyst (both the inner cell mass 

and telecephalon), FgfR1 and FgfR2 during gastrulation (day 6.5-8 p.c. mouse embryos), and FgfR1 is 

expressed in the ectoderm and mesoderm during organogenesis (day 9.5-14.5 p.c. mouse embryos) 
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[36], where FGF signalling is important in the formation of the central nervous system (CNS) and 

peripheral nervous system (PNS) [23]. Mice lacking FgfR1 and/or FgfR2 die early in utero prior to or at 

gastrulation due to severe growth retardation [37].  

 

Fgf signalling through FgfRs has been shown to be important in the development of the limb 

bud and midbrain/hindbrain and Flrts are specifically expressed in these regions.  

 

1.4 Influential Interactions Between Proteins and LRR Proteins 

 

In situ hybridisation analysis of Xenopus FGF8 (XFGF8) and XFLRT3 expression patterns 

showed very similar expression in early embryonic development and the mid-hind brain (MHB) 

boundary [8] (Figure 16). 

 

Figure 16. XFLRT3 and XFGF8 expression patterns: Expression pattern of XFLRT3 (d, e) and XFGF8 (g, h) in Xenopus 
gastrulae (d, g, vegetal view), neurulae, (e, h, anterior view). Adapted from [8]. 
 

 Mouse studies show expression of FLRT3 in regions where FGF signalling is vital for embryonic 

development such as the MHB boundary, the somites and the apical ectodermal ridge (AER) [5] (Figure 

17). 
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Figure 17. Expression of FLRT3 during mouse development: In situ hybridisation of 10.5 dpc mouse embryos with a RNA 
probe for FLRT3. vfb—hypothalamic region of the ventral forebrain; mhb—midbrain/hindbrain boundary; aer—apical 
ectodermal ridge [5]. 

 

 Due to the distinct and precise expression of Flrt3 that overlaps with Fgf and FgfR expression 

the hypothesis of a potential relationship between FgfRs and Flrts was explored. 

 

HEK-293T cells were stimulated with Fgf-2, and using semi-quantitative PCR, it was found that 

transcription of all Flrt members was increased as a result of the stimulation [5] (Figure 18).  

 

Figure 18. Fgf signalling up-regulates Flrt mRNA levels: HEK-293T cells were stimulated with FGF-2 and RNA subjected 
to semi-quantitative PCR to examine Flrt expression. Samples were taken before stimulation (0) and after stimulation for 30 
and 60 min. GAPDH is shown as a control. Adapted from [5]. 
 

This data suggest Flrts may regulate Fgf signalling in vivo.  

 

With Fgf signalling shown to up-regulate Flrt expression, it was investigated if Flrt3 expression 

could regulate Fgf signalling. Over-expression analysis of XFLRT3 was shown to induce 

phosphorylation of ERK in the MAP-kinase signalling pathway in HEK-293T cells; a pathway used by 

FGF signalling. A unique role for Fgf signalling within Xenopus embryos is to induce expression of the 

strong mesodermal marker, Xbra. Introducing XFLRT3 mRNA into animal caps revealed an increase in 

diphosph-ERK levels, and a dose-dependent increase in Xbra expression [8] (Figure 19). 
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Figure 19. XFLRT3 functions in the FGF signalling pathway: a) Animal caps injected with XFLRT3 (0.5 ng per blastomere), 
ca-XFGFR1 (50 pg per blastomere), or bFGF-treated caps (100 ng per ml), as well as uninjected control caps, were isolated 
at blastula stages and cultured for 1.5 h at room temperature. Cell lysates were analysed by Western blotting for 
diphosphorylated (activated) ERK and the nucleolar protein NO38 as a loading control. b) Eight-cell embryos were 
microinjected into all four animal blastomeres with the indicated mRNAs. Animal caps were excised from blastula embryos, 
cultivated until stage 10 and analysed by RT–PCR. XFLRT3 (0.5, 0.75 ng per blastomere) induces Xbra. Adapted from [8]. 
 

Given that Fgf signalling is required for Xbra expression, and that an increase in XFLRT3 

results in and increase in both pERK levels and Xbra expression, this was the first evidence that the 

presence of XFLRT3 causes a difference in the output of FgfR signalling. The increase in pERK levels 

appears not to be corrected intracellularly, which results in an increase in target gene transcription. This 

may occur as a part of a feedback loop, as the expression of the Flrt family can be regulated by Fgf 

stimulation. 

 

Investigation of an interaction between XFLRT3 and FgfR1, causing the increase in Xbra 

transcription, was performed using co-transfection and co-immunoprecipitation in HEK-293T cells. 

XFLRT3 was shown to interact with XFGFR1 but not XBMPR1 [8] (Figure 20). 
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Figure 20. Interaction of XFLRT3 and Xenopus FGFRs: XFGFR1 interacts with XFLRT3. HEK-293T cells were transfected 
with the indicated constructs and analysed by co-immunoprecipitation. WCL= whole-cell lysate. V5, Flag = epitope tag. Adapted 
from [8]. 

 

 The interaction between XFLRT3 and XFGFR1 was confirmed in vivo by luciferase reporter 

assay and bioluminescence resonance energy transfer (BRET), which also determined that the 

fibronectin and transmembrane domains were vital for this interaction [8]. This provides a mechanism 

for the regulation of FGF signalling by FLRT3, while also showing the interaction with FgfR1 is selective.  

 

Regulation of receptor signalling may be able to explain how a variety of cell decisions be made 

in multiple tissues by a common receptor. With over-lapping Flrt3 and FgfR1 expression in the AER, 

which goes on to form the limb (mesoderm), and the MHB, which patterns the developing brain 

(neurectoderm), this may be a perfect example of this idea. Modulation of cell signalling due to binding 

of a single-pass LRR transmembrane protein is not unheard of, with two examples of LRR 

transmembrane proteins interacting with receptors to influence cell signalling having been published in 

the literature; LINGO-1 and the p75NTR/NgR1 complex, and FLRTs with FGFR1 [5, 38, 39].  

 

 The LINGO family of LRR proteins contains four members; LINGO-1, -2, -3, and LINGO-4. The 

LINGO-1 protein consists of an extracellular N-terminal sequence containing a secretory signal 

sequence, 12 LRRs flanked by cysteine-rich sequences, an immunoglobulin domain, a single 

transmembrane domain and a short C-terminal cytoplasmic sequence which contains an epidermal 

growth factor receptor-like tyrosine phosphorylation site with expression predominantly in the central 

nervous system (CNS) [38]. Analysis of whole rat brain cDNA of LINGO-1 showed expression rose 

steadily to its peak at post-natal day 1 after which it declined into adulthood. qRT-PCR and 
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immunohistochemistry revealed a 5-fold increase in LINGO-1 expression in injured rat spinal cord tracts 

that peaks at day 14 post injury occurrence. This results suggests that LINGO-1 is an important protein 

in CNS neuronal development and repair [38]. 

 

 The p75 neurotrophin receptor (NTR) and Nogo-66 receptor (NgR1) are localised to the neuron 

surface and form a complex able to bind components of myelin and inhibit neurite outgrowth [39]. This 

inhibition is regulated by RhoA which is not found in neurons that do not express both p75NTR and 

NgR1 [39, 40]. It has been demonstrated that LINGO-1 effectively binds to p75NTR and to NgR1.  With 

the co-transfection of the LINGO-1 gene with p75NTR or NgR1, RhoA could not be induced. But when 

all three constructs were co-transfected, a complex was shown to exist using co-immunoprecipitation 

and ELISA [38, 39] (Figure 21). 

 

Figure 21. Co-immunoprecipitation of LINGO-1, p75 and NgRl: Utilising anti-Flag tag or rabbit anti-LINGO-1 from COS-7 
cells co-expressing combinations of Flag-NgRl. p75, HA-LINGO-1 or Flag-BaffR. BaffR was used as a specificity control. Lane 
9, total cell lysate, no IP. Adapted from [38]. 
 

 Co-transfection of LINGO-1, p75NTR and NgR1 induced an increase in RhoA-GTP levels, 

restoring the ability to inhibit neurite outgrowth [38] (Figure 22). 

 

Figure 22. NgR1, p75 and LINGO-1 expression activates RhoA and transduces an inhibitory signal for neurite 
outgrowth: RhoA-GTP levels in COS-7 cells co-expressing NgR1/p75 or NgR1/p75/LINGO-1, in the presence or absence of 
AP-OMgp. Adapted from [38]. 
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Therefore, the interaction of the LINGO-1 protein in the p75NTR/NgR1 complex is important for 

signal transduction.  

 

Mouse FLRT family members were assessed for interaction with FGFR1. Expression of Flrt 

proteins and FgfR1 in the same or adjacent vesicular membrane is necessary for an interaction between 

FGFR1 and FLRT proteins to occur. Wheldon, et al. (2010) showed that FLRT1-HA and FGFR1 are 

expressed at common membranes [41] (Figure 23). 

 

 

Figure 23. Co-localisation of FLRT1 and FGFR1: Immunofluorescent staining of Cos-7 cells co-transfected with plasmids 
encoding FGFR1 and 3’HA-tagged FLRT1. Cells stained with anti-FGFR1 (green) and anti-HA (FLRT1- red). Merged images 
show areas of co-localisation in yellow. Arrows highlight examples of co-localisation on the cell surface, arrowheads highlight 
examples of co-localisation in intracellular vesicle.s. Images (in section) taken with a confocal microscope and are 
representative cells from 11 total fields of cells. Adapted from [41]. 
 

 FLRT1-HA and FGFR1 co-localise within membranes of intracellular vesicles (arrowheads) and 

at the cytoplasmic membrane (arrows). This shows that FLRT1 is present at locations within the cell to 

interact with and alter the output of FgfR1. Co-immunoprecipitation of cells co-transfected with FGFR1 

and FLRT proteins showed that all FLRT family members bound to FGFR1 independent of FGF 

stimulation [5] (Figure 24). 
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Figure 24. FLRT proteins interact with FGFR1: HEK-293T cells were co-transfected with 3′HA-tagged FLRT cDNAs and 
FGFR1 cDNA and analysed by immunoprecipitation with anti-HA antibody and Western blotted with anti-FGFR1, with (+) or 
without (−) stimulation using FGF-2. Western blots using anti-FGFR1 (WB-FGFR1) and anti-HA (WB-HA) antibodies confirm 
expression of FGFR1 and FLRT proteins in the IP input samples. Control is untransfected cells [5]. 
 

The interaction between Flrt3 and FgfR1 mediated by both the fibronectin III domain and 

transmembrane domains [5, 8]. All FLRT proteins have also been shown to interact with FGFR2 [41]. 

 

Tyrosine kinase domains located in the intracellular domain allow FgfR-mediated tyrosine 

phosphorylation of interacting proteins. An interaction between FgfR1 and Flrt1 means that it is possible 

that Flrt1 intracellular tyrosines could be phosphorylated dependent on ligand binding to FgfR1. 

Immunoprecipitation of HA-tagged Flrt1 from HEK-293T cells over-expressing Flrt1-HA and FgfR1 

reveal that tyrosine residues are phosphorylated independent of Fgf stimulation [41] (Figure 25). 

 

Figure 25: HEK-293T cells were co-transfected with FGFR1 and either control vector (pcDNA31) or FLRT1 (FLRT-HA). Cells 
were treated with or without stimulation with FGF2 (20ng/ml) in the presence of heparin (10mg/ml) for 30 min. Anti-HA 
immunoprecipitation was performed on whole cell lysate which was subjected to Western blot analysis with anti-
phosphotyrosine (IP: HA, Blot: pY) to identify phosphorylated FLRT1 (pFLRT1). Phosphorylated FGFR1 (pFGFR1) was co-
immunoprecipitated with FLRT1. The whole cell lysate (WCL) was probed for both FGFR1 (Blot: anti-FGFR1) and FLRT1 (Blot: 
anti-HA) expression. Data is representative of at least 4 independent experiments [41]. 
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This also shows the phosphorylation of tyrosine residues on Flrt1 increases with FGF 

stimulation. It is thought that the phosphorylation of tyrosines in the unstimulated sample is due to the 

large number of FgfR1 molecules being expressed, resulting in auto-activation of signalling pathways 

[41]. Three tyrosine residues have been identified by computational analysis as having a high probability 

of being phosphorylated; Y600, Y633 and Y671. The FLRT1 tyrosine phosphorylation observed is 

dependent on FGFR1 activity, shown by the loss of FLRT1 phosphorylation in the presence of FGFR1 

kinase inhibitor SU5402, while point mutation analysis showed that FLRT1 has reduced phosphorylation 

if any one or two of the identified tyrosine residues is mutated, and almost no phosphorylation if all three 

tyrosines are mutated [11, 41] (Figure 26).  

 

Figure 26. FLRT1 tyrosine phosphorylation: HEK-293T cells were transfected with control (pcDNA3.1) or FGFR1 and a 
panel of either full-length FLRT1-HA or tyrosine substitution constructs as indicated (Y600F, Y633F, Y671F, Y2F, Y3F). One 
sample was pre-treated with FGFR kinase inhibitor (SU5402, 50 μM, 1 hr) where indicated. Cell lysates were 
immunoprecipitated with anti-HA and subsequently blotted with anti-phosphotyrosine (IP: HA, Blot: pY) or anti-HA (IP: HA, 
Blot: HA) to examine phosphorylated FLRT1-HA levels (pFLRT1) or total immunoprecipitated FLRT1-HA levels (FLRT1), 
respectively. Whole cell lysate (WCL) fractions were probed with anti-FGFR1 (Blot: FGFR) to control for protein expression. 
Data is representative of 3 independent experiments. Densometric analysis (mean±sem, n=3) in the ration of pFLRT1:FLRT1 
and normalised to FLRT1 phosphorylation in the absence of inhibitor (**p<0.01, *p<0.05, non-parametric one way ANOVA). 
Adapted from [41]. 

 

Haines. et al. showed that Flrt proteins interact with FgfR1 and 2, and with the overlap in 

expression of Flrt1 and FgfR and Fgf ligands, the effect of Flrt1 expression on FGFR signalling was 

investigated [5]. Wheldon, et al. used over-expression of FLRT1 in HEK-293T cells to reveal an increase 
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in FGF signalling pathway activation when FLRT1 transfected cells were stimulated with FGF-2 in a 

time-course assay, indicated by an increase in ERK phosphorylation [41] (Figure 27).  

 

Figure 27: HEK-293T cells were transfected with either pcDNA31 vector, FLRT1-HA or Y3F-FLRT1-HA constructs Cells were 
co-stimulated with FGF2 (20ng/ml) and heparin (10mg/ml) for the indicated times Cell lysates were blotted for anti-phospho-
ERK (WCL IB: pERK), membranes were stripped and re-probed for anti-ERK (WCL IB: ERK). Densitometric analysis has been 
adjusted for ERK loading and expressed as an arbitrary pERK:ERK ratio Data are representative of at least 4 independent 
experiments. Adapted from [41]. 

 

From time-point 0, it can already be seen that Flrt1 over-expression increases pERK levels in 

comparison to the control and pcDNA3.1+. Upon Fgf stimulation, the level of pERK in Flrt1 over-

expressing cells increases more rapidly, and remains more robust than that of the control and 

pcDNA3.1+ over the 30 minute time-course. By mutating the 3 tyrosine residues found to be 

phosphorylated by FgfR1 activity, it was shown that pERK is constitutively active [41]. This provides 

evidence that Flrt1 expression alters levels of FgfR1 signalling activity. 
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Two transmembrane protein families interact with and regulate cell signalling. The 

developmentally regulated expression of many of these LRR family genes and the importance of cell 

signalling in development leads to the hypothesis that interactions between LRR proteins and cell 

receptors may be important for the regulation of signal transduction during development.  

 

As previously mentioned, animal cap studies of Xenopus embryos over-expressing Flrt3 

showed an increase in FgfR activity; by increased levels of pERK, and increased transcription of 

Xbra[8]. Along with the overlapped expression and FgfR interaction data, an obvious relationship exists, 

with the results of this relationship unknown. Lrrtm3 is expressed in the developing neural tissue at a 

time when Fgf signalling is vital and has a similar structure to the Flrt family. With Flrt1 known to 

increase Fgf signalling intracellularly in a higher order mammal, the effect of Flrt3 and Lrrtm3 over-

expression on Fgf signalling in the same system will be investigated in Chapter 3.  

 

1.5 Identification of a Cellular System for the Study of Endogenous Flrt3 

Function 

 

While in-vitro over-expression experiments can easily identify effects and/or actions of Flrt 

proteins in regulating Fgf signalling, it cannot confirm that these effects occur in vivo. Preliminary studies 

on Flrt3-/- mouse knockouts have thus far failed to identify the functions of Flrt3 due to early embryo 

lethality by what appears to be a complex phenotype, not obviously associated with Fgf signalling.  

 

Flrt3-/- embryos show phenotypical malformations such as epiblast cells protruding through 

holes in the anterior visceral endoderm (AVE). These embryos die at mid-gestation with malformations 

such as asymmetric development of headfolds, cardia bifida and anterior neural tube closure defects 

[42]. These embryonic defects correspond with the timing of Flrt3 expression in the early embryo. Flrt3 

is initially expressed at E6.75-7.0dpc in the anterior visceral endoderm (AVE), with later Flrt3 expression 

on E7.25 present in the definitive endoderm (DE) and the posterior neuroectoderm. In E7.75 embryos, 

FLRT3 is still expressed in the DE and posterior neuroectoderm, with expression now seen in the head-

fold and posterior mesoderm [42] (Figure 28). 
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Figure 28. FLRT3 expression in the developing mouse embryo: (H–J) XGal-stained EHF stage (E7.25) and (K–M) LHF 
stage (E7.75) FLRT3+/lacZ embryos. Positions of the cross-sections (I,J,L,M) are indicated by dotted lines in H and K. FLRT3 
is expressed in AVE and DE, amnion, posterior neuroectoderm, headfold, and posterior mesoderm. FLRT3 expression is 
absent or low in ectoderm underlying headfolds and in the PS. (AC) Amniotic cavity; (AM) amnion; (AVE) anterior visceral 
endoderm; (DE) definitive endoderm; (EHF) early head fold; (EMB) embryonic region; (EP) epiblast; (EXT) extraembryonic 
region; (HFM) headfold mesoderm; (LHF) late head fold; (ME) mesoderm; (MS) mid-streak; (NTP) notochordal plate; (PAC) 
proamniotic cavity; (PE) parietal endoderm; (PNE) posterior neuroectoderm; (PrS) pre-streak; (PS) primitive streak; (VE) 
visceral endoderm. Bars: H–M, 
100 μm [42]. 

 

These effects could be due to the homotypic cell sorting phenotype in Flrt3-expressing cells 

explained above [10].  

 

Due to the early expression of Flrt3 and early embryonic lethality of Flrt3 KO, analysis of Flrt3 

function in the mouse embryo may be problematic. Therefore, a cell model is required to study the 

function of Flrt3 in neural differentiation. The identification and characterisation of a system to study the 

function of Flrt3 in neural differentiation will be addressed in Chapter 4. 
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1.6 Aims of the study 

 

Based on the literature referenced above, knowledge gaps in the role of Flrt3 and Lrrtm3 are 

evident. I have presented data that shows Flrt1 interacts with FgfR1 and increases the levels of pERK 

as a result of this interaction upon Fgf stimulation. In Chapter 3, I will investigate if Flrt3 interact with 

FgfR1 in vitro, and if so, I will elucidate the effect of the over-expression of Flrt3 has on FgfR signalling. I 

will also address the importance of particular domains on any change to FgfR signalling using mutants 

and truncations of Flrt3. Addressing this aim will help establish the role of the interaction of Flrt3 with 

FgfR1 and subsequent intracellular signalling. 

 

I have presented data that shows Flrt3 is expressed early in embryonic and studies of Flrt3 KOs 

result in early embryonic lethality by a complex phenotype. As such, the role of Flrt3 in the developing 

neural tissue, such as the MHB, is difficult to determine. In Chapter 4, I will identify a cell model system 

to investigate the function of endogenous Flrt3 in the differentiation of neural tissue. Addressing this aim 

will help understand its role in expression in the developing nervous system.  

 

In Chapter 5, I will investigate if other similar single-pass transmembrane LRR proteins interact 

with FgfR1 in vitro. If they do, I will elucidate the effect of the over-expression of these has on FgfR 

signalling. 

 

Completion of the aims in this Masters project will allow further characterisation of Flrt3 function, 

and will further the broader understanding of single-pass LRR transmembrane proteins. The effect of 

the interaction between LRR proteins Flrt3 and Lrrtm3, with FgfR1, on the output of the FgfR1 signalling 

pathway will be assessed, with a cell system where the function of Flrt3 can begin to be elucidated in 

respect to neural differentiation will be investigated to determine the role of endogenous Flrt3 in this 

context. The desired outcomes of this project will give a deeper understanding into the regulation of 

FgfR signalling during embryonic development, providing a detailed insight into mechanisms that allow 

fine control of FgfR signalling output. This fine control differentiates development of a healthy embryo 

from one that is unviable. 
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2. Materials and Methods 

 

2.1 Materials 

 
Solutions 

Phosphate Buffered Solution (PBS), 1x 

136 mM NaCl 

2.6 mM KCl 

1.5 mM KH2PO4 

8 mM NaHPO4 

pH to 7.4 with HCl 

 
Tris Buffered Solution (TBS), 1x 

150 mM NaCl 

25 mM Tris 

pH to 7.5 with HCl 

 
Western blot transfer buffer 

192 mM glycine 

25 mM Tris 

15% MeOH 

3.6 L RO H2O 

 
HEK-293T cell medium 

1x DMEM + HEPES (Gibco, cat: 12430) 

10% (v/v) HI-FCS 

100 I.U./mL pencillin 

100 μg/mL streptomycin  

 
P19 EC growth media 

1x α-MEM (Gibco, cat: 12571-063) 

10% (v/v) HI-FCS 

100 I.U./mL pencillin 

100 μg/mL streptomycin  

100 mM L-glutamine 

 

 

P19 EC induction media 

1x α-MEM (Gibco, cat: 12571-063) 

5% (v/v) HI-FCS 

100 mM L-glutamine 

 
RIPA lysis buffer 

25 mM Tris-HCl, pH = 8.0 

150 mM NaCl 

1% (v/v) NP-40 

0.01% (w/v) Na-deoxycholate 

 
Cell lysis buffer 

1x RIPA lysis buffer 

1 mM Na3VO4 

50 mM NaF 

25 mM β-glycerophosphate 

1x tablet of cOmplete protease inhibitor cocktail 

(Roche, cat: 11697498001) 

 
Agarose gel electrophoresis buffer 

0.001% EtBr 

5% 20x TBE 

RO H2O 

 
Lennox broth 

1% (w/v) bacto-tryptone 

0.5% (w/v) bacto-yeast extract 

0.25% (w/v) NaCl 

pH to 7.0 with NaOH 
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Blocking Solution (BS) 

1x PBT-0.25% 

10% heat inactivated horse serum 

 
Krebs-HEPES buffer (KHB) 

10 mM HEPES 

4.2 mM NaHCO3 

11.7mM Glucose 

1.18 mM MgSO4.7H2O 

1.18 mM KH2PO4 

4.69 mM KCl 

118 mM NaCl 

1.29 mM CaCl2.2H2O 

pH to 7.4 with NaOH at 37oC 

 
BES, 2x 

50 mM N,N-bis(2-hdroxyethyl)-2-

aminoethanesulfonic acid (BES) 

280 mM NaCl 

1.5 mM Na2HPO4 

 

PBT-1%, 1x 

1% (v/v) Tween-20 

1x PBS 

 
PBT-0.25%, 1x 

0.25% Tween-20 

1x PBS 

 

 

 

 

 

 

 

Protein load buffer (PLB), 6x 

60% (v/v) Glycerol 

300 mM Tris (pH 6.8) 

12 mM EDTA 

12% (w/v) SDS 

864 mM 2-mercaptoethanol 

0.05% (w/v) bromophenol blue 
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Oligonucleotides 

Table 1. Oligonucleotide primers used to amplify sequences for Flrt3 promoter luciferase analysis and effect of Flrt3 
OE on neural differentiation: 2 kb, 4 kb, 6 kb and 10 kb bound to complimentary sequence the respective number of base 
pairs 5′ of the Flrt3 transcriptional start site (forward primer). These primers were used in conjunction with either the + start site 
or – start site primer (reverse primer), which contain the Flrt3 transcription start site, or not, to amplify sequences to be analysed 
by luciferase assay. Flrt3 ORF primers used to amplify the Flrt3 ORF from the RP23-111A1 BAC clone. Primers were designed 
using Primer3 (http://primer3.ut.ee/). 

Amplicon Forward primer (5′ -> 3′) Reverse primer (3′ -> 5′) Amplicon size (bp) 

RARE* CAGTCTCAGGAGCACAGCAC GGGCACATGCCAAAGAAAATGG 632 

2 kb ATTGAGTTTGGCAGGAATGG +start site and –start site 2154 and 2187 

4 kb AGAGCCTGGAAAACCTGGAT +start site and –start site 4024 and 4057 

6 kb TTTGGGTTGGCCACTTGTAT +start site and –start site 6251 and 6284 

10 kb TACACAGGAGCCACAGGTGA +start site and –start site 9983 and 10016 

+start site 

(+pr) 
N/A TTCCATTGCCTGTGAGTTGA N/A 

-start site 

(-pr) 
N/A GCTGAGATGCCATTTGGTTT N/A 

Flrt3 ORF TAGGATCCTGCTGACCATGATCAGC TACTCGAGTCAGGTTATCTGAATGGT 1949 

* sequence containing the conserved retinoic acid response element identified in Figure 4.2. 

 

Table 2. Oligonucleotide primers used to in qRT-PCR experiments: Primers were designed using Primer-BLAST 
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?ORGANISM=10090&INPUT_SEQUENCE=NM_009504.4&LINK_ 
LOC=nuccore) based on the NCBI nucleotide accession number. Restrictions placed on primer design restricted amplicon 
size to between 75 and 150 bp, primer annealing temperature between 56oC and 62oC, and primers must cross an exon-
intron boundary. 

Gene Accession number Forward (5′ -> 3′) Reverse (3′ -> 5′) 

Flrt3 NM_001172160.1 TCCCGTAACCACCTTAGCAC GATGGGGAAGAGATCGTTGA 

Sox1 NM_009233.3 CCTCTCAGACGGTGGAGTTATATT GACTTGCAGGCTATGTACAACATC 

Pax6 NM_001244200.2 AGAATTTGTGTGCAAATGAAGG GTATTTGAATGGGCAATGAGC 

Oct4 NM_001252452.1 CCCAGGCCGACGTGG GATGGTGGTCTGGCTGAACAC 

GAPDH NM_001289726.1 ATGCCAGTGAGCTTCCCGTTCAG AACCAGAAGACTGTGGATGG 

FgfR1 NM_010206.3 AGCGCAAGACACAGACACC ATGGATATTCCACCGTGAGC 

FgfR2 NM_010207.2 GGATCAAGCACGTGGAAAAG AGAGCCAGCACTTCTGCATT 

FgfR3 NM_008010.5 GCCAGCTGCACACATGCAC TGAGGATGCGGTCTAAATCC 

FgfR4 NM_008011.2 TTGAGGCCTCTGAGGAAATG GTCAACACCTGCTCTTGCTG 
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Antibodies 

Table 3. Primary antibodies used for western blot, immunoprecipitation and/or immunofluorescence assays: Specific 
details of the antibodies mentioned in the Methods and/or Results that were used to obtain my results. 

Name Clonal Type Raised in Supplier Catalogue # 

4G10® Platinum Anti-

phosphotyrosine (pY) 
Monoclonal Mouse Millipore 05-1050 

HA-Tag (6E2) Monoclonal Mouse Cell Signalling 2367 

HA.11 Monoclonal Mouse Jomar MMS-101R 

Anti-FLAG M2 Monoclonal Mouse Sigma F3165 

Flg (C-15) Polyclonal Rabbit Santa Cruz sc-121 

ERK1 (K-23) Polyclonal Rabbit Santa Cruz sc-94 

p-ERK (E-4) Monoclonal Mouse Santa Cruz sc-7383 

Anti-human FLRT3 Polyclonal Goat R&D Systems AF2795 

Human FLRT3 Monoclonal Mouse R&D Systems MAB2795 

Sox1 Polyclonal Goat R&D Systems AF3369 

 

Table 4. Secondary antibodies used for western blot and/or immunofluorescence assays: Specific details of the 
antibodies mentioned in the Methods and/or Results that were used to obtain my results. 

Name Raised in Supplier Catalogue # 

anti-mouse HRP Donkey Rockland 610-703-124 

anti-rabbit HRP Donkey Rockland 611-703-127 

anti-goat HRP Donkey Rockland 605-703-002 

anti-mouse Alexa 488 Donkey Jackson IR Labs 715-485-151 

anti-goat Alexa 488 Donkey Invitrogen 913911 

anti-rabbit Alexa 488 Donkey Jackson IR Labs 711-545-152 

anti-rabbit Alexa 594 Donkey Molecular Probes A21207 

anti-mouse Alexa 594 Donkey Molecular Probes A21203 

anti-mouse Cy2 Donkey Jackson IR Labs 715-225-020 

anti-goat Cy3 Donkey Jackson IR Labs 705-165-147 

anti-goat Cy5 Donkey Rockland 605-710-125 

anti-rabbit Cy5 Donkey Jackson IR Labs 711-175-152 
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Enzymes 

Table 5. List of enzymes utilised to perform molecular cloning. 

Name Catalogue # Supplier Function 

Native Poly Pfu 600136-81 Aligent DNA polymerase 

Advantage 2 639201 Clontech DNA polymerase 

T4 DNA ligase M0202S New England Biolabs DNA ligase 

SacI R0156S New England Biolabs Restriction enzyme 

SmaI R0141S New England Biolabs Restriction enzyme 

XhoI R0146S New England Biolabs Restriction enzyme 

BamHI R0136S New England Biolabs Restriction enzyme 

DNAse I M0303S New England Biolabs DNAse 

 

2.2 Methods 

 

2.2.1 Molecular cloning 

 

The target sequence (2 kb ± pr, 4 kb ± pr, 6 kb ± pr, 10 kb ± pr, and Flrt3) was amplified from 

the RP23-111A1 BAC clone using the oligonucleotide primers from Table 1, allowing the polymerase 30 

secs of extension time per 500 bp of target. Amplicons were purified using gel electrophoresis and 

obtained using the QIAquick Gel Extraction kit (Qiagen, catalogue #: 28706) as per manufacturer’s 

instructions. Purified fragments were ligated into pGEMT-Easy using T4 DNA ligase (New England 

Biolabs, catalogue #: M0202S) overnight at 4oC as per manufacturer’s instructions.  Ligation mixture 

underwent heat-shock transformation into competent DH5α E. coli cells by mixing 5 μL of ligation 

mixture with 45 μL of the competent cells, incubating on ice for 20 min, heat-shocking at 42oC for 75 

sec, incubating on ice for 10 min, then adding 450 μL of Luria broth and incubating mixture at 37oC with 

shaking for 45 min. Transformed bacteria was plated onto Luria broth agar plates containing 100 µg/mL 

ampicillin and grown overnight at 37oC (30oC for 6 kb ± pr). Colonies were chosen and grown in Luria 

broth plus 100 µg/mL ampicillin 1.5 mL bacterial cultures overnight at 37oC (30oC for 6 kb ± pr) with 

rotation. Subsequent bacterial culture underwent plasmid extraction using the QIAprep Spin Miniprep kit 

(Qiagen, catalogue #: 27106) as per manufacturer’s instructions, and check-digest with appropriate 

restriction enzymes to confirm insertion of amplicon. Clones containing what appeared to be the correct 

digestion pattern were sequenced using Big Dye® Terminator Cycle Sequencing kit (Applied 

Biosystems, catalogue #: 4337455) as per manufacturer’s instructions, with products sent to the 

Australian Genome Research Facility (AGRF) for sequence analysis. Clones returning the correct 

sequence were digested with appropriate restriction enzymes. Digestion products were separated by 
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agarose gel electrophoresis and target sequence purified using the QIAquick Gel Extraction kit, as per 

manufacturer’s instructions. Purified fragments were ligated into appropriately digested expression 

vectors (see Table 6) using T4 DNA ligase overnight at 4oC as per manufacturer’s instructions. Ligations 

of digested expression vector alone were set-up as negative controls. Reactions underwent heat-shock 

transformation into DH5α E. coli cells (as outlined above) and were plated onto Luria broth agar plates 

containing 100 µg/mL ampicillin and grown overnight at 37oC (30oC for 6 kb ± pr). Colonies were 

chosen and grown in Luria broth plus 100 µg/mL ampicillin 1.5 mL bacterial cultures overnight at 37oC* 

with rotation. Subsequent bacterial culture underwent plasmid extraction using the QIAprep Spin 

Miniprep kit (Qiagen, catalogue #: 27106), as per manufacturer’s instructions, and check-digest with 

appropriate restriction enzymes to confirm presence of insert. Results were run on an agarose DNA gel 

electrophoresis and cultures containing clones that displayed correct digestion pattern were grown in 

100mL overnight cultures while shaking at 37oC containing 100 µg/mL ampicillin (30oC for 6 kb ± pr). 

Subsequent bacterial cultures underwent plasmid extraction using the QIAfilter Plasmid Midi kit (Qiagen, 

catalogue #: 12243) as per manufacturer’s instructions. Purified plasmid was stored at -20oC. 

 

Table 6. Molecular cloning strategy for Flrt3 promoter analysis luciferase constructs and Flrt3 OE on neural 
differentiation: Amplicons were amplified using the primers in Table 1 from the templates listed here. Sequence analysis 
was undertaking utilising the T7 and SP6 primers on the pGEMT-Easy plasmid (intermediate vector). Once confirmed, 
amplicon was sub-cloned into the specific destination plasmid (expression vector) for assay use. 

Plasmid name Template DNA source 
Cloned via plasmid 

(intermediate vector) 
Destination plasmid  
(expression vector) 

RARE, 2kb-pr, 4kb-pr, 6kb-pr RP23-111A1 BAC clone 

(Murdoch Children’s 

Research, Melbourne) 

pGEMT-Easy (Promega, 

cat. #: A3600) 

pGL3 Promoter 

(Promega, cat. #: E1751) 

2kb+pr, 4kb+pr, 6kb+pr RP23-111A1 BAC clone pGEMT-Easy pGL3 Basic (Promega, 

cat. #: E1761) 

Flrt3 untagged RP23-111A1 BAC clone pGEMT-Easy pcDNA3.1+ (Life 

Technologies, cat.  #: 

V790-20) 
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2.2.2 Tissue culture 

 

Cell growth conditions 

Table 7. Cell culture media used for growth of HEK-293T, Cos-7 and P19 EC cells: Mammalian cell lines HEK-293T, 
Cos-7 and P19 EC were grown in and experiments undertaken using the following medium + supplement combinations. 

Media Name Cell Type Base Media Supplements 

DMEM HEK-293T, Cos-7 
DMEM (Gibco, 

cat. #: 12430-054) 

10% (v/v) HI-FCS,  

100 I.U./mL pencillin,  

100 μg/mL streptomycin 

P19 GM P19 
α-MEM (Gibco, 

cat. #: 12571-063) 

10% (v/v) HI-FCS,  

100 I.U./mL pencillin,  

100 μg/mL streptomycin, 100 mM L-glutamine 

P19 IM P19 
α-MEM (Gibco, 

cat. #: 12571-063) 

5% (v/v) HI-FCS,  

100 I.U./mL pencillin,  

100 μg/mL streptomycin, 100 mM L-glutamine 

All cells were passaged in 75 cm2 U-shaped tissue culture flasks (Sigma Aldrich, cat. #: CLS430461U) 

prior to experiment set-up, and incubated in humidified air at 37oC, 5% CO2. 

 

Thawing of cells 

Vials of cells taken from liquid nitrogen storage were thawed in a 37oC water bath until just 

defrosted. HEK-293T and Cos-7 cells were resuspended in the freezing medium and added to a flask 

containing approximately 30 mL of DMEM. P19 cells were resuspended and washed twice with P19 

GM, before being added to a T75 tissue culture flask containing approximately 30 mL of P19 GM. 

 

Passaging of cells 

Cells were grown until approximately 85% confluency. Old medium was removed and cells 

washed with 1x PBS three times. Cells were trypsinised for 5 min with 1 mL of 10 mM trypsin. For HEK-

293T and Cos-7 cells, a 1:10 dilution of the cells was added to approximately 30 mL of DMEM. For P19 

cells, 7x105 cells were added to approximately 30 mL of P19 GM. 

 

Cell transfection 

24 hrs prior to transfection, 10 cm tissue culture plates were seeded with 1x106 HEK-293T cells 

and incubated overnight. Cells were transfected by Ca3(PO4)2 in 10 cm tissue culture plates using the 

following protocol: 

5 μg expression vector was added to 50 μL 2.5M CaCl2 and made up to 250 μL with mQ H2O. 250 μL 2x 

BES buffer was added, the solution was mixed, incubated at 25oC for 20 min, then added dropwise to 
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cells and incubated at 37oC in 3% CO2. Cells with transfection mixture were cultured for 20-22 h before 

harvesting. 

 

24 hrs prior to transfection, 10 cm tissue culture plates were seeded with 1.2x106 P19 cells or 

1x106 Cos-7 cells and incubated overnight. P19 and Cos-7 cells were transfected with Fugene 6 or HD 

using the following protocol: 

4.5 μL Fugene (Promega, cat. # E2691 (6) or E2311 (HD)) and 2 μg expression vector (9:4 (v/w) 

Fugene to DNA ratio) was added to 100 μL of appropriate serum-free media. Solution was mixed and 

incubated at 25oC for 10 min, then added dropwise to cells and incubated at 37oC in 5% CO2. Cells with 

transfection mixture were cultured for 20-22 h before harvesting. 

 

In each cell transfection experiment, a sample of cells were transiently transfected with a GFP 

in the pcDNA3.1 vector to provide evidence of successful transfection. Routinely, 40-50% of HEK-293T 

and Cos-7 cells, and 20-30% of P19 EC cells were found to express GFP in these samples. 

 

Fgf-2 stimulation 

24 hrs prior to transfection, 10 cm tissue culture plates were seeded with 1x106 HEK-293T cells 

and incubated overnight. Cells were washed with 5 mL of 1x KHB, then incubated for 60 min in 5 mL of 

1x KHB at 37oC in 5% CO2. 20 ng/mL of Fgf-2 (Jomar Bioscience, cat. #: CYT-386) and 10 μg/mL of 

heparin (Sigma Aldrich, cat. #: H3149-10KU) was added to appropriate plates of cells and incubated for 

10 min. All plates of cells were washed twice with 1x PBS and lysed in-plate by adding 300 μL of cell 

lysis buffer, scraping and pipetting cells to disrupt the membrane. TCL was spun at 13,000 rpm for 15 

min at 4oC and supernatant collected, labelled as “soluble CL” and stored at -20oC. 

 

2.2.3 Sample analysis techniques 

 

Bradford assay 

30 μL of soluble CL was added to 270 μL of mQ H2O to make a 1:10 dilution. 10 μL of BSA 

standard solutions (2 mg/mL stock diluted to 0 – 1 mg/mL in 0.1 mg/mL increments) and soluble CL 

dilutions was added to a 96-well flat bottom clear plate in duplicate. 200 μL of 1:5 dilution of Bradford 

reagent (Bio-Rad, cat. #: 500-0006) in mQ H2O was added to each well. The plate was incubated at 

25oC for 5 min and then absorbance at 620 nm was measured. A standard curve was created using 

absorbance of the BSA standard solutions and concentration of soluble CL calculated from this. 
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Western blot 

A 10% resolving SDS-PAGE gel was made by combining 4.1 mL H2O, 3.3 mL acrylamide/bis 

(30% 29:1, Sigma Aldrich, cat. # A3574-100), 2.5 mL 1.5 M Tris-HCl pH 8.8, 100 µL 10% (w/v) SDS in 

H2O, 10 µL TEMED (Sigma Aldrich, cat. #: T9281-50), 32 µL 10% (w/v) ammonium sulfate and pouring 

into a mini gel cassette (Invitrogen, cat. #: C2015), until approximately 2 cm from the top. Upon 

complete polymerisation, the stacking gel was made by combining 6.1 mL H2O, 1.3 mL acrylamide/bis 

(30% 29:1, Sigma Aldrich, cat. #: A3574-100), 2.5 mL 1.5 M Tris-HCl pH 6.8, 100 µL 10% (w/v) SDS in 

H2O, 10 µL TEMED (Sigma Aldrich, cat. #: T9281-50), 100 µL 10% (w/v) ammonium sulfate and 

pouring into the top of the cassette until full. A comb was immediately inserted and the stacking gel left 

to polymerise. 6x PLB is mixed with the 35 µg of soluble CL and boiled at 95oC for 5 min. Samples were 

loaded into individual wells with 1 lane of 10 μL of Precision Plus Protein Dual Color Standards (Bio-

Rad, cat. #: 161-0374). SDS-PAGE was run at a constant voltage of 110 V in NuPAGE MES SDS 

running buffer (Invitrogen, cat. #: NP0002) until protein/s of interest are sufficiently resolved. Using 

Western blot transfer buffer, a “wet transfer” sandwich with PVDF membrane (Millipore, cat. #: 

IPVH00010) was made and the transfer was run in Western blot transfer buffer for 90 min at 250 mA at 

4oC. The membrane was incubated in Ponceau stain for 5 min, then washed in RO water to confirm 

protein transfer. The membrane was washed with 1x PBST for 5 min, then incubated in the appropriate 

blocking solution (see Table 8) for 90 min. The primary antibody was diluted in the appropriate antibody 

incubation solution (see Table 8) to a 1:1000 (v/v) dilution and incubated with the membrane overnight 

at 4oC. The membrane underwent 3x 5 min and 1x 15 min wash with base buffer, then incubated with 

appropriate secondary antibody, diluted in the appropriate antibody incubation solution (see Table 8) to 

a 1:5000 (v/v) dilution, for 90 min. The membrane was washed for 3x 5 min then 3x 15 min in base 

buffer before being exposed to ECL Select Western Blotting Detection Reagent (Sigma, cat #: 

GERPN2235) for 5 min. Chemilumiscent bands were detected using the ChemiDoc MP (Bio-Rad). The 

membrane was washed for 5 min in base buffer and then stripped by incubating with Restore PLUS 

Western Blot Stripping Buffer (Thermo Scientific, cat. #: 46430) for 10 min, then re-blocked in blocking 

solution. Antibody incubation and membrane development was then undertaken as previously 

mentioned above. 
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Table 8. Western blot primary antibodies and solutions used for blocking and antibody incubation: For each western 
blot, depending on the antibody used to probe the membrane, the membrane was blocked in the appropriate blocking 
solution, and antibody diluted in the appropriate antibody incubation solution before adding to the membrane for probing. 

Antibody Blocking solution Antibody incubation solution 

4G10® Platinum Anti-

phosphotyrosine (pY) 

3% skim milk TBS 3% skim milk TBST 

HA-Tag (6E2) 5% skim milk TBST 5% skim milk TBST 

Anti-FLAG M2 3% skim milk TBS 3% skim milk TBS 

ERK1 (K-23) 5% BSA PBS 5% BSA PBST 

p-ERK (E-4) 5% BSA PBS 5% BSA PBST 

 

Immunoprecipitation assay 

50 μL of soluble CL was set aside as IP input. 23 μL of Dynabeads Protein G (Dynabeads) 

(Invitrogen, cat. #: 100.03D)/sample had the supernatant removed and washed twice with 500 μL of 

RIPA buffer, then resuspended in 23 μL of RIPA buffer/sample. 20 μL was added to the remaining 

soluble CL supernatant and samples were pre-cleared by rotating overnight at 4oC. Supernatant was 

removed from the Dynabeads and placed in a clean eppendorf. 4 μL of antibody for immunoprecipitation 

was added to the sample and rotated for 60 min at 4oC. 20 μL of washed Dynabeads was added to the 

soluble CL and antibody mixture and rotated for 60 min at 4oC. Supernatant was removed and 

Dynabeads washed twice with 1x TBST. Dynabeads were transferred to a clean eppendorf and washed 

once more with 1x TBST. 20 μL of 6x PLB was added and samples were boiled at 95oC for 5 min and 

loaded onto an appropriate SDS-PAGE gel and run as a Western blot alongside the IP inputs. 

 

RNA extraction and DNAse treatment 

All pipette tips and reagents used are RNAse free. Cells were scraped from base of plate into 1 

mL of 1x PBS and transferred to a clean eppendorf tube. The tubes were centrifuged for 5 min at  

4,000 rpm at 25oC and supernatant discarded. RNA was extracted using Trizol Reagent (Invitrogen, cat. 

#: 15596018) as per manufacturer’s instructions. RNA pellet was redissolved in 100 μL of mQ H2O. 11 

μL of 10x DNAse buffer and 1 μL of DNAse I was added and incubated at 37oC for 10 min. 1 μL of 0.5 M 

EDTA was added and the solution was incubated at 75oC for 10 min. Samples were incubated on ice for 

1 min. 100 μL of phenol/chloroform (Sigma, cat. #: P3803) was added, mixture vortexed to combine and 

sample spun for 5 min at 13,000 rpm at 25oC. Resulting aqueous layer was transferred to a new 

eppendorf tube and precipitated by addition of 10 μL of 3 M NaAc and 250 μL of EtOH and incubation at 

-20oC for 60 min. Mixture was spun for 15 min at 13,000 rpm at RT and supernatant disposed of. Pellet 

was washed with 100 μL of 70% EtOH by centrifuging for 5 min at 13,000 rpm at 25oC. Supernatant was 

disposed of, pellet dried for 10 min in 37oC heating block and resuspended in 20 μL mQ H2O and stored 
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at -20oC. Samples were visualised using agarose gel electrophoresis to confirm RNA integrity 

(prominent bands at approximately 5 kb (28S rRNA) and 2 kb (18S rRNA)), as well as completion of 

gDNA degradation. RNA concentration and purity was assessed by Nanodrop analysis using 2 µL of 

sample. A260/280 values of approximately 2.0 indicated pure RNA. 

 

Complementary DNA (cDNA) synthesis 

1 μg of RNA was added to 10 μL of 2x RT buffer and 1 μL of 20x enzyme mix from the High 

Capacity RNA-to-cDNA Kit (Life Technologies, cat. #: 4387406). Mixture was made up to 20 μL with mQ 

H2O and incubated for 60 min at 37oC, 5 min at 95oC, then stored at -20oC. 

 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

For each gene, 15 ng of cDNA (3 μL) was added to 27.35 μL of Fast SYBR Green Master Mix 

(Life Technologies, cat. #: 4385617) and made up to 50 μL with mQ H2O. 46 μL of this template mixture 

was added to 2.5x10-12 mole (4 μL of 1.25 μM primer pair mix) of each primer of the target gene’s primer 

pair. 15 μL of this mixture was added to a well of a MicroAmp® Fast Optical 96-well reaction plate (Life 

Technologies, cat. #: 4346907) in triplicate. PCR and analysis was undertaken by StepOne Plus Real 

Time PCR System with StepOne Software v2.1. Levels of cDNA in each sample were normalised using 

expression levels house-keeping genes GAPDH and eEF2. In each qRT-PCR run, 2 types of negative 

controls were run; (i) each RNA sample was analysed by qRT-PCR using primers for GAPDH in the 

absence of reverse transcription, and (ii) a sample containing all reaction components except cDNA was 

analysed for each primer pair. All samples and reactants were shown to be not contaminated with DNA 

(no amplification observed in the negative controls).  

 

Immunofluorescence microscopy 

Cells were grown on sterile microscope cover-slips in a 6-well tissue culture tray and treated as 

per experiment details. Cells were washed twice with PBS, fixed for 15 min with 4% (w/v) 

paraformaldehyde and washed three times with PBS. Cells were permeabilized by washing with PBT-

1% for 10 min at 25oC, then blocked by incubating with BS for 30 min at 25oC. Appropriate dilution of 

primary antibody was made using BS and incubated with cells overnight at 4oC. Cells were washed 

twice with PBS and once with PBT-0.25%. Secondary antibody was appropriately diluted in BS and 

incubated with cells for 2 h at 25oC. Cells were washed twice with PBS and once with PBT-0.25%, then 

the cover-slips were mounted onto microscope slides with Prolong Gold Antifade Reagent with DAPI 

(Life Technologies, cat. #: P-36931). Cover-slips were sealed on the microscope slide with nail polish 

and incubated overnight at 25oC in the dark before viewing the slide. Slides were imaged on a Zeiss 
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deconvolution microscope (located in the Molecular Life Sciences building, University of Adelaide), or 

with Leica SP5 Spectral Scanning confocal microscope (located at the Adelaide Microscopy facility, 

University of Adelaide), using the same exposure times, laser and gain settings between slides to 

ensure accurate representation of fluorescence intensity. Images were false coloured and merged 

(where appropriate) using Adobe Photoshop.  

 

Dual-Luciferase assays 

P19 cells were plated in a 24-well tissue culture plate and transfected 4 h later with 500 ng of 

the appropriate Flrt3 pGL3 firefly luciferase vector and 1 ng of renilla luciferase vector using the Fugene 

6 protocol outlined above in Cell transfection, appropriately scaled down. Differentiation of the 

appropriate samples occurs 18 h later, and samples harvested at appropriate time-points and prepared 

for luminometer analysis following the protocol from the Dual-Luciferase Reporter Assay System 

(Promega, cat. #: E1910) without variation. Samples were loaded into individual wells of a 96-well plate 

in triplicate and luminescence measured using the LUMIstar Omega (BMG Labtech) luminometer. 

 

Statistical analysis 

 All statistical analysis of data obtained was performed using the Student’s t-test within the 

GraphPad Prism software package. At least 3 biological replicates were obtained for all data undergoing 

statistical analysis. Data was said to be significantly different from the null hypothesis if p<0.05. 
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3. Analysis of Flrt3 localisation and activity using an over-

expression system 

3.1 Introduction 

 

Flrt proteins have been shown to interact with Fgf receptor 1 (FgfR1), with Flrt1 being implicated 

in altering ERK phosphorylation, a downstream signalling output of FgfR1 [5, 41]. Over-expression of 

Flrt1 in HEK-293T cells and stimulation with Fgf-2 results in a rapid and robust increase of 

phosphorylated ERK (pERK), which is used as a measure of ERK activation and Fgf receptor signalling. 

Upon induction with Fgf2, increased levels of pERK are measured within 1 min, peaking at an 

approximate 2-fold induction after 10 min and remain increased after 30 min. Mechanistic studies on the 

Flrt1 protein have shown that three tyrosine residues (predicted to be Y600, Y633 and Y671) in a conserved 

region of the intracellular domain of Flrt1 are phosphorylated by FgfR1 upon interaction. Mutation of the 

phosphorylated tyrosine residues results in elimination of Flrt1 tyrosine phosphorylation and constitutive 

ERK phosphorylation, which is dependent on FgfR activity, thus suggesting that the inability of FgfR1 to 

phosphorylate the mutated tyrosines results in constitutive FgfR activation [41]. To further understand 

Flrt-dependent regulation of Fgf signalling, an analysis of the effect of Flrt3 expression on FgfR 

signalling output was performed. Experiments were based on those carried out by Wheldon et al. 

(2010), in the aim to further elucidate if characteristics identified for Flrt1 over-expression are 

representative of the Flrt family.  

 

3.2 Results 

 

3.2.1 Localisation of over-expressed Flrt3 and FgfR1 

 

Using tagged proteins, an interaction between Flrt3 and FgfR1 has been shown, with the 

interaction facilitated in part by the transmembrane and fibronectin domains on Flrt3 [5, 8]. These 

interactions have been shown using immunoprecipitation and BRET assays, both of which do not 

visually show the location of interacting proteins in cells. To determine the co-location of the FgfR1 and 

Flrt3 proteins, immunofluorescence experiments of cultured cells over-expressing Flrt3 and FgfR1 were 

performed (Figure 3.1).
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Cos-7 cells were transfected with expression vectors encoding cDNAs from Flrt3 and Fgfr1. 

Transfections using the empty expression vector (pCDNA3.1) were used as controls for this experiment. 

When FgfR1 and pcDNA3.1 are co-transfected into cells (FgfR1/pcDNA3.1), they act as a negative control 

for the HA-antibody, which detects HA-tags. Analysis reveals that using the HA-antibody on these cells 

results in no detectible signal. This is expected as these cells are not expressing a protein containing a 

HA-tag. In the same way, when Flrt3 and pcDNA3.1 are co-transfected into cells (pcDNA3.1/Flrt3-HA), 

they act as a negative control for the Flg-antibody, which detects FgfR1. No signal is detected using the 

Flg-antibody on the cells as these cells are not expressing FgfR1 at high enough levels to be detected in 

the exposure time used. Use of the appropriate antibody to detect the over-expressed protein results in 

detectible signal for both transfection set-ups, acting as positive controls for the experiment. The results 

of these controls show the signals in the expected cells, validating the experiment.  

 

When over-expressed alone (FgfR1/pcDNA3.1), FgfR1 localises within the cell membrane 

(Figure 3.1 FgfR1/pcDNA3.1 ‘i’), but is predominantly localised to structures in the cytoplasm 

reminiscent of intracellular vesicles (Figure 3.1 FgfR1/pcDNA3.1 ‘ii’) consistent with previously 

described localisation of FgfR1 to these structures. High levels of expression are seen adjacent to the 

nucleus suggesting that over-expressed FgfR1 protein accumulates in the Golgi and endoplasmic 

reticulum due to high-level protein over-expression.  

 

Expression of Flrt3 alone (pcDNA3.1/Flrt3-HA) reveals localisation at the cell surface 

membrane (Figure 3.1 pcDNA3.1/Flrt3-HA arrow ‘i’) and at intracellular membranes within the cytoplasm 

(Figure 3.1 pcDNA3.1/Flrt3-HA ‘ii’). Cell surface expression was more extensive than that seen for 

FgfR1, observed as more staining at the “apparent” cell membrane (no membrane marker used, 

therefore an assumption is made as to the location of the cell membrane based on the staining pattern). 

Expression in the cell surface membrane appears concentrated in specific regions including, but not 

limited to, areas of the cell facilitating cell-cell contacts. Overall, cells expressing Flrt3 may occur in 

small clusters, although lone single cells expressing Flrt3 were also observed.  

 

Co-expression of Flrt3 and FgfR1 (FgfR1/Flrt3-HA) showed overlapping domains (Figure 3.1 

FgfR1/Flrt3-HA ‘i’) of co-expression as well as distinct domains of individual protein expression (Figure 

3.1 FgfR1/Flrt3-HA ‘ii’) (Figure 3.1). Co-localisation of FgfR1 and Flrt3 exists mostly in the vesicles and 

membranes within the cytoplasm, adjacent to the nucleus. Some co-localisation between Flrt3 and Fgfr1 

that occurs at the cell surface may be a result of re-localisation of FgfR1 to the cell surface by 
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interaction with Flrt3. Co-localisation does not occur only in the cytoplasm or only in the intracellular 

vesicle membranes, but is present in both of these membranes concurrently. Flrt3 expression is not co-

localised with FgfR1 appears at the extremities of the cell at the cell surface.  

  

Flrt3 and FgfR1 have been previously shown to interact by immunoprecipitation and have now 

been shown they co-localise in the same membranes within the cell, providing an in vivo context for the 

interaction [5]. Co-localisation of Flrt3 and Fgfr1 in intracellular membranes is similar to that observed 

for Flrt1 and Fgfr1 interaction [41]. Flrt3 and FgfR1 are co-localised in the same membranes of the cell, 

and with Flrt3 being shown to interact with FgfR1 by immunoprecipitation, an effect on FgfR1 signalling 

is possible [41]. Interestingly, it is thought that a lot of signalling from FgfR occurs within intracellular 

membranes and not at the cell surface [26]. Assignment of the specific membrane structures would 

provide valuable information on the identity of vesicles where interaction occurs and would require co-

staining with appropriate markers for various membranes.  

 

3.2.2 Effect of Flrt3 over-expression on FgfR1 signalling 

 

Similar to Flrt1, the majority of Flrt3 interaction with FgfR1 co-localisation occurs within 

intracellular vesicles, which positions Flrt3 in the correct location to be able to influence the output of 

FgfR1. Wheldon et al. (2010) showed that over-expression of Flrt1 caused a subtle but consistent 

change in ERK phosphorylation, a measure of FgfR1 signalling via the MAPK pathway output, when 

analysed using a time course of Fgf-2 stimulation [41]. A change in FgfR1 signalling due to the 

expression of Flrt3 and the mechanism associated with the interaction can be assessed in a similar 

manner. By transiently co-transfecting HEK-293T cells with Flrt3-HA and FgfR1 and stimulating the cells 

with Fgf-2, FgfR1 signalling was evaluated by measuring pERK levels by Western blot (Figure 3.2). 
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Figure 3.2. Over-expression of Flrt3 produces a trend towards increased pERK levels: Western blot of HEK-293T cells 
transiently transfected with indicated plasmids (UT = untransfected cells, pc and pcDNA3.1 = pcDNA3.1 transfected cells 
(vector only control)) for 20 h, then stimulated with Fgf-2 and heparin for 10 min. A) Western blot probed with anti-pERK and 
anti-ERK (for pERK normalisation). + = with Fgf-2 and heparin stimulation, - = without Fgf-2 and heparin stimulation. 
Representative of 3 independent experiments. B) Normalised quantification of pERK levels (normalised to total ERK levels 
using densitometric analysis) between unstimulated and Fgf-2 stimulated cells relative to untransfected Fgf-2 stimulated cells. 
C) Quantification of pERK levels in unstimulated cells. D) Quantification of pERK in Fgf-2 stimulated cells. Data for (C) and (D) 
is drawn from (B). Error bars are S.E.M, n=3, Student’s t-test performed to determine significant difference of results, NS = no 
significant difference (p>0.05). 

  

Basal levels of ERK phosphorylation (pERK) are observed in untransfected, unstimulated cells 

(Figure 3.3A, UT -) which are significantly increased (23.25-fold) upon stimulation with Fgf-2 (Figure 
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3.2A, UT +), showing that Fgf-2 stimulation is inducing FgfR activation and subsequent ERK 

phosphorylation (based on Student’s t-test, p<0.05). In this experiment, untransfected (UT) and 

pcDNA3.1-transfected cells (pc) are used as controls for basal pERK levels when unstimulated and for 

Fgf-2 stimulation as pERK levels rise upon stimulation. The stimulated pcDNA3.1-transfected cells show 

no difference in pERK levels upon showing transfection and expression vector alone does not 

drastically alter ERK phosphorylation. 

 

 Cells transfected with Flrt1 show no significant difference in ERK phosphorylation when 

compared to untransfected cells or cells transfected with empty expression vector pcDNA3.1 (pc) 

(p>0.05), whether unstimulated or stimulated with Fgf-2 (Figure 3.2). This is consistent with previous 

data for over-expression of Flrt1 at this time point [41]. Unstimulated cells over-expressing Flrt3 (Flrt3 -) 

showed a 2.63-fold increase in the average level of ERK phosphorylation levels compared to empty 

vector (Figure 3.2). However, this is not significant due to the large degree of variability in the data. Flrt3 

over-expressing cells stimulated with Fgf-2 for 10 min also showed a 1.41-fold increase in the amount of 

phosphorylated ERK (Figure 3.2, Flrt3) when compared to cells transfected with empty vector. However, 

again this data was not-significant using a Student’s t-test (p>0.05). 

 

 The results show pERK levels increase upon over-expression of Flrt3 and Fgf-2 stimulation of 

cells. However, this increase is not significant (p>0.05). It also showed that Flrt3 over-expression in non-

Fgf-2 stimulated cells resulted in a slightly elevated level of pERK activity, albeit statistically insignificant 

at a 95% confidence interval due to variability in the assay. Despite the lack of significance, in both the 

stimulated and unstimulated case Flrt3 exhibited a trend towards increased ERK phosphorylation. 

 

 While Flrt3 does not show a significant increase in FgfR1 activity via the MAPK pathway, 

independent of Fgf-2 stimulation, a trend exists for an increase in pERK levels due to the over-

expression of Flrt3, possibly caused by the interaction with FgfR1. To determine that the increase in 

ERK phosphorylation identified in cells over-expressing Flrt3 is dependent on activation of the Fgf 

receptor, the Fgf receptor inhibitor SU5402 was utilised. Flrt3 or empty vector (pcDNA3.1) transiently 

transfected HEK-293T cells were serum-starved for 60 min with SU5402 (50 μM) where indicated. Cells 

were then stimulated with Fgf-2 for 10 min and cell lysates analysed for levels of pERK by Western blot 

(Figure 3.3). 
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Figure 3.3. Increased pERK levels caused by Flrt3 over-expression require FgfR activity: Western blot of HEK-293T 
cells transiently co-transfected with FgfR1 and pcDNA3.1 (vector only control) or Flrt3 for 20 h, then stimulated with Fgf-2 and 
heparin for 10 min. Appropriate samples were incubated with 50 μM SU5402 during Fgf-2 stimulation. Blot probed with anti-
pERK and anti-ERK (for pERK normalisation). Bar graph represents the normalised quantification of pERK levels between Fgf-
2 stimulated cells with and without SU5402 treatment relative to untransfected Fgf-2 stimulated cells without SU5402 treatment 
(normalised to total ERK levels using densitometric analysis). n=1. 

 

Fgf-2 stimulation of pcDNA3.1-transfected cells (pcDNA3.1 + -) results in activation of Fgf 

receptor and subsequent ERK phosphorylation (Figure 3.3). The inclusion of SU5402 in Fgf-2 

stimulated pcDNA3.1-transfected cells (pcDNA3.1 + +) results in complete absence of pERK, showing 

the effectiveness of the inhibitor in blocking activation of the FgfR1 signalling, and consequently the 

MAPK pathway. As previously shown, stimulation of Flrt3 (Flrt3 + -) over-expressing cells with Fgf-2 

results in a higher level of pERK than stimulation of pcDNA3.1-transfected cells. In this case, the level of 

pERK is slightly higher (2.78-fold increase) than previously shown (1.41-fold increase) for Flrt3 over-

expressing cells in comparison to pcDNA3.1-transfected cells.  When Flrt3 over-expressing Fgf-2 

stimulated cells are incubated with 50 μM SU5402 (Flrt3 + +), the levels of pERK are essentially 

eliminated. 
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 This data shows that the trend identified in our previous experiments of an increase in pERK 

levels in cells over-expressing Flrt3 is due to increased activity of the Fgf receptor, and not through an 

Fgf receptor independent mechanism. Therefore, if this trend is real, increased activity of the FgfR1 is 

responsible for the increase in pERK levels in Flrt3 over-expressing cells, with the interaction between 

Flrt3 and FgfR1 the likely mechanism.  

 

3.2.3 Investigation of Flrt3 tyrosine phosphorylation 

 

Increased levels of pERK seen upon over-expression of Flrt1 and Flrt3 are dependent on the 

activation of the Fgf receptor tyrosine kinase domain ([41] and Figure 3.3). Using NetPhos 2.0 to predict 

tyrosine phosphorylation sites, Wheldon, et al. (2010) proposed that three tyrosine residues on the 

intracellular tail of Flrt1 were highly likely to be phosphorylated upon activation of FgfR1 activity. 

Analysis of tyrosine phosphorylation using a phosphotyrosine specific antibody identified tyrosine 

phosphorylation of Flrt1 and subsequent mutation of the three tyrosines to phenylalanine caused a loss 

of this phosphorylation [41] (Chapter 1, Figure 26). In this study, it was predicted that the intracellular 

domain of Flrt3 may also undergo tyrosine phosphorylation. Tyrosine residues within the intracellular 

domain that have a strong consensus sequence for tyrosine phosphorylation were identified using the 

NetPhos 2.0 prediction algorithm (http://www.cbs.dtu.dk/services/NetPhos/) (Figure 3.4).  

 

Figure 3.4. Predicted sites of tyrosine phosphorylation in the intracellular domain of Flrt3: Using the NetPhos2.0 server, 
tyrosine residues 575, 623 and 636 (red text) of Flrt3 were identified as being the most likely to be phosphorylated [43]. 
 

Out of the 5 Flrt3 intracellular tyrosine residues, 3 were identified as being highly likely to be 

phosphorylated (Figure 3.4). A sequence conserved between all Flrt members contains a single tyrosine 
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residue, Y575, which is the most likely of the three residues in the intracellular domain of Flrt3 to be 

phosphorylated (99.1% likelihood). The remaining two tyrosines are found further towards the C-

terminal of Flrt3, Y623 and Y636 (85.1% and 92.9% likelihood of phosphorylation respectively). Using co-

transfection of HA-tagged Flrt proteins and FgfR1 with immunoprecipitation of HA-tagged proteins, 

tyrosine phosphorylation of Flrt3 in response to Fgf-2 stimulation was investigated (Figure 3.5). 

 

Figure 3.5. Flrt proteins contain phosphorylated tyrosines: Western blot of HEK-293T cells transiently co-transfected with 
indicated plasmids (Fg = FgfR1, pc = pcDNA3.1 (vector control), F1 = Flrt1-HA, F3 = Flrt3-HA) for 20 h, then appropriately 
stimulated with Fgf-2 and heparin (+ Fgf) for 10 min. Resulting WCL underwent immunoprecipitation for HA-tagged proteins. 
Blot probed with anti-pY and anti-HA (control for success of immunoprecipitation). n=2.  
 

Immunoprecipitation of samples transfected with FgfR1 and pcDNA3.1 (Fg/pc and Fg/pc + Fgf) 

showed no bands when probed for phosphorylated tyrosine or for the HA tag, as expected (Figure 3.5) 

as no HA tagged proteins are present in these samples, showing the HA antibody showed no non-

specific precipitation. Wheldon et al. (2010) have previously shown by immunoprecipitation that Flrt1 is 

phosphorylated when co-expressed with FgfR1 which we used as a positive control [41]. Cells 

transfected with FgfR1 and Flrt1 (Fg/F1 and Fg/F1 + Fgf) and immunoprecipitated with HA-antibody, 

independent of Fgf-2 stimulation, show phosphorylation of tyrosine residues, with a single band in each 

lane at approximately 75 kDa. When probed for HA, two bands are seen; one at approximately 75 kDa, 
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and the other at approximately 92 kDa, showing that the immunoprecipitation of HA-tagged proteins 

occurred. Over-expression of Flrt1 alone (F1 and F1 + Fgf) results in no Flrt1 tyrosine phosphorylation. 

Flrt1 expression results in two bands at approximately 75 kDa and 92 kDa when probed for HA. This 

blot shows lower levels of HA-tagged protein in Fgf-2 stimulated samples, indicating that either 

transcription or translation of Flrt1 was lower, or the immunoprecipitation did not occur as effectively as 

the unstimulated sample. These results show that Flrt1 is phosphorylated when over-expressed with 

Fgfr1 in this experiment.  

 

Co-expression of Flrt3 and FgfR1 (Fg/F3) results in phosphorylated tyrosine on an 80 kDa and 

85 kDa species of Flrt3. Fgf-2 stimulation (Fg/F3 + Fgf) results in a single band at approximately 80 

kDa. Interestingly, the associated HA-probed blot shows expression of 1 species of Flrt3 of 

approximately 100 kDa in size, suggesting that the form of Flrt3 that is phosphorylated is a minor 

component of the Flrt3 present in the lysate. When over-expressed alone (F3 and F3 + Fgf), a 100 kDa 

tyrosine phosphorylated species of Flrt3 exists, with stronger tyrosine phosphorylation present in 

unstimulated samples. Multiple forms of Flrt3 are being expressed in the cell, demonstrated by the 

bands present at approximately 75 kDa, 87 kDa and 100 kDa in the HA-blot. Levels of different species 

are expressed the same between F3 and F3 + Fgf with the exception of the 100 kDa species, which 

shows higher expression with Fgf-2 stimulation. Similar to experiments with Flrt1, the overall levels of 

Flrt3 present in immunoprecipitations where Flrt3 and Fffr1 are over-expressed, compared to Flrt3 alone 

are reduced. 

 

Similar to Flrt1, Flrt3 contains tyrosines that become phosphorylated. This phosphorylation 

occurs independently of Fgf-2 stimulation. Interestingly, different forms of Flrt3 appear to have tyrosine 

phosphorylation depending on the co-expression of FgfR1. With FgfR1 co-expression, a 75 kDa species 

of Flrt3 is tyrosine phosphorylated, yet does not appear when probed for HA so is likely to be present at 

low levels. Co-expression of FgfR1 also results in expression of differing amounts and species of Flrt3 

protein.  

 

3.2.4 Role of Flrt3 domains in increased FgfR1 activity 

 

In this study, over-expression of Flrt3 appears to result in a 1.41-fold increase in ERK 

phosphorylation due to increased FgfR1 activity (Figure 3.2) that is likely mediated by the interaction of 

Flrt3 and FgfR. The interaction between Flrts and FgfR has been postulated to be mediated by the 

fibronectin domain, but a Flrt1 molecule can interact with a FgfR without an extracellular domain (L. 
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Wheldon, pers. comm.), but the kinetics of these interactions have not been elucidated [8]. The 

investigation of Flrt3 mutants is a good method to identify a specific motif that is common amongst the 

Flrt family that may mediate FgfR interaction and cause an increase in FgfR signalling.  

To examine the domains of Flrt3 involved in ERK activation a number of mutations of Flrt3 were 

constructed. Mutations were generally a loss of a domain, but also included individual amino acid 

mutations. Mutated Flrt3 constructs include Flrt3 without the intracellular domain (F3-IC), Flrt3 without 

the LRR domains (F3-LR), Flrt3 without the fibronectin domain (F3-FN), Flrt3 without the LRR and 

fibronectin domains (F3-LRFN), Flrt3 without an intracellular microtubule binding domain (F3-KKD), and 

Flrt3 with the intracellular tyrosine residues predicted to be phosphorylated (F3-3YF) (as described in 

Figure 3.4). The effect of these Flrt3 mutations on pERK levels was assessed. HEK-293T cells were 

transiently transfected with FgfR1 and appropriate Flrt3 mutant expression plasmid, followed by Fgf-2 

stimulation and analysis of cell lysates by Western blot for pERK (Figure 3.6). 
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Lysates from cells transfected with HA tagged mutant Flrt3 constructs were assessed for 

protein expression by Western blot that showed all the constructs transfected are being expressed 

(Figure 3.6 B) except F3-LR and F3-KKD. Therefore results with these constructs must be excluded the 

analysis. All Flrt3 mutant proteins were expressed at different levels compared to each other (Figure 3.6 

B). Flrt3, F3-FN and F3-3YF are expressed at similar levels, with the remaining Flrt3 mutant proteins 

expressed at lower levels. Multiple bands appear in all Flrt3 mutant and Flrt3 samples, indicating 

different sized species. Bands present in the pcDNA3.1 sample are at the same size as the bands in the 

adjoining Flrt3 lane. The band in the pcDNA3.1 sample was due to over-loading of the Flrt3-Fgf over-

expressing sample. No bands appear in the untransfected cell lysates (Figure 3.6 B). pcDNA3.1 

transfected cells show the background levels of pERK caused by the transfection of the empty vector 

and pERK levels rise with stimulation of these cells with Fgf-2 as expected allowing any change in 

pERK levels to be attributed to the expression of mutant Flrt3 proteins (p<0.05).  

 

Unstimulated cells over-expressing all Flrt3 mutants show no statistically significant difference 

in pERK levels (Figure 3.6 B, C and D) compared to Flrt3 transfected cells (p>0.05). Levels of pERK in 

Flrt3 over-expressing cells showed a non-significant trend towards higher levels of pERK when 

compared to cells transfected with expression vector alone, as previously observed. The levels of pERK 

show a non-significant change in cells transfected with all mutant Flrt3 constructs when stimulated with 

Fgf-2 (Figure 3.6 B and C) (p>0.05).  

 

 The trend towards an increase in pERK with over-expression with Flrt3 was repeated in this 

assay but is again not significant. Alteration of the domains within the Flrt3 coding sequence gave no 

significant, repeatable changes in ERK phosphorylation when over-expressed in cells. Therefore, we 

were unable to identify any Flrt3 mutants that affect FgfR1 activity or ERK phosphorylation in any way.  

 

3.3 Discussion 

 

 Previous studies have shown that Flrt1 can interact with FgfR1, co-localise with FgfR1 in 

intracellular vesicles, and influence the phosphorylation of ERK, the output of FgfR1 [5, 41]. In this 

chapter, the characteristics of Flrt3 and its influence on FgfR1 signalling were assessed. These 

experiments were carried out to determine if the effects of Flrt3 over-expression on FgfR1 signalling 

were similar to those of Flrt1. Immunolocalisation of over-expressed Flrt3 and FgfR1 determined that 

overlap existed, providing the first evidence of cellular co-localisation of these proteins (Figure 3.1).  
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These results draw similarities with Flrt1 and FgfR1 which showed overlapping expression patterns [41]. 

Flrt3 shows a similar expression pattern to Flrt1, with localisation of the protein shared between 

intracellular membranes and the cell surface membrane. Localisation of the proteins when not over-

lapping is also consistent between studies [41]. Transfection of Flrt3 and FgfR1 proteins resulted in 

localisation to intracellular membrane structures such as the rough ER and/or Golgi body and 

intracellular vesicles. Accumulation in the rough ER and/or Golgi is likely to be due to the large levels of 

over-expression. The co-localisation assay results suggest that Flrt3 and FgfR1 are co-localised to a 

number of different undefined cellular membranes (Figure 3.1). It is important to note that Flrt3 co-

localisation in these over-expression assays is similar to that of Flrt1, which was subsequently shown to 

co-localise with endogenously expressed FgfR1 and Fgf signalling components, and influence FgfR1 

output [41].  

 

 Over-expression of Flrt1 in HEK-293T cells results in a subtle increase in pERK levels as a 

result of FgfR1 activation,  with a more rapid increase of pERK after just 1 min that is sustained at a 

higher level for at least 30 min [41]. To analyse the effect of Flrt3 over-expression on pERK levels we 

attempted to repeat this analysis with Flrt3. We had multiple difficulties with these assays, including 

large levels of variability between experiments, which meant we had difficulty in verifying previous 

experiments to then extrapolate this to our new data for Flrt3. However, we obtained some repeatable 

results with our initial experiments which were performed with Flrt over-expressing cells stimulated for 

10 min. Surprisingly, this experiment resulted in no increase in FgfR1 activation in Fgf-2 stimulated, Flrt1 

over-expressing cells, which is in contrast to previous data despite all efforts made to replicate 

experimental conditions [41]. It was also noted that the constitutive activation of pERK seen in cells 

transfected with a mutant version of Flrt1 that was unable to be phosphorylate on tyrosines was also 

absent in our assays [41]. There could be multiple reasons why Flrt1 may not activate pERK in our 

assays, including differences in cell lines, culture conditions or different batches of reagents used which 

may have altered the response to Flrt1 over-expression. The 23.26-fold increase in pERK levels in 

untransfected cells upon Fgf-2 stimulation indicates that activation of Fgf receptors is occurring as 

expected in our cells, and it is clear to see that the stimulation is also successful in the Flrt1 and Flrt3 

over-expressing samples due to the large increase in pERK levels (Figure 3.2 A + B).  

 

 Flrt3 over-expressing cells showed an average 1.41-fold increase in pERK levels after 10 

minutes stimulation (Figure 3.2 A + B + D) that was consistent over 3 experiments, but statistical 

analysis showed was not significant using a Student’s t- test. The consistency of this increase 

suggested that with further repeats of this experiment we may have obtained a significant increase. This 
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increase in pERK may also be larger at a different time-point, making the increase in FgfR1 activation 

statistically significant. Furthermore, in unstimulated cells we saw a trend towards increased pERK in 

cells over-expressing Flrt3 but this was not significant due to the low levels of pERK present and the 

associated large errors involved. It is interesting to note in stimulated and unstimulated cells that pERK 

levels in Flrt3 over-expressing samples show an increasing trend in pERK levels compared to Flrt1 

over-expressing cells (Figure 3.2) suggesting Flrt3 may be more influential in FgfR activation than Flrt1. 

No difference in pERK levels between pcDNA3.1 and Flrt1 over-expressing cells exists, which is not 

consistent with published data [41]. This further suggests that the loss of Flrt1-related significance may 

be a difference in our cells or the experimental system.  

 

Despite the lack of significance in the above experiments we were confident that Flrt3 was 

causing an increase in the output of FgfR through increased phosphorylation of ERK in our HEK-293T 

cells. Although pERK is a signalling molecule for many different receptors, the increase in pERK levels 

observed in Flrt3 over-expressing samples was attributed predominantly to activation of the Fgf 

receptors (Figure 3.3). The Fgf receptor inhibitor was effective in blocking Fgf receptor activation, with 

levels of pERK in Fgf-2 stimulated, SU5402 treated cells being only slightly higher than the level of 

unstimulated cells. When Flrt3 over-expressing cells are stimulated with Fgf-2 in the presence of the 

inhibitor, pERK levels are almost abolished, suggesting the increase in pERK levels is due to the 

influence that Flrt3 has on the activation of the Fgf receptor and not a result of activation of some other 

signalling receptor or cascade. Combined, this data suggests that Flrt3 over-expression results in 

increased stimulated FgfR activation compared to non-Flrt3 over-expressing and Flrt1 over-expressing 

cells.    

 

Based on studies of Flrt1, we predicted that Flrt3 may be phosphorylated on tyrosine residues 

within its intracellular tail and that Y575, Y623 and Y636 are the most likely candidates for phosphorylation 

upon Fgf receptor activation (Figure 3.4). As previously mentioned, Y575 is within a region of conserved 

sequence across the Flrt family, with the corresponding tyrosine in Flrt 1, Y600, being shown to be 

phosphorylated, hinting to a potentially important role in Flrt function as a FgfR1 regulator [41]. Using 

immunoprecipitation and Western blotting with anti phospho-tyrosine antibody Flrt3 was shown to 

contain phosphorylated tyrosine residues, with the absence of a signal from FgfR1 and pcDNA3.1 

transfected cells indicating that any signal produced in the phospho-tyrosine (pY) blot for the Flrt over-

expressing samples is due to phosphorylation of tyrosines on the HA-tagged Flrt proteins, and not from 

FgfR1 phosphorylated tyrosines. Tyrosine phosphorylation of Flrt1 when co-expressed with FgfR1 is 

evident, similar to the result obtained by Wheldon et al. (2010) [41].  Flrt3 shows robust tyrosine 
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phosphorylation when over-expressed with FgfR1 with a species of approximately 80-85kDa observed. 

Interestingly, when the experiment is performed without over-expression of FgfR1, an approximately 

100 kDa species of Flrt3 showed tyrosine phosphorylation when over-expressed (Figure 3.5). This is the 

largest of the 3 species of Flrt3 to be immunoprecipitated, indicating different post-translationally 

modifications forms of Flrt3 are tyrosine phosphorylated in these two situations. The most obvious 

explanation of this is that the interaction between over-expressed FgfR1 and Flrt3 protein retains and 

phosphorylates more Flrt3 within the endoplasmic reticulum/Golgi where it contains less post-

translational modifications. We observe the retention of Flrt3 adjacent to the nucleus when we over-

express it with FgfR1 in Cos-7 cells compared to expression of Flrt3 alone, which shows more 

localisation to the cell surface. The expression of multiple forms of Flrt3 when over-expressed alone 

(seen by the HA blot), yet the presence of only the largest form having phosphorylated tyrosines 

suggests that the smaller forms may be restricted to the Golgi or endoplasmic reticulum (ER) due to 

large over-expression. Without over-expression of FgfR1, tyrosine phosphorylation cannot occur in the 

Golgi or ER, and therefore only the largest species is observed in the pY blot, presumably 

phosphorylated by endogenous proteins outside of the Golgi /ER. In the HA-blot of Flrt3 and FgfR1 

over-expressing cells two species of Flrt3 protein are observed; an approximately 100 kDa and an 

approximately 92 kDa Flrt3 species, and not the smaller species visualised in the pY blot suggesting the 

phosphorylated Flrt3 is a minority component of all cellular Flrt3. These results show that Flrt3 is 

tyrosine phosphorylated and that this phosphorylation can be altered by its co-over-expression with 

FgfR1, similar to that of Flrt1. 

 

In our assay, we demonstrated that Flrt3 showed a consistent trend of increased FgfR1 

activation (Figure 3.2). This, combined with our demonstrated phosphorylation of Flrt3 and the role that 

the phosphorylated tyrosines of Flrt1 had on FgfR1 activation (Wheldon et al. (2010)) lead us to believe 

we could use this assay to analyse  the importance of the different domains within the Flrt3 protein 

within its role in FgfR1 signalling regulation [41]. No significant changes in FgfR1 activity were detected. 

As previously seen, cells over-expressing Flrt3 that are stimulated with Fgf-2 result in higher levels of 

FgfR1 activity than those not over-expressing Flrt3. This has been observed consistently over 3 different 

assays, meaning there is support that there is a small, but real difference in pERK levels due to Flrt3 

over-expression. It was surprising that with the combination of mutated sequence tested no significant 

change in FgfR1 activity was seen in any of these assays. This could be due to all the constructs 

possessing a transmembrane domain, which is the vital feature for FgfR1 interaction (L. Wheldon, pers. 

comm.) therefore interaction could still occur [8]. Another explanation could be that over-expression of 
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the constructs affects intracellular signalling pathways that interfere with correct signalling pathway 

function such that it may not be the best method to investigate this phenomena.  

  

3.4 Conclusion 

  

 From our experiments, we have confirmed that Flrt3 can act in a similar way to Flrt1 by 

interacting and localising with FgfR1 and being phosphorylated by FgfR1 on tyrosine residues within its 

intracellular domain. Over-expression experiments using the HEK-293T cell line with transient 

transfection of appropriate expression vectors has been previously used to analyse Flrt1 dependent 

alteration of Fgf signalling. This system over-expressing Flrt3 protein within HEK-293T cells to analyse 

the output of Fgf receptor signalling using pERK was problematic in our hands. This system showed a 

consistent trend with Flrt3 over-expression of increasing pERK levels, with or without Fgf-2 stimulation, 

that was however not significant. This was attributed to the activity of FgfR1. This increase was 

observed despite our positive controls with Flrt1 not showing increased FgfR signalling as in previous 

studies, suggesting our assay system was not acting as previously reported. While the data gathered 

here infers a role for Flrt3 in regulating FgfR signalling our investigations suggest that this high-level 

over-expression system may not be the best system available for analysis of Flrt regulation of Fgf 

signalling. This could be overcome with the discovery of a cell system to study endogenous Flrt3 

expression and function. The discovery of a cell system would also allow investigation of the role of 

endogenous Flrt3 in the regulation of pERK levels due to interaction with FgfR1 and provide more 

developmentally relevant data, which will be the focus of Chapter 4. 
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4. P19 EC cell line: A cell model for studying endogenous Flrt3 

function in neural differentiation. 

4.1 Introduction 

  

Chapter 3 has provided some functional insight into the role of Flrt3 in an over-expression 

context. However, the relevance of this functional data to an in vivo setting is uncertain due to the high 

levels of protein expression when compared to the levels of endogenous Flrt3 expression. This can 

result in localisation and activity that is not a true representation of the protein in an endogenous in vivo 

context. A common method of studying in vivo protein function is using knockout mouse models. 

Phenotypic and genetic analysis can identify differences between wild-type and knockout animals, 

providing insight into the roles of Flrt3. As presented in Chapter 1, a Flrt3-/- mouse model has been 

studied in an attempt to elucidate a role for Flrt3 during embryonic development, but due to the early 

lethality of the Flrt3 null mouse, it was difficult to assess the effect of Flrt3 on Fgf signalling. The 

knockout does not survive past mid-gestation, dying at approximately the same time-point as the 

initiation of Flrt3 expression at the midbrain-hindbrain boundary (MHB). Therefore, the embryo does not 

survive to stages where the well-studied models of Fgf signalling, such as the MHB and the developing 

limb, have formed. This makes the knockout model unsuitable to study of the effect of endogenous Flrt3 

function on Fgf signalling in neural development [5].  

 

The identification of an in vitro cell culture model to study the role of endogenous Flrt would be 

advantageous due to its simplicity, ease of use and greater scope for manipulation. A pluripotent or 

multipotent cell line would be a useful tool to study the function of Flrt genes during cellular 

differentiation.  The ability to differentiate these cells down a number of cellular pathways that are 

directly relatable to those in vivo, may lead to direct comparisons to embryonic development. 

Expression of the Flrt family is present during early development of the mouse in the three embryonic 

germ layers, in neural development in the early neurectoderm and at later stages at the MHB boundary 

[5], so may show interesting expression in early pluripotent stem cell differentiation. 

 

In this chapter, different pluripotent cell differentiation regimes are examined in an attempt to 

identify a cell model system to analyse Flrt function. Specifically, the P19 embryonic carcinoma (P19 

EC) cell line and the D3 ES cell line were examined. The P19 EC is a euploid pluripotent cell line 

isolated from murine teratocarcinomas that can be differentiated to different cell fates with the aid of 

different chemicals and cell culture conditions. For example, differentiation with retinoic acid (RA) 
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promotes neural differentiation, whilst differentiation with dimethyl sulfoxide (DMSO) promotes 

cardiomyocyte differentiation [44, 45]. D3 ES cells are the mouse equivalent of the inner cell mass and 

can also be differentiated down various cellular differentiation pathways, reminiscent of those in the 

early mouse embryo, using various cell culture conditions. 

 

4.2 Results 

 

4.2.1 Analysis of Flrt expression in neural-differentiated P19 EC cells 

 

To determine the expression of Flrt genes in vitro in models of early embryogenesis, I utilised 

the differentiation of two stem cell based systems. Firstly, a time-course of differentiation of P19 EC 

cells in the presence of retinoic acid, which directs differentiation towards a neural lineage, was 

analysed using quantitative real-time PCR (qRT-PCR) to detect the expression of Flrt1, Flrt2, and Flrt3 

(Figure 4.1). 
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To identify if the RA-differentiated P19 EC cell model can be used to study Flrt function, gene 

expression over 4-days of differentiation was assessed. Analysis of Flrt3 mRNA shows a rapid and 

robust induction of expression upon early retinoic acid dependent neurectoderm differentiation (Figure 

4.1 A). This is in contrast to expression of Flrt1 and Flrt2 that show negligible expression over the four 

days of differentiation (data not shown). Upon differentiation with RA, Flrt3 expression increases rapidly, 

with a 20.9-fold increase after 1 day (1 + RA) compared to undifferentiated cells (0) (Figure 4.1 A). 

Expression remained steady after 2 days (2 + RA), with a 22.6-fold increase compared to 

undifferentiated cells, before appearing to slightly decrease to a 14.3-fold increase compared to 

undifferentiated cells after 4 days (4 + RA), with all changes noted being statistically significant (Figure 

4.1 A). When compared to differentiation in the absence of RA (- RA), RA-directed neural differentiation 

of P19 EC cells significantly increased endogenous Flrt3 expression in each of the 4 days measured, 

with statistically significant increases of 18.9-fold (p=9.9x10-4), 35.8-fold (p=0.014) and 4.82-fold 

(p=1.2x10-3) respectively (Figure 4.1 A). When differentiated in the absence of RA, expression of Flrt3 

does not significantly change from undifferentiated cells (Figure 4.1 A). Therefore, this model allows 

analysis of Flrt3 function without expression of the closely related Flrt1 and Flrt2 genes, allowing for 

easier data analysis and interpretation. 

 

 As Flrt3 is induced within the initial 24 hours of induction, a short time-course differentiation 

experiment was carried out to determine when an increase in Flrt3 transcription first appears. In 

comparison to non-RA differentiated cells, the presence of RA P19 EC cells show a statistically 

significant 3.7-fold increase in Flrt3 expression after 4 h of differentiation when compared to cells 

differentiated for 4 h without RA. A statistically significant increase is maintained throughout the 

remaining time-points when comparing RA- and non-RA differentiated cells (p<0.05) (Figure 4.1 B). A 

significant 6.5-fold increase in Flrt3 expression is observed after 5 h by RA-driven differentiation when 

compared undifferentiated (0 h) P19 EC cells, with expression continuing to increase beyond this time 

as observed in A (Figure 4.1). In the absence of RA, Flrt3 levels do not change over the first 6 h of 

differentiation, remaining at the same level as undifferentiated cells (0 h) (p>0.05).  

 

Our previous experiments analysing the expression of the Flrt genes during the RA directed 

differentiation relied upon aggregation of P19 cells during differentiation. To determine if cell-cell 

communication that occurs during cellular aggregation plays a role the ability of RA to induce Flrt3 

expression, or if this induction is directed by RA alone, P19 cells grown in a monolayer and treated with 

RA, rather than as aggregates, were analysed. Expression of Flrt3 over the 4-day differentiation period 
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replicates that of cells grown in aggregates (Figure 4.1 C). Flrt3 expression increases in cells grown in a 

monolayer with RA-differentiation after 1 day, remains steady after 2 days, and marginally decreases 

after 4 days (Figure 4.1 C). The induction of Flrt3 expression by RA in cells grown in monolayer will 

provide many advantages for the downstream analysis of Flrt3 expression and function, such as a 

clearer cell morphology for the localisation of Flrt3 protein within these cells. 

 

Investigation into Flrt3 expression during RA-guided early neurectoderm differentiation in 

mouse D3 ES cells was undertaken to determine if induction of Flrt3 is specific to P19 cells and if this 

system could provide a more embryonically relevant model to study Flrt3 function. ES cells can be 

differentiated into different cell types using different methods. The presence of leukaemia inhibitory 

factor (LIF) in the media inhibits ES cell differentiation maintaining ES cells in an undifferentiated state 

(0).  The addition of RA to LIF-containing media (+ LIF + RA) resulted in no change to Flrt3 expression 

after 1 day, and an apparent decrease in expression after 2 days (Figure 4.1 D). Removing LIF from 

lower serum media promotes differentiation to occur, replicating similar conditions to that of P19 EC 

cells differentiating without RA. Levels of Flrt3 in these samples (-LIF) remain similar to that of 

undifferentiated cells, and are similar in pattern to that of P19 EC cells differentiated without RA (Figure 

4.1 D). When early neurectoderm differentiation was promoted by lowering serum levels, removing LIF 

and adding RA, Flrt3 expression appears to increase when compared to undifferentiated D3 ES cells 

and to differentiating cells without addition of RA over the first 2 days of differentiation (Figure 4.1 D). 

Expression of Flrt3 in cells differentiated for 1 day (1 –LIF +RA) showed a 2.5-fold increase compared to 

undifferentiated cells, while differentiation for 2 days (2 –LIF +RA) showed a 4.3-fold increase (Figure 

4.1 D). This expression pattern is similar to that observed in P19 EC cells, albeit with a much reduced 

level of induction (Figure 4.1 A), identifying the RA-differentiation of P19 EC cells the better of the 2 

models investigated to study endogenous Flrt3 function.   

 

To ensure the validity of the results, a number of controls were used in this experiment. The 

primers used are designed against the Flrt3 open reading frame, which is a single exon. This means 

that primers crossing exon boundaries cannot be utilised, resulting in the implementation of a number of 

controls, including DNAse treatment to eliminate contaminating gDNA, analysis of samples that were 

not reverse transcribed to obtain cDNA, and the use of reference genes as a part of the analysis. These 

controls are further outlined in Chapter 2. 

 

 Early neurectoderm differentiation of the P19 EC cell line with RA is a good model to study the 

function of Flrt3. Expression of Flrt3 is rapidly and robustly increased upon differentiation with RA, with 
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this increase consistent between cell lines (P19 EC and D3 ES), and cell monolayer and aggregate 

growth. An increase in Flrt3 is observed within 5 hours of induction of differentiation and continues to 

increase towards a maximum around 48 hours after neurectodermal differentiation begins, with 

expression beginning to fall again after this period of time. Flrt3 was the only family member to show a 

sustained increase in expression using RA-differentiation of P19 EC cells, while negligible change in 

expression of Flrt1 and Flrt2 was observed. Importantly, these results may allow the use of this model to 

analyse the function of Flrt3 without any influence from Flrt1 and Flrt2 which may act as a compensation 

mechanism. Protein expression levels will need to be analysed to ensure that there is no compensation 

for the increase in Flrt3 expression at the protein level. This would confirm the ability to use this model. 

Expression of Flrt3 in non-RA differentiated cells remains low over the initial 4 days of differentiation. 

With the induction of Flrt3 occurring rapidly, a direct response of the gene to exposure of RA may exist.  

 

4.2.2 Flrt3 promoter response to RA 

 

 The rapid nature of the induction of Flrt3 expression by RA-induced differentiation suggested 

that this induction may be a direct transcriptional activation by RA. Therefore, we used two methods to 

identify elements within the Flrt3 promoter region that may control retinoic acid dependent induction of 

Flrt3 expression. 

 

Visual analysis of the Flrt3 promoter up to 10 kb upstream of the Flrt3 start site has failed to 

reveal any obvious sequence that matches the 5’PuGGTCAxxxxxPuGGTCA3’ consensus sequence 

(where Pu is any purine, and x is any nucleotide) of an RA response element [46]. As the expression 

pattern of Flrt3 is highly conserved between mouse and chicken, we performed an analysis of the Flrt3 

upstream sequence using the Evolutionary Conservation of Genomes (ECR) browser 

(http://ecrbrowser.dcode.org/), which compares genomic DNA sequences between species to identify 

conserved regions, and then searched these sequences for conserved transcription factor binding sites. 

We identified a conserved DNA sequence approximately 5 kb upstream of the transcriptional start site 

that contained a conserved retinoic acid orphan receptor (ROR) binding site that is a good candidate for 

a direct response to retinoic acid exposure (https://rvista.dcode.org/cgi-bin/rVA.cgi). It lies within a 

region of approximately 600 bp that shares high sequence homology between higher order vertebrates 

(ECR browser, http://ecrbrowser.dcode.org) (Figure 4.2). 
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Figure 4.2. Alignment of DNA sequences reveals a conserved element upstream of the Flrt3 promoter containing a 
ROR element: A) Flrt3 gene alignment showing percentage sequence identity between various species relative to human 
(yellow and blue boxes with blue arrows at top of figure), including higher order mammals. Yellow shading indicates exons, 
orange shading indicates introns, blue shading indicates ORF, red box highlights conserved portion of DNA sequence further 
investigated (http://ecrbrowser.dcode.org/xB.php?db=hg18&location=chr20:14252643 -14266270). B) Sequence analysis 
revealed the location of a potential retinoic acid response element (RORA1, blue text) within the conserved element in both 
the human and mouse sequences (human sequence shown) (https://rvista.dcode.org/cgi-bin/rVA.cgi). 
  

The nuclear orphan receptor family consists of a number of subfamilies, including the ROR 

subfamily. The subfamily consists of 3 different members; alpha, beta and gamma, of which beta and 

gamma are responsive to retinoic acid [47]. These comprise of a highly-conserved DNA-binding domain 

across the family, and a moderately conserved ligand binding domain. They are defined as orphan 

receptors due to the conflicting reports over the identification of binding ligands. Isoforms differing only 

in their amino terminus, are formed due to alternative promoter usage and splicing. RORs bind to 

specific ROR response elements, which consist of a core motif AGGTCA preceded by a 5 bp A/T-rich 

sequence, as a monomer, with binding to co-repressors and co-activators discovered. RORβ is 

expressed in mouse pineal gland and suprachiasmatic nuclei, localising it within the correct tissue-type 

to influence Flrt3 expression during neurogenesis [48]. Using PCR, the conserved element (CE) was 

isolated and using traditional cloning methods, luciferase constructs containing the CE were cloned with 

the minimal SV40 promoter.   

 

In the second approach, regions of DNA 5’ of the Flrt3 transcriptional start site of varying sizes 

(2 kb, 4 kb and 6 kb of Flrt3) were isolated and used to analyse whether the sequence that mediates 

RA-mediated Flrt3 induction is present close to the Flrt3 transcriptional start site. Variations of the 
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sequence upstream of Flrt3 in the presence or absence of the native Flrt3 transcriptional start site 

(labelled +pr and –pr respectively) were cloned into the luciferase containing vector pGL3 B, under the 

control of the endogenous Flrt3 promoter, or pGL3 P, under the control of the minimal SV40 promoter, 

to also assess the importance of the native promoter (Figure 4.3).
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Figure 4.3. Luciferase constructs cloned to analyse Flrt3 promoter regions response to RA differentiation of P19 EC 
cells: Vector maps showing the structure of the cloned luciferase vectors (previous 2 pages), and a schematic of the regions 
of the Flrt3 promoter investigated (current page). +pr = including Flrt3 transcriptional start site, -pr = excluding Flrt3 
transcriptional start site 

  

To analyse the output from the cloned Flrt3 regulatory elements we transfected the luciferase 

constructs into P19 EC cells and differentiated them with or without RA (Figure 4.4).



80 
 



81 
 

 

F
ig

u
re

 4
.4

. 
A

n
 R

A
 r

es
p

o
n

se
 i

s 
in

it
ia

te
d

 f
ro

m
 w

it
h

in
 a

 1
.7

 k
b

 r
eg

io
n

 b
et

w
ee

n
 4

 k
b

 a
n

d
 6

 k
b

 u
p

st
re

am
 o

f 
th

e 
F

lr
t3

 t
ra

n
sc

ri
p

ti
o

n
 s

ta
rt

 s
it

e:
 N

or
m

al
is

ed
 lu

ci
fe

ra
se

 a
ct

iv
ity

 f
ro

m
 lu

ci
fe

ra
se

 
as

sa
ys

 o
f 

P
19

 E
C

 c
el

ls
 t

ra
ns

fe
ct

ed
 w

ith
 in

di
ca

te
d 

pl
as

m
id

s 
(+

 c
on

t. 
is

 a
 k

no
w

n 
R

A
-r

es
po

ns
iv

e 
el

em
en

t 
in

 p
T

K
-L

U
C

, 
- 

co
nt

. 
is

 e
m

pt
y 

pT
K

-L
U

C
, 

pG
L3

 B
 is

 p
G

L3
 B

as
ic

 (
no

 p
ro

m
ot

er
) 

w
ith

ou
t 

an
 

in
se

rt
, 

pG
L3

 P
 is

 p
G

L3
 P

ro
m

ot
er

 (
m

in
im

al
 S

V
40

 p
ro

m
ot

er
) 

w
ith

ou
t 

an
 in

se
rt

, C
E

 is
 th

e 
co

ns
er

ve
d 

el
em

en
t o

f 
th

e 
F

lrt
3 

pr
om

ot
er

) 
an

d 
di

ffe
re

nt
ia

te
d 

±
 R

A
 fo

r 
1 

(A
, C

, a
n

d 
E

) 
or

 2
 (

B
, D

, F
, a

nd
 G

) 
da

ys
. E

rr
or

 b
ar

s 
ar

e 
S

.E
.M

, n
=

3.
 S

ta
tis

tic
s 

an
al

ys
ed

 u
til

is
in

g 
th

e 
S

tu
de

nt
’s

 t
-t

es
t, 

*=
p<

0.
05

, *
*=

p<
0.

0
1,

 *
**

=
p<

0.
00

5.
 



82 
 

Using RA-differentiation of luciferase vector-transfected P19s, we analysed all the constructs for 

the ability to be induced by RA and found no significant increase in luciferase activity with all except the 

6 kb constructs (Figure 4.4). Here we observed a 1.54-fold increase in luciferase activity in cells 

transfected with 6 kb + pr (p<0.05), while cells transfected with 6 kb – pr resulted in a 3.26-fold increase 

in luciferase activity (p<0.05) when differentiated with RA for 1 day (Figure 4.4 C) compared to those 

differentiated without RA.  

 

The results of this experiment were shown to be valid using several controls. The transfection of 

P19 EC cells was shown to be successful by using a GFP-expression vector control. A transfection 

efficiency of approximately 30-40% was routinely observed. To validate the luciferase assay with 

retinoic acid induced P19 cells, a positive (+ cont.) and negative (- cont.) control were utilised.  The + 

cont. was a luciferase vector containing a known retinoic acid response element, which was confirmed 

to exhibit retinoic acid dependent induction of luciferase. In each case, the + cont. showed a significant 

increase in luciferase activity when transfected cells are differentiated in RA (p<0.05) compared to those 

differentiated without RA (Figure 4.4). The - cont. consisted of the same vector sequence as the + cont., 

except without the known response element, consistently resulting in no change in luciferase activity 

when differentiated in RA or differentiated without RA (p>0.05) (Figure 4.4). The influence of the pGL3 

luciferase vectors in the absence of the DNA to be analysed was assessed using the pGL3 promoter 

vector alone (pGL3 P) and the pGL3 basic vector alone (pGL3 B). The pGL3 B and pGL3 P-transfected 

P19 EC cells showed no positive response to RA-differentiation (Figure 4.4). Interestingly, when P19 EC 

cells containing pGL3 P are differentiated in RA, levels of luciferase expression are consistently 

decreased compared to those cells differentiated without RA (Figure 4.4). All results observed for the 

controls were as expected, validating the data obtained.  

   

Upon differentiation of P19 EC cells with RA, expression of endogenous Flrt3 is seen to 

significantly increase nearly 36-fold (Figure 4.1). An increase in luciferase activity was observed in cells 

containing 6kb of DNA sequence upstream of Flrt3 coding region differentiated in RA compared to these 

cells differentiated without RA for 1 day, although this does not account for the substantial increase in 

endogenous Flrt3 expression (Figure 4.4). This difference in luciferase activity is not observed in the 

cells transfected with the 4kb Flrt3 promoter sequence or within the conserved element. This implies 

that while there is a region of DNA between 4 kb and 6 kb 5’ of the gene that is responsive to RA 

treatment, the extent of induction with the 6 kB constructs was far less than the induction of endogenous 

Flrt3 levels. Therefore, the majority of RA responsive elements must exist elsewhere to justify the 

increase in endogenous Flrt3 expression observed.  
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4.2.3 Flrt3 protein expression during RA-mediated differentiation of P19 EC cells 

 

In Section 4.2.1, a large increase in Flrt3 mRNA expression in P19 EC cells differentiated with 

retinoic acid was observed. To determine if this increased mRNA expression translates into increased 

levels of Flrt3 protein, we utilised a commercial antibody produced to the extracellular domain of the 

Flrt3 protein (MAB2795, R&D systems). Unfortunately, this antibody was problematic in Western blot 

analysis for endogenous Flrt3 protein. Therefore, we used immunofluorescence assays of RA-

differentiated P19 EC cells to analyse endogenous Flrt3 protein expression. To validate the use of the 

Flrt3 antibody in these assays, two experiments were run to test the ability to specifically detect 

endogenous Flrt3. Firstly, HA-tagged Flrt3 was transfected into Cos-7 cells and expression was 

assessed using an anti-HA antibody and the anti-Flrt3 antibody (Figure 4.5). 
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Cos-7 cells over-expressing Flrt3-HA probed with Flrt3 antibody resulted in 

immunofluorescence consistent with the membrane localisation of Flrt3. Cells exhibited protein 

localisation to perinuclear structures within the cell cytoplasm consistent with intracellular membranes or 

uniform cytoplasmic staining consistent with localisation to the cell surface membrane. Cells adjacent to 

other Flrt3 over-expressing cells showed localisation to the site of cell-cell contacts (Figure 4.5 Flrt3-HA 

(anti-Flrt3)). This is consistent with the previous cellular localisation of over-expressed Flrt3 [5]. This 

staining pattern is also observed when over-expressing cells are probed for HA (Figure 4.5 Flrt3-HA 

(anti-HA)), while both antibodies reveal no non-specific binding to untransfected cells (Figure 4.5, 

Untransfected (anti-HA and -Flrt3)). This assay confirms that the Flrt3 antibody selectively binds to Flrt3 

protein in an over-expression system. 

 

 Endogenous Flrt3 mRNA levels increase in RA-differentiated P19 EC cells but are low 

undifferentiated cells. To confirm that the antibody is suitable to determine an increase in endogenous 

Flrt3 protein expression in this system, the specificity of the Flrt3 antibody in P19 EC cells was assessed 

(Figure 4.6).  
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To demonstrate that the Flrt3 antibody is specific for the Flrt3 protein in this system, P19 EC 

cells were transiently transfected with an expression vector to over-express Flrt3 (Flrt3 OE). Expression 

of Flrt3 is detected with the Flrt3 antibody, demonstrated by green immunofluorescence (arrow), with 

expression concentrated adjacent to the nucleus (Figure 4.6 Flrt3 OE). Undifferentiated P19 EC cells 

show very low to no expression of Flrt3, consistent with the mRNA expression of Flrt3 and showing no 

non-specific background staining with the Flrt3 antibody (undifferentiated P19 EC cells, Figure 4.6). This 

eliminates the possibility of the signal being observed from the secondary antibody binding non-

specifically. These controls produced the expected results, and therefore validate the use of the 

antibody in determining an increase in Flrt3 expression using the RA-differentiation P19 EC cell 

differentiation system. 

 

To determine if the increase in Flrt3 mRNA expression reported in Chapter 4.2.1 translates to 

an increase in endogenous Flrt3 protein, P19 EC cells differentiated for 1 day with or without RA were 

assessed for changes in Flrt3 antibody staining (Figure 4.7).
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Differentiation for 1 day in the absence of RA (Day 1 - RA, Figure 4.7) reveals low levels of Flrt3 

expression. Upon differentiating for 1 day in the presence of RA (Day 1 + RA, Figure 4.7), an increase in 

Flrt3 immunostaining was observed in comparison to Day 1 – RA cells, correlating to an increase in 

Flrt3 protein expression. Cells expressing increased levels of Flrt3 are estimated to make up 

approximately 20% of cells in the sample, demonstrating the heterogeneous nature of Flrt3 expression 

in P19 cells at this stage of differentiation. Interestingly, cells that do show an increase in Flrt3 appear to 

occur in clusters (Day 1 + RA third panel, arrow).  Flrt3 immunostaining was present in the cytoplasm in 

a pattern suggesting localisation to intracellular membranes (Figure 4.7, Day 1 + RA fourth panel, 

arrow) and was observed to be stronger at cell-cell boundaries when two cells showing high Flrt3 

expression are in contact (Figure 4.7, Day 1 + RA second and third panel, arrow), which has been 

previously observed in cells over-expressing Flrt3 [5, 10].  

 

This experiment shows that expression levels of Flrt3 protein increase in a subset of P19 EC 

cells during RA-differentiation in comparison to those differentiated in the absence of RA, meaning that 

the increase in Flrt3 transcription identified in Figure 4.1 does translate to an increase in endogenous 

Flrt3 protein expression. Localisation of endogenous Flrt3 protein is similar to that reported for over-

expressed Flrt3 protein. Therefore, the increase in endogenous Flrt3 expression due to RA-

differentiation of P19 EC cells may provide a mechanism for regulating FgfR1 signalling, as alluded to in 

Chapter 3, during this differentiation process. 

 

4.2.4 ERK phosphorylation during P19 EC cell differentiation: Evidence for a role for 

Flrt3.  

 

 Given that levels of endogenous Flrt3 mRNA and protein increase (Figure 4.1, 4.7) in RA-

differentiated P19 EC cells, and that there are multiple lines of evidence that show Flrt proteins can alter 

phosphorylated ERK (pERK) levels via the regulation of Fgf signalling upon over-expression ([41], 

Chapter 3), I investigated whether there is evidence linking the induction of Flrt3 to the regulation of 

ERK phosphorylation in P19 cells.  

 

To assess the regulation of ERK phosphorylation during P19 EC cell differentiation with or 

without retinoic acid, Western blot analysis of whole cell lysates (WCL) was used to investigate the 

levels of pERK (Figure 4.8).   
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Figure 4.8. Increased expression of Flrt3 by RA differentiation and over-expression decreases ERK phosphorylation 
in differentiating P19 EC cells: P19 EC cells were differentiated either without RA (day number only), with RA (day number 
+ RA) or while over-expressing Flrt3 (day number F3 OE) for 1 – 4 days, then lysed. WCLs were analysed by Western blot 
using pERK and ERK (for pERK densitometric normalisation) antibodies. A) Western blot representative of 3 independent 
experiments. pERK levels compared between cells differentiated without RA (day number only (A), - RA (B)) and those 
differentiated in RA (day number + RA) (B), and untransfected cells (day number only (A), WT (C)) compared to over-
expressing Flrt3 cells (Flrt3 OE) (C) relative to undifferentiated cells (0). Error bars are S.E.M, n=3. Statistics analysed utilising 
Student’s t-test, *=p<0.05. 
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By comparing the pERK:total ERK ratio between samples, it was found that differentiation of 

P19 EC cells without RA causes a transient increase in the amount of pERK by a significant 4.7-fold 

compared to undifferentiated cells after 1 day (Figure 4.8). Levels of pERK in cells differentiated without 

RA (- RA) returned to levels of undifferentiated cells after 2 days of differentiation and remain 

unchanged after 4 days. Differentiation for 1 day with RA (+ RA) shows no significant change in pERK 

levels from undifferentiated cells. When compared to cells differentiated without RA, cells differentiated 

with RA display a significant 4.5-fold increase in pERK levels (Figure 4.8 A and B). pERK levels in cells 

differentiated with RA for 2 and 4 days remain unchanged compared to undifferentiated cells, and are 

no different to cells differentiated without RA beyond the first day differentiation. Although not 

statistically significant, there is a trend for cell populations that express Flrt3 at higher levels due to RA-

differentiation to have slightly lower pERK levels than non-RA differentiated cells after 2 and 4 days 

(Figure 4.8 B and C) (p>0.05). Differentiation of cell lines was confirmed by qRT-PCR, with results 

showing a decrease in Oct4 expression upon introduction of differentiation-promoting conditions, i.e. the 

lowering of HI-FCS levels from 10% to 5% (data previously shown). 

 

As an increase in Flrt3 expression induced by RA correlated with an alteration in the level of 

pERK during P19 cell differentiation, the effect of over-expression of Flrt3 on pERK levels during P19 

cell differentiation in the absence of RA was analysed. P19 EC cells were transiently transfected with an 

expression vector containing Flrt3 (Flrt3 OE) or untransfected (WT) and differentiated in the absence of 

RA for 4 days, with whole cell lysates (WCLs) analysed for levels of ERK phosphorylation (Figure 4.8 A 

and C).  

 

Interestingly, Flrt3 OE cells show an identical expression profile of ERK phosphorylation as  

+ RA differentiated cells over the four days of differentiation (Figure 4.8). Throughout the 4-day 

differentiation, Flrt3 OE cells have a statistically similar amount of pERK as day 0 WT cells. In keeping 

with the pattern observed for + RA differentiated cells, Flrt3OE cells show a 4.4-fold reduction in pERK 

level compared to WT cells. As previously described (Figure 4.8 B), WT cells reveal an increase in 

pERK after the first day of differentiation without RA, which then recedes to levels similar to that of 

undifferentiated cells for the remaining 3 days. Similar again to the observations made with the 

differentiation of P19 EC cells with and without RA, a statistically insignificant trend exists for cell 

populations that express Flrt3 at higher levels, due to over-expression in this situation (Flrt3 OE), to 

have slightly lower pERK levels than WT differentiated cells after 2 and 4 days (Figure 4.8 B and C) 



93 
 

(p>0.05). A comparison of pERK levels in untransfected cells and cell transfected with empty pcDNA3.1 

vector revealed no differences in ERK phosphorylation (data not shown). 

 

When P19 EC cells undergo random differentiation, levels of pERK rise on the first day before 

returning to levels observed in undifferentiated cells. When these cells are differentiated towards a 

neural fate by the addition of RA, we see a rapid induction of Flrt3 mRNA and protein, while an increase 

in pERK does not occur. Analysing ectopically over-expressed Flrt3, we see a similar abolishment of the 

increase in pERK levels. This is provocative evidence suggesting that the increased expression of Flrt3 

in P19 cells may be responsible for the reduction in pERK levels, with its ability to regulate Fgf receptor 

providing a possible mechanism for this regulation.  This reduction of ERK phosphorylation is in contrast 

to the increase in ERK phosphorylation seen for the over-expression studies in HEK-293T cells carried 

out in Chapter 3. However it is the first evidence to link endogenous Flrt3 expression and the regulation 

of a key signalling protein downstream of FgfR signalling.  

  

4.2.5 Flrt3 is expressed before Sox1, but is not solely responsible for Sox1 expression 

in P19 EC cell neurectodermal differentiation. 

 

 The differentiation of P19 EC cells in the presence of RA results in a neurectodermal cell fate, 

an early step along the pathway to neural cell lineages [49]. A marker of early neurectodermal cell 

commitment is the expression of Sox1. The importance of this transcription factor in neural 

differentiation has been highlighted by the over-expression of Sox1 being able to drive neural 

differentiation of P19 EC cells in the absence of RA, with robust expression within 24 h in P19 

aggregates [50]. To compare the timing of Flrt3 and Sox1 expression, qRT-PCR analysis of Sox1 

expression was undertaken on P19 EC cells differentiated for up to 6 h in RA (Figure 4.9A).  
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Figure 4.9. Expression of Sox1 is induced by RA differentiation of P19 EC cells, but not Flrt3 OE: qRT-PCR analysis of 
RNA isolated from P19 EC cells. A) Cells were differentiated for up to 6 h with retinoic acid and expression of Flrt3 and Sox1 
analysed B) Cells were differentiated up to 2 days with RA (number + RA) or without RA (number alone), or over-expressing 
Flrt3 (number + Flrt3 OE), and expression of Flrt3 and Sox1 analysed. Error bars are S.E.M, n=3. Statistics analysed utilising 
the Student’s t-test, *=p<0.05, **=p<0.01. 

 

During the first 6 h of differentiation, expression of Sox1 does not vary between undifferentiated 

P19 EC cells (0) and cells differentiated with RA (1, 2, 3, 4, 5, and 6)  (Figure 4.9 A). This is in contrast 

to Flrt3, with expression showing a significant increase in RA-treated cells compared to those without 

RA after 5 hours, with an 8.3-fold difference observed after 6 hours. After 1 day of differentiation, Sox1 

expression is shown to increase (Figure 4.9 B). Compared to cells differentiated without RA, Sox1 
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expression shows a significant 39.4-fold increase (p<0.05) after 1 day (1 vs 1 + RA), while after 2 days, 

a significant 22.4-fold increase (p<0.01) is observed (2 vs 2 + RA) in cells differentiated with RA (Figure 

4.9 B). RA-induced differentiation results in a 14.7-fold increase in Sox1 expression after 1 day 

compared to undifferentiated cells (p<0.05), with expression levels remaining consistently greater, and a 

11.5-fold increase after 2 days in comparison to undifferentiated cells (p<0.05). No significant difference 

between day 1 or 2 differentiated cells is observed (Figure 4.9 B) (p>0.05). Cells differentiated for 1 and 

2 days in media without RA (1 and 2) results in Sox1 expression levels equivalent to those of 

undifferentiated cells. This therefore demonstrates that up-regulation of Flrt3 expression precedes that 

of Sox1 during neural differentiation of P19 EC cells. 

 

As Flrt3 expression is up-regulated prior to increased Sox1 expression, it is possible that the 

increase in Flrt3 expression may lead to up-regulation of Sox1. To determine if expression of Flrt3 in the 

absence of RA was sufficient to induce Sox1 expression, a Flrt3-containing expression vector was 

transiently transfected into P19 EC cells, with the cells differentiated without RA, and Sox1 transcript 

levels measured by qRT-PCR (Figure 4.9B). 

 

Flrt3 over-expression does not show any effect on Sox1 levels after 1 or 2 days of 

differentiation, with Sox1 expression levels remaining similar to cells differentiated without Flrt3 over-

expression (Figure 4.9 B). Expression of Flrt3 was at least 5-fold higher in Flrt3 OE samples than RA-

differentiated samples (Figure 4.9 B), indicating successful plasmid transfection.  

 

During RA-mediated differentiation, Sox1 expression has been shown to increase after Flrt3 

expression is up-regulated. Increased expression of Flrt3 using an over-expression system does not 

result in an increase in Sox1 expression over two days of differentiation, inferring that the increased 

expression of Flrt3 alone is not sufficient to drive Sox1 expression in this cell system and there must be 

other factors involved in the ability to induce Sox1 in RA-guided neural differentiation.  

 

 During early neural differentiation with RA, it has been shown that expression of Flrt3 increases 

after just 5 h (Figure 4.1 C), with Sox1 being expressed after this, but still within the first 24 hours 

(Figure 4.9 B). These experiments were performed using qRT-PCR on an entire population of cells, so it 

is unclear whether the individual cells that increase expression of Flrt3 during RA-mediated 

differentiation also increase Sox1 expression, or if Sox1 is increased in cells that do not increase Flrt3 

expression. Using immunofluorescence assays, expression of Flrt3 and Sox1 in RA-differentiating P19 

EC cells was investigated (Figure 4.10).
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 Localisation of Flrt3 using antibody staining was similar to that observed in Figure 4.7, while Sox1 

localisation was observed in the nucleus, consistent with its role as a transcription factor (Figure 4.10). 

Very little non-specific staining was observed for either of the antibodies. Cells observed during analysis 

of the immunofluorescence assay revealed a combination of expression profiles; cells that expressed 

Flrt3 and Sox1 (Figure 4.10 i), cells that expressed Flrt3 but not Sox1 (Figure 4.10 ii), cells expressing 

Sox1 but not Flrt3 (Figure 4.10 iii), and those cells that showed expression of neither protein, which made 

up the majority of cells counted. Analysis of images determined that undifferentiated P19 EC cells (D0) 

show little to no expression of Flrt3 or Sox1, as expected from Figure 4.9 and previous published data 

(five fields of view randomly selected from 3 different transfections, total of 1850 cells counted) [50]. After 

1 day of differentiation without RA (D1), 2.95% of cells show Flrt3 expression, and 2.06% of cells show 

Sox1 expression.  Only 0.85% of cells were observed to express both Flrt3 and Sox1 simultaneously (five 

fields of view randomly selected from 3 different transfections, total of 3059 cells counted). After 1 day of 

differentiation towards a neurectodermal fate (D1 + RA), approximately 10% of cells express Flrt3, and 

almost 20% of cells express Sox1, which is consistent with the mRNA expression for both genes. 

Interestingly, approximately half of the Flrt3 expressing cells (approximately 5% of the total cells) were 

shown to also express Sox1 (five fields of view randomly selected from 3 different transfections, total of 

1950 cells counted).   

 

Detection of Flrt3 protein has given further insight into the role of Flrt3 in neurectodermal 

differentiation. Flrt3 protein expression increases with differentiation using RA, a change that is 

consistent with the increase in mRNA levels observed in Figure 4.1 (when compared to cells 

differentiated without RA), with immunofluorescence staining revealing that detectible Flrt3 expression is 

observed in approximately 10% of cells (Figure 4.10). Higher levels of Sox1 expression are observed in 

cells differentiated for 1 day in RA compared to cells undergoing unguided differentiation (Figure 4.10), 

consistent with that of Sox1 mRNA levels (Figure 4.9). Without more time-points either side of 24 h, it is 

not possible to determine if all cells that express Flrt3 will show expression for Sox1. This experiment 

has provided an understanding that Sox1 is increased in nearly half of the cells that up-regulate Flrt3 

expression during RA differentiation (Figure 4.10).  

 

4.3 Discussion 

 

The differentiation of P19 EC cells in the presence and absence of RA provides an excellent 

system for the investigation of the function of endogenous Flrt3 in vitro. The P19 EC cell system shows 
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a rapid (within 5 hours of the initiation of differentiation) and robust (continues after 4 days of 

differentiation) increase in Flrt3 expression, with a maximum difference in Flrt3 expression between RA- 

and non-RA differentiated cells of approximately 36-fold (Figure 4.1). Low expression of Flrt3 in cells 

differentiated without RA suggests that spontaneous neural differentiation is slower or occurs rarely. The 

variation in Flrt3 expression levels between experiments, exemplified in Figure 4.1, is caused by subtle 

variations in the proportion of cells responding to RA and a resulting heterogeneous cell population, 

confirmed by immunofluorescence analysis (Figure 4.7). Potential functional redundancy and 

compensation between Flrt family members is avoided using this system, as Flrt1 and Flrt2 expression 

is negligible and unaltered by RA-differentiation, making this a uniquely specific system for studying 

Flrt3 function. The use of the P19 EC cell line differentiated with RA as a model for the investigation of 

Flrt3 function is further strengthened by the induction of Flrt3 expression in monolayer as well as 

aggregate differentiation models. Expression of Flrt3 in P19 EC cell monolayers during RA-

differentiation is comparable to that of those grown in aggregation as embryoid bodies. This therefore 

provides a simpler differentiation system without the complex cell-cell interactions that occur during 

embryoid body, and will aid the investigation into Flrt3 function and localisation, using experiments such 

as immunofluorescence assays. The induction of Flrt3 in D3 ES cell aggregates treated with RA will 

allow any results found in P19 EC cells to be confirmed in ES cells. ES cells may allow comparisons 

between in vitro experiments and what occurs in vivo, with this RA-differentiation system somewhat 

replicating cellular organisation in the developing embryo. It is interesting to note the lack of change in 

Flrt3 expression when D3 ES cells are cultured in the presence of LIF and RA. LIF is used to maintain 

ES cells in their pluripotent state,  so a possible explanation for the lack of change in Flrt3 expression in 

these cells is that the LIF is inhibiting RA signalling, and/or the expression of RORα is inhibited in the 

presence of LIF due to inactivity of controlling transcription factors, or the silencing of the promoters of 

Flrt3 and RORα. While Flrt3 expression shows a greater increase in P19 EC cells compared to D3 ES 

cells, Flrt3 expression during differentiation of the D3 ES cells follows the same pattern of increase. 

These experiments have identified that the differentiation of the P19 EC cell line with and without 

retinoic acid is the best model known to date for investigating Flrt3 function.  

 

The rapid nature of transcriptional induction of Flrt3 suggests direct regulation of expression by 

RA. Use of luciferase vectors containing regions of the Flrt3 promoter transfected into RA-mediated 

differentiating P19 EC cells potentially allowed identification of sites of regulation using the in vitro 

system. The limitation of this experiment includes the absence of potential long-range regulatory 

elements, and the size limitations of upstream regulatory sequences/elements that could be 

incorporated into a single vector. A stretch of sequence between 4 kb and 6 kb upstream of the Flrt3 
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start site was identified as responsible for a small portion of the RA induced increase in Flrt3 expression 

(Figure 4.4), although the levels of luciferase activity are much less than the level of endogenous Flrt3 

expression. Therefore, elements outside of the 6kb upstream of the Flrt3 promoter region must be 

responsible for the majority of the increase in Flrt3 expression observed during RA-mediated 

differentiation of P19 EC cells. While a difference in luciferase activity is observed between 6 kb 

luciferase transfected cells differentiated with or without RA, this is slightly reduced by the second day of 

differentiation, although this is not significant. The observed lack of difference in luciferase activity after 

2 days suggests that this element is potentially involved in the initial rapid increase in Flrt3 expression, 

with other elements allowing the maintenance of Flrt3 expression. The observation of no difference in 

luciferase activity between vectors with or without the Flrt3 transcriptional start site implies that 

sequence spanning approximately 200 bp immediately 5´ and 3´ of the start site is not important in 

regulating the increased expression of Flrt3 in this system. It is interesting to note that the stretch of 

DNA identified using this system partially responsible for the increase in Flrt3 expression does not 

reside within the region of DNA found to be highly conserved between organisms. This may therefore be 

a feature of higher order mammals exclusively, and lie in regions of conservation between higher-order 

mammals not specifically investigated in this project.  

 

 While an increase in gene transcription may logically cause an increase in protein expression, 

this does not occur in all situations. Immunofluorescent staining shows that an increase in Flrt3 

transcription results in the increased translation of Flrt3 after just one day of differentiation with the 

levels of protein expression mirroring that of gene expression using this differentiation system (Figure 

4.1). Induced Flrt3 protein expression localised to perinuclear membranes, and membrane boundaries 

between adjacent cells with increased Flrt3 expression (Figure 4.7). Flrt3 protein detection showed a 

cell population with varying levels of increased Flrt3 expression after treatment with RA, highlighting the 

homogenous nature of P19 cell differentiation eluded to earlier in this discussion.  

 

 Localisation of Flrt3 during RA-mediated differentiation of P19 EC cells to intracellular 

membranes provides an appropriate cellular localisation for Flrt3 to interact with and regulate membrane 

receptors that utilise MAPK signalling, such as FgfR1, as has been observed using in vitro assays 

described in Chapter 3, and predicted in vivo from Flrt3 expression patterns. ERK phosphorylation was 

relatively unchanged from basal levels during both RA-mediated neural differentiation of P19 EC cells 

and differentiation of P19 EC cells over-expressing Flrt3, whereas, a 4.5-fold increase in ERK 

phosphorylation is observed in P19 EC cells undergoing unguided differentiation (Figure 4.8). This data, 

combined with previous evidence of Flrt3 function, implicates endogenous Flrt3 in the regulation of 
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pERK levels. This is a previously unidentified role for endogenous Flrt3, and may be related to a 

potential interaction with FgfR1, observed using over-expression assays in Chapter 3. 

 

The rapid induction of Flrt3 upon neurectodermal differentiation identified in the RA-mediated 

P19 EC cell differentiation system prompted a comparative analysis with Sox1 expression; the earliest 

known marker of neural lineage commitment. Interestingly, Flrt3 induction occurs at least 1 h prior to 

that of Sox1 in cells differentiating with RA (Figure 4.9), identifying Flrt3 as a potential very early marker 

of P19 cell differentiation. In saying this, cells that over-express Flrt3 and differentiate without RA do not 

cause induction of Sox1 expression within the initial two days of differentiation. This may mean that 

these cells are not undergoing neural differentiation, or that Flrt3 expression is not sufficient to drive 

neural differentiation within the 2 days analysed. Due to the presence of a heterogeneous cell 

population in relation to those cells transiently transfected with Flrt3-expressing vector or those with 

Flrt3 induction due to RA-exposure, conclusions cannot be drawn based on assessment of overall cell 

populations, such as qRT-PCR used here. Analysis of individual cells or populations of cells stable over-

expressing Flrt3 must be undertaken to determine if those that are showing increased expression of 

Flrt3 do go on to express Sox1 and therefore undergo neurectodermal differentiation.  

 

Using immunofluorescence assays of P19 EC cell monolayers, shown to similarly induce Flrt3 

expression, and probing for Flrt3 and Sox1 allowed the confirmation of a heterogeneous population of 

cells and the extent of the complexity of the system (Figure 4.10). This experiment was undertaken only 

once to obtain a basic trend of what is occurring within the cell populations, hence the lack of statistics. 

Approximately 10% of cells differentiating with RA express Flrt3 protein, with 17% of Flrt3-positive cells 

also expressing Sox1. From this experiment, we can conclude that Flrt3 and Sox1 expression do not 

correlate well, thus supporting the hypothesis that an increase in Flrt3 expression alone is insufficient to 

drive neurectodermal differentiation, indicating the importance of other proteins. 

 

 The experiments in this chapter have shown that Flrt3 is induced in P19 EC cells by RA 

differentiation at both the mRNA and protein level. They have also shown that pERK levels are altered 

by Flrt3 over-expression and RA treatment during differentiation. Despite these findings, details of how 

these interactions impact cellular differentiation are unknown due to the limitations of the experiments 

performed, e.g. the heterogeneous nature of the culture during RA differentiation and transient 

transfection. Heterogeneity in Flrt3 over-expression results in the ‘diluting’ of observed Flrt3-phenomena 

by cells that do not over-express Flrt3 for experimental techniques that utilise cell populations rather 

than individual cell analysis. These include some techniques performed in this chapter, including qRT-
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PCR (Figure 4.1 and 4.9), luciferase assays (Figure 4.4), and Western blot (Figure 4.8). This 

heterogeneity could be overcome in a number of ways, which are described in Chapter 6.3. Using these 

systems, cultures would be very close to, if not homogeneous in nature, and cells with unaltered Flrt3 

expression excluded from analysis. It would then be possible to further elucidate the function and 

mechanism of endogenous Flrt3 activity.  

 

4.4 Conclusion 

 

 The results of experiments presented in this chapter have identified the P19 EC cell RA 

differentiation system as a suitable model for studying endogenous Flrt3 function. Expression of Flrt3 

occurs in a rapid and robust manner, with induction occurring within 5 h of differentiation, and increased 

expression maintained beyond 4 days of differentiation. The increase in Flrt3 expression is primarily due 

to elements outside of the regions investigated, but a stretch of DNA between 4 kb and 6 kb upstream 

of the Flrt3 start site appears to be partially responsible.  The induction of Flrt3 translates into an 

increased expression of Flrt3 protein, with increased Flrt3 expression appearing to be integral in 

maintenance of low pERK levels upon differentiation of P19 EC cells. Flrt3 is expressed before neural 

lineage marker Sox1 suggesting it is a very early marker of neurectoderm differentiation, but an 

increase in Flrt3 expression alone is not sufficient to induce Sox1 expression during differentiation. 

Other factors appear to play a role in the induction of neurectodermal differentiation besides Flrt3, with 

cells expressing Flrt3 under RA-differentiation more likely to show expression of Sox1 compared to 

Flrt3-transfected cells. Identification of this system will allow further analysis of Flrt3 function during 

neurectodermal differentiation and a probable role in the regulation of ERK phosphorylation, possibly 

though modulation of FgfR signalling. 
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5.  Single-pass LRR transmembrane proteins as regulators of  

FgfR1 activity. 

 

5.1 Introduction 

 

In Chapter 3, I have presented data that infers Flrt3 plays a role in FgfR1 signalling when over-

expressed. In conjunction with data showing Flrt1 also increases FgfR1 signalling [41], it is believed that 

the Flrt family as a whole could regulate FgfR1 signalling by increasing its signalling activity. As 

previously shown, there are many single-pass LRR protein families in the mammalian genome. The 

Lrrtm family is closely related to the Flrt family, with both families encoding structurally similar proteins, 

and some members also showing expression patterns overlapping with FgfR during embryogenesis and 

in regions where Fgf signalling is known to be functionally important.  

 

 The Lrrtm family consists of 4 genes that encode type I transmembrane proteins with 10 

extracellular LRR domains, a transmembrane domain, a family-conserved 71 or 72 amino acid 

intracellular sequence containing a terminal PDZ domain protein docking site consensus sequence, and 

several potential N-linked glycosylation sites [51]. Sequence identity between the family ranges from 

43% to 63% for the human proteins, and sequence identity between human and mouse orthologues 

shows a high degree of conservation, ranging from 95% - 98%. Post-natal expression profiles of Lrrtm 

members are diverse, with Lrrtm3 being the most limited. All Lrrtm family members are expressed in the 

neurons of the adult brain at varying levels with various sub-cellular distributions, where they have been 

shown to act as synaptic organisers [51, 52] (Figure 5.1).  
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Figure 5.1. In situ hybridisation analysis of LRRTM family mRNA expression in the adult mouse brain. Shown are dark-
field emulsions autoradiographs: A) LRRTM1, B) LRRTM2, C) LRRTM3, D) LRRTM4. E) The bright-field image of (D). OB, 
olfactory bulb; Ao, anterior olfactory nucleus; Tu, olfactory tubercle; St, striatum; Cx, cerebral cortex; Th, thalamus; HC, 
hippocampus; IC, inferior colliculi; Mb, midbrain; Po, pons; Me, medulla; Cb, cerebellum. Scale bar, 1 mm. Adapted from [51]. 

 

Embryonic expression of Lrrtm1 is first observed at 9 dpc in the overlying ectoderm of the 

developing limb bud that forms the presumptive AER, while neural expression is present in the 

forebrain, midbrain and hindbrain [53]. Limb expression becomes more restricted by 10 and 11 dpc, 

where it is localised exclusively to the AER. Lrrtm2 shows restricted expression, observed only within a 

collection of lateral cells in the motor horn at 10 dpc [53]. Expression of Lrrtm3 in mouse is observed 

from early- to mid-gestation, with expression present from 8.5 dpc (Figure 5.2). 
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Figure 5.2. Expression of Lrrtm3 during mid-gestation embryogenesis: Lrrtm3 expression is detected by whole mount in 
situ hybridisation on 8 dpc mouse embryos. A) Expression is evident in the presomitic mesoderm (psm), the rostral neural plate 
(np), and the head. B) Expression in the rostral neural tube (nt) is present in dorsal neural progenitors at 9 dpc. C) Further 
expression became evident in the neural tube (nt) with expression in the rostral neural tube reducing in dorsal neural 
progenitors and initiating in centrally located lateral cells at 11 dpc. D) Expression is detected in the head, and expression in 
the presomitic mesoderm (psm) (E) is present in a stripe at the boundary with the most recently formed somites. The 
approximate plane of section D and E is shown in lower case (B). An interference contrast image of the tail of the embryo in B 
(F) shows expression at the presomitic mesoderm/somite boundary (arrowhead). Caudal expression localises to a group of 
cells within the motor horn at 11 dpc (G). The approximate plane of section G is shown in lower case (C). H) Expression is 
present in the hind-gut diverticulum. Adapted from [53]. 

 

Neural expression of Lrrtm3 is strong in anterior neural plate neural progenitor cells (which go 

on to form the rostral neural tube), forebrain and hindbrain at 8.5 dpc, and continues to increase through 

to and beyond adulthood.  Expression is also observed at the presomitic mesoderm/somite boundary 

and within early somites, which continues beyond 11 dpc. As the somite continues to develop, 

expression gradually decreases and is restricted to the somite boundaries. Expression of Lrrtm3 is 

restricted to the brain exclusively post-natally [51, 53].  Lrrtm4 expression is present at 8.5 dpc in 

embryos in the caudal lateral mesoderm, which persists through to 11 dpc, when expression is seen in 

stripes in the anterior mesoderm in the developing sclerotome. Lrrtm4 is also present in the limb 
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mesenchyme in the distal limb bud at 9.5 dpc. Neural expression of Lrrtm4 is seen in the neural tube 

and the developing brain at 9.5 dpc, where expression is maintained throughout development [51]. 

 

Functional data for Lrrtm proteins is limited, although Linhoff et al. (2009) identified an important 

role for the Lrrtm family as organisers of excitatory presynaptic differentiation, allowing postsynaptic 

differentiation. All Lrrtms localise to the cell membrane where over-expression of Lrrtm1, 2, and 4 show 

a >14-fold increase in synapsin clustering when compared to controls, thought to be due to the LRR 

domain. In contrast to this, Lrrtm3 only displayed limited activity, suggesting a different role [52, 54]. An 

Lrrtm1 knockout has revealed a claustrophobia-like behaviour, whilst single nucleotide polymorphisms 

of Lrrtm3 have been identified in increased susceptibility to developing autism spectrum disorders [55, 

56]. During development, expression of Lrrtm1 is observed in the AER and the endolymphatic 

appendage, and Lrrtm3 is expressed at the somite/presomitic mesoderm boundary; tissues that rely on 

FgfR signalling for their correct development. Post-natally, expression of all Lrrtms are observed in the 

dentate gyrus; a region which relies on FgfR signalling for neurogenesis during adulthood [51, 53, 57]. 

With a similar structure to the Flrt family and expression patterns that overlap with regions of FgfR 

signalling importance, investigation of an interaction between Lrrtm3 and FgfR1 was performed. Using 

experiments based on those carried out by Wheldon et al. (2010), I attempted to identify novel roles of 

Lrrtm proteins and to further elucidate if characteristics identified for Flrt1 and Flrt3 over-expression are 

representative of other LRR proteins. 

 

5.2 Results 

 

5.2.1 Investigation of an interaction between Lrrtm3 and FgfR1 

 

With expression in common tissues, an interaction observed between the Flrt proteins and 

FgfR1, and the high degree of structural similarity between the Flrt and Lrrtm proteins, there is potential 

for an interaction to exist between Lrrtm3 and FgfR1. Utilising HEK-293T cells co-transfected with 

FLAG-tagged FgfR1 and HA-tagged Lrrtm3 and subsequent co-immunoprecipitation, this potential 

interaction was investigated (Figure 5.3). 
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Figure 5.3. LRR protein Lrrtm3 interacts with FgfR1: Expression vectors for HA-tagged LRR proteins Flrt3, Lingo1 and 
Lrrtm3 were co-transfected into HEK-293T cells with expression vector encoding Flag-tagged FgfR1 and EphA4. Cells were 
harvested and WCLs underwent co-immunoprecipitation for FLAG-tagged proteins (upper panel). Precipitated proteins were 
analysed by Western blot, probing for HA to identify LRR proteins interacting with FgfR1/EphA4. Immunoprecipitation inputs 
were analysed by Western blot using anti-HA (middle panel) and anti-FLAG (lower panel) antibodies to confirm expression of 
LRR construct and specific pull-down with the FLAG antibody respectively. Input 1o Ab: mouse α-HA (6E2), 2o Ab: donkey α-
mouse HRP. Co-immunoprecipitation 1o Ab: mouse α-HA (6E2), 2o Ab: donkey α-mouse HRP. - = pcDNA3.1 transfected 
(vector control). Representative of 3 independent experiments. 

 

Upon co-expression and immunoprecipitation with anti-FLAG, an interaction between Lrrtm3 

and FgfR1 was identified by the presence of a band of the correct molecular weight  of Lrrtm3 in the 

Lrrtm3/FgfR1 transfected cells (Figure 5.3 upper panel). This is similar to that observed for the 

Flrt3/FgfR1 (positive control) transfected cells. The prominent band in each lane of the 

immunoprecipitation is the heavy Ig chain from the immunoprecipitation antibody, mouse anti-FLAG, 

which appears due the use of a mouse secondary antibody in the Western blot. Cells over-expressing 

Flrt3 and EphA4 receptor, along with cells over-expressing LRR protein Lingo1 and FgfR1 show no 

interaction between the over-expressed proteins, as observed by the lack of a band in the 

immunoprecipitation. 
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Transfection and expression of each of the proteins was successful, demonstrated by the bands 

in appropriate lanes of westerns of WCLs (Figure 5.3 middle and lower panels). When expressed alone, 

Flrt3 (Flrt3/-) cells show no band when probed for FgfR1, demonstrating the specificity of the anti-FLAG 

western antibody. Cells over-expressing FgfR1 alone (-/FgfR1) show no bands when probed for HA-

tagged proteins, demonstrating the specificity of the HA-antibody in the Western blot. The results of 

these experimental controls are as expected and validate the experiment. 

 

The immunoprecipitation assay has revealed that an interaction exists between Lrrtm3 and 

FgfR1. Due to the nature of this technique, it is not clear whether this interaction takes place in the 

native cell, or upon cell lysis. To have an effect on FgfR signalling as Flrt1 and Flrt3 do, Lrrtm3 and 

FgfR1 must be expressed in the same cell membrane for an interaction to take place. 

 

5.2.2 Localisation of over-expressed Lrrtm3 and FgfR1 

 

 Immunoprecipitation has shown that an interaction between Lrrtm3 and FgfR1 exists, but the 

context of this interaction is undefined. To have any functional relevance, these proteins need to be 

localised to common membranes within the cell. Immunofluorescence experiments on cultured Cos-7 

cells transiently transfected with expression vectors encoding for Lrrtm3-HA and FgfR1 were performed 

to determine the sub-cellular localisation of Lrrtm3, and if it co-localises with FgfR1 within cellular 

membranes (Figure 5.4). 
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     Expression of Lrrtm3 alone (pcDNA3.1/Lrrtm3-HA) reveals localisation at the cell surface 

membrane (Figure 5.4 pcDNA3.1/Lrrtm3-HA ‘i’) and within intracellular membranes close to the nucleus 

(Figure 5.4 pcDNA3.1/Lrrtm3-HA ‘ii’). Cell surface expression of Lrrtm3 was more extensive than that 

seen previously for FgfR1 (Figure 3.1). Lrrtm3 expression in the cell surface membrane appears 

concentrated in specific regions including, but not limited to, areas of the cell facilitating cell-cell 

contacts. Like that observed for cells over-expressing Flrt3, cells over-expressing Lrrtm3 generally occur 

in small clusters, although lone single cells expressing Lrrtm3 were also observed. Co-expression of 

Lrrtm3 and FgfR1 showed overlapping and distinct domains of protein expression (Figure 5.4 

FgfR1/Lrrtm3-HA, yellow staining). Co-localisation of FgfR1 and Lrrtm3 exists mostly in the vesicles and 

membranes within the cytoplasm, adjacent to the nucleus. When co-expressed, Lrrtm3 is co-localised 

with FgfR1 at the extremities of the cell, but not at the cell membrane as observed when expressed 

alone.  

 

Co-transfecting cells with vectors encoding Lrrtm3 and empty pcDNA3.1 reveals these cells do 

not exhibit detectable Flg-antibody staining in the exposure time used (Figure 5.4 pcDNA3.1/Lrrtm3-

HA). Use of the HA-antibody to detect the over-expressed protein results in detectible signal for both 

transfection experiments, acting as positive controls for the experiment. The results of these controls 

validate the experiment.  

 

This experiment has shown that Lrrtm3 and FgfR1 co-localise in the same membranes within 

the cell, providing an in vivo context for the interaction. Co-localisation of Lrrtm3 and FgfR1 in 

intracellular membranes is similar to that observed for the Flrt1/Flrt3 and FgfR1 interaction, and 

facilitates a possible regulation of FgfR1 signalling as observed with Flrt1 and Flrt3 [41] (Chapter 3).  

 

5.2.3 Effect of Lrrtm3 over-expression on FgfR1 signalling 

 

Similar to Flrt1 and Flrt3, the majority of Lrrtm3 interaction with FgfR1 co-localisation occurs 

within intracellular vesicles, which positions Lrrtm3 in the correct location to be able to influence the 

output of FgfR1. Wheldon et al. (2010) showed that over-expression of Flrt1 caused a subtle but 

consistent increase in ERK phosphorylation when analysed using a time course of Fgf-2 stimulation, 

while I have shown that Flrt3 over-expression causes a trend towards increase in ERK phosphorylation 

[41] (Chapter 3). Regulated FgfR1 signalling due to the expression of Lrrtm3 and the mechanism 

associated with the interaction can be assessed in a similar manner. HEK-293T cells were transiently 
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co-transfected with Lrrtm3-HA and FgfR1 and stimulating the cells with Fgf-2, with FgfR1 signalling 

evaluated by measuring pERK levels by Western blot (Figure 5.5). 

 

 

Figure 5.5. Over-expression of Lrrtm3 causes an increase in pERK levels: Western blot of HEK-293T cells transiently 
transfected with indicated plasmids (UT = untransfected, pc = pcDNA3.1 transfected (vector only control)) for 20 h, then 
stimulated with Fgf-2 and heparin for 10 min. A) Western blot probed with anti-pERK and anti-ERK (for pERK densitometric 
normalisation). Representative of 3 independent experiments. ERK phosphorylation levels compared between unstimulated  
(-Fgf) and Fgf-2 stimulated (+ Fgf) cells relative to untransfected Fgf-2 stimulated cells. B) Quantification of pERK levels in 
unstimulated cells. C) Quantification of pERK in Fgf-2 stimulated cells. Error bars are S.E.M, n=3. Statistics analysed utilising 
the Student’s t-test, *=p<0.05. 
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Basal levels of pERK are observed in untransfected cells (UT - Fgf) which is significantly 

increased (23-fold) upon stimulation with Fgf-2 (UT + Fgf), showing that Fgf-2 stimulation is inducing 

FgfR activation and subsequent ERK phosphorylation (Figure 5.5). In this experiment, untransfected 

(UT) and pcDNA3.1-transfected cells (pc) are used as controls for basal pERK levels when untreated 

and for pERK levels upon Fgf-2 stimulation. The Fgf stimulated pc cells (pc + Fgf) show no difference in 

pERK levels compared to UT + Fgf cells, indicating that transfection of the expression vector alone does 

not drastically alter ERK phosphorylation. Cells transfected with Flrt1 show no significant difference in 

ERK phosphorylation when compared to untransfected cells or cells transfected with empty expression 

vector pcDNA3.1 (pc - Fgf) (p>0.05), whether unstimulated or stimulated with Fgf-2 (Figure 5.5). This is 

consistent with previous data for over-expression of Flrt1 at this time point [41]. 

 

Unstimulated cells over-expressing Lrrtm3 (Lrrtm3 - Fgf) result in a 4.5-fold increase in pERK 

levels when compared to untransfected cells (p<0.05) (Figure 5.5 B). A similar observation is made 

when comparing to the Flrt1-transfected cells, with a 4.8-fold increase in ERK phosphorylation, which is 

significant at a 90% confidence level (Figure 5.5 B). Fgf-2 stimulated Lrrtm3 over-expressing cells 

(Lrrtm3 + Fgf) showed a 1.6-fold increase in the amount of pERK when compared to untransfected 

HEK-293T cells, and a significant 1.5-fold increase when compared to cells transfected with empty 

vector (p<0.05 for both) (Figure 5.5 C). No difference in ERK phosphorylation between Flrt1 and Lrrtm3 

transfected cells is observed at the 95% confidence interval (Figure 5.5 C). 

  

In summary, this experiment shows that not only are pERK levels increased in Lrrtm3 over-

expressing cells upon stimulation with Fgf-2, but in the absence of Fgf-2 stimulation, these cells also 

show increased levels of basal ERK phosphorylation, when compared to Flrt1 at a 90% confidence 

level.  

 

Similar to my previous data on Flrt3, Lrrtm3 over-expression in cells causes a significant 

increase in ERK phosphorylation upon Fgf-2 stimulation, possibly caused by the interaction with FgfR1. 

To confirm that the increase in ERK phosphorylation identified in cells over-expressing Lrrtm3 is 

dependent on activation of the Fgf receptor, the pan-Fgf receptor inhibitor SU5402 was utilised. Lrrtm3 

or empty vector (pcDNA3.1) transiently transfected HEK-293T cells were serum-starved for 60 min with 

SU5402 (50 μM) where indicated. Cells were then stimulated with Fgf-2 for 10 min and cell lysates 

analysed for levels of pERK by Western blot (Figure 5.6). 
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Figure 5.6. Increased pERK levels caused by Lrrtm3 over-expression require FgfR activity: Western blot of HEK-293T 
cells transiently transfected with Lrrtm3 vector or pcDNA3.1 (vector only control) for 20 h, then stimulated with Fgf-2 and 
heparin for 10 min (+ Fgf). Appropriate samples were incubated with 50 μM SU5402 during Fgf-2 stimulation (+ Fgf + SU5402). 
Blot probed with anti-pERK and anti-ERK (for pERK densitometric normalisation). Bar graph represents the normalised 
quantification of pERK levels between Fgf-2 stimulated cells with and without SU5402 treatment relative to untransfected Fgf-
2 stimulated cells without SU5402 treatment. n=1. 

 

Fgf-2 stimulation of pcDNA3.1-transfected cells (pcDNA3.1 + Fgf) results in activation of Fgf 

receptor and subsequent ERK phosphorylation (Figure 5.6). The inclusion of SU5402 in Fgf-2 

stimulated pcDNA3.1-transfected cells (pcDNA3.1 + Fgf + SU5402) results in complete absence of 

pERK, showing the effectiveness of the inhibitor in blocking activation of the FgfR signalling, and the 

specificity for Fgf-2-resultant pERK increase to the FgfR. As previously shown, stimulation of Lrrtm3 

over-expressing cells with Fgf-2 (Lrrtm3 + Fgf) results in higher levels of pERK than stimulation of 

pcDNA3.1-transfected cells. In this case, the increase in ERK phosphorylation is greater (3.5-fold 

increase) than previously shown (1.5-fold increase) for Lrrtm3 over-expressing cells in comparison to 
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pcDNA3.1-transfected cells.  When Lrrtm3 over-expressing Fgf-2 stimulated cells are incubated with 

SU5402 (Lrrtm3 + Fgf + SU5402), levels of pERK are essentially eliminated. This implies that the 

increase in pERK in the cells transfected with Lrrtm3 is caused by the signalling activity of FgfR1. 

 

Like Flrt3, I have shown that Lrrtm3 co-localises with FgfR1 within intracellular vesicle 

membranes. These proteins have been shown to interact, and the result of Lrrtm3 expression causes 

significant increase in pERK levels upon Fgf-2 stimulation, and a trending increase in basal pERK 

levels. This increase is directly attributed to increased activity of the FgfR receptors, with use of the pan-

FgfR inhibitor resulting in the abolishment of ERK phosphorylation. 

 

 

5.3 Discussion 

 

 Previous studies, including those shown in Chapter 3, have demonstrated that Flrt1 and Flrt3 

can co-localise with FgfR1 in intracellular vesicles, interact with FgfR1, and influence the 

phosphorylation of ERK, the output of FgfR1 [5, 41]. In this chapter, a novel FgfR1/Lrrtm3 protein 

interaction was identified and investigated to determine if the regulation effects of Flrt1 and 3 on FgfR1 

signalling are shared by other single-pass LRR transmembrane proteins. Lrrtm3 was investigated for a 

role in regulating FgfR signalling due to expression in regions that require FgfR activity. By using 

immunoprecipitation, Lrrtm3 was shown to interact with FgfR1 when over-expressed (Figure 5.3), 

facilitated by co-localisation of Lrrtm3 and FgfR1 to common intracellular membranes, first identified in 

this project using immunolocalisation (Figure 5.4). These results draw similarities with Flrt1 and Flrt3 co-

transfected with FgfR1, which showed overlapping expression patterns as described in Chapter 3 and in 

previous studies [41]. Lrrtm3 shows a similar cellular localisation to Flrt1 and Flrt3, with localisation of 

the protein shared between intracellular membranes and the cell surface membrane. Upon co-

expression with FgfR1, Lrrtm3 localisation appears to be altered, with stronger intracellular expression 

and subsequently weaker cell membrane expression. The immunolocalisation assay results suggest 

that Lrrtm3 and FgfR1 are co-localised to a number of different intracellular membranes which are 

undefined in this study. These intracellular membrane structures most probably include the rough ER 

and/or Golgi body and other intracellular vesicles. Accumulation in the rough ER and/or Golgi is likely to 

be due to the large levels of protein over-expression. It is important to note that Lrrtm3 co-localisation in 

these over-expression assays is similar to that of Flrt1 and 3, which were subsequently shown to co-

localise with endogenously expressed FgfR1 and Fgf signalling components, and influence FgfR1 

output [41] (Chapter 4).  
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Over-expression of Flrt1 and Flrt3 in HEK-293T cells results in a subtle increase in pERK levels 

as a result of FgfR1 activation. Flrt1 over-expression demonstrates a rapid increase of pERK after just 1 

min that is sustained at a higher level for at least 30 min [41]. To analyse the effect of Lrrtm3 over-

expression on pERK levels we initially attempted this analysis with Lrrtm3 over-expressing cells 

stimulated with Fgf-2 for 10 min. The 23-fold increase in pERK levels in untransfected cells upon Fgf-2 

stimulation indicates that activation of Fgf receptors is occurring as expected in our cells, and it is clear 

to see that the stimulation is also successful in the Flrt1 and Lrrtm3 over-expressing samples due to the 

large increase in pERK levels (Figure 5.5) suggesting Flrt1 and Lrrtm3 are not inhibiting FgfR activation. 

Lrrtm3 over-expressing cells showed a significant 1.5-fold increase in pERK levels after 10 minutes 

stimulation that was consistent over 3 experiments using a Student’s t- test. This increase is larger than 

that observed for Flrt3 over-expressing cells, and may also differ at different time-points, resulting in the 

potential of a greater regulation of FgfR1 activation. Furthermore, in unstimulated cells there was 

increased pERK in cells over-expressing Lrrtm3 that was significant at 90% confidence. It is interesting 

to note in stimulated and unstimulated cells that pERK levels in Lrrtm3 over-expressing samples show a 

larger increase in pERK levels compared to Flrt1 over-expressing cells suggesting Lrrtm3 may be more 

influential in FgfR activation than Flrt1. This could be due to the time-point analysed, as ERK activation 

by Flrt1 over-expression was not present at this time point in previous studies. No difference in pERK 

levels between pcDNA3.1 and Flrt1 over-expressing cells was observed, which is inconsistent with 

Wheldon et al. suggesting that there may be a difference in our cells or the experimental system 

compared to the published system [41].  

 

Over-expression of Lrrtm3 causes an increase in ERK phosphorylation. While ERK is a 

signalling molecule for many different receptors, the increase in pERK levels observed in Lrrtm3 over-

expressing samples was attributed predominantly to activation of the Fgf receptors (Figure 5.6). The Fgf 

receptor inhibitor was effective in blocking Fgf receptor activation, with levels of pERK in Fgf-2 

stimulated, SU5402 treated cells being markedly lower than the level observed in cells not treated with 

SU5402. When Lrrtm3 over-expressing cells are stimulated with Fgf-2 in the presence of the inhibitor, 

pERK levels are almost abolished, suggesting the increase in pERK levels is due to the influence that 

Lrrtm3 has on the activation of the Fgf receptor and not a result of activation of some other signalling 

receptor or cascade. While the levels of pERK for stimulated Lrrtm3-transfected cells appear higher in 

this assay compared to Figure 5.5, the difference would likely be resolved by collating three repeats of 

the experiment, rather than just the one experiment that I have shown. Combined, this data suggests 
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that Lrrtm3 over-expression results in increased stimulated FgfR activation compared to non-Lrrtm3 

over-expressing and Flrt1 over-expressing cells. 

 

5.4 Conclusion 

 

This Chapter has identified a potential novel interaction between LRR protein Lrrtm3 and FgfR1. 

Initial investigation of this interaction reveals similar FgfR1-signalling regulatory characteristics to that of 

Flrt1 and Flrt3. Lrrtm3 was shown to bind to FgfR1, and both proteins were shown to co-localise within 

common membranes within the cell. Over-expression experiments using the HEK-293T cell line with 

transient transfection of appropriate expression vectors have been previously used to analyse Flrt1 and 

Flrt3 dependent alteration of Fgf signalling, and this system was utilised to assess the regulator effects 

of Lrrtm3 on FgfR1 signalling. The system consistently showed increased ERK phosphorylation with 

Lrrtm3 over-expression, in both the absence and presence of Fgf-2 stimulation, with this increase in 

pERK levels being directly attributed to a change in activity of FgfR1. While the initial data gathered 

here infers a role for Lrrtm3 in regulating FgfR signalling, further investigation into the function and 

mechanism of this interaction are required to elucidate the role of Lrrtm3 in FgfR signalling modulation, 

and more broadly as a characteristic of LRR proteins to regulate FgfR1 signalling. 
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6. General Discussion 

 

In this thesis, I investigated the mechanism of Flrt3 function in the regulation of Fgf signalling, 

including its role in early neural commitment, and whether other single-pass LRR proteins could also 

regulate Fgf signalling, using Lrrmt3 as an example.  

 

The leucine-rich repeat super family is characterised by repeating motifs containing a high 

number of leucine residues. Multiple single-pass LRR transmembrane protein families show overlapping 

expression with FgfR1 during embryonic development, including the Flrt and Lrrtm families, with Flrt1 

shown to regulate FgfR1 signalling [41]. This finding raises the possibility of other LRR proteins 

interacting with and regulating FgfR1 signalling during embryonic development. Expression of Flrt3 is 

observed at the apical ectodermal ridge, the mid-hind brain boundary, and in the developing somite. 

Study into the function of Flrt3 has been confined to over-expression systems, as the knockout mouse 

model of Flrt3 is embryonic lethal. This project has attempted to identify the function of Flrt3 in 

embryonic development by studying the interaction with FgfR1 and using a cellular model to study 

endogenous Flrt3 function. It has also attempted to identify novel LRR protein and FgfR1 interactions, 

and characterise them. 

 

6.1 Investigation of Flrt3 function 

 

6.1.1 Analysis of Flrt3 localisation and activity using an over-expression system 

One of the aims of this project was to investigate the function of Flrt3 expression at regions 

where Fgf signalling is important in development. This study identified for the first time the co-

localisation of Flrt3 and FgfR1 to intracellular vesicular membranes, and at the cell surface membrane. 

Co-over-expression of Flrt3 and FgfR1 resulted in an FgfR-dependent 1.41-fold average increase in 

pERK levels in cells stimulated with Fgf-2, although this was shown to not be statistically significant 

using a Student’s t-test. A trend of increased pERK levels in unstimulated cells transfected with Flrt3 

compared to Flrt1 was also observed, suggesting Flrt3 increased activation of the MAPK pathway by 

FgfR1. Investigations into the importance of specific domains of Flrt3 that contribute to this trend failed 

to reveal required individual domains. Finally, analysis of Flrt3 tyrosine phosphorylation identified 

several different phosphorylation sites which are dependent on the over-expression of FgfR1. 



118 
 

Co-localisation of Flrt3 and FgfR1 to common cellular membranes is vital for the previously 

identified interaction to occur within the cell. Co-over-expression of tagged Flrt3 protein and FgfR1 

revealed overlapping and distinct regions of expression for each protein. This result draws similarities 

with the localisation of Flrt1 and FgfR1 previously described in Chapter 3 [41]. Based on these results, 

the validity of the interaction between over-expressed Flrt3 and FgfR1 in a viable cell context is 

strengthened, whereas previous to this experiment, it could be argued that the identified interaction 

between Flrt3 and FgfR1 could occur as a result of cell lysis. The localisation of Flrt3 to the cell surface 

agrees with a number of previous studies [7, 8]. It has also previously been reported that Flrt3 promotes 

homotypic cell adhesion in vitro and in vivo. Observations from this study can neither clearly support nor 

oppose these findings [10]. While two or more cells over-expressing Flrt3 were observed to be in 

contact with each other on several occasions, both over-expression in isolated cells and cells separated 

within a mixed population were observed. The differences with the previous study could be explained by 

Flrt3 being sequestered to intracellular membranes, if it does play a role in cell-cell adhesion as 

predicted, or be explained by the uncomprehensive nature of immunofluorescence assays as opposed 

to using a EGFP co-transfection system, utilised when this was first observed [10]. 

 

Investigations carried out on the interaction between Flrt1 and FgfR1 by Wheldon et al. (2010) 

using over-expression in the HEK-293T cell line identified Flrt1 as a novel regulator of FgfR1 signalling 

activity. This cellular model was adopted to analyse the outcome of the interaction between Flrt3 and 

FgfR1 on FgfR1 signalling output.  

 

As previously mentioned, reproduction the observations made by Wheldon and colleagues was 

unsuccessful in my hands; Flrt1 showed no significant increase in ERK phosphorylation upon Fgf-2 cell 

stimulation. These differences could be attributed to slight variations in the HEK-293T cell line used, or 

potentially missing details from the protocol. Using the protocol provided in the 2010 paper, a trend was 

observed of Flrt3 being able to increase FgfR-mediated ERK phosphorylation [41]. Studies have also 

shown the expression of Flrt2 in regions reliant on Fgf signalling for embryonic development, and that 

Flrt2 interacts with extracellular and intracellular domains of FgfR2 [5, 58]. These results strongly 

suggest a role for Flrt protein family members in the regulation of FgfR signalling during early 

embryogenesis to facilitate normal embryonic development. The 10-minute time-point chosen to analyse 

pERK levels resulted in an apparent increase in ERK phosphorylation in cells over-expressing Flrt3 

compared to cells over-expressing Flrt1, suggesting that the kinetics of the increasing trend in FgfR1 

MAPK signalling activity due to the Flrt3 interaction may be different to that due to the over-expression 

of Flrt1. A futile phosphorylation cycle between Flrt1 and FgfR1 was observed by Wheldon et al., (2010), 
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by which Flrt1 activates FgfR1, FgfR1 dimerisation and autophosphorylation of intracellular tyrosine 

residues, resulting in phosphorylation of 3 intracellular Flrt1 tyrosines and attenuation of Flrt1-mediated 

FgfR signalling enhancement [41]. Three tyrosines residues were identified on the Flrt3 intracellular tail 

as likely to be phosphorylated, and it is proposed that these are the residues being detected. Extensive 

investigation of the phosphorylation of Flrt3 was undertaken and revealed that different species of Flrt3 

are phosphorylated depending on the expression of FgfR1. Co-expression with FgfR1 results in tyrosine 

phosphorylation of an approximately 80 kDa species, while expression in the absence of FgfR1 over-

expression results in tyrosine phosphorylation of an approximately 98 kDa species. This differs from that 

observed for Flrt1. As expected, when over-expressed with FgfR1, an approximately 75 kDa Flrt1 

species is detected, representing a species with little to no post-translational modification, as observed 

by Wheldon et al. (2010) [41]. Expanding on the findings of Wheldon et al. (2010), it was shown that 

when over-expressed in the absence of FgfR1, Flrt1 lacks phosphorylation of the identified tyrosines, 

which is different to that of Flrt3. This suggests different roles for Flrt1 and 3, with Flrt3 possibly being 

phosphorylated by an interaction at the cell membrane to carry out a Flrt3-specific function, such as cell 

adhesion, with a homotypic cell adhesion phenotype previously observed in Flrt3 over-expressing cells 

[10]. Further to this, the mode-of-action for Flrt3 may differ from that of Flrt1, as mutation of the top three 

tyrosine residues predicted to be phosphorylated on the intracellular tail of Flrt3 does not result in 

constitutively high pERK levels that was observed upon mutation of the equivalent Flrt1 tyrosine 

residues [41]. This could be explained by the mode-of-action occurring through different adaptor 

proteins to Flrt1, which could function through the phosphorylation of other currently unknown residues. 

It had previously been shown that Flrt3 from Xenopus laevis (XFlrt3) required the fibronectin III domain 

to interact with FgfR1, allowing FgfR1 signalling modulation [8]. None of the mutations created and 

tested in this thesis were shown to alter pERK levels, indicating that these individual domains were not 

required for FgfR1 interaction, contrasting the results observed for XFlrt3. Mutational loss of the 

transmembrane domain of XFlrt3 had a subtle effect on FgfR1 interaction, and could contribute to the 

Flrt3/FgfR1 interaction.  

 

Previous studies on Flrt3 have identified its importance in binding to several other proteins to 

facilitate nerve development and remodelling, as well as cell adhesion and morphogenesis [6, 11, 59, 

60].  This study provides support for a role of Flrt proteins as FgfR signalling regulators during early 

embryonic development. Further experiments as outlined in the Future Directions section are required to 

provide more evidence for this role.  
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6.1.2 Identification of the P19 EC cell line to study endogenous Flrt3 function 

 To date, functional studies of Flrt3 have been restricted to over-expression systems due to the 

early embryonic lethality of knockout models [42]. The use of over-expression systems to gain functional 

information about a protein is a double-edged sword; while they are generally easier to obtain data 

compared to endogenous systems due to the much higher expression of the target protein, data 

obtained from these systems may not be an accurate representation of the endogenous function, with 

the potential for cells to display a mutant phenotype [61]. Over-expression systems can give us an 

indication of the involvement of the Flrt3 protein in Fgf signalling, but over-expression of a single protein 

can cause aberrant localisation of that protein, while over-expression of two proteins that interact could 

cause mis-localisation of one or the other protein. For example, over-expression of Flrt3 could localise 

FgfR1 to vesicles that it is not normally present in, or to the cell surface membrane, which may give it 

access to a different signalling environment causing a different output compared to the endogenous 

protein.  

 

Differentiation of P19 EC cells with retinoic acid toward a neural lineage, a developmental 

timepoint similar to early neurectoderm formation, resulted in an increase in Flrt3 expression. This 

increase was rapid and robust, with an increase in expression observed within 5 hours and sustained 

beyond 4 days of differentiation, with similar results observed in cells differentiated in aggregates or as 

a monolayer. Correlating with the increase in mRNA levels was an increase in observed Flrt3 protein 

levels in RA-differentiated P19 EC cells observed by immunofluorescence. Similar to that of the over-

expression studies undertaken in Chapter 3, endogenous Flrt3 was strongly expressed at cell-cell 

junctions and also localised to intracellular vesicles. Analysis of ERK phosphorylation due to RA 

differentiation resulted in a 5-fold decrease in pERK, after the 1st day of differentiation compared to 

random differentiation. Interestingly, over-expression of Flrt3 also resulted in no increase in pERK 

levels, as assessed by transient transfection, whereas differentiation without RA or Flrt3 over-

expression resulted in a 4.7-fold induction of ERK phosphorylation, before returning to basal levels by 

48 h. During RA differentiation, expression of Flrt3 was shown to be induced before Sox1, widely 

regarded to be the first known marker of neural induction, yet over-expression of Flrt3 alone is 

insufficient to induce Sox1 expression. 

 

The rapid and robust induction of Flrt3 upon RA differentiation suggested that the Flrt3 promoter 

may be directly regulated by retinoic acid. A DNA element upstream of Flrt3 is conserved across 

species but was shown not to play a key role in the regulation of Flrt3 induction. It may though, play a 
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role in the inhibition of Flrt3 expression, or even be a regulatory element for another gene and has no 

effect on expression of Flrt3. A fragment from 4-6 kb upstream of the Flrt3 start site was shown to 

respond 2-fold to RA treatment. Closer inspection of this region revealed a γF-hormone response 

element (HRE) (PuGGTCA, preceded by a 6 bp A/T rich sequence), to which RAR-related orphan 

receptor α (RORα) can bind as a monomer and activate transcription [13]. While normally the HRE are 

required in tandem, one element is all that is required to bind RORα. In the absence of RA, the retinoid 

receptor complexes block activation of RORα. It has previously been shown that the combination of 

RORα expression and RA treatment increase expression of the target gene, while the presence of 

RARα prevents RORα-regulated gene expression in the absence of RA. This demonstrates that RARα 

and RORα compete for the same binding site, and that RARα can repress target gene transcription in 

the absence of RA. Therefore, a proposed mechanism of Flrt3 induction would be that RORα and RARα 

compete for the HRE in the region between the 5’ 6 kb upstream from the Flrt3 start site and CE. In the 

absence of RA, RARα is bound to the HRE and prevents RORα activating Flrt3 transcription. Upon 

addition of RA to the system, RARα binds RA and releases from the HRE, allowing RORα activation of 

Flrt3 transcription, resulting in increased expression of Flrt3.  

 

The increase in Flrt3 protein expression as a result of RA differentiation observed in the 

immunofluorescence assay suggests that the increase in Flrt3 mRNA directly leads to increased levels 

of protein. The current Flrt3 antibody does not work for Western blotting, so it would be beneficial to 

obtain a Flrt3 antibody that is optimised for Western blot to quantitatively measure the increase in 

protein levels. The introduction of a tag, such as HA or Flag, onto the endogenous Flrt3 protein using 

CRISPR technology to create a stable P19 cell line could be utilised with well characterised antibodies 

to confirm the increase in expression. The localisation of endogenous Flrt3 to cell-cell junctions agrees 

with localisation of the over-expressed protein and facilitates the cell sorting phenotype previously 

observed in cell expressing higher levels of Flrt3. Intracellular vesicle membrane localisation provides 

the spatial context to facilitate an interaction with FgfR1 [10]. This data adds to the hypothesis that Flrt3 

acts as a homophilic cell adhesion molecule that was based on Flrt3 over-expression, extending the 

concept to endogenous Flrt3.  

 

The role of the ERK signalling pathway during neural differentiation has been extensively 

studied, with Fgf signalling being a conserved initiator of neural development in vertebrates [62-66]. The 

modulation of Fgf signalling is important in neural induction, with an early increase followed by decrease 

in signalling. RA is shown to play a dual role in neural differentiation; initially increasing MAPK signalling 

by induction of Fgf8, then gradually repressing Fgf4, resulting in decreasing MAPK signalling by day 2 
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of differentiation [67]. This enforces the importance of the timing of signalling events during 

differentiation giving rise to particular cell fates. Given that P19 EC cells are more differentiated than the 

46C ES cells used to identify the changes in Fgf signalling, it is not unforeseen that we did not observe 

an increase in MAPK signalling as a result of P19 EC differentiation with RA or Flrt3 over-expression 

[67]. The increase in MAPK signalling via Fgfs observed in the 46C ES cells (pluripotent) may have 

subsided due to the repression of Fgf4 prior to reaching the differentiation status of P19 EC cells 

(multipotent). In regard to the similar behaviour of Flrt3 over-expression and RA differentiation on pERK 

levels, it does pose an interesting question; if a function of Flrt3 is to increase FgfR1 signalling, why are 

pERK levels lower in P19 EC cells that express Flrt3 at high levels (either induced by RA treatment or 

by transient over-expression)? It is possible that with the down-regulation of Fgf4 expression, that Flrt3 

facilitates FgfR basal signalling activity. 

 

Sox1 expression and localisation data agrees with that of Pevny et al. (1998), who observed 

induction within the initial 96 hours of P19 differentiation with RA, with protein expression localised 

exclusively to the nucleus; as expected for a transcription factor [50]. This study is the first to identify 

that increased Sox1 expression is not observed within the initial 6 h of RA differentiation of P19 EC 

cells. Despite Flrt3 induction prior to induction of Sox1, expression of Flrt3 alone was shown to be 

insufficient to induce Sox1 expression and therefore drive neural differentiation. Other factors must 

therefore be required to drive Sox1 expression. 

 

Given the early embryonic lethality by a complex phenotype of Flrt3-/- embryos, a viable system 

to study endogenous Flrt3 function is required. The P19 EC cell line provides this, utilising RA 

differentiation which drives a rapid and robust induction of Flrt3 through an apparent direct effect. The 

function of endogenous Flrt3 can continue to be investigated using this identified model, with 

experiments outlined in the Future Directions that will help elucidate its function. 

 

6.2 Role of single-pass LRR proteins as FgfR signalling modulators 

  

The Lrrtm family of proteins was identified to be similar in structure to that of the Flrt family, with 

some members also displaying expression in tissues reliant on Fgf signalling for development. For these 

reasons, the Lrrtm3 protein was selected as a model to determine if a common function of single-pass 

LRR proteins is modulation of FgfR signalling. Lrrtm3 was found to interact with FgfR1 in pull-down 

assays, while the two proteins were also shown to co-localise to common cellular membranes. These 
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data provided a cellular context for modulation to occur. Cells over-expressing Lrrtm3 showed a 1.5-fold 

increase in ERK phosphorylation upon Fgf-2 stimulation, which is reliant on FgfR signalling activity. 

 

 Previous studies focussing on Lrrtm3 and Alzheimer’s related proteins β-secretase 1 (BACE1) 

and amyloid precursor protein (APP) identified Lrrtm3 localisation to early endosomes in a 

neuroblastoma cell line [68]. Expression is observed elsewhere within the cell, yet remains undefined as 

the paper focuses only on membranes which show overlapping expression with BACE1 and APP. Data 

obtained in this thesis identifies Lrrtm3 localisation to intracellular membranes (which remain undefined), 

potentially akin to that of Lincoln et al. This thesis has also identified Lrrtm3 localising to what appears 

to be the cell surface membrane, extending the known subcellular localisation of Lrrtm3. This study has 

also added FgfR1 to the list of proteins known to interact with Lrrtm3, joining APP, BACE1, and neurexin 

[68, 69]. Evidence now shows that the interaction between Lrrtm3 and FgfR1 results in an increase in 

FgfR1 signalling by the MAPK pathway, supporting a common function that some other single-pass LRR 

protein may act as FgfR signalling modulators where overlapping expression is observed. This function 

cannot be applied broadly to all LRR proteins though, as Lern1 has been shown to not interact with 

FgfR1 despite regions of overlapping expression during embryogenesis (unpublished data not shown).  

Proteins from two single-pass LRR protein families that show overlapping expression with 

FgfR1 during embryogenesis have now been identified to interact with and influence FgfR1 signalling. 

This supports a proposed role for other single-pass LRR proteins in the regulation of Fgf receptors when 

co-expressed during development. It also raises the possibility of other single pass signalling receptors 

being able to interact with and be regulated by various families of LRR transmembrane proteins. Further 

experiments, including those outlined in the Future Directions, are required to fully characterise these 

interactions and strengthen this proposal. 

 

6.3 Significance 

  

Genes that are important in embryonic development are often specifically expressed and have 

important roles in brain development and neuron formation and specification. I have provided evidence 

of Flrt function in a model of early embryogenesis, linking it to a role in the regulation of Fgf signalling. 

Flrt has been shown to be functionally important in the dentate gyrus for neuron specification [19]. 

Interestingly, Fgf signalling has also been shown to be essential for this process [70]. 
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6.4 Future Directions 

 

I have demonstrated that Flrt3 and Lrrtm3, along with previous studies on Flrt1, can interact 

with and modulate the output from FgfR1 in over-expression studies. I have also identified the P19 early 

neural specification system as a model to understand the role of endogenous Flrt3 function, and 

identified alterations in pERK output in this system that could be linked to Flrt3 induction. Below are 

various experiments that could be undertaken to further understand the role of Flrt3 and Lrrtm3, 

combined with how the possible experimental outcomes could be interpreted. 

 

In regard to Flrt proteins and other single-pass LRR transmembrane proteins exhibiting 

modulation of FgfR1, the following experiments could be undertaken; 

 

 Experiment A: Time-course for Fgf stimulation of cells over-expressing FgfR1 and Flrt3. 

Include analysis of other signal cascade pathways such as PI3K, and PLC. 

Using time-points similar to that used by Wheldon et al. (2010), the dynamics of the apparent 

increase in MAPK signalling pathway activation can be investigated. Considering that the FgfRs can 

also signal via the PI3K/Akt and PLC pathways, with all three pathways shown to be important in neural 

differentiation, analysis of all signalling pathways that could be affected should be undertaken [71]. The 

HEK-293T cell line could still be used, stimulating the cells with Fgf-2 and heparin for 10 min following 

serum starvation, comparing cells transfected with plasmid over-expressing Flrt3 and cells over-

expressing empty vector. Cells can be lysed with lysis buffer containing phosphatase inhibitors as 

outlined in Chapter 2, and soluble cell fractions analysed by Western blot, or whole cells could be 

analysed by flow cytometry. Antibodies such as phospho-Akt (Ser473), phospho-Akt (Thr308), and Akt 

from Cell Signalling Technologies (4058, 4056, and 9272 respectively) could be used to assess the 

PI3K/Akt pathway activation. Antibodies such as phosphor-PLCγ1 (Tyr783) (D6M9S) and PLCγ1 from 

Cell Signalling Technologies (14008 and 2822 respectively could be used to assess the PLC pathway. 

Changes in levels of the phosphorylated proteins (ERK, Akt, PLCγ1) in cells over-expressing Flrt3 

compared to empty vector could be directly contributed to the expression of Flrt3 and the interaction 

with FgfR1. 
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 Experiment B: Explore the interaction between Flrt2 and FgfR1 for modulation of FgfR 

signalling. 

Flrt2 expression is observed in the developing sclerotome, which, like tissue expression patterns 

for Flrt1 and Flrt3, is an area that requires Fgf signalling for correct development. Flrt2 has also been 

shown to interact with FgfR1 [5]. Despite this interaction being known to occur, no studies investigating 

the effect the interaction has on FgfR signalling have been carried out. The experiments used to 

investigate the Flrt3 and FgfR1 interaction in HEK-293T cells in this thesis could be carried out with 

Flrt2. Experiment A could also be repeated to include Flrt2 to further understand the interaction.  

 

 Experiment C: Changes in target gene expression due to Flrt3 over-expression. 

Given that Flrt3 shows a trend to increase FgfR1-mediated ERK signalling, and may show effects 

on PI3K/Akt and PLC signalling pathway activation, there is potential for changes in target gene 

expression. Nanostring analysis could be undertaken to determine changes in both mRNA and protein 

expression profiles between cells transfected with plasmid over-expressing Flrt3 and cells transfected 

with empty vector. This would give functional relevance to the modulation of FgfR1 signalling activity. 

The HEK-293T cell line could still be used, stimulating the cells with Fgf-2 and heparin for 10 min 

following serum starvation. Cells would be lysed, with mRNA and protein collected. mRNA would be 

converted to cDNA for the analysis. Using a custom-designed panel of genes known to be regulated by 

FgfR1 signalling during development, such as c-Fos and Elk-1, changes between mRNA and protein 

expression levels could be identified between. Changes in levels of mRNA and protein expression in 

cells over-expressing Flrt3 compared to cells transfected with empty vector could be directly contributed 

to the expression of Flrt3 and the interaction with FgfR1. Microarray analysis could also be undertaken 

to identify novel target genes. This could also be investigated using stable cell lines over-expressing 

Flrt3 rather than transient transfection, eliminating the inherent variability of transient transfection 

efficiency. This would facilitate higher reproducibility, therefore more significant results. 

 

 Experiment D: Further elucidate the Lrrtm/FgfR1 interaction. 

The Lrrtm3/FgfR1 interaction identified in this thesis was found to influence the MAPK signalling via 

FgfR1. Like the Flrt1 and Flrt3 interaction, the influence of the interaction with FgfR1 on the PI3K/Akt 

and PLC pathways has not been investigated. Experiment A could be repeated to include Lrrtm3 in 

place of Flrt3. 
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To further investigate Flrt3 function in neural differentiation, the following experiments could be 

undertaken; 

 

 Experiment E: Determine if Flrt3 expression is vital for RA-mediated neural differentiation.  

Given that Flrt3 shows a rapid and robust induction during the initial stages of RA-mediated 

differentiation, with expression increasing even prior to the induction of Sox1, the role of Flrt3 in neural 

differentiation holds many unanswered questions. To determine if the expression of Flrt3 is vital for 

neural differentiation, a Flrt3 knockdown or knockout system could be utilised. shRNA could be 

designed against Flrt3 and cloned under an inducible promoter, such as doxycycline, with antibiotic 

selection. RA mediated neural differentiation of P19s in the presence of doxycycline would need to be 

assessed to ensure proper differentiation is still viable. This could be achieved by transfecting the empty 

inducible vector into P19 EC cells, differentiate the cells with RA in the presence of doxycycline, then 

assess the expression of Sox1 by qRT-PCR. If comparable to that of differentiation in the absence of 

doxycycline, the system can be used. The shRNA construct could be transfected into P19 EC cells, with 

these cells grown under selection pressure of the antibiotic in the media. Single cell clones would be 

grown and screened by PCR to ensure substantial knockdown of Flrt3 upon induction. The top 5 clones 

would be selected and pooled together to form the stable inducible Flrt3 P19EC knockdown cell line. 

This pooled cell line would be differentiated with RA over a 24 hr time-course, taking samples hourly for 

the initial 6 h of differentiation, with samples also taken at 12, 18 and 24 h post-differentiation. mRNA 

would be harvested, with qRT-PCR used to determine differences in Sox1 expression. Expression of 

Flrt3 would be measured as a control for the knockdown. If Flrt3 is vital in neural differentiation, cells 

shouldn’t express Sox1. If the Sox1 expression profile doesn’t change compared to WT cells, Flrt3 is not 

vital in RA neural differentiation. If Sox1 is not induced, Flrt3 is important in neural differentiation of 

P19s. If Sox1 expression induction is delayed, then Flrt3 plays a role in early neural induction, but other 

factors compensate for its loss after a lag phase. A Flrt3 knockout P19 EC cell line could also be 

created using CRISPR with the guide RNA designed against Flrt3 to address this question. 

 

 Experiment F: Determine if over-expression of Flrt3 is sufficient to induce neural 

differentiation.  

Similar to using a Flrt3 knockdown or knockout system to investigate decreased levels of Flrt3 

expression on neural differentiation, it is also interesting to investigate the effect of increased Flrt3 

expression levels on RA-mediated P19 neural differentiation. This was addressed somewhat in this 

thesis, although using a stable cell line over-expressing Flrt3 will be more insightful than cells transiently 

transfect with plasmid over-expressing Flrt3. Using a lentiviral delivery system containing the Flrt3 ORF, 
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P19 EC cells would be infected and grown under antibiotic selection pressure. Single cell clones would 

be screened by qPCR to assess the over-expression of Flrt3. The top 5 clones would be chosen and 

mixed to form the Flrt3 OE P19 cell line. This cell line would be differentiated with and without RA over a 

24 hr time-course, taking samples hourly for the initial 6 h of differentiation, with samples also taken at 

12, 18 and 24 h post-differentiation. mRNA would be collected, converted to cDNA, and then assessed 

for Sox1 expression using qRT-PCR. Flrt3 expression would be measured to ensure over-expression in 

the cell line. A WT P19 EC cell line would be used as a control. In this experiment, if Sox1 expression is 

induced in the Flrt3 OE cell line without RA, then the increase in Flrt3 expression is sufficient to induce 

neural differentiation and subsequent Sox1 expression. If Sox1 expression is induced faster in the Flrt3 

OE cell line with RA induction, then the increased levels of Flrt3 contribute positively to initiate neural 

differentiation faster than RA alone, or that increased Flrt3 expression can drive Sox1 expression. If 

Sox1 expression is not induced in Flrt3 OE cells without RA, then the increase in Flrt3 expression is not 

sufficient to drive neural differentiation and subsequent Sox1 expression. If Sox1 induction does not 

change in Flrt3 OE RA differentiated cells compared to WT RA differentiated cells, this indicates that the 

increase in Flrt3 expression does not influence the rate of neural differentiation compared to RA alone. 

Finally, if Sox1 is not induced, or is induced at a later time-point in Flrt3 OE cells differentiated with RA, 

then the increase in Flrt3 expression can inhibit neural differentiation, and subsequently Sox1 

expression. 

 

 Experiment G: Determine the transcription factors vital for Flrt3 induction. 

Using the results of the luciferase assays and the mechanism of Flrt3 regulation proposed, 

investigation into the regulation of Flrt3 induction during RA-differentiation could be furthered. Site-

directed mutagenesis of the identified γF-HRE found to reside between the 5’ end of the 6 kb promoter 

sequence and the CE to render it unrecognisable to RARα and RORα would determine if this site is 

playing a role in the Flrt3 expression. If this shows no change in luciferase expression, cloning of 

luciferase vectors containing smaller portions of the 4kb – 6kb region 5’ of Flrt3 could be undertaken to 

help identify the sequence of DNA partially responsible for the increase in Flrt3 expression during RA 

differentiation. Analysis of the sequence found to be responsive to RA for transcription factor binding 

sites would provide an insight into possible the transcription factors responsible for the response. ChIP 

analysis could be undertaken to confirm the identity of this transcription factor and the response 

element. The element could then be mutated to confirm the binding sequence of the transcription factor. 

shRNA disruption of transcription factor translation could also be used to confirm the identity, although 

could pose an issue if the transcription factor is required for cell viability. Broader investigation of the 

surrounding genome to determine the regulatory regions responsible for the large increase in Flrt3 
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expression upon RA-differentiation could also be undertaken using a luciferase approach, followed by a 

random mutagenesis approach of the DNA sequences. 

  

 Experiment H: Explore the endogenous function of Flrt3 on FgfR signalling during 

differentiation. 

Using the P19 EC WT, Flrt3 KO and OE cell lines differentiated with RA, the effect of Flrt3 

expression on FgfR signalling could be assessed. Investigating the MAPK, PI3K/Akt and PLC pathway 

activation using the antibodies utilised in this thesis for the MAPK pathway, and the antibodies 

described in Experiment A for the PI3K/Akt and PLC pathways could be undertaken. Changes identified 

between the WT cell line and the Flrt3 KO and OE cell lines could be confirmed to be through the FgfRs 

using the FgfR pan-inhibitor SU5402. A concern for this would be that the cells may not be able to 

differentiate correctly with the use of the inhibitor, therefore it may be vital to create an inducible FgfR1 

knockout cell line for each of the Flrt3 KO and OE cells to achieve this.  

 

 Experiment I: Investigate the possibility of functional redundancy between Flrt3 and Flrt1 

during neural differentiation.  

A stable P19 EC cell line where the Flrt1 ORF replaces the Flrt3 coding sequence would be created 

utilising the CRISPR/Cas9 system. This would use a guide RNA targeted against an appropriate 

sequence early into the Flrt3 gene that would be transfected into P19 ECs, along with the donor plasmid 

containing the Flrt1 ORF with the neomycin resistance gene on the 3’ end. Cells would be selected for 

the insertion by culturing in media containing neomycin. Single cell clones would be cultured, with next 

generation sequencing used to confirm the insertion of the Flrt1 ORF at the targeted site. Cells with the 

correct insertion would then be differentiated with and without RA, with the mRNA harvested, and 

expression of Sox1 assessed by qRT-PCR. Expression of Flrt1 would be assessed as a control to 

ensure increased Flrt1 expression upon neural differentiation, and Flrt3 expression assessed to ensure 

expression is not observed. The WT P19 EC cell line would be used as a control for the expression of 

Flrt1 and Flrt3. As a result of this experiment, if Sox1 expression is induced and neural differentiation 

occurs in the Flrt1 knockin cell line, then Flrt3 and Flrt1 are functionally redundant during neural 

differentiation, indicating only the modulation of FgfR signalling facilitated by interaction between Flrt1 or 

Flrt3 and FgfR1 required to support neural differentiation. If Sox1 expression is not induced upon RA 

differentiation, then Flrt1 and Flrt3 are not functionally redundant in neural differentiation. This therefore 

potentially identifies a unique function of Flrt3 in relation to Flrt1, in facilitating neural differentiation.  
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6.5 Conclusion 

  

In this project, the previously identified interaction between Flrt3 and FgfR1 was investigated. 

Flrt3 was shown to co-localise with FgfR1, while over-expression of Flrt3 resulted in a trend of increased 

MAPK signalling through the activity of FgfR1. Some of the characteristics of Flrt3 were examined, 

revealing tyrosine phosphorylation present on the Flrt3 protein independent of Fgf-2 stimulation, while 

no specific domain was identified as being responsible for the change in MAPK signalling. A system to 

study the function of endogenous Flrt3 was established, with the P19 EC cell line showing a rapid and 

robust increase in Flrt3 expression upon differentiation with RA, which translated to an increase in Flrt3 

levels. A minor part of this induction may be encoded in a sequence in the promoter region between 4 

kb and 6 kb upstream of the Flrt3 transcription start site, with the majority of RA-dependent induction 

located elsewhere. Flrt3 induction was found to occur prior to that of Sox1, although transient Flrt3 over-

expression in the absence of RA was not sufficient to induce Sox1 expression. Interestingly, 

differentiation of P19 cells with RA or while over-expressing Flrt3 resulted in a decrease in pERK levels 

compared to P19 cells differentiated randomly. The proposal that a role for single-pass LRR proteins, 

which show overlapping expression with FgfR1, is in modulating the signalling output of the receptor 

was explored using Lrrtm3. FgfR1 was found to interact with Lrrtm3 and co-localise to common 

intracellular membranes. Similar to that of Flrt3, the interaction was found to increase FgfR1 signalling 

via the MAPK pathway. This data supports a role of single-pass transmembrane LRR proteins as 

modulators of FgfR activity in the developing embryo in regions where Fgf signalling is vital, and may 

lead to a further understanding of the causes of improper neural development during embryogenesis.  
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