Phenotypic Investigation of Biofilm Formation and Transcriptional Analysis of Invasive Growth of Commercial Wine Saccharomyces cerevisiae

Ee Lin Tek

A thesis submitted for the degree of Doctor of Philosophy

Department of Wine and Food Science Faculty of Science The University of Adelaide September 2017

Contents

Al	Abstract viii				
De	Declaration statement x				
A	Acknowledgements xi				
Tł	nesis	overview and structure	xii		
1	Lite	rature review	1		
	1.1	Commercial wine yeast in the vineyard and winery $\ldots \ldots \ldots \ldots$	2		
	1.2	Yeast's lifestyle as multicellular communities	3		
	1.3	Biofilm formation of S. cerevisiae	4		
	1.4	Biofilm-related phenotypes in S. cerevisiae	7		
	1.5	Mat formation in response to nutrient availability	9		
	1.6	Regulation of mat formation, filamentous growth and invasive growth	10		
	1.7	Cell-cell communication in morphological transitions	11		
	1.8	Quorum sensing in yeast	11		
	1.9	Hydrogen sulfide is a potential cell-cell signalling molecule in $S.$ cerevisiae	13		
	1.10	Research questions and objectives	14		
2	Wir	ne yeast biofilms	15		
	Cont	cextual statement	15		
	Stat	ement of Authorship	16		

Man	-	: Evaluation of the ability of commercial wine yeasts to form biofilms and adhere to plastic: implications for the microbiota of the winery			
	enviro	nment	18		
2.1	Abstract				
2.2	Keywords				
2.3	Introduction				
2.4	Mater	Materials and Methods			
	2.4.1	Yeast strains and media	21		
	2.4.2	Mat formation assays	23		
	2.4.3	Vitality and nuclear staining	24		
	2.4.4	DNA preparation and PCR conditions	24		
	2.4.5	Mat culture harvest and total RNA extraction	25		
	2.4.6	Quantitative real-time PCR	25		
	2.4.7	Plastic adhesion assays	26		
	2.4.8	Winery hose adhesion assays	27		
2.5	Results				
	2.5.1	Prototrophic diploid Σ 1278b as a laboratory reference	27		
	2.5.2	Wine yeasts display diverse mat architectures	31		
	2.5.3	Cell morphologies in the mat rim and mat body reveal distinct lifestyles	31		
	2.5.4	Some wine strains grow invasively at the start of mat formation $\ . \ .$	31		
	2.5.5	Wine strain L2056 forms mats with a more rapidly expanding sector	34		
	2.5.6	Plastic adhesion	36		
	2.5.7	Wine yeast grow invasively and conduct fermentation on grape pulp soft agar	37		
	2.5.8	Wine strain L2056 forms initial attachment on winery hose soft plastic	38		
2.6	Discus	sion	39		

	2.7	Fundi	ng	41
	2.8	Ackno	wledgements	42
	2.9	Supple	ementary Data	42
		2.9.1	Methods	42
		2.9.2	Figures	43
3	Mat	t forma	ation in a low nitrogen medium	49
	Con	textual	statement	49
	Stat	ement o	of Authorship	50
	Man	uscript	Factors influencing filamentous and invasive growth of yeast cells in	
		mat fo	prmation in a low nitrogen environment	52
	3.1	Abstra	act	53
	3.2	Keywo	ords	53
	3.3	Introd	uction	53
	3.4	Mater	ials and Methods	54
		3.4.1	Yeast strains and media	54
		3.4.2	SLAD mat assays	56
		3.4.3	Microscopy imaging and image processing	56
		3.4.4	Conditioned medium mat assays	56
		3.4.5	Nitrogen and glucose measurement	57
	3.5	Result	S	57
		3.5.1	Nitrogen limitation induces filamentous and invasive growth in mats	57
		3.5.2	Mat size and biomass increases with increasing ammonium sulfate .	60
		3.5.3	Filamentous growth is inhibited by a neighbouring mat $\ . \ . \ .$.	60
		3.5.4	Conditioned medium affects cell elongation in liquid culture but not invasive growth	61

		3.5.5	Effect of aromatic alcohols, ethanol, hydrogen sulfide and sulfite on	69
			yeast growing on SLAD mat assays	
	3.6	Discus	sion	66
	3.7	Fundi	ng	69
	3.8	Ackno	wledgements	69
	3.9	Supple	ementary Data	69
		3.9.1	Methods	69
4	Uno	lerstar	nding wine yeast invasive growth through transcriptional	
		lysis		72
	Con	textual	statement	72
	Stat	ement o	of Authorship	73
	Mar	uscript	: Transcriptional analysis of invasively growing wine strains of	
		Sacche	nromyces cerevisiae	75
	4.1	Keywo	ords	76
	4.2	Summ	ary	76
4.3 Introduction		76		
	4.4 Results and Discussion		78	
		4.4.1	Global change in gene expression between surface and invasively	
			growing cells	78
		4.4.2	Glucose import	80
		4.4.3	Carbohydrate metabolism / fungal-type cell wall organisation $\ . \ .$	80
		4.4.4	Medium-chain fatty acid biosynthesis pathway	81
		4.4.5	Genetic interaction network analysis predicts genes modulating invasive growth	82
		4.4.6	Protein interaction network analysis suggests Ssa2p as the major determinant of invasive growth	84
		4.4.7	Expression levels of transcription factor genes do not correlate with their previously reported involvement in invasive growth	86

		4.4.8	Cellular water homeostasis: aquaglyceroporin gene <i>FPS1</i> is required for invasive growth	88
4.5 Conclusions		isions	89	
	4.6	Experimental Procedures		90
		4.6.1	Yeast strains	90
		4.6.2	Genomic DNA preparation and PCR conditions	90
		4.6.3	Low nitrogen invasive growth assays	91
		4.6.4	Sample harvest and RNA extraction	91
		4.6.5	RNA sequencing and analysis	92
		4.6.6	Network analysis	92
	4.7	Ackno	wledgements	93
	4.8	Suppo	rting Information	93
		4.8.1	Tables	93
		4.8.2	Figures	97
5 Conclusions		ns	99	
	5.1	Summ	ary of findings	99
5.2 Contribution to knowledge		Contri	bution to knowledge	00
	5.3	3 Limitations and future directions		02
\mathbf{A}_{j}	ppen assa		Method development for mat formation and plastic adhesion 10	04
	A.1	Mat fo	$prmation assays \dots \dots$	04
		A.1.1	Reproduction of results by Reynolds and Fink (2001) and test mat formation ability of commercial wine yeast strains	04
		A.1.2	Evaluation of medium preparation methods for mat assays 10	05
		A.1.3	Evaluation of mat inoculation with cells at exponential growth phase 1	07
	A.2	Plastic	e adhesion assays	08

A.2.1	Refinement of staining and washing methods
A.2.2	Determination of the maximum absorption of Crystal Violet 109
	Method development for mat formation assays in a low
nitrogen n	nedium (SLAD) 111
B.0.1	Determination of inoculation rate
B.0.2	Preliminary study on the effect of sulfide on mat formation in $\operatorname{SLAD116}$
Appendix C	Attempt to construct $\triangle aqy1$ in AWRI796 119
C.0.1	Transformation with homologous recombination
C.0.2	Construction of $Kan {\rm MX}$ gene replacement cassette from a plasmid . 120
Appendix D	Supporting information for Chapter 4 121
Bibliography	146

Nomenclature

Term	Description
Biofilm	Surface-attached multicellular communities with an extracellular matrix including any related biofilm-forming ability tests such as mat formation and plastic adhesion
Mat	Thin layer of yeast biomass on low-density agar that resembles a film
Filamentous growth	Interchangeable with pseudohyphal growth, a form of growth as a colony that has a filamentous shape, usually contains chains of elongated cells
Filamentous mat	A mat that has a filamentous periphery
Invasive growth	A form of growth that penetrates agar
'Hub and spokes' mat	A flat mat that has raised cables radiating from the hub

 ${\bf NB}$ Filamentous growth and invasive growth are not ploidy-specific unless specified.

Abstract

This study investigated the morphological properties, environmental effects on and gene expression of biofilms, more specifically referred to as mats, formed by laboratory and commercial wine strains of *Saccharomyces cerevisiae*. Two morphological assays were conducted: mat formation and plastic adhesion. Mat features varied between strains and included various architectures, cellular morphologies, and incidence of invasive growth. One commercial strain, L2056, formed mats where a sector produced a distinctive mat morphology, which was retained when subcultured. In considering the role of biofilms in winery conditions, mat formation assays were also performed with grape pulp and adhesion to the soft plastic of common winery hoses. All strains grew invasively on all agar media and appeared to conduct fermentation on the grape-pulp mat assay. Some strains also had the ability to adhere to winery hose plastic. When only limited nitrogen was available, both laboratory and commercial wine strains formed mats with a subpopulation of cells that switched to filamentous and invasive growth. Such invasive growth was influenced by nitrogen concentration, the presence of a neighbouring mat, and by the addition of yeast metabolites. Ethanol and hydrogen sulfide were found to enhance invasive growth of cells within mats exposed to low levels of nitrogen whereas tryptophol and 2-phenylethanol suppressed this enhancement. Sulfite was found to delay overall mat growth. In an effort to understand the cellular decision to switch morphology, changes in the transcriptome of invasively growing cells were studied. In this analysis, 272 genes were identified to be upregulated and 84 genes were downregulated in invasively growing cells. Of the ten largest differentially expressed genes, four were genes encoding hexose transporters (HXT3, HXT4, HXT6 and HXT7) which had an increase in transcript abundance up to 13-fold. One hypothetical gene (AWRI796_5153) with a 6-fold increase in transcript abundance, has translation sequence homologous to an amidase domain. Following differential expression and Gene Ontology analysis, five GO categories represented the 37 significantly enriched GO terms in the upregulated gene set of invasively growing cells, these being glucose import, carbohydrate metabolic process, fungal-type cell wall organisation, medium-chain fatty acid biosynthetic process and cellular water homeostasis. Since cellular water homeostasis has not previously been associated with invasive growth, and four out of five genes in this group were found to be significantly upregulated in the invasively growing cells, further analysis of deletion mutants of each of these confirmed that FPS1, encoding the glycerol export protein, is required for invasive growth of yeast mats in low nitrogen conditions. In summary, this work reports the phenotypic properties of commercial wine yeast biofilms in

environments of both rich nutrient and low nitrogen, either in typical laboratory type agar media or in conditions simulating that of a grape or wine hose. The ability of these yeasts to form complex morphologies, grow invasively into grape solids and attach to winery hose plastic may confer their residency and survival in the vineyard and winery. The influence of different yeast metabolites and transcriptional changes in invasively growing cells provide further understanding of this morphogenetic program.

Declaration statement

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Ee Lin Tek

/ /

Acknowledgements

I would like to thank my supervisors, Prof Vladimir Jiranek, Dr Joanna Sundstrom and Dr Jennie Gardner, for their mentoring, guidance and encouragement throughout my candidature. Thanks to my independent advisor, Prof Steve Oliver, for the conceptual input and critiques for this project and the opportunity for me to undertake research at the University of Cambridge for 11 weeks. RNA-sequencing work would not be possible without Dr Andy Hesketh.

I wish to acknowledge the support from The University of Adelaide; scholarships and operating funds, these being the Adelaide Graduate Research Scholarship, the Research Abroad Scholarship, and the DR Stranks Travelling Fellowship provided by The University of Adelaide, and a Supplementary PhD Scholarship by Wine Australia. I would also like to acknowledge Dr Charles Boone (University of Toronto, Canada) for donating yeast strains in the Σ 1278b background.

I am grateful to be part of the Wine Microbiology and Microbial Biotechnology research group where the staff and students offered generous assistance. Particularly, I would like to mention Nick, for solving many technical issues; Michelle, for providing yeast strain I1 and sharing knowledge on yeast metabolism; Tommaso, for helping to acquire winery hoses; and Jin, for giving advice on molecular biology techniques. I also thank Louise, Max, former students, Gang and Danfeng, former visitors, Marine, Sydney, and Helene for their companionship during my study.

Special thanks to Jess and Lisa for listening and sharing life journey and experiences, Alfredo for inspiring me to keep going when I was losing determination, Henry and Neesha for all the laughs, Christoph for the excitements, Thomas and Lenna for their moral support, friends and fellow dancers for keeping my life balance.

Finally, great appreciations to my beloved family for their support, respect, and love.

Thesis overview and structure

Purposefully inoculated fermentations using commercial wine yeast are broadly implemented due to their success in completing fermentation efficiently and producing quality wine. Many commercial wine strains, usually *Saccharomyces cerevisiae*, were originally isolated from indigenous microflora of successful fermentations. These strains are now produced commercially and are widely available. Evidence suggests that the use of commercial strains leads to their presence and survival in the vineyard and winery. This could potentially lead to an alteration in native microflora in must and subsequently influence the regional character of wine. The mechanism of how these commercial yeasts remain in the winery environment is barely understood.

Biofilm formation is considered a survival strategy for many fungi and bacteria under harsh conditions. *S. cerevisiae* has been reported to be able to form biofilms, evidenced by the ability to grow into a mat and to adhere to plastic. These abilities have been investigated in not only laboratory strains, but also some clinical yeasts and yeasts isolated from wine grapes and must. It is likely that commercial wine yeasts also possess the ability to form biofilms which could drive their residency in the wine making environment. Current knowledge on yeast biofilms has focussed on the laboratory strain Σ 1278b which is not directly applicable to the understanding of wine yeast biofilms since they are substantially genetically different. The study of biofilm formation by commercial wine yeast and their characteristics is therefore warranted.

Given that biofilms are a multicellular growth form, and nitrogen is known to be essential for yeast proliferation, biofilm formation could be affected by nitrogen availability. Lack of nitrogen has been shown to induce a pseudohyphal (filamentous) and invasive growth response in yeast. Filamentous mats can be formed when cells are starved for glucose but the mat formation response to low nitrogen has not been reported. Filamentous and invasive growth responses can be manipulated by other environmental triggers and putative signalling molecules such as temperature, pH, atmosphere, preservatives and fusel alcohols. Studies have shown that cell-cell communication can occur in biofilm formation, but the involvement of this system in yeast, especially *S. cerevisiae* biofilms is poorly understood.

In a quest to understand wine yeast biofilms in greater details, the present study has three aims:

- 1. Investigation of commercial wine yeast biofilm-forming ability and characteristics;
- 2. Exploration of mat formation in low nitrogen conditions and the influence of putative quorum sensing or signalling molecules; and
- 3. Study the genetic regulation of wine yeast biofilms or related phenotypes.

This dissertation has been organised in several chapters to present background information, reports of studies to answer each of the aims, and a conclusion. Chapter 1 establishes the field of knowledge and summarises critical gaps for the present study. Areas of discussion include yeast biofilms and related morphological phenotypes, influence of nitrogen availability, and potential signalling molecules. Chapter 2 presents mat characteristics and plastic adhesion properties of commercial wine yeast strains which addresses Aim 1. Chapter 3 addresses Aim 2 where data involving mat formation of commercial wine yeast strains in a low nitrogen environment and the response to potential signalling molecules is presented. Based on the findings from Chapter 3 that describe invasive growth as the primary observation in low-nitrogen, Chapter 4 presents the investigation of transcriptional changes of invasively growing wine yeast. Chapter 5 is a summary of the main findings including how this work contributes to current knowledge, limitations and future directions of the work.

Chapters 2–4 are presented as unsubmitted work prepared in manuscript style. For consistency, the typing, format, and referencing styles have been adjusted. Numbering of figures and tables has also been modified according to the order in the dissertation. References from all chapters can be found in the Bibliography.