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Eilenodontines are one of the oldest radiation of herbivorous lepidosaurs

(snakes, lizards and tuatara) characterized by batteries of wide teeth with

thick enamel that bear mammal-like wear facets. Unlike most reptiles, eileno-

dontines have limited tooth replacement, making dental longevity

particularly important to them. We use both X-ray and neutron computed

tomography to examine a fossil tooth from the eilenodontine Eilenodon
(Late Jurassic, USA). Of the two approaches, neutron tomography was

more successful and facilitated measurements of enamel thickness and dis-

tribution. We find the enamel thickness to be regionally variable, thin near

the cusp tip (0.10 mm) but thicker around the base (0.15–0.30 mm) and nota-

bly greater than that of other rhynchocephalians such as the extant

Sphenodon (0.08–0.14 mm). The thick enamel in Eilenodon would permit

greater loading, extend tooth lifespan and facilitate the establishment of

wear facets that have sharp edges for orally processing plant material such

as horsetails (Equisetum). The shape of the enamel dentine junction indicates

that tooth development in Eilenodon and Sphenodon involved similar folding

of the epithelium but different ameloblast activity.
1. Introduction
The Rhynchocephalia are today represented by a single living species, the New

Zealand tuatara (Sphenodon punctatus), but during the Mesozoic they were

diverse and widespread [1–6]. In particular, the Eilenodontinae are known

from the Mesozoic of South America, North America and Europe [3,7–13].

As the earliest referred members are dated to the Late Triassic [11], eilenodon-

tines potentially represent the oldest radiation of herbivorous lepidosaurs

(snakes and lizards þ tuatara). They are characterized by deep jaws, broad

and closely packed teeth with conspicuous wear facets and unusually thick

enamel [7,8]. Their stout teeth possess relatively large bases, apparently

suited to withstand high loading and bending forces [1–3]. This dental appar-

atus was likely used in conjunction with a forward (proal) power stroke to

orally process food (chew) prior to swallowing [7,14]. Whereas, in the
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carnivorous Sphenodon, food is cut between longitudinal

flanges [14], in eilenodontines the food would likely be cut

between the hard enamel edges of opposing wear facets as

found in many living mammals [7,15,16]. Because rhynchoce-

phalians have limited or no tooth replacement [10,13,17,18],

the resistance of the teeth to fracture and wear is particularly

important.

Enamel thickness provides valuable information regard-

ing differences in diet, fracture resistance, developmental

history and phylogenetic affinity (e.g. [19–29]). A thicker

layer of enamel increases the amount of tooth wear that can

be endured and it enables a tooth to apply greater forces to

food items before fracture occurs [19,23,29]. Enamel thickness

can also indicate the contribution to tooth development made

by ameloblast activity rather than folding of the outer enamel

epithelium [28,30].

Although enamel thickness has been extensively studied

in mammals, particularly primates (e.g. [19,24,27]), quantitat-

ive comparisons of enamel thickness among reptiles remain

rare [31–34] and are essentially absent for lepidosaurs. The

enamel thickness of Eilenodon or other eilenodontines has

never been specifically measured. In Sphenodon, the enamel

is considered to be relatively thin and removed fairly rapidly

from locations subject to tooth wear (e.g. [14,35]). Estimates of

thickness based on mesiodistal sections suggest that it is

between 0.07 and 0.13 mm thick [36–38]. Similar sections

through the post-hatchling (additional) tooth of a small

fossil rhynchocephalian, Sphenocondor from the Jurassic of

Argentina, suggest an enamel thickness of between 0.03

and 0.04 mm ( [39], fig. 3d ). In both taxa, the distribution of

the enamel broadly resembles that of Alligator, with a rela-

tively even distribution that shows some thickening

towards the cusp tip [31,32].

Both X-rays and neutrons can be used to characterize the

three-dimensional shape and internal structure of fossil

material [40], but to date the former has been used far

more extensively. X-ray computed tomography (X-ray CT)

has been used by vertebrate palaeontologists for over 30

years (e.g. [20,21,41–43]). As high powered computers have

become increasingly accessible, it has become a widely used

and familiar approach for investigating hidden anatomical

details (e.g. [44–46]), facilitating shape quantification (e.g.

[47]), rendering vacuities (e.g. [48,49]), generating composite

computer reconstructions [48,50], building biomechanical

models (e.g. [51]) and isolating the enamel and dentine com-

ponents of fossil teeth [24–26,52–55]. Neutron tomography

has also been available for many years [56,57] and success-

fully used on plant fossils [58,59], but has only rarely been

used for vertebrate fossil material and, rarer still, for quanti-

tative analyses [60–67]. Given that X-rays and neutrons

show different degrees of attenuation per chemical element

([60]; electronic supplementary material, figure S1), the two

methods will likely provide different results for the same

sample [58]. X-ray attenuation generally increases with

atomic number and essentially measures density. The

relationship between neutron attenuation coefficients and

atomic number has no simple theoretical model, and neu-

trons can pass through many dense elements relatively

easily [58,66]. Therefore, as very recently shown in some

fossil primate teeth [68,69], it is possible that neutron tom-

ography may be more informative than X-rays for fossil

teeth where the different dental tissues have mineralized

with similar density.
Here, we study a rare unworn dentary tooth of the eileno-

dontine Eilenodon (Upper Jurassic of North America) to better

understand the dentition of eilenodontines and compare the

potential of X-ray and neutron CT for measuring enamel

thickness in fossil reptiles.
2. Material and methods
2.1. Materials
The dentary tooth is part of the material referred to Eilenodon
robustus by Foster ([9]; DMNH EPV.10685), but it was not itself

figured or specifically described. The material mainly comprises

partial jaws and derives from Green Acres, eastern part of

Garden Park, Colorado, USA, which exposes part of the Upper

Jurassic Morrison Formation. The material was mainly collected

from the surface (Bryan Small 2002, personal communication)

and seems to represent a single adult individual. The tooth

itself is relatively large for a lepidosaur: 4.7 mm labiolingual

width, 3.3 mm mesiodistal length and approximately 4.2 mm

apicobasal height (coronal height) (figure 1). The outer enamel

surface of the tooth is also relatively complex for a lepidosaur,

being bulbous and labiolingually wide with numerous conspicu-

ous apicobasal ridges around the base. The cusp tip is pinched,

laterally inclined, and gives rise to four subtle crests that run

towards each corner of a dumbbell-shaped tooth base (a pheno-

type described as ‘crosslophed’ in [8]). The anterolingual crest is

particularly prominent and forms a shoulder that contributes to a

concave anterior surface. It is equivalent to the ‘medial crest’ of

Toxolophosaurus [7] and probably also to the ‘shoulder’ [70],

‘medial flange’ [35] or ‘anteromedial flange’ [14] of other rhynch-

ocephalians such as Sphenodon, and Cynosphenodon from the

Early Jurassic of Mexico [35], and Opisthias also from the

Upper Jurassic of USA [7]. The ventral edge of the anterolabial

corner is damaged and there is a crack that extends internally

from this.

The Eilenodon tooth specimen’s shape, size and absence of

wear compared to the other available dentition (figure 1c)

suggest that it is almost certainly the posteriormost tooth from

the left tooth row. Therefore, given how the dentition of rhynch-

ocephalians is assembled, it is the youngest tooth in the tooth

row (e.g. [70]). In more anteriorly placed teeth, a single continu-

ous wear facet would be present on the apical and labial surface

due to abrasion from the palatine and maxillary teeth, respect-

ively [7,8].

Comparative material mainly comprised an adult Sphenodon
(SAMA 70524) with relatively unworn posterior dentary teeth.

2.2. X-ray and neutron computed tomography
The specimen was X-ray scanned at Adelaide Microscopy using a

Skyscan 1072 (Bruker, Billerica, MA, USA). It was held in place

using a specially cut piece of polystyrene and scanned using

the following parameters: 100 kV; 80 mA; 0.5 mm focal spot;

1601 projections and a pixel size of 6.5 mm (0.065 mm). To

reduce the effects of beam hardening, the X-rays were filtered

with a 1.0 mm thick aluminium plate. Tomographic reconstruc-

tion of the raw data was performed in Bruker NRecon

v.1.6.10.2 using a beam hardening correction 100%, ring artefact

correction 20 with a dynamic range of 0.015–0.150, producing

801 16-bit TIFF slices.

The specimen was neutron scanned using DINGO, the

Radiography/Tomography/Imaging Station at the Australian

Centre for Neutron Scattering, Australian Nuclear Science

and Technology Organisation, Sydney. The DINGO instrument

uses a quasi-parallel collimated beam of thermal neutrons gener-

ated by the OPAL research reactor. The specimen was scanned

with a collimation ratio (L/D) of 1000 [71,72] to ensure the highest
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Figure 1. The left posteriormost tooth of Eilenodon (DMNH EPV.10685).
(a) Anterior and (b) posterior stereopairs of the unworn isolated dentary
tooth. (c) Anterodorsal view of a partial left dentary showing the apical
and labial wear facets. Scale bar ¼ 2 mm.

(a)

(b)

(c)

(d)

(e)

( f )

0.144 1.155

0.0950.015

Figure 2. Sections of the left posteriormost tooth of Eilenodon (DMNH
EPV.10685) made using X-ray CT and neutron tomography. (a) Computer
models showing the location of the coronal, horizontal and mesiodistal sec-
tion. (b) Final segmented model based on neutron attenuation. (c) X-ray
results. (d ) Neutron results. (e) X-ray results coloured according to attenu-
ation. ( f ) Neutron results artificially coloured according to attenuation.
Scale bar ¼ 2 mm.
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available spatial resolution, where L is the neutron aperture-to-

detector length and D is the neutron aperture diameter. The speci-

men was wrapped in aluminium foil and inserted into a

purposely prepared aluminium holder. The field of view was

set to 50 � 50 mm2 and scan time was 36 h with spatial resolution

of 26 mm (0.026 mm). Neutrons were converted to photons using

a 6LiF/ZnS(Ag) scintillator; photons were then detected by an

Andor IKON-L CCD camera (liquid cooled, 16-bit, 2048� 2048

pixels) coupled with a Makro Planar 100 mm Carl Zeiss lens. A

total of 1440 projections with an exposure length of 90 s were

obtained every 0.258 as the sample was rotated 3608 about its

vertical axis with an exposure length of 90 s. Tomographic recon-

struction of the raw data was performed using Octopus

Reconstruction v.8.8 (Inside Matters NV). Slices were kept at 16-

bit. The dataset was despeckled to smooth the image by replacing

aberrant values by the mean value of their neighbours. An aniso-

tropic diffusion filter was applied to further reduce noise while

enhancing edge-contrast. To determine the value of a voxel, the

algorithm compares the value of that voxel with the value of its

six neighbours. If the difference does not exceed the diffusion

stop criterion (3327), diffusion is applied. The algorithm was iter-

ated five times.

Both datasets were examined using AVIZO 8.01 (Visualisation

Science Group, SAS). In AVIZO, the datasets were aligned so that

precisely comparable sections could be compared (figure 2).

Computer models of the outer external surface of the tooth

were made using both datasets. Both datasets showed three

internal tooth components consistent with enamel, dentine and

pulp. However, the enamel–dentine junction was only distinct

enough for meaningful segmentation in the neutron dataset. As
is typical for fossil specimens, this segmentation was achieved

using a combination of thresholding and manual editing (e.g.

[73]). First, a threshold was applied to capture the entire tooth

that successfully represented the appearance of the outer external

surface. Second, a threshold was applied to isolate the majority of

outer voxels (enamel). Third, thresholding was used to delimit

the boundary between the middle layer (dentine) and the inner

cavity (pulp). Fourth, each layer was visually inspected and iso-

lated voxels were added to the surrounding material. The ventral

margin of the enamel was also extended to include some voxels

that were particularly dense relative to more obvious dentine.

Fifth, the base of the pulp cavity was defined with a near horizon-

tal line between the ventralmost preserved enamel and dentine

(electronic supplementary material, protocol).

Enamel and dentine thickness were measured using the AVIZO

thickness module which measures the distance between oppos-

ing triangles in the mesh of an unsmoothed (existing weights)

surface file of the neutron dataset segmentations. This approach

provides a histogram of surface element number by underlying

enamel thickness.

http://rsif.royalsocietypublishing.org/
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The Sphenodon (SAMA 70524) specimen was scanned with the

following parameters: 100kV; 400 mA; 1199 X-ray projections and a

pixel size of 25 mm (0.025 mm). A molybdenum target was used

with a 0.5 mm Al filter to maximize contrast in the specimen.

Volume reconstruction of the micro-CT data was performed using

the PHOENIX DATOSjX reconstruction software (GE Sensing & Inspec-

tion Technologies) and data were exported as 32-bit float volume

files. Computer models of the outer enamel surface were made in

AVIZO using thresholding to measure tooth shape. Although the

outermost edges of the teeth comprised denser material that

likely represents enamel, the boundary between enamel and

dentine is not very clear and precludes adequate segmentation.

linear (radial coefficient ) linear (margin coefficient )

Figure 3. The relationship between coefficient c and tooth shape with
respect to tooth height divided by radius. The experimental results in
Barani et al. [74] as given in their fig. 5 yield the following plot for the
increase in the coefficient with change in h/R. A bunodont tooth is given
an h/R of 0.5. For h/R . 3.0, the coefficients would begin to plateau. For
unworn posterior teeth, Sphenodon has an h/R value of between 1.95 and
2.32, whereas Eilenodon has an h/R close to 2. (Online version in colour.)
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2.3. Force resistance
Teeth are essentially composed of a hard but brittle shell

(enamel) and a tough but deformable interior (dentine) capable

of sustaining frequent loading [29]. The two main possibilities

for crown fracture depend on whether the load is (i) concentrated

over a small contact area, in which case the fracture load estimate

assumes that the enamel will flex on the underlying dentine, so

producing a radial crack that runs from inside-out, or (ii) spreads

over a large area of the crown, in which case the failure zone is

likely to start low down on the crown around the margin of the

base. The resistance of the crown to fracture is dependent on

tooth size (R, the tooth radius at the crown base), the thickness

of the enamel t, its toughness Kc and a dimensionless coefficient

c related to tooth shape. The peak force at fracture is [29]

F ¼ cKcRt0:5 ð2:1Þ

The value of the coefficient c depends on tooth shape: for

low-crowned teeth, it is 6–8 [29], depending where fractures

initiate, but it rises with crown height to reach 50–55 for

pencil-like or hypsodont teeth [74]. An estimate can be made

for adult Sphenodon using the dimensions of three unworn pos-

terior dentary teeth (electronic supplementary material, table

S1): a mean radius (R) of approximately 0.88–0.98 mm (elec-

tronic supplementary material, table S1) and apicobasal height

(h) of 1.7–2.2 mm (electronic supplementary material, table S1)

gives a h/R between 1.95 and 2.32 (electronic supplementary

material, table S1) and therefore a c of between 17 and 42

(figure 3; electronic supplementary material, table S2). Enamel

thickness is approximately 0.11 mm (range 0.08–0.14 mm)

[36,37], while Kc is 0.21–0.32 MPa m0.5 [38]. Equation (2.1) pre-

dicts a maximum sustainable force of one dentary tooth to be

33–143 N (electronic supplementary material, table S3). This

range of values is broad but also explicit. The teeth have half

the resistance to radial cracks than they do to marginal cracks

(regardless of toughness), and the higher value for toughness

is associated with an approximately 50% greater estimated

force resistance. Estimates based on enamel thickness of 0.11

and 0.13 mm differ by approximately 10%, whereas variation

in estimates among the three teeth due to differences in tooth

shape is consistently less than 25% (when toughness and crack

type are kept constant).

Estimates of critical loading for teeth may permit estimates of

bite force. For wild adult Sphenodon, the maximum bite force

measured at the front of the mouth is 175–275 N [75]. Bite

forces may be twice as great at the posterior end of the tooth

row due to lever mechanics [76]: approximately 550 N. Therefore,

the maximum possible bite forces are much greater than the criti-

cal failure for one dentary tooth. However, such forces would

very likely be shared across multiple teeth due to the shape of

the jaws, arrangement of tooth rows and because the greatest

loading may not be applied until the jaws are fully engaged

[14,77]. Moreover, some specimens of adult jaws of Sphenodon
do exhibit broken tooth crowns which probably represent

instances where loading from a particularly forceful bite was
concentrated on an unusually small number of teeth. Available

measurements suggest that the greatest anterior bite forces poss-

ible (275 N) are 1.9 and 8.4 times greater than the highest and

lowest critical load estimate for the posterior dentary teeth,

respectively.

To estimate critical loading for the unworn dentary tooth

of Eilenodon, we use the same enamel toughness as reported

for Sphenodon [38], but measure the enamel radius, and enamel

thickness from the surface models of the unworn tooth of Eileno-
don generated using neutron CT. To provide a very general

estimate for the anterior bite force of Eilenodon, we apply the

relationship found in Sphenodon between anterior bite force in

Sphenodon and critical loading of a posterior dentary tooth.
3. Results
3.1. Comparison of scanning methods
Both the X-rays and neutrons are successful at representing

the outer enamel surface. The X-ray dataset reveals more

detail due to the greater resolution; nonetheless, all major fea-

tures are visible in the neutron model (e.g. the anterolingual

shoulder, the apicobasal ridges, the acuminate cusp tip and

the posterior ridge). The monochrome models make it

easier to appreciate the surface detail than photographs of

the fossil which is a mottled black, white and blue.

The X-ray dataset is inadequate for interpretation of the

enamel dentine junction (figure 2b,c). In the attenuation dis-

tribution, there is a broad peak between 0.025 and 0.10

which encompasses most of the voxels corresponding to

tooth tissues (figures 2c and 4a, and table 1; electronic

supplementary material, table S4): enamel (0.0191 to approxi-

mately 0.0791 with most values above 0.0493), pulp (0.0551

and 0.0837) and dentine (approx. 0.0722 or greater). The

boundary between enamel and dentine is rarely distinct, and

in most regions, it is not possible to tell where one material

ends and the other begins (figure 2b,c). There are also some

clusters of voxels with values greater than 0.01066 which

appear to lie within the dentine against the boundary with

the enamel. However, they are not continuous enough to

permit meaningful separation of the two components.

Neutrons are more effective than X-rays at revealing the

internal structure of the tooth despite the neutrons having

http://rsif.royalsocietypublishing.org/


enamel

enamel

pulp

pulp

attenuation

0 0.1750.1500.1250.1000.0750.0500.025

10 000 000
no

. v
ox

el
s

1 000 000

100 000

10 000

1000

100

10

1

10 000 000

no
. v

ox
el

s

1 000 000

100 000

10 000

1000

100

10

1
0 2.001.71.501.251.000.750.500.25

dentine

dentine

(a)

(b)
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coloured blocks indicate the typical attenuation values of particular dental
components in the fossil specimen. Attenuation values for the different
dental tissues are relatively distinct in the neutron dataset but not that of
the X-ray dataset. (Online version in colour.)

Table 1. Attenuation values that typically represent particular tooth
components.

material X-ray dataset neutron dataset

enamel 0.0191 to approximately 0.0791 0.5199 – 1.0399

dentine 0.0722 or more 1.0254 – 1.5887

pulp 0.0551 – 0.0837 0.2311 – 0.9243
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Figure 5. Enamel thickness frequency according to the surface element
number of an unsmoothed surface model of the enamel as segmentation
of the neutron CT dataset. The colour gradient is the same as used for
figure 6d. The data are binned at intervals of 0.026 mm which corresponds
to the isometric voxel dimensions.
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lower resolution measurement (figure 2d,e). In the attenu-

ation distribution of the neutron dataset, there are distinct

peaks at 0.35 and 1.15, as well as a more subtle peak at

0.76 (figures 2e and 4b, and table 1). The majority of the

enamel has an attenuation of between 0.72 and 1.01, but

also includes voxels with a wider range of attenuations

(0.51–1.04). There are also two regions of material (one in

the posterolabial corner and the other at the base of the ante-

rolingual shoulder) with very high attenuation values (1.30–

1.70) that are interpreted to be part of the enamel. Attenu-

ation within the dentine is generally between 1.04 and 1.30,

but there are also a few regions where it approaches 1.70.

The boundary used to delimit adjacent enamel and dentine

during segmentation was 1.0399. The material in the pulp

cavity is typically between 0.23 and 0.58, but near the bound-

ary with the dentine it is close to 0.87 and the boundary itself

inferred during segmentation was 0.9185.

3.2. Tooth anatomy
The neutron dataset shows that enamel is a major component

of the tooth. For the portion of tooth preserved, the volume of

enamel is 6.60 mm3, dentine 14.15 mm3 and pulp cavity

5.54 mm3. Therefore, the enamel volume is nearly equal to

half that of the dentine (47%). Based on neutron data, the

modal enamel thickness in Eilenodon is approximately

0.20 mm thick (figure 5), but the thickness is surprisingly

uneven and generally between 0.15 and 0.30 mm (figure 6).

The enamel is thinnest at the cusp tip (less than 0.10 mm)

and thickest at the apicobasal ridges (0.30–0.50 mm)

(figure 6c,d ). The apicobasal ridges present on the lingual
and posterior surface of the tooth are not present at the

enamel dentine junction and, therefore, represent thickened

enamel (figures 2d,e and 6c). The dentine without the

enamel (figure 6e) bears a close similarity to the overall

tooth shape (figure 6e,f ): there is an obvious anterolingual

shoulder, an anterolabial corner (although obscured by

damage), a clear posterolingual corner and a posterolabial

corner. In addition, there is an apicobasal ridge running

along the posterior midline. The dentine is generally between

0.40 and 0.80 mm thick with the thickest portions being along

the corner ridges and posterior ridge. A segmentation of the

pulp cavity reveals a pyramid-like structure with four crests

running to each corner, an expanded anterolingual shoulder

as well as a posterior apicobasal ridge (figure 6g).

3.3. Force resistance
Using the measurable properties of the fossil tooth (enamel

thickness, size and shape), we estimate that the dentary

teeth of Eilenodon had 2.3–3.1 times the resistance to fracture

than those of the modern Sphenodon. For Eilenodon, we know

that the posterior teeth have a crown radius of approximately

0.002 mm, an unworn apicobasal height of 4.2 mm and,

therefore, a h/R of between 1.9 and 2.1 (electronic sup-

plementary material, table S5) and c of between 17 and 36.

The h/R of Eilenodon and Sphenodon is similar because

although the teeth of Eilenodon are relatively wider labiolin-

gually, they are also relatively short mesiodistally and the

proportional unworn apicobasal height is similar. If we use

the modal thickness of 0.20 mm and assume that the teeth

of Eilenodon have the same enamel toughness as Sphenodon
[38], we obtain a critical load estimate of 101–325 N per

tooth (electronic supplementary material, table S5); it was
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33–143 N in Sphenodon. As in Sphenodon, the load would be

spread across multiple teeth. Assuming that the relationship

between anterior bite force and the resistance to fracture for

an individual unworn dentary tooth present in Sphenodon is

the same for Eilenodon (1.9 and 8.4 times greater than the

highest and lowest critical load estimate for the dentary

teeth, respectively), we would predict a maximum anterior
bite force of 625–843 N for Eilenodon. This estimate is much

greater than Sphenodon (275 N) but not entirely unreasonable,

given that Eilenodon is much larger than Sphenodon (maxi-

mum skull length ¼ 110 versus 70 mm) [2,13]. If Eilenodon
possessed the same relationship between skull length and

bite force as Sphenodon [75], animals with a skull length of

110 mm would have an anterior bite force close to 500 N.
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Figure 7. Hypothesis of tooth development in Eilenodon following enamel thickness and tooth development in other amniotes. (a) Early stages of tooth devel-
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Lizards with skull lengths of approximately 100 mm (Salvator
merianae and Dracaena guianensis) are reported to have

anterior bite forces of approximately 500 N [78]. It is possible

that the maximum bite force of the largest individuals of

D. guianensis are underestimated given the relationships

shown in figures 1 and 3 in Schaerlaeken et al. ([78], fig. 3).

Overall, this result highlights the need for wider surveys of

bite force among living lepidosaurs and a greater under-

standing how bite force relates to tooth structure.
4. Discussion
Once again, examination of a fossil member of Rhynchoce-

phalia highlights the diversity of this group and

demonstrates that Sphenodon is not necessarily representative

of its Mesozoic relatives [2,12]. The greater enamel thickness

in Eilenodon, compared with the smaller Sphenodon (and smal-

ler still, Sphenocondor), may be related to scaling but

examination of additional Rhynchocephalia, such as Clevo-
saurus from the Triassic of the UK [18], are required to test

this hypothesis. Nevertheless, the tooth enamel thickness of

Eilenodon appears to be greater than that of crocodylians

[31,32] and some dinosaurs [33]. Wider surveys of other

reptiles including unusual taxa such as herbivorous crocody-

lians [79] and aquatic placodonts [46] are necessary to fully

appreciate the macroevolution of enamel thickness in

amniotes. The relationship between enamel thickness and

enamel microstructure [80] also requires further investigation.

The differences in enamel thickness between Eilenodon and

Sphenodon likely reflect different functional demands. Com-

pared to Sphenodon, and in combination with the greater tooth

size, the thicker enamel around the base of the tooth in Eilenodon
would have been able to sustain up to three times the load before

failure due to a marginal crack. Also, as previous authors have

discussed, the thickened enamel also permits the establishment

of long-lasting wear facets that have sharp edges for shredding

tough material [2,3,7,8]. The relatively thin enamel at the tooth
cusp tip in Eilenodon may be necessary for enabling the func-

tional wear facets to be acquired as early as possible.

The apicobasal ridges on the outer surface of teeth are not

unique to Eilenodon but can be found in many vertebrate taxa

(e.g. [81–83]), including other Rhynchocephalia (e.g. [84], but

not Sphenodon [35]). The ridges would provide enhanced

tooth penetration [81,82], greater grip [83,85] and additional

abrasive edges for reducing food items [82], and they may

have helped transfer stresses from the cusp tip [83,86]. The

fluting between the ridges would help remove fluids and

food fragments from the cutting surfaces of the teeth [82,87].

Eilenodon would have likely fed on a range of herbaceous to

arbustive plants, and perhaps opportunistically the odd insect,

but a potentially preferred food source known from fossil

remains in the Morrison Formation was likely to be Equisetum
(horsetails). Extant members of this genus are rich in energy,

protein and phosphorous, and are easy to digest [88,89]. How-

ever, even in the earliest forms [90], extensive silica deposition

in the outer tissues of the stems serves to stiffen them, making

it potentially abrasive [91]. Deep to this outer layer is a region

of softer tissue with high toughness encountered around the

vascular bundles. Subdivision of the stem requires bladed

teeth, which Eilenodon seems to have acquired via wear facet for-

mation. However, by the time this vascular region is loaded, the

stem tissue will have spread itself over the crown. When contact-

ing the outer crust, the enamel will tend to flex on the underlying

dentine below the point of contact, potentially producing

dangerous radial cracks running out from the enamel–dentine

junction towards the tooth surface. As the vascular bundles

are cut, any potential cuspal fractures would be suppressed by

the highly compressive stress field produced by a smothering

food contact. Failure zone is then likely to start low down the

crown in the enamel around the margins of the crown base [29].

The thicker enamel would also prolong crown life by

increasing resistance to enamel wear. This depends on the

relative hardness of abrasive (plant silica in this case) and

enamel, the angle of contact and on the toughness of

enamel. Phytoliths in extant plants have an upper hardness

http://rsif.royalsocietypublishing.org/
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limit of 2–3 GPa [92–95], while the hardness of mammalian

enamel ranges from 3 to 6 GPa, increasing towards the tooth

surface [96]. This makes plant silica a rubbing agent on mam-

malian enamel, only indirectly capable of removing enamel

tissue from multiple contacts on a plastically deformed

enamel surface. In prismless reptilian enamels, however,

hardness is lower, typically being approximately 3–4 GPa

[32,37,97], which reflects its lower mineral content

[32,38,98]. Furthermore, the toughness of Sphenodon enamel

is much lower than that of mammals [99], also making

plant silica much more of an abrasive threat.

The internal structure of the tooth can also allow us to

hypothesize how the tooth formed given what we know

about tooth development in extant taxa (e.g.

[28,30,100,101]). The major features of the outer external sur-

face that are also visible at the enamel–dentine junction and

pulp cavity are likely due to folding of the epithelium: the

cusp tip, four crests, four corners, anterior concavity and pos-

terior ridge. However, the bulbous nature of the teeth

associated with uneven enamel thickness and apicobasal

ridges around the base of the tooth are due to uneven

enamel deposition by ameloblasts (figure 7). Uneven depo-

sition is how the bicuspid teeth develop in skinks [102] and

geckos [30,100,101]. Despite the labially inclined cusp tip

and wider labiolingual dimension [3], the pyramid-like

shape of the dentine and pulp cavity of Eilenodon resembles

the outer surface shape of the posterior dentary teeth of phy-

logenetically nested rhynchocephalians that have thin enamel

[35], including Sphenodon, Cynosphenodon and, in particular,

Opisthias. Therefore, the major differences between eileno-

dontines and these other rhynchocephalians are likely due

to differences in ameloblast activity rather than initial folding

of the epithelium prior to differentiation.

We have shown that in at least some instances (see also

[69]), neutron tomography may provide favourable contrast

compared to X-ray tomography and, therefore, warrants

greater use among palaeontologists than practiced to date

(e.g. [72,103]). Given the variation in resolution among differ-

ent X-ray and neutron scanners, as well as in the composition

of fossil specimens, our comparison of the two approaches is

not comprehensive. The neutron tomography used here does

not have the same resolution (and likely accuracy) as the X-

ray tomography used elsewhere for primates (e.g. [52]). Never-

theless, the differences we found seem related to differences in

attenuation within a specific specimen, and not resolution (cf.

[69]). Other fossil material from the Morrison Formation may

respond in a similar way to the specimen examined here, but

the Formation is extensive (approx. 1.5 km2) and mineralis-

ation may vary considerably among localities [104]. X-ray CT
has been used successfully to isolate bone [44] and plant

material [89,105] from the surrounding matrix of this rock

unit. However, to our knowledge, examination of dental tis-

sues in other specimens has not yet been attempted.
5. Conclusion
Neutron CT successfully allowed enamel and dentine to be dif-

ferentiated within the fossil tooth despite the boundary being

unclear in higher-resolution X-ray tomography. This example

(along with [69]) highlights the potential of neutron tomogra-

phy as a viable alternative to conventional X-ray

tomography. We show that Eilenodon has enamel which is

twice as thick as that of Sphenodon, but it is unevenly distribu-

ted. The thick enamel around the main body of the tooth would

resist marginal cracks and, along with tooth size, facilitate criti-

cal loading two to three times greater than calculated for

Sphenodon. The relatively thin enamel at the tooth cusp tip in

Eilenodon may be necessary for enabling the long-lasting func-

tional apical wear facets to be acquired as ontogenetically early

as possible. The shape of the enamel dentine junction indicates

that tooth development in Eilenodon and Sphenodon involved

similar folding of the epithelium, but were different with

respect to ameloblast activity.
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