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Abstract 

Comprehension of the character and stratigraphic architecture of sedimentary 

rocks in the subsurface is derived from the observation of modern depositional 

processes on the surface of the Earth and field-based studies of similar depositional 

systems exposed in outcrop. In Australia’s Eromanga Basin, the Murta Formation is 

a substantial hydrocarbon reservoir; however it does not outcrop, data from wells are 

sparse and the depositional setting has previously been interpreted to be both 

continental lacustrine and marginal marine.  

Through extensive field and laboratory work, both for the Murta Formation and 

depositional analogues, this study investigates and discusses the sedimentology, 

stratigraphy and provenance of the Murta Formation in the Eromanga Basin. Murta 

Formation sediments were deposited in the Lower Cretaceous during the Berriasian 

to Valanginian, a key time of increased variation in global eustacy, continental 

breakup, climate change and just after a catastrophic mass extinction event at the 

Jurassic-Cretaceous boundary. Core investigations reveal that the Murta Formation 

is primarily composed of fine sands and muds, often arranged in coarsening up 

parasequences that become increasingly sand-dominated up section. The Murta 

Formation thickens over the Patchawarra and Poolowanna troughs, suggesting a 

basin depocentre in this area. Two basin-wide transgressive-regressive events are 

interpreted to have occurred and these most likely correspond with marine incursion 

in the Upper Murta Formation as the Eromanga Basin transitioned from continental 

lacustrine to marginal marine conditions. Zircon data indicate that sediments are 

sourced from mature cratons and younger volcanic provinces. This implies that the 

potential for unexplored reservoir presence on the western side of the basin is 



substantial, as mature, clean sands in were most likely deposited there in proximal 

deltaic environments. 

This project was motivated by research questions arising from the discovery 

of the Cuisinier Field, which unexpectedly yielded hydrocarbons in a new facies type 

within the Murta Formation. Sands within the Cuisinier system most likely represent 

a delta system deposited during a basin-wide marine regression and transgression 

event. As data for the Murta Formation are sparse, fluvial terminations in low 

accommodation basins are not widely-studied and marine transgressions in 

epicontinental seaways tend to be complex, analogue studies were also conducted. 

Lake Yamma Yamma in central Australia was investigated as it includes a 

substantial area of fluvial termination deposits at the main lake inlet, and has a 

similarly low-gradient basin setting to that of the Murta Formation. The 

geomorphology and sedimentology of deposits at the Lake Yamma Yamma site 

were described in detail, and controls on deposition interpreted. Based on this 

analogue study and literature review, ideas around the theme of fluvial termination 

deposits in a low gradient basin setting were applied to interpretation of the Murta 

Formation. The Dakota Formation, deposited at the initiation of the Cretaceous 

Western Interior Seaway, in Colorado, USA, was considered in detail at a specific 

outcrop locality and used as an analogue for the Murta Formation because it 

comprises a net transgressive system preserving internal transgressive and 

regressive cycles. Overall, the transgression was complex and piecewise. The size 

and shape of the deltaic features are similar to those observed in core in the Murta 

Formation, so thus provide a useful indicator for likely facies arrangements, as well 

as reservoir connectivity and geometries in the Murta Formation.   

These new studies of deposits in modern and outcrop localities, in 



combination with published literature, allowed an improved facies model to be 

developed for the Murta Formation. They also provide new insights into previously 

unstudied deposits, and contribute to aspects of research focus that are presently 

understudied. Lake Yamma Yamma has not previously been the focus of any papers 

despite being the largest playa lake in Queensland, Australia, and containing a 

substantial dryland terminal fluvial deposit, features often interpreted in the ancient 

record but not well studied in modern environments. As a part of this research, a new 

classification scheme to aid in the description and interpretation of dryland fluvial 

termination deposits is proposed. Although the Dakota Formation has been the focus 

of previous studies, the particular locality studied in this thesis has not been 

described in detail or assigned a comprehensive stratigraphic framework. As well as 

providing a detailed description of the sedimentology and a stratigraphic framework 

for the study area, this study also contributes new detrital zircon ages, which enabled 

an improved understanding of regional paleogeography. Furthermore, deposits 

preserved as a result of transgressions of epicontinental seas are not well 

understood and with no observable modern analogues, the detailed process-based 

understanding contributed by this study is very important in understanding similar 

deposits in the subsurface. In addition to contributing new perspectives on the Murta 

Formation of the Eromanga Basin, dryland fluvial termination deposits and the 

Dakota Formation of the Western Interior Seaway, the results of this thesis will 

provide a useful resource for the interpretation of similar systems in the geologic 

record. 
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Chapter 1: Contextual Statement 
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This thesis contributes an improved understanding of marginal lacustrine and 

marginal marine deposits, with a final focus on marine incursions. Understanding the 

nature and character of marine incursions is necessary for reconstructing Earth 

history. Identifying these through distinction between lacustrine and marine deposits 

is generally not well documented, and is often difficult. Understanding the nature of 

deposit composition and architecture in relation to marine transgressions is important 

for formation of consistent basin-wide stratigraphic models, which are an important 

tool in hydrocarbon exploration and development. The existing limited range of well-

studied examples do not capture the scale or complexity of transgressions in eperic 

and epicontinental seaways, or the complex nature of the transgressions that 

occurred in the Cretaceous, in part due to climate change. This thesis contributes 

analysis of sub-surface, outcrop and modern deposits in order to develop an 

improved understanding of the nature and character of marine incursions into a 

marginal lacustrine environment in a low-gradient depositional basin during the 

Cretaceous. This work is intended to fill a knowledge gap in the understanding of 

Eromanga Basin fill, as well as to provide case studies that contribute to knowledge 

gaps relevant to the wider geoscience community. 

This study was initially motivated by the 2008 discovery of a new hydrocarbon 

accumulation. This discovery in the Murta Formation of the Eromanga Basin 

challenged long-held models regarding the nature and character of the Murta 

Formation. The Eromanga Basin, an important resource for Australia, covers more 

than one-fifth of the Australian continent (over a million km2), contains the country’s 

largest and most important aquifer and is the most prolific onshore hydrocarbon-

producing province. This study is the first to examine this reservoir target in detail. 

Examples of sedimentation style are explored and the broader significance of the 
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depositional setting is considered. The goal of this work is to develop a more 

complete picture of the Cretaceous Murta Formation in the Eromanga Basin from a 

sedimentologic perspective, with a view to improve petroleum exploration and 

development.  

The study focus includes, but is not limited, to: 

 process-based sedimentology and depositional environments,

 reconstruction of depositional processes and paleogeography,

 sequence stratigraphic interpretation and significance,

 regional provenance and trends,

 scale and distribution of depositional elements.

The study is based on the following research problems: 

- What is the nature of fluvial terminations in low accommodation basins? Is

there any way of classifying and comparing these? What are the key sedimentary 

characteristics, depositional settings and sand-body geometries in these settings? 

- What is the nature of marine transgressions in epicontinental seaways?

Particularly as the transgression commences; what are the sedimentary features, 

depositional processes and preserved geometries? 

- What was the depositional setting and paleogeography of the Murta

Formation? Was deposition dominated by marginal marine or lacustrine conditions? 

What was the depositional nature of the formation across the basin and what are the 

key controls on deposition? 
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The Murta Formation in the Eromanga Basin does not outcrop in a way that 

allows for meaningful study. Interpretation relies on sparse well data, the quality of 

which is varied. To complement available data and published literature, two 

analogue studies were undertaken: the well exposed Quaternary sediments of the 

Kati Thanda- Kati Thanda- Lake Eyre Basin, Australia; and Cretaceous outcrop of 

the Uncomprahange Plateau, Colorado USA. These make for natural laboratories in 

which to examine sedimentary features and depositional environments, with 

similarities to those in the Eromanga Basin, which cannot be viewed directly in the 

subsurface. 

Following this contextual statement this thesis is divided into an initial 

literature review, four data chapters containing original research and a conclusion. 

All chapters focus on understanding certain aspects of the Murta Formation, both 

directly and through the study of analogous deposits. This thesis is confidential to the 

sponsoring company for three years from the submission date.  

In the next chapter (Chapter 2) a detailed literature review provides 

background and puts the deposits described in later chapters in a larger context by 

reviewing many of the existing studies on the geological setting and sedimentary fill 

of the basins studied. This chapter allows the original research in this thesis to be 

viewed within the framework of previous investigations. The review is divided into 

two sections. The first section covers the discovery of the Cuisinier Field, which 

provided the research questions for this thesis work. Interpretation of the Cuisinier 

Field forms the focus of Chapter 3. The second section covers the specific study 

sites: Lake Yamma Yamma in central Australia; the Dakota Formation in South-West 

Colorado; and the Eromanga Basin in Australia. This detailed literature review 

demonstrates the need and context for the investigations presented in subsequent 
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chapters. 

Chapter 3 presents analysis of seismic, whole core, wireline and petrographic 

data in order to provide a depositional model for the Cuisinier Field. Existing 

depositional models for the Murta Formation are not well integrated over the entire 

basin. The discovery of the Cuisinier Field revealed a new facies not predicted by 

previous depositional models. As the reservoir is largely below seismic resolution, 

detailed stratigraphic analysis guided the development of the depositional model. 

The Murta Formation is interpreted as marginal marine to continental lacustrine at 

Cuisinier. Within the Cuisinier region study area, Murta Formation strata comprise 

five facies associations that form a depositional continuum of offshore to fluvial-

dominated channel fill. The primary reservoir occurs in fluvial channel fill. Reservoir 

sand deposition is primarily controlled by rising and falling base level causing a 

series of transgressions and regressions, although autocyclic processes such as 

bifurcation and avulsion on the delta plain and delta front are important when 

considering reservoir compartmentalisation. As reservoir sandbodies are largely 

below seismic resolution unless stacked or amalgamated, it is clear from this 

investigation that further process-based investigation into analogues for the Murta 

Formation is needed. This is the first academic work on the Cuisinier Field and the 

first academic work for more than twenty years to examine the Murta Formation.  

Chapter 4 focuses on Lake Yamma Yamma, a locality by the sponsor 

company as a modern analogue for the Murta Formation. Some aspects of Lake 

Yamma Yamma, such as the basin gradient and tectonic setting, are thought to be 

similar to the Murta Formation in the Eromanga Basin. Although Lake Yamma 

Yamma is not the ideal representative analogue for the Murta Formation, it did 

provide an opportunity to describe and characterise poorly understood dryland 
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terminal fluvial and lacustrine facies and their characteristics, geometries and 

interactions. Fieldwork for this study was conducted over several weeks in this 

remote area, over 250 km from the nearest town. In the field three hundred and fifty-

two sediment samples were collected for analysis by the author with a laser particle 

sizer and six trenches were logged to provide an overview of sedimentary 

characteristics for the lake. Over thirty kilometres of Real Time Kinematic (RTK) GPS 

data was taken and detailed element dimension data was collected in order to 

provide insights into depositional element dimensions. Distinctive lithofacies, facies 

associations and elements which can characterise terminal fluvial lacustrine 

depositional environments are documented and could be used as interpretative and 

predictive tool in analogous settings. The formation and evolution of Lake Yamma 

Yamma is linked to subtle tectonic changes in the region, which had a large impact 

on local sedimentation. In this chapter, a preliminary new framework for classifying 

and comparing modern dryland fluvial terminations is also presented. This is the first 

work on any aspect of Lake Yamma Yamma, and one of the few focussed on 

sedimentology of dryland fluvial terminations. 

Chapter 5 focuses on the Dakota Formation, exposed on the Uncomprahange 

Plateau between the towns of Montrose and Ridgway as well as around the region in 

south-west Colorado. The Dakota Formation is an ancient outcrop analogue for the 

Murta Formation, as it represents a similar process of regressive and transgressive 

clastic wedges deposited along an interior seaway. Fifty-seven continuous cliff-face 

sections were measured, each comprising between 17 m and 32 m in vertical 

thickness. Lithologies were examined closely with regard to bed thickness, grain 

size, sorting, roundness, sedimentary structures, bed continuity and lateral 

characteristics. A GigaPan Pro paired with an DSLR was used to capture over 40 
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high resolution panoramic images of exposed cliff faces. Detrital zircons from twelve 

rock samples were processed and analysed by the author in order to understand 

more about the provenance and paleogeographic history of the sediments. 

Distinctive lithofacies, facies associations and facies successions were identified. 

The size and characteristics of certain features of the formation facilitate discussion 

about the merits of interpreting these features as incised valleys, compared to 

regressive-transgressive sequences. Results from this work could be used as 

interpretative and predictive tool in analogous transgressive settings. Despite the 

Cretaceous Western Interior being a focus for many geological studies, this is the 

first work focussed on the sedimentology, stratigraphic and paleogeography of this 

local area. This chapter is not intended as a detailed basin-wide correlation for the 

Dakota Formation, but as a detailed localised sedimentology and stratigraphy study 

to be considered as an example when interpreting the Murta Formation. This chapter 

is unique in that it describes and discusses sedimentary processes and features 

which characterise the initial transgression of an epicontinental seaway.  

Chapter 6 presents a basin-wide stratigraphic study of the Murta Formation 

throughout the Eromanga Basin, based on wireline logs, core descriptions and 

detrital zircon geochronology with an aim to improve the conceptual geological 

model and develop paleogeographic reconstructions. A total of forty-five 

representative cores intersecting the Murta Formation were logged, ninety-two 

representative wireline logs were analysed and twelve samples were processed for 

detrital zircon geochronology. Facies analysis results show that sediments in the 

lower Murta Formation were most likely deposited in a marginal lacustrine 

environment. Sediments in the Upper Murta Formation were most likely influenced 

by marine conditions as a Cretaceous seaway developed. Evidence for both 
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depositional settings is substantial. Basin fill was most likely sourced from proximal 

cratons from all sides of the basin during deposition, rather than exclusively from the 

north-east of the basin, as previously thought. This is the first study to use detrital 

zircon geochronology in subsurface sediments within the Murta Formation and the 

first to present an integrated stratigraphic model for the formation.  

Chapter 7 concludes this thesis by summarising the key points and 

significance of these studies and recommending further areas of research. Each of 

these studies plays a useful role in understanding sedimentary processes influential 

in the deposition of the Cretaceous Murta Formation in the Eromanga Basin. The 

results presented in this thesis are useful for understanding the evolution and 

character of clastic lacustrine to marginal marine transgressive systems through the 

global geological record.  



10 

Chapter 2: Background and Review of Relevant 

Literature 
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This review provides the background necessary to understand the spatial, 

temporal and stratigraphic context in which the original research for this thesis exists 

and gives an introductory framework for the investigations presented in later 

chapters. 

The first section presents the details of the discovery of the Cuisinier Field in 

the Eromanga Basin, explains the importance of the Murta Formation as a reservoir 

target and introduces the research problems addressed in this thesis. Section two 

reviews the geological background of the study locations: Lake Yamma Yamma, a 

modern depositional environment within the Kati Thanda- Lake Eyre drainage basin, 

central Australia; the outcropping Dakota Formation deposited in the ancient 

Cretaceous Western Interior Seaway, USA; and the subsurface Murta Formation in 

the Jurassic-Cretaceous Eromanga Basin, Australia.  

2.1. Overview of the Cuisinier Field 

The Cuisinier Field was discovered on the 25th of April 2008 as a result of 

drilling the well Cuisinier-1 in the onshore Eromanga Basin, central Australia (Figure 

1). Cuisinier-1 was designed to test hydrocarbon potential in the Jurassic Hutton 

Sandstone (McPhail et al., 2014). Instead, drilling results indicated conventional oil 

pay higher in the column, in the overlying Cretaceous (Berrasian to Valanginian) 

Murta Formation (Figure 2) contained in a structural and stratigraphic combination 

trap. Results from the well were contrary to existing recorded lithofacies and facies 

models (Figure 3). Existing depositional models for the Murta Formation did not 

predict sand-rich reservoir facies at this location.  

Depositional models for the Murta Formation (Ambrose et al., 1982; Ambrose 

et al., 1986; Gorter, 1994; Bradley, 1993; Mount, 1981, 1982; Newton, 1986; 
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Zoellner, 1988; Lennox, 1986; Theologou, 1995; Hill; 1999) have been presented as 

lacustrine to marginal marine. The most prolific reservoir facies are contained in 

fluvial terminations deposited at the margins of a lake or a seaway.  

The Cuisinier Field was discovered on the 25th of April 2008 as a result of 

drilling the well Cuisinier-1 in the onshore Eromanga Basin, central Australia (Figure 

1). Cuisinier-1 was designed to test hydrocarbon potential in the Jurassic Hutton 

Sandstone (McPhail et al., 2014). Instead, drilling results indicated conventional oil 

pay higher in the column, in the overlying Cretaceous (Berrasian to Valanginian) 

Murta Formation (Figure 2) contained in a structural and stratigraphic combination 

trap. Results from the well were contrary to existing recorded lithofacies and facies 

models (Figure 3). Existing depositional models for the Murta Formation did not 

predict sand-rich reservoir facies at this location. 

Depositional models for the Murta Formation (Ambrose et al., 1982; Ambrose 

et al., 1986; Gorter, 1994; Bradley, 1993; Mount, 1981, 1982; Newton, 1986; 

Zoellner, 1988; Lennox, 1986; Theologou, 1995; Hill; 1999) have been presented as 

lacustrine to marginal marine. The most prolific reservoir facies are contained in 

fluvial terminations deposited at the margins of a lake or a seaway. Differentiating 

between lacustrine and marginal marine depositional environments in the subsurface 

can be difficult. Careful interpretation, considering all of the evidence available, is 

necessary for the Murta Formation. Sedimentary structures often attributed to marine 

tidal processes can occur in fluvual and lacustrine settings (Fraser and Hester, 1977; 

Alam et al., 1985; Ainsworth et al., 2012). Interpretation of marine tidal processes 

should be based on a careful interpretation of diagnostic and supporting (non-

diagnostic) indicators of tidal activity (e.g. Ainsworth et al., 2012) as well as other 

indicators of depositional environment and paleo environmental conditions. 
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The paleoclimate during the deposition of the Murta Formation is interpreted 

to have been cool to temperate (White, 1994). The Early Cretaceous positioning of 

the Eromanga Basin is comparable to the present day latitudes of Norway and 

Alaska (Gorter, 1994). The Eromanga Basin was a low accommodation basin with 

accumulation rates similar to the overlying Paleocene-modern Kati Thanda- Lake 

Eyre Basin (Gravestock et al., 1995; Jansen et al., 2013), with fluvial terminations 

likely to be thinly bedded. A more description of the Murta Formation and the 

Eromanga Basin is included later in this chapter. 

Figure 1: The Cuisinier Discovery at Cuisinier-1 is located in South-West Queensland in the Eromanga Basin. 
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Figure 2: Cuisinier-1 was originally designed to test hydrocarbon potential within the Jurassic Hutton Sandstone. 
Instead, hydrocarbons were intersected in the overlying Cretaceous Murta Formation. In the lithology column 
yellow represents sands, brown represents muds and coals are shown in black. Yellow dotted patterns 
represents sands, brown striped patterns represent shales, curved fill represents cross-beds and ovals with white 
fill represent coarse material. 

As reservoir sands exhibit a gross thickness of less than fifteen metres, 

seismic data were not able to resolve sandbodies. Decision making was driven by 

the geological model. To date, twenty-one wells have intersected oil in the Cuisinier 

field, seventeen of which, including a near-field exploration well (Shefu-1), were 

planned and drilled as this research was conducted. The near-field exploration 

program was a success, with Shefu-1 situated on the western flank of PL 303 
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Figure 3: Cuisinier-1 was a new Murta oil discovery. Results from the well were different to those predicted by 
existing facies models. Lithologies such as A, cross-stratified and ripple laminated sandstone, were not expected. 
Lithologies such as those in core B, interbedded and interlaminated sandstone, silty sandstone, siltstone and 
mudstone typically characterise the Murta formation and have been intersected in approximately ninety 
intersections throughout the Eromanga Basin. Scale is in centimetres. 

A B
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(Figure 4) approximately 5 km west of the nearest Cuisinier development well, 

encountering twelve metres of oil pay exhibiting virgin pressures. At Shefu-1 pay 

occurs structurally lower than encountered in previous wells at Cuisinier, therefore 

lowering the lowest known oil estimates for the area. The oil-water contact has not 

been intersected. Results greatly increase oil in place, given that the Shefu-1 area is 

well outside of areas previously included in estimates (Figure 4).  

Considerable follow-up and development potential for the Murta Formation is 

present, given the success at this location. The Cuisinier Field discovery is an 

exciting example of the potential for new discoveries and raises important research 

questions about the sedimentary fill and paleoenvironments across the Eromanga 

Basin. The deposits below the Murta Formation are fully continental, and the 

conformable overlying formation is fully marine (Gravestock et al., 1995). Given the 

varied interpretations of the Murta Formation as being lacustrine and/or marginal 

marine, a careful interpretation of the depositional environment is called for. An 

improved understanding of deposition in transgressive settings, particularly in 

epicontinental seaways, could assist in the interpretation of deposits such as those 

preserved within the Murta Formation. It is likely that the reservoir targets within the 

Murta Formation are fluvial terminations. The depositional controls and internal 

architecture of deposits which occur as a result of the termination of fluvial systems 

in low accommodation basins and in epicontinental seaways during the transition 

between lacustrine and marginal marine depositional settings are not well-studied 

and could greatly benefit from insights gained through analogue studies.  
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Figure 4: Results of step-out program at Cuisinier, Shefu-1, increased the lowest known oil and area assessment 
for the field. The oil-water contact has not been intersected. The Cook field, which is located on the next permit, 
produced hydrocarbons from the Hutton Sandstone and is on a different pressure gradient. The Cook field used 
to be the largest oil discovery in South-West Queensland, before the Cuisinier Discovery. See Figure 1 for 
location of the Cuisinier Field within the context of the Australian continent. 

These topics can be summarised into the following research themes: 

-The sedimentology, stratigraphy and morphology of fluvial terminations in low

accommodation basins. 

-The sedimentology and stratigraphy of marine transgressions in

epicontinental seaways. 
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-The sedimentology, stratigraphy, depositional setting and paleogeography of

the Murta Formation, including the Cuisinier Field. 

This thesis investigates these research themes through the investigation of 

analogues. The Dakota Formation, deposited as the Cretaceous Western Interior 

Seaway was initiating, was studied as an ancient outcrop rock record analogue for 

the Cuisinier Field and the Murta Formation. The Dakota Formation has many 

similarities with the Murta Formation in that both were deposited in low gradient 

basin settings with similar depositional environments and settings. Depositional 

architecture is likely to be similar in these settings. The Dakota Formation was 

deposited in a warm temperate climate, which is different from the interpreted cool 

temperate to peri glacial Cuisinier Field and Murta Formation. Lake Yamma Yamma, 

off Cooper Creek in the Kati Thanda- Lake Eyre Basin was considered as a modern 

depositional analogue. This was selected as an analogue for the Cuisinier field as 

both were deposited in low gradient intracratonic basins. Although we do not have a 

detailed understanding of the climate in Australia during the Cretaceous, it is 

interpreted to have been cool temperate to peri glacial. This is different from the 

dryland setting of Lake Yamma Yamma and this must be taken into consideration 

when making comparisons.  

This research has the potential to aid in the interpretation of not only the 

Murta Formation, but also similar types of deposits throughout the global geological 

record. 
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2.2. Regional Geological Background for Study Locations 

2.2.1. Lake Yamma Yamma 

Lake Yamma Yamma is an ephemeral dryland lake which receives flow and 

sediment from the western side of the Cooper Creek floodplain, between Windorah 

and Nappa Merrie, prior to the constriction of the Cooper Creek floodplain near the 

Innamincka Dome. The long axis of the lake follows the trend of the Yamma Yamma 

Syncline along strike. The basin base level of Cooper Creek is Kati Thanda- Lake 

Eyre, 700km downstream and approximately 90m lower (Queensland Government, 

2016). No aspect of the Lake Yamma Yamma has been described in published 

literature. This region provides a natural laboratory to study modern sedimentation in 

an ephemeral dryland lake. Chapter 4 provides a detailed technical description of the 

sedimentology and near-surface stratigraphy as well as the depositional 

environments and processes at Lake Yamma Yamma.     

Large dryland lakes far above basin base level can represent sediment 

sumps, which can be of importance to paleogeographic reconstructions. Lake 

Yamma Yamma is the largest inland ephemeral lake in Queensland, Australia. When 

full, Lake Yamma Yamma covers approximately 690 km2 and reaches about 1 metre 

total depth. The lake fills completely approximately once every 25-30 years; however 

there is generally some localised seasonal inundation in the northeast section as a 

result of Cooper Creek overflow. Although shallow, due to a large surface area, the 

lake can store substantial volumes of water and is a significant contributor to 

transmission losses along Cooper Creek. The most recent complete filling event of 

the lake was in 2015, after the study presented in this thesis was conducted 

(Queensland Government, 2016).  
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Local rainfall events in the Lake Yamma Yamma region are rare and short 

lived. Lake Yamma Yamma is filled predominantly from Cooper Creek. Cooper 

Creek at Yamma Yamma receives flow from two rivers, the Thompson and the 

Barcoo (Queensland Government, 2016).  Discharge follows a summer-dominant 

rainfall regime. The majority of rainfall in the catchment occurs in December, January 

and February (McMahon et al., 2008; Figure 5). Rainfall patterns are controlled by 

warm tropical air passing over the Great Dividing Range to the north east of Lake 

Yamma Yamma in the warmer months.  

Figure 5: Overview map of the Kati Thanda- Lake Eyre basin, central Australia and mean monthly rainfall for 
Alice Springs airport between 1941 and 2013 (Australian Bureau of Meteorology (BOM) site number 015590), 
Longreach aero between 1949 and 2013 (BOM site number 036031), Birdsville airport between 2000 and 2013 
(BOM site number 038026) and Coober Pedy airport between 1994 and 2013 (BOM site number 016090). The 
extent of the Great Artesian Basin is also shown in the inset (From Habeck-Fardy and Nanson, 2014). 
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Kati Thanda- Lake Eyre Basin Formation, Structure and Controls on Sediment 
Deposition 

The Late Paleocene to Quaternary semi arid to arid Kati Thanda- Lake Eyre 

Basin (LEB), central Australia, one of the world's largest endorheic basins, is equal 

to approximately one-sixth of the Australian continent (1.14 million km2) (Lang et al., 

2004; Figure 6).The LEB is a shallow topographic depression that extends from the 

monsoon tropics at latitude 19° to the temperate zone at 32°. LEB rainfall patterns 

are dominated by moist tropical air passing over the catchment highlands (eastern 

highlands and northern table-lands) in the warmer months (Allan, 1990) and weakly 

influenced by the northern limit of westerly cold fronts on the southern margins of the 

basin (McMahon et al., 2008). The basin depocentre, Kati Thanda- Lake Eyre, the 

fourth largest playa lake in the world (Callen et al., 1986) contains Australia’s lowest 

land surface, which is 15.2 m below sea-level on Belt Bay, Kati Thanda- Lake Eyre 

north (Lang et al., 2004).   

A major unconformity separates the Eromanga Basin from the overlying LEB. 

Key characteristics of the Eromanga Basin influence the structure of the modern LEB 

(Senior et al., 1978), as well as contemporary Neogene-Quaternary tectonism 

(Senior et al., 1978; Wasson, 1983; Wells and Callen, 1986; Alley, 1998). 

Contemporary northwest and northeast trending anticlines generally control 

Quaternary drainage patterns. The youngest unit of the Eromanga Basin, the Upper 

Cretaceous Winton Formation (Senior, 1968) is exposed in the structural highs of the 

LEB (Figure 6). 

During the late Paleocene, tectonic subsidence formed the large, shallow 

intracratonic Kati Thanda- Lake Eyre (geological) Basin (Krieg et al., 1990). The 

Quaternary has been a time of increasing aridity interspersed with pluvial conditions. 
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Immense lakes are interpreted to have formed during interglacials. A drying trend, in 

combination with windy conditions, in the last interglacial led to extensive dunefields 

which alternated with wetter periods of extensive fluvial and lacustrine sedimentation 

(Alley, 1998; Nanson et al., 2008). 

Modern central Australia is virtually flat. Most alluvial areas within the Kati 

Thanda- Lake Eyre Basin are below 150 m AHD. Whether the influence of tectonics 

has been minor (e.g. Magee et al., 1995) or major (e.g. Quigley et al., 2010) in 

shaping geomorphic expression of the LEB at a regional level is a matter of ongoing 

debate. The role of tectonics at the local, more detailed level is important as low-

gradient modern lake and rivers of this region are sensitive to subtle tectonic 

movements, the effects of which on sedimentation and channel pattern is substantial 

(Jansen et al., 2013). 

The rate of sediment accretion due to tectonic alluvial impoundment upstream 

of the Innamincka Dome (see Figure 6 b)  is interpreted to be 48 ± 21 mm ka-1 over 

the past 270 ka (Jansen et al., 2013). Based on a numerical model of intermittent 

erosion calibrated with Beryllium-10 measurements, Cooper Creek is interpreted to 

have incised at a minimum long-term bedrock incision rate of 17.4 ± 6.5 mm ka-1

(Jansen et al., 2013). Background bedrock denudation rates for central Australia are 

estimated to be considerably lower than this, at around 0.2 to 5 mm ka-1 (e.g. 

Bierman and Caffee, 2002; Belton et al., 2004; Fujioka and Chappell, 2011). The 

rising Innamincka Dome has resulted in the formation of an extensive Cooper Creek 

floodplain with accompanying anabranching channels extending hundreds of 

kilometres upstream (Nanson et al., 2008; Jansen et al., 2013). The lower Cooper 

Creek in the vicinity also appears to be affected by movement of these structures, 

with the formation of swamps and lagoons.  
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Figure 6: a) Surficial Geology and b) domes of the southeastern portion of the LEB (From Habeck-Fardy and 
Nanson, 2014).

Cooper Creek Geomorphology 

The largest drainage catchment in the Kati Thanda- Lake Eyre Basin, and the 

main input point for Lake Yamma Yamma, is Cooper Creek. It has a river length of 

~1500 km (including its primary upstream tributary, the Thomson River; Figure 7) 

and a 3000 km2 drainage basin (Habeck-Fardy and Nanson, 2014; Figure 7). Cooper 

Creek comprises a complex fluvial system, often up to 60 km total floodplain width 

which transports mud and a minor sand load from its headwaters in central 

Queensland to Kati Thanda- Lake Eyre (Figure 9). Cooper Creek has been the focus 

of previous studies (e.g. Nanson et al., 1986; Rust and Nanson, 1986; Nanson et al., 

1988; Knighton and Nanson, 1994; Fagan and Nanson, 2004; Maroulis et al., 2007; 

Cohen et al., 2010). Aeolian dunes, anabranching channels, braided flood channels, 

palaeochannels, splays and waterholes characterise the middle reaches of the 

Cooper Creek floodplain (Nanson and Tooth, 1999; Habeck-Fardy and Nanson, 
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2014; Figure 8). 

Figure 7: Cooper Creek Cooper Creek extends from the confluence of the Thompson and Barcoo Rivers to Kati 
Thanda- Lake Eyre in the eastern Kati Thanda- Lake Eyre basin (From Habeck-Fardy and Nanson, 2014). 

Figure 8: Schematic of the modern geomorphic elements of the middle reaches of the Cooper Creek floodplain 
(From Nanson and Tooth, 1999). 

Anabranching channels along Cooper Creek between Windorah and Nappa 

Merrie near Lake Yamma Yamma tend to have one dominant main trunk, although 

numerous smaller sinuous small channels exist across the floodplain. These 
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channels tend to have width-to-depth ratios of 4 to 60, steep banks formed of 

cohesive mud commonly lined with vegetation, low levees and a canal-like cross 

section. Two primary modern channel patterns coexist on the Cooper Creek 

floodplain; entrenched anabranching channels, which are active at high flow, and low 

wavelength sinuous surficial braided floodplain channels, which are active at high 

and low flow (Nanson et al. 1986). Mud is transported during overbank flow as 

bedload in the form of sand-sized mud pellets and via sinuous surficial braided 

floodplain channels over the floodplains (Nanson et al., 1986; Maroulis and Nanson, 

1996). Mud is a product of weathering from young volcanic materials transported 

from upstream tributaries, primarily the Barcoo and Thomson Rivers. The 

anastomosing channels transport the relatively small sand bedload fraction, thought 

to be sourced from local tributaries, surrounding dunes and scoured from sand 

sheets underlying waterholes (Rust and Nanson, 1986). Channels often stem from 

and terminate in waterholes.  

Waterholes along Cooper Creek range in length from a few hundred metres to 

over twenty kilometres, with typical widths of 20 to 100 m and depths of 6 to 10 m 

and are typically up to five times wider and three times deeper than their 

anabranching feeder channels (Figure 9).  Over three hundred have been identified 

in the lower reaches between Windorah and Nappa Merrie (Knighton and Nanson, 

1994). Waterholes provide focus points for erosional energy during discharge events 

and are important in maintaining the stability of the system (Knighton and Nanson, 

2000). The majority of waterholes along the Cooper are thought to be initiated as a 

function of localised scouring processes during flood events (Knighton and Nanson, 

1994, Knighton and Nanson, 2000). As the scouring reaches the underlying sand 

sheet, erodibility increases and the waterhole deepens resulting in a permanent 
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water body. Waterholes often form at points where several anabranching channels 

come together to produce enough scour to form and maintain incision within the 

muddy floodplain. They also occur where flow converges and scours between dunes 

on the floodplain and where flow is concentrated along the bedrock valley side. In 

these locations they have enough energy to be self-maintaining (Knighton and 

Nanson, 1994, 2000). The depth of the water flow when flow ceases is key in 

determining the characteristics and permanence of a waterhole. The longevity is 

influenced by the frequency of inundation, depth of scoured base, groundwater 

interactions and water loss processes (Costelloe et al., 2003). 

Figure 9: Waterholes on Cooper Creek (a), b), and c) are oblique aerial views, and d) a screen shot from Google 
Earth). a) Meringhina Waterhole (27°15'20"S, 141°58'30"E), with a dry floodplain. b) Meringhina Waterhole during 
the 1990 flood. c) Pritchilla Waterhole (27°09'02"S, 141°59'9"E) which shows two sediment splays, and how the 
bed of the waterholes can be scoured and basal sediment deposited on the floodplain. d) The two Tooley Wooley 
Waterholes (27°52'26"S, 141°50'29"E), showing the formation of waterholes when flood flows are confined 
between aeolian dunes on the floodplain (From Habeck-Fardy and Nanson, 2014). 

When Cooper Creek flows, water and sediment are transported on the 

floodplain. Floodplain surface flow in the central region of Cooper Creek can be 

classified into three categories: braided, reticulate and unchannelled (Fagan and 
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Nanson, 2004; Figure 10). Reticulate surface patterns are related to distinct gilgai 

soil development and a lower flood frequency; these factors contribute to the 

development of intricate networks of bifurcated foodplain channels with right-angled 

confluences between gilgai surface features (Fagan and Nanson, 2004). Braided 

surface patterns occur where gilgai development is minimal and flood frequency is 

relatively high, resulting in the formation of wide, shallow and only slightly inset 

channels (Fagan and Nanson, 2004). As the width of the floodplain increases, so too 

does the extent of the reticulate pattern, and to a lesser degree, the braided pattern. 

Unchannelled regions are observed in the widest, most elevated areas of floodplain 

where surface irregularities are lowest. Their formation is attributed to low overbank 

flow power and reduced inundation frequency (Fagan and Nanson, 2004). The 

relationships between these surface flow patterns are cited as evidence that the 

channel patterns are contemporaneous (e.g. Nanson et al., 1986), rather than relict 

(Whitehouse, 1948; Rundle, 1977; Rust, 1981; Rust and Legun, 1983). 

Figure 10: a) Continuum model of floodplain-surface channel pattern distribution models. The grey area 
occupying the top right corner designates that combinations of overbank flow power and event magnitude and 
inundation frequency were not found (from Fagan and Nanson, 2004). Examples of the patterns on the Cooper 
Creek floodplain at Wilsons Swamp, south of Ballera (screen shot from Google Earth): b) unchannelled floodplain 
(27°40'15"S, 141°59'00"E), c) braided flood channels (27°42'52"S, 141°43'00"E), and d) reticulate flood channels 
(27°50'32"S, 141°57'16"E). 
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2.2.2. Cretaceous Western Interior and Dakota Formation 

Basin Formation, Structure and Controls on Sediment Deposition 

In the Cretaceous western North American geology was dominantly 

influenced by the Sevier and subsequent Laramide Orogenies. North-south trending 

thrust faulting propagating from west to east characterised the Sevier Orogeny 

(DeCelles, 1994), while the loading of the over-thickened Sevier orogenic belt 

created an adjacent foreland basin, or foredeep, to the east as flexural loading drove 

subsidence (DeCelles and Giles, 1996). Faulting contributed to crustal thickening 

and caused the development of a plateau high along the orogenic foreland 

(Livaccari, 1991). Sediment from this high was shed into the adjacent basin 

(Johnson, 2003) (Figure 11).  

Figure 11: Schematic cartoon cross-section across the basin at a time of maximum transgression. The positions, 
directions and sizes of arrows indicate relative thrusting, subsidence and uplift (rebound). From Miall, 2008 after 
Kaufman (1977, 1984), with additional terminology from DeCelles and Giles (1996) and Catuneanu et al. (1999, 
2000). 

The north-south trending foreland basin formed the Western Interior Seaway 

(WIS) an epicontinental seaway linking the paleo-Gulf of Mexico to the Arctic Ocean 
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(Figure 12). There is evidence for both high-frequency tectonism (Catuneanu et al., 

1999, 2000; Vakarelov et al., 2006) and orbital forcing (Elder et al., 1994; Sageman 

et al., 1997; Plint and Kreitner, 2007) as driving mechanisms at different times, in 

different parts of the basin. Local tectonic elements, reflecting reactivation of 

basement elements within the WIS, also had an effect on the development and 

sedimentation of the seaway (Figure 12). The WIS is interpreted to have been a 

broad depression with a reasonably uniform structure, driven by active tectonic 

subsidence to the west and containing a ramped shallowing to the east (Kauffman, 

1977). Episodic thrusting events along this active orogen contributed to uneven rates 

of subsidence in the adjacent foreland basin (Jordan, 1981; Pang and Nummedal, 

1995) and rates of sediment supply from the thrust front.  

The WIS was active for about 100 million years and extended across several 

of Earth’s major climatic zones, from subtropical to subarctic, generally following a 

cooling trend as the basin evolved and drifted northward. The Late Cretaceous was 

a time of highstand sea level and global greenhouse conditions. The period included 

a number of significant eustatic fluctuations (Haq et al., 1987; Miller et al., 2005). The 

interplay between eustacy, global climate, and local Sevier foreland tectonics are 

recorded by changes in sedimentological and stratigraphic characteristics of deposits 

of the Western Interior Seaway. 

Transgressive systems in the WIS, particularly in the Late Cretaceous have 

been well investigated (Van Wagoner et al., 1995; Hancock and Kauffman, 1979; 

Brenner, 2000; Krystinik and Blakeney DeJarnett, 1995) and intensively modelled 

(Slingerland et al., 1996, Jewell et al., 1998). Modelling from paleobathymetry, 

temperature, salinity and wind direction data suggest that the WIS had a strong 

counterclockwise current pattern that occupied entire north-south extent of the 
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seaway. Results show that the seaway exported freshened water much like Hudson 

Bay at the present day (Jewell et al., 1998). The WIS is thought to have influenced 

global ocean circulation patterns. Runoff from eastern drainages exited the seaway 

as a northern coastal jet; runoff from western drainages exited as a southern coastal 

jet. Both jets drew in surface Tethyan and Boreal waters (Slingerland et al., 1996). 

Sequence boundaries and maximum flooding surfaces have been documented by 

workers for local areas within the Western Interior Seaway, but in most cases the 

regional extent and significance of these surfaces have not been addressed. In some 

cases major sequence-bounding unconformities, with hundreds of meters of erosion, 

are the direct time equivalents of maximum flooding events in other parts of the 

basin, reflecting the tectonic complexity typical of the basin (Van Wagoner et al., 

1995; Hancock and Kauffman, 1979). 

Sedimentology and Stratigraphy of the Dakota Formation 

Regression and transgression within the WIS resulted in the deposition of a 

series of clastic wedges (Figure 13; Miall 2008).  The study area lies at the western 

part of the WIS, approximately 400 km east of the thrust front of the Sevier Orogenic 

belt.  Original research in this thesis (Chapter 5) focuses on the basal transgressive 

unit, the Dakota Formation. The Dakota Formation is underlain by the Lower 

Cretaceous Burro Canyon Formation, and overlain by the Mancos Shale (Young, 

1960).  The Mancos Shale is considered to be Late Cretaceous (Young, 1960).  It 

consists of organic-rich black shale deposited in very low oxygen conditions 

(Weimer, 1982). The Mancos Shale represents the offshore and open sea 

environment of the Cretaceous Western Interior Seaway (Weimer, 1982).  



31 

Figure 12: A The geographical location of the Western Interior Seaway, showing the present erosional edge, and 
reconstructed isopachs for the Upper Cretaceous, This shows the shape of the basin at its maximum extent (after 
Beaumont et al., 1993; Miall et al., 2008).B: Localised Tectonic elements of the Western Interior Basin. These 
arches and basins are attributed to reactivation of various basement elements and were all active at different 
times during the history of the seaway (Miall, 2008) 

Terminology used to describe the Dakota Formation differs regionally 

throughout the Cretaceous Western Interior basins in North America. Correlation 

between strata and equivalents on both flanks of the Seaway has been inconsistent. 

The main reason for this confusion is that correlation of Dakota Formation 

equivalents is primarily based on lithological variation within Dakota Group, not a 

chronostratigraphic framework. This problem was not the focus of this thesis. A brief 

summary of the stratigraphy of the Dakota Formation is presented in this Chapter  

A B
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Figure 13: Stratigraphic cross-section of Cretaceous rocks from central Utah to north-eastern Colorado. 
Stratigraphic correlation is complicated by traditional lithostratigraphic methods and a lock of a 
chronostratigraphic framework. Thicknesses are based on well and outcrop control and vertically exaggerated. 
Key: Ksx, Sixmile Canyon Formation; Kfv, FunkValley Formation; Kav, AllenValley Formation; Ksp, Sanpete 
Formation; Kr, Rollins Sandstone Member; Kcz, Cozzette Sandstone Member; Kco, Corcoran Sandstone 
Member. From Miall, 2008, after Molenaar and Rice, 1988. 

and Chapter 5 for context. If the reader is seeking detailed information beyond the 

scope of this thesis Antia and Fielding (2011) provide a recent in-depth discussion of 

basin-wide stratigraphic correlation. 

 The recognition of the lower most of Dakota Group strata within the type 

section of Meek and Hayden (1862) along the eastern edge of the Western Interior 

Seaway was based on the sharp vertical lithological change from red oxidized-to-

carbonaceous shale, to sandstone deposits above the Jurassic Morrison formation 

(Dolson et al., 1991). This vertical variation was used to recognize and correlate all 
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Dakota Group equivalents, even those located hundreds of miles westward, 

southward, and south-westward of the type section, without considering the age as 

recognition criteria.  

The unit now known as the Dakota Formation has been identified by various 

other names.  Meek and Hayden (1861) first named this unit “The Dakota” for 

outcrop along the Missouri River in Dakota County, Nebraska. The first detailed 

study of the Dakota Group was undertaken in northern Colorado Front Range 

foothills particularly from Rainbow Creek in Douglas County to Boxelder Creek in 

northern Larimer County by Waage (1955). Waage divided Dakota Group strata into 

two units: the Lower Lytle Formation and Upper South Platte Formation. Waage 

(1955) also interpreted the depositional environment for Upper South Platte 

Formation as deltaic, estuarine, littoral and neritic environments around the margins 

of the Western Interior seaway. Later on, McKenzie (1971) studied the stratigraphy 

and depositional environment of Dakota Group strata from Deer Creek south of 

Morrison, Colorado to Boxelder Creek near the South Wyoming border. Mackenzie 

(1971) divided the Upper South Platte Formation of Waage (1955) into three 

members. These three members are: Plainview, Skull Creek, and Muddy (now the J 

Sandstone). Before that, Muddy strata were already divided into two members in the 

eastern Hogback of the Colorado Front Range by Mackenzie (1965) which are Fort 

Collins and Horsetooth members. Many authors use variations of the name: Dakota 

Sandstone, Dakota Group, Naturita Formation, Dakota Sandstone (Bartleson, 1994; 

Burbank, 1930; Carter, 1957; Gustason, 1985; Weimer, 1982; Young, 1960).  

The Lower Cretaceous Dakota Sandstone records the initial transgression of 

the Cretaceous seaway across south-western Colorado.  The Late Cretaceous is 

interpreted to have been a period of relative global sea level highstand and included 
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a number of significant eustatic fluctuations (Haq et al., 1987; Miller et al., 2005). 

High organic carbon preservation during this time is associated with large volumes of 

off-ridge volcanism and accelerated sea floor spreading (Arthur et al., 1985), 

including three ocean anoxic events, which record periods of carbon isotope 

fluctuations and enhanced organic carbon content of sediments (Arthur and 

Schlanger, 1979; Jenkyns, 1980). Palynology from Upper Cretaceous coals and 

other terrestrial fauna records suggest this was a period of stable, temperate climate 

(Wolfe and Upchurch, 1987; Howell and Flint, 2003). 

Although basic aspects of the Dakota Formation have been described near 

the study location (Serradji, 2007) these were not adequate to provide a complete 

analogue. The outcrop of the Dakota Formation exposed on the Uncomprahange 

Plateau provides a natural laboratory to study this basal transgression of the WIS. 

Chapter 5 provides a detailed technical description of the sedimentology, 

depositional environments, stratigraphy and paleoenvironments of the Dakota 

Formation exposed on the face of the Uncomprahange Plateau.     

2.2.3. The Murta Formation of the Eromanga Basin 

Geography 

The Eromanga Basin is the largest onshore sedimentary basin in Australia with 

an area of over 1 million km2. It also forms a major portion of the Great Artesian 

Basin (Veevers, 2000). The Eromanga Basin covers most of south and central 

Queensland, part of the south-eastern Northern Territory, northern portions of South 

Australia and New South Wales (Figure 14) and shares a similar history and 

stratigraphic sequences with the Surat Basin to the East and the Carpentaria Basin 
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to the north. The Eromanga Basin unconformably overlies Permo-Triassic 

infrabasins, the Cambro-Ordovician Warburton, Amadeus and Officer Basins and 

Proterozoic basement in the south east. In the north-east the Eromanga Basin is 

adjacent to the coeval Surat Basin, and the Carpentaria and Laura Basins (Figure 

14). It is overlain by the modern Kati Thanda- Lake Eyre Basin, where deposition 

continues to this day. 

Basin Evolution and Structure 

The Eromanga Basin has been interpreted to have formed as an intracratonic 

sag structure resulting from thermal contraction (Gallagher and Lambeck, 1989; 

Gray et al., 2002), dynamic topography induced by a subducted lithospheric slab 

(Russell and Gurnis, 1994; Matthews et al., 2011) and a foreland basin (Jones and 

Veevers, 1984; Gallagher and Lambeck, 1989; Gallagher, 1990; Draper, 2002). 

Although authors do not agree on the specific driving mechanism of basin formation, 

consensus generally exists that eastern Australia was dominated by convergent 

margin tectonics with associated volcanic and sedimentary basins from the Late 

Cambrian (515 million years ago) to the end of the Albian (100 ma). During this time 

the breakup of Gondwana commenced (Mid Jurassic), and the Australian continent 

is interpreted to have been at high latitudes in the southern hemisphere (Figure 15).  

Sedimentation in the Eromanga Basin is considered to have occurred under 

two different structural regimes: flexural relaxation (commencement of sedimentation 

to Upper Cretaceous) and compression (Upper Cretaceous to cessation of 

sedimentation) (Hoffmann, 1989). Sediment infill of the basin during the Cretaceous 

at the time of deposition of the Murta Formation is reported to be relatively younger 

volcanogenic sediments derived from the east (Hoffmann, 1989; Allen et al, 1996).  
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Figure 14: The Eromanga, Surat and Carpentaria Basins share a similar geological history (After Hill, 1999). 

Sediment recycling and cannibalisation of older formations is also likely to have 

occurred. Likely sources of sediment for the basin and ages are detailed in Figure 

16. This is further discussed with specific relevance to the Murta Formation in

Chapter 6. 
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Figure 15: Australia is thought to have been at high latitudes, similar to that of Norway and Greenland today 
Palaeogeographic change through the Jurassic to Cretaceous: (a) Hutton Sandstone- Birkhead Formation time 
(b) Cadna-owie Formation – Murta Formation time (c) Bulldog Shale – Wallumbilla Formation time (d) Winton
Formation time (e) post-Winton Formation erosion. (from Alexander et al., 1998).
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Figure 16: Primary bedrock-age province locations in Australia, shown by the patterns in the lower left. BHB = 
Broken Hill Block; C=Canberra; CP=Curnamona Province; KO=Kanmantoo Orogen; LO=Lachlan Orogen; 
M=Melbourne; MB=Maryborough Basin; MO=Mossman Orogen; NC=New Caledonia; NEO= New England 
Orogen; TO = Thomson Orogen; WVP=Whitsunday Volcanic Province. (From Veevers et al., 2016; After Veevers 
2000; Veevers and Saeed, 2011). 

The Eromanga Basin is structurally dominated by relatively subtle north-

easterly and easterly trending structural anticlinal and synclinal features forming 

troughs and ridges (Figure 17) as a result of complex faulting styles (Figure 18). 

Tectonic activity and basin morphology is likely related to plate boundary activity on 

the eastern edge of the Australia plate and the collision of the Pacific and Australian 

plate after during and after deposition (Veevers, 1984; Radke, 2009). Tectonically 

induced changes from the Neogene to the Quaternary in central Australia have been 

extensive but generally of low magnitude, with fault reactivation common (Sandiford 

et al., 2009; Quigley et al., 2010; Kulikowski, 2016).  
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Figure 17: Regional structural features in the central Eromanga Basin expressed in the structural depth map of 
the Cretaceous Cadna-owie Formation (Radke, 2009). 

Eromanga Basin Sedimentology and Stratigraphy 

The Eromanga Basin stratigraphy (Figure 19) can be divided into three 

sequences — lower non-marine, marine and upper non-marine. The majority of prior 

studies as well as exploration and development efforts have been concentrated on 

the productive lower non-marine sequence, within which the focus of this study also 

falls. This review will focus on the Namur Sandstone, Murta Formation and Cadna-

owie Formation interval (Figure 19). Much of the existing interpretation is based on 

lithostratigraphy and as such this review will heavily feature interpretations from this 

perspective.  
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Figure 18: Structural features are caused and controlled by deep faulting. A number of fault styles can be 
mapped using seismic data (Kulikowski, 2016). 
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Figure 19: Geological summary of the Eromanga Basin. Numbers in rock units represent maximum thickness 
(unbracketed) and average thickness (bracketed). A, C, H, J and Z in the comments represent seismic horizons 
(Radke, 2009). 
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Basin Initiation to Late Jurassic Westbourne Formation 

Fluvial conditions dominated the area bound to become the Eromanga Basin 

as a compressive regime eased in the late Permian, as recorded by the deposition of 

the Nappamerri Group sediments (Apak et al., 1997, Kantsler et al., 1983). The 

upper Nappamerri Group sediments mark an erosional unconformity that separates 

the underlying Cooper Basin from the overlying Jurassic to Cretaceous Eromanga 

Basin (Figure 17). Erosion of up to 500 m of Nappamerri Group sediments occurred 

due to reactivation of basement faults during the Upper Triassic Hunter-Bowen 

Orogeny (Alexander et al., 1998, Apak et al., 1997, Kantsler et al., 1983; 

Mavromatidis, 2006). Subsequently, during the Late Triassic, formation of the 

Eromanga Basin was initiated. 

The Callovian Hutton Sandstone (see Figure 19), the original target of the 

Cuisinier-1 well, overlies the Poolowanna Formation and is comprised predominantly 

of poorly sorted coarse to medium-grained feldspathic sandstone (at the base) and 

fine-grained well-sorted quartzose sandstone (at the top) with minor carbonaceous 

siltstone, mudstone, coal and rare pebble conglomerate, overlies basal Jurassic 

Poolowanna sediments. It is widely interpreted to represent deposition within a 

braided fluvial environment (John and Almond, 1987; Burger, 1986). The Hutton 

Sandstone was interpreted as a prograding alluvial fan system (Moore et al., 1986) 

with aeolian and lacustrine elements.  

Namur Sandstone, Murta Formation and Cadna-owie Formation 

The Namur Sandstone, Murta Formation, McKinlay member and Cadna-owie 

Formation are considered as a sedimentary package in this literature review. As 

these formations have gradational boundaries and no major unconformities exist 
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between them, they are considered to be genetically linked and represent a 

transition from continental to marine depositional settings (Gravestock et al., 1995).  

Namur Sandstone 

The Neocomian Namur Sandstone overlies the Westbourne Formation and 

consists of continental, medium- to coarse-grained, pale grey and buff, cross-bedded 

quartzose and pebbly sandstone with conglomerate beds and minor thin claystone 

lenses (Gravestock et al., 1995).  Conglomerate interbeds consist of lithic and quartz 

pebbles, carbonaceous mudstone intraclasts and fossilised plant fragments. A low 

sinuosity to braided fluvial environment is interpreted as the depositional setting for 

the Namur Sandstone. Mud lenses are interpreted to represent channel 

abandonment deposits. In Queensland the lower part of the Hooray Sandstone is 

equivalent to the Namur Formation (Theologou, 1995).  

McKinlay Member 

The silty sandstone transition between quartz-rich fluvial Namur Sandstone 

and siltstone and mudstone of the overlying Murta Member is informally referred to 

as the McKinlay Member. The McKinlay Member consists of buff, very fine- to 

medium-grained sandstone interbedded with dark grey carbonaceous and 

micaceous siltstone (Gravestock et al., 1995). The McKinlay Member is interpreted 

to have been deposited within a fluvio-deltaic depositional environment. Five 

lithofacies have commonly been described and interpreted in the McKinlay Member: 

channel fill, abandoned channel, lagoon, barrier backshore and barrier shoreface 

(Theologou, 1995; Figure 20). The McKinlay Member is often absent in the Cooper 

region, or interpreted as part of the Murta Formation. For this study, the McKinlay 

Member will be interpreted as part of the Murta Formation. 
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Figure 20: Idealised sequence through the Namur Formation and McKinlay Member used as a facies model in 
the Dullingari area (Theologou, 1995). 

Murta Formation 

The Berrasian to Valanginian Murta Formation gradationally overlies the 

Namur Sandstone, and sometimes the McKinlay Member.  The Murta Formation 

consists of interbedded and interlaminated sandstone, silty sandstone, siltstone and 

lesser mudstone, intraformational conglomerate and coal (Gravestock et al., 1995). 

The Murta Formation is equivalent to the upper Hooray Sandstone in Queensland 

(Gorter, 1994). A type section for the Murta Formation is at Dullingari North 1, 

1469.14–1526.13 m (Mount, 1981). The reference section for the Murta formation is 

Dullingari-9 (Theologou, 1995). A maximum thickness of just over 90 m is reached in 

the Nappamerri Trough (see Figure 17 for location). The sequence inter-tongues 

with the Namur Sandstone Member on a regional scale and the upper contact with 

the Cadna-owie is gradational.   
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Depositional models for the Murta Member (Ambrose et al, 1982 and 1986; 

Gorter 1994; Bradley, 1993; Mount, 1981, 1982; Newton, 1986; Zoellner, 1988; 

Lennox, 1986; Theologou, 1995; Hill; 1999) have been presented as lacustrine to 

marginal marine. Interpretation has been previously conducted at a field and semi-

regional scale. 

Originally a depositional model which defined the Murta Member as a mainly 

fine-grained lacustrine sequence intervening between braided-fluvial sediments of 

the Namur Sandstone Member and the overlying, marginal marine Cadna-owie 

Formation was proposed (Ambrose et al., 1982; Ambrose et al., 1986). The model 

was mainly derived from work on the South Australian section of the Eromanga 

Basin. A regional reduction in thickness and sand content from the north-northeast to 

the southwest was interpreted to represent a depositional pattern where the main 

source of sediment into the “Murta Lake” was from the north and east (Ambrose et 

al. 1982; 1986).  

A lacustrine setting was also interpreted in the Queensland sector. A 

lacustrine delta, sourced from the north was proposed to have provided sediment to 

the Nockatunga, Thungo, Winna and Dilkera Fields for the Murta Formation (Lennox, 

1986).  A transgressive lacustrine shoreface was proposed as the depositional 

setting for the Murta Formation at Maxwell (Hill, 1999).  

The Murta Lake was interpreted to have covered an area of over 50,000km2. 

Strong fluvial-deltaic influences are interpreted in the north and east of the formation 

(Ambrose et al. 1982; 1986; Mount, 1981, 1982). Carbonate cementation was 

interpreted to represent low-stand periods in the lake. Mount (1981, 1982) and 

Ambrose et al. (1986) interpret open lacustrine, lacustrine fan delta, distributary 
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channel and lacustrine shoreline depositional environments. 

Evidence for marine influence in the upper Murta Member has been 

interpreted (Zoellner, 1988; Powell et al., 1989).  The presence of Botryococcus (a 

planktonic cyanobacterium) and land plant spores and pollen is considered to 

indicate a lacustrine to paralic environment (Michaelsen and McKirdy, 1989). 

Estuarine depositional environments are interpreted in the Murta Formation 

(Zoellner, 1988; Gorter, 1994). 

The McKinlay Member and Murta Formation have previously been considered 

as a genetic package (Theologou, 1995).  A drowned river valley was used as a 

depositional model for the basal McKinlay Member and a transgressive lake barrier-

bar system for the Upper Murta Member. The drowned valley was interpreted to form 

part of a lacustrine transgressive sequence tract (e.g. Reinsen, 1992; Dalrymple et 

al., 1992).  

The upper part of the McKinlay Member is interpreted by Theologou (1995) to 

have been deposited as part of a transgressive lake barrier-bar system which 

transgressed rapidly over the lake (e.g. Reinsen, 1992; Galloway, 1986; Kraft and 

John, 1978; Figure 21). Sand packages are either designated as prograding 

lacustrine deltas or a prograding wave dominated shoreline facies. As the formation 

is interpreted as lacustrine, the absence of tides is often implied (Theologou, 1995) 

and hence the flood tidal delta and tidal flat components of this facies models are 

ignored, however lithologies similar to these facies exist. Rapid transgression was 

interpreted to reduce preservation potential (Theologou, 1995).  
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Figure 21: Idealised sequence through the Murta Formation used as a facies model for the Murta Member in the 
Dullingari area, South Australia (Theologou, 1995). 

A depositional model featuring a lake system with vegetated islands was 

interpreted for the Murta Formation (Gorter, 1994). Sequence stratigraphic concepts 

are invoked (Figure 22). Base level rise and fall is invoked in order to interpret 

erosional surfaces and channel incision. Slow base level rise and infill of channels by 

sediment reworked by transgression is interpreted to form “estuarine” deposits, 

although no evidence of marine influence is presented. Continued transgression is 

interpreted to form basin-wide shoaling cycles and maximum transgression results in 

mud-rich condensed section.   
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Figure 22: Schematic cartoon of stratal patterns in the Murta Member in the Queensland sector. The Murta 
Formation and the Cadna-owie Formation are considered to have been deposited together in a ramp basin 
setting. Sand is stippled and mud is white (Gorter, 1994). 

The Murta Formation shows pervasive cementation. The main cement types 

are siderite and undifferentiated carbonate (Gravestock, et al., 1983; Staughton, 

1985; Zoellner. 1988, Green et. al. 1989 and Schulz-Rojahn, 1993). Siderite 

cementation shows features of early and late diagenesis (Zoellner, 1988; Theologou, 

1995). The process of methanogenesis is likely required for the formation of siderite 

cement containing dissolved sulfates in brackish or marine sediments, but in 

freshwater swamps the correct anaerobic conditions for the formation of siderite may 

also exist only a few metres below the sediment water interface even in the absence 

of methanogenesis (Curtis and Coleman 1986; Gautier, 1982; Gautier and Claypool, 

1984). Therefore, the presence of siderite does not infer a particular depositional 

environment. Carbonate cementation is through to have occurred as a result of 

carbon dioxide migrating up from the underlying Cooper Basin and reacting with 

formation water (Schulz-Rojahn, 1993). Calcite is also present in glenodites, calcite 

pseudomorphs (De Lurio and Frakes, 1999), within the Murta Formation. 

The paleoclimate during the deposition of the Murta Formation is interpreted 

to have been cool to temperate and after the long Jurassic period of uniformly warm 
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and wet climate and thriving vegetation dominated by conifers, cycads and ferns 

which had continued into earliest Cretaceous times, a sudden change in conditions 

and flora occurred.  The commencement of Gondwana break-up caused eustatic sea 

level rise, inundating vast areas of the continent and causing the climate to change 

(White, 1994). A cool temperate climate is inferred for the Eromanga Basin during 

the deposition of the Murta Formation based on the presence of microflora pollen 

from Podocarpacean and Araucarean conifers (McKellar, 1996; Gorter, 1994). 

Megafloral studies inferred humid, warm-temperate to cool temperate conditions 

determined by the presence of Ginkgoales. The Early Cretaceous positioning of the 

basin is comparable to the present day latitudes of Norway and Alaska (Figure 14).  

The climate at these present-day latitudes is cold temperate to sub-arctic and subject 

to seasonality. It is possible that periglacial conditions could have existed (Gorter, 

1994).  

Cadna-owie Formation 

The Murta Formation is overlain conformably by a marginal marine to open 

marine shale and sandstone package, the Cadna-owie Formation. The Cadna-owie 

Formation is a pale grey siltstone and mudstone with very fine to fine-grained 

sandstone interbeds and minor carbonaceous claystone (Moore and Pitt, 1984). 

Sections of marine siltstones and mudstones, representing deeper-water 

depositional environments are dominant within the formation toward the centre of the 

basin (Moore and Pitt, 1984). 

Overlying Lithology 

The Cadna-owie Formation is often capped by the Wyandra Sandstone 

medium to coarse-grained, quartzose to labile sandstone with scattered pebbles 
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(Senior et al., 1978). The Wyandra Sandstone is interpreted contain estuarine to 

paralic depositional environments and represent regression after deposition of the 

fully marginal marine Cadna-owie Formation (Etheridge et al., 1986). 

Regional Petroleum Exploration and Development 

Prior to exploration in the Eromanga Basin the geologically similar Surat Basin 

was the main focus of hydrocarbon exploration in Australia. The first economic gas 

accumulation in Australia was found in a deep water bore in the Surat Basin and was 

used to light the town of Roma, Queensland, in 1908. The first commercial oil in 

Australia was found in 1961 at the Moonie Oil field in the Surat Basin (Beddoes, 

1973). 

The Eromanga Basin has been explored with the intent of finding 

hydrocarbons since 1924 (Armstrong and Barr, 1986). Exploration intensity 

increased in the 1950s when licences covering the Cooper and Eromanga basins 

were acquired by local oil companies. In 1957, Innamincka-1 was the first exploration 

well was drilled in the Cooper/Eromanga sequence. Gas was first discovered six 

years later in the Cooper Basin in 1963 at Gidgealpa field and the first sizeable oil 

was the Tirrawarra field in 1970 (Lavering et al., 1986). The first economical 

commercial scale hydrocarbon discovery, gas in the Namur sandstone, was made by 

Namur 1 in 1976. Oil was first discovered in 1977 with an uneconomic flow from 

Poolowanna-1 in the Poolowanna Trough. The first economic oil flow from the 

Eromanga Basin sequence was from the Hutton sandstone in 1978 in Strezlecki-3 

(2400 BOPD) from the Hutton Sandstone. Oil shows in the same well in the Namur 

Sandstone and Birkhead Formation encouraged explorers to look beyond the Hutton 

(Lavering et al., 1986). In 1979 Dullingari North-1 discovered economic oil (450 
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BOPD) in the Murta Formation (Sprigg, 1986). While the Hutton Sandstone has been 

the most prolific producer of the sequence to date, most of the Eromanga Basin has 

proved prospective, with shows or production from the Early Jurassic all the way to 

the Albian (see Figure 20). 

The Dullingari Murta Field was discovered in 1979 at Dullingari-North-1 in 

1979 and was the first well to discover oil in the Murta Member (Mount 1981; Mount 

1982). Initially this discovery was missed as it was not the target formation and mud 

returns were not monitored; however later volumetrically calculated reserves were 

9.1 million barrels of oil in place (Robinson and Butler, 1989). Two main reservoirs 

are interpreted, a shoreline-bar sand and a proximal turbidite lacustrine fan. The 

reservoirs are approximately 1 ft thick and separated by shale barriers approximately 

4 ft thick. Wells are heavily fracture stimulated and the field proves to be more 

complex than initially interpreted (Robinson and Butler, 1989).  

Oil was discovered in the Murta Member, the Hutton Sandstone and the 

Wesborne Formation at Jackson in December 1981, and initially contained 

Australia’s largest discovered recoverable onshore reserve, with 111 million barrels 

of oil in place (Dodman and Rodregues, 1989). The Murta Member reservoir at 

Jackson consists of sandstone, interbedded with siltstone and minor claystone and is 

interpreted as a lacustrine shoreline deposit. Reservoir characteristics and continuity 

vary widely throughout the field. The reservoir is driven by a thin but strong aquifer 

and the producing interval is on average 2.4 m. Although the Murta reservoir is a 

valuable producer, reservoir characteristics are still poorly understood. 

The Eromanga Basin is the most prolific onshore oil basin in Australia; but still 

is generally under explored, with an exploration well density of 1 well per 436 km2. 
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Over 2,474 (825 exploration, 1,649 development) wells have penetrated sediments 

in the basin and 105408 km of 2D and 17421 km2 of 3D seismic lines have been 

shot in the basin. Petroleum exploration in the Eromanga Basin has traditionally 

been concentrated in the portion underlain by the Cooper Basin. About 60 MMbbl 

(8.4 x 106 kL) of oil was predicted as a yet-to-find volume in the Eromanga Basin 

(Alexander, 1998). Although this figure was calculated in 1998, it is still widely cited  

today. 

Vertical and lateral migration of oil from the underlying Permian Cooper Basin 

is generally accepted as the main source of oil in the Eromanga Basin. The 

Poolowanna, Birkhead and Murta Formations within the Eromanga Basin also 

contain organic-rich shales that are oil-prone and in places mature for oil generation 

(Alexander, 1998). Traps within the Eromanga Basin tend to be subtle but can hold 

relatively large volumes due to their broad lateral extent. Trapping mechanisms are 

dominantly structural (anticlines with four-way dip closure or drapes over pre-existing 

highs) although a stratigraphic component is acknowledges in recent discoveries.  

Relatively new oil discoveries in the late 2000s and into the 2010s on the 

western flank of the Cooper Basin have challenged the suggestion that the 

Eromanga Basin is mature for exploration. Two subtle play types, which have not 

been previously explored for in the region, are evident. The dominant play is in the 

structurally controlled in the Namur Sandstone, while the secondary is a stratigraphic 

mid-Birkhead Formation trap which has proved depositionally complex and a 

challenge to delineate and produce economically (Hall et al., 2015). These new 

discoveries, along with the Cuisinier discovery, show that the Eromanga Basin holds 

potential for new discoveries, but effective exploration and development requires 

critical analysis and creative new ideas.  
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Effective exploration and development requires data-driven geological models 

and creative scientific thinking to fill in the gaps when data is sparse. This thesis 

aims to add data and ideas to the base of existing knowledge in order to improve 

exploration in the Eromanga Basin. Chapter 3 provides interpretation for the 

Cuisinier Field and Chapter 6 provides a new regional study for the Murta Formation 

of the Eromanga Basin. Chapter 4 provides a new study of the previously unstudied 

Lake Yamma Yamma and Chapter 5 provides a study of the Dakota Formation 

outcrop, sites which could be used as analogues for the Murta Formation in the 

Eromanga Basin. 
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3.1. Abstract 

The 2008 discovery of new reservoir facies in the Murta Formation provides 

an opportunity and need to develop a new facies model for the Cuisinier Field. 

Existing depositional models for the Murta Formation in the Eromanga Basin are 

inconsistent; the Murta Formation has previously been interpreted as marginal 

marine and as continental lacustrine. This chapter contributes new geological data 

on a fluvial termination in the low accommodation Eromanga Basin, and raises 

questions about potential marine influence. Seismic, conventional core, wireline and 

petrographic data were integrated in order to provide a new description and 

interpretation of the Murta Formation in the Cuisinier region. As the reservoir is 

largely below seismic resolution, detailed stratigraphic analysis primarily guided the 

development of the depositional model. Within the study area, Murta Formation 

strata comprise five facies associations that form a depositional continuum of 

offshore, pro-delta, delta front, shoreline and fluvial-dominated channel fill. The 

primary reservoir occurs in fluvial channel fill. Reservoir sand deposition is largely 

controlled by rising and falling base level in a series of transgressions and 

regressions. Autocyclic processes such as bifurcation and avulsion are important 

when considering reservoir compartmentalisation. This work provides a depositional 

model for the Cuisinier Field which will guide appraisal and development with an aim 

to minimize capital expenditure.  

3.1. Introduction 

Petroleum accumulations of the Eromanga Basin represent Australia’s largest 

and most prolific onshore hydrocarbon resource. The Eromanga Basin is estimated 

to host approximately 130 MMstb of undiscovered oil (Alexander, 1998), an 
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important portion of which is trapped in Early Cretaceous Murta Formation deposits. 

Effective development and production of these reserves requires a detailed 

understanding of stratal architecture, including the location and nature of internal 

baffles, barriers and compartments within the reservoirs. The Eromanga Basin is 

under-explored (approximately 1 well per 58 km2) and subsurface mapping has been 

a persistent challenge in the Murta Formation due to the thin sub-seismic resolution 

of reservoir sandbodies and the occurrence of lateral facies changes over distances 

of a few hundred metres.  

A new and important oil field was discovered in the Murta Formation of the 

Eromanga Basin, the Cuisinier Field. This field is particularly noteworthy as the 

reservoir was discovered in the Early Cretaceous Murta Formation contrary to the 

planned Mid-Jurassic target. Lithologies recorded were contrary to those predicted in 

the Murta Formation. The absence of an integrated basin-wide facies model and the 

complex, interfingering nature of the facies, together with the sub-seismic nature of 

reservoir sandbodies, makes development decisions difficult. Improved depositional 

environment interpretation and stratigraphic correlations within the region will help to 

provide a better estimation of the size of individual sandbodies, and therefore better 

predict reservoir continuity. New data from drilling and coring operations in the 

Cuisinier field provide an opportunity to develop high resolution sedimentological and 

stratigraphic models that better delineate the allo-cyclic and auto-cyclic controls on 

the distribution of facies and geometric stacking patterns of Murta Formation strata. 

The aim of this study was to better understand the distribution of reservoir sand and 

depositional controls on sedimentological heterogeneities in the Murta Formation of 

the Cuisinier Field. As well as enabling improvements to production efforts, it is 

anticipated that an improved understanding of stratigraphy at this location may aid in 
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regional exploration. 

3.2. Geological Setting 

The Jurassic to Cretaceous Eromanga Basin (Figure 1A) covers 

approximately one million square kilometres; approximately one fifth of the Australian 

continent. During the Mid-Jurassic breakup of the supercontinent Gondwana 

commenced and as a result, from the Jurassic until the start of the Cretaceous the 

eastern part of Australia consisted of large, shallow interconnected sedimentary 

basins, the Eromanga, Carpentaria and Surat Basins, which covered approximately 

a third of the Australian continent (Mount, 1981). These basins preserved similar 

lithologies. In the Eromanga Basin, continental and marginal marine lithologies are 

preserved. The Early Cretaceous Murta Formation overlies the terrestrial Namur 

Sandstone and underlies the fully marine Cadna-owie Formation (Mount, 1981; 

Figure 2).  

The breakup of Gondwana caused eustatic sea level rise which inundated 

vast areas of the continent (White, 1994). Previous investigation of the Early 

Cretaceous paleoclimate of south-eastern Queensland (McKellar, 1996; Gorter, 

1994) interpreted a cool temperate climate. This interpretation is based on the 

presence of microflora pollen from Podocarpacean and Araucarean conifers, but 

megafloral studies inferred humid, warm-temperate to cool temperate conditions 

determined by the presence of Ginkgoales (Gorter, 1994). Paleolattitude 

investigations of the south-eastern Eromanga Basin suggest that the Early 

Cretaceous positioning of the basin is comparable to the present day latitudes of 

Norway and Alaska, inferring a colder and potentially glacial climate (White, 1994).   

Early work in the Eromanga basin focussed on the Early Cretaceous 
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stratigraphy as a genetic package at a basin scale. Initial studies (i.e. David and 

Woolnough, 1926) and later summaries (Krieg et al. 1993; Drexel and Preiss, 1995;  

Figure 1: A. The location of the study area and the Eromanga basin in the context of the Australian continent 
(After Hill, 1999). States and capital cities within Australia are included for geographical reference. Inset shows 
the extent of the main map in the context of the Australian continent.  B. Well locations for the Cuisinier Field and 
the location of the 3D seismic survey used in this study. Locations compiled from Santos Ltd well completion 
reports. 

Alley and Frakes, 2003) considered the Murta Formation to have been deposited in a 

purely lacustrine environment and suggested widespread distribution of dropstones 

and diamictitie inferred glacial depositional conditions. Other authors working at a 
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similar scale (Wopfner, 1970, Frakes and Francis, 1988, Markwick and Rowley 1998, 

Sheard, 1990) invoked methods such as tree rafting, large faunal bioturbation and 

very high energy fluvial systems as the processes responsible for depositing these 

lithologies throughout the basin.  

Following the first discovery of economic oil in the Murta Formation (Figure 2) 

in north-east South Australia Mount (1981, 1982) described the depositional 

environment of the Murta Formation at this location as continental lacustrine. The 

Murta Formation is divided into five distinct packages based on grain size variation. 

Lacustrine deltaic distributary mouth bar, crevasse splay and lacustrine turbidite 

elements are interpreted and two depositional models are presented; a ‘deltaic’ 

model and a ‘shoreface bar’ model (Mount, 1981; Mount, 1982). ‘Lake Murta’ was 

envisaged as being wide and shallow during the deposition of the Murta Formation, 

with very low angle slopes to depositional surfaces. This has led previous workers to 

interpret the wave and tide energies as being very low, and dissipated in a broad 

swath parallel to the shoreline (Mount, 1981; Mount, 1982). Lennox (1986) presented 

a similar fine-grained freshwater lacustrine-deltaic depositional model for south-west 

Queensland.  

Mount (1981, 1982) influenced semi-regional studies, and the Murta 

Formation was classified as a fine grained lacustrine sequence (Ambrose, 1982, 

1986) throughout the Eromanga Basin. The Murta Formation was reported to 

interfinger with the Namur Sandstone and gradationally transition into the Cadna-

owie formation in the Jackson area, southwest Queensland (Powell et al., 1989). A 

regional trend of reduction in thickness and sand content from the north-northeast to 

the southwest was interpreted to reflect a depositional pattern where the main 

source of sediment into ‘Lake Murta’ was from the north and east (Ambrose, 1982, 
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1986), even though some of the wells in the southern section of the basin contained 

cleaner sands and were beyond the interpreted depocentre of the lake.  

Figure 2: Stratigraphic table for the Eromanga Basin. The Murta Formation is highlighted in yellow. Geological 
age, palynological zone, lithostratigraphic table, basin development, representative lithology and environment of 
deposition from Santos Ltd., 2013. Abbreviations used FM.= Formation, SST.= Sandstone, MBR.= Member. 

Potential marine influence was interpreted on a basin scale in the Murta 

Formation. Lithofacies analysis, elevated boron concentrations, modern marine-like 

trace element results, fluorapatite nodules, glauconite pellets and calcispheres were 

cited as evidence of a brackish to marginal marine environment (Naylor et al., 1988; 
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Zoellner, 1988 and Powell et al., 1989). A large lake system with estuaries and 

vegetated islands was interpreted as the depositional setting during the mid Murta 

time in the South-west Queensland area, based on core and wireline log analysis 

(Gorter, 1994). After a basal highstand, a rapid drop in base level caused erosion 

and channel incision. Slow base level rise and infill of channels by sediment 

reworked by transgression formed “estuarine” deposits. Continued stepwise 

transgression and regression formed coarsening up and fining-up sequences and 

resulted in sub-areal deposits and vegetated surfaces interfingered with subaqueous 

deposits. Maximum transgression occurred at the top of the Formation. Overlying 

highstand deposits represented a gradational transition from the upper section of the 

Murta Formation into the Cadna-owie Formation (Gorter, 1994). Although Gorter 

(1994) uses sequence stratigraphic and marginal marine terms and the presented 

model infers marine influence, it is not explicitly discussed.  

Depositional models for the Murta Formation are inconsistent and sometimes 

contradictory. Factors such as the presence or absence of marine influence, the 

number and character of depositional sequences and well as the overall mud or 

sand rich nature of the facies are all contentious. Existing models failed to predict the 

occurrence of sand facies in the Cuisinier Field. Previous wells in the Murta 

Formation have been dominated by mud, but the Cuisinier discovery provides 

evidence for clean sand-rich facies in the Murta Formation. Detailed integrated 

analysis of the Cuisinier Field is an essential first step in understanding distribution of 

reservoir sand and depositional controls on depositional heterogeneities in the 

region. 
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3.3. Data and Methods 

This chapter presents an integrated study in which detailed stratigraphic 

investigation is primarily used to provide a process-based interpretation of the early 

Cretaceous Murta Formation at the Cuisinier Field, South-West Queensland (Figure 

1A).  A conceptual geological model and paleogeographic reconstructions are 

presented.  

Geophysical interpretation was undertaken using the greater Cuisinier 3D 

data set which included the compiled Cuisinier, Cook, and Cuisinier North 3D 

seismic surveys (Figure 1B). Rock physics work was conducted, as well as inversion 

and other attribute work. Interpretation was conducted on the full stack volume and 

inversion volumes, primarily rotated AI-Vp-Vs. Schlumberger Petrel, ffA GeoTeric 

and Ellis Paleoscan were used to organise and review, reduce noise from and 

extract horizon slices from seismic data.  

Stratigraphic interpretation was undertaken primarily from analysis of core and 

secondarily from examination of wireline logs. At the time of analysis twenty-one 

wells had been drilled at the Cuisinier Field (Figure 1B). Wireline log suites were run 

for each well. Conventional full hole core was available from two wells, Cuisinier 4 

(50.2 m total core length) and Cuisinier 7 (15.0 m total core length). Both of these 

cores were logged and interpreted. Facies associations are identified based on 

lithology, grain size, sorting, sedimentary structures and trace fossils, and are 

characterized and interpreted using facies analysis. Sampling for petrographic 

analysis was undertaken in reservoir sands and twenty thin sections were analysed. 

Core data was tied back to wireline log data from these two wells, allowing wireline 

data from all twenty-three wells to be fully utilised in the study.  
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3.4. Results and Interpretation 

3.4.1. Facies Associations 

Seventeen lithofacies and twelve facies were recognised in core from 

Cuisinier 4 and 7 (Figure 3A-D; Figure 4A-C). They are interpreted to have been 

deposited and reworked primarily via fluvial and wave action. Facies have been 

grouped into five associations interpreted to be representative of (i) offshore/ 

deepwater, (ii) prodelta, (iii) delta front, (iv) shoreline and (v) channel fill depositional 

environments. Bioturbation intensity (BI) was recorded according to the Taylor & 

Goldring (1993) scheme, with 0 representing no bioturbation and 4 representing 

extreme bioturbation (Figure 3C). Trace fossil diversity and ichnofacies classification 

follows models presented by MacEachern and Bann (2008). Descriptions and 

interpretation for facies associations are detailed in the following paragraphs. 

FA-1 Offshore 

Observations 

Facies Association 1 (FA-1) is composed of thinly interbedded (millimetre and 

sub millimetre scale) light grey to very dark grey claystone, mudstone and occasional 

sandstone beds (Figure 4A). Occasional sandstone beds are thin and quartz rich 

with sharp bases. Sand packages with sharp and erosive bases often transition 

rapidly into fine grained muds. Mud packages are very finely laminated. Overall, 

beds exhibit a fining and thinning upward trend. The presence and character of 

interpreted Thalassinoides, Planolites, Skolithos and Phoebichnus suggest a 

Cruziana icnofacies assemblage (MacEachern & Bann, 2008).  
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Interpretation 

A predominantly Cruziana ichnofacies, fine grain size and the abundance of 

planar lamination in FA-1 suggests a low-energy environment below wave base. 

Mudstone beds are interpreted to have been deposited due to suspension fallout 

during very low energy periods. Minor thin clean ripple-laminated sands with sharp 

bases could have been deposited as a result of density flows or due to seasonal 

events such as high river discharge and/or storm events (Bhattacharya & 

MacEachern, 2009; Capelle et al., 2016). Depositional character suggests that this 

facies association was deposited in an offshore or deepwater environment proximal 

to a prodeltaic setting. FA-1 is interpreted to be the base of a gradational transition 

between the Murta Formation and overlying Cadna-owie Formation. 

FA-2 Prodelta 

Observations 

Facies association 2 (FA-2) is composed of thinly interbedded sandstones, 

siltstones and mudstones. Beds are generally fining and thinning up section. 

Individual layer thicknesses range from 0.2 cm to ~10cm and individual bed 

thicknesses range from 2cm to 60cm. Linsen bedding, wavy bedding, sand-starved 

ripples, current ripples, planar laminations and soft sediment deformation are present 

within this FA. Dewatering structures are present but rare. The presence and 

character of Ophiomorpha, Zoophycos, Planolites, Skolithos and Rhizocorallium 

suggest a mixed Cruziana and Skolithos icnofacies assemblage (MacEachern & 

Bann, 2008). Skolithos elements occur more often in the sand layers but are less 

common in the mud layers. 
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Interpretation 

Overall thinning and fining upward of beds represents a decrease in energy 

up section. A very fine sand grain size along with the abundance of mud, starved 

ripples and planar lamination suggest a low energy depositional environment away 

from tidal and wave energy (Bhattacharya & MacEachern, 2009). From overall facies 

character a prodelta environment is interpreted. A Cruziana and Skolithos 

ichnofacies assemblage supports this interpretation. The abundance and character 

of Planolites, Skolithos and Rhizocorallium in sand beds may indicate that they were 

carried to the location from further upstream during a storm event but did not thrive in 

the depositional environment.  

FA-3 Delta Front and undifferentiated delta plain 

Observations 

This facies association consists of moderately sorted, moderately well-

rounded very fine to fine-grained sandstones and mudstones that exhibit flaser, wavy 

and lenticular stratification (cf. Reineck & Wunderlich, 1968; Figure 3A; Figure 4A) 

and an overall coarsening upward pattern. Flaser bedding is more common at the 

top of the FA, as the FA becomes more sand rich. Asymmetric current ripples, planar 

lamination, dewatering structures, soft sediment deformation, wave-modified current 

ripple laminae, massive sandstone beds and starved ripples are common. Mud 

drapes (<0.5 cm) are preserved in cross bedding on the face of foresets with a slope 

of 10-30°. Sand is generally quartz-rich, although muscovite and biotite rich layers 

also exist. Bioturbation and soft sediment deformation can be intense (BI = 4), but 

bioturbation can also be absent. Siderite cementation is present. Trace fossils 

include Macaronichnus, Ophiomorpha, Planolites, Skolithos and Conichnus, 
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suggesting a predominantly Skolithos trace fossil assemblage (MacEachern & Bann, 

2008).  

Interpretation 

Sand was deposited predominantly as current ripples migrating in response to 

unidirectional subaqueous currents. The interbedded and heterolithic nature of 

sandstone and mudstone beds suggests temporal changes in current velocities, 

particularly in flaser, wavy and lenticular stratification. Although this could be 

attributed to tidal activity throughout the environment (Van Straaten & Kuenen, 1957; 

Reineck & Wunderlich, 1968; Oomkes, 1974; Staub & Gastaldo, 2003; Legler et al., 

2013), no unequivocal tidal indicators were observed in the core. Temporal changes 

in current velocities could potentially occur in an exclusively wave and fluvial 

dominated depositional environment. High variation intensity of bioturbation by an 

impoverished Cruziana and Skolithos ichnofacies is consistent with deposition in a 

stressed environment characterized by fluctuating energy levels, a mobile sediment 

substrate and/or restricted salinities (MacEachern & Bann, 2008). In deltaic ststems 

mouth bar deposits are indistinguishable from terminal distributary channel fill 

deposits and mouth bars can infill the terminal distributary channels (van Heerden 

and Roberts, 1988). A high bioturbation index suggests a higher concentration of 

mouth bars over terminal distributary channel deposits, although changes in 

bioturbation intensity may also be attributed to salinity changes. Differentiation 

between mouth bar and the terminal distributary channel deposits is not made in this 

case as both occur in a similar depositional environment. Some parts of this FA 

could be interpreted to be floodplain deposits, crevasse splays, overbanks and 

levees however lack of evidence of subareal exposure indicators and a lack of 

rootlets or climbing ripples means that interpretation is less likely. This FA could also 
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represent the lower delta plain as well as the delta front, as similar processes occur 

in these environments and it is difficult to discriminate between the two with available 

data. 

 FA-4 Shorelines 

Observation 

Facies Association 4 consists of thin (20 cm - 30 cm) stacked beds of very 

fine-grained and lower fine-grained sandstone, with a sharp base and either a sharp, 

rippled or a gradational top. Wave ripples, low amplitude HCS, occasional planar 

lamination and planar tabular cross beds are present (Figure 4A). Trace fossils 

include Protovirgularia, Thalassinoides and Skolithos, suggesting a mixture of 

Psilonichnus and Skolithos ichnofacies. Wave rippled beds coarsen upward and are 

topped with strata containing planar cross stratified and planar laminated sands and 

muds. In general FA4 overlies FA5, which results in a coarsening up, then fining 

upward pattern.  

Interpretation 

The preservation of sandstone beds with HCS indicates deposition as a result 

of episodic storm events in water depths between the effective storm-wave base and 

fair-weather wave base (Dott & Bourgeois, 1982; Duke, 1985; Keen et al., 2012). 

The abundance of wave ripples compared to HCS beds suggests that storm events 

were less common or rarely preserved, while the presence of planar stratified and 

planar cross stratified sands suggests that upper shoreface and nearshore bars are 

preserved. FA4 appears to be preferentially cemented with calcite and siderite. This 

could be due to the chemical composition of the depositional environment causing 
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precipitation of the cement, but it should be noted that this FA is often the 

stratigraphically highest porous and permeable formation below a regional seal, so 

cement precipitation in this FA may be opportunistic and related to fluid flow later in 

the life of the rock. FA4 is interpreted as a shoreline deposit. Shorelines may be 

stacked and highly bioturbated. This interpretation is supported by the occurrence of 

a mixed Psilonichnus and Skolithos ichnofacies (MacEachern & Bann, 2008).  

FA-5 Fluvial-dominated Deposits 

Observation 

Facies Association 5 (FA5) primarily consists of two types of channel fill- 

cross bedded sandstones (Figure 3A) and mud-clast rich sandstones (Figure 3B). 

The base of the FA is composed of very coarse sand to granules. Cross bedded 

sandstones have sharp planar to erosional bases and consist of trough cross-

bedded, planar cross bedded, current rippled and planar laminated fine to medium-

grained moderately-rounded sands. Trough cross-beds occur in sets that are 

generally 20 to 40 cm thick, but can reach a maximum of 1 m. Sets are stacked into 

cosets that occur in sandstone beds defined by a sharp erosional base and with a 

top marked by abrupt fining in grain size or by a sharp erosional contact at the base 

of the overlying unit. Occasionally very well rounded mud clasts and very coarse 

moderately rounded sand grains are preserved on the face of foresets. Trough cross 

stratification is observed low in the FA, sometimes in association with mud clasts. 

Foreset angle generally decreases up section, with a maximum dip angle of ~30° 

and a minimum of 2-5°. Current ripples and planar laminations are observed near the 

top of packages. For the mud-clast rich sandstones planar cross bedding, simple 

and bifurcated flaser features, ripples and planar lamination are preserved, with 
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mud-clast rich beds suspended in massive structureless sands and cross-stratified 

sands. In the basal two-thirds of the FA, interbedded relatively clean sands and 

sands with mud clasts of various forms are abundant (Figure 3B). Type A1, A2, B1, 

B2, B3 and B4 mud clasts are identified (classification scheme for shale clasts: 

Johansson and Stow, 1995). Smaller, rounder mud clasts are associated with cross-

stratified sands and larger, more angular mud clasts seem to occur in massive 

structureless beds. Soft sediment deformation is present (Figure 3A). Mud clasts are 

sometimes preserved on low angle foresets (10-20°). At 1653.98 m, dropstones and 

a very thin (~0.2 cm) coal wisp are observed near the top of a very gradually fining 

up sequence (Figure 3B). Overall, sand intervals in this FA fine up and individual 

beds thin up section. No soil or coal horizons are present. Bioturbation is low in FA 5 

deposits (BI= 0 to 0.5), with a low abundance of Planolites and Skolithos traces 

(Figure 3C). 

Interpretation 

The rhythmicity, erosional bases, formation of co-sets and preservation of 

trough cross-stratified, planar cross-stratified, current rippled sands is typical of 

fluvial dominated distributary channel deposits. Sediment deposition due to a local 

reduction in flow velocity caused the subsequent growth and development of sand-

rich mid-channel bars and subsequent channel avulsion (Wright, 1977). Bar deposits 

consisting of high-angle cross-stratified sand are interpreted to have formed by 

avalanching on the lee-side of subaqueous dunes. The occurrence of these 

processes over time most likely led to an amalgamation of bar deposits (Hinds et al., 

2004; Crerar and Arnott, 2007; Bhattacharya & MacEachern, 2009). The abundance 

of mud-clasts in the mud-clast rich sandstones, as well as their size and character, 

suggests that the system was proximal but occasionally subject to erosional flows. 
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Erosion and inclusion of material from an overbank or a previously abandoned 

channel setting could provide this source. If flow in the system was ephemeral, mud 

clasts could have originated from the bed itself, such as in terminal splay settings in 

Lake Eyre (Fisher et al., 2008). The association of larger more angular mud clasts 

with massive sands and smaller, rounder mud clasts with cross-bedded sand and 

suggests that sediments were sometimes preserved proximal to the source, and at 

other times clasts were carried to more distal locations and preserved. Relatively 

unorganised coarser grained deposits and slumping near and at the base of the 

facies association probably represent rapid deposition. The appearance of 

dropstones and a coal wisp at ~1654 m could indicate ice rafting, although as no 

other evidence of a glacial environment is observed, are probably a product of 

Cretaceous faunal activity. A lack of pedogenesis or coal horizons suggests a lack of 

soil or peat forming environments. Potentially deposition was relatively rapid, with too 

little time for a soil horizon to form, and in an environment which was not conductive 

to swamp and peat formation. 

An alternate interpretation for this FA, particularly the mud-clast rich 

sandstones, is that it was deposited by hybrid flow bed or sandy turbidite in a 

submarine depositional environment. Characteristics of part of this FA including the 

relative absence of fossil plant material and the presence of a massive basal clean 

sand, topped by a debritic mud-clast rich bed, particularly between 1655.20- 1656 m 

in Cuisinier 4, are similar to submarine beds in the Agadir Basin, Marnoso-Arenacea 

Formation and the Mississippi Fan (Talling et al., 2007; Sumner et al., 2012; Talling 

et al., 2012). Although submarine flows are highly variable in character (Talling, 

2013; Strachan, 2008), this interpretation is not favoured at the Cuisinier location due 

to the size and shape of the mud clasts, the relative lack of dewatering structures, 
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the presence of strong planar and trough cross stratification, the lack of consistent 

repeated structure within beds and the small vertical thickness of the 

Figure 3: A. Sedimentary textures in core at Cuisinier 4 (C4) and Cuisinier 7 (C7). From L-R Typical linsen 
bedding with bioturbation (C4 1666.01 m), interbedded sandstone and mudstone with soft sediment deformation 
structure (C4 1660.30 m), wavy bedding consisting primarily of sandstone with mud layers (C4 1627.23 m), cross 
bedded sandstone (C4 1639.7 m), interbedded sandstone and mudstone with mudclasts and bioturbation (C4 
1657.05 m). B. Prominent clast textures in core. Clockwise L-R: dropped clasts of pebble size composed of 
igneous and clay rich material (1654.00 m), mudclasts with planar internal structure (1661.50 m), mudclasts with 
no internal structure (1659.50 m). C Trace fossils photos- Horizontal, oblique and vertical burrows and some 
escape traces were observed. Traces are not complex and are indicative of infaunal deposit feeders living close 
to or under the sediment interface. Traces include Skolithos, Teichichnus, Planolites and Chondrites, as well as 
potential Rhizocorallium and Zoophycus.  Traces observed indicate depositional environments from a sandy 
backshore to the sublittoral zone. D Significant chemical alteration in cored section. L-R Siderite cementation (C7 
1637.75 m), cone-in cone calcite concretion (C4 1649.27 m). 
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package (less than six metres) observed in core. Interpretation of adjacent facies as 

delta front also does not support a submarine interpretation for this facies 

association. Additionally facies virtually identical to those in FA5 have been 

interpreted as part of a fluvial deltaic system (e.g. Hinds et al., 2004), and as fluvial 

channel fill as a result of bank collapse (Crerar and Arnott, 2007, Figure 10C within 

that reference), which seems to be the most likely scenario for deposition of FA5. 

3.4.2. Petrography and Cementation 

In samples taken from sands in FA2, FA 3, FA 4 and FA 5, framework grains 

are primarily composed of sub-angular to sub-rounded, moderately well sorted 

quartz arenites (Figure 5). Accessory minerals include feldspar, biotite, muscovite, 

lithics, glauconite (particularly in FA2; Figure 5), carbonaceous grains and potential 

volcanic rock fragments. Grain size ranges from lower very fine to very coarse with 

minor silt and clay. Very coarse and granule-sized sands are generally suspended 

within a finer grained sand matrix. Matrix grains consisted primarily of clay (kaolinite 

and illite) and consisted of less than ten percent of the bulk rock volume. Quartz 

overgrowths form grain-welding silica cements (Figure 5). Clay precipitation appears 

to post-date silica precipitation. Calcite and siderite cementation are also present, 

but are concentrated in discrete beds and not dispersed throughout the formation. 

Due to growth and overgrowth patterns, the cementation timing was likely clay, 

quartz, calcite then siderite. Larger scale cone-in cone calcite cementation structures 

were also observed in the core (Figure 3D). 
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Figure 4: A. Lithofacies key, legend, description and basic interpretation for Cuisinier 4 and Cuisinier 7 core logs 
(Figures 4B and 4C). Core photographs and depths are reference sections from Cuisinier 4 core.

Lithofacies 
Grouping Lithofacies Description Typical photograp h

Fm, Fl, Fb, 
Sr 

Organic-type mud 
(clay) interbedded with 
minor sand.  

Fl, Sr, Ss Thin (millimetre scale) 
interbedded mud and 
fine sand. Evidence for 
reworking of sand.    

Fl, Sl 

Sr, Fl Interbedded mud and 
sand. Thicker (1-4 cm) 
mud beds and finely 
interbedded sand and 
mud. 

1626.0 m 

Fb, Sb Interbedded sand and 
mud, heavily 
bioturbated. Probably 
LG4 with bioturbation. 1644.1 m 

Fl, Sl Very finely laminated 
mud and sand. 

1639.1 m 

Sc Fine sand, cemented. 
Siderite cement. 

1623.5 m 
Sk Sand with calcite 

cement.  

1632.2 m 

Sp, Sr, Fl Sand, flaser bedding, 
some mud, moderately
sorted. 

1651.7 m 

Sr, Fl Fine sand, generally 
well rounded, well 
sorted, some mud 
ripples. 1629.9 m 

Sp Subrounded, well 
sorted fine sand. 
Generally cross 
bedded. 16

38
.3

 m

Smu Majority of formation 
consists sub-angular 
mud clasts (0.25-3 cm) 
in generally well sorted 
fine sand 16

59
.5

 m

G, Sp, Sr  Isolated pebbles, 
granules in fine sand 
matrix. 

Code Descrip on 
C Coal 
G Granule 
Fb Mud, bioturbated 
Fd Mud, deformed 
Fl Mud, laminated 
Fm Mud, massive 
Sb Sand, bioturbated 
Sd Sand, deformed 
Sc Sand, cemented 
Sh Sand, horizontal bedding 
Sk Sand, with carbonate 
Sl Sand, laminated 
Sm Sand, massive 
Sp Sand, cross bedding 
Sr Sand, rippled 
Ss Sand, reworked 
Smu Sand, mud intraclasts 

Legend

Calcite cementation

Carbonate cement

Coal Wisps

Siderite cement

Stylotites

Planar cross bedding

Planar Lamination

Ripples

Fault or fracture

SC

CC

Dolomitic cement

Burrows, undifferentiated

Burrows, vertical

Burrows, horizontal

Flaser bedding

Gravel-Pebbles

Hummocky cross stratification

Lenticular bedding 

Mud rip up clasts

Soft sediment deformation

Wavy bedding

Dropped Clast

Rootlet

Paleocurrent vector 

Skolithos

Teichihnus

Planolites

Chondrites

s

T

P

C

16
65

.1
 m

Prodelta 

Deep water

Delta Front

Distributary channel 
overbank and termination

and/or mouth bar

Shoreline

Channel Fill

Interpretation

16
21

.7
 m

 

16
41

.5
 m

16
22

.2
 m(centimetre scale) 

Interbedded mud and 
fine sand.  Fining and

 coarsening up beds.

16
26

.0
 m

16
44

.1
 m

16
51

.7
 m

16
39

.1
 m

16
32

.2
 m

16
23

.5
 m

16
29

.9
 m
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Figure 4: B. Interpreted core and corresponding gamma ray log for Cuisinier 4. In the gamma ray log, yellow 
corresponds to sands, orange represents silts and brown corresponds to muds. 
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Figure 4: C. Interpreted core and corresponding gamma ray log for Cuisinier 7. In the gamma ray log, yellow 
corresponds to sands, orange represents silts and brown corresponds to muds.    
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Figure 5: Clockwise, from top: Representative 200x plane light thin section images images for samples from 
channel fill facies. A and B show lower medium grained, moderately sorted quartz arenite with a good 
intergranular pore system. Cements are mainly quartz overgrowths. Minor pore lining illite and localised kaolinite 
(k) are present. C and D show lower fine grained moderately sorted subarkose. Intergranular pores are partially
filled with quartz overgrowths, kaolinite and calcite (c). Calcite cement overprints quartz cement. Ternary
composition plot (Folk, 1968) shows that three main categories of samples analysed fall in the Quartz arenite,
sublitharenite and subarkose quadrants. Cuttings from Cuisinier 3 and Barta North 1 show glauconitic pellets, as
indicated by the blue arrows.
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The rounding and mineralogy of grains suggests a relatively proximal but 

quartz rich source for sands, particularly in FA5. The presence of glauconite, in FA2 

suggests a mid-shelf to upper-slope depositional setting with low rates of 

sedimentation or potentially a cold climate, although the presence of glauconite 

alone is not sufficient to determine depositional environment (Chafetz and Reid, 

2000). Cementation from calcite and siderite appears to have occurred after initial 

quartz and clay cementation, most likely from the movement of ion-rich fluids through 

rock after compaction and lithification. Such cementation is common in the Murta 

Formation in the Eromanga Basin in porous and permeable sediments below 

competent regional seals (Theologou, 1995).  

Cone-in-cone cementation structures (Figure 3D) are common as a 

recrystallised form of CaCO3 in carbonate rocks undergoing deep burial diagenisis. 

It is suggested that this feature would have grown before the majority of compaction 

occurred due to the soft sediment deformation surrounding the feature. This feature 

may be related to the compaction of carbonate-rich micrite clays (Usdowski, 1963) or 

the result of carbonate supersaturation (increased alkalinity) of lake water generated 

by microbial degradation of organic matter. It is suggested that the zone of 

supersaturation must be “immobilised stratigraphically”, (i.e. it needs to be a below a 

seal) and the stratigraphic height needs to be relatively constant (relative 

quintessence, no sudden subsidence or uplift) for this type of cementation to occur 

(Martin, 1999). Similar examples of this feature are present in the Mississippian 

Carboniferous in Derbyshire, UK (Stow, 2005). Potentially this feature could be 

related to glenodites which are ikaite (CaCO3) concretion nodules, common in the 

overlying Cadna-owie Formation and Bulldog Shale, and interpreted to only grow in 

mud on the seafloor when the water temperature is below 5ᵒC.  
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3.4.3. Trace Fossils and Palynology 

Horizontal, oblique and vertical burrows and some escape traces were 

observed in core (Figure 3C). Generally traces were simple and indicate infaunal 

deposit feeders living close to or under the sediment interface. The abundance and 

characteristics of these traces generally indicates a cold to temperate freshwater to 

brackish anoxic environment. In sediments containing abundant escape traces, 

relatively rapid sedimentation is inferred. Traces in this study are similar to those 

observed in depositional environments from the sandy backshore to the sublittoral 

zone (MacEachern & Bann, 2008). Although no direct evidence for large faunal 

bioturbation was observed, this should not be ruled out as mechanism for soft 

sediment deformation (e.g. Cuisinier 4 1669.90 m to 1670.15 m), or dropstones 

transport (e.g. Cuisinier 4 1653.90 to 1654.00 m) particularly considering small 

sample size of the core and the high intensity of infaunal bioturbation at these 

locations. 

A palynological sample from cuttings at the top of the formation in Cuisinier-1 

was found to be very similar in composition to other Murta Formation samples, and 

dominated by fern spores and bisaccate pollen. The presence of Cicatricosisporites 

spp, Cyclosporites hughesii and Dictyotosporites speciosus are together diagnostic 

of assignment to palynological zone PK1.2.2 (Wood, 2011; Price, 1997). These 

assemblages are characteristically found in the Murta Formation throughout the 

Eromanga Basin and together with a lack of abundant and diverse dinoflaggelate 

flora generally suggest a non-marine depositional environment or a marginal marine 

environment with a significant influx of freshwater.  
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3.4.4. Seismic Data Analysis 

Results 

The top reservoir horizon for the Cuisinier field is characterised by a moderate 

amplitude trough maximum (Figure 6). The seismic reflector is stronger and more 

continuous in the southwest of the survey and reduces in amplitude and continuity 

north eastward (Figure 7). Intense polygonal faulting is observed in overlying Early 

Cretaceous Formations (Figure 8A). A high reflectivity package of cemented 

sandstones and limestones at the top of the Wallumbilla Formation encased in clay 

rich sediments marks the beginning of the strongly developed polygonal fault pattern 

which terminates in the Murta, but may still affect reservoir imaging (Figure 8B). 

These faults make it more difficult to predict reservoir distribution due to dimming 

below faults (Figure 8C). 

Proportional slicing and amplitude extraction along the top Murta reservoir 

horizon shows northwest-southeast amplitude trends (Figure 7A and 7B). There is a 

weak relationship between amplitude and reservoir presence. The combination of 

thin reservoir sands (typically <10 m) interbedded with silts and muds and polygonal 

faulting makes seismic interpretation difficult. Two approximately perpendicular 

trends are observed; a north-west to south east feature and a subtle curving feature 

running approximately south-west to north-east (Figure 7B).    

From core and wireline data (Figure 4; Figure 5; Figure 9), it was observed 

that reservoir sandbodies were largely below seismic resolution, so only highly 

stacked or amalgamated sandbodies can potentially be observed on seismic, 

necessitating an emphasis on sedimentological and stratigraphic interpretation. 

Figure 6: Next page. Uninterpreted but labelled seismic line through the seismic survey showing the nature of the 
Murta and Cadna-owie reflectors and wells Cuisinier North-1 and Cuisinier-1.
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Interpretation 

The seismic reflector for the Cuisinier reservoir is stronger and more 

continuous in the southwest of the survey area (e.g. Figure 6), suggesting that the 

reservoir is well developed there, and reduces in amplitude and continuity north 

eastward, suggesting that the reservoir is poorly developed there. Seismic attribute 

analysis suggests the presence two amplitude trends (Figure 7). A north-west to 

south east feature is interpreted to correlate with a high sand content fluvial 

dominated system. Fluvial influence is interpreted due to the fan-like shape of the 

sandbodies. Incision into surrounding mud-rich deposits is inferred due to the sharp 

change in lithology. The subtle curving features running approximately south-west to 

north-east are interpreted to represent shorelines due to the perpendicular nature of 

these features to the interpreted fluvial features and the curved shape of the 

features.  These tie well to the shorelines interpreted in core and wireline logs. The 

dimming of amplitudes within these domains is not necessarily indicative of sand-

body discontinuity and may represent subtle polygonal faults.  

Ultimately individual reservoir sandbodies in the Murta Formation at the 

Cuisinier Field are below seismic resolution. Attribute analysis is likely to reveal 

stacked or amalgamated sandbodies, but individual reservoirs, as well as internal 

baffles, barriers and compartments are impossible to image with currently available 

data. Stratigraphic changes control the quality and distribution of reservoir sand 

units. Improved stratigraphic correlations within the region can help to provide a 

better estimation of the size of individual sandbodies, and therefore better predict 

reservoir continuity. 

Figure 7: Next page. Interpreted RMS amplitude and sweetness maps highlighting sandbodies for the top 
reservoir (DC70) in the Murta Formation from the Cuisinier 3D survey. A. Uninterpreted image. B. Interpreted 
image. A to C are interpreted as shoreline ridges. 1 to 4 are interpreted as fluvially influenced sandbodies. 
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Figure 8: Fault coherency attribute maps for the Cuisinier 3D seismic survey. A. Polygonal faulting at the base of 
the Cadna-owie Formation, just above the Murta Formation. B. Polygonal faulting continues down to the 
interpreted top reservoir slice and may affect reservoir performance. C. Amplitude dimming beneath faults along 
the reservoir horizon. Cadn=Cadna-owie Formation, Murt=Murta Formation.

3.4.5. Stratigraphic Architecture 

Reservoir presence and quality were recognised as primary risks when 

analysing this field. Reservoir sands within the Murta Formation are characteristically 

thinner than 10 metres, potentially channelized and laterally discontinuous in 

morphology. Neighbouring wells typically display orders of magnitude variation in 

porosity and permeability. To aid in stratigraphic prediction eight correlatable 
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surfaces were used to describe the stratigraphy in the Murta Formation at the 

Cuisinier Field. These are labelled DC10 to DC80 sequentially from the base of the 

Formation (Figure 9). The intervals between these surfaces are named after the 

basal surface, for example the strata between the DC50 and DC60 surface is 

referred to as the DC50 interval. 

From the base of the DC10 surface to the base of DC40 surface, the system 

is mud dominated with minor shallowing and deepening events occurring.  Two 

examples of these shallowing and deepening events are the DC30 and DC40 

surfaces, which are interpreted to represent two closely-spaced flood events. Above 

the DC40 surface, a gradual decrease in gamma ray log values is interpreted as a 

coarsening up or shallowing up sequence. This marks the beginning of the first major 

regression event in the region. The DC50 surface is interpreted as a sequence 

boundary in the Murta Formation. From core interpretation, reservoir sands directly 

above the DC50 surface are interpreted to include shoreline sands (FA4), lowstand 

fluvial channel sands (FA5) and transgressive systems tract sands (most likely FA4 

and reworked FA5). As base level rose, transgressive conditions eroded and 

reworked the sands on and below the DC50 sequence boundary.  

Above the DC50 surface the maximum point of transgression is preserved by 

the DC60 maximum flooding surface.  A second coarsening up or shallowing up 

sequence terminates with the second main sequence boundary for the Murta 

Formation, the DC70 surface. Reservoir facies above the DC70 surface are similar 

to those previously described for the DC50 sequence boundary (FA4 and FA5); 

however there is a higher percentage of fluvial reservoir facies (FA5).  There is a 

further small shallowing event at the very top of the Murta indicated as the DC80 

surface but this is a minor event compared to the DC50 and DC70 sequence 
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boundaries. Above the DC80 (in the Cadna-owie Formation), sedimentation 

becomes increasingly mud-dominated as deep water conditions begin to impose on 

the basin. 

The key reservoir within the Cuisinier Field occurs above the DC70 surface 

where fluvial FA5 deposits exhibit localised thickening. Where a greater net sand 

thickness is encountered the sequence boundary is interpreted to have eroded 

deeper into the underlying FA2, FA3 and FA4 deposits. Multiple sand trends have 

been interpreted within the DC70- DC80 interval in the Cuisinier field. One 

interpretation simplifies reservoir sands into two categories:  System A (Figure 9 T1) 

and System B (Figure 9 T2). These are thought to have formed separate potentially 

inter-connected compartments. System A is interpreted to have the thickest sand 

accumulations where the depth of incision of the sequence boundary is greatest (e.g. 

Cuisinier 1 and 4). This sand trends from north-west to south-east and is an 

amalgamation of fluvial deposits (FA5) that generally fine upwards into TST 

Shoreface sands (FA4). System B has a relatively thin amalgamation of fluvial 

channels (FA5) deposited in the TST (e.g. Cuisinier 6, 7 and 10). These sands are 

deposited between thin HST Shoreface sands below and TST Shoreface sands 

(both FA4) above.  

An alternate interpretation is that System A and System B represent separate 

avulsion lobes of a deltaic system. It could be inferred that System A was deposited 

before System B, as System A contains fluvial sequences with potential 

abandonment tops (e.g. Cuisinier 1, Cuisinier 2). Prediction of reservoir sands away 

from well control is difficult. The Murta DC70 sequence boundary defines the extent 

of reservoir sands. This boundary is best defined by well intersections.  
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Very limited data from initial bottom hole pressure surveys indicate connected 

reservoir between Cuisinier 6, 13 and 10 and potentially between Cuisinier 1, 4 and 

3 (see Figure 1 for Location and Figure 9 for well log motifs), however reservoir 

pressure decline over time will be able to provide more information on potential 

connection and compartmentalisation. This model is probably an oversimplification, 

and mechanisms aside from depositional character such as post-depositional 

cementation and subtle faulting probably contribute to reservoir 

compartmentalisation.  

The secondary reservoir within the Cuisinier Field occurs above the DC50 

sequence boundary, where fluvial sediments display localised thickening, much the 

same as above the DC70 boundary, however no compartmentalisation or correlation 

trends are clear. A weak trend exists between the sands above the DC50 and DC70 

boundary. Sometimes where the DC70 FA5 sands are well developed, the DC50 

sands appear to be poorly developed. 

The opposite is also sometimes true; where DC50 sands are well developed, 

DC70 sands are poorly developed (e.g. Cuisinier 3, 16, 13 and 18). This trend is 

particularly evident in Cuisinier 10, Cuisinier 12, Cuisinier 3, Cuisinier 1, Cuisinier 5 

and Cuisinier 11 (see Figure 9). This pattern could be due to paleotopographical 

changes in the low gradient, low accommodation space basin setting. As the DC50 

sand was deposited it could have created relative paleo-highs in areas of thicker 

deposition.  

Figure 9: Over the following two pages. Field scale wireline correlations. T1 and T2 run roughly north-south 
through the field and T3 and T4 run approximately east-west. DC refers to a surface. Red lines represent 
sequence boundaries and black lines represent stratigraphic markers. Black boxes represent core obtained. 
Green lines represent oil saturation. Stippled boxes represent reservoir flow zones. On the gamma ray logs 
yellow represents sandstone, blue represents carbonates, siltstones are coloured orange and mudstones are 
coloured brown.  The depositional element interpretation column follow the key for gamma ray logs shown in 
Figure 4A. 
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Deposition of the DC70 sand could have been concentrated in paleo-lows where the 

DC50 was not deposited. 

3.4.6. Depositional Model 

The Murta Formation within the Cuisinier study area preserves deposition 

from fluvial-dominated to deep-water marine environments, during a long term 

complex overall transgression event, punctuated by at least two major regressive 

events (Figure 9). Facies slice maps for the most regressive and most transgressive 

facies in key reservoir intervals indicate the overall transgressive nature of the 

formation, with progressive backstepping form the south-west to the north-east 

evident (Figure 10).  

The lower Murta Formation in the Cuisinier Region consists primarily of 

prodelta, delta plain and undifferentiated delta front deposits due to minor shallowing 

and deepening events. Deposition of this stratum was followed by a major shallowing 

event, preserving delta front and shoreline deposits. The upper section of the Murta 

Figure 10: Left and next page. Paleogeographic cartoons, showing 
continued transgression over the course of the formation. Time between 
time slices is not equal. Transgression and regression maps show 
maxima of these potential events. Intervals are approximate. 
Environments are generalised and represent one realisation of what the 
area may have looked like at the time of deposition. As more data is 
obtained, more details should be added. For scale, see Figure 1. 
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Formation preserves lowstand fluvial-dominated FA 5 sediments, interpreted to have 

been deposited at the maximum extent of the shallowing as a result of a major 

regression across the region. These deposits are topped by shoreline deposits due 

to a regional transgression. Another similar regressive and transgressive event 

occurred, preserving fluvial-dominated FA 5 deposits. Autocyclic events such as 

bifurcation, avulsion and lobe switching are interpreted to have controlled sand 

deposition during this regressive event. Fluvial-dominated FA 5 deposits which form 

major reservoirs, and FA 4 shoreline deposits which form minor reservoirs for the 

Cuisinier field were most likely deposited in a fluvial and wave dominated deltaic 

setting. Continued transgression resulted in the deposition of prodelta (FA2) and 

offshore (FA1) facies of the Murta Formation. Deposition of the Murta Formation is 

terminated by a gradual transition into the marine transitional mud-dominated 

Cadna-owie Formation. 

3.5. Discussion 

After over 40 years of exploration, new facies have been discovered and new 

play concepts are being developed for the oil bearing Murta Formation of the 

Eromanga Basin. Effective development and production of these reserves requires a 

detailed understanding of stratal architecture. This paper provides detailed 

stratigraphic analysis and process-based interpretation of a new Murta Formation 

reservoir in the Cuisinier Field. Five facies associations are interpreted from limited 

data. An idealised facies association package from distal to proximal is: (i) offshore, 

(ii) prodelta, (iii) delta front, (iv) shoreline and (v) channel fill depositional

environments. Channel fill and shoreline depositional settings are the primary 
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reservoirs. Prodelta, delta front and offshore mud rich facies provide seals, as well 

as mud-rich internal baffles and barriers. The Murta Formation reservoirs in the 

Cuisinier region were most likely deposited as a part of a small fluvial and wave 

influenced delta, with autocyclic processes responsible for sand distribution. 

Evidence exists for marine and continental influenced deposition. 

Evidence for marine influence on sediment deposition is present in the Upper 

Murta Formation at the Cuisinier Field. The abundance of HCS, wave ripples and 

planar stratification suggest that sedimentation occurred around a large body of 

water. Pervasive flaser and linsen bedding could indicate deposition during regularly 

alternating high energy and low energy environments, such as those in tidal flats. 

Deposits similar to those in FA3, Delta Plain and Delta Front, could be interpreted as 

Inclined Heterolithic Stratification (IHS) deposits. IHS can deposit in channels 

through a process whereby during ebb- or flood-tidal flow, high energy is focused 

within tributary channels and sand deposits amalgamate. Mud layers are deposited 

during intervening slack-water periods. Successions similar to those in FA3 have 

been observed within marine bars of the Holocene Colorado delta (Meckel, 1975). 

Although this interpretation is probable, no explicitly bi-directional bedforms are 

observed, so tidal influence cannot be unequivocally invoked.  

The presence of glauconite pellets in FA2 (Figure 5), suggests a relatively 

cold, marine, mid-shelf to upper slope to tidal flat shallow water depositional 

environment with slow rates of deposition (Triplehorn, 1965). Glauconite is widely 

reported at the base of marine transgressive sequences, although transportation 

after formation and the variation in formation environments throughout the geological 

record constrains its use as a specific environmental indicator on a presence or 

absence basis (Chafetz, 2000). Geochemical findings, including glauconite pellets, 
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from previous studies (Zoellner, 1988; Powell et al., 1989) have been used to infer 

the Murta Formation was deposited in a brackish to marine environment and this 

data from the Cuisinier Field can be considered as complementary to this. 

Limited evidence exists for lateral migration of channels is observed in the 

reservoir sections. Vertical accretion may have been accentuated by rising relative 

base level which commonly enhances vertical aggradation in marginal marine 

settings (e.g. Tornqvist, 1993). The net result was the development of vertically-

accreting, low-sinuosity channels. These are similar to aggrading anastomosed 

channels of the Rhine-Muse delta (Tornqvist, 1993), or straight channels in the 

Mahakam River Delta, Borneo (Gastaldo, 1992). Gorter (1994) observed similar 

deposits on the southern side of the Eromanga Basin in the Murta Formation with 

vegetated islands and a relatively straight anastomosing channel pattern. Limited 

evidence was also presented for lateral migration at this location. 

The Cretaceous was a period of global sea level highstand and included a 

number of major eustatic fluctuations (Haq et al., 1987; Miller et al., 2005). A 

commonly cited example of marine encroachment onto a continent to form an 

epicontinental or eperic seaway during the Cretaceous is the Cretaceous Western 

Interior Seaway. Regression and transgression along the Western Interior Seaway 

resulted in the deposition of a series of clastic wedges along the margins of the 

Seaway (Miall, 2008). Potentially the Eromanga Basin could have experienced 

similar processes throughout the Cretaceous and during the time that the Murta 

Formation was being deposited. 

Evidence for lacustrine influence on sediment deposition is dominant 

throughout the Murta Formation. The dominance of current ripples, unidirectional 
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bedforms and very fine planar lamination suggests a lacustrine deltaic depositional 

setting. A lack of unequivocal tidal indicators such as bi-directional bedforms could 

be an indication that tidal activity was not present. The overall thin-bedded nature of 

the reservoir is similar to those observed in marginal lacustrine environments, even 

considering the wide and shallow nature of the basin. This is consistent with aspects 

of previous interpretation for the Murta Formation in other locations in the Eromanga 

Basin (e.g. Mount, 1981; Mount, 1982; Ambrose, 1982; Ambrose, 1986; Lennox, 

1986; Theologou, 1995).  

A lack of abundant and diverse dinoflagellate flora was observed from the 

sample at Cuisinier. Continental pollens were observed. These along with a lack of 

corals, echinoids, brachiopods, cephalopods or graptolites may indicate that 

deposition occurred in a freshwater lacustrine depositional environment. However 

runoff from a continental environment into any body of water could have transported 

continental pollens and a cold environment may inhibit growth and preservation of 

faunal species. 

Interpretation of seismic attributes shows a delta with a radial fan nature with 

avulsions, which is similar to classic fluvio-lacustrine and fluvial dominated deltas. 

The high-angle (about 90º) intersections between main channels and associated 

tributaries in common in modern tidal channels formed on tidal flats (e.g. Meckel, 

1975; Gastaldo et al., 1995; Olariu, 2012) were not observed. Based on limited 

planform data from seismic attributes, a fluvio-lacustrine or fluvial dominated deltaic 

depositional setting is more likely. 

If the mud-clast rich fluvial dominated FA5 facies in the DC50 cycle are 

interpreted as an ephemeral river terminating into a playa lake setting, terminal splay 
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processes similar to those that occur in the modern depositional Kati Thanda- Lake 

Eyre Basin, central Australia, could have been responsible for deposition of the 

DC50 sand. Terminal splays are common features of many rivers and deltas which 

form as a result of flow deceleration leading to sediment deposition (Tooth, 2005; 

Fisher, 2008) and feature mud-rip up clasts, ripples, cross bedding and thinly 

interbedded sands and muds. The Kati Thanda- Lake Eyre depositional basin, one of 

the world's largest endoreic basins, is equal to approximately one-sixth of the 

Australian continent and has experienced extreme wetting and drying cycles 

(Habeck-Fardy and Nanson, 2014), so terminal splay deposits could interfinger with 

deltaic deposits. The Kati Thanda- Lake Eyre Basin has a very low basin gradient, 

similar to conditions through to have been present during deposition of the Murta 

Formation in the Eromanga Basin, so incision depths and dynamics could be similar. 

Previously described localised and basin-wide depositional models for the 

Murta Formation are inconsistent and sometimes conflicting. The degree of marine 

influence and the number and character of lithofacies and sedimentary sequences is 

not consistent between interpretations. This interpretation of data from the Cuisinier 

region supports some aspects of most of the previously described facies models for 

the Murta Formation, but the absence of an integrated basin-wide facies model 

makes the delineation of the allo- and auto-cyclical controls influencing the 

distribution and character of lithofacies and sedimentary sequences difficult. A robust 

regional study could provide insight into whether surfaces interpreted here are 

regionally or only locally correlatable. The presence or absence of marine influence 

and potential connectivity with the open ocean could be further investigated. 

Furthermore, a regional study could aid in exploration within the Eromanga Basin. As 

reservoir sandbodies are below seismic resolution, studies of analogues and 
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deposits formed as a result of similar processes may improve the understanding and 

hence the capacity to predict reservoir presence for the region.  

3.6. Conclusion 

The Murta Formation within the Cuisinier study area preserves deposition 

during a long term complex overall transgression event, punctuated by at least two 

major regressive events. The Murta Formation at Cuisinier is interpreted to be net 

transgressive from south-west to north-east, with deposition most likely continental at 

the base and increasingly brackish as the top, which grades into fully marine 

deposition. The transgression most likely occurs slowly in a piecewise fashion, with 

eight sequences interpreted over the Murta Formation. Five facies associations are 

interpreted and these correspond with offshore, prodelta, delta front, shoreline and 

channel fill depositional environments. The new fluvial channel fill facies has not 

previously been described in the Murta Formation. 

This work contributes a better understanding of the distribution of reservoir 

sand and depositional controls on sedimentological heterogeneities in the Cuisinier 

Field within the Murta Formation. This will enable more efficient production and 

minimize capital expenditure during development. As reservoir sandbodies are 

largely below seismic resolution, unless stacked or amalgamated, further 

investigation into analogues with similar depositional processes is recommended. A 

basin-wide study of the Murta Formation would also help to highlight the differences 

between autogenetic controls and allogenetic controls on sediment deposition. 
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4.1. Abstract 

In dryland settings, interactions between fluvial and lacustrine systems are 

complex and diverse. We propose that the deposits which accrete at the fluvial-

lacustrine interface in dryland settings can be classified into four categories: (Type 1) 

perennial rivers terminating into perennial lakes, (Type 2) ephemeral rivers 

terminating into perennial lakes, (Type 3) ephemeral rivers terminating at a landform 

which is not a body of water or dry lake, (and) (Type 4) ephemeral rivers terminating 

into ephemeral lakes, which may be wet (4A) or dry (4B). This study presents a 

detailed case study, which includes analysis of sediment characteristics and 

geomorphology, a facies model and depositional element descriptions, for a 

previously unstudied Type 4 deposit, accreting in Lake Yamma Yamma, 

Queensland, Australia. Satellite imagery, inundation frequency maps, geological 

maps, hydrological data and digital elevation models were analysed in an initial 

desktop study. Sediment observations and descriptions, over three hundred and fifty 

sediment samples for particle size analysis, and over thirty kilometres of Real Time 

Kinematic GPS data were collected over approximately two months in the field. 

Analysis of these data enabled the deposits to be described in detail and the likely 

controls on deposition to be interpreted. Twelve main depositional elements are 

described. Proximal fluvial-dominated elements, medial lacustrine-influenced 

depositional elements and marginal lacustrine deposits were sand-dominated, but 

distal elements were generally mud dominated, with suspension fallout processes 

responsible for deposition. 

When flow into Lake Yamma Yamma from Cooper Creek commences, 

terminal splay style deposition occurs, but as flow intensity increases, deltaic 
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deposition occurs and becomes more influential. Incision of channels through 

aeolian dunes influences the morphology of upper and lower delta plain systems. 

Locally-sourced terminal splay complexes provide sand-rich sediment to the lake, 

with shorelines and barrier islands formed during times of high lake level. These 

deposits at Lake Yamma Yamma are compared to other studied dryland fluvial 

termination deposits. We conclude that at Lake Yamma Yamma, changes in climate 

and variability in accommodation space play a role in deposit characteristics, but 

local tectonic activity is the main controlling factor for sediment character, 

geomorphology and sand bed thickness. 

4.2. Introduction 

Interactions between fluvial and lacustrine systems in dryland settings are diverse 

and complex (Al-Masrahy and Mountney, 2015). Permanent, intermittent and 

ephemeral fluvial systems occur in many dryland regions including parts of India, 

Saudi Arabia, the United States and Australia (e.g. Schenk and Fryberger, 1988; 

Nanson et al., 2002; Tooth, 2000; Glennie, 1987). Continental drylands have been 

widespread at times through Earth history (George and Berry, 1993; Turner et al, 

2001; Hinds et al, 2004; Scherer et al, 2007; Abbasi et al, 2013). A significant locus 

of deposition in these settings, and thus a key area of interest, is the termination of 

fluvial systems into playa lakes; the equivalent of a lacustrine delta in a perennially 

wet humid system, and described here as terminal fluvial deposits. 

Published studies of terminal fluvial deposits in drylands have not been 

comprehensively reviewed. A range of different descriptive terminologies have been 

applied without an attempt to establish a broader context for classification. Although 

climate, local tectonic regime and variability in accommodation space play a role in 
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deposit characteristics such as thickness, stacking patterns and preservation 

potential, fundamental sediment transport processes and geomorphologies share 

similarities. We propose, based on published studies of modern dryland terminal 

fluvial deposits, that dryland terminal fluvial deposits can be classified into four 

categories, based on simple fundamental hydrologic conditions. The categories are: 

(1) a perennial river terminating into a perennial lake, (2) an ephemeral river

terminating into a perennial lake, (3) an ephemeral river terminating on a landform 

which is not a body of water or dry lake, e.g. a floodplain, and (4) an ephemeral river 

terminating into an ephemeral lake, which may be wet (4A) or dry (4B), a temporal 

variation in the same system with depositional processes changing at the river 

terminus depending on environmental conditions.  

Type 1 deposits, perennial rivers terminating into perennial lakes, form fluvio-

lacustrine deltas, dominated by subaqueous deposition. Described examples include 

the Ural Delta and the Emba Delta, which have formed where the Ural and Emba 

rivers terminate into the Caspian Sea (Richards et al., 2017). Type 1 deposits share 

similar depositional characteristics to comparatively well-studied marine deltas (e.g. 

Galloway, 1975; Ainsworth et al., 2011), except for a key difference which is that 

they lack the tidal influence that occurs in many marine deltas. They are, however, 

likely to be very similar in terms of their facies and morphology to marine deltas, but 

influenced only by wave and fluvial controls (W, F, Wf and Fw of Ainsworth et al, 

2011). 

Type 2 deposits, ephemeral rivers terminating into perennial lakes, also form 

deltas. This is a rare depositional setting due to the relatively small number of 

perennial lakes in dryland environments. Deltas deposited under these conditions 

form low gradient fluvial-dominated alluvial fan deltas (Blair and McPherson, 2008). 
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A well-described example is the Rose Creek fan delta of west-central Nevada (Blair 

and McPherson, 2008). Type 2 deposits may occur in tectonically active basins with 

steep gradients, which allow for the presence of a stable perennial lake in a dryland 

setting. As these deltas are deposited there are two modes of deposition: alluvial-

dominated when the ephemeral river is dry and fluvial-dominated when the 

ephemeral river flows. As a result fluvial deposits can be interbedded with alluvial 

gravity-driven deposits. 

Type 3; ephemeral rivers terminating at landforms which are not a body of 

water or dry lake, have been described as terminal fans (Friend, 1978, Kelly and 

Olsen, 1993), floodouts (Tooth, 1999; Tooth, 2000), ephemeral mud-prone interdune 

fluvial terminations (e.g. Stanistreet and Stollhofen, 2002), fluvial distributary 

systems (Nichols 1987; Nichols and Hirst 1998; Nichols and Fisher, 2007) and 

ephemeral stream terminal distributary systems (Billi, 2007). Although these deposits 

are well-described, deposit character is highly varied; there is no distinct sedimentary 

succession, and no single facies model can predict deposit character (North and 

Warwick, 2007). Type 3 deposits share process-based characteristics with crevasse 

splays and ephemeral floodplain features formed by overland flow (Jorgensen and 

Fielding, 1996; Taylor, 1999). 

Type 4 consists of ephemeral rivers terminating into ephemeral lakes, which 

may be wet (4A) or dry (4B). Where the ephemeral lake is wet (4A), deposition is 

dominantly subaqueous, similar to that described in a delta (Type 2), but will likely be 

influenced by wetting and drying, aeolian reworking and subaerial flow. Where the 

ephemeral lake is dry (4B), deposition is dominated by subaerial unconfined flow 

(similar to Type 3), which can evolve in scale from a single lobe to a larger 

distributary system. Depositional character is likely to be influenced by aeolian 
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reworking. Examples of Type 4 depositional systems include fluvial terminations fed 

by ephemeral rivers in the Turkana basin, northern Kenya (Frostick and Reid, 1986), 

the Elliot Formation of the Karoo Basin (Turner, 1986), the Río Colorado in Salar de 

Uyuni Bolivia (Donselaar et al., 2013; Li and Bristow, 2015), the Huesca fluvial fan in 

the Ebro Basin, Spain (van Toorenenburg et al., 2016), the Chott Rharsa system, 

southern Tunisia (Blum et al., 1998), Kati Thanda- Lake Eyre margin terminal splays 

complexes in the Kati Thanda- Lake Eyre Basin (Lang et al., 2004; Fisher et al., 

2008) and Coongie Lakes margin terminal splays in the Kati Thanda- Lake Eyre 

Basin (Costelloe, 2009). 

Two facies models describe the characteristics of Type 4 marginal terminal 

fluvial systems in the Lake Eyre Basin: confined and unconfined (Lang et al., 2004; 

Fisher et al., 2008; LEBARG, 2010). The confined facies model is defined by a 

sandy low-sinuosity fluvial channel belt that becomes a network of bifurcating, 

downstream narrowing distributary channels. These are filled with sand fining 

upward or simple compound bars, commonly overlain by desiccated mud-plugs. 

Narrow crevasse splay channels occur until flow becomes unconfined, and resultant 

splay deposits amalgamate laterally to form fining upward middle-ground bar 

deposits. Amalgamated deposits are likely to coarsen upward overall. Aeolian 

reworking is pervasive. The unconfined facies model is simpler. Sheet-flood 

processes dominate deposition. Shallow bars separate wide and shallow distributary 

channels. Topographies are relatively subdued. Deposits generally consist of fining 

upward sheet-like deposits with abundant climbing ripples, parallel and/or upward 

convex parallel lamination and small scale 2D and 3D dunes. Both confined and 

unconfined facies occur at a range of scales (LEBARG, 2010). These conclusions 

were drawn from study of five fluvial termination deposits in Kati Thanda- Lake Eyre, 
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with deposit area ranging from 0.1 – 89 km2, fluvial catchment area ranging from 

<100 – 361 000 km2 and proximal deposit grain size ranging from muddy silt to 

medium sand (LEBARG, 2010). Confined and unconfined deposits may overlie or 

occur adjacent to one another and terminal splay complexes overlie and interfinger 

floodplain, playa and lake floor sediments (Fisher et al., 2008). Temporal and spatial 

variability occurs as a result of lobe stacking, wind-tide reworking and aeolian 

deflation in the short term, as well as medium and long term climatic wetting and 

drying cycles (LEBARG, 2010; Fisher et al., 2008). 

Process-based facies models are not explicitly presented for the other 

published examples of Type 4 dryland terminal fluvial deposits. Chott Rharsa 

system, southern Tunisia (Blum et al., 1998), ephemeral rivers in the Turkana basin, 

northern Kenya (Frostick and Reid, 1986), the Elliot Formation of the Karoo Basin 

(Turner, 1986) or the Coongie Lakes margin terminal splays in the Kati Thanda- 

Lake Eyre Basin (Costelloe, 2009). Inspection of limited sedimentary log data from 

these studies reveals the highly variable nature of these deposits. Grain size, sorting, 

bed thickness, stratigraphic stacking pattern and lateral extent all vary between 

locations. 

Although relatively common in drylands globally, Type 4 deposits are 

generally understudied and underrepresented in the literature compared to their 

Type 1, 2, 3 and marine deltaic counterparts. A range of descriptive terminologies 

are applied without a broader context for classification. A context for classification 

could help to facilitate more productive comparisons and improve interpretation of 

ancient deposits. Furthermore, Type 4 terminal dryland fluvial deposits display no 

distinct sedimentary succession. Deposits are highly varied. No single facies model 

can predict deposit character. More field studies are required in order to characterise 



Description Range of terminology Modern Example Key References 

Category 1 
perennial rivers 
terminating into 
perennial lakes 

lake delta, fluvio-
lacustrine delta 

Ural Delta and Emba Delta 
terminating into the Caspian 

Sea 
 Galloway, 1975; Blair 
and McPherson, 2008; 

Ainsworth, 2011; 
Richards et al., 2017 Category 2 

ephemeral rivers 
terminating into 
perennial lakes 

lake delta, fan delta, 
lacustrine delta 

Rose Creek fan delta of west-
central Nevada  

Category 3 

ephemeral rivers 
terminating at 

landforms which are 
not a body of water 

or playa lake 

terminal fans, floodouts, 
fluvial distributary 

systems, ephemeral 
stream terminal 

distributary systems  

Hoanib River flood deposits of 
Namib Desert; Ephemeral 

stream terminations in the Kobo 
basin, northern Welo, Ethiopia; 

ephemeral rivers on the 
Northern Plains of central 

Australia 

Nichols 1987; Kelly and 
Olsen, 1993; Tooth, 

2000; Stanistreet and 
Stollhofen, 2002;Billi, 

2007; Nichols and 
Fisher, 2007 

Category 4 

A 
ephemeral rivers 
terminating into 

ephemeral lakes, 
which are wet  

fluvial terminations fed by 
ephemeral rivers, fluvial 

termination systems, 
terminal splays, marginal 
terminal fluvial systems 

Fluvial terminations fed by 
ephemeral rivers in the Turkana 

basin, northern Kenya; Chott 
Rharsa system, southern 
Tunisia; Lake Eyre margin 

terminal splays in the Lake Eyre 
Basin, central Australia 

Frostick and Reid, 1986; 
Turner, 1986; Blum et al., 
1998; Lang et al., 2004; 

Fisher et al., 2008; 
Costelloe, 2009 B 

ephemeral rivers 
terminating into 

ephemeral lakes, 
which are dry 

Table 1: Summary of framework for categories of terminal dryland fluvial deposits discussed within this paper. 
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these deposits and develop a predictive facies model. 

Although relatively common in drylands globally, Type 4 deposits are 

generally understudied and underrepresented in the literature compared to their 

Type 1, 2, 3 and marine deltaic counterparts. A range of descriptive terminologies 

are applied without a broader context for classification. A context for classification 

could help to facilitate more productive comparisons and improve interpretation of 

ancient deposits. Furthermore, Type 4 terminal dryland fluvial deposits display no 

distinct sedimentary succession. Deposits are highly varied. No single facies model 

can predict deposit character. More field studies are required in order to characterise 

these deposits and develop a predictive facies model.  

In order to start filling this knowledge gap, this study describes a detailed case 

study of a Type 4 deposit that has not previously been described. We present an 

analysis of sediment characteristics and geomorphology, a summary facies model 

and descriptions of depositional elements. The interpretation of process controls is 

emphasised. Our observations are compared with published studies of dryland fluvial 

terminations and illustrate the diversity of such deposits in dryland settings. This 

study highlights a lack of context for description of fluvial termination deposits, and 

the need for more detailed case studies to enable better understanding of the 

processes and controls of such deposits. 

4.3. Regional Setting and Background 

Lake Yamma Yamma is the largest dryland lake in Queensland, Australia (~800 

km2), located near the northeast corner of the South Australian and Queensland 

borders (Figure 1A). Lake Yamma Yamma is an example of a structurally controlled 

playa lake which has formed upstream of the basin depocentre. The ultimate base 
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level is Kati Thanda- Lake Eyre, ~750km downstream and ~90m lower. Structural 

controls on the lake include intraplate tectonism and large scale folding.  The long 

axis of the lake follows the trend of the Yamma Yamma Syncline along strike and the 

lake is constrained by structural highs to the east, west and south (Figure 1B).  

Lake Yamma Yamma has not previously been the focus of any scientific studies, 

although in 1967 as part of a regional economic exploration study a shallow borehole 

(Barrolka-1, 103 m TD; Figure 2) was drilled in the centre of the lake (Senior, 1970; 

Gregory et al., 1967). A basic lithology log from the hole shows that approximately 

100 m of mud (silt and clay), bands of evaporitic gypsum and thin sands are 

preserved vertically below the lake. Sand intervals are up to 2 m, but typically around 

50 cm thick, and make up approximately 23% of the total length of the hole. No other 

sedimentary details were described. Material from the borehole was not kept. 

Lithologies from this borehole could represent many years of ongoing lacustrine 

sedimentation are preserved in the subsurface in the region, and could suggest that 

Lake Yamma Yamma is a long-established and persistent feature, rather than an 

transient surface landform.  

Lake Yamma Yamma fills primarily as a result of Cooper Creek overflow, and when 

full, covers approximately 690 km2 and reaches 1 metre total depth. The lake fills 

completely approximately once every three decades; however there is generally 

some local seasonal inundation in the northeast section of the lake as a result of 

minor Cooper Creek overflow (Queensland Government, 2016).  

Cooper Creek comprises a complex fluvial system, with up to 60 km total floodplain 

width. The system transports a minor sand load and mud, often as  
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Figure 1: A. The location of Cooper Creek in the context of the Kati Thanda- Lake Eyre Basin. B.The Lake 
Yamma Yamma region, showing basic spatial and geological characteristics of Lake Yamma Yamma and the 
Cooper Creek floodplain in the study area. 
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aggregates (Maroulis and Nanson, 1996; Rust and Nanson, 1989), from its 

headwaters in central Queensland south west to Kati Thanda- Lake Eyre (Figure 

1A). Along Cooper Creek sediment is preserved in synclines and local sediment 

sinks, including Lake Yamma Yamma, above the primary intra-continental 

depocentre base level at Kati Thanda- Lake Eyre (Jansen et al., 2013). Cooper 

Creek is the most intensively described of the Kati Thanda- Lake Eyre drainage 

basin rivers and has been the focus of many studies (e.g. Nanson et al., 1986; Rust 

and Nanson, 1986; Nanson et al.,1988; Knighton and Nanson, 1994; Fagan and 

Nanson, 2004; Maroulis et al., 2007; Cohen et al., 2010; Jansen et al., 2013). 

Aeolian dunes, anabranching channels, braided flood channels, palaeochannels, 

splays and waterholes characterise reaches of the Cooper Creek floodplain closest 

to Lake Yamma Yamma (Tooth and Nanson, 1999). Channels along Cooper Creek 

near Lake Yamma Yamma tend to have one dominant main trunk, although 

numerous sinuous small channels can exist across the floodplain. Dominant main 

trunk channels tend to have low but highly variable width to depth ratios (e.g. 4 to 

60), steep banks formed of cohesive mud commonly lined with vegetation, low 

levees and a canal-like cross section (Knighton and Nanson, 1994).  
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Figure 2: A. Hydrological characteristics of Cooper Creek catchments and drainage systems upstream and 
downstream of Lake Yamma Yamma. Mean monthly rainfall at Longreach and Barcaldine, on the Thompson and 
Barcoo Rivers (Bureau of Meteorology, 2016). Discharge records at Cullyamurra waterhole (near the South 
Australia border) (Bureau of Meteorology, 2016). B. Barrolka shallow exploration borehole lithology. Drilled in 
1967 on the lake bed at Lake Yamma Yamma. Sand, mud and evaporate (gypsum) lithologies are preserved. 
Location is shown in Figure 2A. Adapted from Gregory et al., 1967. 

The convergence of two rivers, the Thompson and the Barcoo, form Cooper 

Creek. Rainfall events in these two rivers catchments results in flow events on 

Cooper Creek. Rainfall data taken at Longreach and Barcaldine (Figure 2; BOM, 

2016), within the Thompson and Barcoo catchments respectively, show a summer-

dominant rainfall regime (Figure 2). Rainfall from these catchments can cause slow-

moving large flows along Cooper Creek which reach and potentially fill Lake Yamma 
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Yamma weeks after initial rainfall events. Closer to the lake, the mean monthly 

maximum rainfall (data range from 1988 to 2015; BOM 2016) at Tanbar station 

(Map, Figure 2) was 32.5 mm in January and the mean monthly minimum was 8.9 

mm in both August and September, with an annual mean of 216.5 mm, a quarter of 

that at Longreach and Barcaldine. These localised rainfall events cause rapid 

ephemeral flows, with small rivers flowing for hours to days. Stage height and daily 

discharge records along Cooper Creek illustrate the variable river hydrology. Data at 

Cullyamurra (Figure 2) shows multiple flow events, with decade scale larger 

magnitude flood events. Mean monthly maximum temperatures at Ballera (Map, 

Figure 2) between 2002 and 2015 were 39.4ᵒC in January and 25.6ᵒC in June. Lake 

Yamma Yamma has an average annual pan evaporation of 3200 mm and an 

average annual global solar exposure of 22 MJ/m2 (BOM, 2016).  As a result of 

these conditions and as the Cooper Creek floodplain widens where Lake Yamma 

Yamma is located (between Windorah and Cullyamurra) flow transmission losses 

exceed 75% on average (Knighton and Nanson, 1994).  

4.4. Methods 

As this represents the first such study of Lake Yamma Yamma, satellite imagery, 

inundation frequency maps (Geoscience Australia, 2014), geological maps 

(1:100,000, DMP Queensland 2010), hydrological data (BOM, 2016) and digital 

elevation models (Geoscience Australia, 2014) were used to undertake a remote 

sensing study of the region prior to a field campaign. As the surface sedimentology 

of the area had not been described previously, conducting fundamental descriptive 

field based work was a priority. Data collection was deliberately designed in order to 

capture a wide range of depositional settings. Sediment observations and 
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descriptions, three hundred and fifty-two sediment samples, over thirty kilometres of 

Real Time Kinematic (RTK) Geographic Positioning System (GPS) data and detailed 

element dimension data were collected at the site (Figure 3).  

Field work was conducted with an aim that field observation and quantitative 

grain size data from trenches, transects and sediment samples could be used to 

provide the basis for facies classifications Sediment was described visually 

(lithology, sorting, rounding, presence of aggregates) and grain size estimates were 

taken qualitatively (range, dominant grain size, multiple populations) both from 

surface sediments and six shallow (up to 1.8 m) trenches. Sediment samples taken 

were representative of facies within geomorphic elements (levee, dune, inter-

distributary floodplain) (cf. Brierley and Hickin, 1991). Where geomorphic elements 

exceeded 20 m, samples were taken every 5-10 m in order to capture variability. 

Minimum sediment sample size was a cube with a 20cm edge, with more sediment 

collected for larger grain sizes. Surface lag, where present, was sampled separately 

from the material below.  

Real Time Kinematic (RTK) GPS data, accurate to centimetre scale, was 

collected primarily along transects to capture major topographic changes between 

the lake and surrounding fluvial and aeolian features. Data was captured at a 

detailed resolution, with an average of 5 m between data points, which decreased to 

0.2 m where large changes were observed over a short distance. Element dimension 

data was collected using a laser range finder and three dimensional element 

relationships were observed. Analysis of lithofacies, architectural and geomorphic 

elements provided the basis for sedimentary process interpretations. All of this work 

was conducted by the author at the field site in September and October 2014.  
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Grain size was analysed from field samples in the laboratory using a 

Beckman Coulter LP13320 Laser Particle Sizer (LPS). In preparation for LPS 

analysis samples were oven dried at 50ᵒC and sieved through a 2 mm mesh (Gale 

and Hoare, 1991). Organics were removed from clastic material through chemical 

digestion using 30% hydrogen peroxide (Lewis, 1984) and the clastic fraction was 

disaggregated using physical methods and through the addition of a chemical 

dispersant. The fraction smaller than 2 mm was analysed in the LPS using 2 micron 

filtered fresh water as a solvent with samples transported at a constant velocity in the 

aqueous liquid module. The larger fraction was incrementally sieved and weighed. 

Grain size analyses were repeated with non-disaggregated duplicates of samples 

that had not undergone the afore-described disaggregation process to assess the 

potential for sediment transport as aggregates. All other conditions were kept 

constant. Grain size distributions for all analyses were normalised using the R 

project for statistical computing (R core Team, 2012) and comprehensive statistics 

computed. Presented grain size distributions are a weighted average for the entire 

sample. All of this work was completed for over 350 samples by the author of this 

thesis. Unprocessed data is available in Chapter 8: Appendices. 

4.5. Results and Interpretation 

4.5.1. Geomorphology and Topography 

Primary inflow to Lake Yamma Yamma occurs to the north east of the lake (Figure 

3A). A combination of DEM and field topographic data show that the maximum 

change in elevation from the deepest point of the lake to the inflow point to Lake 

Yamma Yamma in the north-east is 5.2m. The minimum elevation in the study area 

was 90.2 m, on the lake floor, and the maximum elevation point in the study area 
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was recorded at 124.3 m, to the north of Lake Yamma Yamma at Curralie Dome.  

Linear parallel features on the northern margin of the lake had an elevation of 

approximately 100.1 m, making the total elevation from the lake floor to the lake 

margin 9.9 m. 

Aside from the primary input point from Cooper Creek, smaller systems terminating 

into Lake Yamma Yamma transport material from the Curralie Dome, Mackillop 

Anticline and Gilpeppe Anticline structural highs to Lake Yamma Yamma (distances 

of tens of kilometres; Figure 4). These systems experience very rare (approximately 

once every 10-15 years) ephemeral flows as a result of local rainfall. They are 

estimated to hold water up to 5% of the time (Figure 5) and are back-filled when the 

lake holds water sourced from Cooper Creek. These localised systems cut through 

linear features parallel to the current north-west shoreline of Lake Yamma Yamma, 

which are self-organised into parallel rows. The shoreline features closest to the lake 

represent highstand shoreline deposits and the shoreline features further away from 

the lake are interpreted to be paleoshorelines, based in their morphology and 

sedimentary characteristics. 

Gross depositional environment changes are interpreted based on changes in 

planform morphology, remote sensing data, vegetation, slope and inundation 

frequency. When considering the lake in a traditional deltaic framework (i.e. 

Bhattacharya and Walker, 1992) distinct aeolian, shoreline, upper delta plain, lower 

delta plain, delta front, prodelta and lacustrine (lake/ playa floor) regions can be 

identified (Figure 4). This is not to imply that these gross depositional environments 

are explicitly conformal to the definitions provided for deltas, but given the lack of 

classification framework and diverse terminology for dryland fluvial termination 

settings, they provided a useful broad scale first pass method of discriminating 
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between depositional settings in a way that allowed for further detailed description in 

the field. 

Figure 3: Satellite image with logged section locations (crosses), sample locations (dots), transects (solid lines) 
and major geomorphic features.  Imagery captured 18/10/2012. A. shows main delta and lake. B. shows enlarged 
localised terminal fluvial system. C. shows enlarged waterhole and dune on lower delta plain. 
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Figure 4: Digital Elevation Model from SRTM data (Geoscience Australia, 2015). Interpreted gross depositional 
elements shown in white. Structural highs from geological map. Transect constructed from DEM data and 
adjusted field data. 
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Figure 5: Inundation Frequency Map, showing the percent of time that water is present in different areas 
(Geoscience Australia, 2015). Interpreted gross depositional elements divisions and transect line from Figure 4 
shown. 
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west and the south-west, but channels are shallower and more sinuous and the 

region is more vegetated. 

Near the location of inlet channel terminations the planform of the inlet from 

Cooper Creek to Lake Yamma Yamma exhibits different morphologies in the north-

west and south-east lobes. The active lobe in the north-west has a traditional birdfoot 

planform shape, as would be expected in a fluvial-dominated system (Ainsworth et 

al., 2011, e.g. Mississippi Delta). In the south-western lobe, the termination 

morphology is comparatively linear, similar to that expected from a wave-dominated 

shoreline (Ainsworth et al., 2011, e.g. Rhone Delta). This substantiates an 

interpretation that this south-eastern lobe is not the dominantly active lobe at 

present, and indicates that wave reworking during lake inundation phases is 

significant; as is also indicated by shorelines/beach ridges in other parts of the lake.  

4.5.2. Lithofacies 

Observed lithofacies are described below and briefly summarised in Figure 6. 

These were grouped to form facies associations (Figure 10), which formed the basis 

for depositional element classification (Figure 11). 

Evaporite 

A halite and/or gypsum crust and discrete salt layers were observed on the 

lake bed and in the lake vertical sections. These lithofacies are likely to have been 

deposited out of suspension as evaporation occurs. 

Carbonaceous Mud (Fc) 

This facies consists of very thinly bedded horizons of carbonaceous mud. 

Calcium carbonate horizons are interpreted to have formed in-situ after deposition. 
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Evaporation and low rainfall likely plays a part in the precipitation of these. 

Clay (organic rich) (Cl, Clb) 

This facies consists of the finest lithofacies; generally a polymodal, poorly 

sorted mud with over fifty percent clay content. Medium grey in colour, with high 

organic content this facies generally features millimetre scale laminations and 

mudcracks which may be locally disrupted due to bioturbation.  

This facies is interpreted to have been deposited from suspension in standing 

pools of water during no-flow or waning flow periods. Sediments of this facies have 

the potential to be transported as aggregates, however finely laminated structures 

suggest suspension fallout as a depositional mechanism in this case.  

Silt (Fm, Fb )

This facies contained primarily fine silt. Medium grey in colour, this facies is 

deposited from very low velocity flow or as a result of wind action. 

Very fine sand sized aggregates (Fm, Fb, Fa, Sm) 

This facies consists of fine silt with minor clay, coarse silt and very fine sand 

particles. Light grey in colour, with moderate organic content, this facies is generally 

massive, with localised mud cracks. This facies is interpreted to have been 

transported and deposited as very fine sand sized aggregates. Particle size analyses 

repeated with non-disaggregated samples are stable at a coarser grain size. 

Aggregation can be observed in the field. Thin mud aggregate beds interbedded with 

fine sand facies are common. 

Very fine silt to fine sand (Fm, Fb, Sm) 

This facies consists of very poorly sorted polymodal very fine silt to fine sand. 

Clay content is minimal. Grey light brown, with low organic content, this facies is 
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generally massive, with no visible sedimentary structures. This facies is interpreted 

to have been transported and deposited as a mixture of poorly sorted fine sand sized 

aggregates, due to repeated with non-disaggregated samples being consistently 

coarser. This facies is interpreted to have been deposited out of suspension from low 

velocity flow. Aggregates in are likely to be less stable, and more likely to be broken 

up than those in Facies B, due to lower clay content.  

Poorly sorted medium silty fine sand (Sm, St, Sp, Sr, Sd) 

This facies consists of poorly sorted medium silty fine sand, mode 245.45µm. 

Mud content varies from 20% to 8%. This facies contains trough cross bedding, 

ripple cross bedding and planar cross bedding. This facies is interpreted to be 

material sourced locally from dunes. Facies D is interpreted to be fluvially reworked 

material. Facies D2 and D3 (the ones containing the mud spike) are generally 

associated with less reworked dune material. The similarity of these facies is 

interpreted to represent the dynamic nature of the dune area and the erosion of the 

dunes by fluvial energy.  

Coarse Sand (Sr, Sp, St) 

This facies consists of well sorted, unimodal, coarse sand. Light straw brown, 

this facies contains ripple structures, planar cross bedding, and trough cross 

bedding. Grains are generally well to moderately well rounded. Lithofacies can also 

be interpreted to have been transported through fluvial energy as bedload during 

flooding events.   

Cobbles 

Coarse clasts of 5cm-20cm width were observed in and around inter-delta 

dunes, but are considered to have been transported to the site and manipulated by 
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indigenous Australians and are therefore excluded from this sedimentology study. 

This interpretation is favoured as these clasts showed evidence of being sharpened, 

ground and shaped into tool-like objects and anthropogenically arranged. Where 

observed these coarse clasts were not disturbed. Further study could reveal the 

anthropological significance of these features. 

4.5.3. Grain Size Observations and Statistics 

Field observations showed that within the field area two main types of sand 

were present; a well-rounded poorly sorted medium to coarse quartz sand and a 

very fine to medium moderately rounded moderately well sorted feldspathic sand. 

The quartz sand shared many characteristics with the lake-bordering aeolian dunes 

and often appeared to have frosted edges, indicating that it is most likely sourced 

from aeolian dunes surrounding the lake. Major catchments of the Cooper Creek 

contain felspathic granites, particularly surrounding the Great Diving Range and 

hence the felspathic sand is interpreted to be fluvial sand transported to Lake 

Yamma Yamma from Cooper Creek. Although clastic silts were observed, most silt 

was observed to be organic in nature. Mud was observed primarily as aggregates, 

but also as a product of suspension fallout. Poorly sorted sands were observed to be 

a mixture of sand and fine-sand sized mud aggregates, which slaked to very fine 

sand sized mud aggregate particles when wet. Laminated silt and clay deposits as a 

product of suspension fallout were common in waterhole on the upper and lower 

delta plains and on the lake bed. 

The range of the mean of the absolute disaggregated grain sizes for all 

samples decreased from proximal to distal gross depositional environments (Figure 

9A). The largest change in mean range was from delta plain to delta front. The large 
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Figure 6: Lithofacies grouped primarily by grain size, with a description of characteristics such as sedimentary 
structures and grain size distribution.For a more detailed description, see 4.5.2. Lithofacies. 
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range in means is attributed to the sampling of multiple depositional elements in the 

different gross depositional environments. For example, the upper delta plain had 

remnant dunes, which were composed of medium to coarse sand, as well as mud-

filled waterholes, where clay had settled out of suspension. In comparison, the 

prodelta region was predominantly muddy with some poorly sorted silt and fine sand  

Figure 7: A. Disaggregated mean grain size arranged from distal to proximal gross depositional environment. 
Vertical lines represent the P90-P10 range. Horizontal green ticks show the mean.

at higher elevations. Therefore the average of the means is biased toward the most 

common depositional element’s grain size within a specific gross depositional 

environment. The decreasing proximal to distal grain size is attributed to the 

decrease in depositional energy away from the main fluvial source, Cooper 

Creek. The grain size of mud aggregate particles classifies as silty sand sized, 

and when disaggregated these fall within the clay and silt size range (Figure 9B).  

The small change in grain size in aggregate samples suggests that aggregates in  
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Figure 7: B. Aggregates and disaggregated samples shown by sand, silt and clay proportions. See Figure 3 for all 
sample locations.

Figure 7: C. Aggregates mean grain size arranged from distal to proximal gross depositional environment.
Vertical lines represent the P90-P10 range. Horizontal green ticks show the mean.
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Figure 7: D. Change in disaggregated mean grain size with elevation arranged into gross depositional 
environment. See Figure 3 for all sample locations. 

the Lake Yamma Yamma region tend to converge to a single mean grain

size. The range of mean aggregate grain size is larger on the upper delta plain and 

lower delta plain regions and smaller on the delta front and prodelta (Figure 

9C). This trend could be the result of reduced transport energy distal to the 

source or physical abrasion of aggregates during transport.  

Distinctive trends were observed when absolute disaggregated grain size was 

considered against elevation (Figure 9D). Samples from the upper delta plain and 

lower delta plain showed weak positive increasing trends, whereas prodelta and 

delta front samples did not show distinct trends but tended to cluster around the 

lower grain size region. This dataset was limited to unimodal samples. Means from 
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unimodal samples were considered to be not comparable those of bi- and tri-modal 

samples. Many samples exhibited grain size distributions with multiple modes, 

indicating that multiple sediment size populations exist within the sample.  

 4.5.4. Depositional Elements 

Proximal Fluvial-Dominated Elements 

Upper Delta Plain 

Fluvial-dominated deposits in the upper delta plain region (Figure 12, deltaic 

features, upper delta plain) contained metre scale cross-bedded and ripple laminated 

fluvial fining up sequences interbedded with thick planar laminated mud packages 

(Figure 8). Grain size changes and boundaries between beds were sharp. Poorly 

sorted beds with erosional bases containing rip-up mud clasts and trough cross beds 

with interbedded sand and mud aggregates (e.g. Figure 9) characterised the base of 

such packages. 

Across the upper delta plain a change in elevation of 3-5 m was present 

between the lower northern lobe which is active during high and low flow events, and 

the higher the southern lobe which is active only during high magnitude flow events 

(Fig. 6, A1). Waterholes to the south-west of the lake delta consist of the lowest 

bankful depth (up to 0.8 m deep and up to 150 m wide) mud filled channels. In the 

north-western region of the delta plain, channels are narrower and deeper (up to 43 

m wide and over 8.4 m deep).  
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Figure 8: Topographic cross sections. Elevation in m ASL. Colour bars above transects represent dominant field 
grain size observations. Yellow is sand and brown represents mud. Horizontal axis is distance in metres. 
Locations are shown in Figure 3A.Continues on the next page. 
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Waterholes 

One of the most distinctive features of the upper delta plain is the waterholes, 

segments of large channels of enlarged width and depth which exhibit very similar 

’chain of ponds’ morphology, character and processes as those at Cooper Creek 

(e.g. Knighton and Nanson, 2000). These waterholes occur between non-active 

dune systems on the north-western side of the delta. Formation is interpreted to be 

primarily through dune constriction process, but the waterholes to the far northern 

side also exhibit some characteristics of valley side flanked waterholes. The 

termination of a waterhole is generally marked with a hydraulic jump-up on a metre 

scale, bifurcation and an increase in sinuosity. Smaller connecting channels tend to 

occur orthogonal to delta waterholes. 

Waterholes contain two elements, trunk channels and distributary channels. 

Channel fill is generally fine grained clays and silts (Clm, Cl, Clb, Fm, Fb, and Fa). 

Subtle and strong planar laminations are present, although some beds appear 

massive. Localised bioturbation exists, with tracks, simple and complex burrows and 
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roots present in sediment. Suspension fallout is interpreted as the primary 

depositional mechanism for channel fill. Waterholes often had associated levees and 

overbank deposits.  

These waterholes trap and hold water at relatively high local elevations (up to 

Up to 4 m above the base level of Lake Yamma Yamma). Developed levees of up to 

0.87 m, over bank deposits and erosional scour on remnant dunes suggest that 

when flow occurs it is not constrained to waterholes.  

Waterhole Dune Complex 

Topographic transects C1 to C6 (Figure 6) provide precise topographical information 

for a waterhole-dune complex on the lower delta plain. Transect C2 (Figure 6) taken 

where the waterhole is the widest and deepest (23.2 m wide, 3.1 m depth) shows a 

semi-rectangular waterhole cross section with a silt-rich levee flaked by the remnants 

of dunes which have been destroyed by incision. This waterhole is roughly half the 

width and depth of those measured on the upper delta plain. Transect C1, upstream 

from C2 recorded shallow (less than 1.8 m deep) and narrow (maximum 15 m wide) 

mud  and vegetation filled channels. Small levees flank the main channel, suggesting 

that flow is not confined to within the channels during flow events. Transect C6, 

downstream of C1 and C2 captures the hydraulic jump-up at the termination of the 

waterhole. The hydraulic jump-ups bench caused the waterhole channel to bifurcate 

and eventually terminate.  

Figure 9: Next two pages.Sedimentary logs capture grain size and sedimentary structures in cut banks and 
trenches in different depositional environments at Lake Yamma Yamma. Locations correspond to crosses shown 
in Figure 3. 
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Terminal Splay Sheets 

The termination of the waterholes after hydraulic jump up and bifurcation, particularly 

in the lower delta plain, is expressed as a splay sheet (cf. Fisher et al., 2008). 

Generally these can be split into two categories: sand-rich structured sheets and 

poorly sorted massive deposits. These are difficult to distinguish from remote 

sensing data only. The sand rich structured sheets tend to occur more at channel 

terminations toward the North West. The sand-rich structured sheets and poorly 

sorted massive deposits are not mutually exclusive and may occur 

Figure 10: Next page. Photographs of common deposits. Top row: Basal fluvial package. Mud aggregate lens, 
cross beds, mud aggregates accumulated on the face and toe of foresets. Soft sediment deformation in lower 
delta plain deposits BASE L-R: Soft sediment deformation was abundant throughout the study area. Mudcracks 
on the lake floor commonly exceeded depths of 1 m, due to ongoing desiccation. Mud aggregates accumulate on 
the face and toe of foresets in cross stratification. 
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together as stacked deposits. The sand rich structured sheets display similar 

characteristics to fluvio-deltaic deposits, and are similar to the proximal splay 

element from the Douglas creek terminal splay (Fisher et al., 2008). Soft sediment 

deformation structures are common.  

Deltaic-altered Transitional Features 

Waterholes are flanked by sand rich high relief erosional dune structures. 

When high flow events occur, waterholes become the primary flow conduits and 

these primarily erosional dune structures become depositional features, as overbank 

sediments are deposited. Waterholes are scoured and post terminus lobes become 

part of the lower delta plain. The regular terminal splay character of these features is 

altered by high-energy flow and the features become part of the larger delta system. 

Medial Lacustrine-influenced Depositional Elements 

Lower Delta Plain and Delta Front Channels 

Terminal fluvial deposits in the lower delta plain region showed overall fining 

up sequences interbedded with planar laminated silt and clay beds. The base of the  

fining up sequences was characterised by poorly sorted thin beds containing mud 

aggregates, silt, sand and mud rip-up clasts topped by cross beds with mud 

aggregates on the face of predominantly sandy foresets (e.g. Figure 7 A, B). Current 

ripples (e.g. Figure 7) and soft sediment deformation verging on ball and pillow 

structures (e.g. Figure 7) were common. 

Floodplain channels in the southern lower delta plain display reticulate 

channel morphology (e.g. Fagan and Nanson, 2004) particularly near channel 

terminations. These channels exhibit a maximum 1 m bankful depth and form a 
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dense network of channels with simple form which experience very little change 

along the length of the channel. These channels are filled with poorly sorted clays 

and silts (Clm, Cll, Clb, Fm, Fb, Fa) and organic material. Material deposited outside of 

the channels is nearly identical to that deposited outside of the channels (Clm, Cll, 

Clb, Fm, Fb, Fa). Occasional discontinuous sand layers (Sl) occur on a millimetre scale 

within and outside of the channels. Gilgai is well developed and interpreted to play a 

role in the formation of the reticulate pattern. 

Floodplain channels is the central lower delta plain contain very similar 

sedimentary features to those in the southern lower delta plain, with a slightly higher 

sand content. These channels exhibit characteristics reticulate floodplain flow styles 

in Cooper Creek (Fagan and Nanson, 2004) and appear to be a transition zone 

between the south and north. The increasing sand content in the northern region 

appears to inhibit widespread gilgai development, which results in a transitional 

pattern between braided and reticulate channels.  

Terminal fluvial deposits in the delta front region were composed of 

interbedded muds, fine sands and silts, with some rare fining and coarsening up 

sequences. Mud was observed to have been deposited as silt sized aggregates, but 

some millimetre scale planar lamination was also present. 

Distal Elements 

Playa Lake and Prodelta 

The prodelta and playa lake bed is composed of fine clastic and chemical 

sediment (Clm, Cll, Clb, Fm, Fb, Fa). During flood events, the lake bed is inundated 

with water and sediment, and sediment is deposited out of suspension. During this 
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time the lakebed experiences bioturbation and an influx of organic matter. 

Evaporation causes shallowing, exposing laminated sediment and organic matter. 

Desiccation cracks, up to 1 m deep, soft sediment deformation structures, finely 

laminated silts and muds were observed. Desiccation crack are sometimes filled with 

silts, muds and sands, observed to be deposited through aeolian processes.  

A diverse range of sedimentary structures were observed in the prodelta and 

playa lake floor deposits. Soft sediment deformation including sediment escape, 

slumping, flame structures, ball and pillow structures (Figure 7) as well as large (0.5-

1.5 m wide and 0.5-1.2 m) and polygonal desiccation cracks of many scales (Figure 

7) were observed. A sedimentary log from a trench in the playa lake floor (Figure 8)

recorded predominantly clay with interbedded silt layers. 

Marginal Lacustrine Depositional Elements 

Shorelines 

Linear features parallel to the north-western side of the lake margin are 

composed of sand rich lithofacies (Sr, Sp, St). Wave ripples, planar lamination, low 

angle cross planar stratificant, lenticular, wavy and flaser bedding were observed in 

these settings. Away from the centre of the lake, the lake bed elevates slightly (1-2ᵒ). 

The margin is characterised by an initial sharp elevation of 5-6 m and a subtle 

elevation of 1-2 m, then modern active dune fields dominate the landscape. The 

initial elevation changes are interpreted to represent shoreline deposits during lake 

highstands. Shoreline deposits are thinly bedded, less than 20-30cm and are altered 

by deflation and bioturbation.   

Transects A8, A9, A10 and A11 (Figure 6) capture the transition from 
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lacustrine to shoreline to aeolian depositional environments. For transects A9 and 

A10 (Figure 6) a maximum elevation change of 16.45 m over a distance of 2 km was 

recorded. Sand bars (up to 0.3 m) accompany aggregated shoreline (up to 3.6 m) 

and berm deposits. The second ridge (up to 11.4 m) was composed of interbedded 

paleoshoreline and dune deposits. These shorelines were likely deposited during 

lake highstands.  

Shoreline deposits on the north-west margin of the lake record the former extent 

of highstand and falling stage lacustrine conditions. These are similar, but narrower 

and thinner to those described around Kati Thanda- Lake Eyre (Magee et al., 1995), 

Lake Ngami (Shaw et al., 2003; Burrough et al., 2007) and Etosha Pan (Brook et al., 

2007). As in the afore mentioned cases, they are interpreted to be a product of wave 

reworking at a time of greater water supply (highstands) and/or reduced evaporation 

rates.  

Barrier islands and estuary 

When Lake Yamma Yamma fills, remnant dunes around the south eastern 

edge of the lake appear to form barrier islands. Laminated sands and small ripples 

preserved in the reworked sediment deposited on the remnant dunes suggest minor 

wave action onlapping onto the remnant dune.  A break in the dune forms a relatively 

narrow inlet which allows the interdune area to flood, forming a protected backwater 

lagoon isolated from the floodwaters of the lake. Sediment deposition in the 

backwater consists of laminated silts and organic rich muds (Fm, Fb, Cl, Clb). 
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Aeolian Dunes 

Modern transverse and longitudinal dunes dominate the landscape around Lake 

Yamma Yamma and influence the development of fluvial channels in the region. 

Dunes are similar to those described around the Kati Thanda- Lake Eyre Basin 

(Fitzsimmons et al., 2009). As the focus of this study is fluvio-lacustrine sediments, 

dunes were not studied in detail; however they are important in the overall 

morphology of Lake Yamma Yamma. 

Smaller Scale Localised Fluvial Terminations on Lake Margins 

Small localised distributary channels distribute sediments from local highs to 

the lake floor. Localised distributary channels vary in morphology and sedimentology 

from those in the main channel. Localised channels can be divided into three main 

elements: distributary channel, proximal splay and distal splay.  

Sedimentary logs in the major trunk channel and a smaller distributary 

channel of a localised terminal fluvial system showed vastly different characteristics. 

The major trunk channel log showed thicker beds with pervasive soft sediment 

deformation, current ripples and planar cross bedding where bedding was preserved. 

These were interbedded with mud and silt intervals with planar lamination. The 

distributary channel log showed thinner beds with more pervasive planar lamination, 

minor planar cross bedding and ripples. 

Figure 12: Next page. Deposition element summary, with elements grouped by complex. Schematic, typical field 
log, location, length and width are included. 
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Transects B1, B2, B4 and B5 (Figure 6) capture topographic data around a lake 

margin fluvial termination (location shown in Figure 3B). The major trunk channel is 

captured in B1 and B2. The channel has a wider and shallower cross section than 

the canal-like waterholes. Widening may be caused by reversed flow during major 

filling events in Lake Yamma Yamma. Sand rich point bars on the edge of the 

channel and small braid-like sand bars were observed. B4 and B5 capture the 

distributary channels and represent two common morphologies. B3 and B6 capture 

similar information and B7 and B8 show a decrease in elevation of 5 metres over 

approximately 600 m. 

Base level, and hence depositional style for terminal fluvial systems is controlled by 

lake level. When the lake is dry, the terminal points of localised distributary channels 

take the form of terminal splay complexes (e.g. Fisher et al., 2008). When the lake is 

filled, the terminal points of localised distributary channels experience deltaic 

depositional styles. Deltaic deposition differs from terminal splay type deposition in 

that splay deposits are generally more likely to be massive, more likely to contain 

soft sediment deformation, coarser, more poorly sorted and contain more mud 

aggregates than deltaic deposits. 

4.6. Discussion 

Sedimentary Characteristics and Depositional Model 

When Cooper Creek experiences major flow events, flow is diverted into Lake 

Yamma Yamma. Initially, terminal splay style deposition occurs. Here, the initial 

terminal fluvial deposit is confined. As flow velocity increases, deltaic depositional 

processes become more prevalent and terminal splay deposits are reworked. 

Unconfined deposition occurs in medial and distal environments. Incision through 
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existing dune systems influences the morphology of upper and lower delta plain 

systems. Reworking of dune material and sediment carried from Cooper Creek 

heavily influence the depositional character in medial and proximal depositional 

settings.  Locally sourced terminal splays also provide sand-rich sediment to the 

lake, with shoreface and barrier island facies formed during highstands. Aeolian and 

deflation processes and rework sediment during falling stage and lowstand events. 

Sustained lake filling and sufficient wave fetch allow for wave reworking of deltaic 

deposits, resulting fluvial- and wave-influenced delta geomorphologies and 

shorelines (Figure 5). 

River geomorphology and discharge greatly affects terminal fluvial styles. 

Terminal splay and deltaic styles at Lake Yamma Yamma largely reflect floodplain 

surface flow styles on the Cooper Creek floodplain. Depositional settings at Lake 

Yamma Yamma share characteristics with braided, reticulate and unchannelled 

(Fagan and Nanson, 2004) floodplain surface flow styles. The upper delta plain lobe 

to the north, active during low flow events, is similar in morphology and channel 

cross-sectional characteristics to the braided channel styles in Cooper Creek (Fagan 

and Nanson, 2004; Figure 5). The lower delta plain and upper delta plain, active at 

only very high flow discharges (Figure 5) share a similar channel pattern, bar shape 

and grain size to reticulate channel patterns (Fagan and Nanson, 2004). Although 

these channel morphologies are similar to Type 3 deposits on Cooper Creek, they 

represent Type 4 deposits (where ephemeral rivers terminate into ephemeral lakes). 

It is important to note that these categories do not exist in isolation; over time, a 

dryland terminal fluvial deposit may change and evolve through these classifications. 

An example of system that originated as a lacustrine delta (Type 1) but which is now 

entirely subaerial (Type 3) is the terminus of the Ruo Shui at the western end of  
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Figure 14: Idealised unconfined and confined facies models for Kati Thanda- Lake Eyre. Depositional can occur 
at a range of scales (LEBARG, 2010). 

Inner Mongolia (North and Warwick, 2007). A similar change in deposition type could 

have occurred as the Lake Yamma Yamma terminal fluvial deposit evolved.  

Idealised Facies of a Lake Eyre Terminal Dryland TSC

Con�ned
Uncon�ned
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such as the Chott Rharsa system, southern Tunisia (Blum et al., 1998), ephemeral 

rivers in the Turkana basin, northern Kenya (Frostick and Reid, 1986), the Elliot 

Formation of the Karoo Basin (Turner, 1986) or the Coongie Lakes margin terminal 

splays in the Kati Thanda- Lake Eyre Basin (Costelloe, 2009). Terminal fluvial 

deposits from this study do however display similarities to Type 4 deposits described 

around the margin of Kati Thanda- Lake Eyre (Fisher et al., 2008 and Tooth, 2005; 

LEBARG, 2010; Figure 14). Both confined and unconfined type deposits are 

interpreted at Lake Yamma Yamma. Confined deposits similar to those at around the 

margin of Kati Thanda- Lake Eyre occurred in the upper delta plain areas. Confined 

deposits were also observed around the lake margins at Lake Yamma Yamma, and 

these shared similar facies characteristics to those at Kati Thanda- Lake Eyre. At 

both locations sand-dominated low-sinuosity fluvial channel belt evolved into 

networks of bifurcating, downstream narrowing channels. These were filled with sand 

fining-upward or simple compound bars, commonly overlain by desiccated mud-

plugs. At Lake Yamma Yamma they tend to partly infill erosional topography cut by high 

energy flood waters. Overall, confined deposits had linear fluvial tracts, mud was locally 

ponded and the systems were marked by an abrupt termination dominated by unconfined 

flow processes. Unconfined deposits tended to occur in the delta front and prodelta. Lake 

Yamma Yamma deposits are generally smaller than those observed at Kati Thanda- Lake 

Eyre (Figure 12; Figure 13), however they are not outside of the range of dimensions 

observed at Kati Thanda- Lake Eyre which ranged from 0.1 to 89 km2 (LEBARG, 2010). 

Figure 15: Next page. Summary including similarities and differences between sedimentation at Lake Yamma 
Yamma and other terminal fluvial deposits.

Sedimentary data and models are not explicitly presented for Type 4 deposits 
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Tectonic controls on sedimentation 

Intraplate tectonism is thought to result in large scale folding and tilting responsible 

for deformation patterns that affect the regional drainage as well as creating local 

accommodation space en-route to the intra-continental depocentre, Kati Thanda- 

Lake Eyre (Rust and Nanson, 1986; Knighton and Nanson, 1994; Habeck-Farby & 

Nanson, 2014; Jansen et al., 2013). At Lake Yamma Yamma, a combination of 

contemporaneous tectonic activity and relief from tectonic elements such as the 

Curralie Dome, Glipeppee Anticline and MacKillop Anticline provide barriers to flow, 

causing a change in local base level, as well as fluvial slope and creating 

accommodation to form a local sediment trap.  Hundreds of metres of interbedded 

thin sands, silts, clays and evaporatic gypsum intersected in the Barrolka-1 borehole 

(Figure 2) suggest that the Lake Yamma Yamma is not a transient feature and this 

tectonic influence has been creating sediment accommodation space for a 

substantial period of time. This also suggests that, even in a low-accommodation 

basin such as this one, preserved sequences from these types of depositional 

environments could exceed 100m in the subsurface.  

Observations from modern sedimentation at Lake Yamma Yamma suggest tectonic 

tilting north-westward and the creation of accommodation space in the Yamma 

Yamma Syncline, contemporaneous with modern sedimentation. The deepest and 

most commonly active flow path from Cooper Creek to Lake Yamma Yamma is on 

the north-western side of the floodplain. Inundation frequency maps suggest that the 

north-western side of the lake floor is inundated 15-20% of the time, compared to the 

south-eastern side, which is inundated 1-5% of the time (Figure 5). Substantial 

permanent to semi-permanent waterholes are more frequent on the north western 

side of the connection between Cooper Creek and Lake Yamma Yamma. These cut 
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through recently active dune systems. Waterholes which form small surface features 

where the rate of deposition exceeds the rate of scour and excavation are generally 

located on the south-eastern side of the connection between Cooper Creek and 

Lake Yamma Yamma. Small localised distributary channels on the north-west side of 

the lake show signs of being filled from reversed flow (i.e. flow from the main delta); 

evidence includes sedimentary structures and changes in channel geometries. To 

the south-west of the lake, active dune systems are starting to encroach on the lake 

bed. From inundation frequency maps, it was observed that small chains of lakes to 

the north-west of the delta are filled when the lake is filled (Figure 5). No such 

features exist on the south-east side of the lake.  

Tectonic tilting of the basin toward the north-west in the Cooper Creek area 

contemporaneous with modern sedimentation is also supported by evidence from 

other studies conducted on the Cooper Creek (Habeck-Farby & Nanson, 2014). 

There are five main lines of evidence: (1) the small waterholes where the rate of 

excavation exceeds the rate of deposition are generally located on the east of the 

floodplain; (2) signs of meandering palaeochannels, that Rust and Nanson (1986) 

interpreted to indicate previous sand-dominated flow-regime phases are more clearly 

visible on the east of the floodplain implying a shift of flow westward, less reworking 

and greater preservation of these older channel-forms in the east; (3) the main flow 

path for Cooper Creek lies on the west of the floodplain; (4) the dunefield on the west 

of the floodplain south of Windorah appears to have been partially invaded by 

anastomosing channels; (5) the tributaries on the eastern side of the valley are 

forming small fans onto the floodplain surface whereas the Cooper floodplain 

appears in contrast to be invading the tributary valleys on the western side (Knighton 

and Nanson, 1994). When considered together, this evidence suggests tectonic 



164 

tilting of the Cooper valley, in which Cooper Creek runs and Lake Yamma Yamma is 

contained, north-westward. 

Classification Scheme 

The classification scheme presented in this chapter to describe dryland terminal 

splay to delta continuum provides a useful framework with which to compare dryland 

terminal fluvial deposits. As these types of systems are relatively understudied 

compared to their marginal marine counterparts (e.g. Ainsworth et al., 2011), a wide 

range of descriptive terminologies are used (see introduction of this chapter), which 

makes a clear comparison of sedimentary characteristics difficult. This classification 

scheme is a starting point for a more in depth comparison of deposits. A more 

detailed comparison between Kati Thanda- Lake Eyre and Lake Yamma Yamma 

fluvial termination deposits is planned, outside the scope of this thesis. Further work 

should also include extending the classification scheme to include examples of 

ancient deposits. The work in this chapter has focussed on modern sediments, due 

to the nature of the case study presented, but the integration of ancient deposits 

would provide a useful tool for subsurface interpretation. Integration of ancient 

deposits would also be useful given the few modern dryland fluvial termination 

deposits that have been studied from a sedimentologic perspective. 
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4.7. Conclusions 

This chapter presents new data from a previously unstudied dryland fluvial –

lacustrine system in a low-accomodation basin; Lake Yamma Yamma, central 

Australia. In order to place this study in the context of published literature, a review 

of described modern dryland fluvial termination deposits is presented, and a new 

classification scheme is proposed. The categories are: (Type 1) a perennial river 

terminating into a perennial lake, (Type 2) an ephemeral river terminating into a 

perennial lake, (Type 3) an ephemeral river terminating on a landform which is not a 

body of water or dry lake, e.g. a floodplain, and (Type 4) an ephemeral river 

terminating into an ephemeral lake, which may be wet (4A) or dry (4B), a temporal 

variation in the same system with depositional processes changing at the river 

terminus depending on environmental conditions. Under the classification scheme, 

the focus of this study at Lake Yamma Yamma, where Cooper Creek provides 

inflow, is classified as a Type 4 deposit, where an ephemeral river terminates into an 

ephemeral lake, which may be wet or dry. Few detailed studies of the sedimentology 

of these types of deposits exist. In this study, we provide a detailed facies and 

geomorphic element description, as well as a process-based model for deposition. 

Twelve main depositional elements are described. Proximal fluvial-dominated 

elements, medial lacustrine-influenced depositional elements and marginal lacustrine 

deposits were sand-dominated, with mud generally observed as aggregates. Distal 

elements were generally mud dominated, with suspension fallout processes 

responsible for deposition. 

When Cooper Creek experiences major flood events, some of this flow is diverted 

into Lake Yamma Yamma. Initially, terminal splay style deposition occurs. As the 
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volume of water in Lake Yamma Yamma rises, deltaic deposition commences and 

becomes more dominant, with sediment deposition patterns reflecting this. Incision 

through existing dune systems influences the morphology of upper and lower delta 

plain systems. Reworking of dune material and sediment carried from Cooper Creek 

heavily influence the sedimentology of the lake. Locally-sourced terminal splay 

complexes provide sand-rich sediment to the lake, with shorelines and barrier 

islands formed during times of high lake level.  

The formation of Lake Yamma Yamma is linked to subtle tectonic changes in 

the region. New data from this study suggests the observed overall tilting of the 

Cooper Creek floodplain to the west, combined with gentle domal uplift causing 

synform and anticline formation in the region is responsible for the location, 

morphology and characteristics of the system. Lake Yamma Yamma shows a similar 

depositional style to both confined and unconfined marginal terminal fluvial systems 

in the Kati Thanda- Lake Eyre Basin, although differences in climate, local tectonic 

regime and variability in accommodation space play a role in deposit characteristics 

such as stacking patterns, sand bed thickness and preservation potential. 
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5.1. Abstract 

The classification of net transgressive strata can be complex. The thinly 

bedded nature and complex internal architecture of transgressive deposits makes 

interpretation difficult. This study investigates the sedimentology, sequence 

stratigraphy and provenance of a series of net transgressive clastic sediments 

deposited on the margin of an epicontinental seaway during the Cenomanian. 

Although extensive outcrop studies have been conducted on the Western Interior 

Seaway strata in Utah, New Mexico and Colorado, the interval presented in this 

study has not been investigated in detail at this field site, and this case study 

provides an important contribution with regard to the character and nature of the 

initial transgression. Over fifty-seven 17 to 32 m logged outcrop sections from the 

Dakota Formation reveal a series of coarsening-up and fining-up parasequences 

characterised by mudstone-rich bases coarsening-up into amalgamated ripple-

laminated sand packages, and coarse-sandstone scoured cross-stratified bases, 

fining upward into shale strata. Seven distinct facies associations were observed; 

depositional environments from prodelta to upper delta plain were interpreted. 

Interpretation of these deposits, along with detailed photo-mosaic images, suggest 

that although the Dakota Formation is a net transgressive package, the 

transgression occurred in a complex fashion, with periods of regression where 

relatively small fluvial and tide dominated deltas deposited sand-rich sediment. 

Sediment body geometry is ultimately controlled by subtle allogenic changes in 

sediment supply and relative sea-level, which caused the flooding and abandonment 

of deltaic systems, as well as autocyclic delta lobe abandonment. Detrital zircon 

provenance suggests that sediment supply was ultimately from the Sevier fold-and 

thrust belt, changing to the Mogollon Highlands and the Cordilleran magmatic arc 
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higher in the strata, suggesting that Dakota detritus was increasingly sourced from 

the south. The youngest concordant zircon grain, with an age of 94.4 ± 3.1 Ma 

suggests that sedimentation in the Dakota Formation continued well into the late 

Cenomanian and potentially into the early Turonian.  When taken together, the 

sedimentologic, stratigraphic and provenance data allow the depositional 

environments to be reconstructed and the palaeogeography of the region to be 

better understood. Results presented here provide valuable insights into the 

character and nature of the initial transgression and creation of the Cretaceous 

Western Interior Seaway and provide an analogue for sediments deposited 

elsewhere under similar conditions. 

5.2. Introduction 

Transgressive deposits accumulate during a relative rise in base level where 

the increase in accommodation space is larger than that of sediment supply. 

Although typically thinly bedded (e.g., Tye et al., 1993; Ravnas and Steel, 1998; 

Steel et al., 2000), transgressive sands are commonly more texturally and 

mineralogically mature than their regressive counterparts and can make excellent 

hydrocarbon reservoirs (e.g., Devine, 1991; Snedden and Dalrymple, 1999; 

Posamentier, 2002). Transgressive deposits can be marine dominated, 

estuarine/lagoonal or fluvial, and can include facies such as coal and aeolian 

deposits. Variability is driven by changes in rate of sea-level rise, textural character 

of the sediments, sediment supply, shelf gradient or basin physiography (Cattaneo 

and Steel, 2002). The relative strength and interplay of fluvial, tidal and wave-driven 

depositional processes exerts a primary control on the dimensions, geometry, 
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orientation, preservation and distribution of these marginal marine element bodies 

and facies belts in the geological record (Ainsworth et al., 2011).  

Two approaches are commonly used to describe transgressive deposits in the 

literature. One approach to interpret transgressive tidal and fluvially dominated relies 

heavily on sequence stratigraphic models. In these models sand deposits are 

interpreted to be preserved in incised valleys during transgressions (e.g. Dalrymple, 

1992; Dalrymple et al., 1992; Posamentier & Allen, 1999), although some sequence 

stratigraphic models place less emphasis on incised valleys and more on the 

tectonic creation of accommodation space as a mechanism for sand preservation 

(Gilbert, 1885; Sanders and Kumar, 1975; Swift et al., 1991; Nummedal et al., 1993; 

Thorne and Swift, 1991). The second, and an alternative approach, is to base 

interpretation on modern settings. These studies tend to describe the sedimentology 

and stratigraphy of deposits in detail (Yoshida et al., 2001; Plink-Bjorklund, 2005; 

Dalrymple, 2006; Sixsmith et al., 2008; Ponten & Plink-Bjorklund, 2009), but base 

interpretation of sedimentology on a very limited range of well-studied high-latitude 

modern back barriers and estuary systems (e.g. Van Straaten & Kunen, 1957; 

Oomkes & Terwindt, 1960; Van Straaten, 1961; Evans, 1965; Reineck, 1967; 

Terwindt, 1971). A combination of both of these approaches is ideal if the volume of 

data allows. 

Almost any effort at classifying transgressive deposits based on depositional 

controls and driving factors is likely to be over idealised, due to the variability in 

thickness, lateral dimensions, and internal architecture of transgressive deposits 

(Cattaneo and Steel, 2002). Modern examples of depositional processes of 

transgression are difficult to observe on a useful timescale. Also, transgressive 

processes and resultant deposits are difficult to observe in a modern setting as 
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evidence is often obscured by encroaching waters. A lack of variability of studies 

detailing the sedimentology, stratigraphy and architecture transgressive deposits 

also adds to the difficulty of interpreting these types of deposits. In order to develop a 

sound understanding of the facies relationships and stratigraphic architectures 

resulting from the interaction of fluvial, wave and tidal processes during 

transgressive deposition, well-documented outcrop examples are needed in which 

vertical and lateral facies dimensions and spatial relationships can be measured.  

One such outcrop is provided by the Cenomanian Dakota Formation. On a 

regional scale the Dakota Formation has been inferred as a mixed influence net 

transgressive deltaic succession, preserving the initial encroachment of marine 

waters onto the continental landmass during the Cenomanian (Young, 1960; 

Weimer, 1982; Serradji, 2007). This study aims to develop an improved 

understanding of the detailed local sedimentological processes, facies and 

stratigraphic architecture of the Dakota Formation, which is continually exposed for 

over 25km between the towns of Montrose and Ridgway. This aim is achieved by 

documenting facies characteristics within a framework of carefully interpreted 

stratigraphic surfaces and facies successions and provides more data, higher 

density data and more of a focus on stratigraphic architecture than previous 

investigations. This primary sedimentological study is supported by detrital zircon U-

Pb geochronology in order to develop more of an understanding of sediment supply 

and basin palaeogeography and potential controls that these factors may play on the 

nature and character of the transgression and resultant deposits. The aim of this 

study was not to provide a detailed basin-wide correlation as that was beyond the 

scope of this thesis work. For a recent discussion of broad scale correlation of the 

Dakota Formation, including locations in the Henry Mountains and the Kaiparowits 
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Plateau the reader is referred to Antia and Fielding, 2011. 

5.3. Geological Setting 

In the Early Cretaceous, marine waters encroached on the North American 

Continent from the Arctic and the Tethys regions concurrently, converging in 

Colorado to form the Cretaceous Western Interior Seaway (WIS) (Figure 1). By the 

mid-Cretaceous, the WIS covered an area from the Arctic to the Gulf of Mexico and 

from central Utah to the western Appalachians (Blakey and Umhoefer, 2003; Miall et 

al. 2008). On a continental scale the mechanism responsible for the formation of the 

seaway is thought to be Sevier thrust (Jordan, 1981; Cross and Pilger, 1978; Cross, 

1986; DeCelles, 1994) and mantle flow-induced dynamic subsidence associated with 

cold Farallon plate subduction (Liu et al., 2011). Second and third order controls 

include thrust-related foredeep rebound during periods of reduced tectonic activity 

between thrust movements, eustatic sea level change modulated by subsidence and 

by sediment supply related to climate (Gomez-Veroiza and Steel, 2010; Hampson et 

al., 2011; Aschoff and Steel, 2011; Liu, 2011).  

During formation of the WIS, sediment was transported from the Sevier 

Orogen eastward, depositing a series of progradational and retrogradational coastal 

sediment wedges (Miall et al. 2008). The most basal of these coastal sediment 

wedges, the Dakota Formation, was deposited approximately 400 km east of the 

thrust front of the Sevier Orogenic belt (Figure 1) on the margin of the WIS (Ulincy, 

1999; Valdez, 1993). In Western Colorado, the Dakota Formation has been 

interpreted to represent a transgressive event, preserving the initial encroachment of 

marine conditions and recording the initial transgression of the Cretaceous seaway 
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across South-western Colorado (Young, 1960). Due to a lack of detailed studies, the 

age of the formation is unknown in the Ridgway area. It is estimated to be Early  

Figure 1: Left: Location map for this study showing palaeogeographic reconstruction (after Miall et al., 2008) and 
tectonic domains (after Szwarc et al., 2014) at the end of the Cenomanian. Right: Location map for this work, 
showing outcropping Dakota Formation and major morphological features (After Steven and Hail, 1989). 

Cretaceous (Cenomanian) based on regional studies (Weimer, 1982). The 

Dakota Sandstone is underlain by the Burro Canyon Formation and overlain by the 

Mancos Shale (Young, 1960) (Figure 2). The Lower Cretaceous (Aptian and 

Albian) Burro Canyon formation is composed of continental and fluvial sediments 

(Weimer, 1982). 

The Mancos Shale is of Late Cretaceous (Turonian) age (Young, 1960). It 

consists of organic-rich black shale deposited in very low oxygen conditions and is  
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interpreted to represent the offshore and open sea environment of the WIS (Weimer,

1982). This vertical stratigraphic pattern confirms the net transgressive nature of 

the Dakota Formation. 

Stratigraphic nomenclature used to describe the Dakota Formation is 

complicated (Figure 2), perhaps because of the broad and variable extent of the 

formation along the margin of the WIS (Figure 1). Meek and Hayden (1861) first 

designated this unit “The Dakota” near the town of Dakota, north-eastern Nebraska. 

Many authors have used variations on the name: Dakota Sandstone, Dakota Group 

and Naturita Formation (Bartleson, 1994; Burbank, 1930; Carter, 1957; Fouch et al., 

1983; Gustason, 1985; Gustason, 1989; Hail, 1989; McGookey, 1972; Meek and 

Hayden, 1861; Weimer, 1982; Young, 1960) in describing expressions of packages 

interpreted to be age equivalent. In this chapter, we use the term Dakota Formation. 

This study focuses on outcrop in the Ridgway area (Figure 1). Due to a lack of 

detailed study of this area, the age of the formation is unknown. This locality was 

chosen in part because of the laterally extensive exposure of the Dakota Formation 

on the cliff face, and because of the preservation and exposure of the full Dakota 

Formation package with interpreted continental strata below and marine strata 

above.  

5.4. Data Set and Methods 

This study focuses on the Dakota Formation exposed on the cliff face of the 

Uncompahgre Plateau between the towns of Montrose and Ridgway, south west 

Colorado. Previous fundamental but unpublished work (Young, 1960, Weimer, 1982 

Serradji, 2007) was considered as a basic framework for observation and description 
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and a guide to selecting study locations. The geomorphology of the Uncomprahange 

Plateau allows a three dimensional view of the formation. Exposures are relatively 

Figure 2: Stratigraphic nomenclature used to describe the Dakota Formation is not straightforward. Left: 
Summary of stratigraphy in and near the study area (after Steven and Hail, 1989 and Carter, 1957). Right: 
Summary of stratigraphy described by previous workers in West central Colorado (Currie, 1997 and Sprinkel et 
al., 1999), Colorado N. Range (Waage, 1952 and MacKenzie, 1971), Colorado Plateau (Young, 1960) and south-
eastern Utah (Fouch et al., 1983). 

continuous, with beds dipping approximately 3 to 5 degrees. Fifty-seven vertical 

sections were measured along the 25km length of the plateau and where canyons 

cut the cliff face (Figure 3). These sections are each between 17m and 32m vertical 

thickness. In each section lithologies were examined closely with regard to bed 

thickness, grain size, sorting, rounding, sedimentary structures, bed continuity and 
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lateral characteristics. A GigaPan Epic Pro paired with an EOS 60D DSLR camera 

and 300mm zoom lens was used to capture over 40 high resolution panoramic 

images of exposed cliff faces (locations shown in Figure 3). The panoramas enabled 

tracing and interpretation of stratal units between measured sections. 

Figure 3: Map of the study area showing the spatial extent of the Dakota Formation, and the location of 
stratigraphic logs, sampled sections, and photo-panoramas used in this study. 
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Dakota Formation deposits were categorised based on lithology, sedimentary 

structures and ichnology, and depositional elements interpreted after grouping these 

into facies associations. Special focus was placed on interpreting data in a process-

based framework. Dimensions, geometries and lateral distributions of facies 

associations are characterised within the context of sequence stratigraphic units. 

These are described in terms of facies successions, which allows for the description 

of stratigraphic architecture, correlation between logged sites and the development 

of a depositional model. To aid in correlation, a bentonite bed was used as a local 

chronostratigraphic marker and the Mancos Shale was used as a datum on which to 

hang the correlations. Fieldwork was completed in June and July of 2015 by the 

author of this thesis.  

Rock samples representative of major stratigraphic units were taken (locations 

shown in Figure 3) with the objective of conducting Zircon U-Pb geochronology 

analysis. The samples underwent separation to isolate the zircon fraction through 

physical, magnetic and heavy liquids techniques. Individual grains were handpicked 

and mounted into epoxy resin blocks. Prior to analysis, zircon grains were analysed 

using CL imaging on a Phillips XL-30 SEM with attached Gatan Cathode 

Luminescence detector in order to identify domains within the grains and select 

ablation locations within a single domain. Data were obtained on a Laser Ablation 

Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) using a New Wave 

UP-213 laser attached to an Agilent 7500cx Inductively Coupled Plasma Mass 

Spectrometer (ICP-MS) at The University of Adelaide. A spot size of 30 μm and 

repetition rate of 5 Hz was used. Analysed grains were selected without using any 

particular criteria, to avoid undue bias, but some grains were excluded due to 

metamictisation and small grain size.  
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Age calculations were completed using Iolite v2.31 (Paton et al., 2011) with 

use of the primary zircon standard GJ-1, TIMS normalization data Pb207/Pb206= 608.3 

Ma, Pb206/U238 = 600.7 Ma and Pb207/U235 = 602.2 Ma (Jackson et al., 2004). 

Instrument drift was corrected for via bracketing groups of unknowns of 15–20 with 

8-10 standards and the application of a linear correction. Accuracy of the

methodology was verified by repeated analyses of Plešovice zircon (Pb206/U238 = 

337.13 ± 0.37 Ma; Sláma et al., 2008). Concordia plots were generated using Isoplot 

v3.75 (Ludwig, 2012). Analyses with anomalously high concentrations of U and 

depleted concentrations of Th were discarded because grains of this type can be 

highly susceptible to Pb loss (Dickinson and Gehrels, 2009). Concordant grains were 

defined as those with Pb207/Pb206 and Pb206/U238 ratios within a 10% error threshold 

from a predetermined ideal relationship between the two ratios, and only concordant 

grains were used for interpretation. Pb207/Pb206 ratios were used for age 

determination for grains older than 1 Ga, and Pb206/U238 ratios were used for those 

younger. When ages split the 1 Ga boundary Pb207/Pb206 ratios took precedence. 

Zircon age distributions were compared using the Kolmogorov-Smirnov (K-S) test 

(Press et al., 1986). High p values (p > 0.05) indicate a statistically significant 

likelihood that two samples may have been derived from sources with the same 

zircon age distributions. Low p values (p < 0.05) suggest the samples were sourced 

by statistically distinguishable distributions of zircon ages. All work described 

including sample preparation and analysis was done by the author of this thesis. The 

complete data set is provided in Chapter 8 as supplementary data. 
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5.5. Results and Interpretation 

5.5.1. Facies Associations 

Seven Facies Associations (FA) were recognised based on 

detailed observations of lithology, grain sorting and size, sedimentary structures, 

paleocurrent and trace fossils, a summary of which is shown in Figure 4. Bioturbation 

intensity (BI) was recorded according to the Taylor & Goldring (1993) scheme, with 0 

representing no bioturbation and 4 representing extreme bioturbation. Trace fossil 

diversity and ichnofacies classification follows models presented by 

MacEachern and Bann (2008). 

Facies Association 1: Bioturbated mudstones 

Description 

Facies Association 1 (FA 1) consists of thinly bedded (millimetre and sub 

millimetre scale) light grey to very dark grey claystone, mudstone and occasional 

siltstone beds (Figure 5A). In mudstone and siltstone beds planar lamination and low 

angle cross lamination was present. Mudstone and siltstone beds were separated 

from claystone beds by sharp lower boundaries. Millimetre scale lenticular bedding 

was present but rare in mudstone and siltstone beds and often graded laterally into 

finer claystone beds. Occasional thicker (centimetre scale) claystone beds were 

observed in thicker sections.  Outcrop featuring this facies association was very 

weathered but occasionally exposures were observed in sheltered canyons and 

freshly excavated regions so observation of continuity of this facies was limited. This 

FA was often observed below FA2 (Figure 5B). Bioturbation was moderate to high 

(BI=3-4), but with low species diversity. The character and presence of 

Palaeophycus, Thalassinoides, Skolithos and Arenicolites suggest a distal Cruziana 

icnofacies assemblage (MacEachern & Bann, 2008). 
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Figure 4: Description and interpretation of the facies associations present in the studied interval of the Dakota 
Formation. For key to sedimentary structures see Figure 12. Grain size abbreviations: M=mud, Slt=silt, VF= very 
fine sand, F= fine sand, M= medium sand, C= course sand, VC= very coarse sand, P= pebbles, C= cobbles. 
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Label Interpretation
Summary Lithology 

Description

Key 
Sedimentary 
Structures

Bioturbation
Stratigraphic 

Thickness Range Shape Vertical Motif

FA1 Prodelta

Millimetre to sub millimetre 
interbedded light grey to very 

dark grey claystone, mudstone 
and occasional siltstone beds

Palaeophycus, 
Thalassinoides, 

Skolithos, Arenicolites
0 m to 2 m Continuous

FA2 Delta Front

Upward coarsening package, 
gray silty shale interbedded 
with lower-medium beds at 

base, medium-upper grained 
cross bedded quartz arenite at 

top

Ophiomorpha, 
Thalassinoides, 

Planolites, Arenicolites, 
Skolithos, 

Diplocraterion 

1 m to 3 m Continuous

FA3 Delta Plain

Centimetre scale dark grey 
silty shale irregularly 

interbedded with thick beds of 
fine to medium grainedquartz 
arenite, some carbonaceous 

and coal layers

Planolites, Skolithos, 
Rhizocorallium, 

Arenicolites, 
Diplocraterion

1 m to 5 m Continuous

FA4 Distributary 
channel

Sharp concave upward based, 
medium-grained quartz arenite 

occasionally topped by non-
continuous coal, siltstone or 

claystone beds 

Rare Arenicolites 0 m to 3 m Lenticular

FA5 Shoreface

Lower-fine grained well sorted 
quartz arenite and upper fine 
to medium grained sandstone 
sometimes overlain by planar-
cross bedded sandstone and 

laminated fine sands

Palaeophycus, 
Ophiomorpha, 

Planolites, Arenicolites, 
Skolithos

1 m to 4 m Continuous

FA6 Sinuous fluvial 
channel

Sharp based, upward fining 
succession ranging from 

medium-upper sandstone with 
minor granules and pebbles at 
the base to alternating silt and 

sand at the top

Arenicolites, Planolites, 
Diplocraterion, 

Cochlichnus, small 
Scoyenia 

0 m to 5 m Lenticular

FA7 High energy 
fluvial channel

Scoured base, upward 
thinning amalgamated beds of 

upper-medium to coarse 
moderately rounded quartz 

arenite 

Small Planolites, 
Skolithos 

0 m to 4 m Lenticular
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Interpretation 

A predominantly distal Cruziana icnofacies assemblage, the fine grain size 

and abundance of planar lamination in Facies Association 1 suggests a low energy, 

distal marine environment away from fluvial and wave activity. Thicker claystone 

beds are interpreted to have been deposited from suspension fallout during very low 

energy periods. Coarser mudstone and siltstone beds are interpreted as preserved 

episodic storm or high river discharge events (Wright, 1977; Bhattacharya & 

MacEachern, 2009; Legler et al. 2014). This facies association is interpreted to have 

been deposited in a shallow prodeltaic environment. 

Facies Association 2: Upward coarsening finer interbedded sands and muds 

Description 

Facies Association 2 (FA2) consists of an upward coarsening succession 

composed of laminated gray silty shale interbedded with centimetre scale sandstone 

beds at the base to medium-upper grained cross stratified locally carbonaceous 

quartz arenite (20-30 cm) at the top (Figure 5 C). Wave modified current ripple 

laminae (Figure 5D) and current ripple lamina alternating with planar laminated fine 

to lower medium sandstone beds (Figure 5E) become more dominant at the top of 

the unit, while planar laminated sands and silts with minor slumping and millimetre 

thick organic beds are present at the base. Beds generally become thicker and more 

laterally continuous toward the top of the section. This FA is generally highly 

burrowed with a high trace diversity and abundance (BI=3), particularly in heterolithic 

strata. The BI ranges from 2-4, with coarser beds toward the top of the succession 
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likely to have a higher BI. Ophiomorpha, Thalassinoides, Planolites, Arenicolites, 

Skolithos, (Figure 5F) and Diplocraterion were observed; suggesting a potentially 

poorly populated mixed Cruziana and Skolithos ichnofacies (MacEachern & Bann, 

2008). Traces were smooth walled, curved, lined and unlined, passively and actively 

filled, with a high variation of sizes of traces preserved. This facies association is 

laterally continuous in the study area and is spatially grades into Facies Association 

1 and 3, and is associated with Facies Association 4. 

Interpretation 

The upward coarsening pattern, the dominance of current and wave-modified 

current ripple structures and the high intensity mixed Cruziana and Skolithos 

ichnofacies suggest an environment with low to moderate energy. Wave influence is 

limited, but recorded in wave modified current ripple lamina, suggesting the 

depositional environment is predominantly influenced by fluvial energy.  Abundance 

and diversity of trace species also suggest a relatively sheltered, non-stressed 

setting. Similar depositional patterns have been interpreted as delta front 

depositional settings in fluvial dominated deltas (Hansen and MacEachern, 2005; 

Miall, 1984; Kamola and Van Wagoner, 1995). The upward coarsening succession is 

interpreted to reflect progradation of the delta front. Preservation of wave influenced 

structures could be due to isolated extreme weather events. This facies association 

stacking pattern is similar to a typical delta front from a digitate delta (Fisk, 1961) and 

a lobate river dominated delta (Barton 1994), which indicates that deltas depositing 

sediments in this FA could have displayed these morphologies. The typical total 

thickness of the Dakota package (6-8m) compared to the Wax Lake Delta, 

Atchafalaya (60-70 m) and Panther Tongue, Perrin Delta (15-20 m) (Olariu and 

Bhattacharya, 2006) is small. This could be due to the Dakota Formation containing 
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less amalgamated sand deposits than other settings due to rapid sea level rise 

causing flooding of deltaic lobes during deposition and consequently a shorter 

depositional time.  Mouth bar deposits are virtually inseparable from terminal 

distributary channel deposits as mouth bars infill the channels (van Heerden and 

Roberts, 1988) although a high bioturbation index suggests a higher concentration of 

mouth bars over terminal distributary channel deposits. Differentiation is not made in 

this case as both occur on the delta front depositional environment. 

Figure 5: Representative field photos of FA1 Bioturbated mudstones (Prodelta) and FA2 Upward coarsening finer 
interbedded sands and muds (Delta Front). A- Interbedded FA1 and FA2 typical outcrop expression. Red and 
white intervals are 15 cm and black marks are 10 cm on the Jacob staff. B- A typical facies succession, FA1 
grading into FA2 topped by FA4. FA1 is 1m thickness. C- Coarsening up sequences, a typical field expression of 
FA2. Beds are approximately 1 m thickness. D- Wave modified current ripple, a typical sedimentary structure in 
FA2. E- Typical Skolithos expression in FA2. F- Current ripples in silty fine sand in FA2. Typical expression of 
FA2. 
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Facies Association 3:  Interbedded fine to medium sand, silts and muds with 

dominant fluvial and tidal structures  

Description 

Facies Association 3 (FA 3) consisted of centimetre scale planar laminated 

dark grey silty shale irregularly interbedded with 10 to 50 cm thick beds of fine to 

medium grained current and wave rippled quartz arenite. Sand beds were sharp 

based, preserved tabular cross stratification, inclined low angle cross stratification 

with mud draped foresets (Figure 6A), occasional coal beds (up to 50 cm thick) 

(Figure 6B) and current ripple lamina (Figure 6C). Flaser, lenticular and less 

commonly wavy bedding (Reineck & Wunderlich, 1968) were present, with lateral 

grading between the three types of heterolithic strata present. The lower contact of 

this facies association was characterised by a scoured base and rip-up clasts were 

locally dispersed. Occasional millimetre scale carbonaceous layers, coal wisps and 

woody fragments (Figure 6D) were observed in the upper section of this facies 

association. Synaeresis cracks were observed in sandier beds toward the top of the 

FA (Figure 6E). Although this FA was generally poorly exposed due to the mud rich 

nature of the facies association, it was present in all measured sections and 

relatively laterally continuous. Sparse Planolites and Skolithos, as well as rare 

Rhizocorallium, Arenicolites and Diplocraterion (Figure 6F) were observed in sand 

rich beds, with a BI of 1-2, although preserved trace fossils size within the same 

species was diverse. A poorly developed Skolithos ichnofacies is suggested, 

although elements of Scoyenia and Glossifungites Ichnofacies are preserved 

(MacEachern & Bann, 2008). 
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Interpretation 

The presence of sand beds with sharp bases, tabular cross beds, low angle 

cross beds and current ripple lamina suggests small scale cut and fill structures, 

interpreted to be small channel fill deposits (Wescott and Ethridge, 1980; Holbrook, 

2001; Olariu and Bhattacharya, 2006). Interbedded fine sand and mud beds with 

ripples could represent proximal overbank deposits as well as levees and potential 

crevasse splays, particularly where they pinch out and grade into other lithofacies 

laterally (Holbrook, 2001). The occurrence of lenticular and wavy bedding signifies 

intermittent tidal current activity through the environment (Van Straaten & Kuenen, 

1957; Reineck & Wunderlich, 1968; Oomkes, 1974; Staub & Gastaldo, 2003; Legler 

et al., 2013). IHS indicates accretion of a mobile substrate within laterally migrating 

packages (Thomas et al., 1987; Choi et al., 2004), although in this setting, evidence 

of lateral migration is not strong, potentially due to the poor exposure of this FA. A 

coal horizon, as well as preserved woody, organic and carbonaceous material 

suggests a nearby source of abundant plant material. Mixed wave, tidal and fluvial 

action is preserved in this facies association, with both relatively high and low energy 

elements preserved. This facies association in interpreted to represent a delta plain 

setting due to the diverse range of sub-environments, mixed wave, tidal and fluvial 

influence, as well as the evidence for the Skolithos with elements of Scoyenia and 

potentially Glossifungites Ichnofacies (MacEachern & Bann, 2008). 

Facies Association 4: Sharp based scoured concave upward based, medium-

grained quartz arenite  

Description 

Facies Association 4 (FA 4) consisted of sharp concave upward based, 
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Figure 6: Representative field photos and specific structures of FA3. FA3 was highly variable in nature, so no 
typical outcrop expression photo is included. A- Planar tabular cross stratification, planar laminar stratification and 
current ripple stratification in FA3. Mud drapes were observed on foresets of the cross stratification. B- A sandier 
section of FA3 with a coal bed approximately 40 cm thick. C- Current ripple lamina. Some interpretation is 
included as a guide. D- Wood fragments preserved in FA3. E- Synaereses cracks in laminations between 
centimetre scale sand beds. F- Diplocraterion showing U shape laminae perpendicular to bedding. Entire 
burrows with detailed internal spreite were generally very well preserved. 

medium-grained quartz arenite beds with centimetre to millimetre scale rip-up clasts 

and carbonaceous rich lag at the base of the FA (Figure 7A). This basal bed was 

overlain by planar tabular and trough cross stratification (Figure 7B), grading into 

current-rippled medium to fine sands and flaser beds, occasionally topped by non-

continuous coal, siltstone or claystone beds (Figure 7C) up to 30 cm thick. Mud 

drapes were present on the foresets of current ripples. Where this was observed a 

fining up pattern was present although internal concave upward scours were 

common and full preservation of the fining up was rare (As in Figure 7D). This FA 

was lenticular and extended laterally 5-150m, and was often associated with FA2. 

Rare Arenicolites, Skolithos (Figure 7E) and millimetre scale horizontal burrows were 

present in mud-rich sections.  

10 cm30 cm 10 cm

60 cm

A

15 cm

EDC

5 m

B

F



193 

Interpretation 

Scour and fill structures, sharp bases with lags and a fining upward pattern 

suggest an environment with decreasing energy. Relatively low thickness, a 

combination of fluvial and marine structures and the close association with FA2 delta 

front suggests an interpretation of amalgamated small distributary channels (Elliott 

1978; Bhattacharya and Walker 1992; Reading and Collinson 1996; Olariu and 

Bhattacharya, 2006). Although scour and fill structures are present and there is 

evidence for incision within the beds and into FA2, this is interpreted to be a function 

of the depositional environment rather than a function of external change (DuMars 

2002; Roberts 1998; Olariu and Bhattacharya, 2006). Arenicolites suggests brackish 

or marine environment, low species abundance and diversity suggests stressed 

environment (MacEachern & Bann, 2008). Due to the evidence for a change in fresh 

high energy to low energy brackish environment it is likely that these channels 

retained an open connection with the sea during abandonment, forming estuarine 

channels (Dalrymple et al., 1992). 

Figure 7: Field photos of FA 4 (Distributary channels): A- Carbonaceous lag and mud clasts at the base of the 
FA. B- Planar trough cross bedding near the middle of the FA. C- Non-continuous coal beds near the top of the 
FA. D- Internal concave upward scours were commonly preserved in the FA, particularly near the base. E- Rare 
Skolithos observed near the top of the FA. 
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Facies Association 5: Fine sand dominated by HCS and coarse trough- and 

planar- cross stratified sand  

Description 

Facies Association 5 (FA 5) consists of two genetically related interfingering 

and laterally grading facies: a lower-fine grained well sorted quartz arenite 

dominated by hummocky cross stratification (Figure 8A)  and an upper fine to 

medium grained trough-cross stratified sandstone sometimes overlain by planar-

cross stratified sandstone (Figure 8B) and planar laminated finer sands (Figure 8C). 

In beds with hummocky cross stratification, two types of hummocky cross 

stratification are present: isolated beds containing hummocks and swales (such as 

Figure 8D), usually in the lower part of the FA and amalgamated individual beds 

(such as Figure 8E) up to 40cm thick, capped by wave ripples, usually concentrated 

in the upper FA. Isolated beds generally have a larger wavelength (1-3 m) than 

amalgamated individual beds (0.2- 1 m). A sharp erosional lower boundary exists at 

the base of the FA and a gradational boundary is present between the two facies. 

This facies association shows strong lateral continuity throughout the region. Trace 

fossils included Palaeophycus, Ophiomorpha, Planolites, Arenicolites and Skolithos. 

A BI of 0-2 was recorded. Burrows were generally small and occasionally damaged 

or partially preserved (Figure 8 F). A Skolithos ichnofacies is interpreted based on 

the dominance of traces belonging to this group, although some elements of 

Cruziana are present (MacEachern & Bann, 2008). 

Interpretation 

Hummocky cross stratification indicates deposition by episodic storm events 

in water depths between the effective storm-wave base and fair-weather wave base 
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(Dott & Bourgeois, 1982; Duke, 1985; Keen et al., 2012). Individual HCS beds most 

likely formed in deeper conditions and as a result of larger storms and smaller 

amalgamated beds were a result of smaller, longer storms or water shallowing, most 

likely in the lower shoreface (Storms & Hampson, 2005). The intermittent 

preservation of trough-cross stratified, planar-cross stratified and laminated sands 

suggest that elements of the upper shoreface and nearshore bars are preserved. A 

wave dominated shoreline is interpreted for this FA. The occurrence of a Skolithos 

ichnofacies with some elements of Cruziana supports this interpretation 

(MacEachern & Bann, 2008). Deposition likely occurred in an open area where wave 

energy and storm intensity were high. Fluvial input was reduced or negligible at the 

time. 

Figure 8: Field photos of Facies Association 5: Fine sand dominated by HCS and coarse trough- and planar- 
cross stratified sand (Lower shoreface and Upper shoreface) A- Pervasive hummocky cross stratification was 
observed throughout the FA. B- Trough-cross stratified coarse sandstone was preserved. C- Planar laminated 
fine sands. D- Isolated larger beds containing hummocks and swales. Red and white intervals are 15 cm and 
black marks are 10 cm on the Jacob staff. E- Amalgamated individual containing planar lamination overlain by 
hummocks and swales. F- Example of partially preserved Diplocraterion. Other damaged and partially preserved 
burrows were observed also. 
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Facies Association 6: Sharp scoured base upward fining sand 

Description 

Facies association 6 (FA 6) consists of a sharp or scoured based, upward 

fining succession ranging from medium-upper sandstone with minor granules and 

pebbles at the base to alternating silt and sand at the top. Rip-up clasts coupled with 

carbonaceous lag (Figure 9A) and compound cross stratification with granules and 

pebbles (Figure 9B) at the base of the FA are overlain by planar tabular cross-

stratification (Figure 9C) and current ripple lamina (Figure 9D), topped by alternating 

siltstone and fine sand planar laminated stratification with current ripple lamina. 

Interbedded lenticular coal and mud strata of 1-5 cm (Figure 9E) with ripple 

structures and coal beds up to 10 cm are present at the top of the facies, along with 

interbedded planar laminated silt and mud. Mud draping on ripple forests is common 

higher in the FA, where occasional herringbone stratifications and synaereses cracks 

were also observed (Figure 9F). Scour surfaces are common within the facies and 

lateral accretion was observed. Lithofacies grade laterally and grain size is highly 

variable throughout the FA. Although the FA reaches a maximum of 6 m thickness, 

individual beds (0.5-2 m) are stacked and amalgamated (Holbrook, 2001) and 

preserved both with and without a full fining up sequence. The FA is laterally 

discontinuous and lenticular throughout the study area. Sparse Arenicolites, common 

Planolites, Diplocraterion, Camborygma (Figure 9G) and small Scoyenia (Figure 9H) 

were observed (BI=2-3), suggesting the occurrence of a Scoyenia and occasional 

proximal Skolithos Ichnofacies (MacEachern & Bann, 2008). 

Interpretation 

The dominantly upward fining nature, variation in structures and lateral 
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accretion suggest an interpretation of meandering fluvial channel fill with minor tidal 

influence higher in the FA. Sparse evidence for tidal structures suggests no marine 

influence to only weak marine for the majority of deposition, which would occur on an 

upper delta plain to fully continental transitional setting. This interpretation is 

consistent with a Scoyenia and occasional proximal Skolithos ichnofacies 

(MacEachern & Bann, 2008). The presence of scour and fill structures suggest the 

incision of channels into a relatively immobile mud-rich substrate, while fining and 

thinning up patters suggest a progressive shallowing of water depth and decrease in 

depositional energy. Lateral accretion coupled with interbedded lenticular silts, muds 

and coals suggest the active formation of point bars and channel abandonment 

plugs. This FA shares some similarities with FA4, but cross-stratified beds within this 

facies were thicker, fining up patterns were more distinct, grain size was larger, trace 

fossils were different and lateral accretion was apparent (Figure 14B).  

Figure 9: Field photos of Facies Association 6: Sharp based, upward fining heterolithic (Sinuous Fluvial Channel 
Upper delta plain to alluvial). A- Carbonaceous lag and rip-up clasts at the base of the succession. B- Granules 
and pebbles are present in cross-stratification at the base of the FA. C- Planar trough cross stratification. D- 
Current ripple stratification. E- Thin coal beds at the top of the FA. F- Synaereses cracks present between thin 
sand beds at the top of the FA. G- Interpreted Camborygma. H- Interpreted Scoyenia. Also see Figure 14B for a 
larger scale snapshot. 
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Facies Association 7: Upward thinning medium to coarse grained planar 

tabular sands  

Description 

Facies association 7 (FA 7) consists of a scoured base with rip up clasts and 

upward thinning amalgamated beds of upper-medium to coarse moderately rounded 

quartz arenite with abundant planar tabular cross stratification (Figure 10 A). Current 

ripple and wave modified current- ripple lamina exist right at the top of the FA. 

Asymmetric herringbone cross stratification is common toward the middle-top of the 

facies, with the alternate paleocurrent bed approximately half of less of the size of 

the dominant basal bed. Convolute bedding (Figure 10 B) and soft sediment 

deformation along foresets (Figure 10 C) was observed with discrete beds, often 

closer to the base of the FA. This FA is strongly bedded and grain size is relatively 

constant vertically and laterally throughout the facies, although grains become more 

well-rounded toward the top of the FA. The FA is up to 8 m thick, with beds of up to 

120 cm at the base and as small as 20 cm at the top. This FA is lenticular and 

discontinuous in the region and incises into FA 2 and FA 3. Trace fossils are non-

existent to rare (BI=0-0.5), with small isolated Planolites and Skolithos present in the 

very upper section of the FA. 

Interpretation 

The pervasiveness of highly structured planar tabular cross-stratification 

indicates deposition from subaqueous dunes that migrated as a result of strong 

currents. Although typical tidal indicators such as mudstone drapes, flaser and 

lenticular bedding and are absent, herringbone cross-stratification with bi-directional 

paleocurrents (Figure 14B) is a strong indicator of bi-directional currents most likely 
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as a result of tidal action (Allen, 1980; Visser, 1980; Van den Berg et al., 2007). The 

uniform grain size, moderate degree of rounding and absence of mud may not have 

allowed for the development of heterolithic features and suggests a very high 

energy, clean source with rapid deposition. The absence of a well preserved trace 

fossil assemblage is consistent with deposition in a high-energy marine environment, 

potentially with brackish water conditions toward the top of the FA (MacEachern & 

Bann, 2008). FA7 was not present at all locations and was particularly thick (up to 

seven metres) in the southern section of the study area (Figure 11), with a more 

lenticular geometry than other FA’s. This FA is interpreted to be amalgamated fluvial-

dominated tidally influenced channel fill bars with minor wave reworking at the top of 

the FA. Amalgamation and internal scour has resulted in incomplete preservation of 

channel-fill, making assessment of true depositional channel dimensions difficult 

(Holbrook, 2001).  A major drop in sea level followed by a rapid rise could be 

interpreted from this vertical stacking pattern (Shanely and McCabe, 1992; 1993; 

1995; Blum and Törnqvist, 2001) given the proximity of the continent to the open 

ocean and interpreted multifaceted encroachment pattern of the seaway at the time 

of deposition.  

5.5.2. Facies Successions, Key Surfaces and Stratigraphic Architecture 

In the study area, key surfaces separate facies successions, which are composed of 

the previously described facies associations. Vertical facies successions can be 

traced laterally for kilometres throughout the study area (Figure 3). In some of the 

cliff-face exposures, three-dimensional reconstructions of stratigraphic architecture 

and facies-association distributions over several hundreds of metres have been 

interpreted (Figure 11, Figure 12; Figure 13). In this interpretation, facies 
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associations are grouped into facies successions based on their separation by 

bounding surfaces. Figure 13 presents a simplified overview of the bounding 

surfaces and facies successions and facies associations present in each facies 

succession.  

Figure 10: Field photos of Facies Association 7: Upward thinning medium to coarse grained planar tabular sands 
(High energy fluvial channel Incision of Upper delta plain). A- Typical field expression of FA7; amalgamated 
upper-medium to coarse sandstone with strong planar tabular stratification at the base and herringbone cross 
stratification toward the middle of the FA. Structures within this FA indicate potential deposition in a tidal setting. 
Red and white intervals are 15 cm and black marks are 10 cm on the Jacob staff.  B- Convolute bedding within 
FA 7. Bed is 85 cm thick. C- Soft sediment deformation along foresets of cross-beds in FA7. Also see Figure 14B 
for a larger scale snapshot.

Facies Succession 0 (FS 0) 

The base of this succession is in the Burro Canyon Formation. The transition 

between the Burro Canyon Formation and the Dakota Formation was gradual and 

not always clear, with the formations interbedded across the study area. Where 

observed, the transition was characterised by a change from fluvial coarse-grained 

green-tinted sands to FA3 and FA4 deposits. In some locations channels near the 
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base of the Dakota Formation was erosional, as scour and rip up clasts were 

observed at the base of beds, but in others the transition was gradual, with interbeds 

from millimetre to centimetre scale observed. This facies succession was observed 

across the study area and had a thickness 2 m to 7 m with an average of 4 m. The 

boundary between the Dakota Formation and Burro Canyon Formation was clearer 

and the FA3 and FA4 deposits in this Facies succession were thicker in the northern 

section of the study area. 

FS0 is interpreted to be dominated by fluvial and continental processes at the 

base. Non-deposition or erosion of transitional facies is inferred; however a clear 

ravinement or erosional surface was not observed. This may have been due to lack 

of exposure of this surface; mud from the overlying FA quite often washed down over 

this contact making it tough to trace laterally.  

Facies Succession 1 (FS 1) 

A series of upward thickening coarsening up successions characterise the 

lower part of the study interval, each comprising of FA 1, coupled with FA2 and FA4. 

The coarsening up successions are present above Facies Succession 0 in all 

sections across the study area. This facies succession has a maximum thickness of 

18 m, a minimum thickness of 6 m and is typically between 10 to 12 m in thickness. 

Five coarsening up packages were recorded in the most northerly logged section of 

the study area, while three coarsening up sequences are preserved in the most 

southerly logged section. In the south, the final coarsening up section is incomplete 

and incised into, suggesting that the full section is not preserved in the area (Figure 

14, Dutch Charlie B). FA1 typically grades horizontally into FA2 within this facies 

succession in the study area, and is sometimes capped by FA4.  
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FS1 is dominated by wave and tidal processes and is interpreted to have 

been deposited in a fully marine to marginal marine setting. The gradual transition 

from FA1 (prodelta) to FA2 (delta front) suggests gradual shallowing. The presence 

of FA4 suggests further shallowing as distributary channels generally mark the 

shallowest palaeowater depth in delta front successions (Li & Bhattacharya, 2014). A 

repeat of the cycle with a sharp based transition from FA4 back to FA1 suggests a 

sharp transition from delta front back to prodelta, which could indicate rapid flooding 

back of distributary channels. This back-flooding could be a result of sea-level rise 

and retrogradation, or of lobe avulsion and abandonment on a local scale. A detailed 

analysis of sediment supply and provenance may help to interpret controls on 

deposition.   

Facies Succession 2 (FS 2) 

The middle of the studied interval is comprised of FS 2 and is characterised 

by FA5 and FA6, sometimes topped with FA 3. This facies succession has a 

thickness between 12 m and 3 m with an average of 4-5 m. The facies succession is 

present in the majority of sections across the study area; it is relatively thin in the 

very north of the area and thickens toward the south. The base of the succession is 

interpreted to be a major sequence boundary. FS2 marks the start of fining up and 

blocky sequences, compared to FS1, where parasequences were generally 

coarsening up.  

FS2 marks the beginning of fluvial dominated deltaic deposition within the 

formation, which grades up to wave and tide dominated deposition. The basal 

surface of FS2 is a likely candidate for an incised valley interpretation due to the 

rapid change in facies and the character of the incision surface at the base of the 
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facies succession. However no other evidence for an incised valley was preserved 

and the incision depth is quite small compared to other systems.  The sequence 

boundary may record erosion during lowering of relative sea-level and forced 

regression due to climate change. 

Facies Succession 3 (FS 3) 

The upper part of the interval is comprised primarily of FA 7. This facies 

succession has a thickness between 8 m and 0.5 m with an average of 2-3 m. It 

thickens toward the south and disappears toward the north, although the equivalent 

surface can be traced throughout the study area. The base of the succession is 

interpreted to be a sequence boundary. A sharp transition is observed between FA7 

and the Mancos Shale. 

Deposition of FS3 was dominated by fluvial and tidal processes. The nature of 

FA7 suggests rapid high energy deposition, making FS3 the most likely candidate for 

incised valley deposition. Deposits are also thicker than those of FS2. However, as 

with FS 2, within FS3 no other elements of incised valley deposition were observed.  

Formation thickness and large scale trends 

No significant change in thickness during the deposition of the Dakota 

Sandstone was observed in the study area (Figure 12). The small change that was 

observed (2-3 m) can be accounted for through depositional compaction. Although 

tectonic activity was widening and deepening the seaway, sea level was rising faster 

than sediment was depositing, resulting in a net transgression. Overall, four major 

regressive-transgressive packages are interpreted in a net transgressive setting 

(Figure 14). Regression and transgression was complex and most likely occurred on  
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Figure 13: Simplified conceptual sequence stratigraphic sketch of the Dakota Formation approximately in a 
North-South orientation. Surfaces and facies successions correlate to those throughout Figure 14 and 15. FA is 
an abbreviation for Facies Association and FS is an abbreviation for Facies Succession. A Facies Association is 
made up of a grouping of several lithofacies and a Facies Succession comprises a grouping of Facies 
Associations. 

Figure 14A: Above and next page. For two locations: (A) High resolution photomosaic (Gigapan) of at selected
sites with the locations of the measured sections marked. Additional observations were taken between logging 
locations. Sampling locations for detrital zircon analyses are marked. (B) Interpreted photomosaic with main 
facies highlighted. Facies correspond and use the same colour scheme as those described in Figures 4 to 11.
(C) Overlain lines showing facies successions, sequence boundaries and transgressive surfaces.



#13

#40

Billy Creek

N S

A

B

C

A

B

C

10

20m

0 500m100 200 300 400

NW SE

250m10050 150 200

10

20m

0

Dutch Charlie

Lo
gg

in
g 

Lo
ca

tio
n

Sampling location 

Lo
gg

in
g 

Lo
ca

tio
n

Lo
gg

in
g 

Lo
ca

tio
n

Lo
gg

in
g 

Lo
ca

tio
n

Sampling location 

Lo
gg

in
g 

Lo
ca

tio
n

Lo
gg

in
g 

Lo
ca

tio
n

Lo
gg

in
g 

Lo
ca

tio
n

Lo
gg

in
g 

Lo
ca

tio
n

FS
2

FS
3

FS
2

FS
3

FS
0

FS
1

FS
1



209 

Figure 14B: Zoomed in snapshots of Gigapan photomosaics. A- Potential channel body feature. Bold dashed 
lines represent the base of the channel. Thin solid lines represent the basal sediments and the thin dashed line 
represents potential accretion and top of the basal sediments (FA 6). B- Bi-directional flow structures, indicating a 
potential tidal depositional environment. Arrows show the direction of the foresets (FA 7). C- Large scale cross 
bedding with arrows indicating direction of foresets (FA 6). 
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a number of scales.  FS 2 is interpreted to preserve the broadest ranging regressive-

transgressive event due to the depositional environment shift from delta 

front/prodelta to upper delta plain above tidal reach.  

5.5.3. Sediment Provenance 

Of 14 collected samples, seven yielded zircon grains. When considered 

together, grains yielded  a small population of Mesoarchaean to Neoarchaean ages, 

some Paleoproterozoic detritus, Paleoproterozoic to Cambrian ages, a minor 

concentration in the Neoproterozoic, major detrital peaks in the Ediacaran to 

Cambrian and Carboniferous to Triassic and a final concentration of Triassic to 

Cretaceous-aged detritus (Figure 15A). The aggregate of all results can be 

separated into a series of populations based on major concentrations (Figure 15A). 

Population A: Paleoproterozoic, Neoarchean and Mesoarchean Ages (3100–

2100 Ma) 

Paleoproterozoic, Neoarchean and Mesoarchean Ages age populations are 

represented by approximately 7% of the Dakota Formation zircons. These ages form 

peaks at 2650 Ma, 2645 Ma and 2440 Ma and have the highest relative 

concentration in samples Kd011, Kd010 and Kd004. These grains are most likely 

sourced from units of Precambrian, Paleozoic and Mesozoic age in the Sevier fold-

and-thrust belt (Figure 1; Dickinson and Gehrels, 2009; Lawton et al., 2010). 

Population B: Mesoproterozoic and Paleoproterozoic Ages (2100- 1500 

Ma) 

26% of the Dakota Formation zircons are represented by Mesoproterozoic 
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and Paleoproterozoic Ages. Ages in this population form a major concentrated peak 

at 1660 Ma and a minor peak at 1890 Ma. A small group of older grains have ages of 

2100-1900 Ma. Age peaks for the population are relatively highly concentrated in all 

samples except Kd001 and Kd004, where they are almost absent. In Kd001 the 

1890 Ma peak is more prominent than in other samples.  

Population B zircons are interpreted to have been predominately derived from 

the Mogollon Highlands in central Arizona (Figure 1). The 1890 Ma and 1660 Ma age 

peaks identified in most Dakota Formation samples are correlative with Mogollon 

Highlands Yavapai- Mazatzal basement rocks in central Arizona (Wasserburg and 

Lanphere, 1965; Lanphere, 1968; Anderson and Bender, 1989; Gleason et al., 1994; 

Hawkins et al., 1996; Spencer and Pecha, 2012) as well as potentially many less-

exposed sedimentary units in the Sevier fold-and-thrust belt and throughout the 

southwestern United States (Dickinson and Gehrels, 2008; Laskowski et al., 2013). 

The smaller group of older grains (2100-1900 Ma) is most likely Sevier fold-and-

thrust belt units, which contain grains of similar ages (Dickinson and Gehrels, 2009; 

Lawton et al., 2010), but the original source of the 1800-1600 Ma zircons is primarily 

interpreted to be an extensive metamorphosed magmatic belt that developed as a 

result of plate convergence during the Paleoproterozoic Mazatzal orogeny (Amato et 

al., 2008). The expansive distribution of this magmatic belt resulted in widespread 

exposures of 1800-1600 Ma in the Mogollon Highlands during the time of Deposition 

of the Dakota Formation.  

Population C: Paleozoic through Neoproterozoic Ages (1500–800 Ma) 

Paleozoic through Neoproterozoic Ages represent 45.6% of the Dakota 

Formation zircons. Ages in this population for a major peak around 1040 Ma as well 
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as minor peaks around 900, 1180 and 1365 Ma. Large age peaks for this population 

are present in all of the samples, but particularly prominent in Kd001 and Kd004 and 

very small in Kd013. 

Grenville ages (900–1250 Ma) are prominent in many units within the Sevier 

fold-and-thrust belt (Dickinson and Gehrels, 2008a, 2008b, 2009; Lawton et al., 

2010; Lawton and Bradford, 2011). Peaks at 1180, 1040 and 900 most likely 

represent the recycling of Grenville orogenic detritus originally derived from eastern 

Laurentia. Additionally, Paleoproterozoic and Neoproterozoic ages originally derived 

from remnant magmatic arc sources in eastern Laurentia and Mexico are common in 

the Sevier fold-and-thrust belt (Dickinson and Gehrels, 2008b), so this is considered 

to be the most likely source for this sediment. 

Population D: Neoproterozoic to Permian Ages (800-252 Ma) 

Neoproterozoic to Permian Ages comprise 18.8% of the analysed Dakota 

Formation zircons. This age population is dominated by two age peaks. A major age 

peak for this population exists at 600 Ma. A relatively smaller peak occurs around 

400 Ma. The 600 Ma peak is particularly prominent in Kd013 Kd010 and Kd007. The 

400 Ma peak is particularly prominent in Kd004, Kd009 and Kd011. Where the 600 

Ma peak is prominent, the 400 Ma peak is generally small or absent, and the 

opposite is true, with the exception of Kd004, where both peaks are equally 

prominent. 

Potential sources for the 600 and 400 Ma sediment are to the southeast, lying 

in the same direction from the depositional sites as the East Mexico magmatic arc. 

These include both Laurentian and Oaxaquian Grenville provinces, the intervening 
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Ouachita Paleozoic orogen, and the more distant Yucatãn–Campeche block, where 

both Paleozoic and Neoproterozoic bedrock of these ages exists (Krogh et al. 1993; 

Steiner and Walker 1996). 

Population E: Triassic to Cretaceous Ages (252-94 Ma) 

Triassic to Cretaceous ages comprise 2.6% of the analysed Dakota Formation 

zircons. Three peaks occur. A major peak occurs at 96 Ma and two minor peaks 

occur at 147 and 235 Ma. These peaks are particularly prominent in Kd004, Kd011 

and Kd013, but absent in Kd010. This could be due to the small concordant sample 

size in Kd010 (n=32), although KD013 had a similar amount of concordant grains 

(n=41), but this population was still present in that sample.  

The youngest concordant age is 94.4 ± 3.1 Ma (1σ error youngest single grain 

method, 95% confidence interval, as in Dickinson and Gehrels, 2009) was obtained 

from a volcanic grain in Kd011. This is slightly older than the maximum depositional 

age of 93.9 Ma reported, consistent with the Dakota Formation being of Late 

Cenomanian age (Figure 14). This grain was from a fluvial sample taken in the 

middle of the Formation, so it is likely that at least half of the deposition for the 

formation occurred after 94.4 ± 3.1 Ma. This age is quite close to the 

Cenomanian/Turonian age boundary, 93.9 Ma, so deposition of the Dakota 

Formation at this location could have potentially at least partially occurred in the 

Turonian. 

A potential source for the 235 Ma age peak is Mesozoic foreland basin strata 

containing arc-derived zircons (Dickinson and Gehrels, 2009). Grains composing the 

147 Ma peak were likely derived from 147 Ma intrusions in the Mojave Desert region 
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of southern California (Schermer and Busby, 1994; Gerber et al., 1995; Walker et al., 

2002). Late Cretaceous ages forming the 96 Ma peak were most likely originally 

derived from the Sierra Nevada batholiths (Coleman and Glazner, 1997).  

Temporal Age Variation 

Based on provenance data from this study the Dakota Formation appears to 

have undergone a substantial provenance change during deposition (Figure 15 B). 

Facies Succession 1 samples are dominated by a population of zircons at 1040 to 

1080 Ma. Other smaller populations exist, but these peaks are minor. These 

Grenvillian ages (900–1250 Ma) are interpreted to have been sourced from the 

Sevier fold-and-thrust belt, so it is most likely that this was the primary source for  

Figure 15: A. Relative probability plot containing ages from all detrital zircons in this study (N=7 samples, n=509 
concordant grains). Left vertical axis corresponds to number of grains in each age bin (age bins span 100 m.y.) 
Age populations are denoted by white shaded bars. Chart is annotated with populations A-E as discussed in the 
text. B. Relative probability plots for all detrital zircons samples analysed in this study (N=7). Left vertical axis 
corresponds to number of grains in each age bin (age bins span 100 m.y.). Horizontal axis corresponds to age of 
samples. Number of analyses (n) and sample number is shown for each sample. All data is available in 
supplementary data files. C. Dakota Formation sediment input sources based on interpreted detrital zircon data. 

deposition during this time (Figure 15 C). In the younger FS3, and to some degree in 

FS2, a peak around 1660 Ma becomes prominent and population D zircons become 

more common (Figure 15 B). These 1660 Ma zircons are interpreted to have been 

predominately derived from the Mogollon Highlands in central Arizona, whilepotential 

sources for the 600 and 400 Ma sediment are within the Cordilleran magmatic arc to 
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the southeast (Figure 15 C). This change in provenance suggests that changes 

related to upstream fluvial dynamics could have had an effect on the sedimentology, 

stratigraphy and depositional architecture of the Dakota Formation. 

5.6. Discussion 

The Cenomanian Dakota Formation exposed between Ridgway and Montrose 

(Figure 1) was deposited in a net transgressive mixed influence continental to marine 

environment. In this study seven facies associations, grouped into four facies 

successions, are described (see Figure 4 for summary). These facies successions 

represent progradational and retrogradational sediment packages deposited during 

the initial net transgression of marine waters on to the North American Continent to 

form the Western Interior Seaway (WIS). The preserved sediment pattern indicates 

that the transgression was most likely complex and occurred in at least four stages 

(Figure 14), with a change in sediment provenance throughout the transgression 

event (Figure 15).  

The Dakota Formation gives an example of a complex multi-stage initial 

transgression where marine waters encroach onto a content to form an 

epicontinental or epeiric seaway. Epicontinental or epeiric seaways have been 

interpreted to have existed throughout geological time. These seaways are thought 

to have been present during the Late Ordovician, late Silurian to Early Devonian, the 

late Devonian to mid Pensylvanian, the mid- Jurassic, the Cretaceous and the 

Carboniferous-Permian glacial intervals mainly as a result of high sea level and low 

tectonic relief (Miall et al., 2008). The Dakota Formation is a good example of the 

initial transgression phases and would be a useful analogue for interpreting similar 

deposits in the subsurface. 
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Within separate facies successions, the Dakota Formation is comparable to 

all of five types of transgressive facies patterns commonly recognised (Cattaneo and 

Steel, 2002) but most likely represents a stepped transgression surface (Swift et al., 

1991). In this case sediment supply, probably initially from the tectonically active 

Sevier thrust, temporarily overbalances the relative rate of sea level rise, resulting in 

an a preserved upward offset series of transgressive surfaces, each separated by 

brief progradational pulses of sediment. The resultant deposits are a succession of 

interfingering of marine and continental deposits, organised as a series of 

backstepping series (e.g. Siggerud and Steel, 1999). In this case, the slightly offset 

(landwards) stacking of successive transgressive surfaces results in aggradation of 

the net transgressive formation (Olsen et al., 1995; Siggerud and Steel, 1999; 

Cattaneo and Steel, 2002). 

The four stages of transgression within the Dakota Formation at the study site 

(Figure 14) are characterised by transitions from fluvial to distal marine, marginal 

marine to distal marine, upper delta plain (above tidal influence) to distal marine and 

upper delta plain to offshore depositional settings. Sequence stratigraphic models 

proposing sand deposits preserved in incised valleys during transgressions (e.g. 

Dalrymple, 1992; Dalrymple et al., 1992; Posamentier & Allen, 1999) are not ideal for 

describing the Dakota Formation, as other elements of incised valleys (interfluves 

etc) are not observed. Sequence stratigraphic models and interpretations with less 

influence on incised valleys as a mechanism for sand preservation (Gilbert, 1885; 

Sanders and Kumar, 1975, Swift et al., 1991, Nummedal et al., 1993, Swift and 

Thorne, 1991) are a better fit for the Dakota Formation, potentially due to the 

relatively low basin gradient and piecewise nature of the transgression at the time of 

deposition.  
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Some features of the Dakota Formation are comparable with modern 

deposits, however the range of high-latitude well studied transgressive modern back 

barriers and estuary systems (e.g. Van Straaten & Kunen, 1957; Oomkes & 

Terwindt, 1960; Van Straaten, 1961; Evans, 1965; Reineck, 1967; Terwindt, 1971) 

do not fully capture the smaller scale or complexity of transgressions in 

epicontinental or epeiric seaways. Compared to these well-studied settings the 

Dakota Formation preserves thinner and more fluvially-influenced deposits. The 

modern Mississippi Delta, which is similar to the Dakota Formation in terms of fluvial 

and tidal controls (Coleman and Prior, 1981) preserves fluvial-deltaic sequences 

between 10 to 50 m thick (Penland et al, 1988). Fluvial-deltaic facies sequences of 

deltaic deposits within the Dakota Sandstone are approximately 5 m thick. The 

Dakota Formation sands were deposited on an epicontinental or epeiric seaway as 

opposed to a true continental shelf. The continental shelf has more accommodation 

space compared to an epicontinental or epeiric seaway shelf, and this distinction 

would be particularly notable early in the life of the epicontinental or epeiric seaway 

formation.  

The Mississippi Delta (Coleman and Prior, 1981) as well as the commonly 

studied modern back barriers and estuary systems (e.g. Van Straaten & Kunen, 

1957; Oomkes & Terwindt, 1960; Van Straaten, 1961; Evans, 1965; Reineck, 1967; 

Terwindt, 1971)  have a large, stable source river with consistent provenance. The 

Dakota Formation sands had a changing sediment source during deposition. 

Irregular discharge as the catchment areas transitioned may have resulted in periods 

of non-deposition and lobe flooding within the Dakota Formation. This suggests 

localized, autocyclic abandonment of parts of the delta as an important local control 

on deposition. 
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5.7. Conclusion 

The Dakota Formation is a net transgressive deltaic unit that preserves the 

complex Early Cretaceous initial transgression of marine waters which form the 

Western Interior Seaway (WIS). Deposits of the Dakota Formation exposed on the 

cliff face of the Uncompahgre Plateau between the town of Montrose and Ridgway, 

south west Colorado have not previously been described and interpreted in detail. In 

this study, seven facies associations are interpreted to have been preserved in the 

Dakota Formation in the study area. Four regressive-transgressive sequences are 

interpreted. These sequences are described in terms of facies successions. 

A millimetre to sub millimetre interbedded light grey to very dark grey 

claystone package with mudstone and occasional siltstone beds was interpreted as 

prodelta deposits. Together with an upward coarsening package with gray silty shale 

and lower-medium sand beds at base, as well as medium-upper grained cross 

bedded quartz arenite at top, interpreted as delta front deposits, this facies 

association forms facies succession zero, at the base of the Dakota Formation. 

Centimetre scale dark grey silty shale irregularly interbedded with thick beds of fine 

to medium grained quartz arenite, some carbonaceous and coal layers were 

interpreted as delta plain deposits. These and delta front deposits were the primary 

facies associations in facies succession one. Sharp concave upward based, 

medium-grained quartz arenite occasionally topped by non-continuous coal, siltstone 

or claystone beds, interpreted as distributary channels were common throughout the 

two basal facies successions. A sharp based, upward fining succession ranging from 

with minor granules and pebbles at the base to alternating silt and sand at the top 

graded into a lower-fine grained arenite and upper fine to medium grained sandstone 
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overlain by planar-cross bedded sandstone and laminated fine sands with pervasive 

hummocky cross stratification. These facies, along with some delta front deposits are 

interpreted as the second facies succession in the study area. A high energy fluvial 

dominated channel, consisting of a scoured base, upward thinning amalgamated 

beds of upper-medium to coarse moderately rounded quartz arenite was interpreted 

as a third and final facies succession in the study area.  

A marked change in provenance is evident from the base to the top of the 

Dakota Formation. The transition between catchment areas may have resulted in 

periods of non-deposition and localised, autocyclic abandonment of parts of the 

delta, which was an important local control on deposition. Wave, tidal and fluvial 

influences were evident, with the dominant process changing between facies 

associations as the depositional system evolved. Changes in rate of sediment 

supply, initially from the tectonically active Sevier thrust, and the encroachment of 

marine waters onto the continent are recorded in this complex multi-stage initial 

transgressive package, which records the beginning of the formation of the 

epicontinental Western Interior Seaway. 
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Epicontinental Seaway transition: The Early 

Cretaceous Murta Formation of the Eromanga Basin 
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6.1. Abstract 

A fundamental understanding of the characteristics of marine incursions and 

the formation of epicontinental seaways is important for forecasting potential future 

impacts of climate change and reconstructing Earth history. Few studies focus on the 

sedimentology of initial stages of transgression, where the depositional environment 

transitions from continental to marginal marine. As a result, these environments are 

poorly understood and are difficult to interpret in the subsurface. Here, a facies 

model is presented for the basal transgressive Early Cretaceous Murta Formation of 

the Eromanga Basin. Previous depositional models for the Murta Formation are 

inconsistent and have failed to predict or account for lithologies observed. The Murta 

Formation has been interpreted as both marginal marine to lacustrine within the 

same study areas. This study utilises data from core, wireline log and detrital zircon 

analyses. Six distinct facies associations are described, interpreted to be from 

environments ranging from deep marine to upper delta plain. A process-based 

depositional interpretation is provided. Sediment transport pathways are interpreted 

based upon detrital zircon data. Conceptual paleogeographic reconstructions are 

presented. The lower Murta Formation is dominated by lacustrine deposits whereas 

the upper Murta Formation includes more evidence for marine influence, including 

higher magnitude correlatable regressions and transgressions. This study provides 

an opportunity to better understand the sedimentological character of the transition 

from a continental to marine depositional environment at a variety of scales. 

6.2. Introduction 

Understanding the character and timing of marine incursions is important for 
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reconstructing earth history and forecasting future impacts of climate change. 

Information about past marine incursions is obtained from stratigraphic analysis of 

deposits. However, marine and continental environments do not always have 

unambiguously distinctive deposits (for further discussion see the Chapter 2 Section 

2 of this thesis). In the case of a succession recording a marine incursion, 

distinguishing between such depositional settings can thus be difficult, and potential 

mis-interpretation may have a substantial impact on palaeogeographic 

reconstructions and stratigraphic correlations. A detailed analysis of early-stage 

transgressive deposits is thus required, in order for these interpretations to produce 

robust basin-wide stratigraphic models. This is of direct relevance to the oil and gas 

industry, for which such models are an important tool in exploration and 

development. 

Marine water bodies and resultant depositional systems may inundate large 

previously non-marine areas of continents. When these areas are bordered by land 

masses and connected to the ocean they form epicontinental seas. Similarities and 

differences between depositional processes on continental shelves, very large lakes 

and epicontinental seaways are not well understood (Allison and Wells, 2006; Miall, 

2008). The transition from continental systems to epicontinental seaways has been 

documented in the Cretaceous and is interpreted to be mostly controlled by 

significant eustatic fluctuations (Haq et al., 1987; Miller et al., 2005), high-frequency 

tectonism (Catuneanu et al., 1999; Catuneanu et al., 2000; Vakarelov et al., 2006) 

and orbital forcing (Elder et al., 1994; Sageman et al., 1997; Plint and Kreitner, 

2007).  

Despite having many similarities in depositional processes, elements and 

morphologies, the behaviour and characteristics of lakes can differ considerably from 
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marine systems (Gierlowski-Kordesch & Kelts, 1994; Bagnaz et al., 2012). Their 

behaviour and characteristics are not controlled by marine base level. The character 

of depositional systems in lakes is controlled not only by sediment supply, but also 

pre-existing topography or bathymetry and the timing of peak clastic influx relative to 

lake level. Peak clastic influx and lake level may or may not be related (Bohacs, 

2012). Challenges in prediction of marginal lacustrine depositional patterns arise 

from the non-unique relations of lake character to tectonics and climate, responses 

of lakes to climate change and variety of relationships between lake level, sediment 

supply and water supply (Gierlowski-Kordesch & Kelts, 1994; Bagnaz et al., 2012). 

Wireline log expression of lacustrine strata varies widely among lacustrine facies 

associations and can differ greatly from similar facies associations commonly 

observed in marginal marine strata (Bohacs and Miskell-Gerhardt, 1998; Bagnaz et 

al., 2012) making interpretation and correlation difficult.  

This chapter focuses on the Murta Formation which preserves a lacustrine to 

marginal marine transgression within the Eromanga Basin in Australia (Figure 1A). In 

previous studies the Murta Formation has been interpreted as lacustrine to marginal 

marine (Ambrose et al, 1982 and 1986; Gorter 1994; Bradley, 1993; Mount, 1981, 

1982; Newton, 1986; Zoellner, 1988; Lennox, 1986; Hill, 1999). Specific objectives of 

this basin-wide study were to (i) Develop a consistent understanding of facies and 

depositional environments, (ii) Improve the basin-wide understanding of sediment 

provenance and paleogeography, and (iii) Provide a holistic sequence stratigraphic 

model for the Murta Formation across the basin.   

6.3. Geological Background 

In the Eromanga Basin (Figure 1) unequivocal evidence of marine 
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sedimentation is recognised in the sediments of the Neocomian Cadna-owie 

Formation (see Figure 2 for stratigraphic context). By the Aptian, a Cretaceous sea 

covered approximately 60% of the Australian continent. On a continental scale, 

mechanisms responsible for the basin subsidence, which allowed for the formation of 

the continental seaway, have been interpreted by different workers to be: 

intracratonic sag resulting from thermal contraction (Gallagher and Lambeck, 1989; 

Gray et al., 2002), dynamic topographic changes induced by a subducted 

lithospheric slab (Russell and Gurnis, 1994; Matthews et al., 2011) and foreland 

basin dynamics (Jones and Veevers, 1983; Gallagher and Lambeck, 1989; 

Gallagher, 1990; Draper, 2002).  Timing of the initiation of the seaway is also 

uncertain.  

Lower order controls on sedimentation including sediment supply related to 

climate, subsidence and local tectonic activity impacted Cretaceous sedimentation in 

the Eromanga Basin (Gostin and Therriault, 1997). Eustatic sea level change during 

the Cretaceous is well documented (most recently by Laurin and Sageman, 2007; 

Wendler et al., 2010; Boulila et al., 2011; Wendler et al., 2014; Laurin et al., 2015) 

and is likely to have been influenced by the breakup of Gondwana in the southern 

hemisphere. Sediment supply was influenced by major climatic changes, from 

uniformly warm and wet in the Jurassic period to an interpreted cool temperate 

climate in the Cretaceous (McKellar, 1996; Gorter, 1994). During the Early 

Cretaceous, paleolatitudinal positioning of the basin was comparable to the present 

day latitudes of Norway and Alaska (Figure 3A).  The climate at these present-day 

latitudes is cold temperate to sub-arctic and subject to seasonality (Gorter, 1994), 

but this may have differed in the Early Cretaceous. The role of tectonics at the local 

level (e.g. Gostin and Therriault, 1997) is important, as low-gradient basins such as 
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the Eromanga Basin are sensitive to subtle tectonic movements, the effects of which 

on sedimentation patterns can be substantial (Jansen, 2013). 

Figure 2: Stratigraphic table showing the age, palynological zone, lithology, interpreted environment of deposition 
and basin development for the Murta Formation, as highlighted in yellow (After Santos Ltd, 2014). 

The Berrasian to Valanginian (145-134 Ma) Murta Formation is underlain by 

the continental sand-rich Oxfordian to Berriasian Namur Formation and McKinlay 

Formation and overlain by the Valanginian to Berrasian Cadna-owie Formation, 

which is composed of thick marine mudstones interbedded with siltstone and 

sandstone (Figure 2; Gravestock et al., 1995). This vertical stratigraphic placement 

suggests that the Murta Formation is an overall net transgressive package. Sediment 

infill of the basin during the Cretaceous at the time of deposition of the Murta 

Formation is interpreted to have been derived from younger volcanogenic sediments 
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to the east of the basin (Hoffmann, 1989; Allen et al, 1996) (Figure 4). Fundamental 

Figure 3: A. Paleogeography for the Australian continent in the Middle Cretaceous, after deposition of the Murta 
Formation. No specific age is given, but Albian to Aptian age is inferred (After Frakes and Francis, 1988 and 
Gorter, 1994). B. Paleogeography during the time of deposition for the Murta Formation, based mainly on work 
done in the Dullingari area (Redrawn from Ambrose et al., 1986). 
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Figure 4: Likely source terrains and ages A: Principal bedrock-age provinces of Australia. BHB = Broken Hill 
Block; C=Canberra; CP=Curnamona Province; DZ=Secondary Detrital Grains; KO=Kanmantoo Orogen; 
LO=Lachlan Orogen; M=Melbourne; MB=Maryborough Basin; MO=Mossman Orogen; NC=New Caledonia; 
NEO= New England Orogen; TO = Thomson Orogen; WVP=Whitsunday Volcanic Province (After Veevers, 
2016). 

bedrock-age provinces of Australia are divided by the Tasman Line with the 

Phanerozoic to the east and the Precambrian to the west (Figure 4).  

Existing regional and semi-regional models for the Murta Formation (Ambrose 

et al, 1982 and 1986; Gorter 1994; Bradley, 1993; Mount, 1981, 1982; Newton, 

1986; Zoellner, 1988; Lennox, 1986; Hill, 1999) show inconsistencies, however all 

authors describe the Murta Member as lacustrine to marginal marine. The Murta 

Formation was first defined as a fine-grained lacustrine sequence intervening 

between braided-fluvial sediments of the Namur Sandstone and the overlying, 

marginal to fully marine Cadna-owie Formation (Ambrose et al. 1982; 1986), mainly 

from work completed in the South Australian sector. A regional reduction in thickness 
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and sand content from the north-northeast to the southwest was interpreted to reflect 

a depositional pattern where the main source of sediment into the “Murta Lake” was 

a delta building from the north and east (Figure 3B; Ambrose et al. 1982; 1986). A 

similar lacustrine delta model, sourced from the north, providing sediment to the 

Nockatunga, Thungo, Winna and Dilkera Fields was interpreted for reservoir facies 

in the Murta Formation in the south east of the basin in the Queensland sector 

(Lennox, 1986).  

Apatite nodules, glauconite pellets and calcisphere microfossils together with 

geochemical trace element data were used to infer a brackish to marine environment 

in the upper Murta Formation (Naylor et al., 1988; Zoellner, 1988; Powell et al., 

1989). Hill (1999) analysed facies of the cored intervals of the Murta Formation 

within a specific field in the Southern Queensland area and interpreted that the 

reservoir system represents a progradational lacustrine shoreface sandstone 

succession. In the southeast of the basin a lacustrine system with vegetated islands, 

followed by a rapid drop in base level causing channel incision is interpreted during 

the mid Murta time (Gorter, 1994).  Subsequently, slow base level rise and infill of 

channels by sediment reworking and transgression was interpreted to form estuarine 

deposits, although no evidence of marine influence is directly mentioned. Continued 

transgression is interpreted to form basin-wide shoaling cycles and maximum 

transgression results in a mud-rich condensed section (Gorter, 1994).   

The McKinlay Member and Murta Formation have previously been considered 

as a genetic package (Theologou, 1995).  A drowned river valley was used as a 

depositional model for the basal McKinlay Member and a transgressive lake barrier-

bar system for the Upper Murta Member. The drowned valley was interpreted to form 

part of a lacustrine transgressive  systems tract (e.g. Reinsen, 1992; Dalrymple et 
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al., 1992). The upper part of the McKinlay Member is interpreted by Theologou 

(1995) to have been deposited as part of a transgressive lake barrier-bar system 

which transgressed rapidly over the lake (e.g. Reinsen, 1992; Galloway, 1986; Kraft 

and John, 1978). Sand packages are either designated as prograding lacustrine 

deltas or a prograding wave dominated shoreline facies. As the formation is 

interpreted as lacustrine, the absence of tides is often implied (Theologou, 1995) and 

hence the flood tidal delta and tidal flat components of this facies models are 

ignored, however lithologies similar to these facies exist. Rapid transgression is 

implied to reduce preservation potential. 

Stratigraphic nomenclature used to describe the Murta Formation (Figure 2) 

can be complicated. The Murta Formation was previously referred to as the Murta 

Member, but was promoted to Formation status (Gravestock et al., 1995). The Murta 

Formation grades laterally into the Hooray Sandstone. Although horizontal grading of 

the (South-Australian type) Murta Formation into the Hooray Sandstone in 

Queensland represents a major facies change, deposition is time-equivalent and 

hence for the purpose of this study the Hooray Sandstone will be incorporated into 

the Murta Formation. In this chapter, the term Murta Formation will be used to 

describe the formation studied throughout the Basin, including the Hooray 

Sandstone.  

6.4. Methods and Dataset 

This study focuses on the Murta Formation throughout the Eromanga Basin, 

integrating dataset of wireline logs, core descriptions and geochronology to improve 

the conceptual geological model for the formation and develop paleogeographic 

reconstructions. It will also enable better understanding of the transgression from 
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lacustrine to marine on a basin scale. Palynological, geochemical and petrographical 

data from previous studies or other workers are incorporated into this work. 

A total of forty-five representative cores intersecting the Murta Formation were 

logged in South Australia and Queensland, with the aim of obtaining geographically 

representative coverage for the entire Eromanga Basin (just over 1,000,000 km2; 

Gravestock et al., 1995). Lithofacies, facies and facies associations were identified 

based on lithology, grain size, sedimentary structures and ichnology.  Special   focus   

was   placed   on   interpreting   data   in   a   process-based framework. Process-

based depositional settings were interpreted from facies associations. Results from 

core analysis were integrated with wireline logs. Ninety-two representative wireline 

logs were selected for the study, mainly on the basis of data quality and with the aim 

of obtaining a representative geographically representative coverage. Gamma ray 

and sonic logs were primarily used to construct regional cross sections and 

determine facies continuity. The sandstone upper limit was set as 100 API and a 

velocity cut off of 100 µs per foot was used to determine carbonate cement zones. 

Stacking patterns and stratigraphic trends were used to determine local depositional 

architecture and regional basin scale trends. This context allowed for regional 

correlation across the basin. Marine and non-marine correlation techniques were 

considered. Subdivision of the Murta Formation was based upon sequence 

stratigraphic analysis. All of this work was completed by the author of this thesis. 

Twelve  rock  samples  representative  of  major  stratigraphic  units  were  

taken  (locations  shown  in Figure  1; depths shown in Figure 7)  with  the  objective  

of  conducting  Zircon  U-Pb  geochronology  analysis.  The  samples underwent  

separation  to  isolate  the  zircon  fraction  through  physical,  magnetic  and  heavy  

liquids techniques.  Individual  grains  were  handpicked  and  mounted  into  epoxy 
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resin  blocks  at  the  University  of  Adelaide.  Prior  to  analysis,  zircon  grains  

were  analysed  in  order  to identify  domains  within  the  grains.  Data  were  

obtained  on  a  Laser  Ablation Inductively  Coupled Plasma  Mass  Spectrometry  

(LA-ICP-MS)  using  a  New  Wave  UP-213  laser  attached  to an  Agilent 7500cx  

Inductively  Coupled  Plasma  Mass  Spectrometer  (ICP-MS)  at  Adelaide  

Microscopy,  The University  of  Adelaide.  A  spot  size  of  30 μm  and  repetition 

rate  of  5  Hz  was  used.  Analysed  grains were  selected  without  using  any  

particular  criteria,  to  avoid  undue  bias. 

Age calculations were completed using Iolite v2.31 (Paton et al., 2011) with 

use of the primary zircon standard GJ-1, TIMS normalization data Pb207/Pb206= 608.3 

Ma, Pb206/U238 = 600.7 Ma and Pb207/U235 = 602.2 Ma (Jackson et al., 2004). 

Instrument drift was corrected for via bracketing groups of unknowns of 15–20 with 

8-10 standards and the application of a linear correction. Accuracy of the

methodology was verified by repeated analyses of Plešovice zircon (Pb206/U238 = 

337.13 ± 0.37 Ma; Sláma et al., 2008). Isotope ratios are presented uncorrected for 

common  lead,  with  Concordia  plots  generated  using  Isoplot  v3.75. 

Data ±10% concordant were retained, with the exception of grains younger 

than 500 Ma, where a concordance of ±15% was accepted.  Analyses  with  

anomalously  high  concentrations  of  U  and  depleted  concentrations  of  Th were  

discarded  because  grains  of  this  type  can  be  highly  susceptible  to  Pb loss  

(Dickinson  and Gehrels, 2009). Pb207/Pb206 ratios were used for age determination 

for grains older than 1 Ga, and Pb206/U238 ratios were used for those younger. When 

ages split the 1 Ga boundary Pb207/Pb206 ratios took precedence. Zircon age 

distributions were compared using the Kolmogorov-Smirnov (K-S) test (Press et al., 

1986). High p values (p > 0.05) indicate a statistically significant likelihood that two 
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samples may have been derived from sources with the same zircon age 

distributions. Low p values (p < 0.05) suggest the samples were sourced by 

statistically distinguishable distributions of zircon ages. All of this analysis was 

completed by the author of this thesis at the University of Adelaide and the complete 

data set is provided as a supplementary data set in Chapter 8. 

Geochronology data were integrated with core data and wireline log analysis 

to develop paleogeographic reconstructions for the Eromanga Basin during the Early 

Cretaceous (Berriasian to Valanginian, 145-134 Ma). Reconstructions focus on likely 

sediment transport pathways and paleoenvironmental conditions. Sparse data 

coverage gives rise to uncertainty, and as such reconstructions should be 

considered as a single realisation of many potential scenarios and updated as new 

information is obtained. Furthermore, the majority of data in this study is 

concentrated in closer to the centre of the basin (Figure 1). The basin margins are 

under-represented as very few data are available there.    

6.5. Results 

Twenty-six lithofacies and six distinct facies associations were recognised 

based on detailed observations of lithology, grain sorting and size, sedimentary  

Figure 5: Next page. Photographs of representative lithologies for Facies 1 through 6, potential tidal structures 
and ichnofabrics. See Figure 1B for locations of wells. A: FA 1 Offshore (L-R: Cuisinier 4, 1622-1621 m, 
Merrimelia 16, 5248-5248.10 ft, Three Queens 1, 4784-4783 m, Gidgealpa 24, 5182-5184 ft). B: FA 2 Prodelta 
(L-R: Cuisinier 4 1625-1626 m, Merrimelia 46, 5081-5080 ft, Jena-12, 3629-3636 ft, Tantanna-2 4453-4451 ft) C: 
FA 3 Delta Front (L-R: Jackson 1, 4388.5 -4387 ft, Narcoonowie 4, 4388.5 -4387 ft, Tantanna 2, 4449 -4447 ft, 
Cuisinier 4, 1660.55 -1660.30 m) D: FA 4 Lower Delta Plain (L-R Jena 12, 4040- 4041 ft, Biala 6 3935.9-3936.9 
ft, Dullingari 37 5585- 5584 ft, Orientos 2 4291-4292 ft, Dirkala 3 4509-4507 ft), E: FA 5 Shorelines (Jena 3 
3988.10-3989.10 ft, Dirkala 3 4620.5- 4621.5 ft, Mudera 2 6720.1- 6720.11 ft, Jena 12 4205-4206 ft, Cuisinier 4 
1632.0- 1631.0 m, Jackson 4365- 4364 ft, Jena 3 3990-3991 ft), F: FA 6 Fluvial dominated upper delta plain 
(Jena 11 3895.6-3896.1 ft, Spencer West 2 5398.3-5369.3 ft, Spencer West 2 5365.7-5366.5 ft, Spencer West 2 
4493.9- 4494.9 ft, Dirkala 2 6222.1- 6223 ft, Jena 3 3716- 3716.5 ft, Cuisinier 4 1639.0- 1638.0 m). G: Potential 
structures indicating tidal influence- Tantanna 2 4479-4480, Gidgealpa 19, 5089.9-5089.5, Narcoonowie 4 
4355-4356 ft, Above Dullingari 37 4338 ft , Below Jena 12 5324 ft, Above Cuisinier 4 1645.2 m Below Cuisinier 4 
1639.73- 1369.38 m). H: Variation in ichnofabrics (Mudera 5 7059-7058.1 ft, Mudera 2 4956.4-6957.2 ft, 
Narcoonowie 4 4367.4-4368.4 ft, Merrimelia 46 5129.4-5130.4 ft, Merrimelia 46 5100-5101 ft, Cuisininier 4 
1668-1667.8 m, Gidgealpa 24 5187.6- 5187.5 ft, Jackson 2 4065, 4067, 4066, Cuisinier 4 1654, 1659.
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Code Facies Description Process Interpretation Interpretation 

St, Sp Trough cross and 
planar cross bedding 

Fine-grained to very coarse-grained, 
sub-angular to sub-rounded clasts 
showing poor to moderate sorting. 

Course grained lag, bioturbation 
common. 

Migration of sand bar forms 
within a fluvial channel.  

Channelized 
elements FA6 

Upper and 
Lower Delta 

Plain 

Sm Massive sand Very fine to medium-grained poor to 
well sorted structureless sandstone 

Rapid deposition or destruction 
of structure due to bioturbation 

or other event. 

Fldb Deformed and 
bioturbated mud 

Distorted, disorganised, sub-
horizontal laminations. Intense 

bioturbation common.  

Channel abandonment 
deposition 

G Gravel Fine to coarse gravel, quartz arenite 
rich Basal lag of fluvial systems 

Sb Bioturbated sand Clay, silt and fine sand with remnant 
ripple and planar lamination 

structures mostly destroyed by 
bioturbation. 

Overbank deposits, levees and 
splays in location conductive to 

faunal activity 
Unchannelised 

elements FA4 

Fb Bioturbated mud 

Sbr Bioturbated and 
rippled sand Fine sand reworked  Overbank deposition forms 

levees and splays 

C Coal Dark brown to black discrete clasts 
or beds less than 30 cm 

Peat forming swamp-like 
environments 

Frw Wave ripple laminated 
sandstone 

Very fine-grained to medium grained 
wave ripple lamination, sometimes 

mud draped 

Reworked sand due to wave 
action. Mud settles on face of 

foresets during low energy 
times. 

Shorelines FA5 

Figure 6: Table of lithofacies, facies and descriptions. Characteristics are also discussed in the text. Continued over the following two pages. 



Sh Planar horizontal 
stratification 

Very fine-grained to medium-
grained, moderately sorted. 

Laminations average 5 to 10 mm 
thick and show normal grading. 

Deposition under upper-flow 
regime, high energy 

Delta Front 
and 

Shorelines Sbr Bioturbated and 
rippled sand 

Very fine to lower-medium 
sandstone 

Wave rippled sand effected by 
burrowing behind berm 

Sr Rippled sand 
Small scale starved quartz rich with 

dominant current and occasional 
wave rippled sand 

Reworking of sand mostly due 
to currents but occasionally due 

to wave action 

Delta Front FA3 

Ss Storm influenced sand 
Fine to very fine sand with small and 
large scale high and low wavelength 

hummock and swale structures 

Unidirectional, oscillatory flow 
that is generated by storm 
waves  below normal fair 
weather wave base 

Sbr Bioturbated and 
rippled sand 

Sand beds with remnants of ripple 
structures mostly destroyed by 
burrowing and faunal activity 

Sand deposited with ripple 
structure which has been 

destroyed by faunal burrowing 

Fb Bioturbated sand 
Sand beds with horizontal and 

vertical burrows, structures mainly 
destroyed by burrowing 

Damp or wet, probably rippled 
or laminated sand, which was 

subject to intense bioturbation 
and soft sediment deformation 

Sd Sand deformed 

Well rounded quartz rich sand with 
evidence for soft sedimentation 

including sheared ripples, slumping 
and dewatering 

Slope failure and loading onto 
wet and unlithified sediment, 

also potential tectonic influence 

Sr Rippled sand Small scale starved quartz rich 
current ripples 

Currents transporting sand out 
into the basin Prodelta FA2 



Sbr Bioturbated and 
rippled sand 

Very fine to lower-medium 
sandstone and clay to silt with 

current ripple structures sometimes 
destroyed by bioturbation 

Sand originally reworked by 
currents, but structure 

destroyed by burrowing of 
fauna 

Prodelta and 
Offshore 

Fb Bioturbated mud 

Fl Laminated mud 
Clay to fine silt with planar 

laminations on a millimetre and sub-
millimetre scale, little organic matter 

Deposition in a low energy 
environment through 

suspension fallout 

Fl Laminated mud Clay to fine silt with planar 
laminations  

Deposition under low energy 
regime through suspension 
fallout. May or may not be 
associated with mass flow 

deposits 

Deepwater FA1 

Ss Rippled sand Well rounded fining upward ripple 
laminated sand 

Mass flow deposition including 
debris and turbidite flows 

Sm Massive, graded sand Sharp based, well rounded quartz 
rich fining up sand 

Sc Sand with suspended 
clasts 

Well rounded fining up sand with 
suspended mud or lithic fragment 

clasts. 

Sd Sand deformed 
Well rounded quartz rich sand with 

deformation which may include 
dewatering structures 
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structures, paleocurrent and trace fossils, a summary of which is shown in Figure 5 

and Figure 6. Facies Associations described in detail in the following section. 

Bioturbation intensity (BI) was recorded according to the Taylor & Goldring (1993) 

scheme, with 0 representing no bioturbation and 4 representing extreme 

bioturbation. Trace fossil diversity and ichnofacies classification follows models 

presented by MacEachern and Bann (2008). 

6.5.1. Facies Description and Interpretation 

This facies association scheme is designed such that the interpreted deeper 

facies are designated as lower numbers (e.g. Facies Association 1) and the 

interpreted shallower facies are interpreted designated as lower numbers (e.g. 

Facies Association 6).  

Facies Association 1 

Description 

Facies Association 1 (FA1) consists of thinly bedded (centimetre to millimetre 

scale) and laminated mudstone-dominated beds, as well as massive and deformed 

sand beds (Figure 5 A). Linsen lamination, parallel lamination and flaser bedding 

were common. Quartz-rich well-sorted sandstone beds up to 1 cm thick were present 

but rare. These minor very thin hummocky and ripple-laminated sandstones have a 

sharp base, preserve very small dewatering structures and show a general fining-

upward pattern. FA1 showed no overall grading. Soft sediment deformation including 

dewatering and slump structures, as well as microfaults and siderite concretions 

were present in this facies association. Beds consisting of massive graded sand, 

deformed sand and sand with isolates pebble-sized clasts topped with laminated 

mud were also observed. This FA was often observed in association with FA2. Very 
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minor burrowing (BI=0-1) was present in thin silt and rare sand layers. The character 

and presence of small Cruziana, Zoophycos, Teichichnus, Planolites, Helminthodia, 

Chondrites and Skolithos suggest Zoophycos icnofacies assemblage with elements 

of distal Cruziana (MacEachern & Bann, 2008).  

Interpretation 

The abundance of fine-grained material coupled with planar lamination 

suggests deposition in a low energy environment below wave base away from fluvial 

activity. Mudstone beds are interpreted to have been deposited due to suspension 

fallout during very low energy periods, with laminations and the amalgamation of 

mud layers indicating long periods of low energy. Minor, thin clean ripple-laminated 

sands with sharp bases, fining up profiles, slumps and dewatering structures within 

beds are interpreted to be event beds deposited as a result of gravity flows. In this 

case density flows are interpreted to form as a result of slope failure events and/or 

hyperpycnal currents from rivers (Wright, 1977; Bhattacharya & MacEachern, 2009; 

Legler et al., 2014). Due to the combination of low energy deposition, density flows 

and a distal Cruziana to Zoophycos icnofacies assemblage, FA1 is interpreted to 

have been deposited in a deep water environment. No diagnostic species or 

elements of Nerites ichnofacies (MacEachern & Bann, 2008) were identified, 

although many species identified are common to Cruziana and Zoophycos as well as 

Nerites. Sand-rich event beds may carry species from shallower Cruziana to 

Zoophycos ichnofacies to deeper water environments, explaining the small burrow 

size, as these organisms failed to thrive in a deeper water environment. With more 

data to assess species diversity, the designation of the Nerites ichnofacies to this 

facies association is plausible, although the likely shallow nature of the basin may 

have allowed for Cruziana to Zoophycos ichnofacies to in a more distal setting than 
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conventionally interpreted. 

Facies Association 2 

Description 

Facies Association 2 (FA2) consists of thinly bedded (millimetre and sub 

millimetre scale) light grey to very dark grey claystone, siltstone and occasional 5-10 

cm quartz arenite sandstone beds. Individual sand beds exhibited a fining up 

structure, with sharp bases, a lower fine to very fine sand package and an upper 

gradual transition to silty mud tops (Figure 5 B). Lenticular and wavy stratification, 

clean sand ripples, mud draped ripples, starved ripples, climbing ripples and planar 

stratification structures were common. Sand beds also occasionally preserved 

hummocks, swales and hummocky laminae. Planar lamination was abundant in 

mudstone beds. Soft sediment deformation was present, with slumps, load casts and 

dish structures common in mudstones and microfaults present in sandstones. 

Dewatering structures were common at the interface between sand and mud layers. 

Siderite concretions occurred in all lithologies throughout FA2. FA2 exhibited a 

generally subtle coarsening-up pattern, and a general upward increase in sand 

content. Bioturbation overprints original sedimentary structures. Thicker sand beds 

are generally less bioturbated, and more likely to have vertical burrows. Bioturbation 

is common in siltstones and sandier layers with a BI of 1 to 2. The presence of 

Arenicolites, Thalassinoides, Teichichnus, Rhizocorallium, Rosselia, Planolites and 

Skolithos suggest a dominantly Cruziana ichnofacies (MacEachern & Bann, 2008). 

Interpretation 

Abundant millimetre and sub millimetre scale claystone, siltstone and 

occasional sandstone beds with a dominantly Cruziana ichnofacies suggest a low 

energy environment distal to sediment source, fluvial activity and wave activity. Thin 
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ripple-laminated sands with sharp bases, fining up profiles, slumps and dewatering 

structures are interpreted to be event beds deposited as a result of density flows, 

potentially as a result of slope failure events, higher river discharge and hyperpycnal 

plumes from rivers. Interpreted density flow deposits in FA2 are over 50% thicker 

and show a more defined fining up trends than in FA 1; they are interpreted to be the 

proximal equivalent of the density flow deposits in FA1. Hummocks and swales most 

likely record extreme weather events, while slumping and soft sediment deformation 

suggest gravity-induced mass movements were occurring in the depositional 

environment. Siderite concretions are most likely to have formed post deposition, 

most likely early in diagenisis, and are related to the chemical conditions in the 

depositional environment and pore waters during diagenisis (Schulz-Rojahn, 1993). 

FA2 is interpreted to have been deposited in a prodeltaic setting. 

Facies Association 3 

Description 

Facies Association 3 (FA3) consists of upward-coarsening predominantly 

ripple-laminated quartz-rich moderately to well sorted fine-grained sandstone 

interbedded with planar laminated mica-rich siltstone and mudstone (Figure 5 C). 

Sand bed thicknesses ranged from approximately 10 to 30 cm. Centimetre-scale 

hummocks and swales, wave modified current ripple lamina, massive sandstone 

beds, starved ripples and dewatering structures were present. Slump-folding and 

flame structures were common in mudstones. Capping the sand-rich section were 

mud-rich strata with planar laminations and small scale ripples. Synaereses cracks 

were observed throughout the FA. Microfaults were present in sandstone strata. 

Centimetre-scale coal clasts, wood clasts, well-rounded isolated pebbles and siderite 

concretions were preserved in rare cases in sand beds. High concentrations of 
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micaceous minerals, as well as isolated potential glauconitic grains were observed. 

Traces were small, rare (BI=1) and most commonly observed in siltstones and 

claystones. The presence of Planolites, Skolithos, Ophiomorpha, Thalassinoides, 

Arenicolites and Rosselia indicate a mixed Skolithos and potentially proximal 

Cruziana ichnofacies (MacEachern & Bann, 2008). 

Interpretation 

The upward-coarsening depositional trend, predominantly ripple-laminated 

sands interbedded with siltstone and mudstone and a mixed Cruziana and Skolithos 

ichnofacies suggest a depositional environment of low to moderate energy. Diverse 

ripple structures together with wave-modified strata suggest a fluvial dominated, 

wave influenced (c.f. Ainsworth et al., 2011) depositional setting. Similar patterns 

have been interpreted as delta front depositional settings in fluvial dominated deltas 

(Hansen and MacEachern, 2005; Miall, 1984; Kamola and Van Wagoner, 1995). 

Sand rich sections represent distributary-channel mouthbars, which are interbedded 

with overbank splays and shallow-bay deposits. An upward-coarsening pattern is 

interpreted to be a sign of progradation of the delta front. Soft sediment deformation 

and massive sandstones suggest rapid or event-based deposition. The presence of 

synaereses cracks, which form as a result of subaqueous shrinkage of clay which 

has flocculated rapidly due to a rapid change in chemistry, or salinity, causing 

shrinkage in montmorillonitic clay (Pratt, 1998), implies deposition in sub-aqueous 

conditions and may indicate variations in salinity in a low energy sub-aqueous 

environment. A variation in salinity, or brackish conditions, is also suggested by the 

low diversity and abundance of traces.   Sparse organic matter suggests a nearby 

plant source. Isolated pebbles could be interpreted as glacial erratics, but could have 

been rafted to the location along with the organic matter, or potentially by 
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Cretaceous fauna. Glauconitic material is most likely a result of alteration of 

micaceous minerals or degraded organic material. In delta front settings, mouth bar 

deposits are difficult to distinguish from terminal distributary channel deposits, as 

mouth bars infill the channels (van Heerden and Roberts, 1988).  

Facies Association 4 

Description 

Facies Association 4 (FA4) consists of a wide variety of lithofacies, but mostly 

centimetre-scale planar laminated dark grey silty shale, irregularly interbedded with 1 

to 10 cm thick beds of fine to medium grained current- and wave-rippled quartz 

arenite (Figure 5 D). Carbonate cementation was pervasive in sand beds. Sand beds 

were sharp and sometimes erosionally based. These beds preserved inclined low-

angle cross-stratification, planar tabular stratification and planar lamination as well as 

current ripples and, less commonly, wave ripples. Flaser, linsen and lenticular 

stratification (Reineck & Wunderlich, 1968) were present, with gradual transitions 

between these patterns common. Centimetre scale dewatering structures were 

observed. Coal wisps and woody fragments were present. Synaereses cracks were 

common in the upper section of FA4, most often present in clay-rich sections. 

Oxidised horizons, siderite cementation, carbonate cementation and millimetre-scale 

rootlets were occasionally observed in mud strata.  Planolites and Skolithos, as well 

as rare Camborygma, Rhizocorallium, Diplocraterion (habichi) and Arenicolites were 

observed in sand rich beds, with a BI of 2 to 4. Preserved trace fossils size within the 

same species was diverse. A Skolithos ichnofacies is suggested, although potentially 

some elements of Scoyenia are preserved (MacEachern & Bann, 2008). 

Interpretation 

The abundance of planar lamination and the occurrence of flaser, linsen and 
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lenticular stratification suggest a depositional environment of fluctuating energy. 

Current ripples, planar lamination and inclined low-angle cross-stratification could 

indicate splays, levees and proximal overbank deposits (Holbrook, 2001).  Preserved 

coal wisps and woody fragments suggest a nearby source of plant material. 

Synaereses cracks indicate sub-aqueous conditions and a potential variation in 

salinity. Minor oxidised horizons and rootlets suggest relatively short times of sub-

areal exposure. FA4 is interpreted to represent a delta plain environment due to the 

diverse range of sub-environments and the evidence for a Skolithos ichnofacies 

(MacEachern & Bann, 2008).  

Facies Association 5 

Description 

Facies Association 5 (FA 5) consisted primarily of a coarsening-up package of 

wave ripple-laminated, hummocky cross-stratified, occasional planar cross stratified 

and planar laminated well-sorted, clean, fine-grained quartz arenites, often with high 

mica content (Figure 5 E). FA5 generally has a sharp and erosional boundary at the 

base and a gradual boundary into the overlying FA. Very thin millimetre-scale 

laminated silt and claystone beds are interbedded with sandstones. This FA often 

occurs with relatively low bioturbation (BI = 0 to 1) and well preserved sedimentary 

structures and sometimes occurred with major bioturbation (BI = 2 to 3), particularly 

around siltstone and claystone layers. Depositional sedimentary structures were 

partially deformed and sometimes destroyed by burrowing. Burrows were 

occasionally damaged or partially preserved. Rhizocorallium, Macaronichnus and 

Skolithos, as well as rare Diplocraterion habichi, Psilonichnus, Scoyenia were 

observed. A Skolithos Ichnofacies is interpreted based on the dominance of traces 

belonging to this group, but elements of Psilonichnus and to a lesser extent 
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Scoyenia exist (MacEachern & Bann, 2008). 

Interpretation 

Hummocky cross stratification (HCS) indicates deposition by episodic storm 

events in water depths between the effective storm wave-base and fair-weather 

wave base (Dott & Bourgeois, 1982; Duke, 1985; Keen et al., 2012). Individual HCS 

beds most likely formed in deeper conditions and as a result of larger storms and 

smaller amalgamated beds a result of smaller, longer-duration storms or water 

shallowing, most likely in a shoreface setting (Storms & Hampson, 2005). This is 

consistent with a coarsening-up depositional pattern and the interpreted ichnofacies. 

The intermittent presence of planar tabular cross stratification and planar 

stratification suggests elements of the upper shoreface, backshore and nearshore 

bars are preserved. Highly bioturbated occurrences of this FA were most likely 

deposited during storm events, and then densely inhabited by organisms during 

calmer conditions. Damaged or partially preserved burrows are probably due to 

storm activity on the shoreface.  

Facies Association 6 

Description 

Facies Association 6 (FA6) is a well-sorted, medium-sand sized, quartz arenite, 

with trough cross-stratified, planar tabular cross-stratified, massive, current-rippled 

and planar-laminated structures, and occasional isolated granule to pebble clasts 

(Figure 5 F). The basal bed of most packages in this FA consists of sharp- to 

erosionally-based cross-stratified fine- to medium-quartz arenite with sparse quartz 

and lithic pebbles, mud rip-up clasts, coal chips and plant detritus. Internal scours 

were present. This basal package was overlain by planar tabular cross-stratified, 

massive and planar laminated relatively quartz-rich sands. Mud was present on the 
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foresets of trough and planar tabular cross-stratified sands. A fining-up trend was 

observed in FA6. Siltstone or claystone beds with planar lamination topped the 

package. Carbonate cement, oxidisation and millimetre-scale rootlets were 

occasionally observed in the mud strata. Bioturbation is rare lower in the FA (BI = 0 

to 1) but becomes relatively more abundant (BI = 1 to 2) at the mud-rich top of the 

package. Skolithos, Scoyenia, and Planolites were present. A poorly developed 

Skolithos ichnofacies is suggested, although elements of Scoyenia are preserved 

(MacEachern & Bann, 2008). 

Interpretation 

Scour and fill structures, sharp bases with trough and planar tabular cross-

stratification and coarse lags, fining–up to current rippled and planar-laminated 

sands and muds, suggest an environment with decreasing energy. Trough cross-

stratification is formed by the migration of three-dimensional bedforms with bedload 

transport and indicates the presence of a relatively strong current, while massive 

bedding with little structure could indicate rapid deposition. Relatively low thickness, 

a combination of unidirectional flow indicators and a close association with FA3, FA4 

and FA5 infers that this facies represents fluvial- dominated distributary channels 

(Elliott 1978; Bhattacharya and Walker 1992; Reading and Collinson 1996; Olariu 

and Bhattacharya, 2006). Meandering fluvial and braided streams also exhibit many 

of the characteristics of FA6 (Galloway, 1975; Miall, 1978) so these environments 

should not be discounted entirely, but the vertical thickness of this facies (0.5- 4 m) 

and association with FA3 and FA4 are more suggestive of a distributary channel 

environment. A change from a high energy to low energy brackish environment up  

Figure 7: Next page. Detailed logging across a variety of lithofacies. Detailed core log and interpretation for 6 of 
45 wells logged for this study; Moomba-18, Merrimelia-46, Dullingari-40, Cuisinier-4, Maxwell-1 and Talgeberry-2. 
Wells were selected to show the variation in depositional environments. Overall deepening patter is present. 
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facies is inferred from changes in sedimentation and bioturbation. It is possible that 

these channels retained an open connection with a marine environment during 

abandonment, forming estuarine channels (e.g. Dalrymple et al., 1992). The 

presence of mud drapes and cyclic planar laminated sands and muds may also 

indicate a tidal environment, supporting the interpretation of an estuarine 

environment. 

Low-gradient basins, such as the Eromanga Basin, are sensitive to subtle 

tectonic movements, the effects of which on sedimentation patterns can be 

substantial (Habeck-Fardy and Nanson, 2014). Small tectonic movement can greatly 

affect channel position.  

6.5.7. Carbonate cemented horizons 

Diagenetic overprinting of various sedimentary facies by carbonate (mainly 

siderite) cementation is common throughout the Murta Formation. These horizons 

vary in thickness from 30cm to 1m. They are generally pervasive, have sharp tops 

and gradational bases, and are often fractured. 

Cementation in the Murta Formation occurred in a number of ways, with a 

number of different mechanisms responsible (Schulz-Rojahn, 1993). The two most 

cited mechanisms in the Eromanga Basin literature are described here. Cooper 

Basin carbon dioxide migrated vertically into the calcium-bearing aquifers of the 

Eromanga Basin. Mixing of migrating carbon dioxide with calcium-rich waters could 

have led to the formation of intensely carbonate-cemented zones (Schulz-Rojahn, 

1993). Many of the calcite-cemented zones occur near the top of coarsening-up 

cycles, together with synaresis cracks. In this case calcite cemented beds could 

have originated from precipitation near the boundaries of fresh and salt-water 
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phreatic zones due to a chemical reaction from the change in salinity (Schulz-

Rojahn, 1993). 

6.5.8.Palynology 

Description 

Biostratigraphic data from the Murta Formation were generally taken within the 

first few metres of the top of the formation. Samples were interpreted on the wellsite 

while drilling. Data was available for twelve wells, with one or two samples available 

near the top of the well, mainly from sections classified as FA2 (Prodelta), FA3 

(Delta Front) or FA4 (Delta Plain). A lack of abundant and diverse dinoflagellate flora 

is characteristic of the Murta Formation (Price, 1997). Araucarean/ Podocarpacean 

conifers, seed ferns and tree ferns are common. Brackish water algae, such as 

Botryococcus Pediastrum; acritarchs, such as Microfasta and Schizospora, and rare 

dinoflaggelates such as Baticashpaera Fusiformacysta and Nummus are present. 

Interpretation 

A lack of abundant and diverse dinoflagellate flora suggests a stressed brackish 

environment where salinity changes were common, or a continental environment of 

deposition. The abundance of spores and pollens suggest a continental deposition 

setting, however spores and pollens can be transported in fluvial systems to 

marginal marine depositional environments (De Vernal, 2009). High levels of fresh-

water runoff, rich in traces of continental flora and deposited into shallow, semi-

enclosed bodies of water may explain the high abundance of pollens and spores 

together with the presence of algae and acritarchs. A further detailed study which re-

samples wells in the Murta Formation and describes the palynology is likely to yield 

further depositional setting information, however the very low range of data currently 

available only adds to the interpretation uncertainty. 
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Figure 8: Two pages. Correlations across the basin. Two wireline log-based figures are presented. 
Wireline gamma signatures are only presented. (A) North- East South West wireline log signature for the 
Murta Formation. (B)B) North-West South-East wireline log signature patterns for the Murta Formation.
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6.5.2. Regional Variation in Sedimentary Architecture 

Wireline log observations and interpretations show that the Murta Formation tends to 

exhibit more of a coarsening/ cleaning upward signature on the Queensland side of 

the state border (see Figure 1 for state locations). Here the Murta Formation is 

generally thinner and more sand-rich. The transition from the McKinlay Formation to 

the Murta Formation is subtle in this region. The Murta Formation thickens over the 

Cooper Basin region, suggesting that the depocentre of the basin was in this location 

at the time of deposition of the Murta Formation. The Murta Formation becomes 

more mud-rich and sand beds become thinner on the South Australian side of the 

state border (see Figure 1 for state locations). Coarsening-up intervals are less 

pronounced, meaning that there are still coarsening up sections, but the magnitude 

of change in the grain size (or at least the wireline log response) is smaller. Most of 

the wells studied on the South Australian side of the state border (see Figure 1 for 

state locations) are interpreted to be close to the depocentre of the basin. 

Throughout the Eromanga Basin, the basal part of the Murta Formation is most likely 

to contain fining-up distributary-channel fill or prograding lacustrine sequences, 

whereas the upper section is more likely to contain coarsening-up estuarine, 

shoreface and distributary channel type patterns.  

Two potential sequence boundaries could be interpreted within the Murta 

Formation on most logs (Figure 7 A, B). An abrupt change in facies from a deeper to 

a shallower water depositional setting was interpreted to indicate a sequence 

boundary. Lower order localised sequence boundaries occur on a more regional 

scale and are particularly common in the lower Murta Formation. Often they do not 

correlate outside of specific field areas or between Queensland and South Australian 
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sides of the basin. Potentially, the two areas were controlled by different factors 

during this time, or were controlled by autogenetic processes. Flooding surfaces are 

generally distinct. Transgressive surfaces were difficult to pick and transgressions 

were most likely complex, piecewise events. These surfaces sometimes could be 

interpreted to be erosive in nature, such as at Dullingari where transgressive lags 

were present in many wells (Figure 7 A, B). Lower-order parasequences may be 

present within the interpreted sequences, although distinguishing basin-wide events 

from localised processes was difficult. While these factors must be carefully 

considered, over-interpretation or correlation of autogenetic processes will not result 

in a predictive sequence stratigraphic model.   

Comparable log character changes between closely spaced wells in the Murta 

Formation within the same field. For example, at the Dullingari Field, an upward 

coarsening pattern is present at Dullingari-11, and within the interpreted time 

equivalent unit, an upward fining pattern is present at Dullingari-5. A similar patent is 

present at Thungo-3 where a distinctive fining up gamma ray log response is in 

contrast to coarsening upward sequences in other Thungo wells. While this may be 

indicative of, and has been interpreted as, an erosional boundary or sequence 

boundary, this could also be due to the scale of such features and the limited 

sampling. Reservoir sands in the Murta Formation are on average less than 4 m 

thick and heterolithic in nature, making seismic mapping difficult. Compared to the 

estimated lateral extent of these features (tens of metres), well spacing is relatively 

sparse as it is usually in the order of kilometres. If these features are not targeted 

specifically, well intersections with sandbodies are random. No verification or further 

indication of a sequence or erosional boundary, such as subarial exposure 

indicators, paleosols or erosional surfaces, are seen in core in adjacent wells where 
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sands are not present. At this scale, autogenetic processes such as avulsion of 

distributary channels may be a reasonable explanation rather than incised valley 

formation due to the size and scale of the features. Furthermore, simple lobe 

switching due to the changes in sediment flux or sediment loading can give the 

impression of a regional flooding surface, but it is most likely a local flooding surface. 

tectonic uplift and subsidence, on a reservoir scale, may have caused localised 

incision and fill structures, similar to those in low-gradient basins today (Kati Thanda- 

Lake Eyre Basin, Habeck-Fardy and Nanson, 2014; This thesis, Chapter 4 and the 

references within). Localised sediment re-routing may have resulted in sediment 

bypass and sediment sumps above the ultimate base level of the basin. This could 

explain incised-valley-like features at Dullingari and Thungo. These features are 

more common along the margins of the basin. 

Subtle thickening is observed over major structures in the Eromanga Basin (see 

Figure 3 for location of major structures), indicating that an increase in 

accommodation space occurred, most likely due to low-magnitude tectonic activity 

and base level rise. Sediment supply in the eastern part of the basin was most likely 

steady to increasing, resulting in the progradational and aggradational parasequence 

patterns observed (Figure 7 A, B). Sediment supply in the western part of the basin 

was most likely lower, with older, more mature quartz rich cratons with less relief 

providing a lower rate of sediment supply. This could be the reason that we see 

more retrogradational patterns on this side of the basin (Figure 7 A, B). This further 

complicates stratigraphic correlations across the basin and the determination of 

allogenic compared to autogenic events, as they may be expressed differently on the 

eastern and western sides of the basin.  
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6.5.3. Provenance and Paleogeography 

Results 

At the time of deposition of the Murta Formation, basin fill was most likely 

sourced from (1) mature quartzose continental cratonic sources primarily to the 

south and west and (2) younger volcanogenic sediments derived mainly from the 

east (Hoffmann, 1989; Allen et al, 1996; Figure 4). Evidence for younger 

volcanogenic sediments was clear in sands in wells to the east and south of the 

basin during core logging. In that area (e.g. Talgeberry-2, Takyah-1, Maxwell-2, 

Pitchery-2) sediments were generally fine grained, relatively angular, more 

felspathic, relatively rich in micas and more clay-rich (authigenic kaolinite) than 

comparable depositional environments in other locationsin the south and west of the 

Eromanga Basin. This is supported by petrographic studies in these areas (Hill, 

1999; Martin, 1983), which suggest a proximal metamorphic and igneous source. In 

the south west and north of the basin, sediment provenance has not been 

investigated as thoroughly and is difficult to infer from petrographic observation. 

In order to further investigate sediment provenance 1237 zircon U-Pb data were 

acquired from 12 samples from interpreted fluvial-dominated sandstone units for four 

well locations in the Murta Formation (see Figure 1 and Figure 7 for locations).  

Analysed grains were selected without using any particular criteria, to avoid undue 

bias in the data collection. Data are within 10% concordance and retained due to 

acceptable concentrations of U and Th. Data are presented using age histograms 

superimposed on relative probability plots (Figure 10). Data from samples taken at 

each horizon within a particular well are identical, therefore results have been 

combined for each well location (e.g. Figure 10). This result suggests that the 

sediment source did not change substantially throughout deposition of the Murta  
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Formation. Results have been subdivided into five age populations (A–E; Figure 10). 

Each population may be linked with one or more potential source regions 

exposed on the Eromanga Basin margins during the Cretaceous. The 

characteristics of each age population are outlined in this section with an 

interpretation of spatial and temporal trends observed in the data set. 

6.7.1. Population A: Archean to Paleoproterozoic ages (3000–1900 Ma) 

Paleoproterozoic to Archean age zircons make up 2.2% grains analysed. Small 

peaks exist around 2100 and 1800 Ma. The primary source for these grains was 

most likely the Gawler, Curnamona, Arunta and Mt. Isa cratonic provinces (Veevers, 

2000). A few older grains (2900–2600Ma) are most likely to be inherited and 

recycled from ancient terrains, such as the Yilgarn and/or Pilbara regions (Veevers, 

2000). These older populations are present at Cuisinier, Merrimelia and Moomba, 

but absent at Dullingari. 

Figure 10: Previous Two Pages. 

A. Relative probability plot containing ages from all detrital zircons in this study (n = 1237 grains). Left vertical
axis corresponds to number of grains in each age bin (age bins span 50 m.y.). Age populations are denoted by
grey shaded bars. Population C constitutes the largest percentage of all ages from the Murta Formation (44.5%
of all grains), followed by population D (20.4%), then population B (17.5%), population E
(15.3%), and population A (2.2%).
B. Relative probability histograms for each detrital zircon sample location from the Murta Formation. The name
and number of grains corresponding to each sample are labelled. For locations of samples see Figure 1B.C:
Over page. Likely sediment transport pathways. Green represents older, more stable cratons. Blue represents
younger cratons. Size of transport direction arrow indicates confidence in interpretation.
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6.7.2. Population B: Paleoproterozoic to Mesoproterozoic (1900–1425 Ma) 

Population B, Paleoproterozoic to Mesoproterozoic age zircons account for 

17.5% of Murta Formation zircons analysed. Four major peaks exist at 1720 Ma, 

1670 Ma, 1580 Ma, and 1500 Ma, with a few grains of 1900-1750 Ma present. 

Zircons most likely originated from the Gawler, Curnamona, Arunta, Mt. Isa cratonic 

provinces (Howard et al., 2011; Veevers, 2000). The 1500 Ma population is 

pronounced at Moomba and Dullingari, but minor at Cuisinier and Merrimelia. Likely 

sources are intrusive igneous lithologies of the Gawler Craton and Arunta Region 

(Howard et al., 2008). Merrimelia and Dullingari share peaks at 1670 Ma and 1580 

Ma, which could have been derived from igneous sources such as the Middlecamp, 

Moody and Tunkilla suites on the Gawler Craton (Howard et al., 2008). The main 

peak at Cuisinier is at 1620 Ma, which could have been sourced from the Mt Isa 

province, particularly the Mt Isa Eastern succession and the intrusive igneous 

Soldiers Cap group (Howard et al., 2008). This peak could have also been sourced 

from the Gawler Craton or Arunta Region, as these regions share similar aged 

events (Howard et al., 2011, Veevers et al., 2000); however the closest terrain to 

each well respectively is the most likely source. The presence of these peaks 

suggests that older, more stable Southern Australia and Northern Australian cratons 

were emergent at this time. Alternatively this sediment could have been recycled 

from older underlying formations, particularly at the basin margins. 

6.7.3. Population C: Mesoproterozoic to Neoproterozoic Ages (1425-900 Ma) 

Mesoproterozoic to Neoproterozoic grains consist of 44.5% of Murta Formation 

zircons analysed in this study. Major peaks exist at 1308 Ma, 1166 Ma and 1034 Ma. 

1425-900 Ma grains dominate Moomba and Cuisinier samples and are less 

prominent in others. Peaks at 1308 Ma, 1166 Ma and 1034 Ma correlate with events 
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in the Musgrave, Albany-Fraser and Patterson Blocks which exist to the south and 

west of the basin (Wade, 2008). These grains were most likely sourced from the 

south and west of the basin. These provinces would have represented the basin 

margins at the time of deposition of the Murta Formation. These ages, particularly 

1308 Ma, which is prominent in the Cuisinier samples, also correspond with igneous 

events in the Mt Isa inlier, suggesting that sediment at Cuisinier may have also been 

locally sourced from the Mt Isa inlier to the North-East.  

6.7.4. Population D: Neoproterozoic to Silurian Ages (900-420 Ma) 

Neoproterozoic to Silurian ages account for 20.4% of Murta Formation zircons 

analysed. Major peaks exist at 678 Ma, 640 Ma, 578 Ma, 510 Ma and 460 Ma. The 

population at 678 Ma is small, but is coincident with detrital zircons originating from 

East Africa/ice-covered Antarctica and Lachlan Orogen and in derived sands 

(Veevers and Saeed, 2011). This material was most likely sourced from the south of 

the basin. The peak at 578 Ma is coincident with the Mt. Arrowsmith volcanic event 

and detrital material of this age was most likely sourced from material from this 

event. The peak at 460 Ma is minor and likely again represents material sourced 

from East Africa/ice-covered Antarctica and Lachlan Orogen and in derived sands 

(Veevers and Saeed, 2008) 

6.7.5. Population E: Silurian through Cretaceous Ages (420-140 Ma) 

Population E, 420 to 140 Ma, contains 15.3% of Murta Formation zircons 

analysed. Within this population peaks exist at 380 Ma, 310 Ma, 256 Ma, 205 Ma, 

and 152 Ma. Peaks at 380 Ma and 310 Ma correspond to igneous activity relating to 

the Tabberabberan Cycle and the Benambran Cycle as a part of the Lachlan Orogen 

to the west of the basin (Veevers et al., 2011; Veevers, 2013). New England Late 

Triassic magmatic activity in the New England Orogen coincides with the peak at 
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205 Ma (Veevers, 2013). The population centred on 152 Ma is most likely due to 

Jurassic volcanism, which was widespread throughout the western margin of the 

basin during the Jurassic. This is further supported by the visual appearance of 

these younger grains, as they were more likely to exhibit angular edges and fewer 

domains. 

The youngest analysis is 141.6 ± 2.4 Ma (Merrimelia) and hence deposition of the 

Murta Formation occurred after this time. This is in agreement with an Early 

Cretaceous Berriasian to Valanginian (145-134 Ma) depositional age for the 

Formation, although the depositional age could be younger than this.  

6.5.4. Interpretation 

Results indicate that material was sourced from all around the basin margins 

during deposition of the Murta Formation (Figure 10C). There was no noticeable shift 

in provenance between samples from different stratigraphic layers at individual 

locations, indicating no major shift in source during deposition, even over interpreted 

sequence boundaries.  Although the Neoproterozoic to Cretaceous age peaks are 

present (35.7%), Paleoproterozoic to Neoproterozoic ages (62%) dominate the 

population. 

Samples from Dullingari and Merrimelia share a similar detrital signature (Figure 

10), indicating that they could be supplied by a similar sediment source. Fluvial 

systems originating in the east and west of the basin could have deposited 

sediments in deltaic systems which then fed into deeper water sediments at 

Merrimelia and Dullingari, which are interpreted to have been deposited close to the 

depocentre of the basin. Surprisingly, Cuisinier and Moomba share a similar detrital 

signature, as it is unlikely that Cuisinier and Moomba share a common detrital 
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source. This is interpreted to be because the Gawler Craton, Arunta Block and Mt 

Isa block share a similar evolutionary history, which is reflected in correlatable 

events and a similar detrital signature.  

Although it is not unexpected that material was sourced from all around the basin 

margins during deposition of the Murta Formation, previous interpretations have  

Figure 11: Overall model for deposition in the basin during deposition of the Murta Formation. 

suggested that deltas sourced from the eastern margins prograded across the entire 

basin. Sampling of facies within the basin is likely affected by biases, as more wells 

on the Queensland side of the border (See Figure 1 for state locations) sample 

proximal, shallow water regions, while South Australian wells sample the depocentre 

of the basin. Considering that wells on the South Australia side of the basin sample 

deepwater facies in the Murta Formation, it is likely that delta plain and delta front 

facies exist to further to the west in the basin and they have most likely have not 

been penetrated to date.  
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Figure 12: Stratigraphic notation and paleogeography. Top: Simplified generalised stratigraphic model for the 
Murta Formation across the Eromanga Basin. Base: Paleogeography and generalised depositional environment 
maps of the Murta Formation over a series of time slices, showing continued transgression over the course of the 
formation. Time between time slices is not equal. Transgression and regression maps show maxima of these 
potential events. Intervals are approximate. Environments are generalised and represent one realisation of what 
the basin may have looked like at the time of deposition.Continued on the next page. 
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6.6. Discussion 

Depositional Setting and Provenance 

The Murta Formation was deposited as the Eromanga Basin was transitioning 

from a continental lacustrine to marine setting (Figure 11; Figure 12), and is 

interpreted as a net-transgressive fluvio-deltaic unit. Facies associations have been 

described, ranging from delta plain, with fluvially-dominated delta plain, to wave-

dominated estuary and shoreline deposits, to offshore density flow deposits (Figure 

6). In a complete idealised transgressive sequence, mudstone-dominated beds of 

FA1 offshore deposits are overlain by thin (millimetre and sub millimetre scale) light 

grey to very dark grey claystone, siltstone and occasional 5-10 cm quartz arenite 

sandstone beds of FA2 prodelta deposits. In turn these are overlain by upward 

coarsening ripple laminated quartz rich fine grained sandstones interbedded with 

planar laminated mica rich siltstone and mudstones of FA 3, the delta front. This 

facies association may or may not be overlain by a wave ripple-laminated, 

hummocky cross stratified, occasional planar cross stratified and planar laminated 

well sorted, clean, fine grained quartz arenite, which makes up FA5, a shoreline 

deposit which is generally overlain by centimetre scale planar laminated dark grey 

silty shale irregularly interbedded with fine to medium grained current and wave 
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rippled quartz arenite of FA4, the lower delta plain. Trough cross-stratified, planar–

tabular cross-stratified, massive, current-rippled and planar-laminated well-sorted 

fine- to medium-sand grained quartz arenites, with occasional discrete granules to 

pebbles, are the final FA6, distributary channels, interpreted to have been deposited 

on the upper and lower delta plain. Two marine-linked regional regression and 

subsequent transgression events preserving parts of this idealised facies sequence 

most likely occurred (Figure 12). A regional reduction in sand bed thickness and 

sand content from the north-northeast to the southwest, observed in core probably 

reflects data bias and to some degree sediment provenance (Figure 10).  

Data to the east of the basin from the Queensland area (see Figure 1 for state 

locations) represents more proximal facies and depositional environments. Data from 

the central section of the Eromanga Basin in the SA sector represents deeper water 

settings. Few data exist from the western side of the basin, which could potentially 

contain proximal facies and depositional environments, based on simple basin 

symmetry and evidence that cratons to the west (Figure 10) were shedding 

sediment.  During deposition of the Murta Formation the eastern highlands of the 

Eromanga Basin were probably more prominent than the older, stable and more 

mature cratons to the south and west (Figure 10); however these are still likely to 

have produced sediment and resulted in deposition of associated continental and 

marginal-lacustrine/marine facies. Further exploration to the west of the basin may 

yield clean sand deposits sourced from these mature cratons. 

Evidence for Continental and Marginal Marine Deposition 

Distinguishing between marginal marine and lacustrine depositional 

environments in the ancient record can be difficult and careful interpretation needs to 
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be made in the case of the Murta Formation. It has been long-noted that sedimentary 

structures often attributed to marine tidal processes can occur in fluvual and 

lacustrine settings (Fraser and Hester, 1977; Alam et al., 1985; Ainsworth et al., 

2012). Interpretation of marine tidal processes should thus be based on a careful 

interpretation of diagnostic and supporting (non-diagnostic) indicators of tidal activity 

(e.g. Ainsworth et al., 2012) as well as other indicators of depositional environment. 

In the text following, the evidence available in this context is discussed, and it is 

concluded that the facies described represent a transition from lacustrine to marine. 

First, a case for marine influence is presented, followed by a case for a lacustrine 

environment, then a model which best fits all of the evidence. 

Evidence for marine influence within the Murta Formation is substantial. 

Sedimentary features such as pervasive hummocky-cross stratification, reversal of 

current ripple directions verging on herringbone cross stratification, synaereses 

cracks and upper flow regime planar stratification (Figure 5 G) are consistent with a 

brackish to marine depositional environment. It is important to note that these are not 

diagnostic of a marginal marine environment (e.g Ainsworth et al., 2011) and could 

all occur in a lacustrine setting, however, it is one of many lines of evidence that 

suggest a marine environment.  The presence of Zoophycos, Cruziana and Skolithos 

ichnofacies (Figure 5H) are consistent with a marginal marine to moderately-deep 

marine environment. We suggest that difference in abundance and diversity 

compared to other marginal marine environments may be explained by low 

temperatures (considering the global positioning of the Murta Formation during the 

Cretaceous) and regional evolution of species between different continents. Vertical 

stacking patterns including coarsening-up cycles and coarsening-up topped with 

fining-up cycles are consistent with those of coastal barrier island systems, migrating 
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barrier bar and barrier islands in a transgressive marine environment (Theologou, 

1995). The overall deltaic and estuarine sedimentary nature of the facies, as well as 

the overall transgressive nature of the formation, in the context of the low-gradient 

basin setting, is consistent with a large influx of water. A potential explanation for this 

is the influx of water is from the ocean through the formation of an interior seaway. 

An alternative explanation could be rapid and large lake expansion, or a rapid change in 

climate. 

Geochemical findings from previous studies (Naylor et al., 1988; Zoellner, 1988; 

Powell et al., 1989) suggest that the Murta Formation was deposited in a brackish to 

marine environment. The presence of apatite nodules, glauconite pellets and 

calcisphere microfossils suggest marine influences on the depositional environment.  

Elevated trace element Boron levels also provide evidence for a marine influence, as 

modern seawater shares a similar chemical signature (Zoellner, 1988). The 

presence of Botryococcus Pediastrum (a planktonic cyanobacterium) (Michaelsen 

and McKirdy, 1989) acritarchs, such as Microfasta and Schizospora and rare 

dinoflaggelates such as Baticashpaera Fusiformacysta and Nummus, together with 

land plant spores and pollen could be considered as evidence for freshwater runoff 

into a brackish or marine influenced body of water. It should be noted that the 

sample size for palynology is small and further work would improve this 

interpretation. 

Evidence for marginal marine influence is particularly strong for the Upper Murta 

formation, in which the Murta Formation grades into the fully marine overlying 

Cadna-owie Formation.  A marginal marine interpretation of the Murta Formation 

allows for the application of classical sequence stratigraphic methods (e.g. Mitchum 

et al., 1977; Vail et al., 1977; Posamentier et al., 1988; Van Wagoner et al. 1988; 
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Catuneanu et al., 2009).  This interpretation (Figure 13) fits well with global eustatic 

fluctuations (Haq et al., 1987; Miller et al., 2005) and tectonic reconstructions for the 

Australian continent at the time of deposition (Veevers et al., 2007; Baillie et al., 

1994; Alexander et al., 1998). 

Evidence for a lacustrine depositional setting is also strong. Sedimentary features 

such as wave ripples and very fine planar lamination contained in moderately well 

sorted thinly bedded strata are generally consistent with lacustrine and marginal 

lacustrine facies. A scarcity of tidal indicators such as herringbone stratification or 

tidal rythmites could be an indication that tidal activity was not present. Shorelines 

can occur in both marginal marine and marginal lacustrine settings, but shorelines in 

lacustrine settings are generally thinner and more unpredictable than those in marine 

settings (Talbot & Allen, 1996; Bagnaz et al., 2012). Shorelines in the Murta 

Formation, particularly in the lower section, are more consistent with those in 

marginal lacustrine settings. 

 The presence of a Scoyenia ichnofacies potentially suggests a freshwater 

firmground (continental) depositional environment. A lack of abundant and diverse 

dinoflagellate flora is observed. Continental pollens such as Araucarean/ 

podocarpacean conifers, seed ferns and tree ferns are common. These, along with a 

lack of coral, echinoid, brachiopod or cephalopod species may indicate a freshwater 

depositional environment.  The fact that sediment was most likely sourced from 

around the margins of the basin and does not show signs of being transported along 

an interior corridor (e.g. Gorter, 1994; Theologou, 1995) could indicate that the basin 

was not receiving a large influx of water from outside the basin.  

Evidence for continental and lacustrine deposition is particularly strong in the 
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lower Murta Formation. Lakes are complex non-linear dynamic systems and 

behaviour and characteristics differs considerably from marine systems in that clastic 

influx and base level may or may not be related (Gierlowski-Kordesch & Kelts, 1994). 

The role of tectonics at the local level is important in controlling topography or 

bathymetry as low-gradient basins are sensitive to subtle tectonic movements 

(Chapter 4, this thesis and references within). Wireline expression of lacustrine strata 

varies widely among lacustrine facies associations and can differ greatly from that 

commonly observed in marginal marine strata (Bohacs and Miskell-Gerhardt, 1998), 

which places more uncertainty on the patterns interpreted in this study. There have 

been tentative links between sea level and stratigraphic base level fluctuations in 

interior lacustrine basins (Bagnaz, 2012; Street-Perrot & Harrison, 1985).  These 

links have been made on the assumption that there are links between global eustacy 

and global climate, and that climate can has a large impact on the base levels of 

intracratonic basins.  Inverse or more complex relationships have also been 

identified in lakes during eustatic highstands (Street-Perrot & Harrison, 1985; Allison 

and Wells, 2006).  

Depositional Analogues and Model 

In terms of basin gradient, the Murta Formation is comparable to the modern Kati 

Thanda- Lake Eyre depositional Basin. Fluvio-lacustrine systems in the Kati Thanda- 

Lake Eyre catchment have wide, long, floodplains and the basin base level is below 

sea level. Sediment accretion and incision is controlled by tectonics at the local level, 

such as domal uplift of the Tookoonooka igneous body (Gostin and Therriault, 1997). 

These local events are important as low-gradient basins, such as the Eromanga 

Basin and modern Kati Thanda- Lake Eyre (depositional) Basin, are sensitive to 

subtle tectonic movements, which cause incision and sediment accretion in upstream 
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mini-basins. The effects on sedimentation patterns are important (Jansen, 2013), but 

difficult to reconstruct precisely. Drainage diversion as a result of localised tectonic 

activity probably controlled incision and deposition within the Murta Formation. An 

improved understanding of the localised tectonics of Eromanga Basin will lead to a 

better understanding of sedimentation patterns in the Murta Formation. 

The Cretaceous Dakota Formation, (Chapter 5, this thesis), is similar to the Murta 

Formation in that it represents the encroachment the ocean onto a continental 

landmass during the formation of the Western Interior Seaway (cite your previous 

chapter). Transgression in the Dakota Formation is complex and piecewise. Facies 

interpreted in the Dakota Formation are similar to those in the Murta Formation, 

except in the Dakota Formation the upper delta plain and lower delta plain are more 

clearly defined. The Murta channel bar facies are generally in the range of 15-20 m 

thick, but they are composed of smaller scale depositional bedsets in the order of 2-5 

m thick. The relatively small size of the fluvial dominated, tide influenced deltas 

responsible for the deposition of the Dakota Formation is most likely similar to that of 

the Murta Formation.  

A broadly similar transition to that of the Namur-Murta-Cadna-owie depositional 

system is that of the Triassic Mungaroo-Brigadier-Murat system in the Northern 

Carnarvon Basin, North West Shelf of Australia (Adamson et al., 2013). The 

transition from the Mungaroo to the Brigadier Formation represents a transgressive 

sequence set with the fluvially dominated Mungaroo units passing gradationally 

upwards into the dominantly deltaic Brigadier reservoirs (Longley, 2002; Adamson et 

al., 2013; Marshall & Lang, 2013). The Northern Carnarvon Basin most likely had 

much more accommodation space than the Eromanga Basin. Sediments in the 

Carnarvon Basin were depositing on an open shelf from a stable, mature craton, 
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rather than in an intercontinental setting between a relatively mature, stable source 

and an immature, volcanic arc. This would have influenced preserved sediment 

thickness and composition; however analogous facies were observed in the 

Brigadier Formation (e.g. Adamson et al., 2013) to those present in the Murta 

Formation (this chapter). 

In the Brigadier Formation the general absence of interpreted LST deposits is 

thought to be a function of elevated/rising relative sea level in response to the 

transgressive nature of the sea-level cycle (Marshall and Lang, 2013). A similar 

process can be interpreted for the Murta Formation. The locally progradational 

nature of the fluvial dominated deltas in the Brigadier Formation contrasts with the 

long-lived phase of transgression which continues and accelerates upwards, with an 

overall transition into delta plain, delta front and finally pro-delta settings (Adamson 

et al., 2013). The major transgression is piecewise and complex, reflecting 

incremental sea level rise and fall within the overall rising pattern. The same is true 

for deposits in the Murta Formation, where piecewise transgressions were 

punctuated with locally progradational shoreline and deltaic processes. Minor 

transgressive reworking in both the Brigadier and Murta Formations is interpreted in 

tidal inlet/shoreface deposits at the top of individual sequences (TST conditions), 

although these dominantly appear to have been deposited during HST conditions. 

The lack of a continuous Glossifungites horizon, commonly observed in 

transgressive systems such as the Brigadier Formation (Adamson et al., 2013) but 

not observed in the Murta Formation, could be explained by the cooler climate and 

hence lower species abundance and diversity during the time of Murta deposition. 

Figure 11 presents a likely depositional model for the Murta Formation, which 

represents the transition from fluvial depositional environments in the underlying 
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Namur Sandstone to the overlying fully Marine Cadna-owie Formation. Due to the 

low gradient of the Eromanga Basin, the transgression was complex and piecewise. 

The exact point that the net transgression occurs cannot be precisely defined, 

however the occurrence of two basin-wide correlatable transgressive events in the 

Upper Murta Formation, along with a wide range of marine indicators (discussed 

above), suggest that base level was uniformly rising and falling and most likely 

connected to a marine source. This in interpreted to be due to the basin being 

connected to the open ocean and subject to eustatic rise and fall.  

When viewed as a whole, the data in this chapter come together to enable a 

logical geological interpretation for the Murta Formation. Detailed sedimentology 

work was useful in determining depositional processes. In-depth stratigraphic 

analysis helped to describe depositional stacking patterns and basin-wide trends. 

Detrital zircon geochronology gave an improved understanding of sediment input 

and transport pathways, and proved valuable in predicting facies on the western side 

of the basin. Although beyond the scope of this study, further palynology work could 

prove useful in determining between different depositional environments. The limited 

amount of palynology data available and the fact that it was sampled in order to 

confirm formation depths, as opposed to being sampled for the purpose of a 

depositional environment interpretation limits the usefulness of the data. In a similar 

respect borehole data is also limited to locations where petroleum exploration and 

development targets are located. Biases inherent in this type of sampling should be 

considered. The area of the Eromanga Basin is over 1,000,000 km2. Detailed maps 

of depositional elements are not likely to be accurate given the skewed distribution of 

data over the basin. Further application of analogues and conceptual geological 

models to the Murta Formation should be considered.  
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6.7. Conclusion 

The Murta Formation is interpreted as a net-transgressive fluvio-deltaic unit. 

Deposits can be characterised into six facies associations. In an complete idealised 

transgressive sequence, thinly bedded (centimetre to millimetre scale) and laminated 

mudstone-dominated beds of FA1 offshore deposits are overlain by thin (millimetre 

and sub millimetre scale) light grey to very dark grey claystone, siltstone and 

occasional 5-10 cm quartz arenite sandstone beds of FA2 prodelta deposits. These 

in turn are overlain by of upward coarsening ripple laminated quartz rich fine grained 

sandstones interbedded with planar laminated mica rich siltstone and mudstones of 

FA 3 delta front. This may or may not be overlain by a wave ripple-laminated, 

hummocky cross stratified, occasional planar cross stratified and planar laminated 

well sorted, clean, fine grained quartz arenite, which makes up FA5, a shoreline 

deposit which is generally overlain by centimetre scale planar laminated dark grey 

silty shale irregularly interbedded with fine to medium grained current and wave 

rippled quartz arenite of FA4, the lower delta plain. Trough cross-stratified, planar–

tabular cross-stratified, massive, current-rippled and planar-laminated well-sorted 

fine- to medium-sand grained quartz arenites, with occasional discrete granules to 

pebbles, are the final FA6, distributary channels, interpreted to have been deposited 

on the upper and lower delta plain.  

Understanding the character and timing of marine incursions such as those that 

occurred during the Cretaceous in the Murta Formation is essential in reconstructing 

and interpreting Earth history. Two basin-wide, most likely marine influenced, 

regressive and transgressive events are interpreted to have occurred and these are 

located in the in the Upper Murta Formation. The transgression was most likely 
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complex and occurred in a piecewise fashion. Basin fill was most likely sourced from 

proximal cratons from all sides of the basin during deposition. Other smaller events 

likely occurred on a local scale but these were concentrated in the Lower Murta 

Formation and most likely reflect a rise and fall in sea level. Strata in the Lower 

Murta Formation were most likely deposited in a marginal lacustrine environment. 

Sediments in the Upper Murta Formation were most likely influenced by marine 

conditions as a Cretaceous seaway developed. Evidence for both depositional 

settings is substantial in respective intervals.  
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7.1 Summary and Implications 

The chapters of this thesis combine to enable the depositional setting of the 

early Cretaceous net transgressive Murta Formation in the Eromanga Basin to be 

interpreted, both directly and through analogue studies. Each chapter of this thesis 

contributes to the understanding of the sedimentology and stratigraphy of the Murta 

Formation as a whole. Chapter 3 provides an integrated study of the Cuisinier Field. 

From this study it was clear that investigations needed to focus on sedimentation in 

low-gradient basins, the initial stages of transgression onto a continental landmass 

and the development of a coherent depositional model for the Murta Formation. 

Chapter 4 provides insight into fluvial termination facies and incision dynamics in a 

low-gradient basin at Lake Yamma Yamma in central Australia. Chapter 5 provides 

insight into facies and controls on deposition during encroachment of a marine 

system onto a continent. Chapter 6 provides an integrated depositional model for the 

Murta Formation, and discusses ways that the Murta Formation is similar and 

different to the analogues presented.  

The initial study of the Cuisinier Field (Chapter 3) raised important research 

questions that were explored throughout the thesis. Key research questions were: 

- What is the nature of fluvial terminations in low accommodation basins? How

can we classify and compare these? What are the key sedimentary characteristics, 

depositional settings and sand-body geometries in these settings? 

These questions were considered in Chapter 4, where a new way of classifying and 

comparing modern fluvial terminations in dryland settings was presented. A new 

case study was provided and key sedimentary characteristics, depositional settings 

and sand-body geometries were discussed. 
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- What is the nature of marine transgressions in epicontinental seaways?

Particularly as the transgression commences; what are the sedimentary features, 

depositional processes and preserved geometries? 

These questions were considered in Chapter 5, where the Dakota Formation was 

described in detail at a study site in South-West Colorado. Sedimentary features, 

depositional processes and preserved geometries are presented for this site. 

- What was the depositional setting and paleogeography of the Murta

Formation? Was deposition dominated by marginal marine or lacustrine conditions? 

What was the depositional nature of the formation across the basin and what are the 

key controls on deposition? 

Chapter 3 and Chapter 6 covered these research questions. Chapter 3 

provided an in-depth study of the Cuisinier Field within the Murta Formation. The 

sedimentology and stratigraphy is described in detail. The depositional setting and 

controls are discussed. Chapter 6 describes the entire Murta Formation across the 

Eromanga Basin. Core data and laboratory results to investigate the sedimentology, 

provenance and paleogeography of the Murta Formation, as well as knowledge 

gained from studying two depositional analogues, allows for the presentation of a 

new depositional model for the Murta Formation, with marginal marine and lacustrine 

conditions considered. Given the sparse nature of this type of research in the 

Eromanga Basin, this contribution is a very useful one for future seismic 

geomorphology, sedimentology, stratigraphy and provenance research in the region. 

Results from facies analysis show that previous classification of the Murta 

Formation as either purely marine or continental lacustrine is likely over simplified, as 

sediments show characteristics of both depositional environments (as discussed in 
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detail in Chapter 4). The Murta Formation represents the transition from a fluvial 

depositional environment in the underlying Namur Sandstone to the overlying fully 

Marine Cadna-owie Formation. In a low gradient basin such as the Eromanga, the 

transgression was most likely complex and piecewise. The most likely geological 

model for the Murta Formation separates the formation into two categories. The 

Lower Murta Formation is dominated by sedimentary features such as wave ripples 

and very fine planar lamination contained in moderately well sorted thinly bedded 

strata. These facies are generally consistent with lacustrine and marginal lacustrine 

depositional environments. Palynological, geochemical and trace fossil evidence 

support this interpretation. Sediments in the Lower Murta Formation are unlikely to 

preserve correlatable sequences (highstands and lowstands). The Upper Murta 

Formation exhibits sedimentary features such as pervasive hummocky-cross 

stratification, near herringbone cross stratification, synaereses cracks and upper flow 

regime planar stratification, which could all be could be consistent with marginal 

marine depositional environment.  Palynological, geochemical and trace fossil 

evidence support the interpretation of a marginal marine environment and although 

no feature taken in isolation can be considered as a conclusive depositional 

environment indicator, the cumulative evidence suggests that this is the best 

possible interpretation. Sequences in the Upper Murta Formation are more easily 

correlated with two large transgressive cycles most readily identified on most well 

logs near the top of the Formation. This is consistent with the interpretation of the 

Cuisinier Field (Chapter 3), where two transgressive cycles, most likely in a deltaic 

depositional environment were interpreted. The introduction of marine influence into 

the Murta Formation most likely represents the first marine incursion into the 

Eromanga Basin.  
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U/Pb ages from over 1200 individual detrital zircon grains for twelve samples 

in the Murta Formation show similar spectrums of ages within different stratigraphic 

levels at the same location. However at different locations around the Eromanga 

Basin, very different age spectrums were observed (Chapter 6). Paleoproterozoic to 

Neoproterozoic ages (62%) dominate all populations, but Neoproterozoic to 

Cretaceous age peaks are present in some samples. Sediments in the Eromanga 

Basin are considered to have originated from the margins of the basin, contrary to 

previous interpretation that sediments were mostly sourced from the north-eastern 

margin of the basin. This suggests that the basin was inwardly draining and that no 

circulatory current or drainage pathways to the open ocean were well established. 

This is contrary to results from U/Pb ages from over 1400 individual detrital zircon 

grains from the Dakota Formation, which suggest that an axial depositional system 

transporting sediment from the south influenced deposition at this site (Chapter 5). A 

similar trend for the Murta Formation and development of the Eromanga Basin in the 

Early Cretaceous cannot be inferred. 

In addition to the specific relevance to Australia, chapters within this thesis, 

particularly Chapter 4 and Chapter 5, can also be viewed as examples for similar 

types of deposits existing in the subsurface. The results presented here serve as a 

useful analogue for similar sediments in other localities and time periods, especially 

where data are sparse or of low quality. Analogue studies have proved popular and 

effective in the past. For example, studies from the Jurassic and Cretaceous Book 

Cliffs, central USA, have heavily shaped our understanding of sedimentology and 

stratigraphy in the subsurface. Many models for hydrocarbon exploration and 

development are derived from data from this location. While these outcrop studies 

provide excellent vertical data, critical lateral and process-based information cannot 
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be observed. A large volume of interpretation is based on a small volume of well-

known, well-studied examples, which do not capture the variability, heterogeneities 

and uncertainty in real-world environments. An interpretation utilising a mixture of 

modern and ancient outcrop analogues from a variety of analogous settings is 

optimal.  

This thesis provides never-before studied data-rich examples of both a 

modern process-based analogue and an outcrop analogue, and integrates these 

with a detailed field scale stratigraphic study for a new discovery, to develop a new 

depositional model for important oil-bearing strata on a basin scale. The integrated 

and novel nature of the methods used in this study provide a model for future studies 

in the basin. 

7.2. Further Work and Recommendations 

All work for this thesis was carried out as planned, however several areas of 

study beyond the scope of this project could prove interesting and important. 

Proposed below are some recommendations for future work, organised into the 

following themes: 

 Cuisinier Field exploration and development,

 stratigraphic models for the Eromanga Basin,

 provenance of Eromanga Basin sediments,

 Quaternary paleoclimate at Lake Yamma Yamma,(and)

 broadening the availability of data from a range of depositional settings.

7.2.1. Cuisinier Field Exploration and Development  

In order to further understand the Cuisinier Field (discussed in Chapter 3) 
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within the Murta Formation (discussed in Chapter 6), it would be greatly beneficial if 

better seismic could be acquired. Although the sandbodies are below the current 

seismic resolution, seismic technology is increasing at a rapid pace and new 

technologies may help with increasing the resolution of the data. It is possible that 

conditioning and tuning of the current data may provide more insight. The current 

seismic dataset suffers from a variety of artefacts and is not focussed on the 

reservoir interval. Analogue work, such as the work presented in this thesis can 

forecast likely trends and help with interpretation but cannot define the precise size 

or geometry of the reservoir. It would likely be misleading if relied on too heavily. 

Ultimately the reservoir will be precisely defined by higher-resolution seismic data.  

In terms of practical field development, technologies such as fractured 

horizontal wells would provide more access to reservoir surface area. Existing 

producing wells with good reservoir which develop a high water cut could be re-

entered and the reservoir drilled out laterally to avoid the risk of not encountering 

high quality reservoir. Drilling could be guided up into the oil-rich sections and the 

lower water bearing sections could be cased off. Investment in tracer experiments to 

determine connectivity of compartments may provide important information and 

prevent bypassed oil. Depending on the overall development strategy of the field, 

hydraulic fracturing and pressure support may provide production gains.  

It is likely that the Cuisinier Field is not a unique feature with the Murta 

Formation. A series of similar depositional structures are likely to exist around the 

margins of the Eromanga Basin. As the features cannot be targeted on seismic, 

exploration strategies must draw upon the geological model. An exploration strategy 

to reduce risk could be selecting a well location where Early Cretaceous targets 

could be combined with Jurassic and Permian targets in a series of stacked plays. 
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Further near-field exploration upstream from the Cuisinier Field should also be 

considered. As deltaic facies exist in the Cuisinier region it is likely that fluvially-

dominated sediments were deposited further upstream, which if preserved could 

provide reservoir facies. 

7.2.2. Stratigraphic models for the Eromanga Basin 

As mentioned in Chapter 3 and Chapter 6, stratigraphic models for the 

Eromanga Basin are not always consistent. Calibrating biostratigraphy with 

chronostratigraphy would be a good first step in providing a robust correlation 

framework for the basin. A better understanding of marine incursions throughout the 

history of the basin is needed. Many of the depositional models for the Eromanga 

Basin are based on a specific study area and not integrated across the basin. Big 

data analytics and machine learning may have a role to play in collating and 

integrating all of the data from wells drilled in the basin. With the assistance of these 

tools, workers may be able to spot trends and synthesise data in a more objective 

way. A project focussed on understanding how the Queensland, New South Wales 

and South Australian stratigraphy correlate and developing a robust correlative 

stratigraphic table for the entire Eromanga Basin would greatly improve our 

understanding of basin development. 

7.2.3. Provenance of Sediments in the Murta Formation 

No provenance studies had been conducted for the Murta Formation prior to 

this work. The provenance data reported here (Chapter 6) provides a starting point 

from which to conduct future studies. Detrital zircon grains are interpreted to have 

been sourced from all around the margins of the basin, rather than just from the 

north-east as prior literature has suggested. An increased sample density and the 
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use of additional geochemical and isotopic fingerprinting techniques can provide a 

more detailed picture of the provenance of the Murta Formation. Other age-dating 

techniques such as Rubidium-Strontium or Potassium-Argon age-dating could 

potentially be more useful or could provide another source of data. Hafnium isotopes 

could also be used in conjunction with Uranium-Lead detrital zircon age-dating in 

order to further determine cratonic provenance. Uranium-lead detrital zircon age-

dating combined with biostratigraphic methods could be used in order to better 

constrain the age of the Murta Formation and assist in detailed stratigraphic 

correlation.  

Difficulties in determining the provenance for the Murta Formation (Chapter 6) 

were in part due to the relative lack of studies which provide age-data for the 

Australian continent. This became particularly apparent through the process of 

analysing Uranium-lead detrital zircon ages from the Dakota Formation (Chapter 5) 

compared to those for the Murta Formation (Chapter 6). For the Dakota Formation 

many comprehensive sources of data were available on the age of potential source 

terrains, compared to the few that were available for the Murta Formation. As the 

data available for Australian cratons increases, the determination of provenance for 

sedimentary rocks in Australian Basins will become more robust. 

7.2.4. Quaternary Paleoclimate at Lake Yamma Yamma 

The borehole drilled at Lake Yamma Yamma in 1967 showed that beneath the 

surface sediments studied in this thesis (Chapter 4) 103 m of mud, evaporitic 

gypsum and sands are preserved. Further drilling and OSL dating of sediments at 

Lake Yamma Yamma could provide insight into the larger vertical stacking patterns 

and preservation of sediments. A correlation of strata with other Quaternary lakes 
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such as Lake Buchannan and Lake Frome could provide new insights into Australian 

Quaternary climate change. Given the remote location of these sites (over 200 km 

from the nearest small town) and the desert climate, drilling at this location would be 

challenging, risky and expensive.  

7.2.5. Broadening the availability of data from a range of depositional settings 

Sedimentology and stratigraphy research is biased toward particular 

depositional environments and study locations. A feature or location close to a large 

population or with excellent exposure will generally be studied more than it’s remote 

or poorly exposed counterpart. If we are to understand the range of potential 

interpretations for depositional processes and environments occurring through the 

Earth’s history, we need to have more case studies and more examples from a wide 

range of depositional settings to draw upon. This is true for modern and ancient 

deposits. The variability, heterogeneity and uncertainty in depositional settings in the 

subsurface will not be well represented or understood through analogy with one 

example. This is particularly true for transgressive systems in low accommodation 

basins. Transgressive systems are complex with variable controls including local 

tectonics, rate of sea level rise and local climate change, as discussed throughout 

this thesis. Autocyclic controls such as avulsion and bifurcation also play an 

important role in the distribution and deposition of sands within the system. 

Additionally time scales and magnitudes of transgression events are not well 

understood and may have been different in the Cretaceous to what they are today. 

Further research into the sedimentology and stratigraphy of a diverse range of 

settings will improve our ability to interpret deposition, with application to both 

modern environments and interpretation of the ancient record. 
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Chapter 8: Appendices 
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Data Sets for Chapter 4 (Laser Particle Grain Size data for all of the samples
described in this study), Chapter 5 (LAICPMS Data for each of the standard and
unknown grains analyzed in this study) and Chapter 6 (LAICPMS Data for each of 
the standard and unknown grains analyzed in this study) are available 
electronically from the copy of this thesis stored in the ASP Library. This data is 
also available from the author upon request.

Supplementary Data Set, Chapter 5: All Gigapan images from fieldwork. 

Go to http://gigapan.com/ 

Log In with username Kendall55 and password dakota1 

View all Gigapans taken for this research by selecting Portfolio in the My Gigapan 
drop down menu on the drop down menu on the top right hand corner of the page. 

Supplementary Literature Review is included on the following pages.

http://gigapan.com/
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Fundamental Literature 

The aim of this section is to make this thesis more accessible to the non-

specialist geoscientist or engineer and to provide the reader with an overview of the 

fundamental literature behind this work. 

1. Interpretation of Depositional Environments

Facies analysis provides a rigorous scientific approach to the interpretation of 

strata, based on their composition and vertical sucession (Gressly, 1838; Anderton 

1985; Collinson, 1969) and is undertaken in order to interpret and reconstruct 

paleoenvironments (Anderton 1985; Reading and Levell 1996; Walker 1992). 

However, depositional settings can often be difficult to interpret from the ancient 

record, particularly where data are sparse, such as when conducting an 

interpretation of subsurface data. This increases the uncertainty in interpretation and 

requires interpretation to draw on established depositional models and analogues. 

Depositional processes are not characteristic of a unique depositional environment, 

a factor which introduces further uncertainty into interpretation.  

The following section provides an overview of the nature and controls on fluvial 

termination deposits in the range of environments in which they occur, from marginal 

marine to lacustrine and continental dryland. Common depositional processes 

between deposition in marginal marine and marginal lacustrine deltas are then 

explored, followed by a focus on lacustrine sedimentation. Epicontinental seaway 

settings are introduced, and then the application of sequence stratigraphy in 

marginal marine and lacustrine settings is discussed. These are very broad topics, 
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thus only material relevant and important to the context of the original research 

presented in this thesis is reviewed. Facies interpretation in this thesis follows the 

commonly adopted scheme of Miall (1978), and the reader is referred to this 

resource for further information on the topic. 

2. Marginal Marine Deltaic Settings

The description of deltaic depositional systems has been well documented. 

Historically description has focussed depositional environment interpretation and 

lithostratigraphy (Coleman and Wright, 1975; Galloway, 1975; Hayes, 1975, Hayes, 

1979; Boyd et al., 1992; 2006). More recently, stratigraphic correlation and 

identification of key surfaces which helps place marginal-marine intervals into distinct 

categories (e.g. systems tracts or shoreline trajectory classes) (Posamentier et al., 

1988; van Wagoner et al., 1990; Helland-Hansen and Martinsen, 1996; Helland-

Hansen and Hampson, 2009) has become standard practice. Marginal marine deltas 

are influenced by three main depositional processes: wave, tidal and fluvial. A 

process-based system of interpretation provides a scheme for the description of 

deltas and deltaic deposits (Ainsworth et al., 2011; Vakarelov and Ainsworth, 2013; 

Figure 2). Delta deposits in high accommodation settings, for example at continental 

rift margins, exhibit different depositional styles and geometries to those in low 

accommodation settings, for example interior basins or sag basins. Deposits in high 

accommodation settings will likely be thicker, and preserve highstand sediments, 

compared to low accommodation settings, where deposits are thinner reworking is 

more likely (Galloway, 1975; Hayes, 1975). 

. 
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Figure 1: Process classification categories of the simple classification of Ainsworth et al. (2011). Letter codes 
refer to the dominant, secondary, and tertiary processes (fluvial, wave, and tide) that influence marginal marine 
systems. A Wft category, for example, refers to a wave-dominated, fluvial-influenced, tide-affected system, where 
the influence of waves, fluvial input, and tides decreases in that order. Single-letter codes refer to systems 
affected by a single process, two-letter codes refer to systems affected by two processes, and three-letter codes 
refer to systems affected by three processes. The classification thus effectively describes mixed influence 
systems. The process categories have no spatial component and can be applied to the different hierarchy levels 
of architecture (From Ainsworth et al., 2013). 

3. Marginal Lacustrine Deltaic Settings

Descriptions of lacustrine deltas which terminate into perennial lakes are well 

documented. Well studied examples include the Volga delta (Overeem et al., 2002; 

Figure 2), Atchafalaya lacustrine deltas (Fisk, 1961; Tye and Coleman, 1989), the 

Breggia–Greggio river deltas in Italy (Fanetti and Vezzoli, 2007) and the Ural and 

Emba rivers, which terminate into the Caspian Sea (Richards et al., 2017). 

Lacustrine deltas share many depositional characteristics to comparatively well-

studied marine deltas (Galloway, 1975; Ainsworth et al., 2011), except lack tidal 

influence (T, Tf and Tw elements of Ainsworth et al, 2011). They tend to be relatively 

thinly-bedded, with stacking patterns controlled by the base level of the lake and 

local tectonics (Bohacs, 2012). 
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Figure 2: Modern delta examples from the Lena Delta and Volga Delta (from Olariu and Bhattacharya, 2006) 

Within lacustrine deltas, simple lobe switching due to the changes in sediment 

flux can give the impression of a regional change in depositional setting. This is 

important in marine settings, but more difficult to distinguish in lacustrine settings, 

due to the often thinly bedded nature of the deposits and the unpredictable character 

of lakes (Bohacs et al., 2000a, Bohacs et al., 2000c). Such a characteristic is likely to 

also be true of terminal splay deposits in playas, but perhaps even more 

unpredictable due to the greater variability in environmental conditions and 

depositional processes. Distinguishing between autogenetic, as opposed to allogenic 

cycles is important when interpreting stratigraphic packages and surfaces. Regional 

studies focused on the determination of the provenance of sediments may aid in the 

discrimination between localised and sequence scale changes (Bagnaz et al., 2012). 

4. Fluvial Termination Deposits

Fluvial systems which terminate in/on landforms which are not a body of water 

have been described as terminal fans (Friend, 1978; Kelly and Olsen, 1993; North 
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and Warwick, 2007), floodouts (Tooth, 1999; Tooth, 2000), ephemeral mud-prone 

interdune fluvial terminations (e.g. Stanistreet and Stollhofen, 2002), distributive 

fluvial systems (Nichols 1987; Nichols and Hirst 1998; Nichols and Fisher, 2007) and 

ephemeral stream terminal distributary systems (Billi, 2007). The depositional 

character of these systems is highly varied; there is no distinct morphology or 

sedimentary succession, and no single facies model can predict depositional 

character (North and Warwick, 2007). These deposits share process-based 

characteristics with crevasse splays, deposits that form downstream of beaches in 

levees and other ephemeral floodplain features formed by overland flow (Jorgensen 

and Fielding, 1996; Taylor, 1999). An example of a fluvial termination deposit, a 

floodout in central Australia, is shown in Figure 3 (Tooth, 1999; Tooth, 2000).  

Figure 3: Floodouts of the Sandover River illustrating the main channel and floodplain features (Tooth, 2000). 

Rivers that terminate into ephemeral lakes show a different depositional 

character to other dryland fluvial terminations, and have different depositional 

processes and temporal variability to rivers that terminate into a body of water and 

form a delta. Deposition can be subaqueous, similar to that which occurs in deltas, 
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but can also be influenced by wetting and drying processes, aeolian reworking and 

subaerial flow. Examples of fluvial termination deposits in ephemeral lakes include 

those fed by ephemeral rivers in the Turkana basin, northern Kenya (Frostick and 

Reid, 1986), the Chott Rharsa system, southern Tunisia (Blum et al., 1998) and Kati 

Thanda- Lake Eyre margin terminal splays in the Kati Thanda- Lake Eyre Basin 

(Lang et al., 2004; Fisher et al., 2008).  

5. Common Depositional Elements of Marginal Lacustrine and Marginal Marine
Deposition

Modern lakes have similar depositional features to marginal marine settings, 

though usually at a smaller scale (Fraser et al., 2012; Bartov et al., 2012; Nichols, 

2009). Two main processes affect depositional character in marginal lacustrine 

systems: wave and fluvial. Lunar and wind tides may be present in larger lakes 

(Ainsworth et al., 2012), but the effects of such are negligible on sediment reworking 

compared to tides in marginal marine environments. The occurrence of some 

similarities allows a large part of our understanding of marginal marine processes 

and depositional environments to be transferred to marginal lacustrine depositional 

environments. The processes that control sedimentation in lakes are similar to those 

affecting marine coasts, but lacking major tides (Nichols, 2009). 

For example, Lake Michigan, a large-area freshwater lake in a overfilled lake 

basin features: beaches, barrier spits and islands, deltas, strand plains, upper delta 

plain fluvial and flood-plain systems, estuaries, a shelf-slope system with coastwise 

rectification of currents, a benthic nepheloid layer, density currents, mass flow 

deposits, coastal downwelling jets and Coriolis veering of lake currents (Fraser et al., 

2012). These elements are also observed in modern marginal marine and oceanic 
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settings. However Lake Michigan does differ from a marginal marine setting in that it 

has: a principally mild wave climate, a very small lunar tide and a spillpoint which 

places an upper limit on accommodation (Fraser et al., 2012).  

Beaches can form virtually any place where the land and a body of water 

meet, including in lacustrine settings.  Beaches can form in lakes covering less than 

a square kilometre, and apart from the obvious differences in fetch and tides, beach 

sedimentation in lakes is similar to that in the ocean (Davis, 1978).  A beach is 

defined as the zone of unconsolidated sediment that extends from the uppermost 

limit of wave action to the low-tide mark (Davis, 1978; Timms, 1992).  Because lake 

levels and wave activity are often highly variable, beach profiles are highly variable.  

In lakes with stable shorelines and low energy, beaches can be very narrow.  

However, near oceans and lakes with variable levels and high wave energy, 

beaches can become wide sand sheets extending vast distances.  

Lake Michigan shows an example of a modern well developed beach system 

formed by dynamic wave energy on coastlines with high sand content.  Beaches with 

widths of up to 300 m and effective depths of 7 m are recorded.  If abundant 

sediment is supplied to the zone of shoaling and to the beaches along the lake 

shore, the shore progrades lakeward (Fraser et al., 2012).  This forms a sheet of 

sand as thick as the depth of shoaling, coarsening upward from fine sediments to 

beach sands.  The amount wave energy, and associated depth of shoaling, will 

govern the thickness of the sand sheet formed by beach progradation (Friedman and 

Sanders, 1978).  The lateral extent of prograding beaches will be controlled by the 

morphology of the shoreline, the supply of sediment and the wave energy of the 

lake.  Beaches can also be formed preferentially at one end of a lake if prevailing 

winds produce waves in a single uniform direction.  
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6. Characteristics of Lacustrine Sedimentation

A succinct definition of a lake is difficult to quote. Many of the elements 

observed in modern systems are not directly seen or measured in outcrops of 

ancient lakes (Gierlowski-Kordesch and Kelts, 1994). Less is known about 

preservation potential in lake systems than in marginal marine settings. Varying 

morphologies, tectonic settings, sizes, chemistries and degrees of permanency 

make classification attempts and fixed sedimentary models overly detailed, 

unscaleable, unwieldy, and geologically problematic (Timms, 1992; Gierlowski-

Kordesch and Kelts, 1994). Authors have proposed many definitions with various 

classification schemes to define particular lake types (Oxford, 2016; Timms, 1992; 

Gierlowski-Kordesch and Kelts, 1994; Bayly and Williams, 1973; Reineck and Singh, 

1980; Fouch and Dean, 1983, Selley, 1985; Bohacs et al., 2002).   

In this thesis, for a water body to be defined as a lake: (1) the water body 

must fill or partially fill a basin, (2) the water body should have the same water level 

in all parts, except for relatively short events dominated by wind, thick ice cover or 

large inflows (3) The water body should not have an intrusion of seawater or 

communication with the ocean; however it may be located in the immediate vicinity 

of the coast, and (4) the surface area of the water body should exceed 1 km2. 

Allen and Collinson (1986) proposed that lakes be classified as either 

hydrologically open or hydrologically closed on the basis of input versus evaporation. 

Hydrologically open lakes are dominated by sedimentation from clastic input and 

have an outlet. Shorelines in hydrologically open lakes are generally more fixed and 

stable as input and precipitation is balanced by output and evaporation. Lakes which 

are classified as hydrologically closed lack an outlet and are dominated by 
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biochemical and chemical sedimentation and experience rapid changes in their 

shorelines. All lakes could potentially pass through both of these hydrological 

settings throughout from genesis through evolution until their demise. 

Gierlowski-Kordesch and Kelts (1994) further refined the classification of lake 

basins, defining three categories: event basins, paralic basins and tectonic basins.  

Event lake basins are created by short-term processes and are less likely to 

preserve thick lacustrine deposits in the geological record. Paralic lake basins 

include cut-off marine embayments and shoreline depressions controlled by sea 

level fluctuations. Tectonic lake basins are most commonly preserved in the 

geological rec ord. These generally occur in broad regional sags, orogenic-collapse 

basins, foreland deeps, or rifts and strike slip basins. In a shallow basin setting small 

volume changes will result in large changes in shoreline and rapid vertical facies 

changes. Paralic lake basins and tectonic lake basins will at some stage in their 

evolution connect with the open ocean to form eperic or epicontinental seaways. 

7. Characteristics of Sedimentation in Epicontinental Seaways 
 

Throughout geological history continents were flooded forming vast broad, 

shallow epicontinental seas (Shaw, 1964; Figure 4; Figure 5). These depositional 

settings are important as much of the marine stratigraphic record and details of 

climate change, evolution and extinction are preserved in such environments 

(Hallam, 1981; Allison and Briggs, 1993; Allison and Wells, 2006). Epicontinental 

seas lack appropriately scaled modern counterparts (Allison and Wells, 2006). They 

were typically shallow, on the order of 10 to 200 m deep, but of vast extent, covering 

areas of up to 1,000,000 km2 (Wells et al., 2005; Allison and Wells, 2006). 

Depositional character within these basins would have been similar to that in modern 
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low-accommodation basins; however without suitably scaled modern analogues our 

understanding of these depositional settings is hindered. Wave, tidal and fluvial 

processes effected deposition in epicontinental sea settings. 

Figure 4: Regional palaeogeography for the Cretaceous European Epicontinental Sea compiled from Ziegler 
(1990), Dercourt et al. (2000), Golonka (2004, 2007), Gil et al. (2006), and Golonka et al. (2006). Eight regions of 
interest are summarized in the text: (1) Bay of Biscay Rift; (2) Anglo-Paris Basin; (3) North Sea Basin; (4) North 
to Central European Basins; (5) Russian Platform; (6) Outer Carpathian Foreland Basin; (7) Vocontian Basin; and 
(8) Iberian Microplate. From Mitchell et al., 2009.
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Figure 5: Regional palaeogeography for the Cretaceous North American Western Interior Basin. Modern state 
and country borders are overlain (Blakely, 2016). 

Tidal action in ancient epicontinental seas has been interpreted diversely as 

being either enhanced because of resonance and shoaling, or reduced because of 

frictional damping (e.g. Shaw, 1964; Klein and Ryer, 1978). Numerical modelling 

studies have shown that at least some epicontinental seas were regionally 

microtidal, with a tidal range of less than 2 metres (Ericksen and Slingerland, 1990; 

Wells et al., 2005, Wells et al., 2007). Conversely, there is geological evidence of 

widespread tidal influence that indicates the presence of tidal currents capable of 

transporting coarse grained clastics considerable distances from the 

paleocontinental margin in Proterozoic deposits (Sonnet et al., 1996). Tide-

influenced conditions have been documented in Cenomanian estuarine deposits and 

proposed also for Turonian to Coniacian deltaic strata of the Cretaceous Bohemian 

Basin, Central Europe (Valečka, 1979; Uličný and Špičáková, 1996; Voigt, 1996; 

Uličný, 2001). Additionally, some workers suggest that tidal amplification may have 

occurred as a result of resonance and funnelling in embayments (Wells et al., 2007).  
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Wave action in ancient epicontinental seas has been suggested to have been 

attenuated by the large surface areas of the seas and hence large distances 

travelled by waves (Keulegan and Krumbein, 1949; Shaw, 1964; Irwin, 1965). Wind 

waves are affected by fetch, duration, and intensity of wind (Jonsson et al., 2002; 

Jonsson et al., 2005). Substantial waves are regularly documented in even the small 

semi-restricted seas of today. Wave heights (crest-to-trough height) of larger than 6 

m are documented in the Baltic Sea (300,000 km2 surface area, 55 m depth) 

annually (Allison and Wells, 2006). Models suggest that wavelengths of 200 metres 

are theoretically possible during large storms (Jonsson et al., 2002; Jonsson et al., 

2005). 

Fluvial action generally dominates deltaic deposition in epicontinental seas. 

Examples of fluvio-deltaic settings in epicontinental seas exist in Devonian 

(Slingerland, 1986), Carboniferous (Wells et al., 2005a, Wells et al., 2005b), and 

Cretaceous (Ericksen and Slingerland, 1990) deposits. Deltaic deposits are generally 

thinly bedded, due to the comparatively low amount of accommodation space in 

epicontinental seaways, compared to oceanic margins.  Delta morphology in 

epicontinental seas is primarily fluvial-dominated, although estuarine-type settings 

deposits are proposed also for Turonian to Coniacian deltaic strata of the Bohemian 

Cretaceous Basin, Central Europe (Valečka, 1979; Uličný and Špičáková, 1996; 

Voigt, 1996; Uličný, 2001). 

Depositional processes within epicontinental seas are diverse and complex 

(Allison and Wells, 2006). It is likely that no two epicontinental sea depositional 

settings are the same. Epicontinental seaways share characteristics with both lakes 

and oceans. In order to better understand the depositional character and architecture 

of these depositional settings, sequence stratigraphy can be used. As epicontinental 
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seaway settings share characteristics of marine and lacustrine depositional 

environments, an understanding of the application of sequence stratigraphic 

methods to both of these depositional settings is important. 

8. Sequence Stratigraphy in Marine and Lacustrine Settings 
 

The fundamental sequence stratigraphic model (Mitchum et al., 1977, Payton 

et al., 1977; Vail et al., 1977; Vail 1987, Posamentier et al. 1988; Figure 6) was 

based on two assumptions: depositional sequences were controlled primarily by sea-

level cycles, and sea level cycles were driven by eustacy (Mitchum et al., 1977). This 

implied that sequences from different continental margins would reflect the same 

global sea level curve (Vail et al. 1977) and that global correlation of sequences was 

possible on the basis of one Meso-Cenozoic sea level curve (Haq et al., 1987).  

Sequence stratigraphy was originally developed as a seismic method in 

marine settings rather than processes at the scale of single depositional systems 

(Brown and Fischer 1977). Recent developments in sequence stratigraphy include 

efforts to define, delineate and standardise nomenclature, as well as developing 

ways to make objective observations, independent of model assumptions (Xue and 

Galloway, 1993, Catuneanu, 2006; Catuneanu et al., 2009; Neal and Abreu, 2009). 

The popularity of the model has greatly increased and it has been applied at different 

scales and settings. The latest models in sequence stratigraphy exclude explicit 

reference to sea-level as a primary influence in shaping sequences (Catuneanu et al. 

2009; Neal and Abreu 2009), however sequence stratigraphy originated in the 

marine realm, and the influence that sea level had and still has on shaping the model 

should not be ignored (Burgess, 2016; Ridente et al., 2016).  

Although sequence stratigraphic methods are conceptually different compared 



325 

to traditional lithostratigraphic facies-analysis type methods, in that identification of 

genetic packages and surfaces within a chronostratigraphic framework is 

encouraged, the two can be used as complementary tools in suitable circumstances 

(Figure 7).  

Figure 6: Vail (1987) standard sequence stratigraphic model. (A) Schematic cross section of the standard model. 
(B) Chronostratigraphic chart with distance on the horizontal axis (same scale as A) and time on the vertical axis
(also termed a Wheeler diagram). Abbreviations: bf basin floor fan; HST highstand systems tract; LSW lowstand

wedge; MFS maximum flooding surface; SB1 type 1 sequence boundary; SB2 type 2 sequence boundary; sf 
slope fan; SMST shelf-margin systems tract; ts transgressive surface; TST transgressive systems tract. Originally 

from Vail (1987). Modified by Schlager (2005). 
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Figure 7: Diagram of the different approaches of interpretation, A) lithostratigraphy, and B) sequence stratigraphy 
or chronostratigraphy. (After Posamentier and Allen, 1999). 

 

Concepts of sequences, systems tracts and discontinuities can be aplied in the 

non-marine realm based on work in marine settings (Posamentier and Weimer, 

1993; Shanley and McCabe, 1994). Non-marine sequence stratigraphy provides a 

different method of classifying and interpreting the stratigraphic record of lacustrine 

basins than the traditional lithostratigraphic methods, as it provides a framework for 

prediction rather than being a purely descriptive tool (Oviatt et al, 1994). 

Lakes are complex, non-linear and dynamic systems. Their behaviour and 

characteristics can differ considerably from marine systems (Figure 8, Gierlowski-

Kordesch and Kelts, 1994). The character of lacustrine depositional systems is 

controlled by not only sediment supply, but also pre-existing topography or 

bathymetry and the timing of peak clastic influx relative to lake level (Bohacs et al., 

2000b). Peak clastic influx and lake level may or may not be related (Bohacs, 2012). 

The applications of sequence stratigraphy, as well as prediction of depositional 

patterns, controlling factors and preserved geometries pose distinct challenges 
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(Bagnaz et al., 2012; example of depositional patterns shown in Figure 9). These 

challenges arise from the non-unique relations of lake character to tectonics and 

climate, contingent responses of lakes to climate change, variable ties among lake 

level, sediment supply and water supply (Bohacs et al., 2000b, Bohacs, 2012). Lake 

shoreline shapes vary widely at relatively short temporal and spatial scales and 

change fundamentally between different lake types. Wireline log expression of 

lacustrine strata varies widely among lacustrine facies associations and can differ 

greatly from that commonly observed in marginal marine strata (Bohacs and Miskell-

Gerhardt, 1998). 

Figure 8: A comparison of attributes for lacustrine versus marine environments of deposition (after Gierlowski-
Kordesch and Kelts, 1994). 

Attribute Lacustrine Marine 

Size Highly variable, 1 up to 80,000km2 
today Immense 

Chemistry 
Highly variable, ionic species 

function of drainage basin geology 
and climate 

Uniform Na-Cl 

Geodynamics Altitude variations, drainage 
capture, sudden changes 

Sea level, epeirogeny: slower 
changes 

Climate 
change 

Immediate, drastic response, level 
changes, composition: tens of 

years 

Long term response: 100s of 
years 

Cycles Annual, sun-spot, short term 
climate, Milankovitch Long-term climate, Milankovitch 

Tide No tides, seasonal level variations Tidal dominated 

Organic matter Algae/bacteria: land plants. Type I 
common 

Marine algae or land plant. 
Type II and III 

Deltas Short-term, rapid variance 
response to level changes Long-term stability 

Turbidites Common in dilute waters Rare events 

Transgression 
/ 

Regression 
Very short period Long period phenomena 

Stratigraphy Rapid facies change laterally and 
vertically Walthers’ law, transitional 

Life span Up to ~30 Ma 1-100 Ma
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Figure 9: Distribution of connectivity in the Lan Krabu Formation (Miocene), Sirikit Field, Thailand. Delta-front and 
stream – mouth bar facies are well connected obliquely across the field but poorly connected vertically in any one 
well bore. Recognition of this characteristic pattern and reservoir modelling using a more accurate and 
appropriate correlation strategy increased reserve estimates by 43% in this lacustrine environment. (From 
Bohacs, 2012, originally modified from Ainsworth et al., 1999). 

 

As epicontinental seaway settings share characteristics of both marine and 

lacustrine depositional environments, an understanding of the application of 

sequence stratigraphic methods to both of these depositional settings is important 

(Allison and Wells, 2006). When the seaway is open to the ocean, regular classical 

sequence stratigraphic principles apply, but if the seaway becomes closed to the 

ocean and transitions back to a lacustrine depositional setting, depositional 

architecture and geometries will be more difficult to predict. The inherent uncertainty 

in interpretation can be decreased through the use of existing depositional models 

and analogies with modern and ancient depositional systems that share sufficient 

similarity to provide useful insights. 
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9. Reservoir Analogue Studies 
 

Since the first statement of the three fundamental laws of geology: the 

principle of original horizontality, the law of superposition and the principle of cross 

cutting relationships (Steno, 1669), sedimentology and sedimentary geology has 

played an important role in our description and understanding of the world around 

us. The recognition of deep time, that rocks record the evidence of the past action of 

processes which operate today, and the assumption that the same natural laws and 

processes that operate in the universe now have always operated in the past and 

apply everywhere in the universe is derived from fundamental process-based 

sedimentological observations (Hutton, 1788; Playfair, 1802). These ideas were 

developed into the concepts of uniformitarianism, (frequently cited by fundamental 

workers such as Charles Darwin) through close and careful sedimentological 

observations (Lyell, 1830).  

The disciplines of sedimentology and stratigraphy rely heavily on comparisons 

and analogues since the development of rocks and structures, especially those in 

the subsurface, can rarely be observed directly. It may be relatively straightforward 

to describe and quantify a sedimentary succession from core, but using these data to 

predict sedimentary facies in unsampled areas requires datasets to be 

supplemented by analogue data (Alexander, 1992). Analogues studied in this thesis 

comprise of comparisons with modern depositional processes and ancient outcrop 

rock record examples.  

Modern depositional analogues are used to increase the understanding of the 

reservoir rocks and the processes which operated during their deposition (Harris et 

al., 2004; Alexander, 1992). The consideration of modern processes and their 
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products as analogues for reservoir rocks assumes that the present is the key to the 

past and that modern natural processes have been in effect throughout geological 

time (Alexander, 1992). Studying modern deposits allows the worker to provide a 

detailed description of the deposits, determine the processes operating during 

deposition, and to define the controls on those processes, which can allow for the 

construction of a process-based facies model (e.g. Bhattacharya et al., 2003; Fisher 

et al., 2008). Modern depositional analogues provide excellent lateral resolution but 

relatively poor vertical resolution (Harris et al., 2004). 

Ancient outcrop analogues are used as a comparison tool with rocks or 

structures observed in the subsurface with descriptions of facies which appear to be 

similar (Harris et al., 2004; Alexander, 1992). Direct comparison of subsurface data 

with well-exposed similar rock units can lead to major advances in the understanding 

of the reservoir characteristics (e.g. Burton et al., 2014; Fischer et al., 2007). Data 

from outcrop can be used to model facies geometry, size and distribution, in order to 

give an indication of facies stacking patterns and architecture (e.g. Koehrer et al., 

2011; Eltom et al., 2012). Ancient outcrop analogues provide excellent vertical 

resolution but cannot provide three dimensional lateral horizontal data (Harris et al., 

2004). 
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