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Abstract

Given the continuous growth of the aging population, the cost of health care, and the prefer-

ence that the elderly want to live independently and safely at their own homes, the demand

on developing an innovative living-assistive system to facilitate the independent living for the

elderly is becoming increasingly urgent. This novel system is envisioned to be device-free,

intelligent, and maintenance-free as well as deployable in a residential environment. The

key to realizing such envisioned system is to study low cost sensor technologies that are

practical for device-free human indoor localization and activity recognition, particularly

under a clustered residential home. By exploring the latest, low-cost and unobtrusive RFID

sensor technology, this thesis intends to design a new device-free system for better supporting

the independent living of the elderly. Arising from this live-assistive system, this thesis

specifically targets the following six research problems.

Firstly, to deal with severe missing readings of passive RFID tags, this thesis proposes

a novel tensor-based low-rank sensor reading recovery method, in which we formulate

RFID sensor data as a high-dimensional tensor that can naturally preserve sensors’ spatial

and temporal information. Secondly, by purely using passive RFID hardware, we build

a novel data-driven device-free localization and tracking system. We formulate human

localization problem as finding a location with the maximum posterior probability given the

observed RSSIs (Received Signal Strength Indicator) from passive RFID tags. For tracking

a moving target, we mathematically model the task as searching a location sequence with

the most likelihood under a Hidden Markov Model (HMM) framework. Thirdly, to tackle
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the challenge that the tracking accuracy decreases in a cluttered residential environment, we

propose to leverage the Human-Object Interaction (HOI) events to enhance the performance

of the proposed RFID-based system. This idea is motivated by an intuition that HOI events,

detected by pervasive sensors, can potentially reveal people’s interleaved locations during

daily living activities such as watching TV or opening the fridge door.

Furthermore, to recognize the resident’s daily activities, we propose a device-free human

activity recognition (HAR) system by deploying the passive RFID tags as an array attached

on the wall. This HAR system operates by learning how RSSIs are distributed when a

resident performs different activities. Moreover, considering that falls are among the leading

causes of hospitalization for the elderly, we develop a fine-grained fall detection system that

is capable of not only recognizing regular actions and fall events simultaneously, but also

sensing the fine-grained fall orientations. Lastly, to remotely control the smart electronic

appliances equipped in an intelligent environment, we design a device-free multi-modal hand

gesture recognition (HGR) system that can accurately sense the hand’s in-air speed, waving

direction, moving range and duration around a mobile device. Our system transforms an

electronic device into an active sonar system that transmits an inaudible audio signal via the

speaker and decodes the echoes of the hand at its microphone.

To test the proposed systems and approaches, we conduct an intensive series of experi-

ments in several real-world scenarios by multiple users. The experiments demonstrate that

our RFID-based system can localize a resident with average 95% accuracy and recognize 12

activities with nearly 99% accuracy. The proposed fall detection approach can detect 90.8%

falling events. The designed HGR system can recognize six hand gestures with an accuracy

up to 96% and provide more fine-grained control commands by incorporating hand motion

attributes.
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Chapter 1

Introduction

Fiona’s frail 77-year-old father lives alone in a small apartment. He is making a cup of tea

and his kitchen knows it. Tiny sensors monitor his every move and track each tea-making

step. If he pauses for too long, a nearby computer reminds him about what to do next. Later

that day, Fiona accesses a secure website and scans a checklist, which was created from the

computer in her father’s apartment. She finds that her father took his medicine on schedule,

ate normally, and continued to manage his daily activities on his own. This puts Fiona’s

mind at ease.

With recent developments in cheap sensor and networking technologies, it has become

possible to develop a wide range of valuable applications such as the remote health monitoring

and intervention depicted above. These applications offer the potential to enhance the quality

of life for the elderly, afford them a greater sense of security, and facilitate independent living.

For example, by monitoring the daily routines of a person with dementia, an elder assistant

service can track how completely and consistently the daily routines are performed, and

determine when the resident needs assistance.

Central to realizing these applications is the study of low cost sensor technologies that

are practical for human indoor localization and activity recognition, particularly for the

elderly. However, existing approaches either rely on body-worn sensors to detect human
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locations and activities, or dense sensing where low cost sensors (e.g., wireless transceivers)

are attached to objects and people’s activities can be indirectly inferred from their interactions

with the objects. In the former approaches, battery powered sensors are normally bigger in

size, expensive, and require maintenance and user involvement (e.g., wearing the device).

In the latter approaches, sensors are typically cheaper and maintenance free. However, user

involvement is still needed (e.g., wearing a bracelet to detect objects). All these technologies

are not very practical, especially for monitoring aged people with dementia, or even just

those with mild cognitive impairment.

As a result, to tackle this challenge, this Ph.D. thesis intends to develop a device-free,

intelligent, and maintenance-free system to better support the independent living of the elderly.

This system should bear at least the following three promising characteristics: i) Device-free

- it does not require the user to wear any devices or sensors at any circumstance; ii) Intelligent

- it should automatically understand the user’s daily living routines and activities, as well

as timely and accurately recognize abnormal actions and provide useful assistance when

necessary; and iii) maintenance-free - such a system should be light in both weight and size,

as cheap as possible and require no human maintenance.

Recent advancement in low-cost passive Radio-Frequency Identification (RFID) tags

makes device-free indoor localization and activity recognition possible. They are maintenance-

free (no batteries in tags) and inexpensive (about 5 cents each and still dropping quickly).

This thesis proposes a novel system for automated human indoor location and activity discov-

ery and monitoring by deploying low-cost, unobtrusive passive RFID tags in a full-furnitured

residential home. Also, by taking the recent advances of supervised machine learning and

tensor theory, we first introduce a low-rank tensor completion method to deal with the

reading loss of passive RFID tags and then propose a novel anomaly detection method to

achieve a fine-grained fall detection that not only can recognize regular actions and fall events

simultaneously but also distinguish different fall orientations. Moreover, to conveniently
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control the smart electronic appliances in a smart home, we design a device-free multi-modal

HGR system that can provide up to 162 control commands for various applications.

In the next section, we will first detail the system infrastructure and then identify the

challenges of realizing this system. Furthermore, we illustrate how to deal with those

challenges by decomposing this system into six research issues, as well as listing the research

papers published for each part to demonstrate the effectiveness and novelty of our proposed

approaches and models.

1.1 System Overview

As Fig. 1.1 shows, we propose a conceptual system infrastructure that is mainly built upon

cheap and maintenance-free passive RFID hardware. The whole system consists of four main

modules - Hardware Layer, Discovery Layer, Monitoring Layer and Application Layer.

• Hardware Layer: this layer is the hardware infrastructure of the whole system, in

which we mainly deploy passive RFID tags in a residential environment, plus a few

other commercialized sensors (e.g., pressure sensor, proximity sensor and light sensor)

on the domestic electronic appliances with a primary aim of detecting human-object

interaction events.

• Discovery Layer: this layer is the key component of the system. Its main function is to

automatically and accurately recognize and discover the user’s locations and activities

by using novel machine learning approaches to mine and analyze RFID and sensor

readings collected from the Hardware Layer.

• Monitoring Layer: this module continuously records and tracks user’s daily routines

and activities, as well as performing context-aware, learning-based abnormal activity

reasoning (e.g.,, falling down, lying-down or siting for an unusual long time) in a

real-time manner.
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Fig. 1.1 The overall conceptual framework of the proposed system

• Application Layer: this layer provides useful knowledges or decision information for

various kinds of real-world agents (e.g., user’s children, hospital, emergency service or

aged caring institutes).

1.2 Challenges

However, transforming the above ideal system-concepts into a practical system that is

workable in real-world residential environments requires us to deal with several non-trivial

challenges.

First of all, to make our system lightweight, maintenance-free and as cheap as possible,

we mainly use passive RFID tags (battery-free, extremely cheap, around 5 cents each; very

tiny size, around 5cm × 1cm) in the Hardware Layer. However, since passive RFID tags can
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only energized by harvesting the backscattered RF (Radio Frequency) signal, their signals are

very weak and thus suffer significant reading loss and distortion. Those missing values will

not only decrease accuracy of localization and activity recognition in the Discovery Layer but

also compromise the real-time user-daily-routine monitoring and abnormality reasoning in

the Monitoring Layer. As a result, how to efficiently yet accurately recover the missing sensor

values is our first challenge. Secondly, given the weak RFID sensor readings, how to develop

novel machine learning algorithms for accurately recognizing user’s locations and activities

also deserves a careful consideration, especially in a clustered residential environment where

household furniture and electronic appliances strongly affect the sensor signals. More

challengingly, how can we accurately yet robustly recognize abnormal activities of users in a

real-time manner? In particular, we need to carefully deal with how to enable a fine-grained

abnormality detection (e.g., distinguishing different falling directions).

In the next section, we briefly introduce the key chapters of this thesis which deal with

those challenges and realize the core functionalities of the proposed supporting system from

six different research points of views.

1.3 Summaries of Key Chapters

In this thesis, we illustrate our solutions and methods from six research perspectives, detailed

as follows:

1.3.1 Recovering Missing Readings for Corrupted Sensor Data via Low-

Rank Tensor Completion

Passive RFID tags attached on the walls of a residential house usually generate RSSI readings

with both time-stamps and geo-tags. Such type of data usually have shown complex spatio-

temporal correlation and are easily missing in practice due to communication failure or
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furniture obstruction. In Chapter 3, we aim to tackle the challenge – how to accurately and

efficiently recover the missing values for corrupted spatio-temporal sensor data. In particular,

we first formulate such sensor data as a high-dimensional tensor that can naturally preserve

sensors’ both geographical and time information, which we call a spatio-temporal Tensor.

Then we model the sensor data recovery as a low-rank robust tensor completion problem by

exploiting its latent low-rank structure and sparse noise property. To solve this optimization

problem, we design a highly efficient optimization method that combines the alternating

direction method of multipliers and accelerated proximal gradient to minimize the tensor’s

convex surrogate and noise’s ℓ1-norm. We test our proposed method by a synthetic dataset

and a real-world sensor-array testbed built by passive RFID tags. The key research papers

related with this part are listed as follows:

[C1] W. Ruan, P. Xu, Q. Z. Sheng, N. Falkner, X. Li, and W. E. Zhang, Recovering Missing Values

from Corrupted Spatio-Temporal Sensory Data via Robust Low-Rank Tensor Completion, The 22nd

Int. Conference on Database Systems for Advanced Applications (DASFAA’17), Suzhou, China, Mar

27-30, 2017. [ERA/CORE A, Full Research Paper, Acceptance Rate = 24.3%, Oral Presentation]

[C2] W. Ruan, P. Xu, Q. Z. Sheng, N.K. Tran, N. Falkner, X. Li, and W.E. Zhang, When Sensor

Meets Tensor: Filling Missing Sensor Values Through a Tensor Approach, The 25th ACM Conference

on Information and Knowledge Management (CIKM’16), Indianapolis, USA, Oct 24-28, 2016.

[ERA/CORE A, Acceptance Rate = 24%]

1.3.2 Device-free Human Localization and Tracking Using Passive RFID

Tags

Device-free Passive (DfP) human localization and tracking is one of the key components in

the proposed system. It is promising in two aspects: i) it neither requires residents to wear

any sensors or devices, ii) nor needs them to consciously cooperate during the localization.

In Chapter 4, we build a novel data-driven DfP localization and tracking system upon a set
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of commercial UHF (Ultra-High Frequency) passive RFID tags in an indoor environment. In

particular, we formulate human localization problem as finding a location with the maximum

posterior probability given the observed RSSIs. We propose a series of localization schemes

to capture the posterior probability by taking the advance of supervised-learning models

including Gaussian Mixture Model (GMM), k Nearest Neighbor (kNN) and Kernel-based

Learning. For tracking a moving target, we mathematically model the task as searching

a location sequence with the most likelihood, in which we first augment the probabilistic

estimation learned in localization to construct the Emission Matrix and propose two human

mobility models to approximate the Transmission Matrix in HMM. The proposed HMM-

based tracking model is able to transfer the pattern learned in localization into tracking

but also reduce the location-state candidates at each transmission iteration, which increases

both the computation efficiency and tracking accuracy. The extensive experiments in two

real-world scenarios reveal that our approach can achieve up to 94% localization accuracy

and an average 0.64m tracking error, outperforming other state-of-the-art RFID-based indoor

localization systems. The key research papers related with this part are listed as follows:

[C3] W. Ruan, L. Yao, Q. Z. Sheng, N. Falkner, and X. Li, TagTrack: Device-free Localization and

Tracking Using Passive RFID Tags, The 11th International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services (MobiQuitous’14), London, UK, Dec 2-5, 2014.

[ERA/CORE A, Full Research Paper, Acceptance Rate = 18.1%, Oral Presentation; This work

also won Highly Commended Research Poster Award in The 25th Australia Database Conference

(ADC’14) PhD School in Big Data]

[C4] L. Yao, W. Ruan, Q. Z. Sheng, X. Li, and N. Falkner, Exploring Tag-free RFID-based Passive

Localization and Tracking via Learning-based Probabilistic Approaches, The 23rd ACM International

Conference on Information and Knowledge Management (CIKM’14), Shanghai, China, Nov. 3-7,

2014. [ERA/CORE A, Acceptance Rate = 21.9% ]

[J1] W. Ruan, Q. Z. Sheng, L. Yao, X. Li, N. Falkner, etc., Device-free Human Localization and

Tracking with UHF Passive RFID Tags: A Data-driven Approach, Journal of Network and Computer
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Applications (JNCA), Under 2nd revision.

[ERA A, Impact Factor = 3.5, Extended Version of MobiQuitous’14]

1.3.3 Enhanced Device-free RFID-based Indoor Localization and Track-

ing through Human-Object Interactions

In a cluttered environment such as a residential home, RSSIs are heavily obstructed by

furniture or metallic appliances. Thus the tracking precision of the passive RFID-based

system greatly deceases. However, on the other side, this residential environment is impor-

tant to observe as human-object interaction (HOI) events, detected by pervasive sensors,

can potentially reveal people’s interleaved locations during daily living activities, such as

watching TV or opening the fridge door. In Chapter 5, to deal with the accuracy degradation

in a fully furnished environment, we propose a general Bayesian probabilistic framework to

integrate both RSSI signals and HOI events to infer the most likely location and trajectory. By

leveraging the HOI contexts, the proposed approach significantly enhances the localization

and tracking accuracy of the original system. Experiments conducted in a residential house

demonstrate the effectiveness of our proposed method, in which we can localize a resident

with average 95% accuracy and track a moving subject with 0.58m mean error distance. The

key research papers related with this part are listed as follows:

[C5] W. Ruan, Q. Z. Sheng, L. Yao, T. Gu, M. Ruta and L. Shangguan, Device-free Indoor Local-

ization and Tracking through Human-Object Interactions, The IEEE International Symposium on a

World of Wireless, Mobile and Multimedia Networks (WoWMoM’16), Coimbra, Portugal, June 21-24,

2016. [ERA/CORE A, Full Research Paper, Acceptance Rate = 19.5%, Oral Presentation]

[C6] W. Ruan, Q. Z. Sheng, L. Yao, L. Yang and T. Gu, HOI-Loc: Towards Unobtrusive Human

Localization with Probabilistic Multi-Sensor Fusion, The 14th Annual IEEE International Conference

on Pervasive Computing and Communications (PerCom’16), WiP Track, Sydney, Australia, March

14-18, 2016. [ERA A, CORE A*, 1 of 4 Nominees for Best WiP Poster Award]



1.3 Summaries of Key Chapters 9

1.3.4 Device-free Human Activity Recognition based on Passive RFID

Tag-Array

Human activity recognition is another fundamental functionality in our proposed system.

It usually requires an intelligent environment to successfully infer what a person is doing

or attempting to do. In Chapter 6, we propose a device-free activity recognition approach

by deploying the low cost, passive RFID tags as an array attached on the wall. HAR in our

system is achieved by learning how RSSIs from the passive RFID tag-array are distributed

when a person performs different daily activities. We also systematically explore the impacts

of tag number and locations on the recognition accuracy. Furthermore, we propose a novel

tag selection method to choose the optimal subset of RFID tags in the array. To deal with the

uncertainty in RSSIs caused by the changes of different human activities, we propose the

Dirichlet process Gaussian Mixture Model (DPGMM) based HMM to model the transition

process from one activity to another activity. We conduct extensive experiments consisted by

12 orientation-sensitive activities and a series of activity sequences in a lab environment and

a residential home. The experimental results demonstrate that our proposed approach can

distinguish a series of orientation sensitive postures with high accuracy in both environments.

The experimental results demonstrate the high accuracy of our RFID-based device-free HAR

approach. The key research papers related with this part are listed as follows:

[C7] W. Ruan, L. Chea, Q. Z. Sheng, and L. Yao, Recognizing Daily Living Activity Using Embedded

Sensors in Smartphones: A Data-Driven Approach, The 17th International Conference on Advanced

Data Mining and Applications, (ADMA’16), Gold Coast, Australia, Dec 12-15, 2016. [ERA/CORE

B, Spotlight Paper, Acceptance Rate = 17%, Oral Presentation, Best Student Paper Runner-Up]

[C8] W. Ruan, Unobtrusive Human Localization and Activity Recognition for Supporting Indepen-

dent Living of the Elderly, The 14th Annual IEEE International Conference on Pervasive Computing

and Communications (PerCom’16), PhD Forum, Sydney, Australia, March 14-18, 2016.

[ERA A, CORE A*, Oral Presentation]
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[C9] L. Yao, Q. Z. Sheng, W. Ruan, T. Gu, N. Falkner, X. Li and Z. Yang, RF-Care: Device-free

Posture Monitoring of Elderly People Using a Passive RFID Tag Array, The 12th International Con-

ference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous’15),

Coimbra, Portugal, July 22-24, 2015. [ERA/CORE A, Full Research Paper, Acceptance Rate =

27.9%, Oral Presentation]

[C10] L. Yao, Q. Z. Sheng, W. Ruan, X. Li, S. Wang, Z. Yang and W. Zou, Device-Free Pos-

ture Recognition via Online Learning of Multi-Dimensional RFID Received Signal Strength, The

21st IEEE International Conference on Parallel and Distributed Systems (ICPADS’15), Melbourne,

Australia, Dec 14 - 17, 2015. [ERA/CORE B, Full Research Paper, Oral Presentation]

[C11] L. Yao, Q. Z. Sheng, X. Li, S. Wang, T. Gu, W. Ruan and W. Zou, Freedom: Online Activity

Recognition via Dictionarybased Sparse Representation of RFID Sensing Data, IEEE Intl. Conference

on Data Mining (ICDM’15), Atlantic, USA, Nov 14 - 17, 2015.

[ERA A, CORE A*, Acceptance Rate = 18.2%, Oral Presentation]

1.3.5 Enabling the Fine-grained Device-free Fall Detection

Falls are among the leading causes of hospitalization for the elderly and illness individuals.

Considering that the elderly often live alone and receive only irregular visits, it is essential to

develop such a system that can effectively detect a fall or abnormal activities. In Chapter 7,

we propose a device-free, fine-grained fall detection approach based on pure passive ultra-

high frequency RFID tags, which not only is capable of sensing regular actions and fall events

simultaneously, but also provide caregivers the contexts of fall orientations. In particular,

we first augment the Angle-based Outlier Detection Method (ABOD) to classify normal

actions (e.g., standing, sitting, lying and walking) and detect a fall event. Once a fall event is

detected, we then segment a fix-length RSSI data stream generated by the fall and then utilize

DTW based kNN to distinguish the falling direction. The experimental results demonstrate

that our proposed approach can distinguish the normal daily activities before a fall, as well
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as the fall orientations with more than 90% accuracy. The key research papers related with

this part are listed as follows:

[C12] W. Ruan, L. Yao, Q. Z. Sheng, N. Falkner, X. Li, and T. Gu., TagFall: Towards Device-free,

Fine-grained Fall Detection based on UHF Passive RFID Tags, The 12th International Conference on

Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous’15), Coimbra,

Portugal, July 22-24, 2015. [ERA/CORE A, Full Research Paper, Acceptance Rate = 27.9%, Oral

Presentation; This work also won Best Poster Award in The 9th ACM International Workshop on IoT

and Cloud Computing]

1.3.6 Realizing Human-Machine Interactions Using Touch-free Hand

Gestures

Another important issue in an intelligent residential home is how to accurately and conve-

niently control the domestic electronic appliances equipped (e.g., automated window curtain,

brightness-adjustable lamp, TV and air conditioner). For example, we enter a smart house

and turn on the TV by simply waving a hand in the air, then we can use another hand gesture

to turn on the Air Conditioner as well, furthermore, by several continuous up-and-down

hand-waves, we can adjust the Air Conditioner into a comfortable temperature. To achieve

this functionality, in Chapter 8, we present AudioGest, a device-free gesture recognition

system that can accurately sense the hand in-air movement around user’s mobile devices.

Compared to the state-of-the-art, AudioGest is superior in using only one pair of built-in

speaker and microphone, without model-training or any extra hardware or infrastructure

support, to achieve a multi-modal hand detection. Our HRG system is not only able to

accurately recognize various hand gestures, but also reliably estimate the hand in-air duration,

average moving speed and waving range. We achieve this by transforming the device into an

active sonar system that transmits inaudible audio signal and decodes the echoes of hand at

its microphone. Our experimental results on four real-world scenarios show that AudioGest
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detects six hand gestures with an accuracy up to 96%, and by distinguishing the gesture

attributions, it can provide up to 162 control commands for the smart environment. The key

research papers related with this part are listed as follows:

[C13] W. Ruan, Q. Z. Sheng, L. Yang, T. Gu, P. Xu, and L. Shangguan, AudioGest: Enabling

Fine-Grained Hand Gesture Detection by Decoding Echo Signals, The 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing (UbiComp’16), Heidelberg, Germany, Sept

12-16, 2016. [ERA A, CORE A*, Full Research Paper, Acceptance Rate = 23.7%, Oral Presentation]

[J2] W. Ruan, Q. Z. Sheng, P. Xu, L. Yang, etc., Making Sense of Doppler Effect for Multi-Modal

Hand Motion Detection, IEEE Transaction on Mobile Computing (TMC), To appear

[ERA A*, Impact Factor = 3.822]

1.4 Summary

In conclusion, this Ph.D. thesis attempts to develop a device-free, intelligent and maintenance-

free supporting system that can enable a healthy, safe, cost-effective independent living for

the elderly in a residential home. Recent advancement in low-cost passive Radio-Frequency

Identification technology enables our envisioned system possible. We have systematically

explored how to utilize low-cost, unobtrusive and battery-free passive RFID tags to realize

this living-supporting system. In particular, we tackle this challenge from six research

perspectives. For each part, we provide a novel, device-free and cost-effective solution

by taking recent advances of sensor technologies and state-of-the-art machine learning

techniques. Given the aging of the population, the cost of health care, and the importance that

people want to remain independent and safe at their own homes, the demand on developing

novel technologies such as the one in this thesis is becoming increasingly urgent. Our

proposed innovative technologies can help the elderly live longer independently and safely in
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their own homes, with minimal support from the decreasing number of individuals in the

working-age population.

This thesis has been funded by Prof. Michael Sheng’s Australian Research Council

Discovery Project (ARC DP130104614).





Chapter 2

Literature Review

This chapter focuses on discussing and reviewing the state-of-the-art research works from

five different aspects including missing sensor reading recovery, indoor localization and

tracking, human activity recognition, fall detection and hand gesture recognition. It is

specifically organized as follows, Section 2.1 discusses the latest sensor reading recovery

techniques, especially compares the latest matrix completion and tensor completion methods.

Then Section 2.2 intensively reviews the recent indoor localization and tracking systems

from both wearable and device-free perspectives and further identifies the main pros and

cons of existing RFID-based systems, as well as highlights the advantages of our system.

Furthermore, Section 2.3 concentrates on discussing the state-of-the-art research efforts on

human activity recognition and Section 2.4 reviews the latest fall detection systems, especially

those device-free techniques. Finally, in Section 2.5, we extensively discuss the hand gesture

recognition systems in terms of wearable device and device-free based technologies.

2.1 Missing Sensor Reading Recovery

Imputing/estimating the missing values from a partially observed data have attracted much

interest in the past decades such as signal processing, data mining, computer vision [1, 2].
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Generally, we categorize the techniques of recovering missing values into three types -

regression based methods, matrix completion, and tensor completion based methods. In this

section, we will concentrate on discussing the latter two categories that are more related to

our work.

2.1.1 Matrix Completion Techniques

To capture the global information of a targeted dataset, the “rank" of the matrix is a powerful

tool and many matrix completion/recovery based on the inherent low-rank structure assump-

tion have drawn significant interest. Massive optimization models and efficient algorithms

are proposed [3]. Some researchers [4] have shown that under some mild conditions, most

low-rank matrices can be perfectly recovered from an incomplete set of entries by solving

a simple convex optimization program, namely, solving minM{rank(M)|PΩ(X) = PΩ(T )},

where M indicates recovered data matrix and PΩ means only entries in Ω are observed.

Although low-rank matrix completion has drawn significant interest and has played an im-

portant role in missing data recovery, such methods cannot work or fail to recover the data

matrix under some circumstances that a subset of its entries may be corrupted or polluted by

various sparse noises [5].

As a result, many robust versions of matrix completion that can recover the low-rank

matrix from both noisy and partial observations of data are proposed lately [6, 7]. For

example, Chen et al. [8] investigate the problem of low-rank matrix completion where a

large number of columns are arbitrarily corrupted. They show that only a small fraction of

the entries are needed in order to recover the low-rank matrix with high probability, without

any assumptions on the location nor the amplitude of the corrupted entries. Chen et al. [5]

also deal with a harder problem that a constant fraction of the entries of the matrix are

outliers. They exploit what conditions need to be imposed in order to exactly recover the

such underlying low-rank matrix. Finally, Klopp et al. [9] study the optimal reconstruction
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error in the case of matrix completion, where the observations are noisy and column-wise or

element-wise corrupted and where the only piece of information needed is a bound on the

matrix entries. Recently, a multi-view learning based method is proposed to capture both

local and global information in terms of spatial and temporal perspective, achieving state-of-

the-art performance [10]. It also demonstrates that both local and global spatial/temporal

correlations play an important role in sensor data reconstruction.

2.1.2 Tensor Completion Techniques

Though promising of matrix-based models, the recovered dataset, in many practical applica-

tions, has complex multi-dimensional spatio-temporal correlations, which can be naturally

treated as a tensor instead of a matrix [11, 12]. Therefore data recovery based on high-

dimensional tensor or multi-way data analysis is becoming prevalent in recent several years.

Generally, there are two state-of-the-art techniques used for tensor completion. One is

the nuclear norm minimization, many pioneering similar works are emerged [13, 14] since

Liu et al. [11] first extend the nuclear norm of matrix (i.e., the sum of all the singular values)

to tensor. Later on, Gandy et al. [13] and Signoretto et al. [15] consider a tractable and

unconstrained optimization problem of low-n-rank tensor recovery and adopt the Douglas-

Rachford splitting method and Alternating Direction Method of Multipliers (ADMM) method.

Another popular technique is to utilize the tensor decomposition [16], i.e., decomposing

the Nth-order tensor into another smaller Nth-order tensor (i.e., core tensor) and N factor

matrices. Generally, Tucker and CANDECOMP/PARAFAC are the two most popular

tensor decomposition frameworks [17]. For example, Acar et al. [18] develop an algorithm

called CP-WOPT (CP Weighted OPTimization), which introduces a first-order optimization

approach for dealing with missing values and has been testified to provide a good imputation

performance. Alexeev et al. [19] however focus on exploring tensor rank lower and upper

bounds, especially for the explicit tensors. More recently, Da Silva et al. [20] and Kressner et
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al. [16] propose a nonlinear conjugate gradient method for Riemannian optimization based

on the hierarchical Tucker decomposition and Tucker decomposition separately. However,

those tensor completion methods are neither applied into recovering spatio-temporal sensory

data, nor can deal with a circumstance that the known sensor readings are corrupted by noise.

Our ADMM based robust tensor completion method, on the contrary, can fill both two gaps

and recover the missing sensor values with a high accuracy and robustness.

2.2 Device-free Human Localization and Tracking

This section will review the related works regarding indoor localization and tracking. Gen-

erally, they can be categorized as wearable-device based localization and device-free lo-

calization. We will focus more on the device-free techniques that is more related to our

system.

2.2.1 Wearable Devices based Techniques

Wearable device based systems normally require the user to carry or wear a device such as

RF transceivers, smart-phones, RFID reader or tags. The very first indoor localization work

is Criket [21] which is able to track a subject wearing an ultrasonic transmitter by measuring

the ToA (time-of-arrival) of a short ultrasound pulse. Another very famous pioneering work,

LANDMARC [22], first deploys dozens of active RFID tags in the indoor environment, and

then match the RSSI from a tag carried by a subject with the profiled RSSI fingerprints to

localize a target. Lately, Yang et al. [23] design a high-performance tracking system based

on passive RFID hardware, which can real-time track a tagged object with a centimeter-level

error. With the popularity of smart phones, Zhou et al. [24] present an activity sequence-based

pedestrian indoor localization approach using smartphones. They first detect the activity

sequence using activity detection algorithms and use HMM to match the activities in the



2.2 Device-free Human Localization and Tracking 19

activity sequence to the corresponding nodes of the indoor road network. MaLoc [25] utilizes

magnetic sensor and inertial sensor of smart-phones by a reliability-augmented particle filter

to localize a subject, which does not impose any restriction on smart-phone’s orientation.

Currently, wearable device based localization is still a very active research area due to its

high accuracy and robustness. However, the requirement of wearing a sensor or device may

not be practical for some circumstances.

2.2.2 Device-free Techniques

Device-free techniques can relax wearing requirements for users. In 2007, the device-free

localization challenge was first identified by Youssef et al. [26] who designed a preliminary

WIFI-based Device-free Passive (DfP) localization system. Since then enormous DfP lo-

calization schemes have emerged. Basically, according to the type of hardware installed,

device-free localization schemes can be generally classified into three categories: WIFI,

RFID, and environmental sensors1 based techniques. Environmental-sensor based category

includes many types of sensors, which either cost too much or need some special deploy-

ment for facilities, or may be influenced by natural light or thermal source. Next, we will

intensively review the device-free localization systems based on WIFI and RFID, which is

more related to our system.

WIFI-based Device-free Localization

With the pervasiveness of WIFI, enormous device-free localization systems built upon

wireless signals have emerged during the last decade [43]. The general intuition behind

this technique is that, when a user moves in a monitored area, RSS and CSI abstracted

from WIFI signals will embody different attenuation levels. WIFI-based schemes exploit

various models to decode the signal variations in either Radio Signal Strength (RSS) or

1For simplicity, in this thesis, we generally treat camera-based techniques as one type of environmental
sensors, including infrared sensors [27], light sensors [28], and varies kinds of cameras [29–31]
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Table 2.1 Comparison of typical device-free localization systems

Comparison
Systems

Measured
Physical
Quantity

Non-LoS
Localization? Hardware

Cost of Single
Node/Device

TagArray[32] RSS Threshold NO Active Tags Medium

TASA[33] RSS Threshold NO
Passive and
Active Tags Medium

RTI[34] RSS Attenuation NO Wireless Nodes Medium

CareLoc[35] Swipe Event NO
Passive

RFID Tags Low

NUZZER[36] RSS Changes YES Wireless Nodes Medium
SCPL[37] RSS Changes YES Wireless Nodes Medium
ilight[28] Light Strength No Light Sensors High

Ichnaea[38] RSS changes YES Wireless Nodes Medium

Twins[39]
Critical

State Jump YES Passive Tags Low

VisualLoc[40] Video Frame NO
Wireless

Visual Sensors High

WiTrack[41] FMCW signal Yes USRP Very High

FlexibleTrack[42] RSSI YES
Smartphone and
Wireless Nodes Medium

Ours RSS Variance YES Passive Tags Low

Localization
Accuracy

Maintenance
(e.g., replace
battery etc.)

Training
Overhead

Tested in a
Residential

Home?

Device
-free?

Medium Medium Low NO YES
Medium Medium Low NO YES

High High Low NO YES
High/Detecting

Swipe Event Low Low
NO/Test in

Hospital NO

High Medium High NO YES
Medium Medium Medium NO YES
Medium Medium Low NO YES

High Medium High NO YES
High Low Low NO YES

Very High Medium Low No YES
Very High High Low NO YES
Medium Medium Low NO NO

High Low Low YES YES

Channel State Information (CSI) for localization or tracking [44]. For example, RTI [34]

proposes a radio tomographic imaging model to resolve the RSS attenuation caused by human

motion within an area with dense-deployed wireless notes. By extending the fingerprint-

based technique, Xu et al. [45] adopt various several discriminant analysis approaches to
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classify a user’s location. Furthermore, they design another localization system, SCPL [37],

which is able to count and localize multiple residents. NUZZER, a large-scale indoor DfP

tracking system, was developed by Seifeldin et al. [36]. This work first builds a passive

RF map in an off-line manner and then utilizes a Bayesian model to find a location with

maximum likelihood. Ichnaea [38] is another advanced WIFI-based device-free system

in terms of training overhead and robustness. It combines anomaly detection method and

particle filtering to robustly track a single subject in an area with wireless infrastructure.

More recently, WiTrack, designed by Adib et al. [41], is able to track a human body even the

subject is behind a wall or occluded by furniture. It requires the support of USRP and decodes

the locations by analyzing the reflected specialized Frequency Modulated Continuous Wave

from the human body.

RFID-based Device-free Localization

Undoubtedly, WIFI-based systems bear some promising characters such as moderate cost,

tiny node size and elegant signal propagation models. However, they still require to be

powered in a wire or battery style, which inevitably needs regular maintenance, e.g., periodical

replacement of batteries. On the contrary, RFID-based DfP localization systems have shown

more attractive features such as significant cost-efficiency, zero maintenance (cheap passive

tags) and good hardware scalability. Thus several pioneering device-free systems have

been developed recently based upon either active or passive RFID hardwares. The very

first RFID-based device-free localization system, TagArray, is proposed by Liu et al. [32]

who placed active RFID tags as arrays on the ground localizing a subject by measuring

if RSSI readings are higher than a threshold. TASA [33] is another similar device-free

localization system but is more cost-efficient due to it utilizes both passive and active RFID

tags. Both TagArray and TASA systems focus more on mining frequent trajectory patterns

instead of tracking accuracy, and they only quantify the binary relation of RSSI readings
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with human locations (i.e., comparing RSSIs with thresholds). Later on, Wagner et al. [46]

extend the RTI model from WIFI-based localization to RFID hardware platform that can

track a single user in a small obstacle-free zone with dense passive tags deployed. Very

recently, a new localization system built upon passive tags, Twins [39], was also proposed,

which leverages an interference observation of two very-near tags to detect an intruder in

a warehouse reaching 0.75m mean tracking error. More lately, Yang et al. [47] design a

device-free, see-through-wall tracking system with high accuracy, in which they attached

a group of passive RFID tags on the outer wall to track a moving subject by analyzing the

reflected signals from human body.

Table 2.1 compares our system with other typical localization systems in a high-level

view. Our work thoroughly mines the relations between the RSSI of tags and the impact

brought by human motion to achieve high accuracy localization and tracking. Moreover, our

RFID-based system is built solely upon passive tags, which is less costly and more convenient

for a practical deployment (e.g., tiny size and weight, battery-free feature). At the same time,

our system does not contain any privacy information since it merely exploits RSSI signals

from passive tags. More importantly, most existing localization systems based passive RFID

tags are deployed and tested in an controlled/semi-controlled or cleared space (i.e., a room

or office equipped only with a few objects, lack of metal electronic appliances). However,

by further leveraging the human-object interaction events in a residential home, our passive

RFID based, device-free system can beyond the limits of current similar systems and achieve

high-accuracy localization and tracking accuracy even in a clustered full-furniture house.

2.3 Human Activity Recognition

The goal of activity recognition is to detect human physical activities from the data collected

through various sensors. There are generally two main research directions: i) to instrument
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people, on whom sensors and RFID tags are attached, and ii) to instrument the environment,

where sensors are deployed inside the environment and people do not have to carry them.

Wearable sensors such as accelerometers and gyroscopes are commonly used for recog-

nizing activities [48–51]. For example, the authors in [52] design a network of three-axis

accelerometers distributed over a user’s body. Activities can then be inferred by learning

information provided by accelerometers about the orientation and movement of the cor-

responding body parts. However, such approaches have obvious disadvantages including

discomfort of wires attached to the body as well as the irritability that comes from wearing

sensors for a long duration. More recently, researchers are exploring smart phones equipped

with accelerometers and gyroscopes to recognize activities and gesture patterns [53, 54].

Krishnan et al. propose an activity inference approach based on motion sensors installed in a

home environment [55].

Apart from sensors, RFID has been increasingly explored in the area of human activity

recognition. Some research efforts propose to realize human activity recognition by com-

bining RFID passive tags with traditional sensors (e.g., accelerometers). In this way, daily

activities are inferred from the traces of object usage via various classification algorithms

such as Hidden Markov Model, boosting and Bayesian networks [56, 57]. Recently, passive

RFID techniques have been widely used in pervasive computing community. Thus some

pioneering efforts are emerged to exploit the potential of using “pure” RFID techniques for

activity recognition. For instance, Wang et al. [58] present a prototype RFID-based system to

characterize human activity by extracting temporal and spatial features from radio frequency

patterns. Asadzadeh et al. [59] propose to recognize gesture with passive tags by combining

with multiple subtags to tackle uncertainty of the RFID readings. However, these research

efforts require people to carry RFID tags or even readers (e.g., wearing a bracelet).

More recently, similar to device-free localization and tracking, many research efforts

concentrate on exploring device-free activity recognition. Such approaches generally exploit
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radio transmitters installed in environment, and people are free from carrying any receiver

or transmitter. Most device-free approaches focus on analyzing and learning distribution

of received signal strength or radio links. Youssef et al. [60] propose to localize people by

analyzing wireless signal strength moving average and variance. Zhang et al. [33] develop

a tag-free sensing approach using RFID tag array. However, most of these efforts have

been done on localization and tracking, not on activity recognition. Only very recently, the

authors of [61] and [62] propose device-free activity recognition approaches using sensor

arrays. Arising from this idea, we deploy passive RFID tags as an array attached on the wall

of a residential home to achieve the device-free activity recognition. Compared to current

device-free HAR works, our passive RFID-based approach has many advantages including

in low cost and maintenance free, as well as light size and weight.

2.4 Fall Detection

Timely detection of a fall event can abbreviate the damage degree and reduce the mortality

for the elderly. Fall detection for the elderly has been a hot topic in health-care industry and

has attracted a lot of attention from academia in the past two decades. Since early 1990s,

many fall detection systems have been proposed by researchers from different communities.

In [63, 64], the hardware and methods used in existing fall detection systems have been

thoroughly discussed and reviewed. Based on the hardware used by fall detection, current

systems can be classified into four groups: wearable sensor based, smart-phone based, vision-

based, and environmental sensor based techniques. From the point of obstructiveness, the

former two categories can be regarded as device-free, the latter two are of intrusive in general.
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Wearable sensor based fall detection systems rely on sensors that are embedded in wear-

able items such as coat, belt and watch or be taken by hand, such as smart cane. The widely

used sensors include inertial sensors [65], tri-axial accelerometers [66], gyroscopes [67]

and smart cane [68]. Lee et al. [65] proposed a novel vertical velocity-based fall detection

method to detect a fall event using a wearable inertial sensor. Cheng et al. [66] designed

a cascade-AdaBoost-SVM classifier to realize a real-time fall detection method based on

tri-axial accelerometers worn on the body. Li et al. [67] presented a fall detection system

using both accelerometers and gyroscopes, in which linear acceleration and angular velocity

are measured to determine whether motion transitions are intentional. In [68], Lan et al.

present and design an automatic fall detection system by using a smart cane. These detection

systems can only work on the premise that all the devices are worn by the subject and con-

nected correctly to the human body. Such requirements give additional burden and interfere

subjects’ daily life, which are impractical for some applications.

Most modern smart-phones have built-in sensors that can measure motion, orientation,

and various environmental conditions. These sensors are capable of providing raw data

with high precision and accuracy. Thus, smart phone based fall detection is promising

and with good potential [69], which can integrate all sensors into one single mobile device

(e.g., inertial sensors [70], tri-axial accelerometers [71] and gyroscopes [72]). However,

smart-phone based fall detection systems share the same mechanism as wearable sensors

based techniques. They also have the same problem with wearable based methods. Most

users may not take with their phones all the time, especially at home.

Much work has also been done in investigating the use of standard imaging sensors

for fall detection. Approaches have ranged from single cameras mounted on the wall to

multiple cameras placed around a room [73, 74], or to using a depth-camera Kinect [75, 76].

Lee [77] detected a fall by analyzing the shape and 2D velocity of the person. Rougier [78]

used wall-mounted cameras to cover large areas and falls were detected using human shape
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variation. Despite the considerable achievements that have accomplished in this field over the

recent years, traditional camera-based systems still suffer from a number of limitations. The

problem this method brings is that people may feel uncomfortable with a camera overhead,

especially in bathroom. Besides the privacy intrusion, this method is also limited by line of

sight problem and fails in darkness, where falls usually happen.

Device-free fall detection that use environmental sensors attempts to fuse ambient noise

information including thermal distribution [79], audio [80], floor vibrational [81], Channel

State Information (CSI) [82] data and microwave signal [83] produced by a fall for the

detection purpose. The principle is based on the fact that human movements in a living

setting will cause the signal variations of environmental sensors (e.g., pressure senors [81],

acoustic sensors [80], thermal sensors [79] and wireless transceivers [82], radars [83]), which

can be regarded as being less intrusive. For example, WiFall [82] employs the time variability

and special diversity of Channel State Information (CSI) as the indicator of human activities

to infer a fall event. However, current device-free fall detection systems focus more on

detecting a fall event in some predefined areas and fail to provide fine-grained information

such as status before falling and fall orientations, which may be valuable for rescuers.

Figure 2.1 illustrates our device-free, fine-grained fall detection system based on pure UHF

passive RFID tags in the design space of current FD systems. Compared to other hardware

platforms, RFID is cost-effective (passive tags cost several cents each) and practical (e.g., no

maintenance needs, no battery) and promising in identifying environmental changes [84, 85].

In the meantime, our FD system can provide fine-grained contextual information of a fall

event, including what is people doing before falls and the falling orientation.

2.5 Hand Gesture Recognition

Hand gesture recognition is an active research area over last decades and has been widely

used in many areas such as medical systems, human-machine interactions, and automotive
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assistant systems. Existing HGR systems can be categorized into two general types: wearable

sensor/device based gesture recognition and device-free gesture recognition.

2.5.1 Wearable Devices based Gesture Recognition

Wearable sensor/device based systems utilize various sensors (i.e., 3-axis accelerometer [86],

inertial sensor [87], gyroscope [88] or other smart devices [89] etc.) to sense the movement

of hand or arm. For example, some researchers infer the hand movement by wearing a shaped

magnet [90]. Humantenna [87] requires the user to wear a small Wireless Data Acquisition

Unit enabling the human body as an antenna for sensing whole-body gestures. With the

advanced built-in sensors in mobile device, the system in [88] transfers the acceleration

recorded by a smartphone into a real-time hand moving trajectory.

Recently, Lu et al. [91] designed a wearable device to acquire acceleration and SEMG

(Surface ElectroMyoGraphic) signals and adopted a DTW-based Bayesian classifier to recog-

nize 19 predefined gestures. Singh et al. developed Inviz [92], a low-cost gesture recognition

system using textile-based capacitive sensor arrays. It decodes hand gestures through a

calculation-efficient hierarchical algorithm. More lately, some researchers adopt micro-

radars to realize a series of gesture recognition applications. For instance, Li et al. proposed

Tongue-n-Cheek [93], a contact-less tongue gestures recognition system by designing a head-

wearable device containing three 24GHz micro-radars. By adopting a similar micro-radar

array, Goel et al. designed a facial gesture recognition system, called Tongue-in-Cheek [94],

which can differentiate 8 facial expressions. All these gesture recognition systems either

require users to wear a device/sensor (e.g., magnet ring, smart bracket and SEMG sensors) or

need to install extra hardware such as WDAU, micro-radar or capacitive plates, which might

be impractical for some applications (e.g., elderly people with dementia may forget to wear

those devices or sensors) and add extra cost.
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Beside those conventional gesture systems, some other research efforts focus on stroke-

gesture recognition which enables smart-phones to accurately recognize the hand strokes

on the screen. For example, Wobbrock et al. [95] develop a uni-stroke gestures recogni-

tion system, called $1 Recognizer, which can recognize 16 pen-gestures on the screen of

a smartphone. Li et al. design Protractor [96], a fast and lightweight single-stroke ges-

ture recognition system, which introduces a novel closed-form solution for calculating the

similarity of hand strokes. However, these recognition systems are mainly for recognizing

stroke-based gestures by touching the screen, which is different from our HGR system that

focuses on in-air multi-modal hand gesture recognition without screen-touching.

2.5.2 Device-free Gesture Recognition

This category can be further classified into vision-based, environmental sensor based, RF-

based, and sonar-based approaches.

Video-based hand-gesture recognition systems often do the hand-region segmentation

using color and/or depth information, and sequences of features for dynamic gestures are

used to train classifiers, such as Hidden Markov Models (HMM) [97], conditional random

fields [98], SVM [99], DNN [100]. However, vision-based techniques are usually regarded as

being privacy-invasive. They also require users within the LOS (line of sight) of cameras, fail

to work in dimmed environments, and incur high computational cost. Some environmental

sensor-based hand recognition systems have been emerged, such as Leap Motion that explores

multiple channels of reflected infrared signals to identify hand gestures, Kinect [101] that

uses depth sensor to enable in-air 3D skeleton tracking.

Recently, RF-based gesture recognition systems are also very popular due to its low-cost

and being less intrusive [102, 103]. For example, WiVi [104, 105] uses ISAR technique to

track the RF beam, enabling a through-wall gesture recognition. RF-Care [106] proposes to

recognize human gestures and activities in a device-free manner based on a passive RFID
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array. WiSee [107] can exploit the doppler shift in narrow bands in wide-band OFDM

(Orthogonal Frequency Division Multiplexing) transmissions to recognize 9 different human

gestures. WiGest [103] explores the effect of the in-air hand motion on the RSSI in WiFi

to infer the hand moving directions as well as speeds. Melgarejo et al. [108] leverage the

directional antenna and short-range wireless propagation properties to recognize 25 standard

American Sign Language gestures. AllSee [109] designs a very power-efficient hardware

that extracts gesture information from existing wireless signals.

SonarGest [110] is one of the pioneering audio-based hand recognition systems, which

uses three ultrasonic receivers and one transmitter to recognize 8 hand gestures. The technique

utilized is a supervised Gaussian Mixture Model that can capture the distribution of the feature

vectors obtained from the Doppler signal of gestures. However, it needs to collect training

data (potentially labour-intensive and time-consuming) and requires extra sonic hardware.

SoundWave [111] is another pioneering HGR system by exploiting audio Doppler effect

as well. It only utilizes the built-in speakers and microphones in computers and require

no training. SoundWave designs a threshold-based dynamic peak tracking technique to

effectively capture the Doppler shifts, thus can distinguish five different hand gestures.

Most recently, researchers are trying to transform Commercial off-the-shelf (COTS)

speakers and microphones into a sonar system to detect human breath [112], track a finger

movement [113], and sense user’s presence [114]. Most of these systems adopt similar ideas

from RF-based approaches, either decoding the echo of Frequency-Modulated Continuous-

Wave Radar (FMCW) sound-wave to measure the human body, or utilizing the OFDM to

achieve real-time finger tracking, or exploring the Doppler effect when human approaching

or away from the microphone. However, such systems need two microphones or require

specialized design of soundwave that is power-intensive. Motivated by, but different to,

the previous works, our system only utilizes one speaker and one microphone by emitting

single-tone audio to achieve a multi-modal gesture recognition. It can also decode the echo’s
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spectrogram into real-time hand waving velocity by thoroughly exploring the relations of

hand motion and echo’s frequency shifts.

2.6 Summary

In conclusion, this chapter intensively reviews state-of-the-art related works from five research

facets, which substantially covers six research issues we intend to solve in this thesis.

Concretely, in the hardware layer, we discuss the recent research efforts on missing data

recovery, especially thoroughly compare the pros and cons between matrix completion and

tensor completion techniques. In the discovery layer, we extensively review the indoor

human localization and activity recognition approaches from wearable device and device-free

based views. For the latter category, we further detail the latest advance by classifying it

into WIFI-based, RFID-based techniques. In the monitoring layer, we primarily focus on

reviewing the fall detection systems. In the application layer, we discuss the recent hand

gesture recognition systems.

In this chapter, we provide contexts and literature reviews for the six research issues

targeted by this thesis. Also, we illustrate how our ideas naturally arises from and advance

those related works. From Chapter 3 to Chapter 8, we will present the technical details of

our solutions or systems correspondingly.





Chapter 3

Recovering Missing Sensor Readings via

Low-Rank Tensor Completion

With the booming of the Internet of Things, tremendous amount of sensors have been installed

in different geographic locations, generating massive sensory data with both time-stamps and

geo-tags. Such type of data usually have shown complex spatio-temporal correlation and are

easily missing in practice due to communication failure or data corruption. In this chapter,

we aim to tackle the challenge – how to accurately and efficiently recover the missing values

for corrupted spatio-temporal sensory data. In particular, we first formulate such sensor

data as a high-dimensional tensor that can naturally preserve sensors’ both geographical and

time information, which we call a spatio-temporal Tensor. Then we model the sensor data

recovery as a low-rank robust tensor completion problem by exploiting its latent low-rank

structure and sparse noise property. To solve this optimization problem, we design a highly

efficient optimization method that combines the alternating direction method of multipliers

and accelerated proximal gradient to minimize the tensor’s convex surrogate and noise’s

ℓ1-norm. In addition to testing our method by a synthetic dataset, we also use passive RFID

(radio-frequency identification) sensors to build a real-world sensor-array testbed, which
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generates overall 115,200 sensor readings for model evaluation. The experimental results

demonstrate the accuracy and robustness of our approach.

3.1 Introduction

With the rapid development of sensor technology, enormous numbers of smart devices or

sensors have been deployed in our planet and thus served as a basic yet essential component

of IoT (Internet of Things) [115, 116]. Such tremendous smart devices enable ease of

access, retrieval and monitoring of our surrounding environment in a real-time manner. For

instance, fine-particles (e.g., PM 2.5) sensors are deployed in different locations within a

city to continuously and cooperatively monitor the air quality [117, 118]. Usually, many

sensory data in real world share a common character that they are not only related to the time

dimension (e.g., time series data) but also have a two-dimensional (e.g., sensors deployed in

different latitudes and longitudes) or even three-dimensional spatial attribute (e.g., sensors

placed in various latitudes, longitudes and altitudes), which we thus call multi-dimensional

spatio-temporal sensory data.

However, in practice, sensors easily experience an issue of missing readings due to unex-

pected hardware failures (e.g., power outages) or communication interruptions [117, 119].

Those missing values will not only decrease the real-time monitoring performance, but also

compromise the accuracy of back-end data analysis such as data predication, inference or

visualization. Besides the data loss, the observed sensory data are also easily polluted by the

environmental noise, making accurate data recovery even more difficult [117]. Therefore, ac-

curately yet efficiently interpolating the missing sensory data is a non-trivial and challenging

task, especially for the multi-dimensional spatio-temporal sensory data with noise pollution.

The key to tackle this challenge lies on how to accurately model the quantitative dependen-

cies of the missing readings with the known ones. The most widely used and straightforward

technique is various filtering or regression algorithms that estimate the missing values ac-
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cording to their local temporal/spatial interdependence, such as median filtering, exponential

moving averaging [120], Kriging, Kalman filtering [121], or regression methods with differ-

ent complexities including ARMA/SARIMA (AutoRegressive Moving Average/Seasonal

AutoRegressive Integrated Moving Average), SVR (Support Vector Regression) [122], kNN

(k-Nearest Neighbors) etc. However, such intuitive approaches suffer from two shortcom-

ings: i) it only learns either spatial or temporal dependencies among readings, and is hard

to capture both features; ii) it unavoidably ignores the global correlations of data (e.g., for

some occasions, the missing readings may depend on some far-away entries instead of those

nearby values), leading to an inaccurate estimation in some circumstances.
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To solve this issue, some researchers treat the sensory data as a matrix and propose

various matrix completion/recovery methods to estimate the missing values by capturing their

inherent low-rank structure1 [4, 123]. Those methods usually model time-dependent sensory

data as a matrix S = [s1,s2, ...,sT ] where vector sk ∈ RN represents readings of N different

sensors at time-stamp k. In this regard, matrix completion based methods are, in principle, to

recover the unknown entries by solving an optimization problem: minM{rank(M)|PΩ(M) =

PΩ(S)} where M ∈ RN×T indicates recovered data matrix and PΩ is the project operator that

means only entries in Ω are observed [123]. Also, several robust low-rank matrix completion

methods are recently proposed to deal with a case that the observed data matrix S are polluted

by noise [124]. Although matrix-based methods can well take advantage of the temporal

information, still they are limited to capturing one-dimensional spatial structure due to a fact

that, in matrix formulation, sensors with two-dimensional spatial coordinates are mapped into

a one-dimensional vector, unavoidably resulting in the spatial information loss, as illustrates

in Figure 3.1.

Recently, a multi-view learning based method has been proposed to capture both local

and global information in terms of spatial and temporal perspective, achieving state-of-the-art

performance [10]. It also demonstrates that both local and global spatial/temporal correlations

play an important role in sensor data reconstruction. However, this method needs to carefully

tune five different models, causing two issues: i) parameter tuning is not only labor-intensive

but also requires some domain knowledge; and ii) the interpolation accuracy is sensitive

to the parameters since the linear coefficients directly propagate to the model output. In

addition, it cannot deal with a case that the known sensor readings are corrupted.

As a result, to resolve those unsatisfied issues, this chapter formates the spatio-temporal

sensor data as a multi-dimensional tensor - a natural high-order extension of a matrix.

Figure 3.1 illustrates our general idea, for spatio-temporal sensory data, compared to the

1 The rank of a matrix is often linked to the order, complexity, or dimensionality of the underlying system,
which tends to be much smaller than the data size.
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matrix formulation that only preserves one-dimensional spatial similarity, a tensor-based

method naturally captures the two-dimensional geographic dependency among sensors.

Nevertheless, applying this high-level idea into the practical still requires to address several

challenges. Similar to a matrix-based method [124], low-rank tensor-based data recovery can

be formulated as an optimization problem: minM ,N {rank(M )+λ∥N ∥0 | PΩ(M +N ) =

PΩ(S )} where M ,N ,S represent the recovered data tensor, additive noise tensor and

observed data tensor respectively, PΩ means the known entries of tensor. To this end, the

first challenge is that, the above optimization is a NP-hard untraceable problem [11]. For

the matrix version, we can replace rank(M ) by its tightest convex surrogate (i.e., trace

norm), enabling it solvable (i.e., a convex optimization problem). But how to define a convex

surrogate for a tensor rank needs some careful design. Secondly, even we can define an

effective convex surrogate and make the problem traceable, how to efficiently solve the

convex optimization problem with a convergence guarantee also deserves an elaborative

consideration.

To address the above challenges, we generalize the idea of trace norm in matrix comple-

tion into the tensor, replacing the rank regularization term by the sum of tensor unfoldings’

trace norms under all modes (see details in Sec. 3.2). Moreover, to optimize the objective

function, we first apply a variable-splitting trick by introducing auxiliary tensor variables

to decouple the interdependency of different tensor-modes, then we design an efficient opti-

mization method with a strict convergence guarantee by drawing upon recent advances of

Alternating Direction Method of Multipliers (ADMM) [125] and Accelerate Proximal Gradi-

ent (APG) [3] (see details in Sec. 3.2 and Algorithm 1). In a nutshell, our main contributions

are summarized as follows:

• We propose a robust low-rank tensor completion method to accurately recover the

missing sensor readings under a circumstance of noise pollution by exploiting the latent

spatio-temporal structures and sparse noise property. We also introduce an efficient
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ADMM based optimization scheme to solve the robust tensor completion problem

with a theoretical guarantee of convergence to a global optimum.

• We design a real-world sensor-array testbed consisting of 4×4 passive radio-frequency

identification sensor-tags, generating overall 115,200 received signal strength indicator

(RSSI) readings for the model evaluations. The experiments in both synthetic and

real-world datasets demonstrate that our approach outperforms the state-of-the-art

approaches in terms of accuracy and robustness.

The rest of the chapter is organized as follows. Sec. 3.2 introduces problem formulation

and notations of our solution. We present our model and optimization method in Sec. 3.3 and

Sec. 3.4 presents experimental results and analysis. In Sec. 3.5, we offers some concluding

remarks.

3.2 Problem Formulation

First, we mathematically define our target problem. Assuming that we have I1× I2 sensors

deployed in different spatial areas and collect (noisy) sensor readings2 for T timestamps (see

the example in Figure 3.1), we then can formulate it as a 3-order tensor O ∈ RI1×I2×T and

O = M +N where M represents the true sensor readings (without noise) and N means

the added noise. We use the projection operator PΩ(O) : RI1×I2×T → RK that indicates the

K observed sensor readings oi, j,t where the index (i, j, t) ∈Ω, mapping a tensor to a vector.

Formally, this chapter therefore aims to solve the following Corrupted Sensor Value Recovery

problem:

Problem 1 (Corrupted Sensor Value Recovery) Given a partially observed data tensor

OΩ, our task is to accurately recover the true sensor readings M and additive noise N ,

where M ,N ,O ∈ RI1×I2×···×Id .
2We assume the additive noises are sufficiently sparse relative to the data tensor O .
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Throughout this chapter, we represent scalars, vectors and matrices by lowercase letters

e.g., x, bold lowercase letters such as x, and upper letters X . Tensors of d-order/dimension

are written by calligraphic letters like X ∈ RI1×I2×···×Id , whose elements are represented by

xi1···ik···id ∈ R and 1≤ ik ≤ Ik,1≤ k ≤ d. Thus a vector can be seen as a 1-order tensor and a

matrix can be seen as a 2-order tensor.

Definition 1 Unfolding Operator: the mode-k unfolding of X ∈ RI1×I2×···×Id is denoted by

un f old(X ,k) = X(k) ∈ RIk×∏i ̸=k Ii , i.e., the row of the matrix X(k) are determined by the k-th

component of the tensor X , whereas all the remaining components form its columns.

This operation transforms a tensor into a matrix, i.e. matricization or flattening.

Definition 2 Folding Operator: the mode-k folding of a matrix X(k) is defined as f old(X(k),k)=

X .

Definition 3 Inner Product of Tensor: the inner product of two tensors with identical size

X ,Y ∈ RI1×I2×···×Id is computed by ⟨X ,Y ⟩ := ∑i1,i2,··· ,id xi1i2···id yi1i2···id .

Definition 4 Frobenius Norm: Frobenius norm of X is defined as ∥X ∥F := (∑i1,i2,··· ,id

|xi1i2···id |2)
1
2 .

Thus, for any k ∈ {1, ...,d}, we have ∥X ∥F = ∥X(k)∥F , and ⟨X ,Y ⟩= ⟨X(k),Y(k)⟩.

Definition 5 Tensor-matrix multiplication: the multiplication of a d-order tensor X ∈

RI1×I2×···×Id with a matrix A ∈ RJ×Ik in mode-k is mathematically defined as X ×k A ∈

RI1×···×Ik−1×J×Ik+1×···×Id .

Definition 6 Tucker decomposition: Given an input tensor, Tucker decomposition uses a

smaller/core tensor multiplied by a matrix along each mode to describe the original tensor.
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A tensor X ∈ RI1×I2×···×Id decomposes as

X = G×1A(1)×2A(2) · · ·×dA(d) = [[G ,A(1), ...,A(d)]]

=
R1

∑
r1=1

r2=1

∑
R2

· · ·
rd=1

∑
Rd

gr1r2···rd a(1)r1 ◦ · · · ◦a(d)rd

(3.1)

where {A(k)}d
k=1 ∈ RIk×Rk are a set of factor matrices and R1,R2, ...,Rd is defined as the

Tucker rank. ’◦’ denotes the outer product. When d = 3, Tucker decomposition of tensor is

X = G×1A×2B×3C = [[G ,A,B,C]].

3.3 Robust Low-Rank Spatio-Temporal Tensor Recovery

Being similar to matrix completion, Problem (1) can be formulated as solving a low-rank

minimization problem.

min
M ,N

rankTucker(M )+λ ||N ||0

s.t. PΩ(M +N ) = PΩ(O)

(3.2)

where rankTucker(M ) is the Tucker-rank of a tensor [126]. Similar to matrix comple-

tion, this problem is NP-hard. Thus, to make it tractable, we replace Tucker rank by

its convex surrogate and use ℓ1-norm instead of ℓ0-norm as minM ,N {ConSurro(M ) +

λ ||N ||1 | s.t. PΩ(M +N ) = PΩ(O)}.

Then the first issue is how to define the convex surrogate of a tensor. For a matrix, the

trace norm ∥.∥∗ is the tightest convex envelop of its rank, used as the convex surrogate. Thus,

the idea can be generalized into the high-order tensor, defining its trace norm as the sum of

the trace norms [11] of the mode-i unfolding in tensor M , i.e., ConSurro(M ) = ∑i ∥M(i)∥∗.

Eqn. (3.2) can be therefore transformed into a convex problem:
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min
M ,N

d

∑
i=1
∥M(i)∥∗+λ ||N ||1

s.t. PΩ(M +N ) = PΩ(O)

(3.3)

To solve Eqn. (3.3), we introduce an Alternating Direction Method of Multipliers [125]

that is very efficient in dealing with convex optimization problems by breaking them into

smaller pieces, each of which is then easier to handle. However, the trace norm of each

mode unfolding ∥M(i)∥∗,(i = 1, ...,d) shares the same values in data tensor M and cannot

be optimized independently so that existing ADMM cannot directly be applied to our

problem. Hence, we split these interdependent terms by introducing auxiliary variables

M1,M2, ...,Md , so that they can be solved independently. In particular, we reformulate

Eqn. (3.3) as

min
M1,...,Md ,N

d

∑
i=1
∥Mi,(i)∥∗+λ∥N ∥1

s.t. PΩ(Mi +N ) = PΩ(O), i = 1, ...,d.

(3.4)

We hence define its augmented Lagrangian function as

Lµ(M1, ...,Md,N ,Y1, ...,Yd) =
d

∑
i=1

(
1

2µ
∥PΩ(Mi +N )−PΩ(O)∥2−

⟨Yi,PΩ(Mi +N )−PΩ(O)⟩)+
d

∑
i=1
∥Mi,(i)∥∗+λ∥N ∥1.

(3.5)

According to ADMM, we first fix N to optimize Mi (i = 1, ...,d) by solving

min
M1,...,Md

d

∑
i=1

(
1

2µ
∥PΩ(Mi +N )−PΩ(O)∥2−⟨Yi,PΩ(Mi +N )−

PΩ(O)⟩+∥Mi,(i)∥∗)≡
d

∑
i=1

(µ∥Mi,(i)∥∗+
1
2
∥PΩ(Mi)−Ai∥2)

(3.6)
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where Ai = PΩ(O)−PΩ(N )+µYi. We define the function f (Mi) =
1
2∥PΩ(Mi)−Ai∥2 and

calculate the gradient ∇ f (Mi) = P∗
Ω
(PΩ(Mi)−Ai), where P∗

Ω
(·) means the adjoint operation

of PΩ(·) such as P∗
Ω
(O) : RK → RI1×I2×···×T . According to Accelerated Proximal Gradient

(APG) method [3], we can independently minimize Mi through iterative optimization to

make the final sum minimal. In particular, we get optimal M
(k+1)
i given M

(k)
i until it

converges by solving

min
M

(k+1)
i

f (M (k)
i )+∇ f (M (k)

i )(M
(k+1)
i −M

(k)
i )+

1
2η
∥M (k+1)

i −M
(k)
i ∥

2+

µ∥M(k+1)
i,(i) ∥∗ =

1
2η
∥M (k+1)

i −M
(k)
i +η∇ f (M (k)

i )∥2 +µ∥M(k+1)
i,(i) ∥∗

∝
1
2
∥M (k+1)

i −M
(k)
i +η∇ f (M (k)

i )∥2 +ηµ∥M(k+1)
i,(i) ∥∗

(3.7)

To solve Eqn. (3.7), we first need to define singular value thresholding operator for

tensor.

Theorem 1 For matrix, the singular value threshold operator is defined as Tµ(M) :=

Udiag(σ̄)V ⊺, where M = Udiag(σ)V T is the singular value decomposition (SVD) and

σ̄ := max(σ −µ,0).

Similarly, we define the singular value threshold [127] operator for tensor as Ti,µ(M ) :=

fold(Tµ(M(i)), i). We thus can calculate the closed-form solution of Eqn. (3.7) as follows:

M
(k+1)
i = Ti,ηµ(M

(k)
i −η∇ f (M (k)

i )) (3.8)

Next, we will optimize N when fixed Mi (i = 1, ...,d) by solving the following problem:

min
N

Y ∥N ∥1 +
d

∑
i=1

(
1

2µ
∥PΩ(Mi +N )−PΩ(O)−µYi∥2)

∝ µλ∥N ∥1 +
1
2

d

∑
i=1
∥PΩ(N )−Bi∥2

(3.9)
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where Bi = PΩ(O)+µYi−PΩ(Mi). To solve Eqn. (3.9), we define Homogeneous Tensor

Array [126] by introducing an operator that combines the component tensors with the same

size along the tensor mode-1 as:

M̄ :=
(

M1, ...,Md

)⊺

∈ RdI1×I2×···×Id , (3.10)

which is written as TArray(M1, ...,Md) and its linear operator C :RI1×I2×···×Id→RdI1×I2×···×Id ,

i.e., M̄ = C (M ) ∈ RdI1×I2×···×Id .

Then, we can attain its adjoint operator C ∗ : RdI1×I2×···×Id → RI1×I2×···×Id , such that

M = C ∗(M̄ ) = ∑
d
i=1 Mi.

According to this definition, we can rewrite Eqn. (3.9) as

min
N

µλ∥N ∥1 +
1
2
∥C (PΩ(N ))− B̄∥2

∝
µλ

d
∥N ∥1 +

1
2
∥PΩ(N )− C ∗(B̄)

d
∥2

=
µλ

d
∥N ∥1 +

1
2
∥PΩ(N )− 1

d

d

∑
i=1

(PΩ(O)+µYi−PΩ(Mi))∥2

(3.11)

where B̄ =

(
B1, ...,Bd

)⊺

and C (PΩ(N )) =

(
PΩ(N ), ...,PΩ(N )

)⊺

.

Before solving the Eqn. (3.11), we need the following Theorem.

Theorem 2 When miny{1
2∥y−x∥2

2 +µ∥y∥1}, it has a closed form solution y = Sµ(x) :=

sign(x)max(|x|−µ,0), where Sµ(x) is the shrinkage operator, where all the operations are

element-wise.

According to the shrinkage thresholding operator [128], we can define Sµ(M ) on the

vec(M ) = m. As a result, we can solve Eqn. (3.11) to get N = S µλ

d
( 1

d ∑
d
i=1(PΩ(O)+

µYi−PΩ(Mi))). We thus have C ∗C (N ) = d N , then the optimal condition of Eqn. (3.11)

is 0 ∈ d N +µλ1∂∥N ∥1⇔ 0 ∈N + C ∗(B̄)
d + µλ1

d ∂∥N ∥1.
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Algorithm 1: ADMM based Robust Tensor Completion
Input: Observed Sensory Data Tensor: O , Set of Missing Valule Indexes: Ω

Model Parameters: λ , η , µ

Initialization: M
(0)
i = N (0) = Y

(0)
i = 0 (i = 1, ...,d)

Output: Recovered Sensory Data Tensor: M , Estimated Noise Tensor: N

1 while k > 0 do
2 for i = 1 : d do
3 M

(k+1)
i = Ti,ηµ(M

(k)
i −η∇ f (M (k)

i ));
/* Optimize Mi using singular value threshold */

4 end

5 N (k+1) = S µλ

d
( 1

d ∑
d
i=1(PΩ(O)+µY

(k)
i −PΩ(M

(k+1)
i )));

/* Optimize N using shrinkage thresholding operator

*/

6 for i = 1 : d do
7 Y

(k+1)
i = Y

(k)
i − 1

µ
(PΩ(M

(k+1)
i +N (k+1))−PΩ(O));

/* Update Lagrangian multiplier parameters Yi */
8 end
9 if StoppingCondition == TRUE then

10 Break; /* Ending loop when stop condition satisfied

*/
11 end
12 end
13 return M = 1

d ∑
d
i=1 M

(k+1)
i and N (k+1); /* Return results */

Finally, given M
(k+1)
i and N

(k+1)
i , we can update the Lagrangian multiplier parameter by

Y
(k+1)

i = Y
(k)

i − 1
µ
(PΩ(M

(k+1)
i +N (k+1))−PΩ(O)). Algorithm 1 shows the pseudo-code

of our optimization method.

Essentially, when d = 3, Algorithm 1 alternatively optimizes two blocks of variables

{M1,M2,M3} and N . By defining f (M1,M2,M3) :=∑
3
i=1 ∥Xi,(i)∥∗ and g(N ) := λ1∥N ∥1,

it is easy to verify that Algorithm 1 meets the convergence condition of ADMM. Briefly, the

sequence {M (k)
1 ,M

(k)
2 ,M

(k)
3 ,N (k)} obtained from Algorithm 1 can converge to optimal ten-

sors as (M (∗)
1 ,M

(∗)
2 ,M

(∗)
3 ,N (∗)) for Eqn. (3.4). Hence, the sequence {1

3(∑
3
i=1 M

(k)
i ),N (k)}
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can reach optimal values. Due to the page limitation, we make the proof details available

online3.

3.4 Experiments

In this section, we first conduct a simulation experiment using synthetic data to compare

with the state-of-the-art data recovery methods under different data loss percentages and

additive noise ratios. Then we design a real-world experimental testbed using passive RFID

(Radio-frequency identification) sensors to generate geo-tagged time-series RSSI readings,

which are used to test the practical performance of our method. We run the experiments on

a computer (CORE i7-4710HQ 2.50GHz CPU and 16GB RAM) using MATLAB R2015b.

We use the Tensor Toolbox4 and for tensor operations and decompositions and PROPACK

Toolbox for SVD (Singular Value Decomposition) calculation5.

Similar to other data recovery works [11, 123], we adopt the relative error ∥M−M0∥
∥M0∥ ,

where M ,M0 mean the recovered and original data tensor respectively, to evaluate the

recovery performance.

3.4.1 Comparison Methods

We compare our method with the following typical data recovery methods:

• MAF means the moving averaging interpolation that is the most widely-used method

to fill in missing values in time-series sensory data6.

3www.dropbox.com/s/mcqqpxc6m0b5jyn/Appendix.pdf?dl=0
4Available in www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
5Available in http://sun.stanford.edu/~rmunk/PROPACK/
6Available in au.mathworks.com/help/curvefit/smoothing-data.html

www.dropbox.com/s/mcqqpxc6m0b5jyn/Appendix.pdf?dl=0
www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
http://sun.stanford.edu/~rmunk/PROPACK/
au.mathworks.com/help/curvefit/smoothing-data.html
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• IAL-MC [123] represents the inexact augmented Lagrangian method that can recover

a data matrix of being arbitrarily corrupted, it is a matrix-based robust completion

method and greatly motivates our work7.

• LR-TC [11] is the earliest yet very effective tensor completion method using block

coordinate descent optimization but it cannot deal with the corrupted data (not robust

version)8.

• ADMM-TC [125] also utilizes ADMM for solving the tensor completion problem. It

provides valuable intuitions for the optimization part in this chapter9.

3.4.2 Evaluations on Synthetic Data

Similar to the works in [11, 125], we generate a 50× 50× 20 data tensor with Tucker

rank-(5,5,5). We randomly choose a fraction ρn of the tensor entries that are polluted by

an additive i.i.d. (i.e., independent and identically distributed) noise following uniform

distribution unif(−a,a). Then a fraction ρo of the corrupted tensor elements are randomly

picked as observed values in OΩ. In the experiments, we set µ and η as constants for

simplicity, i.e., µ = 5× std(vec(O)) and η = 0.91. We set parameter as λ = αrλ∗, where

λ∗ = 1,r = 1√
max(I1,I2,T )

and α are tuned in 1 < α < 2.

Recovery Accuracy

Fig. 3.2 compares the relative errors of different methods under an observation percentage

from 5% to 100% and a noise (ρn = 0.1, a = 1). We can see that our method has a better

recovery accuracy than the other three algorithms. Especially, during the interval between

30% and 60%, our method reveals significantly higher recovery capability. We also observe

7Available in www.cis.pku.edu.cn/faculty/vision/zlin/RPCA+MC_codes.zip
8Available in www.cs.rochester.edu/u/jliu/code/TensorCompletion.zip
9Available in https://github.com/ryotat/tensor

www.cis.pku.edu.cn/faculty/vision/zlin/RPCA+MC_codes.zip
www.cs.rochester.edu/u/jliu/code/TensorCompletion.zip
https://github.com/ryotat/tensor
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Fig. 3.2 Relative errors for different
known elements (ρn = 0.1, a = 1)
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Fig. 3.5 Iteration numbers for different
known elements (ρn = 0.15, a = 1)
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Fig. 3.6 Iteration numbers for different
known elements (ρn = 0.3, a = 1)
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Fig. 3.7 Iteration numbers for different
corruption percentages (ρo = 1, a = 1)

that, from 5% to 40% the recovery performance dramatically increases, while it does not

show significant improvement from 40% to 100% observation. We then add more polluted
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data (ρn = 0.25, a = 1) to test these approaches. As Fig. 3.3, all four methods perform

similarly under a circumstance that the missing data are less than 40%, while the proposed

method achieves a smaller relative error of the data recovery when more than 50% data are

polluted. Combining both Fig. 3.2 and Fig. 3.3, our method appears an obvious “thresholding

phenomena" that the recovery accuracy is continuously improved when the observed data

increases below a certain threshold (e.g., 40% in Fig. 3.2 and 70% in Fig. 3.3) and the

threshold is bigger when adding more corrupted data. Next, we set the observation ρo = 1

and investigate the recovery performance under different corruption percentages (from 0%

to 40%). The results are shown in Fig. 3.4. Similarly, our method shows a relatively higher

recovery accuracy (e.g., improving around 3 times under 30% noise pollution) and the other

three methods reveal a similar performance. It is worth mentioning that the recovering

performance greatly degenerates when more than 35% data are polluted.

Iteration Number

Fig. 3.5∼3.7 compare the computation time of different methods in terms of iteration

numbers10. In details, Fig. 3.5 illustrates the iteration times needed for different percentages

of known elements. We observe that the proposed method is super fast when a few data are

observed (e.g., from 5% to 30%) comparing to other solutions, however it requires a similar

or slightly higher iteration times when observing more data (e.g., from 40% to 100%). A

similar result applies to Fig. 3.6 where the proposed method only needs around 50∼100

iteration times under 5% to 30% known data comparing to other methods that requires

180∼370 iterations. Fig. 3.6 shows the experimental results of iteration numbers for different

data corruption percentages with no missing values. Our method overall reveals a slightly

better computation efficiency.

10In each iteration, all the tensor completion based methods require to calculate 3 times SVD that is most
time-consuming computation task so we use iteration number as evaluation metric for computation time.
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Fig. 3.8 Left: The phenomena of RSSI readings loss in passive RFID tags; Right: The
missing rates of RSSI readings from a practical Human Activity Recognition system built
upon a passive RFID tag-array

In summary, the experimental results on the synthetic data suggest that our model can

achieve better recovery performance and computation efficiency with both partial and polluted

observations, especially for the scenarios that only very limited data are known such as less

than 30%.

3.4.3 Evaluations on RFID Sensory Data

Passive RFID tags are one of the most frequently-used sensors due to its cheap price (< 5

cents each) and battery-free features [129–131]. It is widely used to identify and track objects

through remotely accessing the electronically stored data. However, since passive RFID

tags are powered by radio signals and deliver the data via the weak backscatter signal, they

experience severe RSSI reading loss, especially with a high sampling rate or when tag/reader

is moving [132]. As a result, how to accurately recover missing RSSI readings is still a

challenge, especially for a large-scale RFID usage.

To deal with this practical issue as well as to test our method, we designed a testbed

consisting geo-tagged 4×4 RFID sensor array (see Fig. 3.9a) and collect overall 115,200



50 Recovering Missing Sensor Readings via Low-Rank Tensor Completion

Passive 
RFID Tag

1.2m

RFID 
Antenna1.5m

(a)
(b)

Fig. 3.9 (a) Experimental testbed of RFID sensor array; (b) Relative errors for different
tag-array size with 20% missing values

RSSI readings11. Fig. 3.8 illustrates an example of the sensor readings loss in a practical

RFID-based HAR system.

To be more practical, we formulate the readings of RFID sensor array it into a tensor

with different sizes to simulate various real-world application scenarios (e.g., 4×4, 20×20,

20×40 and 40×40 sensor array). Similarly, we add noise (ρn = 0.1, a = 10) with uniform

distribution and randomly choose 20% elements as the unknown in our experiments. Fig. 3.9b

shows the recovery results of our method and MAF (most frequently used in practical RFID

system) as well as other matix-tensor completion methods. For small-scaled deployment

(i.e., 4×4 sensor array), our method achieves similar performance to MAF. However, the

tensor-based methods perform significantly better than MAF in a large-scale deployment

(e.g., 20× 20 sensor array). The lack of performance improvement in 4× 4 sensor array

mainly lies in the fact that the low-rank structure only exists in mode-3 of data tensor which

conflicts our assumption that requires low-rank in all tensor modes.

11We collect over all one hour’s RSS readings, the sampling rate is 2Hz. During the data collection, a
participant is doing various activities between the RFID sensor-array and reader, including walking, sitting,
standing, lying down as well as falling down etc. By doing so, the collected RSSI reading will reveal different
patterns.
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3.5 Conclusion

In summary, we propose a method for recovering the missing data by using the robust tensor

completion. The proposed method can accurately recover the missing values given partial

observed corrupted data.

Our whole system, especially the indoor localization, human activity recognition and

fall detection parts, is built upon passive RFID tags, which suffer severe reading loss. Our

proposed tensor-based data recovery method can significantly reduce the influence of missing

data to the system performance. In the next chapter, we will illustrate how we purely utilize

passive tags to achieve a high-accuracy indoor localization and tracking.





Chapter 4

Device-free Human Localization and

Tracking Using Passive RFID Tags

Localizing and tracking human movement in a Device-free and Passive (DfP) manner is

promising in two aspects: i) it neither requires users to wear any sensors or devices, ii) nor it

needs them to consciously cooperate during the localization. Such a DfP indoor localization

technique underpins many real-world applications such as shopping navigation, intruder

detection, surveillance care of seniors. However, current passive localization techniques

either need expensive/sophisticated hardware such as ultra-wideband radar or infrared sensors,

or have an issue of invasion of privacy such as camera-based techniques, or need regular

maintenance such as the replacement of batteries. In this chapter, we build a novel data-

driven DfP localization and tracking system upon a set of commercial UHF (Ultra-High

Frequency) passive RFID (Radio-Frequency IDentification) tags in an indoor environment. In

particular, we formulate human localization problem as finding a location with the maximum

posterior probability given the observed RSSIs (Received Signal Strength Indicator) from

passive RFID tags. In this regard, we design a series of localization schemes to capture the

posterior probability by taking the advance of supervised-learning models including Gaussian

Mixture Model (GMM), k Nearest Neighbor (kNN) and Kernel-based Learning. For tracking
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a moving target, we mathematically model the task as searching a location sequence with the

most likelihood, in which we first augment the probabilistic estimation learned in localization

to construct the Emission Matrix and propose two human mobility models to approximate

the Transmission Matrix in the Hidden Markov Model (HMM). The proposed HMM-based

tracking model is able to transfer the pattern learned in localization into tracking but also

reduce the location-state candidates at each transmission iteration, which increases both

the computation efficiency and tracking accuracy. The extensive experiments in two real-

world scenarios reveal that our approach can achieve up to 94% localization accuracy and

an average 0.64m tracking error, outperforming other state-of-the-art RFID-based indoor

localization systems.

4.1 Introduction

With the increasing aging population, intelligent space that can better support the independent

living of the elderly has been attracting the increasing attention both from industry and

academia. One of the key preconditions for such a smart environment lies on an accurate

and timely detection of users’ locations and daily routines [43, 133], especially for an indoor

environment that GPS (Global Position System) cannot handle [26]. To tackle this challenge,

a wide range of indoor localization and tracking systems have been proposed for the last

two decades, including but not limited to LANDMARC [22], WILL [134], Tagoram [23]

and BackPos [135]. However most of the approaches are wearable-device based technique

that inevitably requires the user to actively carry one or more devices such as various types

of sensors, smart-phones, RFID tags/readers or other Radio Frequency (RF) transceivers,

thus raising many inherent impractical issues in reality [44]. For example, the attached

sensors/tags may be damaged or lost. It is also obstructive and inconvenient for the user
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to wear devices all the time1, especially considering that many electronic devices have a

moderate size or weight.

To this end, device-free (also called unobtrusive) passive indoor localization has gained

more attention lately and many promising approaches have been proposed [37, 33, 32,

47]. One popular device-free human tracking technique is built upon the recent advance

of computer vision, which develops various models to capture human movement from

images or videos by using RGB cameras [29, 30], or infrared sensors [27] or depth cameras

(e.g., Kinect) [31]. However computer vision based approaches require the tracked user within

the line-of-sight2 (LOS) of a camera, and usually fail to work in a dimmed environment [29].

Moreover, vision-based technique can also be considered to be privacy invasive [43]. Another

DfP localization technique is to intensively exploit the radio-frequency signal, e.g., localizing

the target by analyzing the Received Signal Strength (RSS) variations [34, 38, 133] or

Channel State Information (CSI) [136, 137] in WIFI, or tracking the user through a wall

by decoding the radiowaves reflected of human movement [41]. Though promising, these

systems often require specialized RF signals such as Frequency-Modulated Continuous Wave

(FMCW) or build upon costly special-purpose devices such as USRP (universal software radio

peripheral), or need to modify the low-level firmware such as abstracting CSI signals. Most

importantly, they all require regular maintenance such as battery replacement, thus hindering

their practical deployment in the real world [43, 44]. In this regard, device-free tracking

systems built on COTS (commercial off-the-shelf) passive RFID tags are more promising

in terms of deployment convenience (commercialized product without any hardware or

firmware modification), maintenance effort (no batteries needed and purely harvesting the in-

air backscattered energy) and cost efficiency (≈5 cents each, still dropping quickly) [39, 138].

As a result, in this chapter, we design a DfP system that can unobtrusively localize, track a

subject to high accuracy based on pure passive RFID tags.
1Deloitte Mobile Consumer Survey 2016: www2.deloitte.com/au/en/pages/

technology-media-and-telecommunications/articles/mobile-consumer-survey-2016.html
2There are no barriers or blocks between the subject and camera.

www2.deloitte.com/au/en/pages/technology-media-and-telecommunications/articles/mobile-consumer-survey-2016.html
www2.deloitte.com/au/en/pages/technology-media-and-telecommunications/articles/mobile-consumer-survey-2016.html
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Fig. 4.1 The general idea of the proposed DfP localization and tracking system

However, applying this high-level idea into a practical indoor localization and tracking

system is a non-trivial and challenging task. One key challenge lies on the fact that, in a

practical residential environment, RSSI signal is quite complex and unstable because of

the multipath effect, power source fluctuation and ambient noise disturbance. Unlike the

theoretical analysis, the practical RSSI signal however does not strictly decrease along with

tag-reader distance and exhibits significant nonlinearity, and it may be further corrupted

when introducing human motion. Another challenging issue is how to model the localization

and tracking problem from a data-driven point of view. Currently, most of existing RFID-

based systems are built upon the signal propagation model or backscatter communication

mechanism, thus there is no off-the-shelf learning-based localization model for us to use.

Moreover, to reduce the learning burden, we intend to transfer the pattern learned in localizing

a stationary person into tracking a moving subject. Thus how to effectively bridge the gap
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between localization and tracking under a feasible mathematical framework also deserves a

careful resolution.

To tackle the aforementioned challenges, we first need to enable the RSSI signal from

passive tags to monitor the whole surveillance area in an efficient and unobtrusive manner.

Thus we deploy a set of passive RFID tags and a reader (with antennas) to form a RSS field

that can cover the whole monitored area. Fig. 4.1 outlines the general hardware deployment

in our system. In particular, unlike other RFID-based systems that place the tags on the

ground [32, 33], we attach the passive tags and antennas on the wall to i) make the RSSI

signal face fewer obstacles and ii) not obstruct to user’s routine activities, especially in a

residential environment. Based upon our RFID infrastructure, some distinguishable patterns

can be clearly observed in RSSI signals when a user appears in different locations of a room.

In summary, our RFID-based system is intuitively based on two experimental observations:

Observation 1 The RSSI vector illustrates differentiable changes when a user appears in an

RSS-monitored area comparing to a non-subject scenario.

Observation 2 The RSSI vector reveals distinguishable fluctuation patterns when a user

presents in different locations within an RSS-monitored zone.

The above two observations substantially illustrate that distributions of a RSSI vector3 are

directly relevant with a user’s indoor positions, and those distributions are differentiable for

different locations. Motivated by these two experimental phenomena, we thus seek to decode

human locations and motions by using data-driven approaches. In particular, to localize

a stationary person, we mathematically formulate it as a classification problem, in which

we first collect the RSSIs and associated location labels to train a location classifier that is

then utilized to predict user’s actual location according to the observed RSSI vector (see

details in Sec. 4.4). For tracking a moving user, we first augment the traditional kNN with

3For example, in Fig. 4.1, we can formulate the RSSIs of all tags at a certain time-stamp as a vector
containing 11 readings.
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probabilistic information to quantify the likelihood of locations based on observed RSSIs,

which then is utilized to construct the Emission Matrix in HMM. Furthermore, we calculate

the Transmission Matrix by introducing two location transition strategies - Constraint-Less

Transition (CLT) and Constraint Transition (CT). The latter transition strategy allows our

system to largely narrow down the candidate locations at each state transmission in HMM,

which turns out to only not minimize the computation overhead but also increase the tracking

accuracy (see details in Sec. 4.5). At last, we use Viterbi Search to find the most likely path

of the subject. We call this kNN-HMM. In a nutshell, we summarize the main contributions

in the chapter as below:

• We design a device-free indoor localization and tracking system that utilizes COTS

passive RFID tags and bears some promising characteristics in terms of hardware cost,

deployment scalability and maintenance burden. To the best of our knowledge, the

designed system, purely built upon passive RFID tags, is one of the device-free works

that can not only localize a stationary user but also track a moving one with a high

accuracy in a real-world residential environment.

• We introduce a kNN based HMM method to tracking a motion person by learning

the underlying impacts of a non-moving human body to RSSIs for different locations,

which to some extent bridges the gap of localization to tracking from a data-driven

point of view.

• We conduct extensive in-situ experiments in a real-world residential house where

participants unconstrainedly simulate a series of practical daily living routines. The

experimental results demonstrate that our system achieves over 94% localization

accuracy and 0.64m mean tracking error while largely reducing the training overhead

to 2 minutes for a 17m2 bedroom.
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Fig. 4.2 Backscatter communication mechanism

We organize this chapter as follows. Sec. 4.2 illustrates our preliminary analysis and

experiential observations. We then mathematically model our target localization and tracking

problems in Sec. 4.3. We highlight the proposed solutions in Sec. 4.4 and Sec. 4.5. The

experimental results are presented in Sec. 4.6. Finally, some discussions and concluding

remarks are offered in Sec. 4.7.

4.2 Preliminary

In this section, we will theoretically analyze the RFID backscatter radio signal and then

verify our system’s capability to reach device-free localization and tracking.

4.2.1 Backscatter Radio Communication

RFID tags are widely applied in many industries, for example, an RFID tag attached to an

automobile during production can be utilized to monitored its progress in the assembling,

RFID-tagged containers can be tracked during the transportation [139, 140]. Unlike active

RFID tags that are powered by batteries, passive RFID systems however communicate

through the backscatter radio links due to that passive tags (no batteries powered) can only

passively collect energy from the in-air backscattered radio signal. Fig. 4.2 illustrates a
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Fig. 4.3 Path loss illustration

conceptual diagram of the radio wave propagation between an RFID reader and a passive

tag. In details, the current flow on a reader-antenna induces to a voltage on the tag-antenna

(integrated in the circuit), further producing a radiation signal. The radiated wave then makes

its way back to the reader-antenna, inducing a voltage, thus producing a signal that can be

detected: a backscattered signal. In particular, the tag transmits “1" bit by changing the

impedance on their antennas to reflect the reader’s signal and a “0" bit by remaining in

their initial silence state [141], called ON-OFF keying. A typical UHF reader works in the

frequency band from 860 MHz∼950 MHz (e.g., 902∼ 928MHz ISM band in US). Today’s

commercialized RFID readers have an interrogation distance of about 10 meter, which is

enough for a residential environment. More importantly, the electromagnetic field produced

by RFID readers under no circumstance will harm the human body4.

4.2.2 Received Signal Strength Indicator (RSSI)

RSSI measures the power of received radio signal between the tag-antenna and reader-

antenna [141]. Shown as Fig. 4.3, Path Loss represents the power difference of signals from

4Is RFID Dangerous? www.inria.fr/en/centre/lille/news/is-rfid-dangerous

www.inria.fr/en/centre/lille/news/is-rfid-dangerous
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Fig. 4.4 RSSI variation with distance

the receiving antenna and the transmitting antenna. We assume the radiated power as being

uniformly distributed over a spherical surface at given distance r from the reader-antenna.

Then, only part of this power is received by a tag-antenna, represented as PRX = PT X Ae/4πr2.

Since the effective aperture of an antenna around a half-wavelength long corresponds to a

square round a half-wavelength on a side, the path loss for the isotropic link can be estimated

by Ae = Gλ 2/4π where G denotes the gain of an antenna. Thus we can calculate Friis

Equation of the power from the transmission-antenna T X to the receiver-antenna RX [141].

PRX = PT X GT X
Ae,RX

4πr2 = PT X GT X GRX(
λ

4πr
)2 (4.1)

Then, we can mathematically model the backscatter signal prorogation as:

PRX ,reader = PT X ,tagGtagGreader(λ/4πr)2

= PT X ,readerTbG2
tagG2

reader(λ/4πr)4
(4.2)

where Gtag denotes the gain of the tag-antenna and Tb represents the loss of backscatter

transmission. Thus, under an assumption that a wave directly leaves the antenna and strikes

the tag (i.e., interacting with no other objects), Eqn. 4.2 theoretically demonstrates that
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the power received by the reader-antenna is inversely proportional to the fourth power of

the reader-tag distance. Thereby, for a cleared or open space, RSSIs is capable of being a

promising location indicator. However, our system targets to enable a device-free tracking in

a cluttered environment. As Fig. 4.4 shows, the RSSI strength shows a uncertain nonlinearity

with the distance in a residential room, which cannot be expressed by a cubic or even a

9th-degree polynomial model. So how to model the RSSI-location relation for our application

scenario is very challenging. Instead of developing delicate signal propagation models5, this

chapter intends to seek the answer from a data-driven point of view, i.e., accurately learning

the quantifying relation between the user’s location and the interference of human body to

RSSIs from the collected RSSI observations. We will elaborate the details in Sec. 4.4.

4.2.3 Intuitions Verification

In this section, we conduct several pilot experiments to demonstrate the localization potentials

of our system. We first build a testbed consisted of one RFID reader and 4 UHF passive tags.

The monitored area is divided into 9 virtual grids (0.6m×0.6m each), representing 9 different

zones L1,L2, ...,L9. We want to verify whether the RSSI patterns reveal distinguishable

differences when a user appears in different grids. Fig. 5 snapshots our pilot experimental

results. At first, there is no user in the monitored area, then a person stands in L5 and L9. We

observe that the measured four RSSI signals obviously vary due to the presence of a subject,

so we can clearly discriminate whether there is a subject in the RSS field or not. We also find

that the RSSI signal shows different fluctuation patterns when the subject stands in L5 and L9.

We further cluster the RSSI data generated from these three scenarios (i.e., no subject, L5 and

L9) into a four-dimension space (illustrated by two 3-D scattering figures). It clearly shows

the data clustering in three different subareas (revealing the number of locations the subject

ever appeared) even without overlapping (can be learned to infer the exact human locations).

5This kind of models is also highly related to the furniture and room layout, thereby it is hard to design a
physical localization model with satisfying robustness and accuracy.
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Fig. 4.5 The RSSI readings cluster in differentiable spaces when a person appears in different
locations

In summary, the preliminary experiments reveal the intuitions and feasibility behind our

system for solving the device-free localization. However, in a residential environment, how

to accurately decode the accurate locations is still a non-trivial problem considering the

complicated multi-path effect and the unstable backscattered RSSI propagation properties.

We will elaborate it in Sec. 4.5.
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4.3 Problem Formulation

As aforementioned, we intend to pinpoint the subject’s locations and estimate its continuous

trajectory based on the received RSSIs from a set of RFID tags. Thus we can formally define

the two targeted problems - localization and tracking - in this chapter as follows.

Problem 2 (Localization) In a monitored area covered by one or more RSS fields, can we

accurately pinpoint the current location of a stationary user given a set of RSSI vectors?

Problem 3 (Tracking) In a monitored area covered by one or more RSS fields, can we

continuously estimate the motion trajectory of a moving user with a moderate speed (less

than 1m/s) given a sequence of time-tagged RSSI vectors?

Fig. 4.6 illustrates the pipeline of our solutions for the two problems. From a data-driven

point of view, Problem 1 - Localization can substantially be reformulated as a location

classification problem, in which we aim to accurately quantify the RSSI distributions for

different geographical locations within the monitored area. In particular, assuming that D

anchoring passive tags are deployed in a surveillance area which is divided into G small grids,

we then can represent the locations as l = {l0, l1, ..., lG} where li means the subject appears in

location i and l0 indicates the area is empty. Next, we collect profiling dataset in the following

two steps: i) we record the RSSI readings of all anchoring tags when no human body in

the monitored area; and ii) then a user appears in location li,(i = 1,2, ...,G) and collect the

corresponding RSSI values. Then we build a training dataset H = {S0,S1, ...,SG}, where

Si ∈RN×D, N is the sample number in each grid. This dataset contains the latent information

regarding how a human body influences the RSSIs’ distribution for each location plus an

empty environment. We further can quantify the underlying RSSI-Location relationship by

training a classification model using H . Finally, we construct a (G+1)-location classifier.

During localization phase, a user randomly stands on any locations in the surveillance area,
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and the corresponding RSSI vectors are collected and fed into the location classier. Then it

will output location labels that associate with the subject’s actual locations.

Assuming that the collected RSSI observation dataset is represented by R = {r1,r2, ...,rT},

Problem 2 is mathematically formulated as estimating the optimal posterior probability dis-

tribution p(l j|ri) given a RSSI observation sequence.

j∗ = argmax
j

Pr(l j|ri) (4.3)

In Sec. 4.4, we will give the technical details regarding how to solve the above optimiza-

tion problem. Similarly, for Problem 3-Tracking, we can model it as estimating the joint

probability distribution upon the RSSI observation sequence R1:T and the location labels l1:T

where its location state at time-stamp t is denoted by lt . We can further simplify the model

by assuming that the dynamic motion is a Markov process which only depends on previous

location state, represented by model Pr(l j|l j−1). In this end, we need to solve the following

mathematical problem:

Pr(r1:T , l1:T ) = Pr(l1)Pr(r1|l1)
T

∏
t=2

Pr(rt |lt)Pr(lt |lt−1) (4.4)

to estimate the expected location states l1:T with the maximum probability. We also need

to train a marginal posterior Pr(si|l1: j) to estimate the expected value of l j given observed

RSSI readings. We will introduce the technical details in Sec. 4.5.

4.4 Localizing Stationary Subject

This section will introduce three location classifiers, i.e., Multivariate Gaussian Mixture

Model, k Nearest Neighbor, and Kernel-based Localization for solving Problem 1 - estimating

user’s location given a set of RSSI vectors.



4.4 Localizing Stationary Subject 67

4.4.1 Gaussian Mixture Model based Localization

According to our previous analysis, the key part of localization is to model Pr(l j|ri), the

probability distribution of locations given RSSI observation. This task is difficult since it

needs to quantify the distribution of an underlying variable. However, the reversed distribution

Pr(r j|łi) can be easily learned by observing how RSSIs distribute given the location of a user.

Based on the Bayes Theorem, we thereby decompose the distribution Pr(l|r) as follows6 :

Pr(l|r) = Pr(r|l)Pr(l)
Pr(r)

∝ Pr(r|l) ·Pr(l) (4.5)

where we assume Pr(l)∼ 1/G, denoting an uniform distribution at location l. The assumption

lies on the fact that a user may appear in any locations with an equal probability. Next, we

need to find an appropriate model that quantifies Pr(r|l) distribution. Then we can transfer

Eqn. 4.3 as the following optimization problem.

l∗ = argmax
l∈l

Pr(r|l) ·Pr(l) (4.6)

In our pilot experiment, we observe that RSSIs display a certain clustering pattern in

the high-dimension space. When we take a close look at each cluster, it actually shows a

multi-modal distribution that follows a Gaussian Mixture Model, as shown in Fig. 4.7. This

RSSI distribution phenomenon in fact can be explained by the multi-path effect [141, 142].

Normally, several paths for the backscattered signal exist during the propagation from a

tag to a reader. Among all the paths, the reader prefers to resolve the strongest signal path.

When a human body blocks some propagation paths (i.e., a subject appears in the RSS field),

it will cause the propagation to jump among the multiple paths and lead to the strength

migrating from one level to another. As a result, the signal strength exhibits multi-modal

6 For simplicity, we drop i and j in the equation.
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Fig. 4.7 RSSI distribution pattern and fitted by GMM

characteristics - the distribution is likely composed of multiple Gaussian models. Thus, we

can utilize a GMM to capture the probability distribution when a user appears in each grid.

In particular, assuming that a Gaussian Mixture Model has ql
m components, mean µ l

m and

covariance matrix σ l
m applies for location l, then we have

fl(x) = Pr(x|l) =
M

∑
m=1

ql,mN (x|µl,m,σl,m)

=
M

∑
m=1

ql,m√
(2π)D |σl,m|

exp(−1
2
(x−µl,m)

T
σ
−1
l,m(x−µl,m))

(4.7)

where φl = {ql,m,µl,m,σl,m} represents the model parameter set for location l, in which

ql,m means the weighted factor for the m-th mixture component, µl,m and σl,m denote the

mean and covariance in the m-th Gaussian component. Furthermore, by using the maximum

likelihood estimation, the optimal model parameters φ̂l can be learned through

φ̂l = argmax
φl

Pr(x|l,φl) = argmax
φl

N

∏
i=1

Pr(si|l,φl) (4.8)

where s = {s1,s2, ...,sN} denotes the training dataset.
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To solve the optimization problem in Eqn. 4.8, we adopt Expectation Maximization

(EM), which iteratively optimizes the object function by two steps - E-step (Expectation

step) and M-step (Maximization step). Basically, the expectation step calculates the posterior

probability Pr(l|s) by using the training dataset s. The Maximization step maximizes the

log-likelihood expectation, which in turn enables us to re-calculate the parameters in the

following iteration. We use cross validation to find an optimal value of GMM component

number that maximize the localization accuracy. With a learned GMM location classier, we

can first calculate all the probabilities for candidate locations l1:G given an observed r, and

then we choose the maximal one as the predicted location of the user.

4.4.2 k Nearest Neighbor based Localization

Another way to build a location classier is to learn the Euclidean distances of RSSI vectors

under a resident appearing on a certain candidate locations. In this regard, we introduce

the k nearest neighbors (kNN) method that first measures the context-dependent Euclidean

distances between a testing RSSI vector with the RSSI vectors of training dataset, and then

use a majority vote among its nearest neighbors to assigns a location label. In particular,

assuming that we have a training dataset T = {(s1,y1),(s2,y2), ...,(sN ,yN)} with N samples,

where si ∈ RD is the RSSI vector, yi ∈ l = {l1, ..., lG} is the corresponding location label.

Then, given a distance measuring method and a testing RSSI vector r, we can search its k

nearest neighbors, represented by Nk(r). Finally, the testing RSSI vector is given a most-

common location label y∗ among its k nearest neighbors by following equation.

y∗ = argmax
l j

∑
si∈Nk(r)

I(yi = l j) (4.9)

where j = 1,2, ...,G; i = 1,2, ...,N and I denotes an indicator function which is 1 if yi = l j,

otherwise 0.
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4.4.3 Kernel-based Localization

From the point of probabilistic view, if two RSSI vectors have a stronger similarity, then they

will be in a near or even same location with a higher probability. Based on this intuition, we

thus can use a Kernel-based learning (KL) to resolve the posterior probability of candidate

locations given an RSSI observation. By applying a kernel function in RSSIs, KL can

directly construct possible non-Euclidean topologies that are underlaid implicitly in the

RSSI vectors and locations. In particular, in the learning procedure, KL will assign the

kernel with a probability mass for every RSSI vector of the training dataset. Then, for an

observed RSSI vector, multiple density functions with equal weights will be utilized to

estimate the probability. Mathematically, given the training data and corresponding location

labels S = {(s1, li), ...,(sn, ln)}, the KL-based localization can be formulated as:

min
w,b,ξ

wT w+C
n

∑
i=1

ξi

S.t. li(wT
θ(si)+b)≥ 1−ξi, ξi ≥ 0

(4.10)

where C means the error penalty, ξi(i = 1,2, ...,n) are slack variables and kernel function

is represented by K(si,s j) = θ(si)
T θ(s j). Based on the primal-dual relationship, we can

optimize the model parameters by solving the following dual problem [143]:

max
µ,α

min
w,ξ ,b

wT w−
n

∑
i=1

αi(li(wT
θ(si)+b)−1+ξi)

+C
n

∑
i

ξi +
n

∑
i=1

µiξi

(4.11)

where α = (α1, ...,αn)
T and µ = (µ1, ...,µn)

T are Lagrange multipliers. In the testing, we

can feed the RSSI observations into the trained model and output the associated location

labels. In this chapter, we adopt LibSVM [143] to realize the KL-based localization. The

kernel function selection highly depends on the RSSIs’ nonlinearity and noise caused path
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loss, shadowing and multipath effects in localization. We intensively test the linear kernel,

Gaussian kernel, polynomial kernel and radial basis function kernel, finding the linear kernel

works better.

4.4.4 Discussion

To summarize, we introduce three different types of localization methods. GMM is motivated

by the jumping property of backscattered RF signal from tags, which can be explained by

the signal propagation mechanism. kNN is based on the similarity measurement of context

Euclidean distance of observed RSSI readings. SVM (support vector machine) is an advanced

classification method that are widely adopted by other localization systems. Actually, there

exists other classification methods that can be applied into our localization system, such as

Naive Bayes, Extreme Learning Machine (ELM). We conduct some pilot experiments to

compare these methods. In particular, we first ask a subject to stand two minutes in each

grids to collect the RSSI samples (the testbed is shown in Fig 5), then we randomly divide

the dataset into training and testing datasets in different ratios (from 10% to 90%) to test

the methods. As Fig. 4.8 shows, among all the classification methods, k Nearest Neighbors

achieve the best result. Even with only 10% training data (12 seconds in each grid), it reaches

87.2% accuracy (greatly simplify the pre-calibration and relieve our training burden). It

reveals that, with only a few labeled RSSI data, the context-dependent distance measurement

can better interpret the fluctuation of RSSI signal caused by human body inference, which

strongly motivates our kNN-HMM to tackle the tracking problem.

4.5 Tracking a Moving Subject

Comparing to localizing a relatively static user, human tracking is more challenging, espe-

cially considering the sudden and unpredictable RSSI changes caused by a moving human
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Fig. 4.8 Localization results of different methods

body, which makes the RSSI-Location mapping more difficult. However, on the other hand,

within a sampling time, the next moving location will be near to the current location due to

the human speed limitation (≤ 1m/s), which naturally narrows down the possible candidate

locations. In other words, for tracking problem, we have one more evidence, namely current

location state, that can help us to infer the possible locations besides the RSSI observations.

In particular, we propose two HMM-based models, kNN-HMM and GMM-HMM, to decode

the continuously time-stamped RSSIs into the subject’s moving path by considering both

patterns learned from localization model and the location transition constraints. Hidden

Markov Model is widely applied in spatio-temporal pattern recognition such as handwriting

recognition, proteins structure prediction and human activity recognition. It can be considered

as a generalization of a mixture model where the latent variables, which control the mixture

component to be selected for each observation, are related through a Markov process rather

than independent of each other. In this regard, HMM is perfectly fit the assumption of our

tracking problem that the next moving location depends and only depends on present location,

neither being totally independent nor related to the past location states. Another challenge in
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tracking is the latency, namely the subject already moves to next location whiles the system

is calculating the current location. To reduce this disturbing phenomenon, given the resulting

continuous location points from HMM-based models, we further design a forward calibration

mechanism that substantially takes account of a few past location estimations when resolving

current location. Next, we will elaborate the details of kNN-HMM based and GMM-HMM

based tracking methods as well as the forwarded calibration mechanism.

Assuming that L represents all candidate user’s moving trajectories and R denotes the

observed RSSI vector sequence, then our primary goal is to optimize a trajectory L∗ with a

maximum likelihood based on the following equation.

L∗ = argmax
L

Pr(L|R) (4.12)

According to Bayesian Theorem, we transform optimizing the conditional distribution

into finding an optimal joint probability distribution.

Pr(L|R) =
Pr(L,R)

Pr(R)
∝ Pr(L,R) (4.13)

Assuming that R is consisted of T time-tagged RSSI observations r1:T and L contains T

corresponding location states l1:T , we can further decode Eqn. 4.13 as follows:

Pr(r1:T , l1:T ) = Pr(l1)Pr(r1|l1)
T

∏
t=2

Pr(rt |lt)︸ ︷︷ ︸
B

Pr(lt |lt−1)︸ ︷︷ ︸
A

(4.14)

Now we successfully model our tracking problem as a Hidden Markov Model. To solve

the model, we first need to estimate Transition Matrix A and Emission Matrix B and then use

Viterbi Search to find the optimal location trajectory.
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• Transition Matrix captures state-transition probability of a user moving from a location-

state lt−1 at time-stamp t−1 to a location-state lt at time-stamp t. It can be represented

via Pr(lt |lt−1).

• Emission Matrix models the probability of observing RSSI vector rt given a location

state lt at time t, denoted by Pr(rt |lt).

• Viterbi Searching finds a location sequence {l1, l2, ...lT } that has a maximum likelihood

given Transition Matrix A and Emission Matrix B.

4.5.1 Transition Matrix

First of all, we show how we build a transition matrix based on the location state constraint.

Generally, the human motion can be seen as a state transition process that next moving

location is solely dependent of current state but irrelevant to other states, which can be

defined by a probability matrix Ai j = Pr(at = li|at−1 = l j). To construct such a matrix, we

define following two human motion patterns based on an intuition that a person is only able

to move a limited distance during one sampling interval (i.e., 0.5 second in our system) given

the moving speed (≤ 1m/s) in an indoor environment.

• Constraint-Less Transition (CLT): The tracked user can move to any locations of the

monitored area under a same likelihood, namely lt ∈ l0:G with an equal probability.

• Constraint Transition (CT): The tracked user can only move to one-sampling-time reach-

able locations of the monitored area under a same likelihood and cannot reach other

locations.

The second motion pattern greatly facilitates the tracking efficiency due to the fact that it

can largely exclude some unlikely location states in each calculating iteration. For example,

in Fig. 4.12, it is impossible for a resident to move from L11 to L64 within 0.5 second, so
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we can eliminate L64 from the next moving locations whilst user’s current location is L11.

In this chapter, we categorize the one-sampling-time reachable locations as those grids that

are adjacent or equal to user’s current location. Mathematically, we formulate these two

transition patterns by one equation. We assume that the monitored area is divided into G

locations and li(i = 1,2, ...,G) means the tracked user is in grid i. According to the proposed

two motion patterns, we further define a location-state set ωi including all feasible states that

a user can move to given current state li, and use |ωi| to denote the number of states. We then

can construct a transition probability matrix as follows:

Pr(l j|li) =


1
|ωi|

if l j ∈ ωi

0 if l j /∈ ωi

(4.15)

4.5.2 Emission Matrix

As Eqn. 4.14 shows, Bi j = Pr(ri|l j) represents the emission matrix that essentially shares

the same purpose as the localization problem - modeling the RSSI distributions for different

location states. As a result, we can construct the emission matrix by taking advantage of

aforementioned localization models.

GMM-based Emission Matrix

One straight-forward way is to construct the emission probability matrix based on the GMM

model, which is capable of estimating emission probabilities given the RSSI observations.

Similar to localization problem, we assume that the probability distribution of RSSI observa-

tions follows a multivariate Gaussian Mixture Model for each location state, and we thus are

able to calculate the Emission Matrix using Eqn. 4.7.
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Fig. 4.9 Localization accuracy comparision with k changes

kNN-based Emission Matrix

Another way to construct the emission matrix is taking the merit of k nearest neighbor model

which reveals a superiority in mapping the RSSI observations with the latent locations. To

do so, we construct a kNN-based emission matrix by transforming a traditional kNN classier

into a probabilistic style that can give an emission probability conditioning on the observed

RSSIs.

In particular, the probabilistic kNN estimates the Emission Matrix as follows. We

first search the top-k nearest neighbors N(r j) in the profiling dataset for observed RSSI

r j. Then we also mark these searched samples by its belonging locations, represented by

Ni(r j) = {sk|sk ∈N (r j)∩ sk ∈ li}. Then the probabilistic kNN-based emission matrix is

built as follows:

Pr(r j|li) =
∑
|N i(r j)|
sk∈N i(r j)

1
dis(r j,sk)

∑
|N (r j)|
sk′∈N (r j)

1
dis(r j,sk′)

(4.16)

where dis(r,s) represents two RSSI vectors’ Euclidean distance.
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We conduct a pilot experiment to compare probabilistic kNN and transitional kNN as

well. We first collect 2 minutes training data in each grid, then use 40% as the training data

and 60% as the testing data to test the methods. As Fig. 4.9 shows, the proposed probabilistic

kNN method slightly outperforms traditional kNN in all k values. More importantly, the

probabilistic kNN is capable to estimate the posterior possibilities by measuring the context

distances. Overall its advantages lie in: i) it specifically gives the posterior distribution of

each class rather than assigning a class-membership to the test sample; and ii) it assigns each

neighbor a weight that is inverse-proportional to its distance with the test sample, which not

only considers the number of its most-common neighbors but also measures their relative

distances.

4.5.3 Viterbi Searching

Given a sequence of observations, Viterbi searching, one of the dynamic programming

algorithms, can find an optimal sequence of hidden states with a maximum likelihood,

especially being efficient in solving HMM. In particular, assuming that the length of time-

stamped RSSI observations is t and the ending location state is l j, Viterbi searching finds the

most likely sequence of latent location states as following induction process.

Vj(t) = arg max
l1,l2,...,lt−1

Pr(l1l2...lt = j,r1r2...,rt |A,B) (4.17)

where matrix A and B refer to Eqn. 4.14. By induction, we further obtain:

Vj(1) = B j(r1)

Vj(t +1) = argmax
i

Vi(t)Ai jB j(rt+1)
(4.18)
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Fig. 4.10 HMM based methods

where B j(r1) = Pr(r1|l j) and Ai j = Pr(l j|li). After the induction calculation, we finally can

search an optimal moving trajectory for both GMM and kNN based HMM methods. Fig. 4.10

sketches these two HMM-based methods for dealing with Tracking.

4.5.4 Latency Reduction

As aforementioned, another challenge we need to deal with in tracking is the latency, which

mainly results from the delay of RSSI collection and signals sending by passive tags [141]. As

a result, we introduce a forward calibration mechanism to re-calibrate the walking trajectory

outputted by the Viterbi searching to reduce the latency. In particular, we adopt a sliding

window to average the latest several locations as follows:

ĉ′t =
∑

t+|w|−1
i=t ĉi

|w|
(4.19)

where ĉ′t represents the calibrated coordinates of location lt is the at time t, |w| denotes the

length of the sliding window, and ĉi is raw coordinates of estimated grid’s center at time i

using Eqn. 4.17.
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Fig. 4.11 Hardware deployment

4.6 Evaluation

We evaluate our approach through i) micro experiments in a 3.2m×4.8m testing area (stacked

by 6 RSS fields); and ii) field experiments in a fully furnished house including two bedrooms

and a kitchen (around 220m2 gross floor area).

4.6.1 Hardware Deployment

Ultra-low cost of UHF tags (5∼10 cents each) become the preferred choice of many industry

applications. Following the common practices, we adopt passive UHF tags in this chapter.

As Fig. 4.11 shows, our system is built upon commercial off-the-shelf RFID products without

any hardware or firmware modification. In particular, we use an Alien ALR-9900+ RFID

reader, several reader-antennas (Model: ; Size: 20cm× 20cm× 3cm) and dozens of UHF

passive tags (Model: squiggle Higgs-4; Size: 1cm× 10cm). The operation frequency of

the reader is 840 to 960MHz and the sampling rate is 2Hz. Each collected RSSI readings

includes a TAG-ID, RSSI and TIME. Our system runs in a laptop computer (CPU: I7-3537U

2.5GHz; RAM: 8G; OS: Win7).
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4.6.2 Evaluation Metrics

Similar to other localization and tracking systems, we adopt the following two evaluation

metrics, Accuracy and Error Distance, to measure the localization accuracy and tracking

error respectively.

Acc.=
∑

N
i I(l̂i, li)

N
(4.20)

where l̂i and li respectively denote the estimated and actual location of a user, the indicator

function I(a,b) equals to 1 if a = b, otherwise 0, and N denotes the tested RSSI numbers.

The tracking error distance is defined by

Derror =
∑
|T |
i dis(ĉi,ci)

|T |
(4.21)

The error distance depicted above actually measures the averaging accumulated error

distance for each moving trajectory. In particular, ci and ĉi mean the actual and predicted

coordinates of a subject at time i, and dis(ĉi,ci) denotes the Euclidean distance between

them. |T | is the number of all observed RSSIs of a moving trajectory.

4.6.3 Micro Experiments

We first conduct several micro experiments to test our methods. Before evaluating our

approaches, we need to decide how to choose the optimal size for each virtual grid. According

to our experiments, a small grid size brings more indistinguishable patterns due to the RSSIs’

overlapping in adjacent locations, as a result, we need more profiling data to resolve such

overlapping. In this chapter, a very high location resolution is not our primary goal. For

example, caregivers normally more concern about the elderly resident locating on which

area or room of a house or apartment instead of an extremely fine-grained location point.

Based on this intuition, we set up our experiments as Fig. 4.12, in which each virtual grid is

0.8m×0.8m, locating people in a 0.64m2 resolution.
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Fig. 4.12 Multiple RSS fields and testing paths

Experimental Settings

As Fig. 4.11 shows, one reader-antenna is placed at 1.55m height and faces to passive tags

from 25◦ ∼ 75◦ angle7. The tags are attached on paperboard-holders placed 30cm above the

ground. Considering that our model aims to learn the RSSI-Location mapping, those passive

tags can be flexibly put as any geometric shape. For simplicity, we deploy the passive tags as

a square array with around 1.6m distance. Another issue is that, the reader may lose some

RSSI readings due to the human body occlusion during localization or tracking. As a result,

to make the received RSSI vector with same number of readings, we fill in those missing

values as 0 in each sampling time.

7The antenna angles or height can be set up arbitrarily as long as it is able to capture all the readings of all
tags in an empty environment.
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Table 4.1 Localization accuracies of different methods by using different ratios of training
data

Scena. Ratio (%) 10 20 30 40 50 60 70 80

1

kNN 0.946 0.954 0.958 0.958 0.960 0.961 0.962 0.963
GMM 0.927 0.935 0.938 0.940 0.939 0.943 0.940 0.941
SVM 0.707 0.756 0.823 0.851 0.897 0.912 0.919 0.928
ELM 0.664 0.764 0.719 0.771 0.881 0.898 0.904 0.904

NaiveBayes 0.883 0.887 0.913 0.930 0.938 0.944 0.943 0.946

2

kNN 0.810 0.823 0.833 0.844 0.869 0.902 0.913 0.931
GMM 0.751 0.777 0.783 0.793 0.838 0.884 0.894 0.902
SVM 0.656 0.717 0.775 0.797 0.819 0.832 0.846 0.857
ELM 0.680 0.538 0.614 0.701 0.677 0.774 0.819 0.835

NaiveBayes 0.741 0.777 0.793 0.844 0.872 0.890 0.903 0.914

3

kNN 0.880 0.904 0.918 0.927 0.931 0.931 0.936 0.943
GMM 0.851 0.877 0.883 0.893 0.898 0.904 0.904 0.912
SVM 0.715 0.746 0.774 0.826 0.840 0.854 0.876 0.881
ELM 0.688 0.583 0.617 0.693 0.705 0.812 0.840 0.846

NaiveBayes 0.768 0.789 0.855 0.889 0.918 0.921 0.928 0.929

Localization

To test the localization capability, we define three scenarios to simulate the possible real-world

daily routines.

Scenario 1 (Stationary) A person stands or sits statically in a certain location of monitored

area, mimicking that a resident may talk with someone or watch TV.

Scenario 2 (Dynamic) A person moves around and does several activities within a certain

small zone, mimicking a resident may cook in the kitchen or do morning exercise.

Scenario 3 (Mixed) A subject performs both activities defined in Scenario 1 and 2 within a

certain location.

Accordingly, we test our system based on the above three scenarios: i) a participant

appears in each location for 120s; ii) a participant walks around and performs some activities

in each grid for 120s; and iii) a participant does the above activities for 240s per grid.
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Overall we collect 276,480 RSSI readings in the localization experiments. We randomly

split it into testing and training datasets based on different ratios (in each ratio, we run the

methods twenty times to calculate the average localization accuracy). Table 1 compares our

experimental results of five localization methods with different training ratios. We carefully

tune the parameters for each method - we set k = 2 for kNN and GMM component number

as 4, and choose termination criterion and C in SVM with a linear kernal as 0.01 and 1

respectively [143]. For a stationary scenario, all five methods can localize the subject

with a decent accuracy. Among all, kNN classifier achieves a 94.6% localization accuracy

in particular with 12s/grid training data, which significantly outperforms other methods

especially the SVM and ELM. For a challenging dynamic localization scenario, kNN still

achieves a better performance with 93.1% accuracy using 80% training data. It is also noted

that, under a dynamic scenario, the localization accuracy is more relevant to the training data

size. A larger training dataset is able to provide more informative RSSI patterns for this case.

In Scenario 3, our system is able to reach a high accuracy of 94.3%. In summary, under

a circumstance of limited training data (e.g., 10% training data), kNN based localization

reveals a better and robust performance. It is worth to mention that, to achieve a similar

accuracy, the shortest collection time of training data is of minutes-level in past localization

systems [45]. On the contrary, our system only requires a seconds-level collection time to

get a comparable localization performance. We also observe that, with more training data

(e.g., 80% training data in Table 1), other methods are also able to get good accuracy but

more sensitive to the training data size.

Tracking

In the tracking experiments, we evaluate our HMM based models on three moving trajectories

under the proposed two transition strategies, illustrated in Fig. 4.12. Two persons with various
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Fig. 4.13 Tracking errors on three paths (CT: Constraint Transition; CLT: Constraint-Less
Transition)

weights and heights participate our experiments and every path is tested for 20 times8. As

Fig. 4.13 illustrates, kNN-HMM with Constraint Transition (i.e., kNN-HMM + CT) is able

to track a subject with 0.64m mean error, achieving the best result among all the methods.

This may lie in the fact that kNN-HMM + CT feasibly narrows down the candidate locations

(excluding the invalid location candidates), thus can better quantify the mapping relation

from RSSI sequence to moving trajectories. We also compare our system with other popular

RFID-based localization works, as shown in Fig. 4.14.

LANDMARC [22] is the very first RFID-based localization system that tracks a tagged

subject by measuring its weighted average locations of its nearest four tags. It needs the

target attached with tags and know the reference tags’ locations. In our experimental testbed,

it achieves average tracking error 1.64m (i.e., LANDMARC-1: 3×4 reference tags with 1.6m

interval), and 1.11m (i.e., LANDMARC-2: 5×7 reference tags with 0.8m interval).

TagArray [32] is one of the first RFID-based systems that can localize a subject in a

device-free manner. Generally, TagArray detects a person by comparing the variation of

8We mainly focus on tracking a resident with a moderate moving speed (≈ 0.6m/s) due to that fast moving
in an indoor environment is not practical.
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RSSI readings with a pre-learned threshold. However it is built upon active RFID tags and

requires a high tag tensity as a tag array. It reaches 1.7m (i.e., TagArracy-1: 3×4 reference

tags with 1.6m interval) and 1.15m (i.e., TagArray-2: 5×7 reference tags with 0.8m interval)

mean tracking error in our testbed.

TASA [33] is another device-free RFID-based localization system, which adopts both

passive and active tags. Thus it is less costly than TagArray. But still, it requires to calibrate

all tags’ coordinates. It gives 1.53m (i.e., TASA-1: 3×4 reference tags with 1.6m interval)

and 1.05m (i.e., TASA-2: 5×7 reference tags with 0.8m interval) mean tracking error.

SCPL [37] is one of the advanced wireless-based device-free localization systems. It

utilizes a Gaussian model based Conditional Random Field (GM-CRF) method to track a

moving person. It is very similar to our GMM-HMM method (utilizing Gaussian Mixture

Model). We implement the GM-CRF method in our RFID dataset and get a mean 0.98m

tracking error.

Twins [39] is a very recent RFID-based system purely built upon passive tags, which

utilizes a interference phenomenon (called state jumping) of two passive RFID tags to do the

motion detection. It gives a mean 0.75m tracking distance error in an open warehouse. Twins

also needs to carefully calibrate the positions of the reference tags.

BackPros [135] is one of the recent RFID-based positioning systems, which is able to

track a passive tag with a decimeter-level accuracy. However, BackPro aims to track an

object instead of tracking a human body by exploring the phase differences of backscatter

signals to infer the tag’s location. It needs to carefully calibrate the positions of four antennas

beforehand and the tracked object need to be attached with a passive tag.

Different to the baseline methods, our system does not need to calibrate the tags’ lo-

cations9 and achieves 0.64m average tracking error in our testbed. It offers about 2.56×,

2.66×, 2.39× and 1.53× improvement compared with LANDMARC [22], TagArray [32],

9Although we put tags in a square array in Fig. 4.12, we actually do not use any coordinates of the tags.
Because we target to learn the mapping model, the tags can be placed in other geometric locations.
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Fig. 4.14 Average tracking errors

Fig. 4.15 Tracking error CDF

TASA [33], SCPL [37] (see Fig. 4.14) using the same number of tags. Fig. 4.15 shows the

CDF (cumulative distribution function) curves of tracking error for different methods. The

kNN based HMM with CT achieve a better result, nearly 76% tracking errors are below 1m.
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4.6.4 Field Experiments

This section delivers the experimental results in a residential house that contains 2 bedrooms

(i.e.,a home office and a master room) and a kitchen, as shown in Fig. 4.16. The reader-

antennas are deployed around 1.7 meters vertical distance to the ground and the facing angle

to the passive tags is around 60◦, which is capable of capturing all RSSI readings under a

non-resident environment. Overall we virtually divide the monitored area into 25 grids, and

use 34 passive RFID tags and one reader with three antennas. We attach those passive tags

on the room-walls with about 0.8m interval.

Localization

Similarly, we design three localization scenarios in our field experiments - Stationary,

Dynamic and Mixed. Accordingly, three types of data are collected to train and test the

location classifiers10.

Figure 4.17∼4.19 show the results of localizing a subject using five different location

classifiers varying training ratios (from 5% to 90%)11. In the stationary scenario, the

localization accuracy of kNN is as high as 93.8% with 90% training ratio. More importantly,

only with 6 seconds training data (5% training ratio) for each grid, it can achieve an accuracy

over 85% in a residential house, revealing its advantage than other location classifiers. For

Scenario 2, the performances of all methods are degenerated due to the unstable human

inference, and the results among different methods are more close to each other. We

also observe that more training data can significantly enhance the localization accuracy,

which means, for the challenging dynamic scenario, collecting more training data can

more accurately capture the human inference to RSSI signals. For Scenario 3, the best

10 i) a person appears in each grid for 120s, ii) a person contentiously moves round in a grid for 120s, and
iii) a participant does the above stationary and dynamic activities respectively for 120s. For L1, L10, L11, we
only collect the data people lying down for all scenarios. Overall, we collect 848,640 RSSI readings, forming
24,960 RSSI vectors.

11We randomly choose the training dataset and testing dataset, and conduct each experiments 20 times,
reporting the average accuracies



4.6 Evaluation 89

Fig. 4.17 Localization accuracy in Senario 1

Fig. 4.18 Localization accuracy in Senario 2

perfermance is achieved by kNN using 90% training data, and the overall performance is

between stationery scenario and dynamic scenario. In summary, kNN shows its superiority in

RFID-based device-free localization, considering its simplicity, light computation overhead

and relaxing requirement of training data.
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Fig. 4.19 Localization accuracy in Senario 3

Fig. 4.20 Tracking errors on three paths

Tracking

We also test our tracking methods on three daily routines, as shown in Fig. 4.16.

Path 1: L10→ L9→ L17→ L25→ L24→ L23→ L21→ L20 represents that, a resident

gets up from the master room and does some cooking in the kitchen.
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Fig. 4.21 Tracking error CDF

Path 2: L4→ L5→ L6→ L7→ L8→ L9→ L16→ L15→ L12 mimics that a resident gets

up from the sofa L4 of the master room, and then goes to work at the desk L12 of the home

office (i.e., the room in the upper-left of Fig. 4.16).

Path 3: L11→ L12→ L15→ L16→ L17→ L18→ L19→ L20→ L21→ L22 indicates

that, a resident gets up from the bedroom and goes to the kitchen using the kettle.

Overall three subjects join the experiments and each path test is repeated 20 times. As

Fig. 4.20 depicts, our proposed kNN-HMM with Constraint Transition illustrates a better

result (with 1.07m mean tracking error) comparing to other HMM based models. It is noted

that, in Path 3 - a more complex path of daily routine, our method obtains a larger tracking

error (nearly 1.2m). The reason may be due to the fact that Path 3 involves walking through

a narrow hall with many electronic appliances in the kitchen, which block or absorb the

energy of backscattered signal from an antenna. Thereby the tracking accuracy decays for

this application scenario. In general, our proposed method outperforms other methods by

intensively learning the mapping relation between RSSI readings and human mobilities under

a transition constraint. It is noted that SCPL achieves 1.66m mean error, 1.55 times large

than our method. In the field experiment, we only compare our system with the proposed
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Fig. 4.22 Tracking errors with tag numbers

method in SCPL since the LANDMARC, TagArray and TASA place the RFID tags as arrays

on the ground. Such deployments are impractical and obtrusive for a residential environment.

Firstly, the reader even cannot catch the readings from passive tags that are deployed in a

carpet ground since signals are blocked by furnitures around and absorbed by the carpet.

Secondly, tag-arrays that densely deployed on ground in a residential environment strongly

obstructs the mobility of the resident, causing uncomfortable and inconvenient. In our

system, the passive tags are attached on the wall which is more practical and considered as

less intrusion. As a result, the localization systems proposed in LANDMARC, TagArray and

TASA are no longer capable for the residential application scenario.

4.6.5 Parameters Selection

In this section, we will discuss the factors that have impact on the tracking accuracy.

Tag Density

Tag density is an important influential factor to the tracking performance. As Fig. 4.22 shows,

we investigate the impact of tag density by deploying different numbers of tags in the testing



4.6 Evaluation 93

Fig. 4.23 k value and GMM component number

rooms. The experiments reveal that a sparse tag density (e.g.,2 tags/room) will reduce the

tracking performance. On the other side, continuously using more passive tags does not

improve the tracking accuracy significantly. For example, in our experiments, the tracking

error does not decrease obviously when increasing the tag number from 34 to 89. Such a

phenomenon lies in a fact that it is difficult for an antenna to probe a large number of passive

tags and thus resulting in severe reading loss. It is noted that, comparing to TagArray and

TASA that require a high density of tags, our system is able to achieve a comparable tracking

accuracy using less passive tags.

k Value and GMM Component Number

There are two key parameters in our HMM-based models, one is k value in Emission Matrix

of kNN-HMM, another one is the component number (CN) of GMM in GMM-HMM. We

investigate these two parameters in our micro experiment testbed. Fig. 4.23 illustrates that,

the tracking error reaches the lowest when k = 7, which thus is chosen as the optimal value

in our tracking system. However, GMM-HMM achieves a better tracking accuracy at CN =
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Fig. 4.24 Window size in forward calibration

4, 8, 9 and 15. Considering that a larger CN may potentially cause a model over-fitting and

requires more computation overhead, we choose CN = 4 in this chapter.

Window Length

For a localization system, dealing with the latency is also a concerning issue [144, 43]. In

this chapter, we introduce a simple yet efficient forward calibration to reduce the latency,

laying on the fact that previous human motion has an impact on current location prediction.

One of key parts is to decide the length of previous motion, i.e., the smoothing window

length. Fig. 4.24 shows the relevance between the window size of forward calibration and

the tracking error in different paths using two HMM based methods. We observe that, when

the window length ranges from 8 to 11, our system achieves a less tracking error. Thus, we

select 8 as the optimal length in our system considering both the computational burden and

accuracy.
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Fig. 4.25 Stationary data vs dynamic data

Stationary Data vs Dynamic Data

As mentioned before, we put two kinds of training data into the HMM based methods -

stationary data (Scenario 1) and dynamic data (Scenario 2). In order to analyze which type

of training data plays a key role in tracking, we first add 120 seconds dynamic training data

(before black dot line, the First-stage Training), then we add another 120s stationary data

for training (after black dot line, the Second-stage Training), shown as Fig. 4.25. Overall,

we observe that the tracking error decreases as adding more training data. In details, the

error diminishes rapidly in the first stage, but just slightly reduces in the second stage.

Actually, the last 72 seconds stationary data does not make much contribution to improving

the performance. It reveals that more dynamic data substantially provide richer anchoring

RSSI information regarding the human motion, and a few stationary training data (e.g.,

collecting 24 seconds training data) nearly provide all the essential statical information for

tracking. In other words, we can add more dynamic training data to improve the system’s

tracking performance.
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4.7 Conclusion

Indoor localization and tracking systems built upon passive RFID hardware have shown

attractive potential of passive tags due to the cheap price, low-maintenance and battery-free

character. Those promising features strongly motivate this chapter, in which we design,

implement and evaluate an RFID-based DfP indoor localization and tracking system built

upon passive tags. By taking advantage of supervised classification methods, we introduce a

series of data-driven models to quantify the RSSI distributions when a user appears at various

locations within a monitored area. These approaches enable our system to localize a subject

by maximizing the posteriori probability given RSSI observations. To transfer the pattern

learned in localization into tracking, we further propose the multivariate GMM-based HMM

and kNN-based HMM methods, in which we utilize the probabilistic estimation learned in

localization to construct the emission matrix and introduce two human mobility strategies to

approximate the transmission matrix under the hidden Markov assumption. The intensive

experimental results verify the effectiveness and accuracy of our system.

However, our system aims to accurately localizing and tracking resident in a clustered,

fully-furnitured environment, in which the proposed method can only achieve around 1 meter

mean tracking error by purely adopting passive RFID tags. In the next chapter, we will show

how to incorporate the human-object interaction events to further enhance the performances

of indoor localization and tracking in a residential house.



Chapter 5

Enhancing RFID-based Device-free

Indoor Localization and Tracking

through Human-Object Interactions

Device-free indoor localization aims to localize people without requiring them to carry any

devices or being actively involved in the localizing process. It underpins a wide range of

applications including older people surveillance, intruder detection and indoor navigation.

However, in a cluttered environment such as a residential home, the Received Signal Strength

Indicator (RSSI) is heavily obstructed by furniture or metallic appliances, thus reducing the

localization accuracy. This environment is important to observe as human-object interaction

(HOI) events, detected by pervasive sensors, can potentially reveal people’s interleaved

locations during daily living activities, such as watching TV, opening the fridge door. This

chapter aims to enhance the performance of commercial off-the-shelf (COTS) RFID-based

localization system by leveraging HOI contexts in a furnished home. In particular, we

propose a general Bayesian probabilistic framework to integrate both RSSI signals and HOI

events to infer the most likely location and trajectory. Unlike other RFID-based localization

systems, which are limited to deployment and testing in clear/semi-clear spacial areas, our
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system can work in a furnished environment. Experiments conducted in a residential house

demonstrate the effectiveness of our proposed method, in which we can localize a resident

with average 95% accuracy and track a moving subject with 0.58m mean error distance.

5.1 Introduction

Ambient intelligence has been drawing a growing attention as it enables a smart environment

that can respond to people’s locations and behaviors using various wireless signals, sensors,

or Radio-Frequency Identification (RFID). Many attractive applications can be realized in

these smart environments that will have huge impact on our daily lives, such as aged care,

surveillance and indoor navigation. A crucial prerequisite of all these applications is to

accurately localize and track people in a cluttered living environment [26, 32, 145]. To

tackle this challenge, many state-of-the-art indoor localization systems have been developed

over last decades such as LANDMARC [22], WILL [134], Tagoram [23]. Most of these

techniques, however, require the target to either carry sensors/smartphones/tags or be actively

involved in the localizing process, which has several limitations in practice. The attached

sensor/smart phone/tag may be lost or damaged or elderly people with dementia may forget

to carry the device. As a result, device-free (or unobstructive) indoor localization has gained

significant momentum recently and several approaches have been proposed [43, 44, 47].

One popular device-free technique category is based on computer vision, such as using

RGB camera [146], depth camera [31], or infrared sensors [147], however they are usually

regarded as being privacy-invasive and causes uncomfortable feeling to the residents. Vision-

based systems also require the tracked target within the LOS (line of sight) of cameras (i.e.,

no barriers or blocks between the subject and camera), and fail to work in dimmed or dark

environments. Another technique category is based on RF (radio frequency) signals, e.g.,

detecting human locations by measuring RSS (received signal strength) or CSI (channel state

information) in WLANs (wireless local area networks) [43, 44, 137], or tracking a target
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Fig. 5.1 Intuition of HOI-Loc

through a wall based on the RF signal reflected from human body [41]. However, most of

such past systems often require regular maintenance (e.g., replace the batteries regularly), or

need specialized WIFI signals, e.g., Frequency-Modulated Continuous-Wave (FMCW), or

special-purpose devices, e.g., Universal Software Radio Peripheral (USRP), which hinder

their wide application and deployment in reality [148, 138, 47].

Thus, device-free localization based on passive RFID tags has attracted much attention

recently due to its low-cost (5∼10 cents each, still dropping quickly) and maintenance-free

(no need batteries) nature [148]. However, existing RFID-based device-free techniques usu-

ally work in clear or semi-clear spaces (i.e., empty spaces or spaces with very few objects),

and none of them are actually tested in clustered residential environments, especially in a

multiple-room scenario. In addition, most RFID-based localization techniques are based

on the assumption that knowing the tags’ coordinates in advance, which is impractical in

real-world applications (accurately locating the tag’s position is a time-consuming and chal-
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lenging task itself). Besides, many state-of-the-art RFID-based systems (e.g., [148, 47, 23])

heavily rely on ideal propagation models of RF phase or RSSI, which may not be feasible in

a full-furnitured residential room where rich multi-path reflections and frequent electromag-

net interference exist (e.g., turning on/off electronic appliances in a kitchen) [149, 33]. In

addition, the residents usually move around in the space, and it creates fast changing com-

munication environments such as loss of RSSI readings and varied backscatter prorogation

paths, further introducing unpredictable disturbing factors. To tackle these challenges, in this

chapter, we design HOI-Loc, an RFID-based device-free localization and tracking system to

achieve high accuracy in clustered living environments using Human-Object Interactions.

With the booming of IoT (Internet of Things), human-object interaction has been advo-

cated as an essential component of Cyber Physical System (e.g., smart homes, intelligent

space, and home automation). According to the report [150], there are more than 1.9 bil-

lion devices launched into the market each week that can connect to the residential home,

and there will be rapidly increased into 9 billion by 2018, roughly equal to the number

of smart phones, smart TVs, tablets, wearable computers, and PCs combined. With such

tremendous smart devices, we can easily access, retrieve and monitor HOI events in our

daily lives [151]. For instance, a smart home equipped with various sensors (see Fig. 5.1) is

capable of reporting the operating conditions of the floor lamp, desktop computer and desk

light [152]. Moreover, we observe that the locations causing severe signal decay are usually

full of furniture or electrical appliances, and such locations are exactly where HOI frequently

occurs. Whereas, from another perspective, we can substantially improve the localization

accuracy by utilizing such interaction events. For example, localizing a person in the kitchen

(equipped with rich electrical appliances) purely based on RSSI is difficult since the signals

are severely interfered by electrical devices made of metals (i.e., microwave oven, fridge or

cooker). However, we can offset such signal disturbance and improve accuracy by using HOI,

such as opening a fridge, turning on a kettle or a microwave oven. Inspired by this intuition,
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we propose to incorporate HOI into existing RSSI based methods to improve localization

accuracy in clustered indoor spaces.

Transforming the use of HOI into a practical system, however, requires addressing a

number of challenges. First, localization from weak RSSI signals of passive RFID tags in

a clustered environment is difficult. Unlike active RFID tags or wireless sensors that have

their own power supplies, passive tags can only obtain energy from the interrogating field,

which can easily be obstructed by furniture and metal appliances (e.g., RSSI reading loss,

RSSI jumps due to on-and-off of electronic appliances). In particular, this task is typically

accomplished using COTS RFID readers, which currently do not support any low-level signal

access or modification. In addition, HOI contexts are discrete events which occur from time

to time, but RSSI readings are continuous signal (can be sampled as high as 10 times per

second). How to feasibly incorporate the discrete HOI events with continuous RSSI signal

under rigid mathematical reasoning is a challenging task. Moreover, the inherent signal

diversity of passive tags caused by human mobility would introduce many unknown effects

on the RSSI attenuation and reading disturbance, leading to unpredictable tracking errors.

To address these issues, in the HOI-Loc system, we first set up several RSS fields formed

by passive RFID tags attached on the bedroom’s walls1 to continuously generate RSSI signals,

and then deploy various kinds of sensors (e.g., infrared sensor, touch sensor and light sensor

etc.) to detect the resident’s interaction events with electrical appliances. We propose three

main techniques to tackle the aforementioned challenges. First, we propose a Probabilistic

Polyhedron Isolation (PPI) method to model the likelihood of the target’s locations by

measuring the Euclidean distance of testing RSSI readings with each isolated high-dimension

polyhedron, which is robust to the signal attenuation and jumping (see Section 5.4). Second,

we develop a rigid Bayesian probabilistic framework to fuse the discrete HOI events (i.e.,

indicating where and when people interact with objects) with continuous RSSI signals. In

1Unlike other device-free RFID systems (e.g., LANDMARC [22], TagArray [32], TASA [33] and
Tadar [47]), we do not need to know the locations of passive tags, meaning tags can be attached on the
wall in an arbitrary shape
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particular, we first estimate the RSSI probability, then update the likelihood by computing

the HOI probability, and finally optimize a location with largest confidence (see Section 5.4).

To track a moving subject, we introduce a Hidden Markov Model (HMM) to quantify the

continuous location transition process to eliminate the negative impact caused by human

mobility. In particular, we first approximate the Emission Matrix by a probabilistic scheme

that considers both evidence of the RSSI sequence and HOI event stream based on Bayesian

Inference, then propose a practical but efficient strategy to estimate the Transition Matrix,

finally use the Viterbi Search to recover the target’s trajectory (see Section 5.5). In a nutshell,

our main contributions are summarized as follows.

• We introduce an approach that utilizes HOI events to facilitate device-free localization

based on passive COTS RFID tags. Our experiments demonstrate the feasibility and

accuracy of HOI-Loc in a furnished, clustered living environment. To the best of our

knowledge, the proposed system is a very first effort to do so.

• We propose a general Bayesian-based probabilistic framework that provides a way

to feasibly fuse HOI events with RSSI signals to enhance the tracking performance.

In particular, for a multiple-room scenario (including two bedrooms and a kitchen),

HOI-Loc can achieve average 95% localization accuracy and 58cm tracking error,

offering about 1.3×, 1.86× and 2.86× improvement compared with Twins [148],

TagTrack [138] and SCPL [37].

• HOI-Loc can accurately track up to three residents with average 85cm error distance in

a non-concurrent case, and it is capable of decoding four basic living postures with

overall 94.7% accuracy.
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Fig. 5.2 HOI-Loc system overview

5.2 Preliminary

In this section, we will theoretically analyze the RFID backscatter communication mechanism

and verify HOI-Loc’s capability to reach device-free localization and tracking.

5.2.1 Received Signal Strength Indicator (RSSI)

Passive RFID system communicates based on the backscatter radio link since the passive tags

(no batteries powered) can purely harvest energy from the antenna’s signal. RSSI measures

the power of received radio signal between the tag and reader antenna [141]. We detail the

characteristics of RSSIs from passive RFID tags in Chapter 4 (please see details in Sec. 4.2.2).

5.2.2 Human-Object Interactions (HOI)

Human-Object Interactions, study the interactions between human and the surrounding

smart objects, facilitating the booming of context-aware computing [153]. Currently, many
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researchers from computer vision community investigate how to utilize the HOI for object

tracking/recognition [154], action recognition [155] or human postures detection [156]. In

our daily lives, we also observe that resident’s interactions with surrounding devices can

be very helpful to reveal her locations in a home environment. Considering the following

scenarios, when the door of a microwave oven is open, it is very likely the person is near the

oven; if the desk lamp goes from on to off, or from off to on, we can almost be certain that the

subject currently is in her home office. Thus, inspired by the observation, some HOI contexts

can be very valuable to infer the target’s possible locations. Then, the only question left is

how we can monitor the HOI events in real-time, which although is not a challenging issue,

still needs to be well-designed. In our system, we use the products of Phidgets Inc.2 (i.e.

Single Board Computer PhidgetSBC3, Phidget light sensor, Phidget touch sensor, Phidget

motion sensor etc.). The sensors mounted in electrical appliances communicate with the

PC through WiFi. We use the Microsoft .NET framework and SQL Server 2012 to manage

the interaction events, which can be easily aggregated and visualized. Fig. 5.10 shows the

hardware deployment in a bedroom. The whole detailed experimental settings can be seen

from Fig. 5.9.

5.3 HOI-Loc Overview

Ultra-low cost of UHF tags (5∼10 cents each) become the preferred choice of many industry

applications. Following the common practice, we focus on device-free localization based on

passive UHF tags in this chapter. Today’s COTS RFID readers have an operating range of

around 10m, which is enough for a residential room. We also focus on locating and tracking

residents that are not moving at a high speed (< 1m/s) since moving in a high speed in a

residential room is unlikely.

2http://www.phidgets.com/

http://www.phidgets.com/
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5.3.1 Problem Definition

We consider the target resident moving within a surveillance house. For each monitored house

with D passive tags deployed, we divide it into J zones, denoted by L = {L1,L2, ...,LJ}.

When a subject appears in zone Li, we collect N sample data Si = {si1,si2, ...,siN}, where

si j ∈ RD means data collected in jth sampling period. As a result, when going through all

the zones, we can obtain a dataset S = {S0,S1, ...,SJ}, quantifying how a subject affects

RSSIs from each zone. Here the environmental RSSIs without a subject is represented

by S0. Similarly, for modeling HOI events, we assume that we overall have M different

objects C = {I1, I2, ..., IM} available (e.g. electrical kettle, fridge, microwave oven etc.). Then

we represent the interaction events in a binary way, i.e., Ii = 1 means an interacting event

happens. For example, if I1 represents fridge door, then I1 = 1 means the fridge door has

opened from closed, or closed from opened (interacted with by a resident), otherwise I1 = 0.

Formally, given both signal available, this chapter targets the following two problems.

Problem 4 (Localization) Can we locate a monitored subject by learning the RSSI patterns

and interaction events of human with objects? Formally, given an RSSI vector and interaction

events, we need to correctly estimate the subject’s location.

Problem 5 (Tracking) Can we track a moving subject by learning RSSI changes and HOI

event streams? Formally, given a continuous RSSI sequence and interaction event stream, we

need to accurately estimate the subject’s trajectory.

5.3.2 Solution

Localization: Mathematically, Problem 1 can be formulated as modeling the posterior

distribution Pr(l|o,C) for each possible location. In particular, given observed RSSI signals

o and corresponding interaction events C = {I1, I2, ..., IM}, we find the most likely location
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by using

l∗ = argmax
l∈L

Pr(l|o,C) (5.1)

which is essentially a classification task. We need to model how RSSIs are distributed in

different geographical areas based on a sample of measurements collected at several known

locations and how to feasibly update the posterior probability of the classifier based on the

contexts of HOI. We present our method in §5.4.

Tracking: When a resident walks in random zones, we can collect T continuous RSSI vectors

O = {o1,o2, ...,oT}. Then, mathematically, Problem 2 can be formulated as modeling the

posterior distribution:

Pr(l1:T |O,C ) = Pr(l1:T |o1:T ,C1:T ), l1:T ∈L (5.2)

Then, given observed continuous RSSI vector sequence o1:T and interaction event stream

C1:T , we need to find the location sequence with largest likelihood.

l∗1:T = arg max
l1:T∈L

Pr(l1:T |o1:T ,C1:T ) (5.3)

The tracking problem can be regarded as given a continuous RSSI stream and a HOI event

sequence, how we can recover the underlying location sequence which is as accurate as

possible to the true location trajectory. We elaborate our solution in §5.5.

5.4 Localization

As aforementioned in Eqn.5.1, for localizing a static resident, we need to model the posterior

distribution Pr(l|o,C) given RSSI signal and HOI events. However, it is difficult to measure

the posterior likelihood since we cannot know the RSSI signal patterns and HOI events before

the resident appearing in the monitored area. But we can observe what happened (e.g., the
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RSSI changes, the operating status of electronic appliance) when the resident located in a

certain location during our experiments. So how to bridge the gap? Let us first do a more

thoroughly analysis to Eqn. 5.1. Based on the Bayesian Inference Theorem, we can decode

the equation as

Pr(l|o,C) =
Pr(l)Pr(o,C|l)

Pr(o,C)
=

Pr(l)Pr(o|l)Pr(C|l,o)
Pr(o,C)

∝ Pr(l)Pr(o|l)Pr(C|l,o)
(5.4)

Since RSSI signals and HOI events are from independent sensor sources, we also have

Pr(C|l,o) = Pr(C|l). Thus, we can model the posterior probabilities of candidate locations

as

Pr(l|o,C)∝ Pr(l)Pr(o|l)Pr(C|l) (5.5)

where Pr(l) is the prior probability distribution, which is set as Pr(l)∼ 1/J without losing

generality (means the target can be possible in any locations beforehand). So far, we

successful find a way to model the posterior distribution Pr(l|o,C). We give the following

two definitions.

Definition 1 (RSSI Probability) Given the resident appearing a certain location, RSSI

Probability measure the probabilistic distribution Pr(o|l) of RSSI signals.

Definition 2 (HOI Probability) Given the resident interacting with objects in a certain

location, HOI Probability measure the probabilistic distribution Pr(C|l) of HOI events.

Next, we need to deal with how to accurately measure Pr(o|l) and Pr(C|l).
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Fig. 5.3 RSSIs clustering in different HD spaces for subject in different locations

5.4.1 RSSI Probability

As elaborated in §5.2, mapping the RSSI signal to locations is very challenging under a

clustered environment due to rich multi-path effect. Seeking solutions from backscatter

propagation analysis is impractical in our case, laying in the facts: most backscatter commu-

nication models is depend on the assumption that the position of reference tag is accurately

measured beforehand [47], which is not applicable in HOI-Loc (we relax the assumption,

no need to know tag’s coordinates). From Fig. 5.3, we can observe that the RSSI readings

always cluster in a relatively same HD (high-dimension) space (treating one tag’s signal

as one dimension) when the resident appearing in a same location. Thus, based on this

intuition, we propose a Probabilistic Polyhedron Isolation (PPI) method to efficiently locate
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Fig. 5.4 RSSIs from different locations are bounded by isolated HD polyhedrons

the high-dimension space, inspired by kNN searching. Intuitively, kNN is based on distance

estimation that assigns an Euclidean distance between any two RSSI samples. An observed

RSSI sample is classified by a majority vote and assigned to the most common zone among

its k nearest neighbors, which effectively eliminates the loss or jumping of signal reading

by a majority voting mechanism. However, it only output a class-membership rather than

offering probabilistic information, which is not capable for fusing with HOI events. Thus

we propose the PPI method that works as follows. Assuming for each observation o, we

search its k nearest neighbors from the training set S in the high-dimension space, denoted

as N(o) = {sk|sk ∈ kNN(o)}. The training samples collected in location Li among N(o)

is represented as Ni(o) = {si
k|s

i
k ∈ N(o)∩ si

k ∈ Si}. In fact, Ni(o) represent each isolated

HD-polyhedron. Geometrically, the ith HD polyhedron (mapping to location Li) is formed
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by several high-dimension points (e.g., RSSIs from all tags within a sampling time) in Ni(o),

illustrated as Fig. 5.4. Then, we can estimate RSSI Probability by measuring the Euclidean

distance of testing RSSI readings with each isolated HD Polyhedron.

Pr(o|li) =



∑si
k∈N(o)

1
dis(o,si

k)

∑sk∈N(o)
1

dis(o,sk)
+∑α

, if |Ni(o)| ≥ 1

α

∑sk∈N(o)
1

dis(o,sk)
+∑α

, if |Ni(o)|= 0

(5.6)

where li indicates the target appears in location Li, (i = 1, ..,J); |Ni(o)| means the number of

elements contained in |Ni(o)|, so does |N(o)|; α is a parameter with a very small value to

avoid 0 probability for some locations where no training sample included in |N(o)|. In our

case, it is chosen by

α = 0.001 max
sk∈N(o)

1
dis(o,sk)

(5.7)

Eqn.5.6 gives the posterior distribution by finding its HD polyhedron and measuring its

distance with the test sample. As Fig. 5.5 shown, we compare proposed PPI method with

traditional kNN in a 1.8m×1.8m area (see Fig. 5.3, with 4 tags and 9 virtual grid). The PPI

method outperforms kNN in all k values.

To conclude, it is superior in the following two ways: i) it specifically gives the posterior

distribution of each locations by measuring the context distances, providing a way to fuse

with HOI information; and ii) it utilizes HD polyhedron to code with signal distortion, i.e.,

RSSI fluctuation is robustly tolerated by boundaries of a learned high-dimension space).

However, merely based on RSSI Probability, we still cannot achieve satisfied localization

accuracy in a clustered environment. We run a pilot experiment in a residential master-room

(see Fig. 5.9, Area: 3.6m×4.8m). As Fig. 5.6 shows, the average accuracy is around 80%,
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Fig. 5.5 Localization accuracy for proposed PPI and traditional kNN

Fig. 5.6 Localization result based on RSSI signal (k=2)

and it mis-classifies the adjacent locations such as L2 and L3, L4 and L5. As a result, the

unsatisfied localization performance motivates us to exploit the HOI events.

5.4.2 HOI Probability

HOI contexts basically reflects the interacting status of the resident with her environment at

a particular point of time, which can be utilized to facilitate the localization. Based on the
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problem definition in §5.3, for N continuous time slots, we can retrieve an interaction events

data set C = {C1,C2, ...,CN}, where Ci = {Ii
1, I

i
2, ..., I

i
M} represents statuses of M interacting

events at ith time. We assume that, for each HOI event happening, there exists at least one

candidate location, which is the criterion we choose HOI events. Thus, for each object Ii , its

possible locations can be denoted as

LIi = [LIi
1 ,L

Ii
2 , ...,L

Ii
J ]

T (5.8)

where LIi
j = 1 means L j is the possible location of the subject regarding interaction event Ii;

LIi
j = 0 means L j is not the possible location. For overall M objects, we have

LI = [LT
I1
,LT

I2
, ...,LT

IM
]T (5.9)

Thus, given the interaction events with all objects C = {I1, I2, ..., IM}, we can infer all the

possible locations based on HOI Matrix, defined as:

Definition 3 (HOI Matrix) HOI Matrix indicates all the possible locations for HOI events

happen at a certain time, calculated by MHOI = [I1LT
I1
, I2LT

I2
, ..., IMLT

IM
]T .

To avoid the cases that no available interaction events can be utilized to infer some certain

candidate locations, we smooth the zero probability with adding a small value parameter β .

Based on our numerical experiences, β does not affect the final estimation as long as it is

small enough since it produces much smaller probability comparing to other cases. In this

chapter, we choose β = 0.001. Then, we can estimate Pr(C|l) for each possible locations

based on Algorithm 1. In particular, for each timestamp, we receive a MHOI to indicate

current HOI status, then we feed it into Algorithm 1 to get the HOI Probability.

In summary, based on Algorithm 1 and Eqn.5.6 and Eqn.5.5, we can conveniently

integrate HOI events with RSSI signals under a Bayesian Inference probabilistic framework

to estimate a subject’s location with maximum likelihood. Through fusing these two signals,
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Fig. 5.7 Localization result of fusing HOI events with RSSI signal (k=2)

HOI-Loc greatly increases the localization accuracy, illustrated by Fig. 5.7. With fusing HOI

events, our method achieves overall more than 96% accuracy. We also make comparisons

with methods that are frequently adopted by other fingerprinting-based localization systems,

including SVM [143], EML [157], and Naive Bayes (see experiments in §5.6).

5.5 Tracking

Comparing to localize a relatively static resident, tracking a moving subject is more chal-

lenging, mainly because i) the moving subject causes the obvious RSSI signal latency (when

estimating the current location, the subject already move to another place); and ii) the moving

body introduces sudden, unpredictable RSSI signal pattern changes enabling us difficult to

mapping the signals to locations. However, we observe that the next moving zone is usually

adjacent and only adjacent to current locations3. So we can narrow down candidate locations

as long as we estimate current resident’s location. Intuitively, we introduce a Hidden Markov

Model to model such location transition process. Then we need to deal with how to feasibly

integrate both RSSI signal sequence and HOI event stream into a HMM framework.

3As mentioned before, we assume that the resident move naturally at residential room, less than 1m/s.
Under a 2Hz sampling frequency, moving distance is less than 0.5m/s, within the range of one grid.
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Algorithm 2: HOI Probability Pr(C|l) Estimation
Input: HOI Matrix MHOI ∈ RM×J , β

Output: Pr(C|l j), l j ∈L

1 PossibleLocaSum = 0;
2 for i = 1 : M do
3 for j = 1 : J do
4 if MHOI(i, j) == 1 then
5 PossibleLocaSum=PossibleLocaSum+1;
6 end
7 end
8 end
9 for j = 1 : J do

10 PossibleLocaSumj=0;
11 for i = 1 : M do
12 if MHOI(i, j) == 1 then
13 PossibleLocaSumj=PossibleLocaSumj+1;
14 end
15 end
16 if PossibleLocaSum j ̸= 0 then

17 Pr(C|l j) =
PossibleLocaSumj
PossibleLocaSum

;

18 end
19 else

20 Pr(C|l j) =
β

PossibleLocaSum
;

21 end
22 end

First, we revisit the definition of Tracking Problem in §5.3. Actually, we can decode the

Eqn. 5.2 based on Bayesian Inference in the same way.

Pr(l1:T |o1:T ,C1:T ) =
Pr(l1:T ,o1:T ,C1:T )

Pr(o1:T ,C1:T )

∝ Pr(l1:T ,o1:T ,C1:T )

(5.10)

Similarly, since RSSI signal and HOI events are from independent sensor sources, and current

state is only conditionally depend on previous one, we can further decode the above equation
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as

Pr(l1:T ,o1:T ,C1:T )

= Pr(l1)Pr(o1|l1)Pr(C1|l1)
T

∏
t=2

Pr(ot ,Ct |lt)︸ ︷︷ ︸
A

Pr(lt |lt−1)︸ ︷︷ ︸
B

= Pr(l1)Pr(o1|l1)Pr(C1|l1)
T

∏
t=2

Pr(ot |lt)︸ ︷︷ ︸
A1

Pr(Ct |lt)︸ ︷︷ ︸
A2

Pr(lt |lt−1)︸ ︷︷ ︸
B

(5.11)

So far, we successfully decompose our tracking problem into estimating two Emission

Matrix A1 and A2, and Transition Matrix B. We observe that A1 and A2 are exactly the same

forms (except the times-tamps) as the RSSI Probability and HOI Probability. As a result, for

tracking problem, we can also apply Eqn. 5.6 and Algorithm 1 to estimate the two emission

matrices A1 and A2 respectively.

5.5.1 Transition Strategy

Transition matrix measures the probability of a subject moving to next location at each time

t, which is defined as Ai j = Pr(at = l j|at−1 = li). However, based on the common-sense,

a subject can only move a step at a time, meaning that it is highly unlikely for the subject

to walk from the lower-left corner to the upper-right corner or walk through a bed within

a sampling time (0.5s in our case). Therefore, we adopt a Adjacent Transition strategy to

calculate the probabilities of next candidate locations given current location.

Definition 4 (Adjacent Transition) The subject can only move to a feasible location that

is adjacent (including current location which means still) to current location with equal

probabilities, and the probabilities of moving to other locations are very small.

Based on the proposed strategy, we assume that location li denotes the subject appears

in zone Li. Given current location li, all the possible locations that the subject can move
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to belong to the set ψi, and the number of locations contained in the set is |ψi|. Thus, the

transition probability matrix can be expressed as

Ai j = Pr(l j|li) =


1
|ψi|

if l j ∈ ψi

0 if l j /∈ ψi

(5.12)

where ψi is defined according to the proposed strategy.

5.5.2 Viterbi Searching

Having Emission Matrix and Transition Matrix, we can search the most likely sequence of

state transitions in a continuous time stream via the Viterbi algorithm defined by Vj(t), the

highest probability of a single path of length t which accounts for the first t observations and

ends in location L j:

Vj(t) = arg max
l1,l2,...,lt

Pr(l1:t−1, lt = L j;o1:t ;C1:T |A,B) (5.13)

where A and B can be found in Eqn.5.11. Further, by induction:

Vj(1) = A1 j = (A1)1 j(A1)1 j

Vj(t +1) = argmax
i

Vi(t)Bi j(A1)t+1, j(A2)t+1, j

(5.14)

where (B1)1 j = Pr(o1|l j) and (B2)1 j = Pr(C1|l j). Finally, we can recovery an optimal path

with the maximum likelihood. Next, we need to deal with the latency issue in tracking

system.
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Fig. 5.8 HMM tracking mechanism by fusing RSSI signal and HOI events

5.5.3 Forward Calibration

We find some latency in detecting the subject, which is mainly caused during the RSSI

collection process and by the delay of signals sent by passive tags [141]. The RSSI collector

is programmed with a timer to poll the RSSI with a predefined order of transmission, taking

around 1∼ 2s to complete a new measurement with no workarounds. To cope with the issue,

we adopt a forward calibration mechanism to calibrate the estimated location sequences to

offset the latency, which uses a moving time averaging window to recalculate the coordinates

of location sequence obtained by Viterbi Searching. In particular, the estimated coordinates

ĉi : (x̂i, ŷi) location lt at time t can be calculated as:

ĉt =
∑

t+|w|−1
i=t c̃i

|w|
(5.15)

where |w| is the window length. c̃i is uncalibrated coordinate of predicted grids centroid at

time t. Based on our pilot experiments, we find that HOI-Loc achieves the best performance

when |w|= 7.
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Fig. 5.9 Experiment settings and paths

5.6 Implementation and Evaluation

We set up COTS RFID hardware in a residential house with two bedrooms and a kitchen (see

Fig. 5.9), including an Alien ALR-9900+ Enterprise RFID Reader, 4 two-circular antennas,

and multiple squiggle Higgs-4 passive tags. The reader operates at 840-960MHz and supports

UHF RFID standards such as ETSI EN 302 208-1. We set the sampling rate as 2Hz and

each tag reading contains time stamp, tag ID, antenna ID and the RSSI value, which are

then processed by a computer with an i7-3537U 2.5G processor and 8G RAM, running

WINDOWS 7. Based on our preliminary experiments, we place the antenna about 1.7m

above the ground and facing tags with approximately 45◦ in order to catch all readings of

reference tags in a non-subject environment. We attach passive RFID tags to the wall with

an approximate 0.6m interval (shown as Fig. 5.10). During the localization and tracking,



5.6 Implementation and Evaluation 119

Fig. 5.10 Sensors and RFID hardare deployment
Testing Area: master bedroom: 3.6m×4.8m, bedroom: 3m×3.2m, kitchen: 3.6m×4.6m

we send an RSSI request to all tags within a sampling period. If we cannot receive RSSI

readings of a certain tag, its RSSI value will be set to 0. Thus, for all timestamps, we have

the RSSI vectors with the same dimension.

Before evaluating our approach, we need to deal with two practical issues: one is how

to decide the zone size, and the other is how to choose the specific HOI events and their

corresponding candidate locations. Based on our empirical study, the smaller the grid size, the

higher false classification rate will be due to more indistinguishable zones, and more profiling

data are needed as well. Thus, smaller zone size can offer high localization resolution but

increase the calibration burden. In reality, extreme high resolution in localization is not the

main concern. For instance, in an elderly people assistant system, caregivers are generally

desirable to know which sub-area the elderly is rather than a very fine-grained location point

if achieving the later goal is at expensive cost. Therefore, we defined our virtual zones as

shown in Figure 5.9. For HOI events, the priority is given to the objects that the resident

frequently interacted or used, and their operation status can be easily monitored based on

COTS sensors. We treat the zones that are adjacent to the object as the possible candidate
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Fig. 5.11 Localization result for Stationary Scenario

locations when interacting events happens, e.g., when the fridge door is open, the potential

locations4 are L25, L24 and L17.

5.6.1 Evaluation Metrics

We adopt standard localization accuracy and error distance to measure our proposed ap-

proaches in terms of localization and tracking respectively [32]. The localization accuracy is

defined as

Accu.=
∑

N
i I(l̂i, li)

N
(5.16)

where I(l̂i, li) is an indicator, which equals to 1 if estimated zone l̂i is as same as the ground

truth zone li, otherwise equals to 0; N is the total number of the testing RSSI measurements.

4When we detect the HOI event, the subject may move to a adjacent locations (if not in L25) within 0.5s.
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Fig. 5.12 Localization result for Dynamic Scenario

The error distance denotes the averaging accumulated error distance of the testing samples

in each continuous trajectory, it is calculated using

Diserr.=
∑
|T |
i dis(ĉi,ci)

|T |
(5.17)

where ci is the coordinates of the actual location of the subject at time i, and dis(ĉi,ci) is

the Euclidean distance between predicted coordinates and actual coordinates, |T | is the total

number of testing samples generated by a trajectory.

5.6.2 Localization

Shown as Fig. 5.9, we test the performance in a residential home that is divided into 25 virtual

grids. To be more practical, we defined the following three scenarios to mimic daily-living

activities in our experiments.
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Fig. 5.13 Localization result for Mixed Scenario

• Scenario 1 (Stationary): Assuming a subject is standing/sitting in an unknown place in

the monitored area still, such as watching TV or waiting for someone.

• Scenario 2 (Dynamic): Assuming a subject keeps moving around or with some activi-

ties in a small unknown area, such as cooking in the kitchen.

• Scenario 3 (Mixed): Assuming a subject presents in an unknown place and performs a

combination of Scenario 1 and Scenario 2, such as doing some exercises for a while

and then watching TV.

Based on the predefined three scenarios, we collected three types of data to test our

method: i) a subject is standing in each grid for 120 seconds, ii) a subject keeps moving

around within each grid for 120 seconds, and iii) combining both activities for 120 seconds in

each grid5. Then we randomly divide it as training data (i.e., 5 seconds∼50 seconds data per

grid) and testing data (i.e., 115 seconds∼70 seconds data per grid). In each case, we do exper-

5Three participants with different genders, heights and weights join our experiments. We overall collect
612,000 RSSI readings with one week experiment timespan.
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Table 5.1 The percentage improvements for the accuracy of our method over the other
approaches

Scenarios kNN SVM ELM Native Bayes
S1 12.63% 17.89% 21.05% 12.63%
S2 10.87% 19.56% 18.47% 9.78%
S3 10.63% 18.08% 19.14% 10.63%

iments 20 times to get the mean accuracy. The testing result is shown as Fig. 5.11∼ Fig. 5.13.

The parameter settings are: k=2 for kNN; SVM (linear kernel, terminate criterion=0.01, C=1,

others as default); ELM (hardlim activation function, NumberofHiddenNeurons=600, others

as default, average result of running 20 times); NaiveBayes (normal distribution, uniform

prior probabilities, others as default).

For Scenario 1, all classification methods achieve more than 75% localization accuracy

with 50 seconds’ training data. In particular, the proposed method is able to achieve 95.6%

accuracy with only 5 seconds of training data, which exhibits great advantage than other

fingerprint-based schemes. In previous work, the shortest time needed for collecting training

data to get same localization accuracy is about 60 seconds [45]. Our system only needs

to collect 5 seconds of training data to reach a better localization accuracy, improving 12

times. For Scenario 2, the best localization accuracy is 93.7%, achieved by our method. It

is worth to mention that, performance in this case is more sensitive to the size of training

data. It may lie in fact that more training data can better interpret more informative RSSI

patterns for the dynamic scenario compared to the stationary scenario. For Scenario 3, the

localization accuracy can reach 95.2%. Table 5.1 summarizes the percentage improvements

for the accuracy results of the proposed approach over the other classification methods such

as SVM, ELM, Native Bayes, and kNN. It shows that our method generally improves the

accuracy at around 10% ∼ 20%. To conclude, our method achieves a better localization

performance among all the methods, and it is also more robust to the RSSI uncertainties in

case of limited training data.
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Fig. 5.14 Compare tracking accuracy of HOI-Loc with other state-of-the-art systems

5.6.3 Tracking

We evaluate tracking performance on three paths (see Fig. 5.9), which respectively simulate

three real-life scenarios: i) the subject gets up from the bed in the master bedroom and opens

the fridge, takes out some food to do cooking in the kitchen; ii) the subject stands up from

sofa in the master bedroom and goes to work on the desk in the study room, and iii) the

subject gets up from the bed in the small bedroom and walks through the kitchen and boils

water using the electric kettle. Three subjects with different heights and weights join the

tracking experiments, and each participant walks the three paths 20 times. We also review

and compare HOI-Loc with the state-of-the-art RFID-based systems, shown as Fig. 5.14 and

Fig. 5.15. The parameters used are: k = 2 for TagTrack and HOI-Loc; GMM component

number=4 for GMM-CRF in SCPL.

• TagArray: TagArray [32] is the very first work that utilizes RFID tags to achieve

device-free localization. It deploys active tags as an array to localize a subject when

RSSI of some anchoring tags variate beyond a threshold. However, it requires high tag

density, relatively expensive and needs pre-calibrate the tags’ locations.
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Fig. 5.15 Trackng error CDF (cumulative distribution function) for different device-free
methods

• TASA: TASA [33] is another tag array-based localization scheme using both active and

passive tags, which is more cost-effective comparing to TagArray. However, it tracking

error is heavily correlated with the tag density, and it still requires to calibrate all tags’

coordinates.

• SCPL: It is a device-free localization system based on wireless sensor nodes [37].

SCPL proposes a GMM (gaussian mixer model) based CRF (conditional random

field) to track a moving subject. It reports average 1.3m tracking error. We apply its

GMM-CRF in our testbed, achieving average 1.66m error.

• Twins: Twins [148] is a very recent device-free localization work based on pure passive

tag, which leverages observations caused by interference among two passive tags to

detect a single moving subject. It reports an average 0.75m tracking error in a relatively

spacial warehouse. It requires to know the reference tags’ locations in advance.
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Fig. 5.16 Mean tracking errors using different tag numbers

• BackPros: BackPros [135] is the latest RFID-based positioning system that can achieve

decimeter-level accuracy (i.e., report 13cm mean tracking error). It requires the target

to be attached with a tag and exploits the phase differences of backscatter signals

to infer the tag’s location. It needs carefully calibrate the positions of four antennas

beforehand and the tracked subject attached with a tag.

• TagTrack: TagTrack [138] is a similar attempt using RFID signals to passively localize

the objects. It deploys the passive tags as an array and uses the RSSI changes as

the tracking indicator. It improves the result by introducing classification technique,

reaching 70cm error distance. However, such accuracy is only achievable in a spacial,

clear area. We also utilize its method to our test environment, achieving 1.07m mean

error.

Unlike the above methods, HOI-Loc does not require the location contexts of reference

tags, achieving 0.58m mean error distance in the testbed. As Fig. 5.14 shows, it offers

about 1.3×, 1.86× and 2.86× improvement compared with Twins [148], TagTrack [138] and

SCPL [37] in a residential house6. We also explores the relation of tag density with tacking

6 In a residential home testbed, we do not compare HOI-Loc with TagArray and TASA since these two works
need to put the tags in an array which is impractical especially in a full-furnitured house. Firstly, the reader
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Fig. 5.17 Tracking errors for mutiple residents

error (see Fig. 5.16). We can see that the tracking performance will greatly degenerate

when using less tags, e.g. in the case of 6 tags (2 tags per room), the error is more than

3m. However, adding more tags (e.g. more than 34 tags) cannot enhance the performance

significantly since a large number of tags are difficult to be interrogated by an antenna within

a sampling time, causing more lost readings. As a result, the overall performance decays

in this circumstance. To summarize, HOI-Loc can achieve high tracking accuracy using 34

passive tags, which relaxes the requirement of high-density tags deployment in TagArray

and TASA

5.6.4 Beyond the Limits

To push the limits of HOI-Loc, we also conducted experiments in a multi-resident scenario.

Two residents walked randomly among different rooms and interacted with the environment

even cannot catch the readings from passive tags that are deployed in a blanketed ground because signals are
strongly blocked by furnitures around and absorbed by the blanket. Secondly, tag-arrays that densely deployed
on ground in the residential room strongly obstruct the mobility of the resident, causing uncomfortable and
inconvenient. In HOI-Loc, the passive tags are attached on the wall which is more practical and considered as
less intrusion.
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Fig. 5.18 Confusion matrix of detecting four basic postures

(where the instrumented objects are available), and then for three residents7. As shown

in Fig. 5.17, our method can track two residents with 0.69m average error and track three

residents with 0.85m mean error. Although our experiments exclude the cases that multiple

subjects are concurrent in the same room, from a practical view, the test scenarios is still

valuable and frequently seen in real-living activities. Mostly, in each room (especially in

bedroom) there are usually one resident, and even for a family of two or three, there plenty of

time that people stay or work in a room alone. We also attempted to detect different postures

of the resident, such standing, sitting, lying down and walking using our system. We observe

that, similarly to localization, the RSSI signals embody different patterns when a resident

performs different postures, which means the RSSI signal is not only the location indicator but

also can be exploited as a human-activity indicator. Thus, we collected RSSI readings to feed

into our Probabilistic Polyhedron Isolation method when the resident performing different

postures in the bedroom. As Fig. 5.18 shows, we can successful to detect resident’s postures

with 94.7% accuracy. The results suggest that HOI-Loc provides an enabling primitive to

recognize postures, besides tracking a moving resident. We can use this capability to better

understand a resident’s daily-living habits.

7Make sure there is only one resident in each room at a certain time, overall we collected 10,800 measure-
ments.
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5.7 Conclusion

To summarize, this chapter has shown how human object interaction events can be used to

facilitate the COTS RFID-based device-free localization under a rigid probabilistic frame-

work. The real-world experiments demonstrate the feasibility and effectiveness of our system,

which marks an important step toward enabling accurate device-free indoor localization in

a residential house. In our system, we simply attached passive tags on the walls to enable

antennas to capture signals when a resident moving in the room, and installed sensors on the

electronic appliances, which is considered not being very practical. However, we can mount

readers and antennas on the ceiling, and embed passive tags into wall decorations. Also, with

the development of IoT, it is a standard configuration for smart-homes to monitor working

conditions of domestic appliances. HOI-Loc will be more practical and enable valuable

applications with the prevalence of smart-homes in the near future.

Aside from accurately knowing the resident’s indoor locations, understanding what the

resident is doing is also one of the core functionalities in our living-assistive system. In the

next chapter, we will intensively explore how to achieve a high-accuracy device-free human

activity recognition based on the same passive RFID hardware.





Chapter 6

Device-free RFID-based Human Activity

Recognition

Activity recognition is a fundamental research topic for a wide range of important applications

such as remote health monitoring, fall detection, assistive-living system. It is essential for

those applications to understand what a user is doing or attempting to do. Many of the

existing techniques on activity recognition rely heavily on people’s involvement such as

wearing battery-powered sensors, which might not be practical in real-world situations

(e.g., people may forget to wear sensors). Over the last few years, device-free activity

recognition has gained a considerable momentum and several solutions have been proposed.

In this chapter, we propose a device-free activity monitoring approach using an array of

low cost, passive RFID tags. Activity recognition is achieved by learning how the Received

Signal Strength Indicator from the pure passive RFID tag array is distributed when a person

performs different activities. We systematically examine the impact of tag configurations

on performance of activity recognition and propose techniques for determining the optimal

subset of RFID tags in the array, which is often missing in the most existing approaches.

We further propose to infer activity changes via Dirichlet process Gaussian Mixture Model

(DPGMM) based Hidden Markov Model, which effectively captures the nature of the
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uncertainty caused by signal strength varieties. We run a pilot study and evaluate the

performance with 12 orientation-sensitive activities and a series of activity change sequences.

We conduct extensive experiments in two cases: in a lab environment and at a residential

home. The experimental results demonstrate that our proposed approach can distinguish

a series of orientation sensitive activities with high accuracy in both environments. The

experimental results also show that our RFID-based device-free approach offers a good

overall performance and has the potential to support the assisted living of elderly people.

6.1 Introduction

Human Activity Recognition (HAR) is one of the core functionalities for a living-assistive

system. For instance, by monitoring the activities of a person with dementia, we could

track how completely and consistently her daily routines are performed and determine when

the person needs assistance. It is also regarded as an important and essential infrastructure

for a wide range of applications such as safety surveillance [158, 159], ambient assisted

living [160–162], and remote health monitoring and intervention.

To date, many research works on recognize human activities have been emerged. Com-

puter vision based technique is one of main directions, but unfortunately, such solutions

demand high computational cost for machine interpretation. In addition, the performance

of such vision-based approaches depends strongly on the lighting conditions (e.g., hard to

monitor sleep postures at night), and cameras are generally considered to be intrusive to

user’s privacy. With the development of sensor, RFID, and wireless sensor network tech-

nologies, sensor-based HAR has gained growing attentions in the last several years. Inertial

sensors are the most frequently used wearable sensors for human activity recognition [163–

165, 58, 166, 57, 167]. Although sensor-based HAR systems can better address those issues

in computer vision based techniques such as privacy intrusion and poor performance under

darkness, most works still requires people to wear the inertial sensors or other electronic
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Fig. 6.1 Proposed lightweight setup: a person performs different activities between the wall
deployed with an RFID array and an RFID antenna. The activities can be recognized by
analyzing the corresponding sensing data collected by the RFID reader.

devices. RFID tags. Consequently, those systems unavoidably i) are not always practical,

particularly for monitoring elderly persons with cognitive disabilities who usually forget to

wear, and ii) need users’ cooperation and regular maintenance (e.g., battery changes).

To overcome the aforementioned issues, RF (Radio Frequency) based device-free activity

recognition has been increasingly popular. Those systems generally deploy RF sensors in

environments and analyze the fluctuations of the received signal strength (RSS) induced by the

movements of human bodies to recognize the activities [60, 168, 169, 62, 33]. For example,

in [61], the authors set up a sensor array to learn informative features from fluctuation of

collected signals when people move to different locations or perform different actions. The

HAR solution proposed in this chapter also belongs to this technical category, which is

built upon a set of lightweight, cost-effective and maintenance-free passive RFID tag-array.
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Different to other RF-based HAR approaches, the designed RFID-based system have three

unique advantages: i) it requires no maintenance such as battery replacement or recharging;

ii) it is cheap and each passive tag only costs 5 cents; and iii) it is convenient for deployment

in a residential environment since a passive tag only weights several grams and has a tiny

size (i.e., 5cm×1cm). Fig. 6.1 illustrates the basic hardware setup of our HAR system.

Moreover, our HAR system is capable of recognizing fine-grained daily activities such as

distinguishing orientations of activities. Activity orientation identification can be valuable by

combining with the layout of the place in practice, especially for a living assistive system.

For instance, if we know that a table is on the left side of an elderly person, based on the

layout, if we can detect the orientation of the person’s fall, it is possible to identify how

severe the fall would be (e.g., she may hit the table if falling to her left).

In addition to activity monitoring, considering cost and size of deployment in reality, it

is desirable to find a minimal set of tags and sensors without loss of performance accuracy.

To meet this requirement, we further systematically study the optimal number of RFID tags

deployed in the RFID tag array, which is commonly missing in many existing works. A

common intuition is that more RFID tags offer better performance in activity recognition.

However, research findings show that passive RFID tags can cause some unpredictable

effects, e.g., significant signal loss or fading if two tags are put in a certain distance [170].

Some researchers have been exploring the optimal tag configuration. A recent study by

Wagner et al. [171] investigate the optimal tag placement to alleviate inaccuracy caused by

the variability of RSS.

To this end, before HAR, we first search an optimal placement of passive tags, examining

and eliminating the redundant correlations to find minimal set of tags so that achieve accurate

and discriminative activity recognition performance. Second, to evaluate the performance

of our passive RFID system handling highly dynamic variations of RSSI during activity

transitions, we propose a Dirichlet Process Gaussian Mixture Model (DPGMM) with Hidden



6.1 Introduction 135

Markov Model to detect a sequence of different activities (e.g., from sitting to standing to

falling). In a nutshell, our main contributions are summarized as follows.

• We address orientation-sensitive activity recognition problem using an array of pure

passive RFID tags. Our approach is light-weight, low-cost, and unobtrusive in the sense

that only passive RFID tags are deployed. The proposed HAR relaxes the requirement

that users need to wear devices (sensors or transceivers) for activity monitoring.

• We examine a series of tag selection techniques including F statistics, relief F, random

forest, multinomial logistic regression, to identify and eliminate redundant tags, which

not only determines the optimal settings of tag array in terms of performance, but also

paves a way to deploy tag arrays in larger scale environments with lower cost and

less computational demand. On top of it, we further propose to integrate Dirichlet

process Gaussian mixture model with hidden Markov model for an effective activity

recognition.

• We conduct extensive experiments to validate our proposed approach. The experi-

mental results demonstrate the feasibility of the proposed approach. In particular, the

accuracy of steady activity classification based on our approach achieves over 98% in

both lab and a real-world residential environment.

The rest of this chapter is organized as follows. In Sec. 6.2, we discuss the applica-

tions that can benefit from our approach, and formulate our problem based on some key

observations. We describe our proposed approach in Sec. 6.3. In Sec. 6.4, we report the

experimental results. We wrap up the chapter in Sec. 6.5 with conclusion and some future

research discussions.
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6.2 Background

In this section, we first discuss several representative applications that can benefit from our

device-free activity recognition approach. We then formally define the targeted problems.

6.2.1 Application Scenarios

The HAR system we develop in this chapter can potentially be applied to posture monitoring

and activity recognition in general, particularly for elderly people or people with cognitive

impairment. Here we showcase several examples of its practical applications.

Fall Detection

With the great progress of medical technologies, many developed countries are facing the

issue of the aging society where there will be a lower proportion of people of working age

available to provide the necessary levels of care to elderly people. Meanwhile, the problem

of huge nursing cost has a big impact to aged care. The demand for developing home

surveillance systems is rising and such systems help old people stay at their own homes

longer and safer. Falls are the leading cause of fatal injuries for people aged 65 and above.

By monitoring the activities of an elderly, we could detect the likely falls (e.g., getting out of

bed) and issue an alert timely. Obviously, it is not practical to require the senior people to

carry device all the time.

Ambulatory Monitoring

Activity recognition and monitoring are critical in medical area, e.g., ambulatory monitoring,

because physiological responses, such as changes in heart rate or blood pressure, may result

from changes in body position and physical activities. Continuous monitoring and automatic

detection of subtle behavioral changes can be very valuable for physicians and caregivers to

estimate the physical well-being of a person.
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Fig. 6.2 (a) Histogram of RSSI from activity sit leaning left; (b) Histogram of RSSI from
activity sit leaning right

Sleep Monitoring

Sleep activity recognition is crucial for elderly people as sleep disorders can be associated

with some particular disease such as restless leg syndrome and diabetes. Device-free activity

monitoring is an improvement over camera-based activity monitoring, because the latter

suffers from privacy issues and poor performance at low light levels.

6.2.2 Observations and Problem Formulation

Figure 6.1 depicts the hardware setting of our system, where a tag-array containing several

passive RFID tags is deployed on the wall of a bedroom and a RFID antenna is placed on the

other side, facing these tags with a certain angle for better capturing RSSIs. When a person

performs different activities in the room, our HAR intends to decode her activities from the

collected RSSIs. However, it is well known that RSSI signal exhibits highly uncertain and

complicate fluctuations in an indoor environments due to the signal reflection, diffraction

and scattering, etc.. And those factors are often affected by the propagation environment,

the tagged object properties, and human movements in the signal coverage area. So it is
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Fig. 6.3 RSSIs from 9-tag array for a fall with different orientations

difficult to quantify the relation of RSSI signals and human activities by the conventional

signal propagation model.

However, on the other side, the variations of RSSIs potentially allow us to distinguish dif-

ferent activities if our HAR system can correctly “learn" those patterns. As Figure 6.2 shows,

RSSIs for different activities depict distinctive distribution patterns in terms of histogram.

Even for a same activity with different orientations, the RSSIs still show distinguishable

fluctuation patterns, shown by Figure 6.3. of RSSIs show distinctive changing patterns for a

fall activity with different orientations. Based the above observations, we believe that radio

frequency signals of passive RFID tags embody certain patterns for different orientation

activities and activity transitions, which can be further exploited for our activity recognition

task. We therefore formulate our problems in this work as follows.

Let O ⊂ Rd (d is the number of tags) be the domain of observable RSSI o and L ∈

{1, ...,K} ⊂ R be the domain of output activity label l. Suppose we have n RSSI and activity
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label pairs {(oi, li)|oi ∈O, li ∈L , i = 1, ...,n}. The training dataset would be represented as:

O = [o1, ...,on] ∈ Rd×n, l = [l1, ..., ln]T ∈ Rn (6.1)

In this chapter, we aim to answer the following two questions.

Problem 6 (Tag Deployment) Given an RFID tag array, what is the optimal deployment

setting of tags to achieve the best performance while using as minimal tags as possible?

Problem 7 (Activity Recognition) Given the RSSI observations, how can we accurately

recognize a user’s activity?

6.3 The Proposed Approach

In this section, we first present tag selection solutions to reduce the unpredictable effects

and the number of passive tags. Then we introduce the technical details on human activity

recognition.

6.3.1 Tag Deployment

To find the optimal tag deployment, the first essential challenge for us is how to set up tags

in an indoor setting to obtain the best performance. We first describe some intuitions of tag

placement in this work. There are two main reasons why we place tags as an array:

• We conduct empirical studies on different forms of placing tags, such as arranging

tags as a single line on the wall. According to our results, single-line tag placement

is capable of capturing signal variations, but it may fail to detect fine-grained body

movements, such as sitting leaning right or left. Furthermore, it is also not sensitive to

capture the signal variations caused by subjects with different heights.
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(a)

(b)

Fig. 6.4 Illustration of RSSI fluctuations of falling right and falling left: RSSIs of tag 1, tag 2
and tag 3 (top) and RSSIs of tag 7, tag 8 and tag 9.

• To achieve better accuracy and higher sensitivity, we increase single-line tag placement

to multiple lines, eventually forming an array. Different lines correspond to different

parts of human body. For instance, the upper line of tags would be expected to reflect

the variations from upper human body like waving arms or shaking head, and the
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middle line of tags would be more sensitive to movements of torso, and the bottom line

of tags are supposed to have more response to lower body movements such as falling.

In this way, we may perform more robust activity recognition with the collected full

spectrum of RSSI variations.

As shown in Figure 6.4, the top one shows the RSSI fluctuations of three tags (tag 1,

tag 2 and tag 3 are placed as a single line shown in Figure 13) and the lines indicate RSSI

variations of falling right, and dash lines indicate RSSI variations of falling left. The bottom

one shows the RSSI fluctuations of three tags (tag 7, tag 8 and tag 9 are arranged as a single

line) and the solid lines indicate RSSI variations of sitting right, and dash lines indicate RSSI

variations of sitting left. We can observe the fluctuations of tag 1, tag 2 and tag 3 are not quite

helpful for reflecting different orientation falls as they do not show significant difference, on

the other hand, tag 7, tag 8 and tag 9 can distinguish falling right and falling left better. The

reason lies in fall action happens on the lower body, the lower location of tag 7, tag 8 and

tag 9 can be more sensitive to such actions compared with tag 1, tag 2 and tag 3 in upper

location. To capture the RSSI variations in all aspects, we use multiple lined up tags forming

a tag array in this work. Existing works such as [61, 172] also show that placing sensors as

an array can realize activity recognition with good accuracy.

For Problem 6 Tag Deployment, the second challenge is how many tags should be used

to form a tag-array in order to obtain the best performance while using a less number of tags.

In particular, we intend to answer the following question: how many tags should be actually

deployed to reach the optimal trade-off between performance and set up cost of tag array, in

other words, more is better or less is more?

We first explore the correlations between tags while activities are performed. As shown

in Figure 6.5 (a), the RSSI values of tag 1 and tag 2 are highly correlated with each other,

which means tag 1 and tag 2 are redundant in identifying activities. Figure 6.5 (b) illustrates

that RSSI values of tag 1 and tag 9 successfully divide the RSSI data space from the series
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Fig. 6.5 Illustrative examples of tag correlations

of activities like stand straight, sit straight and lie in bed. We also examine the redundant

correlations among three tags. For example, Figure 6.5 (d) shows that the RSSI values of tag

3, tag 5 and tag 9 can distinguish the listed activities, while the RSSI values of tag 3, tag 4

and tag 6 are highly correlated, as shown in Figure 6.5 (c). From the above observations, to

eliminate the redundancy and select discriminative tags, we introduce a series of techniques

to select a salient subset of tags to determine the optimal tag array configuration in our HAR

system.
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F-Statistics

It is to measure the discrimination of multiple sets of real numbers and is calculated using:

Fi =
∑

l
j=1(ō

j
i − ōi)

2

∑
l
j=1

1
n j−1

∑
n j
k=1(o

j
k,i− ō j

i )
2

(6.2)

where l is the number of activity classes, n j is the number of samples in jth activity class.

ōi denotes the mean value of tag i in the training dataset. ō j
i is the mean value of ith tag

in the jth activity class. The numerator indicates the discrimination between positive and

negative sets, and the denominator indicates the one within each of the two sets. The larger

the F-score is, the more likely this tag is discriminative in activity recognition.

Relief F

This technique estimates the relevance of features according to how well their values distin-

guish between the data points of the same and different activity classes that are close each

other. It computes a weight for each tag to quantify its merit. This weight is updated for the

RSSI samples presented in each activity class, according to the evaluation function:

wi = wi + ∑
j∈L , j ̸=l(oi)

P(l j)

1−P(l j)
|oi−nearmiss j

i (oi)|

− |oi−nearhiti(oi)|

(6.3)

where l is the number of activity classes. nearmiss j(oi) and nearhiti(oi) denote the nearest

RSSI samples to oi from the same and different activity classes respectively.

Random Forest

Random forest (RF) is a classification method [173, 174], which also provides feature

importance. Its basic idea is that a forest contains many decision trees, each of which is
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constructed by instances with randomly sampled RSSIs. The prediction is made by a majority

vote of decision trees. To obtain tag importance, we split the training sets into two parts. By

training the first part and predicting the second, we obtain an accuracy value. For the jth

tag, we randomly shuffle its values in the second set and obtain another accuracy value. The

difference between the two accuracy values can indicate the importance of the jth tag.

Multinomial Logistic Regression with ℓ1 Regularization

ℓ1 regularization uses a penalty term that shapes the sum of the absolute values of parameters

to be small, which usually leads to a sparse parameter vector. In this work, we integrate

the ℓ1 regularization into linear classifier in the objective term. Given our multi-class

activity recognition problem, we combine the ℓ1 regularization with multinomial logistic

regression, which models the conditional probability Pw(l j = ∓1|o). The prime problem

with ℓ1 regularization can be calculated by optimizing the log likelihood:

min
w

K

∑
k=1
||wk||1−

n

∑
i=1

K

∑
k=1

likwT
k oi +

n

∑
i=1

log
( K

∑
k=1

exp(wT
k oi)

)
(6.4)

RFID tags can then be selected by considering the obtained weight vector w.

Least Square with ℓ1 Regularization

It can be represented as:

min
w∈Rd

1
2
||l−Ow||22 +λ ||w||1 (6.5)

where l = {l1, ..., ln} is the activity labels of training RSSI samples, O = {o1, ...,on} is all

training RSSI samples, w = [w1, ...,wd]
T denotes the regression coefficients, wi corresponds

to the regression coefficient of the ith tag, λ is the regularization parameter. Same as the

multinomial case, ||w||1 regularization tends to produce a sparse solution (i.e., the regression

coefficients of irrelevant tags are or close to zero), which indicates the importance of each
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tag. We also study the ℓ2,1 regularization, which is formulated as:

min
w∈Rd

1
2
||l−Ow||22 +λ ||w||2,1 (6.6)

where ||w||2,1 = ∑
n
i=1

√
∑

K
j=1 w2

i j.

After performing the selection process, all tags are ordered based on their importance

and a subset of tags is selected based on a user-defined threshold of top-N (N < d) tags.

6.3.2 Steady Activity Recognition

We adopt SVM (support vector machine) with linear kernel to perform steady activity

classification. SVM aims at finding the decision boundary via maximizing the distance from

the closet sample to the boundary hyperplane. When there are limited training data available,

SVM usually outperforms the traditional parameter estimation methods which are based

on the Law of Large Numbers. This is mainly due to the fact that SVM benefits from the

structural risk minimization principle and the avoidance of overfitting by its soft margin. For

activity recognition, SVM classifies activities based on the fact that the smaller the distance

between two RSSI samples, the higher probability they belongs to a same activity. SVM

method works directly with RSSI using the kernel functions. The topology implicit in sets

of RSSI and the activities can be exploited in the construction of possibly non-Euclidean

function spaces that are useful for activity estimation. Given the sequence of training RSSI

and corresponding activity labels O = {(o1, li), ...,(on, ln)}, where o ∈ Rd and l ∈ {1, ...,K},

the objective function can be formulated as:

min
w,b,ξ

wT w+C
n

∑
i=1

ξi

s.t. li(wT
φ(oi)+b)≥ 1−ξi, i = 1,2, ...,n

ξi ≥ 0, i = 1,2, ...,n

(6.7)
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where ξi is a slack variable, C is the penalty of error term, K(oi,o j) = φ(oi)
T φ(o j) is the

kernel function.

The prime problem of optimization in Equation 6.7 can be converted to solve its duality

using Lagrange multiplier. Thus, Equation 6.7 can be reformulated as:

L(w,b,ξ ,α,µ) =

wT w+C
n

∑
i

ξi−
n

∑
i=1

αi(li(woi +b)−1+ξi)+
n

∑
i=1

µiξi

(6.8)

where α = (α1, ...,αn)
T and µ = (µ1, ...,µn)

T is the Lagrange multipliers. To solve Equation

6.8, we can maximize the minimization of duality as:

max
α,µ

min
w,b,ξ

L(w,b,ξ ,α,µ) (6.9)

After the model is learned, we can recognize the activity class for a given testing RSSI o∗.

6.3.3 Activity Sequence Recognition

To accurately recognize a sequence of activities (e.g., from straight standing to falling to

the ground, then to standing up, finally to walking alway) , our goal is to determine the

conditional probability P(lk|oi) given a new coming sample o. We propose a HMM based

approach, which has shown a powerful performance in modeling activity sequences. In

particular, given observation sequences of RSSI O = {o1, ...,oT}, and activity states denoted

by activity label sequence l = {l1, ..., lT}, the HMM models the sequence of observable RSSI

O = {o1, ...,oT} by assuming that there is an underlying sequence of different activities

l = {l1, ..., lT} drawn from a finite activity set. In our model, each observation ot is the RSSI

vector, and each state lt is the activity label (e.g., sit, lie in bed).

HMM makes two assumptions: i) each activity performed at t only depends on its

immediate previous activity at time t−1, and ii) each observable RSSI ot only depends on
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the current performed activity lt , which are formulated respectively as:

p(lt |lt−1,ot−1, ..., l1,o1) = p(lt |lt−1), t = 1,2, ...,T (6.10)

p(ot |lT ,oT , ..., lt+1,ot+1, ..., l1,o1) = p(ot |lt) (6.11)

With the assumptions, we can model the joint probability of activity sequence l and

observable RSSI sequence O as:

p(l,O) =
T

∏
t=1

p(lt |lt−1)p(ot |lt) (6.12)

where p(lt |lt−1) is the transition probability indicating the likelihood the subject changes

from activity lt−1 to activity lt , which is defined by considering the predefined activity

transitions applications. For example, people can transit from sit to stand, but can not transit

from lie in bed to fall on ground directly, whilst they can transit from lie in bed to sit then to

fall on ground. We denote the state transition probability distribution as A = {ai j}:

ai j = p(lt+1 = l j|lt = li) (6.13)

On the other hand, p(ot |lt) denotes the observation distribution drawn by different

activities. We assume RSSI distribution generated by each activity as a Gaussian mixture

model, which is a weighted sum of m component Gaussian densities. It can be defined as

B = {bt(i)}:
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bt(i) = p(ot |lt = li)

=
Mi

∑
m=1

πi,mN(ot ,µi,m,Σi,m)

= p(ot |µm,Σm) =
1

(2π)D/2Σ
1/2
m

exp(
− 1

2
(ot−µm)

T
Σ
−1
m (ot−µm)

)
(6.14)

where o is d dimensional continuous RSSI observations (d is the number of tags in the

deployment) and π is the mixture weights and p(ot |µm,Σm) is the component Gaussian

distribution.

The traditional GMM learning process with Expectation-Maximization (EM) limits to

determination of how many gaussian components in the GMM. We adopt the Dirichlet

process Gaussian mixture model (DPGMM) in observation probability distribution in this

work. It uses Dirichlet process as a prior over the distribution of the parameters and there

is no need to explicitly declare the number of components. The approximate inference

algorithm uses a truncated distribution with a fixed maximum number of components, but

almost always the number of components actually used depends on the data [175]. We use

two-dimensional RSSI from our dataset to show the advantage of DPGMM over GMM (in

Figure 7). GMM with EM learning splits Gaussian components arbitrarily, for example, the

two clusters are eventually divided into five clusters in some convergences. Thus it does

not reach a good fit even we use AIC (Akaike Information Criterion) [1] as model selection

criteria, while the Dirichlet Process GMM model effectively only uses as many as needed for

a good fit without defining number of guassian components, it can accurately nail down two

clusters and converges to a good fit automatically in this case.

Our goal of detecting activities in the context of HMM is: given a sequence of RSSI

observations o1, ...,oT , what is the most likely sequence of activities to produce such ob-
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Fig. 6.6 RFID tags/reader/antenna (left); Lab setting (middle) and Bedroom setting (right)

servations? We adopt the Viterbi algorithm to find the most likely state sequence in HMM.

Formally, given a continuous sequence of RSSI observations o1...oT and learned HMM

(shown in Equation 6.12), we aim to find the most likely activity sequence l1...lT :

δt( j) = max
l1...lt−1

p(lt = j, lt−1, ...l1,ot , ...,o1|A ,B) (6.15)

where A and B can be calculated from Equation 6.13 and Equation 6.14. By induction, we

can have:

δ1( j) = b1(o j)

δt+1( j) = max
1≤ j≤N

δt−1( j)ai jbt(ot+1), j = 1, ...,K
(6.16)

6.4 Experiments

This section reports our experimental studies in both lab and realworld residential environ-

ments.
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6.4.1 Experimental Settings

Hardware Setup

We used one Alien 9900+ RFID reader, one circular antenna and Squig inlay passive RFID

tags in our experiment (see Figure 6.6). The original tag array containing nine tags was

placed at a 3×3 grid points on the wall where each grid is roughly 0.58m×0.58m. We call

this wall the active testing area. The antenna was arranged in≈ 1.3m height facing the active

testing area in ≈ 70◦ (as shown in Figure 6.6). The subject performed different predefined

activities between the wall and the antenna, and the corresponding sequence of RSSI were

collected.

Sampling Rate

Passive RFID tags tend to be noisy even in a lab environment. For example, one challenge in

existing RFID systems is false negative readings, caused by missed detections (i.e., a tag is

in the antenna’s reading range, but not detected). In addition, RSSI data is much sensitive

to environments, e.g., some disturbance from environment can cause RSSI fluctuations.

Appropriate sampling rates can reduce the aforementioned problems. Too small sampling

rates make our method more sensitive to the noise of RFID readings, while too big sampling

rates blur the inter-class activity boundaries. In our implementation, we collected the

continuous RSSI data streams at the sampling rate of 2Hz.

Data Acquisition

We ran a pilot study to evaluate the performance of our HAR system. For collecting the

training dataset, we conducted a series of experiments in which a subject entered the active

testing area and performed various pre-arranged activities, including standing, sitting, lying

on ground, lying in bed, and falling, etc.. Three subjects (two males and one female)

participated in the experiment and each performed the set of 12 fine-grained activities
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Fig. 6.8 An example of activity changes

(Shown as Figure 6.7). The subjects also performed different predefined activity sequences

for evaluating activity sequence recognition.

The task of the steady activity classification is to model how the signal strengths are

distributed when the subject performs different activities. Each subject stands in the active

testing area which is between the antenna and the wall deployed with passive RFID tags. We

first measured the RSSI values for all tags when the testing area is empty. Then each subject

stood in the area and performed the 12 predefined activities.

For collecting the activity-sequence dataset, we designed eight different activity sequences

to simulate the activity sequences in real world (see Figure 6.8) and collected them using two

strategies. In the first strategy, the subject performed and held each activity for 30 seconds

and then performed next activity in the order as predefined in the sequence. In the second

strategy, the subject performed and held each activity for 60 seconds and then performed the

next activity in the order as predefined in the sequence.

6.4.2 Results

To evaluate the effectiveness of the proposed tag selection, we adopted a person-dependent

10-fold cross-validation strategy. For the person-dependent evaluation, we use partial samples

of a subject for testing and use the remaining samples of the same participant for training.
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Fig. 6.9 Activity classification comparison with Top N tag selection in (a) lab and (b) bedroom
environments
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Impact on Tag Selection

To evaluate the impact of tag selection, we sorted the tag importance calculated from six

selection approaches (Section 6.3.1) in descend order, and compared the recognition accuracy

using SVM with linear kernel by choosing top N tags (N is from 1 to 9 (full set)). Figure 6.9

(a) shows the results comparison over top N tags in the lab environment, and Figure 6.10 (b)

shows the results comparison over top N tags in the bedroom environment.

In both cases, the performance are influenced by the selected tags. Activity classification

accuracy does not improve much after top 5 selected tags using all selection criteria, and

reaches the best point (99.18%) with Relief-F selection when top-7 tags are selected compared

with 99.04% without tag selection (full set of tags). In the bedroom case, the impact of tag

selection on performance is more obvious. The accuracy is the best when only seven tags

are selected, and the performance even slightly drops when more tags are added. From the

results, we can see that the tag selection does improve the overall performance in both lab and

bedroom environments by distinguishing the salient tags, only subset of intuitively placed

tags shows their usefulness and discrimination via implicating the intra-person variability

on different activities. The rest of tags degrade the overall performance due to failing to

capture the inter-class and intra-class variability. Figure 6.10 shows an example of optimal

tag deployments from our experiments.

Steady Activity Classification

To study the feasibility of our approach and sensitivity to size of training data after selecting

tags, we further evaluated the activity classification with varying training ratios in terms of

tag selection and no tag selection. As shown in Figure 6.11, our approach performs well even

only with 10% the training size, the accuracy reaches over 90% in both cases. The accuracy

increases with larger training sizes. However, when the training size is around 60%∼ 70%,
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Fig. 6.10 Selected tags

the accuracy begin to decrease. We can see that the overall accuracy is consistently better

with the tag selection strategy compared with the case without tag selection.

We look closely at the results of the confusion matrices in both the lab and the bedroom

cases with the selected subset of tags and 10% training ratio given in Table 6.1 and Table 6.2.

Generally, only a few samples of activities, i.e., stand in free style (with ID of 1) and stand

straight (with ID of 2), misclassified in the lab environment. In the in bedroom environment,

activities fall right (with ID of 11) and fall left (with ID of 12) are misclassified, whilst they

can be accurately classified in the lab environment. It should be noted that the performance on

classifying orientation-sensitive activities still reaches over 98% in the bedroom environment.

Activity Sequence Recognition

To evaluate the accuracy of recognizing sequential activities, we performed activity classi-

fication over a series of activity changes and measured how accurately our approach can

recognize a activity given new coming RSSI values, as well as how timely our approach can

recognize the activity.
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Fig. 6.11 Accuracy comparison with tag selection and without tag selection using different
training sizes: (a) lab and (b) bedroom
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Table 6.1 Confusion matrix with tag selection in lab

ID 1 2 3 4 5 6 7 8 9 10 11 12
1 35 2
2 1 34
3 39
4 36
5 36
6 36
7 39
8 36
9 37

10 36
11 36
12 36

Table 6.2 Confusion matrix with tag selection in bedroom

ID 1 2 3 4 5 6 7 8 9 10 11 12
1 35 1
2 1 34
3 36
4 36
5 36
6 36
7 39
8 36
9 37

10 36
11 35 2
12 1 35
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Fig. 6.12 Performance comparison on different window sizes using 30s and 60s strategies
without tag selection and with tag selection (a) lab and (b) bedroom
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Passive RFID tags are highly sensitive to disturbance, especially when activities continu-

ously change. The RSSI fluctuation result from activity transition exhibits some uncertainty.

To cope with the impact of this disturbance, we adopted a forward calibration mechanism

to calibrate the RSSI streams before detecting activity changes [176]. We used a sliding

time averaging window to smooth the RSSIs. The calibrated RSSI stream o′t at time t can be

calculated as:

ô′t =
∑

t+|w|−1
i=t o′i
|w|

(6.17)

where |w| is the window size.

Intuitively, a larger window size may break the consistency of RSSI samples from

one activity, while a smaller window size may not provide the best information for the

activity transition process. To determine the best window size in this work, we evaluated the

performance of both lab and bedroom settings with and without tag selection strategy by

varying the window size. Figure 6.12 shows the results. We can see that the performance

does not consistently improve when increasing window size, instead, when the window

size is 2, the performance in both settings reached the best result. We further compared the

performance in terms of different duration an activity is held. Figure 6.12 shows the results

under two durations (30 and 60 seconds) with and without tag selection. From the results, we

can see that the longer the activity is held by the subject, the better accuracy can be achieved.

The reason is that a longer activity holding time can eliminate both inter-class and intra-class

variations, to which RSSI are especially sensitive in recognizing activities. We also can

see that the performance using the tag selection strategy significantly outperforms the one

without tag selection. The results from steady activity classification and activity transitions

detection consistently indicate that an optimal subset of tags can more discriminatingly

recognize activities compared with full set of tags. The subset tags have the dominant impact.
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Fig. 6.13 Recognition latency: blue dot vertical line indicates the ground-truth time point of
activity change, pink dot vertical line indicates the recognition time point detected by our
proposed approach.

Recognition Delay

Fast recognition of sequential activities is critical, particularly for aged-care applications.

For example, for fall detection, we can send an alert and notify caregivers as quickly as

possible to offer medical assistance for elderly people when a fall occurs. So we conducted

the experiments to test how quickly our proposed approach can identify a new activity when

a user constantly changes her activities, in other words, the recognition delay.

The results from our experiments show that our system has 3.5 seconds recognition

latency, which results from two main reasons. Firstly, our system evaluates subject’s activities

every 0.5 seconds using the latest 2 seconds of RSSI stream. In other words, if the current

system time is at timestamp t, our system will produce the predicted activity in the [t−2, t−1]

seconds, and [t− 1, t] seconds is used to backtrack check if the predicted label complies

with predefined rules. For instance, assume that the label is estimated as: lying in bed at

[t− 2, t− 1] interval, if the predicted label in interval [t− 1, t] is nobody, our system will

determine the subject is still lie in bed. Secondly, the RSSI collector is programmed with a

timer to poll the RSSI with a predefined order of transmission, and needs to take around 1
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second to complete a new measurement with no workarounds. From Figure 6.13, we can

clearly see our proposed method can promptly detect the activity changes with slight latency.

In summary, in this section, through our extensive experiments, we can see that the

overall performance at home environment is a little bit lower than the lab environment (due to

furnitures etc.). However, it still achieves over 98% accuracy for steady activity classification

and 70% for the overall activity transition detection.

6.5 Conclusion

In this chapter, we proposed a device-free activity recognition system for elderly people,

by exploiting low-cost passive RFID tags. We focus our study on tag configuration issues,

especially tag placement and selection, for achieving the best trade-off between performance

and cost. We systematically study these issues by using different configuration settings

and applying various tag selection methods. We also propose a Dirichlet Process Gaussian

Mixture Model with the Hidden Markov model to recognize different activities. Through

our extensive experiments, our HAR system detects 12 orientation-sensitive activities, with

an accuracy of 99% and 72% in terms of steady activity and activity sequence recognition

in a lab environment respectively, and over 98% and 70% in a real-life home environment.

We also demonstrate that deploying more tags does not necessarily improve the recognition

performance, which actually decreases the accuracy under some circumstances.

Among all those human activities, falling down is one of the most dangerous actions

that deserves our particular attention, especially for the elderly who live alone. In the next

chapter, we will design a fine-grained fall detection system that can timely recognize falling

events and distinguish the falling orientations.





Chapter 7

Fine-grained Device-free Fall Detection

based on Passive RFID Tag Array

Falls are among the leading causes of hospitalization for the elderly and illness individuals.

Considering that the elderly often live alone and receive only irregular visits, it is essential

to develop such a system that can effectively detect a fall or abnormal activities. However,

previous fall detection systems either require to wear sensors or are able to detect a fall but fail

to provide fine-grained contextual information (e.g., what is the person doing before falling,

falling directions). In this chapter, we propose a device-free, fine-grained fall detection system

based on pure passive Ultra-High Frequency (UHF) Radio-Frequency IDentification (RFID)

tags, which not only is capable of sensing regular actions and fall events simultaneously, but

also provide caregivers the contexts of fall orientations. We first augment the Angle-based

Outlier Detection Method (ABOD) to classify normal actions (e.g., standing, sitting, lying

and walking) and detect a fall event. Once a fall event is detected, we first segment a fix-

length RSSI data stream generated by the fall and then utilize Dynamic Time Warping (DTW)

based k Nearest Neighbors (kNN) to distinguish the falling direction. The experimental

results demonstrate that our proposed approach can distinguish the living status before fall

happening, as well as the fall orientations with a high accuracy. The experiments also show
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that our device-free, fine-grained fall detection system offers a good overall performance and

has the potential to better support the assisted living of older people.

7.1 Introduction

Falls happen when human body suddenly changes from a normal living status (e.g., sitting,

standing, or walking) to the reclining without control [64], which often occur in a very short

time without human attentions. Falls may cause moderate to severe injuries including hip

fractures, head traumas, even more devastating consequences for the elderly. Based on the

Centers for Disease Control and Prevention, one-third population of the elderly who aged 65

and older experience falls each year [177]. Researchers estimate that up to 50% of nursing

home residents fall each year and more than 40% of them might fall more than once [177].

Moreover, studies have shown that the medical outcome of a fall is largely dependent on the

response and rescue time[68]. The delay of medical treatment after a fall can increase the

mortality risk in some clinical conditions, especially for those who live alone [178]. Thus,

falls are a major health risk that diminishes the quality of life among the elderly people,

strongly motivating the necessity of fall detection systems.

Over the past decades, fall detection (FD) and prevention have been an active research

area with several proposed solutions. Both wearable sensor based (e.g., inertial sensors [70],

accelerometer [179, 66], specialized cane [68]) and smart-phone based [71, 72] fall detection

techniques require the subject to be attached with sensors or phones, which might not be

practical (e.g., sensors lost/damaged, or forget to carry by the elderly with dementia). Vision

based fall detection systems [74, 78, 77] employ activity classification algorithms on a series

of images recorded by a video camera, which is usually regarded as being privacy invasive

and causes uncomfortable feeling to the elderly. Vision-based systems also fail to work in

dimmed or dark environments, where falls usually happen.
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Fig. 7.1 RSSIs variation patterns when falls occur

Recently, some device-free techniques for fall detection have been proposed [81, 80, 83].

However, in most of these systems, some complicated or personalized devices (e.g., pressure

sensor, audio sensor, radar) are needed to be implanted in the environment, and then the

variations of audio, pressure or microwave signals are used to infer a fall event. As a result,

most of them can only sense whether a fall happened, but fail to provide more fine-grained

information [63] that is valuable to caregivers. One of the fine-grained contexts is the

status (e.g., sitting, standing or walking) before a fall occurs. For example, when people

fall down while standing or siting, some serious diseases possibly have happened such as

cerebral haemorrhage or cardiopathy [177]. But when people are walking, the falling is

possibly caused by knocking some obstacles. Another useful contextual information is the

fall orientations (e.g., fall to front, fall to back or fall to the right side), e.g., falling to back

may seriously damage the subject’s head, while falling to the right side may more likely

cause injuries to arms or legs.

Based on those motivations and with recent advances of passive RFID sensing technology,

this chapter concentrates on the investigation that whether a device-free, fine-grained fall

detection can be achieved without using any wearable device/sensor. Figure 7.1 briefly

illustrates the mechanism of our fall detection system built on passive RFID tags. When the
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subject falls from standing, the Received Signal Strength Indicators show different fluctuation

patterns, indicating the potential for detecting a fall. Compared to other hardware platforms,

passive RFID is cost-effective (passive tags cost several cents each) and practical (e.g., no

maintenance since no battery needed) [85]. More importantly, as far as we know, until now,

there is no research work that explores how to purely utilize passive RFID hardware to

achieve fine-grained fall detection.

In this chapter, we propose a device-free, fine-grained fall detection system called TagFall,

which can not only timely detect a fall event but also accurately recognize regular daily

living activities (e.g., standing, sitting, lying and walking) before a fall happens, as well as

distinguish the falling directions. To achieve such a fine-grained fall detection, our TagFall

mainly consists of two detection phases. i) Detecting Normal Actions and Falls: we augment

Angle-based Outlier Detection (ABOD) [180] method to mine the clustering patterns of

RSSIs (generating by normal human actions) and detect an anomaly pattern (caused by

falls) simultaneously; and ii) Detecting Fall Directions: once we detect a fall happened, we

segment a fix-length data stream, which we use to calculate the Dynamic Time Warping

(DTW) [181] distance with profiled data streams (known labels). So we can distinguish the

fall directions by a majority vote of its k nearest neighbors based on the DTW distances. In

summary, the core idea of this chapter is to mine the clustering patterns and change rules of

RSSIs when the environment is affected by different human actions (e.g., normal activities

and falls with different orientations). The main contributions are listed as follows.

• We exploit the feasibility of using passive RFID tags to achieve unobstructive, fine-

grained fall detection. To the best of our knowledge, this is the first work to leverage

RSSI signals for device-free fall detection based on pure passive RFID tags.

• We propose a fine-grained fall detection pipeline, which not only can detect a fall event,

but also be capable of offering the contextual information of the subject’s status before

falls occur and the falling directions.
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Fig. 7.2 Hardware Deployment

The rest of this chapter is organized as follows. Sec. 7.2 introduces the hardwares and

intuitions of our system. We present our system architecture in Sec. 7.3 and propose our

solutions in Sec. 7.4. Sec. 7.5 presents experimental results and analysis. Finally, Sec. 7.6

gives the discussion and Sec. 7.7 offers some concluding remarks.

7.2 Hardware and Intuitions

Figure 7.2 shows the system setup, including an Alien ALR-9900+ Enterprise RFID Reader

(20.3cm× 17.8cm× 4.1cm), two-circular antennas (20cm× 20cm× 3cm), and squiggle

Higgs-4 passive tags (1cm× 10cm). The reader operates at 840-960MHz and supports

UHF RFID standards such as ETSI EN 302 208-1. We set the sample rate as 0.5s and each
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Fig. 7.3 RSSIs variation patterns when a subject falls from different status

tag reading contains a time-stamp, a tag ID, an antenna ID and an RSSI value, which is

processed by a WINDOWS 7 PC with an I7-3537U 2.5GHz processor and 8G RAM.

Based on our preliminary experiments, we place the antenna 1.5m above the ground,

facing tags with approximately 60◦, and attach tags on the wall with an approximate 0.6m

interval. When people perform activities in the testing area, an antenna can not guarantee to

read all tags (interfered by human body), particularly for passive tags. To avoid this, we send

an RSSI request to all tags within a sampling time. If we cannot receive RSSI readings of a

certain tag, the RSSI value is manually set to 0. Thus, mathematically, for all time stamps,

we have the RSSI vectors with the same dimensions. In our settings, the tag detection range

can be up to 6 meters. It is worth mentioning that, the electromagnetic fields generated by

the readers, in any case, remain lower than the limitation of thresholding value for humans

based on the report [182], which means the hardware used have no health risk to subjects.

Based on the hardware, we first run a series of pilot experiments to validate our intuitions.

Figure 7.3 demonstrates that when the subject in different living status, the RSSIs display

different invariant patterns. When the subject falls down from normal status (e.g., sitting,
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Fig. 7.4 RSSIs variation patterns when a subject falls to different directions from standing

lying, standing or walking), the RSSIs reflect some unique variations that are different from

previous stable patterns. Underpinned by these observations, it is possible for us to utilize

some supervised classification algorithms to distinguish resident’s regular living actions, as

well as adopt anomaly detection method to detect an abnormal event (e.g., falls). In the next

section, we will introduce how to tackle both problems by extending the traditional ABOD

method.

Figure 7.4 shows that the measured RSSIs can reveal varied fluctuation patterns due to

the subject’s falling down to different directions (e.g., front, left, right or back side) from

standing, which allow us to utilize such underlying trends to recognize the falling orientations.

Motivated by the observation, we could adopt stream data classification methods to classify

resident’s falling directions. In this chapter, we solve this problem by using DTW distance

based kNN. Overall, our preliminary studies have shown the feasibility and potential of our

TagFall system to achieve a fine-grained fall detection.
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7.3 System Architecture

Figure 7.5 shows an overview of proposed system. It consists of five main phases: the sensing

phase, the profile construction phase, the fall detection phase, the falling direction sensing

phase, and the altering phase.

7.3.1 Activity Sensing Phase

The antenna in the test area collects RSSI readings propagated by passive tags and then

sends them to the reader, which delivers the data package including RSSI values, time stamp,

antenna ID and tag ID to a desktop computer for further processing.

7.3.2 Profile Construction Phase

We first utilize slide average smoothing to filter the noises caused by temperature, humidity

changes [85] and categorize daily activities into four categories (i.e., sitting, standing, lying

and walking, shown by Figure 7.12). Then, we calculate the angle variances of vector pairs

formed by same action category and decide the upper and lower boundary of variances, which

contain most likely variances. In the meantime, we sample the most representative data point

for each regular action category to speed up the later online angle variance calculation. We

also collect segmented data streams generated by falls with various falling directions to build

the anchoring data streams for the later DTW distance calculations.

7.3.3 Fall Detection Phase

We perform the same smoothing as Profile Constriction phase and then calculate the angle

variances of vector pairs formed by an observed RSSI and profiling data points for each

normal action category. Based on the calculated variances (i.e., 4 variances in our case) and

learned variance bounds, we identify the target’s current actions by judging whether the
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variance lie in corresponding boundaries. If the variances are within the bounds of multiple

action categories, we assign the activity label that has the most likely variance. When all four

variances are beyond the bounds of known regular actions, the observed RSSI is regarded as

an anomaly, which means the subject currently is experiencing a fall.

7.3.4 Falling Direction Sensing Phase

Once we detect a fall event, we first segment a data stream with the same length as the

anchoring data streams. Then, we calculate the DTW distances between segmented data

stream and all anchoring data streams. At last, we can distinguish the falling direction by a

majority vote of its k nearest neighbors regarding the DTW distance.

7.3.5 Altering and Update Phase

In the meantime, we issue an alarm (e.g., ring an alarm bell) when a fall event is detected.

If the user does not timely stop the alarm, we send an ask-for-help SMS or call. Also, if

the alarm is timely stopped but is a false alarm, we update the profiling data by adding the

error-detected samples into right action category to enhance the detection performance.

7.4 Device-free Fine-grained Fall Detection

The key phases of our TagFall are how to efficiently distinguish the normal daily living

actions and a fall event, and how to accurately classify the falling directions. In this section,

we will introduce technical details on how these two problems are solved.
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7.4.1 Fall Detection

One of the challenges in this chapter is to detect the anomalous patterns in RSSI signals.

A fall involves a series intensive posture changes (e.g., human postures sudden alter from

standing, sitting or lying to the ground), which result in sudden, wide range fluctuation of

RSSI patterns (see Figure 7.3 and 7.4). To tackle the challenge, we propose a p-partial

Angle-based Outlier Detection that can identify p categories of human regular actions and

isolate the anomaly patterns. Angle-based Outlier Detection is first proposed by Hans-Peter

Kriegel et al. [180] for finding anomalous data points caused by a different responsible

mechanism. Unlike purely distance-based approaches (e.g., Local Outlier Factor [183]),

ABOD does not rely on any parameter selection influencing the quality of achieved results.

Here, we extend ABOD to do both classification and anomaly detection by mining the

different patterns of angle variances paired by intra-action and inter-actions.

Figure 7.6 illustrates the basic intuition of our approach. For points (can be multi-

dimension) generated by a same human activity, the angles between different vector pairs

differ widely, which means a large angle variance (e.g., angle α1,α2, the variance of angle

paired by data points of sitting is ranged from 1.17× 10−10 ∼ 8.18× 10−6). The angle

variance of vector pairs generated by different human activities is smaller since most points

are clustered in some directions (e.g., angle β1,β2, the variance of angle paired from data

points of falling to data points of sitting is ranged from 4×10−14∼ 1.53×10−13). Therefore,

we can classify different regular actions (easily collected, e.g., standing, sitting and walking),

and detect abnormal actions (difficultly obtained, e.g., falling) by measuring the angle

variances between a testing data point and the constructed profiling dataset. We first give the

definition of Angle-based Outlier Factor (ABOF) [180] which measures the angle variance

of a data point paired with other data points.

Definition 5 (ABOF) Given a database D ∈Rd , a point A ∈D , and a norm || ||. The scalar

product is denoted by < ., . > . For two points B,C ∈D , BC denotes the difference vector
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C−B. The angle-based outlier factor ABOF(A) is the variance over the angles between the

difference vectors of A to all pairs in D weighted by the distance of the points:

ABOF(A) =VARB,C∈D

(
< AB,AC >

||AB||2 · ||AC||2

)
=

∑B∈D ∑C∈D

(
1

||AB|| · ||AC||
· < AB,AC >

||AB||2 · ||AC||2

)2

∑B∈D ∑C∈D
1

||AB|| · ||AC||

−

∑B∈D ∑C∈D
1

||AB|| · ||AC||
· < AB,AC >

||AB||2 · ||AC||2

∑B∈D ∑C∈D
1

||AB|| · ||AC||

2

(7.1)

Based on ABOF, our proposed p-partial ABOD works as follows. Given that we already

have profiling dataset regarding the resident’s different regular living activities, we first

compute off-line the angle variances of vector pairs in the dataset generated by the same

activity for all p categories (p = 4 in our case, i.e., sitting, standing, lying and walking, see

Figure 7.7 (a)∼(d)). Then, based on the variances, we decide the lower and upper bounds for

the p categories by a box and whisker diagram, which is a standardized way of displaying

the distribution of data (see Figure 7.12). We then can online calculate the angle variances of

an observed RSSI vector paired with the p-category profiling datasets (i.e., falling to sitting,

falling to standing, falling to lying and falling to walking, see Figure 7.7 (e)). We assign

labels to the test sample whose angle variances are within the corresponding boundaries.

If multiple labels are assigned, we choose the category that the corresponding variance of

testing data point lies in the middle of box as most (e.g., assume that the angle variances of a

test data point paired with walking data and standing data are both 10−12, but the variance

for walking data is in the middle of the box more, see Figure 7.12, we assign the test data as

walking). If no labels are assigned, we treat it as a potential outlier.
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Algorithm 3: Accumulated Cost Matrix
Input: Two multi-dimensional time-series: X,Y, Local Cost Matrix C
Output: Accumulated Cost Matrix M

1 N← length of X
2 M← length of Y
3 M← new[N×M]
4 M(0,0)≡ 0
5 for i = 1; i≤ N; i++ do
6 M(i,1)←M(i−1,1)+C(i,1);
7 end
8 for j = 1; j ≤M; j++ do
9 M(1, j)←M(1, j−1)+C(1, j);

10 end
11 for i = 1; i≤ N; i++ do
12 for j = 1; j ≤M; j++ do
13 M(i, j)← C(i, j)+min{M(i−1, j);M(i, j−1);M(i−1, j−1)};
14 end
15 end
16 return M

Unlike previous fall detection systems which usually either utilize some learning-based

classification to distinguish a falling event from other activities [63], or first adopt anomaly

detection method to detect an outlier point and then perform one-vs-all classification [82],

our method focuses on mining the clustering patterns of RSSI data based on the intra angle-

variance and inter angle-variance of multiple-group dataset to avoid parameter tuning, as

well as performs the detection and classification simultaneously. In practical, the proposed

method needs to proceed an off-line Angle Factor learning before achieving the real-time fall

detection, which is less satisfactory and will be improved in our future work.

7.4.2 Falling Direction Sensing

Sensing the falling direction in fact is a time-series classification problem. We need to

classify the segmented RSSI data stream with a label (i.e., falling directions). To tackle the

problem, we introduce a DTW based kNN method.
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Algorithm 4: Optimal Warping Path
Input: Accumulated Cost Matrix M
Output: Optimal Warping Path Path and DTW distance Dis

1 Path[]← new array
2 i = rows of M
3 j = columns of M
4 Dis = 0
5 while (i > 1)&( j > 1) do
6 if i == 1 then
7 j = j−1
8 end
9 if j == 1 then

10 i = i−1
11 end
12 else
13 if Path(i−1, j) == min{M(i−1, j);M(i, j−1);M(i−1, j−1)} then
14 i = i−1
15 end
16 if Path(i, j−1) == min{M(i−1, j);M(i, j−1);M(i−1, j−1)} then
17 j = j−1
18 end
19 else
20 i = i−1; j = j−1
21 end
22 Path.add((i, j));Dis = Dis+M(i, j)
23 end
24 end
25 return Path,Dis

DTW is an efficient algorithm for measuring similarity between two temporal sequences

which may vary in time or speed (e.g., walking pattern, speech recognition) [181]. Given

two multi-dimensional time-series, X = {x1, ...,xN} and Y = {y1, ...,yM}, where xi,yi ∈RD,

algorithm starts by building the local cost matrix C representing all pairwise distances

between X and Y:

C ∈ RN×M : ci, j =
∥∥xi−y j

∥∥ , i ∈ [i : N], j ∈ [1 : M] (7.2)
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Fig. 7.8 Outline of DTW based kNN

Based on the Local Cost Matrix C, we can construct the Accumulated Cost Matrix M, which

contains all possible warping paths (see Algorithm 3). Then Dynamic Programming is used

to find the optimal warping path and DTW distance, starting from the point pend = (M,N) to

the pstart = (1,1) (Algorithm 4).

To our case, when an anomalous RSSI pattern is detected, we first segment a data stream

with m continuous time sample (we choose m = 8), starting from where we detect as an

abnormal point. Then, we calculate all the DTW distances between the segmented data

stream and the profiling data streams using the multi-dimensional DTW by optimal matching

between two given RSSI sequences. Finally, we can classify the falling directions based on a

majority voting by its top k smallest DTW distances. Figure 7.8 illustrates the general idea

of our DTW based kNN.
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7.5 Evaluation

We evaluate our system in a real-world living bedroom (size: 3.9m×3.6m). Fig 7.9 shows

the experimental setup and furniture deployment. Two subjects participate in the experiments,

one male (Age : 28,Height = 172cm,Weight = 68kg) and one female (Age : 27,Height =

163cm,Weight = 49kg).

7.5.1 Evaluation Metrics

For regular actions and falling direction classification, we use standard precision, recall and

accuracy to measure our proposed approaches [63]. For fall detection, we evaluate our result

in terms of Detect Rate and False Detect Rate [82].

DetectRate =
True Positive

# of Fall Events
(7.3)

FalseRate =
False Positive

# of Non-Fall Events
(7.4)

7.5.2 Sensing Normal Activities and Falls

We first collect our profiling data, which involves normal daily living activities (see Fig-

ure 7.10, time span is one day). Then we mimic overall 20 different fall events, including

various falling directions and locations, shown by 7.11. All fall events are conducted by both

participants repeating 3 times each (i.e., 120 fall events).

Based on the collected profiling data, we first calculate the angle variance of RSSI

vectors paired by same action category (i.e., sitting, standing, lying and walking, illustrated

by Figure 7.7 (a)∼(d)). The mean value of variances for regular actions is ranged from

5.14×10−14 to 4.73×10−12, but the maximum value of angle variance paired by falling

to regular actions (shown by Figure 7.7 (e)) is 1.36×10−14. Thus, we can easily separate
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Fig. 7.9 Room layout and three representative action paths

Fig. 7.10 Types of normal activities
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N/A

N/A

N/A

N/A

Fig. 7.11 Different falls in the experiments

the space of regular actions with falls. Figure 7.12 shows our predefined regular activity

categories and the learned variance boundaries. We set the lower and upper bound of box

diagram as 15% and 85%, so the interquartile range includes 70% of most possible variances.

From the box and whisker diagrams, we can easily determine the variance range for each

action. The boundaries of regular actions are ranged from 7.42×10−14 to 1.23×10−12, in

which the lowest value of all four lower boundaries (i.e., 7.42×10−14) is bigger than the

maximum value of angle variance calculated by falling to regular actions (i.e., 1.36×10−14).

This further verifies the feasibility of our method.

After the boundaries for each normal action are learned, we collect 3,492 non-fall events

(varies in time length) generated by regular activities to test our method (e.g., reading

book in bed, cleaning carpet, see Figure 7.10), which can achieve overall 94.7% accuracy.
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Fig. 7.12 Regular activity categories and boundaries

Figure 7.13 (a) (b) illustrate the performance of sensing regular activities. kNN and SVM

are two classification methods that are frequently used by other fall detection systems [63].

Thus, we compare our method to kNN [69, 80] (k = 5) and SVM [82, 72] (linear kernel,

termination criterion=0.015, C=100, others as default [184]). Our method performs well in

distinguishing sitting (98.7% accuracy) and standing (96.7% accuracy) actions but slightly

worse in lying (92.4% accuracy) and walking (91.5% accuracy). kNN method only achieves

81.9% in classifying walking action. Our method does not require tuning any parameters and

achieves comparable good accuracy, although SVM performs slightly better in distinguishing

walking (93.1% accuracy) and Lying (93.5% accuracy) action.



184 Fine-grained Device-free Fall Detection based on Passive RFID Tag Array

Fi
g.

7.
13

C
on

fu
si

on
M

at
ri

x
an

d
D

et
ec

tio
n

Pe
rf

or
m

an
ce



7.5 Evaluation 185

Fig. 7.14 Detection rate and false detection rate varies with the boundaries size (X-axis
only shows the lower boundary, so upper boundary should be 100%−LowerBoundary, the
boundary range should be U pperBoundary−LowerBoundary)

Figure 7.13 shows the capability of our method in detecting falls. We test overall 120 fall

events, including falls from working at desk, dressing up, cleaning the carpet, and falling to

different orientations (e.g., falling to front, to back, to right and to left, shown by Figure 7.11)

and 3,492 non-fall events. The result shows that our method can achieve 90.8% detection

rate and 12.1% false detection rate. As a comparison, we also utilize LOF (adopted by

WiFall [82]) to our dataset, which receives a 81.7% detection rate and 16.3% false detection

rate. In this setting, we set the boundaries of box diagram (Figure 7.12) as from 15% to

85%. We can choose different boundaries of the box diagram (e.g., 5%∼95%, 10%∼90%,

20%∼80%, see Figure 7.14). It illustrates that both the detection rate and false detection rate

increase when the boundary size becomes smaller (spans from 90% to 20%). However, the

false detection rate experiences dramatic growth but the true detection rate in fact does not

significantly increase (from 90.8% at 15% to 98.2% at 40%). Thus, we choose 15% and 85%

as our lower and upper boundaries in term of the box and whisper diagram.
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Fig. 7.15 Confusion Matrix of DTW based kNN (k = 3)

Fig. 7.16 Accuracy of classifying falling direction varies with parameter k

For falling direction classification, we choose 16 fall events which contain falling di-

rections (see Figure 7.11, some falls have no direction context such as falling from bed).

Each fall is conducted by both participants and repeated 3 times each (overall 96 fall events).

Figure 7.15 shows the confusion matrix of our DTW based kNN method choosing k = 3.
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We can observe that the overall accuracy is 87.5%, but the precision and recall in

classifying falling to front are only 69.2% and 75%. The reason may lie in fact that falling to

front and falling to right/left are quite similar in some cases since these two falling directions

are adjacent. Our method performs good at distinguishing the falling to back (precision and

recall are both 91.7%) which possible cause severe damage to the head. The key parameter

in DTW based kNN is the k value that heavily affects the classification accuracy. Figure 7.16

illustrates the relation of classifying accuracy with parameter k. As it shows, the accuracy at

first increases with the growth of k value, climbing the peak at k = 3, then gradually decreases

along with the increase of k. Thus, we choose k = 3 in our experiments.

Figure 7.17 shows performance of our system in three representative action paths. The

bold lines are the ground truth, the Y-axis from 1 to 5 represent action categories (i.e., sitting,

standing, lying, walking and falling). The three action paths are shown by Figure 7.9:

• Lying in Bed (60 seconds) =⇒ Sitting in Chair (60 seconds) =⇒ Falling Down,

• Lying in Bed (60 seconds) =⇒ Dressing Up in Front of Mirror (60 seconds) =⇒

Falling Down,

• Sitting in Chair (60 seconds) =⇒ Cleaning the Carpet (60 seconds) =⇒ Falling Down.

We can see that in the first action path, our method can timely distinguish the actions

and detect the fall event, although generating some unstable predictions when the resident

transfers from getting up from bed to sitting in chair. Our system on the second action

path displays the same classifying capability, but it outputs some bad predictions after the

resident falls from dressing up although it successfully detects a fall event in the first few

points. From the third action path, we observe that the classification result is not as good

as previous two paths when the subject is cleaning the carpet, for the reason that cleaning

involves plenty of activities that may generate some similar RSSI patterns as sitting and

standing actions. In summary, when an activity shift occurs (e.g., from lying to sitting in the
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chair, from sitting to cleaning the carpet), the sensing results are usually decayed, which is

normal due to unpredictable movements of human body. After detecting a fall, the continuing

sensing result is unstable since people usually lie or sit on ground after a fall, which is similar

to our predefined regular activities.

7.6 Discussion

7.6.1 Computation Cost

In the Profile Construction phase (off-line part), for a daily recorded activities, based our

configuration, the calculation time for angle variances is around 70 minutes. With the

constructed profile data, we can online process each given data sample (i.e., the fall detection

phase) within 0.4 seconds. For the falling direction sensing phase, the calculation complexity

of DTW is O(NM) [181] (both equal to 8 in our case), so calculation itself is fast. However,

we need to segment a fix-length data stream beforehand, which results in a latency (about 4

seconds in our case). However, in the direction sensing phase, we aim to provide fine-grained

contexts regarding the happened falls, which does not affect timely detecting a fall and

sending an alarm (done in the fall detection phase).

7.6.2 Hardware

We use standard, commercial RFID system with passive tags in our work. The passive tags

are more cost-effective and, due to their simple structure and protective encapsulation, more

robust than the sensor nodes. Passive tags operate without batteries. Once deployed, no

further maintenance is required. The devices that require power in our sensing system is the

RFID reader and antenna. But recent technical trends show that low-cost, low-power RFID

readers are becoming commonly available by integrating into the smart phones, making our

work potentially beneficial to the more users in the future.
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7.6.3 Detection Methods

As for fall detection techniques, current fall detection systems mainly adopt supervised

classification-based method to detect a fall event, such as Support Vector Machine (SVM) [70,

66, 82], Neural Network [74] or Extreme Learning Machine [76], which have to tune many

parameters to achieve satisfied accuracy. But in our fall detection phase, we aim to mine the

clustering patterns of RSSIs based on the variances of angle paired by data point of different

actions when the environment is affected by diverse human activities. Thus, different to the

traditional classification or distance-based anomaly detection methods, our proposed method

relaxes the requirement of tuning parameters that is time-consuming and sensitive to different

test scenarios [185].

7.6.4 Limitations

One of the limitations is that the current system is designed for and tested with only a single

resident. We believe that this is an important use case, particularly in an aging-in-place

setting, which aims to ensure that a single person can live in his/her home and community

safely and independently regardless of age and ability level. However, the number of profiles

needed with multiple persons would increase exponentially. A more promising approach

therefore would be to find techniques that can isolate concurrent activities in separate space

from each other and match them against profiles separately, which we will consider in

our future work. Another limitation is that labeling profiling data is time-consuming and

labor-intensive, which is also an issue shared by other fall detection systems. In the Profile

Construction phase, we have to use a camera to record the daily living activities, and then

synchronize the camera and RSSI reading based on the time stamp, finally label and segment

data streams into different action categories to build a labeled profile dataset based on the

video records.
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7.7 Conclusion

To detect a fall event in our daily living environments, we present an unobstructive, fine-

grained fall detection system based on pure passive RFID tags. By proposing a p-partially

Angle-based Outlier Detection method, our system can simultaneously identify regular

activities and detect a fall event. By adopting DTW-based kNN, the proposed system can

distinguish different falling orientations. Our approach relaxes the requirement of tuning

parameters and provides more fine-grained contexts regarding fall events comparing to the

current fall detection systems.

From Chapter 4 to Chapter 7, we design a series of functionalities so that our living-

assistive system can accurately localize the resident’s indoor locations, recognize her activities

and detect the falling events. Another important facet in an intelligent living-assistive system

is that how the user can conveniently and unobstructively interact with those upper-layer

systems and applications. In the next chapter, we will design a novel human-machine

interaction approach using in-air hand gestures.





Chapter 8

Realizing Human-Machine Interactions

Using Touch-free Hand Gestures

One important research issue for an intelligent residential home is how to accurately and

conveniently control the domestic electronic appliances (e.g., automated window curtain,

brightness-adjustable lamp, TV and air conditioner). For example, we enter a smart house

and turn on the TV by simply waving a hand in the air, then we can use another hand gesture

to turn on the Air Conditioner as well, furthermore, by several continuous up-and-down hand-

waves, we can adjust the Air Conditioner into a comfortable temperature. To realize such an

envisioned functionality, in Chapter 8, we present a touch-free human-machine interaction

approach via a novel, device-free, multi-module Hand Gesture Recognition (HGR) system,

called AudioGest .

Hand gesture nowadays becomes one of most popular means of interacting with consumer

electronic devices, such as mobile phones, tablets and laptops. Our designed device-free

HGR system in this chapter can accurately sense the hand in-air movement around user’s

devices. Compared to the state-of-the-art, AudioGest is superior in using only one pair of

built-in speaker and microphone, without any extra hardware or infrastructure support and

with no training, to achieve a multi-modal hand detection. In particular, our system is not
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only able to accurately recognize various hand gestures, but also reliably estimate the hand

in-air duration, average moving speed and waving range. We achieve this by transforming

the device into an active sonar system that transmits inaudible audio signal and decodes the

echoes of hand at its microphone. We address various challenges including cleaning the

noisy reflected sound signal, interpreting the echo spectrogram into hand gestures, decoding

the Doppler frequency shifts into the hand waving speed and range, as well as being robust

to the environmental motion and signal drifting. We extensively evaluate our system on

three electronic deivces under four real-world scenarios using overall 3,900 hand gestures

collected by five users for more than two weeks. Our results show that AudioGest detects six

hand gestures with an accuracy up to 96%. By distinguishing the gesture attributions, it can

provide more fine-grained control commands for various applications.

8.1 Introduction

The booming of consumer electronic devices has greatly stimulated the research on novel

human-computer interactions. Hand gestures are a natural form of human communication

with devices that have aroused enormous attentions from both industry and academia [103,

186, 187]. Researchers and companies try to integrate the hand-gesture recognition into

our daily devices, including laptops [111], tablets [109], smartphones [188], and gaming

consoles [189]. However, a crucial prerequisite of these applications is that the device can

accurately and robustly detect gestures anytime (e.g., poor light condition at night), anywhere

(e.g., in rural area without wireless connection) in a device-free manner (e.g., no need to wear

extra devices/sensors) [109, 190, 191].

Over the last decade, many state-of-the-art hand gesture recognition (HGR) systems have

been developed using various hardware platforms, such as computer vision [192], inertial

sensors [193], ultrasonic sensors [111], infrared sensors (e.g., Leap Motion), and depth

sensors [189, 194]. While promising, most of these systems, however, can only partially
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meet those requirements [103]. For example, vision-based techniques are sensitive to the light

conditions (i.e., performance greatly decreases in poor lighting conditions), and are usually

regarded as privacy-intrusive. Although some commercialized HGR systems (such as Kinect,

Leap Motion) achieve enormous success, their applications are still limited in computers,

also need relatively high installation and instrumentation overhead (around 50∼250 USD).

The wearable sensor based approaches (e.g., attaching 3-axis accelerometers or gyroscopes

on hand) unavoidably require the user to wear additional devices. Although those systems

can achieve fine-grained and multi-level hand motion detection in high precision, they may

not be practical in real-world applications (e.g., user may feel uncomfortable or forget to

wear the devices).

Many WiFi-based solutions have recently been proposed to overcome the above lim-

itations. For example, WiGest [103] exploits the influence of in-air hand movement on

the wireless signal strength of the device from an access point to recognize the performed

gestures. Melgarejo et al. [108] leverage a directional antenna and WARP board to access

various wireless features such as Received Signal Strength (RSS), signal phase differences

and CSI (channel state information), then through matching the features from users’ gestures

with a standard set of pre-trained templates to recognize user’s hand gestures. WiSee [107]

exploits the doppler shift in narrow bands extracted from wide-band OFDM (orthogonal

frequency-division multiplexing) transmissions to recognize nine different human gestures.

Although WiFi-based systems can work under any lighting conditions and do not require ded-

icated hardware modification, those systems, however, require the mobile device to be always

connected to a wireless transmitter/receiver, which is impractical for some circumstances

such as on a train/bus or traveling in a rural area.

To tackle these challenges, we develop AudioGest, a device-free system that can trans-

form consumer device into an active sonar system by utilizing the embedded microphone

and speaker of the mobile device. Compared to other HGR systems, AudioGest exploits only
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one pair of built-in speaker and microphone without adding any extra cost on hardware. Au-

dioGest does not require the model-training to achieve a multi-modal hand gesture detection.

The system not only can recognize hand gestures but also is able to accurately estimate the

hand in-air time, average waving speed, and the hand moving range. We call such capability

as multi-modal hand motion detection.

Implementing such a practical system, however, requires addressing a number of non-

trivial challenges. First, the ambient noise (e.g., human conversation, electronic noise)

dominates the recorded audio signals (see the experiments in Sec. 8.3.1). It is hence difficult

to perceive the weak Doppler frequency shifts, let alone decoding the hand waving directions,

speed, and range. Another challenge is the signal drifting brought by the device diversity and

time elapse (see the experiments in Sec. 8.3.2). Since we emit a high-frequency audio signal

(> 18kHz, making it inaudible to human), the Operational Amplifier (OA) in microphone

and speaker both experience attenuation, making the magnitude of recorded echoes unstable.

Moreover, different microphones/speakers have various OA attenuations, also resulting in

signal drifting.

In AudioGest, we propose three main techniques to tackle the aforementioned challenges.

First, we introduce a FFT-based normalization that substantially adjusts the magnitude of

FFT frequency bin in different timestamps to the same level, removing the influence of OA

attenuation in high-frequency part (see details in Sec. 8.5.1). We then perform Squared

Continuous Frame Subtraction, in which we first subtract the spectrum of current audio

frame by previous frame and square the magnitudes of frequency bins, further eliminating the

nearby human motion influence (see details in Sec. 8.5.2). Furthermore, we apply a Gaussian

smoothing filter [195] to transfer the discrete shifted frequency bins into a contouring area.

We decode it into the real-time hand moving velocity curve based on the Doppler frequency

shift (see details in Sec. 8.5.4). Finally, according to the velocity curve, we estimate hand
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gesture, moving speed, and waving range (see details in Sec. 8.5.5). In a nutshell, our main

contributions are summarized as follows:

• We introduce an approach that utilizes one pair of COTS microphone and speaker to ac-

curately detect the hand movement and to estimate fine-grained hand waving attributes.

Our in-situ experiments with five users over a period of two weeks demonstrate the

feasibility and accuracy of AudioGest in various living environments.

• We propose a denoising pipeline that not only abstracts the Doppler frequency shifts

from weak echo signals, but also deals with the signal drifting issue caused by hardware

diversity and time elapse.

• AudioGest is a training-free system that accurately recognizes 6 hand gestures with

an accuracy of 95.1% on average, precisely distinguish the magnitude differences

of various hand speed and moving range, providing up to 54 control commands by

randomly choosing two attributes.

The rest of the chapter is organized as follows. We introduce the preliminaries in Sec. 8.2.

Sec. 8.3 depicts the empirical studies and challenges. We present the system conceptual

overview in Sec. 8.4 and details the AudioGest system in Sec. 8.5. The evaluation results are

reported in Sec. 8.6. Finally, we discuss the limitations and conclude our work in Sec. 8.8.

8.2 Preliminaries

This section briefly introduces the Doppler effect and the COTS hardware utilized in our

research (i.e., speakers and microphones).
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8.2.1 Doppler Effect

Most of current HGR systems utilize labeled sensor readings (including images) to train a

classification model, and then distinguish hand gestures, which is lack of physical interpreta-

tion. It is also hard for those systems to detect some context information regarding the hand

gestures, such as hand’s moving speed and in-air waving duration. AudioGest system in this

chapter, conversely, is inspired by a prevalent law in the physical world namely the Doppler

Effect.

Doppler effect illustrates and quantifies the wavelength changes when wave energy like

sound or radio waves travel between two objects if one or both of them move. The Doppler

effect causes the received frequency of a source to differ from the sent frequency if there is

motion that is increasing or decreasing the distance between the source and the receiver. The

general equation of measuring frequency shift is as follows:

∆ f =
∆v

vwave
fsource (8.1)

where ∆ f = freceiver− fsource , called Doppler Frequency Shift; ∆v = vreceiver− vsource, is the

velocity of the receiver relative to the source: it is positive when the source and the receiver

are moving towards each other.

In our case, the wave source (i.e., speaker) and the receiver (i.e., microphone) are both

motionless but the reflector (i.e., human hand) are moving. Hence, though most of sound

waves stay unchanged, a part of acoustic waves that is reflected by a moving hand experiences

a Doppler frequency shift measured by Eqn. 8.2:

freceived =
1+ vrad/vsound

1− vrad/vsound
fsound (8.2)

where vrad means the radial speed of hand to microphone. Such Doppler effect caused by the

motion of a reflector is widely adopted in modern radar systems or underwater sonar systems.
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Fig. 8.1 Illustration of Doppler Frequency Shift

Motivated by this intuition, AudioGest aims to sense such doppler frequency shift of weak

reflected acoustic waves by a moving hand. As shown in Fig. 8.1, when a hand moves in

different directions or at different speeds, it will cause different Doppler frequency shifts

(e.g., different shapes, different intensities and durations). Our AudioGest targets to decode

such Doppler frequency shifts, to recognize the gestures, and to estimate the moving speed

and duration of a hand in air.

8.2.2 COTS Speakers & Microphones

In this chapter, we aim to turn the COTS speakers and microphones into an active sonar

system to detect fine-grained hand gestures without annoying normal human audition. Such

a system, however, needs the support of high-definition audio capabilities.

Normally, human audible signal lies between 20Hz∼18kHz. Assuming that maximum

hand waving speed is less than 4m/s, it requires 0.47kHz extra bandwidth (under a sampling

rate of 44.1kHz, see Sec. 8.5 for details on how to calculate the frequency bandwidths). As

a result, the speakers and microphones needed should be at least with a capability of up to
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Fig. 8.2 Speakers and microphones in COTS mobile devices

18.47kHz frequency-response. According to the Nyquist–Shannon sampling theorem, to

accurately recover a 20kHz signal, the microphones at least support a 40kHz sampling rate.

Fortunately, mobile devices are increasingly supporting high-definition audio capabilities

targeted at audiophiles. In particular, such advancement includes high-frequency response

range, microphone arrays for stereo recording and noise cancellation, and 4× improvement

in audio sampling rates. Fig. 8.2 shows COTS microphones and speakers of three typical

mobile devices. They all can support up to 22kHz response frequency and typical 44.1kHz

or 48kHz sampling rate, making it possible to achieve fine-grained hand detection.

8.3 Empirical Studies and Challenges

In this section, we will conduct some empirical studies and identify the challenges that we

need to deal with.

8.3.1 Weak Echo Signal

As Fig. 8.1 shows, we transmit a 19kHz sine acoustic wave (for 3s) from the right channel of

the speaker in a laptop (i.e., MacBook Air). Simultaneously, we record the ambient sound

signal using a microphone. At the same time, a participant waves his hand in different
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Fig. 8.3 The Doppler frequency shifts caused by different hand gestures and waving speeds

directions and speeds. Then we conduct an FFT to see the frequency shift of audio signal

caused by hand motion.

From Fig. 8.3, we can observe that the waving hand from down to up results in an

observable magnitude increase in the lower frequency bins, but moving hand from left-to-

right/right-to-left is less obvious and the echo signal is weak (i.e., the bins marked by the

red circles, the left sides of 19kHz bin). In particular, we find that the motion speed of the

hand is highly related with the location of such increased frequency bins, i.e., moving hand

in a slow speed causes a risen magnitude in 18,949.7Hz bin, but with a fast speed, it leads

to an increase in 18,720.4Hz bin. Also, moving hand from right to left and left to right will

arouse a frequency shift in both sides but with opposite intensities (e.g., -53dB and -62dB for

right-to-left, -66 dB and -52dB for left-to-right).

In summary, such observable frequency shifts highly motivate our AudioGest system

but also bring us a challenging task - how to abstract such weak, vulnerable frequency-bin

changes from wideband1 audio signals. Moreover, we intend to decode the fine-grained hand

1Normally, a microphone can resolve 0∼22.05kHz sound signal for a 44.1kHz sampling rate.
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Fig. 8.4 The sound signal drifts for different mobile devices at different time slots

moving speed, in-air duration and motion range beside the hand-gesture recognition. With

ambient noise (such as human conversation, electronic noise and environmental sound), it is

even harder for us to perceive these Doppler frequency shifts. We will illustrate our solution

in Sec. 8.5.2.

8.3.2 Audio Signal Drift

Another challenge is about the audio signal drifts, which can be categorized into two types:

i) temporal signal drift: audio signals received in different time slots depict various magni-

tudes for a same frequency bin; and ii) diverse-device signal drift: audio signals record by

different microphones reveal various magnitudes for the same frequency bin.

Fig. 8.4 illustrates the experiment we conducted under a static environment2, where

microphones from various types of mobile devices record 1-hour reflected audio signals

while speakers of the same device continuously emit 19kHz inaudible sinuous sound-waves.

We divide the 1-hour soundwave into 1,270 signal frames, and further apply 2,048-point

2Static means no hand moving, same meaning applied in the rest of the chapter.
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FFT. We plot the strengths of frequency bin at 19Khz over the time for three different mobile

devices in Fig. 8.4. We find that for different mobile devices, the frequency magnitudes are

diverse. Even for a same electronic device, the signal strengths fluctuate over the time, and the

mobile phone exhibits a stronger signal drift. We also observe that the recorded audio signals

drop significantly during first 10 minutes, which lies on two reasons. One reason is that the

OA is the main component of the speaker and microphone, and emitting high-frequency

sound-waves (i.e., 19kHZ audio signal) will let the OA work on the upper-boundary of its

capability, thus is unstable. The other reason is that with the time evolving, continuous

ringing of the speaker generates fair amount of heat that increases the working temperature

of the electronic components, especially in the first 10 minutes when speakers just start to

work3. It is well known that the electronic device is very sensitive to temperature, which

inevitably influence the performance of the speaker. To summarize, such signal drifting will

greatly hinder the system’s scalability, which means an HGR approach that works well in

one device may be incapable for other devices or in different time-slots. We will deal with

this challenge in Sec. 8.5.1.

8.4 System Conceptual Overview

This section will introduce the system architecture of AudioGest, mainly including three

conceptual layers - the gesture detection layer, the gesture categorization layer, and the

application layer, as shown in Fig. 8.5.

The gesture detection layer is the key part of the whole system (the details shown in the

right part of Fig. 8.5). This layer outputs four kinds of gesture contexts - waving direction,

hand’s average speed and in-air duration, as well as waving range. Specially, to detect such

fine-grained gesture features, we first eliminate the noise of received raw acoustic signal

3The working temperature will gradually reach the thermal equilibrium, that is why the signal fluctuation is
less significant than the first 10 minutes.



204 Realizing Human-Machine Interactions Using Touch-free Hand Gestures

which contains two steps - FFT normalization and background noise subtraction (i.e., dealing

with the Audio Signal Drift challenge). Then, we need to accurately identify the audio

signal segments caused by hand’s motion, consisting of two parts - Gaussian smoothing and

segmenting the frequency shift area (i.e., tackling the Weak Audio Signal challenge). Next,

based on the magnitude changes and temporal locations of segmented frequency bins, we

interpret such Doppler frequency shifts, thus estimate the hand waving directions. Finally,

we put things together, further quantify the hand in-air durations, waving ranges and average

speeds.

The gesture categorization layer categorizes different basic gesture characteristics from

previous layer into different semantics. As Fig. 8.5 shows, we define overall six gesture

directions and three intensity levels for the moving speed, in-air duration and waving range.

Unlike previous systems that only detect one or two hand gesture contexts [103, 109],

AudioGest provides three types of hand motion attributes except the basic hand gestures.

By randomly choosing two motion attributes, AudioGest can theoretically provide up to

6×3×3 = 54 control commands, which we thus call multi-modal hand gesture recognition.

It is noted that AudioGest can support a more fine-grained categorization (e.g., classify the

in-air duration into four or five levels) which leads to more control commands but degrade

the detection accuracy possibly. Vice-versa, we can use a course-grained categorization

to increase the estimation accuracy. For example, for an e-book application (only needs 4

commands, next page, previous page, full screen, normal screen), we can choose four types

of hand waving directions (regardless of waving speed, in-air duration and range) to control

these command buttons. This layer provides flexible controlling choices to the application

layer.
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The application layer maps different gestures to control commands for various applica-

tions. Typically, one action is mapped to one gesture type and the developer can pick one or

more hand gestures to represent an action. For example, for a media player application, a

play action can be performed with a Up-Down hand gesture while a volume up action can be

mapped to moving the hand up. The volume changing rate can be controlled by the speed or

range of the hand waving.

8.5 Realizing the AudioGest System

In this section, we will illustrate how to achieve gesture detection and address the asso-

ciated challenges. Before that, we first introduce how to design the transmitted audio

signal. Human normal audible scope is 20Hz∼18kHz. To avoid annoying human audi-

bility, under no circumstance, should AudioGest produce the sound signal below 18kHz

(to be more safe, we make it 18.5kHz). Assuming that the fastest hand moving speed is

4m/s [111], then the largest Doppler frequency shift4 ∆ fdoppler = (2vhand/vsound) ftransmit =

470.6Hz. Hence, if the mobile device transmits a 19kHz sound, then the received audio

signal is 18,529.4Hz∼19,470.6Hz, satisfying the requirement. Also, we save a bandwidth

(2∆ fdoppler = 941.2Hz) for another possible audio channel5. Although microphones in some

devices can support a 48kHz or even 192kHz sampling rate, we adopt a more general 44.1kHz

sampling rate.

4Since we do not know the transmitted sound frequency beforehand, we use a larger possible transmitted
frequency 20kHz, vsound = 340m/s under 15 ◦C.

5It means we can use another speaker channel to transmit a 20kHz sound, and the received signal is
19,529.4Hz∼20,470.6Hz, which lies in the recording capability of a microphone but without inference with
another speaker channel.
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Fig. 8.6 Left Figure: raw audio spectrogram; Right Figure: audio spectrogram after FFT
normalization

8.5.1 FFT Normalization

As aforementioned, the raw data recorded by microphones not only contain audible noise but

also introduce the signal drifts due to temporal changes and diverse hardwares. This section

introduces an FFT-based normalization technique to deal with such issues. Since our targeted

sound frequency band is 18.5kHz∼19.5kHz, intuitively, we may need a band-pass filter or

high-pass filter. However, the introduced FFT normalization is based upon the frequency

domain of the recorded audio signal. We only perform analysis to the FFT bins within the

targeted narrow bandwidth. Such processing will naturally filter out the influence of audible

noise without adding an extra signal filter.

In order to observe how the Doppler frequency shifts along the time, we first adopt a

2,048-point hamming window to segment the filtered signal into audio frames6, then apply

a 2,048-point FFT7 to each frame to get the sound spectrogram, shown as the left graph in

6Each frame represents 2,048/44,100 = 0.0464s audio signal.
7With a 44.1kHz sampling rate, the velocity detection resolution vres = ( fs/FFTpoints)(vsound/ fsource =

0.39m/s.
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Fig. 8.7 All spectrums of audio signal frames: each line represents a spectrum of each frame

Fig. 8.6. We can see the signal drift severely interferes the audio spectrogram, displaying an

unstable magnitude (e.g., the part marked by the red ellipses).

To deal with this challenge, we collect 3,600 seconds 19kHz sound signal using three

different mobile devices and then segment the signal into frames of 2,048-point length.

As Fig. 8.7 shows, we plot the spectrum of 78,260 audio frames in the same graph. We

can observe that, although the magnitude of the frequency bins for different frames show

unpredictable signal excursions (e.g., the magnitude in 19kHz bin spans from -83dB∼-

24dB), the relative magnitudes for every single sound frame are stable and robust to the

time-elapse and device diversity (i.e., each spectrum shows a similar shape). Because we

intend to perceive the Doppler frequency shifts to infer hand gestures, we are more concerned

about how the peak frequency bin changes over the time instead of absolute magnitude of

each frequency bin. Based on this intuition, we normalize the magnitudes of frequency

bins for each audio frame. Shown in the right graph of Fig. 8.6, after a simple FFT-based

normalization, the audio spectrograms produced by waving hand from Down to Up show a

stable and interpretable Doppler frequency shift and the signal drift is removed.
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Fig. 8.8 Left Figure: the spectrogram after continuous frame subtraction; Right Figure: the
spectrogram after the square calculation

8.5.2 Audio Signal Segmentation

Thus far, we have a denoised audio spectrogram which is robust to the temporal signal drift

and device diversity. But we still need to figure out how to precisely segment the area where

Doppler frequency shift happens.

Squared Continuous Frame Subtraction

To perceive the magnitude changes of frequency bins, we further conduct a Squared Continu-

ous Frame Subtraction, in which we first subtract the normalized spectrum of current audio

frame by previous frames and then square the magnitudes of frequency bins. The continuous

subtraction essentially eliminates the static frequency bins and save the changed bins, shown

as the left graph in Fig. 8.8 (i.e., remove the unchanged 19kHz bin in Fig. 8.6 and highlight

the changed frequency bins). The square calculation will further enhance the frequency-bin

changes caused by hand’s movement but weaken the bins due to the noise (see the right graph

in Fig. 8.8, the noise marked by the red dot oval is further eliminated). Next, we need to

accurately segment the frequency shift area based on those discrete frequency bins.
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Fig. 8.9 Left Figure: the spectrogram after Gaussian Smooth Filter; Right Figure: the
segmented area where Doppler Frequency shift happens

Gaussian Smoothing

Revisit the right graph of Fig. 8.8, the x-axis represents the time-stamps in a 0.046 second

resolution, the y-axis indicates the frequency bins in Hz, the colors ranging from blue to

red quantify the changing magnitude of frequency bins. Intuitively, we thereby can view

such spectrogram graph as an image, then what we are interested is to connect those pixels

and augment it into a zone. To do so, we introduce a Gaussian Smoothing method to blur

the whole image. The Gaussian smoothing is a type of image-blurring filter that uses a

Gaussian function for calculating the transformation to apply to each pixel in an image. In

particular, each pixel’s new value is set to a weighted average of that pixel’s neighborhood.

The original pixel’s value receives the heaviest weight (having the highest Gaussian value)

and neighboring pixels receive smaller weights as their distance to the original pixel increases.

For our two-dimensional image, the following function is used for smoothing:

G(x,y) =
1

2πσ2 exp(−x2 + y2

2σ2 ) (8.3)
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where x is the distance from the origin in the horizontal axis, y is the distance from the origin

in the vertical axis, and σ is the standard deviation of the Gaussian distribution. Intuitively,

this formula produces a surface whose contours are concentric circles with a Gaussian

distribution from the center point, which preserves boundaries and edges well. As the left

graph in Fig. 8.9 shows, after Gaussian smoothing, those peak pixels are well augmented

into a zone. Furthermore, we set a threshold ω to conduct the image binarization, i.e., set the

pixel value to zero if its value is less than ω , set the pixel value to one otherwise. As shown

in the right graph of Fig. 8.9, we can successfully segment the frequency zone that Doppler

shift happens. More de-noising and segmentation examples can be found in APPENDIX B.

8.5.3 Doppler Effect Interpretation

In this section, by using two typical hand-waving examples, we will interpret how a hand

movement generates the shifted audio spectrogram based on the motion law of the hand

movement.

From Eqn. 8.2, since vsound ≫ vrad , we have

∆ f =
2 fsoundvrad

vsound
(8.4)

where ∆ f = freceived− fsound . As Fig. 8.10 shows, assuming that hand moving path has θhand

with the microphone and the hand moving speed is vhand , we have

vrad = vhand cosθhand (8.5)

Furthermore, we can derive the relation based on Eqn. 8.4 and Eqn. 8.5 as follows:

∆ f =
2 fsoundvhand cosθhand

vsound
∝ vhand cosθhand (8.6)
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We take two examples8 to interpret Eqn. 8.6, showing how we link real-time hand moving

gesture with the audio spectrogram. As Fig. 8.10 depicts, when the hand moves from Right

to Left, θhand gradually increases (e.g., from π/6 to π/2 then to 2π/3), hence the cosθhand

decreases9 to 0, then to a negative value (e.g., from
√

3/2 to 0, then to -1/2). As a result, the

frequency shifts from high-frequency (i.e., higher than 19kHz) to zero, then to low-frequency

(i.e., lower than 19kHz). For the most complicated case clockwise circle, the θhand first

decreases from a certain angle to zero, then gradually increases from zero to π , and then

decreases from π to the previous angle (e.g., θhand experiences π/3→ 0→ π/2→ π→ π/3

the right graph of Fig. 8.10). Thus, the audio frequency shifts towards high-frequency at

first, then goes back to 19kHz, further moves to the low-frequency, then it goes back to zero,

continuously moves to high-frequency10.

8.5.4 Transforming Frequency Shift Area into Hand Velocity

This section will introduce how to estimate the real-time hand radial velocity based on the

segmented frequency shift area. It should be noted that the peak bin locates in 19kHz under a

no hand-waving environment (using v0 = 0 represents such case). Based on Eqn. 8.6, we can

model the frequency shift with real-time hand radial velocity as

freceived(t)− fsound =
2 fsound

vsound
vhand(t)cosθhand(t)

=
2

λsound
vrad(t)

(8.7)

Furthermore, we can derive hand radial velocity vrad(t) = 0.5λsound( fshi f t(t)− fsound).

8We choose two typical but complicated gestures for the interpretation.
9cosθ is a monotony decrease function in [0,π].

10Based on Eqn. 8.6, ∆ f actually is determined by both vhand and cosθhand . And vhand represents the hand
speed (a nonnegative scalar), being zero at starting and ending point of hand moving, hence cosθhand (ranging
between -1 to 1, and traversing 0 multiple times) dominates the frequency shift.
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As the left graph of Fig. 8.11 shows, at each time-stamp, the length of frequency interval

marked by red color represents ( fshi f t − fsound). Therefore, we can estimate the real-time

radial velocity of hand as shown in the right top graph in Fig. 8.11. Essentially, the sign of

hand radial velocity indicates the hand moving direction (i.e., hand gesture type), and the

time interval of non-zero velocity represents the hand in-air duration. Also, we can measure

the hand waving range based on the area covered by the velocity curve.

8.5.5 Gesture Recognition

In this section, we introduce in detail how we estimate the hand waving direction, speed and

in-air duration as well as moving range given the hand radial velocity curve.

Recognizing the Waving Direction

Last section illustrates that how we link the hand moving directions with the audio spectro-

gram. Similarly, based on the direction changes of radial velocity (i.e., whether its value is

negative or positive, determined by cosθhand), we hence can estimate the angle ranges of the

hand movement (i.e., in angle categories: [0,π/2] or [π/2,π]), as well as its corresponding

time duration in each angle category. Based on a sequence of angle categories and its dura-

tions, we can further detect different gesture types. AudioGest adopts a rule-based method to

infer the types of hand gestures. These rules are originated from the interpretation of Doppler

Effect, which first exploit the frequency shifting direction to decode cosθhand , then to further

estimate θhand , i.e., the hand waving direction towards the microphone. Finally, based on the

hand waving direction sequence θhand(t) , we estimate the hand waving directions.

We summarize the gesture recognition rules as follows: up to down: the angle of hand

motion is in range [0,π/2]; down to up: the angle of hand motion is in range [π/2,π]; right

to left: the angle of hand waving is [0,π/2]→ [π/2,π] and the time duration in [0,π/2] is

longer than in [π/2,π]; left to right: the angle of hand motion is [0,π/2]→ [π/2,π] but the
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time duration in [0,π/2] is shorter than in [π/2,π]; anticlockwise circle: the angle of hand

motion is from [π/2,π]→ [0,π/2]→ [π/2,π]; clockwise circle: the angle of hand motion

is [0,π/2]→ [π/2,π]→ [0,π/2]. More hand gesture recognition examples can be found

in Appendix C. It is noted that many hand-gestures recognition systems highly depend on

semi-supervised/supervised machine learning methods [190]. Our AudioGest system does

not need to collect labeled training data to train a classifier.

Estimating Waving Duration and Speed

For estimating the hand in-air duration, we can directly measure the time interval that hand

radial velocity is not equal to zero (e.g., the time length marked by dot-line in Fig. 8.11).

Then the remaining problem is how we measure the average hand moving speed. Please note

that the velocity curve we estimate is the hand radial speed (towards the microphone) instead

of the real hand moving speed that we are interested in11. In this chapter, as aforementioned,

we aim to first recognize different hand gestures, then to be able to distinguish different

hand speed, in-air duration and moving range to provide more control commands for serving

various applications. Hence, for a same gesture type, we want to evaluate if the hand is in

slow, medium or fast speed (see Fig. 8.5).

In particular, we first transfer the hand velocity (with moving direction) into a speed

(ignore the direction), the transformation shows as the right-top graph to the right-bottom

graph in Fig. 8.11. We observe that, for the same gesture with different speeds, θhand

actually experiences a same angle range (e.g., π/6→ ...→ π/2→ ...→ 2π/3: moving

from right to left as in the left graph of Fig. 8.10) but in different timestamps. As a result,

according to Eqn. 8.5, we can infer that E(V 1
hand)> E(V 2

hand) ⇐⇒ E(V 1
rad)> E(V 2

rad), where

V 1
rad = {v1

rad(t1),v
1
rad(t2), ...} represents the first sequence of hand radial speed we estimated,

11Theoretically, with a single microphone, we cannot estimate the moving velocity of hand since we cannot
accurately measure the angle between hand and microphone. To do so, we at least need two microphones which
will leave to our future work.
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V 2
rad indicates the second sequence of hand radial speed12. Hence we define a speed-ratio to

evaluate the relative magnitude for different hand speeds. Assuming that the time interval

between two adjacent timestamps is T (e.g., 0.0464s using a 2048-point frame), the hand

waving duration is twaving = nT , then we calculate the speed-ratio as

Sratio =
E(vrad(t))
E(v0

rad(t))
=

1
n

∑
n
i=1 vrad(iT )

E(v0
rad(t))

(8.8)

where E(∗) means expectation or mean value; v0
rad(t) represents a baseline of the hand

moving speed set as E(v0
rad(t)) = 1 for simplicity13. Hence, we have Sratio =

1
n

∑
n
i=1 vrad(iT ),

namely the mean value of our estimated radial-speed. Intuitively, a bigger Sratio represents a

faster hand movement.

Estimating Waving Range

Similar to the waving speed, we cannot estimate exactly how much distance the hand moves

using one microphone. By inheriting the idea in evaluating the waving speed, we also define

range-ratio to measure the relative magnitude of hand waving range:

Rratio =
Rrad

R0
rad

=
∑

n
i=1 T vrad(iT )

R0
rad

=
nT Sratio

R0
rad

(8.9)

where R0
rad represents the baseline of hand waving range that we assume equals to 1. Hence

we can compare the hand waving ranges using Rratio = nT Sratio (i.e., the area of the zone

covered by red color in Fig. 8.11), where n and Sratio is the estimated hand in-air duration

and speed-ratio. In APPENDIX C, we illustrate the examples of estimating hand waving

speeds, in-air time and waving ranges.

12Essentially, V 1
rad and V 2

rad represent two different moving speeds for a same certain hand-gesture type.
13We can definitely find a certain hand waving meets such requirement.
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Algorithm 5: Pseudocode of AudioGest system
Input: Initializing System; Setting System Parameters
Result: Hand Speed-Ratio, Hand In-Air Time,

Hand Waving Range-Ratio and Basic Gesture Type
1 Speaker emits 19kHz sinuous sound-waves
2 Microphone records sound signals
3 while AudioGest not turn off do
4 Reset Sound Frame Size
5 while Sound Frame Size < FrameSizeParameter do
6 wait
7 end
8 Do FFT Normalization based on Section 8.1 // remove the signal

drifts caused by device deversity and time elapse
9 Do Squared Continuous Frame Subtraction based on Section 6.2.1 // enhance

frequency shifts and weak background noise
10 Do Gaussian Smoothing based on Section 8.2.2 // connect shifted

frequency-bins and augment it into a zone
11 Segment Frequency Shift Area based on Section 8.2.2 // set threshold

to conduct image binarization
12 5 if Shift Area Size < AreaSizeParameter then
13 No Hand Motion Detected
14 continue // eliminate false frequency shifts not

caused by hand’s motion and go to next loop
15 else
16 Estimate Hand’s Basic Gesture Types based on Section 8.5.1

// recognize gesture by decoding the direction
squence of hand towards the microphone

17 Estimate Hand In-Air Duration based on Section 8.5.2
18 Estimate Hand Speed-Ratio based on Section 8.5.2 // transfer hand

velocity into a speed without the direction
19 Estimate Hand Waving Range-Ratio based on Section 8.5.3
20 end
21 end
22 Speaker stops
23 Microphone stops

Putting Things Together

Now we put all the pieces together and concretely illustrate how our AudioGest system works

through the pseudo-code, shown as Algorithm 5.
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Fig. 8.13 The three mobile devices used for testing

8.6 Evaluation

We start with micro-benchmark experiments in a lab environment and then conduct the in-situ

tests in four real-world places - Living Room, Bus, Cafe, and HDR Office. We conduct the

testing on three typical mobile devices: laptop (MacBook Air laptop), tablet (GALAXY Tab-

2 tablet), and mobile phone (GALAXY S4 smartphone) without any hardware modification.

We name the three devices as D1, D2 and D3 for simplicity.

8.6.1 Hardware

For the MacBook Air laptop, we run AudioGest on the computer using Audio System

Toolbox1415. For the GALAXY tablet and smartphone, we design the AudioGest system in

the Simulink8.6 that provides a library of Simulink blocks for accessing the devices speaker

and microphone16.

14mathworks.com/hardware-support/audio-ast.html
15developer.apple.com/library/mac/documentation/MusicAudio/ Conceptual/CoreAudioOverview/
16mathworks.com/hardware-support/android-programming-simulink.html
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Length

Width

User ID Gender Age Hand Length Hand Width

User 1 (U1) Male 29 17.1 cm 9.2 cm

User 2 (U2) Female 29 16.4 cm 8.5 cm

User 3 (U3) Male 27 18.5 cm 10 cm

User 4 (U4) Female 13 14.7 cm 7.5 cm

User 5 (U5) Male 23 17.4 cm 9.5 cm

Fig. 8.14 The illustration of handsize measurement and participant information

Fig. 8.15 The 3-axis accelerometer in smartwatch

8.6.2 Testing Participants

Five participants join the experiments. AudioGest decodes the hand gesture via analyzing the

reflected audio signal from hands. Intuitively, a bigger hand generates a stronger echo signal.

Thus we measure the handsize of each participant. Figure 8.13 shows the hardware devices

used in the experimental studies. The five users are marked as U1, U2, U3, U4 and U5.

8.6.3 Collection of Ground Truth

We use the 3-axis MEMS accelerometer in a smart-watch for collecting the ground truth.

Generally, the 3-axis accelerometer records acceleration readings along three orthogonal



222 Realizing Human-Machine Interactions Using Touch-free Hand Gestures

axises. We set the sampling rate as 24Hz. In this chapter, we decode two types of hand

gestures: i) linear movement (e.g., waving from up to down or left to right); and ii) circle

movement (e.g., waving in clockwise circle or anticlockwise circle). For the first case, we

measure the acceleration of the corresponding direction (remove the gravity if in z-axis, same

goes the followings) to calculate the hand in-air time, average hand speed (i.e., v̄ = 1/2at)

and waving range (i.e., r = 1/2at2), then we set a same baseline of waving speed and range

as AudioGest to calculate the speed-ratio and range-ratio. For the second case, we keep the

hand downward and do the circling movement. Then we can estimate the total acceleration

based on the recorded three ones (i.e., atotal =
√

a2
x +a2

y +a2
z ). Finally, we conduct the same

calculation to get the ground truth.

8.6.4 Evaluation Metrics

We adopt four typical evaluation metrics to evaluate our methods: i) Detection Rate (or True

Detection Rate): the ratio of correctly detected hand gesture to overall testing hand gestures,

measuring whether our system can efficiently detect a hand gesture when a hand waving

happens; ii) False Detection Rate: the ratio of wrongly detected hand gestures to overall

detected hand gestures, evaluating whether our system is too “sensitive" by recognizing a

non-handgesture as a hand gesture; iii) Gesture Classification Accuracy: the rate that system

can correctly classify the gesture type among all the detected hand gestures; iv) Detection

Accuracy: the rate that system can correctly classify the gesture types as well as the categories

of the in-air duration, average speed and waving range.
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Fig. 8.16 The average gesture classification accuracy for different mobile devices and users

8.6.5 Micro-Test Benchmark

We conduct some micro-benchmarks in a lab environment. We ask the five participants to

perform each hand gesture 30 times for each device17, hence we test 2,700 hand gestures by

collecting around 4.5 hours audio data.

Gesture Recognition

Fig. 8.16 shows the gesture classification accuracies of five users for three devices. AudioGest

achieves 94.15% gesture type recognition accuracy. In particular, subject U5 can get average

95% accuracy, but U1 achieves 90.15% mean accuracy using the tablet. From its confusion

matrix (shown in Fig. 8.17), we can observe that most errors happen in distinguishing

Right-Left/Front-Behind and Left-Right/Behind-Front. Detecting the hand gestures is done by

decoding the hand-microphone angle sequence and its corresponding duration. For device D1

(i.e., MacBook Air laptop), its microphone locates in the left side, which results in different

17The participants can freely wave with any speed or range, but have to be within the category of the defined
gesture types. The collection time spans over two weeks based on their available time. We also require the
minimum time-interval of two hand gestures is > 1s.
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Fig. 8.17 The Confusion Matrix for the gesture classification

duration time of two angle categories for Right-Left and Left-Right waving. But we cannot

distinguish hand waving from Front-Behind or Behind-Front due to the block of the computer

screen. However, for D2 and D3 (i.e., Galaxy tablet and smartphone), their microphones

locate in the bottom of the device, which substantially enable Right-Left and Left-Right

hand movement generating the same angle category sequence (i.e., [0,π/2]→ [π/2,π])

and roughly same durations. Hence we cannot distinguish such two directions, but we

can recognize the Front-Behind or Behind-Front. Due to the same reason, for recognizing

Right-Left/Front-Behind and Left-Right/Behind-Front, we can only depend on the difference

of angle durations, making it less reliable as other directions. Moreover, to better illustrate the

idea of multi-modal hand detection, we depict several real-world examples in APPENDIX C.

Waving Attributes Estimation

Fig. 8.18-8.20 show the results of estimation errors18 of the hand in-air duration, moving

speed-ratio and range-ratio respectively. The bar charts indicate both average error and

its standard derivation. In particular, AudioGest can estimate the three gesture context

18Namely, the distance between estimated value with the ground truth (≥ 0).
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Fig. 8.18 The hand in-air duration estimation error for different mobile devices and users
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Table 8.1 Calculation time and resolution vs. frame sizes

Frame
Size

Resolution
of FFT (Hz)

Calculation
Time (s)

Resolution
of Speed (m/s)

In-Air Time
Resolution (s)

256 172.27 2.767 3.110 0.0058
1024 43.07 0.733 0.777 0.0232
2048 21.53 0.396 0.389 0.0464
4096 10.77 0.226 0.194 0.0929
8192 5.38 0.134 0.097 0.1858

information with average 0.255s in-air duration, 0.242 speed-ratio and 0.2138 range-ratio

error respectively. It is worth to mention that, among 5 subjects, U5 achieves a better result

in both the gesture classification and the context estimation, which mainly lie in the fact that

U5 has a slightly bigger hand, which enhances the audio signal reflection.

Parameters Chosen

Fig. 8.21-8.23 illustrate how three key parameters influence the performance of our system.

The parameter H-size specifies the number of rows and columns used in the gaussian filter

(i.e., Hsize = [x,y] in Eqn. 8.3). We test overall 11 different H-size when [x= 3,y= 2] performs

better. Parameter σ indicates the standard deviation in Gaussian function, which achieves the

best accuracy at σ = 1.5. The last parameter Gesture-Signal Threshold determines whether a

shift happens in a frequency bin, which plays an important role in AudioGest. We can see

that the higher the value is, the more both true detection and false detection rates decrease.

Hence we choose Threshold = 0.16 to balance such two detection rates.

As Table 8.1 shows, we also measure the FFT resolution, calculation time, speed, and

in-air time detection resolutions by using different signal frame sizes19. We find that for

a smaller frame size, we need to calculate more FFTs within a second and get a smaller

frequency bin, which in turn produces a finer speed resolution but a coarser time resolution.

19We apply FFT with a same length as the signal frame, e.g., for a frame size of 256 samples, we adopt an
FFT with 256-points
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To balance the speed and time resolution as well as to maintain a reasonable calculation time,

we choose 2,048 as the frame size and as the FFT points. Note that the speed resolution is

also equivalent to the lower-boundary of hand speed that we can detect (e.g., if the hand speed

is extremely slow such as less than 0.389m/s, our HGR system cannot detect it). However,

our system focuses on a multi-modal hand gesture recognition, in which we categorize the

hand speed into three levels: slow, medium, and fast (see Fig. 8.5). A speed resolution of

0.389m/s is accurate enough to serve the purpose of this system because this resolution has a

good trade-off among the calculation time, speed resolution and time resolution, especially

it can filter out some false alarms caused by finger movements (those movements usually

produce gentle frequency shifts which can be captured by a sensitive speed resolution).

Please note that we can also use a 4,096-point frame size that can reach 0.194m/s speed

resolution for a more fine-grained hand gesture detection (e.g., we can categorize the hand-

speed into 4 or more ranges so that HGR system can provide more control commands). The

choice of frame size mainly depends on the real-world applications (e.g., whether it requires

a smaller delay, more fine-grained speed and in-air time detection) and the calculation

capacities. The decision also relates to the sampling rate that a mobile device can support.

For example, if the hardware supports a higher sampling rate (e.g., 192kHz in SUMSUANG

Galaxy S6 smart-phone), we can choose 1024-point or even 512-point frame size to achieve a

better or comparable speed resolution as 2048-point size in 44.1kHz sampling rate but with a

better time resolution. In AudioGest, for generality, we set its sampling rate as 44.1kHz. With

this sampling rate, we choose 2,048-point frame size, which is acceptable for multi-module

hand-gesture detection.
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System Robustness

We evaluate the robustness of AudioGest in four ways:

• Orientation Angle: as Fig. 8.24 shows20, AudioGest performs well when the orientation

angle is less than π/4. Under a π/2 circumstance, its accuracy greatly decreases to

around 60%, which we will leave for further work.

• Hand-Device Distance: we test the system when the hand waves in different categories

of hand-device distance21. AudioGest achieves satisfied accuracy when the distance

is below 10cm (which is the typical using scenario for most users). We also observe

its performance decreases when the hand waves in a far distance from the device (the

COTS microphone cannot capture the echo-sound due to its capability limitation).

• Environmental Motion: as Fig. 8.26 shows, we test our system under five environmental

motion circumstances - Quiet (no audible noise and human motion), Noisy (playing

music loudly), Dynamic1 (with human walking back and forth in around 4 meters away

the device), Dynamic2 (with human walking back and forth in around 2 meters away)

and Dynamic3 (with human walking back and forth nearby, around 0.5 meter). We can

see AudioGest works well under first three cases (especially, it is nearly unaffected by

human noise).

• Time Elapse: we also test its performance under different elapsed time periods - 6

hours, 1 day, 3 days, 1 week, and 10 days, without tuning parameters. We conduct

a comparison experiment to study the performance of the system adopting and not

adopting the proposed signal denoising method (i.e., FFT normalization). In other

words, the audio data collected under a same experiment (i.e., same participants,

gestures and same mobile devices under a same testing surrounding environment) is
20we mainly test D2 and D3 from 0 to π/2, since laptop normally lie flat on the surface.
21It is difficult for us to accurately control/measure how hand close to the device while waving, but controlling

the lowest hand-device distance within a range is possible.
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fed into two HGR systems – one contains the denoising processing and the other does

not. As the results shown in Fig. 8.27, by applying FFT normalization, AudioGest

achieves about 35% to 70% performance increase when dealing with the signal drifting

challenge, which demonstrates the effectiveness of our denoising approach.

In summary, AudioGest performs accurately under normal circumstance, and is robust to

the human noise and signal drifting.

8.6.6 In-suit Experiments

Fig. 8.28-8.30 show the system performance in some typical daily-living environments. Two

subjects (U1 and U2) participate in the test. We ask the subjects to use three mobile device in

a living room (5m×3.5m), on a bus, in a Cafe, and in an HDR (Higher Degree by Research)

space (around 15m×10m, contains > 20 students). We collect 1,200 hand gestures (Living

Room: 360, Bus: 240, Cafe: 240, HRD Space: 360). The in-situ testing spans around two

weeks upon participants’ time availability. Under the living room and HDR office, AudioGest

performs similarly to our micro-benchmark since such testing scenarios are usually with less

environmental motion inferences. When coming to the bus (the most dynamic environment

but also where people usually use the mobile devices), the performance is degraded to an

average 89.67% accuracy, and the segmentation (i.e., hand in-air duration) and speed-ratio

accuracy also decrease, which is mainly caused by the narrow space and unpredictable

motion influences on the bus.

To summarize,the results from both micro-benchmark and in-suit experiments suggest

that AudioGest provides an enabling primitive that can device-free recognize hand gestures,

as well as accurately estimate hand movement speed and range.
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Fig. 8.31 SoundWave detects the frequency shift based on a percentage-threshold method.
For one peak case, it detects the bandwidth of the amplitude drops below 10% of the tone
peak. For a large frequency shift casing two peaks, it performs a second scan (if the second
peak ≥ 30%) and repeats the first scan to find the bandwidth drops from the second peak.

8.6.7 Comparing with the State-of-the-Art

This section compares our AudioGest with seven state-of-the-art HGR systems in terms

of detection mechanism, hardware, testing environment, system training requirement and

detection capacity/resolution as well as the accuracy, shown in Table 2.1. Briefly, except

for SoundWave [111], other HGR systems mainly exploit Radio Frequency (RF) signals

to recognize hand motions. Those RF signals are either from COTS or modified WIFI

and GSM infrastructures (e.g., WiGest [103], WiSee [107] and SideSwipe [196]), or radars

(e.g., FineGesture [108] and RadarGesture [197]), or generated by specialized hardwares

(e.g., AllSee [109]). While bearing many advantages, they are either built upon extra

hardwares or available WIFI signals, which may be impractical under some circumstances

(see discussions in Sec. 1).
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Unlike the above HGR systems, SoundWave is one pioneering work to exploit the

Doppler effect of sound wave reflected by hands, sharing the same hand gesture recognition

mechanism as AudioGest. SoundWave can recognize five hand gestures: Two Handed Pull,

Back Flick, Quick Taps, Slow Taps, with an average 94.5% accuracy. It mainly adopts a

percentage-threshold based dynamic peak tracking method to capture the frequency shifts.

Different from SoundWave, our system achieves a multi-modal hand gesture recognition,

which not only can recognize basic hand gestures but also aims to quantitatively measure

the hand waving speed, rang and in-air time (see Fig. 8.5). More importantly, we provide a

mathematical model for interpreting Doppler Effect into hand motion (see Sec. 8.2.1 and

8.5.4) by linking the equation of Doppler Frequency shift and Newton’s law of motion of

hand gestures. As far as we know, neither SoundWave nor other HGR systems can achieve

this.

Moreover, since SoundWave cannot achieve a multi-module hand gesture detection,

and gesture types, testing experiments, and participants are also very different, it is hard

to conduct fair benchmark experiments. We thus compare our work with SoundWave and

other HGR systems in a high-level of view, shown in Table 2.1. Accurately detecting the

frequency shifts is the foundation of HGR systems based on Doppler Effect. Without a

good performance in capturing frequency shifts, both our system and Soundwave cannot

achieve an accurate hand gesture recognition. To this end, we compare AudioGest with

SoundWave by two experimental cases in terms of the performance of detecting frequency

shifts. Fig. 8.31 depicts how SoundWave detects the bandwidth of shifted frequency. When

four or more FFT frames (i.e., 2048-point segmentation) in succession are detected with

frequency shifts, SoundWave will consider a hand motion is happened.



8.6 Evaluation 235

Ta
bl

e
8.

2
C

om
pa

ri
so

n
of

ty
pi

ca
ld

ev
ic

e-
fr

ee
H

G
R

sy
st

em
s

C
om

pa
ri

so
n

It
em

s
W

iG
es

t[
10

3]
Fi

ne
G

es
tu

re
[1

08
]

A
llS

ee
[1

09
]

So
un

dW
av

e
[1

11
]

M
ea

su
re

d
Si

gn
al

R
SS

I
R

SS
,C

SI
,P

ha
se

R
F

si
gn

al
A

ud
io

N
ee

d
ex

tr
a

ha
rd

w
ar

e?
N

o
Y

es
Y

es
N

o
Te

st
in

dy
na

m
ic

en
vi

ro
nm

en
ts

?
(e

.g
.,

bu
s)

N
o

Y
es

N
o

N
o

N
ee

d
tr

ai
ni

ng
?

N
o

Y
es

(k
N

N
)

N
o

N
o

Se
ns

e
ge

st
ur

e
co

nt
ex

ts
?

(e
.g

.,
sp

ee
d,

ra
ng

e)
Y

es
(s

pe
ed

)
N

o
N

o
N

o
A

cc
ur

ac
y

/G
es

tu
re

R
es

ol
ut

io
n

96
%

/3
6

92
%

/2
5

97
%

/8
94

.5
%

/5
C

om
pa

ri
so

n
It

em
s

Si
de

Sw
ip

e
[1

96
]

R
ad

ar
G

es
tu

re
[1

97
]

W
iS

ee
[1

07
]

Au
di

oG
es

t
M

ea
su

re
d

Si
gn

al
G

SM
si

gn
al

FM
C

W
R

ad
a

O
FD

M
ra

di
o

A
ud

io
N

ee
d

ex
tr

a
ha

rd
w

ar
e

Y
es

Y
es

Y
es

N
o

Te
st

in
dy

na
m

ic
en

vi
ro

nm
en

ts
?

(e
.g

.,
bu

s)
N

o
N

o
N

o
Y

es
N

ee
d

tr
ai

ni
ng

?
Y

es
(S

V
M

)
N

o
N

o
N

o
Se

ns
e

ge
st

ur
e

co
nt

ex
ts

?
(e

.g
.,

sp
ee

d,
ra

ng
e)

N
o

Y
es

(s
pe

ed
,r

an
ge

)
N

o
Y

es
(r

el
at

iv
e

sp
ee

d
&

ra
ng

e)
A

cc
ur

ac
y

87
.2

%
N

/A
(h

an
d

tr
ac

k)
94

%
95

.1
%

G
es

tu
re

R
es

ol
ut

io
n

14
N

/A
(h

an
d

tr
ac

k)
9

54
(r

an
do

m
ly

ch
oo

se
tw

o
at

tr
ib

ut
es

)



236 Realizing Human-Machine Interactions Using Touch-free Hand Gestures

(a
)E

ch
o

si
gn

al
’s

sp
ec

tr
og

ra
m

af
te

rF
FT

no
rm

al
iz

at
io

n
(b

)D
et

ec
te

d
ba

nd
w

id
th

of
fr

eq
ue

nc
y

sh
if

ta
tt

=
2.

38
s

(i
.e

.,
FF

T
Fr

am
e

51
)b

y
So

un
dW

av
e

(c
)D

et
ec

te
d

ba
nd

w
id

th
at

t=
3.

31
3s

(i.
e.

,F
FT

Fr
am

e
71

)b
y

So
un

dW
av

e
(d

)T
he

re
al

-t
im

e
ha

nd
ra

di
ca

lv
el

oc
ity

de
te

ct
ed

by
Au

di
oG

es
t

Fi
g.

8.
32

E
xp

er
im

en
ta

lC
as

e
1:

a
sl

ow
-s

pe
ed

cl
oc

kw
is

e
ha

nd
ci

rc
lin

g



8.6 Evaluation 237

(a
)E

ch
o

si
gn

al
’s

sp
ec

tr
og

ra
m

af
te

rF
FT

no
rm

al
iz

at
io

n
(b

)D
et

ec
te

d
ba

nd
w

id
th

of
fr

eq
ue

nc
y

sh
if

ta
tt

=
1.

58
6s

by
So

un
dW

av
e

(c
)D

et
ec

te
d

ba
nd

w
id

th
at

fr
am

e
t=

1.
96

s
by

So
un

dW
av

e
(d

)T
he

re
al

-t
im

e
ha

nd
ra

di
ca

lv
el

oc
ity

de
te

ct
ed

by
Au

di
oG

es
t

Fi
g.

8.
33

E
xp

er
im

en
ta

lC
as

e
2:

a
fa

st
-s

pe
ed

cl
oc

kw
is

e
ha

nd
ci

rc
lin

g



238 Realizing Human-Machine Interactions Using Touch-free Hand Gestures

Case 1: Detecting Slow-speed Clockwise Hand Circling

Fig. 8.32 (b)∼(d) compare the detection results of SoundWave and AudioGest for a Slow-

Speed clockwise circling case. In Fig. 8.32 (a), we observe that the hand is currently moving

away from the microphone at t = 2.38s, and towards the microphone at t = 3.3133s. However,

SoundWave cannot accurately detect frequency shifts in such two FFT frames (see Fig. 8.32

(b) and (c)) since both the second peaks are less than a threshold 30% and the lower point is

below 10%, thus leading the recognition of “no motion”. Fig. 8.32 (d) shows the result of

our method, in which we first utilize Squared Continuous Frame Subtraction and Gaussian

Smoothing to get the shifted frequency area and then transfer it into a hand radial speed curve.

Both frequency shifts as well as hand speed in these two frames are successfully detected

and estimated.

Experimental Case 2

Fig. 8.33 (b)∼(d) illustrate another detection results for a Fast-Speed clockwise circling case.

Similarly, although SoundWave can successfully detect the happening of hand motion, it

still fails to accurately estimate shifted bandwidth (missing the third peak), which results

in incorrect hand speed estimation. Actually, those two FFT frames represent two peak

speeds during the hand waving. Fig. 8.33 (d) shows our result, which correctly quantifies the

bandwidth of the shifted frequency and captures the peak speeds.

To summarize, from the perspective of technique and methodology, percentage threshold-

based dynamic peak tracking in SoundWave is a promising and efficient method that can

deal with the hardware diversities and signal drifts. The FFT Normalization in our chapter

actually serves the same purpose. However the rest techniques introduced by our system

including Squared Continuous Subtraction, Gaussian Smoothing and Hand Radial Speed

Transformation make AudioGest free of percentage threshold chosen and more accurate in

quantifying shift frequency bandwidth.
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8.7 Discussion

This section will discuss the limitations of our work that are left for the future work.

8.7.1 Separation of the Speaker and Microphone

In AudioGest, we focus on multi-modal hand gesture recognition with only one pair of

microphone and speaker. Our system requires that the microphone and speaker are placed

in different places. The rational of speaker-microphone separation lies on i) reducing the

self-inference from the speaker (i.e., preventing the microphone recording the sound of the

speaker on the same device); ii) increasing the performance of microphone (i.e., sound from

outside is neutralized by the sound-wave emits from speaker with a higher possibility if

speaker and microphone are close); and iii) limited deployment space in a mobile device.

Interestingly, commercial mobile devices (e.g., laptops, mobile phones and tablets) on the

market perfectly meet this requirement of AudioGest.

8.7.2 Gesture Trajectory

By making sensing of Doppler Effect, AudioGest can recognize six types of pre-defined basic

gestures regardless of other hand motion attributes. The starting and stopping points of those

gestures are quite flexible. AudioGest can interpret the spectrogram to the hand movements

as long as the Doppler frequency shifts are captured. However, it is possible that two different

gestures generate a same spectrogram, in which we cannot distinguish these two gestures.

This is the reason that AudioGest needs to pre-define the hand moving trajectories. In other

words, AudioGest does not care about the starting or ending point of hand movements, as

long as two hand waving trajectories do not generate the same spectrogram.
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8.7.3 Noise Disturbance to Human

Considering normal human hearing scope of 55∼18kHz, AudioGest emits a 19kHz single

tone sound-wave. At the same time, to largely reduce the possible disturbance brought by the

sound, we adjust the sound volume into a very low intensity since our system aims to detect

hand movements around the vicinity of a mobile device. We adjust the volume of 19kHz into

a very low-intensity level, which is difficult to be heard by people who is 0.5 meter away

from the device. A 13-year-old young female participates in our experiments and she does

not feel any uncomfortable while using our HGR system. That is also why we give up a plan

using more advantaged soundwave signals (such as FMCW), which although has a better

speed and range detection ability, it still generates small hear-able sound even the frequency

of the signal is designed to be higher than 18kHz. In addition, we could choose a 20kHz

sound-wave in our system, which would be safer and unobtrusive for human users.

8.8 Conclusion

To summarize, this chapter has shown how one single pair of microphone and speaker can

achieve a multi-modal hand motion detection. AudioGest thoroughly exploits the Doppler

frequency shift from hand movement and accurately interprets the spectrogram of echo signals

into the multi-modal hand motion attributes. Our system only uses a single pair of COTS

speaker & microphone without any extra hardware, and it is capable of accurately recovering

hand’s real-time radial velocity, thus decodes the hand moving direction, waving speed, and

in-air range. By deeply interpreting the Doppler effect and hand motion, AudioGest is free

from labor-intensive data labeling and supervised model training. It can provide more control

commands for various applications by co-recognizing hand gestures and their associated

motion attributes. The real-world experiments demonstrate the feasibility and effectiveness of
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our system, which marks an important step toward enabling accurate and ubiquitous gesture

recognition.





Chapter 9

Conclusion and Future Work

From six concrete research perspectives, this Ph.D. thesis has systematically explored how

to utilize the cost-effective and maintenance-free passive RFID sensor technology to build

a smart living-assistive system that can enable a healthy and safe independent life for the

elderly in a residential home. From Chapter 3 to Chapter 8, for each research issue, we

present a device-free, cost-effective and innovative approach that advances existing similar

works. In this chapter, we will conclude this thesis and point out some promising future

research issues, as well as give some illuminative solutions.

9.1 Conclusions

With the continuously growth of the aging population, the shortage of health-care service,

and the importance that people want to remain independent and safe at their own homes, the

demand on developing a novel living-assistive system can support the elderly live longer

independently and safely in their own homes is becoming increasingly urgent. This Ph.D.

thesis thus attempts to develop such a living-supportive system that can enable a healthy, safe,

cost-effective independent living for the elderly in a residential home. Briefly, comparing

to other related works, our proposed system built on passive RFID tags and cheap sensors
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bears three major merits - device-free, intelligent and maintenance-free. In particular, we

decompose the system into six specific research problems. For each issue, we provide a novel,

device-free and cost-effective solution by taking recent advances of sensor technologies and

state-of-the-art machine learning techniques.

First of all, this thesis has thoroughly reviews state-of-the-art related works from five

research facets in Chapter 2, which substantially corresponds the six research issues we intend

to solve. Concretely, in the hardware layer, we discuss the recent research efforts on missing

data recovery, especially thoroughly compare the pros and cons between matrix completion

and tensor completion techniques. In the discovery layer, we review the indoor human

localization and activity recognition approaches from wearable device and device-free based

techniques, especially intensively discuss the latter one by categorizing it into WIFI-based

and RFID-based schemes. In the monitoring layer, we primarily focus on reviewing the fall

detection systems. In the application layer, we discuss the recent hand gesture recognition

systems and highlight the advantages of our HGR system.

Then, from Chapter 3 to Chapter 8, we elaborate the technical details of our solutions for

those six research problems.

To deal with the challenge of sensor reading loss in passive RFID tags, Chapter 3 proposes

tensor completion based method. It can accurately recover the missing readings given partial

observed corrupted sensor data. The main novelty of this solution lies on that it can naturally

capture the two-dimensional geographic dependency among sensors by formulating sensor

readings with strong spatio-temporal correlations as a multi-dimensional tensor.

Upon this sensor reading recovery solution, Chapter 4 then presents a passive RFID-

based device-free indoor localization and tracking system. Firstly, the localization problem is

tackled by introducing a series of data-driven models to quantify the RSSI distributions when

a user appears at various locations within a monitored area. These approaches enable our

system to localize a subject by maximizing the posteriori probability given RSSI observations.
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By transferring the pattern learned in localization, we further propose the multivariate GMM-

based HMM and kNN-based HMM methods to deal with the human tracking problem.

However, the pure passive RFID based system cannot achieve satisfying localization

and tracking accuracy in a cluttered living environment (e.g., a a fully-furnished residential

home) because RSSIs from passive tags are heavily obstructed by furniture or metallic

appliances, significantly compromising the system’s performance. As a result, in Chapter 5,

we develop an enhanced RFID-based localization and tracking system that exploits human

object interaction events to facilitate the traditional RFID-based localization under a rigid

probabilistic framework. It is based on an intuition that, in a residential environment, the HOI

events caused by daily living activities, detected by pervasive sensors, can potentially reveal

people’s transient locations, such as watching TV, opening the fridge door. The real-world

experiments demonstrate the feasibility and effectiveness of our system, which marks an

important step toward enabling an accurate and practical device-free human localization and

tracking in a real residential home.

Apart from the resident’s location context, recognizing the user’s daily activity is also

essential for our living-assistive system. Thus, Chapter 6 proposes a novel device-free human

activity recognition approach by deploying the passive RFID tags as an tag-array. Such

tag-array significantly improves the capability of sensing human activities comparing to

regular passive RFID tags. Our HAR system can accurately classify 12 orientation-sensitive

activities in a lab environment as well as in a residential environment. We also explore the

optimal tag selection and placement that enable an more accurate activity recognition but

with less passive tags.

Considering that falls are among the leading causes of hospitalization for the elderly,

Chapter 7 introduces a device-free, fine-grained fall detection (FD) approach based on the

same passive RFID hardware. Our FD system can simultaneously identify regular activities

and detect a fall event by the proposed p-partially Angle-based Outlier Detection method.
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More importantly, our system can distinguish different falling orientations, which we believe

is a valuable context for the care-givers. Comparing to the current fall detection solutions,

our approach relaxes the requirement of tuning parameters and provides more fine-grained

contexts regarding fall events.

At last, to conveniently interact with those electronic appliances equipped in a residential

environment (e.g., automated window curtain, TV and air conditioner). Chapter 8 designs

AudioGest , a novel hand gesture recognition system that uses one single pair of microphone

and speaker to achieve a multi-modal, fine-grained hand motion detection. Our system is

able to accurately recover hand’s real-time radical velocity, and then decode the hand moving

direction, waving speed and in-air range. It is also training-free and can provide up to 54

gesture control commands by randomly choosing two hand motion attributes.

Overall, this thesis provides a series of novel solutions for six research challenges. Those

six parts are closely related and together compose a device-free, intelligent and maintenance-

free living-assistive system that can enable an independent, low-cost and safe living for the

elderly. Given the aging of the population, the cost of health care, and the importance that

people want to remain independent and safe at their own homes, we believe the proposed

innovative technologies in this thesis will be extremely valuable to both government and

society in the era of global aging.

9.2 Open Issues for Future Work

In this section, we will identify some open research issues for the future work, which is listed

as follows.
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9.2.1 Sensor Data Recovery

In Chapter 3, we propose a robust tensor based model to recover missing readings for the

sensor dataset with strong spatio-temporal correlations. Our method however still is based

upon some assumptions that may be unpractical for some types of spatio-temporal sensor

data.

One assumption is that, every mode of the tensor X is simultaneously low-rank. However,

this assumption might be too strict to be satisfied in practice. For example, the original tensor

is low-rank only in certain mode, such as our experiments in recovering RFID sensor data,

where the low-rank may only exist in the third-mode for 4×4 sensor array. To deal with this

issue, a straight-forward solution is to add a priori factor/weight to each unfolding matrix

of the tensor thus penalize different modes with different low-rank priori knowledge (if we

know in advance). Ideally, a method that can adaptively find the low-rank modes and only

minimize the modes where low-rank exits may also be investigated in the future. Therefore,

some other methods are proposed, such as the "Mixture" model for the tensor completion

in [126, 125], which relaxed the each mode of tensor low-rank to the corresponding mode of

the different component tensors low-rank. Based on this model, we can also explore the new

representation method for the low-rank tensor in the future.

Moreover, in our model, we assume the noise is sparse, thus usually adopts l1 norm

that is optimal only for Laplacian noise. However, the real-world data may be Gaussian

noise (Frobenius norm), or the mixture of different kinds of noise, even more complex noise,

unknown noise. Therefore, it is necessary to consider a robust model to tackle much complex

noise cases. The The relevant research efforts have emerged in matrix completion, such as a

model to deal with mixture of Gaussian noise [198]. How to extend such model into a tensor

case is also an interesting future work.

Lastly, in the optimization objective function, we used the Tucker rank (i.e., multi-linear

rank of tensor) in our model, which is not exactly equivalent to actual tensor rank. Similar to
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matrix, estimation of the rank of tensor is a NP-hard problem [19], and the approximation

of rank, e.g., Tucker rank based on each unfolding matrix, might be omit some intrinsic

information in some cases. The estimation of tensor rank can determined the accurate of the

recovery, therefore, how to find the suitable rank of tensor worths an in-depth exploration

in the future. In this chapter, we transform the tensor nuclear norm into the sum of nuclear

norm in each unfolding matrix. However, we unavoidably need to compute many SVDs

of matrices (possibly very large for some circumstances) at each iteration, leading to an

expensive computational cost. As a result, some alternative tensor decomposition methods

can be studied in the future.

9.2.2 Device-free Indoor Localization and Tracking

Chapter 4 introduces a series of methods from a data-driven viewpoint to deal with hu-

man localization and tracking problems. Comparing with physical models that leverage

the backscatter propagation mechanism, it delivers many promising features including no

requirement of tag pre-calibration, flexible deployment of RFID tags, a large monitoring

area, and robustness in the face of multi-path effect1. However, a learning/training stage is

necessary. Based on our experiments, for a 20m2 room, it requires about one-minute training

data to reach 85% in accuracy. Future work in this regard will focus on the investigation

of how to utilize the signal’s backscatter propagation to facilitate our data-driven model for

further reducing the learning overhead.

Our system in Chapter 4 targets to track a single resident in an indoor environment with

an aim to support the elderly who live alone.. For the circumstance of several residents

locating in a same residential room, the location-RSSI impacts from different persons will

be tangled and coupled which require an expensive learning overhead, i.e.,, exponentially

increasing with the number of residents. One way to address this problem is to retrieve

1Data-driven methods substantially learn the multi-path effect directly in the model-training stage instead of
designing a delicate multipath propagation model in physical model based methods.
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other information from the backscatter signals in RFID tags such as RF phase, RSSI reading

rate, doppler frequency. Those signals can potentially serve as indicators of locations and

reduce the pattern overlapping from multiple users, thus to ease the learning burden. The

other possible solution is to build a delicate backscatter model to decompose the impact of

different persons to RSSIs. In the future, we will investigate this idea in details.

9.2.3 Device-free Human Activity Recognition

In Chapter 6, we directly use raw RSSI as the features, since the feature extraction methods

popularly used in inertial sensor based activity recognition do not work well on RSSI. We

investigate 13 general feature extraction methods widely used in inertial sensor based activity

recognition including mean average value, kurtosis, correlation. However, the performance

are not good even very bad by using the features. We will keep exploring suitable features

of RSSI in recognizing activities. Our next exploration will be deriving deeper relations

between tags correlation in terms of temporal and spatial features, e.g., strength variation

and coverage, which can be exploited to build a more robust tag coverage model for accurate

recognitions.

The HAR work presented in this thesis is the first step to recognize high-level human

activities. There are three types of human activities generally: i) actions, which consist

of multiple activities for a single person with temporal dimension, e.g., walking, cooking;

ii) interactions, which are activities that involve two or more persons, e.g., two people are

shaking hands; and iii) group activities, which are activities performed by groups of people,

e.g., a group of people having a meeting. Identifying these complex human activities is

another main goal of our future work. Another promising research direction is how to develop

a location-aware activity recognition system based on pure passive RFID tags, in which we

not only can monitor the elderly people’s activities but also locate their fine-grain locations,

e.g., we will know where the person is when our system detect his fall.
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9.2.4 Device-free Fall Detection

In Chapter 7, we present a device-free and fine-grained fall detection system based on passive

RFID tag-array. One of limitations is that the current system is designed for and tested

with only a single resident. We believe that this is an important use case, particularly in an

aging-in-place setting, which aims to ensure that a single person can live in his/her home

and community safely and independently regardless of age and ability level. However, the

number of profiles needed with multiple persons would increase exponentially. A more

promising approach therefore would be to find techniques that can isolate concurrent activities

in separate space from each other and match them against profiles separately, which we

will consider in our future work. Another limitation is that labeling profiling data is time-

consuming and labor-intensive, which is also an issue shared by other fall detection systems.

In the Profile Construction phase, we have to use a camera to record the daily living activities,

and then synchronize the camera and RSSI reading based on the time stamp, finally label and

segment data streams into different action categories to build a labeled profile dataset based

on the video records. So how to reduce the human labeling burden is a big challenge that

worths us a further investigation.

Moreover, we use a standard, commercial RFID system with passive tags in our work.

The passive tags are more cost-effective and, due to their simple structure and protective

encapsulation, more robust than the sensor nodes. Passive tags operate without batteries.

Once deployed, no further maintenance is required. The devices that require power in our

sensing system is the RFID reader and antenna. But recent technical trends show that low-

cost, low-power RFID readers are becoming commonly available by integrating into the

smart phones, making our work potentially beneficial to more users in the future. Moreover,

more advanced passive tags are emerging recently, such as WISP that can sense quantities

such as light, temperature, acceleration, strain, liquid level. Such new RFID technology
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will enable us to build more capable smart space, which is also a very promising research

direction.

9.2.5 Device-free Hand Gesture Recognition

In Chapter 8, we develop a novel hand gesture recognition system AudioGest by trans-

forming a mobile device into an active mini sonar system. According to our experiments,

AudioGest can provide up to much more fine-grained control commands for applications by

combining the hand-gesture types, hand in-air duration, average speed and waving range. It,

however, can only distinguish overall eight hand gestures accurately. The main reason lies in

that we only utilize one microphone and depend on the Doppler frequency shift to interpret

the echo audio signals. In the future, we will investigate this from two ways: i) mining other

features from the spectrogram of reflected signals to facilitate our physical model in order

to recognize more hand gestures (it may bring some burden of labeling training data); and

ii) adopting two or more microphones to enable a real-time hand motion tracking.

The work in Chapter 8 belongs to the area of Hand Gesture Recognition which focuses on

recognizing pre-defined hand gestures. Another similar technique, Hand Tracking, however

mainly aims to real-time recover hand moving trajectory. Generally, hand tracking needs

more dedicated hardware support and efficient signal processing techniques. Given a pair of

speaker and microphone, AudioGest ’s upper limitation is to recognize several pre-defined

hand movements and their associated motion features as illustrated in Chapter 8. However,

with one more microphone (in a location that is different to the first one), AudioGest can

substantially achieve a hand tracking purpose, which will be part of our future work.

As the system robustness evaluation shows, AudioGest ’s performance decreases for some

challenging scenarios such as the device orientation greatly changes (> π/4) and human

motions at the vicinity of device (< 0.5m). However, such issues can be addressed by two

possible ways: i) exploring the built-in 3-axis accelerometer to detect the orientation of the
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device, then real-time updating parameters and hand-gesture recognition rules accordingly;

ii) borrowing the idea from radar to transmit MFSK (multiple frequency shift keying) audio

signal, enabling multiple-target range sensing, hence distinguishing the nearby environmental

motion and hand movement.
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APPENDIX A

Convergence Proof

Proof 1 : To proof our convergence, we first define following notations: M̄ = TArray(M1,

M2,M3), ¯N = TArray(N ,N ,N ) and Ō = TArray(O,O,O), as well as F(M̄ ) = f (M1,

M2,M3) := ∑
3
i=1 ∥Mi,(i)∥∗ and G( ¯N ) = 3g(N ) := 3λ1∥N ∥1 where F(·) and G(·) are

convex functions. As a result, we can write Equation 3.4 as:

min
M̄ , ¯N

F(M̄ )+G( ¯N )

s.t. M̄ + ¯N = Ō

(A.1)

And the (k+1)-th iteration from Algorithm 1 is as follows:

M̄ k+1 = argmin
M̄

F(M̄ )+
1

2µ
∥M̄ + ¯N k− Ō−µȲ k∥2;

¯N k+1 = argmin
¯N

G( ¯N )+
1

2µ
∥ ¯N +M̄ k+1− Ō−µȲ k∥2;

Ȳ k+1 = Ȳ k− 1
µ
(M̄ (k+1)+ ¯N (k+1)− Ō)

(A.2)

To assist our proof, we introduce Lemma 1 below.

Lemma 1 Assuming that M̄ , ¯N are an optimal solution for Equation A.1, and Ȳ represents

corresponding optimal dual variable according to the equality constraint M̄ + ¯N = Ō . Ob-
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viously, there exists η > 0 making the sequence (M̄ k, ¯N k, Ȳ k) obtained from Equation A.2

meets following relation.

∥W k−W ∗∥2
D −∥W k+1−W ∗∥2

D ⩾ η∥W k+1−W k∥2
D

(A.3)

Where W = TArray(M̄ , Ȳ ), W k = TArray(M̄ k, Ȳ k), ∥W ∥D := ⟨W ,DW ⟩. The inner

product ⟨W ,V ⟩D := ⟨W ,DV ⟩, where D =

µI 0

0 µI

 and V is anther tensor array

with the same size as W . The detail proof can be found in [199].

Based on Lemma 1, we obtain following three properties: i) ∥W k −W k+1∥D → 0;

ii) {W k} lies in a compact region, and iii) ∥W k−W ∗∥2
D is non-increasing monotonically

so that it converges. As a result, we can obtain that the sequence{W k,N k} has a sub-

sequence that can converge to {Ŵ k, ˆN k}. Based on the optimality conditions in the two

subproblems of Equation A.2, any limit point {Ŵ k, ˆN k} in the sequence {W k,N k} meets

the KKT (Karush–Kuhn–Tucker) conditions for Equation A.1. As a result, any limit point of

{M̄ , ¯N } is an optimal solution for Equation 3.4. Similar to the proof of the robust matrix

completion [123], the above proof for robust tensor completion is also valid for the partial

observation case.



APPENDIX B

Examples of Denoising and

Segmentation in AudioGest

In this Appendix, we depict the spectrograms after denoising and our segmentation results

for various hand gestures waving with different speeds. As we can see, the proposed

segmentation method can accurately localize those areas where Doppler frequency shifts

happen.
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(a) (b)

(c) (d)

(e) (f)

Fig. B.1 Denoised spectrograms of different hand gestures with various speeds and their
segmentation results: waving hand (a) from Right to Left; (b) from Up to Down; (c) Anti-
clockwise Circle; (d) Clockwise Circle; (e) Clockwise Circle with fast speed; (f) Clockwise
Circle with slow speed



APPENDIX C

Multi-modal Hand Detection Examples

This Appendix illustrates some real examples of how our multi-modal hand detection works.

Fig. C.1 and Fig. C.2 show the FFT-normalized spectrograms and their corresponding real-

time hand radial-velocity curves detected and the in-air waving duration, speed-ratios and

range-ratios measured by our system. Those four hand gestures are differentiated by their

motion trajectories in AudioGest like other HGR systems.

Fig. C.3 and Fig. C.4 depict four types of clockwise hand circling with different waving

speeds and ranges. Different to current HGR systems that can not distinguish those gestures,

AudioGest can recognize hand gestures (a) and (b) in Fig. C.3 by the speed-ratio, and hand

gesture (a) and (b) in Fig. C.4 by their different range-ratios even though they share the same

waving trajectory. Those examples elaborate how AudioGest achieves the multi-modal hand

motion detection.
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