Axon stretch growth: Towards functional repair of the spinal cord – An early translational exercise

Malcolm Philip Brinn

B.HIthSc (Life Sc) Flinders University

B.HlthSc (Hons Anat) University of Adelaide

Discipline of Anatomy and Pathology

Adelaide Medical School

January 2017

A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

TABLE OF CONTENTS

ABSTRACT	V
DECLARATION	VIII
RESEARCH CONTRIBUTION	IX
DEDICATION AND ACKNOWLEDGEMENTS	х
ETHICS STATEMENT AND PERMITS	XII
LIST OF FIGURES	XIII
LIST OF TABLES	xv
LIST OF ABBREVIATIONS	
GLOSSARY OF TERMS	
мотто	XVIII

PART 1 INTRODUCTION

CHAPTER 1.	BACKGROUND2
Introdu	tory remarks
Rationa	le4
Aims an	d Objectives
Primer .	7
Relevan	t Gross Anatomy11
Referen	ces
CHAPTER 2.	MORBIDITY, EPIDEMIOLOGY, AND AETIOLOGY OF SPINAL CORD INJURY
Morbid	ty Cost
	ty Cost
Epidem	
Epidem Aetiolog	ology
Epidem Aetiolo <u>c</u> Injury C	ology23 Iy of spinal cord injury
Epidem Aetiolog Injury C Mechar	ology
Epidem Aetiolog Injury C Mechar Secondo	ology

PART 2 EXPERIMENTAL

CHAPTER 3.	AXON STRETCH GROWTH - AN EARLY TRANSLATIONAL PERSPECTIVE	50
Backgr	ound	51
In-Vitro	Axon Stretch Growth	
Axon st	retch growth – animal model	60
In-vivo	Axon Stretch Growth strategy	63
Pertine	nt Literature for Sheep Model	65
Referer	nces	70
CHAPTER 4.	AN OPTIMISED METHOD FOR OBTAINING ADULT RAT SPINAL CORD M	IOTOR
NEURONS TO	BE USED FOR TISSUE CULTURE	76
Introdu	ction to Published Article	77
Abstrac	rt	80
Introdu	ction	81
Materi	als and Methods	82
Results	and Discussion	94
Conclus	ions	
Acknov	/ledgments	
Contrib	utions	
Disclos	ures	
Referer	nces	105
CHAPTER 5.	A PORTABLE LIVE CELL CULTURE AND IMAGING SYSTEM WITH OPTION	NAL
UMBILICAL B	IOREACTOR USING A MODIFIED INFANT INCUBATOR	
Develo	oment preamble	
Introdu	ction to article	
Abstrac	.t	125
Introdu	ction	
Materi	als and Methods	
Results		
Discuss	ion	
Conclus	ion	
Acknov	vledgements	
Referer	Ices	143

CHAPTER 6.	IN-VITRO AXON STRETCH GROWTH OF ADULT RAT MOTOR NEURONS	145
Abstrac	ct	
Introdu	iction	151
Materia	als and Methods	153
Results.		159
Discuss	sion	
Summa	ary	
Referen	nces	
CHAPTER 7.	SUMMARY, CONCLUSIONS, FUTURE DIRECTIONS, AND COMMENTARY O	N
RESEARCH EN	NVIRONMENT.	177
Summa	ary – Early Translational Science	
Summa	ary – Project	
Conclus	sions and Future Directions of this research	
Referen	nces	
CHAPTER 8.	APPENDICES	184
Append	dix 1: Stepper Motor Controller – Arduino Source code	185
Append	dix 2: CO ₂ PID Controller – Arduino Source Code	
Append	dix 3: Paper 1: Journal of Neuroscience Methods	193
Append	dix 4: Paper 2: Journal of bioengineering	

LANGUAGE: OXFORD UK ENGLISH (MODIFIED)

Abstract

Axon stretch growth: Towards functional repair of the spinal cord – An early translational exercise

Background

Injury to the spinal cord often visually presents as a local injury, damaging neurons that reside in the spinal cord, their projecting axons and supporting infrastructure such as oligodendrocytes. However, damage also occurs to ascending and descending axons that communicate with the brain. Fundamentally, repair of these injuries requires two distinct restorative approaches. The local injury will require stabilisation of the local environment, the rescue of injured neurons and support infrastructure, replacement of lost cells and restoration of intra-spinal communication. The latter ascending and descending axon injury will require proximal and distal axon reunification to restore supra-spinal communication with the brain.

This thesis presents the results of an early translational exercise that takes a non-linear approach to facilitate investigation into axon stretch growth (ASG) - an intrinsic mechanism that allows axons to adapt to body height and size throughout life. Pioneering research has shown that in-vitro exploitation of ASG has the potential to bridge significant gaps associated with injuries to long supra-spinal nerve tracts within the spinal cord.

Although translational science can be applied across the research spectrum, the traditional practice is to intervene once the research has matured. Here, the intervention occurs early, in an environment of limited funding within a progressive school of basic sciences. At the time of intervention, no infrastructure or experience in ASG research was evident within the faculties.

Translational Methods

The absence of a robust in-vitro adult motor neuron culture was identified as a potential barrier in ASG translation. Collaborations in anatomy, neuroscience, and toxicology were formed. Three separate animal ethics applications were required. Publication of a protocol followed.

The infrastructure required to conduct necessary in-vitro investigations into ASG was determined. Multidisciplinary collaborations were formed with mechanical, electrical and electronics engineers. Design, engineering, and commissioning of the equipment followed.

The lack of a definitive translational animal model has been previously identified as a significant barrier to spinal cord injury research. Specifically, a suitable large animal model has yet to be clearly defined for ASG research. Collaborations with comparative anatomy, a large animal research centre, and a senior spinal surgeon progressed development of a sheep model. Separate multi-institutional animal ethics applications were also required.

Results

A robust peer reviewed method was established to hydraulically extrude the spinal cord of adult Sprague-Dawley rats in under 60 seconds, and a serum free culture protocol simplified to maximise the yield of motor neurons and reduce culture costs. Adult motor neurons harvested and cultured using this protocol are capable of in-vitro survival for periods exceeding 21 days.

A decommissioned infant humidicrib was successfully converted into a portable temperature $(32 - 39^{\circ}C \pm 0.1^{\circ}C)$, and carbon dioxide controlled imaging incubator. Additional modifications incorporating umbilical support for multiple tailored bioreactors was also developed. A tailored ASG bioreactor was prototyped, tested, and commissioned. Axon stretch growth of motor neurons has been initiated in the bioreactor.

The literature review suggested that non-human primates were the optimal model for final translational confirmation. However, there was sufficient evidence to indicate that ungulates (i.e. sheep or pig) may be an alternative for ASG research. Relevant information on the sheep was collated, and basic investigation on their anatomy progressed.

Conclusion Early applied translational science (as practised here) is strategic and cost effective, showing that the overall strategy facilitates research, while potentially identifying barriers that could delay progress or cause late translational failure. The introduction of an "off the shelf" early intervention funding model allocated to translational scientists should be considered as a mechanism to progress basic science investigations that are in conceptual stages of development.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time

I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship.

Malcolm Philip Brinn

2016

Modified Oxford UK/English Version

Research contribution

Publications

Brinn, MP, O'Neill, K, Musgrave, I, Freeman, BJC, Henneberg, M & Kumaratilake, J 2016, 'An optimized method for obtaining adult rat spinal cord motor neurons to be used for tissue culture', *J Neurosci Methods*, vol.273, pp. 128-137

Brinn, MP, Al-Sarawi, SF, Lu, T-F, Freeman, BJC, Kumaratilake, J & Henneberg, M. 2016, 'A portable cell culture and imaging system with optional umbilical bioreactor using a modified infant incubator', Bioengineering

Brinn, MP, Kumaratilake, J, Al-Sarawi, SF, Lu, T-F, Freeman, BJC & Henneberg, M 2016, 'An optimized method for obtaining adult rat spinal cord motor neurons to be used for tissue culture', *J Tissue Engineering (submitted 24th January 2017)*

Presentations

Brinn MP, Kumaratilake, J, Henneberg M, and Freeman BJC. Exploiting Axon Stretch Growth as a novel mechanism for the future repair of long nerve tracts within the spinal cord. XIII Adelaide Centre for Spinal Research Symposium 13-15 August 2015 Novotel Barossa Valley, South Australia

Posters

Brinn MP, O'Neill K, Zhao S, Kumaratilake J, Musgrave I, Tien-Fu Lu, Al-Sarawi S, Linke I, Slater, A, Freeman BJC & Henneberg M 2016 'Axon Stretch Growth – Overcoming distance: Towards repair of long nerve tracts within the spinal cord' Poster presented at The University of Adelaide, Faculty of Health Sciences Postgraduate research conference: National Wine Centre, Adelaide, August 2014

Brinn MP, Kumaratilake J, Tien-Fu Lu, Al-Sarawi, Freeman BJC & Henneberg M. 'Axon Stretch Growth of adult primary motor neurons", Proceedings of the 25th Biennial Meeting of the ISN jointly with the 13th Meeting of the APSN in conjunction with the 35th Meeting of the ANS, 23rd - 27th August 2015, Cairns Australia, p333

Dedication and Acknowledgements

This thesis is dedicated to Rosemary, who has been the love of my life for over 40 years. Thank you for sharing this journey and for your support even when you had good reasons not too. Thank you also for your love, your motivation and guidance during the highs and lows.

To my daughters Tanya and Sharlene and my son Michael, a personal thank you. I remain the proudest father and look forward to spending more time with you all now.

To my grandchildren, Johnathon, Joshua, Samantha, Scott, Emma, Nathan, Peter, Mark, and Ruby I love you all.

To my supervisors Professor Maciej Henneberg, Professor Brian Freeman and Doctor Jaylia Kumaratilake, I feel honoured that you allowed me to undertake this PhD under your guidance. Thank you for your patience and perseverance, for the multiple reads of my thesis and the encouragement and support during the highs and lows.

To Maciej, who is also my mentor, thank you personally for your guidance, for your tremendous input in bringing this study to life and for your encouragement in taking on this early translational adventure with me. I have learned much in our short time together, 5 minutes with you is equivalent to 2hrs with anyone else.

I extend a special mention to Doctor Jaylia Kumaratilake for providing the extensive funding for the in-vitro work. I particularly want to acknowledge that the funding was provided by private lecturing. This was an extraordinary gift of both your time and effort in preparing lectures and in delivering them out of hours for over three years. Jaylia, You make the world a better place.

I also extend a special mention to Professor Brian Freeman who I am indebted to on many levels. First, for his gifted surgical intervention and second for supporting my work, providing perspective and opening doors that would otherwise be difficult to open. Thank you for taking the time to involve yourself in this project.

Preface

I would like to thank Doctor Said Al-Sarawi and Doctor Tien-Fu-Lu for their collaboration, engineering technical advice, and support in the development of the axon stretch device. I also extend my warm wishes and thanks to my extended technical family; Mr Ian Linke, Mr Bradley Pullen, Mr Aubrey Benjamin Slater, Mr Hayden Westell and Mr Alban O'Brian. Thank you for your time, knowledge, experience, and skills. I could not have completed this PhD without you.

To the many staff within the medical school, particularly Doctor Ian Musgrave and Ms Katie O'Neill, thank you for your assistance with cell culture work and use of your cell culture laboratory.

To my anatomy associates and peers thank you for your support and good grace to put up with me. Special mention to Tavik, Chris, Teghan, Irena, Stella, Caitlin, Arjun, Arthur, Dante, Gary, Pen, Todd, Mojdeh, Ian, Vyith, Mounir, Julie, Eleanor, Bill, and Mark. To the young ones, I now know I will be in good hands in the nursing home. To the older ones – see you there.

To all the staff, students and friends of the Anatomy discipline, I cannot thank you enough for your support and guidance. It was a wonderful experience sharing my journey with you all. A special mention and thank you to Bob Vink for guidance and professional assistance in topic selection.

To Kristin Carson, my good friend, and an exceptional research talent. Thank you for your support, guidance, and presence.

To the many other people that have mentored, assisted, or supported me through to completion of this thesis I also extend my grateful appreciation and thanks.

Finally, it is with sadness that I cannot share this moment with both my late father Philip John Brinn and late mother Kathleen Brinn as they were exceptional parents, both caring, and giving. I lost them both during this journey, and I miss then terribly, particularly now.

Ethics Statement and Permits

All experimental studies presented in this thesis were conducted per the guidelines established by the National Health and Medical Research Council

Ethics Committee	Ethics Number	Description	Approval Date
UOA	M-2012-205	Harvesting of rat spinal cords for motor and sensory neuron culture under serum- free conditions	19/12/2012 24/09/2013
UOA	M2014-159	Long term culture of adult motor neurons obtained from the spinal cord of a Sprague Dawley rat	14/11/2014
UOA	M-2014-051	Pilot study stimulating intrinsic growth in the	16 th April 2014
SAHMRI	SAM100	injured spinal cord: Phase 1: Validation of the sheep model	4 th June 2014

UOA = University of Adelaide

SAHMRI – South Australian Health and Medical Research Institute - PIRL

List of Figures

FIGURE 1: PICTURE AND DRAWING REPRESENTATION OF NEURON CONNECTIVITY	8
FIGURE 2: SCHEMATIC OF ACUTE AND SUBACUTE MOLECULAR EVENTS	9
FIGURE 3: WALLERIAN DEGENERATION OCCURS AT RANDOM FOCI ALONG THE LENGTH OF THE DISTAL AXON STUMP	10
FIGURE 4: RIGHT LATERAL DRAWING OF THE VERTEBRAL COLUMN AND PICTURES OF THE OSSEOUS VERTEBRA.	13
FIGURE 5: DIAGRAM OF STRUCTURAL RELATIONSHIPS	15
FIGURE 6: DIAGRAMMATIC REPRESENTATION OF THE MENINGES SURROUNDING THE SPINAL CORD (DETAIL)	16
FIGURE 7: VASCULAR SUPPLY TO THE SPINAL CORD	18
FIGURE 8: AETIOLOGY OF TRAUMATIC SPINAL CORD INJURY BY AGE (2012)	25
Figure 9: Adverse Mechanical Tension	29
FIGURE 10: NERVE TRACTS - COMMUNICATION PATHWAYS	31
FIGURE 11: CONTUSION, CRUSH, AND COMPRESSION INJURIES WITH VARYING COMPLEXITY	33
FIGURE 12: SECONDARY INJURY MECHANISMS (FIGURES 2 & 3) REVISITED	34
FIGURE 13: AIS GRADE VS. TIME TO DECOMPRESSION	35
FIGURE 14: RILUZOLE COMPARED WITH OTHER TREATMENTS AT 7WEEKS POST-SCI (RAT)	37
FIGURE 15: TIME-DEPENDENT TREATMENT TARGETING NMDA RECEPTORS	38
FIGURE 16: TIME-COURSE (COLLATED) CLINICAL VS. MOLECULAR LEVEL INJURY	40
FIGURE 17: ORIGINAL RADIOGRAPH CERVICAL SPINE IN FLEXION (A) AND EXTENSION (B)	51
FIGURE 18: LONGITUDINAL SAGITTAL SECTIONS OF THE SPINAL CORD (SILVER STAINED)	52
FIGURE 19: CADAVER SPINAL CORD RESPONSE TO AXIAL LOAD ON THE PONS-CORD TRACT	53
FIGURE 20: CLASSICAL SCHEMATIC OF MECHANICAL AXON STRETCH GROWTH	57
FIGURE 21: SPINAL CORD HARVESTING TECHNIQUE	88
FIGURE 22: POST CENTRIFUGATION IMAGE OF 4 LAYERED OPTIPREP DENSITY GRADIENT	90
FIGURE 23: IMAGES OF LIVE NERVE CELLS IN NFM CULTURE (DAY 7-28)	100
FIGURE 24: SIMULTANEOUS POST-FIXATION (DAY 7) DIFFUSION CONTRAST AND FLUORESCENCE IMAGES	101
FIGURE 25: IMMUNOFLUORESCENCE (DAY 21) ANTI-CHOLINE ACETYLTRANSFERASE ANTIBODY (AB35948)	102
FIGURE 26: IMMUNOFLUORESCENCE (DAY21) NEUROFILAMENT 165KDA ANTIBODY (DSHB: 2H3)	103
FIGURE 27: IN-VITRO REQUIREMENTS	112
FIGURE 28: STABLE 3 SECTION VERSION OF AXON STRETCH BIOREACTOR:	115
FIGURE 29: SAGITTAL VIEW OF 3 SECTIONED BIOREACTOR (ASSEMBLED)	116
Figure 30: Single Piece 3D printed chamber	117
FIGURE 31: LOW-COST ASG INTEGRATED SYSTEM	118

FIGURE 32: ADAPTED DRAWING (SERVICE MANUAL) OF THE DRAGER AIR-SHIELDS ISOLETTE [®] . C100 HUMIDICRIB	
FIGURE 33: DIAGRAM REPRESENTING THE CO2 GAS CONNECTION DIRECT TO THE INCUBATOR	
FIGURE 34: ARDUINO BASED CIRCUIT DIAGRAM FOR CO2 CONTROL	
FIGURE 35: DIAGRAM OF HEATING AND GAS	131
FIGURE 36: SCHEMATIC WIRING DIAGRAM OF THE CLOSED LOOP HEATING SYSTEM	
FIGURE 37: BASIC DESIGN OF BIOREACTORS	134
FIGURE 38: SAGITTAL VIEW EXAMPLE OF A MORE ADVANCED BIOREACTOR (TOP ALUMINIUM MACHINED (PTFE COA	ted) bottom
SECTION MACHINED FROM SOLID PTFE. STANDARD BASE PLATE NOT SHOWN	135
FIGURE 39: THE COMPLETE SYSTEM WITH ASSEMBLED AND FUNCTIONING BIOREACTOR IN IT IS CONTROLLED AND PRO	OTECTED
HOUSING (HUMIDICRIB)	141
FIGURE 40: IMAGE OF MICROSCOPE STAGE WITH PIEZO ACTUATORS	155
FIGURE 41: CUT SAGITTAL IMAGE OF BASE SECTION	158
FIGURE 42: IMAGE OF CELLS DAY 5	
FIGURE 43: IMAGE DAY 21 (UNDER GREEN LOW LIGHT 24HR)	161
Figure 44: Image Axons Day 21 Immunohistochemistry cHat 100µm	162
Figure 45: Image Axons Day 21 Immunohistochemistry cHat 50µm	
Figure 46: Image Axons Day 21 2H3 20μm	
FIGURE 47: IMAGE OF AXON STRETCH GROWTH	165
FIGURE 48: IMAGE OF AXON FOLLOWING DISCONNECTION X40 MAG	166
FIGURE 49: IMAGE X40 MAGNIFICATION AXON DAY 14	167
FIGURE 50: CONCEPT OF SYRINGE VERSION OF ASG DEVICE	

List of Tables

TABLE 1: AETIOLOGY OF TRAUMATIC SPINAL CORD INJURY BY PROPORTION OF MALES AND FEMALES	25
TABLE 2: DEFINED SPINAL CORD SYNDROMES (REVISED)	27
Table 3: Sheep - Reference Anatomy (Book)	65
Table 4: Sheep - General	65
Table 5: Sheep - Vascular anatomy	65
TABLE 6: SHEEP - ORTHOPAEDIC SPINE AND COMPARATIVE ANATOMY	66
TABLE 7: SHEEP - SURGICAL GENERAL	66
TABLE 8: SHEEP MODEL OF SCI	67
Table 9: Sheep - Locomotion/Gait	67
TABLE 10: SHEEP - ANIMAL MODEL LITERATURE	68
TABLE 11: SHEEP - NERVE REGENERATION	68
TABLE 12: SHEEP - SPINAL CORD NEURAL	69
TABLE 13: PREPARATION OF OPTIPREP DENSITY GRADIENTS	83
TABLE 14: NEUROBASAL CONDITIONED MEDIUM (NEUROBASAL-CM)	84
TABLE 15: PREPARING THE STEPPED DENSITY GRADIENT	89
TABLE 16: LIST OF ANTIBODIES FOR PRIMARY CELL CULTURE	92
TABLE 17: IMMUNOHISTOCHEMISTRY SOLUTIONS	93
TABLE 18: SMEAR TEST TO DETECT THE PRESENCE OF RED BLOOD CELLS IN THE BREWER AND TORRICELLI (2007) DENSITY	
GRADIENT WITHOUT A PERFUSION STEP	95
TABLE 19: POST-PLATING MOTONEURONES IDENTIFIED WITH ANTI-CHOLINE ACETYLTRANSFERASE (CHAT) ANTIBODY	99
TABLE 20: EQUIPMENT REQUIREMENTS FOR CO2/AIR SENSOR AND CONTROL AUTOMATION	138
TABLE 21: PROGRAMMED AXON STRETCH RATES FOR ADULT MOTONEURONS	154

List of Abbreviations

Abbreviation	Full Description	Abbreviation	Full Description
AMPA	α-amino-3-hydroxy- 5-methyl-4-	ETS	Early Translational Scientist
	isoxazolepropionic acid	GDNF	Glial-derived neurotrophic factor
ASF	Artifical Cerebro- Spinal Fluid	HIB-PM	Hibernate processing medium
ASG	Axon Stretch Growth	L1-L5	Lumbar Vertebrae (numbered)
bFGF	Basic Fibroblast Growth Factor	Mg ²⁺	Magnesium
BDNF	Brain-derived neurotrophic factor	Neurobasal - CM	· Neurobasal based conditioned medium
C1-C7	Cervical Vertebrae (numbered)	NMDA	N-methyl-D- aspartate
Ca ²⁺	Calcium	NTSC	Non-Traumatic SCI
cAMP	8(-4 Chlorophenylthic	°C	Degrees Celsius
	cyclic adenosine 3'5 monophosphate)	O ₂	Oxygen
CNE	Computer Numeric Control	PBS	Phosphate buffered solution
CNS	Central Nervous	PDL	Poly-D-Lysine
CNTF	System Ciliary Neurotrophic	PEEK	PolyEtherEther Ketone
CO ₂	Factor Carbon Dioxide	PEG	Polyethylene glycol
CSF	Cerebrospinal Fluid	PET	Polyethylene terephthalate
CST	Corticospinal tract	PNS	Peripheral Nervous System
Cx1 – Cx4	Coccyx Vertebrae (numbered)	S1-S5	Sacral Vertebrae (numbered)
DIV	Days in Vitro	SCI	Spinal Cord Injury
DNA	Deoxyribose Nucleic Acid	T1-T12	Thoracic Vertebrae (numbered)
DRG	Dorsal Root Ganglion	TSCI	Traumatic SCI
DSHB	Developmental Studies Hybridoma Bank	L	1
EDTA	Ethylene Diamine Tetra Acetic acid		

Glossary of Terms

Primary injury: An event that causes initial damage to the spinal cord

Secondary injury: A series of biochemical events that occur within the spinal cord consequential to primary injury or repair intervention.

Wallerian Degeneration: A specific form of degeneration that affects neurites (including axons) when separated from a neurons cell body. This can be further specified as anterograde or orthograde.

Acute injury: The immediate post-injury phase, where damage to the spinal cord is continuing consequential to vascular or CSF disruption, and/or secondary injury biochemical events (generally < 24 hours' post injury)

Sub-acute injury: The period where optimal neuroprotective interventions are in place. Importantly, no new damage is being initiated, but secondary biochemical events are potentially still active, and the fate of existing damaged cells can be influenced through cell rescue measures (24 hours > 10 days)

Stabilised injury: A point between sub-acute and chronic injury, where the injury to the spinal cord has not yet reached steady-state but has stabilised. Biochemical events may be continuing, but the clinical response is reactionary (10 days > 24 months)

Chronic injury: The stage where the patient has reached steady state, and all biochemical events have subsided to the extent that the spinal cord is no longer actively responding to the injury or post injury intervention (>24 months)

Acute Repair: An immediate repair intervention that occurs while the spinal cord is in either acute or early subacute phase of injury.

Planned Repair: A planned intervention that occurs during the mid to late subacute or chronic phase of injury. The aim is to restore connections but, the repair may not improve functional outcome.

Restoration of Function: A planned intervention that occurs during the mid to late sub-acute or chronic phase of injury and is aimed to deliver specific functional gain i.e. nerve/muscle transfer surgery.

The Surgical Treatise - Case 31 (Edwin Smith Papyrus)

In 1930, renowned Egyptologist James Henry Breasted completed and published (now out of print) a comprehensive translation of the "Edwin Smith Papyrus." The papyrus has been dated to the sixteenth century B.C and is considered to be the earliest known health record of the spinal column and spinal cord trauma. Case 31 (hieroglyphs above) old English transliteration: "If thou examines a man having a dislocation in a vertebra of his neck, shouldst thou finds him unconscious of his two arms and his two legs on account of it, while his phallus is erected on account of it and urine drops from his member without his knowing it; his flesh has received the wind; his two eyes are blood-shot; it is a dislocation of a vertebra of his neck extending to his backbone which causes him to be unconscious of his two arms and his two legs"......"An ailment not to be treated".

https://oi.uchicago.edu/research/publications/oip/edwin-smith-surgical-papyrus

volume-1-hieroglyphic-transliteration (Accessed: 29/5/2015)