
Adaptive Anomalous Behavior

Identification in Large-Scale

Distributed Systems

Javier Álvarez Cid-Fuentes

School of Computer Science

The University of Adelaide

This dissertation is submitted for the degree of

Doctor of Philosophy

Supervisors: Dr. Claudia Szabo and Prof. Katrina Falkner

August 2017



© Copyright by

Javier Álvarez Cid-Fuentes

August 2017

All rights reserved.

No part of the publication may be reproduced in any form by print, photoprint,

microfilm or any other means without written permission from the author.



A mi familia.



Declaration

I certify that this work contains no material which has been accepted for the award of

any other degree or diploma in my name in any university or other tertiary institution

and, to the best of my knowledge and belief, contains no material previously published

or written by another person, except where due reference has been made in the text. In

addition, I certify that no part of this work will, in the future, be used in a submission in

my name for any other degree or diploma in any university or other tertiary institution

without the prior approval of the University of Adelaide and where applicable, any

partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library,

being made available for loan and photocopying, subject to the provisions of the

Copyright Act 1968. The author acknowledges that copyright of published works

contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on

the web, via the University’s digital research repository, the Library Search and also

through web search engines, unless permission has been granted by the University to

restrict access for a period of time.

I acknowledge the support I have received for my research through the provision

of an Australian Government Research Training Program Scholarship.

Javier Álvarez Cid-Fuentes

August 2017



Acknowledgements

First of all I would like to thank my two supervisors, Dr. Claudia Szabo and Prof.

Katrina Falkner, for their support and guidance during these three years (and a bit).

Thank you for your patience, help, insight, and above all, thank you for giving me the

opportunity to work with you and for teaching me everything about research.

I would also like to thank the people who, besides my supervisors, helped me to

carry out my studies in Adelaide. Francesc, Cruz, Rosa, and Wamberto, this thesis

would not have been possible without your support.

I am also very thankful to the university staff and students for creating a really

enjoyable atmosphere that makes things much easier. I am especially grateful to the

people who, in one way or another, helped me during my studies. Thanks to Dan and

Marianne for their immense technical support; to Yongrui and Ali for our fruitful talks;

to Dídac for his brief but really insightful assistance; to Yuval for his help in the area of

security; and to Lachlan and Jamal for the good times spent together. Finally, I would

like to give special thanks to Pádraig and Zhigang for their academic and personal

support. These years would not have been the same without you.

Por otro lado, también me gustaría darle las gracias a todas las personas que, a

nivel personal, han estado a mi lado durante estos años. En primer lugar, muchísimas

gracias a mis padres, que han trabajado durísimo toda su vida para darnos a mí y a mi

hermana unas oportunidades que ellos no tuvieron. Sin vosotros no sería quien soy,

ni estaría donde estoy. Gracias también a mi hermana, por estar siempre ahí, y a mis



vi

tíos, Maribel y José Luís, por haber hecho esta experiencia más llevadera aun estando

a miles de kilómetros de aquí.

Gracias a todos los amigos que están lejos pero están, gracias a Esteve por el

soporte y por haberme traído un trocito de casa contigo en los días en los que estuviste

aquí, y gracias a Juan por aquel fin de semana en Montreal que se pareció a los

míticos jueves. Agradecérselo también a todas esas aves de paso que han hecho de

mi estancia en Australia una experiencia inolvidable: Carles, Vicent, Zulia, Sandra,

Nacho, Mehdi, Luís, Tania, Andrea, Carmen, Gorka, Rafa, Cristian, Jonathan, Alex y

Jorge. A Alfonso y Gerard por los buenísimos ratos y las risas. Y en especial a Pablo

y Cassia por su gran ayuda y las muchas tardes y noches que hemos compartido.

Por último, last but not least, dar las gracias a Ana, una de las personas más

importantes de mi vida, por haber compartido conmigo este viaje que no ha sido

fácil, por la cantidad y la calidad de los momentos, y por haber estado a mi lado

incondicionalmente.



Abstract

Distributed systems have become pervasive in current society. From laptops and mobile

phones, to servers and data centers, most computers communicate and coordinate their

activities through some kind of network. Moreover, many economic and commercial

activities of today’s society rely on distributed systems. Examples range from widely

used large-scale web services such as Google or Facebook, to enterprise networks and

banking systems. However, as distributed systems become larger, more complex, and

more pervasive, the probability of failures or malicious activities also increases, to

the point that some system designers consider failures to be the norm rather than the

exception.

The negative effects of failures in distributed systems range from economic losses,

to sensitive information leaks. As an example, reports show that the the cost of

downtime in industry ranges from $100K to $540K per hour on average. These

undesired consequences can be avoided with better monitoring tools that can inform

system administrators of the presence of anomalies in the system in a timely manner.

However, key challenges remain, such as the difficulty in processing large amounts

of information, the huge variety of anomalies that can appear, and the difficulty in

characterizing these anomalies.

This thesis contributes a novel framework for the online detection and identification

of anomalies in large-scale distributed systems that addresses these challenges. Our

framework periodically collects system performance metrics, and builds a behavior

characterization from these metrics in a way that maximizes the distance between nor-
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mal and anomalous behaviors. Our framework then uses machine learning techniques

to detect previously unseen anomalies, and to identify the type of known anomalies

with high accuracy, while overcoming key limitations of existing works in the area. Our

framework does not require historical data, can be employed in a plug-and-play man-

ner, adapts to changes in the system behavior, and allows for a flexible deployment that

can be tailored to numerous scenarios with different architectures and requirements.

In this thesis, we employ our framework in three anomaly detection application

domains: distributed systems, large-scale systems, and malicious traffic detection.

Extensive experimental studies in these three domains show that our framework is

able to detect several types of anomalies with 0.80 Recall on average, and 0.68 mean

Precision or 0.082 mean FPR depending on the domain. Moreover, our framework

achieves over 0.80 accuracy in the identification of various types of complex anomalous

behaviors. These results significantly improve similar works in the three explored

research areas.

Most importantly, our approach achieves these detection and identification rates

with significant advantages over existing works. Specifically, our framework does

not rely on historical anomalous data or on assumptions on the characteristics of the

anomalies that can make anomaly detection easier. Moreover, our framework provides

a flexible and highly scalable design, and an adaptive method that can incorporate new

system information at run time.
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Chapter 1

Introduction

Computer and communication systems are a pivotal part of current society to the

point that some authors have coined the term the network society [2] to refer to their

profound impact on present economic, social, political and cultural aspects. Most

current software systems can be considered distributed systems, that is, “systems in

which components located on networked computers communicate and coordinate

their actions by passing messages” [3]. Since the global spread of the Internet, most

computers communicate across some kind of network, and often perform actions in

response to messages received from other computers. Even more, with the increasing

popularity of the Internet of Things (IoT) [4], even a ordinary lamps may communicate

with each other [5].

Due to this global interconnectivity, most distributed systems are also large-scale

systems with hundreds, thousands or even millions of components. Examples are

web services such as the widely used Google search engine [6], Facebook [7], or

Amazon [8]; peer-to-peer (P2P) networks used for file sharing such as BitTorrent [9];

high performance computing (HPC) clusters; privacy oriented networks like TOR [10];

the internal networks of companies and universities; vast networks of small devices in

the context of IoT; virtualized infrastructures on demand such as Amazon EC2 [11];

or large-scale systems from other sectors like finance, health, or the military.
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These computer systems have allowed unprecedented advances at numerous levels,

from the health sector to space exploration. However, they have also made society

much more fragile in the sense that a single computer failure can produce enormous

economic and personal losses [12, 13, 14, 15]. As a recent example, a single router

malfunction that caused a cascading failure forced Southwest Airlines to cancel or

delay more than 2,000 flights, which generated between $54 million and $82 million

in losses [14]. Therefore, it is essential for society that computer system experts and

researchers provide the adequate tools to avoid failures, or at least to minimize their

catastrophic consequences.

The area of research that studies how and why computer systems fail, and how

to avoid or ameliorate the negative effects of failures is the area of dependability.

Dependability has been defined as a measure of availability, reliability, maintainability,

confidentiality, integrity, and safety [16]. Availability is the capacity to deliver a

service when requested; reliability is the capacity to remain delivering the correct

service over time; maintainability is the ability to allow modifications and repairs;

confidentiality is the capacity to ensure the privacy of users; integrity is the absence of

improper alterations; and safety is the absence of catastrophic consequences on the

users and environment [16]. For obvious reasons, the goal of any system designer or

administrator is to achieve the highest possible degree of dependability. However, this

is often an arduous task due to the size and complexity of current computer systems,

which are composed of thousands of computers that interact with each other. This vast

amount of interactions generates nonlinear dependencies between system components

that make the system extremely hard to diagnose and maintain.

The different threats to dependability can be organized into three categories: fail-

ures, errors and faults [17]. Failures are events that occur when there is an incorrect

service delivery. Failures can occur at software, hardware, or system level. For ex-

ample, a failure in a software component implies that the component stops delivering

correct functionality to other components, whereas a failure in a group of networked
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computers can imply that a common service, such as the delivery of a web page,

becomes unavailable to users. Failures are the final consequence of errors, which are

deviations from the correct internal state of the different entities that participate in a

computer system [16]. Thus, an error produces a failure when an internal deviation

reaches the boundaries of the entity in question, affecting other external entities, which

can be other software components, computers or the users. Finally, the causes of

errors are called faults. Faults range from software and hardware flaws to input or

configuration mistakes to intrusion attempts and attacks. In other words, anything

that can generate a deviation from the correct state of a system is considered a fault.

Fig. 1.1 shows the relationship between failures, errors and faults.

Fig. 1.1. Relationship between faults, errors and failures (extracted from Salfner et
al. [17]).

Some faults can exist in a computer system for long periods of time without

generating errors, and are only activated when a very specific condition is met. For

example, a software bug can remain inactive until a particular execution path or state is

reached. Faults that have not generated an error are called dormant faults [16]. Errors

can be detected or undetected, and typically have some side effects before generating

a failure. These side effects usually manifest in certain system metrics as symptoms,

which are often the only indication of the presence of an error.
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The means to achieve dependability, and thus avoid failures, can be organized into

four categories [16]: fault prevention, fault tolerance, fault removal and fault forecast-

ing. Fault prevention involves the use of design and development techniques to avoid

introducing faults into computer systems, such as formal verification techniques [18].

Fault tolerance is the ability of detecting and handling errors to avoid failures. Fault

removal involves testing and verification methods to find and remove faults, and fault

forecasting involves constructing system models to analyze the possible faults that can

occur.

In this thesis, we focus on fault tolerance for two main reasons. Firstly, as com-

puter systems grow in size and complexity, ensuring the complete absence of faults

through fault prevention becomes impossible [19]. Secondly, certain types of faults

are extremely difficult to find and remove without running the system in a production

environment [20, 21], which reduces the effectiveness of fault removal and forecasting

techniques.

Fault-tolerance is composed of two main activities: error detection and recovery.

As shown in Fig. 1.1, errors have side effects that can be observed through monitoring.

Thus, employing the adequate tools, errors can be detected and handled by means

of recovery methods to avoid and ameliorate the negative effects of costly failures.

More precisely, error detection, also referred to as anomaly detection [22], consists of

analyzing system information to find symptoms that can be indicative of the presence

of an error. Anomaly detection is categorized into white, gray or black box depending

on the type of information analyzed [23]. White box analysis is based on the analysis

of internal system information, such as application execution paths or the internal vari-

ables. As such, white box analysis is typically achieved through instrumentation of the

source code of the applications in a computer system [24]. Gray box analysis employs

information located at a more external level of the system, such as the call stack or

the processes memory, and black box analysis exclusively relies on external system

variables, such as resource consumption or generated outputs. White box analysis is
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the most accurate of the three, but also the most expensive in computational terms [24].

Once the relevant system information has been collected, anomaly detection typically

relies on statistical and machine learning techniques to find abnormal patterns caused

by errors [22].

Since current computer systems display a broad range of architectures, purposes

and characteristics, anomaly detection has plenty of areas of application [22]. Exam-

ples include distributed systems [23], IP networks [25], sensor networks [26], and

security [27]. In essence, the problem of anomaly detection remains the same across

all application domains, however, the information gathered, the means to collect it,

and the anomaly detection techniques are sometimes tailored to meet the particular

requirements of the systems under study.

Anomaly detection is one of the pillars of fault tolerance, and fault tolerance is

crucial for ensuring the dependability of computer systems and, by extension, for

ensuring the correct functioning of most of our economic, social, political, and cultural

activities. Despite the immense relevance of anomaly detection and the numerous

research efforts to address it [22], key challenges remain, such as:

• Definition of anomalies: the number of anomalies that can appear in a particular

computer system is often very large and increases over time as the system and

the environment evolve [22]. Thus, obtaining historical data for all the anomalies

that can occur is unattainable. This makes the anomaly detection problem very

challenging, as detection systems do not have access to a precise definition of

what anomalies look like before these appear.

• Boundary of normality: since a precise definition of anomalies is often un-

available for a given system, defining what is considered normal in the system

is also a difficult task that depends on the area of application [22]. Defining a

boundary of normality typically requires the choice of a threshold, which has a

direct impact on the accuracy of the detection system. A threshold that is too
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permissive will consider many anomalies as normal, whereas a threshold that is

too restrictive will generate a lot of false positives. However, since anomalies

are not well defined, the optimal threshold value is usually unknown and cannot

be determined easily. In addition, what is considered normal can change over

time as the system and the environment evolve, there can exist various separate

definitions of normality within the same system, and what is considered normal

often depends on the context. For example, high resource consumption can be

normal during system maintenance and abnormal otherwise.

• Scale: most current computer systems consist of a large number of software

components, often running in various computers that communicate through a

network. Anomaly detection in large computing systems is especially challeng-

ing due to the high computational resources required to process large amounts

of information, and the need for an scalable, possibly distributed, approach [23].

Existing works in anomaly detection deal with these challenges in different ways.

Since a general definition of anomalies is difficult to build, some works obtain this

definition from historical anomalous data [28, 29, 30, 31], or limit their detection to

anomalies that have very specific characteristics, such as point anomalies [21, 32],

sudden changes [29, 21, 33], or system specific anomalies [34, 35, 36, 37]. In this

manner, anomaly detection becomes easier because there is a more detailed definition

of certain anomalies. However, detection is restricted to the anomalies that match this

detailed definition.

The boundary of normality is typically controlled by a configuration parameter and

the characteristics of the available data. Approaches that rely on historical anomalous

data [28, 29, 30, 31] can also build a more precise boundary of normality. However,

these approaches cannot detect previously unseen anomalies. As mentioned before,

what is considered normal can change over time and might depend on contextual
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information. However, many existing works employ fixed boundaries [29, 21, 33], and

few approaches take into account contextual information [38, 39, 40].

Several existing works are concerned with the scalability of their methods [21, 37,

41, 42], and some approaches experiment with large-scale scenarios [30, 34, 35, 39, 43].

However, there is still a gap between the size of real world large-scale systems and the

size of the systems employed in the literature. More precisely, existing works typically

analyze systems composed of around 300 computers, whereas real world data centers

can be composed of 50,000 to 80,000 servers [44, 45].

In addition to this, identifying the type of the anomalies is also necessary since it

can reduce the time spent in debugging, and help system administrators in finding the

root causes of problems.

1.1 Contributions

The work presented in this thesis focuses on black box anomaly detection in large-scale

distributed systems. Most current computer systems can be defined as distributed,

however, we are mostly interested in large-scale systems composed of tens to thousands

of computers due to their pervasiveness and relevance in present society [44, 45].

The main contribution of this thesis is defining an adaptive framework for black

box anomaly detection without historical data and its successful application in three

domains: distributed systems, large-scale systems, and malicious traffic detection.

More precisely, the main contributions of this thesis are:

A black box framework for anomaly detection in large-scale distributed sys-

tems [46, 47]: we present a framework designed to overcome several of the

existing limitations in anomaly detection when specifically applied to large-scale

distributed systems. Our framework is designed with a flexible architecture and

employs machine learning techniques that enable its application to numerous
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infrastructures. Our framework does not rely on historical anomalous data, is de-

signed to detect anomalies regardless of their characteristics, adapts to changes

in normal behavior, can detect contextual anomalies, and can be deployed in a

decentralized and scalable manner.

A methodology for the identification of complex anomalous behaviors in dis-

tributed systems [47]: we employ our framework for the detection and iden-

tification of complex anomalous behaviors, such as deadlock, livelock, and

unwanted synchronization, in distributed systems. In addition, we analyze differ-

ent ways of representing the behavior in distributed systems in order to maximize

anomaly detection and identification without historical anomalous data. This is

crucial as obtaining historical anomalous data is challenging in most real world

scenarios [48], and anomaly identification can help system administrators to

find the root causes of problems more easily.

A decentralized architecture for anomaly detection in large-scale systems: we

propose a decentralized architecture to detect anomalies in large-scale systems

composed of hundreds to thousands of computers, generating tens of thousands

of readings per unit time. This architecture is highly scalable and consumes an

insignificant portion of the overall computing resources, making it suitable for

real world large-scale infrastructures.

A method for the detection of previously unseen malicious traffic in large-scale

networks [49]: we present a method for representing the individual behavior

of computers in a large-scale network based on the traffic they generate. We

employ this method together with our anomaly detection framework to detect

malicious traffic without historical data, and without any assumptions on the

traffic type.
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In addition to these contributions, the work presented in this thesis has produced

the following publications:

• [46] Javier Álvarez Cid-Fuentes, Claudia Szabo, and Katrina Falkner, “Online

Behavior Identification in Distributed Systems,” in Proceedings of the 34th

Symposium on Reliable Distributed Systems, 2015, pp.202–211.

• [47] Javier Álvarez Cid-Fuentes, Claudia Szabo, and Katrina Falkner, “Anomaly

Detection in Distributed Systems without Historical Data,” to be submitted to

IEEE Transactions on Dependable and Secure Computing.

• [49] Javier Álvarez Cid-Fuentes, Claudia Szabo, and Katrina Falkner, “A Frame-

work for the Online Detection of Novel Botnets,” under review for 24th ACM

Conference on Computer and Communications Security, 2017.

1.2 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2 presents a review of the state-of-the-art in anomaly detection in

the three domains where our framework has been applied: distributed systems,

large-scale systems, and malicious traffic detection. Chapter 2 also gives an

analysis on common key issues in existing works in these three areas, as well as

on issues that are specific of each field.

• Chapter 3 overviews the limitations in the area of anomaly detection and

presents our black box anomaly detection framework. Chapter 3 describes

the assumptions and design choices behind our framework construction, and

the theoretical foundations, algorithms, and machine learning and statistical

techniques employed to overcome many of the limitations identified in the area.
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Chapter 3 also proposes three different architectures that can be employed in

infrastructures with different characteristics and requirements.

• Chapter 4 analyzes the characteristics of distributed systems and a particular

class of anomalies that we denote as complex anomalous behaviors. Chapter 4

describes the design of a synthetic distributed system that we employ to evaluate

our framework’s performance. In the experimental section, Chapter 4 presents a

parametric study that shows how different configuration parameters affect this

performance.

• Chapter 5 Chapter 5 describes how the framework presented in Chapter 3 can

be employed in the detection and identification of complex anomalous behaviors

and change point anomalies with great success. Chapter 5 presents a set of

experiments that study our framework detection and identification capabilities

when employing different features to represent distributed systems behavior.

These experiments are carried out with data from our synthetic distributed system

and with a publicly available dataset by Yahoo! [50].

• Chapter 6 tackles the problem of anomaly detection in particularly large sys-

tems such as high performance computing clusters or large-scale data centers.

Chapter 6 analyzes the challenges in anomaly detection that are specific to these

kind of systems, and then describes how the framework presented in Chapter 3

can be employed in a decentralized manner to overcome these challenges. Chap-

ter 6 also describes the process that we employ to simulate a large-scale system

composed of 1,000 computers using monitoring data from the synthetic dis-

tributed system presented in Chapter 4. Chapter 6 then presents an experimental

analysis where the detection of anomalies in large-scale systems, as well as the

scalability of our approach, is evaluated from the perspective of four anomaly

profiles.
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• Chapter 7 analyzes the anomaly detection problem when applied to the detec-

tion of malicious traffic in large-scale networks. Chapter 7 reviews the challenges

and limitations in this area, and describes how the framework proposed in Chap-

ter 3 can be employed to overcome them. Chapter 7 also proposes a methodology

to transform network traffic data to a representation of computer’s behavior that

can be exploited by our framework. Chapter 7 then conducts an experimental

study using the most varied and realistic publicly available dataset in the area [1],

which contains network traffic from more than 6,000 computers, including 32

types of malicious traffic of different characteristics. Chapter 7 compares the

results obtained to similar works in the area [1], proving the superiority of our

approach.

• Chapter 8 concludes this thesis and analyzes the future research directions in

anomaly detection as a whole, as well as in anomaly detection when applied to

the three domains explored in this thesis.



Chapter 2

Literature Review

In this chapter, we present a review of existing works related to error detection in

the main application areas covered by this thesis. As mentioned in Chapter 1, error

detection, often referred to as anomaly detection [22], consists of diagnosing the

state or behavior of a running system by analyzing certain system metrics that can

indicate the presence of errors. The analyzed metrics range from hardware counters to

network packets depending on the system under study, and the analysis is typically

done by means of statistical or machine learning techniques [22]. Error detection has

applications in numerous domains, such as distributed systems [23], IP networks [25],

sensor networks [26], and security [27] among others.

Anomaly detection can be categorized into black, gray, and white box depending

on the level of the analysis [23]. White box approaches analyze internal system

information, such as execution paths. Gray box methods analyze other more external

system data, such as the call stack, and black box approaches analyze the system

from external variables, such as resource consumption. For example, Magpie [51] is

a gray box request extraction and workload modeling tool that can be used to detect

performance anomalies in multi-tier systems. Magpie employs instrumentation to

track the execution path followed by requests and their resource consumption. Then,

similar requests are clustered together using an incremental clustering algorithm.
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Requests are tagged as anomalous when they do not belong to any cluster. Magpie

requires additional efforts from developers to instrument the source code of the system.

Moreover, it cannot be applied if access to this code is restricted.

Another gray box approach is Pip [52], a framework for the detection of unexpected

behaviors in distributed systems. Pip is based on two main mechanisms. On the one

hand, the programmer instruments the source code of applications to generate Pip

execution traces at run time. On the other hand, the programmer writes a description

of the expected behavior of applications in a defined language. Thus, when the system

is executed, Pip compares the execution traces obtained with the written expectations

to detect deviations. To manually define the expected behavior of a system in a

textual description can be difficult and inefficient in systems with a high number of

components and numerous complex interactions. Thus, Pip is not well suited for

large-scale scenarios.

In this thesis we focus in black box analysis because it requires less computational

resources and thus is better suited for large-scale systems [24]. Since we employ our

approach to tackle the error detection problem in three domains, namely, distributed

systems, large-scale systems, and malicious traffic detection, in the following, we

review the existing black box anomaly detection approaches that have been applied to

these three domains. Since distributed systems and large-scale systems are overlapping

domains, in the large-scale section (Section 2.2), we review approaches that experiment

with systems composed of more than one hundred computers.

2.1 Anomaly Detection in Distributed Systems

In this section, we summarize in chronological order the most relevant works in error

detection in the area of distributed systems, where it has received significant attention

often referred to as anomaly detection [23].
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The work by Hood and Ji [53] contributed to the foundations of current black box

anomaly detection in distributed systems and networks. Hood and Ji propose a method

for the detection of anomalies in networks by analyzing data obtained through the

Simple Network Management Protocol. The authors fit an autoregressive model [54]

to the collected data, and model the normal behavior of the monitored network by

means of a Bayesian model [55]. This model is then employed to detect deviations

from normality, and to notify the network manager when appropriate.

More recent work by Williams et al. [32] demonstrates the feasibility of failure

prediction through the black box analysis of performance metrics in distributed systems.

Williams et al. propose a framework, called Tiresias, able to detect sudden changes in

the system metrics by means of a dynamic template of normal behavior. Then, through

a set of heuristic rules, Tiresias decides whether a failure is likely to occur in the near

future. Williams et al. assume that the degradation in some performance metrics,

such as CPU usage or network traffic, are likely to produce a global failure eventually.

Even though the authors focus on failure prediction, Tiresias heavily relies on anomaly

detection to generate its predictions. Tiresias can detect sudden changes in a particular

system metric, however, it cannot detect changes in the correlation between multiple

metrics, or anomalies characterized by a progressive change, such as a trend.

Ozonat [38] presents an anomaly detection technique for distributed web services,

where system performance metrics are monitored over a time period and divided into

segments, that is, sets of contiguous readings that are similar to each other. These

segments are discovered by means of information theoretic techniques and dynamic

programming. Then, segments are clustered based on statistical distances between

them using an agglomerative hierarchical algorithm. Segments not belonging to any

cluster are considered anomalous. Since Ozonat’s method relies on the observed data,

and does not make assumptions on the characteristics of anomalies, it can detect a

wide variety of errors. However, choosing the sensitivity of the clustering algorithm is
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system dependent, and difficult to achieve without any knowledge about characteristics

of the anomalies.

Cherkasova et al. [56] propose a method for the detection of performance anomalies

and application changes in multi-tier architectures. The method consists of a regression

based transaction model that correlates processed transactions and consumed CPU,

and an application performance signature that provides a model of the behavior of the

application. Performance anomalies are detected when the observed CPU utilization

cannot be explained by the observed application workload, and application changes are

detected when CPU consumption exhibits a change sustained over time. Cherkasova

et al. provide an adaptive method that takes into account the evolution of the system

metrics over time. However, the method relies on historical data, which might not be

available in many cases, and limits the detection process to well-known anomalies.

Gu and Wang [33] present a method for the online prediction of bottlenecks in data

stream applications running in a cluster. Online means that the method works at run

time. The method analyzes system performance metrics, such as CPU and memory

consumption, and employs a set of Bayesian classifiers to detect anomalies, and a

discrete time Markov chain to compute the probability of future bottlenecks. The

method relies on anomaly symptoms learned from historical failure data. Thus, when

the symptoms are repeated, the probability of a future bottleneck is assumed to be

high. Apart from that, the method assumes that system metrics are independent from

each other, which is not necessarily true in many scenarios.

EbAT [41] is a lightweight online anomaly detection framework based on entropy

calculation for cloud infrastructures. EbAT collects different virtual machine metrics,

such as CPU utilization, over a time period and computes their entropy in a sliding

window manner that generates an entropy time series. Then, EbAT employs a spike

detection algorithm to locate abnormally high values in entropy that can be indicative

of an anomaly. EbAT can detect previously unseen anomalies because it does not rely
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on historical failure data. Moreover, EbAT adapts to changes in behavior because it

only analyzes entropy deviations with respect to recently observed data.

Wang et al. [40] propose two statistical techniques to detect anomalies in distributed

systems: Tukey and relative entropy. The Tukey method [57] is employed to detect

point anomalies, that is, anomalies characterized by a single abnormal reading in a

performance metric, and is based on the interquartile range of a series of data points.

The relative entropy method is employed to detect anomalies characterized by an

abnormal sequence of readings in a performance metric. The entropy method is based

on the multinomial goodness-of-fit test [58], and finds anomalies by looking at the

distribution of values in the recent history. Wang et al. provide an adaptive method

that does not require historical anomalous data, and that analyzes system behavior

over time. However, Wang et al. do not take into account the correlations between the

different system metrics, and can only detect anomalies characterized by a change in a

single metric.

PREPARE [29] is a prediction-driven performance anomaly prevention system

for virtualized cloud computing infrastructures. PREPARE employs a 2-dependent

Markov chain to estimate the future value of system performance metrics, and a tree-

augmented naive Bayesian network to decide if the predicted value corresponds to a

normal or anomalous state. In addition, PREPARE can carry out prevention actions,

such as increase the memory allocation of a particular virtual machine, to prevent the

system from reaching the predicted anomalous state. PREPARE relies on historical

failure data and thus it cannot detect previously unseen anomalies.

UBL [21] is an unsupervised anomaly detection framework for cloud systems

able to detect anomalous virtual machines by analyzing performance metrics such as

CPU and memory utilization. UBL employs a self-organizing map [59] to build a

representation of the system behavior using normal data. Then, UBL raises an alert if

the system deviates from what the self-organizing map considers normal. Since UBL

relies on a definition of normality, it can detect previously unseen anomalies. However,
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UBL cannot adapt to changes in normal behavior as continuous updates degrade the

quality of the the self-organized map.

CloudPD [60] is an anomaly detection and remediation framework devised for

cloud infrastructures. CloudPD’s anomaly detection engine has two stages. In the first

stage, an anomaly detector is used to find deviations in virtual machines’ performance

metrics based on a model of normal recent behavior. Metrics with significant deviations

are further analyzed in the second stage where the anomaly is confirmed if there is a

significant change in the correlation of the candidate metric and other metrics of the

same virtual machine, or other virtual machines running the same application. Since

CloudPD employs a model of normal behavior based on recent history, it is able to

detect previously unseen anomalies and can adapt to changes in normal behavior.

2.1.1 Key Issues

Even though there have been significant advances in anomaly detection in distributed

systems over the years, key challenges remain. We identify the following main issues

in existing works:

Use of historical data: Some of the existing works [29, 33, 56] rely on historical

failure data to detect anomalies. However, historical failure data is unavailable

in most real world scenarios [21, 48]. Moreover, obtaining samples of all

the anomalies that can take place in a distributed system is impossible [19].

Thus, works that rely on historical failure data are limited to the detection of

well-known anomalies, or anomalies that exhibit well-known patterns.

Time awareness: Many anomalies can only be detected when observed over a time

period rather than at a time instant [61]. However, some works do not analyze

the system over time [21, 32]. This means that these works can only detect

anomalies characterized by a single anomalous data point (i.e., point anomalies),

and not other more complex anomalies such as periodic patterns.
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Multi-metric: Some anomalies are characterized by an anomalous combination of

multiple performance metrics. For example, high CPU utilization might be

normal if the system workload is also high and abnormal otherwise [62], where

the system workload can be characterized by the number of requests received

per time unit. Another example are anomalies where different metrics that

should be independent from each other end up being correlated [20]. Existing

works [29, 32, 33, 40, 41, 56, 60] that do not take into account metric correlations

cannot detect these kind of anomalies.

Adaptiveness: The behavior of a running system changes over time. Therefore, an

effective anomaly detection framework needs to be able to adapt to changes in

behavior by dynamically incorporating new data into its statistical model. Some

of the existing approaches do not implement this kind of adaptiveness [29, 21,

33].

Progressive changes: Some works [32, 41, 60] detect anomalies when a significant

difference between current monitored data and recent past data is found. These

approaches might find difficulties in detecting anomalies that exhibit a progres-

sive change in the monitored metrics, such as a trend [23], since the difference

between current readings and the recent past is never significantly high.

Table 2.1 shows a comparison of existing anomaly detection methods in the area

of distributed systems. Previously unseen refers to approaches that do not rely on

historical anomalous data and thus can detect previously unseen anomalies. As it can

be seen, most approaches have issues that limit their anomaly detection capabilities.

In fact, only one of the existing works meets all the considered criteria [38]. The most

critical point is the inclusion of the correlations between different system metrics in

the analysis, which is only accomplished by three of the reviewed works [21, 38, 41].
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Table 2.1. Comparison of anomaly detection methods in the area of distributed
systems.

Approach
Previously

Unseen
Time-Aware Multi-Metric Adaptiveness Progressive

Changes

Tiresias
[32]

✓

Ozonat
[38]

✓ ✓ ✓ ✓ ✓

Cherkasova
et al. [56]

✓ ✓ ✓

Gu and
Wang [33]

✓ ✓

EbAT [41] ✓ ✓ ✓
Wang et al.

[40]
✓ ✓ ✓ ✓

PREPARE
[29]

✓ ✓

UBL [21] ✓ ✓ ✓
CloudPD

[60]
✓ ✓ ✓

2.2 Anomaly Detection in Large-Scale Systems

Large-scale systems are a particular class of distributed systems, however, a precise

definition of what constitutes a large-scale system does not exist. Nevertheless, the

literature generally considers systems composed of hundreds to thousands of computers

as large-scale [34, 35, 39]. Since large-scale systems are also distributed systems,

some of the error detection approaches outlined in Section 2.1 can be applied to them.

However, none of these approaches evaluate their methods in a specifically large

scenario. In this section, we review the works in anomaly detection that experiment

with systems of more than one hundred computers.

Tan and Wang [39] propose a context-aware anomaly detection framework for

stream processing systems called ALERT. Using a Bayesian model, ALERT first

determines the probability that a running system is in a particular execution context.
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ALERT then makes use of a context-specific classifier to raise an alert if the system is

in a state that can lead to a failure. Both context generation and anomaly detection are

based on historical failure data. ALERT analyzes the system behavior in a time period,

however, it does not take into account the correlations between the different system

metrics, and relies on historical anomalous data. Tan and Wang evaluate ALERT in a

system composed of 250 servers, where 20 metrics are monitored per server.

Lan et al. [35] present a method for detecting anomalous nodes in large-scale

systems where all computers exhibit the same behavior. Their method consists of

collecting a set of performance metrics from the computers in the system, reduce

the dimensionality of the data, and label as anomalous the computers that deviate

from the majority. Lan et al. explore principal component analysis (PCA) [63] and

independent component analysis (ICA) [64] as dimensionality reduction techniques,

and a cell-based algorithm to find computers that deviate from the majority. Since Lan

et al.’s method relies on deviations from the majority, it does not require historical

data, and can adapt to changes in normal behavior. Lan et al. evaluate their method in

a cluster composed of 887 nodes, where they collect 19 metrics per node.

Fu et al. [43] present a framework for anomaly detection in cloud systems. This

framework is composed of two adaptive support vector machine classifiers [65] that

can learn new system information as it becomes available. One of the classifiers is

one-class and the other is binary. Similar to Lan et al.’s approach, this framework

employs ICA to reduce the dimensionality of the data. Anomaly detection is achieved

by weighting the outputs of the two classifiers based on a credibility score and the

proportion of abnormal data that has been observed. The credibility score is adjusted

based on the number of errors that each classifier perform over time, and the more

abnormal data, the more weight is given to the binary classifier.

Fu et al.’s framework improves its accuracy as new abnormal data is obtained at run

time, however, thanks to the one-class classifier, the framework can theoretically detect
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previously unseen anomalies. Fu et al. run their experiments in a system composed of

362 servers, where 518 overall system metrics are collected.

Guan et al. [30] propose an anomaly detection method for cloud systems that is

based on wavelet analysis of the system metrics in a sliding time window. The method

first finds the subset of system metrics that better represent normal and anomalous

behaviors. Then, a wavelet decomposition procedure and a neural network are em-

ployed on these metrics to find anomalies. The process can incorporate new data at

run time and thus can adapt to changes in behavior. However, the method depends on

historical failure data to select the most relevant metrics and to carry out the wavelet

decomposition. Guan et al. experiment with 362 nodes and 518 metrics.

Guan and Fu [66] present a method for identifying anomalies in cloud infrastruc-

tures. This method employs PCA to select the system metrics that are more correlated

with failures. A Kalman filter [67] is then employed to estimate the value of the

selected metrics at a time point. An anomaly is detected if the difference between the

estimation and the actual value is greater than a predefined threshold. Guan and Fu’s

method can adapt to changes in behavior by updating the selected metrics when new

information is obtained. However, since metric selection depends on previously seen

failures, the method cannot detect novel anomalies that affect other system metrics.

Guan and Fu experiment with 362 nodes and 518 metrics.

Yu et al. [34] propose an anomaly detection framework for large-scale infras-

tructures. Yu et al. first group nodes together based on their geographical location

and the network topology. Their framework then clusters together nodes of similar

behavior within each group, and employs a two-phase majority voting algorithm to

detect anomalous nodes in each cluster. The framework is able to detect previously

unseen anomalies as long as these deviate from the behavior of the majority of the

nodes. However, it is not clear if node clustering can be updated at run time if the

behavior of the system changes. Yu et al. experiment in a cluster of 6,400 computers.
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2.2.1 Key Issues

Some of the limitations that we encounter in black box anomaly detection for large-

scale systems are the same as those outlined in Section 2.1. That is, some of the

existing works do not consider the evolution of the system metrics over time [39, 43],

others do not take into account the correlation between the system metrics [66], others

are not adaptive [39], and others rely on historical failure data [30, 39, 66].

Moreover, other methods [34, 35] assume that most computers in the system exhibit

similar behavior, and detect those that deviate from the majority. These works have a

different objective to the work presented in this thesis in that they are more focused on

high performance clusters, where nodes can be easily grouped by similarities in their

behavior. Conversely, we provide a more universal approach, that does not rely on this

assumption and is architecture agnostic.

Table 2.2. Comparison of anomaly detection methods for large-scale systems.

Approach
Previously

Unseen
Time-Aware Multi-Metric Adaptiveness Heterogeneous

ALERT
[39]

✓ ✓

Lan et al.
[35]

✓ ✓ ✓ ✓

Fu et al.
[43]

✓ ✓ ✓ ✓

Guan et al.
[30]

✓ ✓ ✓ ✓

Guan and
Fu [66]

✓ ✓ ✓

Yu et al.
[34]

✓ ✓ ✓

Table 2.2 compares the different works in anomaly detection for large-scale systems.

Heterogeneous refers to works that do not assume homogeneity in the behavior of

the different system components. We can see that none of the reviewed approaches

meets all the considered criteria. However, in this case, most approaches take into
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account metric correlations, and the major issue is the detection of previously unseen

anomalies, which is only accomplished by three approaches [34, 35, 43].

2.3 Malicious Traffic Detection

In the area of security, error detection has been employed for the detection of different

malicious activities, such as intrusions or viruses [22]. A portion of the research in

security has also focused on the detection of botnets [27], one of the most serious

threats due to their pervasiveness and harmful capabilities.

We tackle the anomaly detection problem in this particular area because botnet

detection is affected by challenges similar to those in anomaly detection in large-scale

distributed systems, such as the need to process large amounts of information, and the

difficulty in obtaining historical data. Moreover, existing botnet detection works share

many of the key issues outlined in Sections 2.1 and 2.2.

Anomaly detection has been applied to botnet detection from two perspectives:

host-based and network-based detection [27]. Host-based detection methods focus

on detecting malicious executables in individual computers, whereas network-based

methods focus on detecting malicious computers by analyzing network traffic (i.e.,

network packets). In this section we review the most relevant network-based botnet

detection approaches, as these are more similar to our work in that a network of

computers is also a distributed system.

Strayer et al. [68] propose a botnet detection method to identify Internet Relay Chat

(IRC) [69] based bots in a network. Their method first filters out well-known traffic,

employs a classifier to identify chat communications, and then uses a correlation

engine to find hosts with suspiciously similar behaviors.

Karasaridis et al. [42] present another method for detecting IRC bots from a set

of suspicious hosts. Their method employs a series of statistical techniques on the
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network traffic to find activities that can be related to botnets, such as receiving many

connections from suspicious hosts.

Strayer et al. and Karasaridis et al. provide botnet detection approaches that heavily

rely on the IRC protocol. This is because IRC used to be the most popular protocol

for botnet communication. However, current botnets employ other communication

methods and architectures to make their detection more difficult.

BotHunter [70] is a bot detection system that relies on various intrusion detection

techniques and a correlation engine. BotHunter first employs malware signatures,

payload analysis and predefined rules to log different suspicious activities, such as port

scanning or binary downloading. Then, BotHunter uses a correlation engine to flag

hosts that carry out several of these suspicious activities in a specific order, or within a

specific time frame. Since BotHunter is based on detecting malicious activities, it does

not depend on a specific communication protocol or botnet architecture. However,

since BotHunter employs signatures, it cannot detect previously unseen botnets.

BotSniffer [36] is a bot detection framework focused on the detection of IRC and

HTTP botnets by finding hosts with similar behavior. BotSniffer is based on the fact

that bots typically communicate with their bot master at the same time and in similar

ways. BotSniffer employs two main detection algorithms. The first algorithm analyzes

response crowds, that is, groups of hosts that reply to a message more or less at the

same time, whereas the second algorithm analyzes the homogeneity of these crowds,

that is, the similarity of the responses produced by the different hosts. BotSniffer does

not rely on historical botnet data and thus can detect novel botnets as long as bots

behave in a synchronized manner.

BotMiner [71] is a botnet detection framework that looks for hosts that perform sus-

picious activities, and with similar communication patterns. To achieve this, BotMiner

carries out two clustering processes. The first process groups hosts performing suspi-

cious activities, such as port scanning or binary downloading. The second clustering

process groups hosts with similar communication patterns. BotMiner then computes a
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botnet score by correlating the different clusters obtained in the two processes. Bot-

Miner is protocol and architecture agnostic, and can detect previously unseen botnets.

However, BotMiner requires the presence of more than one bot of the same type in the

monitored network, as it can only detect bots that exhibit synchronized behavior.

BotGAD [37] is a botnet detection framework that, like BotMiner, looks for group

activities in a network (i.e., computers with similar communication patterns). BotGAD

mainly focuses on the analysis of DNS traffic, and can differentiate between malcious

and legitimate group activities.

Yen and Reiter [72] propose a method to differentiate legitimate peer-to-peer (P2P)

traffic from botnet P2P traffic. Their method is based on the observations that P2P

botnet traffic is less voluminous, more constant, and less random. Yen and Reiter’s

method detects malicious hosts by analyzing certain characteristics of the network

traffic, such as the average number of bytes transmitted or the number of IP addresses

contacted. The method heavily relies on specific characteristics of existing botnets.

BotGrep [28] is a P2P detection algorithm based on graph analysis. BotGrep finds

P2P nodes by analyzing the mixing time of the network communication topology

through random walks. BotGrep is a first step in the detection of P2P nodes that needs

to be extended with another detection technique, such as the one proposed by Yen and

Reiter [72], to differentiate legitimate from malicious P2P traffic.

Yu et al. [73] propose an online botnet detection method, which consists of finding

similarities in network flows. Network flows are groups of packets with the same

source and destination IP addresses and ports. Network flows are compared to each

other by transforming them to the frequency domain by means of a discrete Fourier

transform, and computing their Euclidean distance. After a set of suspicious hosts

has been identified, a more localized network analysis is employed to detect hosts

performing malicious activities such as port scanning. Since Yu et al.’s method

analyzes network packets at the transport layer, it is protocol and architecture agnostic.
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Moreover, it can detect previously unseen botnets, as long as bots exhibit synchronized

behavior.

Zhao et al. [31] propose a botnet detection method based on the classification

of network flows. Zhao et al. analyze certain flow characteristics, such as number

of packets exchanged or average payload size, to categorize flows into normal or

malicious by means of a decision tree classifier. Zhao et al.’s method is protocol and

architecture agnostic, and does not require the presence of group activities to detect

botnets. However, their method cannot detect previously unseen botnets as it relies on

historical data.

Beigi et al. [1] present an extensive study on feature selection for the detection

of botnets. In their study, Beigi et al. classify network flows using a decision tree

classifier, and find that the best features to differentiate legitimate from malicious traffic

are average packet length, flow duration, average bits per second, and percentage of

small packets exchanged. Beigi et al.’s method is protocol and architecture independent

but, similar to Zhao et al.’s approach, their method relies on historical botnet data and

thus cannot detect previously unseen botnets.

Finally, PsyBoG [74] is a botnet detection framework based on DNS analysis.

PsyBoG monitors DNS queries looking for extensive usage, periodic patterns and

group activities. PsyBoG employs a significant peak detector to find periodic behaviors

in DNS traffic, and a group activity analyzer to find similarities in DNS traffic. PsyBoG

can detect previously unseen botnets as long as these employ the DNS protocol in a

suspicious manner.

2.3.1 Key Issues

Existing network-based botnet detection approaches employ a wide range of tools and

exploit different botnet characteristics to achieve their goal. However, there are still a
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series of limitations that are more or less common among most existing works. These

limitations are:

Use of historical data: methods that rely on historical botnet data [1, 28, 31, 72]

have difficulties in detecting previously unseen botnets and, similar to protocol

specific approaches, are at risk of becoming obsolete as botnets evolve and

modify their communication patterns.

Protocol specific: works that are protocol or architecture specific [28, 36, 37, 72, 74]

are limited to the detection of botnets that use these protocols and architectures.

This means that these approaches are at risk of becoming obsolete as new botnets

that employ other communication strategies emerge.

Group activities: assuming group activities in a botnet is a strong assumption be-

cause the main purpose of these networks is to carry out synchronized malicious

actions. Nevertheless, works that rely on group activities [36, 37, 71, 73, 74]

require the presence of more than one bot of the same type in the monitored

network, which may not be always the case.

Our framework overcomes these three main limitations by employing a protocol

agnostic behavioral representation, not making any assumptions on the botnet behav-

ioral characteristics, and not relying on historical botnet data. In this manner, our

framework is able to detect previously unseen botnets with high accuracy, and with a

reduced risk of becoming obsolete as new types of botnets appear.

Table 2.3 presents a comparison of methods in the area of malicious traffic detection.

Heterogeneous refers to methods that do not rely on bots having similarities in their

behavior to be able to detect them. The area of malicious traffic detection is slightly

different to the area of anomaly detection in distributed systems because malicious

traffic is easier to define than performance anomalies. In malicious traffic detection

there are three main groups of approaches. The first group encompasses approaches
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that are heavily tailored for a particular type of botnet [42, 68]. These are the first

botnet detection methods that were proposed, cannot typically detect previously unseen

botnets, and are protocol specific.

The second group is formed by approaches that are protocol agnostic but heavily

rely on group activities [70, 71, 73]. These approaches can usually detect previ-

ously unseen botnets because their analysis is based on finding behavioral similarities

between hosts (assuming that novel botnets exhibit group activities).

The third group contains other more recent approaches that analyze network flows

regardless of the protocol, architecture, and communication similarities [1, 31]. These

approaches are more similar to existing works in the area of distributed systems in

the sense that are purely focused on data analysis, and do not consider suspicious

communication mechanisms, protocols, or architectures. These approaches also

present similar issues to anomaly detection methods in distributed systems, such as

relying on historical botnet data or the lack of adaptiveness.

Table 2.3. Comparison of anomaly detection methods in the area of botnet detection.

Approach Previously
Unseen

Protocol
Agnostic

Heterogeneous

Strayer et al. [68]
Karasaridis et al. [42]

BotHunter [70] ✓
BotSniffer [36] ✓
BotMiner [71] ✓ ✓
BotGAD [37] ✓

Yen and Reiter [72]
BotGrep [28]
Yu et al. [73] ✓ ✓

Zhao et al. [31] ✓ ✓
Beigi et al. [1] ✓ ✓
PsyBoG [74] ✓
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2.4 Analysis of Anomaly Detection Approaches

In this section we present a comprehensive comparison of the different anomaly

detection approaches reviewed in this chapter. The comparison, which can be seen in

Table 2.4, is based on the main challenges in anomaly detection identified in Chapter 1,

that is, the definition of anomalies, the boundary of normality, and scalability. The

main issues identified in Sections 2.1, 2.2, and 2.3 are a direct consequence of these

three challenges. Therefore, we map each issue to the corresponding challenge and

employ them as the comparison criteria. In the following, we detail each of these

criteria.

2.4.1 Definition of Anomalies

As explained in Chapter 1, obtaining a precise definition of the anomalies in a system

is difficult because its number is typically very large (and unknown), and because most

anomalies have never been seen before they appear. This leads to anomaly detection

approaches to target specific types of well-known anomalies, or anomalies that exhibit

certain well-known patterns. We employ the following criteria to compare what types

of anomalies different approaches are able to detect:

Previously Unseen: we consider that a method is able to detect previously unseen

anomalies (or botnets) if it does not rely on historical failure data or anomalous

signatures.

Time-Aware: time-aware applies to approaches in the area of distributed systems

that analyze the system over a time period, as many anomalies can only be

detected in this manner [61]. Time-awareness is not crucial for malicious traffic

detection and thus we consider it not applicable in this domain.

Multi-Metric: multi-metric applies to approaches that take into account the correla-

tion between multiple system metrics to detect anomalies. Like time-awareness,
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this is not essential for malicious traffic detection and thus we consider it not

applicable in this domain.

Progressive Changes: some anomaly detection approaches can only detect anoma-

lies that are significantly different from recent past data. These approaches

cannot detect anomalies that exhibit a progressive change in the system metrics.

This is also not applicable to malicious traffic detection.

Heterogeneous: this includes approaches that can detect anomalies in heterogeneous

conditions as opposed to relying on some kind of homogeneity. For example,

in distributed systems, approaches that assume that different computers behave

in a similar manner are not heterogeneous. In malicious traffic detection, we

do not consider as heterogeneous the approaches that require group activities to

detect botnets.

Protocol Agnostic: this only applies to malicious traffic detection, and refers to

approaches that are not tied to a specific network protocol.

Architecture Agnostic: we consider as architecture agnostic the approaches that

can detect anomalies regardless of the architecture of the system under study or

botnet.

In Table 2.4 we see that very few approaches [38] employ a universal definition

of anomalies that can be used to detect previously unseen anomalies without making

any assumption on their characteristics. These assumptions occur especially in the

area of malicious traffic detection because botnets can be defined more easily than

performance anomalies. However, even in botnet detection, making assumptions on

the characteristics of the anomalies limits the detection capabilities of existing works,

especially when dealing with previously unseen anomalies.
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2.4.2 Normality Boundary

The second challenge identified in Chapter 1 is the definition of a boundary of normality.

This is difficult because there can be multiple definitions of what is normal, these

definitions can evolve over time, and may depend on a particular context. We employ

two criteria related to the boundary of normality:

Adaptive: we analyze if existing works can incorporate new data into their definition

of normality as it becomes available at run time. Incorporating new data is

crucial to adapt to possible changes in the normal behavior of the system under

study.

Contextual: we analyze if the different approaches take into account contextual

information when defining what is normal in the system. This does not apply to

malicious traffic detection approaches as context is not usually as relevant as in

the distributed systems domain.

Table 2.4 shows that while some approaches are adaptive, very few take into

account contextual information [38, 39, 40]. Moreover, none of the malicious traffic

detection works are adaptive. This is because most of these works rely on a definition of

anomalies (i.e., botnet traffic) more than on a definition of normal traffic. Nevertheless,

incorporating new data to the definition of normality as it becomes available can help in

reducing the amount of false positives in cases where normal and anomalous behaviors

are very similar.

2.4.3 Scalability

The third challenge identified in Chapter 1 is scalability. We analyze the scalability of

existing works from two perspectives:
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Discussed: this includes approaches that discuss the problem of scalability, and

that propose a design that can be considered scalable (e.g., a decentralized

architecture).

Experimental: this includes approaches that have actually been tested in large-scale

scenarios, that is, more than one hundred nodes for distributed systems, and

millions of network packets for malicious traffic detection.

In Table 2.4 we can see that numerous approaches are concerned with scalability,

and that several works employ large-scale datasets. However, very few of the reviewed

works [34] have been tested in a real world large-scale scenario with thousands of

computers. Moreover, none of the works presents a comprehensive scalability analysis

on their methods.

Table 2.4 also shows that, even though anomaly detection is tackled in different

ways depending on the area of application, there are key issues shared among the

different areas. These issues are the result of the main challenges in anomaly detection

outlined in Chapter 1, and overcoming them in one application domain can bring

significant improvements in other domains as well. For example, Table 2.4 shows that

a global definition of anomalies that is system independent can greatly improve the

state-of-the-art in anomaly detection in multiple domains, as all the reviewed works

rely on some specific characteristic of the system under study. The same occurs with

scalability, which has become essential for anomaly detection due to the size of current

computer systems and networks.
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2.5 Summary

In this section, we have presented an extensive review of existing works in the area

of anomaly detection applied to distributed systems, large-scale infrastructures, and

malicious traffic detection. We have analyzed the most common limitations in these

three domains, and explained how our general framework overcomes these limitations.

Even though the three domains have been studied independently in the literature

(especially malicious traffic detection), the anomaly detection problem is essentially

the same, and is subject to similar key challenges. In fact, the three domains share

some of the identified limitations, as shown in our literature comparison (Section 2.4).

This thesis provides a general framework for anomaly detection that creates a

behavioral representation of a running system, and that can detect behavior deviations

regardless of the system under study or the nature of the analyzed metrics. This

contributes to the state-of-the-art in anomaly detection, including many of its areas of

application.



Chapter 3

A Framework for Behavior

Identification without Historical Data

The probability of failures or malicious attacks increases as software systems become

larger, more complex, and pervasive. Nevertheless, detecting and identifying anoma-

lous behaviors in large-scale distributed systems with high accuracy remains as an

open problem as seen in Chapter 2. This is because of key challenges such as the

difficulty in processing large amounts of information, the decentralized nature of these

kind of systems, the huge variety of anomalies that can appear, and the difficulty in

characterizing these anomalies.

In this chapter, we present our black box framework for anomaly detection in

large-scale distributed systems. Our framework has been designed to overcome many

of the issues identified in Chapter 2, such as the lack of historical data, the diversity of

distributed system architectures and anomalies, and the need for scalability. This is

achieved by means of machine learning methods, and by providing several deployment

settings that can be tailored to numerous scenarios and application domains.
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3.1 Overview

As seen in Chapter 1, dependability is crucial for current distributed systems, which go

from large-scale web services composed of numerous computers that communicate and

work together to provide a service to users, to P2P networks where users share their

resources to achieve a common goal. Even though different distributed systems have

different purposes and characteristics, all need to ensure correct behavior, maximize

efficiency and availability, protect the privacy of their users, and avoid malicious

activities among other requirements. Failing to fulfill one or more of these requirements

can cause economic losses [15], exposure of sensitive information [13] or, in extreme

cases, loss of life [12]. For example, reports show that the cost of downtime in industry

ranges from $100K to $540K per hour on average [75].

Threats to dependability range from software flaws to physical conditions (e.g.,

room temperature), to malicious attacks [16]. These threats can produce errors in the

system, and errors end up causing failures [16]. The negative effects of system errors

could be ameliorated with better monitoring tools that can quickly detect anomalies

in the system [76]. In addition, it is important not only to detect the presence of an

anomaly, but also to identify the anomaly type. This can potentially improve the

dependability of the system as the root cause of problems can be more easily identified,

without the need for the system expert to analyze large amounts of information [77].

Unfortunately, anomaly detection in large-scale systems is an arduous task with

low efficiency [35]. On the one hand, analyzing a great number of components and

interactions is difficult in terms of complexity and magnitude [61]. On the other hand,

most of the anomalies that appear in running systems have not been seen before, and

thus it is difficult to detect them, as historical failure data is unavailable [78].

As seen in Chapter 2, black box analysis is a popular method for anomaly detection

in large-scale systems and networks. However, existing black box approaches still

have limitations that must be addressed in order to detect anomalies with increased
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accuracy in real world scenarios. Key issues include the need for historical failure

data, detecting only a particular class of anomalies, being architecture specific, and the

lack of adaptiveness and scalability.

In this chapter we present a general framework for identifying anomalous behav-

iors in large-scale distributed systems. Our framework is designed to overcome the

challenges faced by existing works by using a combination of several classifiers in a

two-step process that allows the detection of previously unseen anomalies, as well as

the identification of their type. Our framework builds and maintains a model of the

system behavior at run time, and obtains relevant properties from this model that are

used to classify the system behavior into normal or anomalous. This is done by means

of several support vector machines (SVM) [65]. Since the behavioral model is built

and updated at run time, our framework does not require historical failure data and

can adapt to changes in behavior. Moreover, our framework does not depend on the

architecture of the system under study, or makes any assumption on the characteristics

of the anomalies, which means that can be employed in numerous scenarios and

domains.

The rest of this chapter is organized as follows. Section 3.2 presents the different

behavioral perspectives that can be adopted when analyzing the behavior of distributed

systems. Section 3.3 explains the considerations that have been taken in the design of

our anomaly detection framework. Section 3.4 presents our framework in detail, and

Section 3.5 concludes the chapter.

3.2 Characterizing System Behavior

A crucial step in black box anomaly detection is the characterization of system behavior,

that is, how system behavior is represented using the available system information.

The behavior of a system is defined as “what the system does to implement its function

and is described by a sequence of states” [16], where the state of a system is the
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combination of its computation, communication, stored information, interconnection,

and physical condition. The global behavior of a distributed system is the combined

behavior of all of its components, where a system component refers to any hardware or

software entity that is part of the system. For example, a campus network can be seen

as a system of computers, switches, and routers that communicate with each other,

whereas a multi-tier architecture can be seen as a system of software applications, such

as databases and web servers. When a system component deviates from its intended

behavior, we say that there is an error, an anomaly, or an anomalous behavior in the

system. The level at which we observe system behavior depends on the characteristics

of the system under study and on the type of anomalies that we are interested in

detecting.

Existing works in anomaly detection employ various perspectives when modeling

and analyzing the behavior of the system under study [29, 31, 21, 34]. Their choice of

perspective is determined by the type of distributed system under analysis, its goals, as

well as the type of anomalies to be detected. We classify these perspectives in three

main categories: global behavior, system of systems and replicated behavior, as shown

in Fig. 3.1.

A global behavior perspective can be adopted when we are interested in mod-

eling the system behavior as a whole and in detecting deviations from this overall

behavior [33, 40]. The system of systems perspective is typically employed when

the system under study can be divided into subsystems from the point of view of its

behavior [29, 21], and the replicated behavior perspective can be employed when we

are interested in using a single model to characterize the behavior of various system

components [34, 35].

Global Behavior In certain distributed systems there is a clear definition of global

behavior, in the sense that system components cooperate with each other to achieve a

common goal, such as providing an external service. In these scenarios, we are usually
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Fig. 3.1. Different perspectives that can be employed when modeling the behavior of
distributed systems.

interested in ensuring that the system components work together in the expected

way, and that the correct service is delivered. Thus, behavior is usually analyzed

as the combined behavior of all the components in the system. Examples of these

kind of systems are multi-tier architectures, where components such as databases,

load balancers, web and application servers work together to deliver a service over

the network. Global behavior is the most common perspective adopted by anomaly

detection approaches in distributed systems [30, 32, 33, 39, 38, 41].

System of Systems A system of systems perspective is employed when we are

interested in analyzing system behavior as a collection of subsystems. This perspective

can be useful in cloud infrastructures, for example, where the behavior of each virtual

machine can be modeled independently, and the system administrator can be alerted if
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any of the virtual machines deviates from the expected [29, 21]. The system of systems

perspective can also be useful in large-scale scenarios such as HPC clusters, where

the scalability of the anomaly detection process can be improved by independently

analyzing groups of geographically close computers [34], instead of analyzing the

behavior of the system as a whole.

Replicated Behavior A replicated behavior perspective means analyzing the be-

havior of the different system components using a single model. This is useful in

cases where several components exhibit similarities in their behavior, as it enables the

detection of components that deviate from the rest. This kind of behavioral perspective

has been employed especially in HPC clusters, where different nodes can be assumed

to behave in similar ways [34, 35].

3.3 Design Considerations

In Chapter 2 we present an analysis of current limitations in black box anomaly detec-

tion. These limitations include the use of historical failure data, focusing on specific

types of anomalies, targeting specific architectures, and the lack of adaptiveness and

scalability. Based on these limitations, we discuss below the main considerations that

we have taken in the design of the framework proposed in this chapter.

Historical Data The basic idea behind most black box anomaly detection approaches

is to build a statistical model that can separate normal and anomalous behaviors (see

Chapter 2). This model is then employed to categorize the current system behavior

into these two classes. This statistical model can be built using normal or anomalous

historical data of the system. However, anomalous historical data is unavailable in

most real world scenarios as mentioned in Chapter 1. Moreover, relying on anoma-

lous historical data to build the model limits the ability to detect anomalies that are
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completely different from what has been observed in the past. For these reasons, we

assume that historical data is unavailable, which means that our framework needs to

build a system behavioral model at run time only using data available since the system

started running.

Time Awareness Anomalies in distributed systems are characterized by an anoma-

lous succession of states. Therefore, the statistical model employed in the detection of

anomalous behaviors needs to include multiple metric readings over a time period to

be able to detect all types of anomalies [61].

Metric Correlations Some anomalies are characterized by an anomalous correlation

between several system metrics. For example, high CPU utilization might be normal if

memory utilization is also high, and abnormal otherwise. Thus, our framework needs

to model the behavior of the system while taking into account the correlation between

the different system metrics.

Architecture Independence The system metrics that are relevant for anomaly de-

tection depend on the characteristics of the system under study, and go from hardware

counters to application metrics. For example, in the case of a P2P network, the analysis

could include messages sent and received by each peer, number of peers contacted,

number of bytes sent and received, etc. Conversely, in the case of an HPC cluster, the

monitored metrics could be CPU, memory, and network utilization per node. The rele-

vant metrics also depend on the type of anomalies that are to be detected. Thus, if the

main goal of the analysis is the detection of malicious activities in a network, the most

relevant metrics will be related to network usage. Our design must be independent

from the choice of system metrics to allow our framework to be employed in a variety

of scenarios, from large-scale networks to multi-tier architectures.



3.4 Behavior Identification Framework 42

Additionally, as mentioned in Section 3.2, system behavior can be analyzed from

several perspectives depending on the type of anomalies that are to be detected. Our

framework also needs to be independent from the behavioral perspective, and needs

to provide a flexible design that can be used to model the behavior of a variety of

distributed systems regardless of their characteristics and architecture.

Adaptiveness The normal behavior of the system under study can change over time.

Therefore, to adapt to these changes, our framework needs a mechanism to incorporate

new data to the statistical model as it becomes available at run time. This mechanism

is also necessary because we assume a lack of historical failure data.

Context Awareness Some anomalies depend on the context. For example, high

CPU utilization can be normal in a high demand scenario, and abnormal otherwise.

Thus, our framework needs a way of incorporating contextual information into the

statistical model.

Scalability Scalability is essential as distributed systems become larger and more

complex. Thus, our framework needs to be scalable to be employed in large-scale

scenarios.

Anomaly Identification Identifying the type of the anomalies can help debugging

and finding their root causes. Thus, apart from detecting anomalies, our framework

needs to provide means for the identification of known anomalies.

3.4 Behavior Identification Framework

Fig. 3.2 shows our framework’s design, including its main components and how

they interact with each other. The framework is designed to detect previously un-

seen anomalies, and to identify the type of known anomalies while satisfying the
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Fig. 3.2. Framework’s design.

design considerations outlined in Section 3.3. Our framework is composed of three

main components: the Behavior Extractor, the Behavior Identifier, and the Feedback

Provider.

The Behavior Extractor periodically collects system performance metrics from

a running distributed system and generates a Behavior Instance (BI) every time new

data is available. BIs are representations of the system behavior in a time period. The

Behavior Identifier classifies each BI as normal or anomalous using a statistical model

called the Behavioral Model (BM). When a BI is classified as anomalous, the Behavior

Identifier informs the Feedback Provider. The Feedback Provider then decides whether

to alert the system administrator. When alerted, the system administrator informs the

Feedback Provider about the actual state of the system (i.e., normal or anomalous).

The Feedback Provider transmits this information to the Behavior Identifier, which

can then update the BM to incorporate the new data. The internals of each component

are detailed in the following sections.
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3.4.1 Behavior Extractor

The Behavior Extractor periodically collects system performance metrics from a

running distributed system. These metrics may be hardware metrics, such as the CPU,

memory, or the network utilization of the system nodes, operating system metrics,

such as the number of running processes or threads in each node, or software metrics,

such as the number of exchanged messages between applications. These metrics can

be represented as time series, where each data point is the value of a certain metric

at a particular time instant. Thus, given a time frame, the behavior of the system can

be defined by a set of time series. This set of time series is what we call a Behavior

Instance (BI).

Formally, given the set of all the available system metrics

M = {mi |1 ≤ i ≤ n} , (3.1)

we denote ri j as the reading for metric mi at time instant j, and

si j = ri j,ri( j+1), ...,ri( j+z) (3.2)

as the sequence of z readings for metric mi starting with ri j. We then denote the BI at

time instant j as the set

B j = {si j |1 ≤ i ≤ n} , (3.3)

a collection of n time series of size z. Behavior Instances are thus created in a sliding

window of constant size z, where z determines the granularity of the analysis. Every

time a new set of readings {ri( j+z+1) |1 ≤ i ≤ n} is obtained, a new BI is generated as

B j+1 = {si( j+1) |1 ≤ i ≤ n} , (3.4)
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where

si( j+1) = ri( j+1),ri( j+2), ...,ri( j+z+1) . (3.5)

The Behavior Extractor applies a feature extraction process to BIs after generating

them. A feature is a function that derives some relevant property from a dataset. In

this case, features extract relevant properties from the time series data such as mean,

standard deviation, skewness, or kurtosis [79]. Computing these features serves two

purposes. On the one hand, it provides a more robust way of comparing time series

than straightforward differences between readings such as Euclidean distances [79].

On the other hand, it reduces the dimensionality of the data. After the feature extraction

process, each BI is transformed into a feature vector. Feature vectors represent the

behavior of the system during a time period in an N-dimensional space called the

feature space. Detection of anomalous behaviors can then be done by detecting

deviations in this feature space.

Formally, given a set of features

SF = { fk |1 ≤ i ≤ u} , (3.6)

where fk : Rz → Rdk is a feature that reduces the dimension of the data from z to dk,

we denote

vi j = f1(si j), f2(si j), ..., fk(si j) (3.7)

as the sequence of all the features in SF applied to the time series si j. We then define

F(B j) as the concatenation of all the features applied to all the time series in B j. Thus,

the feature vector of B j is

F(B j) = v1 j,v2 j, ...,vn j = x j , (3.8)
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Fig. 3.3. Derivation process of feature vector x j from Behavior Instance B j and a set
of features SF . Each feature is applied to each sequence of readings in B j, and the
results are concatenated to form x j.

and F : Rn×z → RN , where N = ∑u
k=1 dk. The feature extraction process is depicted in

Fig. 3.3.

Feature vectors capture the evolution of the system metrics over time and the

relationships between these metrics. Therefore, deviations in the feature space can

be caused by a change in one of the metrics, as well as by changes in the correlation

of multiple metrics. Moreover, contextual information can be easily included in the

feature vector by representing context as a system metric. For example, a high demand

context could be represented as the number of client requests received. Since the feature

vector takes into account metric correlations, different contexts are automatically

represented as different regions in the feature space, and anomalies characterized by

deviations in a specific context can be detected.

3.4.2 Behavior Identifier

The Behavior Identifier is in charge of building and maintaining the Behavioral Model

(BM), of deciding whether a feature vector is anomalous, and of identifying the type

of detected anomalies. This is done by means of several classifiers. A classifier is a

supervised learning method to categorize sets of data [80]. Typically, a classifier is

first trained with a set of labeled data, that is, data whose category is known, and then
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used to categorize unlabeled data afterwards. The process of categorizing unlabeled

data is also known as label prediction. Building the training dataset requires a system

expert to label historical data belonging to the considered categories. However, as

mentioned before, in our case we assume that historical data is unavailable, and make

use of online classifiers that can build and update the BM at run time. The accuracy of

an online classifier increases with the number of predictions, as the statistical model

converges to an optimal representation of the data distribution [81]. The disadvantage

of using online classifiers is that, for a period of time at the beginning, the predictions

can be less accurate. The advantages are that no previous labeled data is needed, and

that the BM can easily adapt to changes in the definition of normal behavior. This

is relevant as a precise definition of normal and anomalous behavior of a system is

hard or even impossible to obtain before the actual execution of the system. In the

following we describe the technical details of the Behavior Identifier.

Support Vector Machines

The Behavior Identifier employs a type of classifier called Support Vector Machines

(SVMs), which are a widely used mechanism for classifying data [65]. Having a set of

labeled vectors L = {(xi,yi) |1 ≤ i ≤ l}, where xi ∈ Rn, and yi ∈ {−1,+1} represents

two distinct categories, the training phase in an SVM consists of finding the optimal

hyperplane that separates the two categories in an n-dimensional space.

Fig. 3.4. Construction of a SVM in a 2-dimensional space.
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Fig. 3.4 shows and example of an SVM in a 2-dimensional space, where X1 and

X2 are the dimensions of the vectors, black and white circles represent labeled vectors

belonging to two distinct categories, and the gray circle represents an unlabeled vector.

The h line represents the optimal separating hyperplane, which is optimal because is

found by maximizing the distance M. The two dotted lines are called the margins, and

the vectors lying on them are called the support vectors. After finding h, this SVM

would classify the unlabeled vector as “black” according to its position with respect

to h. Finding h requires minimizing ||w||2, where w is a vector normal to h. This

minimization can be expressed as the optimization problem

l

∑
i=1

αi −
1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jxi · x j

subject to αi ≥ 0 and
l

∑
i=1

αiyi = 0 ,

(3.9)

where αi and α j are Lagrange multipliers and

w =
l

∑
i=1

αiyixi . (3.10)

After solving the optimization problem, unlabeled vectors can be categorized

according to their position in the n-dimensional space with respect to the hyperplane.

The decision function for an unlabeled vector x j becomes

f (x j) = sgn

 
l

∑
i=1

αiyixi · x j −b

!
, (3.11)

where b is a bias term that represents the distance from the hyperplane to the origin of

the coordinate space.

For not linearly separable categories in the n-dimensional space, a kernel trick can

be used by replacing the product xi · x j in Eq. (3.9) by a kernel function K(xi,x j) ≡

φ(xi) ·φ(x j), where φ : Rn → Rm represents a transformation from the n-dimensional
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space to an m-dimensional space. This kernel function enables building the hyperplane

in the m-dimensional space, where the two categories can be separated. A widely used

kernel function is the radial basis function (RBF) kernel, which is defined as [82]

K(x, x′) = e−γ∥x−x′∥2
, (3.12)

where γ is a free parameter and ∥x− x′∥2 is the squared Euclidean distance between x

and x′.

Gradient Descent

Solving Eq. (3.9) given a training dataset yields the optimal hyperplane or decision

function. In our case, we are interested in building and updating this decision function

at run time. To build an online support vector machine that modifies its decision

function whenever new observations become available, the gradient descent method

can be used. Gradient descent is an algorithm for finding the minimum of a function in

an iterative manner. We employ a modified version of the SVM proposed by Kivinen

et al. [83]. The SVM optimization problem can be formulated as the loss minimization

problem

min ∑
x∈S

ℓ( f (x), y) , (3.13)

where ℓ( f (x),y) is the loss incurred when misclassifying x. Then, we can apply the

gradient descent method to iteratively update the decision function f . Being x j a new

observation, we have that

f j+1 = f j −η
∂

∂ f
ℓ( f (x j), y j) , (3.14)

where η is the learning rate, that is, the “speed” in which we approach the f that

minimizes the amount of classification errors. To apply this method, we can set
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αi = yiαi in Eq. (3.11) and write f j as

f (x j) = sgn

 
j−1

∑
i=1

αixi · x j −b

!
. (3.15)

Then we can update the α coefficients at each iteration as

αi =

(
−ηℓ′( f j(xi), yi) for i = j
(1−ηλ )αi for i < j ,

(3.16)

where λ is used decrease the weight of past observations, giving more importance to

new data. As loss function, we can use the soft margin loss:

ℓρ( f (x), y) = max(0, ρ − y f (x)) , (3.17)

where ρ ≥ 0 is a margin parameter that controls the amount of margin errors permitted.

This loss function then can be used in Eq. (3.16) with

ℓ′ρ( f (x),y) =

(
−y if y f (x)≤ ρ
0 otherwise .

(3.18)

These equations build a classifier able to differentiate between two classes, that is,

a binary classifier. With some modifications, we can also define a one-class classifier,

which is a classifier that requires only labeled observations from one category to

build the decision function. One-class classifiers build a sphere around the labeled

observations, and categorize any observation that lies outside this sphere as anomalous.

To build a one-class classifier we use the loss function

ℓρ( f (x)) = max(0, ρ − f (x))−νρ , (3.19)

where ρ defines the size of the sphere, y is dropped as there is only one class, and ν

controls the frequency of anomalous classifications. Since
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∂ℓρ

∂ f
=

(
−1 if f (x)< ρ
0 otherwise

(3.20)

and

∂ℓρ

∂ρ
=

(
1−ν if f (x)< ρ
−ν otherwise ,

(3.21)

we have that the updates for the α terms and ρ are 1

(αi,α j,ρ) =

(
((1−η)αi, η , ρ −η(1−ν)) if f (x)< ρ
((1−η)αi, 0 , ρ +ην) otherwise .

(3.22)

The decision function is then

f (x j) = sgn

 
ρ −

j−1

∑
i=1

αixi · x j

!
. (3.23)

Data Normalization

Normalizing the vectors before classification is crucial to avoid bias towards a par-

ticular dimension [84] because SVMs rely on dot products between vectors. For

example, the dot product between x = [0.3, 100] and x′ = [0.1, 200] is biased towards

the second dimension as it takes much larger values. For this reason, the Behavior

Identifier normalizes each vector component to the [0,1] interval using a sigmoidal

function. This type of function has the advantage that it is robust to the presence of

extreme values in the data. The function is defined as

x′i =
1

1+ e
xi−µi

σi

for 1 ≤ i ≤ n , (3.24)

where subindex i in this case denotes the ith component of a vector, x is the original

vector, x′ is the scaled vector, and µ and σ are the mean and standard deviation of

1In [83] there is a typo and the plus and minus signs of the ρ update are swapped.
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the set of seen vectors. Since the Behavior Identifier receives vectors one at a time,

µ and σ are computed also online. Initially, µ is set to the first received vector and

σ = [1,1, ...,1]. Then, updates can be performed using

µ ′
i = (1− 1

t
)µi +

1
t

xi

σ ′
i = (1− 1

t
)σi +

1
t
(xi −µ ′

i )
2 ,

(3.25)

where x is the last received vector and t is the number of vectors processed so far.

Two-step Classification

The Behavior Identifier makes use of a combination of a one-class classifier and

multiple binary classifiers to achieve two main goals: the one-class classifier is used to

detect previously unseen anomalies without historical failure data, and a set of binary

classifiers is used to identify the type of known anomalies. Algorithm 1 presents the

pseudocode of the one-class classifier. Classes normal and anomalous are represented

with −1 and +1 respectively.

The classifier contains two main methods: CLASSIFY and UPDATE_MODEL.

CLASSIFY returns the predicted label (lines 7 and 9) of an unlabeled vector x j using

the decision function in Eq. (3.23) (line 6). UPDATE_MODEL modifies the current

decision function given a vector x j of the normal class (−1). If the kernel evaluation is

less than ρ (line 14), meaning that the current function misclassifies x j, the vector is

incorporated into the set of support vectors V (line 15) with α j = η (line 12), and ρ is

decreased (line 17). Here, instead of using ρ = ρ −η(1−ν) as defined in Eq. (3.22),

we use ρ = ρ −ρη(1−ν) to enforce ρ > 0, given that η < 1 and ν < 1. Alternatively,

ρ is increased if the current function correctly classifies x j (line 19). This makes ρ to

approach its optimal value close to the kernel evaluation, ensuring that the size of the

sphere around the normal data is minimal. Finally, the α values are also updated (line

22).
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Algorithm 1 Online One-class Classifier
1: function INIT

2: V ← /0 // Set of support vectors
3: end function
4:
5: function CLASSIFY(x j: Vector)
6: if ρ < ∑

xi∈V
αiK(xi, x j) then

7: return -1
8: else
9: return +1

10: end if
11: end function
12:
13: function UPDATE_MODEL(x j: Vector)
14: if ∑

xi∈V
αiK(xi, x j)< ρ then

15: V ←V ∪{x j}
16: α j ← η
17: ρ ← ρ −ρη(1−ν)
18: else
19: ρ ← ρ +ρην
20: end if
21: for all αi ̸= α j do
22: αi ← (1−η)αi
23: end for
24: end function

Algorithm 2 shows the pseudocode of the binary classifier, which is very similar

to the one-class classifier. The CLASSIFY method uses the decision function in

Eq. (3.15) (line 6), and the UPDATE_MODEL now makes use of y j to decide whether

to update the decision function based on the soft margin loss in Eq. (3.17) (line 14). If

the current function misclassifies x j, the vector is added to V (line 16) and α j = ηy j

according to Eq. (3.16) (line 15). Finally, the rest of the α coefficients are updated

(line 19).

The binary classifier is designed to receive a similar amount of positive and negative

vectors over time. Given an unbalanced dataset, the classifier is biased towards the

most common class. This is obvious when |V |= 1, since the kernel evaluation in the

CLASSIFY method (line 6) will always yield the sign of the only support vector in
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Algorithm 2 Online Binary Classifier
1: function INIT

2: V ← /0 // Set of support vectors
3: end function
4:
5: function CLASSIFY(x j: Vector)
6: if ∑

xi∈V
αiK(xi, x j)< 0 then

7: return -1
8: else
9: return +1

10: end if
11: end function
12:
13: function UPDATE_MODEL(x j: Vector, y j: int)
14: if y j ∑

xi∈V
αiK(xi, x j)≤ ρ then

15: α j ← ηy j
16: V ←V ∪{(x j, y j)}
17: end if
18: for all αi ̸= α j do
19: αi ← (1−λη)αi
20: end for
21: end function

the set. Moreover, successive calls to the UPDATE_MODEL method with vectors of

the same type will produce no actual changes in the model, as the update condition

(line 14) will be false with high probability after a few updates, and new vectors of the

same type will not be included into V . To avoid a biased model in a scenario where

most of the vectors are negative because distributed systems run most of the time in

normal conditions, we update the binary classifier in a balanced manner. Algorithm 3

shows the pseudocode of the balanced update process.

If the set of support vectors is empty (line 7), the model is updated normally (line

8). Otherwise, if x j is negative and there are positive vectors stored in P (lines 9 and

10), the model is updated with x j (line 11) and a random vector from P (lines 12 and

13). If x j is negative but P is empty (line 14), instead of updating the model, x j is

stored in N (line 15). The process when x j is positive is the same but swapping N

and P (lines 18 to 24). This avoids successive updates with vectors of the same type
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Algorithm 3 Balanced Update Process
1: function INIT

2: P ← /0 // Set of positive vectors
3: N ← /0 // Set of negative vectors
4: end function
5:
6: function BALANCED_UPDATE(x j: Vector, y j: int)
7: if |V |= 0 then
8: UPDATE_MODEL(x j, y j)
9: else if y j < 0 then

10: if |P|> 0 then
11: UPDATE_MODEL(x j, y j)
12: xp ← GET_RANDOM(P)
13: UPDATE_MODEL(xp, +1)
14: else
15: N ← N ∪ x j
16: end if
17: else
18: if |N|> 0 then
19: UPDATE_MODEL(x j, y j)
20: xn ← GET_RANDOM(N)
21: UPDATE_MODEL(xn, −1)
22: else
23: P ← P∪ x j
24: end if
25: end if
26: end function

by storing them to be used in the future, and ensures that the model is updated in a

balanced manner.

As mentioned before, the Behavior Identifier combines several classifiers to detect

previously unseen anomalies and to identify the type of known anomalies. We call

this two-step classification because Behavior Identifier decides whether a vector is

anomalous in a first step and, in case it is, the Behavior Identifier identifies its type

in a second step. This two-step process is done by means of a one-class classifier

(OC), a binary classifier (BC), and a multi-class classifier (MC). The MC is in turn

composed of multiple binary classifiers organized in a tree-like directed acyclic graph

(DAG) [85].
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Fig. 3.5 shows an MC able to identify four types of anomalies: deadlock, livelock,

thrashing, and memory leak. Each node in the graph represents a binary classifier,

and each of these binary classifiers discards one type of anomaly until the final result

is obtained. For example, the node at the top of the graph decides if a vector is a

memory leak or a deadlock. The classification process continues to the left if the

vector is not a memory leak, and to the right if the vector is not a deadlock. When

a new type of anomaly is found, the DAG is extended with a new level. There are

c− 1 levels given c types of anomalies, and each level has one extra node than the

previous level. Thus, the total number of nodes for c types of anomalies is c(c−1)
2 , and

the number of classifications needed to obtain the final result is c− 1. Each binary

classifier in the MC maintains its own decision function, updating it online when new

data becomes available. Given an anomalous vector of type ya, the MC updates the

decision functions of the nodes that compare ya against other types. This means a total

of c−1 updates.

Fig. 3.6 depicts the two-step process that combines the OC, BC, and the MC. In the

first step, the OC and the BC classify vectors as normal or anomalous. The OC serves

to detect previously unseen anomalies while the BC is used to reinforce the detection

Fig. 3.5. DAG of binary classifiers to form a multi-class classifier.
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of already known anomalies. The outputs of the OC and the BC are combined to

produce a final prediction for step one. A simple approach is to combine the outputs

using a logical or, and more advanced techniques could use weights based on the

reliability of each classifier. The process finishes if the vector is classified as normal in

this first step. If the vector is anomalous, the process moves on to step two, where the

MC identifies the type of the anomaly. The total number of evaluations is therefore 2

for normal vectors and c+1 for anomalous vectors.

Fig. 3.6. Two-step classification process. Multi-class classification is provided by
means of a directed acyclic graph of binary classifiers.

Model Update

The Behavior Identifier transmits the result of the two-step classification to the Feed-

back Provider. The Feedback Provider then decides whether to alert the system

administrator. If the system administrator is alerted and feedback is received, the

Behavior Identifier updates the Behavioral Model. The BM is defined by the decision

functions of the multiple classifiers that are involved in the two-step classification

process. Given a vector x j with known type y j, the OC’s decision function is updated

if y j =−1, (i.e., x j is normal), and the MC is updated if x j is anomalous. The BC is
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updated in any case as it is used to differentiate between normal vectors and known

anomalies. Each of the classifiers normalizes x j before updating the decision function,

and also updates the normalizing function using Eq. (3.25). Note that each of the

classifiers maintains its own normalizing function.

3.4.3 Feedback Provider

The Feedback Provider decides when to alert the system administrator based on

the result of the two-step classification process. The Feedback Provider behavior is

modeled as a finite state machine (FSM), which is shown in Fig. 3.7.

Fig. 3.7. Feedback Provider behavior modeled as a FSM.
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In this FSM, the pred variable represents predictions received from the Behavior

Identifier, and the f b variable represents feedback received from the system adminis-

trator. A negative value in these variables means normal behavior, whereas positive

values represent different types of anomalies. The Feedback Provider starts in the

Train state. This state is completely optional and is used to train our framework if some

labeled data is available, or if it can be guaranteed that the system will run normally

for a certain amount of time at the beginning. The parameter Tr controls the duration

of this initial training phase, and the state is avoided if Tr = 0. After this, the Feedback

Provider moves on to the Normal state, and remains in it as long as the predictions

received from the Behavior Identifier are normal. The Feedback Provider moves to the

Warning state if it receives an anomalous prediction. The Feedback Provider remains

in the Warning state as long as the number of consecutive anomalous predictions

(variable anom) is less than a predefined number, represented by the parameter Gr.

If a normal prediction is received, the Feedback Provider goes back to the Normal

state. The Feedback Provider raises an alert if it receives more than Gr consecutive

anomalous predictions while in the Warning state. In this manner, Gr helps to reduce

the number of false alerts caused by noisy readings. Gr defaults to 1, but it can be

increased to tailor our framework to different scenarios.

When an alert is raised, the Feedback Provider requests feedback to the system

administrator. The update() method transmits this feedback to the Behavior Identifier,

which can then update the Behavioral Model accordingly. The Feedback Provider

moves back to the Normal state if the actual behavior of the system is normal (i.e.,

f b < 0). Otherwise, the Feedback Provider moves to the the Alert state. The Feedback

Provider remains in the Alert state as long as the system administrator confirms the

presence of the anomaly. If no feedback is given, the Feedback Provider returns to

the Normal state through the Cooling state if Gr consecutive normal predictions are

received. Conversely, if the system administrator confirms the end of the anomaly, the

Feedback Provider moves to the Clean state. The Feedback Provider remains in this
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state for z observations (i.e., the sliding window size), to ensure that no anomalous

readings remain in the BIs once the Feedback Provider returns to the Normal state.

The feedback provided by the system administrator is crucial for our framework’s

performance. In the case of receiving incorrect feedback, our framework might

include incorrect data into the Behavioral Model. Errors in the BM can be dynamically

corrected with new data and thus are not permanent in any case. However, an inaccurate

BM can produce false positives and false negatives. False positives are easy to correct

because the system administrator is alerted, and has the opportunity to provide new

feedback. Conversely, false negatives might remain undetected until a failure is

observed, and positive samples can then be used to correct the BM.

3.4.4 Addressing Multiple Behavioral Perspectives

As mentioned in Section 3.2, distributed systems can be analyzed from several behav-

ioral perspectives depending on their characteristics and the type of anomalies that

we are interested in detecting. Our framework is designed to be independent from the

architecture of the system under study and the system metrics being analyzed. We

achieve this by building each framework component as a black box from the point

of view of the other components, allowing for a highly flexible deployment. In the

following, we describe how our framework can be employed to tackle the different

behavioral perspectives detailed in Section 3.2.

Global Behavior

This perspective is employed when we are interested in analyzing a global behavior

definition. Thus, we set our framework to collect performance metrics from all the

system components and use these to build the BM, alerting the system administrator

when the global behavior of the system deviates from what is expected. This is our

framework’s default setting, and is depicted in Fig. 3.8.
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Fig. 3.8. Default setting used in global distributed system behavioral analysis.

System of Systems

Our framework can be set to analyze the behavior of a system in a system of systems

perspective as shown in Fig. 3.9. In this case, we deploy several instances of our

framework’s components. Each set of instances models the behavior of one of the

subsystems. Before alerting the system administrator, feedback is aggregated using

a Feedback Aggregator. The most basic Feedback Aggregator alerts the system

administrator when any of the subsystems deviates from what is considered normal,

however, other more complex policies can be implemented such as correlation analysis

or weighted alerts. This approach can also be applied to large-scale systems where

analyzing the behavior of the whole system is unfeasible due to computational or

storage limitations.

The stars in Fig. 3.9 denote the fact that each set of framework component works

independently from the others and builds a separate BM. Each of these BMs can

employ different configuration settings and system metrics.

Replicated Behavior

We can employ the setting depicted in Fig. 3.10 in scenarios where we are not interested

in analyzing the global behavior of the system, but the behavior of the individual

components from a shared perspective. In this setting, each system component is

monitored independently, but the BM is shared among the different components. That

is, several Behavior Extractors generate BIs corresponding to each system component.

Then, each BI is classified using the same behavior definition, and the decision on

whether to alert the system administrator is taken based on each component’s trajectory.
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Fig. 3.9. Setting employed to analyze a distributed system from a system of systems
perspective.

This architecture can be employed to detect misbehaving nodes in a network, or in

scenarios where several computers are expected to behave in a similar manner, such as

in an HPC cluster.

3.5 Summary

In this chapter, we presented our behavior identification framework for anomaly

detection in distributed systems. Our framework analyzes the behavior of a running

distributed system by periodically collecting system performance metrics. From these

metrics, our framework builds a representation of the system behavior in a time frame

taking into account the correlations between the different metrics. Then, using a

combination of several SVM classifiers, our framework is able to detect anomalous
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Fig. 3.10. Shared BM setting employed to analyze distributed systems from a repli-
cated behavior perspective.

behaviors and to identify their type. Unlike similar existing approaches, our framework

does not rely on historical data, does not make any assumptions on the characteristics

of the anomalies, can be employed in a variety of scenarios regardless of the system

architecture, can adapt to changes in the normal behavior of the system, and is scalable.

To our knowledge, our framework is the only existing work that enables the detection

and identification of anomalous behaviors in large-scale distributed systems that can

be applied to most scenarios without system modifications or redeployment.



Chapter 4

A Synthetic Distributed System to

Model Complex Anomalous Behaviors

In Chapter 3, we present our black box framework for anomaly identification in

distributed systems. Our framework is architecture agnostic and has been designed

to overcome many of the issues in the area of anomaly detection, such as the lack

of historical data or the need for scalability. The three main components that form

our framework, namely, Behavior Identifier, the Behavior Extractor, and Feedback

System, can be configured with several parameters to adapt our framework to different

scenarios and application domains. These configuration parameters are crucial for

obtaining an increased detection accuracy. Thus, to be able to successfully employ our

framework in the various scenarios where it can be applied, we first need to obtain a

deep understanding on how these parameters affect our framework performance.

Towards this, we need to test our framework in a controlled scenario. Thus, in this

chapter, we present the design of a synthetic distributed system that can reproduce

numerous complex anomalous behaviors. We then employ a series of high level

design and deployment tools to build, execute, and monitor our synthetic system in a

controlled manner. Using monitoring data obtained from our synthetic system, we then
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perform a comprehensive parametric study on our framework to better understand how

the different configuration parameters impact on our framework’s detection accuracy.

4.1 Overview

Distributed systems often manifest nonlinear or even chaotic behaviors in the sense

that small variations in the system state at a particular instant can result in a completely

different outcome. This is caused by the vast number of system interactions and

their complexity, and by the non-deterministic nature of concurrent systems, where

timing and the order of events play a key role in the system outcome. For example, an

unexpected delay in a particular transaction can trigger a race condition that leads to a

deadlock.

Errors that arise from the system interactions or the timing of events are caused

by faults introduced during the development stage. However, system interactions and

timing are conditions that are difficult to study before system execution, making these

types of errors extremely difficult to predict at the development stage (see Chapter 1).

These types of errors have also been referred to as emergent behaviors [20], that

is, complex anomalous behaviors that emerge from the interactions of the system

components, and that cannot be identified by just observing the individual components.

Emergent behaviors in software systems have been grouped into six categories [20]:

• Livelock: This happens when the progress of the system stalls because several

entities are changing in response to each other. A special case of this is receive

livelock, when the progress of the system stalls because an increasing amount of

high priority tasks needs to be processed before actual work can be performed.

• Deadlock: A situation in which the progress of the system stalls because several

entities are waiting for each other.
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• Thrashing: This occurs when the competition over a shared resource causes

the system to spend more time switching contexts than doing actual work. A

typical example is the one caused by too much paging in a system.

• Unwanted synchronization: When multiple system activities that should be

independent from each other end up being correlated. For example, a series of

messages that different components should transmit at random times end up

being transmitted simultaneously due to some inherent coupling between the

components.

• Unwanted oscillation: Occurs when the system oscillates between a fixed set

of states.

• Phase change: This happens when an incremental change in some variable ends

up causing a drastic change in the whole system. For example, in the presence

of a memory leak, a system may keep correct functioning until a tipping point is

reached and the whole system crashes.

Despite the harmful potential of these complex anomalous behaviors, very few

works have addressed them [21, 35, 86]. A possible reason for this is the lack of

publicly available datasets [23], or the difficulty in reproducing them in controlled

and realistic conditions. The few publicly available datasets of system monitoring

data [50, 87] do not contain cases of complex anomalous behaviors in a real world

deployment.

In this chapter we build a synthetic distributed system able to reproduce several

complex anomalies, and analyze these behaviors from the perspective of their impact

on the system performance metrics. Then, through an extensive parametric study, we

evaluate our framework’s performance when dealing with these complex anomalous

behaviors.
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The rest of this chapter is organized as follows: Section 4.2 describes our synthetic

distributed system and the different complex anomalous behaviors that it can reproduce.

Section 4.3 analyzes how these anomalous behaviors affect the performance metrics of

our synthetic distributed system. In Section 4.4 we present a comprehensive parametric

study on our framework employing monitoring data from our synthetic distributed

system, and Section 4.5 concludes the chapter.

4.2 Synthetic Distributed System

We developed our own synthetic distributed system (SDS) due to the lack of publicly

available datasets containing complex anomalous behaviors, and to provide a controlled

testing scenario for our framework. The SDS allows us to model several types of

anomalous behaviors and to analyze our framework’s detection capabilities. The

development and deployment of the SDS is done by means of MEDEA [88], a tool

for modeling and analyzing the performance of distributed systems. MEDEA allows

to graphically model system components and their interactions, and then automates

their deployment and execution by generating code using the Component workload

emulator Utilization Test Suite (CUTS) [89]. During system execution, MEDEA also

allows for the collection of several performance metrics, such as CPU and memory

utilization, by means of a Data Distribution Service [90] logging system.

4.2.1 System Design

The SDS consists of a distributed system where multiple Clients share access to several

Databases. Clients can freely read information from the Databases, but write access is

granted using a distributed mutual exclusion protocol. This protocol is an adaptation

of the algorithm by Ricart and Agrawala [91] that achieves mutual exclusion using

2(N − 1) messages, being N the number of processes. In the SDS, access to each
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Database is controlled by a subset of Clients. Clients wanting to write to a Database

must request votes to the Database controllers, and can only perform the write after

achieving a majority of their votes.

Components in MEDEA are defined in terms of their interface and behavior. The

Client’s interface has two input ports and two output ports, namely, commIn, txIn,

commOut and txOut. Communication (“comm”) ports are used to interact with other

clients, whereas transfer (“tx”) ports are used to access Databases. The Database’s

interface has two ports: txIn and txOut to interact with Clients. Clients exchange

five types of communication messages between them: voteRequest to ask for votes

to obtain write access to a Database; vote to issue a vote; rescind to rescind an

issued vote; rescindAck to acknowledge a rescission; and release to inform voters

that the write action has been performed. The Client component also exchanges four

types of transfer messages with the Database component: read, write, readAck, and

writeAck. To ensure a correct ordering of actions, all exchanged messages are tagged

on emission with a Lamport clock timestamp [92]. Fig. 4.1 shows the component

interfaces, their ports, and the connections between them. Client B txIn and txOut

connections are not depicted for clarity. In the case of having more components, each

Client is connected to all the other Clients and to all the Databases.

Fig. 4.1. Representation of the components interfaces, and how these are connected.
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Clients can be in three different states: working, writing, and rescinding. The

working state means that a Client is carrying out some activity, and it is used to prevent

Clients from doing more than one thing at a time, otherwise the whole system could

become overloaded with requests. The writing and rescinding states are reached

when a Client is writing to a Database or rescinding a vote respectively. Clients can be

in multiple states at the same time, or not be in any of them. Additionally, each Client

maintains a Lamport clock, a priority queue to store voting requests, information about

the current issued vote, a counter for its own votes, and the ID of the Database to

manage. Database management is assigned uniformly among all Clients when the

SDS is initialized. The Databases behavior is much simpler than the Client behavior

as they just reply to write and read requests with acknowledgements.

Component behavior in MEDEA is modeled as a set of workflows that execute

when certain events trigger. Fig. 4.2 shows how Clients decide which action to carry

out. Clients continuously perform one of three actions: write and read to a Database,

or idle for a random amount of time. Clients have a 0.5 probability of choosing the

write action, a 0.35 probability of choosing the read action, and a 0.15 probability

of choosing the idle action. The workflow in Fig. 4.2 begins with a periodic event.

Upon triggering, the Client checks its working state. If the Client is not working, it

enters the working state and randomly chooses an action to perform. If the Client

is already working, it checks if it is being idle, and the amount of remaining idle

time. If the chosen action is to write, the Client selects one of the available Databases

at random, and broadcasts a voteRequest to the other Clients. A voteRequest

message expresses the desire of the sender Client to obtain mutual exclusion to access

a Database. In these requests, Clients include their ID, a timestamp, and the target

Database. If the chosen action is to read, the Client directly accesses a random

Database by sending a read message. As said before, reads do not require mutual

exclusion. If the chosen action is to remain idle, the Client sets a random amount of

time to do so. Apart from selecting an action, every time the periodic event triggers,
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Fig. 4.2. Process that models how Clients periodically perform different actions.

Clients also perform a random number of iterations in an empty loop to simulate CPU

work. In Fig. 4.2, missing arrows coming out of some of the evaluation nodes (e.g.,

remain idle? → yes) go to the ending state, and are not depicted for clarity.

A voting process runs concurrently in addition to the action selection process. This

voting process, depicted in Fig. 4.3, is in charge of issuing and rescinding votes. The

voting process also runs periodically, and begins by checking whether the Client has

already issued a vote. If the Client has not issued a vote and the priority queue that

stores voting requests is not empty, the Client removes and votes for the head of the

queue. The priority queue sorts voting requests by timestamp and Client ID, ensuring

that the oldest request is always at the head of the queue. If the Client has already

issued a vote but it is not the oldest one in the queue, the Client enters the rescinding

state and sends a rescind message to the Client that was voted. It can be seen how the

rescinding state is used to avoid carrying out more than one rescission concurrently.

Fig. 4.3. Process that models how Clients issue and rescind votes.
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A third periodic process manages writes to the Database. This process is shown

in Fig. 4.4. If the Client is not already writing and it has the majority of the votes, it

sends a write message to the Database and enters the writing state. To represent the

information being written, write messages carry a random number of bytes.

Fig. 4.4. Process that models how Clients write to a Database after achieving the
majority of the votes.

Client interactions through the communication ports are modeled as a separate

process that can be seen in Fig. 4.5. Upon message arrival at the commIn port, the

Client checks the message type and carries out the appropriate actions, which are

summarized in the following:

• voteRequest: The Client first checks if the request is to access the Database it

manages. If that is the case, the Client simply inserts the request into its priority

queue. The voting process will serve the request when appropriate.

• vote: The Client increases its number of votes if the vote is valid. Valid votes

are those corresponding to the Client’s current voting request, which is identified

by its timestamp. If the vote is outdated, the Client replies with a release, as

the writing action has already been completed.

• release: If the message is valid (i.e., corresponds to the current issued vote),

the Client sets its issued vote to nil and resets the rescinding state, as a rescind

is no longer possible. This allows the voting process to serve another request

from the queue.

• rescind: If the message is valid and the Client is not in the writing state,

the Client decreases its number of votes and replies with a rescindAck to
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acknowledge the rescission. If an outdated rescind is received, the Client

simply replies with a release. Note that if the Client is already writing, the

rescind message is ignored as a release will be sent after writing is finished.

• rescindAck: The Client inserts the vote request again in the priority queue

(remember that it was removed when the Client issued its vote), sets its vote to

nil and exits the rescind state. At this point the rescission has been successful,

and the voting process will vote for the oldest Client in the queue.

Fig. 4.5. Process that models how Clients treat messages received at the commIn port.

The behavior of the Database component is only composed of one process, shown

in Fig. 4.6. The Database carries out a random amount of iterations in an empty loop

every time it receives a message to simulate CPU work, and then replies with the

corresponding acknowledgement. The readAck message contains a random number

of bytes that simulate the retrieval of some information from the Database.
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Fig. 4.6. Process modeling the Database behavior.

Finally, the process that manages Clients’ txIn port is depicted in Fig. 4.7. When

a writeAck message is received the Client broadcasts a release message allowing

new votes to be issued to another Client, sets its number of votes to zero, and resets

the writing and working states to end the writing action. If a readAck is received,

then the Client resets the working state to end the read action.

Fig. 4.7. Process that models how Clients treat messages received at the txIn port.

All processes run concurrently within each system component, and all commu-

nication is asynchronous. However, MEDEA guarantees that messages received at

the same port are processed one at a time. Additionally, we force some actions to be

performed in a mutually exclusive manner. For example, in the process in Fig. 4.7,

the sending of the release message, and the state updates are performed atomically

to avoid race conditions such as processing a rescission in between. Note how the

liveness of the SDS is guaranteed since, eventually, the oldest vote request will achieve

a majority of the votes, and outdated vote and rescind messages are always replied

with a release message that frees the vote issuer.
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4.2.2 Modeling Anomalous Behaviors

The behavior of the SDS is complex enough to allow the introduction of several anoma-

lous behaviors. The SDS behavior follows the global behavior scheme described in

Chapter 3, that is, a distributed system with a well-defined global behavior. More

precisely, we model five types of anomalies: deadlock, livelock, unwanted synchro-

nization, memory leak, and starvation. We introduce a new Client state per each of the

anomalies, and modify certain processes to generate the desired behavior. Anomalies

can then be activated and deactivated by setting Clients in the desired state. The way

in which the SDS reproduces the anomalous behaviors is described in the following.

Deadlock This anomaly is achieved by forcing the priority queue to return a random

vote request instead of the oldest one, and not allowing rescissions. This ensures that

votes are distributed among all requesting Clients, preventing any of them to reach the

majority. Deadlock is implemented to only affect access to one of the Databases. This

means that, since Clients perform actions at random, the SDS could keep progressing

under the right conditions. However, as soon as two Clients try to access the affected

Database at the same time, the probability of deadlock occurring is high. Moreover,

once the affected Database enters a deadlocked state, the whole system rapidly shuts

down as Clients progressively try to access it.

Livelock This anomaly is achieved by forcing the priority queue to return a random

vote request instead of the oldest one, and letting Clients to rescind their vote. This

creates an endless loop of rescissions since Clients are unable to vote for the correct

requester. Like deadlock, livelock only affects one of the Databases, and due to

the randomness of the voting process, Clients are able to obtain write access in rare

occasions. Even so, like in deadlock, the whole system rapidly degrades when all

Clients end up trying to access the livelocked Database.
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Unwanted synchronization This anomaly is recreated by forcing all Clients to

request write access to the same Databases, one after the other. In addition to this,

a limit is added to the number of requests that can be stored. Clients start by re-

questing write access to one of the Databases. This causes manager Clients for this

Database to receive a number of vote requests. When the limit of requests is reached,

manager Clients simulate an overloading by sending a new type of message to vote

requesters, the reject message. When a requester Client receives a reject message,

it broadcasts a release message, and requests access to another Database, which is

the same for all Clients. This produces periodic bursts of requests from one Database

to another as long as the synchronization is active. Contrary to deadlock and livelock,

this anomaly affects the whole system since the beginning.

Starvation This anomalous behavior is achieved by forcing Clients to ignore vote

requests from one of the Clients. In this manner, the affected Client is unable to

achieve the majority and starves.

Memory leak This anomaly is created by making one of the Clients to periodically

allocate an increasing amount of memory until a maximum value close to the total

available system memory. This anomaly does not fit into the definition of complex

anomalous behavior. Nevertheless, we include it due to its prevalence in many software

systems.

4.2.3 Testbed

We run the SDS in a testbed consisting of six nodes, each composed of two Intel Xeon

Dual Core 2.33GHz processors, 4GB of memory, and 73GB of disk space. The nodes

run CentOS 6.5 as operating system, and the system deployment and execution is

driven by Jenkins [93]. One of the nodes runs the logging system and the remaining five

run the system components. In our experiments, we deploy 20 of these components:
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17 Clients and 3 Databases. Each Database is deployed in a different node and Clients

are uniformly distributed, resulting in each node running four components.

As said before, MEDEA allows the collection of several performance metrics per

node. These are: total CPU utilization, utilization of each core (four per node), disk

utilization per each partition, and memory utilization. In addition to these metrics, the

SDS logs other kinds of information, such as messages sent and received by every

component. Using this data, we extract network utilization (in and out) per node, and

the number of messages sent per Client. Network utilization is essential to fully model

the behavior of the SDS as it implements a distributed mutual exclusion protocol,

and thus relies heavily on component interactions. We also include messages sent

per Client to be able to capture the starvation anomaly. In the same manner, other

application metrics, such as the number of Clients contacted or the number of writes

performed, can be extracted. In total we monitor 60 hardware metrics (including

network utilization), and 17 application metrics. The monitoring frequency is once per

second for all metrics.

4.3 Behavior Characterization

As detailed in Chapter 3, in order to detect anomalies, our framework builds a be-

havioral model from the monitored performance metrics. Understanding how system

metrics change in response to anomalies is useful to improve the construction of this

model. Fig. 4.8 shows two hundred seconds of the hardware metrics of one of the

nodes when the SDS is in normal operation. The behavior of a node is the combination

of the behaviors of all the components running in that node, which is four per node

in our case. This makes the behavior of the nodes to be very similar to each other.

It can be seen that CPU and network utilization are the metrics that provide more

information. However, it is important to include as many metrics as possible in the

analysis since anomalous behaviors are unpredictable, and can have an impact on



4.3 Behavior Characterization 77

0 200

0

1
Memory

0 200

0

1
CPU

0 200

0

1200

b
y
te
s

Network In

0 200

0

1200

b
y
te
s

Network Out

0 200

0

1
Core 1

0 200

0

1
Core 2

0 200

0

1
Core 3

0 200

0

1
Core 4

0 200

0

1
Disk 1

0 200
time (s)

0

1
Disk 2

0 200
time (s)

0

1
Disk 3

0 200
time (s)

0

1
Disk 4

Fig. 4.8. Hardware metrics collected from one of the nodes in a time span of two
hundred seconds with the SDS running in normal mode.

any of the metrics. For example, even though memory utilization does not seem very

informative, it becomes crucial in the presence of a memory leak.

Fig. 4.9 shows two hundred seconds of memory, CPU and network utilization of

one of the nodes right after the SDS deadlocks. At the beginning the system seems to

behave normally, however, around one hundred seconds after deadlock is activated,

both network input and output suffer a complete drop in activity. This is because

Clients enter deadlock progressively when they try to write to the affected Database,

as explained in Section 4.2.2.

Fig. 4.10 depicts the same metrics immediately after a livelock is activated. Similar

to deadlock, we see a significant drop in network utilization after around 100 seconds.

Network input seems to remain active for a longer period, possibly due to Clients still

writing or reading to a Database not affected by the anomaly. In this case, Clients keep

exchanging votes and rescissions between them, and some network activity remains.
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Fig. 4.9. Hardware metrics collected from one of the nodes in a time span of two
hundred seconds with the SDS running in deadlock mode.
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Fig. 4.10. Hardware metrics collected from one of the nodes in a time span of two
hundred seconds with the SDS running in livelock mode.

Fig. 4.11 shows the hardware metrics of a node during unwanted synchronization.

Again, the most affected metrics are network input and output. In this case, network

input is characterized by short periods of high activity followed by low activity regions.

This is because the depicted node is running one of the Databases, and Clients have

their write requests synchronized.

Fig. 4.12 shows network input of the five nodes running the SDS when unwanted

synchronization is taking place. The nodes running the three Databases are one, four,

and five. This clearly shows how Clients move from one Database to another in groups,

as high activity a nodes matches low activity in the rest. Nodes not running Databases

do not receive as much traffic as the others because Clients are continuously doing

writes.
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Fig. 4.11. Hardware metrics collected from one of the nodes in a time span of two
hundred seconds with the SDS running in synchronization mode.
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Fig. 4.12. Network input of the five nodes running the SDS during an unwanted
synchronization.

Fig. 4.13 shows the metrics of a node affected by a memory leak. This anomaly

has a significant impact on memory utilization, where an increasing trend is generated.

The rest of the metrics remain normal.
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Fig. 4.13. Hardware metrics collected from one of the nodes in a time span of two
hundred seconds during a memory leak.

Starvation does not have a significant impact on the hardware metrics because

there are four components executing concurrently in each node. This is the reason we

also collect the number of messages sent per Client.

Fig. 4.14 shows this metric for four Clients running in the same node right after

the system activates the starvation of Client 3.
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Fig. 4.14. Messages sent per Client right after the SDS enters starvation mode.

Observing how different anomalies impact on the system metrics provides insight

on what kind of information a behavior representation needs to include in order to

maximize the chances of detecting anomalies. The observed patterns support the ideas

outlined in Chapter 3 in regards to representing system behavior. On the one hand, it

is clear that most anomalies are characterized by an anomalous sequence of values.

For example, deadlock (Fig. 4.9) is characterized by a downward shift in network
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output (among other conditions). This shift differs from the fluctuations in network

output observed during normal operation (Fig. 4.8) in that the metric remains low

for a certain amount of time. Observing network output at a single time instant does

not provide sufficient information to differentiate deadlock from normal behavior, as

network output can occasionally take low values during normal operation as well.

Instead, we require to analyze the system in a time frame to decide whether the metric

has been low for enough time to be considered an anomaly. On the other hand, some

anomalies are characterized by anomalous correlations between several metrics. For

example, during unwanted synchronization there is a significant coupling between the

network input in several nodes. Thus, in order to detect these anomalies, it is necessary

to analyze the metrics as a whole instead of independently.

In addition, the way in which the system metrics deviate from normality is similar

across different types of anomalies. This is because there is a finite number of patterns

that a time series can produce, and these have been extensively studied [94]. For

example, deadlock and starvation produce a similar drop in the metric that each

anomaly affects. A better understanding of these deviations is crucial for building a

behavioral model that enables the detection of previously unseen anomalies, as these

are likely to reproduce the same patterns in the data. These common patterns are [94]:

• Shifts: an abrupt change in the probability distribution of a metric. That is,

an upward or downward shift in mean and standard deviation. Shifts can be

indicative of sudden changes in the system internal operation such as deadlocks,

errors in configuration, malicious activities, or software and hardware failures.

• Trends: or more precisely, changes in trend. Since resources in a computer

system are finite, upward or downward trends cannot reproduce indefinitely, and

must change at some point. Changes in trend can signify resource exhaustion or

system degradation.
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• Seasonality: patterns in the data that repeat at uniform time intervals. The

appearance of a seasonal pattern may imply the presence of an unwanted syn-

chronization or oscillation, whereas changes in seasonality can mean a variation

in the system’s normal behavior, for example, due to network congestion or a

malicious activity.

Shifts, trends and seasonality changes can be produced by anomalies, but can also

be the result of a normal change in the system. For example, upward shifts or trends

can appear due to an increase in user activity. In these cases, it is necessary to analyze

the correlation between multiple metrics.

4.4 Parametric Study

The framework presented in Chapter 3 can be configured with various parameters

to tune the detection accuracy in different scenarios. The Behavior Extractor uses

a window size (denoted z) to control the amount of consecutive readings that form

the feature vectors. The SVM classifiers can be tuned with various variables (or

hyperparameters): γ to control the kernel function, ρ to define the area of the decision

function, η to define the learning rate, λ to give more importance to new vectors, and

ν to control the frequency of anomalous classifications. The Feedback Provider uses a

parameter called Tr to force a training phase at the beginning of the execution, and

another parameter called Gr to define the amount of consecutive anomalous predictions

before raising an alert. Table 4.1 summarizes the different parameters and their ranges.

In this section, we present a parametric study to obtain a better understanding on how

the different configuration parameters affect our framework’s performance.

The most important parameters are the window size (z), the kernel tunning hy-

perparameter (γ), and the hyperparameter that controls the frequency of alerts (ν).

These three parameters directly affect the behavioral representation of the system
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Table 4.1. Summary of the different parameters used to tune our framework.

Component Parameter Purpose Typical Range

Behavior Extractor z Window size ≥ 1

Behavior Identifier

γ Kernel tunning > 0
ν Frequency of alerts (0,1]
η Learning rate (0,1]
ρ Decision function size (0,1]
λ Decay rate [0,1]

Feedback Provider
Tr Training size ≥ 0
Gr Alert grouping ≥ 1

and the decision function that separates the normal and anomalous classes. The ρ

parameter is also important, however, since this parameter is adjusted at run time

(see Chapter 3), it has a lower impact on the final detection accuracy. The other

classifier hyperparameters (η and λ ) control the speed at which new information is

incorporated into the Behavioral Model, and the rate at which old data is “forgotten”.

These hyperparameters can be highly useful in particular scenarios, but their impact

on the detection accuracy is in general lower than other hyperparameters.

Tr and Gr are useful to reduce the number of false positives. Tr allows to in-

corporate normal data to the model at the beginning of the execution, reducing the

number of false positives that can naturally appear when the BM does not contain any

information, and Gr can help to reduce the amount of false alerts in scenarios with

noisy data or where the normal and anomalous classes are very similar.

We generate a set of monitoring data by running the SDS with different settings.

We run the SDS for 50 minutes, and inject one of the anomalous behaviors described

in Section 4.2.2 at minute 20. The anomalous behavior is active for a certain amount

of time, and then the SDS resumes normal operation. We experiment with anomalous

behaviors of 20, 50, 100, 300, and 600 seconds long, and run the SDS 10 times per
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anomaly type and duration, which means a total of 500 executions for the study. In the

rest of this chapter we will refer to this dataset as SDS-Dataset-1.

4.4.1 Framework Deployment

As detailed in Chapter 3, our framework can be deployed in various manners to adapt

to different system requirements. Since the different complex anomalies that the SDS

can reproduce are system-wide behaviors, we employ a global perspective for the

study of the SDS behavior. The deployment setting that our framework employs to

model global system behavior is depicted in Fig. 4.15.

Fig. 4.15. Setting used in global distributed system behavioral analysis.

4.4.2 Experimental Setup

In our experimental analysis we take certain considerations that are worth mentioning.

These are detailed in the following.

Hyperparameters Our framework’s performance highly depends on the parameters

used in the classification process (i.e., γ , ν , ρ , η , and λ ). Choosing the right

parameters in a classifier is a well-known limitation in supervised learning [95] that

typically involves performing a grid search using the training set [84]. This procedure

cannot be applied in our case, as our framework operates in a completely online

manner, and it does not rely on historical data. Instead, we reduce the size of the search

space by setting ρ , η , and λ to predefined values. In doing this we might be using

suboptimal values and the results obtained become a lower bound on our framework’s

performance. In the case of the one-class classifier, we set ρ = 0.5 and η = 1√
t , where
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t is the number of classified vectors. In the case of the binary classifier we use the

same function for η , and set ρ = 0 and λ = 1. Regarding γ and ν , we experiment with

several values and present the best results obtained.

Evaluation Time We configure our framework to ignore the first zmax−z+(Trmax−

Tr) seconds of execution, where zmax and Trmax are the maximum window size and

Tr values used across all the parametric study. This is done to be able to compare

the results when using different parameter combinations, since using a higher Tr or z

results in less vectors being classified, and therefore, less probability of getting false

alarms. In this manner, the amount of execution time used to evaluate our framework

is the same in all experiments regardless of the parameters used.

Feedback Feedback is given automatically every time that alerts are raised, and as

long as the Feedback Provider remains in the Alert state (see Chapter 3).

Performance Metrics Network utilization exhibits a lot of variance, and can mask

anomalies that have an impact on other metrics, such as memory leak and starvation. In

the experiments, we remove network utilization from the analysis when detecting these

two anomalies. This permits an unbiased comparison between the performance of our

framework when dealing with different anomalous patterns in the system metrics.

Evaluation Metrics Our framework’s objective is to alert the system administrator

as soon as possible after anomalies appear, but also to produce the minimum possible

number of false alarms, since inspecting them is very time consuming. The typical

evaluation metrics employed in anomaly detection [39], which are true positive rate

(TPR) and false positive rate (FPR) with respect to the vector classifications are not

very informative in our case. For example, in a run of 50 minutes long from which

20 seconds are anomalous and 2980 seconds are normal, generating 10 false positives

yields a FPR of 2970
2980 ≈ 0.003, which could be interpreted as a good result. However,
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investigating 10 false alarms in 50 minutes is unacceptable in a real world scenario. For

this reason we employ TPR (or Recall) and Precision, and define them with respect to

the number of anomalies instead of the classified vectors, that is,

Recall =
detected anomalies

total number of anomalies

Precision =
detected anomalies

total number of alerts
,

(4.1)

where we consider an anomaly as detected if at least one alert is raised while the

anomaly is active. Recall evaluates the ability of our framework to detect anomalies,

whereas Precision evaluates the absence of false positives. Both metrics range from

0 to 1, being 1 the optimal value. Note that multiple alerts during the same anomaly

affect Precision negatively. In this manner we penalize random alerts and ensure that

the anomaly is being truly detected. Additionally, in some experiments we also provide

the detection time (DT), which is the time from the appearance of an anomaly until it

is detected, and the F-score (F1), which is the harmonic mean of Recall and Precision:

F1 = 2 · Recall ·Precision
Recall +Precision

. (4.2)

4.4.3 Features

We employ four features to represent behavior in the parametric study: mean (ME),

standard deviation (SD), skewness (SK), and kurtosis (KU). Given a sequence of

readings {ri|1 ≤ i ≤ z} where z is the sliding window size, the features are defined

as [79]

ME =
∑z

i=1 ri

z
(4.3)

SD =

s
∑z

i=1(ri −ME)2

z
(4.4)
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SK =
∑z

i=1(ri −ME)3

z ·SD3 (4.5)

KU =
∑z

i=1(ri −ME)4

z ·SD4 −3 . (4.6)

These features provide a good representation of the probability distribution of the

values in a time series. Mean gives the peak of the distribution, standard deviation the

spread of values, and skewness and kurtosis measure the asymmetry and tail of the

distribution respectively.

4.4.4 Initial Training

We want to know how beneficial is including a short training phase at the beginning

of the execution. In some scenarios we can assume that a system runs normally for

a short period of time at the beginning or, alternatively, we can closely monitor the

system to ensure that no anomalies occur for a time period. Our framework can be set

in train mode to avoid getting the false alarms that naturally occur at the beginning of

the execution due to the behavioral model being empty. In these experiments, we use

the 50 minutes runs containing an anomalous behavior between minutes 20 and 30,

and employ different Tr values. The window size is set to 128 seconds, and Gr is set

to 1.

Fig. 4.16 shows mean Recall and Precision over 10 runs per anomaly type using

different Tr values. When Tr is 0 none of the anomalies is detected. This is because

we set ρ to an arbitrary value, and the one-class classifier does not receive enough

vectors to converge to a meaningful decision function. Even so, with Tr = 10, the

one-class classifier has enough vectors to build the decision function, and is able to

detect deadlock, livelock, and unwanted synchronization. For these three anomalies,

results are improved slightly as Tr increases, reaching 1.00 Recall with Precision of

0.76, 1.00 and 0.95 respectively at Tr = 600. In the case of the memory leak and

starvation anomalies, Recall remains high in several cases, however, low Precision
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indicates that the anomalies are detected just because a high number of alerts increases

the probability of one of them being raised during the anomalous part of the execution.

In other words, the detection is accidental. In the next sections we will analyze the

reasons behind the poor results obtained with these two anomalies.
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Fig. 4.16. Mean Recall and Precision obtained using different Tr values. Anomaly
duration is 10 minutes, z = 128, and Gr = 1.

It is clear that the more information provided in the training phase, the better the

results obtained. If the initial training period is shorter, the classifier obtains new

information through false alarms, thus reducing Precision. However, as the behavioral

model converges to an optimal representation of the system behavior, false alarms

become less common, and our framework is able to achieve a good detection accuracy.
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4.4.5 Alert Grouping

Through a second set of experiments, we want to know if false positives can be reduced

by only raising alerts after a certain number of consecutive anomalous predictions have

been found, and how this alert grouping affects our framework’s detection time. We

use a window of 128 seconds long, Tr = 200, and experiment with several Gr values.
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(e) Starvation

Fig. 4.17. Mean Recall, Precision and DT obtained using different Gr values.
Anomaly duration is 10 minutes, z = 128, and Tr = 200.

Fig. 4.17 shows mean Recall, Precision, and detection time (DT) obtained in the

monitoring data with 10 minute anomalies. Increasing Gr clearly decreases the number

of false alarms, resulting in higher Precision. In the synchronization case, higher Gr

values also increase Recall. This could be due to less noisy data being incorporated

into the behavioral model, making the detection of the anomalous behavior easier.
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From Gr = 1 to Gr = 200, Precision improves by 64% in the deadlock case; by 34%

in the livelock case; and by 71% in the synchronization case. Even though there is

an improvement in memory leak and starvation as well, it is not significant as these

anomalies are not being correctly detected. The drawback of high Gr values is an

increase in detection time that goes from less than 100 seconds with Gr = 1 to more

than 300 seconds in some cases with Gr = 200. Considering these results, the optimal

Gr value is likely to be between 10 and 50 in most cases. However, higher values

could be used in very noisy scenarios or when detection time is not critical.

4.4.6 Window Size

In a final set of experiments we analyze how window size affects our framework’s

performance. We set Tr = 200 and Gr = 1, and experiment with different window

sizes and anomaly durations. Fig. 4.18 and Fig. 4.19 present mean F-score and

DT respectively obtained with different combinations of window size and anomaly

durations.

Fig. 4.18 shows that longer anomalies are detected more easily. In the case of

deadlock and livelock (Fig. 4.18a and Fig. 4.18b), this is because it takes around 100

seconds for the anomalies to have a noticeable impact on the system metrics (see

Section 4.3). Deadlocks and livelocks of 100 seconds or less do not differ enough

from normal behavior when looking at the metrics. Something similar happens in the

case of unwanted synchronization (Fig. 4.18c). It takes more than 50 seconds to be

able to completely observe the anomalous pattern in the system metrics. This prevents

our classifier to correctly detect the anomalies as these cannot be differentiated from

normal behavior.

Longer windows achieve better detection rates overall. This is because of the

combination of the sliding window and the feature extraction processes. Vectors

generated in this way are equivalent to computing a rolling function that acts as
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(e) Starvation

Fig. 4.18. Mean F-score for different combinations of window size and anomaly
duration (Tr = 200 and Gr = 1).

a noise filter. The longer the window, the smoother the resulting function. This

is relevant when dealing with system metrics with high variance such as network

utilization, as local changes are filtered out while preserving the global trends of

the data. Moreover, longer windows do not prevent our framework from detecting

short anomalies. For example, in the 100 seconds deadlock (Fig. 4.18a), a window of

256 seconds obtains better results than windows of 64 seconds or less, even though
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using a 256 second window means that fewer than 50% of the feature vector contains

anomalous readings at best. This suggests that filtering local changes with larger

windows is more beneficial than a higher proportion of anomalous readings in the

feature vector. In addition, Fig. 4.19 reveals that detection time is not highly affected

by the window size. Therefore, the optimal window size is between 128 and 512

seconds.
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Fig. 4.19. Mean detection time in seconds for different combinations of window size
and anomaly duration (Tr = 200 and Gr = 1).
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Windows of 1 second long perform poorly in most cases. This is consistent with the

idea that analyzing the system over a time period is essential to detect most anomalous

behaviors. The exception to this is the memory leak case (Fig. 4.18d), where using

a window of size 1 seems to work much better than larger windows. This is because

memory leak generates a smooth trend in memory utilization, and a window of size 1 is

equivalent to obtaining the utilized memory at a time instant. Since in the memory leak

case we remove network utilization from the analysis, our framework is able to detect

the memory leak by setting a simple threshold. This, however, would not be useful

in a real scenario where we are interested in detecting multiple types of anomalies,

and where memory usage can increase due to other reasons (e.g., an increase in user

requests).

The results obtained in the memory leak case suggest that the anomaly is not

being detected when using windows of more than 1 second long because of how the

behavior is represented. Probably, a different combination of features would yield

much better results. The reason behind the bad results obtained in the starvation

case (Fig. 4.18e) can be an improper choice of features, or the characteristics of the

application metrics. It is possible that the difference between normal and anomalous

behaviors when looking at messages sent per Client is not significant enough to trigger

the anomaly detection. The use of other features to improve the detection of certain

anomalies will be explored in the next sections.

Finally, Fig. 4.20 shows the F-score obtained when using Tr = 600 and Gr = 20.

Performance improves with respect to the previous setting, but the general trends

remain. That is, longer windows are able to capture the behavior of the system better

because are less sensitive to local changes.
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(b) Livelock
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(e) Starvation

Fig. 4.20. Mean F-score for different combinations of window size and anomaly
duration (Tr = 600 and Gr = 20).

4.4.7 Optimal Parameters

Table 4.2 summarizes the results obtained in the parametric study by presenting the

parameters that maximize our framework’s anomaly detection performance when ana-

lyzing data from the SDS. These optimal parameters are system dependent (especially

γ and ν). However, we have seen that large window sizes work better than short

window sizes in general. This is likely to hold for most systems because the window
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Table 4.2. Optimal parameter values.

Parameter Optimal Range

γ (10−3,10−2)

ν (0.1,0.4)
Tr [100,600]
Gr [10,50]
z [64,512]

size affects the way our framework computes the similarity between time series, and it

is independent from the system under study, the monitored metrics or the monitoring

rate.

Additionally, the parametric study has shown that Gr values between 10 and 50 can

improve our framework’s performance without increasing the detection time. This is

also independent from the system being analyzed because Gr affects the classification

process but not the way system behavior is characterized.

Finally, Tr should be set to the maximum possible value, since more training data

typically produces better results. Nevertheless, the parametric study has shown that

between 100 and 600 Behavior Instances are enough for our framework to produce

acceptable results.

The best overall results are obtained with Tr = 100, Gr = 50, and z = 512. These

results are presented in Table 4.3. We can see that deadlock, livelock and synchro-

nization are detected with high accuracy, while starvation and memory leak obtain

worse results. This is due to the proportion of performance metrics that the different

anomalies affect. Deadlock, livelock and synchronization affect two metrics per node,

whereas starvation and memory leak only affect one metric in one node.
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Table 4.3. Results obtained when using the best overall parameters (Tr = 100, Gr = 50,
and z = 512).

Anomaly Recall Precision DT (s)

Deadlock 1.00 0.90 76
Livelock 1.00 0.95 83

Synchronization 1.00 0.93 92
Memory Leak 1.00 0.54 108

Starvation 1.00 0.42 13

4.5 Summary

In this chapter, we have employed a synthetic distributed system to perform an ex-

tensive study on complex anomalous behaviors, and how these affect the system

performance metrics. In addition to this, we have employed monitoring data extracted

from this synthetic system to carry out a parametric study on the framework presented

in Chapter 3. By means of this study, we have gained insight on how various parameters

affect our framework’s ability to detect several complex anomalous behaviors.

By knowing the range of parameter values that maximize detection performance,

we can employ our framework in different scenarios in a more effective manner. We

have found that larger Tr values result in less false positives, but a Tr of 10 is enough

to obtain a meaningful decision function that can detect many of the anomalies. Larger

Gr values produce better detection results in general, at the cost of increasing the

detection time. A Gr value between 10 and 50 results in the best balance between

detection accuracy and time. Finally, we have found that longer window sizes produce

better detection results because of the smoothing effect that this has on the monitoring

data. Moreover, longer window sizes do not seem to have a negative impact on the

detection time.

The results obtained prove that our framework is able to detect previously unseen

complex anomalous behaviors with high accuracy. More precisely, when using the
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optimal parameters, our framework achieves 1.00 mean Recall, 0.75 mean Precision,

and detection time below 100 observations.

In Chapter 5, we present a feature selection process that further explores how

different behavior representations impact on our framework’s performance.



Chapter 5

Feature Selection for Anomaly

Detection and Identification

Black box anomaly detection is based on the detection of anomalous patterns in

system metrics represented as time series. As mentioned in Chapter 4, there are three

main patterns that can appear in the system performance metrics in the presence of

anomalies: shifts, trends, and seasonality. Pattern changes in time series are also

referred to as change points. Therefore, black box anomaly detection is closely related

to change point detection in time series.

So far, we have employed four first order features to model the system metrics

and to detect the different anomalous patterns that can appear. These features are

mean, standard deviation, skewness and kurtosis (see Chapter 4). However, there

are numerous other features that can be employed in the feature vector generation

process [96], which might better to represent certain patterns, thus improving our

framework’s detection accuracy.

Additionally, anomaly identification is highly relevant for fault tolerance, as it

allows system administrators to find the root causes of errors easily. Thus, in this

chapter, we employ a publicly available dataset by Yahoo! [50] to evaluate the perfor-

mance of our framework in the detection of change point anomalies. We analyze our
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framework’s ability to identify the type of the different complex anomalous behaviors

generated by our synthetic distributed system, and we present a comprehensive feature

selection analysis to better understand how the feature extraction process influences our

framework detection and identification performances. In this analysis we experiment

with a variety of features that can capture different anomalous patterns in the system

performance metrics.

5.1 Detecting Change Point Anomalies

In this section, we evaluate our framework’s performance when detecting change

point anomalies in time series. Change point anomalies are sudden changes in the

distribution of values in a time series, which typically means a change in trend or

seasonality. Being able to detect change point anomalies is relevant for our study, as

most anomalous behaviors in distributed systems produce change points in the system

metrics (see Chapter 4).

In these experiments we employ the Yahoo! Webscope labeled anomaly detection

dataset [50]. This dataset is a publicly available dataset composed of real and synthetic

time series. The real time series come from several Yahoo! services, whereas the

synthetic data consists of 100 time series with varying trend, noise, and seasonality.

We run our experiments using the synthetic data because the real time series do not

contain change point anomalies.

Each of the 100 synthetic time series is composed of 1,681 data points, and have

anomalies at random timestamps. We split these time series in smaller sections, and

group these sections together to simulate the behavior of a distributed system from

which several performance metrics are collected. We generate 1,320 groups of 65 time

series of 150 data points long. Within each group, a random number (from 1 to 25)

of time series contain an anomaly from timestamp 100 to the end of the time series.

Each group of time series can be seen as the behavior of a system from which 65
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performance metrics are collected. The first 100 data points are considered the normal

behavior of the system, and the remaining 50 data points are considered anomalous.

In the rest of this chapter, we will refer to this dataset as Yahoo-Dataset.

Fig. 5.1 depicts nine time series from one of the groups. The first three time series

contain a change point anomaly at timestamp 100, and the rest of the time series are

normal. Some of the time series also contain point anomalies, that is, an anomalous

reading at a single data point. An example is the circled value at timestamp 43 in the

last of the time series. However, we do not focus on detecting these kind of anomalies,

as we are more interested in complex anomalous behaviors. Even though only three

time series contain a change point anomaly, we consider the whole set of 65 time

series as an anomalous behavior from timestamp 100 until the end.

In these experiments, we employ the same set of features and classifier parameters

as in the parametric study presented in Chapter 4. Additionally, we use Gr = 10,

Tr = 50, and three window sizes: 8, 16, and 32 data points.
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Fig. 5.1. Subgroup of time series from one of the sets generated from the Yahoo! data.
The first three time series contain a change point anomaly at timestamp 100.
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5.1.1 Results

Fig. 5.2 shows mean Recall and Precision obtained in the 1,320 groups of time series,

plotted by number of anomalous time series in the group. Performance improves as

the number of anomalous time series increases. The minimum number of anomalous

time series to achieve an acceptable performance is 7, which represents around 10% of

the data. Even so, in some cases good performance is achieved with only 3 or 4 time

series containing a change point (Fig. 5.2b and Fig. 5.2c).
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(c) Window Size = 32

Fig. 5.2. Mean Recall and Precision obtained in the Yahoo! dataset for a varying
number of anomalous time series (Gr = 10 and Tr = 50).
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The best window size in this case is 32, however, window size does not seem

to be as important as in the experiments presented in Chapter 4 with the SDS data.

This can be due to the fact that a window of 8 data points is enough to capture the

characteristics of the time series in this case, and to differentiate from normal and

anomalous behaviors.

5.2 Identifying Anomaly Types

In this section we evaluate our framework’s ability to identify the type of the different

anomalous behaviors. This can help debugging, as it allows to identify the root cause

of the anomalies easier.

In these experiments we employ a set of SDS monitoring data with four anomalies

per run. We run the SDS for 200 minutes and inject four 10 minute anomalies at

minutes 20, 70, 120, and 170. Let t1, t2, t3, and t4 be the type of the four anomalies,

the first two anomalies are of different types in all runs (i.e., t1 ̸= t2). Then, we

perform 10 runs where t1 = t3 and t2 = t4, and 10 runs where t1 = t4 and t2 = t3. We

do this for every combination of anomalies, obtaining 200 runs in total. For example,

given deadlock and livelock, we perform 10 runs where the order of the anomalies is

deadlock-livelock-deadlock-livelock; and 10 runs where the order of the anomalies is

deadlock-livelock-livelock-deadlock. In the rest of this chapter, we will refer to this

dataset as SDS-Dataset-2.

5.2.1 Experimental Setup

As said before, the SDS runs for 200 minutes with anomalies at minutes 20, 70, 120

and 170. We train our framework with the first 100 minutes of execution, including

the two first anomalies (i.e., Tr = 6000), and evaluate the identification performance

in the second half of the execution.
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We use Gr = 20, and the same features and classifier parameter values used

in Chapter 4. Feedback is also provided automatically after alerts and when the

framework is in the Alert state. Finally, in these experiments, we include all the system

metrics in the analysis, regardless of the anomaly being detected.

5.2.2 Evaluation Metrics

We employ a confusion matrix to evaluate our framework’s performance of identifying

anomaly types. Given two anomalies of types t and t ′, the element Ctt ′ of the confusion

matrix C is the ratio between the number of times that t has been classified as t ′ and

the number of times that t has been detected. In a perfect scenario, Ctt ′ would be 1 for

t = t ′ and 0 for t ̸= t ′.

5.2.3 Results

Tables 5.1, 5.2, and 5.3 show the confusion matrix obtained when using windows of

64, 128 and 256 seconds respectively. The scores are the mean over the 20 runs per

anomaly pair.

All the anomalies except starvation are correctly identified in the majority of cases.

This can be seen in the diagonal of the matrices. We also see that window size does not

have a significant impact on the identification of the anomalies, as long as the window

is long enough to allow detection.

Table 5.1. Confusion matrix using a window of 64 seconds.

Deadlock Livelock Synch. Mem. Leak Starvation

Deadlock 0.68 0.24 0.08 0.00 0.00
Livelock 0.05 0.66 0.25 0.04 0.00
Synch. 0.13 0.02 0.84 0.00 0.01

Mem. Leak 0.03 0.03 0.21 0.66 0.07
Starvation 0.00 0.00 0.00 1.00 0.00
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Table 5.2. Confusion matrix using a window of 128 seconds.

Deadlock Livelock Synch. Mem. Leak Starvation

Deadlock 0.63 0.23 0.09 0.00 0.05
Livelock 0.07 0.57 0.26 0.10 0.00
Synch. 0.20 0.05 0.71 0.02 0.02

Mem. Leak 0.20 0.04 0.16 0.52 0.08
Starvation 0.00 0.00 0.00 0.50 0.50

Table 5.3. Confusion matrix using a window of 256 seconds.

Deadlock Livelock Synch. Mem. Leak Starvation

Deadlock 0.70 0.23 0.03 0.02 0.03
Livelock 0.07 0.53 0.28 0.10 0.02
Synch. 0.14 0.08 0.75 0.02 0.01

Mem. Leak 0.11 0.00 0.05 0.68 0.16
Starvation 0.00 0.00 0.00 0.67 0.33

Deadlock is mostly confused with livelock, however, livelock is mostly confused

with unwanted synchronization, and unwanted synchronization is confused with dead-

lock. This suggests that our classifier is slightly biased towards the last anomaly

observed. In the runs containing deadlock and livelock, the anomaly injected at minute

50 is always livelock even when the anomalies at minutes 70 and 170 are swapped.

The anomaly at minute 50 is the second anomaly used to train the classifier (the first

being at minute 20), and the type of this anomaly obtains higher scores in the confusion

tables. Despite of this bias the identification performance is over 0.6 in most cases.

Starvation is misclassified as memory leak in many cases because both anomalies

are very similar from the point of view of network and CPU utilization, which are the

system metrics that have a higher influence in the classification process. Moreover,

our framework is unable to detect starvation in many cases due to the low impact

that the anomaly has on the system performance metrics, and in the runs containing
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both anomalies, memory leak is injected at minute 50, producing a bias towards this

anomalous behavior.

5.3 A Comprehensive Feature Selection Analysis

As seen in Chapter 4, especially in the case of memory leak, the way system behavior is

represented is crucial for the detection and identification of anomalies. Our framework

represents behavior as feature vectors (see Chapter 3), which are defined by the window

size and the set of features SF extracted from the system metrics. In this section we

explore how different features affect our framework’s performance.

In these experiments we employ the SDS-Dataset-2, the Yahoo-Dataset, and

another set of monitoring data consisting of 10 runs per anomaly type of 100 minutes

long, where the same 10 minute anomaly is injected twice (at minutes 30 and 80). We

experiment with deadlock, livelock, unwanted synchronization, and memory leak. We

will refer to this dataset as SDS-Dataset-3. In this case, we do not use the starvation

anomaly because the impact that it has on the system metrics is not significant enough

to allow its detection.

5.3.1 Experimental Setup

With the anomaly detection dataset we use the same setup as in the parametric study

presented in Chapter 4, whereas with the anomaly identification dataset we use the

same setup as in the anomaly identification section (Section 5.2).

5.3.2 Evaluation Metrics

Apart from the metrics used in previous experiments, we redefine Recall and Precision

in respect to the number of correct identifications to evaluate the performance of

different features in identifying the anomaly types. That is, given an anomaly of type t,
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we define

Recallt =
number of times t is correctly identified

number of times t is detected

Precisiont =
number of times t is correctly identified

number of times an anomaly is identified as t
.

(5.1)

These two metrics and the corresponding F-score (i.e., their harmonic mean) give

an idea of how well an anomaly type is identified, and how often an anomaly type is

confused with others.

5.3.3 Features

A feature is any relevant information that represents a characteristic of a time series.

There is a large amount of features that can be extracted from time series [96]. For

example, statistical features such as mean or standard deviation represent certain

properties of the probability distribution of the values in the series. Applying certain

transformations to a time series can also be used to obtain new knowledge. For

example, the autocorrelation function [54] reveals periodic patterns in the data. Other

techniques that can be used to extract features from time series are frequency domain

transformations such as the discrete Fourier transform (DFT) or the discrete wavelet

transform (DWT) [97]; regression models [98]; time series analysis models such as

the autoregressive integrated moving average model (ARIMA) [53, 54]; and chaotic

analysis functions such as the Lyapunov exponent [99].

In our experiments, we employ 17 features to capture the different patterns that

anomalous behaviors produce in the system metrics, that is, shifts, trends and season-

ality (see Chapter 4). The employed features are summarized in the following.
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First Order Features

First order features are the statistical features employed in the parametric study in

Chapter 4, that is, mean (ME), standard deviation (SD), skewness (SK), and kurtosis

(KU) [79]. These features, defined in Chapter 4, are essential to represent the un-

derlying distribution of values in a time series, and can help especially in detecting

shifts.

Second Order Features

Second order features are co-occurence features typically employed in image process-

ing that have been adapted to find similarities between time series [79]. Second order

features include energy (EG), entropy (EP), correlation (CO), inertia (IN), and local

homogeneity (LH). To compute these features, the data is first quantized into q levels,

that is, data points in the time series are mapped to a finite number of predefined values.

Then, a matrix D is computed where Di j, for 1 ≤ i, j ≤ q, contains the number of times

a data point with level i in the quantized series is followed, at a distance d, by a data

point with level j. Using this matrix, second order features are defined as

EG =
q

∑
i=1

q

∑
j=1

(Di j)
2 , (5.2)

EP =
q

∑
i=1

q

∑
j=1

Di j · log(Di j) , (5.3)

IN =
q

∑
i=1

q

∑
j=1

(i− j)2Di j , (5.4)

LH =
q

∑
i=1

q

∑
j=1

1
1+(i− j)2 Di j , (5.5)

and

CO =
q

∑
i=1

q

∑
j=1

(i−µx)( j−µy)Di j

σxσy
, (5.6)
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where

µx =
∑q

i=1 i∑q
j=1 Di j

q
, (5.7)

µx =
∑q

j=1 j ∑q
i=1 Di j

q
, (5.8)

σx =

s
∑q

i=1(i−µx)2 ∑q
j=1 Di j

q
, (5.9)

and

σx =

s
∑q

j=1( j−µy)2 ∑q
i=1 Di j

q
. (5.10)

Second order features give information about the distribution of close values in

a time series. Thus, they can be used in detecting shifts and periodic patterns. In the

experiments, we employ d = 1 and q = 10.

Linear Regression

One of the simplest regression models that can be applied to a time series is the linear

regression model [98]. This model consists in fitting a line to the data typically by

minimizing the difference between the values in the series and a value in the fitted line.

The fitted line takes the form y = β0 +β1x, where β0 is the y-intercept, and β1 is

the slope. We fit a linear model to the time series and extract five features: β0 (B0), β1

(B1), the standard error of β0 (S0), the standard error of β1 (S1), and the coefficient of

determination (R2), defined as

R2 =
∑n

i=1(yi −µ)2

∑n
i=1(xi −µ)2 , (5.11)

for a sequence of values x1, ...,xn, where

µ =
1
n

n

∑
i=1

xi . (5.12)
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The coefficient of determination is a measure of how well the model fits the actual

data. These regression features are useful to reveal trend changes in the data.

Discrete Fourier Transform

The discrete fourier transform (DFT) converts a sequence of values to the frequency

domain. The DFT is widely used in signal processing, but has also been employed to

find similarities in time series [100]. Given a sequence of values x0, ...,xn, the DFT

produces a transformed sequence of complex numbers c0, ...,cn. From this sequence,

we can obtain a sequence of real numbers by computing the absolute value as

|c|=
q

[Re(c)]2 +[Im(c)]2 , (5.13)

where Re(c) and Im(c) are the real and imaginary parts of c respectively.

When values in the original sequence are real numbers, the transformed sequence

is symmetric, that is, |ci| = |cn−i| for 0 ≤ i < n
2 . Thus, we can use only the first n

2

transformed values.

The initial values of the transformed sequence represent low frequencies, whereas

the last values of the sequence represent high frequencies. There has been some

discussion in the literature as to which frequencies of the transform provide better

information in order to find similarities in time series [100]. In our case, we experiment

with both by extracting two features from the transformed sequence:

FH = |ci| for 0 ≤ i ≤ k
4

(5.14)

and

FL = |ci| for
3k
4

≤ i ≤ k , (5.15)

where k = n
2 . In other words, FH and FL are the 25% initial and last values respectively

of the first half of the DFT.
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Since the DFT transforms the data to the frequency domain, it is extremely suited

to discover periodic patterns.

Lyapunov Exponent

The Lyapunov exponent (LE) measures the rate of separation of infinitesimally close

trajectories in dynamical systems [101]. The Lyapunov exponent can be used to

measure how chaotic a time series is. Given a time series xi, ...,xn, LE is defined

as [99]

LE =
1
n

n

∑
i=1

λ (xi,x∗j) , (5.16)

where x∗j is the closest value to xi in the series such that i ̸= j, and

λ (xi,x j) =
1
n

log
|x j+d − xi+d|
|x j − xi|

, (5.17)

where d is a predefined distance.

The Lyapunov exponent therefore measures how much close values in the series

deviate from each other over time. In the experiments we employ d = 0.1z, where z is

the window size.

5.3.4 Anomaly Detection

In a first experiment, we evaluate our framework’s detection performance when using

different features individually. Fig. 5.3 shows mean Recall and Precision obtained

in the SDS-Dataset-3 and the Yahoo-Dataset. With the SDS data we use Gr = 20,

Tr = 400, and windows of 32, 64, 128 and 256 seconds. With the Yahoo! data we use

Gr = 10, Tr = 50, and windows of 8, 16 and 32 data points. Results are averaged over

all window sizes to get a better idea on how well different features perform regardless

of the window employed.
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(e) Yahoo!

Fig. 5.3. Mean Recall and Precision obtained with the different individual features.
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Deadlock is best detected using S1 and LY . S1 obtains a Recall and Precision

of 0.95 and 0.90, whereas LY obtains 0.89 and 0.83. In the case of livelock, also S1

obtains the best results with 0.92 Recall and 0.89 Precision. For synchronization, CO

works best with 0.93 Recall and 0.58 Precision. The memory leak is best detected

with ME and B0. ME obtains 1.00 Recall and 0.95 Precision, and B0 obtains 0.91

Recall and 0.83 Precision. In the case of the Yahoo! anomalies, also ME and B0

obtain the highest performance. ME achieves 1.00 Recall and 0.88 Precision, and B0

achieves 1.00 Recall and 0.94 Precision. S1 and CO are in general better at dealing

with high variance in the system metrics, like network utilization in the deadlock,

livelock, and synchronization cases. Conversely, B0 and ME work better in the cases

where there is not such a great variance in the metrics, like in the memory leak and

Yahoo! anomalies. The features that obtain the highest overall performance are ME

and SD. This is because these two features represent the underlying distribution of

values in the system metrics very well. Regarding FL and FH, both features obtain

similar results, with FL being slightly superior in some cases. Apart from CO, second

order features like EG, IN or LH do not achieve good performance, and the worst

overall features are B1 and R2. It is clear that there is a trade-off between detection

accuracy and the number of anomalies that can be detected. For example, livelock can

be detected with very high accuracy using S1, but ME and SD provide better detection

across different types of anomalies.

We are also interested in knowing if a combination of multiple features can improve

detection accuracy across different types of anomalies. Since evaluating every feature

subset is unfeasible, we perform a simulated annealing search [102], and find that the

set of features with the best overall performance is {CO,ME,B0,S1}. Table 5.4 shows

the mean F-score obtained for this set compared to the F-score of the best individual

feature (ME). The set {CO,ME,B0,S1} sacrifices some performance in detecting

the memory leak to achieve an overall mean improvement of 15% over ME. While
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Table 5.4. Mean detection F-score of the set of features {CO,ME,B0,S1} versus ME.

Anomaly ME {CO,ME,B0,S1} Improvement

Deadlock 0.74 0.91 22%
Livelock 0.69 0.79 14%

Synchronization 0.41 0.65 58%
Mem. Leak 0.97 0.81 -16%

Yahoo! 0.92 0.90 -2%

Mean 0.75 0.81 15%

features S1 and CO reinforce each other in the detection of deadlock, livelock and

synchronization, ME and B0 enable the detection of the memory leak.

Finally, we test the set {CO,ME,B0,S1} in SDS-Dataset-2. Table 5.5 shows

Recall, Precision and detection time averaged over 120 runs with different anomalies.

We use Tr = 400, Gr = 20, and a window of 128 seconds.

Table 5.5. Average Recall, Precision and DT using the set of features
{CO,ME,B0,S1} in the SDS-Dataset-2 (Tr = 400, Gr = 20, z = 128).

Recall Precision DT (s)
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Deadlock 0.99 0.11

0.86 0.19

208 54
Livelock 0.92 0.27 215 59

Synchronization 0.62 0.48 158 43
Memory Leak 0.02 0.15 291 3

It can be seen how deadlock, livelock and synchronization are correctly detected

with high accuracy. The drop in the detection of the memory leak is due to the intro-

duction of network utilization in the analysis. This system metric has so much variance

that it masks the trend in memory usage generated by the memory leak. Precision is

computed overall since false positives cannot be associated with a particular anomaly

in a run containing anomalies of different types. The slight drop in Recall in synchro-

nization when compared with previous experiments, can be explained by the fact that

the classifier parameters that enable the detection of one anomaly with high accuracy

might not allow the detection of other anomalies. In other words, being able to detect
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multiple anomalies in the same run comes at the cost of overall accuracy. Even so, most

anomalies are detected in less than 200 seconds (or obsevations) with high Precision

(0.86). A solution to the memory leak problem would be to have dedicated classifiers

for certain system metrics, the use of different features with different metrics, or the

use of a combination of multiple classifiers with different settings (e.g., several window

sizes).

5.3.5 Anomaly Identification

In a second experiment, we evaluate how different features perform when identifying

anomaly types. We employ SDS-Dataset-2 using the first 100 minutes of execution to

train our framework. We set Gr = 20, Tr = 6000, and z = 128. Fig. 5.4 shows mean

Precisiont and Recallt per anomaly type using different features.

In this case, the results are much more consistent across the different types of

behavior, with LH outperforming the rest of the features in all cases. It seems that

second order features are more useful for identifying the type of the anomalies than for

detecting them, whereas the opposite happens to the linear regression features. This

can be caused by similarities across the different anomalous behaviors, such as low S0

and S1, that make them indistinguishable when using these features.

Next, we run a simulated annealing search to know if the identification perfor-

mance can be improved by combining multiple features. We find that the optimal

set is {LH, IN}, with a slightly better performance than LH. Other sets found in the

simulated annealing process, such as {LH, IN,EP}, can also outperform LH in certain

cases, but using more than these three features always reduces performance. This is

because LH outperforms the rest of the features in all cases. Including IN or EP can

reinforce the identification of anomalies to a certain degree, but adding more features

beyond that only hinders performance. Table 5.6 shows the a comparison of the the

F-score obtained by LH, {LH, IN}, and {LH, IN,EP}.
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(d) Memory Leak

Fig. 5.4. Mean Recallt and Precisiont obtained with the different individual features.
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Table 5.6. Mean identification F-score of the set of features {LH, IN} versus
{LH, IN,EP} and LH.

Anomaly LH {LH, IN,EP} {LH, IN} Improvement over LH

Deadlock 0.77 0.80 0.82 6.1%
Livelock 0.71 0.75 0.75 4.4%

Synchronization 0.78 0.76 0.76 -3.7%
Mem. Leak 0.80 0.76 0.79 -1.3%

Mean 0.77 0.77 0.78 1.4%

Finally, Table 5.7 shows the confusion matrix obtained when using {LH, IN} as the

feature set. Comparing these results with Table 5.2 in Section 5.2 we see that there is a

significant improvement in the identification performance when using {LH, IN}. More

precisely, deadlock, livelock and unwanted synchronization identification improves in

more than 20%, and memory leak identification improves in 68%, going from 0.52 to

0.88.

Table 5.7. Confusion matrix obtained using the feature set {LH, IN} and a window of
128 seconds.

Deadlock Livelock Synch. Mem. Leak

Deadlock 0.77 0.09 0.09 0.06
Livelock 0.07 0.69 0.22 0.02
Synch. 0.04 0.02 0.88 0.05

Mem. Leak 0.06 0.00 0.06 0.88

5.4 Discussion

Experimenting with the Yahoo! data (Section 5.1) showed that, in some cases, the

proportion of anomalous data needs to be greater than ∼10% to allow detection. In

other cases, like memory leak in the SDS-Dataset-3, the anomaly is detected despite

of representing as little as ∼2% of the feature vector. The major factor that hinders the

detection of certain anomalies is the variance of the system metrics. Metrics with high
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variance tend to bias the classification process and can mask anomalies that mainly

affect other metrics with lower variance. Solutions to this problem can be the use

of other types of classifiers, or applying some noise reduction technique to smooth

certain metrics.

In addition, we have seen that an adequate selection of features is essential. One of

the best features for detection in many cases is B0. A reason for this can be that the

y-intercept serves a as measure of trend or the distribution of values (similar to ME)

depending on the case. Nevertheless, different features capture different anomalies,

and even though combining multiple features improves overall performance, it comes

at the cost of some loss in the detection of certain anomalies. Moreover, features that

are useful to detect anomalies differ from features that are useful to identify their type.

The use of multiple behavior representations, employing different sets of features (and

maybe different window sizes), might improve overall detection and identification

rates in scenarios with many different types of anomalies.

In any case, this chapter provides valuable insight on which features to employ

in black box anomaly detection to model system behavior, as the patterns that the

system metrics exhibit under anomalous conditions (i.e., trends, seasonality changes,

and shifts) are likely to be similar even for different systems and architectures. In

this sense, we have found that CO, ME, B0, and S1 are the best features for anomaly

detection, and that LH, IN and other second order features work better for anomaly

identification.

5.5 Summary

In this chapter we have analyzed the performance of the framework presented in

Chapter 3 when detecting change point anomalies, and identifying complex anomalous

behaviors. Moreover, we have carried out a feature selection analysis to discover
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which features capture better the different anomalous patterns that can appear in the

system metrics.

Our results show that our framework is able to detect different types of anomalous

behaviors with 0.65 mean Recall and over 0.80 mean Precision, reaching over 0.90

F-score for certain anomaly types. Moreover, our framework is also able to identify the

type of complex anomalous behaviors with over 0.80 mean accuracy when employing

the adequate features. We found that first order features, such as mean and standard de-

viation, and linear regression features are useful to detect previously unseen anomalies,

whereas second order features are more useful to identify their type.

In the future, a real world dataset should be employed to validate our results, while

other improvements could be added, such as using a different behavioral representation

for detection and identification, combinations of multiple classifiers, or finding a

practical way of choosing the optimal classifier parameters in an online setting.



Chapter 6

Decentralized Anomaly Detection in

Large-Scale Systems

Dependability in large-scale distributed systems is especially challenging due to their

size and complexity. The larger a system is, the higher the probability of errors,

and effective anomaly detection in these systems still remains an open problem, as

demonstrated by numerous recent failure events [14, 103, 104, 105], such as the

cascading failure that forced Southwest Airlines to cancel more than 2,000 flights in

August 2016 [14].

Dependability in large-scale systems is also affected by the decentralized and non-

linear nature of these systems. Key challenges include extremely large computational

and storage requirements, the great variety of behaviors that these systems can display,

and the difficulty in analyzing high dimensional data.

In Chapter 3, we present a system of systems setting that our framework can

employ to deal with particularly large scenarios in a scalable manner. In this chapter

we analyze the problems of anomaly detection in large-scale systems, employ the

decentralized system of systems setting to address this problem in an efficient and

scalable way, and evaluate the performance of the framework presented in Chapter 3

when dealing with a large-scale dataset.
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6.1 Overview

Even though many current distributed systems can be considered large-scale systems,

a precise definition of what constitutes a “large” system is difficult to obtain. Examples

of systems that are undoubtedly large-scale are the data centers maintained by Internet

giants such as Google and Amazon. The exact dimensions of these data centers

are unknown, but reports estimate that each company uses over 2 million servers

to provide their services [44, 45]. This means that a typical data center could be

composed of 50,000 to 80,000 servers. Another example are the supercomputers

appearing at the Top 500 list [106]. The first computer on the November 2016 list

is the Sunway TaihuLight [107], which is composed of almost 50,000 nodes with a

combined amount of over 10 million cores.

Existing works that have addressed the anomaly detection problem specifically for

large-scale distributed systems [30, 35, 39, 43, 66, 108, 109], have experimented with

systems composed of around 300 nodes, and datasets containing from 500 to 30,000

time series. According to these numbers, a system can be considered large-scale

when it is composed of hundreds to tens of thousands of nodes. Nevertheless, there

is a gap between the state of the art in anomaly detection and real world large-scale

deployments. This gap can be explained by the challenges associated with processing

large amounts of information, and the lack of publicly available datasets.

It is clear that detecting anomalies in large-scale computer systems introduces

new challenges. On the one hand, the amount of monitoring data that these systems

can potentially generate is very large. Collecting 60 to 80 performance metrics per

node in a data center of 50,000 servers generates 3 to 4 million readings per unit time.

This establishes enormous storage and computational requirements that need to be

addressed in scalable ways. On the other hand, anomaly detection in high dimensional

data is subject to the curse of dimensionality [110]. That is, as the dimension of

the data increases, the distance between normal and abnormal data items decreases,
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making them indistinguishable from the point of view of a detector. This is because,

when comparing two n-dimensional vectors for a large n, a high number of irrelevant

vector elements can easily mask the differences between the few elements that are

relevant.

In this chapter, we analyze the applicability of the framework described in Chapter 3

to a large-scale scenario. We describe the limitations of our framework in such

scenarios, describe how to overcome these limitations, and evaluate our framework’s

performance. The rest of this chapter is organized as follows: Section 6.2 discusses

the dimensionality problem, Section 6.3 presents our framework decentralized setting,

Section 6.4 describes the large-scale data generation process employed, Section 6.5

shows the experimental analysis, and Section 6.6 concludes the chapter.

6.2 The Curse of Dimensionality

The data dimensionality problem in anomaly detection is especially relevant in large-

scale scenarios since the monitoring data is inevitably high dimensional. It has been

proven that [111]:

lim
n→∞

dmax −dmin

dmin
= 0 , (6.1)

for many distance measures such as the Euclidean distance, where n is the dimension

of the data, and dmax and dmin are the maximum and minimum vector distances

respectively in the n-dimensional space. This implies that differentiating between near

and far elements becomes more difficult as n increases. This is referred to as the curse

of dimensionality.

One of the most typical approaches when dealing with high dimensional data

in anomaly detection is to employ dimensionality reduction techniques before data

processing [109]. A widely used dimensionality reduction technique is principal com-

ponent analysis (PCA) [63]. PCA transforms n-dimensional data to a p-dimensional
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space, where n> p, by combining dimensions in a way that retains the maximum possi-

ble variance. By using PCA in anomaly detection, irrelevant and duplicate information

is removed from the analysis, potentially improving detection rates.

However, dimensionality reduction techniques define the dimensional transfor-

mation based on data available at the training phase. This limits the effectiveness of

these techniques in situations where training data is unavailable or incomplete, such as

in many real world anomaly detection scenarios. For example, PCA might consider

memory utilization irrelevant if it displays a constant value under normal conditions.

However, eliminating memory usage from the analysis prevents the detection of mem-

ory leaks, or other memory related anomalies, in the future. Since our framework

assumes a lack of historical data, we address the data dimensionality problem by

employing a decentralized approach instead.

6.3 A Decentralized Deployment

We address the data dimensionality problem by employing the decentralized system of

systems setting introduced in Chapter 3. This setting, depicted in Fig. 6.1, is useful

in scenarios where the system can be divided into multiple subsystems in terms of

its behavior. However, it can also be used to split the monitoring and analysis of

large-scale systems in order to distribute the computational load, and to ameliorate the

negative effects of high dimensional data.

The setting is composed of several sets of Behavior Extractor, Behavior Identifier

and Feedback Provider, which we will refer to as instances. Each instance monitors a

subset of nodes or system components, and builds a behavior representation of this

subset. If the subset’s behavior representation deviates from what is considered normal

by the instance, an alert is generated. Alerts are collected by the Feedback Aggregator,

which notifies the system administrator if necessary. The simplest approach here

is to forward any alert received, but other techniques can be implemented such as
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Fig. 6.1. Setting employed to analyze distributed systems from a system of systems
perspective.

voting or weighted alerts. Instances are independent from each other, and the only

communication happens between individual instances and the Feedback Aggregator.

This provides a great degree of flexibility and scalability that are highly beneficial in

large-scale systems.

Detection performance when using this decentralized setting depends on the num-

ber of deployed instances and the partitioning of the different subsystems. More

instances implies lower dimensional data per instance. However, it also means a more

localized analysis that might miss system-wide anomalies, or anomalies characterized

by abnormal correlations between components monitored by different instances. Thus,

subsystems should be ideally composed of tightly coupled components to obtain a

complete characterization of each subsystem’s behavior. This division can be achieved

to a certain extent in many large-scale systems as component interaction is not uniform
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across the whole system. That is, subgroups of tightly coupled components can be

typically identified. Nevertheless, in the following sections we analyze the impact

on our framework’s performance of different partitioning strategies under various

anomalous conditions.

6.4 Data Generation

Due to the lack of publicly available datasets, we generate our own data using moni-

toring data from the synthetic distributed system (SDS) presented in Chapter 4. We

replicate and concatenate data obtained from SDS runs to simulate a larger system

running for a longer period.

We start with data collected from 250 SDS runs per anomaly type, with deadlock,

livelock, memory leak and unwanted synchronization. Each run consists of 5 nodes

with 12 performance metrics per node. We split the normal and anomalous part of

each node, and obtain 60,000 anomalous time series of different lengths, and around

540,000 normal time series.

We then employ a bootstrapping [112] algorithm to create 25 replicas of each

time series. Bootstrapping is a technique to replicate time series that maintains certain

properties of the original data, like mean and variance. Fig. 6.2 depicts a time series

representing 200 seconds of network output and its replica. The replica introduces

slight variations to the original data, but keeps the general distribution of values.

After the bootstrapping process, we end up with 1.5 million anomalous time series

and 13.5 million normal time series. These time series are of different lengths, and

are grouped into 1.25 million nodes with 12 metrics per node. We use this data as a

pool of time series of the system metrics under different anomalous conditions. We

then concatenate randomly chosen nodes from this pool to generate 120 10-hour long

runs of 1,000 nodes each. Each of the runs contains 10 anomalies of 10 minutes long,

at random timestamps, and of random types. The number of nodes affected by the
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Fig. 6.2. Network output and a time series replica for a period of 200 seconds.

anomalies ranges from 1 to 100, with 10 runs per each type. This means that at most

100 nodes out of 1,000 display an anomalous behavior simultaneously. This represents

10% of the system, and between the 0.33% and the 0.66% of the time series depending

on the anomaly type. We experiment with 60,000 time series of 36,000 data points per

run, greatly surpassing the system size employed by similar works [35, 39, 108, 109].

Our large-scale dataset has two main limitations. Firstly, the bootstrapping al-

gorithm generates replicas that are very similar to the original series, limiting the

variety of available data. Secondly, the concatenation process eliminates the existing

correlations between the different nodes. In real systems, as a result of node interaction,

certain metrics may be highly correlated to others. These correlations do not exist in

our dataset.

However, since the concatenation process creates 10 hour time series using multiple

shorter series chosen at random from a large pool of data, a sufficient variety in the data

is guaranteed. In addition, the lack of correlations between nodes is a disadvantage

for the classification process because there is less information that can be used to
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detect the anomalies. Moreover, changes in the correlation of metrics and changes

in the underlying distribution of metric values due to the concatenation process can

generate false positives. In other words, any deviation introduced in the system metrics

due to the concatenation process cannot improve the measured performance because

our framework considers these deviations as (false) anomalies. This means that the

detection performance observed when using this dataset is a lower bound on the

optimal performance. In other words, the limitations of the dataset do not introduce a

positive bias in the results.

6.5 Experimental Analysis

In this section we study how the proportion of anomalous data processed by each

instance and the number of instances that are affected by each anomaly impact on our

framework’s performance in large-scale scenarios. More precisely, we experiment

with four anomalous profiles, as shown in Table 6.1.

Table 6.1. Different profiles evaluated.

Profile Density Dispersion

High Density High Dispersion 80% - 100% 10 - 20
Low Density High Dispersion 20% - 40% 10 - 20
High Density Low Dispersion 80% - 100% 1 - 5
Low Density Low Dispersion 20% - 40% 1 - 5

Density refers to the number of anomalous nodes per instance, whereas dispersion

refers to the overall number of affected instances. Anomalies that affect less than 5

instances are low dispersion anomalies, and anomalies that affect more than 5 instances

are high dispersion anomalies.
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6.5.1 Experimental Setup

We employ the same settings as in Chapter 4. That is, we set ρ = 0.5 and η = 1√
t

for the one-class classifier, ρ = 0, η = 1√
t and λ = 1 for the binary classifier, and

experiment with various values of γ and ν . Additionally, we employ Tr = 3600 (i.e., 1

hour), Gr = 20, z = 128, and the set of features that obtained the best detection results

in Chapter 4: {CO,ME,B0,S1}. For simplicity, all instances use the same settings,

meaning that results could be improved with a better parameter selection mechanism

that takes into account the characteristics of each instance, or that modifies certain

parameters at run time converging to the optimal values.

We run our experiments on the Phoenix supercomputer [113], where we deploy

200 instances (i.e., combination of Behavior Extractor, Behavior Identifier, and Feed-

back Provider). To simplify the experiments, all instances run in the same node using

32 cores and 16GB of memory. Since the dataset is organized in 1,000 nodes, each

instance monitors 5 nodes (i.e., 60 performance metrics). Feedback is given automati-

cally to every instance after an alert, and while the instance is in the Alert state. The

Feedback Aggregator consists in a simple “OR”, that is, alerts from any instance are

always forwarded to the system administrator.

As said before, our dataset contains 120 runs with varying number of nodes affected

by the anomalies. In Table 6.1, 20% density means 1 anomalous node out of 5, 40%

means 2 anomalous nodes, and so on. The distribution of anomalous nodes among the

different instances is completely random. That is, each of the 10 anomalies per run

affects different nodes in different instances, and only the density remains constant.
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We employ the same evaluation metrics as in Chapter 4. That is, Recall and

Precision defined as

Recall =
detected anomalies

total number of anomalies

Precision =
detected anomalies

total number of alerts
,

(6.2)

6.5.2 Results

Fig. 6.3 and Fig. 6.4 show mean Recall and Precision for the different profiles. Data is

presented according dispersion and density. Recall is presented per anomaly type and

Precision is computed globally because false alerts cannot be assigned to a particular

anomaly. Dashed lines in the plots highlight the boundaries of the profiles outlined in

Table 6.1.

Fig. 6.3 shows that the detection rate is not heavily influenced by density nor

dispersion. All anomaly types are detected with high accuracy in all profiles in general.

Nevertheless, there are some appreciable tendencies, such that the detection accuracy

increases with dispersion. For example, all anomaly types are detected more easily

when they affect one node in different instances (20 - 20% case) than when they affect

one node in one instance (1 - 20% case). This is because the probability of one of

the instances detecting the anomaly is greater as the number of affected instances

increases.

This has interesting implications, in that it allows large-scale systems to be divided

in small subsystems, and thus make the system easier to analyze in terms of compu-

tational requirements, because detection performance is not negatively affected by

high dispersion. Thus, the partitioning can be performed without taking into account

component coupling and still obtain good detection results. The only case in which

small subsystems could be detrimental to the detection accuracy is for anomalies

characterized exclusively by an anomalous correlation between several nodes that
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(d) Memory Leak

Fig. 6.3. Mean Recall obtained with the different profiles.

are monitored by different instances. However, this can be avoided with appropriate

partitioning.

Fig. 6.4 shows that Precision clearly increases with density, and decreases slightly

with dispersion. This can be explained by a higher number of alerts when more

instances are affected by the anomalies, and a much accurate detection in high density

scenarios because the anomaly has a higher impact on the instance. The number of

false alerts can be reduced with a more sophisticated Feedback Aggregator in high

dispersion scenarios. For example, a simple yet effective technique is to notify the

system administrator only if more than one instance raises an alert in a short period of

time.

Fig. 6.5 and Fig. 6.6 show Recall and Precision when the system administrator

is notified only if 3 alerts occur within a 50 seconds window. We see that both
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Fig. 6.4. Mean Precision obtained with the different profiles.

Precision and Recall improve in high dispersion profiles. However, overall accuracy

is reduced in low dispersion cases because the probability of 3 consecutive alerts is

lower. Nevertheless, our framework can be easily tailored to the characteristics of the

system under study to maximize performance.

6.5.3 Discussion

Without aggregating alerts (Fig. 6.3 and Fig. 6.4) mean results are 0.77 Recall and

0.45 Precision. All anomaly types are detected in most situations, however, when the

number of anomalous nodes per instance is less than 20%, detection is achieved with

low Precision (i.e., a high number of false alarms). This is because one anomalous

node per instance means between 1.6% (1 out of 60) and 3.3% (2 out of 60) anomalous

time series per instance depending on the anomaly type. At these rates, our framework

is unable to differentiate between normal and anomalous behavior.

Table 6.2 summarizes the results obtained for the different profiles. It is clear

that our framework performs better in high density scenarios, where mean Recall and

Precision are 0.76 and 0.55 respectively. High density scenarios are scenarios that

contain 13% to 17% of anomalous time series per instance. Therefore, the optimal

partition size depends on the system under study. In large-scale systems where tightly

coupled components can be easily identified (e.g., web server and database), the

instances can be set to monitor a higher number of components, as the probability of
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(d) Memory Leak

Fig. 6.5. Mean Recall when requiring three consecutive alerts to notify the system
administrator.

anomalies affecting more than 13% of the metrics per instance is higher. In systems

where anomalies are expected to have a highly distributed impact affecting fewer

metrics in many components, instances should be set to monitor fewer components.

Another possibility is to set different instances to monitor only one or two metrics

(like memory usage) in multiple components. This can be easily done thanks to our

framework’s flexibility, and could provide better results in scenarios where anomalies

have very low impact on the system metrics.

Nevertheless, the results are impressive considering that in high density scenarios

the percentage of overall affected nodes is between 0.4% and 10%, and the percentage

of affected time series across the whole system is between 0.03% and 1.6%. This is

achieved thanks to our framework’s decentralized setting.
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Fig. 6.6. Mean Precision when requiring three consecutive alerts to notify the system
administrator.

Table 6.2. Summary of the results obtained for the different profiles.

Profile Recall Precision
High Density High Dispersion 0.71 0.46
High Density Low Dispersion 0.81 0.69
Low Density High Dispersion 0.89 0.30
Low Density Low Dispersion 0.69 0.35

Since detection rates are high in all cases, the main limitation of our framework

is the amount of false positives. This can be solved with better feedback aggregation

strategies, as shown in Fig.fig5.6, where mean Precision for high dispersion scenarios

is 0.61.

Regarding the scalability of our approach, 200 instances running in a node with 32

cores and 16GB of memory are able to process 10 hours of execution from a system

composed of 1,000 nodes (i.e., 60,000 time series of 36,000 data points) in around

15 minutes. This is around 1.5 seconds per minute of execution with the 0.8% of the

overall computational resources (32 out of 4,000 monitored cores). The overall impact

on the system is insignificant considering that a completely decentralized deployment

with each instance running in a different node can be employed, and the only required

communication is between the instances and the Feedback Aggregator when alerts are

raised.
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6.6 Summary

In this chapter we have presented the problem of detecting anomalies in large-scale

distributed systems and have proposed a decentralized approach to address the main

challenges behind this problem. In our experiments, we evaluated the detection

capabilities of the framework presented in Chapter 3 in large-scale scenarios using

a synthetic dataset composed of 120 10-hour long runs with 1,000 nodes displaying

various complex anomalous behaviors.

Our results show that our framework can be applied to large-scale systems with

great success using a decentralized setting. Specifically, our framework is capable

of detecting several types of anomalies with overall mean Recall of 0.78 and mean

Precision of 0.45. Moreover, in high density scenarios, our framework achieves mean

Recall of 0.76 and mean Precision of 0.55, with only between 0.03% and 1.6% of

anomalous data across the whole system. Additionally, our framework’s decentralized

setting is highly scalable and consumes less than 0.8% of the available computational

resources, meaning that it can be employed in large-scale systems with minimal impact.

These results improve the state-of-the-art in anomaly detection in large-scale

distributed systems, as our framework provides a highly scalable and flexible method

that can be applied to numerous scenarios without historical data, and in an adaptive

manner. Moreover, in contrast to some existing works [34, 35], we do not assume

behavioral homogeneity among nodes, and experiment with a much larger system that

generates 60,000 readings of monitoring data per unit time.



Chapter 7

An Online Approach for the Detection

of Novel Botnets

As seen in Chapter 2, anomaly detection has several application domains, including

malicious traffic detection. Moreover, malicious traffic detection suffers from similar

challenges to anomaly detection in other domains studied in Chapters 4, 5 and 6. This

means that we can take advantage of the characteristics of the framework presented in

Chapter 3 to tackle the malicious traffic detection problem, while overcoming many of

the limitations in existing works.

A particular case of malicious traffic is botnet traffic. Botnets are networks of ille-

gally controlled computers [114] that have become a major threat on the Internet [27].

These networks can generate millions of dollars for their owners [115] by disrupting

the normal activities of legitimate Internet users or by stealing sensitive information.

Detecting malicious traffic in order to disrupt botnet activities is essential for the

reliability, availability and security of Internet services. However, despite many efforts

in this direction [27], key challenges remain. These include the high computational

requirements of processing large amounts of information, the similarity between botnet

and normal traffic, and the constant creation of new botnet mechanisms to bypass

current detection approaches.
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In this chapter we analyze the problem of detecting bots in large-scale networks,

and propose the use of the framework presented in Chapter 3 to tackle this problem.

Employing a scalable distributed deployment, our framework creates a complete

characterization of the behavior of legitimate hosts that can be used to discover botnet

traffic with high accuracy. Moreover, our framework dynamically adapts to changes

in network traffic, and is capable of detecting novel botnets without any previous

knowledge about them and without any assumption on their architecture or protocols

employed. These features are crucial to nullify the constant efforts by botnet managers

to adapt to detection techniques.

7.1 Overview

Botnets are networks of illegally controlled computers (i.e., bots) typically employed

for malicious activities. These networks are created by infecting a large number of

computers with malware (i.e., malicious software) by means of operating system

vulnerabilities, USB drives, or malicious web sites. Once a victim’s computer is

infected, the botnet software allows an attacker (also known as bot master) to take

control and carry out malicious activities such as e-mail spamming or distributed

denial-of-service (DDoS) attacks. Upon infection, and to remain undetected, bots

typically update themselves, disable antivirus applications, block DNS lookups to

certain domains, and download and run other types of malware.

Since the appearance of the first Internet Relay Chat (IRC) [69] based bot in

1993 [116], botnets have become a dangerous threat difficult to detect and dismantle.

A novel malware used to create large botnets of small devices called Mirai [117] is

believed to be behind a recent massive DDoS attack that disrupted access to tens

of services in October 2016 [118]. This attack, which employed around 100,000

Internet of Things (IoT) devices, could be the largest DDoS attack in history, with

an estimated throughput of 1.2 Tbps. Apart from the economic losses that downtime
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causes in industry [75], botnets can cause numerous issues in other sectors, such as

defense [119] or public administrations [120].

The damaging potential of botnets has led to significant efforts to detect and

prevent them [27]. Existing methods for botnet detection can be classified into two

groups: signature-based and anomaly-based [27]. Signature-based techniques employ

signatures of well-known botnets to detect malicious hosts [121]. Anomaly-based

techniques employ machine learning and statistical methods to detect unusual or

suspicious patterns in computers’ behavior. Anomaly-based techniques have become

the main research area in botnet detection [27] due to the limitations of signature-based

methods, such as the difficulty in keeping the signature database up to date, and their

inability to detect previously unseen botnets.

Anomaly-based methods can be further divided into host-based and network-

based [27]. Host-based methods analyze the internal behavior of computers looking

for signs of infection in binaries and system calls [122], whereas network-based meth-

ods analyze network traffic looking for suspicious patterns [31, 123] or correlations

between the behavior of multiple hosts [71, 124, 37, 72] that can be indicative of

botnets.

Since malicious activities can be classified as a particular type of error in computer

systems [16], network-based botnet detection methods are a particular case of anomaly

detection in distributed systems. In this case, anomalies are malicious behaviors, and

system metrics are obtained from traffic monitoring rather than hardware counters.

Similar to anomaly detection in distributed systems, efficient and accurate botnet

detection remains open for improvement despite the numerous efforts taken towards

this direction. The main challenges in the area are [27]: the continuous evolution in

botnet creation, maintenance and communication mechanisms; the fact that botnet

traffic is very similar to regular traffic in many cases; and the high computational

resources required to analyze large amounts of information. In addition, the majority of

Internet users are not aware of the risks of botnets or how to protect their devices [27]
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and, due to the spread of mobile and IoT devices, the number of potential victims has

grown exponentially in the last years [125, 126].

Most network-based botnet detection approaches employ machine learning and

statistical techniques to differentiate normal from malicious traffic [27]. Since most of

these approaches use historical bot data to build their statistical models and classifiers,

they are limited to the detection of well-known botnets, or new botnets that display

the same well-known behavioral patterns. However, attackers are constantly adapting

their methods and implementing new mechanisms to bypass state-of-the-art detection

approaches in a kind of arms race [127]. Thus, assuming that future botnets can be

detected by analyzing historical data is a critical false assumption, one that will always

keep researchers one step behind of attackers.

In this chapter we employ the framework presented in Chapter 3 to detect novel

bots in large-scale networks. We show how our framework can be deployed in such

scenarios, and analyze its detection performance with a varied and realistic botnet

dataset. The rest of this chapter is organized as follows: Section 7.2 describes the

characteristics of botnets. Section 7.3 presents the different botnet behavioral patterns

that can be employed to detect them. Section 7.4 describes our approach. Section 7.5

presents the experimental analysis, and Section 7.6 concludes the chapter.

7.2 Botnet Characteristics

Botnets are composed of three main entities: bot master, command and control infras-

tructure (C&C), and bots [128]. Fig. 7.1 shows the most typical botnet architecture.

Bots are infected computers that can be controlled through some kind of C&C infras-

tructure by a bot master. Since all communication between bot master and bots goes

through the C&C infrastructure, this is the most vulnerable part of the botnet.

The C&C infrastructures can be centralized or decentralized [128]. Centralized

C&C infrastructures are composed of one or a small number of servers that transmit
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Fig. 7.1. Typical botnet architecture.

commands to bots. These infrastructures typically employ the IRC protocol due

to its versatility, or the less suspicious Hypertext Transfer Protocol (HTTP) [36] as

means of communication. The weaknesses of centralized infrastructures is that they

present a single point of failure and that they generate certain traffic patterns that

can be easily detected. Decentralized C&C infrastructures employ P2P networks to

distribute messages between bots. Modern botnets have moved to this kind of C&C

infrastructure [129] due to its robustness and obfuscation capabilities. Decentralized

botnets can employ already existing P2P networks, such as Kademlia [130], or build

their own P2P network [131].

7.2.1 Bot Life Cycle

Despite the various types of botnets, the process for infecting vulnerable computers

and transforming them into bots is typically the same [27]. This life cycle is depicted

in Fig. 7.2. The process begins with a virus or malware infection through the usual

channels (e.g., operating system vulnerabilities, malicious web sites, infected external

devices, etc.). This is the Initial Infection phase. After a host has been infected, the

malware downloads and runs other malicious binaries from a remote database in a

Secondary Injection phase. These binaries, when executed, convert the host into a bot.

In a third phase, the recently activated bot contacts the C&C infrastructure to inform
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the bot master of its presence. This Rally phase is repeated every time that the bot

is restarted or reconnects to the network. After this third phase, the bot is ready to

receive orders from the C&C, and carries out malicious activities in phase 4. Finally,

in a fifth phase, bots can receive maintenance or updates to avoid detection, include

new features, or switch to another C&C server.

Fig. 7.2. Bot life cycle (extracted from Silva et al. [27]).

Phases 3 and 5 are the most vulnerable stages the life cycle of a bot. In these

two phases, bots display certain communication patterns that can be recognized by

botnet detection systems. Moreover, these phases are likely to occur periodically, thus

increasing the chances for detection.

7.2.2 Command & Control Communication

Since bots need to communicate with the C&C infrastructure to receive updates and

orders, the C&C is the central and most critical part of any botnet. The way bots

obtain the location of the C&C varies across different botnets with different C&C

architectures, and has evolved over time to minimize detection risks.

In centralized architectures, the simplest approach is to hardcode the C&C IP

address or domain name in the bot binaries. Hardcoding the IP address has the disad-

vantages that control over bots is lost if the C&C is taken down, and that authorities
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can obtain the C&C IP address using reverse engineering. Hardcoding the domain

name of the C&C is a better approach, as Dynamic DNS (DDNS) [132] can be em-

ployed to change the IP address associated with a domain name if the old address

is compromised. However, the botnet still can be easily dismantled by blocking the

malicious domain at the DNS provider or the organizational level.

A more sophisticated mechanism typically employed in centralized C&C architec-

tures is a Domain Generation Algorithm (DGA). Bots execute a DGA able to generate

thousands of pseudorandom domains per day, and try to connect to a portion of them.

The bot master, who also has access to the DGA, can register a fraction of the domains

to ensure that bots will access the C&C with certain probability. In this manner, by

the time authorities take down a malicious domain, bots have already moved to new

ones. This is the mechanism employed by Conficker [133], a prominent botnet that

infected between 9 million to 15 million computers, including systems at the United

Kingdom Ministry of Defence, the French Navy, and Manchester’s City Council and

police department.

In decentralized architectures, bots do not typically employ the DNS protocol [134].

Instead, bots receive a list of peers upon infection, and then obtain a more up to date

list from these initial peers. The initial peer list can be downloaded in a separate

file, or hardcoded in the bot binaries [129, 134]. Other P2P bots periodically send

probes to random IP addresses in order to discover active peers in the network [135].

Decentralized botnets can be harder to detect because they do not exhibit certain DNS

communication patterns that are easy to recognize by some detection methods.

7.2.3 Malicious Activities

The purpose of any botnet is to obtain some kind of gain, whether economic, industrial

or political. This gain is obtained by means of a series of malicious or illegal activities.

The most typical of these activities are [136]:
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• Malware propagation: many bots try to spread themselves to other vulnerable

computers in the network in order to increase the size and power of their botnet.

Bots achieve this by performing port scans and probing other computers looking

for operating system or application vulnerabilities.

• Cyber-fraud: some bots can steal banking information and passwords by dis-

playing fake versions of certain web sites when the infected computer tries to

connect to them [137]. The stolen information is then sent to the C&C.

• Spamming: the spread of junk e-mails including advertising, phishing, and

malware is a common practice that can provide significant profits to the bot

master [115].

• Information theft: some bots steal sensitive information such as credit card

numbers or passwords and transmit them to the C&C. Other botnets have been

used for industrial and cyber-espionage [138].

• Network disruption: bots can be ordered to send numerous requests to a service

in a short period of time to make it unavailable to other users. DDoS attacks are

used for economic, political or industrial reasons.

7.3 Botnet Detection

Some of the botnets behavioral patterns outlined in Section 7.2 can be exploited to dif-

ferentiate bot traffic from legitimate traffic in a network. The particular communication

patterns that bots exhibit when performing malicious activities and communicating

with the C&C can be recognized when looking at the protocol employed, the number

of packets exchanged, or the inter-arrival time of packets among others. The behavioral

patterns most commonly exploited by existing network-based detection approaches

are detailed in the following.
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7.3.1 Communication using IRC

IRC is a messaging protocol that is very convenient for C&C communication, as it

provides one-to-one and one-to-many communication capabilities. Thus, many botnets

have historically employed this protocol as means of communication and, as a response

to this, many detection approaches analyze the characteristics of IRC traffic [139, 140].

These approaches look for randomly generated IRC nicknames [140], or IRC channels

(i.e., chat rooms) with a majority of participants performing certain activities such

as TCP SYN scanning [139]. As a response to IRC based detection efforts, modern

botnets have moved to other protocols such as HTTP(S) and P2P.

7.3.2 DNS Lookups

As detailed in Section 7.2, C&C communication in centralized botnet architectures

requires an extensive use of the DNS protocol to make botnets more robust and difficult

to dismantle. Bots generate large amounts of DNS queries because C&C resource

records are typically delivered with a short time-to-live to allow for fast transitions

from one IP address to another, and because DGA algorithms typically try to connect

to large amounts of nonexistent domains.

It has been reported that a high number of NXDOMAIN responses (i.e., trying

to resolve many nonexistent domain names) can be indicative of an infected com-

puter [141, 142]. In addition, botnet DNS queries differ from legitimate DNS queries

in that the number of different IP addresses that access a C&C domain is fixed because

malicious domains are only accessed by bots; C&C domains are accessed by many

computers simultaneously in a short period of time; and C&C communication typically

employs DDNS instead of regular DNS [143]. Other works have exploited the fact that

C&C domain names are automatically generated and follow certain patterns [144].
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7.3.3 P2P

Since P2P botnets do not use the DNS protocol [134], detecting decentralized C&C

infrastructures can be more difficult than detecting centralized ones. Nevertheless,

malicious P2P traffic can be differentiated from legitimate traffic by analyzing the

volume of the P2P transfers, the amount of connections and disconnections in the

P2P network (i.e., churn), and the connection similarities between peers [72, 145].

More precisely, data transfers are typically less voluminous among bots than among

legitimate P2P users, P2P botnets are more stable than legitimate P2P networks, and

peers in a botnet display similar traffic patterns that do not exist among legitimate P2P

users.

Other methods to differentiate between botnet and legitimate traffic in P2P net-

works include the analysis of the management packets employed to maintain the

network structure, such as keep-alive packets [146], and the analysis of the periodicity

of packets and the number of IP addresses contacted by each peer [147].

7.3.4 SMTP

Spamming is an activity that can generate millions of dollars to bot masters [115].

Bots employed for this purpose make an extensive use of the Simple Mail Transfer

Protocol (SMTP), making them vulnerable to botnet detection systems. Spammer bots

can be identified by analyzing the content length, time of arrival, and frequency of

e-mails [148].

7.3.5 Group Activities

Regardless of the C&C architecture and protocols employed, bots can be detected

by finding computers with similar behaviors in a network [37, 68, 71, 143, 149]. For

example, computers that display similar communication patterns such as average

number of bytes per packet and, at the same time, perform suspicious activities such
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as high DNS requests, are likely to be bots [71]. A limitation of looking for group

activities is that it requires the presence of more than one bot of the same botnet in the

monitored network.

7.3.6 Transport Layer

Finally, bots can also be detected by analyzing network traffic at the transport layer (i.e.,

TCP and UDP) regardless of the application layer protocol or the C&C architecture

employed. The behavior of infected computers differs from the behavior of normal

computers in that bots need to perform certain actions as part of their life cycle, such as

receiving updates, maintaining open connections, and performing malicious activities.

These actions create certain traffic patterns that can be identified by analyzing sent and

received TCP and UDP packets. For example, an abnormally high amount of outgoing

small packets can be a sign of some kind of port scanning that many bots employ to

find vulnerabilities in other computers.

Network traffic is typically arranged in flows to facilitate this kind of analysis. A

network flow is a collection of packets that share the same source and destination IP,

source and destination ports, and protocol. Flows can then be classified according to

their number of packets, their duration, or their average packet size to detect malicious

activities [123, 150, 151]. It has been suggested that the most useful features to

differentiate between normal and malicious flows are average packet length, flow

duration, average bits per second, and percentage of small packets exchanged [1].

7.4 Detection of Novel Botnets

As previously stated, network-based botnet detection is a particular case of anomaly

detection in distributed systems. Thus, we can employ the framework presented in

Chapter 3 to tackle this problem. Moreover, due to the characteristics of our framework,
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we can use it to detect novel botnets for which historical data is unavailable. This is

particularly relevant in botnet detection, as bot masters are continuously implementing

new botnet communication mechanisms to avoid being discovered.

A monitored network can be composed of hundreds of computers that exchange

information between them and with the outside. Each of these computers can be

regarded as a component in a distributed system, and their network activities can be

seen as the system performance metrics. For example, monitoring the number of

packets sent and received by each computer over a time period yields 2n time series

for n computers. We then can apply the procedure described in Chapter 3 to obtain a

feature vector that represents the behavior of the network (or system) in that particular

time frame. In this manner, we can model the normal behavior of the network, and

label as anomalous (or malicious) any deviation from this model.

However, this methodology has two disadvantages. On the one hand, many real

world networks are large-scale, and analyzing high dimensional data is problematic as

explained in Chapter 6 due to the curse of dimensionality. On the other hand, most

networks are highly dynamic, where computers continuously join and leave. This

makes it impossible to compare behavior representations obtained at different time

periods as the number of available performance metrics (i.e., n) changes over time. The

dimensionality problem can be addressed by employing a system of systems approach

as showed in Chapter 6. However, coping with network dynamism requires a different

methodology.

We propose to model the behavior of hosts instead of the behavior of the whole

network to tackle both the data dimensionality and the network dynamism problems in

large-scale networks. Thus, we can employ the replicated behavior setting introduced

in Chapter 3, which can be seen in Fig. 7.3. In this setting, we deploy a Behavior

Extractor per computer in the monitored network (labeled as system component in

Fig. 7.3). Each of these Behavior Extractors communicates with a Behavior Identifier

that maintains a unique model of normal host behavior in the network. The Behavior
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Identifier transmits the classifications to the appropriate Feedback Provider, which

can then decide whether to raise an alert based on each computer’s history. In this

manner, the Behavioral Model characterizes any legitimate behavior that takes place

in the network, such as web browsing or video streaming, and labels as anomalous

hosts that deviate from these.

Fig. 7.3. Setting employed to analyze distributed systems from a replicated behavior
perspective.

This setting solves the data dimensionality problem by employing feature vectors

that represent the behavior of a single host instead of the behavior of the whole

network. Moreover, since the Behavior Identifier acts as a black box from the point

of view of the other framework components (see Chapter 3), the Behavioral Model is

independent from the number of computers in the network. That is, Behavior Extractor

and Feedback Provider instances can be created and destroyed as computers join and

leave the network. This solves the network dynamism problem.

It is also worth noting that our framework is orthogonal to the behavioral represen-

tation employed. That is, our framework can be employed to analyze protocol specific
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behaviors such as DNS or SMTP usage, or to analyze protocol independent behaviors

such as transport layer network flows.

7.4.1 Behavior Representation

Network traffic typically consists of TCP and UDP packets, and in many cases only

the packet headers are available due to privacy requirements. As said before, a

common method for analyzing network traffic is to group packets in flows. Flows are

collections of packets with the same source and destination IP addresses and ports,

and protocol. In this manner, network behavior is modeled from the point of view

of the communications that take place, and malicious computers are detected by the

characteristics of the flows in which they are involved.

We take a slightly different approach since we are interested in modeling the

behavior of computers instead of the behavior of the network. Thus, we compute

metrics by looking at the last N packets sent and received by each IP address. For

example, if we are interested in detecting DGA based bots, we can use the number

of NXDOMAIN responses in the last N packets received by each IP address as a metric.

The metric is updated with new packet arrivals because we look at the last N packets

received. Even though the inter-arrival time of packets is not constant, we can represent

the evolution of the metric over time as a time series that can be processed by the

Behavior Extractor.

Formally, given an IP address A, we define Pj(A,N) = {p j, ..., p j+N−1} as the

sequence of N packets (in the order they are obtained) that have A as source or

destination IP, starting with the jth packet. Then, we define {mi |1 ≤ i ≤ n} as a set

of n metrics where m are functions over a set of packets mi(Pj) = ri j, and ri j ∈ R.

We then define si j = ri j,ri( j+1), ...,ri( j+z) as the sequence of z readings for metric mi

starting with ri j (i.e., a time series). Thus, the collection of si j for all metrics can be
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used to build Behavior Instances for each IP address in the network as explained in

Chapter 3.

We employ the following 9 metrics to represent host behavior:

• The number of distinct destination IP addresses

• The number of distinct source IP addresses

• The number of distinct destination ports

• The number of distinct source ports

• Total bytes sent

• Total bytes received

• Packets sent

• Packets received

• The time difference between the first and the last packet

7.5 Experimental Analysis

In this section, we present a series of experiments to evaluate our framework’s ability

to detect novel bots in a network. More precisely, we are interested in answering the

following questions: i) what is our framework performance in detecting novel bots

without using historical bot data?, ii) how do different framework settings affect this

performance? (i.e., Tr, Gr, and z), and iii) how many false alarms are generated?

7.5.1 Dataset

For our experiments we employ the ISCX botnet dataset [1], a publicly available

dataset that consists of a combination of three other datasets, and contains traffic from
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16 different IRC, P2P and HTTP based botnets. This makes the ISCX dataset the most

realistic and varied dataset that is publicly available [1].

The ISCX dataset consists of two subsets: train and test. The train subset contains

∼9 million packets of which ∼4.5 million are malicious (i.e., have a malicious IP

address as source or destination). The test subset contains ∼5 million packets of which

∼2.5 million are malicious.

Beigi et al. [1] perform a feature selection process employing the ISCX dataset,

and find that the best features for detecting bots are the average packet length, the flow

duration, the average bits per second, and the percentage of small packets exchanged.

Using these features, Beigi et al. obtain a 75% detection rate and a 2.3% false positive

rate. Beigi et al.’s approach is architecture and protocol agnostic, however, it employs

historical botnet data, which means that it cannot detect novel botnets.

7.5.2 Experimental Setup

We employ the same settings as in Chapter 4. That is, we use ρ = 0.5 and η = 1√
t

for the one-class classifier, ρ = 0, η = 1√
t and λ = 1 for the binary classifier, and

experiment with various values of γ and ν .

Since we are interested in detecting novel botnets, we only use normal traffic to

train our framework. The training set of the ISCX dataset contains ∼4.7 million normal

packets. We train our framework using between the 5% and the 50% of the normal

traffic in the training set, selected by random sampling, and analyze how different

training sizes (i.e., the Tr variable) affect our framework performance. We do not

employ more than the 50% of the train set because this is enough for our framework to

produce satisfactory results.

As said before, we employ 9 metrics to build the behavioral representation of

the computers in the network: the number of destination IP addresses, the number

of source IP addresses, the number of destination ports, the number of source ports,
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total bytes sent, total bytes received, total packets sent, total packets received, and the

time difference between the first and the last packets. These metrics can be computed

from the packet headers, thus, they can be employed even on encrypted traffic, while

preserving the privacy of the users.

We compute these metrics on the last 25 packets per IP address (i.e., N = 25). This

means that IP addresses that are send or receive less than 25 packets are filtered out.

This is not a problem since bots usually generate more than 25 packets as part of their

typical maintenance and malicious activities before potentially being detected and

removed.

As explained in Section 7.3, we represent the collected metrics as time series that

can be processed by the Behavior Extractor. To generate the feature vectors used in the

classification process we employ the same features as in Chapter 6: {CO,ME,B0,S1},

and experiment with various values of Gr, z.

As in Chapter 4, feedback is given after every false alert, and we assume that

computers do not switch from normal to malicious behavior, or vice versa.

7.5.3 Evaluation Metrics

We employ two metrics to evaluate our framework’s performance: true positive rate

(T PR) and false positive rate (FPR). Since our main focus is to detect bots in a

network, and our framework monitors each IP address independently from each other

(see Section 7.4), we define the evaluation metrics per IP address as

T PR =
detected bots

total number of bots

FPR =
false alerts

total number of legitimate computers

(7.1)
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T PR measures our framework ability to detect bots and FPR measures the fraction

of legitimate computers that are labeled as malicious. The optimal T PR and FPR

values are 1 and 0 respectively.

7.5.4 Results

In a first experiment, we evaluate the effect of z (i.e., window size) on our framework’s

performance. Fig. 7.4 shows T PR and FPR obtained for different window sizes when

using Gr = 1 and Tr = 10% of the training set. Window size does not significantly

affect our framework’s performance in this case. This can be because bots display

a consistent behavior over time that is significantly different from normal behaviors.

The best results are T PR = 1.00 and FPR = 0.082, and are obtained with z = 64.

� �� �� �� ���

�����������

���

���

���

���

���

���

����

����

����

����

����

����

����

����

����

����

��� ���

Fig. 7.4. T PR and FPR for different window sizes (with Gr = 1 and Tr = 10% of the
training set).

In a second experiment, we evaluate how Gr affects our framework’s performance.

Fig. 7.5 shows T PR and FPR obtained when using different Gr values, z = 64, and

Tr = 10% of the training set. Again, we see that Gr does not have a significant impact

on performance in this case. This can be because of the same reason as before. Bot

behavior is consistent over time, and significantly different from normal behavior.

Thus, malicious traffic is classified correctly most of the time, and alarms are generated
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Fig. 7.5. T PR and FPR for different Gr values (with z = 64 and Tr = 10% of the
training set).

even when requiring 50 consecutive anomalous classifications. The best results in this

case are obtained with Gr = 1.

In a third experiment, we evaluate the effect of the training size on the detection

accuracy. Fig. 7.6 shows mean T PR and FPR for different Tr values. The results are

averaged over all z and Gr values. As the train size increases, the number of false

positives decreases. This is because our framework receives a better representation of

the behavior of legitimate computers, and can recognize them better in the testing stage.

However, the decrease in false positives also results in a decrease in detection accuracy

because the representation of normal behavior does not generalize so well, that is, the

model overfits the training data. Using 50% of the training set, our framework obtains

T PR = 0.72 and FPR = 0.027, and the best results are obtained when using 10% of

the training set with T PR = 0.97 and FPR = 0.11.

Finally, in many real world scenarios, a low number of false alerts is more important

than a high detection rate. When a large number of false positives is generated, only a

fraction of them can be investigated, as this is a time consuming task. As a consequence,

true positives become irrelevant because they cannot be confirmed either. In these

scenarios, it can be more beneficial to reduce the number of false positives to a

manageable amount at the cost of reducing detection accuracy as well.
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Fig. 7.6. Mean T PR and FPR for different Tr values.

Fig. 7.7 presents the Receiver Operating Characteristic (ROC) curve generated by

our framework. A ROC curve plots T PR as a function of FPR, and shows how these

two metrics change for different settings. The curve shows that our framework can be

configured to minimize the number of false positives while sacrificing some detection

accuracy in scenarios where a low number of false alerts is necessary. The lowest FPR

is 0.0017 with a T PR of 0.48.
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Fig. 7.7. ROC curve obtained for different framework settings.
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7.5.5 Comparison with Existing Work (Beigi et al. [1])

Table 7.1 shows a comparison of our results with the results reported by Beigi et

al. [1] when using the ISCX dataset. The first row of Table 7.1 shows our results when

maximizing the overall accuracy (i.e., the mean of T PR and FPR), and the second row

shows our results when minimizing the number of false positives.

Table 7.1. Results comparison with Beigi et al.

T PR FPR False Alarms

Max Accuracy (Us) 1.00 0.082 519
Min FPR (Us) 0.48 0.0017 11

Beigi et al. 0.75 0.023 ∼5,800

Beigi et al. compute the T PR and FPR in relation to the classification of network

flows instead of IP addresses, thus, the results are not directly comparable. However,

Table 7.1 shows that our approach can achieve a perfect detection rate with much

less false alarms. The number of false alerts raised by our framework is 519 and

11 depending on the maximization criteria. Beigi et al.’s approach generates an

approximate number of 5,800 false positives. Assuming that all the false positives are

reported, this is one to two orders of magnitude above our number of false alerts. As

said before, a low number of false positives is crucial in many real world scenarios, as

investigating alerts is a time consuming task that requires expert knowledge. Moreover,

our framework is able to achieve these results without historical data, being able to

detect novel botnets exclusively based on a characterization of normal host behavior.

7.5.6 Discussion

Our framework can detect novel bots with a T PR of 1.00 and a FPR of 0.082 or,

alternatively, with a T PR of 0.48 and a FPR of 0.0017. The latter means only 11 false

alerts in a dataset with 5 million network packets and only 0.5% malicious computers.
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That is, in scenarios where a low number of false positives is crucial, our framework

can detect half of the infected computers with extremely low false alarm overhead.

Our framework maintains similar or better detection accuracy than similar works [1],

while reducing the number of false alerts by one to two orders of magnitude. This is

a significant improvement as a reduction of alerts is critical to reduce system admin-

istration costs, and to be able to investigate the notifications that correspond to real

threats. Moreover, our approach does not rely on historical malicious data, can be

used in a plug-and-play manner, and adapts to changes in network behavior by means

of dynamic training. This means that our framework is able to detect novel botnets

with communication mechanisms different from the methods employed by existing

botnets. This is of the utmost importance since attackers are constantly adapting to

avoid detection.

Despite the very promising results obtained, we identify some issues that should

be addressed in the future. Even though the ISCX dataset is the most realistic and

varied publicly available botnet dataset [1], our approach should be deployed in a real

world scenario to fully evaluate its performance. More precisely, malicious traffic in

the ISCX dataset represents the 44.97% of the total traffic, and hosts do not change

their behavior from malicious to normal or vice versa. In a real scenario, the number

of false positives generated by our approach could be higher due to the percentage of

malicious traffic being lower, hosts exhibiting intermittent behavior, and IP addresses

being reused by different hosts. Thus, in the future, we plan to deploy our framework

in our campus network to further investigate its detection capabilities in real world

scenarios, as well as to discover ways of minimizing the overhead produced by false

alarms.

In addition, our approach relies on the fact that bot behavior is different from

legitimate behavior from the point of view of the network traffic. Even though this is

true for existing botnets, evasion mechanisms could be implemented in the future to

mimic legitimate hosts and avoid detection. Nevertheless, bots need to deviate from
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normal behavior at some point in order to be useful to bot masters. Thus, despite

possible evasion techniques, differences in behavior will likely be present at certain

communication level that can be exploited by our framework by collecting the adequate

metrics.

7.6 Summary

In this chapter we have presented the problem of detecting malicious activities in a

network. This problem can be formulated as a particular case of detecting anomalies

in a distributed system, meaning that it can be tackled by the framework described

in Chapter 3. Thus, we have shown how our framework can be deployed using a

replicated behavior setting to detect novel bots by analyzing network traffic.

Through an extensive experimental analysis using the most realistic and complete

publicly available botnet dataset [1], we have proven the applicability of our framework

in real world scenarios. Our framework is able to achieve a T PR of 1.00 and a FPR of

0.082 if a certain number of false alerts can be tolerated, or a T PR of 0.48 and a FPR

0.0017 if minimizing the false alarms is crucial.

Our results significantly improve the results obtained by other works on the same

dataset [1], while introducing the advantages of an adaptive training and the ability

to detect previously unseen malicious traffic. These two advantages are critical since

attackers are constantly adapting their methods to avoid detection.
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Conclusions and Future Work

Distributed systems are pervasive and have become a critical building block in our

society. The increasing size and complexity of these systems creates a need for better

tools to achieve dependability. However, large-scale complex systems present new

challenges for dependability and, more precisely, for fault tolerance and anomaly

detection in the many domains where it can be applied.

In this thesis we have focused on anomaly detection in three domains: distributed

systems, large-scale systems, and malicious traffic detection. As seen in Chapter 1 and

2, these three domains share key challenges and limitations. This has allowed us to

tackle the anomaly detection problem in the three domains from a general approach

that overcomes many of these limitations.

As mentioned in Chapter 1, the main contributions of this thesis are: i) a black box

framework for anomaly detection in large-scale distributed systems, ii) a methodology

for the identification of complex anomalous behaviors in distributed systems, iii) a de-

centralized architecture for anomaly detection in large-scale systems, and iv) a method

for the detection of previously unseen malicious traffic in large-scale networks. In the

following we detail these contributions and how the work in this thesis accomplishes

them.
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A Black Box Framework for Anomaly Detection in Large-Scale Distributed Sys-

tems

Chapter 3 has presented our black box framework for anomaly detection. This frame-

work has been designed to overcome the main limitations identified in existing works

in the three domains explored in this thesis (see Chapter 2). Thus, our framework

analyzes system behavior over time taking into account metric correlations, does

not require historical failure data and thus can detect previously unseen anomalies,

adapts to changes in the normal behavior of the system under study, can incorporate

contextual information into the behavioral analysis, and is able to identify the type of

known anomalies. Moreover, our framework provides a flexible and scalable design

that makes it applicable to numerous scenarios regardless of the architecture of the

system under study or the type of anomalies that are to be detected.

The suitability, scalability and high detection accuracy of our framework has been

proven in Chapters 4, 5, 6, and 7, where the framework has been successfully employed

to detect a wide variety of anomalies in different scenarios.

A Methodology for the Identification of Complex Anomalous Behaviors in Dis-

tributed Systems

Complex anomalous behaviors are a major problem in distributed systems [19, 20].

However, few existing works have studied these behaviors in the literature [21, 35,

86]. In this thesis, we have provided insight on how some of these behaviors affect

the system performance metrics (see Chapter 4), and have taken advantage of the

outstanding capabilities of the framework presented in Chapter 3 to detect and identify

the type of this behaviors with high accuracy, and in a way that overcomes many

limitations in the area of anomaly detection in distributed systems.

The results obtained in Chapters 4 and 5 show that our approach is clearly superior

in several ways to similar works in the area. Our framework improves the state-
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of-the-art in anomaly detection in distributed systems by achieving an increased

detection accuracy, while providing certain characteristics that none of the existing

works provide, as seen in Chapter 2. More precisely, our framework outperforms

similar works by not relying on historical data, which is unavailable in most cases,

adapting to changes in behavior, and not making assumptions on the characteristics of

the anomalies.

A Decentralized Architecture for Anomaly Detection in Large-Scale Systems

Large-scale systems are pervasive and a central part of current society. However, few

works address the anomaly detection problem in a particularly large scenario [30, 35,

39, 43, 66, 108, 109]. Moreover, as seen in Chapter 2, anomaly detection in large-

scale systems suffers from similar challenges and limitations as anomaly detection

in distributed systems. In Chapter 6, we have presented a decentralized approach to

tackle the anomaly detection problem in large-scale systems in a way that overcomes

many of these limitations.

Through an extensive experimental study, we have proven that the framework

presented in Chapter 3 provides a highly scalable solution to anomaly detection in

large-scale scenarios that is superior to similar works in the area. Similar to anomaly

detection in distributed systems, existing works that address anomaly detection in

large-scale systems often rely on historical failure data, provide architecture specific

solutions, and do not analyze system behavior in a general manner. In contrast, we have

provided an architecture agnostic solution that can detect previously unseen anomalies,

identify their type, and that does not make assumptions on the characteristics of the

anomalous behaviors. Moreover, we have evaluated our method in a much larger

scenario than those employed by similar works, consisting of 1,000 nodes and 60,000

metric readings per unit time. This has proven that our framework can be employed in

large-scale scenarios with minimal overhead.
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A Method for the Detection of Previously Unseen Malicious Traffic in Large-

Scale Networks

Botnets are one of the major existing threats in the Internet [27]. Their detection is

crucial for our security, privacy, and safety as Internet users. However, botnet detection

remains an open problem due to key challenges, such as the constant evolution of

botnet communication mechanisms and the difficulties in differentiating botnet from

legitimate traffic. In this thesis, we have provided a scalable solution to this problem

that greatly improves the state-of-the-art in the area.

As seen in Chapter 2, existing botnet detection approaches are limited by the

use of historical botnet data, the lack of adaptiveness, and by providing protocol

and architecture specific methods. In Chapter 7, we have demonstrated how the

framework described in Chapter 3 can be employed in a scalable manner to tackle the

botnet detection problem with great success. In the experimental analysis presented

in Chapter 7, we have seen that our framework can detect botnets with high accuracy,

while producing a number of false alarms one to two orders of magnitude smaller than

similar works in the area [1]. Moreover, our framework is capable of achieving this

without relying on historical botnet data, which means that previously unseen botnets

can also be detected. This makes our framework extremely robust to the constant

botnet evolution, and provides a hard to evade solution that cannot easily become

obsolete.

8.1 Directions for Future Work

The work presented in this thesis has contributed to various research areas where

anomaly detection can be applied. The most evident continuation to this thesis would

be to apply the ideas proposed in Chapter 3 to address the anomaly detection problem

in other domains where our framework design can be beneficial, such as in sensor
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networks, the Internet of Things, IP networks, or multi-agent systems. Moreover,

the work presented in this thesis is also applicable to other scientific fields, such as

cognitive science for the analysis of electroencephalography data [152], or engineering

for the diagnosis of industrial systems [153].

Another logical continuation to this thesis is the improvement of the machine

learning techniques employed by the framework presented in Chapter 3. For example,

the two-step classification process would greatly benefit from a mechanism to adjust the

classifier hyperparameters in an online manner, or from other classification strategies,

such as an ensemble of classifiers with different settings (e.g., window sizes). Other

research directions that we will explore in the future are detailed in the following.

Multilevel and Context-Aware Anomaly Detection for Large-Scale Virtualized

Infrastructures

We identify three main challenges that need to be addressed in anomaly detection: i)

large-scale scenarios, 2) multilevel anomalies, 3) contextual anomalies. These three

challenges have not received the necessary attention in the literature, and are becom-

ing more relevant as systems grow in size, and due to the popularity of virtualized

environments.

Despite the contribution of this thesis to large-scale scenarios, there is still a

significant gap between current research and real world deployments (see Chapter 5).

In this thesis we have experimented with 1,000 nodes and 60,000 system metrics, and

existing works that focus in large-scale systems experiment with systems of 250 to 800

nodes, and with 500 to 16,000 system metrics. However, real world large-scale systems

are composed of 50,000 to 80,000 computers, which can easily result in over 1 million

system metrics. Moreover, if we consider that each computer can allocate numerous

virtual machines in current virtualized infrastructures, the number of available metrics

rises to the order of 107. Our framework is capable of addressing this challenge and
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thus, in the future, we should aim for high scalability as a priority, and should try to

gradually approach the numbers exhibited by real world deployments.

In addition to this, due to the increasing popularity of virtualized environments,

there is a strong need for multilevel and context-aware anomaly detection. In these

environments, new virtual machines are constantly created, removed, and reallocated,

and anomalies can occur at application, virtual machine, and physical machine level.

Moreover, these anomalies cannot be characterized unless context in defined in a

very precise manner. For example, high CPU and memory utilization can be normal

or abnormal depending on the amount and type of virtual machines allocated to a

particular node.

False Alarm Reduction for Malicious Traffic Detection

Despite the numerous works that have addressed the botnet detection problem, botnets

are still one of the most serious threats on the Internet. The main reason for this

is the constant evolution of botnets and their evasion mechanisms. This thesis has

contributed to ameliorate this problem with the detection of novel botnets without

historical data. However, a main challenge remains in decreasing the number of false

alarms while maintaining a high detection accuracy.

A small number of false alarms is critical for efficient botnet detection, as the

consequence of a high number of false alarms is that most alerts end up not being

investigated due to the high human and economic costs that it entails. This means

that true positives are not discovered either, making the whole process useless. In the

future, we will focus on detecting malicious traffic in a real world large-scale network

while reducing the number of false alarms to a manageable size. This can only be

accomplished by involving network administrators in the anomaly detection design

process to better understand their requirements and limitations as security experts.
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