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Abstract

This thesis investigates network on chip (NoC) architecture, most particularly, NoC

mapping algorithms for homogeneous processing elements of a system on chip (SoC)

designed for AI and cognitive computing.

Production systems are used in cognitive architectures and knowledge-based systems

to produce appropriate reasoning behaviours by matching the symbolic information of

the environment with the production rules stored in their knowledge bases. General

purpose computers are not specifically manufactured for the purpose of continuous

matching involved in production systems, and often fail to deliver the performance

and speed required in real-time applications. A reconfigurable and parallel computer

architecture, named the Street Processor, has been developed by the research group

of which the author is a member, to address the performance gap. The processor has

its own instruction set, called the Street language, to define the production rules. The

production rules are implemented on simple and identical PEs of the Street Processor

that conduct the matching operations in parallel and asynchronously. Special steps

can be taken to make these operations synchronous if required. Two artificial agents

demonstrate the capability of the Street Processor, and are also used as test cases to

measure the performance of NoC mapping techniques.

The Street Processor is expected to contain thousands of fine-grained homogeneous

PEs to build a complex cognitive agent. To make the continuous and simultaneous

communication among the PEs more efficient, a regular and generic NoC architecture

is considered in this work. The network architecture allows multiple PEs to be associ-

ated with a single NoC router to optimise its resources. The mapping of PEs to NoC

routers, which is an NP-hard optimisation problem, is addressed in this work using

two alternative approaches. The Branch and Bound (BB) and Simulated Annealing

(SA) techniques are analysed for use as a preferred mapping technique. Although the

BB technique provides a mapping solution faster than SA, the latter is considered more

promising for large systems, e.g. the Street Processor, since BB achieves the computa-

tion time advantage at the cost of a high memory requirement.
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Abstract

To reduce the computation time of the SA method by shrinking the search space, the

dependency graph, which captures the communication volume among PEs over a pe-

riod of time, is partitioned into smaller groups of PEs (GPEs). By assigning each GPE

to a router, this approach also reduces the number of required routers and the inter-

router traffic of the network. A Priority-based Simulated Annealing (PSA) technique is

proposed, which takes advantages of the relative placements of the routers and inter-

dependencies of the GPEs to determine a heuristic initial mapping to start annealing.

The experiments show that this approach significantly improves the computation time

for finding a solution without sacrificing mapping quality. Considering the inherent

memory utilisation advantage over the BB technique, and the computation time im-

provement over the original SA technique, the proposed approach is suggested to be

the most suitable for NoC mapping for the Street Processor and similar homogeneous

SoCs.
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Chapter 1

Introduction

T
HIS thesis considers on-chip communication networks for paral-

lel computation using a production system programming model.

The context and motivation for the research are explained in this

chapter. It briefly describes the significance of networks on chip (NoCs) as a

communication platform among hardware processing elements (PEs). The

original contributions of the research are highlighted, and an overview of

the thesis structure is presented in this chapter.

Page 1



1.1 Background

1.1 Background

Since Allen Newell, Herbert Simon and Cliff Shaw wrote the first artificial intelligence

(AI) program in 1956 to mimic the problem solving skills of human beings, research ac-

tivity aimed at achieving human-like intelligence has progressed along many streams.

This includes knowledge-based systems (Hayes-Roth and Jacobstein 1994), genetic

and evolutionary algorithms (Goldberg 1994, Jones 1998), fuzzy systems (Zadeh 1994),

neural networks (Haykin 2001) and artificial general intelligence (AGI) (Goertzel and

Wang 2007). While most of the approaches aim at a particular aspect or application

of intelligence, AGI targets the implementation of an intelligence that can be applied

in various domains. Cognitive architectures have been proposed as the most elegant

way to achieve AGI in artificial systems (Langley 2006), and have been successfully

applied to many applications (Anderson 1983, Laird et al. 1987, Anderson 1996). They

capture knowledge and skills in systems to yield intelligent behaviours in a diversity

of complex environments. Cognitive architectures commonly use production systems

for knowledge representation and processing. In production systems, the knowledge

is encoded in the form of production rules to achieve appropriate reasoning behaviour

in accordance with the states of the environment in which the systems are running. Be-

sides cognitive architectures, production systems are also applied in the implementa-

tions of different knowledge-based systems in areas including computer aided design

(Chen et al. 2012), medical diagnosis (Shortliffe 2012) and adaptive support systems

(Angelov 2013), just to name a few.

In the years since that first AI program, semiconductor fabrication technology has ad-

vanced to the point that it is possible to cost-effectively produce integrated circuits

(ICs) containing billions of transistors. For three decades the exponential increase of

transistor count followed Moore’s law, and it is only in recent years that the rate of

growth has started to slow as shown in Figure 1.1 (Scherer 2015). The performance de-

mands of modern complex embedded applications have also increased substantially.

These demands cannot be handled by the processors containing a single core or pro-

cessing element. The technology growth and increasing performance demands have

driven researchers to adopt a new paradigm, called the system on chip (SoC), in which

an entire computational systems is realised on a single chip. For very large and com-

plex systems, SoCs often contain multiple PEs, and are then known as multi-processor

SoCs (MPSoCs) (Jerraya and Wolf 2004). The underlying concept of such systems is to

Page 2



Chapter 1 Introduction

divide applications into sections that can be processed concurrently on multiple pro-

grammable PEs.

Figure 1.1. Transistor counts in 1965 – 2015. A plot of transistor counts per IC against year of

introduction; the vertical line corresponds to exponential growth of transistor count

doubling every two years (Scherer 2015).

The performance of SoCs is greatly dependent on the characteristics of the intercon-

nection between the PEs, particularly as the number of PEs in the SoC increases. It

is necessary to implement a communication infrastructure that provides the required

communication bandwidth between PEs, while keeping latency low and minimising

power consumption. Networks on chip have opened a new option for high perfor-

mance on-chip communication (Dally and Towles 2001). NoCs consist of a chip-wide

network of locally connected routers able to relay data from any PE on the network to

any other. Compared to the conventional interconnect using shared buses and cross-

bars, they provide a flexible high performance chip-level communication with regular-

ity and modularity. In the design flow of NoC architectures, the mapping of PEs onto

NoC structures plays a crucial role because this affects the traffic flow within the NoC,

and can have a significant effect on the overall performance of the system.
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This thesis focuses on the implementation of a NoC-based communication infrastruc-

ture for a SoC containing specialised hardware for production systems that will imple-

ment a cognitive architecture for AGI. Critically, it also proposes an efficient algorithm

to map the PEs onto the NoC structure.

1.2 Research motivations

To achieve human-like intelligence, a system must possess a large bank of knowledge.

Since the realisation of hard-coded knowledge is slow, tiresome and error-prone, in-

telligent systems often involve logical expressions of the pattern matching processes,

known as production systems, which provide a straightforward mechanism to imply

new knowledge using stored information (Nilsson 2014). Whenever the state of the en-

vironment changes they perform parallel pattern matching between the current state

and remembered information, and trigger appropriate actions. Production systems

are, by nature, computation-intensive because of the requirement for continuous par-

allel repeated searching and matching processes. The integration of a large knowl-

edge base increases the demand on these processes (Hayes-Roth and Jacobstein 1994).

However, the immature programming paradigm and tools for them make it harder

for a programmer to achieve something in a production system compared with sys-

tems programmed using conventional languages. As a result, their performance has,

historically, not been satisfactory for complex applications.

Most of the data manipulated by production systems is symbolic because of the abil-

ity of symbolic data to represent abstract information, which is one of the important

aspects of intelligence (Newell and Simon 1976). Several customised hardware archi-

tectures were proposed to improve the efficiency of execution of production systems

in the 1980s (Stolfo 1983, Gupta 1985), but these efforts faded away with the improved

performance and availability of general purpose computers, and for many years pro-

duction systems were largely realised on general purpose computers. With the incep-

tion of sophisticated intelligent agents, however the execution of production systems

on general purpose machines has failed to deliver the performance and speed required

in real-time applications. This limitation is expected to become more critical as cogni-

tive architectures evolve towards being able to implement agents that achieve true

AGI. However, the massive increase in the number of transistors now implementable
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on one chip, and the evolution of the MPSoC model, have revived the interest in spe-

cialised hardware for large production systems that are subject to real-time time con-

straints.

Production systems usually spend most of their computation efforts matching the pro-

duction rules with the state of the environment (Forgy 1979). For a conventional ma-

chine, this operation exhausts the available memory and processing resources, and

makes the system slow. But the inherently parallel characteristics of production sys-

tems are a good match for the large scale parallel computation that can be achieved

by multiple PEs integrated on a single IC. The improvement of semiconductor tech-

nology provides the ability to realise a hardware-based production system which in-

volves fine-grained parallelism by associating each production rule to a PE, and thus

achieving very high higher execution speeds.

NoCs have recently emerged as an effective communication platform for systems with

a large number of PEs. They provide on-chip networks of routers to transmit data

between PEs. The placement of PEs in the NoC network greatly influences the per-

formance of the system because the communication time, link bandwidth and energy

are dependent on it. But determining the optimal mapping of PEs to NoC routers is

an NP-hard problem in which the search space increases factorially with the number

of PEs and routers. It requires prohibitive computation time to solve using exhaus-

tive algorithms (Garey and Johnson 1979). Therefore, an effective mapping algorithm

is required to obtain an near-optimum mapping within a tolerable time limit. Branch

and Bound (Lawler and Wood 1966) and Simulated Annealing (Kirkpatrick et al. 1983)

are two optimisation approaches commonly used to solve this kind of problem. The

work described in this thesis examines these approaches to propose an efficient NoC

mapping algorithm for hardware-based production systems.

1.3 Thesis objectives

This thesis studies the design of a hardware for production systems, which implements

fine-grained parallelism in execution by evaluating production rules in simple homo-

geneous PEs. The objectives of the research reported in this thesis is to develop an

efficient communication platform for the hardware. It targets NoC-based on-chip com-

munication where each router can be associated with one or more PEs. The mapping of

PEs to NoC routers is another problem that is also explored in this thesis. Branch and
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Bound, and Simulated Annealing based mapping techniques are evaluated in order to

propose an improved mapping algorithm. The next Section presents a summary of the

original contributions made in the course of addressing these research issues.

1.4 Statement of original contributions

This thesis makes contributions in the area of on-chip communication of homogeneous

PEs of cognitive workload. The contributions can be divided into two categories. The

first part focuses on the design of a interconnect platform for homogeneous PEs of a

hardware-based production system. And the second part concerns the mapping of PEs

to NoC routers using optimised mapping algorithms.

1.4.1 On-chip communication of cognitive workload

A conventional computer, with its sequential execution path and centralised memory,

is not a good match for the computational requirements of cognitive agents. Rather,

these would be better served by hardware that supports fine-grained parallelism and

distributed memory, somewhat like the brain. The Street Processor is a reconfigurable,

flat, parallel computer architecture designed as a SoC with many homogeneous PEs

for symbolic cognitive workloads (Frost et al. 2015). It has own instruction set, called

the Street language, to define the behaviour of an agent using production rules.

In this processor, thousands of identical PEs transmit data to each other simultane-

ously. This subsequently causes new data to be generated by the PEs when their cor-

responding production rules match the state of the environment, and this results in

even more traffic. To make this traffic exchange feasible and efficient, a NoC-based

communication platform is developed for this hardware. NoCs have been widely

used in embedded heterogeneous SoCs, however no application is reported for event-

driven SoCs containing such a large number of homogeneous PEs. Thus the appli-

cation of NoCs in the class of parallel processors exemplified by the Street Processor

is considered to be the principal contribution in this thesis. This work has been pre-

sented in International Workshop on Artificial Intelligence and Cognition (AIC 2015), under

the title of “A Network-based Communication Platform for a Cognitive Computer”

(Numan et al. 2015).
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1.4.2 Optimised mapping techniques

Optimal mapping of PEs to NoC routers is an NP-hard problem which is a big chal-

lenge in NoC design. This work investigates mapping techniques based on two op-

timisation algorithms. Branch and Bound is a systematic approach, which reduces

the search space by deleting unpromising partial solutions without further exploring

them. On the other hand, Simulated Annealing is a probabilistic technique, which is

designed to avoid the trap of becoming stuck at local optima. A comparative study of

the mapping techniques based on these approaches is done in this work to contribute

towards determination of a preferred approach of the proposed mapping algorithm.

The NoC mapping process is used as an example of a cognitive problem in this work.

In order to support building a self-configurable agent, the Branch and Bound based

mapping is itself implemented using Street language. This demonstrates that the Street

Processor can dynamically and autonomously re-arrange the placement of PEs based

on recent traffic history. The significance of this action is that it shows the capacity of

the Street Processor to monitor and improve its own performance.

NoCs are more scalable than other contemporary on-chip communication platforms

(Dally and Towles 2004). In this work, the scalability of NoCs is further improved by

allowing multiple PEs to be associated with a single router. This consequently reduces

the number of routers in a NoC structure and reduces the implementation cost. When

the communication patterns include clusters of PEs with a lot of traffic between them,

this strategy reduces the inter-router traffic of the network. This approach also shrinks

the search space of the PE-to-router mapping problem since a group of PEs (GPE) are

assigned to a router, instead of an individual PE. The mapping of GPEs to routers is

achieved by an improved Simulated Annealing algorithm, which involves a heuristic

initial mapping to expedite the process. This work is in preparation to be submitted to

a peer-reviewed journal under the title of “Priority-based Network-on-Chip Mapping

of the Processing Elements of Production Systems”.

1.5 Overview of the thesis

As outlined in Figure 1.2, this thesis comprises five parts including an overview of the

work undertaken, a review on the Street Processor, two parts discussing the above-

mentioned contributions and the conclusion. The highlights of each part of the thesis

is presented as follows.

Page 7



1.5 Overview of the thesis
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Figure 1.2. Thesis outline and contributions. This thesis is composed of 7 chapters in total,

divided in five major parts. The major contributions lie in the part of NoC mapping.

Overview (Chapters 1 & 2) provides the introductory information, background and a

review on the technologies relevant to this thesis. The current chapter has de-

scribed the motivation, objective and contributions of the work performed in this

study. Chapter 2 presents a literature review of the previous works in the fields

of cognitive architectures, production systems and NoCs. This chapter also pro-

vides justification for the methodologies and approaches used in this work.

Street Processor (Chapter 3) reviews the design of a hardware-based production sys-

tem. It describes the architecture of the Street Processor, containing many ho-

mogeneous PEs. The general structure of PEs are described in this chapter. The

production rules are defined by the Street language which is also explained. This
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chapter also introduces some promising features like sleep period and Big Pro-

ductors that make the Street Processor a very novel on-chip production system.

NoC platform (Chapter 4) of the SoC with many PEs is presented in this part of the

study. First, it presents the justification for using NoCs instead of traditional

on-chip interconnect techniques in such systems. Second, a NoC-based commu-

nication platform is described for the class of SoCs containing large numbers of

homogeneous PEs, represented by the Street Processor. This chapter discusses

different aspects of NoC design e.g. topologies, routing schemes, flow control

techniques, as well as the micro-architecture of a NoC router.

NoC mapping (Chapters 5 & 6) presents several techniques for mapping homogeneous

PEs onto NoC structures. Chapter 5 describes two mapping techniques using

Branch and Bound, and Simulated Annealing algorithms. It also demonstrates

the comparison between these two techniques. In addition, the Branch and Bound

mapping algorithm is implemented using Street language demonstrating the fea-

sibility of constructing self-configurable cognitive agents. In Chapter 6, an im-

proved Priority-based Simulated Annealing algorithm is proposed, which finds

an optimum mapping solution in a reasonable computation time without sacri-

ficing mapping quality. The performance of this technique is analysed using two

test cases as well as a set of synthetic traffic scenarios.

Conclusion (Chapter 7) summarises the significance of the work, results and contri-

butions presented in this thesis. This chapter also presents an outlook of possible

future research work and improvements.
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Chapter 2

Background and Related
Work

T
HE use of production systems is very common in cognitive ar-

chitectures because of their ability to produce effective reasoning

behaviour, and simple and regular structure. In spite of being the

subject of research for many years, production systems have been limited

by their slow performance. Researchers have proposed different algorithms

to mitigate this problem and have implemented these algorithms on a vari-

ety of hardware systems from conventional computers to systems on chip.

SoCs with multiple processing elements have emerged as a promising tech-

nology to implement large and complex systems. However, efficient com-

munication between the PEs still poses challenges to researchers. Networks

on chip are an efficient solution for on-chip communication, but mapping of

PEs onto NoC routers strongly influences the performance of SoCs and is an

important area of research. This chapter provides a study on background

and related works on cognitive architectures, production systems, NoCs

and other related topics to establish the context for the work described in

this thesis.
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2.1 Introduction

Human-like intelligence in artificial systems, commonly termed as artificial general

intelligence in the literature, is a very long studied area of research. In contrast to ad-

vanced AI systems such as Deep Blue (Campbell et al. 2002) and Watson (Ferrucci et al.

2010), which are very expert in specific applications, AGIs are conceived to solve gen-

eral problems (Thorisson and Helgasson 2012). AGI agents are expected to have human-

level intelligence, general knowledge across different domains, the ability to reflect on

themselves and the ability to create fundamental innovations and insights (Franklin

2007).

Several approaches have been adopted to achieve AGI in a system, but no one ar-

tificial system has been able to approach the level of human intelligence. One of

the most promising fields of research directed to this end is cognitive architectures.

Cognitive architectures are large systems of heterogeneous modules and components,

which operate coherently to solve general problems in multiple domains (Thorisson

and Helgasson 2012). As a foundation for AGI systems, they have those characteristics

of agents that are common to multiple application domains. They include memories

that store information and representation of the agent’s goals and knowledge. They

also contain well defined processes to interact with the environment, and learning

mechanisms to improve their performance over time.

Many cognitive architectures (Forgy 1979, Anderson 1996, Kieras and Meyer 1997) in-

volve production systems as the core of their reasoning because of their ability to de-

scribe how humans think. They receive inputs from the environment and compare

these against a knowledge base to deliver appropriate responses. They have been gen-

erally considered computationally expensive and slow, and hence were largely ignored

in industry (Kuo and Moldovan 1992), in spite of their immense promise to support

general purpose intelligent systems. But the increasing demand of intelligent systems

is continuously pressing to build efficient production systems.

Research on production systems has been pursued in different directions. Most of

these efforts considered implementation of production systems on conventional com-

puters. These implementations are prone to under-utilisation of available resources

due to the von Neumann bottleneck (Backus 1978). With the continuous evolution of
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semiconductor process technology, SoCs with multiple PEs have evolved as an effi-

cient solution to this bottleneck for many applications (Jerraya and Wolf 2004). Com-

munication between the on-chip components of MPSoCs has been a broad area of re-

search ever since the MPSoC concept emerged. It is evident that shared bus and ad hoc

point-to-point connection based solutions could not support the ever-increasing com-

munication demand of MPSoCs. NoCs, inspired by wide area networks of computers,

emerged as a potential solution and opened a new paradigm of on-chip communica-

tion (Dally and Towles 2001). The performance of SoCs is influenced by the placement

of PEs on the NoC infrastructure. This encouraged researchers to propose efficient

algorithms to solve this placement problem.

This chapter starts with a short history of AGI systems in Section 2.2. This is fol-

lowed by a discussion of cognitive architectures in Section 2.3 that highlights their

characteristics and provides a category-wise review of cognitive architectures. This

section also briefly describes the two most successful cognitive architectures: Soar

(Laird et al. 1987, Laird 2012) and ACT-R (Anderson 1996, Anderson et al. 2004) , which

are both based on production systems. Section 2.4 describes the basic structure of pro-

duction systems and reports a study on state of the art techniques. Section 2.5 explores

SoCs with multiple PEs as the most appropriate implementation technique for com-

plex embedded systems. Finally, Section 2.6 presents the communication model and a

review on the architectures of NoCs. The algorithms for the placement of PEs on NoCs

structure are also reviewed in this section.

2.2 Artificial general intelligence

An AGI is a system that could successfully performs a wide range of tasks autonomously

across different domains in a similar way to a human being. The features that distin-

guish AGI agents from other AI agents are their abilities to pursue a wide variety of

goals embedded in different environments rather than solving a predefined problem.

The original aim of AI research was to build human level intelligence. Herbert Simon,

who was one of the founders of the concept of AI, forecast about Turing’s ‘Thinking

machine’ (Turing 1950) that ”... their ability to do these things is going to increase

rapidly until – in a visible future – the range of problems they can handle will be co-

extensive with the range to which the human mind has been applied” (Simon and

Newell 1958). AI research started towards this goal, but in 1970s - 1980s, it was realised
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that the practical problems in achieving this ambitious goal in reality were immense,

perhaps intractable. As a consequence, AI researchers cut back their objectives to de-

velop intelligent systems with domain specific targeted solutions, called ‘weak AI’ to

contrast with the ‘strong AI’ of general artificial intelligence.

Recently, there has been a renewed interest in building human-like intelligent systems.

Large corporations like Yahoo, Google, IBM, Facebook are investing in AGI related

technologies. Google has acquired ‘DeepMind’, which builds general purpose learn-

ing algorithms for simulations, e-commerce, and games (Shu 2014). Motivated by the

human nervous system, IBM introduced self-managed computer systems, called ‘auto-

nomic systems’, which are able to configure themselves to optimise performance and

to protect themselves from attacks (IBM 2005). Yahoo and Facebook are also taking

similar interest in this advanced AI technologies (Zacks 2013, Cutler 2014). Govern-

ment organisations have also begun to develop an interest in strong AI. Intelligent dis-

tribution agent (IDA) is an AGI software agent of U.S. Navy that interacts in natural

languages and assigns tasks to the pool of personnel autonomously (Franklin 2003).

No particular focus has yet emerged from current AGI research; rather contemporary

projects are diverse and often pioneering in nature. This is because, interestingly, there

is little consensus on the objective of reproducing ‘intelligence’ as a whole in comput-

ers. Although every approach gets its motivation from the same source, human intel-

ligence, here ‘intelligence’ is understood in several senses. Consequently, researchers

attempt to replicate different aspects of human intelligence. Table 2.1 lists different

approaches to achieving human-level intelligence. Among them, cognitive architec-

tures are considered to be one of the most promising approaches to create AGI systems

(Pei 2007).

2.3 Cognitive architectures

John Anderson first coined the term ‘cognitive architecture’ in his book, “The archi-

tecture of cognition” (1983). He defined it to be ‘the basic principles of operations of

a cognitive system’. However, even before he introduced the concept, the idea was

implicit in the rule-based information processing theories of Newell and Simon (1972).

Newell further elaborated this concept in his book, “Unified theories of cognition”

(1990), where he listed a number of important features of cognitive systems includ-

ing adaptive, dynamic and flexible behaviours, learning, knowledge integration, vast
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Table 2.1. Approaches to building AGI agents.

Aspects Inspiration Rationale Examples

Structure Neuroscience, biology Since intelligence is produced

in human brains, an intelli-

gent computer should simu-

late brain structure as faith-

fully as possible

TrueNorth

(Merolla et al. 2014),

SyNAPSE (Srinivasa

and Cruz-

Albrecht 2012),

HTM (Hawkins and

George 2006)

Interaction Linguistics Intelligence is displayed by

effective communication be-

tween two parties. For this

reason, an intelligent system

should interact exactly like a

human

Turing test (Turing

1950)

Capability Domain-specific com-

puter applications

Problem-solving capability

proves intelligence. Hence,

an intelligent system should

be able to solve certain

practical problems that are

currently solvable by humans

only

Deep blue

(Campbell et al.

2002), expert sys-

tems (Jackson 1986)

Behaviour Psychology Intelligence is associated to

cognitive behaviours that

human beings demonstrate,

such as perceiving, reason-

ing, learning and acting.

Therefore, an intelligent

computer should reproduce

these behaviours

Soar (Laird et al.

1987), ACT-R

(Anderson 1996)

Principle Logic, mathematics Intelligence is a form of ra-

tionality or optimality. So

an intelligent system should

always do the right thing

according to certain general

principles

AIXI (Hutter. 2004),

NARS (Wang 1995)

Page 15



2.3 Cognitive architectures

knowledge base and real-time performance. These features were subsequently anal-

ysed and partially applied by several architectures (Anderson and Lebiere 2003).

2.3.1 Characteristics of cognitive architectures

All cognitive architectures are expected to demonstrate the ability to analyse the exter-

nal and internal environment in order to solve both repeating and new problems by

learning from experience. The essential characteristics of cognitive architectures are

discussed here, some of which are adopted from (Langley et al. 2009b).

Identification of events: A cognitive architecture has the ability to identify events and

match them with the known or familiar knowledge. This is the initial step in

categorising events to determine appropriate responses to them. A cognitive ar-

chitecture supports this feature by representing patterns of events. Production

systems (Forgy 1979, Miranker 1987) of cognitive architectures perform this task

through the use of conditions in their production rules.

Selection from alternatives: Often, multiple patterns in the knowledge base can be

matched by the events. A cognitive architecture selects the most appropriate one

from these alternatives. This decision making, known as conflict resolution, in-

volves several criteria depending on architectures (Luger 2004, Miranker et al.

1990). A good cognitive architecture refines these criteria based on its experi-

ences.

Problem solving strategy Human-like intelligent agents are most likely to handle new

situations. This requires plans and problem solving mechanisms (Langley et al.

2009a). A cognitive architecture represents a plan as an ordered set of actions,

their expected effects, and the manner in which these effects enable later actions.

Remembering and learning: A cognitive architecture encodes and stores the results of

cognitive processing in memory, usually referred to as episodic memory, to retrieve

them when required. An ideal cognitive architecture should also have some ways

of learning to improve its performance by generalising specific experiences (Laird

2012).

Knowledge sharing: A cognitive architecture should be able to communicate with

others agents so that they can obtain and share knowledge (Ferguson and Allen
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Table 2.2. Classifications of cognitive architectures.

Memory type Representative architecture

Symbolic Rule-based memory

Graph-based memory

Soar (1987), EPIC (1997)

SNePS (2007)

Connectionist Globalist memory

Localist memory

IBCA (2000)

Cortronics (2007)

Hybrid Localist-distributed memory

Symbolic-connectionist memory

CLARION (2006)

ACT-R (1996)

2011). This may also require a way for transforming the knowledge from internal

representations to a form suitable for communication.

Occasional uncertainty: Like human beings, a cognitive architecture may allow occa-

sional uncertainties in its operations. This allows it to explore new experiences

which might result in it learning new things. This type of learning is consid-

ered by some researchers to be an essential feature required to achieve cognition

(Sun 2001).

2.3.2 Related work on cognitive architectures

In this section, cognitive architectures are reviewed and compared from different per-

spectives (Thorisson and Helgasson 2012, Langley et al. 2009b, Duch et al. 2008). Knowl-

edge representation is considered a key property that can be used to differentiate

cognitive architectures. An architecture achieves knowledge from the information

stored in its memory. Various types of memory keep information about the envi-

ronment, current activities and previous experiences. The importance of memory

has been demonstrated from different perspectives in the recent literature (Hecht-

Nielsen 2007, Hoya 2005, Hawkins and Blakeslee 2004). Based on the types of mem-

ories, cognitive architectures can be broadly divided into three categories: symbolic,

connectionist and hybrid architectures, as summarised in Table 2.2.
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Symbolic cognitive architectures

Symbolic architectures focus on information processing in a top-down analytic ap-

proach using high level symbols or declarative knowledge. They have the ability to

input, output, store and alter symbolic entities, and to carry out appropriate actions

to reach their goals. Soar (Laird et al. 1987), EPIC (Kieras and Meyer 1997), ICARUS

(Langley et al. 2009a) and SNePS (Shapiro et al. 2007) are some prominent symbolic cog-

nitive architectures. In symbolic architectures knowledge can be embedded in produc-

tion systems as production rules (Laird et al. 1987). Production rules provide a flexible

and context dependent representation of knowledge with their conditions matching

the current state and actions modifying it. Production systems are discussed in more

detail in Section 2.4. The knowledge can also be represented using directed graphs like

semantic networks, conceptual graphs and schemata (Sowa 1992, Minsky 1974).

Connectionist cognitive architectures

Connectionist architectures have been widely used to solve domain specific problems.

Less commonly they have also been used as the basis for general cognitive architec-

tures. These architectures view knowledge as being encoded into simple neuron-like

processing nodes. The nodes use low level activation signals flowing over a network

that interact with each other in a specific way changing their internal states and re-

vealing interesting emergent properties. The multi-layer perceptron and other neural

networks based on delocalised transfer functions process information in a distributed,

global way (O’Reilly and Munakata 2000). All parameters of such networks influence

their outputs. On the other hand, the basis set expansion networks that use localised

functions are examples of localist networks (Blachnik and Duch 2008, Duch et al. 2001).

The output signals for a given input depend only on a small subset of units that are acti-

vated. This kind of architecture has been criticised in the literature for not demonstrat-

ing the desired functionalities of cognitive architectures (Langley et al. 2009b). IBCA

(O’Reilly and Munakata 2000) and Cortronics (Hecht-Nielsen 2007) are two examples

of connectionist architectures.

Hybrid cognitive architectures

Hybrid architectures result from combining the symbolic and connectionist paradigms

of cognitive architectures. Symbolic architectures are able to process information and

realise high level cognitive functions, whereas connectionist architectures are better
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suited for capturing context specific behaviour and handling many pieces of low level

information simultaneously. The potential benefit of a combined approach is there-

fore to have each method address the limitations of the other, allowing creation of a

complete intelligent system architecture that covers all levels of cognitive processing.

The localist-distributed class of hybrid architectures comprises a combination of lo-

calist modules with each concept specified by one processing node and distributed

modules with each concept represented by a set of overlapping nodes. In compari-

son, the symbolic-connectionist class involves a mixture of symbolic modules (rule or

graph based memory) and connectionist modules (localist or distributed type) (Sun

and Alexandre 2013). ACT-R (Anderson et al. 2004), CLARION (Sun 2006) and DUAL

(Kokinov 1994) represent the most successful hybrid cognitive architectures.

Many of the proposed architectures in the literature have been abandoned due to their

limitations, while others have been vigorously pursued. Soar and ACT-R are the most

successful and mature cognitive architectures. The following sections briefly discuss

these two architectures.

2.3.3 Soar

Soar (State, Operator And Result), one of the most successful symbolic cognitive ar-

chitectures, has been gradually developed and extended over the last three decades

(Laird et al. 1987, Laird 2012). It is a typical example of rule-based architectures de-

signed to model general intelligence. Soar stores its procedural knowledge in the form

of production rules, arranged in terms of operators. The operators act in the problem

space that is the set of states in order to achieve the goal or result. Figure 2.1 shows the

block diagram of the Soar architecture (Laird 2012).

The current version of the Soar architecture includes different types of memories that

interact during its processing cycle. These are the short term working memory, and long

term semantic, procedural and episodic memories. These memories are briefly described

here:

Working memory stores information about the current state of the environment. The

working memory elements (WMEs) are either supplied by sensors or copied

from other memories based on relevancy to the present state. Working memory

also contains an activation mechanism indicating the relevance and usefulness of

WMEs.
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Figure 2.1. Block diagram of the Soar architecture. (Laird 2012)

Semantic memory keeps declarative information and facts about the problem space.

Knowledge is retrieved from semantic memory via deliberate associative retrieval

i.e., using appropriate cues. Most of the knowledge is initialised from an existing

knowledge base and the rest is acquired when new information is learned.

Episodic memory stores the memory episodes that a Soar agent has experienced. It in-

cludes contextualised information about specific events. This provides the agent

with the ability to use prior experiences to handle the current state.

Procedural memory stores the production rules that support the proposal, evaluation,

selection and application of operators during processing cycles. The operators act

on the problem space and make changes to working memory.

The execution of a Soar agent is governed by its processing cycle in which the agent

chooses an appropriate operator based on the information of its working memory and

production rules. This cycle can be broken into five phases as shown in Figure 2.2. In

the input phase, Soar receives the changes of current state to the perception block and a

perceptual buffer in working memory is updated. In the next phase, the current state is

elaborated by firing the production rules in parallel that match the changes to retrieve

information relevant to that state. Then the operators are proposed by production rules
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for the current state. Once operators are proposed, other rules register preferences

for them based on different criteria such as frequency or recency of rule firings. The

operators are then evaluated based on preferences by a fixed decision procedure, and if

a single operator is unambiguously preferred by the evaluation criteria, it is selected for

application. In the application phase, the selected operator is applied to make changes

to the state in order to move the agent closer to its goal. Finally, in the output phase,

Soar sends information of state changes to problem space via its actuators.

State elaboration

Operator proposal

Operator evaluation

Operator 

selection

InputOutput

Operator 

application

Figure 2.2. Soar processing cycle.

The Soar processing cycle repeatedly proposes, selects, and applies operators to a state.

However, when knowledge about operator selection is insufficient to uniquely deter-

mine the appropriate operator to apply, an impasse occurs. When an impasse occurs,

Soar decomposes the state into a substate that includes the reasons for the impasse and

the state that the impasse arose in. From the perspective of the new state, the earlier

state is known as the superstate. In the substate, operators are proposed, selected and

applied in the same way as the superstate. Additional impasses may be encountered in

a substate. This may lead to a stack of substates. Soar applies operators on states in the

substates to resolve the impasse. When it is resolved, all the subsequent substates be-

low it disappear and Soar learns new information. The reason for the impasse and its

actions are then converted to production rules which summarise the processing that re-

solved the impasse. This learning process is known as chunking (Laird et al. 1986). The

new production rules generated by chunking are added to the procedural memory to

be used directly in similar situations in the future without creating substates.

A variety of complicated agents have been developed using Soar. The most visible has

been TAC-Air-Soar that is used for training fighter pilots of U.S. Army (Tambe et al.
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1995). Soar is also used in interactive computer games (Magerko et al. 2004), modeling

human language processing (Lewis 1993) and categorisation (Miller and Laird 1996).

2.3.4 ACT-R

ACT-R (Adaptive Control of Thought-Rational) is a hybrid cognitive architecture that

is concerned primarily with modelling human cognition (Anderson 1996, Anderson et al.

2004). It was developed based on a human associative memory (HAM) model (Anderson

and Bower 1973) which was later extended into the model of human cognition (Anderson

1983). ACT-R architecture is composed of modules, memories, buffers and a pattern matcher.

Figure 2.3 shows the high level architecture of ACT-R.

Visual

module

Buffers

Motor

module

Pattern

matcher

Production

execution

Procedural

memory

Declarative

memory

Figure 2.3. Block diagram of the ACT-R architecture. (Budiu 2013)

Modules: ACT-R is organised into a set of modules, each of which processes a differ-

ent type of information to take care of the interface with the environment. The

most well developed modules are sensory modules for visual processing and

motor modules for actions.

Memories: There are two kinds of long term memories in ACT-R: declarative memory

encodes factual knowledge about the environment into chunks (different from

‘chunks’ in Soar); and procedural memory coordinates the processing of the mod-

ules using its production rules. Both are realised as a symbolic-connectionist

structure, where the symbolic level consists of production rules and chunks, and

the sub-symbolic level of a massively parallel connectionist structure.
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Buffers: ACT-R accesses its modules through buffers. For each module, a dedicated

buffer serves as the interface with that module. The contents of the buffers col-

lectively comprise the short term memory.

Pattern matcher: The pattern matcher searches for a production rule that matches against

the contents of short term memory. Only one such rule can be executed at a given

moment. That rule, when executed, modifies the buffers and thus changes the

state of the system.

Each declarative chunk has an associated base activation that reflects its past usage and

influences its retrieval from long term memory, whereas each production rule has an

expected cost and probability of success. These enable an analytic characterisation of

connectionist computations to measure the general usefulness of a chunk and produc-

tion rule. These parameters influence the rule matching process of the pattern matcher

that searches for a production rule to match against the state of the buffers. If sev-

eral rules match, ACT-R computes the utility for each matched rule as the difference

between its expected benefit and its expected cost. The system selects the production

rule with the highest utility and executes its action. That action alters the buffers and

thus changes the state of the system. This change causes new production rules to be

matched and results in even more changes. Some changes modify existing structures,

whereas others initiate actions in the associated modules, such as executing a motor

command or retrieving a chunk from long term declarative memory.

ACT-R learns declarative knowledge through problem solving. The base activation for

declarative chunks increases when they are used by production rules, and decreases

otherwise. Similarly, the cost and success probability for productions is updated based

on their observed behaviour. The architecture can learn entirely new rules from sample

solutions through a process of production compilation that analyses dependencies of

multiple rule firings, replaces constants with variables, and combines them into new

conditions and actions (Taatgen 2005).

Over the years, a number of applications have been developed based on ACT-R model

for understanding a variety of phenomena from the experimental psychology litera-

ture, including aspects of memory, attention, reasoning, problem solving and language

processing. Anderson related ACT-R modules to different areas of the brain and de-

veloped models that match results from brain-imaging studies (Anderson 2007). It has

been used in natural languages (Budiu and Anderson 2004), complex problem solving
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(Byrne and Kirlik 2005), tutoring (Koedinger et al. 1997) and controlling mobile robots

that interact with humans (Trafton et al. 2005).

2.4 Production systems

Soar, ACT-R and many other cognitive architectures such as EPIC (Kieras and Meyer

1997), CLARION (Sun 2006) and NARS (Wang 1995, Wang 2006) use production sys-

tems as a core mechanism to achieve their goals. A production system is one whose

knowledge base contains the domain knowledge encoded in the form of rules to mimic

human reasoning. It stems from the observation that much of human reasoning can be

expressed by a set of if-then or condition-action rules. Instead of representing knowledge

in a declarative and static way, a production system represents it in a general way to

handle different situations.

2.4.1 Basic structure of production systems

A production system generally consists of three components: a set of production rules to

define behaviours, a global knowledge base, referred as working memory, representing

the environment and a control mechanism called the inference engine.

Production rules consist of a left hand side (LHS) of conditions and a right hand side

(RHS) of actions. If the condition part is matched with the current state of the

environment, then the action part is executed. Each rule represents some knowl-

edge about the problem solving process.

Working memory is the total knowledge base of the current state of the environment.

It is represented as a set of attributes defining the domain world. The attributes

are called WMEs, which are symbolic triples (e.g. (ID1, HasA, Tail) arranged in a

graph data structure.

Inference engine The inference engine is a sequential program that controls the pro-

cessing of the production system. It has three steps: rule matching (match), con-

flict resolution (select) and rule execution (act). The inference engine is said to

be operating in forward chaining when the system starts in an initial state and

executes production rules to reach the final state. A backward chaining system
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starts at the goal state and tries to find the possible conditions that resulted in

that state. Backward chaining is often used for learning, while forward chaining

is common in reasoning (Rich and Knight 1991). In this research, the inference

engine is considered in forward chaining only.

The schematic of Figure 2.4 shows the execution cycle of a production system that

works on production rules and working memory, and is dictated by the steps of the

inference engine.

Working memory

{WME1, WME2, ...}

Rule matching

{PR1:WME1,

PR1:WME2,

PR2:WME3}

Production rules

{PR1, PR2, ...}

Conflict resolution

{PR1:WME1,

PR2:WME3}

Rule execution

{Action(PR1:WME1),

Action(PR2:WME3)}

Figure 2.4. Processing cycle of a production system. PR1 : WME1, PR1 : WME2 and

PR2 : WME3 are three rule instantiations. Action(PR1 : WME1) and Action(PR2 :

WME3) are the actions for the instantiations PR1 : WME1 and PR2 : WME3 respec-

tively.

Rule matching: When the WMEs in working memory match the conditions of a pro-

duction rule, the rule is instantiated. The rule may match multiple sets of WMEs

at the same time, resulting in a conflict set of instantiations. For example, if PR1 is

satisfied by both WME1 and WME2, then there are two instantiations of PR1 and

they create a conflict set.

Conflict resolution: In conflict resolution, a single rule instantiation is selected from

the conflict set based on a variety of criteria. The criteria may be simple, such
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as selecting the fist rule activated in the match phase, or may involve complex

rule selection heuristics. In many cases, the activation is selected according to

the recency of the matched WMEs in the working memory. This comes from the

assumption that more recent matches are more likely to be relevant to the agent’s

current situation (Luger 2004, Miranker et al. 1990). It is also intended to guide the

agent towards following a single line of reasoning. In Figure 2.4, PR1 is selected

for execution in the conflict resolution step.

Rule execution: Once a rule instantiation is selected, it fires, i.e. the action part of the

production rule executes. This makes changes to working memory by adding,

removing or modifying WMEs. The changes in working memory affect new rules

and cause the cycle to begin again.

2.4.2 Related work on production systems

There is a long history of research on production systems. They were extensively inves-

tigated during the 1980s and 1990s (Kuo and Moldovan 1992) but they were considered

to be computationally expensive and slow due to the underlying matching process.

This encouraged the researchers to improve the performance and resource manage-

ments of production systems in different ways. The research efforts on production

systems can be classified into three categories: sequential matching, parallel matching and

parallel rule firing algorithms.

Sequential matching algorithms

Rete (Forgy 1979) is the most popular sequential matching algorithm and has been con-

sidered as a standard technique since its development. Forgy initially developed Rete

for the OPS5 production language (Forgy 1981). Rete compiles the conditions of pro-

duction rules in the form of an augmented dataflow network (Miranker 1987), and the

new WMEs added to working memory are sequentially matched with these conditions.

The partial matchings of these conditions are referred as tokens. The tokens are stored

in the memory nodes of the Rete network. This matching algorithm performed slowly

during modifications of WMEs, because the modifications were performed by dele-

tions followed by additions of WMEs to working memory. When the previous WME

was deleted the states of the network was updated. During addition of the WME with

a different value, many tokens that were removed previously, were re-instantiated and
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this caused redundant network updates. TREAT (Miranker 1987) addressed this prob-

lem by using a more efficient network update procedure. The deletions in TREAT were

faster than those of Rete, but the additions resulted in time-consuming operations due

to exhaustive searches to determine complete matches of the conditions. However, it

was claimed that the speed-up during deletions was much greater than the loss during

additions (Miranker 1987). Again, the problem of redundant network updates of the

Rete algorithm was addressed by sharing the network nodes, but the effectiveness of

this procedure was criticised by later works (Schor et al. 1986). The problem of ineffec-

tive network sharing was addressed by YES/RETE (Schor et al. 1986) by introducing a

direct WME modification operation, instead of the conventional add-after-delete oper-

ation. This was reported to be almost 10 times faster than the Rete algorithm.

Parallel matching algorithms

To reduce the execution time of matching operations, Gupta (1985) proposed a paral-

lel architecture of the Rete matching algorithm using the states saved in intermediate

memory nodes. He suggested partitioning the Rete network into several processes

and assigning the processes to multiprocessors. A shared memory architecture was

suggested for this solution to allow the data structures be shared amongst multiple

concurrent processes. He expected 100-fold execution speed-up on the original Rete

algorithm, however the results showed only a 10-fold speed-up, because only a very

small number of production rules were affected by the changes in working memory

and there was a large variation in the processing requirements of the affected rules.

The potential speed-up achievable by this implementation was limited by the number

of available processors. DADO (Stolfo 1983) overcame this limitation by using a large

set of processing nodes, each associated to an individual production rule. The process-

ing nodes were interconnected to form a complete binary tree. The performance of the

DADO prototype was evaluated by measuring the execution times of a set of bench-

mark programs (Stolfo 1987) which reported 2 to 31-fold speed-ups compared to the

system running a compiled version of OPS5. However, DADO had a drawback of low

utilisation of hardware parallelism (Kuo and Moldovan 1992). Moreover, both DADO

and Gupta’s parallel matching solution suffered from cross-product effects, which re-

ferred to the case when an incoming token found several tokens to be matched, and as

a result of which a large number of tokens were sent to the successor of that node.

Page 27



2.5 Multi-processor systems on chip

Parallel rule firing algorithms

A second class of parallel production systems involved parallel rule firing techniques.

These techniques attempted to increase the available parallelism by parallelising not

only the match phase, but all phases of the processing cycle of production systems. As

these production systems did not have any sequential conflict resolution criteria, the

instantiations of the rules that were not dependent on each other, were only allowed to

fire concurrently in a production cycle. Two types of parallel rule firing systems are de-

scribed in the literature: one that applies a parallel conflict resolution strategy and the

other that allows non-deterministic executions. In the first type of systems the parallel

conflict resolution strategies are encoded as a set of meta-rules (Stolfo et al. 1991). The

inputs to these meta-rules are the instantiations that are already matched. By careful

analysis of these meta-rules, a set of non-interfering rule instantiations is selected and

fired. In non-deterministic production systems (Ishida 1990, Gamble 1990, Pasik 1989),

a rule instantiation is chosen randomly and fired without the help of any conflict res-

olution strategy. Since this random selection leads to many possible solutions of a

particular problem, some of these systems leave the responsibility of correctness of a

particular solution to the programmers, whereas the others consider the context of the

problem to apply instantiations of the production rules.

Production systems were the subject of a large body of work in the 1980s and early

1990s. The research on a specialised hardware for production systems were abandoned

due to lack of computing capacity and communication bandwidth of hardware tech-

nologies. The current advancements in chip technology motivates many of the ideas

to be revisited. The next section will review SoCs with multiple PEs as a suitable tech-

nology to realise production systems.

2.5 Multi-processor systems on chip

For several decades the performance of computation systems has been increasing expo-

nentially, following the prediction of Gordon Moore who anticipated that the number

of transistors in a single chip would increase two fold every two years (Moore 1965,

Moore 1998). However, to achieve the full benefits of this transistor growth per chip,

manufacturers had to face the challenge of a long persisting problem – the von Neu-

mann bottleneck (Backus 1978). The transfer mechanism between memory and proces-

sor limits the performance of the architecture, especially in modern systems with very
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high clock rates. Therefore, no matter how fast the processor is, or how big the memory

is, the performance of the system is constrained by the rate at which instructions and

data are moved back and forth from the memory to the processor. This effect can be

mitigated to a certain extent by employing caches and pipelines, but it cannot be elimi-

nated (Hennessy and Patterson 2011). As this problem is embedded in the architecture

itself, some experts believe that this should be solved by moving to a completely new

architecture rather than adding new features to it (Mang et al. 2009).

One of the possible directions to this end is to build a system that integrates all com-

ponents of a digital system into a single chip. This architecture is called a SoC. They

are currently viewed as the most suitable implementation technique to build complex

embedded systems that provide high performance in terms of both timing and power.

SoCs with multiple programmable PEs or cores, known as multi-processor SoCs have

emerged as an important class in the past decade (Jerraya and Wolf 2004). They com-

bine several embedded processing cores, memories and specialised circuitry (accelera-

tors, peripherals) interconnected through a dedicated infrastructure to provide a com-

plete integrated system. MPSoCs are widely used in the application of networking,

communications, signal processing and multimedia.

MPSoCs have two distinct branches in the literature: heterogeneous and homogeneous

MPSoCs, although the ‘MPSoC’ acronym generally refers to the heterogeneous class.

Heterogeneous MPSoCs contain PEs with differing functionalities, such as general

purpose processors, digital signal processors (DSPs), memories, accelerators and

peripherals, reflecting the need of the expected application domain. To take full

advantage of heterogeneous MPSoCs, the system software must use the execu-

tion characteristics of each application to predict its processing needs and then

schedule it to PEs that match those needs. The predictions can minimise the per-

formance loss to the system as a whole rather than that of a single application.

C-5 (Freescale 2001), Nexperia (Dutta et al. 2001) and OMAP (Texas Instruments

Inc. 2004) are some of the leading heterogeneous MPSoCs architectures.

Homogeneous MPSoCs introduce parallelism through replication of many identical

PEs placed in a regular fabric. The PEs run multiple instructions in parallel, in-

creasing overall speed for programs amenable to parallel computing. This ap-

proach has a major positive consequence of making system design a matter of

instantiation capability instead of architecture complexity. The homogeneous
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style is generally used for data-parallel systems. The Lucent Daytona architec-

ture (Ackland et al. 2000), a pioneer of this class, was designed for wireless base

stations.

A homogeneous approach is more scalable but less power efficient, while a heteroge-

neous approach offers the best power vs performance trade-off (Saponara and Fanucci

2012). Due to their good power efficiency, heterogeneous MPSoCs are used for portable

systems and more generally embedded systems. These systems typically run a well-

defined set of software applications and hence the processing resources can be opti-

mised to suit the software workload. Homogeneous approaches are commonly used

for computers, servers and supercomputing, where the hardware must achieve high

performance over a wide variety of different software workloads (Azulsystems 2016,

Picochip 2012).

2.6 Networks on chip

Following Moore’s law, the transistor density is increasing every year (ITRS 2015),

however uniprocessor architectures are not increasing in performance proportionately.

On the contrary, MPSoCs are are emerging as the prevailing architecture for both gen-

eral purpose and application specific applications. As the number of PEs increases and

the system becomes more complex, the need for a scalable on-chip communication

infrastructure that can deliver high bandwidth is gaining more importance.

The communication structures of earlier SoCs were characterised by custom designed

ad hoc mixes of buses and point-to-point links (Lahiri et al. 2001). Buses were well

understood concepts and were easy to model, but in a highly interconnected MPSoC,

they became a communication bottleneck. Moreover, the power usage per communi-

cation event increased due to higher capacitive load caused by the increased number

of PEs. A crossbar can overcome some of the limitations of the buses but is not scal-

able and so was considered as an intermediate solution only. Dedicated point-to-point

links were optimal in terms of bandwidth availability, latency, and power usage as they

were designed especially for this given purpose. Although they were simple and easy

to design and model, the number of links increased exponentially with the number of

PEs, and impose an increasingly large area overhead.

For systems with a small number of PEs, ad hoc communication structures might be

viable, but as the systems grew and the design cycle time requirements decreased, the
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need for more generalised solutions became pressing. The bus and crossbar based

network structures consumed far more energy than desirable to achieve the required

on-chip communications and bandwidth (Dally and Towles 2001). For maximum flex-

ibility and scalability, it was required to move towards a shared, segmented global

communication structure. The search for alternative architectures led to the concept

of NoCs (Guerrier and Greiner 2000, Dally and Towles 2001, Benini and Micheli 2002).

The key concept behind NoCs was to use a network of routers to enable data flow be-

tween the PEs associated to routers more efficiently, and to allow simultaneous com-

munications over multiple channels. This solved the issues of energy and performance

inefficiencies incurred by shared bus communications. Such a distributed communi-

cation fabric scaled well with chip size and complexity. This also helped to improve

aggregate performance by exploiting parallel operations at different segments of the

network structure.

2.6.1 NoC communication model

The basic idea of NoCs was borrowed from the wide area networks of computers. A

seven layer open systems interconnection (OSI) model (Zimmermann 1980) was pro-

posed to interconnect heterogeneous and distributed systems. This layered structure

decomposes the communication problem into more manageable components at differ-

ent hierarchical layers. Each layer solves one part of the problem. In addition, layering

provides a more modular design. At each layer, protocols and services, which are

implementation independent, are well defined. The nodes residing in the same layer

can thus communicate with each other transparently. Adding new services to one

layer only needs to modify the functionality at that layer only, reusing the functions

provided at all the other layers. Due to these advantages, several NoCs researchers

(Millberg et al. 2004, Sgroi et al. 2001) have followed this model and adapted it to build

a protocol stack for on-chip communication.

Inspired by the OSI model, NoC architectures can be partitioned into four layers: sys-

tem layer, network interface layer, network layer and link layer. Figure 2.5 shows the flow

of data through the layers of NoC structure.

System layer defines PEs and their operations. At this layer, most of the network

implementation details are hidden from the PEs. They transmit data as if they

are directly connected to each other.
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Figure 2.5. Data flow through different layers in NoC and OSI models.

Network interface layer decouples the PEs from the network. It handles the end-to-

end flow control, encapsulating the data generated by the PEs for the routing

strategy of the network. The data is broken into packets which may contain infor-

mation about their destination.

Network layer consists of the routers or switches and links of the NoC structures. An

on-chip network is defined mainly by its topology and its protocol. Topology con-

cerns the layout and connectivity of the routers and links on the chip. Protocol

dictates how these routers and links are used. This layer is described in more

detail in Chapter 4.

Link layer consists of one or more channels which can be either virtual or physical. It

works with flits (flow control unit) that are subdivisions of packets. The flits may

be again divided into phits (physical units) which are the minimum size datagram

that can be transmitted in one link transaction. In most cases flits and phits are

equivalent.

Compared to wide area networks, in NoCs, the layers are generally more closely re-

lated to each other. NoCs can be designed based on knowledge of the PEs to be con-

nected and the known characteristics of the traffic to be handled. This awareness pro-

vides additional advantages to NoCs designers when building an optimised on-chip

communication infrastructure.
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2.6.2 Related work on NoC architectures

Efficient on-chip communication mechanisms have been an active research topic for

more than a decade (Moraes et al. 2004, Bjerregaard and Mahadevan 2006). Sonics

Micronetwork (Flynn 1997) was an example of an evolutionary solution which gener-

alised the on-chip interconnect to support higher bandwidth than shared buses. ST-

BUS (Bona et al. 2004) was another example of this class, which provided the design-

ers flexibility to instantiate both shared bus or crossbar interconnect configurations.

These architectures provided higher bandwidth than simple buses, but the wiring de-

lay and scalability problems of these architectures encouraged researchers to propose

more versatile solutions. In order to achieve this goal, researchers moved to a NoC

paradigm for on-chip communication.

A number designs addressing different aspects of NoCs have been proposed over

the years. Æthereal (Rijpkema et al. 2003b) was a design that aimed at providing a

complete NoC infrastructure for heterogeneous SoCs with end-to-end quality of ser-

vice guarantees. The network supported guaranteed throughput for real-time ap-

plications and best effort traffic for timing-unconstrained applications. Support for

heterogeneous architectures required highly configurable NoC building blocks, cus-

tomizable at instantiation time for a specific application domain. Xpipes interconnect

(Dall’Osso et al. 2012) and its synthesiser XpipesCompiler (Jalabert et al. 2004) instanti-

ated an application specific NoC from a library of composable soft macros e.g. network

interfaces, links and switches, that were highly parametrizable and provided a reliable

performance.

NoC platforms with regular topologies are suitable for homogeneous SoCs. NOS-

TRUM (Kumar et al. 2002), proposed by researchers at KTH in Stockholm, adopted

a grid-based, router driven communication platform for on-chip communication. The

scalable programmable integrated network (SPIN) (Guerrier and Greiner 2000) was

another regular network architecture. It adopted cut-through routing to minimise la-

tency and storage requirements. The SoCBUS (Wiklund and Liu 2003) used a two

dimensional mesh network with packets routing through the network while locking

the circuit as they traversed.

After several years of intensive research, there are now several credible NoCs in the

market. Sonics SiliconBackplane (Wingard 2001) was the first commercial NoC. It of-

fered a time division multiple access style interconnection network. Arteris (Fanet

2005) and Silistix (Martin et al. 2010) were two other examples of commercial NoCs.
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The Silistix interconnect was an asynchronous interconnect that had adaptors for com-

mon bus protocols and was meant to fit into a SoC built by using the globally asyn-

chronous locally synchronous (GALS) paradigm.

2.6.3 Related work on NoCs mapping

The mapping of PEs to NoC routers is an important step of NoC design. It directly im-

pacts the performance of SoCs, because the communication time, required link band-

width, admissible delay and power consumption of routers are influenced by the place-

ments of PEs. A number of mapping techniques have been reported recently in sev-

eral surveys (Sahu and Chattopadhyay 2013, Pop and Kumar 2004). In (Sahu and

Chattopadhyay 2013), the authors categorised NoC mapping algorithms into two broad

classes: static and dynamic algorithms. In static mapping the association between PEs

and routers is determined before execution and this is not changed thereafter, whereas

in dynamic mapping, this association may change during execution based on net-

work traffic conditions. Static algorithms are further divided into several sub-classes.

Among them deterministic and heuristic algorithms are the principal ones.

Dynamic algorithms

Dynamic mapping algorithms update the assignments of PEs to routers during execu-

tion of the system. They monitor the traffic to detect performance bottlenecks and dis-

tribute the traffic over the network. The works in (de Souza Carvalho et al. 2010, Chou

and Marculescu 2008, Chou et al. 2008) represent some leading mapping techniques of

this class. As these algorithms depend on the current traffic load, they are expected

to result in better solutions. However, the computational overhead of the mapping

algorithms increases delay and energy consumption of the systems at run time.

Static deterministic algorithms

Deterministic algorithms are search-based static mapping techniques. The Branch and

Bound mapping algorithm (Hu and Marculescu 2005) belongs to this class. It is a

systematic search algorithm that topologically finds the mapping by searching the so-

lution in tree branches and bounding unallowable solutions. It results in an energy

and performance aware mapping for tile-based regular NoC architectures to satisfy

the specified design constraints through bandwidth reservation. Based on the Branch
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and Bound algorithm, a traffic balanced mapping algorithm (TBMAP) for two dimen-

sional mesh was proposed in (Lin et al. 2008). To ensure balanced traffic over the net-

work, it sacrificed minimum paths between PEs in some cases. In (Reshadi et al. 2010),

the Branch and Bound algorithm was applied with heuristic-based NMAP mapping

(Murali and Micheli 2004). It performed better than both of the algorithms in terms

of communication cost, power consumption and network latency. Branch and Bound

algorithms have drawbacks in the form of large memory and long CPU time require-

ments, and hence, are suitable for smaller problems (Sahu and Chattopadhyay 2013).

Static heuristic algorithms

Heuristic algorithms are suitable for NP-hard problems that require a prohibitively

long time for finding exact solutions. The objective of this approach is to produce

a solution in a reasonable time frame that is good enough, if not the best among all

possible solutions. Mapping of PEs to the NoC routers is an example of such prob-

lems. Heuristic mappings based on genetic algorithms (Lei and Kumar 2003, Jena and

Sharma 2007), particle swarm optimisation (Fekr et al. 2010, Wenbiao et al. 2007) and

ant colony optimisation (Wang et al. 2011) are some evolutionary techniques that are in-

spired by natural phenomena. These kind of mapping techniques usually suffer from

slow rate of convergence. In contrast to evolutionary techniques, constructive heuristic

algorithms are much faster. They generate partial solutions sequentially, and at the end

deliver the final mapping solution. These algorithms can be constructive without iter-

ative improvement, such as PMAP (Koziris et al. 2000) and SMAP (Saeidi et al. 2007), or

constructive with iterative improvements, such as NMAP (Murali and Micheli 2004),

SUNMAP (Murali and De Micheli 2004) and Simulated Annealing based mapping

(Harmanani and Farah 2008). Simulated Annealing is an optimisation algorithm that

probabilistically accepts bad results to avoid the trap of converging to local minima

while searching for a near optimal solution. It is discussed in more detail in Chapter 5.

2.7 Chapter summary

This thesis describes a NoC for a homogeneous MPSoC designed for execution of a

cognitive architecture. This chapter has discussed the background and research re-

lated to the topics covered in this thesis. It started with a discussion of AGI as the

motivation of this work. Cognitive architectures are considered to be amongst the
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most prominent approaches to achieving AGI in a system. They effectively replicate

cognitive behaviours through the activities of perceiving, reasoning, learning and act-

ing. Researchers have taken several strategies to realise these cognitive activities on

systems. Production systems are very commonly used as the core of reasoning in in-

telligent systems but have the limitation of being slow due to the mechanism used to

match the state of the environment with its knowledge base. A number of algorithms

have been proposed to speed up the matching procedure. Most of these algorithms

considered realisation of production systems on conventional computers that cannot

efficiently utilise the current advancement of semiconductor technologies. SoCs with

multiple PEs emerged as a very promising system implementation technique to take

advantage of these advancements. On the other hand, the on-chip communication

greatly impacts the performance of SoCs. Researchers in this field have adopted NoCs

as the most viable platform for on-chip communication. In order to support the next

chapters of this thesis, this chapter reviewed the research activities on NoCs, especially

the assignment of PEs to NoC routers.
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Chapter 3

Hardware-based
Production System

T
HIS chapter presents an overview of the Street Processor, a new

processing architecture for symbolic cognitive workloads. This

processor serves as the platform for the author’s research on com-

munication infrastructure for hardware-based production systems. The

processor has its own instruction set, called Street language, to define the be-

haviour of an agent using production rules. The Street Processor supports

fine-grained parallelism by implementing the production rules in simple,

identical processing elements. However, it has some unique synchronisa-

tion techniques to control its parallelism when required. The Street Pro-

cessor also implements some innovative concepts such as sleep period and

Big Productors, which have the potential to improve its performance for

cognitive applications.
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3.1 Introduction

Production systems provide intelligence to a system by defining a set of rules based on

the current state that act when there is a change to the current state. They have been the

subject of a large body of work during the 1980s and early 1990s (Kuo and Moldovan

1992). They have often been used in research on intelligent systems including ex-

pert systems (McDermott 1980, Waterman 1986) and cognitive models (Anderson 1983,

Laird et al. 1987, Newell 1990). However, despite their long history, production systems

are computationally expensive.

The quest for an efficient production system has led to efforts in different research di-

rections. One of the most important contributions was the development of efficient

production rule matching algorithms. These are used to determine when a rule is

satisfied by the current state. The invention of the Rete algorithm (Forgy 1979) was

a major step in this direction. Since then, a number of improvements and modifica-

tions to Rete have been proposed (Miranker 1987, Schor et al. 1986). Another impor-

tant advancement towards this end, was the OPS5 system (Forgy 1981) which was the

first rule-based language to be used successfully in expert systems. However, it was

criticised because its naive rule matching technique occupied most of its computation

efforts (Gupta 1985). Gupta’s research focussed on improvements to rule matching al-

gorithms and transforming existing algorithms to exploit parallel conventional hard-

ware. The DADO computer (Stolfo 1983) was a notable example of the processors that

emerged from this work.

The imperative for improved algorithms and optimised hardware to support produc-

tion systems waned with the explosion of performance and affordability of conven-

tional computing hardware during the last three decades, which have enabled other

approaches to implementing AI. However, the cognitive agents are becoming more

complex, and this trend is expected to accelerate as we strive towards agents that

achieve true artificial general intelligence. With the growth in complexity of cognitive

agents and greater accessibility of efficient application-specific hardware, specialised

hardware architectures for cognitive computing holds significant promise of improved

performance over conventional computing hardware, especially in embedded cogni-

tive applications. This chapter describes a new kind of hardware, named the Street Pro-

cessor1, as an efficient platform for production systems. The goal of the Street project

1The Street project is an outcome of a team of researchers, of which the author is a member. This work

is presented in (Frost et al. 2015).
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is to design a computer architecture that takes advantage of the huge number of tran-

sistors available in modern integrated circuits to achieve advanced cognitive compu-

tation in real-time, but with much lower power dissipation than current computers.

The Street Processor is quite different from conventional computers. It realises fine-

grained parallel execution using hardware that distributes computation and memory

among many PEs. It shares these features with other recently announced cognitive

computers (Merolla et al. 2014, Kumar 2013); however it is optimised for processing at

a higher level of abstraction, using production rules and symbols rather than neuron

models and synaptic weights.

This chapter starts with the description of two popular matching algorithms, in Sec-

tion 3.2. The design of the Street Processor is tightly linked with the design of its in-

struction set, which we call Street language. For the sake of clarity, the Street language

is presented first in Section 3.4, with little reference to the underlying hardware. The

Street Processor architecture is described in Section 3.5. Then, different aspects of the

Street Processor are discussed in Sections 3.6 and 3.7.

3.2 Production systems

A production system is a model of computation that has been widely used in AI. This

can be achieved by providing the system a symbolic representation of its environment

and of behaviours the agent is expected to exhibit in response to changes in its en-

vironment. This representation is then systematically manipulated until a solution is

produced (Newell and Simon 1976, Laird et al. 1987). The organisation and execution

characteristics of a production system is illustrated in Section 2.4.

The major computational cost of a production system is matching the rules against

working memory. A naive approach that compares all the conditions with all the

working memory elements in each cycle spends 90% of its execution time search-

ing for matches (Forgy 1979). As the number of rules is increased the processing

cost quickly exhausts available computational resources. Several matching algorithms

have been developed to avoid this problem (Oflazer 1986, Raschid et al. 1988, Mi-

ranker et al. 1990), but Rete (Forgy 1979, Forgy 1981) and TREAT (Miranker 1987, Mi-

ranker and Lofaso 1991) are considered the most prominent among them.
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3.2.1 Rete matching algorithm

Forgy (1979) observed that the actions of a fired rule affected only a small proportion of

the working memory in each cycle. So rather than re-evaluating the entire production

system in each cycle, he proposed the Rete matching algorithm, which only computes

incremental changes to the set of satisfied rules due to working memory changes. This

increases the processing speed and makes the production system more efficient. Rete

maintains some intermediate memories of all partial matches. The algorithm processes

the changes in working memory to update the intermediate memories and determine

which production rules completely or partially match the new state of working mem-

ory. Together with the fact that in the usual cases there are only a few memory changes

in each cycle, and those changes affect only a small number of production rules, the

Rete matching algorithm works efficiently with a large number of production rules.

The Rete algorithm compiles the conditions of production rules into a discrimination

network. The partial matches of WMEs with the conditions are stored in intermediate

alpha and beta memory nodes of the network. Constant tests that check the existence of

constant symbols in WMEs are performed, and the WMEs, which passes the constant

tests are stored in alpha memories. The alpha memory nodes are connected to two-

input join nodes that find the partial binding between conditions. Beta memories store

partial instantiations of the rules i.e. combinations of WMEs that match some but not

all of the conditions of a production. These partial instantiations are called tokens.

As an analogy to relational databases, the working memory can be considered as a

‘relation’ and the production rule as a ‘query’. The constant tests represent a ‘select’

operation over WMEs. For each condition, there is an alpha memory that stores the

result of that ‘select’ operation. Let us consider a generic production rule having con-

ditions C1, C2, C3 and C4, in Figure 3.1 (a). The complete matching of production rule PR

with working memory is given by match(C1) ./ match(C2) ./ match(C3) ./ match(C4),

where the symbol ./ is a natural join operator between two conditions. The join nodes

do these joins, and each beta memory stores the results of one of the intermediate joins.

Whenever there is any change in working memory, this is checked using constant tests

and the appropriate alpha memories are updated. These updates are propagated over

to the attached join nodes, activating those nodes. If any new partial instantiations

are created, they are added to the appropriate beta memories and then propagated

down of the network, activating other nodes. Whenever the propagation reaches the

bottom of the network, it flags that all the conditions are completely matched. This is
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PR {

(C1) // conditions

(C2)

(C3)

(C4)

-->

(A1) // actions

(A2)

}

Constant test of C1 Constant test of C2

Constant test of C3

Constant test of C4

Join node

Terminal node

(a) (b)

Figure 3.1. An example of Rete discrimination network.

done by a terminal node that signals the newly found complete match and sends the

rule bindings to the conflict set. Figure 3.1 (b) shows the Rete discrimination network

corresponding to the production rule shown in Figure 3.1 (a).

3.2.2 TREAT

There is a trade-off in the amount of information that should be saved during each

Rete matching cycle. Saving all information requires many intermediate memories and

processing becomes time consuming if working memory changes very frequently. On

the other hand, saving too little information may result in unexpected matchings. Mi-

ranker (1987) pointed out that beta memories cause overhead in memory management.

Every time a WME is removed, matching must be performed to find those entries that

need to be deleted. To solve this problem, he proposed TREAT (Miranker 1987) elimi-

nating beta nodes from the network. Unlike alpha memories in Rete, the memories are

broken into three partitions: old, new-delete and new-add. The old partition contains the

partially matched WMEs of the previous cycle. In the current cycle, the new WMEs
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are added to the memories of the new-delete and the new-add partitions depending

on the current operation.

When a new WME is added, an exhaustive search through the network is performed

to determine new rule bindings. As a result, additions in TREAT are slower than those

of the Rete algorithm. When a WME is deleted, it is deleted from the alpha memory,

and its instantiations in the conflict set are also deleted. Therefore, deletions in TREAT

are faster than those of the Rete algorithm. Miranker has shown that in many cases

the speed-up obtained in deletion is greater than the loss in addition (Miranker 1987).

It is claimed that TREAT outperforms Rete, often by more than 50% (Miranker and

Lofaso 1991), though Nayak’s outcome contradicts the claim as he thought that some

issues like the long chain effect and handling of combinational logics are overlooked

in TREAT (Nayak et al. 1988). This debate opens an avenue of further investigation on

the TREAT matching algorithm.

3.3 Street Processor: Hardware-based production system

The word ‘Street’ is inspired by the names of the ‘Soar’ cognitive architecture and the

‘Rete’ matching algorithm. However, the Street Processor architecture significantly

differs from both of them. It is a reconfigurable, flat, parallel architecture designed for

processing symbolic cognitive workloads. It is designed for use in real-time embed-

ded implementations of artificial general intelligence, exemplified by the plethora of

potential autonomous robotics applications. It leads to a hardware architecture that

is very different from conventional computers, consisting of many simple PEs, called

productors, executing and communicating in parallel.

The Street Processor executes a parallel production language directly on it. This lan-

guage, called the Street language, is inspired by OPS5 (Forgy 1981) and the languages

used in the Soar (Laird 2012) and ACT-R (Anderson 1996) cognitive architectures.

However, the Street language is different from all of these. The language is described

in the next section.

A Street Processor is based loosely on the Rete matching algorithm with Miranker’s

alternative approach, TREAT. The Street language leads to an efficient TREAT-like rule

matching hardware. It is asynchronous, with no global match-select-act cycle as found
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in other production systems, explained in Section 3.2.1. This asynchronous model pro-

vides the best opportunity to parallelise traditional production systems at the applica-

tion level (Amaral and Ghosh 1993). In the work that follows all Street code is executed

on a simulator developed in the Java platform (Phillips 2016).

3.4 Street language

The Street language is used to express a set of production rules that implement an in-

telligent agent. Like other production systems, each rule is an if-then statement: if a

specified pattern (condition) exists in working memory, the rule fires, i.e. then the rule

executes (action) to make changes to working memory. The production rules oper-

ate concurrently and asynchronously. Consequently the language is event-driven and

non-deterministic.

The OPS5, Soar and ACT-R production systems use a set of conflict resolution methods

to select a single rule to fire at some point in an execution cycle. OPS5 uses a fixed set of

rules to choose a single instantiation to fire (Forgy 1981). Soar uses a system of operators

and preferences to allow the runtime execution to influence the selection (Laird 2012).

ACT-R uses a utility value mechanism, which assigns a metric to rules (Bothell 2004).

The Street language has no inherent execution cycle or conflict resolution; any kind of

strategy or decision-cycle may be implemented as desired using rules.

It is inefficient for all of the productors to concurrently access the same shared working

memory, and just as bad for each to have its own complete private copy of working

memory. The Rete matching algorithm addresses this by dividing working memory

into the alpha memories. Similarly, in a Street Processor, each productor only stores

that subset of working memory that might eventually match its if conditions. When

a productor makes a change to working memory, it communicates the change to the

other affected productors. Hence the system is entirely event driven. A change to

working memory can trigger a cascade of further changes. This supports the design of

Street language to map production rules to hardware following the commonalities of

other production languages.
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3.4.1 Working memory

Following other production systems, the working memory in Street represents the cur-

rent state of the system. It is a set of working memory elements (WMEs). Each WME

has one or more fields called attributes. Attributes are represented internally as 64 bit

words. They can represent signed integers or hashed strings. For instance, the WME

(ID17 source ID2) has 3 attributes: ID17, source and ID2, where ID17, source and

ID2 are strings. Here is a simple example of working memory of just 3 WMEs:

{( ID17 name Torrens), (ID17 source ID2), (isCounted ID5)}

3.4.2 Production rules

Each Street production rule consists of one or more condition elements (CEs) and ac-

tions. Each CE and action contain any number of attributes. In the example of Fig-

ure 3.2, (<p> type dog) and (<p> age (<a> > 7)) are CEs and (<p> isOld) is an ac-

tion. The rule searches working memory for two WMEs with matching first attributes,

one of them having second and third attributes matching the strings type and dog, and

the other WME having a second attribute matching the string age and a third attribute

with a numeric value greater than 7. If it finds these two WMEs, it fires and the action

and creates a new WME with first attribute equal to the first attribute of the CEs, and

a second attribute equal to isOld. The interpretation of this production rule is that

it searches working memory for records of dogs with ages greater than 7, and labels

them as old. A complex cognitive agent would consist of hundreds or thousands of

production rules operating on symbolic and numeric data in working memory.

st {oldDogs // a rule begins with 'st{' and a name

(<p> type dog) // a rule may have one or more CEs

(<p> age (<a> > 7)) // CEs are enclosed in brackets

-->

(<p> isOld) // there may be one or more actions

} // a rule ends with a '}'

Figure 3.2. A Street production rule.
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Condition elements

A condition element (CE) specifies WMEs to be matched in the working memory.

The CE (<p> type dog) matches any 3-attribute WME where the second and third

attributes are type and dog respectively. During the matching operation, a constant

test checks for these constants in WMEs. The first attribute is assigned to a variable

<p>, which can be any value. A variable test checks this variable for consistent variable

bindings in WMEs. A subset of working memory that satisfies all of the CEs in a pro-

duction rule with consistent variable assignments is called an instantiation of the rule.

So instantiations of the rule above will be pairs of WMEs in working memory such as:

{(pet1 type dog), (pet1 age 8)}

Note that the first attributes must be the same as they were specified by the same

variable <p>. It is said that these WMEs are joined on any shared variables.

As demonstrated in (<p> age (<a> > 7)), CEs can test binary relations between at-

tributes and constants. In this example, a match occurs only if the third attribute has

value greater than 7, in which case variable <a> is assigned that value.

The special relation (<x> != <y>) is also allowed. This specifies that the correspond-

ing attribute must join with any appearances of the variable <x> in other conditions,

and must not be equal to the variable <y> bound in any other condition. For example,

in Figure 3.3, the CEs check if <p> has <a> and <b>, and both are different. In this case,

<p> has at least two items.

st {hasAtLeastTwoItems

(<p> has <a>)

(<p> has (<b> != <a>))

-->

(<p> isHappy)

}

Figure 3.3. Example of a inequality check.

Page 45



3.4 Street language

It is also possible to search for the absence of a WME in memory using a negative condi-

tion element. For example, in Figure 3.4, -(<p> isToy) checks if there is no WME that

declares that <p> is a toy. If both the CEs of the rule are true, <p> is labelled isReal.

st {realDogs

(<p> type dog)

-(<p> isToy)

-->

(<p> isReal)

}

Figure 3.4. Example of a negative condition element.

However, the Street language does not allow other relations between variables, such as

(<x> > <y>). This is because variable matching is performed in parallel in hardware

using content addressable memories (CAMs). Variable relations other than equality

and inequality in this scheme incur substantial hardware overhead. It is more efficient

to subtract <y> from <x> in one rule, and compare the result against 0 in another.

Actions

The actions of a production rule are performed for each instantiation of the rule. They

may only add or delete WMEs. Actions such as (<p> isOld) and (<p> isReal) in

Figures 3.2 and 3.4 add WMEs to working memory. Variables in actions that appear

in the rule’s CEs take on the values from the rule’s instantiation; variables that do not

appear on the CEs are given a new, unique identifier value. Actions can also remove

WMEs from working memory. For example, in Figure 3.5 -(<s> counter 4) deletes

the WME from working memory when the condition is true.

A single change to working memory can instantiate multiple production rules in which

case the actions for all of these new instantiations will be executed. For example, if

the alpha memories of the rules of oldDogs in Figure 3.2 and realDogs in Figure 3.4

already contain the WMEs (pet2 age 9) and -(pet2 isToy) respectively, and a new

WME (pet2 type dog) arrives in working memory, both the rules will fire in parallel

and create the two new WMEs (<p> isOld) and (<p> isReal).
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st {resetCounter

(<s> counter 4)

-->

(<s> counter 0)

-(<s> counter 4)

}

Figure 3.5. Example of a negative action.

Moreover, a single change to working memory can create multiple instantiations of

a production rule. For instance, the working memory currently contains the WMEs

(pet1 type dog) and (pet2 type dog), and a new WME (startRunning true) ar-

rives, then it will cause two instantiations of the rule runningDog of Figure 3.6, and

(pet1 isRunning) and (pet2 isRunning) WMEs will be added to the working mem-

ory.

st {runningDog

(<p> type dog)

(startRunning true)

-->

(<p> isRunning)

}

Figure 3.6. Example of multiple instantiation of a production rule.

Actions can include logic and arithmetic operations between variables and constants

or variables and variables. For example, (<n> difference (<x>-<y>)).To simplify the

requirements on underlying hardware, they are currently limited to elementary integer

arithmetic, boolean and bitwise logic.

In some other production languages, the actions of a production rule are undone when

the rule no longer matches. Soar has two kinds of rule: one that makes persistent

changes to working memory, and another that only applies while its instantiation is

true (Laird 2012). In Street language all rules make persistent changes to working

memory. A WME added to working memory will remain there until it is explicitly
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deleted. This simple model makes it possible to realise both kinds of Soar rule, al-

though a rule that makes only temporary changes to working memory will need the

support of additional rules to delete WMEs it creates.

3.4.3 Synchronisation

Because Street production rules are executed concurrently and asynchronously, it is

possible for non-deterministic behaviour to arise due to race conditions. Here it is

expected that occasional non-determinism will often be tolerated as a normal aspect

of cognitive computing. In cases where determinism is important, Street language

provides mechanisms to avoid and resolve races.

Bundled actions: Actions from a given rule and corresponding to a given instantiation

are grouped together as bundled actions. They will always be executed in the

order in which they are written on the RHS, and will not be interleaved with other

actions of the same rule. Hence the rule in Figure 3.7, will always add the WME

(<p> barks) to memory. If the two conflicting actions, to remove (<p> barks)

and to add (<p> barks), appeared in two different rules that were instantiated

at the same time, then the outcome would be undefined.

st {barkingDogs

(<p> type dog)

(<p> isReal)

-->

-(<p> barks)

(<p> barks)

}

Figure 3.7. A rule to demonstrate bundled actions.

Sequencing rules: To resolve races, Street language provides a special sequencing

rule, indicated by the use of a modified arrow, ~~>. If an action (or bundled

action) creates multiple new instantiations of a sequencing rule, it will only fire

its actions for one of those instantiations. Which instantiation it chooses to fire

is arbitrary. It will not fire again for any instantiation until the rule is reset. A
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sequencing rule is reset when there is no match in working memory for any of its

CEs.

To clarify the need for sequencing rules, consider the production rule in Fig-

ure 3.8. This rule is intended to count the number of WMEs in memory of the

form (ID1 dog <i>). It works fine so long as WMEs of this form arrive in work-

ing memory one by one, with sufficient delay between them to instantiate the

rule for each WME change.

/* it is assumed that (ID1 count 0) is created initially */

st {countDogs

(ID1 dog <i>)

(ID1 count <c>)

-->

-(ID1 dog <i>) // don 't count it again

-(ID1 count <c>) // remove the old count

(ID1 count <c>+1) // increment the count

}

Figure 3.8. A Street production rule susceptible to race conditions.

Problems occur when dogs arrive simultaneously or even just quickly one after

another. Imagine (ID1 dog fred) is created, quickly followed by (ID1 dog ...

tom). The rule will fire with <i> = fred and <c> = 0. There is no guarantee

that these changes will take effect before the rule fires again with <i> = tom and

<c> = 0. The result will be that both ‘fred’ and ‘tom’ will be removed from work-

ing memory, but the count will only be 1, instead of 2. The delay between an

action and its effect on working memory is an inevitable consequence of the dis-

tributed hardware structure.

The race in Figure 3.8 can be resolved by replacing the --> with ~~> so that it be-

comes a sequencing rule. This time, the rule will fire for <i> = fred and <c> ...

= 0 as before; however, it will not fire again when (ID1 dog tom) is created, even

though this creates a new instantiation. But then the rule is notified of the ac-

tion -(ID1 count 0) and, assuming there are no other (ID1 count <c>) WMEs

in memory, the rule will be reset. When the final action from counting ‘fred’,
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(ID1 count 1) is processed, it will create a new instance of the rule with <i> ...

= tom and <c> = 1. After its actions are taken both the ‘fred’ and ‘tom’ will have

been removed from memory, and the count will become 2 as expected.

3.5 Street Processor architecture

The parallel Street language is directly executed in the Street Processor. Figure 3.9

shows the Street Processor alongside a conventional computer system when both are

executing an agent using a symbolic cognitive architecture. The Street Processor has

been designed specifically to support cognitive processing. As indicated in the figure,

it consists of a large number of hardware processing elements or productors, with a sin-

gle production rule assigned to each2. The productors are connected via interconnect

networks and communicate using tokens to notify each other of changes to working

memory. Rather than broadcasting tokens to all productors, a static destination table is

determined for each productor by analysing the constant symbols of the production

rules. The destination table lists the productors affected by the action of the current

productor. This destination table is also used to initially allocate production rules to

productors. This allocation remains static during execution, but is updated when the

Street Processor sleeps periodically (discussed in Section 3.7).

3.5.1 Micro-architecture of a productor

A Street Processor contains a number of simple identical productors. A simplified

block-diagram of a productor is shown in Figure 3.10. Each productor contains config-

uration registers, a production match controller, a block of alpha memory and an Arithmetic

Logic Unit (ALU). Investigating the implementation issues of the productor are still

unresolved and matters for further research. They are also not within the scope of this

thesis, hence not discussed in broad detail, rather a very brief description is provided.

Configuration registers store the definition of the associated production rule, i.e. the

CEs and actions of the rule.

Production match controller is a state machine that coordinates the productor’s match-

act cycle. For each incoming token it updates the contents of the alpha memories,

2It is possible for a production rule to spread over multiple productors. This is discussed in Sec-

tion 3.5.2
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Figure 3.10. Block diagram of a productor.

finds new instantiations (match), and outputs tokens corresponding to the rule’s

actions (act).
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Alpha memory comprises subsets of working memory matching each CE. It is a block

of modified CAM called Relational CAM (RCAM)3. The RCAM is used to accel-

erate searching by matching alpha memory cells in parallel to find new instan-

tiations of a rule. It has a 64 bit column for every variable in the rule’s CEs. It

is assumed that this column size is large enough to handle a large number of

variables in each production rule. The depth of an alpha memory and the num-

ber of alpha memory columns per productor are design parameters, and the best

choice will depend on the workload. The RCAM includes a selected flag in each

row. Different search operations can be performed using this flag to select or de-

select rows that match the cue, which represents the attribute values in WMEs.

The contents of the first selected row can be read from the array and deselected so

that iteration continues through the set of selected rows. The hardware overhead

for this extra RCAM functionality is trivial compared to the area required for

the CAM array, yet it provides exactly the operations required for the matching

algorithm.

3.5.2 Big Productor

When a production rule cannot fit in a single productor, either because it has a large

number of CEs and variables (and needs too many columns of alpha memory), or it

matches a large number of WMEs (the alpha memory requirement exceeds the capac-

ity of a productor) during runtime, the flat architecture of a Street Processor allows

the productor to spread over multiple productors, making a Big Productor. One of the

productors of the Big Productor acts as the master and its configuration registers and

production match controller stays active. It is considered as a source or destination

of tokens, and the Big Productor uses the destination table attached to it. The other

productors of the Big Productor support the master productor by lending their alpha

memories. The network routers associated with them are used to forward the tokens

only. If a Big Productor is created during runtime, the supporting productors may

reside some distance from the master productor. This may affect the system perfor-

mance due to communication latency, but the situation will be resolved during the next

sleep period when the distant productors are re-mapped closer to the master produc-

tor. Chapters 5 and 6 investigate different mapping techniques in more detail. When

3This work is in preparation to be submitted to a peer-reviewed journal under the title of “Relational

Content Addressable Memory”.
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the mapping technique involves GPEs (which will be discussed in Chapter 6), all of

the PEs of the Big Productor are mapped to a single router to reduce communication

latency. Figure 3.11 shows an example of a Big Productor where p4 works as a mas-

ter productor and is considered as a source or destination of tokens. The router r4

associated to p4 stays active and the routers r1 and r2 forward tokens only.

r� r� r�
r
4

r r!
r" r

8
r
9

p
1

p
2

p
3

Figure 3.11. An example of a Big Productor.

3.6 Dependency graph

The actions of a production rule make changes in the working memory. If the changes

can cause another rule to be instantiated, then the second rule is said to be dependent

on the first rule. The degree of dependency is determined by the number of actions of

the first rule that causes the second rule to fire. For example, in Figure 3.12, the produc-

tion rule oldDogs adds (<p> isOld) to working memory, which may cause tiredDogs

rule to be instantiated. Hence, tiredDogs is dependent on oldDogs with the degree of

dependency equal to 1.

This dependency provides a good indication of traffic between productors. The Street

Processor keeps track of the runtime traffic between productors for a given period of

time. It generates a dependency graph using the traffic statistics and this is used to refine

productor placements later on.

The mapping of productors onto an interconnect network depends on the dependency

graph (discussed in Chapters 5 and 6). It is a weighted directed graph, where each

vertex represents an active productor. The weighted edges between vertices represent

total traffic over a given period of time. This graph is used to map the productors onto

Page 53



3.7 Sleep period

st {oldDogs

(<p> type dog)

(<p> age (<a> > 7))

-->

(<p> isOld)

}

st {tiredDogs

(<p> type dog)

(<p> isOld)

(<p> workingHour (<h> > 2))

-->

(<p> isTired)

}

Figure 3.12. An example of dependencies between two production rules.

the interconnect network so that the most inter-dependent productors are placed close

together in the expectation that this will reduce communication latency and power

consumption.

3.7 Sleep period

Depending on the changes in working memory, different production rules fire at differ-

ent rates. It is also usual that a production rule fires at different frequencies in different

periods of time. The Street Processor stores traffic statistics due to rule firings during

runtime. At regular intervals (expected to be of the order of 24 hours) or when the util-

isation of alpha memories exceeds a certain threshold, the Street Processor will pause

its normal execution of reacting to the changes in working memory. During this time

it uses the recorded traffic statistics to update its dependency graph. It evaluates the

dependency graph to update the assignment of production rules to productors so that

highly inter-dependent rules are assigned to productors close together, to minimise the

overall network traffic, latency and power consumption. This is analogous to human

sleeping (Landmann et al. 2014), and is termed the sleep period of the Street Processor.
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When the Street Processor wakes up after a sleep period, it continues to operate as be-

fore, but with performance that will improve because of the revised rule-to-productor

mapping if, as hypothesized, the re-mapping process is effective. Sub-optimal place-

ment may adversely affect the performance of the Street Processor until the next sleep,

increasing latency and power consumption, but does not stop it operating correctly.

Re-assignment of production rules to productors involves changing the content of the

configuration registers for each productor. Each productor has a single associated net-

work router, which uses a static destination table to direct the tokens to productors

that may be affected by them. During the sleep period, the memory contents and des-

tination tables are also modified. However, the network structure remains unchanged.

The mechanism to transfer rule definition and memory contents between productors

is still under investigation. We envisage that this can be done by using a dedicated su-

pervisory processor, or by the Street Processor itself using additional production rules.

The production rules to define the mapping between production rules and productors

based on traffic record will be discussed in detail in Chapter 5.

3.8 Conclusion

The Street Processor is a new kind of hardware architecture that has been designed es-

pecially for cognitive computing. It executes a parallel production language directly in

hardware with the aim of realising advanced cognitive agents more power-efficiently

than conventional computers. The language is much simpler than OPS5 and the lan-

guages used in Soar and ACT-R. Although Street language is parallel by nature, there

are synchronisation techniques to tackle race conditions, and make it able to solve de-

terministic problems.

A conventional computer, with its sequential execution path and centralised memory,

is not a good match with the computational requirements of cognitive computing. It

would be better served by hardware that supports fine-grained parallelism and which,

like the brain, distributes memory and computation. The Street Processor is the hard-

ware designed to fill the gap. It decentralises its memory over an array of alpha mem-

ories associated with individual productors. Each productor asynchronously conducts

matching over working memory changes and corresponding production rules. The al-

pha memories are realised using RCAMs that allow parallel search operations to find

new rule instantiations.
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The Street Processor architecture has some distinguishing features that make it suitable

for running advanced cognitive agents. It introduces the concept of a sleep period, dur-

ing which the placement of the productors is refined to improve overall traffic, latency

and power consumption. In addition, a Street Processor has provision for alpha memo-

ries to grow over multiple productors using the concept of Big Productors. This allows

a Street Processor to run for an extended period of time without memory overflow.

The Street Processor, which contains thousands of homogeneous processing elements,

requires an efficient interconnect platform to ensure simultaneous data exchange. The

on-chip communication of such processors is discussed in next chapters.
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Chapter 4

Interconnect Platform of
SoCs with Homogeneous

PEs

A
N interconnect platform based on network on chip is dis-

cussed in this chapter for a system on chip containing many

homogeneous processing elements. The NoC architecture is

designed to be very simple in order to optimise resource requirements as

it is targeted to be used in a system having a large number of simple PEs.

This chapter describes various components and design parameters of NoC

architectures, including topologies, routing schemes and flow control tech-

niques. This chapter also presents the realisation of a NoC router. This sets

the foundation of NoC mapping problem, which is one of the most vital

design considerations of NoC design addressed in later chapters.
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4.1 Introduction

The scaling of microelectronic technologies has led to an exponential growth of avail-

able processing resources on a single chip. However, the performance of SoCs is ulti-

mately limited by the efficiency of interconnection between the PEs, so in many cases

the architecture is communication-limited rather that computation-limited. The grow-

ing complexity of SoCs requires highly scalable communication infrastructures. The

conventional on-chip communication techniques based on point-to-point links and

buses cannot provide this scalability. This has inspired researchers to shift to a new

paradigm of on-chip communication in the form of networks on chip. In NoC archi-

tectures, the network of routers that are associated with PEs, supports simultaneous

communication between PEs over multiple links. This can increase the aggregated

performance of SoCs.

A number of notable NoC architectures have been reported in the literature. SPIN

(Guerrier and Greiner 2000), NOSTRUM (Kumar et al. 2002), SoCBUS (Wiklund and

Liu 2003), Æthereal (Rijpkema et al. 2003b) and Xpipes (Dall’Osso et al. 2012) are promi-

nent among them. Each of these architectures has a different router structure, switch

and interface design, routing scheme and flow control techniques. However, most of

the state of the art architectures are packet-switched and involve regular topologies.

Regular topologies are especially suitable for homogeneous SoCs because homoge-

neous processor architectures tend to exhibit symmetry and regularity in their pro-

cessing and communication. An example of a regular topology is a mesh, which has a

simple layout and switch architecture independent of the network size.

This chapter describes the NoC architectures used in homogeneous SoCs like the Street

Processor, which has been discussed in Chapter 3. First, the limitations of traditional

on-chip communication methods that led to the development of NoCs are discussed in

Section 4.2. Section 4.3 explains different important aspects of NoCs including topolo-

gies, routing schemes and flow control techniques. Section 4.4 briefly illustrates the

micro-architecture design of a NoC router. Finally, in light of these discussion, Sec-

tion 4.5 summarises design parameters of the NoC architecture of a Street Processor.

4.2 Limitations of conventional on-chip communication

Small SoCs often use either buses or ad hoc dedicated links as the medium for on-chip

communication. With point-to-point links, data travels on dedicated wires directly
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connecting two end-point PEs, so they potentially yield ideal performance with small

number of PEs. However, when the number of on-chip components increases, this

scheme requires a huge amount of wiring to directly connect every component to ev-

ery other. Moreover the utilisation of this wiring is very poor, often less than 10%

average wire usage at a time (Dally and Towles 2001). Consequently, the poor scalabil-

ity due to considerable area overhead is a prohibitive drawback of dedicated links. In

addition, the dedicated wires need special attention to manage power, signal integrity

and performance issues.

In SoCs with traditional buses, all PEs share the same physical wires and the same

limited bandwidth. The serialisation of bus access requests allows only one master at

a time to access the buses. This limits scalability and results in significant performance

degradation for complex SoCs. Moreover, the addition of new PEs to shared buses

increases associated load capacitance, ending up in more energy consumed per bus

transaction. The power required to drive long buses with many PEs can be prohibitive

(Weste and Harris 2010). In addition, a centralised arbiter of bus-based interconnect

adds arbitration latency as the number of PEs increases. As a consequence, the overall

performance of a bus-based SoC does not scale with the number of PEs but rather

degrades significantly as bus traffic quickly reaches its saturation.

Earlier research (Benini and Micheli 2002, Dally and Towles 2001) pointed out the need

for more scalable architectures for on-chip communication, and therefore to progres-

sively replace point-to-point connections and shared buses with NoCs. NoCs provide

a much better performance scalability than buses. There is less contention for access to

the network infrastructure, since multiple transactions originating from multiple PEs

can be handled at the same time. This results in a more efficient network resource util-

isation. Thus, for SoCs with a large number of PEs, NoC architectures promise to be

the most efficient interconnect solution.

4.3 NoC architecture

The PEs and routers, together with the physical links between routers comprise a NoC

architecture. The design of a NoC architecture has several important characteristics

that affect its performance: topology, routing, flow control and virtual channels. The

next section describes the physical components of NoCs followed by the descriptions

of these design considerations.
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4.3.1 Physical components

NoC structures can be broken down into four major physical building blocks: PEs,

interfaces, routers and links. Figure 4.1 depicts an example of a NoC structure and its

major components.

PE

Interface

Router

Link

r1 r2 r3

r4 r5 r6

r7 r8 r9

Figure 4.1. A NoC structure and its major components.

Processing elements produce and consume data (tokens in the case of the Street Pro-

cessor) communicated over NoCs. In general, a PE contains a processing core,

memory module and possibly other intellectual property (IP) blocks. In the Street

Processor, each PE contains a simple and identical productor (described in Sec-

tion 3.3).

Interfaces couple PEs to the communication infrastructure provided by the NoC. They

implement an interface between network protocol and the protocols supported

by PEs. Interfaces handle the flow control, encapsulating the data generated by

PEs for the routing strategy of the network. The data is broken into packets which

contain information about their sources and destinations along with payloads.

Routers handle network packets according to defined routing and flow control proto-

cols within the network. They forward packets to adjacent routers via the links

in accordance with routing information. Router micro-architecture is discussed

in Section 4.4.

Links provide the interconnection between routers in the network. They may consist

of one or more logical or physical connections. They usually have two symmetric

unidirectional data-paths each with additional control wires both in forward and
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backward direction. In some NoC designs, control wires enable multiplexing of

multiple logical links onto a single physical connection.

4.3.2 Topology

A NoC is functionally composed of links and routers that provide the interconnection

mechanism for PEs to transmit and receive packets. The network topology determines

the physical layout and connections between routers and links in the network. An

important design decision for NoCs concerns topology selection. Topologies can be

categorised into regular and irregular classes. Customised domain-specific irregular

topologies may offer more power efficiency and deliver better performance to NoCs

with specialised heterogeneous PEs (Ishiwata et al. 2003, Yamauchi et al. 2002). How-

ever, for NoCs with homogeneous PEs, regular topologies such as mesh are considered

more suitable because of their modularity and regularity (Dally and Towles 2001, Guer-

rier and Greiner 2000, Kumar et al. 2002). These characteristics facilitate re-usability

and interoperability of the modules. Moreover, if the network structure is regular and

designed beforehand, its electrical parameters can be controlled and optimised very

well. Figure 4.2 shows some regular NoC topologies.

(a) #$%
#&% #'%

Figure 4.2. Regular NoC topologies. (a) Mesh, (b) Torus, (c) Ring, (d) Tree

Each topology is characterised by several properties, which are briefly discussed here.
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Degree: The degree is the number of links connected to each router. Degree deter-

mines the number of possible alternate paths out of a router. It also gives an

indication of the cost of NoC routers. Routers with higher degrees require more

interfaces, which increases implementation complexity. A topology might have a

uniform degree, for example, in Figure 4.2 the torus and ring topologies have uni-

form degrees of 4 and 2 respectively. On the other hand, mesh and tree topologies

do not have uniform degrees because the routers at the edges of the topologies

have fewer neighbours than the internal routers.

Number of hops: A topology also determines the number of hops (routers) a packet

would traverse to reach its destination. This influences network latency signif-

icantly. As energy is required to traverse routers and links, the hop count in a

topology directly affects network energy consumption.

Path diversity: Furthermore, a topology dictates the path diversity between routers,

affecting how well the network can spread out its traffic and hence support band-

width requirements. This also determines whether the routing algorithm has the

flexibility to route packets around faults in the network.

4.3.3 Routing schemes

When a PE wishes to transmit data to another PE it specifies the address or identifier

of the destination PE and passes the data into the network through its interface to the

attached router. The path that the data takes through the NoC to the destination PE

is determined by the routing algorithm. A packet can be transmitted from a source

to a destination router using more than one possible path through the network. Two

important characteristics of a viable routing algorithm are its livelock and deadlock

freedom. A livelock occurs when a routing technique never leads a packet to its desti-

nation. They can happen in the case of adaptive routings, if the packet is continuously

routed in non-productive directions (Glass and Ni 1992). A deadlock happens when a

packet cannot proceed because some resource that it requires is occupied by another

packet and never released. This creates a permanent inability to proceed due to cyclic

dependency, unless some corrective measures are taken. Figure 4.3 shows four dead-

locked packets waiting in each router for links that are currently held by other packets,

preventing any packet from making forward progress. The packet entering router r1

from the south wants to leave through the east, but another packet is holding that link
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while waiting at router r2 to leave via the south output interface, which is again held

by another packet that is waiting at router r4 to leave via the west interface and so on.

r1

r3

r2

r4

Turn 1

Turn 2

Turn 3

Turn 4

Figure 4.3. A deadlock situation. Turn 1: packet entering r1 from the south wants to leave

through the east, Turn 2: packet entering r2 from the west wants to leave through

the south, and so on.

Many routing algorithms have been proposed (Bjerregaard and Mahadevan 2006, Agar-

wal et al. 2009) in the literature. Deterministic routing is the most commonly used

technique among them. In deterministic routing, the routing paths are completely de-

termined by the addresses of sources and destinations (Dally and Towles 2004). As a

result, all deterministic routing algorithms are livelock free. Dimension ordered rout-

ing is a minimal deterministic routing algorithm because it selects paths with the small-

est number of hops between the source and destination (Dally and Towles 2004). In

this routing, all packets from a source to a destination traverse the same path on a ‘per

dimension’ basis, reaching the ordinate matching its destination before switching to

the next dimension. For a 2D mesh, the packet is first routed through X (horizontal,

or east-west) axis and then through Y (vertical or north-south) axis until it reaches the

destination. For this reason, this routing is also referred as XY routing. Alternatively, if

the packets traverse through the Y axis first and then through the X axis, it is called YX

routing. XY routing is deadlock free because it allows packets travelling east and west

to turn north or south, but prohibits packets travelling north and south from turning

east or west. For the same reason, YX is also deadlock free. As illustrated in Figure 4.4,

since two of the turns are not permitted the cycles in Figure 4.3 are not possible and

hence a deadlock is avoided.

A more sophisticated routing algorithm is adaptive routing, in which the path depends

on the network traffic situation. Adaptive routing algorithms often rely on local router

information such as queue occupancy and queuing delay to handle congestion and
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(a) ()*
r1

r3

r2

r4

r1

r3

r2

r4

Figure 4.4. Permitted turns in dimension order routing. (a) XY routing turns, (b) YX routing

turns

select links (Linder and Harden 1991, Dally and Aoki 1993). With a fully adaptive

routing algorithm, livelock and deadlock are crucial problems which are handled by

limiting adaptability of the system (Chien and Kim 1995) and by special flow control

techniques (Duato 1995). Another problem with adaptive routing is that different pack-

ets of the same data (token) can arrive at their destination in an order different from

that in which they were sent, which requires special mechanisms and large buffering

space to re-order the packets.

Compared to adaptive routing, deterministic dimension order routing is very simple

for implementation and especially suitable for SoCs with a large number of PEs. This

routing algorithm requires less buffering space since no ordering is required for re-

ceived packets (Bhattacharyya et al. 2003). Furthermore, the predictable traffic of de-

terministic routing allows the designer to mitigate latency and congestion problems by

carefully placing the PEs into the NoC structure.

4.3.4 Routing implementation

Routing algorithms can be implemented using lookup tables at either the source routers

or at each hop along the route. These are known as source routing and node table based

routing respectively.

Source routing: In source routing, the route is embedded in the header of the packet

at the source. For instance, in Figure 4.1 at page 60, the routing from r1 to r9 using

XY routing can be encoded as E → E → S → S. At each hop, the router reads the

most immediate route information from the packet header and sends the packet

towards the specified output link. The disadvantages of source routing include
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the bit overheads required to store the routing table for the entire network at

the network interface of each source and to store the entire routing path in each

packet. These paths can grow large depending on network size.

Node table based routing: Rather than providing complete routing information in a

packet, it can be stored in intermediate routers. This approach significantly re-

duces the total storage required to hold routing tables because each router stores

only direction of the next hop towards each destination rather than the entire

path. When multiple paths are available for each destination, this approach sup-

ports some sort of adaptability. By updating the routing tables based on the cur-

rent traffic situation, node table based routing can handle faults and congestion

in the network. Table 4.1 demonstrates the routing table with XY routing on the

network in Figure 4.1. Each row of the table indicates the next hop directions to

reach the corresponding destinations.

Table 4.1. Node table based routing of a 3 × 3 mesh using XY routing.

Source
Destination

r1 r2 r3 r4 r5 r6 r7 r8 r9

r1 - E E S E E S E E

r2 W - E W S E W S E

r3 W W - W W S W W S

r4 N E E - E E S E E

r5 W N E W - E W S E

r6 W W N W W - W W S

r7 N E E N E E - E E

r8 W N E W N E W - E

r9 W W N W W N W W -

4.3.5 Flow control techniques

A NoC consists of many links and buffers. Flow control deals with the allocation of

links and buffers to a packet as it travels along a path through the network. Whether

a deadlocked packet will be dropped, blocked in place, buffered, or re-routed through

another link depends on the flow control policy. A good flow control policy avoids

link congestion and packet loss while reducing network latency.
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Flow control techniques can be classified into two categories: bufferless and buffered.

Bufferless techniques like circuit switching (Lines 2004) and time division multiplex-

ing (Richardson et al. 2006), form a path from source to destination by reserving links

(not buffers) exchanging by setup and acknowledge messages prior to sending packets.

Intermediate routers may buffer the packets temporarily but they should be forwarded

in the next cycle. Although latency and buffer requirements are reduced in this method

of flow control, it suffers from poor bandwidth utilisation because multiple links will

be reserved for the transition of one placket and will not be available for other pack-

ets. The links remain idle between setup and the actual packet transfer while other

packets seeking to use those resources are blocked. In the buffered flow control tech-

nique, the router can store the packet until the required link along the path becomes

available. Store and forward (Dally and Towles 2004), virtual cut through (Kermani

and Kleinrock 1979) and wormhole routing (Dally and Seitz 1987) are some commonly

used buffered flow control techniques. Wormhole routing has been used extensively

in high performance parallel computers for its low buffering requirements, which in

turn helps routers to meet tight area and power constraints (Jetly 2013).

In wormhole routing, packets are broken down into flow control digits (flits), and the

flits are routed over the network in a pipelined fashion resulting in a significantly re-

duced latency. Flits are further broken down into phits, which are the smallest physical

units that can be transported over a link in a single cycle. Flits can be categorised in

three types. The head flit of the packet contains routing information and is used to

direct the packet to destination. This is followed by payload composed of body flits

containing data and a tail flit indicating the end of a flit sequence. Figure 4.5 depicts

the decomposition of transmitted data in wormhole routing. Here VCID is the identity

number of the virtual channel (which will be discussed shortly) that the flit occupies.

SrcDstOthersData

HEADSrcDstVCID+,-./01+23
VCIDDataTAILVCIDData

4567859 :.59./45;<.,=7>,0
T
6?.0 8@ @7>,0

Figure 4.5. Data decomposition in wormhole routing.
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In wormhole routing, when the head flit is blocked due to congestion, the trailing flits

of the packet wait at their current routers. As a result, the routers do not need large

buffers to store the whole packet, rather small buffers to store several flits are sufficient.

As the packet size does not depend on the available buffer size, it gives more flexibility

to define the packet size minimising control overhead in wormhole routing. Because of

limited buffering requirements and reduced latency (Dally and Seitz 1987), wormhole

routing is believed to be the most appropriate flow control technique for systems with

a large number of PEs.

4.3.6 Virtual channels

When a packet at a router’s input interface is blocked, it stalls subsequent packets

that are in the queue behind it, even if resources are available for the stalled packets.

The use of virtual channels is a flow control technique that reduces this head-of-line

blocking problem (Dally 1992). It splits a physical link into a number of virtual channels

and associates multiple virtual channels with each router interface. Virtual channels

arbitrate for physical link bandwidth on a ‘per cycle’ basis. When a packet holding

a virtual channel becomes blocked, other packets can still traverse the physical link

through other virtual channels. Thus virtual channels increase the utilisation of the

physical links and extend overall network throughput.

Figure 4.6 illustrates an example of virtual channels. Packet p1 arrives at the west

interface of router r1 and with an intention to reach r4, occupies the link between r1 and

r2. Now if another packet p2 arrives later in the north interface of r1 with destination

to r3, in the absence of virtual channels, p2 will be blocked until p1 releases the link.

However, with virtual channels, the physical link will be multiplexed and both packets

will be able to proceed without blocking each other.

4.4 Router micro-architecture

Figure 4.7 illustrates the micro-architecture of a NoC router for wormhole routing with

n interfaces, each having v virtual channels (Dally and Towles 2004). The major com-

ponents of a router are input buffers, crossbar switch, route computation logic, switch

allocator and virtual channel allocator. The first two components provide the data-

path of the router, and are involved in storage and movement of a packet’s payload.
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p2

p1

r1 r2 r3

r4

Figure 4.6. Example of virtual channel flow control.

The others are considered in as the control unit, which coordinates the movement of

packets through the resources of the data-path. The number of interfaces of a router

depends on the number of PEs attached to it. It is a common practice to attach one PE

to a router. However, for SoCs that have a large number of PEs, it is advantageous to

associate multiple PEs to a single router in order to reduce the number of routers and

overall cost of the NoC architecture.

The physical components of a router are discussed here.

Input buffers are first-in first-out (FIFO). They hold the incoming flits until they are

released to the output interfaces. Buffer cells can be implemented using static

latches or SRAMs depending on the buffer size and access timing requirements.

For NoC routers that have several interfaces to support multiple PEs per router,

the buffers are normally implemented using static latches, typically in the size of

a small number of flits each. These can be readily synthesised without requiring

memory generators.

Crossbar switch is responsible for transferring flits from input to output interfaces.

The router uses this crossbar network with full connectivity, enabling multiple

and simultaneous flit transfers. Hence the size of the crossbar is vn × n. This is

built using multiplexers that receive select signals from the switch allocator to set

up corresponding connections between input buffers and output interfaces.
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HILMMNOLENPQNDERBSONTCDELERNB

UELSV

ABCDE FDGferHI JHI KHI v UELSV

ABCDE FDGferHI JHI KHI v UELSV

Figure 4.7. Router micro-architecture with n interfaces, each having v virtual channels. The

solid and dotted lines indicate the data-paths and the control signals respectively.

Control unit comprises a routing computation block, a virtual channel allocator and

a switch allocator. The routing computation logic looks up the routing table for

the output interface to which the the flits of a packet will be forwarded. Once

the output interface is determined, the flits are allocated a virtual channel by

the virtual channel allocator. Each flit of the packet is then forwarded over the

virtual channel by assigning a time slot on the switch using the switch allocator.
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A switch allocator provides the necessary signals to the crossbar switch to move

flits from the input buffer to the output interface.

The router employs credit-based link level flow control to coordinate flit delivery

between routers. Credits keep track of the number of buffers available at the next

hop, by sending a credit to the previous hop when a buffer is vacated, and incre-

menting the credit count at the previous hop upon receiving the credit. When a

flit departs the current router, the current router decrements the credit count for

the appropriate downstream buffer.

The router works in a pipeline at the flit level. Figure 4.8 illustrates the logical pipeline

stages of the router. When a head flit arrives at the input interface of a router, it is

first decoded and stored at the input buffer in the buffer write (BW) pipeline stage.

In the next stage, the routing logic performs route computation (RC) based on the

information in the head flit, to determine the output interface to which the packet

will be forwarded. The head flit then enters the virtual channel allocation (VA) stage

to arbitrate for a virtual channel at the allocated output interface. Upon successful

allocation of a virtual channel, the head flit proceeds to the switch allocation (SA) stage

where it arbitrates for the switch. On achieving switch arbitration, the flit is read from

the input buffer and traversed over the crossbar switch to the output interface in the

switch traversal (ST) stage. Finally, the flit is passed to the next router in the link

traversal (LT) stage. Body and tail flits follow a similar pipeline except that they do

not go through RC and VA stages, instead inheriting the route and the virtual channel

allocated to the head flit. The tail flit, on leaving the router, deallocates the virtual

channel reserved by the head flit.WX YZ
VA

[\ []
LTWX [\ []

LTWX [\ []
LTWX [\ []

LT

Head flit

Body flit

Body flit

Tail flit

Figure 4.8. Pipeline stages of a NoC router.
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4.5 NoC of the Street Processor

A Street Processor will typically thousands of fine-grained homogeneous PEs execut-

ing in parallel. Unlike SoC implementations of multimedia and image processing algo-

rithms, which usually contain complex processing nodes e.g. CPUs, DSPs and RAMs,

the PEs of a Street Processor are relatively simple. Thus, a regular and generic tile-

based NoC architecture is expected to be sufficient to meet its communication require-

ments. Each tile contains a router, and one or more PEs. A regular mesh topology fits

well for this kind of large homogeneous system. A dimension order XY routing is used

in this NoC design because it is immune to deadlock and livelock. Furthermore, this

routing scheme requires less buffering space and is very simple to implement.

Since this interconnect architecture is designed to support a large number of PEs, buffer

space optimisation is very crucial. To this end, node table based routing is proposed,

as it only requires space to store routing information for the next hop towards the

destination, rather than the entire path. The NoC of the Street Processor uses wormhole

routing as a flow control policy, for its low buffering requirements and reduced latency.

The optimal size of the buffers is a function of the technology in which the architecture

is implemented (FPGA, full custom, etc.) and is not addressed in detail in this work.

As the routers are expensive components of a NoC architecture, each of the routers of

the Street Processor is connected to multiple PEs, instead of one single PE. The number

of PEs associated to individual routers depends on the traffic between PEs, which is

discussed in Chapter 6. As the highly communicating PEs are placed under the same

router, the traffic is handled internally. This, in turn, reduces the network traffic. To

implement multiple interfaces with reduced buffering resources, static FIFO buffers

that can store a small number of flits are used in each interface of the routers. In worm-

hole routing, since the body and tail flits follow the head flit, and a single buffer does

not need to store the whole packet, the flits of a packet can span over multiple buffers

trailing behind the head flit.

4.6 Conclusion

In this chapter, an interconnect platform suitable for SoCs with a large number of ho-

mogeneous PEs has been described. Point-to-point links and shared buses cannot pro-

vide enough scalability to support large and complex SoCs like the Street Processor.
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Rather, they limit the overall performance of the system if the power and traffic are not

managed very carefully. NoC architectures provide a more scalable and efficient alter-

native communication for such SoCs by allowing multiple simultaneous transactions

over the network (Dally and Towles 2001).

A regular mesh topology is advocated as suitable for NoCs supporting a large number

of PEs because of their modularity and re-usability. A deterministic dimension order

routing is preferred over adaptive routing for its ease of implementation and lower

buffering requirements. To further optimise the buffering space, the NoC design uses

wormhole routing, which requires small buffers in NoC routers, good enough to store

several flits of a packet. As the packet size and the buffer size are independent to each

other, it provides more flexibility to define the packet size. This chapter also discusses

the micro-architecture of a NoC router supporting these aspects.

Although this chapter describes many important parameters and implementation as-

pects of a NoC architecture, it does not discuss the placement of PEs onto NoC struc-

tures. This is a very complex and delicate problem of NoC design. The performance of

a system varies significantly depending on NoC mapping (Hu and Marculescu 2003b,

Lahiri et al. 2001). Chapters 5 and 6 address this crucial aspect of NoC design in detail.
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Chapter 5

Mapping of Homogeneous
PEs to NoC Routers

T
HISchapter describes the mapping of processing elements to net-

work on chip routers. We explore two optimisation techniques to

solve this mapping problem. The Simulated Annealing is a smart

algorithm to solve optimisation problems having multiple local minima. It

probabilistically allows hill-climbing to escape from the trap of local min-

ima. On the other hand, The Branch and Bound is a systematic approach,

which limits its search spaces using heuristics. We show that Branch and

Bound can be implemented in Street language to build a self-configurable

agent, which can re-arrange its PE placements for improved performance.

This agent, in turn, is used as a test case to evaluate the performance of the

mapping techniques.
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5.1 Introduction

Research on NoC design can be broadly classified into four categories (Marculescu et al.

2009, Agarwal et al. 2009). The first focuses on the choice of communication infrastruc-

ture, such as network topology, router architecture, buffer optimisation, link design

and clocking (Murali and De Micheli 2004, Rijpkema et al. 2003a, Wolkotte et al. 2005).

The second deals with the communication paradigm including routing techniques,

switching methods, congestion control, power and thermal management (Glass and

Ni 1992, Siebenborn et al. 2004, Hu and Marculescu 2004, Shang et al. 2006). The

third dimension involves designing an evaluation framework for NoCs to obtain a

good understanding of achievable throughput, latency, and bandwidth of the network

(Carloni et al. 2001, Lin and Pileggi 2002). These three fields of research build the com-

munication infrastructure and paradigm of NoCs. The fourth important direction of

NoC research is to optimise the association of PEs with routers. This plays a very

significant role in determining the performance of the overall system, as it directly

influences communication time, required link bandwidth and power consumption.

A number of NoC mapping techniques proposed in the literature have been reviewed

in Chapter 2. Mapping techniques can be either static or dynamic. In static map-

ping, the placement of PEs on routers is determined before the system starts, and it

remains unchanged during execution. On the other hand, if the mapping changes dur-

ing execution, it is a dynamic mapping. This is typical for NoCs that are fault-tolerant

and adaptive by nature. The cost of dynamic mapping often outweighs its benefits

(Carvalho et al. 2009). Static mapping techniques can be categorised into deterministic

and heuristic approaches. A deterministic mapping attempts to constructively enu-

merate the solution space while a heuristic mapping does not. A heuristic is a local

search method relying on a neighbourhood function to search near-optimal solutions

(Aarts and Lenstra 1997). A deterministic approach fundamentally involves Branch

and Bound or Back-tracking algorithms, but Back-tracking has been criticised for high

computation time (Gendron and Crainic 1994). On the other hand, among the heuristic

approaches such as Simulated Annealing, Tabu search, genetic algorithms and neural

networks, Simulated Annealing provides a good approximation to the global mini-

mum of a given function in a large space (Aarts and Lenstra 1997).

In Chapter 4, a NoC communication platform has been presented for systems on chip

having multiple homogeneous PEs. This chapter describes the process of PE mapping
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onto the network structure. To this end, mapping techniques based on Simulated An-

nealing, and Branch and Bound are considered from implementation perspective in

this chapter because of their advantages over other candidates of the same category.

The mapping algorithms are applied to graphs constructed from a recent history of

traffic between the PEs of the Street Processor, during the sleep period (discussed in

Section 3.7). The chapter starts with a discussion on the aspects to be considered during

NoC mapping in Section 5.2 and the definition of the mapping problem in Section 5.3.

The mapping techniques are discussed in Sections 5.4 and 5.5. The Street implementa-

tion of the Branch and Bound mapping is discussed in Section 5.6. This also acts as a

test case to evaluate the performance of the mapping techniques. In Section 5.7, these

mapping techniques are compared based on the test case and a range of network sizes.

5.2 Mapping considerations

An algorithm for mapping PEs to NoC routers must be aware of the network topology.

Topology may be defined as a physical layout and connections between routers and

channels in the network. The effect of a topology on overall network cost-performance

is profound. A topology determines the number of routers that a packet must tra-

verse, thus influencing network latency significantly. As traversing routers and links

incurs energy, a network topology also directly affects network energy consumption.

Furthermore, the topology dictates the total number of alternate paths between PEs,

affecting how well the network can spread out traffic and hence support bandwidth

requirements.

Secondly, it is also crucial to set mapping constraints carefully. A mapping constraint can

be defined as a restriction derived from the requirements of the system and the charac-

teristics of the NoC architecture, imposed when associating PEs to network structure.

It is very likely that not every mapping is feasible in all cases. Any mapping constraints

are likely to limit the size of the search space and speed up the mapping algorithm. The

bandwidth requirement is an example of a mapping constraint.

Thirdly, a mapping algorithm explores the search space of possible mappings to find

the best mapping. In order to determine the best mapping, at least one optimisation

goal is required. Network throughput or latency, communication energy, power con-

sumption and computation time are some examples of optimisation parameters. Thus,
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a mapping algorithm searches for the best mappings by attempting to optimise one or

more such parameters.

Finally, the mapping problem is closely related to routing. Any routing algorithm may

be applied after the mapping has been done. However, if the routing method is not

defined beforehand, it is possible that the mapping is sub-optimal because it has failed

to take into account the true costs of packet routing. A mapping algorithm should

therefore consider the routing paths for the mapped PEs as well. The routing function

can be deterministic or adaptive. Also, it should provide freedom from deadlock and

livelock as previously discussed.

In this chapter, we consider the mapping problem for the NoC of the Street Processor,

as designed in Section 4.5. Recall that this NoC is a regular, tile-based network archi-

tecture, which considers a mesh topology. During a sleep period, the system updates

its PE placements, depending on the traffic statistics, but this is not considered to be a

dynamic mapping because the mapping can only be changed while the system is in-

active. The mapping constraints and optimisation goals can be described in the form

of an energy cost function, which will be discussed in Section 5.3. As explained in Sec-

tion 4.3.3, the deterministic dimension order routing is used because of its livelock and

deadlock freedom.

5.3 Mapping constraint and goal

This section formulates the PE-to-router mapping problem by defining the optimisa-

tion goal in terms of an energy cost function.

5.3.1 Energy cost function

In (Walter et al. 2009), the energy cost is defined in terms of total bandwidth delivered

by the links used. Let us assume that in a NoC structure, there are NR routers and

equal number of PEs to be mapped to those routers. If in a particular mapping MεM

where M is the set of all possible mappings, PE piεP is mapped to router riεR, where

P and R are sets of PEs and routers respectively, and li,jεL is a physical link between

router ri and rj, the energy cost function to minimise the total bandwidth required is

expressed by (5.1)

Cost(M) = ∑
1≤i,j≤NR

comm(pi , pj)× di,j (5.1)
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Here, di,j is the shortest Manhattan distance between routers ri and rj, and comm(pi , pj)

is the average data transfer rate between ri and rj observed over some defined time in-

terval (in bits/second). In order to demonstrate how the NoC mapping affects the

overall cost, let us consider the two example mapping instances shown in Figure 5.1.

They consist of nine PEs placed onto a 2D mesh NoC. In each case, p2 communicates

30 bits/second to p6 and p4 communicates 100 bits/second to p3 based on the action

elements of corresponding production rules. For the sake of simplicity, the communi-

cation between other PEs are ignored here.

^_1̀

r1 r2 ra
r4 rb rc
rd re rf

g
1

g
2

gagcgd ge gf ^_ )2

r1 r2 ra
r4 rb rc
rd re rf

g
1

g
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g

4

g
4

gb gb

Figure 5.1. Examples of two mappings M1 and M2.

In mapping M1, p2 is mapped to r2, p6 to r6, p4 to r4 and p3 to r3. In mapping M2 we

swap p4 to r5 and p5 to r4. The energy costs of these two arrangements are

Cost(M1) = comm(p2, p6)× d2,6 + comm(p4, p3)× d4,3 = 30× 2+ 100× 3 = 360bits/second

(5.2)

Cost(M2) = comm(p2, p6)× d2,6 + comm(p4, p3)× d4,3 = 30× 2+ 100× 2 = 260bits/second

(5.3)

It can be noticed that because of difference in placement of p4, mapping M2 provides

lower cost than M1.

In (Ye et al. 2002), the authors represented this cost function using an energy model.

According to this, the energy consumed in sending one bit of data from ri to rj is cal-

culated as

Eri ,rj
= Es ×

(

di,j + 1
)

+ El × di,j + Eb ×
(

di,j + 1
)

(5.4)
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where Es, El and Eb are the energy consumed at each switch, link and buffer along the

path from router ri to rj, measured in Joules/bit. So, if n bits of data are transmitted

between ri and rj, the energy cost becomes

Eri,rj
= n ×

{

Es ×
(

di,j + 1
)

+ El × di,j + Eb ×
(

di,j + 1
)}

(5.5)

The total energy cost of a particular mapping, M, thus can be obtained from (5.6),

where NR is the number of routers in the network structure.

Cost(M) = ∑
1≤i,j≤NR

Eri ,rj
(5.6)

In (5.1) and (5.6), Es, El and Eb are constants for a given NoC architecture and imple-

mentation technology. Hence, the energy cost effectively depends on the distance di,j

between the mapped PEs which makes NoC mapping very crucial.

5.3.2 Problem definition

To define the NoC mapping problem it is necessary to define some important terms

first.

Dependency graph (DG): DG = (P,D, WD), is a directed graph, which quantifies the

dependencies between PEs. Here, P is the set of PEs, and D is the set of depen-

dencies between them represented by directed edges, each of which connects an

ordered pair of PEs. The dependency from pi to pj, where pi, pjεP, means that

in order to instantiate or execute pj, necessary information is required to arrive

from pi. It is represented by a directed edge (pi, pj)εD, which is associated with

the communication volume from pi to pj measured over a defined interval. The

mapping between D and the set of communication volumes C is represented by

the function WD : D → C.

Traffic graph (TG): TG = (P,T, WT) is a weighted undirected graph derived from the

DG, which represents total traffic flow between the PEs. Here, P is the set of PEs,

T is the set of edges representing inter-dependencies between the PEs, and WT :

T → C′ represents the function from T to the set of total traffic C′ between the

PEs. Each edge (pi, pj)εT, connecting PEs pi and pj, is associated with the total

traffic between the two PEs. If in a DG, there are edges (pi , pj)εD and (pj, pi)εD,
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between two PEs pi and pj, having weights WD((pi , pj)) and WD((pj, pi)) re-

spectively, then the weight of the traffic edge (pi, pj)εT in TG is derived to be

WD((pi , pj)) + WD((pj, pi)).

Architecture graph (AG): AG = (R,L, WL), is an undirected graph that describes the

NoC structure. Here R is the set of routers, and L is the set of physical links.

WL : L → B is a function mapping L to the set of link capacities B. In static

mapping, the link capacity is considered equal for all the links.

Assuming that the number of PEs is not greater than the number of routers, the objec-

tive is to find a mapping function: M : P → R such that the cost in (5.6) is minimised.

In other words, the objective of the mapping problem is to find the best mapping of

PEs to routers that minimises overall energy consumption, and thus makes the NoC

architecture more power-efficient.

However, mapping of PEs to routers is an instance of an NP-hard optimisation prob-

lem, in which the search space of the problem increases factorially with the system size

(Garey and Johnson 1979). For NoCs with NP PEs and NR routers, where NP ≤ NR,

the size of the search space is NP!
(NR−NP)!

, considering each PE is attached to one router.

This means, for a small problem of the mapping 16 PEs to an equal number of routers,

there is a search space of 16! = 2.092279 × 1013. If each search takes 0.01 millisecond,

it will take 6.6 years to complete the entire search. It is therefore important to take

a strategic decision about the mapping technique to optimise the performance met-

rics with an acceptable trade-off between optimality of the mapping and computation

time. Hence, the optimisation goal of this work is defined to be: to find the mapping

with near-optimum energy cost in a short period of time.

5.4 Simulated Annealing

Simulated Annealing (SA) (Kirkpatrick et al. 1983) is an iterative probabilistic algo-

rithm for solving optimisation problems. It includes the notion of hill-climbing which

makes this algorithm especially suitable for the problems with a lot of local minima.

The idea behind this algorithm comes from metallurgy, where annealing is the process

used to temper or harden metals and glass by heating them to a high temperature and

then gradually cooling them, thus allowing the material to coalesce into a low-energy
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crystalline state. A typical local search algorithm proceeds by choosing a random ini-

tial solution and generating a neighbour from that solution. The neighbouring solution

is accepted if it has a lower cost. Such an algorithm has the risk of converging to a local

minimum. Although Simulated Annealing algorithm is by itself a local search algo-

rithm, it avoids getting trapped in local minima by occasionally accepting neighbour-

ing solutions with higher cost with some probability. The advantages of this technique

are its ease of implementation, its applicability for many combinatorial optimisation

problems and the ability to give reasonably good solutions.

5.4.1 Simulated Annealing algorithm

In this work, Simulated Annealing is applied on the traffic graph. It effectively op-

timises solutions over large state spaces by making iterative improvements. It has a

concept of temperature, which is initially set very high, and keeps reducing at every

step. It starts with a random solution, and searches for better solutions that pass the

temperature-dependent acceptance test. Figure 5.2 shows the pseudo-code for this al-

gorithm. As parameters, the algorithm requires the initial temperature T0 and the max-

imum number of iterations per temperature, which is equal to the number of routers

NR. It returns the optimised mapping Mbest as an output. The algorithm has some

important concepts and steps that are described in the following subsections.

5.4.2 Annealing schedule

A geometric annealing schedule is used in this mapping technique as recommended by

Fouskakis and Draper (2002). The geometric annealing temperature schedule defines

the temperature at iteration i as Ti = Ti−1 × 0.9bi/NRc in line 22 of Figure 5.2. Here the

geometric progression ratio is set to 0.9 following (Kirkpatrick et al. 1983). The initial

temperature T0 is set sufficiently high to accept virtually all transitions. But there is no

minimum temperature, rather a stop criterion is checked to determine when annealing

should stop.

5.4.3 Acceptance test

Simulated Annealing probabilistically accepts bad moves to avoid traps of local min-

ima. For this occasional hill-climbing, the Metropolis method (Catoni 1996) is used
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Require: TG, T0, NR

1: T = T0

2: M = RandomMapping(TG)

3: C = M.GetMappingCost()

4: done = f alse

5: while done 6= true do

6: for i = 1 to NR do

7: Mnew = RandomSwap(M)

8: Cnew = Mnew.GetMappingCost()

9: ∆C = (Cnew − C)/C

10: if ∆C < 0 or F(∆C) ≥ random(0, 1) then

11: M = Mnew

12: C = Cnew

13: else

14: M = RollbackSwap(Mnew)

15: end if

16: end for

17: if StopTest(C, Cprev ) then

18: Mbest = M

19: Cbest = C

20: done = true

21: else

22: T = T × 0.9bi/NRc

23: Cprev = C

24: end if

25: end while

26: return Mbest

Figure 5.2. Simulated Annealing algorithm for NoC mapping.
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in line 10 of Figure 5.2. The acceptance probability function is F(∆C) = exp(−∆C/T)

according to this method, where T is the temperature and ∆C is the cost difference

between two consecutive mappings. This equation indicates that a decrease in ∆C

gives higher acceptance probability, and an increase of ∆C results in lower acceptance

probability. As the number of iterations increases and the temperature decreases, the

acceptance probability for a given ∆C decreases. The acceptance probability of the

Metropolis criterion is implemented by comparing F(∆C) with random(0, 1) which is a

random number generated with a uniform distribution between 0 and 1. The intention

is to accept all moves producing a decrease in cost and probabilistically accept moves

producing an increase in cost, to escape from local minima.

5.4.4 Swapping function

A uniform random swap function RandomSwap() is used to obtain a new mapping

Mnew from the current mapping M. Suppose that, in current mapping M, PE pi is

allocated to ri, and the new mapping Mnew is derived by applying the function on M.

The function randomly selects a PE pj from a router rj 6= ri and exchanges pi with pj.

If the acceptance test in line 10 of Figure 5.2 is not passed, the RollbackSwap(Mnew)

function in line 14 rollbacks this swap operation.

5.4.5 Stop criterion

The stop criterion at line 17 of Figure 5.2 is checked in every iteration to determine

whether the cost has changed negligibly over the last several temperatures or the ac-

ceptance test is passed. When a certain number of consecutive iterations result in the

same energy cost and ∆C is insignificant, it indicates that the annealing is not giving

any better mapping, and hence should be terminated.

The performance of Simulated Annealing to map PEs of a Street Processor is analysed

in Section 5.7.

5.5 Branch and Bound

The Branch and Bound (BB) algorithm for NoC mapping was proposed in (Hu and

Marculescu 2005) with the purpose of optimising total communication energy while
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satisfying bandwidth constraints. It is a systematic search algorithm that topologically

finds the best mapping by searching the solution in tree branches, and bounding unal-

lowable solutions.

In this mapping technique, a search tree is generated, which represents the solution

space. The root node corresponds to the state where no PE is yet mapped to any router.

Each internal node represents a partial mapping, and each leaf node is a complete map-

ping of PEs onto routers. Each node has a mapping cost attached with it. This cost rep-

resents the energy necessary for the communication among the PEs already mapped.

The cost of a child node cannot be less than the cost of its parent node because the child

contains one more PE mapped to a router. Figure 5.3 shows an example search tree of

the solution space. For instance, the internal node labelled r0xx...x represents a partial

arrangement where p0 is mapped to r0, and other PEs are yet to be mapped. Again,

the leaf node r0rn−1r1...rn−2 represents a complete mapping in which PEs p0, p1, p2, ...

pn−1 are mapped to routers r0, rn−1, r1, ... rn−2 respectively.

r0xx...x r1xx...x rhijxx...x

r0r1x...x r0r2x...x r0rhijklllk
rmr1rnlllohij rmrhijr1lllohin Leaf nodes

with complete mapping

Internal nodes

with partial mapping

Root

Figure 5.3. An example of Branch and Bound search tree of solution space.

5.5.1 Branch and Bound algorithm

As the name suggests, the Branch and Bound algorithm has two major steps:

Branch: The next unmapped PE of an unexpanded node is enumeratively assigned to

unoccupied routers, and the child nodes are generated. For example, the internal

node r0xx...x is expanded to r0r1x...x, r0r2x...x, ... r0rn−1x...x meaning the next

unmapped PE p1 is mapped to routers r1, r2, ... rn−1 respectively.
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Bound: The new child node is checked whether it satisfies mapping constraints, and

also if it can generate the best leaf nodes. If not, the node is not expanded further.

The PEs are initially sorted based on their traffic demands that are obtained from the

traffic graph. The traffic demand of a PE is calculated by summing up all the traffic

volume associated to it. As the PEs with higher traffic demands dominate the overall

energy consumption, they are mapped first to the unoccupied routers to generate new

child nodes. A node is expanded, if and only if the mapping constraint is met by

the PEs already mapped. When a node is found unexpandable, the subsequent nodes

derived from it are not capable of providing the best mapping, and thus not explored.

Each of the newly generated child nodes are examined to see if it is possible to generate

the best leaf node from it. The algorithm calculates the upper and lower limits of costs

of the child nodes to detect candidate optimal nodes.

Upper bound cost of a node is the value that is no less than the minimum cost of

its leaf nodes. Thus, UBC is a metric that informs the highest cost of the best

mapping that may result by expanding the current node.

Lower bound cost is defined as the lowest cost that its leaf nodes can possibly achieve.

LBC indicates the lowest cost of the best mapping that may result from the the

current node.

The cost of leaf nodes generated from a node will be between the LBC and UBC of

this node. If the cost or LBC of a node is higher than the lowest UBC that is already

found so far, it is deleted without any expansion, because it is guranteed that the cost

of the leaf nodes are certainly greater than the lowest UBC and the node cannot lead

to the best mapping solution. The lowest UBC and highest LBC are updated in every

step. All the nodes are traversed this way, and finally the node with minimum cost

is accepted as the best mapping node. The speed of this algorithm depends on the

computation of UBC and LBC. These are described in the following subsections.

Figure 5.4 shows the pseudo-code of the mapping algorithm. A priority queue is used

in this algorithm to store the nodes. It starts with the root node at line 5. Each time a

node is inserted into the queue, it is sorted according to energy cost (line 24) so that the

node with the lower cost gets higher priority because the node with the lowest cost is

more likely to result in leaf node with the minimum cost.
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Require: TG

1: Sort PEs of TG by traffic demand

2: Mroot = NULL

3: UBCmin = ∞

4: Cbest = ∞

5: Q.Insert(Mroot)

6: while Q.Next() 6= NULL do

7: Mcur = Q.Next()

8: for all unoccupied router Ri do

9: Mnew = Mcur.GetChildNode(Ri )

10: Cnew = Mnew.GetMappingCost()

11: if Cnew > Cbest or Mnew.LBC > UBCmin then

12: continue

13: end if

14: if Mnew.IsLea f Node() then

15: if Cnew < Cbest then

16: Cbest = Cnew

17: Mbest = Mnew

18: end if

19: else

20: if Mnew.UBC < UBCmin then

21: UBCmin = Mnew.UBC

22: end if

23: Q.Insert(Mnew)

24: Q.Sort()

25: end if

26: end for

27: end while

28: return Mbest

Figure 5.4. Branch and Bound algorithm for NoC mapping.
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5.5.2 Lower bound cost calculation

The LBC of a node is computed as the sum of three components: energy cost between

mapped PEs, between unmapped PEs, and between mapped-unmapped PEs as de-

scribed by (5.7). Here, m and m′ subscripts indicate the mapped and unmapped PEs

respectively.

LBC = Costm,m + Costm,m′ + Costm′ ,m′ (5.7)

The cost between mapped PEs can be calculated exactly. The other two components

are heuristically determined. To calculate the cost between unmapped PEs, two unoc-

cupied routers with the minimum distance are determined and the unmapped PEs are

considered to be mapped to them, and the cost is calculated. And, to calculate the cost

between mapped and unmapped PEs, the unoccupied router with the shortest distance

from the occupied routers, is determined and the unmapped PEs are considered to be

mapped to it, and the cost is determined.

5.5.3 Upper bound cost calculation

By definition, the cost of any legal child node can be considered as the UBC of the

parent node, but a tight UBC is desired. So the minimum UBC is updated in each it-

eration. A greedy method, which maps the unmapped PEs to unoccupied routers, is

used to determine the child node with the smallest cost. A UBC also has three compo-

nents: cost between originally mapped PEs, between originally mapped and greedily

mapped PEs, and between greedily mapped PEs as in (5.8). The subscripts m and g

indicate the originally mapped and greedily mapped PEs respectively.

UBC = Costm,m + Costm,g + Costg,g (5.8)

At each step, the greedy method takes the next unmapped PE with the highest commu-

nication demand, and places it on the router which best facilitates the communication

of the PE to the originally mapped PEs. If the router is already occupied, then the un-

occupied router with smallest Manhattan distance from this router is considered. This

step is repeated until all the PEs are mapped. If the child node is illegal, the UBC of the

current node is set to be infinitely large, otherwise it is set equal to the cost of the child

node.

The performance of UBC computation is thus determined by the speed of the greedy

mapping. The greedy method effectively tries to do a quick mapping to search for the
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best mapping cost that may be achieved starting from the current node of the search

tree. The accuracy of the UBC value strongly depends on the accuracy of the greedy

mapping.

The Branch and Bound mapping implementation using the Street language is described

in the next section with a view to build a self-configurable agent, which can re-arrange

the placements of the PEs on a NoC structure to improve its performance.

5.6 Test case: the self-configurable Street agent

Street agents are intended to run for an extended period of time in different environ-

ments. Based on varying inputs from the environment, production rules may fire at

different rates, and dependency and traffic graphs may vary over time. There is a pos-

sibility that after a period of execution the previous mapping of PEs onto the network

structure is not providing good performance any more. This might happen because

of decrease of traffic loads between adjacent PEs and increase of traffic loads between

distant PEs. Hence, if the mapping of PEs is updated periodically based on current

traffic, the agent is expected to perform better than before. A feature of the Street en-

gine is that during a sleep period (discussed in Section 3.7), PEs are re-arranged on the

network infrastructure without external intervention. This self-configuration provides

the following advantages over static configuration:

Adaptability: The self-configurable agent can change its PE mapping to adapt to the

changing environment.

Autonomy: The agent does not need any external help for reconfiguration; this pro-

vides autonomy to the agent.

Versatility: The PEs can be mapped in different ways making the same agent to im-

prove its performance for input changes over time.

With a view to prove the feasibility of a self-configurable agent, the Branch and Bound

mapping was implemented using Street language. The language is flexible enough to

write agents in several approaches. Here, the problem is solved by dividing the agent

into several entities and constructing production rules to define how these entities af-

fect each other. This work also serves as a test agent for the purpose of measuring the

performance of the mapping techniques discussed in Sections 5.4 and 5.5.
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5.6.1 Entity relationship

The Branch and Bound mapping is defined using a number of entities, which are the

data structures in working memory. Some of them are temporary ones used to de-

termine the following major entities. These are not discussed here. These are also

important to support the major entities. Each entity has several attributes to define

its characteristics. Again, there are some temporary intermediate attributes, which are

also not mentioned here. The major entities are as follows:

Global stores information that is shared among entities. It has the attributes to hold

the number of PEs, routers, traffic edges in traffic graph, links in the network

structure, minimum UBC, best mapping cost etc.

PE represents a processing element that realises a production rule. It contains the

attributes of PE index, total incoming and outgoing traffics and its ranking based

on total traffic.

Router contains the attributes of router index, position (row and column in 2D a mesh)

and status, whether it is occupied or unoccupied.

Mapping relation indicates the relation between each PE and router. If there are NP

PEs and NR routers, then the cardinality of the mapping relation is NP × NR.

Mapping node is a node of the Branch and Bound search tree. It has the attributes

of current cost, LBC and UBC. It keeps track of the PEs and routers not yet

mapped. This entity uses some temporary attributes to calculate its major at-

tributes. These temporary attributes are used to calculate total traffic between

unmapped PEs, between mapped and unmapped PEs, the minimum distance

between unmapped routers, the nearest router distance from mapped routers,

and so on.

The relationships between these entities are shown in the entity relationship diagram

in Figure 5.5. PE entities are related to each other and keep track of the total traffic

between them, as derived from the traffic graph. Routers, in the same way, are related

to other routers and store the distance between them obtained from the architecture

graph. All PEs and routers are in relations through mapping relation entities. Each

mapping node entity contains several mapping relationships to represent its partial

mapping. It also keeps track of the unmapped PEs and unoccupied routers. The values
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of the global attributes are shared and updated during runtime. For example, if the

UBC of a node is found to be less than the minimum UBC, the value of the global

attribute representing the minimum UBC is updated accordingly.
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Figure 5.5. Relationship between the major entities. The rectangles, oval and diamond shapes

indicate the entities, attributes and relationships respectively

5.6.2 Production rules

The agent to perform Branch and Bound mapping is written with 70 production rules

in Street language. The definitions of the Street rules are available at the website of

the Street project (Phillips 2016). Since Street language is very primitive by nature, it

requires many intermediate rules to do simple calculations. For example, in order to

check if variable <var1> is greater than variable <var2>, first one production rule cal-

culates the difference of the variables, <diff> = <var1> - <var2>, and then another

rule compares the variable containing the difference, <diff> with zero. This is because,

Street language does not support direct comparison of variables. Table 5.1 lists some

of the important Street rules used to realise the self-configurable agent.
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Table 5.1. Important Street rules to realise the self-configurable agent.

Production rules Description

calculateDistance Calculates distance between routers

calculatePEtoPEtraffic Calculates total traffic between PEs

calculateTotalLoad Calculates total traffic by adding up incoming and outgoing traffics

getAllRelations Generates all possible mapping relations between PEs and routers

createNewNodes Creates child nodes from parent nodes if the node is expandable

getCurrentMappingCost Calculates the partial mapping cost of mapping nodes

getLowerBoundCost Calculates LBC of mapping nodes

generateGreedyMapping Greedily maps unmapped PEs to unoccupied routers

getUpperBoundCost Calculates UBC of mapping nodes

getMinUBCost Calculates minimum UBC

getBestMappingCost Finds the best mapping cost comparing current cost with it

5.7 Experiments

The self-configurable Street agent consists of 70 production rules. Each of these rules

was associated with its own PE to execute it. The agent generated 10,387 dependencies

between its PEs during execution. The traffic graph, shown in Figure 5.6, was derived

from the dependencies. The PEs are represented by their indices and the weights of

edges indicate the traffic between them. PE indices corresponding to relevant produc-

tion rules are listed in Table A.1 of Appendix A.

Some experiments were conducted on this test agent to optimise the mapping of its PEs

onto a 9 × 9 NoC structure using BB and SA techniques. First, the SA based mapping

was applied to the traffic graph. The energy cost of the mapping configuration was

calculated using (5.6) with the values of Es = 0.284 picojoule, El = 0.449 picojoule and

Eb = 1.056 picojoule obtained from bit energy model of (Hu and Marculescu 2003a).

Figure 5.7 presents the energy cost at every iteration of SA. It can be observed that the

mapping occasionally accepted bad moves to escape from local minima. Eventually,

it levelled off at 1.71065 × 107 picojoule. Even more iterations did not provide any

further decrease of the energy cost. The simulation took 1079 seconds on a Ubuntu

virtual machine having 2 processor cores and 2 GB memory.

Figure 5.8 shows the 9 × 9 NoC structure with an indication of traffic associated with

each router. Each small square block in this heatmap represents the traffic to and from
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Figure 5.6. Traffic graph of the agent solving Branch and Bound mapping.

Page 91



5.7 Experiments

Figure 5.7. Energy cost in each iteration of Simulated Annealing.

the PE attached to each router. It can be observed from this figure that, as expected, the

PEs with higher traffic concentration are mapped closer to each other.
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Figure 5.8. Router-wise traffic after Simulated Annealing mapping.
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The BB mapping was also applied on the traffic graph. It generated a search tree having

5,439,129 nodes. For each node, the partial mapping cost, LBC and UBC were calcu-

lated. The minimum UBC and maximum LBC were tracked to limit the cost of the best

mapping. Figure 5.9 illustrates the minimum UBC and maximum LBC limiting the

best mapping cost. LBC and UBC of a node were analysed to check if the node was

legal to be expanded based upon the principles mentioned in Section 5.5. If the node

was not expandable, it was deleted. In this experiment, approximately 95% of the total

nodes were deleted making BB an efficient optimisation method. The simulation took

203 seconds which was almost 5 times faster than SA, on the same system. The energy

cost of the best mapping was measured 1.63669× 107 picojoule. Figure 5.10 shows the

traffic heatmap to and from the PE attached to each router after BB mapping.

Figure 5.9. Minimum UBC and maximum LBC limiting the best energy cost.

Note that the difference between the energy costs of the mapping solutions obtained by

SA and BB techniques is very negligible. To investigate how they scale in performance

and efficiency with network sizes, both techniques were used to map synthesised net-

work structures ranging from 4 to 196 routers. For every architecture, 10 random de-

pendency sets were artificially generated. Each dependency set was used for mapping

using both techniques. Figure 5.11 shows that the difference in energy costs of the opti-

mum solutions for a particular network size for the mapping techniques was less than
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Figure 5.10. Router-wise traffic after Branch and Bound mapping.

8%. But the comparison of the computation time, as shown in Figure 5.12, demon-

strates that BB outperformed SA by reaching the optimum solutions much faster. This

is because SA blindly explored the solution space, whereas BB systematically deletes

most of its unpromising solutions without exploring them in detail.

5.8 Analysis of Branch and Bound mapping

The BB algorithm finds a mapping solution through a very detailed search. Com-

pared to SA, the advantage of BB mapping is its computation speed. However, when

the number of PEs is very high, the nodes in its search tree have a high branching

factor and its search space grows exponentially even when efficient bounding tech-

niques are used. Although it trims the unpromising nodes of the search tree to speed

up the process, this is not enough to obtain a mapping algorithm that is fast enough.

It still needs to traverse the leaf nodes of the tree, which causes large memory con-

sumption and still high processing time. It has to decide how much of the tree is to

be deleted in order to save memory (Bader et al. 2005). Moreover, the implementation

of the UBC and LBC calculation does not guarantee the best mapping configuration

(Radu and VinŢan 2013). The UBC computation relies on a greedy mapping technique

that quickly finds a mapping by trying to place unmapped PE on an unoccupied router
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Figure 5.11. Energy cost comparison between SA and BB mapping.

Figure 5.12. Computation time comparison between SA and BB mapping.

so that the energy cost is minimised. Making this kind of local optimal decisions does

not necessarily lead to a global optimum. Although the greedy method provides some

speed-up, this might not result in the best mapping. Furthermore, LBC is also not real-

istically computed. This maps an unmapped PE to the best unoccupied router without
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considering whether another PE has been already mapped to that router. Once again,

the approach is fast but it does not provide the tightest LBC. The calculations of UBC

and LBC can be made more realistic by checking whether a PE is already mapped to

the best unoccupied router. If so, then the next best unoccupied router should be con-

sidered. The effect of this measure on overall performance of NoC demands further

investigation.

5.9 Conclusion

This chapter has described two techniques for mapping homogeneous PEs to NoC

routers based on Simulated Annealing, and Branch and Bound algorithms due to their

superiorities over other candidate algorithms. A test case of a self-configurable agent

was built to evaluate the performance of these mapping techniques. The agent mapped

PEs onto a NoC structure based on BB algorithm using Street language. This estab-

lishes the capability of the Street Processor to implement a self-configurable agent.

When executed, the agent generated 10,387 dependencies between 70 PEs. These de-

pendencies were analysed to map PEs onto a 9× 9 mesh structure using both mapping

techniques. The comparison shows that BB mapping reached a solution approximately

5 times faster than SA. The reason is that the searching process of SA was blind, and

much time was wasted on exploring unpromising solutions, whereas BB mapping sys-

tematically deleted them by analysing the partial costs, LBC and UBC. In the test case

of the self-configurable agent, it deleted almost 95% of its solution space without fur-

ther exploring them. This result is supported by the experiments carried out on syn-

thetic dependency sets where a BB approach provided significantly better performance

in terms of computation time.

However, the computation time advantage of BB mapping comes at the cost of high

memory requirement. Also, there is scope to make UBC and LBC calculations more

realistic. Considering these issues, we consider SA to be more appropriate for appli-

cations where memory consideration is more important than computation time. The

Street Processor, which usually contains a large number of PEs, is a suitable applica-

tion of SA mapping. The processor also has the ability to periodically re-organise the

mapping during sleep period for improved performance.

In the next chapter, efforts have been taken to reduce the computation time of SA by

taking advantage of graph partitioning and a priority-based initial mapping.
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Chapter 6

Priority-based Simulated
Annealing of Grouped PEs

T
HIS chapter proposes a network on chip mapping technique for

homogeneous systems. It uses graph partitioning to group the

heavily-communicating processing elements and then map each

group of PEs to a router. This reduces the amount of traffic that must pass

through the network. In addition to this, the search space of the mapping

problem is significantly reduced by this strategy. An improved Simulated

Annealing-based mapping approach is proposed here, which prioritises the

PEs and NoC routers based on their dependencies and positions respec-

tively. These priorities are used to determine a heuristic initial mapping,

which in turn results in a reduction in the computation time to find an op-

timum solution without sacrificing mapping quality.
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6.1 Introduction

A large number of PEs makes it challenging to find an optimum PE-to-router map-

ping in a NoC because the search space grows exponentially with the number of PEs.

For homogeneous systems such as the Street Processor, where the number of PEs may

range up to thousands, a heuristic mapping technique must be used to solve the map-

ping problem.

The search space can be significantly reduced using graph partitioning algorithms. The

classical graph partitioning problem is to divide the vertices of a weighted graph into

approximately equal partitions such that the number and weights of edges connecting

vertices assigned to different partitions is minimised. This finds applications in many

areas including parallel computing, task scheduling and VLSI design (Cheng and Wei

1991, Gilbert and Zmijewski 1987, Garbers et al. 1990). It is a NP-complete optimisation

problem that may have prohibitive computation time requirements. There exists a

critical trade-off between time and performance (that is, the quality of the partitioning

obtained) of the partitioning algorithms. Many algorithms have been developed to

find reasonably good partitions (Kernighan and Lin 1970, Fiduccia and Mattheyses

1982, Hendrickson and Leland 1995, Hagen and Kahng 1991).

NoC mapping techniques based on application partitioning have been proposed by

(Tosun 2011, Jang and Pan 2010). Tosun (2011) observed that integer linear program-

ming (ILP) provided optimum mapping; but since it searched for every possible so-

lution in the huge solution space, it took a very long time to determine the opti-

mum solution. He proposed a clustering-based relaxation technique for ILP formu-

lations in order to reach the optimum result within tolerable time limits. Jang and Pan

(2010) proposed a partition-based mapping for an irregular mesh network. However,

both of these techniques did not allow inter-partition movement of PEs. This caused

optimised mapping inside partitions but sacrificed global optimisation. Sahu et al.

(Sahu et al. 2010) proposed a mapping algorithm based on Kernighan-Lin (KL) parti-

tioning (Kernighan and Lin 1970), which is a bi-partitioning algorithm. This approach

considered swapping of PEs between partitions in an iterative way.

An improved Simulated Annealing algorithm was proposed in (Radu and VinŢan

2013), which optimised mapping by clustering PEs implicitly during the swapping

process. However, the authors in (Radu et al. 2013) concluded that an evolutionary

algorithm performs better than this. Particle swarm optimisation was proposed by

Sahu et al. (2014), which used a deterministic initial mapping to explore the search
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space. This initial mapping technique was unable to obtain a good mapping as NoC

size increased. A cluster-based Simulated Annealing was proposed in (Lu et al. 2008)

to provide runtime improvements without compromising the quality of the solution,

compared to the original Simulated Annealing. However the technique proposed in

(Radu and VinŢan 2013) proved to produce a better quality mapping even without

generating any initial mapping.

A cluster-based NoC architecture was also described in (Modarressi and Sarbazi-Azad

2012) but this introduced additional configuration switches between the routers, which

caused a 10% to 35% area overhead. Moreover, generally the routers in a NoC are ex-

pensive. In Intel’s 80-core TeraFlops, for example, more than 80% of the on-chip com-

munication power was consumed by routers (Oracle 2012). Hence, it is desirable to

reduce the number of routers in a NoC structure containing a large number of PEs.

However all of the above mentioned mapping techniques used partitioning (or clus-

tering) to localise PEs only, and they mapped one PE to each router. As a result, they

did not aid in reducing the number of routers.

In this chapter, we describe a method for partitioning PEs into groups of PEs (GPEs)

using a multi-level partitioning algorithm. The number of required routers is reduced

by assigning a GPE to a router, instead of a single PE. The PEs within a GPE commu-

nicate with each other using the crossbar of the router, as discussed in Section 4.4. The

mapping of GPEs to routers is done by Simulated Annealing. In the second phase of

this work, we propose a further improvement to the performance of Simulated Anneal-

ing by generating a good initial mapping in order to converge faster to the optimum

solution. This is done by prioritising the routers and GPEs based on their locations

and inter-dependencies respectively. Our experiments show that all these efforts sig-

nificantly reduce the computation time to find the solution without degrading the per-

formance of the mapped network of PEs.

6.2 Graph partitioning

Graph partitioning is a method of dividing the vertices of a weighted graph into roughly

equal partitions or groups. The number of edges whose incident vertices belong to dif-

ferent partitions is called the edge-cut of the partition. A good partitioning technique

minimises the edge-cuts, and the weights of the edges connecting vertices in different

partitions.
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A weighted graph can be defined as G = (V, E, WE) where V, E and WE respectively

denote the sets of vertices, edges, and the function to map the edges to their weights,

i.e. WE : E → C, where C is the set of all possible edge weights. The k-way partitioning

of the graph is defined as to partition V into k subsets such that
⋃k

i=1 Vi = V and

Vi ∩ Vj = Ø, i 6= j and the sum of edge weights whose whose incident vertices belong

to different subsets of V is minimised. Figure 6.1 illustrates an example of a graph

partitioning where the graph in (a) is partitioned into the graph in (b).

´µ¶
·¸¹º¹¸ ¹º·¸

10 ·¸ ¹¸¹¸ ¹º»̧ ·¸ ·¸ ¹¸¹¸ ¹º·¸
Figure 6.1. Example of graph partitioning. The weights are shown for corresponding edges

In this work, graph partitioning is applied on the traffic graph (introduced in Sec-

tion 5.3.2) to divide it into a number of GPEs. In addition to evenly distributing traffic

over the network, it provides some additional benefits as well. First, it minimises the

search space of the mapping problem, which helps to reduce the computation time.

Secondly, it reduces the number of required routers, as instead of a single PE, each

router is associated with one GPE comprising multiple PEs.

6.2.1 Multi-level graph partitioning

Graph partitioning is a NP-complete optimisation problem. Various approaches have

been taken to find a good partitioning in reasonable computation time. Spectral par-

titioning methods (Pothen et al. 1990) produce excellent partitions for a wide class of

problems. However, these methods are very time consuming. The multi-level spec-

tral bisection algorithm (Barnard and Simon 1993) speeds up the spectral partition-

ing methods by an order of magnitude without any loss of quality of the edge-cut.

But this method also takes a large amount of time. Geometric partitioning algorithms

(Miller et al. 1991, Heath and Raghavan 1995) tend to be fast but often yield partitions
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that are worse than those obtained by spectral methods. Compared to spectral and ge-

ometric partitionings, multi-level graph partitioning (Hendrickson and Leland 1995,

Karypis and Kumar 1995) provides good quality partitions in a short period of time.

This work uses this method to partition the traffic graph.

Multi-level partitioning is a straightforward approach to approximate the graph parti-

tioning problem. It consists of three phases: graph coarsening, initial partitioning, and

uncoarsening. During the coarsening phase the graph is gradually reduced to coarser

graphs using local operations. In the initial partitioning phase the coarsest and there-

fore smallest graph can be partitioned using a suitable partitioning algorithm. This

partition is then applied in the refinement phase to each larger graph and further re-

fined. The phases are illustrated in Figure 6.2.

C
oarsening

Initial partitioning

Figure 6.2. The phases of multi-level graph partitioning.

Coarsening: In the graph coarsening phase, a series of successively smaller graphs is

derived from the input graph. The fundamental step of coarsening is the edge

collapse operation. In this step, two vertices joined by an edge are merged, and

the new vertex retains edges connecting to the union of the neighbours of the

merged vertices. Mathematically, collapsing an edge e = (v1, v2) ∈ E into a ver-

tex v3 /∈ V results in a graph G′ = (V ′, E′, W ′
E), where V ′ = V \ {v1, v2} ∪ {v3}.

For E′, at first, the edge e = (v1, v2) is removed from E, and then the set of edges

e′ = {(v3, vk)|vk ∈ N(v1) ∪ N(v2)} is added. Here N(vi) = {vk|(vi, vk) ∈ E} rep-

resents the sets of neighbours of vi. The weights of edges are left unchanged
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unless both merged vertices are adjacent to the same neighbour. In this case,

the new edge that represents the two original edges is given a weight equal to

the sum of the weights of the two edges it replaces. (6.1) gives the equation to

calculate edge weights. Figure 6.3 demonstrates two examples of edge collapse.

This edge collapsing process continues until the coarsened graph contains a small

number of vertices, yet enough to perform a meaningful initial partitioning. In

case of partitioning the traffic graph of the Street Processor, considered later in

Section 6.2.2, the process continues until the size of the graph is reduced to 100

vertices.

WE((v3, vk)) =



















WE((v1, vk)) + WE((v2, vk)) if (v3, vk) ∈ e′ and vk ∈ N(v1) ∩ N(v2)

WE((vl , vk)) if (v3, vk) ∈ e′ and vk ∈ N(vl), vl ∈ {v1, v2}

WE((v3, vk)) else

(6.1)

Figure 6.3. The collapse of an edge. Vertices v1 and v2 are collapsed into the new vertex v3.

Note that the edge weights of the edge {v3, v4} in (a) and (b) are measured by first

two cases of (6.1) respectively

Initial partitioning: In this phase, a partitioning of the coarsest graph is computed

using the KL algorithm. Since the coarsest graph is usually very small, this step

is very fast. This is done by by recursively calculating k-way bi-partitions of

the graph (Simon 1991). To calculate a bi-partition, first two pseudo peripheral

vertices are found, i.e., two vertices having the greatest distance to each other.

This can be done by starting a breadth first search at one random vertex v0. Then

a vertex v1 is selected with maximal distance to v0. Now a second breadth first

search is started at v1, and a vertex v2 with maximal distance to v1 is selected.

This process is repeated until the distance between vi and vi+1 stops increasing.
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Each vertex is then assigned to that pseudo peripheral vertex it is closer to. This

algorithm is used in many graph partitioning tools such as METIS (Karypis and

Kumar 1998).

Uncoarsening: In the uncoarsening phase, the partitioning of the smallest graph is

projected to the successively larger graphs by assigning the pairs of vertices that

were collapsed together to the same partition as that of their corresponding col-

lapsed vertex. After each projection step, the partitioning is refined using bound-

ary KL refinement algorithm (Karypis and Kumar 1998) to iteratively swap ver-

tices between partitions as long as such moves reduce the edge-cuts. The refine-

ment process considers the boundary vertices of the partitions only. The internal

vertices may become boundary vertices if their adjacent boundary vertices are

swapped between partitions. This uncoarsening phase ends when the partition-

ing solution has been projected all the way to the original traffic graph.

6.2.2 Multi-level partitioning of traffic graph

This work uses the tool METIS (Karypis and Kumar 1998) for a quick multi-level par-

titioning of traffic graph. The quality of the partitionings, i.e. the weights of edge-cuts

between partitions, produced by this tool are on the average 6%-23% better than those

produced by other state of the art schemes, according to the authors. METIS uses novel

approaches to successively reduce the size of the graph in the coarsening phase. Dur-

ing this time, METIS employs algorithms that make it easier to find a high-quality par-

tition of the coarsest graph. The use of powerful coarsening schemes also allows the

refinement process to be simplified considerably, making the multi-level scheme quite

fast. During refinement, it focuses primarily on the portion of the graph that is close to

the partition boundary.

These highly tuned algorithms allow METIS to produce high-quality consistent parti-

tions in a small amount of time.

METIS is applied on the traffic graph TG = (P,T, WT), which has been defined in

Section 5.3.2. Here, P, T and WT respectively represent the sets of PEs, communication

edges and the function to map the communication edges to the total traffic between
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them. It partitions the P into a set of k GPEs, G = {G1, G2, ...Gk}, where
⋃k

i=1 Gi = P.

Then total traffic between two GPEs Gi and Gj (i 6= j) can be calculated by (6.2)

WQ((Gi, Gj)) = ∑
pi∈Gi,pj∈Gj

WT((pi , pj)) (6.2)

Using this equation, a coarser traffic graph that defines the traffics between GPEs is

derived. This traffic graph, referred as partitioned traffic graph (PTG), can be defined

as PTG = (G,Q, WQ), where G, Q and WQ represent the sets of GPEs, edges between

GPEs and the function from the set of edges to the set of possible weights respectively.

6.3 Priority-based Simulated Annealing

Each GPE is considered to be mapped to a NoC router in this proposed mapping tech-

nique. The Simulated Annealing algorithm, described in Section 5.4, blindly explores

many ultimately unusable paths, which consumes time unnecessarily. We improve this

by heuristically generating an initial mapping considering the priorities of GPEs and

routers. The priorities are derived by analysing the partitioned traffic graph and ar-

chitecture graph respectively. This algorithm also involves a localised swapping tech-

nique, in contrast to a uniform random swap used in general Simulated Annealing.

These efforts make this Priority-based Simulated Annealing (PSA) technique converge

faster to solution. Figure 6.4 shows the pseudo-code of the proposed mapping tech-

nique. The major steps of PSA are described in the following subsections.

6.3.1 Initial mapping

The Priority-based Simulated Annealing mapping technique generates an initial map-

ping using the PTG and AG. The initial mapping consists of three steps: GPE prioritis-

ing, router grouping and GPE-to-router mapping.

GPE prioritising: The GPEs are prioritised based on their total number of connections

(the number of attached edges) and total traffic demand (the sum of the weights

of the attached edges). The priority of a GPE Gk ∈ G, depends on the number

of attached edges nk and total traffic Ck associated to it. The total traffic of Gk is

calculated as

Ck =
nk

∑
i=1,i 6=k

WQ((Gi, Gk)) (6.3)
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Require: PTG, AG, T0, NR

1: Sort GPEs {G1, G2, ...Gk} of PTG by traffic demand

2: T = T0

3: M = InitialMapping(PTG, AG)

4: C = M.GetMappingCost()

5: Smax = AG.GetMaxStage()

6: for s = 1 to Smax do

7: done = f alse

8: while done 6= true do

9: for i = 1 to NR do

10: Mnew = LocalisedSwap(M, s)

11: Cnew = Mnew.GetMappingCost()

12: ∆C = (Cnew − C)/C

13: if ∆C < 0 or F(∆C) ≥ random(0, 1) then

14: M = Mnew

15: C = Cnew

16: else

17: M = RollbackSwap(Mnew)

18: end if

19: end for

20: if StopTest(C, Cprev) then

21: Mbest = M

22: Cbest = C

23: done = true

24: else

25: T = T × 0.9bi/NRc

26: Cprev = C

27: end if

28: end while

29: end for

30: return Mbest

Figure 6.4. Priority-based Simulated Annealing algorithm for GPE mapping.
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where WQ(Gi, Gk) is total traffic between Gi and Gk over a period of time. Gen-

erally, the GPE with the higher number of edges has the higher priority. If two

GPEs have same number of edges, then the total traffic is compared. The GPE

with higher traffic demand gets higher priority in this case.

Let us consider two GPEs G1 and G2 are connected to n1 and n2 number of

other GPEs, and the total traffic associated to them are C1 and C2 respectively. If

n1 > n2, or (n1 = n2 and C1 > C2), then G1 is considered to have higher priority

than G2. This is because, the GPEs with more edges and higher traffic demands

affect the overall traffic of the network more compared to other GPEs.

Router grouping: The routers are grouped based on their degrees of adjacency and

global distance, which are measured by their positions and distances from other

routers. If a router rk has ak number of adjacent routers, then the degree of adja-

cency of the router is ak. The value is important because a router with a higher

degree of adjacency has a larger communication capability, so it should be as-

signed to GPEs with higher connectivities. On the other hand, the degree of

global distance reflects the global connectivity, and is calculated by the sum of

distances from this router to other routers. If the sum of Manhattan distances

from rk at position (xk, yk) to all other routers in the network is gk, then its degree

of global distance is considered gk. It is calculated as

gk =
NR

∑
i=1,i 6=k

(|xi − xk|+ |yi − yk|) (6.4)

where NR is the number of routers and (xi, yi) is the position of other routers.

Two routers r1 and r2 having the degrees of adjacency a1 and a2, and degrees

of global distance g1 and g2 respectively, are the members of the same group if

(a1 = a2 and g1 = g2). If a1 > a2 or (a1 = a2 and g1 > g2), then r1 is associated to

a group having higher priority than that of r2.

Figure 6.5 shows two examples of 5× 5 and 6× 6 network structures where each

cell represents a router and its priority. It indicates that the center routers have

the highest priorities, and the priorities gradually decreases as the position of the

routers move away from the center.

GPE-to-router mapping: The GPEs are then mapped to routers according to their pri-

orities. The high-priority GPEs are mapped to router groups with higher priori-

ties. This satisfies the traffic demands of the high-priority GPEs as those routers
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Figure 6.5. Routers indicating their priorities in 5 × 5 and 6 × 6 network structures.

provide more adjacency and they are relatively closer to other routers. If there

is any remaining router in the current group, the GPE with the next priority is

mapped into that. Otherwise, the GPE is mapped to the next router group, and

so on. As a result, the GPEs will be initially concentrated nearer the centre, and

will be gradually moved towards the edges.

6.3.2 Annealing

The PSA follows the principles of original Simulated Annealing with some modifica-

tion. The GPEs mapped in a router group are allowed to move inside and outside of

the group depending on the swapping distance during the localised swap. This makes

the algorithm robust enough not to limit annealing inside a router group only. The

annealing stages and localised swap are discussed below:

Annealing stages: The annealing continues over several stages. The stages dictates

the swapping distances between the routers. Annealing at stage s corresponding

to swapping distance d, means that the GPEs within distance d = D − s + 1 are

allowed to be swapped in that stage. Here D represents the highest Manhattan

distance between routers, which is essentially the diameter for a mesh structure.

For a NoC structure of n × n routers, D = 2 × n − 2. Annealing starts with the

highest swapping distance D at stage s = 1, allowing the GPEs with d ≤ D to

be exchanged. Then, it moves to the lower subsequent swapping distances. For

example, in the second stage, s = 2, the GPEs with d ≤ (D − 1) may be swapped,

and so on. In the final stage, on GPEs with swapping distance d = 1, i.e. only the

neighbouring GPEs may be swapped.
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Require: M, s

1: d = M.GetAllowableDistance(s)

2: ri = M.RandomRouterSelection()

3: rg = M.GetRouterGroup(ri )

4: dmax = rg.GetMaxDistanceInGroup()

5: if d ≤ dmax then

6: rj = rg.IngroupRouterSelection()

7: else

8: rj = rg.RandomRouterSelection()

9: end if

10: Mnew = Swap(ri , rj)

11: return Mnew

Figure 6.6. Pseudocode of localised swap.

Localised swap: In the annealing stages, instead of a uniform random swap, PSA con-

ducts a localised swap, which selectively allows GPE swapping inside and out-

side a router group. At each stage, a pair of routers is randomly selected within

and/or across the group based on the value of d which is the allowable swapping

distance at stage s. The first router ri is selected randomly. Then the maximum

swapping distance from ri to its in-group routers, dmax, is calculated. If d ≤ dmax,

then the second router rj is randomly selected from the same group; otherwise rj

is selected irrespective of router group boundaries, i.e. from inside or outside of

the group ri belongs to. Figure 6.6 shows the pseudocode of localised swap.

This process results in a blind swapping in the earlier stages, ending up with

exclusively inside-group swaps in the later stages. This helps to escape from

local minima during the earlier stages and limits the search to be carried out at

near-optimal solutions in the later stages.

6.4 Test case: the Subsumption Cockroach agent

To compare the performance of the mapping techniques we applied them to an AI

Cockroach agent developed by James Donovan, an undergraduate student at the Uni-

versity of Adelaide. The agent is reported in detail in the Street website (Phillips 2016).

The structures of PEs and routers are discussed in Chapters 3 and 4, respectively. The
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agent uses a subsumption architecture (Brooks 1986, Brooks and Connell 1986). It is

built using a number of modules that are realised in Street language. Considering that

each rule is allocated to a single PE, the dependency and traffic graphs of the agent

are generated. These graphs are used to map the PEs onto the network structure. Al-

though a detailed discussion of the subsumption architecture is not within the scope

of this thesis, it is necessary to discuss the basics of this architecture to understand the

dependencies expressed in the Street production rules.

6.4.1 Subsumption architecture

A subsumption architecture stacks simple artificial intelligence behaviours on top of

each other to create complex behaviour. The idea is that low level behaviours will con-

tinue to work without re-implementing them into each advanced level of behaviour.

Subsumption architecture is an alternative to traditional AI, which usually consists of

taking sensor inputs, analysing the data to produce a representation of the environ-

ment, and then deciding what output signals to send to actuators to respond to the

environment. A subsumption architecture instead closely relates sensor readings to

actions performed, with no complete analysis of the environment to decide what to

do next. Instead, many layers of control have their own behaviour that incrementally

affect the total behaviour of the system.

Levels of competence

This architecture focuses on a hierarchy of behaviours. The behaviour that has no

reliances on other behaviours is a level 0 behaviour. A behaviour that relies only on

the level 0 behaviour is level 1, and so on, until every desirable behaviour has a level

assigned. Each level of desirable behaviour is termed a level of competence.

Layers of control

Each level of competence has a corresponding layer of control, which specifies modules

and data-paths between them to satisfy the level of competence. The data-paths in a

layer of control specify which module outputs connect to which module inputs. A

layer of control cannot change the data-paths created by lower layers of control, but

they can use inhibition and suppression mechanisms to alter the inputs and outputs

of a module to achieve desirable behaviour. An inhibitor can be connected from the
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output of one module to the output data-path of another module. A suppressor is

similar to an inhibitor, but is placed from the output of one module to the input data-

path of another. Inhibitors and suppressors are used when a pre-established data-path

from a lower layer of control must be altered to achieve a higher level of competence.

Modules

Modules are the functional parts of the architecture that consist of inputs, outputs, data

storage and states. A finite state machine (FSM) moves through the states of outputs

asynchronously to every other state. Only the latest signal is stored at the inputs, so if

it is not analysed before the next signal arrives, it will be lost forever.

6.4.2 Development of the Cockroach agent

This agent demonstrates some aspects of the behaviour of cockroaches. It wanders

around a room avoiding bright light, looks for food when it is hungry and goes to

dark places to rest when it is tired. It retreats to the last dark place as preferred place,

and likes to follow walls rather than open spaces. This subsumption Cockroach agent

was built to be used as a test case to evaluate the performance of Street project. The

correctness of the agent was verified by a simulation developed in the Java platform.

The following layers of competences specify the goal of each increment of functionality

for the Cockroach agent.

Layer 0 corresponds to the first level of competence, in which the agent rotates to align

itself approximately parallel to the wall. In this layer, it has three modules to

detects walls, to determine the angle to align with a wall and to turn the agent.

Layer 1 adds the functionality that allows the Cockroach agent to move forward when

not rotating. In addition to the modules of layer 0, it uses a module to move

forward. The module moves the agent forward in small increments when it is

not turning.

Layer 2 causes the agent to randomly depart from walls when following them. The

module in this layer outputs a random angle at a random time when the agent is

lined up with a wall.

Page 110



Chapter 6 Priority-based Simulated Annealing of Grouped PEs

Layer 3 provides functionalities of the agent to navigate to a dark place when tired and

frightened, and sleep when tired. It has modules to check the levels of tiredness

and fright, and to track the last dark place.

Layer 4 is responsible for providing the agent with a hunger level and the ability to

seek and eat food previously found when hungry using its two modules.

6.5 Experiments

The modules of the Cockroach agent were implemented using Street language with

293 production rules, each realised on a single PE. When the agent was executed for

approximately 20 minutes, it generated a set of dependencies between PEs. The traffic

graph generated from these dependencies using the process described in Section 5.3.2,

is shown in Figure 6.7, in which the PEs are indicated by their indices. The list of PE

indices and corresponding production rules are listed in Table B.1 of Appendix B.

In order to compare the performance of the mapping techniques, the PEs of the Cock-

roach agent were mapped using the PSA, SA and BB mapping techniques. All of the

experiments were carried out on an Ubuntu virtual machine having 2 processor cores

and 2 GB memory. Since the mapping techniques are heuristic, all of the approaches

did not necessarily produce the same solution. Figure 6.8 shows the computation time

required for each of the techniques to reach their final solutions. The figure also in-

cludes the computation times for the mapping techniques in the case of the Street im-

plementation of the self-configurable agent (discussed in Section 5.6). This is magnified

in an inset of the figure for greater clarity. In both cases, PSA reached its solutions sig-

nificantly faster than SA. For the self-configurable agent, PSA took approximately half

of the computation time required by SA. For the Cockroach agent, the advantage of

PSA was greater. In this test case, PSA worked 2.5 times faster than SA. It should also

be noticed that the self-configurable agent had 70 PEs, so all of the mapping techniques

took much less time, compared to the case of the Cockroach agent which used 293 PEs.

But the computation time of PSA increased relatively more slowly than both SA and

BB techniques. It increased 36 times from 564 seconds (for the self-configurable agent)

to 20388 seconds (for the Cockroach agent) for PSA, whereas 50 times (1080 and 53497

seconds) and 57 times (203 and 11672 seconds) respectively for SA and BB.

Although PSA demonstrated a significant computation time improvement over SA,

it still took a considerable amount of time, because the search space was still very
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Figure 6.8. Computation time comparison between mappings of two Street agents. The self-

configurable agent and the Cockroach agent contain 70 and 293 PEs respectively.

large. The traffic graph of Figure 6.7 exhibits some identifiable clusters of PEs. This

suggests that a hierarchical grouping of PEs was a sensible approach. We applied the

multi-level partitioning algorithm on the traffic graph to generate a partitioned traffic

graph between the groups of PEs. Figure 6.9 shows the partitioned traffic graph of the

Cockroach agent. It generated 27 GPEs optimising total edge weights between them.

Here the GPE size and number were not imposed, rather a balanced distribution of the

network traffic was considered, i.e. each GPE supported approximately same amount

of internal traffic. The GPEs were then mapped to a 6 × 6 NoC structure using PSA

and SA techniques.

Both of the techniques of SA and PSA were iterative processes. Figure 6.10 shows the

energy consumption of the GPE-to-router mapping that was generated at each itera-

tion, estimated using the energy model described in Section 5.3.1. Since PSA started

annealing from a heuristic initial mapping, rather than random mapping, it reached

the solution earlier than SA. The figure shows that it reached its solution at iteration

32, whereas SA reached its solution at iteration 71. To reach the solution, PSA took

36 seconds for computation and SA took 75 seconds. This clearly indicates that PSA

converged to a solution much faster than SA.
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Chapter 6 Priority-based Simulated Annealing of Grouped PEs

Figure 6.10. Energy cost comparison between PSA and SA in each iteration for the Cock-

roach agent.

To further investigate the performance of the proposed mapping technique, a set of

10 traffic graphs were synthetically created for numbers of GPEs ranging from 4 to

196. These GPEs were mapped onto the network using PSA and SA techniques. Fig-

ure 6.11 illustrates the estimated energy cost comparison of the mapping techniques.

It shows that the cost was almost identical for both approaches. However when the

computation times were compared, as shown in Figure 6.12, PSA provided a signif-

icant improvement over SA for higher number GPEs. This justifies the efficiency of

the PSA technique for large systems in terms of computation time without sacrificing

mapping quality.

6.6 Conclusion

In NoCs design, determining a mapping of a large numbers of PEs to routers in a

reasonably short period of time is one of the most challenging tasks. This chapter

proposes a NoC mapping technique for systems that typically contain hundreds of

homogeneous PEs. The number of routers is reduced by using network partitioning

to divide the PE traffic graph into a graph containing a smaller number of GPEs. This

also aids in reducing the number of links in the network structure. Multi-level graph
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6.6 Conclusion

Figure 6.11. Energy cost comparison between PSA and SA.

Figure 6.12. Computation time comparison between PSA and SA.

partitioning is used to produce a good quality partitioning in a small amount of time.

This puts PEs that communicate a lot into the same GPE under a single router; therefore

the traffic over the network is reduced. Furthermore, partitioning significantly reduces
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Chapter 6 Priority-based Simulated Annealing of Grouped PEs

the search space of the mapping problem, as instead of mapping individual PEs, one

GPE is mapped to each router. This reduces the computation time of mapping process.

A priority-based algorithm is proposed in this chapter to map PEs to NoC routers. This

is a refinement of the SA algorithm using localised swapping in the annealing stages.

The proposed technique is validated using two test cases as well as a set of syntheti-

cally created traffic graphs. The experiments demonstrate that all of these optimisation

techniques make the PE-to-router mapping much more time efficient without compro-

mising the mapping quality, which is measured by evaluating the energy costs of the

mapping solutions.

The results show that for the test cases of the self-configurable agent and Cockroach

agent, the proposed PSA mapping works at least two times faster than original SA

mapping while producing equally good solutions. Although it does not run as fast as

BB mapping, the computation time difference between BB and PSA is significantly less

than that between BB and SA. We believe that a better initial mapping will reduce the

difference even further. Compared to BB, Simulated Annealing based techniques will

generally provide better memory utilisation, as discussed in the last chapter. Consid-

ering this along with the computation time improvement over SA, the PSA is the best

candidate amongst the three, for NoC mapping in large systems.

The performance improvement is compared with the initial mapping. No experiment

has been done in this work to compare performance improvement after subsequent re-

grouping. Further work to be done includes testing the hypothesis that the re-mapped

solutions perform better (by running faster and producing solutions that consume less

energy) than previous mapping configurations. Also, there is a need to examine how

a better initial mapping affects the overall mapping performance and system perfor-

mance, as a whole. Although this priority-based mapping is conducted on the Street

agents, it is general enough to be used in other homogeneous systems as well.
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Chapter 7

Conclusions and Future
Work

T
HISchapter summarises the research presented in this thesis, and

gives comments on the significance of the work in the field of pro-

duction systems and networks on chip. It highlights the contribu-

tions that the research has made towards designing an optimisation algo-

rithm for mapping homogeneous processing elements of a system on chip

onto a NoC structure. The chapter also identifies areas for future work to

further advance the research on human-like intelligent systems and on-chip

communication.
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7.1 Summary

7.1 Summary

This thesis has reported an investigation of the communication platform of a hardware-

based production system, which was built as a SoC having a large number of homoge-

neous PEs. As on-chip communication is generally a crucial performance-determining

factor in a large scale multi-processor system, NoCs were argued to be a communica-

tion architecture that could be systematically tailored to address this challenge. The

mapping of PEs to NoC routers, which significantly influences the performance of

overall system, was addressed as the major issue to be examined in this thesis.

Chapter 2 presented a background study and review of related works to establish the

basis for the work described in the thesis. It explained the significance of cognitive

architectures in AGI research. Two successful cognitive architectures, Soar and ACT-R,

were discussed to demonstrate examples of the use of production systems in cognitive

systems. This chapter reported different approaches to realising production systems.

It was explained that conventional computers, in spite of their impressive performance

improvement over several decades, do not provide an efficient platform for such ap-

plications. In contrast, SoCs with many PEs were proposed as a technology suitable

for building a hardware-based production systems. To provide an efficient communi-

cation between the PEs, a NoC-based interconnect platform was suggested as the most

suitable approach. This chapter pointed out the importance of mapping of PEs to NoC

routers, and reviewed the research activities in this field.

A new hardware-based production system, the Street Processor, was discussed in Chap-

ter 3. It reviewed many aspects and characteristics of the hardware. The processor has

its own instruction set, called Street language, which was inspired by OPS5 and the lan-

guages used in Soar and ACT-R, but is much simpler than them. The Street Processor

supports fine-grained parallelism by implementing the execution of production rules

in simple, homogeneous PEs, and distributing computation and memory among them.

The PEs include customised CAM to allow parallel search operations to find new rule

instantiations. The Street Processor introduced the concept of a periodic sleep interval,

during which the execution is paused, and the placement of the PEs on NoC structure

is updated, to improve overall traffic, latency and power consumption. The processor

also allows its memory to expand over multiple PEs to avoid memory overflow when

it executes for an extended period of time.

Chapter 4 described a NoC-based communication platform for SoCs with a large num-

ber of homogeneous PEs. The Street Processor is an example of this class of SoCs.
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Chapter 7 Conclusions and Future Work

The NoC architecture used a regular mesh topology, which was considered to be the

best fit for a homogeneous system. A dimension order XY routing was used in this

NoC design because of its deadlock- and livelock-freedom, and low buffering require-

ment. The architecture employed wormhole routing and virtual channels as flow con-

trol strategies. Wormhole routing was selected because of its limited buffering require-

ment and reduced latency. Virtual channels improved the efficiency of data traversal

by reducing the head-of-line blocking problem. This chapter also discussed the micro-

architecture of a NoC router addressing the above mentioned requirements. Unlike

most NoC routers, which typically support one PE each, this router was connected to

multiple PEs to reduce the system implementation cost. The interfaces of the router

used small static FIFO buffers to store the flits. Furthermore, the router used credit-

based link level flow control to coordinate flit delivery between routers by keeping

track of the number of buffers available at the adjacent router.

The mapping of PEs to NoC routers is an important performance-determining factor

of SoC architectures because the communication time, required link bandwidth and

power consumption are dependent on the placements of PEs. But optimum mapping

of PEs to routers is an instance of NP-hard optimisation problems, in which the search

space of the problem increases factorially with the system size. Chapter 5 explored

two optimisation algorithms, Branch and Bound and Simulated Annealing to map the

homogeneous PEs of the Street Processor to NoC routers. To compare the performance

of these mapping techniques, a self-configurable agent was implemented in Street lan-

guage using a total of 70 production rules. The mapping techniques were employed to

map the PEs representing the production rules onto a 9 × 9 mesh structure. Although

the solution qualities of both of the techniques were almost identical in terms of their

energy costs, the Branch and Bound based mapping technique executed approximately

5 times faster than the Simulated Annealing based technique. This was because Simu-

lated Annealing was a blind algorithm, which wasted much time exploring unpromis-

ing solutions, whereas Branch and Bound systematically deleted almost 95% of its so-

lution space without completely exploring it. However, Branch and Bound achieved

this computation time advantage at the cost of a high memory requirement. For ap-

plications like the Street Processor, for which memory optimisation is more important

than computation time, a Simulated Annealing based technique was considered to be

a more suitable solution.
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In Chapter 6, a multi-level graph partitioning technique was applied to the PE traffic

graph to split it into smaller groups of PEs in order to assign each GPE to a router. This

particular graph partitioning technique provided a balanced traffic distribution among

the GPEs in a short period of time compared to BB and SA. It placed heavily commu-

nicating PEs into the same GPE under a single router. This reduced the overall traffic

over the network since the local PEs communicated to each other internally without

using network links. This chapter also described an improved Simulated Annealing-

based mapping technique. It analysed the GPE dependencies and router positions to

prioritise them. These priorities were used to determine a heuristic initial mapping.

The proposed technique also involved a localised swapping strategy, which selectively

allowed GPEs to be swapped between routers having the same or different priorities

depending on the annealing stages. These efforts resulted in faster convergence to a

final mapping solution. This Priority-based Simulated Annealing was applied to two

test cases as well as a set of synthetically created traffic graphs to map the PEs to NoC

routers. Experiments showed that compared to the original Simulated Annealing al-

gorithm, PSA performed at least two times faster while producing equally good solu-

tions, as indicated by the estimated energy cost consumption of the mapped solutions.

Although this proposed mapping technique was not as fast as Branch and Bound-

based mapping, it was still preferred among the three techniques considered, because

of the high memory requirement of Branch and Bound algorithm and the quality of

the solution.

7.2 Conclusions

The thesis has provided contributions in defining an interconnect platform, particu-

larly the mapping optimisation algorithm, for SoCs having a large number of PEs. The

Street Processor may include thousands of homogeneous PEs executing production

rules. To make the communication between this very large number of PEs efficient, a

NoC-based interconnect architecture has been discussed in this thesis. Although NoCs

are not a very new concept in the field of SoCs, the application of NoCs to such a large

scale network of fine-grained homogeneous PEs can be considered very promising.

The mapping of PEs to NoC routers directly impacts the performance of a SoC. This

instance of NP-hard problem cannot be solved by deterministic approaches. This work

has inspected Branch and Bound, and Simulated Annealing optimisation algorithms
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to solve the mapping problem. For the systems like the Street Processor that concern

more about optimising memory, but have the ability to periodically re-organise its PEs,

Simulated Annealing based mapping has been advocated to be more suitable. The pro-

posed priority-based Simulated Annealing algorithm with a heuristic initial mapping

and localised swapping has ended up in faster computation to find an optimum map-

ping solution. We have used the proposed technique for Street agents of approximately

three hundred production rules. However, we consider that this number is still not

enough for complex agents. The performance of NoC mapping techniques for agents

containing thousands of PEs are not yet evaluated because of the lack of availability to

date of such large agents.

In this thesis, we have considered generic NoC routers, which supports multiple PEs.

There still exists potential for improvement of the router architecture. The trade-off

between the number of routers and the number of interfaces per router to support

the same number of PEs should be investigated. Moreover, this work included some

efforts towards building a self-manageable cognitive agent. To assist this goal, a self-

configurable agent was realised using production rules written in Street language. The

objective of this work is to demonstrate the ability of Street language to solve the PE

mapping problem, and to develop a test case to measure the performance of the pro-

posed mapping algorithm. Further work needs to be done to define the procedure

of updating rule definition of the PEs, synchronisation techniques and other related

issues.

Overall, the thesis has advanced the research of hardware-based architectures for AI

and cognitive systems by investigating issues in the underlying communication plat-

form. Although the proposed mapping technique has been tested for PEs of the Street

Processor, we believe that this is general enough to be applied to any large scale homo-

geneous SoCs as well.

7.3 Future work

In this thesis, we explored the communication platform of an on-chip production sys-

tem. Inevitably, some topics and ideas arose in the study, which could not be investi-

gated due to time constraints. Some of them are listed below.

• The performance of the mapping techniques were examined using several Street

agents having a maximum of 293 production rules. All of them were software
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agents executed within a controlled environment. There is a need for bigger and

more complex hardware agents to provide more realistic results to demonstrate

the suitability of the work.

• This thesis mainly concentrated on the mapping of homogeneous PEs onto NoC

platform. The issues related to the design of multi-interface NoC router archi-

tecture were not investigated in detail in this research. The trade-off between

attaching PEs to router interfaces instead of individual routers was not worked

out here. The PEs under the same router communicated using the crossbar of the

router. A number of alternative approaches ranging from point-to-point connec-

tion to a hierarchy of NoC can be explored for better solutions. Also, the impact

of buffer size and flit size on overall NoC performance and complexity may also

be an interesting topic for future research.

• A self-configurable Street agent was introduced to demonstrate the ability of

Street language to solve NoC mapping problems, and to build a test case to eval-

uate the performance of mapping algorithms. However, details about the mech-

anism of updating PE definitions, required synchronisation techniques and other

related issues were not explored in this thesis. In order to build an operational

self-configurable agent, these issues should be investigated.

• The mapping algorithms adopted the energy model considered in the experi-

ments of (Hu and Marculescu 2005), where the energy consumptions were mea-

sured with Synopsys design compiler for a 0.35 µm technology. Since this energy

model was used for comparison purpose, we considered it acceptable. However,

to get accurate energy costs of different mapping approaches, a more sophisti-

cated energy model of homogeneous system supported by experimental results,

is required.

• The performance improvement of the proposed priority-based simulated anneal-

ing technique was compared with the initial mapping. No experiment was done

to compare it after subsequent re-grouping. A further investigation on perfor-

mance comparison between subsequent mapping solutions may reveal interest-

ing information.

Page 124



Chapter 7 Conclusions and Future Work

• The proposed mapping technique was intended for implementation at physical

and architectural level, but currently limited at functional level. An obvious di-

rection for further work is to complement this with hardware prototypes, prob-

ably using FPGAs. Such prototypes will bring forward many interesting issues,

and will certainly encourage the researchers to mitigate the issues.
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Appendix A

T
HIS appendix lists the names of Street production rules used to

realise a self-configurable agent. This re-organises the processing

elements on a NoC structure using the Branch and Bound algo-

rithm. The complete definition of the rules are available in the website of

the Street project (Phillips 2016).
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Table A.1. List of Street production rules of the self-configurable agent.

PE index Street production rule

0 initialise

1 calculateTotalPE

2 calculateIntermediateValuesForTotalLinks

3 calculateTotalEdges

4 calculateTotalLinks

5 initialisePEandTiles

6 findRowTimesColumns

7 findColumn

8 initialiseAdjacency

9 calculateRowColDifference

10 getPositiveRowDiff

11 getPositiveColumnDiff

12 calculateDistance

13 initialiseTrafficRandom

14 ackTrafficRandom

15 checkAllLoadGenerated

16 checkAllDistanceCalculated

17 calculatePEtoPEtraffic

18 calculateTotalLoad

19 getAllRelations

20 createFirstMappingNodes

21 createNewNodes

22 getTotalRelationInNode

23 getPreviousRelations

24 getUnmappedPE

25 getUnoccupiedTile

26 getPartialTileToTileCost

27 getPartialMappingCost

28 flagCurrentCostCalculated

29 initialiseUnmappedPEandTile

30 initialiseLastUnmappedPEandTile

31 getMinMUminusCurrentDistance

32 getMinMUtileDistance

33 getTotalMUtraffic

34 getTotalNumberOfMUtraffic

35 flagTotalMUtrafficCalculated

36 getTotalMUcost

37 getMinUUminusCurrentDistance

38 getMinUUtileDistance

39 getUUtraffic

40 getTotalUUtraffic
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PE index Street production rule

41 getTotalUUcost

42 getTotalMUandUUcostforLBcost

43 getLowerBoundCost

44 getTotalMUtrafficTimesRowAndCol

45 getSumRow

46 getSumCol

47 getGoodRowAndCol

48 getDistanceBetweenGoodAndU tile

49 getGreedyRelationsAndMinDistance

50 getGreedyMUtileToTileCost

51 getGreedyMUcost

52 flagGreedyMUcostCalculated

53 getGreedyUUtileToTileCost

54 getGreedyUUcost

55 flagGreedyUUcostCalculated

56 flagUUcostCalculated forOneUnmappedPE

57 getGreedyMUandUUcost

58 getUpperBoundCost

59 getMinMinusUBCost

60 getMinUBCost

61 deletePositiveMinMinusUBCost

62 flagMinUBCostCalculated

63 getLBminusMinUBcost

64 flagNodeExpandable

65 flagNodeExpandable false

66 createMapping

67 getBestMappingCostDiff

68 deleteHigherMappingCostDiff

69 getBestMappingCost
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Appendix B

T
HIS appendix lists the names of the Street production rules used

for the development of the Cockroach agent. This agent was de-

veloped by James Donovan, an undergraduate student at the Uni-

versity of Adelaide. The work is reported in detail in the website of the

Street Project (Phillips 2016).
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Table B.1. List of Street production rules of the Cockroach agent.

PE index Street production rule

0 initialise

1 Forward init

2 Forward stateRegister

3 Forward nextstate NIL CHECK

4 Forward output NIL CHECK

5 Forward nextstate CHECK NIL

6 Forward output CHECK NIL

7 Forward nextstate CHECK FORWARD

8 Forward output CHECK FORWARD

9 Forward nextstate FORWARD OUT

10 Forward output FORWARD OUT

11 Forward nextstate OUT NIL

12 Forward output OUT NIL

13 Forward currentBusy

14 RandomAngleEvent init

15 RandomAngleEvent stateRegister

16 RandomAngleEvent nextstate NIL HUGGINGSTART left

17 RandomAngleEvent nextstate NIL HUGGINGSTART right

18 RandomAngleEvent output NIL HUGGINGSTART

19 RandomAngleEvent nextstate HUGGINGSTART HUGGINGSETTIMER

20 RandomAngleEvent output HUGGINGSTART HUGGINGSETTIMER

21 RandomAngleEvent nextstate HUGGINGSETTIMER HUGGINGWAIT

22 RandomAngleEvent output HUGGINGSETTIMER HUGGINGWAIT

23 RandomAngleEvent nextstate HUGGINGWAIT NIL

24 RandomAngleEvent nextstate HUGGINGWAIT NIL nowall

25 RandomAngleEvent nextstate HUGGINGWAIT TURNLEFT

26 RandomAngleEvent nextstate HUGGINGWAIT TURNRIGHT

27 RandomAngleEvent output HUGGINGWAIT nextstate

28 RandomAngleEvent nextstate TURNRIGHT WAIT

29 RandomAngleEvent output TURNRIGHT WAIT

30 RandomAngleEvent nextstate TURNLEFT WAIT

31 RandomAngleEvent output TURNLEFT WAIT

32 RandomAngleEvent nextstate WAIT NIL

33 RandomAngleEvent output WAIT NIL

34 RandomAngleEvent currentWallStatus

35 Turn init

36 Turn stateRegister
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PE index Street production rule

37 Turn nextstate NIL ROTATE

38 Turn output NIL ROTATE

39 Turn nextstate NIL NIL

40 Turn output NIL NIL

41 Turn nextstate ROTATE NIL

42 Turn output ROTATE NILL

43 WallDetector nowall

44 WallDetector leftwall

45 WallDetector rotateright

46 WallDetector rightwall

47 WallDetector rotateleft

48 WallDetector rotaterandom

49 WallHugger init

50 WallHugger stateRegister

51 WallHugger nextstate NIL WAIT

52 WallHugger output NIL WAIT

53 WallHugger nextstate WAIT OUTLEFT

54 WallHugger nextstate WAIT OUTRIGHT

55 WallHugger nextstate WAIT OUTRANDOM

56 WallHugger output WAIT nextstate

57 WallHugger nextstate OUTLEFT NIL

58 WallHugger output OUTLEFT NIL

59 WallHugger nextstate OUTRIGHT NIL

60 WallHugger output OUTRIGHT NIL

61 WallHugger nextstate OUTRANDOM OUTRANDOM1

62 WallHugger output OUTRANDOM OUTRANDOM1

63 WallHugger nextstate OUTRANDOM1 NIL

64 WallHugger output OUTRANDOM1 NIL 0

65 WallHugger nextstate OUTRANDOM1 NIL 1

66 WallHugger currentWallStatus

67 TurnSuppressor init

68 TurnSuppressor inhibitionCount

69 TurnSuppressor inhibitionMessageArrived

70 TurnSuppressor inhibitionPeriodOver

71 TurnSuppressor passMessage

72 TurnSuppressor inhibitMessage

73 Frightness init

74 Frightness stateRegister
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PE index Street production rule

75 Frightness nextstate NIL CHECK

76 Frightness output NIL CHECK

77 Frightness nextstate CHECK CONSUME

78 Frightness nextstate CHECK RESTORE

79 Frightness output CHECK nextstate

80 Frightness nextstate RESTORE NIL

81 Frightness output RESTORE NIL

82 Frightness output RESTORE NIL limited

83 Frightness nextstate CONSUME NIL

84 Frightness output CONSUME NIL

85 Frightness output CONSUME NIL limited

86 Tiredness init

87 Tiredness stateRegister

88 Tiredness nextstate NIL CHECKDARK

89 Tiredness output NIL CHECKDARK

90 Tiredness nextstate CHECKDARK OUTREST

91 Tiredness nextstate CHECKDARK OUTDARK

92 Tiredness output CHECKDARK nextstate

93 Tiredness nextstate OUTRESET OUTDARK

94 Tiredness output OUTRESET OUTDARK

95 Tiredness nextstate OUTDARK CHECK

96 Tiredness output OUTDARK CHECK

97 Tiredness nextstate CHECK RESTORE

98 Tiredness nextstate CHECK CONSUME

99 Tiredness nextstate CHECK nextstate

100 Tiredness nextstate RESTORE NIL

101 Tiredness output RESTORE NIL

102 Tiredness output RESTORE NIL limited

103 Tiredness nextstate CONSUME NIL

104 Tiredness output CONSUME NIL

105 Tiredness state CONSUME NIL limited

106 Tiredness currentResting

107 IntegrateDark init

108 IntegrateDark stateRegister

109 IntegrateDark nextstate NIL CHECKRESET

110 IntegrateDark output NIL CHECKRESET

111 IntegrateDark nextstate CHECKRESET SETINCR

112 IntegrateDark output CHECKRESET SETINCR true

113 IntegrateDark output CHECKRESET SETINCR false

114 IntegrateDark nextstate SETINCR SETPOS
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PE index Street production rule

115 IntegrateDark output SETINCR SETPOS

116 IntegrateDark nextstate SETPOS OUT

117 IntegrateDark output SETPOS OUT up 1

118 IntegrateDark output SETPOS OUT up 2

119 IntegrateDark output SETPOS OUT right

120 IntegrateDark output SETPOS OUT down

121 IntegrateDark output SETPOS OUT left

122 IntegrateDark output SETPOS OUT topright

123 IntegrateDark output SETPOS OUT bottomright

124 IntegrateDark output SETPOS OUT bottomleft

125 IntegrateDark output SETPOS OUT topleft

126 IntegrateDark nextstate OUT NIL

127 IntegrateDark output OUT NIL

128 IntegrateDark currentHeading

129 IntegrateDark resetRequest

130 IntegrateDark timerCount

131 IntegrateDark timerExpired

132 IntegrateDark sendFoundDarkTrue

133 IntegrateDark sendFoundDarkFalse

134 IntegrateDark incrDistanceDiagonalTemp

135 IntegrateDark incrDistanceDiagonal

136 PathPlanDark init

137 PathPlanDark stateRegister

138 PathPlanDark nextstate NIL WAIT

139 PathPlanDark output NIL WAIT

140 PathPlanDark nextstate WAIT CHECK1

141 PathPlanDark output WAIT CHECK1

142 PathPlanDark nextstate CHECK1 SLEEP1 a

143 PathPlanDark nextstate CHECK1 SLEEP1 b

144 PathPlanDark nextstate CHECK1 CHECK2 a

145 PathPlanDark nextstate CHECK1 CHECK2 b

146 PathPlanDark nextstate CHECK1 ABANDON

147 PathPlanDark output CHECK1 nextstate

148 PathPlanDark nextstate CHECK2 SLEEPEND

149 PathPlanDark nextstate CHECK2 FRIGHT1

150 PathPlanDark output CHECK2 nextstate

151 PathPlanDark nextstate SLEEP1 SLEEP3

152 PathPlanDark nextstate SLEEP1 SLEEP2

153 PathPlanDark output SLEEP1 nextstate

154 PathPlanDark nextstate SLEEP2 SLEEP2b
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155 PathPlanDark output SLEEP2 SLEEP2b

156 PathPlanDark nextstate SLEEP2b SLEEP3

157 PathPlanDark output SLEEP2b SLEEP3

158 PathPlanDark nextstate SLEEP3 SLEEP4

159 PathPlanDark nextstate SLEEP3 SLEEPEND

160 PathPlanDark output SLEEP3 nextstate

161 PathPlanDark nextstate SLEEP4 NIL

162 PathPlanDark output SLEEP4 NIL

163 PathPlanDark nextstate SLEEPEND SLEEPEND2

164 PathPlanDark output SLEEPEND SLEEPEND2

165 PathPlanDark nextstate SLEEPEND2 NIL a

166 PathPlanDark nextstate SLEEPEND2 NIL b

167 PathPlanDark nextstate SLEEPEND2 FRIGHT1 a

168 PathPlanDark nextstate SLEEPEND2 FRIGHT1 b

169 PathPlanDark output SLEEPEND2 nextstate

170 PathPlanDark nextstate FRIGHT1 FRIGHT2

171 PathPlanDark nextstate FRIGHT1 NIL

172 PathPlanDark output FRIGHT1 nextstate

173 PathPlanDark nextstate FRIGHT2 FRIGHT2b

174 PathPlanDark output FRIGHT2 FRIGHT2b

175 PathPlanDark nextstate FRIGHT2b NIL

176 PathPlanDark output FRIGHT2b nextstate

177 PathPlanDark nextstate ABANDON NIL

178 PathPlanDark output ABANDON NIL

179 PathPlanDark currentInputLevel

180 RandomAngleEventInhibitor init

181 RandomAngleEventInhibitor inhibitionCount

182 RandomAngleEventInhibitor inhibitionMessageArrived

183 RandomAngleEventInhibitor inhibitionPeriodOver

184 RandomAngleEventInhibitor passMessage

185 RandomAngleEventInhibitor inhibitMessage

186 WallHuggerInhibitor init

187 WallHuggerInhibitor inhibitionCount

188 WallHuggerInhibitor inhibitionMessageArrived

189 WallHuggerInhibitor inhibitionPeriodOver

190 WallHuggerInhibitor passMessage

191 WallHuggerInhibitor inhibitMessage

192 ForwardSuppressor init

193 ForwardSuppressor inhibitionCount

194 ForwardSuppressor inhibitionMessageArrived
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PE index Street production rule

195 ForwardSuppressor inhibitionPeriodOver

196 ForwardSuppressor passMessage

197 ForwardSuppressor inhibitMessage

198 IntegrateFood init

199 IntegrateFood stateRegister

200 IntegrateFood nextstate NIL CHECKRESET

201 IntegrateFood output NIL CHECKRESET

202 IntegrateFood nextstate CHECKRESET SETINCR

203 IntegrateFood output CHECKRESET SETINCR true

204 IntegrateFood output CHECKRESET SETINCR false

205 IntegrateFood nextstate SETINCR SETPOS

206 IntegrateFood output SETINCR SETPOS

207 IntegrateFood nextstate SETPOS OUT

208 IntegrateFood output SETPOS OUT up 1

209 IntegrateFood output SETPOS OUT up 2

210 IntegrateFood output SETPOS OUT right

211 IntegrateFood output SETPOS OUT down

212 IntegrateFood output SETPOS OUT left

213 IntegrateFood output SETPOS OUT topright

214 IntegrateFood output SETPOS OUT bottomright

215 IntegrateFood output SETPOS OUT bottomleft

216 IntegrateFood output SETPOS OUT topleft

217 IntegrateFood nextstate OUT NIL

218 IntegrateFood output OUT NIL

219 IntegrateFood currentHeading

220 IntegrateFood resetRequest

221 IntegrateFood timerCount

222 IntegrateFood timerExpired

223 IntegrateFood sendFoundFoodTrue

224 IntegrateFood sendFoundFoodFalse

225 IntegrateFood incrDistanceDiagonalTemp

226 IntegrateFood incrDistanceDiagonal

227 PathPlanFood init

228 PathPlanFood stateRegister

229 PathPlanFood nextstate NIL WAIT

230 PathPlanFood output NIL WAIT

231 PathPlanFood nextstate WAIT CHECK1

232 PathPlanFood output WAIT CHECK1

233 PathPlanFood nextstate CHECK1 EAT1 a

234 PathPlanFood nextstate CHECK1 EAT1 b
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235 PathPlanFood nextstate CHECK1 CHECK2 a

236 PathPlanFood nextstate CHECK1 CHECK2 b

237 PathPlanFood nextstate CHECK1 ABANDON

238 PathPlanFood output CHECK1 nextstate

239 PathPlanFood nextstate CHECK2 EATEND

240 PathPlanFood nextstate CHECK2 NIL

241 PathPlanFood output CHECK2 nextstate

242 PathPlanFood nextstate EAT1 EAT3

243 PathPlanFood nextstate EAT1 EAT2

244 PathPlanFood output EAT1 nextstate

245 PathPlanFood nextstate EAT2 EAT2b

246 PathPlanFood output EAT2 EAT2b

247 PathPlanFood nextstate EAT2b EAT3

248 PathPlanFood output EAT2b EAT3

249 PathPlanFood nextstate EAT3 EAT4

250 PathPlanFood nextstate EAT3 EATEND

251 PathPlanFood output EAT3 nextstate

252 PathPlanFood nextstate EAT4 NIL

253 PathPlanFood output EAT4 NIL

254 PathPlanFood nextstate EATEND NIL

255 PathPlanFood output EATEND NIL

256 PathPlanFood nextstate ABANDON NIL

257 PathPlanFood output ABANDON NIL

258 PathPlanFood currentInputLevel

259 Hunger init

260 Hunger stateRegister

261 Hunger nextstate NIL CHECKFOOD

262 Hunger output NIL CHECKFOOD

263 Hunger nextstate CHECKFOOD OUTRESET

264 Hunger nextstate CHECKFOOD OUTFOOD

265 Hunger output CHECKFOOD nextstate

266 Hunger nextstate OUTRESET OUTFOOD

267 Hunger output OUTRESET OUTFOOD

268 Hunger nextstate OUTFOOD CHECK

269 Hunger output OUTFOOD CHECK

270 Hunger nextstate CHECK RESTORE

271 Hunger nextstate CHECK CONSUME

272 Hunger nextstate CHECK nextstate

273 Hunger nextstate RESTORE NIL

274 Hunger output RESTORE NIL
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PE index Street production rule

275 Hunger output RESTORE NIL limited

276 Hunger nextstate CONSUME NIL

277 Hunger output CONSUME NIL

278 Hunger state CONSUME NIL limited

279 Hunger currentEating

280 Hunger foundFood

281 PathPlanDarkAngleInhibitor init

282 PathPlanDarkAngleInhibitor inhibitionCount

283 PathPlanDarkAngleInhibitor inhibitionMessageArrived

284 PathPlanDarkAngleInhibitor inhibitionPeriodOver

285 PathPlanDarkAngleInhibitor passMessage

286 PathPlanDarkAngleInhibitor inhibitMessage

287 PathPlanDarkRestingInhibitor init

288 PathPlanDarkRestingInhibitor inhibitionCount

289 PathPlanDarkRestingInhibitor inhibitionMessageArrived

290 PathPlanDarkRestingInhibitor inhibitionPeriodOver

291 PathPlanDarkRestingInhibitor passMessage

292 PathPlanDarkRestingInhibitor inhibitMessage
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