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Abstract  

Water distribution systems (WDSs) are becoming increasingly complex and larger in 

scale due to the rapid growth of population and fast urbanization. Hence, they require 

high levels of investment for their construction and maintenance. This motivates the need 

to optimally design these systems, with the aim being to minimize the investment budget 

while maintaining high service quality. Over the past 25 years, a number of evolutionary 

algorithms (EAs) have been developed to achieve optimal design solutions for WDSs, 

representing a focal point of much research in this area.  

One issue that hinders EAs’ wide application in industry is their significant demand on 

computational resources when handling real-world WDSs. In recognition of this, there 

has been a move from aiming to find the globally optimal solutions to identifying the 

best possible solutions within constrained computational resources. While many studies 

have been undertaken to attain this goal, there have been limited efforts that use 

engineering knowledge to reduce the computational effort. The research undertaken in 

this thesis is such an attempt, as it aims to efficiently identify near-optimal solutions with 

the aid of WDS design knowledge. 

This thesis presents a domain-knowledge based optimization framework that enables the 

near-optimal solutions (fronts) of WDS problems to be identified within constrained 

computing time. The knowledge considered includes (i) the relationship between pipe 

size and distance to the water source(s); (ii) the impact of flow velocities on optimal 

solutions; and (iii) the relationship between flow velocities and network resilience.  

This thesis consists of an Introduction, three chapters that are based around a series of 

three journal papers and a set of Conclusions and Recommendations for Further 

Work.  
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The first paper introduces a new initialization method to assist genetic algorithms 

(GAs) to identify near-optimal solutions in a computationally efficient manner. This 

is attained by incorporating domain knowledge into the generation of the initial 

population of GAs. The results show that the proposed method performs better than 

the other three initialization methods considered, both in terms of computational 

efficiency and the ability to find near-optimal solutions. 

The second paper investigates the relative impact of different algorithm initializations 

and searching mechanisms on the speed with which near-optimal solutions can be 

identified for large WDS design problems. Results indicate that EA parameterizations, 

that emphasize exploitation relative to exploration, enable near-optimal solutions to 

be identified earlier in the search, which is due to the “big bowl” shape of the fitness 

function for all of the WDS problems considered. Using initial solutions that are 

informed using domain knowledge can further increase the speed with which 

near-optimal solutions can be identified.  

The third publication extends the single-objective method in the first paper to a 

two-objective problem. The objectives considered are the minimization of cost and 

maximization of network resilience. The performance of the two-objective 

initialization approach is compared with that of randomly initializing the population 

of multi-objective EAs applied to range of WDS design problems. The results 

indicate that there are considerable benefits in using the proposed initialization 

method in terms of being able to identify near-optimal fronts more rapidly. 

Although all of the results obtained in this research have shown that the proposed 

method is effective for improving the efficiency of EAs in finding near-optimal 

solutions, only gravity fed water distribution systems with a single loading case were 

considered as case studies. One important area for future research is the extension of 

the proposed method to more complex WDSs which may include tanks, pumps and 

valves.  
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Chapter 1. Introduction  

Water distribution systems (WDS) are used to deliver water from water sources or 

treatment plants to end-users, representing one of the basic forms of civil infrastructure 

within cities. A typical WDS consists of pipes, reservoirs, pumps, valves and other 

hydraulic elements, which are all cost intensive in construction and management. 

Furthermore, the maintenance and rehabilitation costs for WDSs are often very large, 

which can be on the order of millions of dollars (e.g. Simpson et al. 1994; Nicklow et al. 

2010). This motivates a number of studies to optimise these systems, aiming to 

potentially save significant costs while meeting the required demand as well as satisfying 

supply pressures (Marchi et al. 2014a).  

For a given water distribution network layout, the design problem typically involves the 

selection of the pipe sizes as well as the sizes of other system components (e.g. valves 

and pumps), such that the system can be constructed or operated with the minimum total 

life cycle cost while satisfying all of the design constraints (e.g. Dandy et al. 1996; Zheng 

et al. 2011a,b; Kang and Lansey 2012). However, the complex system structure (e.g. 

loops), highly nonlinear relationship between pipe head loss and flows and the discrete 

nature of the availability of pipe sizes that can be used create a highly complex search 

space for a WDS design problem (Zecchin et al. 2012). This results in the presence of 

many local optimal solutions, bringing significant challenges for finding a high quality 

solution.  

Traditionally, a trial-and-error approach or deterministic optimisation techniques (e.g. 

linear programming and nonlinear programming) have been used to find efficient 

solutions for simple WDSs (Fujiwara and Khang 1990; Bragalli et al. 2012). However, 

solutions found using these approaches are often unsatisfactory, especially for large, 

real-world problems (Simpson et al. 1994; Maier et al. 2014). More recently, 

evolutionary algorithms (EAs) have been employed to optimise the design of WDSs, and 

have been often demonstrated to be able to find significantly improved solutions 

compared to traditional methods (Maier et al. 2015). This is because EAs differ from 

deterministic optimisation techniques in that they navigate through the search space by 
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means of stochastic evolution rather than using gradient information, thereby leading to a 

higher likelihood that globally optimal solutions will be reached (di Pierro et al. 2009; Fu 

et al. 2012). Another important advantage of EAs over traditional optimisation 

techniques is for multi-objective problems, where they can identify a set of Pareto 

optimal solutions in a single run, with trade-offs between multiple competing objectives 

being identified (Ostfeld et al. 2014).  

From the literature, it can be seen that the research area of EAs applied to WDS design 

optimisation has undergone significant development over the past few decades (e.g. 

Nicklow et al. 2014; Maier et al. 2014). This is supported by the following: (i) a broad 

range of EA types has been successfully applied to WDS design problems; and (ii) EAs 

have provided an improved understanding of the WDS optimisation problem for both 

single objective and multi-objective problems. However, the application of EAs is not 

without difficulties, with one of the main issues being their significant demand on 

computational resources, which is especially the case when dealing with real-world 

problems (Fu et al. 2012; Kang and Lansey 2012). In fact, their computational intensity 

has been one of the main reasons for practitioners’ reluctance to use EAs in practice. 

In recognition of this, there has been a move from attempting to find the global optimal 

solutions, which may require very large computational effort, to identifying near-optimal 

solutions within limited computational budgets in recent years (Gibbs et al. 2008, 2015; 

Tolson et al. 2007, 2009; Maier et al. 2014, 2015). This is because, for many water 

resource problems, finding near-optimal solutions in a reasonable amount of time (rather 

than attempting to find the global optimum) is often sufficient from a practical 

perspective. Finding best possible solutions within a limited time framework is 

challenging for many EA-based optimisation techniques, which are typically developed 

to find globally optimal solutions without considering the constraint of the available 

computational resources (Maier et al. 2014).  

To address this issue, a number of approaches have been developed for efficiently 

arriving at near-optimal solutions in recent years. Examples include the hybridisation of 

EAs with deterministic techniques (Tolson et al. 2009; Zheng et al. 2011a), EA 
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parametrisations based on improved understanding of their run-time searching behaviour 

(Zecchin et al. 2012; Zheng et al. 2015a), and partitioning of large problems into a set of 

smaller and manageable sub-problems (Zheng et al. 2013 a,b). However, so far there 

have been limited efforts to use domain knowledge to assist EAs to efficiently identify 

near-optimal solutions (Kang and Lansey 2012; Bi et al. 2015a). Domain knowledge is 

often derived from a physical understanding of the system, as well as engineering 

experience. The research undertaken in this thesis is an attempt to develop new 

techniques that efficiently identify near-optimal solutions with the aid of WDS design 

knowledge. 

1.1 Objectives of research 

This research aims to improve EA optimisation of WDSs with the aid of domain 

knowledge in both single and multiple objective spaces. The specific objectives are given 

below: 

Objective 1: To incorporate domain knowledge into the initialization of EAs, enabling 

EAs to commence their search in the areas surrounding promising regions and hence 

improve their performance in efficiently identifying near-optimal solutions. The EA 

used to meet this objective is the genetic algorithm (GA), which is the most 

frequently used EA for water resources problems.  

Objective 2: To gain an improved understanding of the relative impact of the EA 

starting position and parameterisations on the speed with which near-optimal 

solutions can be identified for large optimization problems. In order to meet this 

objective, fitness function and run-time behavioural statistics are used to gain such an 

increased understanding.  

Objective 3: To extend the domain-knowledge based single-objective EA initialization 

method in Objective 1 to a multi-objective problem. The objectives considered are the 

minimization of cost and the maximization of network resilience (one way to 

represent WDS reliability). Two different types of multiobjective EAs (MOEAs) are 

considered in order to meet this objective, which are NSGA-II, representing one of 
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the standard MOEAs for industry application, and Borg, representing a recent 

state-of-the-art MOEA for water resources.  

1.2 Outline of the thesis 

This thesis consists of five chapters, with the main body (Chapters 2-4) being a 

collection of published, accepted or submitted papers from internationally recognised 

Journals (Bi et al., 2015a; Bi et al., 2015b; Bi et al., 2015c). Table 1.1 summarises the 

main information of each paper and how they link to the stated objectives of this thesis, 

with details given below. 

Table 1.1 Publication information 

Publication Aims 
Linking to the 

objectives 

The number of case studies 
(the range of the number of 

decision variables) 

Publication 1 
(Chapter 2) 

To develop a new initialization method 
for EAs with the incorporation of domain 
knowledge in single objective (cost) 
space 

Objective 1 Seven (34 to 1274) 

Publication 2 
(Chapter 3) 

To improve understanding of the relative 
impact of EA starting position and 
parameterisation on the speed with which 
near-optimal solutions are found in single 
objective (cost) space 

Objective 2 Four (164 to 1274) 

Publication 3 
(Chapter 4) 

To extend the initialization method in 
single-objective (cost) space to a two- 
objective (cost and network resilience) 
space 

Objective 3 Five (34 to 1274) 

In Chapter 2 (publication 1), a new initialization method is developed to assist EAs to 

find near-optimal solutions in an efficient manner, in which domain knowledge with 

regard to the relationship between pipe size and distance to the source(s) of WDS(s), as 

well as the impact of flow velocities on optimal solutions are considered. Three steps are 

involved in the proposed approach, including (i) the selection of pipe sizes based on 

knowledge that pipe diameters generally get smaller the further they are from the source; 

(ii) dynamic adjustment of the velocity threshold to account for the fact that appropriate 

velocity thresholds are likely to be network dependent; and (iii) control of initial 

population diversity by sampling from distributions centred on the solutions determined 

using the heuristic procedures of (i) and (ii). The performance of the proposed method is 
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compared with that of another heuristic sampling method and two non-heuristic sampling 

methods applied to seven WDS design case studies with the number of decision variables 

ranging from 34 to 1274. This chapter links to Objective 1 of this thesis (Table 1.1).  

Chapter 3 (publication 2) aims to investigate the relative impact of different algorithm 

initializations and searching mechanisms on the speed with which near-optimal solutions 

can be identified. While the impact of the initialization (initial population, starting 

position in solution space) of EAs on the speed (in terms of computational effort) with 

which near-optimal solutions can be found has been investigated previously, the impact 

of using different EAs (e.g. genetic algorithm, differential evolution) and EA 

parameterizations (e.g., mutation rate) on the relative performance of these initialization 

methods has not been studied previously. This study addresses this issue. In order to 

obtain a better understanding of the relative performance of different algorithm 

initialization methods and searching behaviours, a secondary objective of this research is 

to examine the properties of the fitness functions of the case studies and the run-time 

behavioural statistics of the different algorithms and their parameterizations, and how 

they relate to observed algorithm performance. This chapter links to Objective 2 of this 

thesis (Table 1.1).  

Chapter 4 (publication 3) develops and tests a method for identifying high quality 

initial populations for multi-objective EAs (MOEAs) applied to WDS design problems 

aimed at minimizing cost and maximizing network resilience. The proposed 

multiobjective initialization method not only considers the relationship between pipe size 

and distance to the source(s) of water, as for the method in Chapter 2, but also accounts 

for the relationship between flow velocities and network resilience. The benefit of using 

the proposed approach compared with randomly generating initial populations in relation 

to finding near-optimal fronts more efficiently is tested on five WDS optimization case 

studies of varying complexity with two MOEAs (NSGA-II and Borg). This chapter links 

to Objective 3 of this thesis (Table 1.1).  
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While the manuscripts have been reformatted (the sections have also been renumbered) 

in accordance with University guidelines, the material within this thesis is otherwise 

presented herein as published or submitted for publication. A copy of the manuscript that 

has already been published is provided in Appendix.  

Conclusions of the research within this thesis are provided in Chapter 5, which 

summarises research contributions, research limitations and recommendations for further 

research. 
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Chapter 2. Journal Paper 1-Improved genetic algorithm 
optimization of water distribution system design by 
incorporating domain knowledge 
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Abstract 

Over the last two decades, evolutionary algorithms (EAs) have become a popular 

approach for solving water resources optimization problems. However, the issue of low 

computational efficiency limits their application to large, realistic problems. This paper 

uses the optimal design of water distribution systems (WDSs) as an example to illustrate 

how the efficiency of genetic algorithms (GAs) can be improved by using heuristic 

domain knowledge in the sampling of the initial population. A new heuristic procedure 

called the Prescreened Heuristic Sampling Method (PHSM) is proposed and tested on 

seven WDS cases studies of varying size. The EPANet input files for these case studies 

are provided as supplementary material. The performance of the PHSM is compared 

with that of another heuristic sampling method and two non-heuristic sampling methods. 

The results show that PHSM clearly performs best overall, both in terms of 

computational efficiency and the ability to find near-optimal solutions. In addition, the 

relative advantage of using the PHSM increases with network size. 

Keywords: Optimization; Genetic algorithms, Water distribution systems; domain 

knowledge; heuristics; computational efficiency. 

2.1 Introduction 

Evolutionary algorithms (EAs) have been used successfully and extensively for solving 

water resources optimization problems in a number of areas, such as engineering design, 

the development of management strategies and model calibration (Nicklow et al. 2010; 

Zecchin et al. 2012). However, a potential shortcoming of EAs is that they are 

computationally inefficient, especially when applied to problems of realistic size. 

Consequently, there is a need to improve the computational efficiency of EAs to make 

them easier to use for the optimization of realistic water resources problems (Maier et al. 

2014a).  

One application area where this is the case of is the design of water distribution systems 

(WDSs) (Marchi et al. 2014a; Stokes et al. 2014). Over the past two decades, a variety of 

EAs have been applied to this problem, as detailed in Zheng et al. (2013a). Among these, 
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genetic algorithms (GAs) have been used most extensively (Simpson et al. 1994; Dandy 

et al. 1996, Gupta et al. 1999; Vairavamoorthy et al. 2005; Krapivka and Ostfeld 2009; 

Kang and Lansey 2012; Zheng et al. 2013b). However, GAs have been primarily applied 

to relatively simple benchmark problems, such as the 14-pipe problem (Simpson et al. 

1994), the New York Tunnels problem with 21 tunnels (Dandy et al. 1996), and the 

Hanoi problem with 34 pipes (Zheng et al. 2011a). In recent years, there has been a move 

towards increasing the complexity and realism of the case studies to which GAs are 

applied, including the Balerma network with 454 pipes (Reca and Martínez 2006), the 

Rural network with 476 pipes (Marchi et al. 2014b), the BWN-II network with 433 pipes 

(Zheng et al. 2013b), and the network used by Kang and Lansey (2012), which has 1274 

pipes and will be referred to as the “KL” network for the remainder of this paper.  

Increased network size and complexity result in significant challenges in terms of 

achieving good quality near-optimal solutions given the computational budgets that are 

typically available in practice (di Pierro et al. 2009; Fu et al. 2012). This is because (i) the 

time for hydraulic simulation increases appreciably for large WDSs; and (ii) the 

complexity and size of the search space associated with a large WDS are increased 

significantly. As a result, computational efficiency has been identified as a key concern 

for the widespread uptake of GAs for the optimization of large, real-world WDSs (di 

Pierro et al. 2009).  

In order to address this issue, two main approaches have been adopted in the literature. 

As part of the first approach, it is argued that for large, real problems, the focus should be 

on finding the best possible solution within a realistic computational budget, rather than 

on attempting to find the global optimal solution (e.g. Tolson and Shoemaker 2007; 

Gibbs et al. 2008; Tolson et al. 2009; Gibbs et al. 2010, 2011). This is because for such 

large problems, the global optimal solution is unlikely to be found within a reasonable 

computational timeframe.  

As part of the second approach, efforts have been made to increase the computational 

efficiency of the optimization process. This has been done in a number of ways, 
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including the use of increased computational power, such as parallel and distributed 

computing (Wu and Zhu 2009; Roshani and Filion 2012; Wu and Behandish 2012), the 

use of surrogate- and meta-modeling to speed up the simulation process (e.g. Broad et al. 

2005; di Pierro et al. 2009; Broad et al. 2010; Razavi et al. 2012), and the seeding of the 

initial population of EAs with good solutions obtained using a variety of analytical 

techniques (e.g. Keedwell and Khu 2006; Zheng et al. 2011a; Fu et al. 2012; Zheng et al. 

2014(b,c,d)). It should be noted that similar concepts have recently also been used in 

conjunction with other optimization techniques (e.g. Zhang et al. 2013; Housh et al. 2013) 

and non-optimization based WDS design approaches (e.g. Sitzenfrei et al. 2013). 

Although some of the methods mentioned above utilize engineering knowledge in their 

development (e.g. Keedwell and Khu 2006; Zheng et al. 2011a), there have been limited 

attempts to incorporate engineering knowledge and experience directly. Only Kang and 

Lansey (2012) have combined engineering experience with GAs in order to increase the 

computational efficiency of the optimization process. This was achieved by seeding half 

of the initial GA population with solutions that result in flow velocities below a threshold 

selected from within a pre-defined velocity range. However, the approach has only been 

applied to a single case study thus far and its relative performance has not yet been 

assessed in a rigorous and comprehensive manner. In addition, the approach has a 

number of potential shortcomings. Firstly, selection of an appropriate range for the 

velocity threshold is subjective, which might make the method difficult to apply and 

could result in inconsistent results from repeated, independent implementation of the 

method. Secondly, pipe sizes that result in appropriate velocities are determined using a 

structured trial-and-error process. However, in practice, pipe sizes generally reduce with 

distance from the source (Walski 2001). Consequently, there exists an opportunity to 

incorporate this domain knowledge into the initial pipe sizing process. Finally, there is 

limited control over population diversity, as this is achieved by seeding the initial 

population with 50% of randomly generated solutions and 50% of the solutions obtained 

based on engineering experience. 
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In order to address these shortcomings, the objectives of this paper are (i) to introduce a 

new heuristic sampling method for determining the initial population of GAs for the 

least-cost design of WDSs that is based on engineering experience / domain knowledge 

and that overcomes the potential shortcomings of the method of Kang and Lansey (2012); 

and (ii) to provide a rigorous assessment of the performance of this method compared 

with that of Kang and Lansey’s sampling method (KLSM) and two sampling methods 

that do not consider any domain knowledge (i.e. random sampling (RS) and Latin 

hypercube sampling (LHS)) on seven WDS design case studies of varying size and 

complexity. 

The remainder of this paper is organized as follows. The proposed heuristic, domain 

knowledge based sampling method for determining the initial population of GAs for the 

least-cost design of WDSs is introduced in next section, followed by the methodology for 

assessing the performance of this method against that of the KLSM and the two 

non-heuristic sampling methods. Next, the results are presented and discussed, followed 

by a summary and conclusions.  

2.2 Proposed prescreened heuristic sampling method for WDS 
design 

The proposed heuristic sampling method for initializing the population of GAs for 

the least-cost design of WDSs based on domain knowledge is called the Prescreened 

Heuristic Sampling Method (PHSM). It uses a three-step procedure that (i) selects 

pipe sizes based on knowledge that pipe diameters generally get smaller the further 

they are from the source; (ii) dynamically adjusts the velocity threshold to account 

for the fact that appropriate velocity thresholds are likely to be network dependent; 

and (iii) enables the diversity of the initial population to be controlled by sampling 

from distributions centred on the solutions determined using the heuristic procedures 

in (i) and (ii). The PHSM has some similarities to the KLSM in that it aims to find 

initial pipe sizes that restrict flow velocities to lie within certain ranges. However, it 
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overcomes the potential limitations of the KLSM outlined in the Introduction. Details 

of the three steps of the PHSM are given below. 

Step 1: Assign pipe diameters based on distances between demand nodes and supply 

sources  

As mentioned above, the first step of the PHSM is motivated by the knowledge that, 

in real WDSs, the diameters of upstream pipes are generally larger than those further 

downstream (Walski 2001). However, for WDSs, each demand node usually has a 

number of different paths that connect it to the supply source (reservoir). This 

indicates that the spatial distance between each demand node and the reservoir may 

vary according to the paths selected to deliver the required demands. In the proposed 

method, the shortest delivery path to each demand node is selected and used to 

represent the spatial distance between that node and the source node. The rationale 

behind this is that it has been demonstrated that the majority of the demand at a node 

is supplied by the path with the shortest distance for an optimal design of WDSs 

(Zheng et al. 2011a). The detailed process of step 1 of the PHSM is as follows: 

i: Find the shortest distance to a reservoir in the water network, li for each node i 

(i=1,2…..,n, where n is the total number of demand nodes in the network) using 

the Dijkstra algorithm (Zheng et al. 2011a). When dealing with a water network 

with multiple reservoirs, an augmented source node is created to connect all the 

reservoirs to enable the determination of li following Deuerlein (2008) and Zheng 

et al. (2011a). 

ii: Obtain the largest value of the shortest distance L by L=max(li). 

iii: Divide the network into P specific areas with the shortest distance to the source 

node interval of L/P, where P is the number of available pipe diameters for the 

design. 

iv: Assign pipes in each area a different diameter, with the largest diameter assigned 

to the pipes in the area nearest to the source and the smallest diameter to the pipes 
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in the area furthest from the source (reservoir). All pipes in a single area are 

assigned the same diameter. 

For example, for the WDS introduced by Zheng et al. (2011a), which has 164 pipes 

(Figure 2.1), the largest shortest distance of all nodes (L) is obtained after steps i and 

ii. If there are five diameter options for this network (i.e. P=5), the network will be 

divided into five areas in step iii. In order to do this (i) all nodes that have a 

shortest-distance that is not greater than L/P (i.e. 0<li≤L/5) form Area 1; (ii) all nodes 

that have a shortest-distance that is larger than L/P but not greater than 2L/5 (i.e. 

L/5<li≤2L/5) form Area 2; (v) all nodes that have a shortest-distance larger than 4L/P 

(i.e. 4L/5<li≤L) form Area 5. The resulting division of the network is given in Figure 

2.1. Finally, (i) all pipes in Area 1 are assigned the largest diameter; (ii) all pipes in 

Area 2 are assigned the second largest diameter; and so on until all pipes in Area 5 

are assigned the smallest pipe diameter. As such, the diameters of the upstream pipes 

are generally larger than those of the downstream pipes.  

 

Figure 2.1 WDS used to illustrate the result of network division of the PHSM 
(The red dot lines represent the distance boundary used to assign diameters) 

ReservoirArea 1

Area 2

Area 3

Area 5

Area 4
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Step 2: Adjust pipe diameters based on velocities  

In this step, the diameters obtained in step 1 are refined to achieve flow velocities in 

all pipes that are close to a particular threshold. This is based on the domain 

knowledge that the velocity in each pipe of an optimal solution for a WDS is in a 

limited range. In addition, in order to ensure that the chosen pipe diameters approach 

optimal values, the velocity threshold is selected to result in solutions that are on the 

boundary between feasibility and infeasibility. This is because the optimal solution is 

often located on the boundary of the feasible and infeasible areas of the search space. 

The stages in the process for achieving this are shown in Figure 2.2.  

 

Figure 2.2 Flowchart of the algorithm for adjusting pipe diameters based on flow 
velocity 

As can be seen from Figure 2.2, an inner loop and an outer loop are involved in the 

algorithm. The inner loop is used to determine the network configuration based on 

pipe velocities. To do this, a threshold value v  for velocity needs to be assigned at 
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the beginning (e.g. v =0.1 m/s), which represents the expected velocity for each pipe 

in the network. The network with initial diameters determined in Step 1 is then 

simulated using a hydraulic solver to obtain the flow rate for each pipe. Based on this 

flow rate, the new diameter jND  for each pipe can be calculated using: 

v

Q
ND j

j π
4

=       (2.1) 

where j=1,….,m is the jth pipe in the water network and m is the total number of pipes. 

As continuous diameter values are generated using Equation (2.1), these values need 

to be rounded up or down to the nearest discrete diameter based on the available 

options.  

The inner loop continues until there is no further change in diameter in accordance 

with Equation (2.1) or the number of simulations (s) reaches the specified maximum 

number of allowable simulations (Smax), at which point the cost (f) and the minimum 

pressure head of this design are determined. If this solution is feasible (i.e., the 

pressure head constraints are satisfied), the network configuration and its associated 

network cost are saved to an archive. As part of the outer loop, the inner loop is 

repeated for successive increases in the velocity threshold (i.e. vvv ∆+= ) until no 

feasible solution can be found. If the solution found at the completion of the inner 

loop is infeasible, the outer loop is not performed and the process of adjusting 

diameters is terminated.  Finally, the feasible solution with the lowest cost for the 

different velocity thresholds considered is selected from the archive and denoted as 

an approximate optimal solution for the WDS being optimized. This solution is then 

used as the starting point for Step 3, as outlined below.  

Step 3: Generate distribution functions based on the approximate optimal solution 

determined in Step 2.  

In order to ensure sufficient diversity in the initial solution, the initial diameter for 

each pipe is generated from a distribution, such that the pipe diameter obtained in 
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Step 2 has the highest probability of being selected. The logic behind this is that the 

approximate diameter for a pipe determined in Step 2 is most likely to be the optimal 

diameter relative to other diameter options. Hence, a relatively higher density 

function value is assigned to this diameter (i.e. it is more likely to be selected during 

sampling).   

The density function f(Dk) and the distribution function F(Dk) for selecting each 

initial diameter are given by the following equations: 

Pk
xa
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+
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∑

=
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where a is a constant factor to control the density of each diameter kD , details of 

which are discussed in Section 4; x  is the distance between Dk and Dc (the diameter 

for a pipe in the approximate optimal solution determined in Step 2) in terms of 

integer coding; and P is the total number of available pipe diameters. 

In order to illustrate how the approach outlined above is used to generate the pipe 

diameters in the initial solution, the following example is used. Table 2.1 presents the 

assumed total pipe diameter options and their corresponding integer coding values. If 

Dc=200mm in Step 2 for a particular pipe, its integer code is 1, as shown in Table 2.1. 

The absolute distance ||x  between each Dk and Dc is then calculated and presented 

in the third column of Table 2.1. The density function and distribution function 

values for generating each available diameter for this pipe during sampling are 

calculated based on Equations (2.2) and (2.3), respectively (assuming a=1). The 

results are given in the fourth and fifth columns of Table 2.1. As can be seen, a 

diameter of 200mm has the largest probability of being selected during sampling, as 

this diameter is selected based on the heuristic rules used in Steps 1 and 2. In contrast, 
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a diameter of 600mm has the smallest probability of being selected, since it has the 

largest distance to the optimal diameter of 200mm.  

Table 2.1 An example to illustrate the application of Step 3 of the PHSM 

Pipe diameters 
Dk (mm) 

Integer coding 
number 

Absolute distance 

to Dc ( ||x ) 
Density function 
values )( kDf  

Distribution function 
values )( kDF  

100 0 1 0.5 0.19 
200 1 0 1 0.39 
300 2 1 0.5 0.19 
500 3 2 0.33 0.13 
600 4 3 0.25 0.10 

It should be noted that the assumption made in Step 1 that the upstream diameters are 

typically larger than those further downstream might not hold for all networks due to 

the influence of network topology and zoning, However, as the initial diameters 

obtained in Step 1 are adjusted based on flow velocities in Step 2, the influence of 

network topology and zoning is accounted for in the overall approach. 

2.3 Methodology 

As stated in the Introduction, one of the objectives of this paper is to provide a 

rigorous assessment of the relative performance of the PHSM compared with that of 

the KLSM and two sampling methods that do not consider domain knowledge. The 

flowchart of the process for achieving this is shown in Figure 2.3. As can be seen, 

four different sampling methods, including two heuristic methods (i.e. the PHSM and 

the KLSM) and two non-heuristic methods (i.e. RS and LHS), are used to obtain 

initial GA populations. The two non-heuristic sampling methods are considered as 

they provide a benchmark against which the performance of the two heuristic 

sampling methods can be assessed. RS is used as this is the conventional method for 

initializing GA populations and LHS is used as it provides a more structured 

approach for sampling the solution space. It should be noted that, although there are 

some other analytical techniques for seeding the initial population of EAs (e.g. 

Keedwell and Khu 2006; Zheng et al. 2011a; Fu et al. 2012), they do not incorporate 

engineering knowledge and experience directly and hence are not considered in this 

paper. 
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Figure 2.3 Flowchart of the assessment process 

Each of the sampling approaches is applied to seven WDSs of varying size and 

complexity, including the Hanoi, Extended Hanoi, Fosspoly 1, ZJ, Balerma and Rural 

networks, as well as a modified version of the KL network (KLmod). The networks 

are optimized for total life cycle costs while satisfying pressure head constraints at 

each demand node. The hydraulic simulations required to check pressure constraints 

are performed using EPANET 2.0, as demand-driven modelling is most commonly 

used in optimization studies, although pressure-driven modelling is likely to be a 

better alternative under some circumstances (Laucelli et al. 2012). Each of the GA 

optimization runs is repeated 10 times with different sets of initial solutions and GA 

operators generated using different random number seeds for each network and 

sampling method. The results are compared in terms of the best and average solutions 

found during these ten runs. Details of each of the components of the process are 

provided in subsequent sections. 

2.3.1 Sampling methods  

Details of the KLSM (Method 2, Figure 2.3) and the two non-heuristic sampling 

methods (Methods 3 and 4, Figure 2.3) are given below. Details of the PHSM 

(Method 1, Figure 2.3) are given in the previous section. 
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2.3.1.1 The KLSM (Kang and Lansey 2012) (Method 2) 

As mentioned previously, in this approach, initial solutions are generated by adjusting 

pipe diameters to ensure that the velocities in all pipes are less than a pre-set velocity 

threshold selected from a practical range of velocities for average and peak flows in 

water supply networks. The heuristic procedure for achieving this is as follows: 

(1)  All pipes to be optimized are set to the minimum allowable diameter. 

(2)  A hydraulic simulation is carried out to obtain the flow velocity in each 

pipe.  

(3)  The resulting velocity in each pipe is compared with a pre-set velocity 

threshold selected from within the range of 0.45-1.5 m/s (e.g. 1 m/s). If the 

velocity is larger than the threshold, this pipe diameter is increased to the next 

larger commercial size.  

Steps (2) and (3) are performed repeatedly until all velocities in all pipes are below the 

threshold and the resulting pipes sizes are used to form one solution of the initial 

population. A number of different initial solutions is generated by varying the value of 

the velocity threshold within the pre-defined velocity range of 0.45 - 1.5m/s. In order to 

maintain solution diversity, half of the initial solutions are generated using this heuristic 

method, while the other half are generated randomly. In this study, the velocity 

thresholds of the KLSM are obtained using the following equation: 

 

N

smsm
rsmVTr

2
1

)/45.0/5.1(
/45.0

−+=                                  (2.4) 

where VTr (m/s) is the rth (r=1,2…, N
2

1
) velocity threshold used for generating the 

heuristic solutions; N is the total population size. 
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2.3.1.2 Random Sampling (Method 3) 

In random sampling (RS), each diameter option has the same probability of being 

selected for each pipe within the WDS. When generating a solution, each decision 

variable (i.e. pipe) is assigned a diameter value that is randomly selected from all 

available diameter options.   

2.3.1.3 Latin Hypercube Sampling (Method 4) 

Latin Hypercube Sampling (LHS) is a type of stratified sampling method that ensures 

that all portions of the sample space of each variable are sampled (McKay et al. 

1979). In this study, Simlab2.2 (JRC 2008) is used to generate initial solutions using 

LHS for each case study. A detailed description of the process of LHS can be found 

in the manual of Simlab2.2 (JRC 2008). 

2.3.2 Case studies  

Details of each case study are given in Table 2.2. For each case study, the decision 

variables are the pipe diameters and the objective is to find the minimum cost solution 

while satisfying the pressure head constraints. Consequently, the optimization problem to 

be solved can be represented as follows:  

Minimize ∑
=

=
m

j
jj DCF

1

)(  (2.5) 

Subject to:   

 .....,n,iHHH iii 21   maxmin =≤≤  (2.6) 

 G(Hi, D)=0 (2.77) 

  }{  AD j ∈  (2.8) 
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where F is the network cost that is to be minimized; )( jj DC  is the cost function for 

pipe j =1,2…,m with assigned diameter Dj; m and n are the total number of pipes and 

demand nodes in the network, respectively; G(Hi, D)=nodal mass balance and loop 

(path) energy balance equations for the whole network with pipe combinations of 

D=[D1, D2,….Dm]T, which is solved using EPANET2.0; Hi=head at node i=1,2….,n; 
min
iH and max

iH  are the minimum and maximum allowable head limits at the nodes; 

and A = a set of commercially available pipe diameters. 

Table 2.2 Details of the seven case studies 

Case study Reference 
No. of 

decision 
variables1 

No. of 
diameter 
options2 

Size of total 
search space 

Pressure 
head 

constraint 

Current best 
solution  

Current best 
solution 

found by GAs 

Hanoi 
Fujiwara 

and Khang 
(1990) 

34 6 261086.2 ×  m 30≥  

$6.081 million 
by Reca and 

Martínez (2006) 
using 

GENOME 

$6.081 
million by 
Reca and 
Martínez 
(2006) 

Extended 
Hanoi 

current 
study 

34 10 34101×  m 30≥  -3 -3 

Fosspoly1 
Bragalli et 
al. (2012) 

58 22 771026.7 ×  m 40≥  

$0.0291 million 
by Bragalli et 

al. (2012) using 
MINLP 

-3 

ZJ 
Zheng et 

al. (2011a) 
164 14 1871023.9 ×  m 22≥  

$7.082 million 
by Zheng et al. 
(2011a) using 

NLP-DE 

-3 

Balerma 
Reca and 
Martínez 
(2006) 

454 10 454101×  m 20≥  

€1.923 million 
by Zheng et al. 
(2011a) using 

NLP-DE 

€2.302 
million by 

Bolognesi et 
al. (2010) 

Rural 
network 

Marchi et 
al. (2014) 

476 15 5591058.6 ×  m 0≥  

$ 31.22 million 
by Marchi et al. 

(2014) using 
DE 

$ 36.25 
million by 

Marchi et al. 
(2014) 

KLmod 
network 

Adapted 
from Kang 
and Lansey 

(2012) 

1274 10 1274101×  m 45≥  -3 -3 

1The decision variables are the pipe diameters. 2The pipe diameter options for the Extended Hanoi and KL network are given in 
this paper and those for the other case studies are given in the references provided. 3The current best solution is unknown or the 
network has not been optimized previously using an Evolutionary Algorithm. 

As shown in Table 2.2, the seven case studies vary in size and complexity. Details of 

each network, including the network layout, the available pipe diameters and the cost 

of each diameter for the Extended Hanoi and the KLmod network are given in this 

paper and those of the other case studies are given in the corresponding references in 

the second column of Table 2.2. The EPANet input files for these seven networks are 

provided as supplementary material. The current best known solution for each case 
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study (if available) is presented in the second last column in Table 2.2. The best 

known solutions (least-cost solutions) for the Hanoi, Balerma and Rural case studies 

found by GAs are given in the last column, while no GA solutions can be found in 

the literature for the other case studies.  

The Extended Hanoi case study is developed based on the original Hanoi problem 

(Fujiwara and Khang 1990), and has not been used in previous studies. The only 

difference between the original and Extended Hanoi case studies is the number of 

available diameters for each pipe, while the other information is the same. As it is 

acknowledged that infeasible solutions dominate the search space for the Hanoi case 

study, a larger number of diameter options is included for this case study in order to 

test the performance of the various sampling methods when dealing with a search 

space with a larger feasible proportion. For the Extended Hanoi problem, ten pipe 

diameters, including 12, 16, 20, 24, 30, 40, 50, 60, 70 and 80 inches are available 

instead of the six smallest diameters from this list that were available for the original 

Hanoi case study (Fujiwara and Khang 1990). 

The topology of the KLmod network case study is taken from the network used by 

Kang and Lansey (2012), without consideration of pumps and fire-fighting conditions. 

For this network, a total of ten diameters, including 150, 200, 300, 400, 500, 600, 700, 

800, 900, and 1,000 mm are available for all pipes, with the unit costs given in Kadu 

et al. (2008).  

2.3.3 Genetic algori thm optimization  

The description of genetic algorithms (GAs) has been well documented (see e.g. 

Simpson et al. 1994) and hence, this information is not repeated in this paper. In this 

study, the GA used integer coding, two-point crossover, bitwise mutation, and 

tournament selection, as these have been demonstrated to be effective in terms of 

finding optimal solutions (Deb 2000; Vairavamoorthy and Ali 2005; Zheng et al. 

2011b). Although a number of different GA variants have been developed over the 

past four decades in order to improve search performance (Dandy et al. 1996; 
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Nicklow et al. 2010), the use of a relatively standard GA formulation was considered 

adequate, as the focus of this study is on the evaluation of different methods for 

obtaining initial GA populations. In addition, all of the sampling approaches 

considered in this paper can be used in conjunction with any GA variant or other type 

of EA.  

2.4 Computational Experiments 

The four sampling methods (i.e. the PHSM, the KLSM, RS and LHS) were used to 

generate the initial solutions for GAs applied to each of the seven WDS case studies 

(Figure 2.3). The results of GAs seeded using these four sampling methods were 

compared in terms of objective function value and computational efficiency. 

For the PHSM, the value of the initial threshold velocity v  used in Step 2 was 

selected to be 0.1 m/s for all case studies based on the results of preliminary trials 

with several different values, although variations of this initial value were found to 

have only a slight impact on the results. It was found that the overall number of 

simulations required for adjusting pipe diameters in Step 2 was less than 200 for the 

seven case studies, and hence the maximum number of allowable simulations Smax 

was set to 1000. In Step 3 of the PHSM, a number of different values of a (see 

Equation 2.2) ranging from 0.1 to 2 were tried and a = 0.5 was ultimately selected, as 

it produced slightly better results than other a values. However, as was the case for 

the initial threshold velocity v , slight variations in a did not significantly influence 

the final results. For the KLSM, velocity thresholds were generated in accordance 

with Equation (2.4). 

The parameter values of the GAs applied to each case study were fine-tuned with the 

aid of a large-scale sensitivity analysis. For the crossover probability, values ranging 

from 0.1 to 0.9 were tried. For the mutation probability, 10 different values around 

the value of 1/ND (where ND is the number of decision variables) were tried for each 

study, as it has been demonstrated that a value of approximately 1/ND is an effective 

value and is normally used for GAs (Simpson et al. 1994). The parameter values that 
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exhibited the best performance in terms of efficiently finding good quality optimal 

solutions were selected and are presented in Table 2.3. For each case study, the GAs 

seeded using the four sampling methods considered used the same parameter values. 

A penalty cost was added to the objective function value for infeasible solutions, with 

a penalty multiplier of 105/metre of head being used for all case studies (Simpson et 

al. 1994). The tournament size in the selection operator was two for all GAs. The 

maximum allowable number of evaluations for each case study is given in the last 

column of Table 2.3, with the larger networks assigned larger computational budgets.  

Table 2.3 Parameters values of GAs for each case study 

Case study 

Number of 
decision 
variables 

(ND) 

Network group 
based on the 
size of WDSs 

Population 
size (N) 

Crossover 
probability 

Mutation 
probability 

Total 
number of 
evaluations 

Hanoi 34 
G1 (ND<100) 

100 0.9 0.02 300,000 
Extended Hanoi 34 100 0.9 0.02 300,000 

Fosspoly1 58 500 0.8 0.02 500,000 
ZJ 164 

G2 
(100<ND<500) 

500 0.9 0.006 500,000 
Balerma 454 1000 0.9 0.002 1,000,000 

Rural network 476 1000 0.8 0.002 1,000,000 

KLmod network 1274 G3(ND>500) 1,000 0.9 0.0008 2,000,000 

In order to facilitate easier discussion of the results, the seven case studies were 

assigned to three groups based on the number of decision variables (ND), as shown in 

the third column of Table 2.3. The first three case studies (Hanoi, Extended Hanoi 

and Fosspoly1) were assigned to G1, as their values of ND<100, while the ZJ, 

Balerma and Rural network case studies were allocated to G2 with 100<ND<500. 

The KLmod network was assigned to G3, as its ND>500. 

The performance of each sampling method was assessed using the method outlined 

below: 

1. For each case study, ten GA runs were performed for each of the four 

sampling methods using different random number seeds, resulting in a total of 

40 final optimal solutions.  

2. The best final solution from the 40 solutions was selected for each case study 

and used as a benchmark against which the performance of each sampling 
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method was assessed. This benchmark optimal solution was also compared 

with the current best known solution in the literature obtained using similar 

GAs, if available (see Table 2.2), in order to ensure that the results obtained in 

the current study are reasonable. 

3. For each sampling method, the average of the best solution at each GA 

generation was calculated for each case study based on the ten runs with 

different starting random number seeds (denoted ABS). In addition, among 

the ten best solutions at each generation, the one with the lowest cost was 

selected (denoted as BBS).  

4. The deviation of ABS and BBS from the corresponding benchmark optimal 

solution was plotted against the number of evaluations for each sampling 

method. This resulted in four convergence curves on the same plot, enabling a 

comparison of the performance of the four sampling methods considered.  

5. The performance of each sampling method was also assessed in terms of its 

computational efficiency in being able to find near-optimal solutions. For this 

purpose, optimal solutions that had objective function values within 5% of the 

benchmark optimal solution were defined as being near-optimal. 

In order to enable a fair comparison between the methods, the computational 

overheads associated with implementing the proposed PHSM are also considered 

(Table 2.4). This was achieved by converting the computational time required for 

each step of the proposed PHSM (see Section 2.2) to the equivalent number of 

network simulations using the same computer configuration (Pentium PC (Inter R) at 

3.0 GHz). As shown in Table 2.4, the proposed PHSM is very efficient in computing 

the shortest-distance values for the network (Step 1) and generating distribution 

functions based on the approximate optimal solutions (Step 3), while it is relatively 

more time-consuming in adjusting pipe diameters based on the velocities in Step 2. 

This is expected, as this step involves an iterative process (see Figure 2.2). The 

number of equivalent network simulations that correspond to the total computational 

overhead required by the PHSM method is presented in the last column of Table 2.4. 
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As can be seen, this computational effort is negligible compared with the total 

computational budgets used in Table 2.3, and hence is not considered in the 

subsequent discussions in Section 2.5.  

Table 2.4 Computational overhead analysis for the proposed sampling method 

(PHSM) 

Case study 

Number 
of 

decision 
variables 

(ND) 

Equivalent 
simulations of 

the 
computational 

overhead used in 
Step 11 

Equivalent 
simulations of the 

computational 
overhead used in 

Step 21 

Equivalent 
simulations of 

the 
computational 
overhead used 

in Step 31 

Total 
computational 

overhead2 

Hanoi 34 10 102 1 113 (0.38%) 
Extended 

Hanoi 
34 10 126 1 137 (0.46%) 

Fosspoly1 58 11 153 1 165 (0.33%) 
ZJ 164 6 147 2 155 (0.31%) 

Balerma 454 8 165 3 176 (0.18%) 
Rural network 476 9 171 3 183 (0.18%) 

KLmod 
network 

1274 14 190 4 208 (0.10%) 
1The computational overhead used for each step has been converted to the equivalent number of network simulations for 

each case study.  
2The computational overhead is expressed as the equivalent number of simulations and the fraction of the total 

computational budget this represents (in brackets) 

2.5 Results and discussion 

The costs of the best solutions found using the GAs initialized with the four sampling 

methods considered for each of the seven case studies are given in Table 2.5, with the 

lowest cost solutions found highlighted in bold. In addition, for the case studies to 

which GAs had been applied previously in the literature, the percentage deviation of 

the solutions found in this study compared with the best solution found using GAs 

reported in the literature are shown in brackets (i.e. negative percentage changes 

indicate that the solutions found in this study are better and vice versa). It should be 

noted that the results presented here are compared with those obtained using GAs in 

previous studies because the purpose of this study is to compare the relative 

performance of different initial sampling approaches.  This requires the impact of 

the sampling approaches to be isolated from the impact of algorithm searching 

behavior as much as possible. Consequently, as a GA is used as the EA in this study 
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for reasons outlined previously, the final results obtained in this study should only be 

compared with those obtained using other GAs.  

Table 2.5 Cost of the best solution found by each sampling method for each case 

study 

Case study 
Cost of the best solution found by each sampling method (Million) 

RS LHS KLSM PHSM 

Hanoi $6.195 (1.87%) $6.217 (2.24%) $6.224 (2.35%) $6.109 (0.46%) 
Extended Hanoi $5.365 $5.366 $5.360 $5.346 

Fosspoly1 $0.0294 $0.0294 $0.0309 $0.0290 
ZJ $7.562 $7.560 $7.655 $7.431 

Balerma €2.125 (-7.69%) €2.146 (-6.78%) €2.130 (-7.47%) €2.061 (-10.47%) 
Rural $36.108 (-0.39%) $36.265 (0.04%) $36.255 (0.01%) $35.173 (-2.97%) 

KLmod $8.686 $8.737 $8.418 $8.307 
Note: The result of each sampling method for each case study was obtained over 10 runs with different random number seeds. 
The percentage of the cost of each best solution relative to the best solution found by GAs is given in italics in the brackets. The 
benchmark optimal solution for each case study is indicated in bold. 

From Table 2.5, it can be clearly seen that by using the proposed PHSM, better 

quality solutions could be found for each case study within the given computational 

budgets than when the other approaches were used. The KLSM produced better 

solutions for the large KLmod network compared to the other two non-heuristic 

sampling methods (RS and LHS). This agrees well with the observations made by 

Kang and Lansey (2012). However, for five of the other six case studies, RS 

performed better than the KLSM in terms of the quality of the final solutions.  

The convergence plots for each of the algorithms for the case studies belonging to the 

three different groups defined in Table 2.3, as defined in the previous section, are 

given in Figures 2.4 (G1), 2.5 (G2) and 2.6 (G3) and provide an indication of both 

solution quality and computational efficiency. A common observation is that the 

PHSM generally found significantly better initial solutions than the non-heuristic 

sampling approaches. This is most likely because the initial solutions obtained using 

the PHSM were feasible and the diameters for these solutions were generally in a 

reasonable range based on velocities, nodal demands and elevations. For the larger 

case studies, the PHSM also found significantly better initial solutions than the 

KLSM. The initial solutions obtained using the other sampling methods were 
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typically infeasible for the larger case studies or feasible with high costs for the 

simpler WDSs. This demonstrates that the proposed domain knowledge based 

sampling method is effective in identifying good quality starting solutions. A detailed 

discussion of the results for the three groups of case studies is given in the subsequent 

sections. 

2.5.1 Group 1 (G1) case studies 

As can be seen from Table 2.5 and Figure 2.4, the performance of the GAs initialized 

with the four different sampling methods is very similar for the G1 case studies (i.e. 

Hanoi, Extended Hanoi and Fosspoly1), both in terms of the ability to find optimal 

solutions and computational efficiency. While the GAs initialized with the PHSM 

were able to find the best solution for all three case studies, the variation in the cost 

of the best-found solutions was relatively small (Table 2.5). Similarly, while GAs 

initialized with the PHSM found better initial solutions and generally converged 

more quickly than the GAs initialized with the other methods (Figure 2.4), this 

difference was not very large. Consequently, based on the results obtained, there does 

not appear to be a significant advantage of using domain knowledge for the 

initialization of GAs for small problems, such as those considered for the G1 case 

studies. 
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(a) Case study 1: Hanoi (34 decision variables) 

  

(b) Case study 2: Extended Hanoi (34 decision variables) 

  

(c) Case study 3: Fosspoly1 (58 decision variables) 

  

Figure 2.4 Results of the GAs with the four sampling methods applied to case 
studies in Group 1 (G1 in Table 2.3) 
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2.5.2 Group 2 (G2) case studies 

As can be seen from Table 2.5 and Figure 2.5, the performance of the GA initialized 

with the PHSM is noticeably better than that of the GAs initialized with the other 

three methods for the G2 (ZJ, Balerma, Rural) networks, both in terms of the 

best-found solution and computational efficiency. This suggests that while for the 

simpler G1 case studies the GAs were able to find good solutions relatively quickly 

with the aid of their evolutionary operators, irrespective of the starting position in 

solution space, this is not the case for the more complex G2 case studies. This 

demonstrates that the better starting positions in solution space identified using the 

PHSM are able to assist the GA with finding better regions of larger search spaces, as 

indicated by the better solutions found when the GAs were initialized with the PHSM 

(Table 2.5 and Figure 2.5). This trend was already noticeable for the Fosspoly1 case 

study, which is the most complex of the G1 case studies (Figure 2.4). 

The results in Table 2.5 and Figure 2.5 also indicate that the solutions found using the 

PHSM were not only better than those obtained using RS and LHS, but also better 

than those obtained using the other heuristic sampling method (i.e. the KLSM). This 

appears to be both as a result of the quality and diversity of the initial solutions.  For 

example, for the ZJ and Rural networks, the PHSM was able to identify significantly 

better initial solutions than the KLSM, resulting in more rapid convergence and better 

final solutions (Figure 2.5). In contrast, for the Balerma network, use of the KLSM 

resulted in better initial solutions than use of the PHSM. However, despite this initial 

disadvantage, use of the PHSM resulted in more rapid convergence and the 

identification of better solutions, which is likely due to the additional control over 

population diversity offered by the PHSM. A similar trend was also observed for the 

Fosspoly1 network (Figure 2.4), which is the largest of the G1 networks. It should be 

noted that the better performance of the PHSM was not affected by the presence of 

multiple source reservoirs, as is the case for the Balerma network. This suggests that 

the approach of using an augmented source node for networks with more than one 

source reservoir (as described in Step 1 for the PHSM) is effective. 
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(a) Case study 4: ZJ network (164 decision variables) 

  

(b) Case study 5: The Balerma network (454 decision variables) 

  

(c) Case study 6: The Rural network (476 decision variables) 

  

 

Figure 2.5 Results of the GAs with the four sampling methods applied to case 
studies in Group 2 (G2 in Table 2.3) 
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In terms of the quality of the solutions found, use of the PHSM resulted in the best 

solutions for all three G2 case studies by some margin (Table 2.5, Figure 2.5). In 

contrast, the quality of the solutions found using the other three initialization methods 

is quite similar, with no advantage of using the KLSM. It should also be noted that 

for the two case studies to which similar GAs had been applied in previous studies, 

the GA initialized with the PHSM found solutions that were 10.47% and 2.97% 

better than those found in previous studies for the Balerma and Rural networks, 

respectively (Table 2.5).  

As far as convergence speed is concerned, use of the PHSM results in significantly 

faster convergence to near-optimal solutions (i.e. solutions that are within 5% of the 

benchmark optimal solution, as defined previously) than use of the other three 

initialization methods, which all performed similarly (Figure 2.5). This indicates that 

there is likely to be a significant advantage in using the PHSM when trying to find 

the best possible solution within reasonable computational budgets for complex 

networks. 

2.5.3 Group 3 (G3) case studies 

As can be seen from Table 2.5 and Figure 2.6, for this very large network (i.e. 

KLmod), the performance of the GAs initialized with both heuristic sampling 

methods (i.e. PHSM and KLSM) are noticeably better than that of the GAs initialized 

with the two non-heuristic sampling methods (i.e. RS and LHS), both in terms of the 

best-found solution and computational efficiency. While the GAs initialized using the 

two heuristic sampling methods were able to find near-optimal solutions after 

approximately 800,000 evaluations for the average solutions based on ten runs, which 

is equivalent to approximately 3 hours in terms of CPU time, the GAs initialized with 

the non-heuristic sampling methods (i.e. RS and LHS) were not even able to find 

solutions of this quality at the end of the optimization run (using nearly 2,000,000 

evaluations and approximately 7 hours of CPU time). Although Figure 2.6 suggests 

that the GAs initialized with RS and LHS had not converged yet and might ultimately 
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find solutions of a similar quality to those found when the heuristic sampling 

methods were used, the computational effort required to do so is likely to be very 

large. This clearly highlights the advantage of using heuristic sampling methods for 

initializing GA populations for larger networks. 

  

 

Figure 2.6 Results of the GAs with the four sampling methods applied to case 
studies in Group 3 (G3 in Table 2.3) 

In terms of the relative performance of the two heuristic sampling methods, while 

both converged to near-optimal solutions after approximately the same number of 

iterations, use of the PHSM resulted in clearly better best-found solutions. This is 

likely to be due to a combination of the better initial solutions identified using the 

PHSM, as well as the additional control over population diversity afforded by the 

PHSM. However, the relative performance of the KLSM compared with that of the 

PHSM was much better for the KLmod case study, which is most likely because the 

KLSM was designed for a modified version of this problem. 

2.6 Summary and conclusions 

In order to improve the ability of GAs to find optimal or near-optimal solutions in 

reasonable timeframes for realistic-sized water distribution optimization problems, a new 

heuristic sampling method (the PHSM) for initialising GA populations was introduced 
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and evaluated in this paper. The performance of the PHSM was compared with that of an 

existing heuristic sampling method (the KLSM) and with that of more traditional 

sampling methods, including RS and LHS, for seven WDSs of varying size and 

complexity.  

The results obtained based on the seven WDS optimization (pipe-sizing) problems 

considered indicate that overall, the proposed PHSM performed significantly better than 

the other three sampling methods, both in terms of solution quality and computational 

efficiency. It was also found that the relative advantage of the PHSM increased with 

network size and complexity. While for the smaller (G1) networks, the performance of 

the GAs initialised using the four different methods was very similar, there were clear 

advantages in using the PHSM for the larger (G2) networks and in using both heuristic 

sampling methods (i.e. PHSM and KLSM) for the largest network considered (G3). This 

advantage is likely to be due to the ability to find better initial solutions, enabling more 

favourable regions of the solution space to be explored more quickly. The results also 

indicate that PHSM outperforms the KLSM, which is likely due to a combination of the 

ability to find better initial solutions and the additional population diversity provided by 

the PHSM.  

As the focus of this paper was on the development and evaluation of the PHSM, all 

analyses were conducted using a reasonably standard GA. However, as the PHSM is 

independent of the optimization algorithm used, it can be tested in combination with 

other algorithms. Such investigations would be useful in terms of assessing the 

generality of the results obtained in this paper.  In addition, it would be useful to 

extend and apply the proposed approach to a larger number of case studies with 

increased hydraulic complexity, such as the inclusion of tanks, valves and pumps.  

However, given that pipe sizes generally represent the largest number of decision 

variables, application of the PHSM to the subset of the decision variables consisting of 

pipe diameters is still likely to be beneficial for WDSs including tanks, valves and pumps.  

Finally, it would be interesting to compare the performance of the PHSM with that of 
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other methods that could be used for initialising EAs, such as the cellular automata 

network design algorithm of Keedwell and Khu (2006). 
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Chapter 3. Journal Paper 2- Impact of starting position and 
searching mechanism on evolutionary algorithm convergence rate 
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Abstract 

Traditionally, evolutionary algorithms (EAs) have been used to attempt to find 

globally optimal solutions for water distribution system (WDS) optimization 

problems. However, as these algorithms are being applied to increasingly complex 

systems, computational efficiency is becoming an issue, and hence approaches that 

enable near-optimal solutions to be identified within reasonable computational 

budgets have received increasing attention. One of these approaches is the 

initialization of EAs in a manner that accounts for domain knowledge of WDS design 

problems. While the effectiveness of these initialization approaches has been studied 

previously, the impact of algorithm searching behavior on the speed with which 

near-optimal solutions can be found has not yet been examined. To this end, this 

study aims to investigate the relative impact of different algorithm initialization 

methods and searching mechanisms on the speed with which near-optimal solutions 

can be identified for large WDS optimization problems. Fitness function and 

run-time behavioral statistics are used to gain an increased understanding of the 

behaviour. The results show that both the starting population and algorithm searching 

mechanism have an impact on the speed with which near-optimal solutions are 

identified. The fitness function and run-time behavioral statistics indicate that EA 

parameterizations that favor exploitation over exploration enable near-optimal 

solutions to be identified earlier in the search, which is due to the “big bowl” shape of 

the fitness function for all of the WDS problems considered. Using initial populations 

that are informed by domain knowledge further increases the speed with which 

near-optimal solutions can be identified.  

CE Database subject headings: searching mechanism; evolutionary algorithm; 

optimization; sampling method; water distribution system. 

Author Keywords: searching mechanism; evolutionary algorithm; optimization; 

sampling method; water distribution system. 
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3.1 Introduction 

Evolutionary algorithms (EAs) have been used extensively for various water 

resources optimization problems over the past few decades (Nicklow et al. 2010; 

Maier et al. 2014, 2015). Their main advantages compared with traditional 

deterministic approaches include (i) increased ability in exploring the entire search 

space, leading to a higher likelihood of arriving at good quality solutions (Nicklow et 

al. 2010); (ii) the ability to be linked with any simulation models (Zheng et al. 2013a; 

Beh et al. 2015), and (iii) greater adaptability in handling water resources problems 

with multiple conflicting objectives (Kapelan et al. 2005; Ostfeld et al. 2014).  

However, the application of the EAs is not without difficulties, with one of the 

typical challenges being their larger demands on computational time (di Pierro et al. 

2009; Zheng et al. 2013b). This is especially the case when dealing with realistic 

water resources problems, such as the design of large-scale water distribution 

systems (WDSs) (Marchi et al. 2014b), which are investigated in the present study. In 

fact, as highlighted in Maier et al. (2014), the relatively low computational efficiency 

of EAs has become a main barrier to their wider up-take in industry.  

In order to address this issue, there is general consensus that finding near-optimal 

solutions as quickly as possible, rather than trying to find the best possible solution, 

or finding the best possible solution within a given computational budget (e.g. Gibbs 

et al. 2010; 2015), is of great importance (Maier et al. 2014). This is because, as, 

from a practical perspective, there is generally insufficient time to run the 

optimization until no further improvement in objective function values are obtained 

when dealing with real-world problems.  

One way to increase the computational efficiency of EAs so that near-optimal 

solutions can be found within realistic timeframes is to initialize their searching in 

promising regions of the solution space based on an understanding of the physics of 

the problem being solved. In terms of WDS design optimization, Keedwell and Khu 

(2006) considered intuitive knowledge of the way in which WDSs function to 
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generate the initial solutions for EAs. As part of their approach, if a demand node in 

the WDS has a head deficit or surplus, the diameters of the pipes that are connected 

to this node are increased or decreased (respectively). Subsequently, Zheng et al. 

(2011a) seeded EAs with solutions from an optimal tree network based on the 

knowledge that the optimal solution for a WDS subject to a single loading condition 

consists of a branched topology without any loops.  

More recently, Kang and Lansey (2012) incorporated engineering experience into the 

initialization of EAs through the use of the optimal flow velocity within the pipes. 

Three steps are involved in their method, which are (1) all pipes to be optimized are 

given the minimum allowable diameter, (2) a hydraulic simulation model is used to 

calculate the flow velocity in each pipe, and (3) the diameters are increased to the 

next available size if the obtained flow velocity is larger than the preset optimal 

velocity that is determined based on engineering experience, and vice versa. Steps (2) 

and (3) are repeated until flow velocities in all pipes are below the given optimal 

velocity, and the resulting pipe sizes form an initial solution that overall has a 

velocity close to the optimal velocity in each pipe (domain knowledge). A set of 

different initial solutions is obtained through the use of different optimal velocities 

according to engineering experience, and the EAs are seeded with these solutions to 

find near-optimal solutions with increased computational efficiency (Kang and 

Lansey 2012).  

Building on the work of Kang and Lansey (2012), Bi et al. (2015) proposed an 

initialization (sampling) method that accounted for the fact that pipe sizes generally 

reduced with distance from the source (Walski, 2001), in addition to considering 

optimal flow velocities. As part of the approach, initial EA populations are generated 

by sampling in the vicinity of the solutions identified based on this domain 

knowledge, in order to avoid premature convergence to local optima in solution space. 

Bi et al. (2015) found that their method outperformed the approach of Kang and 
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Lansey (2012) for a set of WDS case studies with different sizes and complexity in 

terms of the speed with which near-optimal solutions were identified.  

While the impact of the initialization (initial population, starting position in solution 

space) of EAs on the speed (in terms of computational effort) with which 

near-optimal solutions can be found has been investigated previously, as outlined 

above, the impact of using different EAs (e.g. genetic algorithm, differential 

evolution) and EA parameterizations (e.g., mutation rate) on the relative performance 

of these initialization methods has not yet been studied. This is despite the fact that 

algorithm searching behavior, as represented by different EAs and parameterizations, 

is known to have a significant impact on algorithm convergence (Zheng et al. 2015a). 

In other words, while there have been many studies that have examined the impact of 

different EAs and EA parameterizations on convergence rate and the ability to find 

globally optimal solutions, their impact on the ability to find near-optimal solutions 

for real-life problems with limited computational budgets using EAs that have been 

initialized by methods using varying degrees of domain knowledge has not yet been 

investigated. 

In order to overcome the above shortcoming, the primary objective of this paper is to 

investigate the relative impact of different algorithm initializations, different EAs and 

different EA parameterizations on the speed with which near-optimal solutions can 

be identified for a number of WDS optimization problems of varying complexity. In 

order to obtain a better understanding of the relative performance of different 

algorithm initialization methods and searching behaviours, a secondary objective of 

this paper is to examine the properties of the fitness functions of the case studies and 

the run-time behavioral statistics of the different algorithms and their 

parameterizations, and how they relate to observed algorithm performance, as 

suggested by Maier et al. (2014). The remainder of this paper is organized as follows. 

The methodology is given in the next section, followed by details of the 

computational experiments that have been conducted in order to meet the objectives. 
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Next, the results are presented and discussed, before the paper is summarized and 

conclusions are drawn. 

3.2 Methodology 

Figure 3.1 presents the overall methodology used in the present study. As stated 

previously, the relative impact of the EA initializations (starting positions) and 

algorithm behaviours (algorithms and their parameterizations) on the convergence 

rate to near-optimal solutions are assessed. Two different initialization (sampling) 

methods and two different types of EAs are considered, as shown in Figure 3.1. For 

each EA, a suite of different parameterizations is used. The two EAs with different 

initialization methods and parameterizations are applied to four large WDS design 

problems, for which the number of decision variables ranges from 164 to 1,274. To 

gain an improved understanding of the results in terms of the speed with which 

near-optimal solutions are identified, the problem characteristics, as well as the 

run-time algorithm searching behavior, are analyzed. Details of each element in 

Figure 3.1 are discussed in following sub-sections.  
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Figure 3.1 Flowchart of the assessment process, where N is the population size, L 
is the number of decision variables, Pc and CR are the crossover probabilities for 
the genetic algorithm (GA) and differential evolution (DE), respectively, and Pm 
and F are their mutation probabilities. The subscript of each case study indicates 

the number of decision variables. 

3.2.1 Ini tia l ization approaches 

As shown in Figure 3.1, the two initialization methods considered are random 

sampling (RS), which is the most commonly used initialization method, and the 

Prescreened Heuristic Sampling Method (PHSM) (Bi et al. 2015). The PHSM is used 

to represent the class of initialization approaches that take into account domain 

knowledge, as it performed better than the method of Kang and Lansey (2012) when 

applied to case studies used in this paper (Bi et al. 2015). The three main steps in the 

PHSM (Bi et al. 2015) include: 

� Step 1: Assign pipe diameters to all pipes based on the distance between 

demand nodes and supply sources. This is motivated by the knowledge that, 

in real WDSs, the diameters of upstream pipes are generally larger than those 

of pipes further downstream (Walski 2001). 

Network 1:
ZJ164

Network 2:
BN454

Network 3:
RN476

Network 4:
KL1274

Algorithm behavior  

Genetic algorithm

EA initialization

Differential evolutionRandom sampling PHSM (Bi et al. 2015)

• N=500 (Network 1) and 
1,000 (Networks 2 -4)

• Pc=0.9
• Pm=1/(4L), 1/(2L), 1/L, 2/L

Results 
• Convergence plots
• Number of iterations to reach near-optimal 

solutions (efficiency)

Run-time searching 
behavior statistics

Fitness landscape 
statistics

• N=500 (Network 1) and 
1,000 (Networks 2 -4)

• CR=0.5
• F=0.1, 0.2, 0.3, 0.5
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� Step 2: Adjust pipe diameters based on velocities. In this step, the diameters 

obtained in Step 1 are refined to achieve flow velocities in all pipes that are 

close to a particular threshold. This is based on the domain knowledge that 

the velocity in each pipe of an optimal solution for a WDS is within a limited 

range.  

� Step 3: Generate initial population by sampling from distribution functions 

centered around the approximate optimal solution determined in Step 2. In 

order to ensure sufficient diversity in the initial solution, the initial diameter 

for each pipe is generated from a distribution, such that the pipe diameter 

obtained in Step 2 has the highest probability of being selected.  

3.2.2 Evolutionary algori thms and their parameterization  

Genetic algorithms (GAs) and differential evolution algorithms (DEs) are considered 

in the present study. These EAs are selected because GAs have been widely 

recognized as an industry standard optimization technique (Wang et al. 2015), while 

DEs have been shown to outperform GAs in terms of computational efficiency and 

the ability to find optimal solutions in recent WDS studies (Vasan and Simonovic 

2010; Zheng et al. 2013c). Details of the GA algorithm adopted are given in Bi et al. 

(2015), but an elitism scheme was added in this study to facilitate better comparison 

with the DE. Details of the DE algorithm used are given in Zheng et al. (2011a). It 

should be noted that, for each algorithm, constraint tournament selection is used to 

handle infeasible solutions (Deb et al. 2000).  

Many studies have shown that the mutation operator in GAs and DEs can have a 

more significant impact on searching behaviour, and hence algorithm performance, 

than other parameters, such as crossover and population size (Reca and Martinez 

2006; Zheng et al. 2015a). This is because different mutation rates can substantially 

alter the balance between exploration (i.e. broadly searching the solution space) and 

exploitation (i.e. focusing on the local regions) (see Maier et al. 2014), during an 

algorithm’s search. In order to explore the influence of different degrees of 
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exploration and exploitation on EA convergence rate and the ability to find 

near-optimal solutions, a number of different mutation probabilities are therefore 

used for both the GA and DE. Details of the adopted values of the mutation rates and 

other algorithm parameters are shown in Figure 3.1 for both EAs. As can be seen, in 

addition to the recommend mutation probability of Pm=1/L (where L is the number of 

decision variables in the real-value coding scheme) (Wang et al. 2015), mutation 

rates of 1/(4L), 1/(2L) and 2/L are considered for the GAs applied to each case study.  

Zheng et al. (2015a) conducted a comprehensive study to analyze the impact of the 

DE parameters (mutation factor F and crossover rate CR) on its searching 

performance. They concluded that DE performance was more influenced by the value 

of F rather than CR, and F=0.3 and CR=0.5 were recommended as default 

parameters for relatively large optimization problems. Following their work, CR=0.5 

is used for each case study and mutation factors of F=0.1, 0.2, 0.3, and 0.5 are 

considered, as they represent significantly different searching behavior. For each case 

study, the population size N outlined in Bi et al. (2015) is also used in the present 

study for both EAs, which is N=500 for the ZJ164 problem and N=1,000 for the other 

three WDS design case studies as shown in Figure 3.1.  

3.2.3 Case studies 

As shown in Figure 3.1, four large-scale case studies are considered, the details of which 

are given in Bi et al. (2015). These large problems are chosen because they are more 

relevant than simpler case studies for the purposes of this study, which is aimed at 

assessing the effectiveness of different algorithm initializations and behaviours in terms 

of finding near-optimal solutions for large WDSs that are representative of those 

encountered when solving real-world problems as quickly as possible. 

The aim of the optimization problem is to identify the n pipe diameters

[ ]  ,,, T
21 ndddD L= that correspond to the least cost design solution  *D , subject to the 

satisfaction of a number of constraints. That is 
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where id  is the diameter of pipe i=1,2….,n; ic  is the cost function for pipe i 

associated with the choice of decision variable id ; )( *DP  is the nodal pressure 

vector for design solution *D , which has to be greater than the minimum allowable 

pressure vector minP  for demand nodes under a set of design demands for the WDS 

(feasible solution). A hydraulic simulation model (EPANET2.0 in this study) is 

typically used to determine )( *DP . A is a set of commercially available pipe 

diameters (discrete) for the given WDS design problem.  

3.2.4 Performance assessment  

The results of the optimization runs are presented in terms of the convergence plots 

and the number of iterations required to identify near-optimal solutions, as was done 

by Bi et al. (2015). Near-optimal solutions are defined as solutions that are within 5% 

of the best-known solution for each of the case studies, which are also given in Bi et 

al. (2015). The selection of 5% is based on the fact that it is commonly used in 

statistical analysis and also, from a practical point of view, it could be considered that 

being within 5% of the minimum cost solution is sufficiently close. However, it is 

recognized that, in certain circumstances a smaller value (e.g. 2% or 1%) would be 

more appropriate.  

In order to minimize any influence of the stochastic elements of the two EAs 

considered, the results presented are averaged over 10 runs with different random 

number seeds. The metric used for this purpose is the percentage deviation of the 

mean cost to the best known solution (DMO%), to enable the results from different 

case studies to be compared in an objective fashion.  
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3.2.5 Performance explanation  

To gain an improved understanding of the optimization results achieved by using 

different starting positions, EAs and EA parameterizations, the characteristics of the 

fitness functions and run-time behavior statistics are assessed (see Figure 3.1), as 

detailed in the sub-sections below. 

Fitness function properties 

Previous studies have recognized the importance of the characteristics of the problem 

on the success of a given optimization algorithm (Gibbs et al. 2011, 2015). Therefore, 

there is a growing interest in quantifying the characteristics of water resources 

optimization problems to provide guidance for selecting the most effective searching 

algorithms and algorithm parameterizations (Maier et al. 2014). For instance, Gibbs 

et al. (2011) proposed a number of statistics to quantify the properties of the fitness 

function (see Maier et al., 2014) of two operational WDS optimization problems, 

including the spatial correlation and mutual information between decision variables, 

which were used to guide the determination of the most appropriate GA parameters. 

Subsequently, the same authors quantified the characteristics of the fitness function of 

two optimization problems with regard to water quality within WDSs, including one 

real-world WDS in Sydney, Australia. This information was used to determine the 

most appropriate GA population size when the number of available evaluations was 

limited (Gibbs et al. 2015). In order to better understand and explain the algorithm 

behaviour observed in this study, the fitness function characteristics of the WDS 

design problems considered are calculated using two metrics: the spatial correlation 

(Gibbs et al. 2011) and the dispersion metric (Arsenault et al. 2014).  

Spatial correlation  

Spatial correlation is often used to identify the macrostructure of the solution space, 

and is typically represented by the correlation length Rl (Weinberger 1990), the total 

correlation strength in the fitness function over the correlation length Rs (Gibbs et al. 
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2011) and the total positive correlation strength Rp (Gibbs et al. 2015). Figure 3.2 

illustrates the meaning of the Rl, Rs and Rp metrics using a hypothetical case. As 

shown in this figure, Rl corresponds to the shortest distance at which the correlation 

value falls below zero, Rs is given by the area under the plot of correlation for a 

distance no greater than Rl, and Rp corresponds to the area under the correlation plot 

with positive values.  

 

Figure 3.2 Illustration of the spatial correlation statistics using a hypothetical 
case.  

The difference between Rs and Rp provides useful insight into the global structure of 

the search space. For example, if Rs < Rp, points that are far apart in the search space 

are positively correlated, suggesting a complex global structure with multiple 

correlated regions, as illustrated in Figure 3.2. In contrast, if Rs = Rp, then the plot of 

correlation versus distance in the search space does not become positive at distances 

that are greater than the correlation length, which is indicative of a single big bowl 

shape. More details of the spatial correlation are given in Gibbs et al. (2011, 2015).  

Dispersion metric 

While the spatial correlation outlined above focuses on the macrostructure of the 

solution space, the dispersion metric aims to provide greater insight to the 
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microstructure (promising regions). This metric uses iterative random sampling of the 

search space to measure the average pairwise distance between the m-best solutions 

(i.e., solutions with lowest cost) from a population of N samples, where the value of 

m is fixed (e.g. 100) and n is variable (e.g. from 1,000 to 10,000). A fast decrease in 

the average pairwise distance when N is increased means the fitness function has a 

smooth microstructure. In contrast, the value of the dispersion metric is expected to 

gradually decrease or even remain constant for a complex and rugged search space. 

This metric has previously been used to measure landscape properties of hydrological 

calibration problems (Arsenault et al. 2014), but this is the first time it has been used 

to investigate the fitness function structure of WDS design optimization problems.  

The dispersion metric is illustrated in Figure 3.3 using a hypothetical case. The top 

and bottom panels indicate relatively smooth (a single global optimum) and rugged 

(multiple optimal solutions) search spaces, respectively. The mean pairwise distance 

between the 30 best solutions selected from the random solutions (lowest objective 

function values) in the top panel is expected to decrease more quickly compared with 

that in the bottom panel when increasing the sample size N from 100 to 200. This is 

because the pairwise distance between the top solutions in the bottom panel is 

dominated by the distance between the optimal solutions in different sub-regions.  
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Figure 3.3 Illustration of the dispersion metric using a hypothetical case. Dots 
represent solutions in the two-dimensional domain and the red dots indicate the 
30 best solutions across different sample sizes. The blue “+” indicate the local 

optima and the dashed circles show the promising regions. 

Searching behavior metrics 

Two metrics from the literature are selected in order to better understand the run-time 

searching behavior for the different optimization runs, namely: objective function 

cost (in objective space) and population diversity (in decision space). The most 

straightforward metric for assessing search quality during an optimization run is the 

objective function value of the best solution found at each generation )(Gfbest  

(Zecchin et al. 2012). For a single-objective minimization problem, this can be 

expressed as 

)(min)( GXfGfbest =  (3.4) 

where GX = [ ]  ,,, T
21 N,G,G,G XXX L  is the population with N solution vectors at 

generation G=1, 2….,Gmax. This metric can effectively characterize an algorithm’s 

searching behavior, such as how algorithms with different parameterizations and 

starting points approach the optimal solution, and how an algorithm’s searching 
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performance temporally varies (e.g., which stage of searching is most productive in 

reducing the cost).   

The population diversity in decision space is typically measured by the averaged 

pairwise Hamming distance of the population (Zecchin et al. 2012; Zheng et al. 

2015a). However, the Hamming distance only measures the existence of the 

difference between each bit of the solution string without considering the magnitude 

of this difference. Consequently, in the present study, the mean of the magnitude of 

the pairwise distance, )(Gdmean , is used to characterize population diversity, where  

∑ ∑
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where 2/)1( −NN  is the total number of pairs of candidate solutions (N is the 

population size); ),( k,Gi,G XXH  measures the degree of the topological distance 

between solutions i,GX  and k,GX . For example, by using the proposed metric, if all 

available options of the decision variables are [200, 400, 500, 600], i,GX =200, and 

k,GX =600, then ),( k,Gi,G XXH =3, rather than 1 (Hamming distance). As such, in 

addition to accounting for the presence of any differences in the solutions, the 

magnitude of the difference between two solutions is also considered. The metric in 

Equation (3.5) quantitatively measures the spread of solutions over the decision space. 

A large value of )(Gdmean  reveals that the current search is broadly exploring the 

decision space, while a low value of )(Gdmean  is indicative of localized exploitation 

(Maier et al. 2014).  

The population diversity metric presented in this paper (SPD%) is standardized as 

follows  

%100
)(

(%) ×=
LC

Gd
SPD mean  (3.6) 

where L is the number of the decision variables and C the number of possible pipe 

diameters. As such, population diversity can be compared for different case studies.  
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To better understand the relationship between searching quality (objective function 

cost, DMO%) and searching diversity (SPD%), dynamic correlations are estimated 

between these two run-time series. The correlation at generation G between DMO% 

and SPD% is estimated using DMO%[1:G] and SPD%[1:G]. 

3.3 Computational Experiments  

As mentioned previously, for each EA with a different starting position and 

parameterization, ten runs with different random number seeds are performed for 

each case study. The averaged results over the ten runs are presented to minimize the 

impact of the stochastic nature of the EAs. For the large case studies considered, the 

typical computational budgets in terms of the maximum number of generations 

ranged from 1,000 (Kang and Lansey 2012) to 2,500 (Wang et al. 2015). To enable a 

more comprehensive analysis on the run-time searching behavior during different 

stages, the maximum number allowable generations for each case study is set as 

5,000 in the present work. This results in a total of 
8102×  simulations for the ZJ164 

problem, and 
8104×  simulations for each of the other three case studies (BN454, 

RN476 and KL1274) for all combinations of EA parameterizations. This takes 

approximately 60 days using a Pentium PC (Inter R) at 3.0 GHz.  

To obtain the fitness function statistics, a sample size of 10,000 is used for each case 

study, guided by Gibbs et al. (2011). The samples are generated using both random 

and Latin hypercube sampling. As the resulting statistics were very similar, only the 

results for random sampling are presented. The mean of the magnitude of the 

pairwise distances given in Equation (3.5) is used to calculate the dispersion metric, 

with m=100 (the number of the best solutions) and N (sample sizes) ranging from 

1,000 to 10,000 following Arsenault et al. (2014). The analysis of spatial correlation 

and dispersion metric were repeated ten times, using 10,000 samples generated with 

different random number seeds, and the results obtained were similar. 

The dispersion metric was also calculated for the New York Tunnel problem (NYTP), 

which only has 21 decision variables and is widely acknowledged in the literature as 
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a rather simple problem with a large proportion of feasible regions (Zheng et al. 

2015a). This enables the dispersion metric for the NYTP to be used as a benchmark 

against which the relative roughness of the microstructure of the four complex case 

studies considered in this paper can be assessed. 

3.4 Results and discussions 

Figures 3.4 and 3.5 present the changes in the solution quality and diversity metrics 

(Equations 3.4 and 3.5) over the different optimization runs for the GA and DE with 

different initializations and parameterizations, applied to the four case studies. The 

black and red lines represent results for initializations using the RS and PHS methods, 

respectively, with different line types indicating different algorithm 

parameterizations. 

3.4.1 Impact of  the start ing posit ions and searching mechanisms  

As can be seen from the left panels in Figures 3.4 and 3.5, overall, the EAs that are 

initialized with the PHSM are able to converge more rapidly than those initialized 

with random sampling for the same parameterizations and case studies. This is 

independent of case study and algorithm searching behavior (i.e. type of EA and EA 

parameterization), thereby extending the findings of Bi et al. (2015), who used a 

single EA with a single parametrization. The greater effectiveness of the PHSM is 

mainly due to the good starting positions it is able to identify. For example, the 

deviations from the best-known values of the initial solutions for the ZJ164, RN476 and 

KL1274 problems are approximately DMO% = 30%, 40% and 20%, respectively. 

These values are appreciably lower relative to the corresponding values obtained 

using the RS method. 
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Figure 3.4 Results for GAs for which initial solutions are obtained using the RS 
method (black lines), and the PHSM (red lines). Different line types represent 

different mutation probabilities Pm. Left panel: Deviation of the mean cost from 
the best known solution (DMO%), with the horizontal grey lines showing 5% 

deviation. Right panel: Standardized average population diversity SPD (%) with 
the horizontal grey lines indicating complete convergence. 
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Figure 3.5 Results for DEs for which initial solutions are obtained using the RS 
method (black lines), and the PHSM (red lines). Different line types represent 

different mutation weighting factors F. Left panel: Deviation of the mean cost to 
the best known solution (DMO%), with the horizontal grey lines showing 5% 

deviation to the best-known solution. Right panel: Standardized average 
population diversity SPD (%) with the horizontal grey lines indicating complete 

convergence. 

However, the faster convergence rate associated with the use of the PHSM does not 

always result in the ability to find near-optimal solutions more quickly. This is 

because, for certain combinations of algorithm type and parameterization, 
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near-optimal solutions cannot be identified at all, regardless of the initialization 

method used (e.g. none of the GA parameterizations investigated are able to find 

near-optimal solutions for the BN454 and RN476 networks, Figure 3.4, left panel). In 

other words, while the use of the PHSM is able to “shift down” the convergence 

curve for a particular algorithm and associated parameterization during the early 

stages of searching, the overall shape and location of this curve is a function of 

algorithm searching behavior.  

In terms of searching behavior, the results suggest that EAs with relatively lower 

mutation rates are able to find or approach near-optimal solutions more quickly, 

although this may not necessarily result in the best final solution. For example, for 

the KL1274 problem, the DE algorithm that was initialized using random sampling 

(RS) found lower-cost solutions with F=0.3 than with F=0.1 after 2,400 generations, 

but the latter located near-optimal solutions (DMO% < 5%) after only 600 

generations, which is appreciably less than the 2,200 generations required when 

F=0.3 is used.  

The difference in observed convergence rates for the different algorithms and their 

parameterizations can be explained by examining the properties of the fitness 

functions for the four case studies, as well as the run-time behavioral statistics of the 

different algorithms and parameterizations as shown below. 

3.4.2 Relationship between observed performance and problem 

statist ics  

The fact that parameters with reduced explorative and increased exploitative behavior 

are able to find near-optimal solutions more quickly and consistently is a function of 

the global structure of the fitness functions for the case studies investigated. As can 

be seen from Figure 3.6(a), all four case studies have a very similar global structure, 

with a correlation length Rl ≈0.5 and Rs = Rp. This indicates that approximately 50% 

of the search space for each case study forms a “big bowl” shape that is positively 

correlated as illustrated in Figure 3.7. Consequently, little exploration is needed to 
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identify near-optimal regions, providing an explanation for why EAs with smaller 

mutation probabilities exhibit better performance for all case studies. In contrast, 

higher levels of exploration (high values of mutation) increase the time and effort 

taken to find promising regions in the solution space, resulting in a slower 

convergence to near-optimal solutions (Figures 3.4 and 3.5, left panel).  

 

Figure 3.6. (a) Fitness function statistics (spatial correlation) of the four WDS 
problems considered; (b) Change in normalized pairwise distance of the top 
m=100 solutions with increase in sample size N. The grey line represents the 

values for the benchmark NYTP. 

 

 

Figure 3.7. Stylized representation of the cross-section of the fitness function of 
the WDS design problems considered. 

PHSM

Random
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Although EAs with lower mutation rates converge more rapidly during the early 

phases of searching, their objective function values tend to stagnate during the later 

stages of the search. This can be explained by examining the values of the normalized 

dispersion metrics for each case study. As can be seen from Figure 3.6(b), for the 

four WDSs considered, the mean of the pairwise distance of the selected top 100 

solutions decreases slowly or remains approximately constant. This is in contrast to 

the values for the benchmark NYTP, for which there is a rapid reduction in the value 

of the normalized metric, as was the case for the hydrological model calibration study 

considered by Arsenault et al. (2014). These results suggest that the microstructure of 

the promising regions (i.e. at the base of the big bowl shape) is very complex and 

rugged for the case studies considered (see Figure 3.7), whereas the opposite is the 

case for the NYTP. For the rugged microstructure of the four larger WDSs, EAs with 

relatively low mutation rates do not have sufficient exploration power during the later 

searching stages to enable them to find better solutions, resulting in stagnant 

performance, as observed from Figures 3.4 and 3.5 (left panel). 

The fitness function characteristics discussed above can also be used to explain why 

the convergence plots of optimization runs initialized with the PHSM are always 

below those of the corresponding optimization runs initialized randomly, but 

generally follow the same shape (Figures 3.4 and 3.5, left panel). Due to the 

“big-bowl” macrostructure of the fitness functions of all case studies, the better initial 

solutions identified with the aid of the PHSM are likely result in searches that 

commence “part-way” down the “big bowl” (grey dots in Figure 3.7), shifting the 

convergence curve “down” during the initial stages of the search. In contrast, the 

randomly generated solutions (black triangles in Figure 3.7) are generally scatted in 

regions at the “top” of the “big bowl”.  
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3.4.3 Relationship between observed performance and population 

diversi ty  

While the relative ability of EAs with different levels of mutation to identify 

near-optimal solutions can be explained by the properties of the fitness function, as 

discussed above, the absolute performance of the algorithms with the different 

parameterizations is somewhat more difficult to explain. The same applies to the 

relative performance of the GA and DE. However, additional insight into the speed 

with which different algorithms and parametrizations are able to identify 

near-optimal solutions can be obtained by examining the relationship between 

population diversity (Figures 3.4 and 3.5, right panel) and searching quality (Figures 

3.4 and 3.5, left panel). As can be seen, better optimization performance generally 

corresponds to a faster reduction in population diversity, which makes sense, given 

that the macrostructure of the fitness function of all four case studies has a “big bowl” 

shape (see Figure 3.7). The strong relationship between solution quality and 

population diversity is confirmed by the generally high values (between 0.8 and 1.0) 

of the dynamic correlation between DMO% and SPD% as shown in Figure 3.8, 

irrespective of EA and parameterization. This highlights that the speed with which 

near-optimal solutions can be identified is a property of population diversity, which is 

a property that transcends algorithm type and parameterization. The results suggest 

that different algorithms and parameterizations could well be merely means by which 

different population diversities are achieved and that it is likely that similar searching 

behavior can be achieved by different algorithms and parameterizations. In other 

words, while the results in the left panel of Figures 3.4 and 3.5 would suggest that the 

DE outperforms the GA, this is might not be an intrinsic property of these algorithms, 

provided different algorithm parameterizations can produce the desired population 

diversities. 



CHAPTER 3. JOURNAL PAPER 2 

61 

 

Figure 3.8. Results of the dynamic correlations between DMO% and SPD%. The 
correlation at generation G was estimated using DMO%[1:G] and SPD%[1:G]. 
The results shown are for random initialization. Similar results are obtained for 

initialization with the PHSM.  

3.4.4 Summary 

Overall, the results suggest that both algorithm initialization and searching 

mechanisms can significantly affect EA convergence rates, and hence the speed with 

which they can identify near-optimal solutions for large problems. For the WDS case 

studies considered, which all have fitness functions with a “big bowl” macrostructure, 

population diversity, as controlled by EA type and parameterization, has the biggest 

impact on the shape and location of the convergence plot, with algorithm behavior 
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favoring exploitation resulting in the ability to identify near-optimal solutions, and to 

do this more quickly. The use of the PHSM for algorithm initialization enables better 

starting solutions to be identified, thereby enabling near-optimal solutions to be 

found more quickly. However, this is conditional on the selection of a combination of 

algorithm and parameterization that results in a rapid reduction in population 

diversity. 

3.5 Conclusions  

Evolutionary algorithms (EAs) have been used widely to optimize the design and 

operation of water distribution systems (WDSs) over the past four decades. Starting 

from relatively simple benchmarking problems, there has been a move towards 

applying EAs to real-world, and large WDS design problems (Maier et al. 2014). One 

of the challenges associated with the application of EAs to large problems is their 

relative computational inefficiency, which make them difficult to apply to real-world 

problems. In recognition of this, there is growing interest in finding near-optimal 

solutions of large optimization problems within manageable computational budgets, 

instead of necessarily seeking the global optimum.  

One way to enable near-optimal solutions to be determined more quickly is to seed 

the initial solutions of EAs within promising regions of the solution space. This can 

be achieved by generating initial solutions with the aid of engineering experience or 

domain knowledge, as has been done in a number of previous studies, such as Kang 

and Lansey (2012) and Bi et al. (2015). While these initialization methods have often 

been reported to exhibit better performance than random sampling, their performance 

as a function of different EAs and EA parameterizations has not yet been investigated. 

Furthermore, there is a lack of understanding of the relative impact of different 

starting positions and searching mechanisms on convergence rate in the context of 

finding near-optimal solutions for problems with real-life complexity with limited 

computational budgets.  
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The present study aims to address the above issues by investigating the impact of 

starting positions and searching mechanisms on the rate with which EAs converge to 

near-optimal solutions. Two initialization methods are considered, namely: random 

sampling (RS) and the Prescreened Heuristic Sampling Method (PHSM, Bi et al. 

2015). Different searching mechanisms are represented by two EAs, including 

genetic algorithms and differential evolution algorithms, with different 

parameterizations. Four large WDS design problems, for which the number of 

decision variables ranges from 164 to 1,274, are considered as case studies. To gain a 

better understanding of the relative performance of different algorithm initialization 

methods and searching mechanism, the fitness function characteristics of the case 

studies and the run-time behavioral statistics of the different algorithms and their 

parameterizations are assessed.  

The results of the present study and their implications can be summarized as follows. 

(i) Both starting position and searching mechanism significantly affect the capacity 

of EAs to efficiently identify near-optimal solutions for large WDS design problems, 

with the latter exhibiting relatively more noticeable impacts.  

(ii)  Strong correlations are observed between improvements in objective cost 

function and reduction in population diversity during the run-time behavior analysis, 

for each type of EA and parameterization. This indicates that the convergence 

properties in the decision space heavily affect the searching quality in the objective 

space. Such an observation sheds new light on the causes of performance differences 

between different algorithms, parameterizations and starting positions, making it 

possible to modify an algorithm’s performance through manipulating its population 

diversity.  

(iii)  The performance variation between different initialization methods and 

searching mechanisms (algorithms and parameterizations) can be related to the 

properties of the fitness function of the WDS design problems considered. The results 

show that the fitness functions for the case studies considered are likely to consist of 
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a single “big bowl” structure with a rugged base that is likely to have many local 

optima. This can explain the greater utility of the PHSM over the RS method, as the 

initial solutions obtained using the former enable the search to commence part way 

down the “side” of the “big bowl”. This is supported by the high quality of the 

starting positions obtained using the PHSM for the case studies considered. Based on 

the observed fitness function characteristics of the case studies considered, the use of 

EAs with reduced explorative capability (lower mutation rates) is expected to be 

more effective at being able to converge to near-optimal solutions more quickly.  

In closing, the results of this study indicate that the use of EA initialization methods 

that are based on domain knowledge, such as the PHSM, in combination with EAs 

and their parametrizations that enable population diversity to be reduced rapidly, has 

the potential to enable near-optimal solutions to WDS optimization problems of 

real-world complexity to be obtained with significantly reduced computational 

budgets. 
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Chapter 4. Journal Paper 3- Use of domain knowledge to increase 
the convergence rate of evolutionary algorithms for optimizing the 
cost and resilience of water distribution systems 
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Abstract: Evolutionary algorithms (EAs) have been used extensively for the 

optimization of water distribution systems (WDSs) over the last two decades. 

However, computational efficiency can be a problem, especially when EAs are 

applied to complex problems that have multiple competing objectives. In order to 

address this issue, there has been a move towards developing EAs that identify 

near-optimal solutions within acceptable computational budgets, rather than 

necessarily identifying globally optimal solutions. This paper contributes to this work 

by developing and testing a method for identifying high quality initial populations for 

multi-objective EAs (MOEAs) for WDS design problems aimed at minimizing cost 

and maximizing network resilience. This is achieved by considering the relationship 

between pipe size and distance to the source(s) of water, as well as the relationship 

between flow velocities and network resilience. The benefit of using the proposed 

approach compared with randomly generating initial populations in relation to 

finding near-optimal solutions more efficiently is tested on five WDS optimization 

case studies of varying complexity with two different MOEAs (NSGA-II and Borg). 

The results indicate that there are considerable benefits in using the proposed 

initialization method in terms of being able to identify near-optimal solutions more 

quickly. These benefits are independent of MOEA type and are more pronounced for 

larger problems and smaller computational budgets.  

CE Database subject headings: Multiobjective evolutionary algorithm; optimization; 

initialization method; water distribution system; near-optimal fronts 

Author Keywords: Multiobjective evolutionary algorithm; optimization; 

initialization method; water distribution system; near-optimal fronts. 

4.1 Introduction 

Evolutionary algorithms have been used extensively and successfully for the 

optimization of water distribution systems (WDSs) over the last 20 years (Nicklow et 

al., 2010; Maier et al., 2014). However, as demonstrated in the Battle of the Water 

Networks II (Marchi et al., 2014), it is extremely difficult to find globally optimal 
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Pareto fronts for large WDS optimization problems with more than one objective. As 

a result, heuristic information and domain knowledge are commonly used to either 

reduce the size of the search space or to identify promising regions in the solution 

space from which to commence the search (Marchi et al., 2014). Both of these 

approaches are designed to ensure that near-optimal solutions are obtained within 

reasonable computational budgets, rather than to necessarily attempt to find the 

globally optimal solution(s) (e.g. Tolson and Shoemaker, 2007; Gibbs et al., 2008, 

2011, 2015; Tolson et al., 2009). The use of such approaches is of particular 

importance when evolutionary algorithms (EAs) are applied to real-world problems, 

as they often require the use of computationally intensive simulation models for 

objective function and/or constraint evaluation (Maier et al., 2014). Consequently, 

there is a need to develop approaches that enable near-optimal solutions to be found 

for the optimization of WDSs within computational budgets that are acceptable from 

a practical perspective. This is important for the successful application of EAs in both 

the research domain and in practice, thereby enabling their full potential to be 

realized (Maier et al., 2014). 

The use of domain knowledge is an important approach to achieving the above goal, 

as demonstrated in a number of engineering problem domains, including mechanical 

design (Sapuan, 2011), aircraft wing design (Ong and Keane, 2002) and reservoir 

system optimization (Li et al., 2014).  In the area of the optimization of WDSs, 

Keedwell and Khu (2006) considered the fact that the diameters of the pipes that are 

connected to demand nodes with a pressure deficit (or surplus) can be increased (or 

decreased) to increase pressure (or reduce cost) in the determination of the initial 

population of EAs. Subsequently, Zheng et al. (2011) incorporated knowledge that 

the most cost-effective solution for a looped WDS with a single demand case is a 

tree-branched topology into the initialization of EAs, and Kang and Lansey (2012) 

developed an initialization method that uses engineering experience about optimal 

flow velocities in WDSs. More recently, Bi et al. (2015) proposed an initialization 

approach that not only considers optimal flow velocities in pipes, as in Kang and 
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Lansey (2012), but also allows for the fact that pipe diameters generally reduce with 

distance from the source (Walski, 2001). As part of the approach, initial EA 

populations are obtained by sampling in the vicinity of the solutions generated based 

on the above principles in order to avoid premature convergence to local optima in 

solution space (Bi et al., 2015).  

The initialization methods outlined above have been reported to significantly 

outperform the random initialization approach in terms of their ability to identify 

near-optimal solutions at reduced computational cost. However, they are only 

applicable to single-objective WDS optimization problems, or at least have not been 

applied to multi-objective problems to date. In contrast, most real-world problems 

have more than one competing objective and, in recent years, increasing effort in the 

optimization of WDSs has been devoted to multi-objective optimization problems 

(Nicklow et al., 2010), with the minimization of cost and the maximization of various 

network reliability measures receiving the most attention (Tolson et al., 2004; Prasad 

and Park, 2014; Raad et al. 2010; Wu et al., 2013; Zheng et al., 2014; Wang et al., 

2015). While a number of previous studies have been successful in improving the 

computational efficiency of such problems (e.g. Zheng et al., 2011; Creaco and 

Franchini, 2012), there remains a need to develop a formal approach that enables 

domain knowledge to be used to identify good initial populations for multi-objective 

EAs (MOEAs) applied to WDS design problems.  

In order to address this shortcoming, an approach that uses WDS domain knowledge 

to identify good initial populations for EAs that minimize cost and maximize network 

resilience is introduced in this paper. The approach extends the Prescreened Heuristic 

Sampling Method (PHSM) of Bi et al. (2015), which only considers cost 

minimization as an objective, to a multi-objective problem. The proposed 

Multi-Objective Prescreened Heuristic Sampling Method (MOPHSM) is tested on a 

number of benchmark WDS design problems, ranging in size from 34 to 1274 pipes, 

and the performance of the proposed MOPHSM is compared with that of randomly 
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initializing the population of MOEAs, which is most commonly used in literature. In 

order to assess the utility of the proposed MOPHSM, three run-time performance 

metrics are used. These are the hypervolume index (Hadka and Reed, 2015), the 

generational distance (Kollat et al., 2008) and the extent of front. NSGA-II (Deb et 

al.,2002) and Borg (Hadka and Reed, 2012) are used as MOEAs, as NSGA-II, or 

algorithms based on it, have been used extensively for the multi-objective 

optimization of WDSs (e.g. Wu et al., 2010; Stokes et al., 2015a, b; Wang et al., 2015) 

and Borg is a more recently developed algorithm that is being applied increasingly to 

a range of problems, including WDS optimization (e.g. Stokes et al., 2015c; Wang et 

al., 2015). 

The remainder of this paper is organized as follows. The optimization problem is 

given in the next section followed by the proposed MOPHSM. The methodology 

used and computational experiments performed for testing the approach then follow. 

The results are presented and discussed in the following section, before a summary 

and conclusions are provided. 

4.2 The optimization problem 

The WDS design problem typically involves the selection of pipe diameter sizes for a 

predefined network topology, in order to meet selected design objectives, and satisfy 

hydraulic and design constraints. Following Wang et al. (2015), the minimization of 

pipe cost and the maximization of network resilience (a surrogate measure of 

network reliability) were taken as the two objectives, which can be described as 

follows: 
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Hydraulic 

constraints: 
),( DMDH f=  (4.5) 

Diameter choices: niA Di ,,1   K=∈  (4.6) 

where Fc is the total network cost, including pipe material and construction costs; 

D=[D1, …, Dn]
T, where Di is the diameter of pipe i=1,……n; Li is the length of pipe i; 

a, b are specified cost function coefficients; n is the total number of pipes in the 

network; [ ]  T
1 mHH L=H  is the vector of pressure heads at network nodes;

[ ]  T
1 mDMDM L=DM  is the predefined vector of nodal demands; m is the total 

number of demand nodes in the network; jH  and  jDM are the pressure head and 

the nodal demands for node j=1,……m, respectively; jz  is the elevation of node j; 
*

j
H  and #

j
H  are the design minimum and maximum allowable pressure head at 

node j, respectively; rq  and R
rH  are total demands and total heads (pressure head 

plus the elevation head) provided by the supply source (reservoirs or tanks) 

r=1,……R, respectively. 

pD  is the diameter belonging to set jM , which represents all pipes connected to 

node j; || jM  is the cardinality of jM ; *

i
V  and #

i
V  are the design minimum and 

maximum allowable flow velocity for pipe i, respectively; and A is the set of 

commercially available pipe diameters.  

It is noted that the network resilience defined in Prasad and Park (2014) included 

pumps within the WDS. These are not considered in this paper for consistency with 
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Wang et al. (2015). jU  in Equation (4.3) is an indicator of diameter uniformity for 

pipes that immediately connect to node j( jM ), with a larger value representing a 

higher reliability of the network loop, since the diameter variations between these 

pipes are overall lower ( jU =1 when all pipe diameters are identical) (Prasad and 

Park, 2014).  

4.3 Proposed multi-objective prescreened heuristic sampling method 

The proposed MOPHSM to identifying good initial populations of MOEAs used to 

minimize the cost and maximize the resilience of WDSs is based on a basic 

understanding of the relationship between some of the characteristics of optimal 

WDSs and the two objectives considered. The proposed MOPHSM consists of three 

steps, details of which are given below.  

4.3.1 Step 1: Identi fy ini t ia l  solut ions using domain knowledge 

related to cost 

In actual WDSs, the diameters of upstream pipes are generally equal to or larger than 

those further downstream (Walski, 2001). In this step of the MOPHSM, this 

knowledge is used to assign initial pipe diameters in accordance with their distances 

to the supply sources, as was done by Bi et al. (2015) as part of the single-objective 

PHSM. A brief summary of the main steps for achieving this is given below, with full 

details provided in Bi et al. (2015). 

1) Find the shortest distance tree-network for the WDS design problem 

being solved using the Dijkstra algorithm (Zheng et al., 2011). 

2) Obtain the largest value of the shortest distance Lin the tree network, 

i.e. the largest distance that the supply sources have to deliver the 

demands. 

3) Divide the WDS network into P specific areas with the shortest 

distance to the source node interval of L/P, where P is the number of 

available pipe diameters for the design.  
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4) Assign pipes in each area a different diameter, with the largest 

diameter assigned to the pipes in the area nearest to the source and 

the smallest diameter to the pipes in the area furthest from the source 

(reservoir).All pipes in a single area are assigned the same diameter. 

The main benefit of the above approach is that it is able to identify a much greater 

proportion of lower-cost solutions that are near the boundary of feasibility in terms of 

being able to satisfy pressure constraints than can be achieved with random 

initialization. Consequently, EAs that are seeded with these solutions can commence 

their search in more promising regions of the solution space, leading to improved 

efficiency in terms of being able to identify near-optimal solutions, as demonstrated 

in Bi et al. (2015).  

4.3.2 Step 2: Ident i fy an ini t ia l  f ront by adjusting the solutions 

obtained in Step 1 based on domain knowledge related to network 

resi l ience 

While step 1 results in the identification of good starting positions in solution space 

in relation to the cost objective, additional considerations are required in order to 

identify good initial solutions in relation to both the cost and network resilience 

objectives. This requires a good understanding of the factors that have an impact on 

network resilience. As shown in Equations (4.2) and (4.3), the two factors that affect 

network resilience are pressure head jH  and diameter uniformity jU . For a WDS 

design problem, the nodal demands are typically fixed, and hence a network design 

solution with a relatively higher pressure head at each node would have overall larger 

diameters and, accordingly, relatively lower flow velocities V . With the aid of this 

knowledge, it is possible to adjust the initial solutions from Step 1 to produce an 

extended front of initial solutions with a range of cost and network resilience values 

by using the methodology illustrated in Figure 4.1.  
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Figure 4.1 Flowchart of the proposed methodology for adjusting the pipe 
diameters obtained from step 1 based on flow velocity in order to identify good 

initial solutions in relation to both cost and network resilience 

As shown in Figure 4.1, as part of this proposed methodology, the diameters 

obtained in Step 1 are refined to achieve flow velocities that are close to a 

particular threshold Vk (k=1,2…,K) in all pipes. The different values of Vk can 

be determined based on engineering experience, as well as the type of water 

network being designed (e.g. potable supply network, irrigation network). For 

relatively smaller values of Vk, the overall diameters of the design solution are 

larger, resulting in an overall larger set of pressure heads jH  in Equation (4.1), 

Perform a hydraulic simulation (EPANET2.0) for the network with initial diameters Di
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and vice versa. Since all pipes are assumed to have an identical expected value 

of Vk, the diameters for the pipes with similar flows are more likely to be of 

overall similar diameter, leading to a relatively large value of diameter 

uniformity jU  (Equation 4.2) and hence a greater value of network resilience. 

As such, an approximate front that accounts for domain knowledge related to 

both cost (Step 1) and network resilience (Step 2) is formed by the solutions 

archived in the solution pool, as shown in Figure 4.1.  

4.3.3 Step 3: Generate ini t ial  MOEA population by sampling in the 

vicini ty of  the ini t ial  f ront identi f ied in Step 2  

In order to ensure sufficient diversity in the initial MOEA population, density 

functions are developed around each of the solutions identified in Step 2, from which 

samples can be drawn to form the initial population, as was carried out by Bi et al. 

(2015) for the single objective case. The proposed density function takes the 

following form (Bi et al., 2015) 

Pb
DDa

Df
cb

b ,....,1          
||||1

1
)( =

−+
=     (4.7) 

where a is constant; |||| cb DD −  is the distance between Db and Dc (the diameter for 

a pipe in the approximate optimal solution determined in Step 2) in terms of integer 

coding (for details see Bi et al. (2015)); and P is total number of available pipe 

diameters.  

Figure 4.2 illustrates the distributions of the initial samples for different values of a 

for a pipe with D=400 mm (grey line) obtained in Step 2, with P={100, 200, 300, 400, 

500, 600, 700}. As shown in this figure, the diameters closer to the heuristic pipe 

diameter obtained in Step 2 have a higher probability of being selected, as they are 

more likely to be the optimal diameter compared with other diameter options for the 

given flow velocity value. It can also be seen that a larger value of a will produce 

samples that are closer overall to the initial solution obtained in Step 2, and vice 

versa.  
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Figure 4.2 Distribution of samples for different values of a 

For each solution on the initial front obtained in Step 2, a set of NK=  KN /  

samples is generated using the density function in Equation (4.7), where N is the 

population size of the MOEA, K is the total number of solutions in the initial front 

(Step 2), and  KN /  is the ceiling function with a smallest integer not less than 

N/K. In this way, the required N initial solutions of the MOEA are generated.  

4.4 Methodology 

The methodology used to test the utility of the MOPHSM introduced in the previous 

section is summarized in Figure 4.3. As can be seen, two different MOEA 

initialization methods are considered, namely the proposed MOPHSM with the most 

commonly used random initialization as a benchmark. As mentioned previously, two 

different MOEAs, including NSGA-II and Borg, are applied to both initialization 

methods in order to ensure that the impact of the different initialization schemes is 

not algorithm specific. Both initialization methods and MOEAs are applied to five 

WDN design problems, for which the number of decision variables ranges from 34 to 

1,274. To gain an improved understanding of the results in terms of the speed with 

which near-optimal fronts are identified, three run-time performance metrics are 
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analyzed. These are the hypervolume, the generational distance and the 

extent-of-front. Details of each step in Figure 4.3 are discussed in following 

sub-sections.  

 

Figure 4.3 Flowchart of the assessment process. The subscript of each case study 
indicates the number of decision variables. 

4.4.1 Methods for determining ini t ia l  MOEA populati on 

As shown in Figure 4.3, the performance of the proposed MOPHSM is compared 

with that of the random initialization method in terms of efficiently finding 

near-optimal fronts. For the MOPHASM, the K different flow velocities (see Figure 

4.1) are determined within the specified range [0.1 m/s, 4 m/s], with an interval of 

v∆ =0.1 m/s. These upper and lower bounds of velocity, as well as the velocity 

interval, are selected based on a preliminary analysis of the best known fronts of a 

number of the WDS benchmarking case studies outlined in Wang et al. (2015). 
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The most appropriate values of a for the density function used to generate the initial 

population (see Equation (4.7)) are determined using a trial-and-error process. As 

part of this process, the impact of different values of a (0.1, 0.3, 0.5 and 0.7 for each 

of the case studies) on the resulting optimal solutions is assessed by visual inspection. 

The results of this analysis show that values of 5.0≥a  are more likely to result in 

premature convergence during the optimization run, whereas values of 1.0≤a  do 

not exhibit a significant advantage relative to the random initialization approach. 

Hence, a value of 3.0=a  is used in this study.  

4.4.2 Mul t iobjective evolutionary algori thms 

As mentioned previously, NSGA-II (Deb et al., 2002) and Borg (Hadka and Reed, 

2012) are selected as MOEAs. NSGA-II uses a fast non-dominated sorting strategy to 

rank solutions, which is followed by selecting population members of the next 

generation according to Pareto dominance and crowding distance. As outlined in Deb 

et al. (2002), a Simulated Binary Crossover (SBX) operator and a polynomial 

mutation approach are used to carry out crossover and mutation, respectively, and a 

constraint tournament selection strategy is used to handle infeasible solutions.  

Borg is a unified optimization framework combining ε-dominance, ε-progress, 

randomized restart and auto-adaptive multioperator recombination, with details given 

in Hadka and Reed (2012). The operators used in Borg include SBX, Differential 

Evolution (DE), Patent-Centric Crossover (PCX), Unimodal Normal Distribution 

Crossover (UNDX), Simplex Crossover (SPX), and Uniform Mutation (UM). One of 

Borg’s important features is its auto-adaptive multi-operation selection scheme, 

where a feedback loop is established in which operators that produce more successful 

offspring are rewarded by increasing their selection probabilities for generating new 

solutions for the next generation (Hadka and Reed, 2012). Another feature is the 

implementation of a restart strategy (adaptive population sizing) in order to avoid 

premature convergence. 



CHAPTER 4. JOURNAL PAPER 3 

79 

It should be noted that both algorithms use the constraint tournament selection 

method (Deb, 2000) to handle infeasible solutions. 

4.4.3 Case studies 

As shown in Figure 4.3, five case studies of varying sizes are included, ranging from 34 

to 1274 pipes. All of these case studies were considered as single objective problems in 

Bi et al. (2015) and the HP34, FOS58 and BN454 problems were also considered in the 

multi-objective study by Wang et al. (2015). As stated previously, the minimization of 

network cost and the maximization of network resilience (a surrogate measure of 

network reliability) are taken as the two objectives in the present work, as was the case in 

the benchmarking study by Wang et al. (2015), in which further details about the 

objectives are provided.  

4.4.4 Run-t ime performance metrics  

As mentioned above, three performance metrics are used to assess the quality of the 

fronts that are generated during the optimization runs. The first metric is the 

hypervolume index (Zitzler and Thiele 1999), which calculates the hypervolume of 

the multi-dimensional region enclosed by a front and a reference point. This metric is 

able to represent overall performance, jointly measured by solution quality, solution 

diversity and the uniformity of the solutions on the front (Hadka and Reed 2012). In 

this study, the specific hypervolume performance metric used is the hypervolume 

index at generation G, denoted as HI(G), which is defined as the ratio of the 

hypervolume at generation G relative to that of the best-known Pareto front *PF . As 

such, HI(G) lies within [0,1], with larger values representing a hypervolume that is 

closer to that of *PF .  

It should be noted that there is no accepted definition of what constitutes 

near-optimal fronts in multi-objective space. Hadka and Reed (2012) defined 

near-optimal fronts in terms of achievement of 90% of the hypervolumes of the 

best-found (Pareto) fronts, as the hypervolume is widely accepted as the best overall 

performance metric for multi-objective optimization problems. Consequently, a 
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similar measure is used in this study.  However, in this study, near-optimal fronts 

are defined as those with hypervolumes that lie within 5% of the hypervolume of the 

best-known solution, i.e. HI(G) 0.95. This is done in order to align this study with 

that of Bi et al. (2015), in which, in a single-objective optimization context used to 

assess the performance of the PHSM, near-optimal solutions were defined as those 

that lie within 5% of the best-known solution.  

The second metric is the generational distance, which is typically used to represent 

an MOEA’s convergence status in objective space (Kollat and Reed, 2006). It is 

calculated as the mean of the Euclidean distance between each solution point on the 

approximate front and its nearest solution point on *PF . Each dimension of the 

solution vectors on *PF  is normalized to [0,1] initially, followed by the 

normalization of each dimension of the approximate front using the data ranges from 

*PF . As such, the value of the generational distance is normalized within the range 

[0, 1]. A lower value of generational distance indicates a better front, as it possesses 

an overall shorter distance to the Pareto front in objective space.  

The third metric is the extent of the front, which is another important indicator for 

assessing an MOEA’s searching quality in terms of explorative ability. Although 

HI(G) can partly represent the extent of the front, solution quality and diversity also 

affect its value. Consequently, the extent of the front measure is used in this study to 

obtain a deeper understanding of this particular aspect of front quality.  This is 

achieved by comparing the extent of the front at a particular generation G with that of 

the best-known front *PF . More specifically, the extent of front value is equal to the 

maximum Euclidean distance between two solution points on the front at generation 

G divided by the equivalent distance for the best-known Pareto front *PF . The 

normalization method described for computing the generational distance is also used 

to calculate the extent of front metric, and hence its value is within the range [0, 1]. 

It should be noted that the best-known Pareto front *PF is needed in the calculation 

of all of the above performance metrics. For the HP34, FOS58 and BN454 problems, 
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these fronts are taken from Wang et al. (2015), which were developed by 

comprehensive runs of multiple MOEAs. The *PF of the ZJ164 and KL1274 problems 

are not available from the literature, and hence are obtained by non-dominated 

sorting (Deb et al., 2002) of the merged fronts from all of the results generated in this 

study. For the two objectives considered, a hypothetical solution with the maximum 

cost (i.e. all pipes are assigned the largest available diameter) and the minimum 

network resilience (i.e. In=0) is considered as the reference point (the worst solution) 

for the computation of HI(G) for each WDS problem, which is consistent with Wang 

et al. (2015).  

4.5 Computational experiments 

For each case study, the default parameter values of NSGA-II and Borg are used 

(Wang et al. 2015). For both NSGA-II and Borg, these include a crossover 

probability of 0.9 (SBX for NSGA-II, and all other crossover operators for Borg) and 

a mutation rate of 1/LN (polynomial mutation), where LN is the number of decision 

variables, as shown in Table 1. The population sizes (N) for the HP34, FOS58 and 

BN454 problems are taken from Wang et al. (2015), and for the remaining case studies 

they are taken from Bi et al. (2015), with values given in Table 4.1. It is noted that 

the population sizes given in Table 1 are the initial value for Borg applied to each 

case study, as its population size is dynamically increased as the search progresses 

(Hadka and Reed 2012). The maximum allowable number of generations for each 

case study is 2,500, which is consistent with those used in Wang et al. (2015).  
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Table 4.1 MOEA parameters used for each case study 

Case studies 
Crossover 
probability 

(SBX) 

Mutation 
probability 
(polynomial 
mutation)1 

Population 
size (N) 

Maximum 
allowable of 
generations 

(MG) 

Equivalent number 
of generations for 

identifying the initial 
fronts 

HP34 0.9 0.0294 240 2500 2.6 

FOS58 0.9 0.0172 400 2500 2.9 

ZJ164 0.9 0.0061 500 2500 4.5 

BN454 0.9 0.0022 1000 2500 5.7 

KL1274 0.9 0.0008 1000 2500 6.2 
1Mutaton rate is 1/LN, where LN is the number of decision variables (the subscript number of the case 
studies). 

It should be noted that additional computational effort is required to determine the 

initial front (Steps 1-2) in the proposed method (mainly Step 2), which has been 

converted to the equivalent number of generations for each case study using a 

Pentium PC (Inter R) at 3.0 GHz, as shown in Table 4.1. It can be seen that the 

proposed method is very efficient in producing the initial front for each case study, as 

its computational overhead is negligible compared with the total computational 

budgets allowed for the NSGA-II and Borg optimization runs. As stated previously, 

the number of solutions on the initial front is K=40, and hence the number of samples 

generated based on each of these solutions is  KN /  using the density function in 

Equation (4.3). As such, the sample size for each solution on the initial front is 6, 10, 

13, 25 and 25 for the HP34, FOS58 ZJ164, BN454 and KL1274 problems, respectively. 

For each case study, all NSGA-II and Borg optimization runs with each of the two 

initialization methods are repeated ten times using different starting random number 

seeds, and the mean value of the run-time measure metrics over the ten runs is 

presented for discussion (Zecchin et al., 2012; Zheng et al., 2015). In addition, the 

approximate fronts from the two initialization methods at three different generations 

(G) are shown to enable a direct visual comparison of their performance.  

Given that the ability to find near-optimal fronts (rather than the end-of-run front) is 

the focus of this study, performance metrics are shown up to a maximum of 500 

generations, which is 20% of the total computational budget of 2,500 generations. 
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The approximate fronts at G=10, 100 and 500 are presented for the HP34, FOS58 ZJ164, 

BN454 problems. For the KL1274 case study, G=100, 300 and 500 are used, as there are 

many infeasible solutions at small numbers of generations for this large problem. The 

fronts at these three generation numbers are selected as they provide an indication of 

(i) the quality of the initial fronts, (ii) performance with very limited computational 

budgets (e.g. 100 generations), and (iii) the ability to identify near-optimal fronts 

with reasonable computational overheads (e.g. G=500), respectively.  

4.6 Results and discussion 

The approximate fronts obtained using the proposed MOPHSM (red ‘+’) and the 

random initialization approach (black circles) are shown in Figures 4.4 (for NSGA-II) 

and 4.5 (for Borg), with grey triangles representing the best-known fronts. These 

results are from a typical run for the two initialization methods considered, and 

similar performances were observed for the other runs. It is noted that an archive was 

used in Borg to store non-dominated solutions obtained from the ε-dominance 

operator, with details given in Hadka and Reed (2012), meaning that the number of 

solutions in the archive increased over the generations. This is the reason why Borg 

produced fewer non-dominated solutions at the earlier generations relative to 

NSGA-II, as shown in Figures 4.4 and 4.5.  

As can be seen, the fronts produced using the MOPHSM clearly dominate those 

generated using the random initialization approach, irrespective of which MOEA is 

used, with the advantages of the MOPHSM more noticeable for larger problems and 

smaller numbers of generations. For example, (i) for the BN problem with 454 

decision variables, the costs of the solutions identified using the MOPHSM for both 

NSGA-II and Borg were approximately half of those obtained with the aid of the 

random method at G=10 for similar values of network resilience (Figures 4.4 and 4.5), 

and (ii) for the largest problem (KL1274) with similar values of network resilience, the 

costs of solutions from the NSGA-II and Borg fronts seeded by the MOPHSM were 
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around 15% and 25% lower than those obtained using the random approach at G=100, 

respectively. 

It is noted that, for NSGA-II, the MOPHSM’s superior performance is not evenly 

distributed across the whole front, but is significantly more prominent in regions with 

relatively low costs. For solution regions with very high costs, both initialization 

methods exhibited comparable performance, as shown in Figure 4.4. This finding is 

consistent with the observations of Zheng et al. (2014), in that good starting positions 

for NSGA-II are more likely to show advantages in searching regions with relatively 

low costs. This is because such regions typically have more complex fitness functions, 

as they are often located at the boundary between feasible and infeasible areas. 

Interestingly, MOPHSM’s better performance was observed across the entire front 

relative to the random method for Borg, as shown in Figure 4.5. This is most likely 

due to the differences in searching mechanisms between NSGA-II and Borg. For the 

Borg algorithm applied to the KL network, MOPHSM gave a front that was more 

limited in extent than the random method and this limitation applied up to 500 

generations.  
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Figure 4.4 Approximate fronts of the proposed MOPHSM (red ‘+’) and the 
random initialization approach (black circles) obtained using NSGA-II. The 

grey triangles are the best-known fronts. 
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Figure 4.5  Approximate fronts of the proposed MOPHSM (red ‘+’) and the 
random initialization approach (black circles) obtained using Borg. The grey 

triangles are the best-known fronts 

Figures 4.6 and 4.7 present the mean values of the three run-time performance 

metrics for both initialization methods for NSGA-II and Borg, respectively. In both 
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figures, red dashed and black solid lines represent results obtained using the 

MOPHSM and the random approach, respectively. As can be seen, when the 

MOPHSM was used instead of the random initialization approach, near-optimal 

fronts (95% of the hypervolume of the best-known front) were able to be identified 

much more quickly on a consistent basis, irrespective of which MOEA was used. It 

can also be seen that the relative advantage of using the MOPHSM is more 

pronounced for larger problems. For example, with the aid of the MOPHSM (i) 

NSGA-II only required approximately 130 generations to identify a near-optimal 

front for the BN454 problem, which is about 50% of the generations needed when the 

random initialization approach was used (Figure 4.6) and (ii) Borg was able to reach 

the near-optimal front using approximately 420 generations for the BN454 case study, 

with HI values consistently higher than those from the random method throughout 

the run up to 500 generations (Figure 4.7). In addition, for the largest problem (KL 

problem with 1274 decision variables), both MOEAs (NSGA-II and Borg) produced 

substantially larger values of HI compared with those obtained using the random 

initialization approach, as shown in Figures 4.6 and 4.7.  

The results in the middle panel of Figures 4.6 and 4.7 show that the main advantage 

of the MOPHSM over the random method is its greater ability to produce fronts with 

lower generational distance to the best-known fronts. In terms of the extent of the 

fronts, as shown in the right panels of Figures 4.6 and 4.7, use of both initialization 

methods exhibited comparable performance although the random method gave a 

higher value of this measure when Borg is applied to the KL problem. 
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Figure 4.6 Run-time performance metrics of the proposed MOPHSM (red 
dashed line) and the random initialization approach (black solid lines) for 
NSGA-II. The horizontal grey line in the left panel indicates 95% of the 

best-known front hypervolume (near-optimal fronts) 
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Figure 4.7 Run-time performance metrics of the proposed MOPHSM (red 
dashed line) and the random initialization approach (black solid lines) for Borg. 
The horizontal grey line in the left panel indicates 95% of the best-known front 

hypervolume (near-optimal fronts) 

It should be noted that the end-of-run (G=2500) fronts and performance statistics 

obtained using the two initialization methods considered (not shown) are similar, 
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suggesting that there is no advantage in using the proposed MOPHSM method if the 

aim is to identify the globally optimal front. However, as the above results clearly 

demonstrate, if the aim is to identify near-optimal solutions to complex problems 

within realistic computational budgets, there are significant advantages in using the 

proposed approach. It should also be noted that overall, the relative performance of 

NSGA-II and Borg is in line with that obtained by Wang et al. (2015) and explained 

in Zheng et al. (2015). 

4.7 Summary and conclusions  

Over the past few decades, EAs have been used extensively for the optimization of 

WDSs. In recent years, there has been increased focus on the application of EAs to 

more complex WDSs and on the inclusion of multiple objectives, resulting in high 

computational demands and long run-times. In order to address this issue and to 

enable EAs to be applied more easily in practice, a significant amount of research has 

focused on the development of methods that enable near-optimal solutions to be 

identified within reasonable computational budgets, rather than on necessarily 

finding the globally optimal solution or Pareto front. 

This paper makes a contribution in this field of research by developing and testing an 

approach to identifying good initial solutions for WDS design problems that aim to 

minimize network cost and maximize network resilience. The method builds on that 

proposed by Bi et al. (2015) for single objective WDS design problems aimed at 

minimizing network cost and uses domain knowledge about the attributes of good 

designs, including the relationship between pipe diameter and the distance to the 

supply sources and the interaction between flow velocities and network resilience. 

The relative advantage of using the proposed MOPHSM compared with using a 

random initialization method in terms of the computational effort required to identify 

near-optimal solutions was assessed on five case studies of varying size and 

complexity using two different MOEAs (NSGA-II and Borg). Performance was 
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assessed using three run-time metrics, namely the hypervolume, the generational 

distance to the best-known fronts, and the extent of the fronts.  

The results show that while the proposed MOPHSM is unable to improve the quality 

of solutions at the end of the run, its use enables near-optimal solutions to be 

identified at much smaller computational expense, irrespective of which of the two 

MOEAs is used. The advantage of using the MOPHSM is particularly noticeable 

when dealing with larger problems and smaller computational budgets. This is 

appealing from a practical perspective, as in many real-life applications, there is 

insufficient time to run MOEAs until no further improvement in the optimal fronts is 

obtained. While the use of the MOPHSM has been found to be beneficial, its utility 

should be assessed further in future studies by comparing its performance with that of 

other approaches to developing good initial solutions (see Introduction), which are 

currently generally only applicable to single-objective problems.  
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Chapter 5. Conclusions and Recommendations for Future Work 

Evolutionary algorithms (EAs) have been used extensively to optimise the design of 

water distribution systems (WDSs) over the last 20 years. However, these 

applications are still mainly limited to the research domain due to their large 

computational requirements when applied to real-world problems. These 

requirements often go beyond the computational budgets that are typically available 

in practice. In order to address this issue, there is general consensus that identifying 

near-optimal solutions in a reasonable timeframe, rather than trying to find the 

globally optimal solution in an unaffordable timeframe, is of great practical 

importance. While many studies have been undertaken to achieve this goal, to date 

there have been limited efforts that consider the use of domain knowledge for this 

purpose.  

5.1 Research Contributions 

The overall contribution of this thesis is the development of methods for generating 

initial solutions with the aid of WDS domain knowledge, thereby enabling EAs to 

identify near-optimal solutions (fronts) as quickly as possible. A further contribution 

is the use of run-time convergence statistics to provide an improved understanding of 

the speeds with which the near-optimal solutions are found. While these proposed 

initialization methods do not necessarily improve the final solution quality compared 

to the random initialization method after very long run times, they are capable of 

identifying near-optimal solutions with significantly reduced computational effort. 

This is verified through the results obtained for a number of WDS case studies with 

increasing complexity. Such a feature is of particular importance when EAs are 

applied to real-world problems, as they often require the use of computationally 

intensive simulation models for objective function and/or constraint evaluation. It is 

anticipated that the initialization methods outlined in this thesis will enable a wider 

up-take of EAs in practice, thereby enabling their full potential to be realized within 

the WDS design domain.  
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The research contributions in each chapter are outlined below to specifically meet the 

objectives of this research stated in Chapter 1.  

1. In the first publication given in Chapter 2, a new heuristic initialization 

method for seeding GA populations was introduced and evaluated, in which 

domain knowledge about the relationship between pipe size and distance 

to the supply sources, as well as the impact of the flow velocities on 

optimal solutions, were considered. This initialization method was 

compared with three other methods (an existing heuristic sampling method 

and two more traditional sampling methods, including random sampling and 

Latin Hypercube sampling) on seven WDS optimisation (pipe-sizing) 

problems with increasing complexity. The results obtained indicated that 

overall, the proposed initialization method significantly outperformed the 

other three sampling methods, both in terms of solution quality 

(single-objective cost) and computational efficiency. It was also found that 

the relative advantage of the proposed method was greater for larger networks. 

This demonstrates that the incorporation of domain knowledge into the 

generation of initial solutions is effective in guiding EAs’ searching quickly 

towards promising regions, thus enabling near-optimal solutions to be 

reached within very limited timeframes(meeting Objective 1).  

2. In the second publication (Chapter 3), it was found that both EAs’ starting 

positions and searching mechanisms significantly affect their capacity to 

efficiently identify near-optimal solutions, and the latter exhibited relatively 

more noticeable impacts. With the aid of run-time behavior analysis, it was 

observed that improvements in objective cost function and reduction in 

population diversity were strongly correlated, implying that the convergence 

properties in the decision space heavily affect the searching quality in 

objective space. This observation shed new light on the causes of 

performance differences between different algorithms, parameterizations and 

starting positions, making it possible to modify an algorithm’s performance 

through manipulating its population diversity. Another important finding in 

this study in that the fitness functions of WDS design problems are likely to 

consist of a single “big bowl” structure with a rugged base that is likely to 
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have many local optima. This can explain the great utility of the proposed 

initialization method in Chapter 2 (paper 1), as the initial solutions obtained 

using this method enabled the search to commence part way down the “side” 

of the “big bowl”. Based on the observed fitness function characteristics of 

the case studies considered, the use of EAs with reduced explorative 

capability (lower mutation rates) is expected to be more effective in terms of 

efficiently identifying near-optimal solutions. This is useful guidance for EA 

parameterization.  

3. In the third publication outlined in Chapter 4, a multiobjective initialization 

method was proposed to identify high quality initial populations for 

multi-objective EAs (MOEAs) applied to WDS design problems, aimed at 

minimizing cost and maximizing network resilience (a measure of WDS 

supply reliability). In addition to engineering experience about the 

relationship between pipe size and distance to the source(s) of water as 

considered in the first publication (Chapter 2), domain knowledge about the 

relationship between flow velocities and network resilience was also 

accounted for. The proposed approach was compared with randomly 

generating initial populations in relation to finding near-optimal solutions 

more efficiently based on five WDS case studies of varying complexity with 

two different MOEAs (NSGA-II and Borg). The results indicate that there are 

considerable benefits in using the proposed initialization method in terms of 

being able to identify near-optimal solutions (fronts) more quickly, 

irrespective of MOEA type, with benefits being more pronounced for larger 

problems and smaller computational budgets.  

5.2 Research Limitations 

The limitations of this research are discussed below. 

1. As part of the proposed initialization method, only domain knowledge with 

regard to pipe-sizing is considered. In other words, the WDS case studies 
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considered are purely pipe-sizing problems, without considering the design of 

other hydraulic elements, such as valves, tanks and pumps.  

2. Domain knowledge is only used in the initialization phase of EAs in this 

thesis, while it has not been implemented to dynamically guide the searching 

during the optimization process. For example, the relationship between the 

pipe size and distance to the source(s) of water can also be considered at each 

generation after the algorithm operators (e.g. crossover and mutation) have 

been applied, in addition to the initial population.  

3. The effectiveness of the proposed multiobjective initialization method was 

demonstrated for the objectives of the minimization of cost and the 

maximization of network resilience. There are many other objectives within 

WDS design that should be considered, such as minimization of greenhouse 

gas emissions 

5.3 Recommendations for Future Work 

This research has developed new initialization methods that have successfully 

assisted EAs to identify near-optimal solutions (fronts) for WDS design problems in a 

computationally efficient manner. However, there are still opportunities to address 

the limitations outlined above as part of future studies along this research line: 

1. Incorporating the domain knowledge in relation to other hydraulic 

components into EA optimization of WDSs, in addition to pipes. It is 

possible to extend the proposed domain-knowledge based methodology to 

deal with pipe cleaning and relining within the optimization process 

through considering the reasonable range of the velocities. However, the 

inclusion of the domain knowledge for the design of pumps, tanks and 

valves is not straightforward, requiring further investigation.  

2. Applying the proposed method to solve other loading cases, in addition to a 

single loading case as considered in this thesis. For example, fire loading 

cases (multiple loading cases) and water quality could be solved by 

checking whether the velocities lie within acceptable limits. 
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3. Development of a more advanced EA framework that is able to 

dynamically implement domain knowledge within the optimization process, 

in addition to the initialization stage, as considered in this thesis. 

4. Modification of the proposed multiobjective initialization method to 

account for a number of other objectives for WDS design problems. For 

example, leakage losses as a function of pipe sizes and pressures could be 

considered as a separate objective during the design optimization. Similarly,  

water quality could also be treated as a separate objective (where 

appropriate). 

5. Development of advanced EA algorithms to enable dynamic adjustment in 

parameterization according to the improved understanding between the 

searching quality in objective space and convergence in decision space 

obtained in this thesis.  
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Over the last two decades, evolutionary algorithms (EAs) have become a popular approach for solving
water resources optimization problems. However, the issue of low computational efficiency limits their
application to large, realistic problems. This paper uses the optimal design of water distribution systems
(WDSs) as an example to illustrate how the efficiency of genetic algorithms (GAs) can be improved by
using heuristic domain knowledge in the sampling of the initial population. A new heuristic procedure
called the Prescreened Heuristic Sampling Method (PHSM) is proposed and tested on seven WDS cases
studies of varying size. The EPANet input files for these case studies are provided as supplementary
material. The performance of the PHSM is compared with that of another heuristic sampling method and
two non-heuristic sampling methods. The results show that PHSM clearly performs best overall, both in
terms of computational efficiency and the ability to find near-optimal solutions. In addition, the relative
advantage of using the PHSM increases with network size.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Evolutionary algorithms (EAs) have been used successfully and
extensively for solving water resources optimization problems in a
number of areas, such as engineering design, the development of
management strategies andmodel calibration (Nicklow et al., 2010;
Zecchin et al., 2012). However, a potential shortcoming of EAs is
that they are computationally inefficient, especially when applied
to problems of realistic size. Consequently, there is a need to
improve the computational efficiency of EAs tomake them easier to
use for the optimization of realistic water resources problems
(Maier et al., 2014).

One application area where this is the case of is the design of
water distribution systems (WDSs) (Marchi et al., 2014a,b; Stokes
et al., 2014). Over the past two decades, a variety of EAs have
been applied to this problem, as detailed in Zheng et al. (2013a).
Among these, genetic algorithms (GAs) have been used most
extensively (Simpson et al., 1994; Dandy et al., 1996; Gupta et al.,
eering North, School of Civil,
race Campus, University of
el.: þ61 8 83136139.
Bi), graeme.dandy@adelaide.
.R. Maier).
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1999; Vairavamoorthy and Ali, 2005; Krapivka and Ostfeld, 2009;
Kang and Lansey, 2012; Zheng et al., 2013b). However, GAs have
been primarily applied to relatively simple benchmark problems,
such as the 14-pipe problem (Simpson et al., 1994), the New York
Tunnels problem with 21 tunnels (Dandy et al., 1996), and the
Hanoi problem with 34 pipes (Zheng et al., 2011a). In recent years,
there has been a move towards increasing the complexity and re-
alism of the case studies to which GAs are applied, including the
Balerma network with 454 pipes (Reca and Martínez, 2006), the
Rural network with 476 pipes (Marchi et al., 2014a), the BWN-II
network with 433 pipes (Zheng et al., 2013c), and the network
used by Kang and Lansey (2012), which has 1274 pipes and will be
referred to as the “KL” network for the remainder of this paper.

Increased network size and complexity result in significant
challenges in terms of achieving good quality near-optimal solu-
tions given the computational budgets that are typically available in
practice (di Pierro et al., 2009; Fu et al., 2012). This is because (i) the
time for hydraulic simulation increases appreciably for largeWDSs;
and (ii) the complexity and size of the search space associated with
a large WDS are increased significantly. As a result, computational
efficiency has been identified as a key concern for the widespread
uptake of GAs for the optimization of large, real-world WDSs (di
Pierro et al., 2009).

In order to address this issue, two main approaches have been
adopted in the literature. As part of the first approach, it is argued
m optimization of water distribution system design by incorporating
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that for large, real problems, the focus should be on finding the best
possible solution within a realistic computational budget, rather
than on attempting to find the global optimal solution (e.g. Tolson
and Shoemaker, 2007; Gibbs et al., 2008; Tolson et al., 2009; Gibbs
et al., 2010, 2011). This is because for such large problems, the
global optimal solution is unlikely to be found within a reasonable
computational timeframe.

As part of the second approach, efforts have been made to in-
crease the computational efficiency of the optimization process.
This has been done in a number of ways, including the use of
increased computational power, such as parallel and distributed
computing (Wu and Zhu, 2009; Roshani and Filion, 2012; Wu and
Behandish, 2012), the use of surrogate- and meta-modeling to
speed up the simulation process (e.g. Broad et al.,. 2005; di Pierro
et al., 2009; Broad et al., 2010; Razavi et al., 2012), and the seed-
ing of the initial population of EAs with good solutions obtained
using a variety of analytical techniques (e.g. Keedwell and Khu,
2006; Zheng et al., 2011a, 2014a,b; Zheng and Zecchin, 2014; Fu
et al., 2012). It should be noted that similar concepts have
recently also been used in conjunction with other optimization
techniques (e.g. Zhang et al., 2013; Housh et al., 2013) and non-
optimization based WDS design approaches (e.g. Sitzenfrei et al.,
2013).

Although some of the methods mentioned above utilize engi-
neering knowledge in their development (e.g. Keedwell and Khu,
2006; Zheng et al., 2011a), there have been limited attempts to
incorporate engineering knowledge and experience directly. Only
Kang and Lansey (2012) have combined engineering experience
with GAs in order to increase the computational efficiency of the
optimization process. This was achieved by seeding half of the
initial GA population with solutions that result in flow velocities
below a threshold selected from within a pre-defined velocity
range. However, the approach has only been applied to a single case
study thus far and its relative performance has not yet been
assessed in a rigorous and comprehensive manner. In addition, the
approach has a number of potential shortcomings. Firstly, selection
of an appropriate range for the velocity threshold is subjective,
which might make the method difficult to apply and could result in
inconsistent results from repeated, independent implementation of
the method. Secondly, pipe sizes that result in appropriate veloc-
ities are determined using a structured trial-and-error process.
However, in practice, pipe sizes generally reduce with distance
from the source (Walski, 2001). Consequently, there exists an op-
portunity to incorporate this domain knowledge into the initial
pipe sizing process. Finally, there is limited control over population
diversity, as this is achieved by seeding the initial population with
50% of randomly generated solutions and 50% of the solutions ob-
tained based on engineering experience.

In order to address these shortcomings, the objectives of this
paper are (i) to introduce a new heuristic sampling method for
determining the initial population of GAs for the least-cost design
of WDSs that is based on engineering experience/domain knowl-
edge and that overcomes the potential shortcomings of the method
of Kang and Lansey (2012); and (ii) to provide a rigorous assess-
ment of the performance of this method compared with that of
Kang and Lansey's sampling method (KLSM) and two sampling
methods that do not consider any domain knowledge (i.e. random
sampling (RS) and Latin hypercube sampling (LHS)) on seven WDS
design case studies of varying size and complexity.

The remainder of this paper is organized as follows. The pro-
posed heuristic, domain knowledge based sampling method for
determining the initial population of GAs for the least-cost design
of WDSs is introduced in next section, followed by the methodol-
ogy for assessing the performance of this method against that of the
KLSM and the two non-heuristic sampling methods. Next, the
Please cite this article in press as: Bi, W., et al., Improved genetic algorith
domain knowledge, Environmental Modelling & Software (2014), http://
results are presented and discussed, followed by summary and
conclusions.

2. Proposed prescreened heuristic sampling method for WDS
design

The proposed heuristic sampling method for initializing the
population of GAs for the least-cost design of WDSs based on
domain knowledge is called the Prescreened Heuristic Sampling
Method (PHSM). It uses a three-step procedure that (i) selects pipe
sizes based on knowledge that pipe diameters generally get smaller
the further they are from the source; (ii) dynamically adjusts the
velocity threshold to account for the fact that appropriate velocity
thresholds are likely to be network dependent; and (iii) enables the
diversity of the initial population to be controlled by sampling from
distributions centred on the solutions determined using the heu-
ristic procedures in (i) and (ii). The PHSM has some similarities to
the KLSM in that it aims to find initial pipe sizes that restrict flow
velocities to lie within certain ranges. However, it overcomes the
potential limitations of the KLSM outlined in the Introduction.
Details of the three steps of the PHSM are given below.

Step 1: Assign pipe diameters based on distances between demand
nodes and supply sources

As mentioned above, the first step of the PHSM is motivated by
the knowledge that, in real WDSs, the diameters of upstream pipes
are generally larger than those further downstream (Walski, 2001).
However, for WDSs, each demand node usually has a number of
different paths that connect it to the supply source (reservoir). This
indicates that the spatial distance between each demand node and
the reservoir may vary according to the paths selected to deliver the
required demands. In the proposed method, the shortest delivery
path to each demand node is selected and used to represent the
spatial distance between that node and the source node. The
rationale behind this is that it has been demonstrated that the
majority of the demand at a node is supplied by the path with the
shortest distance for an optimal design of WDSs (Zheng et al.,
2011a). The detailed process of step 1 of the PHSM is as follows:

i Find the shortest distance to a reservoir in the water network, li
for each node i (i ¼ 1,2 … ..,n, where n is the total number of
demand nodes in the network) using the Dijkstra algorithm
(Deo, 1974). When dealing with a water network with multiple
reservoirs, an augmented source node is created to connect all
the reservoirs to enable the determination of li following
Deuerlein (2008) and Zheng et al. (2011a).

ii Obtain the largest value of the shortest distance L by L¼max(li).
iii Divide the network into P specific areas with the shortest dis-

tance to the source node interval of L/P, where P is the number of
available pipe diameters for the design.

iv Assign pipes in each area a different diameter, with the largest
diameter assigned to the pipes in the area nearest to the source
and the smallest diameter to the pipes in the area furthest from
the source (reservoir). All pipes in a single area are assigned the
same diameter.

For example, for the WDS introduced by Zheng et al. (2011a),
which has 164 pipes (Fig. 1), the largest shortest distance of all
nodes (L) is obtained after steps i and ii. If there are five diameter
options for this network (i.e. P¼ 5), the networkwill be divided into
five areas in step iii. In order to do this (i) all nodes that have a
shortest-distance that is not greater than L/P (i.e. 0 < li � L/5) form
Area 1; (ii) all nodes that have a shortest-distance that is larger than
L/P but not greater than 2L/5 (i.e. L/5 < li � 2L/5) form Area 2;…; (v)
m optimization of water distribution system design by incorporating
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Fig. 1. WDS used to illustrate the result of network division of the PHSM (The red
dotted lines represent the distance boundary used to assign diameters). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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all nodes that have a shortest-distance larger than 4L/P (i.e. 4L/
5 < li� L) form Area 5. The resulting division of the network is given
in Fig. 1. Finally, (i) all pipes in Area 1 are assigned the largest
diameter; (ii) all pipes in Area 2 are assigned the second largest
diameter; and so on until all pipes in Area 5 are assigned the
Fig. 2. Flowchart of the algorithm for adjustin
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smallest pipe diameter. As such, the diameters of the upstream
pipes are generally larger than those of the downstream pipes.

Step 2: Adjust pipe diameters based on velocities

In this step, the diameters obtained in step 1 are refined to
achieve flow velocities in all pipes that are close to a particular
threshold. This is based on the domain knowledge that the velocity
in each pipe of an optimal solution for a WDS is in a limited range.
In addition, in order to ensure that the chosen pipe diameters
approach optimal values, the velocity threshold is selected to result
in solutions that are on the boundary between feasibility and
infeasibility. This is because the optimal solution is often located on
the boundary of the feasible and infeasible areas of the search
space. The stages in the process for achieving this are shown in
Fig. 2.

As can be seen from Fig. 2, an inner loop and an outer loop are
involved in the algorithm. The inner loop is used to determine the
network configuration based on pipe velocities. To do this, a
threshold value v for velocity needs to be assigned at the beginning
(e.g. v ¼ 0.1 m/s), which represents the expected velocity for each
pipe in the network. The network with initial diameters deter-
mined in Step 1 is then simulated using a hydraulic solver to obtain
the flow rate for each pipe. Based on this flow rate, the new
diameter NDj for each pipe can be calculated using:

NDj ¼
ffiffiffiffiffiffiffiffi
4Qj

pv

s
(1)

where j ¼ 1,… .,m is the jth pipe in the water network andm is the
total number of pipes.

As continuous diameter values are generated using Equation (1),
these values need to be rounded up or down to the nearest discrete
diameter based on the available options.
g pipe diameters based on flow velocity.

m optimization of water distribution system design by incorporating
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The inner loop continues until there is no further change in
diameter in accordance with Equation (1) or the number of simu-
lations (s) reaches the specified maximum number of allowable
simulations (Smax), at which point the cost (f) and the minimum
pressure head of this design are determined. If this solution is
feasible (i.e., the pressure head constraints are satisfied), the
network configuration and its associated network cost are saved to
an archive. As part of the outer loop, the inner loop is repeated for
successive increases in the velocity threshold (i.e. v ¼ v þ Dv) until
no feasible solution can be found. If the solution found at the
completion of the inner loop is infeasible, the outer loop is not
performed and the process of adjusting diameters is terminated.
Finally, the feasible solution with the lowest cost for the different
velocity thresholds considered is selected from the archive and
denoted as an approximate optimal solution for the WDS being
optimized. This solution is then used as the starting point for Step 3,
as outlined below.

Step 3: Generate distribution functions based on the approximate
optimal solution determined in Step 2.

In order to ensure sufficient diversity in the initial solution, the
initial diameter for each pipe is generated from a distribution, such
that the pipe diameter obtained in Step 2 has the highest proba-
bility of being selected. The logic behind this is that the approxi-
mate diameter for a pipe determined in Step 2 is most likely to be
the optimal diameter relative to other diameter options. Hence, a
relatively higher density function value is assigned to this diameter
(i.e. it is more likely to be selected during sampling).

The density function f(Dk) and the distribution function F(Dk) for
selecting each initial diameter are given by the following equations:

f ðDkÞ ¼
1

1þ ajxj k ¼ 1; ::::; P (2)

FðDkÞ ¼
f ðDkÞPP
k¼1 f ðDkÞ

k ¼ 1; ::::; P (3)

where a is a constant factor to control the density of each diameter
Dk, details of which are discussed in Section 4; x is the distance
between Dk and Dc (the diameter for a pipe in the approximate
optimal solution determined in Step 2) in terms of integer coding;
and P is the total number of available pipe diameters.

In order to illustrate how the approach outlined above is used to
generate the pipe diameters in the initial solution, the following
example is used. Table 1 presents the assumed total pipe diameter
options and their corresponding integer coding values. If
Dc ¼ 200 mm in Step 2 for a particular pipe, its integer code is 1, as
shown in Table 1. The absolute distance jxj between each Dk and Dc

is then calculated and presented in the third column of Table 1. The
density function and distribution function values for generating
each available diameter for this pipe during sampling are calculated
based on Equations (2) and (3), respectively (assuming a ¼ 1). The
results are given in the fourth and fifth columns of Table 1. As can be
Table 1
Example to illustrate the application of Step 3 of the PHSM.

Pipe diameter
Dk (mm)

Integer
coding
number

Absolute
distance
to Dc (jxj)

Density
function
value f ðDkÞ

Distribution
function
value FðDkÞ

100 0 1 0.5 0.19
200 1 0 1 0.39
300 2 1 0.5 0.19
500 3 2 0.33 0.13
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seen, a diameter of 200 mm has the largest probability of being
selected during sampling, as this diameter is selected based on the
heuristic rules used in Steps 1 and 2. In contrast, a diameter of
600 mm has the smallest probability of being selected, since it has
the largest distance to the optimal diameter of 200 mm.

It should be noted that the assumption made in Step 1 that the
upstream diameters are typically larger than those further down-
stream might not hold for all networks due to the influence of
network topology and zoning, However, as the initial diameters
obtained in Step 1 are adjusted based on flow velocities in Step 2,
the influence of network topology and zoning is accounted for in
the overall approach.

3. Methodology

As stated in the Introduction, one of the objectives of this paper
is to provide a rigorous assessment of the relative performance of
the PHSM compared with that of the KLSM and two sampling
methods that do not consider domain knowledge. The flowchart of
the process for achieving this is shown in Fig. 3. As can be seen, four
different sampling methods, including two heuristic methods (i.e.
the PHSM and the KLSM) and two non-heuristic methods (i.e. RS
and LHS), are used to obtain initial GA populations. The two non-
heuristic sampling methods are considered as they provide a
benchmark against which the performance of the two heuristic
sampling methods can be assessed. RS is used as this is the con-
ventional method for initializing GA populations and LHS is used as
it provides a more structured approach for sampling the solution
space. It should be noted that, although there are some other
analytical techniques for seeding the initial population of EAs (e.g.
Keedwell and Khu, 2006; Zheng et al., 2011a, 2014a,b; Zheng and
Zecchin, 2014; Fu et al., 2012), they do not incorporate engineer-
ing knowledge and experience directly and hence are not consid-
ered in this paper.

Each of the sampling approaches is applied to seven WDSs of
varying size and complexity, including the Hanoi, Extended Hanoi,
Fosspoly 1, ZJ, Balerma and Rural networks, as well as a modified
version of the KL network (KLmod). The networks are optimized for
total life cycle costs while satisfying pressure head constraints at
each demand node. The hydraulic simulations required to check
pressure constraints are performed using EPANET 2.0, as demand-
driven modelling is most commonly used in optimization studies,
although pressure-driven modelling is likely to be a better alter-
native under some circumstances (Laucelli et al., 2012). Each of the
GA optimization runs is repeated 10 times with different sets of
initial solutions and GA operators generated using different random
number seeds for each network and sampling method. The results
are compared in terms of the best and average solutions found
during these ten runs. Details of each of the components of the
process are provided in subsequent sections.

3.1. Sampling methods

Details of the KLSM (Method 2, Fig. 3) and the two non-heuristic
sampling methods (Methods 3 and 4, Fig. 3) are given below. De-
tails of the PHSM (Method 1, Fig. 3) are given in the previous
section.

3.1.1. The KLSM (Kang and Lansey, 2012) (Method 2)
As mentioned previously, in this approach, initial solutions are

generated by adjusting pipe diameters to ensure that the velocities
in all pipes are less than a pre-set velocity threshold selected from a
practical range of velocities for average and peak flows in water
supply networks. The heuristic procedure for achieving this is as
follows:
m optimization of water distribution system design by incorporating
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Fig. 3. Flowchart of the assessment process.
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(1) All pipes to be optimized are set to the minimum allowable
diameter.

(2) A hydraulic simulation is carried out to obtain the flow ve-
locity in each pipe.

(3) The resulting velocity in each pipe is compared with a pre-
set velocity threshold selected from within the range of
0.45e1.5 m/s (e.g. 1 m/s). If the velocity is larger than the
threshold, this pipe diameter is increased to the next larger
commercial size.

Steps (2) and (3) are performed repeatedly until all velocities
in all pipes are below the threshold and the resulting pipes sizes
are used to form one solution of the initial population. A number
of different initial solutions is generated by varying the value of
the velocity threshold within the pre-defined velocity range of
0.45e1.5 m/s. In order to maintain solution diversity, half of the
initial solutions are generated using this heuristic method, while
the other half are generated randomly. In this study, the velocity
thresholds of the KLSM are obtained using the following
equation:

VTr ¼ 0:45m=sþ r
ð1:5m=s� 0:45m=sÞ

1
2N

(4)

where VTr (m/s) is the rth (r¼ 1,2…,½N) velocity threshold used for
generating the heuristic solutions; N is the total population size.
3.1.2. Random sampling (Method 3)
In random sampling (RS), each diameter option has the same

probability of being selected for each pipe within the WDS. When
generating a solution, each decision variable (i.e. pipe) is assigned a
diameter value that is randomly selected from all available diam-
eter options.
3.1.3. Latin Hypercube Sampling (Method 4)
Latin Hypercube Sampling (LHS) is a type of stratified sampling

method that ensures that all portions of the sample space of each
variable are sampled (McKay et al., 1979). In this study, Simlab2.2
(JRC, 2008) is used to generate initial solutions using LHS for each
case study. A detailed description of the process of LHS can be found
in the manual of Simlab2.2 (JRC, 2008).
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3.2. Case studies

Details of each case study are given in Table 2. For each case
study, the decision variables are the pipe diameters and the
objective is to find the minimum cost solution while satisfying the
pressure head constraints. Consequently, the optimization problem
to be solved can be represented as follows:

Minimize.

F ¼
Xm
j¼1

Cj
�
Dj
�

(5)

Subject to:

Hmin
i � Hi � Hmax

i i ¼ 1;2:::::;n (6)

GðHi;DÞ ¼ 0 (7)

Dj2
�
A
�

(8)

where F is the network cost that is to be minimized; Cj(Dj) is the
cost function for pipe j ¼ 1,2…,mwith assigned diameter Dj;m and
n are the total number of pipes and demand nodes in the network,
respectively; G(Hi, D) ¼ nodal mass balance and loop (path) energy
balance equations for the whole network with pipe combinations
of D ¼ [D1, D2,… .Dm]T, which is solved using EPANET2.0; Hi ¼ head
at node i ¼ 1,2 … .,n; Hmin

i and Hmax
i are the minimum and

maximum allowable head limits at the nodes; and A ¼ a set of
commercially available pipe diameters.

As shown in Table 2, the seven case studies vary in size and
complexity. Details of each network, including the network layout,
the available pipe diameters and the cost of each diameter for the
Extended Hanoi and the KLmod network are given in this paper and
those of the other case studies are given in the corresponding ref-
erences in the second column of Table 2. The EPANet input files for
these seven networks are provided as supplementary material. The
current best known solution for each case study (if available) is
presented in the second last column in Table 2. The best known
solutions (least-cost solutions) for the Hanoi, Balerma and Rural
case studies found by GAs are given in the last column, while no GA
solutions can be found in the literature for the other case studies.
m optimization of water distribution system design by incorporating
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Table 2
Details of the seven case studies.

Case study Reference No. of
decision
variablesa

No. of
diameter
optionsb

Size of total
search space

Pressure
head
constraint

Current best solution Current best solution
found by GAs

Hanoi Fujiwara and Khang (1990) 34 6 2:86� 1026 � 30 m $6.081 million by Reca and
Martínez (2006) using GENOME

$6.081 million by Reca
and Martínez (2006)

Extended Hanoi current study 34 10 1� 1034 � 30 m -c -c

Fosspoly1 Bragalli et al. (2012) 58 22 7:26� 1077 � 40 m $0.0291 million by
Bragalli et al. (2012) using MINLP

-c

ZJ Zheng et al. (2011a) 164 14 9:23� 10187 � 22 m $7.082 million by
Zheng et al. (2011a) using NLP-DE

-c

Balerma Reca and Martínez (2006) 454 10 1� 10454 � 20 m V1.923 million by
Zheng et al. (2011a) using NLP-DE

V2.302 million by
Bolognesi et al. (2010)

Rural network Marchi et al. (2014a,b) 476 15 6:58� 10559 � 0 m $ 31.22 million by
Marchi et al. (2014a,b) using DE

$ 36.25 million by
Marchi et al. (2014a,b)

KLmod network Adapted from Kang
and Lansey (2012)

1274 10 1� 101274 � 45 m ec ec

a The decision variables are the pipe diameters.
b The pipe diameter options for the Extended Hanoi and KL network are given in this paper and those for the other case studies are given in the references provided.
c The current best solution is unknown or the network has not been optimized previously using an Evolutionary Algorithm.
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The Extended Hanoi case study is developed based on the
original Hanoi problem (Fujiwara and Khang, 1990), and has not
been used in previous studies. The only difference between the
original and Extended Hanoi case studies is the number of available
diameters for each pipe, while the other information is the same. As
it is acknowledged that infeasible solutions dominate the search
space for the Hanoi case study, a larger number of diameter options
is included for this case study in order to test the performance of
the various sampling methods when dealing with a search space
with a larger feasible proportion. For the Extended Hanoi problem,
ten pipe diameters, including 12,16, 20, 24, 30, 40, 50, 60, 70 and 80
inches are available instead of the six smallest diameters from this
list that were available for the original Hanoi case study (Fujiwara
and Khang, 1990).

The topology of the KLmod network case study is taken from the
network used by Kang and Lansey (2012), without consideration of
pumps and fire-fighting conditions. For this network, a total of ten
diameters, including 150, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000 mm are available for all pipes, with the unit costs given in
Kadu et al. (2008).

3.3. Genetic algorithm optimization

The description of genetic algorithms (GAs) has been well
documented (see e.g. Simpson et al., 1994) and hence, this infor-
mation is not repeated in this paper. In this study, the GA used
integer coding, two-point crossover, bitwise mutation, and tour-
nament selection, as these have been demonstrated to be effective
in terms of finding optimal solutions (Deb, 2000; Vairavamoorthy
and Ali, 2005; Zheng et al., 2011b). Although a number of
different GA variants have been developed over the past four de-
cades in order to improve search performance (Dandy et al., 1996;
Nicklow et al., 2010), the use of a relatively standard GA formulation
was considered adequate, as the focus of this study is on the
evaluation of different methods for obtaining initial GA pop-
ulations. In addition, all of the sampling approaches considered in
this paper can be used in conjunction with any GA variant or other
type of EA.

4. Computational experiments

The four sampling methods (i.e. the PHSM, the KLSM, RS and
LHS) were used to generate the initial solutions for GAs applied to
each of the seven WDS case studies (Fig. 3). The results of GAs
Please cite this article in press as: Bi, W., et al., Improved genetic algorith
domain knowledge, Environmental Modelling & Software (2014), http://
seeded using these four sampling methods were compared in
terms of objective function value and computational efficiency.

For the PHSM, the value of the initial threshold velocity v used in
Step 2 was selected to be 0.1 m/s for all case studies based on the
results of preliminary trials with several different values, although
variations of this initial value were found to have only a slight
impact on the results. It was found that the overall number of
simulations required for adjusting pipe diameters in Step 2 was less
than 200 for the seven case studies, and hence the maximum
number of allowable simulations Smax was set to 1000. In Step 3 of
the PHSM, a number of different values of a (see Equation (2))
ranging from0.1 to 2were tried and a¼ 0.5was ultimately selected,
as it produced slightly better results than other a values. However,
as was the case for the initial threshold velocity v, slight variations
in a did not significantly influence the final results. For the KLSM,
velocity thresholds were generated in accordance with Equation
(4).

The parameter values of the GAs applied to each case studywere
fine-tuned with the aid of a large-scale sensitivity analysis. For the
crossover probability, values ranging from 0.1 to 0.9 were tried. For
the mutation probability, 10 different values around the value of 1/
ND (where ND is the number of decision variables) were tried for
each study, as it has been demonstrated that a value of approxi-
mately 1/ND is an effective value and is normally used for GAs
(Simpson et al., 1994). The parameter values that exhibited the best
performance in terms of efficiently finding good quality optimal
solutions were selected and are presented in Table 3. For each case
study, the GAs seeded using the four sampling methods considered
used the same parameter values. A penalty cost was added to the
objective function value for infeasible solutions, with a penalty
multiplier of 105/metre of head being used for all case studies
(Simpson et al., 1994). The tournament size in the selection oper-
ator was two for all GAs. The maximum allowable number of
evaluations for each case study is given in the last column of
Table 3, with the larger networks assigned larger computational
budgets.

In order to facilitate easier discussion of the results, the seven
case studies were assigned to three groups based on the number of
decision variables (ND), as shown in the third column of Table 3.
The first three case studies (Hanoi, Extended Hanoi and Fosspoly1)
were assigned to G1, as their values of ND < 100, while the ZJ,
Balerma and Rural network case studies were allocated to G2 with
100 < ND < 500. The KLmod network was assigned to G3, as its
ND > 500.
m optimization of water distribution system design by incorporating
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Table 3
Parameters values of GAs for each case study.

Case study Number of
decision
variables (ND)

Network group
based on the
size of WDSs

Population
size (N)

Crossover
probability

Mutation
probability

Total number of
evaluations

Hanoi 34 G1 (ND < 100) 100 0.9 0.02 300,000
Extended Hanoi 34 100 0.9 0.02 300,000
Fosspoly1 58 500 0.8 0.02 500,000
ZJ 164 G2 (100 < ND < 500) 500 0.9 0.006 500,000
Balerma 454 1000 0.9 0.002 1,000,000
Rural network 476 1000 0.8 0.002 1,000,000
KLmod network 1274 G3(ND > 500) 1000 0.9 0.0008 2,000,000
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The performance of each sampling method was assessed using
the method outlined below:

1. For each case study, ten GA runs were performed for each of the
four sampling methods using different random number seeds,
resulting in a total of 40 final optimal solutions.

2. The best final solution from the 40 solutions was selected for
each case study and used as a benchmark against which the
performance of each sampling method was assessed. This
benchmark optimal solution was also compared with the cur-
rent best known solution in the literature obtained using similar
GAs, if available (see Table 2), in order to ensure that the results
obtained in the current study are reasonable.

3. For each sampling method, the average of the best solution at
each GA generation was calculated for each case study based on
the ten runs with different starting random number seeds
(denoted ABS). In addition, among the ten best solutions at each
generation, the one with the lowest cost was selected (denoted
as BBS).

4. The deviation of ABS and BBS from the corresponding bench-
mark optimal solution was plotted against the number of eval-
uations for each sampling method. This resulted in four
convergence curves on the same plot, enabling a comparison of
the performance of the four sampling methods considered.

5. The performance of each sampling method was also assessed in
terms of its computational efficiency in being able to find near-
optimal solutions. For this purpose, optimal solutions that had
objective function values within 5% of the benchmark optimal
solution were defined as being near-optimal.

In order to enable a fair comparison between the methods, the
computational overheads associated with implementing the pro-
posed PHSM are also considered (Table 4). This was achieved by
converting the computational time required for each step of the
proposed PHSM (see Section 2) to the equivalent number of
network simulations using the same computer configuration
(Pentium PC (Inter R) at 3.0 GHz). As shown in Table 4, the proposed
Table 4
Computational overhead analysis for the proposed sampling method (PHSM).

Case study Number of
decision
variables (ND)

Equivalent simulations
of the computational
overhead used in step 1a

Equiv
of the
overh

Hanoi 34 10 102
Extended Hanoi 34 10 126
Fosspoly1 58 11 153
ZJ 164 6 147
Balerma 454 8 165
Rural network 476 9 171
KLmod network 1274 14 190

a The computational overhead used for each step has been converted to the equivalen
b The computational overhead is expressed as the equivalent number of simulations a
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PHSM is very efficient in computing the shortest-distance values
for the network (Step 1) and generating distribution functions
based on the approximate optimal solutions (Step 3), while it is
relatively more time-consuming in adjusting pipe diameters based
on the velocities in Step 2. This is expected, as this step involves an
iterative process (see Fig. 2). The number of equivalent network
simulations that correspond to the total computational overhead
required by the PHSM method is presented in the last column of
Table 4. As can be seen, this computational effort is negligible
compared with the total computational budgets used in Table 3,
and hence is not considered in the subsequent discussions in Sec-
tion 5.

5. Results and discussion

The costs of the best solutions found using the GAs initialized
with the four sampling methods considered for each of the seven
case studies are given in Table 5, with the lowest cost solutions
found highlighted in bold. In addition, for the case studies to which
GAs had been applied previously in the literature, the percentage
deviation of the solutions found in this study compared with the
best solution found using GAs reported in the literature are shown
in brackets (i.e. negative percentage changes indicate that the so-
lutions found in this study are better and vice versa). It should be
noted that the results presented here are compared with those
obtained using GAs in previous studies because the purpose of this
study is to compare the relative performance of different initial
sampling approaches. This requires the impact of the sampling
approaches to be isolated from the impact of algorithm searching
behavior as much as possible. Consequently, as a GA is used as the
EA in this study for reasons outlined previously, the final results
obtained in this study should only be compared with those ob-
tained using other GAs.

From Table 5, it can be clearly seen that by using the proposed
PHSM, better quality solutions could be found for each case study
within the given computational budgets than when the other ap-
proaches were used. The KLSM produced better solutions for the
alent simulations
computational
ead used in step 2a

Equivalent simulations
of the computational
overhead used in step 3a

Total computational
overheadb

1 113 (0.38%)
1 137 (0.46%)
1 165 (0.33%)
2 155 (0.31%)
3 176 (0.18%)
3 183 (0.18%)
4 208 (0.10%)

t number of network simulations for each case study.
nd the fraction of the total computational budget this represents (in brackets).
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Table 5
Cost of the best solution found by each sampling method for each case study.

Case
study

Cost of the best solution found by each sampling method (Million)

RS LHS KLSM PHSM

Hanoi $6.195 (1.87%) $6.217 (2.24%) $6.224 (2.35%) $6.109 (0.46%)
Extended

Hanoi
$5.365 $5.366 $5.360 $5.346

Fosspoly1 $0.0294 $0.0294 $0.0309 $0.0290
ZJ $7.562 $7.560 $7.655 $7.431
Balerma V2.125 (-7.69%) V2.146 (-6.78%) V2.130 (-7.47%) V2.061 (-10.47%)
Rural $36.108 (-0.39%) $36.265 (0.04%) $36.255 (0.01%) $35.173 (-2.97%)
KLmod $8.686 $8.737 $8.418 $8.307

Note: The result of each sampling method for each case study was obtained over 10
runs with different random number seeds. The percentage of the cost of each best
solution relative to the best solution found by GAs is given in italics in the brackets.
The benchmark optimal solution for each case study is indicated in bold.
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large KLmod network compared to the other two non-heuristic
sampling methods (RS and LHS). This agrees well with the obser-
vations made by Kang and Lansey (2012). However, for five of the
other six case studies, RS performed better than the KLSM in terms
of the quality of the final solutions.

The convergence plots for each of the algorithms for the case
studies belonging to the three different groups defined in Table 3, as
defined in the previous section, are given in Fig. 4 (G1), 5 (G2) and 6
(G3) and provide an indication of both solution quality and
computational efficiency. A common observation is that the PHSM
generally found significantly better initial solutions than the non-
heuristic sampling approaches. This is most likely because the
initial solutions obtained using the PHSM were feasible and the
diameters for these solutions were generally in a reasonable range
based on velocities, nodal demands and elevations. For the larger
case studies, the PHSM also found significantly better initial solu-
tions than the KLSM. The initial solutions obtained using the other
sampling methods were typically infeasible for the larger case
studies or feasible with high costs for the simpler WDSs. This
demonstrates that the proposed domain knowledge based sam-
pling method is effective in identifying good quality starting solu-
tions. A detailed discussion of the results for the three groups of
case studies is given in the subsequent sections.

5.1. Group 1 (G1) case studies

As can be seen from Table 5 and Fig. 4, the performance of the
GAs initialized with the four different sampling methods is very
similar for the G1 case studies (i.e. Hanoi, Extended Hanoi and
Fosspoly1), both in terms of the ability to find optimal solutions and
computational efficiency. While the GAs initialized with the PHSM
were able to find the best solution for all three case studies, the
variation in the cost of the best-found solutions was relatively small
(Table 5). Similarly, while GAs initialized with the PHSM found
better initial solutions and generally converged more quickly than
the GAs initialized with the other methods (Fig. 4), this difference
was not very large. Consequently, based on the results obtained,
there does not appear to be a significant advantage of using domain
knowledge for the initialization of GAs for small problems, such as
those considered for the G1 case studies.

5.2. Group 2 (G2) case studies

As can be seen from Table 5 and Fig. 5, the performance of the
GA initialized with the PHSM is noticeably better than that of the
GAs initialized with the other three methods for the G2 (ZJ,
Balerma, Rural) networks, both in terms of the best-found solution
and computational efficiency. This suggests that while for the
Please cite this article in press as: Bi, W., et al., Improved genetic algorith
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simpler G1 case studies the GAs were able to find good solutions
relatively quickly with the aid of their evolutionary operators,
irrespective of the starting position in solution space, this is not the
case for the more complex G2 case studies. This demonstrates that
the better starting positions in solution space identified using the
PHSM are able to assist the GAwith finding better regions of larger
search spaces, as indicated by the better solutions found when the
GAs were initialized with the PHSM (Table 5 and Fig. 5). This trend
was already noticeable for the Fosspoly1 case study, which is the
most complex of the G1 case studies (Fig. 4).

The results in Table 5 and Fig. 5 also indicate that the solutions
found using the PHSM were not only better than those obtained
using RS and LHS, but also better than those obtained using the
other heuristic sampling method (i.e. the KLSM). This appears to be
both as a result of the quality and diversity of the initial solutions.
For example, for the ZJ and Rural networks, the PHSM was able to
identify significantly better initial solutions than the KLSM,
resulting in more rapid convergence and better final solutions
(Fig. 5). In contrast, for the Balerma network, use of the KLSM
resulted in better initial solutions than use of the PHSM. However,
despite this initial disadvantage, use of the PHSM resulted in more
rapid convergence and the identification of better solutions (Fig. 5),
which is likely due to the additional control over population di-
versity offered by the PHSM. A similar trend was also observed for
the Fosspoly1 network (Fig. 4), which is the largest of the G1 net-
works. It should be noted that the better performance of the PHSM
was not affected by the presence of multiple source reservoirs, as is
the case for the Balerma network (see Reca andMartínez (2006) for
network configuration). This suggests that the approach of using an
augmented source node for networks with more than one source
reservoir (as described in Step 1 for the PHSM) is effective.

In terms of the quality of the solutions found, use of the PHSM
resulted in the best solutions for all three G2 case studies by some
margin (Table 5, Fig. 5). In contrast, the quality of the solutions
found using the other three initialization methods is quite similar,
with no advantage of using the KLSM. It should also be noted that
for the two case studies to which similar GAs had been applied in
previous studies, the GA initialized with the PHSM found solutions
that were 10.47% and 2.97% better than those found in previous
studies for the Balerma and Rural networks, respectively (Table 5).

As far as convergence speed is concerned, use of the PHSM re-
sults in significantly faster convergence to near-optimal solutions
(i.e. solutions that arewithin 5% of the benchmark optimal solution,
as defined previously) than use of the other three initialization
methods, which all performed similarly (Fig. 5). This indicates that
there is likely to be a significant advantage in using the PHSMwhen
trying to find the best possible solution within reasonable
computational budgets for complex networks.

5.3. Group 3 (G3) case studies

As can be seen from Table 5 and Fig. 6, for this very large
network (i.e. KLmod), the performance of the GAs initialized with
both heuristic sampling methods (i.e. PHSM and KLSM) are
noticeably better than that of the GAs initialized with the two non-
heuristic sampling methods (i.e. RS and LHS), both in terms of the
best-found solution and computational efficiency. While the GAs
initialized using the two heuristic sampling methods were able to
find near-optimal solutions after approximately 800,000 evalua-
tions for the average solutions based on ten runs, which is equiv-
alent to approximately 3 h in terms of CPU time, the GAs initialized
with the non-heuristic sampling methods (i.e. RS and LHS) were
not even able to find solutions of this quality at the end of the
optimization run (using nearly 2,000,000 evaluations and
approximately 7 h of CPU time). Although Fig. 6 suggests that the
m optimization of water distribution system design by incorporating
dx.doi.org/10.1016/j.envsoft.2014.09.010
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GAs initialized with RS and LHS had not converged yet and might
ultimately find solutions of a similar quality to those found when
the heuristic sampling methods were used, the computational
effort required to do so is likely to be very large. This clearly
highlights the advantage of using heuristic sampling methods for
initializing GA populations for larger networks.

In terms of the relative performance of the two heuristic sam-
pling methods, while both converged to near-optimal solutions
after approximately the same number of iterations, use of the
PHSM resulted in clearly better best-found solutions. This is likely
to be due to a combination of the better initial solutions identified
using the PHSM, as well as the additional control over population
Please cite this article in press as: Bi, W., et al., Improved genetic algorith
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diversity afforded by the PHSM. However, the relative performance
of the KLSM compared with that of the PHSM was much better for
the KLmod case study, which is most likely because the KLSM was
designed for a modified version of this problem.

6. Summary and conclusions

In order to improve the ability of GAs to find optimal or near-
optimal solutions in reasonable timeframes for realistic-sized wa-
ter distribution optimization problems, a new heuristic sampling
method (the PHSM) for initialising GA populations was introduced
and evaluated in this paper. The performance of the PHSM was
m optimization of water distribution system design by incorporating
dx.doi.org/10.1016/j.envsoft.2014.09.010
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compared with that of an existing heuristic sampling method (the
KLSM) and with that of more traditional sampling methods,
including RS and LHS, for seven WDSs of varying size and
complexity.

The results obtained based on the seven WDS optimization
(pipe-sizing) problems considered indicate that overall, the pro-
posed PHSM performed significantly better than the other three
sampling methods, both in terms of solution quality and compu-
tational efficiency. It was also found that the relative advantage of
the PHSM increased with network size and complexity. While for
the smaller (G1) networks, the performance of the GAs initialised
using the four different methods was very similar, there were clear
Please cite this article in press as: Bi, W., et al., Improved genetic algorith
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advantages in using the PHSM for the larger (G2) networks and in
using both heuristic sampling methods (i.e. PHSM and KLSM) for
the largest network considered (G3). This advantage is likely to be
due to the ability to find better initial solutions, enabling more
favourable regions of the solution space to be explored more
quickly. The results also indicate that PHSM outperforms the KLSM,
which is likely due to a combination of the ability to find better
initial solutions and the additional population diversity provided
by the PHSM.

As the focus of this paper was on the development and evalu-
ation of the PHSM, all analyses were conducted using a reasonably
standard GA. However, as the PHSM is independent of the
m optimization of water distribution system design by incorporating
dx.doi.org/10.1016/j.envsoft.2014.09.010
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optimization algorithm used, it can be tested in combination with
other algorithms. Such investigations would be useful in terms of
assessing the generality of the results obtained in this paper. In
addition, it would be useful to extend and apply the proposed
approach to a larger number of case studies with increased hy-
draulic complexity, such as the inclusion of tanks, valves and
pumps. However, given that pipe sizes generally represent the
largest number of decision variables, application of the PHSM to the
subset of the decision variables consisting of pipe diameters is still
likely to be beneficial for WDSs including tanks, valves and pumps.
Finally, it would be interesting to compare the performance of the
PHSMwith that of other methods that could be used for initialising
EAs, such as the cellular automata network design algorithm of
Keedwell and Khu (2006).
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.envsoft.2014.09.010.
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