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Abstract

Water distribution systems (WDSs) are becomingeasingly complex and larger in
scale due to the rapid growth of population and diglsanization. Hence, they require
high levels of investment for their constructioml anaintenance. This motivates the need
to optimally design these systems, with the aimdpgd minimize the investment budget
while maintaining high service quality. Over thesp25 years, a number of evolutionary
algorithms (EAs) have been developed to achievienaptlesign solutions for WDSs,

representing a focal point of much research indtes.

One issue that hinders EAs’ wide application irustdy is their significant demand on
computational resources when handling real-worldS&Dn recognition of this, there
has been a move from aiming to find the globallyirogl solutions to identifying the

best possible solutions within constrained comprtat resources. While many studies
have been undertaken to attain this goal, theree Hmen limited efforts that use
engineering knowledge to reduce the computatioffiatteThe research undertaken in
this thesis is such an attempt, as it aims toieffity identify near-optimal solutions with

the aid of WDS design knowledge.

This thesis presents a domain-knowledge based iaption framework that enables the
near-optimal solutions (fronts) of WDS problemsbi® identified within constrained
computing time. The knowledge considered includethé relationship between pipe
size and distance to the water source(s); (ii)infgact of flow velocities on optimal

solutions; and (iii) the relationship between fleglocities and network resilience.

This thesis consists of an Introduction, three tdrgthat are based around a series of
three journal papers and a set of Conclusions amcbfRmendations for Further
Work.



The first paper introduces a new initialization huet to assist genetic algorithms
(GAs) to identify near-optimal solutions in a congtionally efficient manner. This
is attained by incorporating domain knowledge ithe generation of the initial
population of GAs. The results show that the pregosiethod performs better than
the other three initialization methods consideredth in terms of computational

efficiency and the ability to find near-optimal stbns.

The second paper investigates the relative imgadifferent algorithm initializations
and searching mechanisms on the speed with whiahapimal solutions can be
identified for large WDS design problems. Resuittigate that EA parameterizations,
that emphasize exploitation relative to exploratienable near-optimal solutions to
be identified earlier in the search, which is dughte “big bowl” shape of the fithess
function for all of the WDS problems considered.ifgsinitial solutions that are
informed using domain knowledge can further inceedlse speed with which

near-optimal solutions can be identified.

The third publication extends the single-objectimethod in the first paper to a
two-objective problem. The objectives consideresl the minimization of cost and
maximization of network resilience. The performanoé the two-objective
initialization approach is compared with that odamly initializing the population
of multi-objective EAs applied to range of WDS dgsiproblems. The results
indicate that there are considerable benefits iimgushe proposed initialization

method in terms of being able to identify near-oyati fronts more rapidly.

Although all of the results obtained in this resbahave shown that the proposed
method is effective for improving the efficiency &As in finding near-optimal

solutions, only gravity fed water distribution systs with a single loading case were
considered as case studies. One important ardattoe research is the extension of
the proposed method to more complex WDSs which imelyde tanks, pumps and

valves.
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CHAPTER1.INTRODUCTION

Chapter 1. Introduction

Water distribution systems (WDS) are used to delivater from water sources or
treatment plants to end-users, representing otteedbasic forms of civil infrastructure
within cities. A typical WDS consists of pipes, eesirs, pumps, valves and other
hydraulic elements, which are all cost intensiveconstruction and management.
Furthermore, the maintenance and rehabilitatiotnscios WDSs are often very large,
which can be on the order of millions of dollarg(é&impson et al. 1994; Nicklow et al.
2010). This motivates a number of studies to opemihese systems, aiming to
potentially save significant costs while meeting tequired demand as well as satisfying

supply pressures (Marchi et al. 2014a).

For a given water distribution network layout, thesign problem typically involves the
selection of the pipe sizes as well as the sizeghsr system components (e.g. valves
and pumps), such that the system can be constroictgeerated with the minimum total
life cycle cost while satisfying all of the desigonstraints (e.g. Dandy et al. 1996; Zheng
et al. 2011a,b; Kang and Lansey 2012). Howeverctimplex system structure (e.g.
loops), highly nonlinear relationship between gigad loss and flows and the discrete
nature of the availability of pipe sizes that canused create a highly complex search
space for a WDS design problem (Zecchin et al. ROll&s results in the presence of
many local optimal solutions, bringing significartitallenges for finding a high quality

solution.

Traditionally, a trial-and-error approach or detistic optimisation techniques (e.g.
linear programming and nonlinear programming) haeen used to find efficient
solutions for simple WDSs (Fujiwara and Khang 19Bf@&galli et al. 2012). However,
solutions found using these approaches are oftsatigfactory, especially for large,
real-world problems (Simpson et al. 1994; Maier abt 2014). More recently,
evolutionary algorithms (EAs) have been employeoltiimise the design of WDSs, and
have been often demonstrated to be able to findifisgntly improved solutions
compared to traditional methods (Maier et al. 20T5)s is because EAs differ from

deterministic optimisation techniques in that tinayigate through the search space by
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means of stochastic evolution rather than usindignainformation, thereby leading to a
higher likelihood that globally optimal solutionslivibe reached (di Pierro et al. 2009; Fu
et al. 2012). Another important advantage of EAsrotraditional optimisation
techniques is for multi-objective problems, whehneyt can identify a set of Pareto
optimal solutions in a single run, with trade-détstween multiple competing objectives
being identified (Ostfeld et al. 2014).

From the literature, it can be seen that the rebemnea of EAs applied to WDS design
optimisation has undergone significant developnemr the past few decades (e.g.
Nicklow et al. 2014; Maier et al. 2014). This igpported by the following: (i) a broad
range of EA types has been successfully appli&iix® design problems; and (i) EAs
have provided an improved understanding of the Vép@nisation problem for both
single objective and multi-objective problems. Heer the application of EAs is not
without difficulties, with one of the main issuesirty their significant demand on
computational resources, which is especially thee cahen dealing with real-world
problems (Fu et al. 2012; Kang and Lansey 2012adh their computational intensity

has been one of the main reasons for practitiongtgtance to use EAs in practice.

In recognition of this, there has been a move fattempting to find the global optimal
solutions, which may require very large computati@ifort, to identifying near-optimal
solutions within limited computational budgets @tent years (Gibbs et al. 2008, 2015;
Tolson et al. 2007, 2009; Maier et al. 2014, 20T%)is is because, for many water
resource problems, finding near-optimal solutiona reasonable amount of time (rather
than attempting to find the global optimum) is oftsufficient from a practical
perspective. Finding best possible solutions withinlimited time framework is
challenging for many EA-based optimisation techegjwhich are typically developed
to find globally optimal solutions without considey the constraint of the available

computational resources (Maier et al. 2014).

To address this issue, a number of approaches lese developed for efficiently
arriving at near-optimal solutions in recent ye&samples include the hybridisation of

EAs with deterministic techniques (Tolson et al020Zheng et al. 2011a), EA
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parametrisations based on improved understanditigeofrun-time searching behaviour
(Zecchin et al. 2012; Zheng et al. 2015a), andtipaing of large problems into a set of
smaller and manageable sub-problems (Zheng eD&B a,b). However, so far there
have been limited efforts to use domain knowledgassist EAs to efficiently identify

near-optimal solutions (Kang and Lansey 2012; BileP015a). Domain knowledge is
often derived from a physical understanding of siygstem, as well as engineering
experience. The research undertaken in this thesian attempt to develop new
techniques that efficiently identify near-optimalugions with the aid of WDS design

knowledge.

1.1 Objectives of research

This research aims to improve EA optimisation of 8¢Dwith the aid of domain
knowledge in both single and multiple objectivecqgsa The specific objectives are given

below:

Objective 1 To incorporate domain knowledge into the initialization of EAs, enabling
EAsto commence their search in the areas surrounding promising regions and hence
improve their performance in efficiently identifying near-optimal solutions. The EA
used to meet this objective is the genetic algoritfGA), which is the most
frequently used EA for water resources problems.

Objective 2 To gain an improved understanding of the reative impact of the EA
garting position and parameterisations on the speed with which near-optimal
solutions can be identified for large optimization problems. In order to meet this
objective, fitness function and run-time behavibatatistics are used to gain such an
increased understanding.

Objective 3 To extend the domain-knowledge based single-objective EA initialization
method in Objective 1 to a multi-objective problem. The objectives considered are the
minimization of cost and the maximization of netlwaesilience (one way to
represent WDS reliability). Two different typesmtiltiobjective EAs (MOEAS) are
considered in order to meet this objective, whieh MSGA-II, representing one of
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the standard MOEAs for industry application, andrg@aepresenting a recent
state-of-the-art MOEA for water resources.

1.2 Outline of the thesis

This thesis consists of five chapters, with the rmiaody Chapters 2-4 being a
collection of published, accepted or submitted m@m internationally recognised
Journals (Bi et al., 2015a; Bi et al., 2015b; Bakt 2015c). Table 1.1 summarises the
main information of each paper and how they linkhi® stated objectives of this thesis,

with details given below.

Table 1.1 Publication information

The number of case studies

Publication Aims L|nk|_ng to the (the range of the number of
objectives g -
decision variables)
To develop a new initialization method
Publication 1 for EAs with the incorporation of domain —
(Chapter 2) knowledge irsingle objective (cost) Objective 1 Seven (34 0 1274)
space
To improve understanding of the relative
Publication 2 impact of EA starting position and
parameterisation on the speed with which Objective 2 Four (164 to 1274)
(Chapter 3) ) - .
near-optimal solutions are founddamgle
objective (cost) space
To extend the initialization method in
Publication 3 single-objective (cost) space ttva- Objective 3 Five (34 to 1274)

(Chapter 4) objective (cost and network resilience)
Space

In Chapter 2 (publication 1) a new initialization method is developed to adshs to
find near-optimal solutions in an efficient mannier,which domain knowledge with
regard to the relationship between pipe size astarlie to the source(s) of WDS(s), as
well as the impact of flow velocities on optimaligmns are considered. Three steps are
involved in the proposed approach, including (g gelection of pipe sizes based on
knowledge that pipe diameters generally get smékefurther they are from the source;
(i) dynamic adjustment of the velocity threshaddaiccount for the fact that appropriate
velocity thresholds are likely to be network depsrigd and (i) control of initial
population diversity by sampling from distributioosntred on the solutions determined

using the heuristic procedures of (i) and (ii). Peeformance of the proposed method is
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compared with that of another heuristic samplinghoe and two non-heuristic sampling
methods applied to seven WDS design case studieshe&inumber of decision variables

ranging from 34 to 1274&his chapter linksto Objective 1 of thisthesis (Table1.1).

Chapter 3 (publication 2) aims to investigate the relative impact of différalgorithm
initializations and searching mechanisms on thedpath which near-optimal solutions
can be identified. While the impact of the initzaliion (initial population, starting
position in solution space) of EAs on theeed (in terms of computational effort) with
which near-optimal solutions can be found has been investibpteviously, the impact
of using different EAs (e.g. genetic algorithm, feliéntial evolution) and EA
parameterizations (e.g., mutation rate) on thdivelperformance of these initialization
methods has not been studied previously. This sadlyesses this issue. In order to
obtain a better understanding of the relative perémce of different algorithm
initialization methods and searching behaviouse@ndary objective of this research is
to examine the properties of the fithess functiohthe case studies and the run-time
behavioural statistics of the different algorithared their parameterizations, and how
they relate to observed algorithm performarites chapter links to Objective 2 of this
thesis (Table 1.1).

Chapter 4 (publication 3) develops and tests a method for identifying highlity
initial populations for multi-objective EAs (MOEAspplied to WDS design problems
aimed at minimizing cost and maximizing network ilisce. The proposed
multiobjective initialization method not only codstrs the relationship between pipe size
and distance to the source(s) of water, as fomisthod inChapter 2, but also accounts
for the relationship between flow velocities andivaek resilience. The benefit of using
the proposed approach compared with randomly gemgiaitial populations in relation
to finding near-optimal fronts more efficientlytissted on five WDS optimization case
studies of varying complexity with two MOEAs (NSGRand Borg).This chapter links

to Objective 3 of thisthesis (Table 1.1).
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While the manuscripts have been reformatted (tboss have also been renumbered)
in accordance with University guidelines, the matewithin this thesis is otherwise
presented herein as published or submitted foigatlan. A copy of the manuscript that

has already been published is provided in Appendix.

Conclusions of the research within this thesis mavided in Chapter 5, which
summarises research contributions, research lianiaand recommendations for further

research.
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Abstract

Over the last two decades, evolutionary algorithl@8s) have become a popular
approach for solving water resources optimizatiwblems. However, the issue of low
computational efficiency limits their application large, realistic problems. This paper
uses the optimal design of water distribution systé/VDSs) as an example to illustrate
how the efficiency of genetic algorithms (GAs) dam improved by using heuristic
domain knowledge in the sampling of the initial plgion. A new heuristic procedure
called the Prescreened Heuristic Sampling Meth&tS5{®) is proposed and tested on
seven WDS cases studies of varying size. The EP/&dat files for these case studies
are provided as supplementary material. The pedooa of the PHSM is compared
with that of another heuristic sampling method &l non-heuristic sampling methods.
The results show that PHSM clearly performs beseraly both in terms of
computational efficiency and the ability to findan@ptimal solutions. In addition, the
relative advantage of using the PHSM increasesmvetork size.

Keywords: Optimization; Genetic algorithms, Water distrilout systems; domain

knowledge; heuristics; computational efficiency.

2.1 Introduction

Evolutionary algorithms (EAs) have been used ssfolyg and extensively for solving
water resources optimization problems in a numbareas, such as engineering design,
the development of management strategies and roatiletation (Nicklow et al. 2010;
Zecchin et al. 2012). However, a potential shoriogmof EAs is that they are
computationally inefficient, especially when apgli¢o problems of realistic size.
Consequently, there is a need to improve the caatipoal efficiency of EAs to make
them easier to use for the optimization of realstater resources problems (Maier et al.
2014a).

One application area where this is the case tieiglesign of water distribution systems
(WDSs) (Marchi et al. 2014a; Stokes et al. 2014prGhe past two decades, a variety of
EAs have been applied to this problem, as detail&theng et al. (2013a). Among these,
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genetic algorithms (GAs) have been used most exengSimpson et al. 1994; Dandy
et al. 1996, Gupta et al. 1999; Vairavamoorthyl.e2@05; Krapivka and Ostfeld 2009;
Kang and Lansey 2012; Zheng et al. 2013b). How&vas have been primarily applied
to relatively simple benchmark problems, such asl#-pipe problem (Simpson et al.
1994), the New York Tunnels problem with 21 tunn@sindy et al. 1996), and the
Hanoi problem with 34 pipes (Zheng et al. 201Iajekent years, there has been a move
towards increasing the complexity and realism ef ¢ase studies to which GAs are
applied, including the Balerma network with 454gsifReca and Martinez 2006), the
Rural network with 476 pipes (Marchi et al. 2014bg BWN-II network with 433 pipes
(Zheng et al. 2013b), and the network used by KenthLansey (2012), which has 1274

pipes and will be referred to as the “KL” netwodk the remainder of this paper.

Increased network size and complexity result imiBzant challenges in terms of
achieving good quality near-optimal solutions givlea computational budgets that are
typically available in practice (di Pierro et &l(®; Fu et al. 2012). This is because (i) the
time for hydraulic simulation increases appreciafily large WDSs; and (ii) the
complexity and size of the search space assocwteda large WDS are increased
significantly. As a result, computational efficignicas been identified as a key concern
for the widespread uptake of GAs for the optim@atof large, real-world WDSs (di

Pierro et al. 2009).

In order to address this issue, two main approalches been adopted in the literature.
As part of the first approach, it is argued thatidoge, real problems, the focus should be
on finding the best possible solution within a ist&l computational budget, rather than
on attempting to find the global optimal solutieg, Tolson and Shoemaker 2007;
Gibbs et al. 2008; Tolson et al. 2009; Gibbs eP@10, 2011). This is because for such
large problems, the global optimal solution is kelly to be found within a reasonable

computational timeframe.

As part of the second approach, efforts have bestterto increase the computational

efficiency of the optimization process. This hagrbelone in a number of ways,
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including the use of increased computational powech as parallel and distributed
computing (Wu and Zhu 2009; Roshani and Filion 2042 and Behandish 2012), the
use of surrogate- and meta-modeling to speed ugirthéation process (e.g. Broad et al.
2005; di Pierro et al. 2009; Broad et al. 2010;dRagt al. 2012), and the seeding of the
initial population of EAs with good solutions obitad using a variety of analytical
techniques (e.g. Keedwell and Khu 2006; Zheng. @(dl1a; Fu et al. 2012; Zheng et al.
2014(b,c,d)). It should be noted that similar catsehave recently also been used in
conjunction with other optimization techniques (&lgang et al. 2013; Housh et al. 2013)
and non-optimization based WDS design approactgsSgzenfrei et al. 2013).

Although some of the methods mentioned above aeitéizgineering knowledge in their
development (e.g. Keedwell and Khu 2006; Zhend. &04.1a), there have been limited
attempts to incorporate engineering knowledge apereence directly. Only Kang and
Lansey (2012) have combined engineering experieitbeGAs in order to increase the
computational efficiency of the optimization progeshis was achieved by seeding half
of the initial GA population with solutions thastét in flow velocities below a threshold
selected from within a pre-defined velocity rangewever, the approach has only been
applied to a single case study thus far and iativel performance has not yet been
assessed in a rigorous and comprehensive mannaddition, the approach has a
number of potential shortcomings. Firstly, selectmf an appropriate range for the
velocity threshold is subjective, which might make method difficult to apply and
could result in inconsistent results from repeatadependent implementation of the
method. Secondly, pipe sizes that result in ap@atEpvelocities are determined using a
structured trial-and-error process. However, irciiea, pipe sizes generally reduce with
distance from the source (Walski 2001). Conseqyetitere exists an opportunity to
incorporate this domain knowledge into the inipgle sizing process. Finally, there is
limited control over population diversity, as thg& achieved by seeding the initial
population with 50% of randomly generated solutiand 50% of the solutions obtained

based on engineering experience.

11



CHAPTERZ2.JOURNAL PAPER1

In order to address these shortcomings, the olgsctf this paper are (i) to introduce a
new heuristic sampling method for determining thigal population of GAs for the
least-cost design of WDSs that is based on engigeexperience / domain knowledge
and that overcomes the potential shortcomingseofrtethod of Kang and Lansey (2012);
and (i) to provide a rigorous assessment of thopeance of this method compared
with that of Kang and Lansey's sampling method (KI)Snd two sampling methods
that do not consider any domain knowledge (i.edeam sampling (RS) and Latin
hypercube sampling (LHS)) on seven WDS design sas#ies of varying size and

complexity.

The remainder of this paper is organized as follol¥se proposed heuristic, domain
knowledge based sampling method for determiningriitial population of GAs for the
least-cost design of WDSs is introduced in nexiaedollowed by the methodology for
assessing the performance of this method agaiastahthe KLSM and the two
non-heuristic sampling methods. Next, the resutgpeesented and discussed, followed
by a summary and conclusions.

2.2 Proposed prescreened heuristic sampling methotbr WDS
design

The proposed heuristic sampling method for inttialj the population of GAs for
the least-cost design of WDSs based on domain ledgel is called the Prescreened
Heuristic Sampling Method (PHSM). It uses a threpgrocedure that (i) selects
pipe sizes based on knowledge that pipe diametserglly get smaller the further
they are from the source; (ii) dynamically adjuts velocity threshold to account
for the fact that appropriate velocity thresholds kkely to be network dependent;
and (iii) enables the diversity of the initial pdgtion to be controlled by sampling
from distributions centred on the solutions detaedi using the heuristic procedures
in (i) and (ii). The PHSM has some similaritiestb@ KLSM in that it aims to find

initial pipe sizes that restrict flow velocities lie within certain ranges. However, it

12



CHAPTERZ2. JOURNAL PAPER1

overcomes the potential limitations of the KLSMImeéd in the Introduction. Details

of the three steps of the PHSM are given below.

Sep 1: Assign pipe diameters based on distances between demand nodes and supply

Sources

As mentioned above, the first step of the PHSM adivated by the knowledge that,
in real WDSs, the diameters of upstream pipes anerglly larger than those further
downstream (Walski 2001). However, for WDSs, eaemand node usually has a
number of different paths that connect it to thepdy source (reservoir). This
indicates that the spatial distance between eagtandé node and the reservoir may
vary according to the paths selected to deliverdgeired demands. In the proposed
method, the shortest delivery path to each dematt® ns selected and used to
represent the spatial distance between that nodehensource node. The rationale
behind this is that it has been demonstrated b®atrtajority of the demand at a node
is supplied by the path with the shortest distafozean optimal design of WDSs
(Zheng et al. 2011a). The detailed process of stefpthe PHSM is as follows:

i Find the shortest distance to a reservoir in wager network]; for each node
(i=1,2.....n, wheren is the total number of demand nodes in the netivosing
the Dijkstra algorithm (Zheng et al. 2011a). Wheralthg with a water network
with multiple reservoirs, an augmented source rniedgreated to connect all the
reservoirs to enable the determinatior; dbllowing Deuerlein (2008) and Zheng
et al. (2011a).

ii: Obtain the largest value of the shortest distdnby L=max(;).

ii: Divide the network intoP specific areas with the shortest distance to thece
node interval ofL/P, whereP is the number of available pipe diameters for the

design.

iv: Assign pipes in each area a different diametath the largest diameter assigned

to the pipes in the area nearest to the sourcéh@nsimallest diameter to the pipes
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in the area furthest from the source (reservoil). pdpes in a single area are

assigned the same diameter.

For example, for the WDS introduced by Zheng e(2011a), which has 164 pipes
(Figure 2.1), the largest shortest distance ohadles () is obtained after steps i and
ii. If there are five diameter options for this wetk (i.e. P=5), the network will be
divided into five areas in step iii. In order to dois (i) all nodes that have a
shortest-distance that is not greater thédh(i.e. 0<l;sL/5) form Area 1; (ii) all nodes
that have a shortest-distance that is larger th&nbut not greater thaBL/5 (i.e.
L/5<[;<2L/5) form Area 2; (v) all nodes that have a shortestatice larger than 4L/P
(i.e. A/5<li<L) form Area 5. The resulting division of the netwas given in Figure
2.1. Finally, (i) all pipes in Area 1 are assigrikd largest diameter; (ii) all pipes in
Area 2 are assigned the second largest diametérs@mn until all pipes in Area 5
are assigned the smallest pipe diameter. As shehjiameters of the upstream pipes

are generally larger than those of the downstreigesp

Figure 2.1WDS used to illustrate the result of network divison of the PHSM
(The red dot lines represent the distance boundarysed to assign diameters)
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Sep 2: Adjust pipe diameters based on velocities

In this step, the diameters obtained in step ITrefired to achieve flow velocities in
all pipes that are close to a particular threshdldis is based on the domain
knowledge that the velocity in each pipe of an ropti solution for a WDS is in a
limited range. In addition, in order to ensure ttegt chosen pipe diameters approach
optimal values, the velocity threshold is seledtedesult in solutions that are on the
boundary between feasibility and infeasibility. 38 because the optimal solution is
often located on the boundary of the feasible afebsible areas of the search space.

The stages in the process for achieving this avevshn Figure 2.2.

Set up a initial threshold velocity (v), for exampt=0.1nv/s.
Specify the adjustmentv, for exampledv=0.1m/s.
Set up the number of simulatiarO.

'

Perform a hydraulic simulation (EPANET2.0) for thetwork with initial diameter®;

| For all pipes, check whethdiD; =D;? I&>| Check whethes=S,,, (maximum number )1‘—

o_> obtained inep 1 (j=1,2...m, where m is total number of pipes). —

h Update s=s+1.

3 v

£ | Obtain the flow rate for each pip@). | 5
E : il
= Calculate the updated diametdD)) using NDj=/4Q; for all pipes. a)
3 ™ 0
< ; ]
_5 | Round all updated values ND; to the nearest discrete pipe diameters. |

3

%]

R

ES

()

>

[

(2]

o)

¢

Yes i Yes
| Calculate the total pipe cog}.( |
—| Is the minimum pressure satisfied at all nodes? |

Nol

| Finish and select the feasible solution with thedet cost from the pool. |

Figure 2.2 Flowchart of the algorithm for adjusting pipe diameters based on flow
velocity

As can be seen from Figure 2.2, an inner loop anduder loop are involved in the
algorithm. The inner loop is used to determine rieévork configuration based on

pipe velocities. To do this, a threshold value for velocity needs to be assigned at
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the beginning (e.gv =0.1 m/s), which represents the expected velooityefch pipe
in the network. The network with initial diametedgtermined in Step 1 is then

simulated using a hydraulic solver to obtain tlesvflate for each pipe. Based on this
flow rate, the new diameteND, for each pipe can be calculated using:

ﬂ

ND, =
Y

(2.1)

wherej=1,....mis thej™ pipe in the water network amdis the total number of pipes.
As continuous diameter values are generated ugjogtion (2.1), these values need
to be rounded up or down to the nearest discretmetier based on the available

options.

The inner loop continues until there is no furtbkange in diameter in accordance
with Equation (2.1) or the number of simulatiossréaches the specified maximum
number of allowable simulation§:x), at which point the cosf)(and the minimum
pressure head of this design are determined. # $biution is feasible (i.e., the
pressure head constraints are satisfied), the meteanfiguration and its associated
network cost are saved to an archive. As part efdtter loop, the inner loop is
repeated for successive increases in the veldeigshold (i.e.v=v+Av) until no
feasible solution can be found. If the solutionrfduat the completion of the inner
loop is infeasible, the outer loop is not performaad the process of adjusting
diameters is terminated. Finally, the feasiblaisoh with the lowest cost for the
different velocity thresholds considered is selédtem the archive and denoted as
an approximate optimal solution for the WDS beipgraized. This solution is then

used as the starting point for Step 3, as outlbeddw.

Sep 3. Generate distribution functions based on the approximate optimal solution
determined in Sep 2.

In order to ensure sufficient diversity in the ialitsolution, the initial diameter for

each pipe is generated from a distribution, suett the pipe diameter obtained in
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Step 2 has the highest probability of being setecide logic behind this is that the
approximate diameter for a pipe determined in 2tepmost likely to be the optimal
diameter relative to other diameter options. Hermetelatively higher density
function value is assigned to this diameter (t.&s imore likely to be selected during

sampling).

The density functiorf(Dy) and the distribution functiof(Dy) for selecting each
initial diameter are given by the following equaiso

1

(D)= o KLbeP (2.2)
F(Dk)=Pf(—Dk) k=1..P (2.3)
> (D)

wherea is a constant factor to control the density ofhedmmeter D, , details of

which are discussed in Section 4; is the distance betwe@&y andD. (the diameter
for a pipe in the approximate optimal solution deteed in Step 2) in terms of

integer coding; an@ is the total number of available pipe diameters.

In order to illustrate how the approach outlined\abis used to generate the pipe
diameters in the initial solution, the followingample is used. Table 2.1 presents the
assumed total pipe diameter options and their spamding integer coding values. If
D~=200mm in Step 2 for a particular pipe, its integede is 1, as shown in Table 2.1.
The absolute distancgx| between eacBy andD; is then calculated and presented
in the third column of Table 2.1. The density fumctand distribution function
values for generating each available diameter e pipe during sampling are
calculated based on Equations (2.2) and (2.3),eotisely (assumingg=1). The
results are given in the fourth and fifth columrsTable 2.1. As can be seen, a
diameter of 200mm has the largest probability ahdpeelected during sampling, as

this diameter is selected based on the heuridts msed in Steps 1 and 2. In contrast,
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a diameter of 600mm has the smallest probabilithehg selected, since it has the

largest distance to the optimal diameter of 200mm.

Table 2.1 An example to illustrate the applicatiorof Step 3 of the PHSM

Pipe diameters Integer coding| Absolute distance Density function Distribution function
Dk (mm) number to D¢ (|X]) values f(D,) values F(p,)
100 0 1 0.5 0.19
200 1 0 1 0.39
300 2 1 0.5 0.19
500 3 2 0.33 0.13
600 4 3 0.25 0.10

It should be noted that the assumption made in Stépt the upstream diameters are
typically larger than those further downstream rhigbt hold for all networks due to
the influence of network topology and zoning, Hoesmvas the initial diameters
obtained in Step 1 are adjusted based on flow iteledn Step 2, the influence of

network topology and zoning is accounted for indkierall approach.

2.3 Methodology

As stated in the Introduction, one of the objedivd this paper is to provide a
rigorous assessment of the relative performandeeoPHSM compared with that of
the KLSM and two sampling methods that do not agrsdomain knowledge. The
flowchart of the process for achieving this is show Figure 2.3. As can be seen,
four different sampling methods, including two histic methods (i.e. the PHSM and
the KLSM) and two non-heuristic methods (i.e. RSl &tS), are used to obtain
initial GA populations. The two non-heuristic samgl methods are considered as
they provide a benchmark against which the perfogeaof the two heuristic
sampling methods can be assessed. RS is used as tie conventional method for
initializing GA populations and LHS is used as royides a more structured
approach for sampling the solution space. It shblchoted that, although there are
some other analytical techniques for seeding thigalinpopulation of EAs (e.g.
Keedwell and Khu 2006; Zheng et al. 2011a; Fu .€2@l12), they do not incorporate
engineering knowledge and experience directly aamté are not considered in this

paper.
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Heuristic sampling Non-heuristic sampling

1 ! : 1
1 ry 1
__» Initialization of N !
populations ' Method 1: Method 2: P Method 3: Method 4: '
! PHSM Kang & Lansey (2012) | Random Latin hypercube !
[E—— # ________________ # ________ VLT N S $ ______ 1
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Case studies | Network 1: Network 2: Network 3: || Network 4: | | Network 5: Network 6: || Network 7:
Hanoi Extended Hanoil| Fosspolyl 7] Balerma Rural KL
¥ v v ‘ ¥ ! ! !
EA ‘ Genetic Algorithm Optimization‘
} Undertake 10 runs using different random numbeds#e
\
. The average of best solutions The best solution
Results comparison found in 10 runs found in 10 runs

Figure 2.3 Flowchart of the assessment process

Each of the sampling approaches is applied to s&vB&$ss of varying size and
complexity, including the Hanoi, Extended Hanoissjooly 1, ZJ, Balerma and Rural
networks, as well as a modified version of the Kdtwork (KLmod). The networks
are optimized for total life cycle costs while séting pressure head constraints at
each demand node. The hydraulic simulations reguoeheck pressure constraints
are performed using EPANET 2.0, as demand-drivedefting is most commonly
used in optimization studies, although pressureedrimodelling is likely to be a
better alternative under some circumstances (LAwtedl. 2012). Each of the GA
optimization runs is repeated 10 times with différeets of initial solutions and GA
operators generated using different random numbedss for each network and
sampling method. The results are compared in tefrtise best and average solutions
found during these ten runs. Details of each ofdbeponents of the process are

provided in subsequent sections.

2.3.1 Sampling methods

Details of the KLSM (Method 2, Figure 2.3) and tweo non-heuristic sampling
methods (Methods 3 and 4, Figure 2.3) are givemviheDetails of the PHSM
(Method 1, Figure 2.3) are given in the previougise.
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2.3.1.1 The KLSM (Kang and Lansey 2012) (Method 2)

As mentioned previously, in this approach, inigalutions are generated by adjusting
pipe diameters to ensure that the velocities irpipks are less than a pre-set velocity
threshold selected from a practical range of veéscifor average and peak flows in

water supply networks. The heuristic proceduraétrieving this is as follows:
(1) All pipes to be optimized are set to the minimuloveable diameter.

(2) A hydraulic simulation is carried out to obtairetiiow velocity in each
pipe.

(3) The resulting velocity in each pipe is comparethva pre-set velocity
threshold selected from within the range of 0.4b+h/s (e.g. 1 m/s). If the
velocity is larger than the threshold, this pipgnaeter is increased to the next

larger commercial size.

Steps (2)and (3)are performed repeatedly until all velocities inpbes are below the
threshold and the resulting pipes sizes are userto one solution of the initial
population. A number of different initial solutiofs generated by varying the value of
the velocity threshold within the pre-defined véipcange of 0.45 - 1.5m/s. In order to
maintain solution diversity, half of the initiallstons are generated using this heuristic
method, while the other half are generated randormythis study, the velocity

thresholds of the KLSM are obtained using the faitg equation:

@.5m/s- 045m/s)

In
2

VT, = 045m/s+r (2.4)

where VT, (m/s) is the rh (r=1,2...,%N) velocity threshold used for generating the

heuristic solutiong\ is the total population size.
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2.3.1.2 Random Sampling (Method 3)

In random sampling (RS), each diameter option hassame probability of being
selected for each pipe within the WDS. When gemgyad solution, each decision
variable (i.e. pipe) is assigned a diameter vaha ts randomly selected from all
available diameter options.

2.3.1.3 Latin Hypercube Sampling (Method 4)

Latin Hypercube Sampling (LHS) is a type of stiatifsampling method that ensures
that all portions of the sample space of each bhiare sampled (McKay et al.

1979). In this study, Simlab2.2 (JRC 2008) is usedenerate initial solutions using

LHS for each case study. A detailed descriptiothefprocess of LHS can be found
in the manual of Simlab2.2 (JRC 2008).

2.3.2 Case studies

Details of each case study are given in Table Ro2.each case study, the decision
variables are the pipe diameters and the objeidit@ find the minimum cost solution
while satisfying the pressure head constraintss€aqurently, the optimization problem to

be solved can be represented as follows:

Minimize F = icj(oj) (2.5)
<
Subject to:
H™<H <H™ i=12...,n (2.6)
G(H;, D)=0 2.77)
D; L{A 2.8)
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whereF is the network cost that is to be minimize@;(D;) is the cost function for
pipej =1,2...mwith assigned diamet&);; m andn are the total number of pipes and
demand nodes in the network, respectiv@{td;, D)=nodal mass balance and loop
(path) energy balance equations for the whole nd&twaoth pipe combinations of

D=[Ds, D2,....Dm]T, which is solved using EPANET2.Bl=head at node=1,2....n;
H™and H™ are the minimum and maximum allowable head lirattthe nodes;

andA = a set of commercially available pipe diameters.

Table 2.2 Details of the seven case studies

No. of No. of Size of total Pressure Current best Current best
Case study Reference decision diameter search space head solution solution
variable  optiong P constraint found by GAs
$6.081 million $6.081
Fujiwara by Reca and million by
Hanoi and Khang 34 6 286x10%° >30m Martinez (2006) Reca and
(1990) using Martinez
GENOME (2006)
Extended current " 3 3
Hanoi study 34 10 x10° 2 30m ) )
$0.0291 million
Bragalli et - by Bragalli et 3
Fosspolyl ) (2012) 58 22 726<10 240m  ,"2012) using
MINLP
$7.082 million
Zheng et a7 by Zheng et al. 3
2 al. (2011a) 164 14 923x10 z22m (2011a) using
NLP-DE
Reca and €1.923 million €2.302
. by Zheng et al. million by
54
Balerma l\?gggg):z 454 10 210" 2 20m (2011a) using  Bolognesi et
NLP-DE al. (2010)
$ 31.22 million $36.25
Rural Marchi et S5 by Marchi et al. million by
network al. (2014) 476 15 658x10 20m (2014) using Marchi et al.
DE (2014)
Adapted
KLmod from Kang 274 3 3
network and Lansey 1274 10 1x1C" 2 45m ) )
(2012)

The decision variables are the pipe diamefé&te pipe diameter options for the Extended Handité&h network are given in
this paper and those for the other case studiegiaea in the references providé@he current best solutiés unknown or the

network has not been optimized previously usingaolutionary Algorithm.

As shown in Table 2.2, the seven case studiesinaize and complexity. Details of
each network, including the network layout, theilade pipe diameters and the cost
of each diameter for the Extended Hanoi and the &d.metwork are given in this
paper and those of the other case studies are givle corresponding references in
the second column of Table 2.2. The EPANet indasfior these seven networks are

provided as supplementary material. The current k@swn solution for each case
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study (if available) is presented in the second ¢adumn in Table 2.2. The best
known solutions (least-cost solutions) for the HaBalerma and Rural case studies
found by GAs are given in the last column, while @A solutions can be found in

the literature for the other case studies.

The Extended Hanoi case study is developed basdteonriginal Hanoi problem
(Fujiwara and Khang 1990), and has not been usqutewious studies. The only
difference between the original and Extended Hamasie studies is the number of
available diameters for each pipe, while the othérmation is the same. As it is
acknowledged that infeasible solutions dominatestbeach space for the Hanoi case
study, a larger number of diameter options is idetufor this case study in order to
test the performance of the various sampling metheden dealing with a search
space with a larger feasible proportion. For théeBaed Hanoi problem, ten pipe
diameters, including 12, 16, 20, 24, 30, 40, 50, BDand 80 inches are available
instead of the six smallest diameters from thisthat were available for the original

Hanoi case study (Fujiwara and Khang 1990).

The topology of the KLmod network case study isstakrom the network used by
Kang and Lansey (2012), without consideration ohps and fire-fighting conditions.
For this network, a total of ten diameters, inchgdi50, 200, 300, 400, 500, 600, 700,
800, 900, and 1,000 mm are available for all pipet) the unit costs given in Kadu
et al. (2008).

2.3.3 Genetic algorithm optimization

The description of genetic algorithms (GAs) hasnbe®ll documented (see e.g.
Simpson et al. 1994) and hence, this informatiomoisrepeated in this paper. In this
study, the GA used integer coding, two-point cressp bitwise mutation, and
tournament selection, as these have been demaust@tbe effective in terms of
finding optimal solutions (Deb 2000; Vairavamoortagd Ali 2005; Zheng et al.
2011b). Although a number of different GA variahts/e been developed over the

past four decades in order to improve search pedoce (Dandy et al. 1996;
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Nicklow et al. 2010), the use of a relatively startdlGA formulation was considered
adequate, as the focus of this study is on theuatiah of different methods for
obtaining initial GA populations. In addition, alif the sampling approaches
considered in this paper can be used in conjunetitmany GA variant or other type
of EA.

2.4 Computational Experiments

The four sampling methods (i.e. the PHSM, the KL3\, and LHS) were used to
generate the initial solutions for GAs applied &zle of the seven WDS case studies
(Figure 2.3). The results of GAs seeded using tliese sampling methods were

compared in terms of objective function value aadhputational efficiency.

For the PHSM, the value of the initial thresholdoe#y v used in Step 2 was
selected to be 0.1 m/s for all case studies baretthe results of preliminary trials
with several different values, although variatimighis initial value were found to
have only a slight impact on the results. It wasnfib that the overall number of
simulations required for adjusting pipe diameter$iep 2 was less than 200 for the
seven case studies, and hence the maximum numlsioafable simulationSm.x
was set to 1000. In Step 3 of the PHSM, a numbedif®érent values ofa (see
Equation 2.2) ranging from 0.1 to 2 were tried arwl0.5 was ultimately selected, as
it produced slightly better results than othevalues. However, as was the case for
the initial threshold velocityv , slight variations ira did not significantly influence
the final results. For the KLSM, velocity thresheldiere generated in accordance

with Equation (2.4).

The parameter values of the GAs applied to eaoh stasly were fine-tuned with the
aid of a large-scale sensitivity analysis. Forc¢hessover probability, values ranging
from 0.1 to 0.9 were tried. For the mutation praligh 10 different values around
the value oft/ND (whereND is the number of decision variables) were triedefach
study, as it has been demonstrated that a valapmbximatelyl/ND is an effective

value and is normally used for GAs (Simpson ei894). The parameter values that
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exhibited the best performance in terms of effitiefinding good quality optimal
solutions were selected and are presented in RaBldé-or each case study, the GAs
seeded using the four sampling methods considesed ilne same parameter values.
A penalty cost was added to the objective functialue for infeasible solutions, with
a penalty multiplier of 1Umetre of head being used for all case studiesSom et
al. 1994). The tournament size in the selectiorraipe was two for all GAs. The
maximum allowable number of evaluations for eacbecstudy is given in the last

column of Table 2.3, with the larger networks asstjlarger computational budgets.

Table 2.3 Parameters values of GAs for each caseidy

Number of

o Network group . . Total
decision Population Crossover Mutation
Case study ; based on the . - . number of
variables X size (N) probability probability .
(ND) size of WDSs evaluations
Hanoi 34 100 0.9 0.02 300,000
Extended Hanoi 34 G1 (ND<100) 100 0.9 0.02 300,000
Fosspolyl 58 500 0.8 0.02 500,000
ZJ 164 G2 500 0.9 0.006 500,000
Balerma 454 1000 0.9 0.002 1,000,000
Rural network 476  (LOOND<S00) 7450, 0.8 0.002 1,000,000
KLmod network 1274 GD>500) 1,000 0.9 0.0008 2,000,000

In order to facilitate easier discussion of theulss the seven case studies were
assigned to three groups based on the number sialegariablesD), as shown in
the third column of Table 2.3. The first three catigdies (Hanoi, Extended Hanoi
and Fosspolyl) were assigned to G1, as their vadfiddD<100, while the ZJ,
Balerma and Rural network case studies were a#ldctad G2 with 100KMD<500.

The KLmod network was assigned to G3, ad\iis>500.

The performance of each sampling method was askesseg the method outlined
below:
1. For each case study, ten GA runs were performede&mh of the four
sampling methods using different random numberseaegulting in a total of
40 final optimal solutions.
2. The best final solution from the 40 solutions wekested for each case study

and used as a benchmark against which the perf@amaheach sampling
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method was assessed. This benchmark optimal solutas also compared
with the current best known solution in the literat obtained using similar
GAs, if available (see Table 2.2), in order to eaghat the results obtained in
the current study are reasonable.

3. For each sampling method, the average of the bmstian at each GA
generation was calculated for each case study baseithe ten runs with
different starting random number seeds (denoted)ABSaddition, among
the ten best solutions at each generation, thewstiethe lowest cost was
selected (denoted as BBS).

4. The deviation of ABS and BBS from the correspondaegchmark optimal
solution was plotted against the number of evabmstifor each sampling
method. This resulted in four convergence curvethersame plot, enabling a
comparison of the performance of the four sampiiveghods considered.

5. The performance of each sampling method was aksesasd in terms of its
computational efficiency in being able to find ne@timal solutions. For this
purpose, optimal solutions that had objective fiomctalues within 5% of the
benchmark optimal solution were defined as beirag-Hoptimal.

In order to enable a fair comparison between thehodas, the computational
overheads associated with implementing the prop&¥¢8M are also considered
(Table 2.4). This was achieved by converting thenmatational time required for
each step of the proposed PHSM (see Section 2.#)etequivalent number of
network simulations using the same computer cordition (Pentium PC (Inter R) at
3.0 GHz). As shown in Table 2.4, the proposed PHSMery efficient in computing
the shortest-distance values for the network (Stpmnd generating distribution
functions based on the approximate optimal solsti®tep 3), while it is relatively
more time-consuming in adjusting pipe diameteretam the velocities in Step 2.
This is expected, as this step involves an itegapyocess (see Figure 2.2). The
number of equivalent network simulations that cgpond to the total computational

overhead required by the PHSM method is presentdki last column of Table 2.4.
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As can be seen, this computational effort is nédgkgcompared with the total
computational budgets used in Table 2.3, and hescrot considered in the

subsequent discussions in Section 2.5.

Table 2.4 Computational overhead analysis for thenmpposed sampling method

(PHSM)
Number 'Equwglent Equivalent .Equw.alent
simulations of . . simulations of
of simulations of the Total
- the . the .
Case study decision . computational . computational
; computational . computational
variables head di overhead used in head d overhead
(ND) overhead used in Step 2 overhead use
Step 1 in Step 3
Hanoi 34 10 102 1 11(®.38%)
Extended 0
Hanoi 34 10 126 1 1370.46%)
Fosspolyl 58 11 153 1 168.33%)
Z] 164 6 147 2 15.31%)
Balerma 454 8 165 3 176.18%)
Rural network 476 9 171 3 1880.18%)
KLmod 0
network 1274 14 190 4 208.10%)

The computational overhead used for each step éas ¢onverted to the equivalent number of networkilstions for
each case study.

*The computational overhead is expressed as thevadgni number of simulations and the fraction oé tiotal
computational budget this represents (in brackets)

2.5 Results and discussion

The costs of the best solutions found using the BAislized with the four sampling
methods considered for each of the seven caseestad? given in Table 2.5, with the
lowest cost solutions found highlighted in bold.dddition, for the case studies to
which GAs had been applied previously in the litera, the percentage deviation of
the solutions found in this study compared with iest solution found using GAs
reported in the literature are shown in brackets. (hnegative percentage changes
indicate that the solutions found in this study be¢ter and vice versa). It should be
noted that the results presented here are compatiedhose obtained using GAs in
previous studies because the purpose of this sisidp compare the relative
performance of different initial sampling approagheThis requires the impact of
the sampling approaches to be isolated from theaanpf algorithm searching

behavior as much as possible. Consequently, as & @#ed as the EA in this study
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for reasons outlined previously, the final resoliéained in this study should only be

compared with those obtained using other GAs.

Table 2.5 Cost of the best solution found by eaclspling method for each case

study
Case study Cost of the best solution found by each samplinthoee (Million)
RS LHS KLSM PHSM
Hanoi $6.1951.87%) $6.217(2.24%) $6.224(2.35%) $6.109(0.46%)
Extended Hanoi $5.365 $5.366 $5.360 $5.346
Fosspolyl $0.0294 $0.0294 $0.0309 $0.0290
Z) $7.562 $7.560 $7.655 $7.431
Balerma €2.12%-7.69%) €2.146(-6.78%) €2.130(-7.47%) €2.061(-10.47%)
Rural $36.108-0.39%)  $36.265(0.04%) $36.255(0.01%) $35.173(-2.97%)
KLmod $8.686 $8.737 $8.418 $8.307

Note: The result of each sampling method for eae study was obtained over 10 runs with differantiom number seeds.
The percentage of the cost of each best solutiative to the best solution found by GAs is givantalics in the brackets. The
benchmark optimal solution for each case studydgcated in bold.

From Table 2.5, it can be clearly seen that by gisive proposed PHSM, better
quality solutions could be found for each casestuithin the given computational
budgets than when the other approaches were u$ed KLISM produced better
solutions for the large KLmod network compared e tother two non-heuristic
sampling methods (RS and LHS). This agrees wel whe observations made by
Kang and Lansey (2012). However, for five of théieot six case studies, RS

performed better than the KLSM in terms of the gyalf the final solutions.

The convergence plots for each of the algorithmglfe case studies belonging to the
three different groups defined in Table 2.3, asndef in the previous section, are
given in Figures 2.4 (G1), 2.5 (G2) and 2.6 (G3) anovide an indication of both
solution quality and computational efficiency. Anomon observation is that the
PHSM generally found significantly better initiablstions than the non-heuristic
sampling approaches. This is most likely becausartitial solutions obtained using
the PHSM were feasible and the diameters for tisedetions were generally in a
reasonable range based on velocities, nodal denmardiglevations. For the larger
case studies, the PHSM also found significantlyteoeinitial solutions than the

KLSM. The initial solutions obtained using the atheampling methods were
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typically infeasible for the larger case studiesfeamsible with high costs for the
simpler WDSs. This demonstrates that the proposemath knowledge based
sampling method is effective in identifying goodatjty starting solutions. A detailed
discussion of the results for the three groupsasecstudies is given in the subsequent

sections.

2.5.1 Group 1 (G1) case studies

As can be seen from Table 2.5 and Figure 2.4, ¢ilopnance of the GAs initialized
with the four different sampling methods is versngar for the G1 case studies (i.e.
Hanoi, Extended Hanoi and Fosspolyl), both in teomthe ability to find optimal
solutions and computational efficiency. While th&<Ginitialized with the PHSM
were able to find the best solution for all threse studies, the variation in the cost
of the best-found solutions was relatively smalalfle 2.5). Similarly, while GAs
initialized with the PHSM found better initial stilons and generally converged
more quickly than the GAs initialized with the othmethods (Figure 2.4), this
difference was not very large. Consequently, basethe results obtained, there does
not appear to be a significant advantage of usiogain knowledge for the
initialization of GAs for small problems, such dose considered for the G1 case

studies.
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(a) Case study 1: Hanoi (34 decision variables)
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Figure 2.4 Results of the GAs with the four samplig methods applied to case
studies in Group 1 (G1 in Table 2.3)
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2.5.2 Group 2 (G2) case studies

As can be seen from Table 2.5 and Figure 2.5, ¢hlomance of the GA initialized
with the PHSM is noticeably better than that of As initialized with the other
three methods for the G2 (ZJ, Balerma, Rural) netgjoboth in terms of the
best-found solution and computational efficienchisTsuggests that while for the
simpler G1 case studies the GAs were able to fomtgsolutions relatively quickly
with the aid of their evolutionary operators, ipestive of the starting position in
solution space, this is not the case for the mamptex G2 case studies. This
demonstrates that the better starting positionsolation space identified using the
PHSM are able to assist the GA with finding betégiions of larger search spaces, as
indicated by the better solutions found when thes@#&re initialized with the PHSM
(Table 2.5 and Figure 2.5). This trend was alreaaljceable for the Fosspolyl case
study, which is the most complex of the G1 casdistu(Figure 2.4).

The results in Table 2.5 and Figure 2.5 also irtditiaat the solutions found using the
PHSM were not only better than those obtained uRiSgand LHS, but also better
than those obtained using the other heuristic Sagphethod (i.e. the KLSM). This
appears to be both as a result of the quality aretsity of the initial solutions. For
example, for the ZJ and Rural networks, the PHSM alae to identify significantly
better initial solutions than the KLSM, resultingmore rapid convergence and better
final solutions (Figure 2.5). In contrast, for tBalerma network, use of the KLSM
resulted in better initial solutions than use & BHSM. However, despite this initial
disadvantage, use of the PHSM resulted in moredragnvergence and the
identification of better solutions, which is likefue to the additional control over
population diversity offered by the PHSM. A simitaend was also observed for the
Fosspolyl network (Figure 2.4), which is the latggghe G1 networks. It should be
noted that the better performance of the PHSM veasafiected by the presence of
multiple source reservoirs, as is the case foB#lerma network. This suggests that
the approach of using an augmented source nodeefarorks with more than one

source reservoir (as described in Step 1 for th8N@HSs effective.
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(a) Case study 4: ZJ network (164 decision variables)
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Figure 2.5 Results of the GAs with the four samplig methods applied to case
studies in Group 2 (G2 in Table 2.3)
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In terms of the quality of the solutions found, wdehe PHSM resulted in the best
solutions for all three G2 case studies by somegimgiTable 2.5, Figure 2.5). In
contrast, the quality of the solutions found udimg other three initialization methods
IS quite similar, with no advantage of using theSflL It should also be noted that
for the two case studies to which similar GAs hadrbapplied in previous studies,
the GA initialized with the PHSM found solutionsathwere 10.47% and 2.97%
better than those found in previous studies for Bladerma and Rural networks,

respectively (Table 2.5).

As far as convergence speed is concerned, useedHEM results in significantly
faster convergence to near-optimal solutions giodutions that are within 5% of the
benchmark optimal solution, as defined previoughan use of the other three
initialization methods, which all performed simlia{Figure 2.5). This indicates that
there is likely to be a significant advantage ilmgghe PHSM when trying to find
the best possible solution within reasonable coatmutal budgets for complex

networks.

2.5.3 Group 3 (G3) case studies

As can be seen from Table 2.5 and Figure 2.6, it Yery large network (i.e.
KLmod), the performance of the GAs initialized wittoth heuristic sampling
methods (i.e. PHSM and KLSM) are noticeably beattan that of the GAs initialized
with the two non-heuristic sampling methods (i.& &d LHS), both in terms of the
best-found solution and computational efficiencyhid/the GAs initialized using the
two heuristic sampling methods were able to findarreptimal solutions after
approximately 800,000 evaluations for the averafations based on ten runs, which
is equivalent to approximately 3 hours in term&&U time, the GAs initialized with
the non-heuristic sampling methods (i.e. RS and )Li#8e not even able to find
solutions of this quality at the end of the optiatian run (using nearly 2,000,000
evaluations and approximately 7 hours of CPU timdthough Figure 2.6 suggests
that the GAs initialized with RS and LHS had notweerged yet and might ultimately
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find solutions of a similar quality to those foumghen the heuristic sampling
methods were used, the computational effort requicedo so is likely to be very
large. This clearly highlights the advantage ohgdheuristic sampling methods for

initializing GA populations for larger networks.
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Figure 2.6 Results of the GAs with the four samplig methods applied to case
studies in Group 3 (G3 in Table 2.3)
In terms of the relative performance of the two rigic sampling methods, while
both converged to near-optimal solutions after apipnately the same number of
iterations, use of the PHSM resulted in clearlytdyebest-found solutions. This is
likely to be due to a combination of the bettetiahisolutions identified using the
PHSM, as well as the additional control over popafadiversity afforded by the
PHSM. However, the relative performance of the KL8SMnpared with that of the
PHSM was much better for the KLmod case study, Wwiscmost likely because the

KLSM was designed for a modified version of thisidem.

2.6 Summary and conclusions

In order to improve the ability of GAs to find aptl or near-optimal solutions in
reasonable timeframes for realistic-sized watdriligion optimization problems, a new

heuristic sampling method (the PHSM) for initialgiGA populations was introduced
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and evaluated in this paper. The performance dPH®M was compared with that of an
existing heuristic sampling method (the KLSM) andhwthat of more traditional
sampling methods, including RS and LHS, for seveDS#/ of varying size and

complexity.

The results obtained based on the seven WDS optionz (pipe-sizing) problems

considered indicate that overall, the proposed PH8Nbrmed significantly better than
the other three sampling methods, both in termsobftion quality and computational
efficiency. It was also found that the relative @abage of the PHSM increased with
network size and complexity. While for the sma(ét) networks, the performance of
the GAs initialised using the four different methadas very similar, there were clear
advantages in using the PHSM for the larger (GByars and in using both heuristic
sampling methods (i.e. PHSM and KLSM) for the latgestwork considered (G3). This
advantage is likely to be due to the ability talfimetter initial solutions, enabling more
favourable regions of the solution space to beoegdl more quickly. The results also
indicate that PHSM outperforms the KLSM, whichikelly due to a combination of the

ability to find better initial solutions and thediiibnal population diversity provided by

the PHSM.

As the focus of this paper was on the developmedtevaluation of the PHSM, all
analyses were conducted using a reasonably stat@kartHiowever, as the PHSM is
independent of the optimization algorithm usedait be tested in combination with
other algorithms. Such investigations would be wis@i terms of assessing the
generality of the results obtained in this papdn addition, it would be useful to
extend and apply the proposed approach to a largerber of case studies with
increased hydraulic complexity, such as the incluspf tanks, valves and pumps.
However, given that pipe sizes generally represieatlargest number of decision
variables, application of the PHSM to the subseahefdecision variables consisting of
pipe diameters is still likely to be beneficial #MDSs including tanks, valves and pumps.

Finally, it would be interesting to compare thefpenance of the PHSM with that of
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other methods that could be used for initialisifgsEsuch as the cellular automata

network design algorithm of Keedwell and Khu (2006)
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Chapter 3. Journal Paper 2- Impact of starting podion and
searching mechanism on evolutionary algorithm convgence rate
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Abstract

Traditionally, evolutionary algorithms (EAs) haveedm used to attempt to find
globally optimal solutions for water distributionystem (WDS) optimization
problems. However, as these algorithms are beipijeabto increasingly complex
systems, computational efficiency is becoming aues and hence approaches that
enable near-optimal solutions to be identified witheasonable computational
budgets have received increasing attention. Onethete approaches is the
initialization of EAs in a manner that accounts domain knowledge of WDS design
problems. While the effectiveness of these iniation approaches has been studied
previously, the impact of algorithm searching bebawn the speed with which
near-optimal solutions can be found has not yehlmeamined. To this end, this
study aims to investigate the relative impact dfedent algorithm initialization
methods and searching mechanisms on the speedwwth near-optimal solutions
can be identified for large WDS optimization probke Fitness function and
run-time behavioral statistics are used to gainiremeased understanding of the
behaviour. The results show that both the stapioggulation and algorithm searching
mechanism have an impact on the speed with whicr-ogtimal solutions are
identified. The fitness function and run-time bebaal statistics indicate that EA
parameterizations that favor exploitation over exgifion enable near-optimal
solutions to be identified earlier in the searchijol is due to the “big bow!” shape of
the fitness function for all of the WDS problemsismlered. Using initial populations
that are informed by domain knowledge further iases the speed with which

near-optimal solutions can be identified.

CE Database subject headings: searching mechareswiutionary algorithm;

optimization; sampling method; water distributigistem.

Author Keywords: searching mechanism; evolutionary algorithm; ropation;

sampling method; water distribution system.

39



CHAPTER3. JOURNAL PAPER2

3.1 Introduction

Evolutionary algorithms (EAs) have been used extehs for various water
resources optimization problems over the past fesades (Nicklow et al. 2010;
Maier et al. 2014, 2015). Their main advantages paved with traditional
deterministic approaches include (i) increaseditghih exploring the entire search
space, leading to a higher likelihood of arrivingyaod quality solutions (Nicklow et
al. 2010); (ii) the ability to be linked with anynaulation models (Zheng et al. 2013a;
Beh et al. 2015), and (iii) greater adaptabilityhendling water resources problems

with multiple conflicting objectives (Kapelan et @005; Ostfeld et al. 2014).

However, the application of the EAs is not withdlifficulties, with one of the
typical challenges being their larger demands anprdational time (di Pierro et al.
2009; Zheng et al. 2013b). This is especially taeecwhen dealing with realistic
water resources problems, such as the design ge-kwale water distribution
systems (WDSs) (Marchi et al. 2014b), which aregtigated in the present study. In
fact, as highlighted in Maier et al. (2014), thiatieely low computational efficiency

of EAs has become a main barrier to their widetake in industry.

In order to address this issue, there is genenasertsus that finding near-optimal
solutions as quickly as possible, rather than grym find the best possible solution,
or finding the best possible solution within a givaomputational budget (e.g. Gibbs
et al. 2010; 2015), is of great importance (Maierle 2014). This is because, as,
from a practical perspective, there is generallgufficient time to run the

optimization until no further improvement in objeet function values are obtained

when dealing with real-world problems.

One way to increase the computational efficiencyE#fs so that near-optimal
solutions can be found within realistic timeframgdo initialize their searching in
promising regions of the solution space based ournalerstanding of the physics of
the problem being solved. In terms of WDS desigtingpation, Keedwell and Khu

(2006) considered intuitive knowledge of the waywhich WDSs function to
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generate the initial solutions for EAs. As partloir approach, if a demand node in
the WDS has a head deficit or surplus, the diarmeaitthe pipes that are connected
to this node are increased or decreased (respiggtigibsequently, Zheng et al.
(2011a) seeded EAs with solutions from an optimak tnetwork based on the
knowledge that the optimal solution for a WDS subje a single loading condition

consists of a branched topology without any loops.

More recently, Kang and Lansey (2012) incorpora&tegineering experience into the
initialization of EAs through the use of the optinflaw velocity within the pipes.
Three steps are involved in their method, which(&jeall pipes to be optimized are
given the minimum allowable diameter, (2) a hyd@slmulation model is used to
calculate the flow velocity in each pipe, and (8¢ diameters are increased to the
next available size if the obtained flow velocity larger than the preset optimal
velocity that is determined based on engineerimgeeg&nce, and vice versa. Steps (2)
and (3) are repeated until flow velocities in albgs are below the given optimal
velocity, and the resulting pipe sizes form aniahisolution that overall has a
velocity close to the optimal velocity in each pif@main knowledge). A set of
different initial solutions is obtained through thee of different optimal velocities
according to engineering experience, and the EAseaeded with these solutions to
find near-optimal solutions with increased compotal efficiency (Kang and
Lansey 2012).

Building on the work of Kang and Lansey (2012), &ial. (2015) proposed an
initialization (sampling) method that accounted fioe fact that pipe sizes generally
reduced with distance from the source (Walski, 20@1 addition to considering

optimal flow velocities. As part of the approadhifial EA populations are generated
by sampling in the vicinity of the solutions iddied based on this domain
knowledge, in order to avoid premature convergeéadecal optima in solution space.

Bi et al. (2015) found that their method outperfedmnthe approach of Kang and
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Lansey (2012) for a set of WDS case studies witferdint sizes and complexity in

terms of the speed with which near-optimal solgiaere identified.

While the impact of the initialization (initial pofation, starting position in solution
space) of EAs on thespeed (in terms of computational effort) with which
near-optimal solutions can be found has been invesdygreviously, as outlined
above, the impact of using different EAs (e.g. genalgorithm, differential
evolution) and EA parameterizations (e.g., mutatate) on the relative performance
of these initialization methods has not yet beewlistl. This is despite the fact that
algorithm searching behavior, as represented ligrdiit EAs and parameterizations,
is known to have a significant impact on algoritbomvergence (Zheng et al. 2015a).
In other words, while there have been many stuthiashave examined the impact of
different EAs and EA parameterizations on convecgerate and the ability to find
globally optimal solutions, their impact on theldpito find near-optimal solutions
for real-life problems with limited computationalidgets using EAs that have been
initialized by methods using varying degrees of donmknowledge has not yet been

investigated.

In order to overcome the above shortcoming, theany objective of this paper is to
investigate the relative impact of different algiom initializations, different EAs and
different EA parameterizations on the speed withctvimear-optimal solutions can
be identified for a number of WDS optimization pleras of varying complexity. In
order to obtain a better understanding of the ix&aperformance of different
algorithm initialization methods and searching héhiars, a secondary objective of
this paper is to examine the properties of theefignfunctions of the case studies and
the run-time behavioral statistics of the differemgorithms and their
parameterizations, and how they relate to obsermgdrithm performance, as
suggested by Maier et al. (2014). The remaindéhisfpaper is organized as follows.
The methodology is given in the next section, fokd by details of the

computational experiments that have been conductedder to meet the objectives.
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Next, the results are presented and discussedrebtfe paper is summarized and

conclusions are drawn.

3.2 Methodology

Figure 3.1 presents the overall methodology usethénpresent study. As stated
previously, the relative impact of the EA initiagimons (starting positions) and
algorithm behaviours (algorithms and their paramedéons) on the convergence
rate to near-optimal solutions are assessed. TWerelt initialization (sampling)

methods and two different types of EAs are coneidleas shown in Figure 3.1. For
each EA, a suite of different parameterizationssed. The two EAs with different
initialization methods and parameterizations argliag to four large WDS design
problems, for which the number of decision variahignges from 164 to 1,274. To
gain an improved understanding of the results mseof the speed with which
near-optimal solutions are identified, the problehmaracteristics, as well as the
run-time algorithm searching behavior, are analyZedtails of each element in

Figure 3.1 are discussed in following sub-sections.
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’ Random samplingH PHSM (Bi et al. 2015# ’ Genetic algorithm‘ ’ Differential evolution ‘
v v
* N=500 (Network 1) and * N=500 (Network 1) and
1,000 (Networks 2 -4) 1,000 (Networks 2 -4)
* P=0.9 * CR=05
* P,71/(4), 1/(2),1L,2/L | » F=0.1,0.2,0.3,0.5
‘ 3 — I
Network 1:| | Network 2: Network 3: || Network 4:
YA BNysq RNy76 KL 1274
v v v v
\ 4
Results
Run-time searching .| « Convergence plots < Fitness landscape

behavior statistics | « Number of iterations to reach near-optimal statistics
solutions (efficiency)

Figure 3.1 Flowchart of the assessment process, whéN is the population sizeL

is the number of decision variablesP. and CR are the crossover probabilities for

the genetic algorithm (GA) and differential evoluton (DE), respectively, andPy,

and F are their mutation probabilities. The subscript ofeach case study indicates
the number of decision variables.

3.2.1 Initialization approaches

As shown in Figure 3.1, the two initialization metls considered are random
sampling (RS), which is the most commonly usedialation method, and the

Prescreened Heuristic Sampling Method (PHSM) (Bile2015). The PHSM is used

to represent the class of initialization approacttest take into account domain
knowledge, as it performed better than the metiddang and Lansey (2012) when
applied to case studies used in this paper (Bi. &045). The three main steps in the
PHSM (Bi et al. 2015) include:

»> Step 1: Assign pipe diameters to all pipes basedhendistance between
demand nodes and supply sources. This is motivatatie knowledge that,
in real WDSs, the diameters of upstream pipes anerglly larger than those

of pipes further downstream (Walski 2001).
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» Step 2: Adjust pipe diameters based on velocitreshis step, the diameters
obtained in Step 1 are refined to achieve flow e#iles in all pipes that are
close to a particular threshold. This is basedhendomain knowledge that
the velocity in each pipe of an optimal solution &WDS is within a limited
range.

» Step 3: Generate initial population by samplingnfrdistribution functions
centered around the approximate optimal soluticierdened in Step 2. In
order to ensure sufficient diversity in the initedlution, the initial diameter
for each pipe is generated from a distribution,hstitat the pipe diameter

obtained in Step 2 has the highest probabilityedhd selected.

3.2.2 Evolutionary algorithms and their parameterization

Genetic algorithms (GAs) and differential evolutiaigorithms (DES) are considered
in the present study. These EAs are selected bec@#s have been widely

recognized as an industry standard optimizatiohrtiggie (Wang et al. 2015), while
DEs have been shown to outperform GAs in termsoafiputational efficiency and

the ability to find optimal solutions in recent WBBudies (Vasan and Simonovic
2010; Zheng et al. 2013c). Details of the GA aldjon adopted are given in Bi et al.
(2015), but an elitism scheme was added in thidysta facilitate better comparison
with the DE. Details of the DE algorithm used aneeg in Zheng et al. (2011a). It
should be noted that, for each algorithm, constriminrnament selection is used to

handle infeasible solutions (Deb et al. 2000).

Many studies have shown that the mutation operatd@dAs and DEs can have a
more significant impact on searching behaviour, badce algorithm performance,
than other parameters, such as crossover and piopukize (Reca and Martinez
2006; Zheng et al. 2015a). This is because diftemartation rates can substantially
alter the balance between exploration (i.e. broaélgrching the solution space) and
exploitation (i.e. focusing on the local regionsgd Maier et al. 2014), during an

algorithm’s search. In order to explore the infloenof different degrees of
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exploration and exploitation on EA convergence rated the ability to find
near-optimal solutions, a number of different miotatprobabilities are therefore
used for both the GA and DE. Details of the adoptdes of the mutation rates and
other algorithm parameters are shown in Figuref@.both EAs. As can be seen, in
addition to the recommend mutation probabilityPeE1l/L (whereL is the number of
decision variables in the real-value coding sche(iéang et al. 2015), mutation
rates of 1/(&), 1/(2L) and 2L are considered for the GAs applied to each cashy st

Zheng et al. (2015a) conducted a comprehensivey studnalyze the impact of the
DE parameters (mutation factdf and crossover rat€CR) on its searching
performance. They concluded that DE performancema® influenced by the value
of F rather thanCR, and F=0.3 and CR=0.5 were recommended as default
parameters for relatively large optimization prabe Following their workCR=0.5

is used for each case study and mutation factors=0f1, 0.2, 0.3, and 0.5 are
considered, as they represent significantly difiesearching behavior. For each case
study, the population sizd outlined in Bi et al. (2015) is also used in thregent
study for both EAs, which islI=500 for the Zg4 problem andN=1,000 for the other

three WDS design case studies as shown in Figfire 3.

3.2.3 Case studies

As shown in Figure 3.1, four large-scale case studre considered, the details of which
are given in Bi et al. (2015). These large problames chosen because they are more
relevant than simpler case studies for the purposdhis study, which is aimed at
assessing the effectiveness of different algorithitializations and behaviours in terms
of finding near-optimal solutions for large WDSsatthare representative of those

encountered when solving real-world problems asltyas possible.

The aim of the optimization problem is to identifjne n pipe diameters
D :[dl,dz,---,dn]T that correspond to the least cost design solufibn subject to the

satisfaction of a number of constraints. That is

46



CHAPTER 3. JOURNAL PAPER2

D = argnini:cI (d) (3.1)
where
P(D*) 2 Pmin (32)
d L{A
(3.3)

where d, is the diameter of pipé=1,2....n; ¢ is the cost function for pipe
associated with the choice of decision variable P(D") is the nodal pressure

vector for design solutiord”, which has to be greater than the minimum alloeabl
pressure vectorP,.. for demand nodes under a set of design demandlddVDS

(feasible solution). A hydraulic simulation modé&RANET2.0 in this study) is
typically used to determin@(D’). A is a set of commercially available pipe

diameters (discrete) for the given WDS design pobl

3.2.4 Performance assessment

The results of the optimization runs are presemegrms of the convergence plots
and the number of iterations required to identamoptimal solutions, as was done
by Bi et al. (2015). Near-optimal solutions areiled as solutions that are within 5%
of the best-known solution for each of the casdisty which are also given in Bi et
al. (2015). The selection of 5% is based on the flaat it is commonly used in

statistical analysis and also, from a practicahpof view, it could be considered that
being within 5% of the minimum cost solution is fatiéntly close. However, it is

recognized that, in certain circumstances a smadere (e.g. 2% or 1%) would be

more appropriate.

In order to minimize any influence of the stochastiements of the two EAs
considered, the results presented are averagedlO@veuns with different random
number seeds. The metric used for this purposbkespercentage deviation of the
mean cost to the best known solution (DMO%), tobén#he results from different

case studies to be compared in an objective fashion
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3.2.5 Performance explanation

To gain an improved understanding of the optimaratiesults achieved by using
different starting positions, EAs and EA parametgions, the characteristics of the
fitness functions and run-time behavior statisace assessed (see Figure 3.1), as

detailed in the sub-sections below.
Fitness function properties

Previous studies have recognized the importantieeotharacteristics of the problem
on the success of a given optimization algorithrblS et al. 2011, 2015). Therefore,
there is a growing interest in quantifying the cuderistics of water resources
optimization problems to provide guidance for seterthe most effective searching
algorithms and algorithm parameterizations (Mateale2014). For instance, Gibbs
et al. (2011) proposed a number of statistics @ntjty the properties of the fithess
function (see Maier et al., 2014) of two operatioWdDS optimization problems,
including the spatial correlation and mutual infatman between decision variables,
which were used to guide the determination of tlestnappropriate GA parameters.
Subsequently, the same authors quantified the cteaistics of the fithess function of
two optimization problems with regard to water gyalvithin WDSs, including one
real-world WDS in Sydney, Australia. This infornati was used to determine the
most appropriate GA population size when the nunabexvailable evaluations was
limited (Gibbs et al. 2015). In order to better arsland and explain the algorithm
behaviour observed in this study, the fithess fionctharacteristics of the WDS
design problems considered are calculated usingmefnics: the spatial correlation
(Gibbs et al. 2011) and the dispersion metric (Aasdt et al. 2014).

Spatial correlation

Spatial correlation is often used to identify thaamostructure of the solution space,
and is typically represented by the correlatiorgtarir (Weinberger 1990), the total

correlation strength in the fitness function oues torrelation lengtRs (Gibbs et al.
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2011) and the total positive correlation strenBth(Gibbs et al. 2015). Figure 3.2
illustrates the meaning of tHe, Rs and R, metrics using a hypothetical case. As
shown in this figureR, corresponds to the shortest distance at whicltahelation
value falls below zeroRs is given by the area under the plot of correlationa
distance no greater that, andR, corresponds to the area under the correlation plot

with positive values.

Q
s

05

S -

Spatial correlation
0.0
|

-05

-1.0

0.0 0.2 04 06 0.8 1.0

Normalized distance

Figure 3.2 lllustration of the spatial correlation statistics using a hypothetical
case.

The difference betweeRs andR, provides useful insight into the global structofe
the search space. For exampleRik R,, points that are far apart in the search space
are positively correlated, suggesting a complexbalostructure with multiple
correlated regions, as illustrated in Figure 3R2cdntrast, ifRs = R,, then the plot of
correlation versus distance in the search space motebecome positive at distances
that are greater than the correlation length, wiscimdicative of a single big bowl

shape. More details of the spatial correlationgawen in Gibbs et al. (2011, 2015).

Dispersion metric

While the spatial correlation outlined above foaus®m the macrostructure of the

solution space, the dispersion metric aims to pm®vgreater insight to the
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microstructure (promising regions). This metricsugerative random sampling of the
search space to measure the average pairwise aigt@tween therbest solutions
(i.e., solutions with lowest cost) from a populatiof N samples, where the value of
m is fixed (e.g. 100) and is variable (e.g. from 1,000 to 10,000). A fastré@se in

the average pairwise distance whéns increased means the fitness function has a
smooth microstructure. In contrast, the value ef dispersion metric is expected to
gradually decrease or even remain constant fomgpkex and rugged search space.
This metric has previously been used to measudstape properties of hydrological
calibration problems (Arsenault et al. 2014), this is the first time it has been used

to investigate the fitness function structure of B/@esign optimization problems.

The dispersion metric is illustrated in Figure 8s8ng a hypothetical case. The top
and bottom panels indicate relatively smooth (@lsirglobal optimum) and rugged
(multiple optimal solutions) search spaces, respelgt The mean pairwise distance
between the 30 best solutions selected from théoransolutions (lowest objective
function values) in the top panel is expected torel@se more quickly compared with
that in the bottom panel when increasing the sarsigieN from 100 to 200. This is
because the pairwise distance between the topi@muin the bottom panel is

dominated by the distance between the optimalisolsiin different sub-regions.
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Figure 3.3 lllustration of the dispersion metric usng a hypothetical case. Dots
represent solutions in the two-dimensional domainrad the red dots indicate the
30 best solutions across different sample sizes. &blue “+” indicate the local
optima and the dashed circles show the promising géons.

Searching behavior metrics

Two metrics from the literature are selected ineortd better understand the run-time
searching behavior for the different optimizatiams, namely: objective function
cost (in objective space) and population divergity decision space). The most
straightforward metric for assessing search quadlityng an optimization run is the
objective function value of the best solution fouatl each generatiof)(G)

(Zecchin et al. 2012). For a single-objective mizi@mion problem, this can be

expressed as
foes (G) = Min f (X) (3.4)

where XG:[XLG,XZ,G,---,XN,GT is the population withN solution vectors at

generationG=1, 2....Gmax. This metric can effectively characterize an atpon’'s
searching behavior, such as how algorithms witlle#ht parameterizations and

starting points approach the optimal solution, dmdv an algorithm’s searching
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performance temporally varies (e.g., which stagseafrching is most productive in

reducing the cost).

The population diversity in decision space is tgflic measured by the averaged
pairwise Hamming distance of the population (Zeccéi al. 2012; Zheng et al.
2015a). However, the Hamming distance only meastines existence of the
difference between each bit of the solution stmntipout considering the magnitude

of this difference. Consequently, in the preseatlgt the mean of the magnitude of
the pairwise distancd,,,(G), is used to characterize population diversity, ighe
N-1

dean (G) = N(N 1) & k;lH (Xig: Xio) (3.5

where N(N -1)/2 is the total number of pairs of candidate soligidN is the
population size);H (X5, X, ;) measures the degree of the topological distance
between solutionsX;; and X, . For example, by using the proposed metric, if all
available options of the decision variables ared[200, 500, 600],X; ; =200, and
X, =600, thenH(Xs, X,5)=3, rather than 1 (Hamming distance). As such, in
addition to accounting for the presence of anyed#hces in the solutions, the
magnitude of the difference between two solutianalso considered. The metric in

Equation (3.5) quantitatively measures the spréawlations over the decision space.
A large value ofd, ., (G) reveals that the current search is broadly expdothe

decision space, while a low value of . (G) is indicative of localized exploitation

(Maier et al. 2014).

The population diversity metric presented in theép@r (SPD%) is standardized as

follows

SPD(%) =

dmea”—c(G)xloo% (3.6)

wherel is the number of the decision variables &the number of possible pipe

diameters. As such, population diversity can bepamed for different case studies.
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To better understand the relationship between Bemyaquality (objective function
cost, DMO%) and searching diversity (SPD%), dynanuoelations are estimated
between these two run-time series. The correlatogeneratiorc between DMO%
and SPD% is estimated using DMO%})land SPD%[1G].

3.3 Computational Experiments

As mentioned previously, for each EA with a differestarting position and
parameterization, ten runs with different randonmbar seeds are performed for
each case study. The averaged results over thearierare presented to minimize the
impact of the stochastic nature of the EAs. Forléinge case studies considered, the
typical computational budgets in terms of the maximnumber of generations
ranged from 1,000 (Kang and Lansey 2012) to 2,508nQ et al. 2015). To enable a
more comprehensive analysis on the run-time seaychehavior during different
stages, the maximum number allowable generationedch case study is set as
5,000 in the present work. This results in a tofai2*10 simulations for the Zds
problem, and4*10 simulations for each of the other three case etudBN;s4,
RN476 and Klg7g for all combinations of EA parameterizations. §hiakes

approximately 60 days using a Pentium PC (Inteat/R3.0 GHz.

To obtain the fitness function statistics, a sangite of 10,000 is used for each case
study, guided by Gibbs et al. (2011). The samptesganerated using both random
and Latin hypercube sampling. As the resultingisttas were very similar, only the
results for random sampling are presented. The nu#athe magnitude of the
pairwise distances given in Equation (3.5) is ugedalculate the dispersion metric,
with m=100 (the number of the best solutions) &@sample sizes) ranging from
1,000 to 10,000 following Arsenault et al. (201%he analysis of spatial correlation
and dispersion metric were repeated ten timesguE)000 samples generated with

different random number seeds, and the resultsnantavere similar.

The dispersion metric was also calculated for teevNork Tunnel problem (NYTP),

which only has 21 decision variables and is widadignowledged in the literature as
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a rather simple problem with a large proportionfedisible regions (Zheng et al.
2015a). This enables the dispersion metric forNN&P to be used as a benchmark
against which the relative roughness of the micuattire of the four complex case

studies considered in this paper can be assessed.
3.4 Results and discussions

Figures 3.4 and 3.5 present the changes in théi@olguality and diversity metrics
(Equations 3.4 and 3.5) over the different optimiaaruns for the GA and DE with
different initializations and parameterizationsplsgx to the four case studies. The
black and red lines represent results for init&lans using the RS and PHS methods,
respectively, with different line types indicatingdifferent algorithm

parameterizations.

3.4.1 Impact of the starting positions and searchig mechanisms

As can be seen from the left panels in FiguresaBdi 3.5, overall, the EAs that are
initialized with the PHSM are able to converge maapidly than those initialized
with random sampling for the same parameterizatiand case studies. This is
independent of case study and algorithm searchahg\dor (i.e. type of EA and EA
parameterization), thereby extending the findingBbet al. (2015), who used a
single EA with a single parametrization. The grea#ectiveness of the PHSM is
mainly due to the good starting positions it iseabd identify. For example, the
deviations from the best-known values of the ihg@utions for the Z}4, RNyzsand
KL 1274 problems are approximately DMO% = 30%, 40% and 208spectively.
These values are appreciably lower relative to dbeesponding values obtained

using the RS method.
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Figure 3.4 Results for GAs for which initial solutbns are obtained using the RS
method (black lines), and the PHSM (red lines). Diérent line types represent
different mutation probabilities Py, Left panel: Deviation of the mean cost from
the best known solution (DMO%), with the horizontalgrey lines showing 5%
deviation. Right panel: Standardized average popul#on diversity SPD (%) with
the horizontal grey lines indicating complete conugence.
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Figure 3.5 Results for DEs for which initial solutons are obtained using the RS
method (black lines), and the PHSM (red lines). Diérent line types represent
different mutation weighting factors F. Left panel: Deviation of the mean cost to
the best known solution (DMO%), with the horizontal grey lines showing 5%
deviation to the best-known solution. Right panelStandardized average
population diversity SPD (%) with the horizontal grey lines indicating complete
convergence.

However, the faster convergence rate associatddtihét use of the PHSM does not
always result in the ability to find near-optimadlions more quickly. This is

because, for certain combinations of algorithm typad parameterization,
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near-optimal solutions cannot be identified at adigardless of the initialization
method used (e.g. none of the GA parameterizatiovsstigated are able to find
near-optimal solutions for the Bl and RNz networks, Figure 3.4, left panel). In
other words, while the use of the PHSM is able gbift down” the convergence
curve for a particular algorithm and associatedapeterization during the early
stages of searching, the overall shape and locatiothis curve is a function of

algorithm searching behavior.

In terms of searching behavior, the results sugtedt EAs with relatively lower

mutation rates are able to find or approach netimab solutions more quickly,

although this may not necessarily result in thet fieal solution. For example, for
the KLy,74 problem, the DE algorithm that was initialized ngsirandom sampling

(RS) found lower-cost solutions wif=0.3 than withF=0.1 after 2,400 generations,
but the latter located near-optimal solutions (DMO%o5%) after only 600

generations, which is appreciably less than thé®®,generations required when
F=0.3 is used.

The difference in observed convergence rates ferdifferent algorithms and their
parameterizations can be explained by examining graperties of the fitness
functions for the four case studies, as well astimetime behavioral statistics of the

different algorithms and parameterizations as shiogaw.

3.4.2 Relationship between observed performance angroblem
statistics

The fact that parameters with reduced exploratictiacreased exploitative behavior
are able to find near-optimal solutions more quickhd consistently is a function of
the global structure of the fitness functions foe tase studies investigated. As can
be seen from Figure 3.6(a), all four case studa®la very similar global structure,
with a correlation lengtlir =0.5 andRs = R,. This indicates that approximately 50%
of the search space for each case study formsgabtwl” shape that is positively

correlated as illustrated in Figure 3.7. Conseduygtfittle exploration is needed to
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identify near-optimal regions, providing an explaoa for why EAs with smaller

mutation probabilities exhibit better performana &ll case studies. In contrast,
higher levels of exploration (high values of muta)i increase the time and effort
taken to find promising regions in the solution @paresulting in a slower

convergence to near-optimal solutions (FiguresaBat 3.5, left panel).
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Figure 3.6. (a) Fitness function statistics (spatiaorrelation) of the four WDS
problems considered; (b) Change in normalized painge distance of the top
m=100 solutions with increase in sample si2¢. The grey line represents the

values for the benchmark NYTP.

A Random
® PHSM

Figure 3.7. Stylized representation of the cross-ston of the fitness function of
the WDS design problems considered.
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Although EAs with lower mutation rates converge enoapidly during the early
phases of searching, their objective function valtemnd to stagnate during the later
stages of the search. This can be explained byiexamthe values of the normalized
dispersion metrics for each case study. As caneba fom Figure 3.6(b), for the
four WDSs considered, the mean of the pairwiseadcs of the selected top 100
solutions decreases slowly or remains approximatehstant. This is in contrast to
the values for the benchmark NYTP, for which thiera rapid reduction in the value
of the normalized metric, as was the case for jldedlogical model calibration study
considered by Arsenault et al. (2014). These resuigjgest that the microstructure of
the promising regions (i.e. at the base of theldugl shape) is very complex and
rugged for the case studies considered (see FRjdje whereas the opposite is the
case for the NYTP. For the rugged microstructurtheffour larger WDSs, EAs with
relatively low mutation rates do not have sufficierploration power during the later
searching stages to enable them to find bettertisnl) resulting in stagnant

performance, as observed from Figures 3.4 and&ft5panel).

The fithess function characteristics discussed alman also be used to explain why
the convergence plots of optimization runs inieti with the PHSM are always
below those of the corresponding optimization rungialized randomly, but
generally follow the same shape (Figures 3.4 ark] &ft panel). Due to the
“big-bowl!” macrostructure of the fitness functioofall case studies, the better initial
solutions identified with the aid of the PHSM aikely result in searches that
commence “part-way” down the “big bowl” (grey dats Figure 3.7), shifting the
convergence curve “down” during the initial stagdésthe search. In contrast, the
randomly generated solutions (black triangles iguFé 3.7) are generally scatted in

regions at the “top” of the “big bow!".

59



CHAPTER3. JOURNAL PAPER2

3.4.3 Relationship between observed performance anpopulation
diversity

While the relative ability of EAs with different els of mutation to identify
near-optimal solutions can be explained by the @migs of the fitness function, as
discussed above, the absolute performance of theritims with the different
parameterizations is somewhat more difficult tolaxp The same applies to the
relative performance of the GA and DE. However,itamltal insight into the speed
with which different algorithms and parametrizasorare able to identify
near-optimal solutions can be obtained by examining relationship between
population diversity (Figures 3.4 and 3.5, right@d and searching quality (Figures
3.4 and 3.5, left panel). As can be seen, bettém@ation performance generally
corresponds to a faster reduction in populatiorerdity, which makes sense, given
that the macrostructure of the fitness functiomlbfour case studies has a “big bowl!”
shape (see Figure 3.7). The strong relationshipvdest solution quality and
population diversity is confirmed by the generdilgh values (between 0.8 and 1.0)
of the dynamic correlation between DMO% and SPD%sle®wvn in Figure 3.8,
irrespective of EA and parameterization. This hghts that the speed with which
near-optimal solutions can be identified is a propef population diversity, which is
a property that transcends algorithm type and petamzation. The results suggest
that different algorithms and parameterizationdaowell be merely means by which
different population diversities are achieved amt it is likely that similar searching
behavior can be achieved by different algorithmd parameterizations. In other
words, while the results in the left panel of Figgi8.4 and 3.5 would suggest that the
DE outperforms the GA, this is might not be aningic property of these algorithms,
provided different algorithm parameterizations ganduce the desired population

diversities.
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Figure 3.8. Results of the dynamic correlations bateen DMO% and SPD%. The

correlation at generationG was estimated using DMO%[1G] and SPD%[1:G].

The results shown are for random initialization. Similar results are obtained for
initialization with the PHSM.

3.4.4 Summary

Overall, the results suggest that both algorithnitialization and searching
mechanisms can significantly affect EA convergerates, and hence the speed with
which they can identify near-optimal solutions farge problems. For the WDS case
studies considered, which all have fitness funatisith a “big bowl” macrostructure,
population diversity, as controlled by EA type gratameterization, has the biggest

impact on the shape and location of the convergeiate with algorithm behavior
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favoring exploitation resulting in the ability tdentify near-optimal solutions, and to
do this more quickly. The use of the PHSM for alidon initialization enables better
starting solutions to be identified, thereby enaplinear-optimal solutions to be
found more quickly. However, this is conditional thie selection of a combination of
algorithm and parameterization that results in pidrareduction in population

diversity.
3.5 Conclusions

Evolutionary algorithms (EAs) have been used widelyoptimize the design and
operation of water distribution systems (WDSs) aber past four decades. Starting
from relatively simple benchmarking problems, théx@s been a move towards
applying EAs to real-world, and large WDS desigopems (Maier et al. 2014). One
of the challenges associated with the applicatibEAs to large problems is their
relative computational inefficiency, which makerthdifficult to apply to real-world

problems. In recognition of this, there is growimgerest in finding near-optimal

solutions of large optimization problems within rgeable computational budgets,

instead of necessarily seeking the global optimum.

One way to enable near-optimal solutions to berdeted more quickly is to seed
the initial solutions of EAs within promising regie of the solution space. This can
be achieved by generating initial solutions witke #id of engineering experience or
domain knowledge, as has been done in a numbeewiops studies, such as Kang
and Lansey (2012) and Bi et al. (2015). While thegalization methods have often
been reported to exhibit better performance thadaom sampling, their performance
as a function of different EAs and EA parameteitret has not yet been investigated.
Furthermore, there is a lack of understanding ef tblative impact of different
starting positions and searching mechanisms onergewce rate in the context of
finding near-optimal solutions for problems withaldife complexity with limited

computational budgets.
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The present study aims to address the above itgué@svestigating the impact of
starting positions and searching mechanisms onatieewith which EAs converge to
near-optimal solutions. Two initialization methoase considered, namely: random
sampling (RS) and the Prescreened Heuristic Sagyplathod (PHSM, Bi et al.
2015). Different searching mechanisms are repredehty two EAs, including
genetic algorithms and differential evolution algums, with different
parameterizations. Four large WDS design problefos,which the number of
decision variables ranges from 164 to 1,274, ansidered as case studies. To gain a
better understanding of the relative performancediféérent algorithm initialization
methods and searching mechanism, the fitness @mctharacteristics of the case
studies and the run-time behavioral statisticshaf different algorithms and their

parameterizations are assessed.
The results of the present study and their impbecatcan be summarized as follows.

(i) Both starting position and searching mechanismifgigntly affect the capacity
of EAs to efficiently identify near-optimal solutie for large WDS design problems,
with the latter exhibiting relatively more noticéalimpacts.

(i) Strong correlations are observed between improvesnén objective cost
function and reduction in population diversity digithe run-time behavior analysis,
for each type of EA and parameterization. This aaths that the convergence
properties in the decision space heavily affectabarching quality in the objective
space. Such an observation sheds new light onairges of performance differences
between different algorithms, parameterizations ataiting positions, making it
possible to modify an algorithm’s performance tlgloumanipulating its population
diversity.

(i) The performance variation between different init@ion methods and
searching mechanisms (algorithms and parametentican be related to the
properties of the fitness function of the WDS degigoblems considered. The results

show that the fitness functions for the case studansidered are likely to consist of
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a single “big bowl!” structure with a rugged basattis likely to have many local
optima. This can explain the greater utility of RISM over the RS method, as the
initial solutions obtained using the former enatile search to commence part way
down the “side” of the “big bowl”. This is suppodtey the high quality of the
starting positions obtained using the PHSM fordase studies considered. Based on
the observed fitness function characteristics efdhse studies considered, the use of
EAs with reduced explorative capability (lower ntidga rates) is expected to be

more effective at being able to converge to neairrgg solutions more quickly.

In closing, the results of this study indicate tthe use of EA initialization methods
that are based on domain knowledge, such as th&VPkScombination with EAs

and their parametrizations that enable populativardity to be reduced rapidly, has
the potential to enable near-optimal solutions t®3Voptimization problems of
real-world complexity to be obtained with signifitly reduced computational

budgets.
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Abstract: Evolutionary algorithms (EAs) have been used msiteely for the
optimization of water distribution systems (WDSsjep the last two decades.
However, computational efficiency can be a problerspecially when EAs are
applied to complex problems that have multiple cetimgy objectives. In order to
address this issue, there has been a move towanddoding EAs that identify
near-optimal solutions within acceptable computetlo budgets, rather than
necessarily identifying globally optimal solutiofis paper contributes to this work
by developing and testing a method for identifyimigh quality initial populations for
multi-objective EAs (MOEASs) for WDS design problerasned at minimizing cost
and maximizing network resilience. This is achielgdconsidering the relationship
between pipe size and distance to the source(gptdr, as well as the relationship
between flow velocities and network resilience. Henefit of using the proposed
approach compared with randomly generating inipapulations in relation to
finding near-optimal solutions more efficiently tssted on five WDS optimization
case studies of varying complexity with two difietdlOEAs (NSGA-1I and Borg).
The results indicate that there are considerableefiis in using the proposed
initialization method in terms of being able to ntiey near-optimal solutions more
quickly. These benefits are independent of MOEAetgpd are more pronounced for

larger problems and smaller computational budgets.

CE Database subject headings: Multiobjective evahatry algorithm; optimization;

initialization method; water distribution systengam-optimal fronts

Author Keywords: Multiobjective evolutionary algorithm; optimizat;

initialization method; water distribution systengamn-optimal fronts.
4.1 Introduction

Evolutionary algorithms have been used extensivahg successfully for the
optimization of water distribution systems (WDSsgbthe last 20 years (Nicklow et
al., 2010; Maier et al., 2014). However, as dematesd in the Battle of the Water
Networks Il (Marchi et al., 2014), it is extrematfficult to find globally optimal
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Pareto fronts for large WDS optimization problemthwnore than one objective. As
a result, heuristic information and domain knowkedge commonly used to either
reduce the size of the search space or to ideptdynising regions in the solution
space from which to commence the search (Marchal.et2014). Both of these
approaches are designed to ensure that near-opgimh#tions are obtained within
reasonable computational budgets, rather than tessarily attempt to find the
globally optimal solution(s) (e.g. Tolson and Shad&er, 2007; Gibbs et al., 2008,
2011, 2015; Tolson et al.,, 2009). The use of suppraaches is of particular
importance when evolutionary algorithms (EAs) goel@d to real-world problems,
as they often require the use of computationallgrisive simulation models for
objective function and/or constraint evaluation {®eet al., 2014). Consequently,
there is a need to develop approaches that enahteoptimal solutions to be found
for the optimization of WDSs within computationaldgets that are acceptable from
a practical perspective. This is important for $hkecessful application of EAs in both
the research domain and in practice, thereby ewgliheir full potential to be
realized (Maier et al., 2014).

The use of domain knowledge is an important appreéaachieving the above goal,
as demonstrated in a number of engineering probi@mains, including mechanical
design (Sapuan, 2011), aircraft wing design (Ong Keane, 2002) and reservoir
system optimization (Li et al.,, 2014). In the adathe optimization of WDSs,
Keedwell and Khu (2006) considered the fact thatdlameters of the pipes that are
connected to demand nodes with a pressure daficgurplus) can be increased (or
decreased) to increase pressure (or reduce costeinletermination of the initial
population of EAs. Subsequently, Zheng et al. (20fhtorporated knowledge that
the most cost-effective solution for a looped WDBhva single demand case is a
tree-branched topology into the initialization oA€ and Kang and Lansey (2012)
developed an initialization method that uses ergging experience about optimal
flow velocities in WDSs. More recently, Bi et aRO15) proposed an initialization

approach that not only considers optimal flow véies in pipes, as in Kang and
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Lansey (2012), but also allows for the fact thgtepidiameters generally reduce with
distance from the source (Walski, 2001). As parttled approach, initial EA
populations are obtained by sampling in the vigioit the solutions generated based
on the above principles in order to avoid premataevergence to local optima in

solution space (Bi et al., 2015).

The initialization methods outlined above have beeported to significantly
outperform the random initialization approach innts of their ability to identify
near-optimal solutions at reduced computationalt.céowever, they are only
applicable to single-objective WDS optimization lplems, or at least have not been
applied to multi-objective problems to date. In wast, most real-world problems
have more than one competing objective and, inntegears, increasing effort in the
optimization of WDSs has been devoted to multi-otoye optimization problems
(Nicklow et al., 2010), with the minimization of €toand the maximization of various
network reliability measures receiving the mosemtibn (Tolson et al., 2004; Prasad
and Park, 2014; Raad et al. 2010; Wu et al., 2@b2ng et al., 2014; Wang et al.,
2015). While a number of previous studies have tmemessful in improving the
computational efficiency of such problems (e.g. @heet al.,, 2011; Creaco and
Franchini, 2012), there remains a need to develdgrraal approach that enables
domain knowledge to be used to identify good ihpiapulations for multi-objective
EAs (MOEAS) applied to WDS design problems.

In order to address this shortcoming, an approahuses WDS domain knowledge
to identify good initial populations for EAs thaimmize cost and maximize network
resilience is introduced in this paper. The appncadends the Prescreened Heuristic
Sampling Method (PHSM) of Bi et al. (2015), whicmly considers cost
minimization as an objective, to a multi-objectiygroblem. The proposed
Multi-Objective Prescreened Heuristic Sampling Met{MOPHSM) is tested on a
number of benchmark WDS design problems, rangirgize from 34 to 1274 pipes,
and the performance of the proposed MOPHSM is coedpwith that of randomly
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initializing the population of MOEAs, which is mosbmmonly used in literature. In
order to assess the utility of the proposed MOPH8ivge run-time performance
metrics are used. These are the hypervolume indexlka and Reed, 2015), the
generational distance (Kollat et al., 2008) andehktent of front. NSGA-Il (Deb et
al.,2002) and Borg (Hadka and Reed, 2012) are aseMOEAs, as NSGA-II, or
algorithms based on it, have been used extensivety the multi-objective
optimization of WDSs (e.g. Wu et al., 2010; Stokeal., 2015a, b; Wang et al., 2015)
and Borg is a more recently developed algorithnh ihbeing applied increasingly to
a range of problems, including WDS optimizatiorg(e&tokes et al., 2015c¢; Wang et
al., 2015).

The remainder of this paper is organized as folloWse optimization problem is
given in the next section followed by the propod¢@PHSM. The methodology
used and computational experiments performed &iinig the approach then follow.
The results are presented and discussed in th@nvialy section, before a summary

and conclusions are provided.
4.2 The optimization problem

The WDS design problem typically involves the setecof pipe diameter sizes for a
predefined network topology, in order to meet del@design objectives, and satisfy
hydraulic and design constraints. Following Wangle{2015), the minimization of
pipe cost and the maximization of network resilen@ surrogate measure of
network reliability) were taken as the two objeeBSy which can be described as
follows:

— N b
Minimize the cost: F.=a) DL, (4.1)

i=1

Maximize the _ zj=1UjDMj(Hi —H)
n R m *
network resilience: zr:qurR a Z,:P'V'j(“ T z)

(4.2)
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Subject to: 3D,
| U, == (4.3)
Indicator of J |M.|><ma>{D ) :
j pM, p
diameter uniformity
#
Pressure and H sH;sH (4.4
* # .
velocity constraints vV sVisV
Hydraulic
_ H = f(D,DM) (4.5)
constraints:
Diameter choices: DOA i=1..,n (4.6)

whereF. is the total network cost, including pipe mateaald construction costs;
D=[Dy, ..., Dy]", whereD; is the diameter of pipe1,...... n; L is the length of pipe

a, b are specified cost function coefficients;is the total number of pipes in the
network; H=[H,---H_,]" is the vector of pressure heads at network nodes;

DM =[DM,---DM_]" is the predefined vector of nodal demanusjs the total
number of demand nodes in the networ; and DM, are the pressure head and
the nodal demands for nogel,...... m, respectivelyz, is the elevation of nodg

H*i and H’f are the design minimum and maximum allowable prestiead at

nodej, respectively;q and H? are total demands and total heads (pressure head

plus the elevation head) provided by the supplyr@®u(reservoirs or tanks)

r=1,...... R, respectively.

D, is the diameter belonging to s&d;, which represents all pipes connected to

nodej; |M;| is the cardinality ofM; Vi* and Vi# are the design minimum and

maximum allowable flow velocity for pipeé, respectively; andA is the set of

commercially available pipe diameters.

It is noted that the network resilience definedPimsad and Park (2014) included

pumps within the WDS. These are not considerethisygaper for consistency with
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Wang et al. (2015)U; in Equation (4.3) is an indicator of diameter onifity for
pipes that immediately connect to nodé, ), with a larger value representing a

higher reliability of the network loop, since themeter variations between these
pipes are overall lowerl; =1 when all pipe diameters are identical) (Prasad a

Park, 2014).
4.3 Proposed multi-objective prescreened heuristgampling method

The proposed MOPHSM to identifying good initial jpigtions of MOEAs used to
minimize the cost and maximize the resilience of $¥Dis based on a basic
understanding of the relationship between somehef dharacteristics of optimal
WDSs and the two objectives considered. The prapb®PHSM consists of three

steps, details of which are given below.

4.3.1 Step 1: ldentify initial solutions using doman knowledge

related to cost

In actual WDSs, the diameters of upstream pipeg@nerally equal to or larger than
those further downstream (Walski, 2001). In thigpstof the MOPHSM, this
knowledge is used to assign initial pipe diameberaccordance with their distances
to the supply sources, as was done by Bi et all5p@s part of the single-objective
PHSM. A brief summary of the main steps for acmeuhis is given below, with full

details provided in Bi et al. (2015).

1) Find the shortest distance tree-network for the Wi@Sign problem
being solved using the Dijkstra algorithm (Zhenglet2011).

2) Obtain the largest value of the shortest distdneehe tree network,
i.e. the largest distance that the supply sourea® o deliver the
demands.

3) Divide the WDS network intd® specific areas with the shortest
distance to the source node intervalL&®, whereP is the number of

available pipe diameters for the design.
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4) Assign pipes in each area a different diameterh wite largest
diameter assigned to the pipes in the area netargése source and
the smallest diameter to the pipes in the arehdsttfrom the source

(reservoir).All pipes in a single area are assighedsame diameter.

The main benefit of the above approach is that @ble to identify a much greater
proportion of lower-cost solutions that are near tloundary of feasibility in terms of

being able to satisfy pressure constraints than lsanachieved with random

initialization. Consequently, EAs that are seeddth these solutions can commence
their search in more promising regions of the sofuspace, leading to improved

efficiency in terms of being able to identify nemptimal solutions, as demonstrated
in Bi et al. (2015).

4.3.2 Step 2: ldentify an initial front by adjusting the solutions
obtained in Step 1 based on domain knowledge reladeto network
resilience

While step 1 results in the identification of gostdrting positions in solution space
in relation to the cost objective, additional colesations are required in order to
identify good initial solutions in relation to botihe cost and network resilience
objectives. This requires a good understandingheffactors that have an impact on
network resilience. As shown in Equations (4.2) &h@8), the two factors that affect
network resilience are pressure hebld and diameter uniformityJ; . For a WDS
design problem, the nodal demands are typicallgdixand hence a network design
solution with a relatively higher pressure headath node would have overall larger
diameters and, accordingly, relatively lower floelacities V. With the aid of this
knowledge, it is possible to adjust the initial wgmns from Step 1 to produce an
extended front of initial solutions with a rangeaoafst and network resilience values

by using the methodology illustrated in Figure 4.1.
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Define K different flow velocities/, k=1,2,..K based on engineering experience

v

k=1
v

Set up the number of simulati@¥0

v

Perform a hydraulic simulation (EPANET2.0) for tietwork with initial diameter®,
obtained inep 1 (i=1,2...m, where m is total number of pipes).
Updates=s+1.
v

Obtain the flow rate for each pip&J.

v

Calculate the updated diamet®)) using NDj= 48i for all pipes.
T k

A 4

v

Round all updated values ND; to the nearest discrete pipe diameter.

v

No

A 4

ND;

No, SeiD;

Check whetheND,;=D;?

Check whethes=S,,,, (maximum number )7

Yes v Yes o

Save thekh solution in the pool

.

Is k=K?
lYes
Finish and archiv& different solutions to the solution pool

No, k=k+1

Figure 4.1 Flowchart of the proposed methodology faadjusting the pipe
diameters obtained from step 1 based on flow veldgiin order to identify good
initial solutions in relation to both cost and netvork resilience

As shown in Figure 4.1, as part of this proposedhounlogy, the diameters
obtained in Step 1 are refined to achieve flow e#lles that are close to a
particular threshol&/y (k=1,2...K) in all pipes. The different values ¥f can
be determined based on engineering experience elisasvthe type of water
network being designed (e.g. potable supply networigation network). For

relatively smaller values ofy, the overall diameters of the design solution are
larger, resulting in an overall larger set of pugesheadsH, in Equation (4.1),
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and vice versa. Since all pipes are assumed to dravdentical expected value
of Vi, the diameters for the pipes with similar flowg anore likely to be of
overall similar diameter, leading to a relativelgrde value of diameter
uniformity U; (Equation 4.2) and hence a greater value of nétwesilience.
As such, an approximate front that accounts for aonknowledge related to
both cost (Step 1) and network resilience (Steps 2prmed by the solutions

archived in the solution pool, as shown in Figurtke 4

4.3.3 Step 3: Generate initial MOEA population by ampling in the
vicinity of the initial front identified in Step 2

In order to ensure sufficient diversity in the iait MOEA population, density
functions are developed around each of the solsiidentified in Step 2, from which
samples can be drawn to form the initial populat@s was carried out by Bi et al.
(2015) for the single objective case. The propodedsity function takes the
following form (Bi et al., 2015)

1
f(D,) = b=1...P 4.7
)= 1vain, -0, " D

wherea is constant;||D, — D, || is the distance betwed&h, andD. (the diameter for

a pipe in the approximate optimal solution deteediin Step 2) in terms of integer
coding (for details see Bi et al. (2015)); aRdss total number of available pipe

diameters.

Figure 4.2 illustrates the distributions of thetiadisamples for different values af
for a pipe withD=400 mm (grey line) obtained in Step 2, with{100, 200, 300, 400,
500, 600, 700}. As shown in this figure, the diaemstcloser to the heuristic pipe
diameter obtained in Step 2 have a higher prolalmfi being selected, as they are
more likely to be the optimal diameter comparechvather diameter options for the
given flow velocity value. It can also be seen tadarger value o& will produce
samples that are closer overall to the initial sotuobtained in Step 2, and vice

versa.
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Figure 4.2 Distribution of samples for different vdues ofa

For each solution on the initial front obtained Step 2, a set oNK=[N/K |

samples is generated using the density functiokgoation (4.7), wherd\ is the
population size of the MOEAK is the total number of solutions in the initiabrit
(Step 2), and|_N /K_| is the ceiling function with a smallest integert i@ss than

N/K. In this way, the requireN initial solutions of the MOEA are generated.

4.4 Methodology

The methodology used to test the utility of the MM introduced in the previous
section is summarized in Figure 4.3. As can be ,séw@o different MOEA

initialization methods are considered, namely treppsed MOPHSM with the most
commonly used random initialization as a benchmaskmentioned previously, two
different MOEAs, including NSGA-II and Borg, are @ied to both initialization

methods in order to ensure that the impact of ifferdnt initialization schemes is
not algorithm specific. Both initialization methodsd MOEAs are applied to five
WDN design problems, for which the number of dexisiariables ranges from 34 to
1,274. To gain an improved understanding of theltgsn terms of the speed with

which near-optimal fronts are identified, three -tume performance metrics are
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analyzed. These are the hypervolume, the geneshtiatistance and the
extent-of-front. Details of each step in Figure 4B discussed in following

sub-sections.

Methods for determining initial MOEA population

l

v v
Proposed Random
MOPHSM initialization

. .

NSGA-II and Borg

Network 1: | | Network 2: Network 3: || Network 4: Network 5:
HP34 FOSoB Z‘]164 BN454 KL 1274
* ¢ Y ¢ ¢
Results

¢ Hypervolume index plots
¢ Generational distance plot
« Extent-of-fronts plots

n

Figure 4.3 Flowchart of the assessment process. Thebscript of each case study
indicates the number of decision variables

4.4.1 Methods for determining initial MOEA population

As shown in Figure 4.3, the performance of the psgol MOPHSM is compared
with that of the random initialization method inrrtes of efficiently finding

near-optimal fronts. For the MOPHASM, thkedifferent flow velocities (see Figure
4.1) are determined within the specified range [@/%, 4 m/s], with an interval of
Av=0.1 m/s. These upper and lower bounds of veloasy/well as the velocity
interval, are selected based on a preliminary amalyf the best known fronts of a

number of the WDS benchmarking case studies odtim&Vang et al. (2015).
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The most appropriate values afor the density function used to generate theainit
population (see Equation (4.7)) are determinedgusirtrial-and-error process. As
part of this process, the impact of different vale¢a (0.1, 0.3, 0.5 and 0.7 for each
of the case studies) on the resulting optimal smistis assessed by visual inspection.
The results of this analysis show that valuesaof 0.5 are more likely to result in
premature convergence during the optimization wimgreas values ot < 0.1 do
not exhibit a significant advantage relative to ta@dom initialization approach.

Hence, a value ofa = 0.3 is used in this study.

4.4.2 Multiobjective evolutionary algorithms

As mentioned previously, NSGA-II (Deb et al., 20@2)d Borg (Hadka and Reed,
2012) are selected as MOEAs. NSGA-II uses a fastdomminated sorting strategy to
rank solutions, which is followed by selecting plaion members of the next
generation according to Pareto dominance and craywistance. As outlined in Deb
et al. (2002), a Simulated Binary Crossover (SBXgrator and a polynomial
mutation approach are used to carry out crossawémautation, respectively, and a

constraint tournament selection strategy is usdthtalle infeasible solutions.

Borg is a unified optimization framework combinirgdominance,e-progress,
randomized restart and auto-adaptive multiopergmombination, with details given
in Hadka and Reed (2012). The operators used iig Bamlude SBX, Differential
Evolution (DE), Patent-Centric Crossover (PCX), tdadal Normal Distribution
Crossover (UNDX), Simplex Crossover (SPX), and bimf Mutation (UM). One of
Borg's important features is its auto-adaptive moyteration selection scheme,
where a feedback loop is established in which dpesdhat produce more successful
offspring are rewarded by increasing their selecpoobabilities for generating new
solutions for the next generation (Hadka and R@&d2). Another feature is the
implementation of a restart strategy (adaptive padmn sizing) in order to avoid

premature convergence.
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It should be noted that both algorithms use thesttamt tournament selection

method (Deb, 2000) to handle infeasible solutions.

4.4.3 Case studies

As shown in Figure 4.3, five case studies of vayyizes are included, ranging from 34
to 1274 pipes. All of these case studies were dersil as single objective problems in
Bi et al. (2015) and the HP FOSs and BNs,4 problems were also considered in the
multi-objective study by Wang et al. (2015). Astetiapreviously, the minimization of
network cost and the maximization of network resiie (a surrogate measure of
network reliability) are taken as the two objectivie the present work, as was the case in
the benchmarking study by Wang et al. (2015), inclwHurther details about the

objectives are provided.

4.4.4 Run-time performance metrics

As mentioned above, three performance metrics sed to assess the quality of the
fronts that are generated during the optimizationsr The first metric is the
hypervolume index (Zitzler and Thiele 1999), which calculates the déryolume of
the multi-dimensional region enclosed by a frord arreference point. This metric is
able to represent overall performance, jointly mead by solution quality, solution
diversity and the uniformity of the solutions ore tliont (Hadka and Reed 2012). In
this study, the specific hypervolume performancdrimaised is the hypervolume
index at generatiorG, denoted adHI(G), which is defined as the ratio of the
hypervolume at generatida relative to that of the best-known Pareto frdPE " . As
such,HI(G) lies within [0,1], with larger values represeigtia hypervolume that is

closer to that of PF " .

It should be noted that there is no accepted definiof what constitutes
near-optimal fronts in multi-objective space. Hadidad Reed (2012) defined
near-optimal fronts in terms of achievement of 96%the hypervolumes of the
best-found (Pareto) fronts, as the hypervolumeidely accepted as the best overall

performance metric for multi-objective optimizatigeroblems. Consequently, a
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similar measure is used in this study. Howeverthis study, near-optimal fronts
are defined as those with hypervolumes that lidiwis% of the hypervolume of the
best-known solution, i.e. HI(G) 0.95. This is ddneorder to align this study with
that of Bi et al. (2015), in which, in a single-ebjive optimization context used to
assess the performance of the PHSM, near-optinhalicos were defined as those

that lie within 5% of the best-known solution.

The second metric is thgenerational distance, which is typically used to represent
an MOEA'’s convergence status in objective spacelédkand Reed, 2006). It is
calculated as the mean of the Euclidean distanteeke@ each solution point on the
approximate front and its nearest solution point BR . Each dimension of the
solution vectors onPF" is normalized to [0,1] initially, followed by the
normalization of each dimension of the approxinfedat using the data ranges from
PF . As such, the value of the generational distasagoirmalized within the range
[0, 1]. A lower value of generational distance oales a better front, as it possesses

an overall shorter distance to the Pareto frombijective space.

The third metric is thextent of the front, which is another important indicator for
assessing an MOEA'’s searching quality in terms>gflaative ability. Although
HI(G) can partly represent the extent of the frontusoh quality and diversity also
affect its value. Consequently, the extent of tloatf measure is used in this study to
obtain a deeper understanding of this particulgreetsof front quality. This is
achieved by comparing the extent of the front paricular generatio® with that of
the best-known frontPF " . More specifically, the extent of front value mual to the
maximum Euclidean distance between two solutiomfgodon the front at generation
G divided by the equivalent distance for the besivkm Pareto frontPF™. The
normalization method described for computing theegational distance is also used

to calculate the extent of front metric, and heite®alue is within the range [0, 1].

It should be noted that the best-known Pareto frBRt is needed in the calculation

of all of the above performance metrics. For theHPOSs and BNs4 problems,
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these fronts are taken from Wang et al. (2015), ciwvhivere developed by
comprehensive runs of multiple MOEAs. THeF * of the ZJg4 and Kly274 problems
are not available from the literature, and hence @btained by non-dominated
sorting (Deb et al., 2002) of the merged frontsrfrall of the results generated in this
study. For the two objectives considered, a hypathlesolution with the maximum
cost (i.e. all pipes are assigned the largest a@viaildiameter) and the minimum
network resilience (i.d,=0) is considered as the reference point (the wsmisition)
for the computation ofll(G) for each WDS problem, which is consistent withrilya
et al. (2015).

4.5 Computational experiments

For each case study, the default parameter valu®&SGA-II and Borg are used
(Wang et al. 2015). For both NSGA-II and Borg, thesclude a crossover
probability of 0.9 (SBX for NSGA-II, and all otherossover operators for Borg) and
a mutation rate of LN (polynomial mutation), whereN is the number of decision
variables, as shown in Table 1. The populationssi®g for the HR,;, FOSs and
BN4s4 problems are taken from Wang et al. (2015), andhi® remaining case studies
they are taken from Bi et al. (2015), with valuégeg in Table 4.1. It is noted that
the population sizes given in Table 1 are thedhialue for Borg applied to each
case study, as its population size is dynamicaltyeased as the search progresses
(Hadka and Reed 2012). The maximum allowable nurobeyenerations for each

case study is 2,500, which is consistent with thessl in Wang et al. (2015).
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Table 4.1 MOEA parameters used for each case study

Mutation Maximum Equivalent number
Crossover . . .
. > probability Population | allowable of of generations for
Case studies| probability . . . : Al >
(SBX) (polynomial size () generations | identifying the initial
mutation} (MG) fronts
HP3, 0.9 0.0294 240 2500 2.6
FOS;s 0.9 0.0172 400 2500 2.9
264 0.9 0.0061 500 2500 4.5
BNus4 0.9 0.0022 1000 2500 5.7
KL 1274 0.9 0.0008 1000 2500 6.2

'Mutaton rate is 1IN, whereLN is the number of decision variables (the subseniphber of the case
studies).

It should be noted that additional computation&brefis required to determine the
initial front (Steps 1-2) in the proposed methodaifmy Step 2), which has been
converted to the equivalent number of generatiamsefach case study using a
Pentium PC (Inter R) at 3.0 GHz, as shown in Table It can be seen that the
proposed method is very efficient in producingitiigal front for each case study, as
its computational overhead is negligible compareth whe total computational
budgets allowed for the NSGA-Il and Borg optimiratiruns. As stated previously,
the number of solutions on the initial frontis40, and hence the number of samples
generated based on each of these solutiofigK | using the density function in
Equation (4.3). As such, the sample size for eatitien on the initial front is 6, 10,
13, 25 and 25 for the HR FOSg ZJs4 BNsss and Klyo74 problems, respectively.

For each case study, all NSGA-II and Borg optimaatuns with each of the two
initialization methods are repeated ten times usliffgrent starting random number
seeds, and the mean value of the run-time measetacsnover the ten runs is
presented for discussion (Zecchin et al., 2012;nghet al., 2015). In addition, the
approximate fronts from the two initialization metls at three different generations

(G) are shown to enable a direct visual comparisaheif performance.

Given that the ability to find near-optimal fror{tether than the end-of-run front) is
the focus of this study, performance metrics areamshup to a maximum of 500

generations, which is 20% of the total computatidnadget of 2,500 generations.
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The approximate fronts &=10, 100 and 500 are presented for thgsHFOSs ZJ164,
BNys4 problems. For the Kip74 case studyz=100, 300 and 500 are used, as there are
many infeasible solutions at small numbers of gati@ans for this large problem. The
fronts at these three generation numbers are sdlastthey provide an indication of
(i) the quality of the initial fronts, (ii) perforance with very limited computational
budgets (e.g. 100 generations), and (iii)) the @bt identify near-optimal fronts

with reasonable computational overheads (e.g. Gs568pectively.

4.6 Results and discussion

The approximate fronts obtained using the propdd@PHSM (red ‘+) and the
random initialization approach (black circles) abmwn in Figures 4.4 (for NSGA-II)
and 4.5 (for Borg), with grey triangles represegitthe best-known fronts. These
results are from a typical run for the two initetion methods considered, and
similar performances were observed for the othes.rit is noted that an archive was
used in Borg to store non-dominated solutions okthifrom thes-dominance
operator, with details given in Hadka and Reed 220fneaning that the number of
solutions in the archive increased over the geimerat This is the reason why Borg
produced fewer non-dominated solutions at the exarfjenerations relative to
NSGA-II, as shown in Figures 4.4 and 4.5.

As can be seen, the fronts produced using the MO#PIdearly dominate those
generated using the random initialization approachspective of which MOEA is
used, with the advantages of the MOPHSM more naltieefor larger problems and
smaller numbers of generations. For example, (i)thke BN problem with 454
decision variables, the costs of the solutionstifled using the MOPHSM for both
NSGA-II and Borg were approximately half of thodastaaned with the aid of the
random method &=10 for similar values of network resilience (Figs.4 and 4.5),
and (ii) for the largest problem (Kk;4) with similar values of network resilience, the

costs of solutions from the NSGA-II and Borg froseeded by the MOPHSM were
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around 15% and 25% lower than those obtained ussngandom approach @=100,

respectively.

It is noted that, for NSGA-II, the MOPHSM’s superiperformance is not evenly
distributed across the whole front, but is sigrifidy more prominent in regions with
relatively low costs. For solution regions with ydrigh costs, both initialization
methods exhibited comparable performance, as showigure 4.4. This finding is
consistent with the observations of Zheng et &14, in that good starting positions
for NSGA-II are more likely to show advantages @ashing regions with relatively
low costs. This is because such regions typicalelmore complex fitness functions,
as they are often located at the boundary betweanilfle and infeasible areas.
Interestingly, MOPHSM’s better performance was ob=e across the entire front
relative to the random method for Borg, as showfigure 4.5. This is most likely
due to the differences in searching mechanismsdstWwWSGA-1l and Borg. For the
Borg algorithm applied to the KL network, MOPHSMvgaa front that was more
limited in extent than the random method and timsitation applied up to 500

generations.

84



CHAPTER4. JOURNAL PAPER3

Network Resilience Network Resilience Network Resilience Network Resilience

Network Resilience

a8 e
o
2 J
o
] 4
o '°
¢ HP,,, G=100 HPs,, G=500
o
g I 1 1 I 1 1 1 I 1 I
7 8 9 10 1" 7 8 9 10 1"
o - _‘{, ot oD -
o vy 1 w
o
o |
o
S .
s FOSs, G=100 FOSs;, G=500
1 1 1 I 1 1 I I 1 1 1 1
0.0 0.5 1.0 15 0.0 0.5 1.0 15 0.0 0.5 1.0 15
~ o oot e Ao oot
~
o |
o
v
o
; -
Q- 2}, G=100 7)1, G=500
I I I I 1 1 I 1
10 20 30 40 10 20 30 40
@ - @ S o B e
© |
o
; -
o |
o e
% . 8
a BN,s,, G=10 o BN,s,, G=100 BN,s,, G=500
S I T I 1 1 I I 1 1 I 1 I
5 10 15 20 S 10 15 20 S 10 15 20
°1 ’w/ ,‘w/
v
s Y ad 2
2 J
o
2
e KLz, G=100 KL,y7, G=300 KL 574, G=50(r
o
g - 1 I 1 I 1 1 1 1 I I I I I I 1
20 40 60 80 100 20 40 60 80 100 20 4? ... 60 80 100
Cost ($ million) Cost ($ million) Cost ($ million)

Figure 4.4 Approximate fronts of the proposed MOPH# (red ‘+’) and the
random initialization approach (black circles) obtaned using NSGA-II. The
grey triangles are the best-known fronts.

85



CHAPTER4. JOURNAL PAPER3

2
o
8 ++
2 o
E—3 ™ -
= 8
e ° 0o
x
@
- HP,,, G=10 HP,,, G=100 HP,, G=500
&
g T T T T T T T T T T T T T T T
7 8 9 10 1" 7 8 9 10 1 8 9 10 1"
o
.
s s |LF
o 2
@ o
= ~
s o]
z
® o | _
Zz o FOSss, G=10 FOSs, G=100 FOSss, G=500
T T T T T T T T T T T T
0.0 0.5 1.0 15 0.0 0.5 1.0 15 0.0 0.5 1.0 15
o ~
o o
$
= 9
= 2 ' 4
o o
x v
~ o
2 3
Q
Z o 7)1, G=10 Z) 160, G=100 23161, G=500
T T T T T T T T T T T T
10 20 30 40 10 20 30 40 10 20 30 40
@ ]
8 o
5 @ |
= o
z o | !{‘ [‘
[v 4 o
- o
5 o - 8
z +
o 24
= L] BN,s5,, G=10 BN,5, G=100 BN, G=500
L T T T T T T T T T T T T
5 10 15 20 S 10 15 20 5 10 15 20
8 4
-
w
® o ‘
x o4
x © ‘{ '{ f
2 g
g o
g | KLy, G=100 KLy G=300 KLy G=500
o T T T T T T T T T T T T T T T

20 40 60

Cost ($ million)

80

100

20 40 60

Cost ($ million)

80

100 20 40 60

Cost ($ million)

80 100

Figure 4.5 Approximate fronts of the proposed MOPIEM (red ‘+’) and the
random initialization approach (black circles) obtaned using Borg. The grey
triangles are the best-known fronts

Figures 4.6 and 4.7 present the mean values ofthitee run-time performance

metrics for both initialization methods for NSGAdhd Borg, respectively. In both
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figures, red dashed and black solid lines represesntlts obtained using the
MOPHSM and the random approach, respectively. As lba seen, when the
MOPHSM was used instead of the random initializatapproach, near-optimal
fronts (95% of the hypervolume of the best-knowonf)y were able to be identified
much more quickly on a consistent basis, irrespeaf which MOEA was used. It
can also be seen that the relative advantage afgutie MOPHSM is more
pronounced for larger problems. For example, wite &id of the MOPHSM (i)
NSGA-II only required approximately 130 generatidosidentify a near-optimal
front for the BNis4 problem, which is about 50% of the generationsiedevhen the
random initialization approach was used (Figure 4r&l (ii) Borg was able to reach
the near-optimal front using approximately 420 gatiens for the B4 case study,
with HI values consistently higher than those from the sananethod throughout
the run up to 500 generations (Figure 4.7). In tamidi for the largest problem (KL
problem with 1274 decision variables), both MOEASGA-II and Borg) produced
substantially larger values ¢il compared with those obtained using the random

initialization approach, as shown in Figures 4.6 4rvy.

The results in the middle panel of Figures 4.6 &fdshow that the main advantage
of the MOPHSM over the random method is its greabdlity to produce fronts with
lower generational distance to the best-known &omt terms of the extent of the
fronts, as shown in the right panels of Figuresah@ 4.7, use of both initialization
methods exhibited comparable performance altholighrandom method gave a

higher value of this measure when Borg is applethé KL problem.
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best-known front hypervolume (near-optimal fronts)
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Figure 4.7 Run-time performance metrics of the propsed MOPHSM (red
dashed line) and the random initialization approach(black solid lines) for Borg.
The horizontal grey line in the left panel indicats 95% of the best-known front

hypervolume (near-optimal fronts)
It should be noted that the end-of-rud=@500) fronts and performance statistics

obtained using the two initialization methods cdesed (not shown) are similar,

89



CHAPTER4. JOURNAL PAPER3

suggesting that there is no advantage in usingtbgosed MOPHSM method if the
aim is to identify the globally optimal front. Hower, as the above results clearly
demonstrate, if the aim is to identify near-optinsalutions to complex problems
within realistic computational budgets, there agmificant advantages in using the
proposed approach. It should also be noted thaabyéhe relative performance of
NSGA-II and Borg is in line with that obtained byaw et al. (2015) and explained
in Zheng et al. (2015).

4.7 Summary and conclusions

Over the past few decades, EAs have been usedsasbnfor the optimization of
WDSs. In recent years, there has been increased fat the application of EAs to
more complex WDSs and on the inclusion of multiphectives, resulting in high
computational demands and long run-times. In otdeaddress this issue and to
enable EAs to be applied more easily in practicggaificant amount of research has
focused on the development of methods that enadde-optimal solutions to be
identified within reasonable computational budgeatsther than on necessarily

finding the globally optimal solution or Paretoffito

This paper makes a contribution in this field cfe@rch by developing and testing an
approach to identifying good initial solutions /DS design problems that aim to
minimize network cost and maximize network resitenThe method builds on that
proposed by Bi et al. (2015) for single objectiveD®/design problems aimed at
minimizing network cost and uses domain knowledigeua the attributes of good

designs, including the relationship between pipemditer and the distance to the

supply sources and the interaction between flowargés and network resilience.

The relative advantage of using the proposed MOPHS®Nkhpared with using a
random initialization method in terms of the congiignal effort required to identify
near-optimal solutions was assessed on five casadiest of varying size and

complexity using two different MOEAs (NSGA-II andoRBy). Performance was
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assessed using three run-time metrics, namely yperiolume, the generational

distance to the best-known fronts, and the extetiteofronts.

The results show that while the proposed MOPHSMhizble to improve the quality
of solutions at the end of the run, its use enablear-optimal solutions to be
identified at much smaller computational expengespective of which of the two
MOEAs is used. The advantage of using the MOPHSMaidicularly noticeable

when dealing with larger problems and smaller cammpenal budgets. This is
appealing from a practical perspective, as in meggj-life applications, there is
insufficient time to run MOEASs until no further imgvement in the optimal fronts is
obtained. While the use of the MOPHSM has beenddonbe beneficial, its utility

should be assessed further in future studies byaany its performance with that of
other approaches to developing good initial sohgigsee Introduction), which are

currently generally only applicable to single-olee problems.
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Chapter 5. Conclusions and Recommendations for Futa Work

Evolutionary algorithms (EAs) have been used exitelysto optimise the design of
water distribution systems (WDSs) over the last y&€ars. However, these
applications are still mainly limited to the resgardomain due to their large
computational requirements when applied to realewvoproblems. These
requirements often go beyond the computational étsdipat are typically available
in practice. In order to address this issue, tieegeeneral consensus that identifying
near-optimal solutions in a reasonable timefranagher than trying to find the
globally optimal solution in an unaffordable tineafie, is of great practical
importance. While many studies have been undertakachieve this goal, to date
there have been limited efforts that consider the aof domain knowledge for this

purpose.

5.1 Research Contributions

The overall contribution of this thesistte development of methods for generating
initial solutions with the aid of WDS domain knowledge, thereby enabling EAs to
identify near-optimal solutions (fronts) as quickly as possible. A further contribution

is the use of run-time convergence statistics to provide an improved understanding of
the speeds with which the near-optimal solutions are found. While these proposed
initialization methods do not necessarily imprave tinal solution quality compared
to the random initialization method after very long times, they are capable of
identifying near-optimal solutions with significintreduced computational effort.
This is verified through the results obtained forumnber of WDS case studies with
increasing complexity. Such a feature is of paldicumportance when EAs are
applied to real-world problems, as they often nexjtine use of computationally
intensive simulation models for objective functimmd/or constraint evaluation. It is
anticipated that the initialization methods outtiria this thesis will enable a wider
up-take of EAs in practice, thereby enabling thdirpotential to be realized within

the WDS design domain.
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The research contributions in each chapter areedtbelow to specifically meet the

objectives of this research statecCinapter 1.

1.

In the first publication given ilfChapter 2, a new heuristic initialization
method for seeding GA populations was introducetl @raluated, in which
domain knowledge about the relationship betweer pipe and distance
to the supply sources, as well as the impact offline velocities on
optimal solutions, were considered. This initiai@a method was
compared with three other methods (an existingisteusampling method
and two more traditional sampling methods, inclgdiandom sampling and
Latin Hypercube sampling) on seven WDS optimisati@ipe-sizing)
problems with increasing complexity. The resultdamied indicated that
overall, the proposed initialization method sigfitly outperformed the
other three sampling methods, both in terms of tieolu quality
(single-objective cost) and computational efficienit was also found that
the relative advantage of the proposed method veagey for larger networks.
This demonstrates that the incorporation of domaiowledge into the
generation of initial solutions is effective in ding EAs’ searching quickly
towards promising regions, thus enabling near-ggtisolutions to be
reached within very limited timeframes(meet@pjective 1).

In the second publicatiorChapter 3), it was found that both EAS’ starting
positions and searching mechanisms significantfgcaftheir capacity to
efficiently identify near-optimal solutions, ancethatter exhibited relatively
more noticeable impacts. With the aid of run-tineldwior analysis, it was
observed that improvements in objective cost fonctand reduction in
population diversity were strongly correlated, iyipd) that the convergence
properties in the decision space heavily affect skarching quality in
objective space. This observation shed new light tbe causes of
performance differences between different algothparameterizations and
starting positions, making it possible to modify algorithm’s performance
through manipulating its population diversity. Anet important finding in
this study in that the fithess functions of WDSiglegroblems are likely to

consist of a single “big bowl!” structure with a gaegl base that is likely to
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5.2

have many local optima. This can explain the gutiity of the proposed
initialization method irChapter 2 (paper 1), as the initial solutions obtained
using this method enabled the search to commemte/gg down the “side”
of the “big bowl”. Based on the observed fitnessction characteristics of
the case studies considered, the use of EAs witlucesl explorative
capability (lower mutation rates) is expected tarimre effective in terms of
efficiently identifying near-optimal solutions. EBhis useful guidance for EA

parameterization.

In the third publication outlined i€@hapter 4, a multiobjective initialization
method was proposed to identify high quality ihitipopulations for
multi-objective EAs (MOEAS) applied to WDS desigrolgems, aimed at
minimizing cost and maximizing network resilience rheasure of WDS
supply reliability). In addition to engineering exjence about the
relationship between pipe size and distance tosthece(s) of water as
considered in the first publicatioflgapter 2), domain knowledge about the
relationship between flow velocities and networlsilience was also
accounted for. The proposed approach was compaitd randomly
generating initial populations in relation to findi near-optimal solutions
more efficiently based on five WDS case studieganying complexity with
two different MOEAs (NSGA-II and Borg). The resultslicate that there are
considerable benefits in using the proposed irraabn method in terms of
being able to identify near-optimal solutions (#n more quickly,
irrespective of MOEA type, with benefits being marenounced for larger

problems and smaller computational budgets.

Research Limitations

The limitations of this research are discussedvwelo

1. As part of the proposed initialization method, odtymain knowledge with

regard to pipe-sizing is considered. In other wotde WDS case studies
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considered are purely pipe-sizing problems, witloomsidering the design of

other hydraulic elements, such as valves, tankpangbs.

2. Domain knowledge is only used in the initializatiphase of EAs in this
thesis, while it has not been implemented to dynaltyiguide the searching
during the optimization process. For example, #ationship between the
pipe size and distance to the source(s) of wateals® be considered at each
generation after the algorithm operators (e.g.soeey and mutation) have

been applied, in addition to the initial population

3. The effectiveness of the proposed multiobjecinalization method was
demonstrated for the objectives of the minimizatioh cost and the
maximization of network resilience. There are mather objectives within
WDS design that should be considered, such as mgtion of greenhouse

gas emissions

5.3 Recommendations for Future Work

This research has developed new initialization pughthat have successfully
assisted EAs to identify near-optimal solutioner{fs) for WDS design problems in a
computationally efficient manner. However, there still opportunities to address

the limitations outlined above as part of futuredgts along this research line:

1. Incorporating the domain knowledge in relation tthes hydraulic
components into EA optimization of WDSs, in additito pipes. It is
possible to extend the proposed domain-knowledgedaethodology to
deal with pipe cleaning and relining within the iopkation process
through considering the reasonable range of theciteds. However, the
inclusion of the domain knowledge for the designpoinps, tanks and
valves is not straightforward, requiring furthevéstigation.

2. Applying the proposed method to solve other loadiages, in addition to a
single loading case as considered in this thesis ekample, fire loading
cases (multiple loading cases) and water qualityldcdoe solved by
checking whether the velocities lie within accepdimits.
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3. Development of a more advanced EA framework thataide to
dynamically implement domain knowledge within theimization process,
in addition to the initialization stage, as consagkin this thesis.

4. Modification of the proposed multiobjective inii@dtion method to
account for a number of other objectives for WDSigie problems. For
example, leakage losses as a function of pipe sizdgressures could be
considered as a separate objective during themegigmization. Similarly,
water quality could also be treated as a separdijective (where
appropriate).

5. Development of advanced EA algorithms to enableadyn adjustment in
parameterization according to the improved undeditey between the
searching quality in objective space and convergancdecision space

obtained in this thesis.
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1. Introduction

Evolutionary algorithms (EAs) have been used successfully and
extensively for solving water resources optimization problems in a
number of areas, such as engineering design, the development of
management strategies and model calibration (Nicklow et al., 2010;
Zecchin et al., 2012). However, a potential shortcoming of EAs is
that they are computationally inefficient, especially when applied
to problems of realistic size. Consequently, there is a need to
improve the computational efficiency of EAs to make them easier to
use for the optimization of realistic water resources problems
(Maier et al.,, 2014).

One application area where this is the case of is the design of
water distribution systems (WDSs) (Marchi et al., 2014a,b; Stokes
et al., 2014). Over the past two decades, a variety of EAs have
been applied to this problem, as detailed in Zheng et al. (2013a).
Among these, genetic algorithms (GAs) have been used most
extensively (Simpson et al., 1994; Dandy et al., 1996; Gupta et al,,
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1999; Vairavamoorthy and Ali, 2005; Krapivka and Ostfeld, 2009;
Kang and Lansey, 2012; Zheng et al., 2013b). However, GAs have
been primarily applied to relatively simple benchmark problems,
such as the 14-pipe problem (Simpson et al., 1994), the New York
Tunnels problem with 21 tunnels (Dandy et al., 1996), and the
Hanoi problem with 34 pipes (Zheng et al., 2011a). In recent years,
there has been a move towards increasing the complexity and re-
alism of the case studies to which GAs are applied, including the
Balerma network with 454 pipes (Reca and Martinez, 2006), the
Rural network with 476 pipes (Marchi et al., 2014a), the BWN-II
network with 433 pipes (Zheng et al., 2013c), and the network
used by Kang and Lansey (2012), which has 1274 pipes and will be
referred to as the “KL” network for the remainder of this paper.

Increased network size and complexity result in significant
challenges in terms of achieving good quality near-optimal solu-
tions given the computational budgets that are typically available in
practice (di Pierro et al., 2009; Fu et al., 2012). This is because (i) the
time for hydraulic simulation increases appreciably for large WDSs;
and (ii) the complexity and size of the search space associated with
a large WDS are increased significantly. As a result, computational
efficiency has been identified as a key concern for the widespread
uptake of GAs for the optimization of large, real-world WDSs (di
Pierro et al., 2009).

In order to address this issue, two main approaches have been
adopted in the literature. As part of the first approach, it is argued
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that for large, real problems, the focus should be on finding the best
possible solution within a realistic computational budget, rather
than on attempting to find the global optimal solution (e.g. Tolson
and Shoemaker, 2007; Gibbs et al., 2008; Tolson et al., 2009; Gibbs
et al, 2010, 2011). This is because for such large problems, the
global optimal solution is unlikely to be found within a reasonable
computational timeframe.

As part of the second approach, efforts have been made to in-
crease the computational efficiency of the optimization process.
This has been done in a number of ways, including the use of
increased computational power, such as parallel and distributed
computing (Wu and Zhu, 2009; Roshani and Filion, 2012; Wu and
Behandish, 2012), the use of surrogate- and meta-modeling to
speed up the simulation process (e.g. Broad et al.,. 2005; di Pierro
et al., 2009; Broad et al., 2010; Razavi et al., 2012), and the seed-
ing of the initial population of EAs with good solutions obtained
using a variety of analytical techniques (e.g. Keedwell and Khu,
2006; Zheng et al., 2011a, 20144a,b; Zheng and Zecchin, 2014; Fu
et al, 2012). It should be noted that similar concepts have
recently also been used in conjunction with other optimization
techniques (e.g. Zhang et al., 2013; Housh et al., 2013) and non-
optimization based WDS design approaches (e.g. Sitzenfrei et al,,
2013).

Although some of the methods mentioned above utilize engi-
neering knowledge in their development (e.g. Keedwell and Khu,
2006; Zheng et al., 2011a), there have been limited attempts to
incorporate engineering knowledge and experience directly. Only
Kang and Lansey (2012) have combined engineering experience
with GAs in order to increase the computational efficiency of the
optimization process. This was achieved by seeding half of the
initial GA population with solutions that result in flow velocities
below a threshold selected from within a pre-defined velocity
range. However, the approach has only been applied to a single case
study thus far and its relative performance has not yet been
assessed in a rigorous and comprehensive manner. In addition, the
approach has a number of potential shortcomings. Firstly, selection
of an appropriate range for the velocity threshold is subjective,
which might make the method difficult to apply and could result in
inconsistent results from repeated, independent implementation of
the method. Secondly, pipe sizes that result in appropriate veloc-
ities are determined using a structured trial-and-error process.
However, in practice, pipe sizes generally reduce with distance
from the source (Walski, 2001). Consequently, there exists an op-
portunity to incorporate this domain knowledge into the initial
pipe sizing process. Finally, there is limited control over population
diversity, as this is achieved by seeding the initial population with
50% of randomly generated solutions and 50% of the solutions ob-
tained based on engineering experience.

In order to address these shortcomings, the objectives of this
paper are (i) to introduce a new heuristic sampling method for
determining the initial population of GAs for the least-cost design
of WDSs that is based on engineering experience/domain knowl-
edge and that overcomes the potential shortcomings of the method
of Kang and Lansey (2012); and (ii) to provide a rigorous assess-
ment of the performance of this method compared with that of
Kang and Lansey's sampling method (KLSM) and two sampling
methods that do not consider any domain knowledge (i.e. random
sampling (RS) and Latin hypercube sampling (LHS)) on seven WDS
design case studies of varying size and complexity.

The remainder of this paper is organized as follows. The pro-
posed heuristic, domain knowledge based sampling method for
determining the initial population of GAs for the least-cost design
of WDSs is introduced in next section, followed by the methodol-
ogy for assessing the performance of this method against that of the
KLSM and the two non-heuristic sampling methods. Next, the

results are presented and discussed, followed by summary and
conclusions.

2. Proposed prescreened heuristic sampling method for WDS
design

The proposed heuristic sampling method for initializing the
population of GAs for the least-cost design of WDSs based on
domain knowledge is called the Prescreened Heuristic Sampling
Method (PHSM). It uses a three-step procedure that (i) selects pipe
sizes based on knowledge that pipe diameters generally get smaller
the further they are from the source; (ii) dynamically adjusts the
velocity threshold to account for the fact that appropriate velocity
thresholds are likely to be network dependent; and (iii) enables the
diversity of the initial population to be controlled by sampling from
distributions centred on the solutions determined using the heu-
ristic procedures in (i) and (ii). The PHSM has some similarities to
the KLSM in that it aims to find initial pipe sizes that restrict flow
velocities to lie within certain ranges. However, it overcomes the
potential limitations of the KLSM outlined in the Introduction.
Details of the three steps of the PHSM are given below.

Step 1: Assign pipe diameters based on distances between demand
nodes and supply sources

As mentioned above, the first step of the PHSM is motivated by
the knowledge that, in real WDSs, the diameters of upstream pipes
are generally larger than those further downstream (Walski, 2001).
However, for WDSs, each demand node usually has a number of
different paths that connect it to the supply source (reservoir). This
indicates that the spatial distance between each demand node and
the reservoir may vary according to the paths selected to deliver the
required demands. In the proposed method, the shortest delivery
path to each demand node is selected and used to represent the
spatial distance between that node and the source node. The
rationale behind this is that it has been demonstrated that the
majority of the demand at a node is supplied by the path with the
shortest distance for an optimal design of WDSs (Zheng et al,,
2011a). The detailed process of step 1 of the PHSM is as follows:

i Find the shortest distance to a reservoir in the water network, l;
for each node i (i = 1,2 ... ..,n, where n is the total number of
demand nodes in the network) using the Dijkstra algorithm
(Deo, 1974). When dealing with a water network with multiple
reservoirs, an augmented source node is created to connect all
the reservoirs to enable the determination of I; following
Deuerlein (2008) and Zheng et al. (2011a).

Obtain the largest value of the shortest distance L by L = max(l;).

Divide the network into P specific areas with the shortest dis-

tance to the source node interval of L/P, where P is the number of

available pipe diameters for the design.

iv Assign pipes in each area a different diameter, with the largest
diameter assigned to the pipes in the area nearest to the source
and the smallest diameter to the pipes in the area furthest from
the source (reservoir). All pipes in a single area are assigned the
same diameter.

=

i
ii

=

For example, for the WDS introduced by Zheng et al. (2011a),
which has 164 pipes (Fig. 1), the largest shortest distance of all
nodes (L) is obtained after steps i and ii. If there are five diameter
options for this network (i.e. P = 5), the network will be divided into
five areas in step iii. In order to do this (i) all nodes that have a
shortest-distance that is not greater than L/P (i.e. 0 < [; < L/5) form
Area 1; (ii) all nodes that have a shortest-distance that is larger than
L/P but not greater than 2L/5 (i.e. L/5 < [; < 2L/5) form Area 2; ...; (v)
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Reservoir

Fig. 1. WDS used to illustrate the result of network division of the PHSM (The red
dotted lines represent the distance boundary used to assign diameters). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

all nodes that have a shortest-distance larger than 4L/P (i.e. 4L/
5 < ;<L) form Area 5. The resulting division of the network is given
in Fig. 1. Finally, (i) all pipes in Area 1 are assigned the largest
diameter; (ii) all pipes in Area 2 are assigned the second largest
diameter; and so on until all pipes in Area 5 are assigned the

smallest pipe diameter. As such, the diameters of the upstream
pipes are generally larger than those of the downstream pipes.

Step 2: Adjust pipe diameters based on velocities

In this step, the diameters obtained in step 1 are refined to
achieve flow velocities in all pipes that are close to a particular
threshold. This is based on the domain knowledge that the velocity
in each pipe of an optimal solution for a WDS is in a limited range.
In addition, in order to ensure that the chosen pipe diameters
approach optimal values, the velocity threshold is selected to result
in solutions that are on the boundary between feasibility and
infeasibility. This is because the optimal solution is often located on
the boundary of the feasible and infeasible areas of the search
space. The stages in the process for achieving this are shown in
Fig. 2.

As can be seen from Fig. 2, an inner loop and an outer loop are
involved in the algorithm. The inner loop is used to determine the
network configuration based on pipe velocities. To do this, a
threshold value v for velocity needs to be assigned at the beginning
(e.g. v = 0.1 m/s), which represents the expected velocity for each
pipe in the network. The network with initial diameters deter-
mined in Step 1 is then simulated using a hydraulic solver to obtain
the flow rate for each pipe. Based on this flow rate, the new
diameter NDj for each pipe can be calculated using:

4

%

ND; = (1)

where j =1, ... ,m is the jth pipe in the water network and m is the
total number of pipes.

As continuous diameter values are generated using Equation (1),
these values need to be rounded up or down to the nearest discrete
diameter based on the available options.

Set up an initial threshold velocity (v), for example v=0.1m/s.
Specify the adjustment Av, for example 4v=0.1m/s.
Set up the number of simulations s=0.

v

Perform a hydraulic simulation for the network with initial diameters D; obtained in Step

= ™ 1 (j=1,2...m, where m is total number of pipes). -

L Update s=s+1.

3 v

T ’ Obtain the flow rate for each pipe (Q)). ‘ &

1 * =

_
Calculate the updated diameter (NDj) using NDj=/42, for all pipes. Q
v g
* 3
’ Round all updated values of ND; to the nearest discrete pipe diameters. ‘

N
’ For all pipes, check whether ND,=D;? M Check whether s=S,,,,, (maximum number )? ‘—

Yes l

Yes l

’ Calculate the total pipe cost (f). ‘

Yes, save this solution in pool, then v

I

_{

Is the minimum pressure satisfied at all nodes? ‘

o 1

’ Finish and select the feasible solution with the lowest cost from the pool. ‘

Fig. 2. Flowchart of the algorithm for adjusting pipe diameters based on flow velocity.
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The inner loop continues until there is no further change in
diameter in accordance with Equation (1) or the number of simu-
lations (s) reaches the specified maximum number of allowable
simulations (Smax), at which point the cost (f) and the minimum
pressure head of this design are determined. If this solution is
feasible (i.e., the pressure head constraints are satisfied), the
network configuration and its associated network cost are saved to
an archive. As part of the outer loop, the inner loop is repeated for
successive increases in the velocity threshold (i.e. v = v + Av) until
no feasible solution can be found. If the solution found at the
completion of the inner loop is infeasible, the outer loop is not
performed and the process of adjusting diameters is terminated.
Finally, the feasible solution with the lowest cost for the different
velocity thresholds considered is selected from the archive and
denoted as an approximate optimal solution for the WDS being
optimized. This solution is then used as the starting point for Step 3,
as outlined below.

Step 3: Generate distribution functions based on the approximate
optimal solution determined in Step 2.

In order to ensure sufficient diversity in the initial solution, the
initial diameter for each pipe is generated from a distribution, such
that the pipe diameter obtained in Step 2 has the highest proba-
bility of being selected. The logic behind this is that the approxi-
mate diameter for a pipe determined in Step 2 is most likely to be
the optimal diameter relative to other diameter options. Hence, a
relatively higher density function value is assigned to this diameter
(i.e. it is more likely to be selected during sampling).

The density function f{Dy) and the distribution function F(Dy) for
selecting each initial diameter are given by the following equations:

f(Dk):%a'X‘ k=1,...P (2)
f(Dy)

FDy) = —2k  k=1,..,P 3

i) > ket f(Dy) ‘ ©)

where a is a constant factor to control the density of each diameter
Dy, details of which are discussed in Section 4; x is the distance
between Dy and D, (the diameter for a pipe in the approximate
optimal solution determined in Step 2) in terms of integer coding;
and P is the total number of available pipe diameters.

In order to illustrate how the approach outlined above is used to
generate the pipe diameters in the initial solution, the following
example is used. Table 1 presents the assumed total pipe diameter
options and their corresponding integer coding values. If
D. =200 mm in Step 2 for a particular pipe, its integer code is 1, as
shown in Table 1. The absolute distance |x| between each Dy and D,
is then calculated and presented in the third column of Table 1. The
density function and distribution function values for generating
each available diameter for this pipe during sampling are calculated
based on Equations (2) and (3), respectively (assuming a = 1). The
results are given in the fourth and fifth columns of Table 1. As can be

Table 1

Example to illustrate the application of Step 3 of the PHSM.
Pipe diameter Integer Absolute Density Distribution
Dy (mm) coding distance function function

number to Dc (|x]) value f(Dy) value F(Dy)

100 0 1 0.5 0.19
200 1 1] 1 0.39
300 2 1 0.5 0.19
500 3 2 033 0.13

seen, a diameter of 200 mm has the largest probability of being
selected during sampling, as this diameter is selected based on the
heuristic rules used in Steps 1 and 2. In contrast, a diameter of
600 mm has the smallest probability of being selected, since it has
the largest distance to the optimal diameter of 200 mm.

It should be noted that the assumption made in Step 1 that the
upstream diameters are typically larger than those further down-
stream might not hold for all networks due to the influence of
network topology and zoning, However, as the initial diameters
obtained in Step 1 are adjusted based on flow velocities in Step 2,
the influence of network topology and zoning is accounted for in
the overall approach.

3. Methodology

As stated in the Introduction, one of the objectives of this paper
is to provide a rigorous assessment of the relative performance of
the PHSM compared with that of the KLSM and two sampling
methods that do not consider domain knowledge. The flowchart of
the process for achieving this is shown in Fig. 3. As can be seen, four
different sampling methods, including two heuristic methods (i.e.
the PHSM and the KLSM) and two non-heuristic methods (i.e. RS
and LHS), are used to obtain initial GA populations. The two non-
heuristic sampling methods are considered as they provide a
benchmark against which the performance of the two heuristic
sampling methods can be assessed. RS is used as this is the con-
ventional method for initializing GA populations and LHS is used as
it provides a more structured approach for sampling the solution
space. It should be noted that, although there are some other
analytical techniques for seeding the initial population of EAs (e.g.
Keedwell and Khu, 2006; Zheng et al., 2011a, 2014a,b; Zheng and
Zecchin, 2014; Fu et al., 2012), they do not incorporate engineer-
ing knowledge and experience directly and hence are not consid-
ered in this paper.

Each of the sampling approaches is applied to seven WDSs of
varying size and complexity, including the Hanoi, Extended Hanoi,
Fosspoly 1, ZJ, Balerma and Rural networks, as well as a modified
version of the KL network (KLmod). The networks are optimized for
total life cycle costs while satisfying pressure head constraints at
each demand node. The hydraulic simulations required to check
pressure constraints are performed using EPANET 2.0, as demand-
driven modelling is most commonly used in optimization studies,
although pressure-driven modelling is likely to be a better alter-
native under some circumstances (Laucelli et al., 2012). Each of the
GA optimization runs is repeated 10 times with different sets of
initial solutions and GA operators generated using different random
number seeds for each network and sampling method. The results
are compared in terms of the best and average solutions found
during these ten runs. Details of each of the components of the
process are provided in subsequent sections.

3.1. Sampling methods

Details of the KLSM (Method 2, Fig. 3) and the two non-heuristic
sampling methods (Methods 3 and 4, Fig. 3) are given below. De-
tails of the PHSM (Method 1, Fig. 3) are given in the previous
section.

3.1.1. The KLSM (Kang and Lansey, 2012) (Method 2)

As mentioned previously, in this approach, initial solutions are
generated by adjusting pipe diameters to ensure that the velocities
in all pipes are less than a pre-set velocity threshold selected from a
practical range of velocities for average and peak flows in water
supply networks. The heuristic procedure for achieving this is as
follows:
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Fig. 3. Flowchart of the assessment process.

(1) All pipes to be optimized are set to the minimum allowable
diameter.

(2) A hydraulic simulation is carried out to obtain the flow ve-
locity in each pipe.

(3) The resulting velocity in each pipe is compared with a pre-
set velocity threshold selected from within the range of
0.45—1.5 m/s (e.g. 1 m/s). If the velocity is larger than the
threshold, this pipe diameter is increased to the next larger
commercial size.

Steps (2) and (3) are performed repeatedly until all velocities
in all pipes are below the threshold and the resulting pipes sizes
are used to form one solution of the initial population. A number
of different initial solutions is generated by varying the value of
the velocity threshold within the pre-defined velocity range of
0.45—1.5 m/s. In order to maintain solution diversity, half of the
initial solutions are generated using this heuristic method, while
the other half are generated randomly. In this study, the velocity
thresholds of the KLSM are obtained using the following
equation:

1.5m/s — 0.45m/s)

VT, — 0.45m/s + ™
2

(4)

where VT (m/s) is the rth (r = 1,2 ...,"sN) velocity threshold used for
generating the heuristic solutions; N is the total population size.

3.1.2. Random sampling (Method 3)

In random sampling (RS), each diameter option has the same
probability of being selected for each pipe within the WDS. When
generating a solution, each decision variable (i.e. pipe) is assigned a
diameter value that is randomly selected from all available diam-
eter options.

3.1.3. Latin Hypercube Sampling (Method 4)

Latin Hypercube Sampling (LHS) is a type of stratified sampling
method that ensures that all portions of the sample space of each
variable are sampled (McKay et al., 1979). In this study, Simlab2.2
(JRC, 2008) is used to generate initial solutions using LHS for each
case study. A detailed description of the process of LHS can be found
in the manual of Simlab2.2 (JRC, 2008).

3.2. Case studies

Details of each case study are given in Table 2. For each case
study, the decision variables are the pipe diameters and the
objective is to find the minimum cost solution while satisfying the
pressure head constraints. Consequently, the optimization problem
to be solved can be represented as follows:

Minimize.
m
F=>_G(D) (5)
j=1
Subject to:
HMIN < H; < HMX j=1,2....,n (6)
G(Hi,D) = 0 (7)

where F is the network cost that is to be minimized; C(D;) is the
cost function for pipe j = 1,2 ...,m with assigned diameter D;; m and
n are the total number of pipes and demand nodes in the network,
respectively; G(H;, D) = nodal mass balance and loop (path) energy
balance equations for the whole network with pipe combinations
of D=[Dy, Dy, ... .Dm]T, which is solved using EPANET2.0; H; = head
at node i = 1,2 ... .n; H{“i“ and H™ are the minimum and
maximum allowable head limits at the nodes; and A = a set of
commercially available pipe diameters.

As shown in Table 2, the seven case studies vary in size and
complexity. Details of each network, including the network layout,
the available pipe diameters and the cost of each diameter for the
Extended Hanoi and the KLmod network are given in this paper and
those of the other case studies are given in the corresponding ref-
erences in the second column of Table 2. The EPANet input files for
these seven networks are provided as supplementary material. The
current best known solution for each case study (if available) is
presented in the second last column in Table 2. The best known
solutions (least-cost solutions) for the Hanoi, Balerma and Rural
case studies found by GAs are given in the last column, while no GA
solutions can be found in the literature for the other case studies.
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Table 2
Details of the seven case studies.

Case study Reference No. Of No. of Size of total Pressure Current best solution Current best solution
decision diameter  search space  head found by GAs
variables®  options® constraint

Hanoi Fujiwara and Khang (1990) 34 6 2.86 x 1026 >30m $6.081 million by Reca and $6.081 million by Reca

Martinez (2006) using GENOME and Martinez (2006)

Extended Hanoi  current study 34 10 1x 1034 >30m ¢ ¢

Fosspoly1 Bragalli et al. (2012) 58 22 7.26 x 1077 >40m $0.0291 million by €

Bragalli et al. (2012) using MINLP
Z] Zheng et al. (2011a) 164 14 9.23 x 1087 >22m $7.082 million by =€
Zheng et al. (2011a) using NLP-DE
Balerma Reca and Martinez (2006) 454 10 1 x 10%4 >20m €1.923 million by €2.302 million by
Zheng et al. (2011a) using NLP-DE  Bolognesi et al. (2010)
Rural network Marchi et al. (2014a,b) 476 15 6.58 x 1055  >0m $ 31.22 million by $ 36.25 million by
Marchi et al. (2014a,b) using DE Marchi et al. (2014a,b)
KLmod network  Adapted from Kang 1274 10 1 x 101274 >45m - -

and Lansey (2012)

2 The decision variables are the pipe diameters.

b The pipe diameter options for the Extended Hanoi and KL network are given in this paper and those for the other case studies are given in the references provided.
¢ The current best solution is unknown or the network has not been optimized previously using an Evolutionary Algorithm.

The Extended Hanoi case study is developed based on the
original Hanoi problem (Fujiwara and Khang, 1990), and has not
been used in previous studies. The only difference between the
original and Extended Hanoi case studies is the number of available
diameters for each pipe, while the other information is the same. As
it is acknowledged that infeasible solutions dominate the search
space for the Hanoi case study, a larger number of diameter options
is included for this case study in order to test the performance of
the various sampling methods when dealing with a search space
with a larger feasible proportion. For the Extended Hanoi problem,
ten pipe diameters, including 12, 16, 20, 24, 30, 40, 50, 60, 70 and 80
inches are available instead of the six smallest diameters from this
list that were available for the original Hanoi case study (Fujiwara
and Khang, 1990).

The topology of the KLmod network case study is taken from the
network used by Kang and Lansey (2012), without consideration of
pumps and fire-fighting conditions. For this network, a total of ten
diameters, including 150, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000 mm are available for all pipes, with the unit costs given in
Kadu et al. (2008).

3.3. Genetic algorithm optimization

The description of genetic algorithms (GAs) has been well
documented (see e.g. Simpson et al., 1994) and hence, this infor-
mation is not repeated in this paper. In this study, the GA used
integer coding, two-point crossover, bitwise mutation, and tour-
nament selection, as these have been demonstrated to be effective
in terms of finding optimal solutions (Deb, 2000; Vairavamoorthy
and Ali, 2005; Zheng et al, 2011b). Although a number of
different GA variants have been developed over the past four de-
cades in order to improve search performance (Dandy et al., 1996;
Nicklow et al., 2010), the use of a relatively standard GA formulation
was considered adequate, as the focus of this study is on the
evaluation of different methods for obtaining initial GA pop-
ulations. In addition, all of the sampling approaches considered in
this paper can be used in conjunction with any GA variant or other
type of EA.

4. Computational experiments
The four sampling methods (i.e. the PHSM, the KLSM, RS and

LHS) were used to generate the initial solutions for GAs applied to
each of the seven WDS case studies (Fig. 3). The results of GAs

seeded using these four sampling methods were compared in
terms of objective function value and computational efficiency.

For the PHSM, the value of the initial threshold velocity v used in
Step 2 was selected to be 0.1 m/s for all case studies based on the
results of preliminary trials with several different values, although
variations of this initial value were found to have only a slight
impact on the results. It was found that the overall number of
simulations required for adjusting pipe diameters in Step 2 was less
than 200 for the seven case studies, and hence the maximum
number of allowable simulations Sp,,x was set to 1000. In Step 3 of
the PHSM, a number of different values of a (see Equation (2))
ranging from 0.1 to 2 were tried and a = 0.5 was ultimately selected,
as it produced slightly better results than other a values. However,
as was the case for the initial threshold velocity v, slight variations
in a did not significantly influence the final results. For the KLSM,
velocity thresholds were generated in accordance with Equation
(4).

The parameter values of the GAs applied to each case study were
fine-tuned with the aid of a large-scale sensitivity analysis. For the
crossover probability, values ranging from 0.1 to 0.9 were tried. For
the mutation probability, 10 different values around the value of 1/
ND (where ND is the number of decision variables) were tried for
each study, as it has been demonstrated that a value of approxi-
mately 1/ND is an effective value and is normally used for GAs
(Simpson et al., 1994). The parameter values that exhibited the best
performance in terms of efficiently finding good quality optimal
solutions were selected and are presented in Table 3. For each case
study, the GAs seeded using the four sampling methods considered
used the same parameter values. A penalty cost was added to the
objective function value for infeasible solutions, with a penalty
multiplier of 10°/metre of head being used for all case studies
(Simpson et al., 1994). The tournament size in the selection oper-
ator was two for all GAs. The maximum allowable number of
evaluations for each case study is given in the last column of
Table 3, with the larger networks assigned larger computational
budgets.

In order to facilitate easier discussion of the results, the seven
case studies were assigned to three groups based on the number of
decision variables (ND), as shown in the third column of Table 3.
The first three case studies (Hanoi, Extended Hanoi and Fosspoly1)
were assigned to G1, as their values of ND < 100, while the Z],
Balerma and Rural network case studies were allocated to G2 with
100 < ND < 500. The KLmod network was assigned to G3, as its
ND > 500.
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Table 3
Parameters values of GAs for each case study.

Case study Number of Network group Population Crossover Mutation Total number of
decision based on the size (n) probability probability evaluations
variables (np) size of WDSs

Hanoi 34 G1 (ND < 100) 100 0.9 0.02 300,000

Extended Hanoi 34 100 0.9 0.02 300,000

Fosspoly1 58 500 0.8 0.02 500,000

7] 164 G2 (100 < ND < 500) 500 0.9 0.006 500,000

Balerma 454 1000 0.9 0.002 1,000,000

Rural network 476 1000 0.8 0.002 1,000,000

KLmod network 1274 G3(ND > 500) 1000 0.9 0.0008 2,000,000

The performance of each sampling method was assessed using
the method outlined below:

1. For each case study, ten GA runs were performed for each of the
four sampling methods using different random number seeds,
resulting in a total of 40 final optimal solutions.

2. The best final solution from the 40 solutions was selected for
each case study and used as a benchmark against which the
performance of each sampling method was assessed. This
benchmark optimal solution was also compared with the cur-
rent best known solution in the literature obtained using similar
GA:s, if available (see Table 2), in order to ensure that the results
obtained in the current study are reasonable.

3. For each sampling method, the average of the best solution at
each GA generation was calculated for each case study based on
the ten runs with different starting random number seeds
(denoted ABS). In addition, among the ten best solutions at each
generation, the one with the lowest cost was selected (denoted
as BBS).

4, The deviation of ABS and BBS from the corresponding bench-
mark optimal solution was plotted against the number of eval-
uations for each sampling method. This resulted in four
convergence curves on the same plot, enabling a comparison of
the performance of the four sampling methods considered.

5. The performance of each sampling method was also assessed in
terms of its computational efficiency in being able to find near-
optimal solutions. For this purpose, optimal solutions that had
objective function values within 5% of the benchmark optimal
solution were defined as being near-optimal.

In order to enable a fair comparison between the methods, the
computational overheads associated with implementing the pro-
posed PHSM are also considered (Table 4). This was achieved by
converting the computational time required for each step of the
proposed PHSM (see Section 2) to the equivalent number of
network simulations using the same computer configuration
(Pentium PC (Inter R) at 3.0 GHz). As shown in Table 4, the proposed

Table 4
Computational overhead analysis for the proposed sampling method (PHSM).

PHSM is very efficient in computing the shortest-distance values
for the network (Step 1) and generating distribution functions
based on the approximate optimal solutions (Step 3), while it is
relatively more time-consuming in adjusting pipe diameters based
on the velocities in Step 2. This is expected, as this step involves an
iterative process (see Fig. 2). The number of equivalent network
simulations that correspond to the total computational overhead
required by the PHSM method is presented in the last column of
Table 4. As can be seen, this computational effort is negligible
compared with the total computational budgets used in Table 3,
and hence is not considered in the subsequent discussions in Sec-
tion 5.

5. Results and discussion

The costs of the best solutions found using the GAs initialized
with the four sampling methods considered for each of the seven
case studies are given in Table 5, with the lowest cost solutions
found highlighted in bold. In addition, for the case studies to which
GAs had been applied previously in the literature, the percentage
deviation of the solutions found in this study compared with the
best solution found using GAs reported in the literature are shown
in brackets (i.e. negative percentage changes indicate that the so-
lutions found in this study are better and vice versa). It should be
noted that the results presented here are compared with those
obtained using GAs in previous studies because the purpose of this
study is to compare the relative performance of different initial
sampling approaches. This requires the impact of the sampling
approaches to be isolated from the impact of algorithm searching
behavior as much as possible. Consequently, as a GA is used as the
EA in this study for reasons outlined previously, the final results
obtained in this study should only be compared with those ob-
tained using other GAs.

From Table 5, it can be clearly seen that by using the proposed
PHSM, better quality solutions could be found for each case study
within the given computational budgets than when the other ap-
proaches were used. The KLSM produced better solutions for the

Case study Number of Equivalent simulations Equivalent simulations Equivalent simulations Total computational
decision of the computational of the computational of the computational overhead"”
variables (np) overhead used in step 1° overhead used in step 2 overhead used in step 3°
Hanoi 34 10 102 1 113 (0.38%)
Extended Hanoi 34 10 126 1 137 (0.46%)
Fosspoly1 58 11 153 1 165 (0.33%)
V| 164 6 147 2 155 (0.31%)
Balerma 454 8 165 3 176 (0.18%)
Rural network 476 9 171 3 183 (0.18%)
KLmod network 1274 14 190 4 208 (0.10%)

@ The computational overhead used for each step has been converted to the equivalent number of network simulations for each case study.

b The computational overhead is expressed as the equivalent number of simulations and the fraction of the total computational budget this represents (in brackets).
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Table 5
Cost of the best solution found by each sampling method for each case study.
Case Cost of the best solution found by each sampling method (Million)
study - go LHS KLSM PHSM
Hanoi  $6.195 (1.87%) $6.217 (2.24%) $6.224 (2.35%) $6.109 (0.46%)
Extended $5.365 $5.366 $5.360 $5.346
Hanoi
Fosspoly1 $0.0294 $0.0294 $0.0309 $0.0290
Z] $7.562 $7.560 $7.655 $7.431
Balerma €2.125(-7.69%) €2.146 (-6.78%) €2.130 (-7.47%) €2.061 (-10.47%)

Rural $36.108 (-0.39%) $36.265 (0.04%) $36.255 (0.01%) $35.173 (-2.97%)
KLmod  $8.686 $8.737 $8.418 $8.307

Note: The result of each sampling method for each case study was obtained over 10
runs with different random number seeds. The percentage of the cost of each best
solution relative to the best solution found by GAs is given in italics in the brackets.
The benchmark optimal solution for each case study is indicated in bold.

large KLmod network compared to the other two non-heuristic
sampling methods (RS and LHS). This agrees well with the obser-
vations made by Kang and Lansey (2012). However, for five of the
other six case studies, RS performed better than the KLSM in terms
of the quality of the final solutions.

The convergence plots for each of the algorithms for the case
studies belonging to the three different groups defined in Table 3, as
defined in the previous section, are given in Fig. 4 (G1), 5 (G2) and 6
(G3) and provide an indication of both solution quality and
computational efficiency. A common observation is that the PHSM
generally found significantly better initial solutions than the non-
heuristic sampling approaches. This is most likely because the
initial solutions obtained using the PHSM were feasible and the
diameters for these solutions were generally in a reasonable range
based on velocities, nodal demands and elevations. For the larger
case studies, the PHSM also found significantly better initial solu-
tions than the KLSM. The initial solutions obtained using the other
sampling methods were typically infeasible for the larger case
studies or feasible with high costs for the simpler WDSs. This
demonstrates that the proposed domain knowledge based sam-
pling method is effective in identifying good quality starting solu-
tions. A detailed discussion of the results for the three groups of
case studies is given in the subsequent sections.

5.1. Group 1 (G1) case studies

As can be seen from Table 5 and Fig. 4, the performance of the
GAs initialized with the four different sampling methods is very
similar for the G1 case studies (i.e. Hanoi, Extended Hanoi and
Fosspoly1), both in terms of the ability to find optimal solutions and
computational efficiency. While the GAs initialized with the PHSM
were able to find the best solution for all three case studies, the
variation in the cost of the best-found solutions was relatively small
(Table 5). Similarly, while GAs initialized with the PHSM found
better initial solutions and generally converged more quickly than
the GAs initialized with the other methods (Fig. 4), this difference
was not very large. Consequently, based on the results obtained,
there does not appear to be a significant advantage of using domain
knowledge for the initialization of GAs for small problems, such as
those considered for the G1 case studies.

5.2. Group 2 (G2) case studies

As can be seen from Table 5 and Fig. 5, the performance of the
GA initialized with the PHSM is noticeably better than that of the
GAs initialized with the other three methods for the G2 (Z],
Balerma, Rural) networks, both in terms of the best-found solution
and computational efficiency. This suggests that while for the

simpler G1 case studies the GAs were able to find good solutions
relatively quickly with the aid of their evolutionary operators,
irrespective of the starting position in solution space, this is not the
case for the more complex G2 case studies. This demonstrates that
the better starting positions in solution space identified using the
PHSM are able to assist the GA with finding better regions of larger
search spaces, as indicated by the better solutions found when the
GAs were initialized with the PHSM (Table 5 and Fig. 5). This trend
was already noticeable for the Fosspoly1 case study, which is the
most complex of the G1 case studies (Fig. 4).

The results in Table 5 and Fig. 5 also indicate that the solutions
found using the PHSM were not only better than those obtained
using RS and LHS, but also better than those obtained using the
other heuristic sampling method (i.e. the KLSM). This appears to be
both as a result of the quality and diversity of the initial solutions.
For example, for the Z] and Rural networks, the PHSM was able to
identify significantly better initial solutions than the KLSM,
resulting in more rapid convergence and better final solutions
(Fig. 5). In contrast, for the Balerma network, use of the KLSM
resulted in better initial solutions than use of the PHSM. However,
despite this initial disadvantage, use of the PHSM resulted in more
rapid convergence and the identification of better solutions (Fig. 5),
which is likely due to the additional control over population di-
versity offered by the PHSM. A similar trend was also observed for
the Fosspoly1 network (Fig. 4), which is the largest of the G1 net-
works. It should be noted that the better performance of the PHSM
was not affected by the presence of multiple source reservoirs, as is
the case for the Balerma network (see Reca and Martinez (2006) for
network configuration). This suggests that the approach of using an
augmented source node for networks with more than one source
reservoir (as described in Step 1 for the PHSM) is effective.

In terms of the quality of the solutions found, use of the PHSM
resulted in the best solutions for all three G2 case studies by some
margin (Table 5, Fig. 5). In contrast, the quality of the solutions
found using the other three initialization methods is quite similar,
with no advantage of using the KLSM. It should also be noted that
for the two case studies to which similar GAs had been applied in
previous studies, the GA initialized with the PHSM found solutions
that were 10.47% and 2.97% better than those found in previous
studies for the Balerma and Rural networks, respectively (Table 5).

As far as convergence speed is concerned, use of the PHSM re-
sults in significantly faster convergence to near-optimal solutions
(i.e. solutions that are within 5% of the benchmark optimal solution,
as defined previously) than use of the other three initialization
methods, which all performed similarly (Fig. 5). This indicates that
there is likely to be a significant advantage in using the PHSM when
trying to find the best possible solution within reasonable
computational budgets for complex networks.

5.3. Group 3 (G3) case studies

As can be seen from Table 5 and Fig. 6, for this very large
network (i.e. KLmod), the performance of the GAs initialized with
both heuristic sampling methods (i.e. PHSM and KLSM) are
noticeably better than that of the GAs initialized with the two non-
heuristic sampling methods (i.e. RS and LHS), both in terms of the
best-found solution and computational efficiency. While the GAs
initialized using the two heuristic sampling methods were able to
find near-optimal solutions after approximately 800,000 evalua-
tions for the average solutions based on ten runs, which is equiv-
alent to approximately 3 h in terms of CPU time, the GAs initialized
with the non-heuristic sampling methods (i.e. RS and LHS) were
not even able to find solutions of this quality at the end of the
optimization run (using nearly 2,000,000 evaluations and
approximately 7 h of CPU time). Although Fig. 6 suggests that the
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Fig. 4. Results of the GAs with the four sampling methods applied to case studies in Group 1 (G1 in Table 3).

GAs initialized with RS and LHS had not converged yet and might
ultimately find solutions of a similar quality to those found when
the heuristic sampling methods were used, the computational
effort required to do so is likely to be very large. This clearly
highlights the advantage of using heuristic sampling methods for
initializing GA populations for larger networks.

In terms of the relative performance of the two heuristic sam-
pling methods, while both converged to near-optimal solutions
after approximately the same number of iterations, use of the
PHSM resulted in clearly better best-found solutions. This is likely
to be due to a combination of the better initial solutions identified
using the PHSM, as well as the additional control over population

diversity afforded by the PHSM. However, the relative performance
of the KLSM compared with that of the PHSM was much better for
the KLmod case study, which is most likely because the KLSM was
designed for a modified version of this problem.

6. Summary and conclusions

In order to improve the ability of GAs to find optimal or near-
optimal solutions in reasonable timeframes for realistic-sized wa-
ter distribution optimization problems, a new heuristic sampling
method (the PHSM) for initialising GA populations was introduced
and evaluated in this paper. The performance of the PHSM was
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(a) Case study 4: ZJ network (164 decision variables)
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(b) Case study 5: The Balerma network (454 decision variables)

(c) Case study 6: The Rural network (476 decision variables)
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Fig. 5. Results of the GAs with the four sampling methods applied to case studies in Group 2 (G2 in Table 3).

compared with that of an existing heuristic sampling method (the
KLSM) and with that of more traditional sampling methods,
including RS and LHS, for seven WDSs of varying size and
complexity.

The results obtained based on the seven WDS optimization
(pipe-sizing) problems considered indicate that overall, the pro-
posed PHSM performed significantly better than the other three
sampling methods, both in terms of solution quality and compu-
tational efficiency. It was also found that the relative advantage of
the PHSM increased with network size and complexity. While for
the smaller (G1) networks, the performance of the GAs initialised
using the four different methods was very similar, there were clear

advantages in using the PHSM for the larger (G2) networks and in
using both heuristic sampling methods (i.e. PHSM and KLSM) for
the largest network considered (G3). This advantage is likely to be
due to the ability to find better initial solutions, enabling more
favourable regions of the solution space to be explored more
quickly. The results also indicate that PHSM outperforms the KLSM,
which is likely due to a combination of the ability to find better
initial solutions and the additional population diversity provided
by the PHSM.

As the focus of this paper was on the development and evalu-
ation of the PHSM, all analyses were conducted using a reasonably
standard GA. However, as the PHSM is independent of the
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Fig. 6. Results of the GAs with the four sampling methods applied to case studies in Group 3 (G3 in Table 3).

optimization algorithm used, it can be tested in combination with
other algorithms. Such investigations would be useful in terms of
assessing the generality of the results obtained in this paper. In
addition, it would be useful to extend and apply the proposed
approach to a larger number of case studies with increased hy-
draulic complexity, such as the inclusion of tanks, valves and
pumps. However, given that pipe sizes generally represent the
largest number of decision variables, application of the PHSM to the
subset of the decision variables consisting of pipe diameters is still
likely to be beneficial for WDSs including tanks, valves and pumps.
Finally, it would be interesting to compare the performance of the
PHSM with that of other methods that could be used for initialising
EAs, such as the cellular automata network design algorithm of
Keedwell and Khu (2006).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.envsoft.2014.09.010.

References

Bolognesi, A., Bragalli, C., Marchi, A., Artina, S., 2010. Genetic heritage evolution by
stochastic transmission in the optimal design of water distribution networks.
Adv. Eng. Softw. 41 (5), 792—801.

Bragalli, C., D'Ambrosio, C., Lee, ]J., Lodi, A., Toth, P, 2012. On the optimal design of
water distribution networks: a practical MINLP approach. Optim. Eng. 13 (2),
219-246.

Broad, D.R., Dandy, G.C., Maier, H.R., 2005. Water distribution system optimization
using metamodels. ]. Water Resour. Plan. Manag. 131 (3), 172—180.

Broad, D.R., Maier, H.R,, Dandy, G.C., 2010. Optimal operations of hydraulically
complex water distribution systems using metamodels. ]. Water Resour. Plan.
Manag. 136 (4), 433—443.

Dandy, G.C., Simpson, A.R., Murphy, LJ., 1996. An improved genetic algorithm for
pipe network optimization. Water Resour. Res. 32 (2), 449—458.

Deb, K., 2000. An efficient constraint handling method for genetic algorithms.
Comput. Methods Appl. Mech. Eng. 186 (2—4), 311-338.

Deo, N., 1974. Graph Theory with Applications to Engineering and Computer Sci-
ence. Prentice-Hall, Englewood Cliffs, N. J.

Deuerlein, J.W., 2008. Decomposition model of a general water supply network
graph. J. Hyd. Eng. 134 (6), 822—832.

di Pierro, F., Khu, S.-T,, Savic, D., Berardi, L., 2009. Efficient multi-objective optimal
design of water distribution networks on a budget of simulations using hybrid
algorithms. Environ. Model. Softw. 24 (2), 202—213.

Fu, G., Kapelan, Z., Reed, P., 2012. Reducing the complexity of multiobjective water
distribution system optimisation through global sensitivity analysis. ]. Water
Resour. Plan. Manag. 138 (3), 196—207.

Fujiwara, O., Khang, D.B., 1990. A two-phase decomposition method for optimal
design of looped water distribution networks. Water Resour. Res. 26 (4),
539-549.

Gibbs, M.S., Dandy, G.C., Maier, H.R., 2008. A genetic algorithm calibration method
based on convergence due to genetic drift. Inform. Sci. 178 (14), 2857—2869.
http://dx.doi.org/10.1016/j.ins.2008.03.012.

Gibbs, M.S., Maier, H.R,, Dandy, G.C., 2010. Comparison of genetic algorithm
parameter setting methods for chlorine injection optimization. J. Water Resour.
Plan. Manag. 136 (2), 288—291.

Gibbs, M.S., Maier, H.R., Dandy, G.C., 2011. Relationship between problem charac-
teristics and the optimal number of genetic algorithm generations. Eng. Optim.
43 (4), 349—-376. http://dx.doi.org/10.1080/0305215X.2010.491547.

Gupta, L., Gupta, A., Khana, P, 1999. Genetic algorithm for optimization of water
distribution systems. Environ. Model. Softw. 14 (5), 437—446.

Housh, M., Ostfeld, A., Shamir, U., 2013. Limited multi-stage stochastic program-
ming for managing water supply systems. Environ. Model. Softw. 41 (0), 53—64.

JRC, 2008. European Commission Joint Research Center. http://simlab.jrc.ec.europa.
eu/.

Kadu, M.S., Gupta, R., Bhave, P.R., 2008. Optimal design of water networks using a
modified genetic algorithm with reduction in search space. J. Water Resour.
Plan. Manag. 134 (2), 147—160.

Kang, D., Lansey, K., 2012. Revisiting optimal water-distribution system design: is-
sues and a heuristic hierarchical approach. ]. Water Resour. Plan. Manag. 138 (3),
208-217.

Keedwell, E., Khu, S.-T., 2006. Novel cellular automata approach to optimal water
distribution network design. . Comput. Civ. Eng. 20 (1), 49—56.

Krapivka, A., Ostfeld, A., 2009. Coupled genetic algorithm—-linear programming
scheme for least-cost pipe sizing of water-distribution systems. ]. Water Resour.
Plan. Manag. 135 (4), 298—302.

Laucelli, D., Berardi, L., Giustolisi, O., 2012. Assessing climate change and asset
deterioration impacts on water distribution networks: demand-driven or
pressure-driven network modeling? Environ. Model. Softw. 37 (0), 206—216.

Maier, H.R,, Kapelan, Z., Kasprzyk, ], Kollat, J., Matott, L.S., Cunha, M.C., Dandy, G.C.,
Gibbs, M.S., Keedwell, E., Marchi, A., Ostfeld, A., Savic, D., Solomatine, D.P,
Vrugt, J.A., Zecchin, A.C., Minsker, B.S., Barbour, EJ., Kuczera, G., Pasha, F,
Castelletti, A., Giuliani, M., Reed, P.M., 2014. Evolutionary algorithms and other
metaheuristics in water resources: current status, research challenges and future
directions. Environ. Model. Softw. http://dx.doi.org/10.1016/j.envsoft.2014.09.013
accepted Sept. 12, 2014.

Marchi, A., Dandy, G., Wilkins, A., Rohrlach, H., 2014a. Methodology for comparing
evolutionary algorithms for optimization of water distribution systems. ]. Water
Resour. Plan. Manag. 140 (1), 22—-31.

Marchi, A., Salomons, E., Ostfeld, A., Kapelan, Z., Simpson, A., Zecchin, A., Maier, H.,
Wu, Z., Elsayed, S., Song, Y., Walski, T., Stokes, C., Wu, W., Dandy, G., Alvisi, S.,
Creaco, E., Franchini, M., Saldarriaga, ]., Pdez, D., Hernandez, D., Bohdrquez, ].,
Bent, R, Coffrin, C, Judi, D.,, McPherson, T., van Hentenryck, P, Matos, ].,
Monteiro, A., Matias, N., Yoo, D., Lee, H., Kim, ]., Iglesias-Rey, P., Martinez-Solano, F.,,
Mora-Melig, D., Ribelles-Aguilar, J., Guidolin, M., Fu, G., Reed, P.,, Wang, Q., Liu, H.,
McClymont, K., Johns, M., Keedwell, E., Kandiah, V., Jasper, M., Drake, K., Shafiee, E.,
Barandouzi, M., Berglund, A. Brill, D. Mahinthakumar, G. Ranjithan, R,
Zechman, E., Morley, M., Tricarico, C., de Marinis, G., Tolson, B., Khedr, A,
Asadzadeh, M., 2014b. The battle of the water networks II (BWN-II). ]. Water
Resour. Plan. Manag. http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000378.

McKay, M.D., Beckman, RJ., Conover, W,., 1979. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics 21 (2), 239—245.

Please cite this article in press as: Bi, W., et al., Improved genetic algorithm optimization of water distribution system design by incorporating
domain knowledge, Environmental Modelling & Software (2014), http://dx.doi.org/10.1016/j.envsoft.2014.09.010



http://dx.doi.org/10.1016/j.envsoft.2014.09.010
http://dx.doi.org/10.1016/j.envsoft.2014.09.010
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref1
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref1
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref1
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref1
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref2
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref2
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref2
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref2
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref3
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref3
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref3
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref4
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref4
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref4
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref4
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref6
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref6
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref6
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref6
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref496
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref496
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref8
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref8
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref8
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref8
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref9
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref9
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref9
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref9
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref10
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref10
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref10
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref10
http://dx.doi.org/10.1016/j.ins.2008.03.012
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref12
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref12
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref12
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref12
http://dx.doi.org/10.1080/0305215X.2010.491547
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref14
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref14
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref14
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref15
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref15
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref15
http://simlab.jrc.ec.europa.eu/
http://simlab.jrc.ec.europa.eu/
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref17
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref17
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref17
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref17
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref19
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref19
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref19
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref21
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref21
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref21
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref21
http://dx.doi.org/10.1016/j.envsoft.2014.09.013
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref23
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref23
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref23
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref23
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000378
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref26
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref26
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref26
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref26

12 W. Bi et al. / Environmental Modelling & Software xxx (2014) 1-12

Nicklow, ]., Reed, P, Savic, D. Dessalegne, T., Harrell, L, Chan-Hilton, A.
Karamouz, M., Minsker, B., Ostfeld, A., Singh, A., Engineering, E. Z. A. T. C. 0. E. C.
i. E,, and Water, R, 2010. State of the art for genetic algorithms and beyond in
water resources planning and management. . Water Resour. Plan. Manag. 136
(4), 412—432.

Razavi, S., Tolson, B.A., Burn, D.H., 2012. Review of surrogate modeling in water
resources. Water Resour. Res. 48, WO07401. http://dx.doi.org/10.1029/
2011WRO011527.

Reca, J., Martinez, J., 2006. Genetic algorithms for the design of looped irrigation
water distribution networks. Water Resour. Res. 42 (5), W05416.

Roshani, E., Filion, Y., 2012. Using parallel computing to increase the speed of water
distribution network optimization. In: The 14th Water Distribution Systems
Analysis Conference, ASCE, Adelaide, South Australia.

Simpson, A.R., Dandy, G.C., Murphy, L.J., 1994. Genetic algorithms compared to other
techniques for pipe optimization. J. Water Resour. Plan. Manag. 120 (4),
423—-443.

Sitzenfrei, R., Moderl, M., Rauch, W., 2013. Automatic generation of water distri-
bution systems based on GIS data. Environ. Model. Softw. 47 (0), 138—147.
Stokes, C.S., Simpson, A.R., Maier, H.R., 2014. The cost - greenhouse Gas emission
nexus for water distribution systems including the consideration of Energy
generating infrastructure: an integrated optimization framework and review of

literature. Earth Perspect. 1-9. http://dx.doi.org/10.1186/2194-6434-1-9.

Tolson, B.A., Shoemaker, C.A., 2007. Dynamically dimensioned search algorithm for
computationally efficient watershed model calibration. Water Resour. Res. 43,
WO01413. http://dx.doi.org/10.1029/2005WR004723.

Tolson, B.A., Asadzadeh, M., Maier, H.R., Zecchin, A., 2009. Hybrid discrete
dynamically dimensioned search (HD-DDS) algorithm for water distribution
system design optimization. Water Resour. Res. 45 (12), W12416.

Vairavamoorthy, K., Ali, M., 2005. Pipe index vector: a method to improve genetic-
algorithm-based pipe optimization. J. Hyd. Eng. 131 (12), 1117—1125.

Walski, T.M., 2001. The wrong paradigm—why water distribution optimization
doesn't work. J. Water Resour. Plan. Manag. 127 (4), 203—205.

Wu, Z., Zhu, Q., 2009. Scalable parallel computing framework for pump scheduling
optimization. World Environ. Water Resour. Congr. 2009, 1-11.

Wu, Z.Y., Behandish, M., 2012. Comparing methods of parallel genetic optimization
for pump scheduling using hydraulic model and GPU-based ANN meta-model.
In: The 14th Water Distribution Systems Analysis Conference, ASCE, Adelaide,
South Australia.

Zecchin, A.C., Simpson, A.R., Maier, H.R,, Marchi, A., Nixon, ].B., 2012. Improved
understanding of the searching behavior of ant colony optimization algorithms
applied to the water distribution design problem. Water Resour. Res. 48 (9),
W09505.

Zhang, W., Chung, G., Pierre-Louis, P., Bayraksan, G., Lansey, K., 2013. Reclaimed
water distribution network design under temporal and spatial growth and
demand uncertainties. Environ. Model. Softw. 49 (0), 103—117.

Zheng, F., Simpson, A.R., Zecchin, A.C., 2011a. A combined NLP-differential evolution
algorithm approach for the optimization of looped water distribution systems.
Water Resour. Res. 47 (8), W08531.

Zheng, F, Simpson, A.R., Zecchin, A.C., 2011b. Dynamically expanding choice-table
approach to genetic algorithm optimization of water distribution systems.
J. Water Resour. Plan. Manag. 137 (6), 547—551.

Zheng, F., Simpson, A.R. Zecchin, A.C., 2013a. A decomposition and multistage
optimization approach applied to the optimization of water distribution sys-
tems with multiple supply sources. Water Resour. Res. 49 (1), 380—399.

Zheng, F., Zecchin, A., Simpson, A., Lambert, M., 2013b. Non-crossover dither
creeping mutation genetic algorithm for pipe network optimization. ]. Water
Resour. Plan. Manag. http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000351.

Zheng, F, Simpson, AR. Zecchin, A.C., Deuerlein, JW., 2013c. A graph
decomposition-based approach for water distribution network optimization.
Water Resour. Res. 49 (4), 2093—2109.

Zheng, F, Simpson, A., Zecchin, A., 2014a. Coupled binary linear pro-
gramming—differential evolution algorithm approach for water distribution
system optimization. J. Water Resour. Plan. Manag. 140 (5), 585—597.

Zheng, F., Zecchin, A., 2014. An efficient decomposition and dual-stage multi-
objective optimization method for water distribution systems with multiple
supply sources. Environ. Model. Softw. 55 (0), 143—155.

Zheng, F,, Simpson, A., Zecchin, A., 2014b. An efficient hybrid approach for multiobjective
optimization of water distribution systems. Water Resour. Res. 50 (5), 3650—3671.

Please cite this article in press as: Bi, W., et al., Improved genetic algorithm optimization of water distribution system design by incorporating
domain knowledge, Environmental Modelling & Software (2014), http://dx.doi.org/10.1016/j.envsoft.2014.09.010



http://refhub.elsevier.com/S1364-8152(14)00263-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref27
http://dx.doi.org/10.1029/2011WR011527
http://dx.doi.org/10.1029/2011WR011527
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref29
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref29
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref30
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref30
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref30
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref31
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref31
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref31
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref31
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref32
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref32
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref32
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref32
http://dx.doi.org/10.1186/2194-6434-1-9
http://dx.doi.org/10.1029/2005WR004723
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref35
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref35
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref35
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref50
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref50
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref50
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref50
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref37
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref37
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref37
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref38
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref38
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref38
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref38
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref40
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref40
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref40
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref40
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref41
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref41
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref41
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref42
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref42
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref42
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref42
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref43
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref43
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref43
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref43
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000351
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref46
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref46
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref46
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref46
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref46
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref47
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref47
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref47
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref47
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref48
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref48
http://refhub.elsevier.com/S1364-8152(14)00263-1/sref48

	TITLE: Improved Evolutionary Algorithm Optimisation of Water Distribution Systems Using Domain Knowledge
	Contents
	Abstract
	Statement of Originality
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms

	Chapter 1. Introduction
	Chapter 2. Journal Paper 1 - Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge
	Paper

	Chapter 3. Journal Paper 2 - Impact of starting position and searching mechanism on evolutionary algorithm convergence rate
	Paper

	Chapter 4. Journal Paper 3 - Use of domain knowledge to increase the convergence rate of evolutionary algorithms for optimizing the cost and resilience of water distribution systems
	Paper

	Chapter 5. Conclusions and Recommendations for Future Work
	References
	Appendix
	Paper


