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Abstract

Sensor arrays play important roles in signal transmission/reception, estimation, and

tracking, and have been successfully applied to many engineering fields such as radar,

sonar, wireless communications to name a few. Practically, sensor array systems usu-

ally suffer from nonideal factors such as signal coherency, spatially coloured noise, and

a limited number of sensors. In this thesis, problems of direction of arrival (DOA) esti-

mation in the presence of nonideal factors are addressed, and new algorithms to tackle

these problems are developed that achieve improved performance with a limited num-

ber of sensors.

Under multipath propagation, independent and coherent signals coexist, resulting in

rank deficiency of the cumulant matrix. To tackle this problem, two methods for DOA

estimation of mixed independent and coherent signals using fourth-order cumulants

(FOC) are proposed, and both algorithms can make efficient use of the array degrees of

freedom (DOFs). The first algorithm implements the estimation via two-stage process-

ing by separating the independent and coherent signals. In this method, new matrix

reconstruction techniques for independent signal cumulants and rank restoration are

developed, and the DOAs of both the independent and coherent signals can be esti-

mated by polynomial rooting without performing a spectral grid search. Its superiority

over existing methods is demonstrated by simulation results.

The second algorithm considers the case when a large number of coherent signals,

greater than the number of sensors, exist due to the propagation channel. Here, we

exploit temporal correlation in the signals to form an array output matrix with pseudo

snapshots, spanning the same signal subspace as the one using real snapshots. By in-

corporating this property, new augmented cumulant matrices are constructed and the

corresponding method for coherent group separation is derived. Compared with the

existing method, the proposed one achieves better performance in terms of estimation

accuracy and robustness of the spatial signature, especially for weak signals.
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Abstract

Apart from signal with circular statistics discussed above, we study the noncircularity

embedded in modern wireless communication signals to further extend the effective

aperture, enhance DOFs, and improve the estimation performance. A new FOC-based

direction finding method which can extend the array aperture as well as maximise the

DOFs is proposed. By combining noncircularity with high order cumulants and op-

timsing geometric arrangement of the virtual array arising accordingly, the resultant

identifiability of DOA estimation can be up to twice larger compared with the using

the same order cumulants for circular signals. Simulation results validate that the pro-

posed method offers better performance in terms of identifiability as well as accuracy.

Last, we revisit the case when uncorrelated and coherent signals coexist and utilise the

noncircularity of signals in this scenario. To the best of our knowledge, there are no

publications addressing the class of DOA estimation problem, and a novel two-stage

second order statistics (SOS) estimator is introduced accordingly to further increase

the DOFs. In this method, a more robust approach is presented to identify the true

DOA estimates from the pseudo ones, the estimates of noncircular phases are derived

in closed-form, and a novel spatial smoothing technique based on the eigenvectors

is developed to restore the rank deficiency. Additionally, new deterministic Cramér-

Rao lower bounds (CRLBs) are derived for the considered mixture model of noncir-

cular signals. The theoretical analysis justifies that the number of identifiable signals

is larger than the current algorithms. Extensive simulation results show that the pro-

posed method offers sufficient DOFs as well as improving the estimation accuracy of

both the uncorrelated and coherent signals.
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