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Abstract 

The GPS signal is vulnerable to both intentional and unintentional 

interferences due to its low received power. The need to localise GPS 

interference sources is becoming more pressing as more systems rely on 

GPS, while GPS jammers are becoming more widely available. This thesis 

discusses techniques to estimate the direction of arrival (DOA) of weak 

interferences in the GPS frequency band using antenna arrays. 

The main issues which affect weak GPS interference DOA estimation 

accuracy are the antenna array errors, interference from other GPS signals, 

the number of snapshots required for DOA estimation and system coloured 

noise. 

In order to estimate antenna array errors, a modelled eigenstructure based 

antenna array calibration algorithm is presented. This algorithm describes the 

antenna array errors using a physical model and uses the GPS signals with 

known DOAs as disjoint calibration sources to reduce the number of 

unknown calibration parameters and to enable a larger number of possible 

calibration sources to be used. 

GPS calibration sources often have multipath components. These multipath 

components will contaminate the mutual coupling estimation result due to a 

similar directional behaviour. In order to solve this issue, a new calibration 

algorithm is developed to estimate the mutual coupling matrix in the presence 

of multipath signals. This algorithm first uses the decomposed signal 

subspace to construct its calibration cost function and then estimates the 

calibration parameters using alternating projection based methods iteratively. 

The GPS signals typically have a SNR range from -15dB to -30dB. If the INR 

of the weak GPS interference is close or lower than this range, GPS signals 

need to be mitigated as they act like strong interferences. A Multiple 
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Subspace Projection (MSP) algorithm is proposed to cancel GPS signals. 

This algorithm projects the received signal onto the orthogonal subspace of 

GPS signals to cancel them completely even if the signals are band-limited, 

have multipath components, or have fractional delays.  

The number of snapshots in the received data significantly influences the 

DOA estimation variance. The Cramer-Rao Lower Bound (CRLB) is derived 

and analysed for the antenna array DOA estimation. By using the CRLB, the 

number of snapshots is required to be larger than 1 × 106 to have the DOA 

estimation standard deviation to be smaller than 0.25⁰ for a signal with a 

SNR of -20dB. 

Finally, after cancelling GPS signals using the MSP algorithm, whitening the 

coloured noise in the system by using noise only data and calibrating the 

antenna array, the experimental results using an eight-element GPS antenna 

array showed that the DOA of a weak GPS interference with a SNR of -22dB 

could be accurately estimated. 
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Chapter 1: Introduction 

1.1 Problem Description 

This section introduces the background of the Global Positioning System 

(GPS) first. The types of the GPS interferences and their damage to GPS 

receivers are presented later. Finally, the need for localising weak GPS 

interferences using antenna arrays is discussed. 

1.1.1 Global Positioning System (GPS) 

The Global Positioning System (GPS) is a satellite navigation system used in 

localisation, navigation, tracking, mapping, and timing [1]. It uses a 

constellation of between 24 and 32 medium earth orbit (MEO) satellites 

which are at a height of approximately 20,000 km and with an orbital period 

of about 12 hours. At least four GPS satellites are necessary to compute 

accurate positions in three dimensions and the time offset of the receiver 

clock. GPS was originally designed for the U.S. military in the 1970s, but is 

now also extensively used for a number of civilian applications. GPS was 

fully operational on 27 April, 1995. Because of its high precision, general 

acceptance and ease of use, GPS has gradually become the main means of 

global navigation. 

The GPS signal is a Direct Sequence-Spread Spectrum (DS-SS) signal 

modulated with a Pseudo Random Noise (PRN) binary code. With PRN 

codes, GPS is able to use the Code Division Multiple Access (CDMA) 

concept. By using DS-SS, GPS satellites can transmit low power signals that 

still have adequate Carrier to Noise Power ratio (C/No) after correlation in the 
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receiver [2]. However, the low power received GPS signal, typically 15-30 dB 

below the receiver’s thermal noise level, is susceptible to interferences from 

either intentional or unintentional sources. As a result, the performance of 

GPS and the code synchronization process degrades dramatically. 

The characteristics of the GPS signal structure determine the GPS receiver 

algorithms and applications. As shown in figure 1.1.1, there are three main 

components in a civilian GPS signal: the navigation message, the PRN code 

and the L1 RF carrier frequency. 

 

Figure 1.1.1: GPS L1 signal structure. 

The GPS navigation (NAV) message contains the ephemeris and the 

almanac data with +1 and -1 binary values, by which the satellite orbit and 

time can be obtained.  The navigation data rate is 50 bps. In figure 1.1.1, the 

50 bps navigation message is modulated onto the 1 Mbps C/A code by 

Modulo-2 operation. The signal is then modulated onto 1575.42 MHz by the 

L1 carrier using a Binary Phase Shift Keying (BPSK) scheme. 
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There are two types of PRN codes in GPS, Coarse/Acquisition (C/A) code 

with a length of 1023 chips and a transmission rate of 1.023 Mchips/s and 

Precision (P/Y) code with a length of 6.1871×1012 chips and a transmission 

rate of 10.23 Mchips/s. The Coarse/Acquisition (C/A) signal which is for 

civilian use is the identification of each satellite and is modulated on the L1 

carrier frequency 1575.42 MHz. The encrypted Precision (P/Y) signal which 

is for military use is modulated on the L2 carrier frequency 1227.6 MHz and 

the L1 carrier frequency 1575.42MHz with a one week long encryption key. 

The encrypted P/Y signal is an anti-spoofing mode and only military receivers 

can acquire it. Although there are techniques which can use the P/Y signal 

without knowledge of the encrypted code [3], only the civilian C/A signal in 

the L1 frequency band is considered in this thesis. However, all the 

algorithms in this thesis can be adapted to the L2 frequency band with small 

modifications. 

The PRN code is the key component in GPS. It is a Direct Sequence-Spread 

Spectrum (DS-SS) signal, which is also known as Direct Sequence Code 

Division Multiple Access (DS-CDMA). DS-SS enables signal transmissions 

with very low power spectral densities, and the received GPS signals are 

below the thermal noise level. For an antenna with 0 dB isotropic gain and 

Right-Hand Circular Polarization (RHCP) near the Earth’s surface, the 

minimum specified received signal power of a L1 C/A signal viewed at 5 

degrees above local horizon is -160 dBW. Assuming that the thermal noise 

has a power density of No = -205 dBW/Hz, the C/A codes spread the GPS 

signal power over a 1 MHz bandwidth, hence the resulting noise power over 

1 MHz is -205 dBW + 60 dB = -145 dBW/Hz [4]. The GPS signal power is 

thus 15 dB below the noise power. In practice the SNR is lower than the 

predicted value due to receiver losses, so GPS signals are typically 15-30 dB 

below the receiver’s thermal noise level.  
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1.1.2 Interference in the GPS Frequency Band 

It is illegal to transmit RF signals in the GPS frequency band, so any RF 

signals, either intentional or unintentional, in or close to the GPS frequency 

band which are not GPS signals are interferences. As discussed in Section 

1.1.1, due to the weak power of incident GPS signals (15-30 dB below 

thermal noise level), they are vulnerable to even weak interferences, and as 

a result it is relatively easy to jam most commercial GPS receivers [5]. 

Reference [6] reported that the typical jamming threshold Jammer to Signal 

level (J/S) is 40-50 dB which will prevent the GPS receivers from obtaining a 

position fix. In [7], it is reported that a 1W jammer can make a GPS receiver 

in a radius of 10km fail to track the satellites, and fail to acquire the satellites 

in a radius of up to 85km. 

Class 
 

Type Potential Sources 

Wideband 

Band-limited Gaussian 
Intentional matched bandwidth 
noise jammers 

Phase/frequency 
modulation 

Television transmitters’ 
harmonics or near-band 
microwave link transmitters 
overcoming the front end filter of 
a GPS receiver 

Matched spectrum 
Intentional matched-spectrum 
jammers, spoofers, or nearby 
pseudolites 

Pulse 
Any type of burst transmitters 
such as radar or ultra-wideband 
(UWB) 

Narrowband 

Phase/frequency 
modulation 

Intentional chirp jammers or 
harmonics from an amplitude 
modulation (AM) radio station, 
citizens band (CB) radio, or 
amateur radio transmitter 

Swept continuous wave 
Intentional swept CW jammers or 
frequency modulation (FM) 
stations transmitter’ harmonics 

Continuous wave 
Intentional CW jammers or near-
band unmodulated transmitter’s 
carriers 

Table 1.1.1: Types and potential sources of RF interferences. 
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Jammers can be categorised in to two basic groups based on the bandwidth 

they occupy relative to the GPS bandwidth: Continuous wave (CW) / 

Narrowband jammers and wideband jammers. Table 1.1.1 shows the types 

and potential sources of RF interferences as summarized in [2] and [8]. 

Radio Frequency Interference (RFI) can impact a GPS receiver in many 

ways. It can affect the operation of the Automatic Gain Control (AGC) [2], the 

Low Noise Amplifier (LNA) in the RF front-end [9] and the carrier and code 

tracking loops [10, 11]. Reference [4] showed that Continuous Wave (CW) 

interference has severe effects on the GPS C/A code signal. The detailed 

effects of different types of interferences, such as continuous-wave (CW) and 

wideband signals, as well as pulsed and continuous signals were studied in 

[12].  

1.1.3 The Need for GPS Interference Localisation 

As discussed in Sections 1.1.1 and 1.1.2, the GPS signal is vulnerable to 

both intentional and unintentional interference due to its low incident power. 

A number of GPS interference events have been reported. Reference [13] 

reported that the third order harmonic of a TV transmitter tower in Sydney, 

Australia, was in the GPS L1 frequency band and prevented a software 

receiver from tracking the satellite. Reference [14] reported a preamplifier in 

an active TV antenna unintentionally jammed an area with a radius of up to 

3km. Reference [15] reported one of the Ground Based Augmentation 

System (GBAS) GNSS receivers at the Newark Liberty International Airport 

was jammed periodically due to a low-power jamming device located in a 

truck on the nearby highway. The need to localise GPS interference sources 

is becoming more pressing as more systems begin to rely on GPS, while 

GPS jammers are becoming more widely available. GPS jamming source 

localization is important especially for safety critical applications such as 

airports or machine guidance [16].  



 

6 
 

A lot of research has been done to suppress and mitigate GPS interferences. 

Research topics include:  

Temporal processing [17-20]. These techniques assume clear jammer 

time-frequency (TF) signatures and rely on the distinct differences in the 

temporal structure of the jammer and the spread-spectrum signals and use a 

time domain filter, typically an adaptive prediction filter,  to suppress the 

interferences;  

Spectral-based processing [21-23]. These techniques transform the signal 

to the frequency domain with an FFT, where the signal is filtered by using an 

appropriate weighting to mitigate the interference, such as removing peaks in 

the spectrum, and then transform the signal back to the time domain.  

Subspace projection [24-26]. These techniques use the fact that the 

jammer IF (Instantaneous Frequency) defines the temporal signature of the 

interference within a one-dimensional signal sub-space per interference 

source to construct a subspace orthogonal to the jammer. The resulting 

projection matrix is used to excise the jammer power in the incoming signal 

prior to correlation with the receiver pseudo random noise (PRN) sequence. 

Spatial signal processing [27-32]. These techniques use multiple antenna 

elements combined with an optimum beamforming algorithm to adjust the 

radiation pattern of the antenna array. The gain in each direction depends on 

the choice of the array weights thus implementing a spatial filter.  Several 

optimality criteria have been studied aimed at enhancing the SNR of GPS 

signals in the receivers and mitigating interferences. Examples include Null 

steering, Maximum SINR and MVDR. Combinations of these techniques, 

such as time-frequency processing [33] and space-time processing [34-38] 

have also been considered and provide better results compared to single 

antenna and/or single domain processing.  

However in order to disable the GPS interference source it must first be 

localised. While there has been a lot of research on GPS interference 
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suppression and mitigation, not as much research has been done in the GPS 

interference localisation area. Three main methods have been used to 

localise GPS interferences: the first method uses the C/No values on a 

network of GPS receivers to estimate the ranges to the interference position 

and thus estimate the position [39-42]; the second method attempts to locate 

the interference using widely separated antennas using the Time Difference 

of Arrival (TDOA) of the interference signal between antennas [43-45]; the 

third method estimates the Direction of Arrival (DOA) of the interference 

source by using adaptive antenna array processing techniques [46, 47].  

So far publications in the GPS interference localisation area have not 

considered the minimum interference power for which DOA estimation 

algorithms will be effective. However, for GPS systems, interference sources 

transmitting several milliwatts can affect other nearby GPS receivers due to 

the very low received signal level of the GPS signals of -160 dBW at the 

surface of the earth. As a result, it is important to have a highly sensitive 

interference DOA estimation system that is able to accurately estimate DOAs 

of weak interference sources at a reasonable distance of several kilometres. 

It is thus important to research algorithms which enable the DOA of weak 

GPS interferences to be estimated reliably and accurately using an adaptive 

antenna array. In order to achieve this, the main issues that are addressed in 

this thesis are: 

1. The adaptive antenna array DOA estimation algorithms assume no 

errors in antenna arrays, so uncertainties such as gain/phase errors in 

each channel and mutual coupling between antennas existing in the 

antenna array will degrade the performance of DOA estimation 

techniques, especially for high resolution, subspace based DOA 

estimation algorithms such as Multiple Signal Classification algorithm 

(MUSIC). 

2. If the interferences power is lower than the GPS signal power level, 

which is typically 15 dB to 30 dB below the thermal noise, estimation 

of the interference DOA will be severely compromised or fail 
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completely due to the large number of relatively strong and directional 

GPS signals.    

3. Because of the intended low power level of the interference and its 

potentially unknown waveform, a large number of non-coherent 

integrations are required to reduce the variance of the DOA estimation 

to an acceptable level. So, in order to achieve a certain performance, 

the number of the snapshots used in the spatial non-coherent 

integration and the performances of weak interference DOA 

estimations need to be statistical analysed. 

4. In practice there may be other imperfections in the system such as 

coloured receiver noise and other interfering sources in the GPS L1 

frequency band. 

1.2 Thesis Outline and Contributions 

Chapter 2 

Background information on adaptive antenna array processing techniques 

including DOA estimation algorithms is introduced. The applications of these 

array processing techniques in the GPS area are also presented along with a 

review of current GPS interference localisation methods. 

Chapter 3 

An eigenstructure GPS antenna array calibration algorithm based on a 

physical model of the array errors is proposed to estimate array orientation, 

gain/phase errors and antenna mutual coupling effects by using GPS signals 

as disjoint calibration sources.  
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Contributions 

1. GPS antenna array errors are described by matrices based on 

physical models of the errors, which reduces the number of unknown 

parameters in the cost function, thus reducing the number of sources 

required for calibration and giving an understanding of the underlying 

causes of the array manifold errors. 

2. GPS signals are used as disjoint GPS antenna array calibration 

sources, which largely simplifies the computations required to estimate 

directions of arrival of calibration sources and also enables the 

number of calibration sources used to be larger than the number of 

GPS antenna array elements. 

3. The unknown parameters are estimated iteratively by minimising the 

highly sensitive eigenstructure based cost function. 

Chapter 4 

A Maximum Likelihood (ML) based GPS antenna array calibration algorithm 

is proposed to estimate antenna mutual coupling effect and array orientation 

in the presence of multipath signals of calibration sources.  

Contributions 

1. The multipath signals of the calibration sources and the mutual 

coupling effect which have a similar behaviour are both modelled in 

the GPS array calibration cost function.  

2. Antenna mutual coupling effect, array orientation error and the 

multipath signals of the calibration sources are estimated iteratively by 

minimising the eigenstructure based cost function. 

3. The DOAs of the multipath signals are estimated by minimising the 

cost function using a low computational maximum likelihood algorithm 

– Alternating Projection (AP). 
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Chapter 5 

The effect of the GPS signals on the DOA estimation of weak GPS 

interferences is presented. The Multiple Subspace Projection (MSP) 

algorithm is proposed to cancel GPS signals.  

Contributions 

1. The effect of GPS signals on the DOA estimation of weak 

interferences is analysed. 

2. GPS signals are cancelled by the proposed Multiple Subspace 

Projection (MSP) algorithm. This algorithm extends the current single 

dimensional subspace based GPS cancellation algorithms [48, 49] to 

multi-dimensional subspace structure and thus achieves better 

cancellation of the received GPS signals. 

Chapter 6 

The requirement of the number for snapshots of antenna array processing 

and the technique to whiten the coloured noise in the system are discussed 

first. An eight-element GPS antenna array and data-recording system are 

described later. The experimental results of weak GPS interference DOA 

estimation are presented in the end. 

Contributions 

1. The Cramer-Rao Lower Bound (CRLB) is derived and analysed for a 

circular array with one element in the centre. 

2. The number of snapshots used to estimate the covariance matrix for 

weak GPS interference DOA estimation is determined by CRLB 

analysis. 

3. Coloured noise in the system is whitened by pre-whitening technique 

using noise-only data. 
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4. Experimental results demonstrate an accurate DOA estimation at an 

input SNR of -22dB after cancelling the GPS signals, pre-whitening 

the system coloured noise and calibrating the antenna array. 

Chapter 7 

The conclusion of the thesis and suggestions for future work are presented. 

Throughout this thesis, although other DOA estimation algorthims can be 

used, attention is restricted to use of the MUSIC algorithm as it provides a 

good balance between sensitivity to system errors and accurate DOA 

estimation.  
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Chapter 2: Background of GPS Antenna Array 

Processing 

2.1 Introduction 

This chapter first introduces the general background of the application of 

antenna array techniques in the GPS area in Section 2.2. Then, Section 2.3 

discusses direction of arrival (DOA) estimation algorithms by subspace 

methods. Antenna array calibration techniques are reviewed in Section 2.4, 

while previous work in GPS interference DOA estimation and localisation is 

discussed in Section 2.5. 

2.2 Antenna Array Beamforming in the GPS Area 

An antenna array is a set of antenna elements deployed in space whose 

outputs are combined to achieve an overall radiation pattern that can be 

different from the radiation pattern of the individual elements [50]. Antenna 

arrays can thus be used to electronically steer a beam in a desired direction 

without requiring mechanical steering.  The beam can be steered using either 

conventional or adaptive techniques.  The main difference between optimum 

beamforming and conventional beamforming is the method used to adjust the 

“weights” of each antenna: conventional Beamforming has fixed “weights” for 

a given beam direction which means its beampattern is fixed, while optimum 

beamforming chooses the weights for each beam direction according to a 

predefined optimality criterion. It is thus able to minimise the effects of 

interfering signals by adapting the weights to track changes in the 

interference parameters such as direction of arrival (DOA). Conventional 

beamforming achieves the maximum SNR in spatially uncorrelated noise and 
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in the absence of interference, but its performance drops compared with 

optimum beamforming when there are one or more interferences. This is 

because optimum beamforming takes both received signals and noise into 

account through the covariance matrix of the receiver outputs and can then 

be made adaptive by adjusting its weights in response to changes in the 

interference environment. Most of these beamforming algorithms are used to 

enhance the SNR of the received GPS signal and to mitigate against 

interference. However, some can also be used for direction finding. The main 

optimum antenna array processing algorithms (null-steering, MaxSINR and 

MVDR) will be discussed in the following paragraphs. 

Null steering steers deep nulls to the directions of the interferences and 

attempts to keep a uniform beampattern in all the other directions. The 

optimization algorithm minimises the mean square error between a chosen 

reference antenna (the choice varies depending on the antenna array 

geometry) and a linear combination of the remaining antenna outputs. The 

advantage of this approach is that a-priori knowledge of the DOA of the GPS 

signals relative to the array is not required. This simplifies the implementation 

of the algorithm, which can be completely separate from the GPS receiver. 

As a result, null steering is widely used in GPS applications. References [27, 

31, 51, 52] discuss and test the performance of this technique when applied 

to GPS. However, this technique is only useful for canceling interferences 

and does not improve the SNR of the GPS signals over a single antenna and 

indeed in some case can lead to a loss in C/No for some satellites.  

MaxSINR maximises the signal-to-interference plus noise ratio. To 

implement this technique, the GPS signal covariance matrix must be 

separated from the overall signal covariance matrix. As a result, MaxSINR is 

usually applied after correlation so that the GPS signal components can be 

separated. In [53], a subspace technique was used to estimate interference 

DOAs and was combined with the MaxSINR technique to remove these 

interferences from the received data. A similar technique was used in [8]. A 

technique that combines the capability of rejecting narrowband interferences 

and multipath components when using the MaxSINR criteria was applied in 
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[54]. It gives the best improvement and achieves the theoretical limit that 

adaptive algorithms such as MaxSINR and MMSE can achieve. In [55], an 

adaptive algorithm with improved convergence speed was introduced. This 

approach acquires GPS signals first to either get a reference signal or to be 

able to separate covariance matrices. 

Minimum Variance Distortionless Response (MVDR) is also known as 

optimal beamformer, Capon beamformer and Linearly Constrained Minimum 

Variance Beamformer (LCMV). It aims to minimise the output power subject 

to a unity gain constraint in the direction of the desired signal. MVDR makes 

the best use of the available degrees of freedom to shape the spatial nulls 

and has a greater probability of preserving the GPS signals. Compared with 

null steering, MVDR will give a narrower null if the interference is close to a 

GPS signal because it seeks to maintain the array gain in the direction of the 

GPS signals [32]. In [47, 56], the performance of MVDR for estimating the 

DOA of interferences was tested by scanning optimum beam over a range of 

angles and finding local maxima. The result shows that although MVDR 

requires a well calibrated array, it gave a surprisingly good performance 

when separating two interferences with an array that was not well calibrated. 

This indicates that errors in the GPS array were small enough to allow the 

MVDR technique to be used relatively robustly for direction finding. The 

MVDR technique is thus a good technique against which high resolution 

subspace based DOA estimation techniques that are more sensitive to phase 

errors can be compared. 

2.3 Subspace Based DOA Estimation Algorithms 

Subspace or eigenstructure and high resolution methods estimate the 

directions of signals by using the eigenstructure of the covariance matrix and 

the fact that the signal subspace and the array manifold intersect at locations 

corresponding to the directions of the signals [57]. Eigenvalues and 

eigenvectors are important in many physical systems as generally an 
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eigenvector corresponds to a natural mode of oscillation of the system and its 

corresponding eigenvalue gives the intensity of that oscillation [58]. There are 

two main subspace methods commonly used to estimate the DOA: MUltiple 

SIgnal Classification (MUSIC) and Estimation of Signal Parameters via 

Rotational Invariance Techniques (ESPRIT). 

The MUltiple SIgnal Classification (MUSIC) algorithm [59-61] uses the 

property that the array manifold is orthogonal to the noise subspace at the 

signal directions of arrival to estimate the direction of signals with the 

assumptions that the signals are uncorrelated and the noise is also spatially 

uncorrelated. If the signals are correlated, the noise subspace will not be 

orthogonal to the array manifold and hence the MUSIC algorithm will provide 

incorrect signal directions, as MUSIC cannot handle coherent sources 

without spatial smoothing. When the number of the snapshots and signal to 

noise ratio are large and the sources are uncorrelated and the noise is 

spatially uncorrelated, MUSIC performs similarly to the Maximum Likelihood 

method which is derived from the DOA likelihood function based on the 

observation data probability density function and is thus the optimal method 

for direction finding [62]. When the number of the snapshots and the signal to 

noise ratios are small or the signals are correlated, MUSIC will not be able to 

resolve closely spaced sources even in the absence of modeling errors [63]. 

To overcome the problems caused by correlated signals, in [64, 65], spatial 

smoothing techniques have been proposed. 

In [66], the sensitivity of the MUSIC algorithm is quantified by a first–order 

analysis. The analysis shows that even small modeling errors can lead to 

significant degradation in the performance of the MUSIC algorithm. 
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Figure 2.3.1: The MUSIC “spectrum” in the presence of phase errors, the 

sensor phase error β is between 0.005⁰<β<0.05⁰ [66]. 

Figure 2.3.1 shows that the MUSIC “spectrum” gradual degrades from two 

sharp peaks to a flat single peak as the modeling phase errors increase for a 

circular array of four uniformly spaced sensors, half a wavelength apart. The 

two sources are at directions 13.5º and 16.5º. Due to the small phase errors, 

the peak locations are no longer at the true directions of the signals. The high 

sensitivity of the MUSIC algorithm to modeling errors is a serious problem 

that needs to be solved if MUSIC is to be practically used [66]. 

The weighted MUSIC algorithm is a modification of the MUSIC algorithm. It 

adds a weighting matrix to weight the relative contributions of the 

eigenvectors. When the weighting matrix is identity matrix, the weighted 

algorithm simplifies to the MUSIC algorithm. The weighted MUSIC performs 

better than MUSIC when the number of snapshots is small and the signal 

sources are correlated [67]. 

The root MUSIC algorithm estimates the directions of the signals by 

computing the roots of polynomial equations. When there is only a limited 

number of snapshots available, root MUSIC is better than MUSIC [68]. A 
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technique for extending root MUSIC from a ULA array to 2D non-ULA 

arbitrary array was given in [69] and demonstrated good performance. 

Estimation of Signal Parameters via Rotational Invariance Techniques 

(ESPRIT) estimates signal arrival direction by exploiting the rotational 

invariance of the signal subspaces of subsets of the array receivers [58]. This 

means that the signal subspace of particular subsets of receivers can be 

obtained from a different subset with the same number of receivers by a 

simple vector rotation. ESPRIT is more efficient than MUSIC because it 

avoids searching the array manifold. The major limitation of this method is in 

the use of estimated covariances and the subtraction of the estimated noise 

power which is critical [70]. In the absence of modeling errors, MUSIC is 

always more accurate than ESPRIT [71]. In the presence of modeling errors 

the situation becomes more complicated. However, it is possible to prove that 

if the errors in the response of the different sensors are complex Gaussian 

random variables which are mutually independent but have equal variance, 

then MUSIC is always more accurate than ESPRIT [72]. 

2.4 Antenna Array Calibration 

Antenna array processing techniques assume no array errors, and their 

performance degrades or fails completely when the array manifold is poorly 

described. As discussed in the previous sub-section, direction finding 

algorithms by subspace methods are quite sensitive to modeling errors such 

as array manifold errors, so array calibration is important for high resolution 

direction finding methods to work well. 

There are two basic array calibration methods based on the type of sources. 

Active array calibration methods use special sources with known parameters 

for array calibration and the source DOAs are usually known, while passive 

array calibration methods use sources in the received data and the source 

DOAs are usually unknown. When the sources are far from the arrays, the 
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transmitted waves can be assumed to be planar. In [73] and [74], the 

Cramer-Rao lower bound for active array calibration was analysed. The 

analyses showed that the bearing of the calibration sources must be 

uniformly distributed in angle to minimise the Cramer-Rao lower bound for 

uncorrelated sources and the minimum value of the Cramer-Rao lower bound 

is inversely proportional to the number of sources and the number of data 

points. The papers also suggested that active array calibration is expected to 

provide better accuracy than passive array calibration. Two methods – 

iterative Newton-type algorithms for ML estimation and eigenstructure–based 

algorithms - are proposed to estimate the array sensor positions using non-

disjoint sources with known DOAs. 

In [75], a ML method was developed for estimating sensor positions. The 

method is a two-step approach using disjoint sources. Disjoint sources can 

be separated independently of array processing, which is possible if they are 

separated in the time, frequency or code domains. In the first step, the DOAs 

of the sources are estimated using the nominal sensor positions and 

searching for local maxima over a range of steering directions. In the second 

step, the sensor positions are estimated using the DOAs estimated in the first 

step. This process is iterated and the cost function converges to a minimum 

depending on the accuracy of the nominal sensor positions and the initial 

DOA estimates.  

An eigenstructure based method for estimating unknown sensor parameters 

(gain, phase, position) is proposed in [76] and [77]. The method is based on 

the assumption that the eigenstructure based calibration parameter 

estimation cost function will be a minimum when the signal steering vector is 

almost orthogonal to the estimated noise subspace. The values at which the 

cost function reaches a minimum are taken as the estimated values of the 

respective parameters. The process iterates between two steps: Step1: The 

sources’ directions are estimated by MUSIC using the estimated array 

parameters in the last round. Step2: A closed form solution that is related to 

the Gauss-Newton technique is used to estimate the sensor positions using 

the last estimated source DOAs or the gain/phase can be estimated from a 
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quadratic minimization problem. In [78], the array is calibrated for mutual 

coupling errors as well as sensor gain and phase errors where a three step 

process is used based on the same method as in [76, 77]. The conditions for 

uniqueness are also derived. The ML method [75] which is an optimal 

method is expected to be more computationally intense than the 

eigenstructure method. This eigenstructure based self-calibration method is 

of particular interest because of its simplicity in implementation and its 

relative robustness. However, the papers represent only the first few steps in 

the development of self-calibration techniques. A considerable amount of 

work remains to be done before these techniques are fully developed and 

validated [57], especially in the context of GPS. 

The performance of self-calibration algorithms is analysed in [57], which 

showed that imbalances of the sensor gains has very little effect on the 

accuracy of direction of arrival estimation and most of the loss in 

performance is due to phase errors. Increasing the number of sensors 

improves estimation accuracy and reduces the loss of performance due to 

the need to estimate relatively fewer unknown parameters. The analysis also 

seems to indicate that attempting to estimate all of these parameters using 

only four sensors leads to a very ill-conditioned problem. Finally, it is very 

desirable to have the sources used for self-calibration well separated in angle. 

The calibration algorithms considered so far assume that the DOA of the 

calibration signal is unknown and needs to be estimated as part of the 

calibration process. [79] uses the similar eigenstructure method to [76], but 

the key difference is that it uses sources with known DOAs, making the 

algorithm a one step process rather than an iterative process. This is an 

interesting modification because the GPS signal directions are usually known. 

To improve the standard self-calibration method based on MUSIC, [80] adds 

a regularization term to the MUSIC cost function so that it takes on the form 

of a Maximum a posteriori (MAP) estimator. This can make the self-

calibration methods more robust and enables them to handle direction-

dependent errors for which the usual self-calibration algorithms will fail. 
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Reference [81] takes the novel approach of formulating the problem of 

direction finding using an uncalibrated array in an H∞ framework. Based on a 

state-space equivalent for the conventional array signal model, results from 

linear estimation in Krein space can be used to easily derive an H∞ filter that 

removes the “uncertainties” of the array signal model that are otherwise 

manifest in the received signal. The H∞ approach results in a minimisation of 

the worst-case scenario. The algorithm iterates between two steps. The 

algorithm is initialised with nominal values of the DOAs supplied by an 

algorithm such as MUSIC. Based on the nominal DOAs, the H∞ filter is 

constructed, and the received signal is fed as the filter input. The filter output 

is then fed back into MUSIC to update the DOA estimates, and the process 

repeats itself. This algorithm is computationally intensive.  

The calibration performance between the approaches outlined in [80] and [81] 

is compared in [82]. The results show that the algorithm in [80] outperforms 

the algorithm in [81] for high SNR and also has the advantage of outputting 

array calibration updates in addition to DOA estimates. The algorithm 

proposed in [81] does offer a performance advantage in a low SNR 

environment, as anticipated from its H∞ design criterion. For practical 

applications in which an array is initially calibrated and self-calibration is 

employed for calibration updates, high SNR signals of opportunity would 

most likely be used. The algorithm [80] would thus be a better match to this 

application. For this project, GPS signals will be used as the calibration 

sources. Although GPS signals are 20-30 dB below the noise, long 

integration times can be used to increase the effective SNR. The achievable 

SNR and hence the optimal calibration algorithms for the GPS scenario are 

the subject of this research. 
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2.5 Previous Work in GPS Interference DOA 

Estimation and Localisation Area 

This section summarises the previous GPS interference DOA estimation and 

localisation work. Three main types of methods have been proposed to 

localise GPS interferences: 

1. C/No value based range estimation 

2. TDOA based location estimation 

3. Antenna array based DOA estimation 

References [39-42] use the C/No values on a network of GPS receivers to 

estimate the ranges to the interference position and thus estimate the 

position of the interference. This method typically uses GPS modules to set 

up a network of GPS receivers at determined locations, so the localisation 

system can be easily setup with relatively low cost. As described in [39], the 

experimental interference source localisation accuracy is within a few of tens 

of meters with both 5 receivers and the interference within 500 metres. The 

performance of this method degrades quickly when interference source is 

close to the receivers because AGC may saturate or far away from the 

receivers because AGC voltage relation to distance may be insufficient. 

References [40, 43-45] attempt to localise the interference by using widely 

separated antennas using the Time Difference of Arrival (TDOA) of the 

interference signal between antennas. This method requires highly accurate 

clock synchronisation among the receiver stations. As described in [45], the 

experimental interference source localisation accuracy is about a few metres 

with 3 receivers located within 81 metres of each other when the interference 

is about100 metres away from the furthest receiver. A major disadvantage is 

that the performance of TDOA degrades quickly if the interference source is 

a narrow band signal. Performance of the technique also depends on the 

geometry of the antenna positions and the relative orientation of the 
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interference. Increasing the number of antennas leads to performance 

improvements. 

References [46, 47, 83] estimate the Direction of Arrival (DOA) of the 

interference source by using adaptive antenna array processing techniques. 

The experimental results in [47] shows the standard deviation error of DOA 

estimation using an 8 element circular array is about 4 degrees with four far-

field GPS jammers a few kilometres away from the antenna array. The 

estimation error can be improved with better antenna array calibration and 

longer integration time. 

  



 

24 
 

 



 

25 
 

Chapter 3: GPS Antenna Array Calibration I: 

Modelled Eigenstructure based GPS Antenna 

Array Calibration 

3.1 Introduction 

Most antenna array DOA estimation algorithms assume the steering vector 

lies on the true array manifold determined by the array geometry. However, 

uncertainties, such as gain/phase errors in each channel and mutual coupling 

between antennas exist in practical antenna arrays and will degrade the 

performance of DOA estimation algorithms. Subspace based high sensitivity 

DOA estimation algorithms, such as Multiple Signal Classification algorithm 

(MUSIC), are especially vulnerable to such errors as they exploit the 

assumed orthogonality between the signal and noise subspaces.  

The MUSIC algorithm will be used in Chapter 6 of this thesis to estimate the 

DOAs of a weak interference in the GPS frequency band because of its high 

estimation sensitivity for weak targets. References [66], [57] and [84] 

quantified the sensitivity of the MUSIC algorithm to system errors using a 

first-order analysis by assuming that the exact covariance matrix of the array 

element outputs is known. The results showed that even small modelling 

errors can lead to significant degradation in the DOA estimation performance 

of the MUSIC algorithm. As a result, in order to estimate the DOAs of weak 

GPS interferences reliably and accurately, antenna array calibration is 

necessary. 

In the GPS area, several different types of calibration techniques have been 

proposed. In references [85] and [86], the phase errors of each channel were 

measured experimentally. The results showed that the phase deviations were 
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significant for patch antenna elements. Reference [87] proposed a least 

squares based calibration algorithm which used GPS signals as the 

calibrating reference sources to estimate and record the array steering vector 

errors as a function of azimuth and elevation angles. The results showed 

good calibration performance and the structure of the algorithm is simple, but 

this method did not assume any physical model of the system errors, so it is 

only able to accurately calibrate the array gain/phase errors in the directions 

of the GPS ephemeris. The errors are expected to increase as the signal 

DOA moves away from the GPS ephemeris directions at which the array was 

calibrated. Reference [87] also pointed out that their algorithm was not 

practical for dynamic operation at present due to the loss of accuracy in the 

orientation estimation of the array. Reference [88] used a mixed LMS/𝐻∞ 

optimal approach to estimate the array uncertainties. The simulation results 

showed the improved capabilities for anti-jamming, interference rejection and 

minimising the effect of system uncertainties. But the algorithm did not 

appear to have been tested on real data. Similar to [87], reference [88] also 

needed a large number of calibration sources as the algorithm did not make 

use of any additional information about how the array errors were related to 

each other. Reference [89], similar to [87] and [88], used a Minimum Mean 

Square Error (MMSE) criteria to solve the equations relating the received 

signal and the calibration parameters. Reference [90] calibrated the 

gain/phase mismatch between the antenna array channels by measuring the 

received gain/phase differences of the receiving channels from a single GPS 

signal. 

Friedlander proposed an eigenstructure based method for estimating 

unknown sensor parameters in [77],  [78], [76] and [57]. This method is 

based on the assumption that the array is calibrated when the signal steering 

vector is almost orthogonal to the estimated noise subspace. The cost 

function is thus the projection of the signal steering vector onto the noise 

subspace. The values at which the cost function reaches the minimum are 

taken as the estimated values of the respective parameters. This 

eigenstructure based self-calibration method is simple to implement and 
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relatively robust, so it has been investigated and applied widely in areas such 

as Over-The-Horizon radar [91-93] and wireless communications [94]. 

A model based approach to GPS array calibration that makes use of the 

array geometry to determine an underlying model of how the array errors are 

interrelated is proposed in this chapter. This model based approach reduces 

the number of calibration sources that are required and gives an 

understanding of the underlying causes of the array manifold errors. Unlike 

previous array calibration methods, which assume there is no prior 

knowledge of the error models in the calibration process, the method 

proposed here is a modelled eigenstructure based self-calibration algorithm 

for estimating the array orientation, gain/phase errors and mutual coupling 

effects in the antenna array by using GPS satellite signals as the disjoint 

calibration sources. The gain/phase errors and mutual coupling effects are 

described by the matrices based on a physical model which forms the basis 

of the algorithm error minimization process and hence reduces the number of 

calibration sources required to calibrate the array. GPS signals are used as 

the calibration sources and thus there is no need to estimate the direction of 

the calibration sources. However, the orientation of the antenna array relative 

to the satellites may not be known precisely and needs to be estimated. Thus 

in the GPS context, there is no need to estimate the DOA of all calibration 

sources as was the case in [91], but only the array orientation. Due to the 

orthogonality of the GPS PRN codes, the covariance matrices of GPS signals 

are able to be extracted disjointly, so GPS signals are used as disjoint 

calibration sources in this algorithm, which enables the number of the GPS 

signals used in the calibration process to be equal or larger than the number 

of the array elements. 

The remainder of this chapter is structured as follows: The assumed 

calibration signal model is described in Section 3.2. In Section 3.3, the 

proposed calibration algorithm is outlined and the simulation results are given 

in Section 3.4. In Section 3.5, experimental results based on a 4 element 

equally spaced linear array are presented. Finally, conclusions are given in 

Section 3.6. 
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3.2 Signal Model 

3.2.1 Ideal Array Model 

Consider an array of M elements in the absence of gain/phase errors and 

mutual coupling. The output of the mth sensor at the time t in the presence of 

a far field narrowband signal s(t) is  

 
𝑥𝑚(𝑡) = 𝑒

−𝑗𝜔𝜏𝑚𝑠(𝑡) + 𝑛𝑚(𝑡) 
 

(3.2.1) 
 

where 𝜔 is the radian frequency of the narrowband signal (for GPS L1 carrier 

frequency, it is 2𝜋 × 1.575 × 109  radians/s) and )(tnm  is additive receiver 

noise which is assumed to be White Gaussian Noise. Because the signal s(t) 

is assumed to be in the far field, the signal wavefront is effectively planar 

over the array. Thus, 𝜏𝑚 = (𝑥𝑚 cos 𝜃 + 𝑦𝑚 sin 𝜃)𝑠𝑖𝑛𝜑/𝑣  represents the time 

delay of the signal received at the mth sensor with respect to the reference 

origin, xm and ym are the position coordinates of the mth sensor for a two 

dimensional array, θ and 𝜑 are the azimuth and elevation directions of arrival 

of the signal respectively.   

For simplicity in the remainder of this chapter, all the signals are assumed to 

lie in the same plane as the array, i.e. the elevation angle 𝜑 = 90°. 

The vector form of the M sensors outputs is 

     𝑥(𝑡) = 𝑣 𝑠(𝑡) + 𝑛(𝑡)                                    (3.2.2) 

where T

M txtxtxtx )](,),(),([)( 21  , 𝑣 = [𝑒𝑗𝜔𝜏1 , 𝑒𝑗𝜔𝜏2 , … , 𝑒𝑗𝜔𝜏𝑀]𝑇 ( 𝑣(𝜃) is the 

steering vector) and 𝑛(𝑡) = [𝑛1(𝑡), 𝑛2(𝑡), … , 𝑛𝑀(𝑡)]
𝑇. 
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3.2.2 Array Error Model 

The calibration algorithm seeks to calibrate for the gain/phase errors in each 

individual channel, mutual coupling effects between the antennas and the 

array orientation error based on the models described below. 

Gain/phase error model 

The gain/phase error model describes the gain/phase mismatch in the 

individual antenna channels which can be directly modelled by a diagonal M 

by M matrix 

 
},...,,,,1{ 2

2
Mm j

M

j

m

j
eeediag

  
Γ  

 

(3.2.3) 
 

where αm and ∅𝑚 are the gain and phase error of channel m.  All the 

gain/phase errors are referenced to channel 1. 

Mutual Coupling model 

The mutual coupling model tries to describe the behavior of the coupling 

between the antennas according to the shape of the antenna array using a 

matrix model. The physical behavior of antenna mutual coupling and its 

mathematical expressions are discussed in [95] and [96]. In [57] and [78], 

appropriate matrix models for the case of equally spaced linear and circular 

arrays are given based on two assumptions below, other array geometries 

are considered in reference [97]. 

(a) The mutual coupling coefficients are inversely proportional to the 

distance between the antennas. 

(b) The coupling between any two equally spaced antennas is the same. 

If the array is an equally spaced linear array, the mutual coupling matrix 

becomes a symmetric Toeplitz matrix with value 1 at the diagonal positions. 

The M by M symmetric Toeplitz matrix C is given by 
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C                      (3.2.4) 

where cn is the complex mutual coupling coefficient for the two antennas, for 

which the antenna number difference is n. 

For an equally spaced circular array, a symmetric circulant matrix provides 

an excellent model. The M by M symmetric circulant matrix C is given by  
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 (3.2.5) 

if the number of antennas M is even, or 
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if the number of antennas is odd and where cn is the mutual coupling effect 

for the two antennas, of which the antenna number difference is n. 

Array orientation error 

As the GPS signals are to be used as the calibration sources, the directions 

of the calibration sources can be obtained accurately from the satellite 

constellation and estimated user position. However, any error in the 

estimation of the array orientation will affect the DOA of the calibration 

sources relative to the array. To model this error, an orientation error angle θe 

will be added to the DOAs of all the calibration sources.  

 
 TeNeneeDOA   ,...,,,, 21   

 

(3.2.7) 
 

where DOA  are the true azimuth directions of the signals and  N ,,, 21   are 

the azimuth directions of the signals referenced to the chosen array 

reference direction. 

The final steering vector for source n can be written as 

 𝑣 = [𝑒𝑗
2𝜋
𝜆
𝑘𝑇𝑢1 , 𝑒𝑗

2𝜋
𝜆
𝑘𝑇𝑢2 , … , 𝑒𝑗

2𝜋
𝜆
𝑘𝑇𝑢𝑚 , … , 𝑒𝑗

2𝜋
𝜆
𝑘𝑇𝑢𝑀]𝑇 

 

(3.2.8) 
 

where, 𝑘𝑇 = [cos (𝜃𝑛 + 𝜃𝑒), 𝑠𝑖𝑛(𝜃𝑛 + 𝜃𝑒)] and 𝑢𝑚 = [𝑥𝑚, 𝑦𝑚]
𝑇 is the mth sensor 

position. 

3.2.3 Array Model with the Errors 

The vector form of the antenna array outputs at the time t for a single far field 

narrowband signal s(t) in the presence of a gain/phase error matrix 𝚪, mutual 

coupling matrix C, and array orientation error 𝜃𝑒 is given by 

 
𝑥(𝑡) = 𝐂𝚪 ∙ 𝑣(𝜃 + 𝜃𝑒)𝑠(𝑡) + 𝑛(𝑡) . 

 

(3.2.9) 
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The covariance matrix of this received signal is 

 
𝐑 = 𝐸{𝑥(𝑡)𝑥𝐻(𝑡)} = 𝐂𝚪𝑣 ∙ 𝜎𝑠

2 ∙ 𝑣H𝚪H𝐂H + 𝜎𝑛
2 ∙ 𝐈 

 

(3.2.10) 
 

where 𝜎𝑠
2 is the signal power, 𝜎𝑛

2 is the noise power and I is order M identity 

matrix. 

Once the estimated covariance matrices �̂�  are obtained, the gain/phase 

errors and mutual coupling effects together with the array orientation error 

will be estimated by minimising a formulated cost function with respect to 

these error models. 

3.2.4 Solution Existence Condition 

The GPS signals can be considered disjoint sources due to their orthogonal 

spreading codes. Calibration sources are said to be disjoint if the estimated 

receiver covariance matrices of the signals can be estimated separately from 

each other. For an M sensor uniform linear array with N disjoint sources there 

are 2(M-1) gain/phase errors, 2(M-1) mutual coupling parameters and 1 array 

orientation error in the M sensor array. N disjoint sources give 2N(M-1) least 

squares equations.  

A solution exists if 2(𝑀 − 1) + 2(𝑀 − 1) + 1 ≤ 2𝑁(𝑀 − 1),  that is 𝑁 ≥ 2 +

1

2(𝑀−1)
. For GPS antenna array with any number of antennas (𝑀 > 1), the 

requirement is 𝑁 ≥ 3. The number of available GPS signals is typically larger 

than 4, so the solution existence condition requirement is not difficult to 

achieve when calibrating GPS antenna arrays. 

If the calibration signals are joint, i.e., the sources are not clearly separable 

by other means, then the individual signal covariance matrices cannot be 

separately estimated and only a single joint covariance matrix can be used. 

Thus there will be only 2N(M-N) least squares equations, resulting in  the 
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maximum number of calibration sources being limited by the number of the 

antennas in the array. 

3.3 Calibration Algorithm 

The array manifold is the locus of steering vectors in a multidimensional 

space. The array manifold is orthogonal to the noise subspace at the signal 

bearings under the assumptions that the signals are uncorrelated and the 

noise is also spatially uncorrelated. This orthogonality condition is used by 

this calibration algorithm to formulate the cost function. The array errors are 

estimated by minimising the cost function. 

As shown in figure 3.3.1, the proposed algorithm iterates between three 

steps: Step 1, the array orientation angle is estimated using the estimated 

array parameters in the last round. Step 2, the gain/phase error diagonal 

matrix is estimated using the array orientation angle obtained from step 1 and 

the mutual coupling matrix from the last round. Step 3, the mutual coupling 

matrix is estimated using the array orientation angle obtained from step 1 and 

gain/phase error diagonal matrix from step 2. The process will complete 

when the cost function converges. The final array orientation, gain/phase 

error diagonal matrix and the mutual coupling matrix are the estimated 

results. 
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Figure 3.3.1: Calibration algorithm flow chart. 

Whilst this approach following that of Friedlander will give a local optimum 

solution, it is not necessarily guaranteed to give a global optimum solution. 

3.3.1 Cost function 

The covariance matrix of each GPS signal across the antenna array can be 

extracted separately by cross-correlating with the CA code for that particular 

GPS signal and integrating. Because the GPS signals can be separated in 

this way, the post-correlation covariance matrices for each GPS satellite can 

be treated as coming from disjoint sources. 

Consider N disjoint GPS calibration sources, the estimated post-correlation 

covariance matrix for the nth disjoint source is  

 
�̂�𝒏 =

1

𝑇
∑𝑥𝑛(𝑡)

𝑇

𝑡=1

𝑥𝑛
𝐻(𝑡) 

 

(3.3.1) 
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where 𝑥𝑛(𝑡) is the vector of the M post-correlation sensor outputs for the nth 

GPS calibration source at time t and T is the total number of contiguous post 

correlation outputs needed to estimate the covariance matrix and perfect 

correlation is assumed. 

The eigen-decomposition of the nth estimated covariance matrix �̂�𝒏 gives the 

M×1 signal eigenvector �̂�𝑛 which correspond to the largest eigenvector and 

M×M-1 noise eigenvectors 
nÛ which corresponds to the column wise stored 

M-1 smallest eigenvectors. Hence the formulated cost function is  

 
𝑄 = ∑‖�̂�𝒏

𝐻𝐂𝚪 ∙ 𝑣(𝜃𝑛 + 𝜃𝑒)‖
2
 

𝑁

𝑛=1

 

 

(3.3.2) 
 

where C is the mutual coupling matrix, 𝚪 is the gain/phase error matrix, 𝑣 is 

the steering vector, θn is the DOA of the nth GPS calibration source, θe is the 

array orientation error and  𝐂𝚪 ∙ 𝑣 is the array manifold, N is the number of 

GPS calibration sources.  

The array is perfectly calibrated if the signal steering vector is orthogonal to 

the noise subspace, hence the cost function is minimised.  

3.3.2 Initialization 

The initial values of the gain/phase error 𝚪 and mutual coupling matrix C can 

be selected based on prior knowledge gained through electromagnetic 

modelling. If no such prior knowledge is available, the gain/phase error and 

mutual coupling matrices can be initialised by the identity matrix 𝐈𝑀 . 

The nominal DOAs of the calibration sources are calculated from the 

constellation of the satellites and the location of the antenna array. If the 

array orientation angle can be estimated initially, this angle will be included to 

calculate the nominal DOAs. 
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3.3.3 Orientation Error Estimation 

The values of the gain/phase error 𝚪 and mutual coupling matrix C from the 

last round are used as the current values and fixed in the cost function. If this 

is the first round, the initial values of  𝚪 and C are used. 

The minimisation of the cost function in equation 3.3.2 with respect to the 

orientation angle 𝜃𝑒 is given by 

 
𝜃𝑒 = 𝑎𝑟𝑔 min

𝜃𝑒
∑‖�̂�𝒏

𝐻𝐂𝚪 ∙ 𝑣(𝜃𝑛 + 𝜃𝑒)‖
2
 

𝑁

𝑛=1

 

 

(3.3.3) 
 

The minimisation defined by equation 3.3.3 is performed by a grid (0.01° step 

size) search over the space of 𝜃𝑒 . The corresponding angle at which the 

minimum occurs is the estimated orientation error. 

Note that whilst each of the steps in the iterative process may require a 

smaller number of calibration sources, the question of whether the same or 

different sources are required for each of the separate steps needs to be 

resolved. A complete study of this is beyond the scope of this work and the 

bound derived, although it may not be the lowest bound, suffices the practical 

perspective. 

3.3.4 Gain/phase Error Estimation 

In this step, the gain/phase errors are estimated by minimising the cost 

function with respect to the gain/phase errors. The values of the orientation 

error θe from the orientation error estimation step and the mutual coupling 

matrix C from the last round are used as the current values and are fixed in 

the cost function in equation 3.3.2 which can be conveniently rewritten as 
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𝑄 =∑𝑣(𝜃𝑛 + 𝜃𝑒)

𝐻𝚪𝐻𝐂𝐻�̂�𝑛�̂�𝑛
𝐻
𝐂𝚪𝑣(𝜃𝑛 + 𝜃𝑒)

𝑁

𝑛=1

 

 

(3.3.4) 
 

Using Lemma 1 in Appendix A to swap the positions of the vector 𝑣(𝜃𝑛 + 𝜃𝑒) 

and the matrix 𝚪 

 
𝑄 = 𝜂𝐻 {∑𝐀𝟏

𝐻(𝑛)𝐂𝐻�̂�𝑛�̂�𝑛
𝐻
𝐂

𝑁

𝑛=1

𝐀𝟏(𝑛)} 𝜂 

 

(3.3.5) 
 

where 𝜂 = [𝚪11, 𝚪22, … , 𝚪𝑀𝑀]
𝑇, 𝐀𝟏(𝑛) = 𝑑𝑖𝑎𝑔{𝑣(𝜃𝑛 + 𝜃𝑒)}. 

The minimisation problem becomes a quadratic minimisation problem under 

the linear constraint 𝜂𝐻𝑤 = 1, where 𝑤 = [1,0,0, … ,0]𝑇. The result is given by 

 
�̂� =

𝐙−1𝑤

𝑤𝑇𝐙−𝟏𝑤
 

 

(3.3.6) 
 

where 𝐙 = ∑ 𝐀𝟏
𝐻(𝑛)𝐂𝐻�̂�𝑛�̂�𝑛

𝐻
𝐂𝑁

𝑛=1 𝐀𝟏(𝑛). 

Finally, the gain/phase error matrix  𝚪  can be recovered from �̂�using the 

equation 𝚪 = 𝑑𝑖𝑎𝑔( �̂�). 

3.3.5 Mutual Coupling Matrix Estimation 

In this step, the values of the orientation error θe from the orientation error 

estimation and the gain/phase error matrix Γ  from the gain/phase errors 

estimation step are used as the current values and fixed in the cost function. 

The mutual coupling matrix is estimated by minimising the cost function with 

respect to the mutual coupling matrix. 

Assuming that the antenna array is a circular array (the mutual coupling 

matrix is symmetric circulant matrix) and using Lemma 2 of Appendix A gives 

the following cost function 
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𝑄 = 𝑐𝐻 {∑𝐀𝟐

𝐻(𝑛)�̂�𝑛�̂�𝑛
𝐻

𝑁

𝑛=1

𝐀𝟐(𝑛)} 𝑐 

 

(3.3.7) 

where 𝑐 = 𝐂1𝑖, 𝑖 = 1,2, . .,L, L = M/2 + 1 when M is even and L = M/2 + ½ 

when M is odd, and the M × L matrix 𝐀𝟐(𝑛) is the sum of the four M × L 

following matrices 

 
[𝐖1]𝑝𝑞 = {

𝐗𝑝+𝑞−1,     𝑝 + 𝑞 ≤ 𝑀 + 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝐖2]𝑝𝑞 = {
𝐗𝑝−𝑞+1,      𝑝 ≥ 𝑞 ≥ 2

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝐖3]𝑝𝑞 = {
𝐗𝑀+1+𝑝−𝑞 , 𝑝 < 𝑞 ≤ 𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝐖4]𝑝𝑞 = {
𝐗𝑃+𝑞−𝑀−1, 2 ≤ 𝑞 ≤ 𝑙, 𝑝 + 𝑞 ≥ 𝑀 + 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 
 
 
 

(3.3.8) 

   
where 𝑙 = 𝑀/2  for even M and 𝑙 = (𝑀 + 1)/2  for odd M, and 𝐗 = 𝚪 ∙

𝑣(𝜃𝑛 + 𝜃𝑒). 

If the antenna array is a linear array, the mutual coupling matrix will be a 

Toeplitz matrix. In this case, Lemma 3 of Appendix A needs to be used to 

swap the positions of the matrix C and the vector 𝚪𝑣(𝜃𝑛 + 𝜃𝑒). 

Again, the minimisation problem becomes quadratic minimisation problem 

under the linear constraint 𝑐𝐻𝑤 = 1, where 𝑤 = [1,0,0, … ,0]𝑇 . The result is 

given by  

 
�̂� =

𝐆−1𝑤

𝑤𝑇𝐆−𝟏𝑤
 

 

(3.3.9) 

where 𝐆 = ∑ 𝐀𝟐
𝐻(𝑛)�̂�𝑛�̂�𝑛

𝐻𝑁
𝑛=1 𝐀𝟐(𝑛).  

The symmetric circulant mutual coupling matrix C can be recovered from �̂� 

using the relationship 𝐂1𝑖 = 𝑐,  𝑖 = 1,2, . .,L, L = M/2 + 1 when M is even and L 

= M/2 + ½ when M is odd. 
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3.3.6 Convergence Check 

The cost function Qk is calculated at the end of the kth iteration using the 

estimated array orientation error, gain/phase errors and mutual coupling 

matrix. If the difference in the previous and current cost function is larger than 

a preset threshold,  , ie.  

 
 kk QQ 1  

 

(3.3.10) 
 

then another iteration of the algorithm is performed, otherwise the calibration 

algorithm will stop and the current array orientation error, gain/phase errors 

and mutual coupling matrix are taken to be the estimated results. 

3.4 Simulation Results 

The performance of the proposed algorithm was verified by simulations. In 

the simulations no prior knowledge of the array error parameters was 

assumed, so the gain/phase error matrix and mutual coupling matrix were 

initially all set to be the identity matrix. 

The simulations assumed a uniform circular array with 8 omni-directional 

antennas spaced by half a wavelength of the calibration signals, which is 9.5 

cm. The 6 calibration sources were in the far field of the array and are 

assumed to be narrow-band signals with a carrier frequency of 1.575 GHz 

and the SNR was 10 dB after GPS signal coherent post-correlation for one 

CA code period. The azimuth DOAs of the 6 sources were 56°, 98°, 146°, 

250°, 290° and 325° with elevation DOAs at 45° for all sources. The sources, 

similarly to real GPS signals, were assumed to be disjoint and uncorrelated 

with each other. The noise in the system was uncorrelated additive white 

Gaussian noise (AWGN) with zero mean. The number of snapshots was 

1,000 for a recording length of 1 second (1000 CA code periods in 1 second), 

and as a result, the estimated noise covariance matrix 
nR̂  was assumed to 
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be equal to the exact noise covariance matrix 
nR . The gain and phase errors 

were assumed to be stationary in the data and thus fixed for each realisation. 

The antenna array errors were simulated as 

1. Array orientation error relative to GPS north: 10⁰. 

2. Gain/phase errors in each channel (Gain is linear and not in dB): 

Channel 1 2 3 4 5 6 7 8 

Gain (in 

amplitude) 
1 1 1.2 0.8 0.85 0.9 1.2 1.22 

Phase 0 -25º -15º 50º 20º -15º 65º 45º 

Table 3.4.1: The mutual coupling parameters used in the simulations. 

3. Mutual coupling coefficients: c = [ 1  0.22  0.11  0.06  0.03 ]. 

The above values were chosen to be similar to those measured 

experimentally in anechoic chamber. The calibration convergence threshold 

was 1 × 10−9. The calibration process converged after 11 iterations. 

3.4.1 Beampattern 

Figures 3.4.1 and 3.4.2 show the ideal beampattern and the beampattern of 

a conventional beamformer before and after the proposed calibration scheme 

is applied respectively. 
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Figure 3.4.1: Ideal beampattern and original beampattern (no calibration), 

beam steering direction: 180 . 

 

Figure 3.4.2: Ideal and calibrated beampattern, beam steering direction:180⁰. 
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Before calibration, the main beam of the beampattern is shifted and 

attenuated slightly and the sidelobe levels increase significantly. After the 

calibration, the beam pattern is very close to the ideal beampattern. Although 

there are still some very small differences in the sidelobe structure, the main 

beam is nearly the same as the ideal main beam and can be easily 

distinguished from the sidelobes. 

3.4.2 Calibration Error Analysis 

The calibration error is defined as the absolute value of the difference 

between the estimated value and the real value of a parameter. Figure 3.4.3 

shows the averaged channel gain of 7 channels was quite accurately 

estimated with an averaged calibration error of 0.00146 after convergence 

which was significantly reduced from the initial value - 0.153. 

 

Figure 3.4.3: Averaged channel gain calibration error versus iteration number. 
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6 and the channel with no initial error – channel 1. Although these three 

channels had very different initial values, they have about the same 

convergence rate. 

 

Figure 3.4.4: Gain calibration error of channel 1, 6 and 8. 

Figure 3.4.5 shows the averaged mutual coupling calibration error was 0.003 

after convergence which was not as good as the gain/phase error estimation, 

but it was still a large improvement from the initial averaged mutual coupling 

error of 0.116. 
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Figure 3.4.5: Averaged mutual coupling calibration error versus iteration 

number. 

As shown in figure 3.4.6, the array orientation estimation converged after one 

iteration. The orientation was accurately estimated to be 10.01⁰, where 0.01⁰ 

was the array orientation searching step.  

 

Figure 3.4.6: Orientation estimation error in degrees versus iteration number. 
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3.4.3 Effect of the Number of Calibration Sources and DOAs 

Monte Carlo analysis was conducted to test the algorithm’s performance for 

the number of calibration sources and their DOAs. The azimuth and elevation 

DOAs of the calibration sources were randomly and uniformly generated from 

0° to 360° and from 0° to 90° respectively. 200 simulations were conducted 

for each test. Figure 3.4.7 shows the mean and standard deviation (STD) of 

the estimated array orientations. The algorithm performed well in all the test 

cases except for 2 calibration sources, which is expected as discussed in 

Section 3.2.4. 

 

Figure 3.4.7: Statistical performance (mean and STD) of array orientation 

estimation. 
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1. The azimuth DOAs for the 6 calibration sources were 56°, 98°, 146°, 

250°, 290° and 325°.  

2. The azimuth DOAs for the 4 calibration sources were 56⁰, 98⁰, 250⁰ 

and 290⁰.  

3. The azimuth DOAs for the 2 calibration sources were 56⁰ and 250⁰. 

As shown in figure 3.4.8, the calibration cost function value of 2 calibration 

sources is very small after convergence but its convergence rate is much 

slower than 4 and 6 calibration sources. 6 calibration sources have the 

fastest convergence rate. However, 2 and 4 calibration sources have a lower 

calibration cost function value at convergence than 6 calibration sources. 

This can be due to the lesser number of least squares equations for 2 and 4 

calibration sources. Although 2 and 4 calibration sources have a lower cost 

function value at convergence, figure 3.4.9 shows 6 calibration sources have 

better mutual coupling estimation accuracy than 2 and 4 sources. This 

suggests more calibration sources provide better calibration accuracy but not 

lower cost function convergence value. 

 

Figure 3.4.8: Cost function value with different number of calibration sources 

versus iteration number.  
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Figure 3.4.9: Averaged mutual coupling relative error with different number of 

calibration sources versus iteration number. The percentage is calculated by 

the formula error_in_percentage = estimation_error/initial_error*100%. 

Figure 3.4.10 shows the mean and 95% confidence interval of the array 

orientation estimation performance with different number of the sources 

versus source SNR. 100 simulations were conducted for each test with 

different noise realisations. The result shows 6 calibration sources have the 

best estimation accuracy and variation. As the calibration source SNR 

increases to 20dB, the estimation mean value 10.006⁰ of 6 source calibration 

converges to the true array orientation error 10⁰, while the estimation mean 

values of 4 and 2 calibration sources have a bias of 0.150⁰ and 1.553⁰ 
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Figure 3.4.10: Array orientation error estimation mean and 95% confidence 

interval with different number of calibration sources versus the calibration 

source SNR. 
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source DOA estimation unless the calibration sources have SNRs larger than 

about 10dB or smaller than about -20dB. In these cases, the two methods 

have similar performance. 

 

Figure 3.4.11: Channel 2 gain estimation mean values versus SNR using 

array orientation estimation (blue) and source DOA estimation (red). 

As shown in figure 3.4.12, the array orientation estimation has a lower 
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Figure 3.4.12: Channel 2 gain estimation standard deviation versus SNR 

using array orientation estimation (blue) and source DOA estimation (red) 

3.5 Experimental Results 

An experiment was carried out using real GPS signals with a uniform linear 

array of 4 dipole antennas spaced by 9 cm. The number of data points per 

channel that were used in the cross-correlation to extract the GPS signal  

was 800,000; this corresponds to a total time length of 50 ms at the sampling 

frequency of 16 MHz. The array was rotated to the southeast direction, which 

is 145⁰ from north (The exact direction was unknown). After cross-correlation 

processing, 6 satellites 4, 7, 11, 13, 16, 23 were obtained. By referring to the 

GPS almanac, the azimuth and elevation angles of the satellites are given in 

table 3.5.1. 
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 SV 4 SV 7 SV 11 SV 13 SV 16 SV 23 

Azimuth 222º 321º 328º 259º 68º 231º 

Elevation 11º 8º 24º 31º 29º 55º 

Table 3.5.1: GPS satellite DOAs referring to the GPS almanac. 

By using the nominal array orientation value 145⁰, the DOAs of the GPS 

satellites, which are the projections of the azimuth and elevation angles onto 

the orientated plane of the array, are calculated in the table 3.5.2.  

 SV 4 SV 7 SV 11 SV 13 SV 16 SV 23 

DOA 77º 171º 156º 110º 79º 88º 

Table 3.5.2: GPS satellite DOAs referring to the GPS antenna array with the 

nominal array orientation value. 

The formula used for the above calculations is shown in equation 3.5.1. 

 
𝐷𝑂𝐴 = acos (cos(𝑎𝑧𝑖𝑚𝑢𝑡ℎ − 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) ∗ sin (900 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)) 

 
(3.5.1) 

 

 

Satellites 4, 7, 13, 16 are used as the disjoint calibration sources while the 

directions of the satellites 11 and 23 are estimated by the calibrated array to 

verify the performance of the algorithm. (Please note the current number of 

calibration sources is 4. If joint sources are used to calibrate the array, the 

maximum number of the calibration sources will be limited by M-1 which is 3 

for the current case, where M is the number of the antennas in the array).  

After calibration, the algorithm gave the estimated parameters in table 3.5.3. 
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CH1 
 

CH2 
 

CH3 
 

CH4 

 
Array orientation 

134 º 

 
Channel gain 

1 0.74 0.49 0.58 

 
Channel phase error 

0 -3º 6º 33º 

 
Mutual coupling gain  

1 0.15 0.073 0.067 

 
Mutual coupling phase 

0 10º -159º 27º 

Table 3.5.3: Estimated antenna array parameters. 

 SV 4 SV 7 SV 11 SV 13 SV 16 SV 23 

DOA 88 º 169 º 153 º 119 º 69 º 94 º 

Table 3.5.4: GPS Satellite DOAs relative to the GPS antenna array after 

correcting the array orientation. 

The estimated array orientation of 134º is in a southeasterly direction (145º) 

as expected. The array orientation was not measured accurately, but only 

with reference to a nearby road, hence cannot be compared directly to 

ground truth. However the DOA of the GPS signals given in table 3.5.1 are 

accurate and will be used to evaluate the accuracy of the calibration along 

with the general shape of the multiple signal classification algorithm (MUSIC) 

spectrum. MUSIC is a high resolution direction of arrival estimation algorithm 

and it is sensitive to the array errors, so the MUSIC spectra before and after 

calibration indicate the performance of the calibration algorithm.  

Figure 3.5.1 and figure 3.5.2 show the MUSIC spectra before and after 

calibration for satellites 11 and 23. Both of the figures show an improvement 

in the height of the peaks and better DOA accuracy after calibration. The 

estimated DOAs of satellites 11 and 23 are 157⁰ and 93.3⁰ respectively 

which correspond reasonably well with the true GPS satellite DOAs given in 
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table 3.5.4. Thus the array manifold is closer to the true array manifold after 

calibration.  

 

Figure 3.5.1: MUSIC spectrums before (blue) with peak value at 167.3º and 

after (red) the calibration with peak value at 157 º for satellite 11. 

 

Figure 3.5.2: MUSIC spectrums before (blue) with peak value at 96.4º and 

after (red) the calibration with peak value at 93.3 º for satellite 23. 
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The calibration performance is further tested by splitting the 6 GPS data sets 

into the 4 calibration data sets and 2 test data sets differently. With 6 GPS 

data sets, the number of possible validation subsets is 𝐶6
2 = 15, so the total 

number of DOAs to be tested is 30. The results of the DOA estimation errors 

are shown in figure 3.5.3. The small averaged estimation error (0.68°) 

suggests the calibration algorithm perform well for the experimental data sets. 

 

Figure 3.5.3: DOA estimation errors after calibration by cross validating the 

experimental data sets. Mean = 0.68°, STD = 2.44°. 
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antenna array with the assumption that if the estimation of these errors are 

correct, the model should be able to provide the true array manifold by 

making the signal subspace orthogonal to the noise subspace. 

The simulations demonstrate an improvement in the beampattern after the 

calibration and give an accurate estimation of array error parameters. The 

simulations also indicate that the algorithm is computational efficient as an 

accurate estimation of the error parameters were achieved after only the first 

few iterations. Experimental results show improved DOA estimation accuracy 

and resolution. Results not presented here show that changing the order of 

the steps in the iterative process did not affect the final estimation result 

which was most sensitive to initial conditions.  

So far the model has not included multipath components of the calibration 

sources which could occur due to ground reflections or nearby objects. This 

adds errors to the nominal DOAs of the calibration sources and couples with 

the mutual coupling effects degrading the calibration accuracy. In the next 

chapter, multipath signals will be included in the signal model and the 

additional parameters estimated by an alternating projection based 

calibration process. 
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Chapter 4: GPS Antenna Array Calibration II: 

Mutual Coupling Calibration in the Presence of 

Multipath Signals 

4.1 Introduction 

Chapter 3 discussed an eigen-structure based calibration method using 

direct path line of sight (LOS) GPS signals as the disjoint calibration sources. 

However, GPS signals suffer from reflections from various objects such as 

the ground, hills and buildings, which is commonly known as the GPS 

multipath problem. The GPS multipath signals are typically highly correlated 

or fully coherent with the LOS signals due to their limited bandwidth. High 

resolution subspace based direction of arrival (DOA) estimation methods, 

such as the MUltiple Signal Classification algorithm (MUSIC) in Chapter 3, 

assume the received signals are uncorrelated. As a result the performance of 

these algorithms will be degraded or even fail completely in a multipath 

environment. Various algorithms have been developed to solve the multipath 

problem in both antenna array and GPS signal processing. 

In the antenna array processing area, there are two main categories of 

algorithms that are able to estimate the DOAs of correlated signals: 

Maximum Likelihood (ML) based algorithms and spectrum based low 

computational algorithms. 

The Maximum Likelihood (ML) methods for DOA estimation [60, 98-102] 

estimate the DOAs of signals by using a multi-dimensional grid based search 

to maximise the likelihood function (LF). The ML estimators are not easy to 

implement in practice due to the high computational complexity [103]. Some  

ML algorithms with reduced complexity have been developed, such as the 
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Alternating Projection (AP) algorithm [104], Expectation Maximisation (EM) 

algorithm [105, 106], Data Supported Optimisation algorithm (DSO) [103] and 

Space-Alternating Generalised EM (SAGE) algorithm [107]. The Alternating 

Projection algorithm is particularly interesting due to its low computational 

burden, straight forward structure and fast convergence rate.  

The classic spectrum based algorithms are quadratic based Minimum 

Variance Distortionless Response (MVDR) or Capon algorithm [108], 

subspace based MUtiple Signal Classification (MUSIC) algorithm [59, 60] 

and Estimation of Signal Parameter via Rotational Invariance Techniques 

(ESPRIT) algorithm [109-111]. These algorithms suffer significant 

performance degradation or even fail if the incoming signals are highly 

correlated or fully coherent [112]. However there are techniques that can 

make them robust to correlated signals. The most common technique is 

spatial smoothing [113-116]. However, due to the need to construct sub-

arrays, the applications of the spatial smoothing techniques lead to a lower 

resolution due to the loss in the number of degrees of freedom and are also 

constrained to particular array configurations like uniform linear arrays (ULA) 

and uniform circular arrays (UCA). 

In GPS applications, multipath error is one of the most significant causes of 

accuracy degradation in position estimation. As a result multipath signal 

detection and mitigation methods have been widely researched in the GPS 

area. For single antenna systems, the well-known narrow correlator [117], the 

strobe correlator [118, 119] and the double delta correlator [120] have been 

proposed to reduce distant multipath, but they are not effective in mitigating 

short delay multipath (close reflections) [121]. For antenna array applications, 

various methods and algorithms have been proposed and introduced into the 

GPS area, such as Maximum Likelihood (ML) [30], Alternating Projection (AP) 

[122], Space-Alternating Generalised EM (SAGE) [123-125] and statistical 

Constant False Alarm Rate (CFAR) multipath detector [126]. However these 

methods assume an ideal antenna array model, so their performance will 

drop in the presence of array errors such as mutual coupling between 

antennas. 
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Modern communication devices and systems tend to use smaller size 

antenna arrays. For conventional GPS receivers, there is often even less 

room for GPS antenna integration [125]. As a result, mutual coupling 

becomes a problem for these systems especially as the element separation 

in the antenna array is reduced below half of a wavelength [127]. Techniques 

for modelling, measuring and mitigating the mutual coupling effect between 

antennas are discussed in [78, 94-96, 127-134]. Multipath also affects the 

signal from the calibration sources. This will in turn have an impact on the 

resulting mutual coupling calibration accuracy. As a result it is important to 

model and account for mutual coupling within the calibration algorithm. A 

calibration algorithm that addresses this issue is the main focus of this 

chapter. 

This chapter describes an algorithm that calibrates the mutual coupling effect 

in a GPS antenna array in the presence of multipath on the calibration 

sources. As in Chapter 3, the mutual coupling effects are modelled by a 

mutual coupling matrix based on the physical characteristics of the antenna 

array and the GPS signals are used as the disjoint calibration sources. The 

absolute DOAs of the GPS signals are known from their orbit models, 

however the DOAs of the GPS signals relative to the antenna array is not 

known due to the unknown orientation of the array. The calibration algorithm 

thus also estimates the array orientation error as part of the calibration 

process. The multipath signals of the calibration sources are incorporated 

into the calibration process by using a maximum likelihood approach and 

including the maximum number of expected multipath signals as additional 

signals in the likelihood function. The DOAs of the additional GPS multipath 

signals are estimated by Alternating Projection (AP) [104] which turns a multi-

dimensional optimisation problem into an iterative process of one 

dimensional search. 

The remainder of this chapter is structured as follows: The assumed 

calibration signal model is described in Section 4.2. In Section 4.3, the 

proposed calibration algorithm is outlined and simulation results are given in 
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Section 4.4. In Section 4.5, experimental results are presented. Finally, 

conclusion is given in Section 4.6. 

4.2 Signal Model 

4.2.1 Ideal Array Model 

Following Chapter 3, consider an array of M elements with no mutual 

coupling and orientation errors. The vector form of the M sensor outputs is 

 
𝑥(𝑡) = 𝑣(𝜃, 𝜑)𝑠(𝑡) + 𝑛(𝑡) 

 

(4.2.1) 
 

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑀(𝑡)]
𝑇 , 𝑣(𝜃, 𝜑) = [𝑒−𝑗𝜔𝜏1 , 𝑒−𝑗𝜔𝜏2 , … , 𝑒−𝑗𝜔𝜏𝑀]𝑇 

(𝑣(𝜃, 𝜑) is the steering vector) and 𝑛(𝑡) = [𝑛1(𝑡), 𝑛2(𝑡), … , 𝑛𝑀(𝑡)]
𝑇. 

4.2.2 Mutual Coupling Model 

The mutual coupling effects are described by matrices based on their 

physical models and included in the algorithm error minimisation process to 

parameterise the array model and hence reduce the number of parameters 

that need to be estimated to calibrate the array. This in turn reduces the 

number of calibration sources required to calibrate the array compared with 

other calibration algorithms that do not assume any underlying error model. 

The mutual coupling model tries to describe the behaviour of the coupling 

between the antennas according to the shape of the antenna array using a 

matrix model. As discussed in Chapter 3, appropriate matrix models for the 

cases of uniformly spaced linear and circular arrays are given based on the 

assumption that the coupling between any two equally spaced antennas is 
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the same. If the array is a uniformly spaced linear array, the mutual coupling 

matrix will be banded symmetric Toeplitz matrix. If the array is a uniformly 

spaced circular array, the mutual coupling matrix will be a circulant symmetric 

matrix. 

In this chapter, a uniformly spaced circular array with an additional antenna 

element in the centre to help reduce sidelobes was chosen. This array 

structure is used in [47] and [83]. To model the mutual coupling effect in this 

array configuration, the same assumptions as in [78] and [57] are used. The 

proposed mutual coupling matrix is shown by an example in figure 4.2.1. 

Note that this is different to Chapter 3 as this was what was used in the 

following experiment. 

This example shows the modelled mutual coupling matrix for the array with 7 

equally spaced circular antennas with an additional antenna in the centre, 

where c1, c2, c3 and c4 are the mutual coupling coefficients for the four 

antenna distances in the array. 

 

Figure 4.2.1: 8 elements array geometry – 7 element uniform circular array 

with 1 additional element in the centre. 

If all the mutual coupling effects from all the antennas are included, the 

matrix is 
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𝐂 =

(

 
 
 
 
 

1 𝑐1
𝑐1 1

𝑐1 𝑐1
𝑐2 𝑐3

𝑐1 𝑐2
𝑐1 𝑐3

1 𝑐2
𝑐2 1

𝑐1 𝑐1
𝑐4 𝑐4

𝑐1 𝑐1
𝑐3 𝑐2

𝑐3 𝑐4
𝑐2 𝑐3

𝑐4 𝑐3
𝑐4 𝑐4

𝑐1 𝑐4
𝑐1 𝑐4

𝑐3 𝑐2
𝑐4 𝑐3

𝑐1 𝑐3
𝑐1 𝑐2

𝑐4 𝑐4
𝑐3 𝑐4

1 𝑐2
𝑐2 1

𝑐3 𝑐4
𝑐2 𝑐3

𝑐3 𝑐2
𝑐4 𝑐3

1 𝑐2
𝑐2 1 )

 
 
 
 
 

 

 

(4.2.2) 
 

Based on preliminary experimental measurements the mutual coupling of 

elements separated by greater than 𝜆 /2 could be ignored  and only the 

mutual coupling effects from the adjacent antennas are considered, in this 

case the matrix is 

 
𝐂 =

(

 
 
 
 
 

1 𝑐1
𝑐1 1

𝑐1 𝑐1
𝑐2 0

𝑐1 𝑐2
𝑐1  0

1 𝑐2
𝑐2 1

𝑐1 𝑐1
0 0

𝑐1 𝑐1
0 𝑐2

0 0
𝑐2 0

0 0
0 0

𝑐1 0
𝑐1 0

0 𝑐2
0 0

𝑐1 0
𝑐1 𝑐2

0 0
0 0

1 𝑐2
𝑐2 1

0 0
𝑐2 0

0 𝑐2
0 0

1 𝑐2
𝑐2 1 )

 
 
 
 
 

 

 

(4.2.3) 
 

The proposed matrix is similar to the mutual coupling model of uniformly 

spaced circular array, but has additional entries in the first column and the 

first row to describe inclusion of the centre antenna. 

4.2.3 Array Model with Errors 

The vector form of the antenna array outputs at the time t for a GPS satellite 

signal in the presence of an unknown array orientation error, mutual coupling, 

a single direct path signal and P multipath signals from the same source, s(t), 

is given by 

 
𝑥(𝑡) = 𝐂𝐕𝑠(𝑡) + 𝑛(𝑡) 

 
(4.2.4) 

 

where, 

𝑥(𝑡) is the antenna array outputs at the time t; 
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𝐂  is the mutual coupling matrix which is described in the above mutual 

coupling model section; 

𝐕 = [𝑣(𝜃 + 𝜃𝑒 , 𝜑), 𝑣(𝜃1, 𝜑1),… , 𝑣(𝜃𝑃, 𝜑𝑃)], 𝑣 is the steering vector derived from 

the array geometry, 𝜃  and 𝜑  are the azimuth and elevation angles of the 

direct path signal which can be obtained based on the GPS almanac data 

and the user position, 𝜃𝑒  is the array orientation error which affects the 

azimuth angle estimation of the direct path signal, 𝜃𝑝 and 𝜑𝑝 are the azimuth 

and elevation angles of the pth multipath signal; 

𝑠(𝑡) = [𝑠(𝑡), 𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑃(𝑡))]
𝑇 , 𝑠(𝑡) is the direct path signal at time t, 

𝑠𝑝(𝑡) = 𝐴𝑝𝑒
𝑗𝜑𝑝𝑠(𝑡) is the pth multipath signal at time t with an amplitude of 𝐴𝑝 

and a phase delay of 𝜑𝑝; 

𝑛(𝑡) is additive uncorrelated White Gaussian Noise in the array channels at 

time t. 

The covariance matrix of this received signal is 

 
𝐑 = 𝐸{𝑥(𝑡)𝑥𝐻(𝑡)} 

 
(4.2.5) 

 

Once the covariance matrices are obtained, the array orientation error and 

the mutual coupling effects will be estimated by minimising a formulated cost 

function with respect to these errors. 

4.2.4 Solution Existence Condition 

This section considers the number of calibration signals that are required to 

ensure the existence of a solution. A simple example that assumes one 

multipath signal for each direct path signal is used to show how to determine 

the number of calibration sources required. 
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Consider an M (M is an even number) sensor array with N disjoint calibration 

sources. The array has M-1 elements forming an M-1 element uniformly 

spaced circular array and 1 element in the centre of the circular array. For 

each calibration source one multi-path signal is assumed to exist as well. 

Based on the above model, there are 2(M/2) mutual coupling parameters, 1 

array orientation error parameter and 2N multipath DOA parameters in the M 

sensor array. N disjoint sources give 2N(M-1) least squares equations. 

Please note, if joint sources are used, this will be 2N(M-N) and thus, the 

maximum number of calibration sources will be limited by the number of 

antennas in the array [91]. Hence, the solution exists when 2(M/2)+2N+1<= 

2N(M-1), that is N >= (M+1)/(2M-4). For example if the sensor number M = 8, 

the number of calibration sources N must >= 1. 

4.3 Calibration Algorithm 

The array manifold is the locus of steering vectors in a multidimensional 

space. If the parameters of the array are correctly estimated, the array 

manifold and the signal should span the same subspace at the signal 

bearings. This concept is adopted by the algorithm to construct the cost 

function. The array parameters are estimated by minimising the cost function 

until convergence is achieved. 

4.3.1 Cost Function 

Consider N disjoint GPS calibration sources, the estimated post-correlation 

covariance matrix for the nth disjoint source is 

 �̂�𝑛 =
1

𝑇
∑𝑥𝑛(𝑡)𝑥𝑛

𝐻(𝑡)

𝑇

𝑡=1

 
(4.3.1) 
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where 𝑥𝑛(𝑡)is the vector of the M post-correlation sensor outputs for the nth 

GPS source. 

The noise is assumed to be uncorrelated White Gaussian Noise (WGN). The 

eigen decomposition of the nth estimated covariance matrix �̂�𝑛  gives the 

estimated signal subspace �̂�𝑛  and the estimated noise subspace �̂�𝑛  as 

indicated in equation 4.3.2. In this Chapter, the multipath signals are 

assumed to be highly correlated or fully coherent with the direct path signal 

which means there is only one obvious large eigen-value, so the signal 

subspace �̂�𝑛  is a column vector. In the case of low correlation multipath 

signals, the signal subspace �̂�𝑛  will be a matrix and thus the vector 𝑠𝑛  in 

equation 4.3.3 will become a matrix. 

 
�̂�𝑛  =  [�̂�𝑛  ⋮ �̂�𝑛] [

𝚲𝑠𝑛 + 𝜎𝑛
2𝐈

⋯
0

⋮
⋮

0
⋯
𝜎𝑛

2𝐈
] [
�̂�𝑛

H

⋯

�̂�𝑛
H
] 

 

(4.3.2) 
 

The formulated cost function for an M element antenna array with N disjoint 

calibration sources and 𝑃𝑛 multipath signals on the nth calibration source is 

thus given by 

 
Q = ∑‖�̂�𝑛 − 𝐂𝐕𝒏𝑠𝑛‖

𝟐

𝐹

𝑁

𝑛=1

 

 

(4.3.3) 
 

where, 

Q is the value of the cost function; 

𝐂  is the mutual coupling matrix described in the mutual coupling model 

section; 

𝐕𝒏 = [𝑣(𝜃𝑛 + 𝜃𝑒 , 𝜑𝑛), 𝑣(𝜃1𝑛 , 𝜑1𝑛), … , 𝑣(𝜃𝑃𝑛 , 𝜑𝑃𝑛)] , 𝑣  is the steering vector 

derived from the array geometry, 𝜃𝑛  and 𝜑𝑛  are the known azimuth and 

elevation angles of the nth direct path signal which can be obtained based on 
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the GPS almanac data and the user position, 𝜃𝑒  is the unknown array 

orientation error of the horizontal array which affects the azimuth angle 

estimation of the direct path signal, 𝜃𝑝𝑛and 𝜑𝑝𝑛are the unknown elevation 

and azimuth angles of the pth multipath signal for the nth calibration source; 

𝑠𝑛 is a complex vector that linearly combines array manifold vectors for the 

nth calibration source. The values of the elements of 𝑠𝑛 are not necessarily 

the signal amplitude and phase values (unlike 𝑠(𝑡) in the signal model), but 

rather relate the array manifold 𝐂𝐕𝒏 to the signal subspace �̂�𝑛. The relative 

amplitude ratios and phase differences of the complex elements are the 

amplitude ratios and phase differences of the direct path and multipath 

signals. It is similar to the normalised post correlation signals which lose the 

absolute amplitude and phase information but the relative relationships are 

kept. 

Note that the cost function in equation 4.3.3 is different to that used Chapter 

3 due to the necessity of having to estimate both the DOAs and relative 

amplitudes of the multipath components. 

4.3.2 Calibration Algorithm Flow Chart 

As shown in figure 4.3.1, the proposed algorithm iterates between four steps:  

 Step 1, the array orientation error is estimated using the estimated 

array parameters in the last round.  

 Step 2, the DOAs of the multipath signals are estimated using the 

array orientation angle obtained from step 1 and the mutual coupling 

matrix from the last round.  

 Step 3, the complex numbers which fit the array manifold to the signal 

subspace are estimated using the array orientation error obtained from 

step 1, the DOAs of multipath signals from step 2 and the mutual 

coupling matrix from last iteration.  
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 Step 4, the mutual coupling matrix is estimated by using the array 

orientation error obtained from step 1, the DOAs of the multipath 

signals from step 2 and the fitting complex numbers from step 3. The 

process will complete when the cost function converges. The final 

array orientation error and the mutual coupling matrix are the 

estimated results. 

 

Figure 4.3.1: Calibration algorithm flow chart. 

4.3.3 Pre-processing 

In the pre-processing step, the gain/phase responses with respect to the 

different frequencies in the system bandwidth of each channel are measured 

using a spectrum analyser with the inputs of each channel terminated. A 

Wiener filter is applied to the received data to match the gain/phase 

responses of all the channels to the reference channel which is chosen to be 

channel 1 in this chapter and corresponds to the central element of the array. 

After applying the above gain/phase calibration on the received data, the 

covariance matrix of each GPS signal across the antenna array is extracted 

separately by cross correlating the CA code with that particular GPS signal 



 

68 
 

and integrating. As the GPS signals can be separated in this way, the post-

correlation covariance matrices for each GPS satellite can be treated as 

resulting from disjoint sources, although the GPS satellites are actually 

transmitting at the same time. 

4.3.4 Initialization 

The initial values of the mutual coupling matrix C can be selected based on 

prior knowledge. If there is no prior knowledge, C will be initialised to be the 

identity matrix 𝐈𝑀. 

The DOAs of the calibration sources (direct path signals) are calculated from 

the constellation of the satellites and the location of the antenna array. If the 

array orientation error  𝜃𝑒  can be estimated a-priori, this angle will be 

included to calculate the azimuth angles of the direct path signals. 

4.3.5 Array Orientation Error Estimation 

The values of the DOAs of multipath signals and the mutual coupling matrix 

C from the last round are used as the current values and fixed in the cost 

function. If this is the first iteration, the initial value of C is used and the 

estimation assumes an absence of multipath signals. The complex vector 𝑠𝑛 

is not involved in the steering vector parameter estimations in this and the 

next sections, because it becomes a scalar in the projection operation. 

The array orientation error θe  at the kth iteration is estimated using a 

maximum-likelihood approach 

 
𝜃𝑒
𝑘
= 𝑎𝑟𝑔𝑚𝑎𝑥

𝜃𝑒
∑‖𝐏𝐂𝑘−1𝐕𝑛(𝜃𝑒)�̂�𝑛‖

𝟐

𝑭

𝑁

𝑛=1

 

 

(4.3.4) 
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where 𝐕𝒏 = [𝑣(𝜃𝑛 + 𝜃𝑒 , 𝜑𝑛), 𝑣(𝜃1𝑛
𝑘−1, 𝜑1𝑛

𝑘−1),… , 𝑣(𝜃𝑃𝑛
𝑘−1, 𝜑𝑃𝑛

𝑘−1)]  and P is 

the projection operator defined as 𝐏𝑨 = (𝑨
𝐻𝑨)−𝟏𝑨𝐻 , H is the Hermitian 

transpose. In the first iteration, where multipath is assumed to be absent, 

𝐕𝒏 = 𝑣(𝜃𝑛 + 𝜃𝑒 , 𝜑𝑛)  and 𝐏𝑨 = {[𝐂𝑣(𝜃𝑛 + 𝜃𝑒 , 𝜑𝑛)]
𝐻𝐂𝑣(𝜃𝑛 + 𝜃𝑒 , 𝜑𝑛)}

−1
[𝐂𝑣(𝜃𝑛 +

𝜃𝑒 , 𝜑𝑛)]
𝐻 . 

The maximisation defined by the equation above is performed by a grid (0.01° 

step size) search over the space of 𝜃𝑒 . The corresponding angle at which the 

maximum occurs is the estimated orientation error. 

4.3.6 Multipath DOA Estimation 

The values of the array orientation error estimated from this iteration and the 

mutual coupling matrix C from the last iteration are used as the current 

values and fixed in the cost function. 

Consider 𝑃𝑛 multipath signals exist for the nth calibration source. The  𝑝𝑛
th 

multipath signal’s DOA is estimated by using the DOAs of the 1st, 2nd, … , 

( 𝑝 − 1)𝑛
th multipath signals estimated in this iteration and the DOAs of the 

(𝑝 + 1)𝑛
th, …,  𝑃𝑛

th multipath signals estimated from the last iteration. 

The azimuth and elevation angles 𝜃𝑝𝑛and 𝜑𝑝𝑛of the 𝑝𝑛
th multipath signal for 

the nth calibration source at the kth iteration are estimated by  

 
(𝜃𝑝𝑛 , �̂�𝑝𝑛)

𝑘 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃𝑝𝑛 ,𝜑𝑝𝑛

‖𝐏𝐂𝑘−1𝐕𝑛(𝜃𝑝𝑛 ,𝜑𝑝𝑛)
Ê𝑛‖

𝟐

𝑭
 

 

(4.3.5) 
 

where 

𝐕𝒏 = [𝑣(𝜃𝑛 + 𝜃
𝑘
𝑒 , 𝜑𝑛), 𝑣(𝜃1𝑛

𝑘, 𝜑1𝑛
𝑘), … , 𝑣(𝜃𝑝𝑛 , 𝜑𝑝𝑛),… , 𝑣(𝜃𝑃𝑛

𝑘−1, 𝜑𝑃𝑛
𝑘−1)]  and 

P is the projection operator defined as 𝐏𝑨 = (𝑨𝐻𝑨)−𝟏𝑨𝐻. 
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The maximisation is performed by a grid (0.01° step size) search over the 

space of the azimuth and elevation angles of the multipath signals. The 

corresponding angle at which the maximum occurs is the estimated DOAs. 

The multipath DOA estimation iterates through the multipath signals of all the 

calibration sources using Alternating Projection. 

4.3.7 Complex Number Estimation 

The values of the array orientation error and DOAs of the multipath signals 

estimated from this round and the mutual coupling matrix C from the last 

round are used as the current values and fixed in the cost function.  

The complex vector 𝑠𝑛 for nth calibration source at kth iteration is estimated 

by the linear least squares estimator as follows 

 
�̂�𝑛
𝑘 = [(𝐂𝑘−1𝐕𝒏

𝑘)
𝐻
(𝐂𝑘−1𝐕𝒏

𝑘)]
−𝟏

 (𝐂𝑘−1𝐕𝒏
𝑘) Ê𝑛 

 

(4.3.6) 
 

where 𝐕𝒏 = [𝑣(𝜃𝑛 + 𝜃𝑒
𝑘 , 𝜑𝑛), 𝑣(𝜃1𝑛

𝑘, 𝜑1𝑛
𝑘),… , 𝑣(𝜃𝑃𝑛

𝑘, 𝜑𝑃𝑛
𝑘)]  and H is the 

Hermitian transpose. 

4.3.8 Mutual Coupling Matrix Estimation 

In this step, the mutual coupling matrix is estimated by minimising the cost 

function with respect to the mutual coupling matrix. The values of the 

orientation error 𝜃𝑒 , the DOAs of the multipath signals and the complex 

vector 𝒔𝑛  estimated by the latest previous steps are used as the current 

values and are fixed in the cost function. If the current iteration number is k, 

the cost function is given by 



 

71 
 

 
𝑄𝑘 =∑‖Ê𝑛 − 𝐂𝐕𝑛

𝑘𝑠𝑛
𝑘‖

𝟐

𝐹

𝑁

𝑛=1

 

 

(4.3.7) 
 

Consider an M sensor antenna array with M-1 sensors forming a uniformly 

spaced circular array and 1 additional antenna in the centre of the circle. The 

mutual coupling matrix which describes this array configuration is given in 

Section 4.2.2. There are M/2 unknown complex parameters in the mutual 

coupling matrix if M is an even number or (M+1)/2 unknown complex 

parameters in the mutual coupling matrix if M is an odd number. Assume M is 

an even number. The cost function in equation 4.3.7 can be rewritten as 

 
𝑄𝑘 = ∑‖Ê𝑛 − 𝛂𝑛

𝑘  𝑐‖
𝟐

𝐹

𝑁

𝑛=1

 

 

(4.3.8) 
 

where 𝑐 is a (M/2+1)×1 vector containing all the unknown parameters in the 

mutual coupling matrix and c = [𝑐1, 1, 𝑐2, 𝑐3, … , 𝑐𝑀/2]
𝑇 , 𝛂𝑛

𝑘  is a M×(M/2+1) 

matrix created from the matrix product 𝐕𝑛
𝑘𝑠𝑛

𝑘 , the expression for 𝛂𝑛
𝑘   is 

given below 

 
[𝜶𝑛

𝑘]𝑝𝑞 =

{
 
 
 
 

 
 
 
 ∑[𝑑]

𝑖

𝑀

𝑖=2

,     𝑝 = 1, 𝑞 = 1

[𝑑]
1
, 𝑝 = 1, 𝑞 = 2  

0,        𝑝 = 1, 𝑞 ≠ 1&2

[𝑑]
1
,                     𝑞 = 1

∑[𝑾𝒊]𝑝𝑞

4

𝑖=1

,    𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

 

 

(4.3.9) 
 

where  𝑑 = 𝐕𝑛
𝑘𝑠𝑛

𝑘, and matrices  𝑾𝟏,𝑾𝟐,𝑾𝟑,𝑾𝟒 are given as 

 

[𝑾𝟏]𝑝𝑞 = {
[𝑑]

𝑝+𝑞−2,
 𝑝 + 𝑞 ≤ 𝑀 + 3

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝑾𝟐]𝑝𝑞 = {
[𝑑]

𝑝−𝑞+2,
𝑝 ≥ 𝑞 ≥ 3

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝑾𝟑]𝑝𝑞 = {
[𝑑]

𝑀+1+𝑝−𝑞,
𝑝 < 𝑞 ≤ 𝑀/2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.3.10) 
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[𝑾𝟒]𝑝𝑞 = {
[𝑑]

𝑝+𝑞−𝑀−1,
3 ≤ 𝑞 ≤ 𝑀 2⁄ , 𝑝 + 𝑞 ≥ 𝑀 + 4

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Combine N sources into one least squares solution, 

 
𝑄𝑘 = ‖�̂� − 𝛄𝑘 c‖

𝟐

𝐹
 

 

(4.3.11) 
 

where �̂� = [Ê1
T
, Ê2

T
, … , Ê𝑁

T
]
T

and  𝛄 = [𝛂1
T, 𝛂2

T, … , 𝛂𝑁
T]T. 

The minimisation problem becomes to be a linear least squares problem with 

linear constraints 𝑤H ĉ𝑘 = 1 , where 𝑤 = [0, 1,0… ,0]𝑇 . The solution to this 

problem is 

 
ĉ𝑘 = ĉu

𝑘 − (𝛄𝑘
H
𝛄𝑘)

−𝟏

𝑤 [𝑤H (𝛄𝑘
H
𝛄𝑘)

−𝟏

𝑤]
−𝟏

(𝑤H ĉu
𝑘 − 1) 

 

(4.3.12) 
 

where ĉu
𝑘 = (𝛄𝑘

H
𝛄𝑘)−𝟏𝛄𝑘

H 
Ê  is the linear least squares solution with no 

constraints. 

4.3.9 Convergence Check  

The cost function value 𝑄𝑘  is calculated at the end of each round. If the 

difference in the previous and current cost function value is larger than a pre-

set threshold 휀, ie. 

 
𝑄𝑘−1 − 𝑄𝑘 > 휀 

 
(4.3.13) 

 

another iteration of the algorithm is performed, otherwise the calibration 

algorithm will stop and the current array orientation error and mutual coupling 

matrix are taken to be the estimated results. 
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4.4 Simulation Results 

In the simulations, no prior knowledge of the array parameters was assumed. 

The antenna array configuration is shown in figure 4.2.1. It had 8 omni-

directional antennas, 7 of them forming a uniformly distributed circular array 

with a radius of 1.25λ and one additional antenna in the centre of the circle. 

There were 12 far-field narrow band GPS calibration sources. Each GPS 

signal had a SNR of -20dB and a data length of 300,000 samples. The DOAs 

of the 12 GPS calibration sources are in table 4.4.1. After the correlation and 

integration, the SNR of each source was 20dB and the number of available 

snapshots was 30. In all simulations, the calibration sources were assumed 

to have 1 multipath signal with an SNR of 10dB after correlation. 

Source 
number 

01 02 03 04 05 06 

Azimuth 
angle 

230.00⁰ 223.86⁰ 43.73⁰ 241.49⁰ 308.59⁰ 268.60⁰ 

Elevation 
angle 

48.41⁰ 11.55⁰ 36.40⁰ 19.77⁰ 29.70⁰ 44.32⁰ 

Source 
number 

07 08 09 10 11 12 

Azimuth 
angle 

137.99⁰ 77.28⁰ 73.47⁰ 90.26⁰ 289.47⁰ 16.37⁰ 

Elevation 
angle 

22.22⁰ 43.48⁰ 12.74⁰ 13.79⁰ 30.94⁰ 23.96⁰ 

Table 4.4.1: DOAs of the 12 GPS calibration sources. 

The array parameters are: 

 The antenna array orientation: 10⁰. 

 Mutual coupling effect between antennas as shown in table 4.2.2. 
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 C 1 C 2 C 3 C 4 

Gain 
(amplitude) 

0.2 0.22 0.15 0.1 

Phase 
(degrees) 

174.27⁰ -133.01⁰ 82.06⁰ 19.33⁰ 

Table.4.4.2: Mutual coupling coefficients for the fixed distances between two 

antennas. 

As shown in figure 4.4.1, the calibration algorithm converges after 12 

iterations. 

 

Figure.4.4.1: Cost function value versus iterations. 

The estimated array orientation error and mutual coupling coefficients are: 

 The estimated antenna array orientation: 10⁰. 

 Estimated mutual coupling effect between antennas. 
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 C 1 C 2 C 3 C 4 

Gain 
(amplitude) 

0.2015 0.2199 0.1469 0.0987 

Phase 
(degrees) 

174.20⁰ -132.68⁰ 82.38⁰ 18.88⁰ 

Table.4.4.3: Estimated mutual coupling coefficients. 

The calibration results are very accurate. The array orientation error is 

identical to the simulation value and the mutual coupling coefficients are 

within 2.5% of the correct values. The accuracy of the calibration can be 

seen by comparing the resulting beampatterns of the calibrated array with 

that of an ideal, perfectly calibrated array. 

Figure 4.4.2 and figure 4.4.3 show the ideal beampattern and the 

beampattern before and after the proposed calibration scheme is applied. 

The beampatterns are those of the conventional beamformer. 

 

Figure 4.4.2: Ideal beampattern (blue) and beampattern without calibration 

(red), main beam steering direction: 180⁰, elevation angle = 0⁰.  
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Figure 4.4.3: Ideal beampattern (blue) and beampattern with calibration 

(green), main beam steering direction: 180⁰, elevation angle = 0⁰.  

Before calibration, the main beam of the beampattern without calibration is 

attenuated slightly and the highest sidelobe level increases. After calibration, 

the beampattern is very close to the ideal beampattern. Although there are 

still some very small differences in the null and sidelobe structure, the main 

beam is the same as the ideal main beam and can be easy distinguished 

from the sidelobes. 

4.5 Experimental Results 

4.5.1 Experiment Setup 

An experiment was carried out with a 7 element equally spaced circular 

monopole antenna array with one monopole antenna in the centre. The 
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radius of the circular array was 25cm (1.3129λ). The actual array picture is 

shown in figure 4.5.1. 

 

Figure 4.5.1: The antenna array used in the experiment. It is part of the 

GNSS Environmental Monitoring System (GEMS) [83]. 

The number of data points per channel that were used in the cross-

correlation to extract the GPS signal was 2,291,520; this corresponds to a 

total time length of 143 ms at a sampling frequency of 16 MHz. The antenna 

array orientation was roughly measured to be 52⁰ to initialise the calibration 

algorithm. This angle was estimated manually using a magnetic compass 

and then correcting for the magnetic declination in Adelaide. The manual 

compass reading was expected to be accurate to within a few degrees. The 

terminated gain/phase errors in each channel were measured by a spectrum 

analyser and a Wiener filter was applied to equal the gain/phase responses 

of the eight channels. 

After cross-correlation processing, 5 satellites SV 11, 20, 23 30, 32 were 

obtained and used as the calibration sources. The SNR of each was about 

18dB after integration. By referring to the GPS almanac, the azimuth and 

elevation angles of the satellites are as follows: 
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SV  11 20 23 30 32 

Azimuth 314.3⁰ 226⁰ 279.5⁰ 52.6⁰ 194⁰ 
Elevation 48.1⁰ 44.4⁰ 35⁰ 10.1⁰ 64.8⁰ 

Table 4.5.1: DOAs of the satellites. 

4.5.2 Calibration Performance Analysis 

The calibration is carried out with the assumption that there is one multipath 

existing for each calibration source. However the technique still works if there 

is less than one multipath signal. In this case the second largest value in the 

complex number vector, 𝑠𝒏 for nth calibration source will be much smaller 

than the largest value. After 10 iterations, the calibration converges as shown 

in figure 4.5.2. The estimated array orientation error and mutual coupling 

coefficients, when only the adjacent mutual coupling effects are considered, 

are in table 4.5.2.  

 

Figure 4.5.2: Cost function value versus the iterations 
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Array orientation 

51.71⁰ 

Mutual coupling coefficients 

 C 1 C 2 C 3 C 4 

Gain 
(amplitude) 

0.1085 0.0944 0 0 

Phase  -165.54⁰ -15.72⁰ 0 0 

Table 4.5.2: Estimated parameters for the antenna array. 

The estimated array orientation is 51.71⁰ which is close to the measured 

value 52⁰. This comparison is to give the accuracy of the experimental setup 

but is not intended to be an estimate of the accuracy of the algorithm. The 

estimated mutual coupling gains are 0.1085 (-19.29dB) and 0.0944 (-

20.50dB) for C1 and C2 respectively. These values are very close to the 

values measured by the network analyser, which were C1 = C2 = -20dB.  

The magnitudes of complex number 𝑠𝒏  which indicate the existence of 

multipath signals for each calibration source are shown in table 4.5.3. 

 SV 11 SV 20 SV 23 SV 30 SV 32 

|𝑠(1)| 0.3536 0.3143 0.3088 0.2836 0.3043 

|𝑠(2)| 0.0826 0.1502 0.1001 0.1324 0.1006 

|𝑠(2)| |𝑠(1)|⁄  0.2336 0.4779 0.3242 0.4669 0.3306 

Table 4.5.3: Magnitudes of s. 

Because the algorithm cannot estimate the number of multipath signals, so 

the multipath signal detecting threshold is set to be at most 8dB lower than 

the direct path signal which is a higher threshold than the normal multipath 

power level. That is if |s(2)|/|s(1)| value is lower than 0.3981 in magnitude, no 

multipath is assumed to be in that calibrating signal. Based on this threshold, 

SV 20 and SV 30 are detected to have multipath signals as shown in table 

4.5.3. 
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The elevation angle of SV 30 is only 10.1⁰, so the multipath could be caused 

by the ground reflection. The elevation angle of SV 20 is 44.4⁰ and the 

azimuth angle is 226⁰. Therefore, there may be a possible multipath reflector 

nearby the antenna array. The calibration algorithm estimates the DOA 

information for the multipath signal of SV 20 is: azimuth angle 145.2⁰ 

(compensated by the estimated array orientation error in table 4.5.2) and 

elevation angle 48.5⁰. Figure 4.5.3 shows the investigation of a possible 

multipath reflector based on the location of the antenna array and the 

estimated azimuth DOA of the multipath signal. As the measurement 

suggests at the azimuth direction of 143.23⁰, there is a large metal court 

lamp, which is close to the estimated value of 145.2⁰ and could be the 

possible multipath reflection source. However the DOA estimation of 

multipath signals could be inaccurate because of the lack of knowledge of the 

number of the signals, which will affect the parameter estimation. 

 

Figure 4.5.3: The possible multipath reflector for SV 20. 
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4.5.3 Performance Comparison between the Calibration 

Algorithms with and without Multipath Assumptions 

One of the important features of the proposed calibration algorithm in this 

chapter is that it assumes the calibration sources have multipath signals and 

includes these multipath components into the signal model and the 

calibration cost function. Therefore, it is interesting to compare the 

performance of the calibration algorithms with and without multipath 

assumptions.  

The antenna array calibration without multipath was implemented by 

removing the multipath signal components from the signal model and the 

multipath DOA estimation step in the calibration process. The estimated 

parameter values are in table 4.5.4. Comparing with parameter values 

estimated with multipath assumption, the array orientation estimation is 0.36⁰ 

higher and all the mutual coupling coefficients are estimated to be higher. 

These higher mutual coupling coefficients may be due to the compensations 

of no multipath calibration. 

Array orientation 

52.07⁰ 

Mutual coupling coefficients 

 C 1 C 2 C 3 C 4 

Gain 
(amplitude) 

0.1142 0.1083 0 0 

Phase  -123.57⁰ -35.96⁰ 0 0 

Table 4.5.4: Estimated parameters for the antenna array with no multipath 

calibration. 

The performance of the two calibration algorithms were evaluated by 

estimating the DOAs of the GPS signals on the other recorded GPS data at a 
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different time. 4 strong GPS signals were obtained. The GPS signals were 

correlated and integrated in each array channel. The final processed 

received data for each GPS source had a SNR of about 20dB with 100 

snapshots. The DOAs of the GPS signals were estimated by the MUSIC 

algorithm applied with the estimated calibration parameters in table 4.5.2 and 

table 4.5.4.  

SV 
Almanac azimuth 

angle 
Calibration 

without multipath 
Calibration with 

multipath 

04 208.26⁰ 206.6⁰ (-1.66⁰) 207.82⁰ (-0.44⁰) 
16 56.87⁰ 55.6⁰ (-1.27⁰) 56.72⁰ (-0.15⁰) 
08 289.23⁰ 287.9⁰ (-1.33⁰) 288.92⁰ (-0.31⁰) 
20 15.69⁰ 14.8⁰ (-0.89⁰) 15.23⁰ (-0.46⁰) 

Table 4.5.5: GPS signal azimuth angle estimations. The angle estimation 

errors are in brackets.  

 
Almanac 

elevation angle 
Calibration 

without multipath 
Calibration with 

multipath 

04 13.12⁰ 11.1⁰ (-2.02⁰) 11.6⁰ (-1.52⁰) 
16 36.12⁰ 33.2⁰ (-2.92⁰) 33.2⁰ (-2.92⁰) 
08 31.56⁰ 29.1⁰ (-2.46⁰) 27.4⁰ (-4.16⁰) 
20 25.28⁰ 22.6⁰ (-2.68⁰) 24.4⁰ (-0.88⁰) 

Table 4.5.6: GPS signal elevation angle estimations. The angle estimation 

errors are in brackets. 

As shown in table 4.5.5 and table 4.5.6, the DOA estimation errors of the 

calibration algorithm without multipath assumption are worse than the 

algorithm with multipath assumption for all the azimuth angles and most of 

the elevation angles. Without multipath calibration, the Root Mean Squared 

Error (RMSE) of the azimuth angle estimation is 1.32⁰. With multipath 

calibration, the RMSE reduces to 0.36⁰. Due to the array geometry limitation, 

the elevation angle estimation has a large variance, so the calibration 

algorithm with multipath calibration is only marginally better than the 

calibration algorithm without multipath calibration.  
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As shown in figure 4.5.4 and figure 4.5.5, the MUSIC spectrum with multipath 

calibration has a higher target response and a cleaner pattern than the one 

without multipath calibration. This indicates the calibration algorithm with 

multipath calibration has a better estimation of the mutual coupling matrix 

and thus the array manifold than the one without multipath calibration. 

 

 

Figure 4.5.4: MUSIC spectrums for SV04 without multipath calibration (upper) 

and with multipath calibration (lower). 
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Figure 4.5.5: MUSIC spectrums for SV16 without multipath calibration (upper) 

and with multipath calibration (lower). 
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4.5.4 Performance Comparison between One and Two 

Multipath Assumptions 

In Section 4.5.2, the calibration was performed with one multipath 

assumption. Similar to the discussions in Section 4.5.3, it is also very 

interesting to compare the performance of the proposed calibration algorithm 

using one and two multipath assumptions.  

The estimated parameter values using two multipath assumption are in table 

4.5.7 and table 4.5.8. As shown in table 4.5.7, the magnitudes of the complex 

number of the second multipath components s(3) are about 3 to 6 times 

lower than those of the first multipath components s(2). The small 

magnitudes of the second multipath components indicate that the signal 

model with two multipath may overfit the calibration data by expanding the 

dimension of the signal structure. Comparing the results in table 4.5.8 with 

the parameter estimated with one multipath assumption, the array orientation 

estimation is 0.09⁰ higher and the mutual coupling coefficients are slightly 

different. 

 SV 11 SV 20 SV 23 SV 30 SV 32 

|𝑠(1)| 0.3612 0.3124 0.3076 0.2963 0.3172 

|𝑠(2)| 0.0751 0.1259 0.0992 0.1304 0.0641 

|𝑠(3)| 0.0271 0.0363 0.0296 0.0206 0.0225 

Table 4.5.7: Magnitudes of s. 

Array orientation 

51.80⁰ 

Mutual coupling coefficients 

 C 1 C 2 C 3 C 4 

Gain 
(amplitude) 

0.1036 0.0960 0 0 

Phase  -169.18⁰ -13.69⁰ 0 0 

Table 4.5.8: Estimated parameters for the antenna array with two multipath 

assumption. 
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The performance is compared by DOA estimation accuracy using the same 

validation GPS sources in Section 4.5.3. As shown in table 4.5.9, for azimuth 

angles, the RMSE of two multipath assumption is 0.51° whilst the RMSE of 

one multipath assumption is 0.36°. One multipath assumption is better than 

two multipath assumption but the difference is very limited. This indicates two 

multipath assumption may only slightly overfit the calibration data. As 

discussed in Section 4.5.3, due to the array geometry limitation, the elevation 

angle estimation showed in table 4.5.10 has a large variance but one 

multipath assumption is still marginally better than two multipath assumption. 

SV 
Almanac azimuth 

angle 
Calibration with 
one multipath 

Calibration with 
two multipath 

04 208.26⁰ 207.82⁰ (-0.44⁰) 207.99° (-0.27°) 

16 56.87⁰ 56.72⁰ (-0.15⁰) 56.38° (-0.49°) 

08 289.23⁰ 288.92⁰ (-0.31⁰) 288.65° (-0.58°) 

20 15.69⁰ 15.23⁰ (-0.46⁰) 15.01° (-0.68°) 

Table 4.5.9: GPS signal azimuth angle estimations. The angle estimation 

errors are in brackets.  

 
Almanac 

elevation angle 
Calibration with 
one multipath 

Calibration with 
two multipath 

04 13.12⁰ 11.6⁰ (-1.52⁰) 11.2⁰ (-1.92⁰) 

16 36.12⁰ 33.2⁰ (-2.92⁰) 32.6⁰ (-3.52⁰) 

08 31.56⁰ 27.4⁰ (-4.16⁰) 28.3⁰ (-3.26⁰) 

20 25.28⁰ 24.4⁰ (-0.88⁰) 24.6⁰ (-0.68⁰) 

Table 4.5.10: GPS signal elevation angle estimations. The angle estimation 

errors are in brackets. 

4.6 Conclusion 

In this chapter, a calibration algorithm for array orientation error and mutual 

coupling parameters in the presence of multipath for a GPS antenna array is 

proposed. This algorithm uses GPS signals as the disjoint calibration sources 

to iteratively estimate the array orientation error, the parameters of mutual 
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coupling matrix and the DOAs of multipath signals based on the assumption 

that if the estimates of these parameters are correct, the model should be 

able to make the array manifold and the signal span the same subspace at 

the signal bearings. The DOAs of multipath signals are estimated by 

Alternating Projection which turns a multi-dimensional optimisation problem 

into an iterative process of one dimensional search in each iteration. 

The simulations show the estimated array parameters are very close to the 

true values resulting in an improved beampattern after the calibration. The 

algorithm was also applied to a limited amount of the real data and the 

experimental results showed the estimated DOAs of the GPS signals using 

the calibrated parameters were close to the true DOAs. The experimental 

results also indicate that the calibration algorithm resolves possible multipath 

reflection sources but the performance is limited by the unknown number of 

multipath signals. Comparing with the calibration algorithm without multipath 

assumptions, the proposed calibration algorithm is more accurate in terms of 

DOA estimates and array manifold estimation. 
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Chapter 5: GPS Signal Cancellation 

5.1 Introduction 

As discussed in Chapter 1, there are four main issues that affect the DOA 

estimation accuracy of the antenna array for weak interferences. They are: 

1. Errors in the antenna array model. 

2. GPS signals acting as interference sources. 

3. Weak interference non-coherent integration length. 

4. Coloured noise and other interference in the system. 

Errors in the antenna array model are addressed by the two GPS antenna 

array calibration algorithms proposed in Chapters 3 and 4. These algorithms 

calibrate the antenna array orientation error, channel gain/phase mismatches 

and mutual coupling effects between antennas in the presence of calibration 

sources that also have a multi-path component. This chapter will propose a 

method to solve the issue 2 by cancelling the GPS signals using a Multiple 

Subspace Projection (MSP) method. 

5.1.1 The Need to Cancel GPS Signals 

Typically the power of the GPS L1 C/A code signals are below the total 

receiver noise power, i.e., GPS pre-correlation signal SNRs range from -

15dB to -30dB, so they usually have no or very limited effect on the DOA 

estimation of a strong interference. However, if the INR of the interference is 

at level of -15dB or lower, the GPS signals are now stronger than the 
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interference and will affect the estimation of the DOA of the interference. The 

following figure shows this effect. 

 

Figure 5.1.1: Standard Deviation of the GPS interference DOA estimation 

using the MUSIC algorithm in the presence of 10 GPS signals (red) and 

without GPS signals (blue).  

Figure 5.1.1 shows the simulation results of the standard deviation of the 

interference DOA estimates using the MUSIC (MUltiple SIgnal Classification 

algorithm) algorithm with and without GPS signals. The grid step size of 

MUSIC is 0.01°. The interference is a simulated CW interference. This 

simulation is based on an 8 element half wavelength uniformly spaced linear 

array (ULA), the number of snapshots K = 10000 and 10 GPS signals are 

uniformly distributed from 0 to 180 degrees with an SNR of -20dB. Each 

standard deviation is estimated using 200 independent simulations. From 

Figure 5.1.1, the DOA estimation accuracy of the interference is basically 

unaffected for an INR is above -10dB. When the INR is between -10dB and -

14dB, the interference DOA variance is clearly affected by the GPS signals, 

while below -14dB the MUSIC algorithm fails completely in estimating the 

DOA of the interference. Thus the GPS signals need to be cancelled if the 
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DOAs of interferences with an INR of less than -20 dB need to be accurately 

estimated. Although GPS interference with an INR of -20dB or lower at the 

receiver end does not interfere with far field high precision surveying 

receivers according to the results in [135], it is still highly important to be able 

to accurately estimate its DOA for the purpose of interference localisation as 

it may still be a problem for nearby receivers. 

5.1.2 Current GPS Signal Cancellation Methods 

Several GPS signal cancellation methods have been proposed in both the 

adaptive antenna array processing area and the GPS area. 

In the adaptive antenna array processing area, spatial filtering [50] and 

subspace projection based techniques [136] have been used to reject GPS 

signals from certain directions, but these methods reduce the array 

processing gain for the intended signal as one spatial degree of freedom is 

required to mitigate each interference. Furthermore, if the number of 

antennas is less than the number of GPS signals, array processing is not 

capable of rejecting these signals as the least squares equations become 

underdetermined. 

In the GPS area, several methods have been proposed to cancel the 

unwanted GPS signals from the input data in order to detect a much weaker 

signal. The classical problem is the near-far problem where a strong GPS 

signal masks a much weaker one. This is also known as the CA code cross 

correlation or GPS civilian signal self-interference problem. In [137], a 

Successive Interference Cancellation (SIC) technique was proposed to 

subtract strong GPS signals by reconstructing the strong GPS signals using 

CA code information derived from the tracking loops of a conventional 

detector. A Partitioned Subspace Projection (PSP) method [48, 49], removes 

the unwanted GPS signals by projecting the received signal onto the 

orthogonal subspace of the strong GPS signals. Compared with [137], the 
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PSP method uses a least squares filter to produce a better amplitude 

estimate of strong signals. The PSP method was further studied in [138, 139] 

and proved to be independent of the received signal phase which was 

convenient for non-coherent receivers. To solve the quantization problem 

when using a low-end GPS receiver with a one or two bit ADC, adaptive 

orthogonalization using the constraints method [140, 141] and the Delayed 

Parallel Interference Cancellation (DPIC) method [142-144] were proposed. 

Adaptive orthogonalization, using a constraint method, reconstructs the 

despreading codes making them orthogonal to the strong GPS signals and 

nearly parallel to the weak GPS signals, but it cannot be used to cancel the 

GPS signals directly. The Delayed Parallel Interference Cancellation (DPIC) 

method subtracts the cross correlation of the strong GPS signals from the 

correlation output at the post-correlation stage. The performance of DPIC is 

slightly worse than PSP because it is designed to have a lower computational 

burden [143]. However, due to their single rank least mean squares 

estimation structure, both PSP and DPIC methods can only cancel a line of 

sight (LOS) GPS signal and thus are unable to cancel multipath components 

of the unwanted GPS signals or distortions due to a non-ideal frequency 

response of the GPS front end filters. 

In this chapter, the subspace projection concept in [48] and [49] is extended 

to a Multiple Subspace Projection (MSP) method. This MSP method 

assumes the received GPS L1 C/A signal is received after it is transformed 

by a Finite Impulse Response (FIR) filter, and thus its signal subspace 

becomes multi-dimensional while in the PSP method it is assumed to be rank 

one. Due to its multi-dimensional subspace structure, MSP achieves better 

cancellation of the received GPS signal if the signal is band-limited, has 

multipath components, or has fractional delays. 

The remainder of the chapter is structured as follows: The Multiple Subspace 

Projection (MSP) method is proposed in Section 5.2; its performance 

analysis is presented in Section 5.3; in Section 5.4, experimental results are 

described. Finally conclusions are given in Section 5.5. 
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5.2 GPS Signal Cancellation Using Multiple Subspace 

Projection 

5.2.1 GPS Signal Model 

The vector form of a single channel down-converted baseband received 

signal 𝑥(𝑛) with K GPS L1 C/A signals and a single GPS interference is 

 
𝑥(𝑛) = ∑𝑞𝑘(𝑛)

𝐾

𝑘=1

+ 𝑣(𝑛) + 𝑤(𝑛) 

 

(5.2.1) 
 

where 𝑞𝑘(𝑛) = [𝑞𝑘[𝑛], 𝑞𝑘[𝑛 − 1], … , 𝑞𝑘[𝑛 − 𝑐𝐿 + 1]]
𝑇  is the kth GPS L1 C/A 

code signal which is orthogonal to other GPS signals, 𝑐𝐿 is the code length, 

𝑣(𝑛) = [𝑣[𝑛], 𝑣[𝑛 − 1], … , 𝑣[1]]𝑇 is the interfering signal whose DOA is to be 

estimated, 𝑤(𝑛) = [𝑤[𝑛], 𝑤[𝑛 − 1], … ,𝑤[1]]𝑇  is Additive White Gaussian 

Noise (AWGN), and 𝑛 denotes sample number. 

For the kth GPS L1 C/A signal, the code phase, Doppler frequency and the 

data modulation are obtained through software GPS acquisition and are used 

to construct the signal 𝑠𝑘 which is the kth transmitted baseband GPS L1 C/A 

signal with unity gain. The transmitted signal 𝑠𝑘[𝑛] is given by 

 
𝑠𝑘[𝑛] = 𝑐𝑘[𝑛 − 𝜏𝑘] ∙ 𝐷𝑘 ∙ 𝑒

𝑗2𝜋𝑓𝑘𝑛 

 
(5.2.2) 

 

where 𝑐𝑘[𝑛] is the Direct-Sequence Spread Spectrum (DS-SS) signal (the 

C/A code), 𝜏𝑘  is the code phase, 𝐷𝑘  is the data modulation and 𝑓𝑘  is the 

Doppler frequency. 

In many practical situations, there are multipath arrivals which can be 

modelled as the delayed versions of the direct path signal 𝑠𝑘[𝑛]. As these are 

treated as interferences, they can be modelled as the output of an FIR filter 

and this is discussed in the following section. 
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5.2.2 Cancellation Algorithm 

In order to cancel the kth GPS signal 𝑞𝑘(𝑛) in the received data 𝑥(𝑛), the 

relationship between the unknown signal 𝑞𝑘(n) and the known signal  𝑠𝑘(𝑛) 

need to be modeled. In [49] and [48], it is modeled as: 

 
𝑞𝑘(𝑛) = 𝐴𝑘𝑒

𝑗𝜑𝑘𝑠𝑘(𝑛) 

 

(5.2.3) 
 

where 𝐴𝑘 is the amplitude of the kth GPS signal and 𝜑𝑘 is the carrier phase 

mismatch between the two signals. This simple but effective model assumes 

that in the received data 𝑥(𝑛), the only parameters of the kth GPS signal, 

𝑞𝑘(𝑛), that need be estimated are the amplitude and carrier phase difference. 

However, if the GPS signal has multipath components, fractional delays or is 

band-limited due to the receiver front end filters, this model will be 

mismatched. 

In order to cancel the GPS signals even if they have multipath components, 

fractional delays or are band-limited, an Lth order Finite Impulse Response 

(FIR) model to describe the relationship between 𝑞𝑘(𝑛)  and 𝑠𝑘(𝑛)  is 

proposed as shown in figure 5.2.1. 

 

Figure 5.2.1: Finite Impulse Response (FIR) model. 

This model is a linear model, so the vector form of this model can be 

expressed as 

 
𝑞𝑘(𝑛) = 𝐒𝑘(𝑛)𝜃𝑘 

 
(5.2.4) 
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where 𝜃𝑘 are the weights of the FIR system for the kth GPS signal and 𝐒𝑘(𝑛) 

is given by 

 
𝐒𝑘(𝑛) = [𝑠𝑘(𝑛), 𝑠𝑘(𝑛 − 1), ⋯ 𝑠𝑘(𝑛 − 𝐿 + 1)] 

 
(5.2.5) 

 

where L is the order of the FIR system. In practice, L is set to be from 15 to 

100 taps. 

For the kth GPS L1 C/A code signal where  𝑞𝑘(𝑛) = 𝐒𝑘(𝑛)𝜃𝑘, the received 

signal 𝑥(𝑛) can be rewritten as 

 
𝑥(𝑛) = 𝐒𝑘(𝑛)𝜃𝑘 + 𝐒𝑜(𝑛)𝜃𝑜 + 𝑣(𝑛) + 𝑤(𝑛) 

 
(5.2.6) 

 

where 𝐒𝑜 = [𝐒1 𝐒2… 𝐒𝑘−1 𝐒𝑘+1…𝐒𝐾]  are the other GPS signals and their 

respective FIR system weights are  𝜃𝑜 = [𝜃1
𝑇 𝜃2

𝑇 … 𝜃𝑘−1
𝑇 𝜃𝑘+1

𝑇 …  θ𝐾
T
]𝑇. 

In order to cancel the kth GPS signal, the subspace principle is utilised. The 

subspace orthogonal to that spanned by the kth GPS signal is  

 
𝐏𝑘 = 𝐈 − 𝐒𝑘(𝐒𝑘

𝐻𝐒𝑘)
−1
𝐒𝑘

𝐻 

 

(5.2.7) 
 

The rank of  𝐒𝑘
𝐻𝐒𝑘 is the order of the FIR system L even if the sampling rate 

is higher than the chip rate, so the orthogonal subspace 𝐏𝑘  is a multi-

dimensional subspace while it is only rank one in the PSP method [48, 49]. 

The received data 𝑥(𝑛) now is projected onto 𝐏𝑘 to cancel the kth GPS signal 

𝐒𝑘𝜃𝑘  

 

𝐏𝑘𝑥  = (𝐈 − 𝐒𝑘(𝐒𝑘
𝐻𝐒𝑘)

−1
𝐒𝑘

𝐻) (𝐒𝑘𝜃𝑘 + 𝐒𝑜𝜃𝑜 + 𝑣 + 𝑤) 

= 𝐒𝑜𝜃𝑜 + 𝑣 + 𝑤 − 𝐒𝑘(𝐒𝑘
𝐻𝐒𝑘)

−1
𝐒𝑘

𝐻(𝐒𝑜𝜃𝑜 + 𝑣 + 𝑤) 

 

(5.2.8) 
 

In equation 5.2.8, the received kth GPS signal 𝐒𝑘(𝑛)𝜃𝑘 is fully cancelled and 

𝐒𝑜(𝑛)𝜃𝑜 + 𝑣(𝑛) + 𝑤(𝑛) is the desired projection result which only includes the 

other GPS signals 𝐒𝑜(𝑛)𝜃𝑜, the GPS interference 𝑣(𝑛) and the noise 𝑤(𝑛). 

So the projection error is 
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 𝑒𝑘(𝑛) = 𝐒𝑘(𝐒𝑘
𝐻𝐒𝑘)

−1
𝐒𝑘

𝐻(𝐒𝑜(𝑛)𝜃𝑜 + 𝑣(𝑛) + 𝑤(𝑛)) 
 

(5.2.9) 
 

So, 

 
𝐏𝑘𝑥(𝑛)  = 𝐒𝑜(𝑛)𝜃𝑜 + 𝑣(𝑛) + 𝑤(𝑛) + 𝑒𝑘(𝑛) 

 
(5.2.10) 

 

In equation 5.2.9, due to the CDMA structure of the GPS signals, the GPS 

signal is uncorrelated with the interference 𝑣(𝑛)  and the white Gaussian 

noise 𝑤(𝑛), so 𝐸{𝑺𝑘(𝑛)
𝐻𝑣(𝑛)} = 0 and 𝐸{𝑺𝑘(𝑛)

𝐻𝑤(𝑛)} = 0. Also because of 

the limited GPS gold code cross-correlation dynamic range, which is about 

23.9 dB within 1ms1, 𝐒𝑘
𝐻𝐒𝑜 is not strictly but approximately 0. This means 

the projection error is very small and can be approximated by 0 (𝑒𝑘 ≈ 0). 

Furthermore, as discussed below, the cancellation is iteratively applied on all 

the GPS signals, so this error will be even smaller after all the GPS signals 

are subtracted.  

The projection result is 

 
𝐏𝑘𝑥(𝑛)  ≈  𝐒𝑜𝜃𝑜 + 𝑣(𝑛) + 𝑤(𝑛) 

 
(5.2.11) 

 

where the kth GPS signal 𝑞𝑘(𝑛) = 𝐒𝑘(𝑛)𝜃𝑘  is cancelled from the received 

signal 𝑥(𝑛). 

Multiple GPS signals are able to be cancelled by applying the individual 

projection multiple times, or by combining matrices 𝐒𝑘 and 𝐒𝑜 into 𝐒 = [𝐒𝑘 𝐒𝑜] 

and being included in the projection matrix to be cancelled. These GPS 

signal cancellations are applied on all the antenna array receiver channels 

whilst the GPS acquisition information can be obtained from only one 

antenna, or a beam steered at the GPS satellite. 

This multiple dimensional subspace structure based on the FIR system 

model has some important benefits in GPS signal cancellation, as it will 

accurately subtract the GPS signals even if the GPS signal has unknown 

                                            
1
 Known as the CA code cross correlation problem, the GPS civilian signal self-interference or the GPS near-far effect. 
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amplitude and carrier phase, multipath components, fractional delays or is 

band-limited due to the receiver front end filters. 

There is a potential implementation issue, as the orthogonal subspace matrix 

𝐏𝑘  may be too large to be calculated directly, due to the memory 

requirements. So when implementing𝐏𝑘𝑥  = (𝐈 − 𝐒𝑘(𝐒𝑘
𝐻𝐒𝑘)

−1
𝐒𝑘

𝐻) 𝑥, instead 

of trying to obtain the orthogonal subspace 𝐏𝑘 = 𝐈 − 𝐒𝑘(𝐒𝑘
𝐻𝐒𝑘)

−1
𝐒𝑘

𝐻 first, it is 

better to change this equation to be 

 
𝐏𝑘𝑥  = 𝑥 − 𝐒𝑘(𝐒𝑘

𝐻𝐒𝑘)
−1
𝐒𝑘

𝐻𝑥 

 

(5.2.12) 
 

Then the following 1-4 steps can be calculated in sequence to reduce the 

memory requirements during the computation. 

1. 𝐒𝑘
𝐻𝑥,  

2. (𝐒𝑘
𝐻𝐒𝑘)

−1
𝐒𝑘

𝐻𝑥,  

3. 𝐒𝑘(𝐒𝑘
𝐻𝐒𝑘)

−1
𝐒𝑘

𝐻𝑥,  

4. 𝑥 − 𝐒𝑘(𝐒𝑘
𝐻𝐒𝑘)

−1
𝐒𝑘

𝐻𝑥  

In this sequence, the result of each operation has a maximum memory 

requirement of  𝐿 × 𝑁 , where L is the order of the system and N is the 

number of samples, and thus avoided the problem to store the massive 

𝑁 × 𝑁 orthogonal subspace matrix 𝐏𝑘. 

5.3 Performance Analysis 

In order to evaluate the GPS cancellation performance of the Multiple 

Subspace Projection method, Matlab was used to simulate the different 

cancellation scenarios. The GPS code phase and data modulation were 

assumed to be accurately estimated and this estimation step was not 
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included in the simulations. The sampling rate was 4MHz and the FIR model 

of the MSP method has L = 60 taps. 

In this section, the cancellation performance comparison between the MSP 

and the PSP method is evaluated by using the ratio between the cross 

correlation peak before the cancellation and the cross correlation peak after 

cancellation, which is defined as 

 

𝐺𝑃𝑆 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

= 10𝑙𝑜𝑔10(
𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑎𝑘 𝑎𝑓𝑡𝑒𝑟 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛

𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑎𝑘 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛
)2   (𝑑𝐵) 

 

(5.3.1) 
 

where the cross correlation is computed between the received signal (before 

or after cancellation) and the ideal received signal defined in equation 5.2.2 

with no errors in it. 

An example of this ratio calculation is given below: 

 If a GPS signal’s cross correlation peak before cancellation was 

1 × 104.  

 After applying the MSP cancellation method, the cross correlation 

peak value became 1 × 103.  

 After applying PSP cancellation method, the cross correlation peak 

value became 2.5 × 103.  

The GPS cancellation performance of the MSP method and PSP method 

were -20dB and -12dB respectively. In this case, MSP method has a better 

performance than PSP method. Please note the GPS cancellation 

performance numbers are only comparable in the same scenario between 

the two algorithms, because they are not only determined by the 

performances of the algorithms, but also determined by the SNRs of the GPS 

signals and the correlation length used in the cross correlation process. 
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5 different scenarios were simulated to compare performance. The rest of 

this section will discuss and compare the cancellation performance of the 

MSP method and the PSP method in these scenarios. The 5 scenarios were: 

1. One GPS signal in thermal noise 

2. One GPS signal with a Doppler frequency demodulation error in 

thermal noise 

3. One GPS signal with fractional delay in thermal noise 

4. One GPS signal with one multipath signal in thermal noise 

5. One band limited GPS signal in thermal noise 

5.3.1 Scenario 1: one GPS signal 

In this simulation, there is only one GPS signal (PRN 1) and thermal noise in 

the received data. The GPS signal (PRN 1) is intended to be cancelled. This 

scenario shows the cancellation performance in the ideal conditions (no 

errors), so the two algorithms should have very similar performances and are 

able to cancel the GPS signal. 
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Figure 5.3.1: Cross correlation results before the MSP cancellation (blue) and 

after the MSP cancellation (red). The data length is 20ms, the GPS (PRN 1) 

signal has a SNR of -20dB. 

As shown in figure 5.3.1, after applying MSP cancellation on the received 

data, the peak of the cross-correlation is significantly reduced and even lower 

than the original noise floor. The cancellation performance is -19.5dB. This 

indicates the MSP method can reject the GPS signal very effectively in the 

ideal conditions.  
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Figure 5.3.2: The cancellation performance comparison between MSP (blue) 

and PSP (red) using GPS (PRN 1) signal. The data length is 20ms, each 

cancellation performance point is estimated using 100 simulations. 

Figure 5.3.2 shows the cancellation performance comparisons of MSP and 

PSP against the SNR of the GPS signal from -35dB to -10dB. As expected, 

the two algorithms have almost the same performance and both are able to 

cancel the GPS signal well. They are able to achieve about -29.5dB 

cancellation when the GPS signal has -10dB SNR. As the SNR of the GPS 

signal drops to -35dB, the two algorithms have about -4.7dB cancellation.  
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Figure 5.3.3: The cancellation performance comparison between MSP (blue) 

and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) 

signal is -20dB, each cancellation performance point is estimated using 100 

simulations. 

Figure 5.3.3 shows the cancellation performance comparisons of MSP and 

PSP against data length from 1 ms (1 period) to 200ms (200 periods). Again, 

the two algorithms have almost the same performance and both are able to 

cancel the GPS signal well. They are able to achieve -29.5dB cancellation 

when the data length is 200ms. As the data length drops to 1ms, the two 

algorithms give -7.5dB cancellation. This figure also shows that the 

cancellation performance improvement rate reduces as the data length 

increases. 

Although MSP has greater complexity and the noise subspace is smaller 

than that of PSP, no performance degradation ensures. 
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5.3.2 Scenario 2: one GPS signal with Doppler error  

In this simulation, there was only one GPS signal (PRN 1) and thermal noise 

in the received data. The GPS signal (PRN 1) had a residual Doppler 

frequency. The GPS signal (PRN 1) is intended to be cancelled. The signal 

models of the MSP and PSP methods do not include the Doppler frequency 

error, so they are not supposed to be able to cancel the GPS signal well or 

even fail in this condition. 

 

Figure 5.3.4: Cross-correlation results before the MSP cancellation (blue) 

and after the MSP cancellation (red). The residual Doppler frequency is 10Hz, 

the data length is 20ms, the GPS signal (PRN 1) has a SNR of -20dB. 

Figure 5.3.4 shows the GPS signal with 10Hz residual Doppler frequency. 

The MSP method is still able to partially cancel the GPS signal. The 

cancellation performance is -15.7dB. Comparing with -19.5dB cancellation 

performance in the ideal condition, the cancellation performance drops by 

3.8dB. 
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Figure 5.3.5: Cross-correlation results before the MSP cancellation (blue) 

and after the MSP cancellation (red). The residual Doppler frequency is 30Hz, 

the data length is 20ms, the GPS signal (PRN 1) has a SNR of -20dB. 

As shown in figure 5.3.5, as the Doppler frequency error increases to 30Hz, 

the cancellation performance of the MSP method degrades dramatically. The 

cancellation performance value is -2.6dB comparing with -15.7dB when the 

Doppler frequency error is 10Hz. Compared with -19.5dB cancellation 

performance in the ideal condition, the cancellation performance drops by 

16.9dB. It almost fails to cancel the GPS signal. 
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Figure 5.3.6: Cancellation performance comparison between MSP (blue) and 

PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) signal is 

-20dB, the data length is 20ms, each cancellation performance point is 

estimated using 100 simulations. 

Figure 5.3.6 shows that the MSP and PSP algorithms have the same 

cancellation performance in the presence of residual Doppler frequency. 

When there is no residual Doppler frequency, the cancellation performance is 

-19.5dB. As the Doppler frequency increases, the cancellation performance 

decreases. When the residual Doppler frequency increases to 50Hz, both 

MSP and PSP algorithms fail to cancel this GPS signal as Doppler error is 

not included in the signal model. 

The main factor affecting the tolerable Doppler error is actually the data 

length to be processed. A longer data length will require a more accurate 

estimation of the Doppler frequency.  
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Figure 5.3.7: The MSP cancellation performance comparison between no 

Doppler error (blue) and 1Hz Doppler error (red). The SNR of the GPS (PRN 

1) signal is -20dB, each cancellation performance point is estimated using 

100 simulations. 

Figure 5.3.7 shows that for a 1Hz Doppler frequency error, the MSP 

algorithm has a small cancellation performance loss when the data length is 

less than 60ms (60 periods), but has a significant loss when the data length 

is larger than 100ms (100 samples). This is due to the increase in Doppler 

error when larger block of data is used. In practice, the data would be split 

into smaller blocks and cancellation is done by block basis. 

5.3.3 Scenario 3: one GPS signal with fractional delay  
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(PRN 1) is intended to be cancelled. Due to the multiple dimensional 

subspace structure, the MSP method should be able to cancel the GPS 

signal whilst the PSP method will perform worse or even fail. 

 

Figure 5.3.8: Cross correlation results comparison between the MSP 

cancellation (red) and the PSP cancellation (green) with a fraction delay. The 

data length is 20ms, the GPS (PRN 1) signal has a SNR of -20dB. The 

fractional delays are 1/4 chip (upper) and 1/2 chip (lower). 
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As shown in figure 5.3.8, the MSP method is able to cancel the GPS signal 

with the cancellation performance of -19.5dB for 1/4 chip (1 sample) and 1/2 

chip (2 samples) delays. The cancellation performance of the PSP method 

decreases to -7.1dB (1/4 chip delay) and -2.4dB (1/2 chip delay). 

 

Figure 5.3.9: The cancellation performance comparison between MSP (blue) 

and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) 

signal is -20dB, the data length is 20ms, each cancellation performance point 

is estimated using 100 simulations 

The simulation in Figure 5.3.9 assumes the fractional delay is able to be 

larger than half chip space (2 samples), but this rarely happens in real GPS 

applications. The result shows that the cancellation performance of the MSP 

method is -19.5dB in all the fractional delay conditions. The PSP method 

performs worse in the presence of any fractional delay, and it will fail when 

the delay is one chip (4 samples). 
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5.3.4 Scenario 4: one GPS signal with one multipath signal 

In this simulation, there is only one GPS signal (PRN 1) and thermal noise in 

the received data. The GPS signal (PRN 1) has multipath components. The 

GPS signal (PRN 1) is intended to be cancelled. Due to the multiple 

dimensional subspace structure, the MSP method should still be able to 

cancel the GPS signal whilst the PSP method will perform worse or even fail. 
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Figure 5.3.10: Cross correlation results comparison between the MSP 

cancellation (red) and the PSP cancellation (green) with a multipath signal. 

The blue curve is the cross-correlation result before cancellation. The data 

length is 20ms, the GPS (PRN 1) signal has a SNR of -20dB, the multipath 

signal has 3 sample delay and SNR of -26dB. 

In figure 5.3.10, the upper graph shows the cross-correlation results for 39 

correlation peaks, the lower graph shows the cross-correlation results for the 

highest (centre) peak, the data length is 20ms, the GPS (PRN 1) signal has a 

SNR of -20dB and the multipath signal has 3 sample delay and SNR of -

26dB. The results show the MSP method is still able to cancel the GPS 

signal with the cancellation performance of -20.2dB. The cancellation 

performance of the PSP method decreases to -7.6dB. 

 

Figure 5.3.11: The cancellation performance comparison between MSP (blue) 

and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) 

signal is -20dB, the multipath signal has a 3 sample delay, the data length is 

20ms, each cancellation performance point is estimated using 100 

simulations. 
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Figure 5.3.11 shows the cancellation performance in the presence of one 

multipath signal with SNR from -26dB to –41dB. The cancellation 

performance of the MSP method is about -20dB in all the SNR conditions. 

The PSP method performs worse in the presence of multipath. The stronger 

(higher SNR) the multipath signal is, the larger the degradation is. 

 

Figure 5.3.12: The cancellation performance comparison between MSP (blue) 

and PSP (red) using GPS (PRN 1) signal. The SNR of the GPS (PRN 1) 

signal is -20dB, the multipath signal has SNR of -26dB, the data length is 

20ms, each cancellation performance point is estimated using 100 

simulations. 

Figure 5.3.12 shows the cancellation performance in the presence of one 

multipath signal with delay from 1 sample to 6 samples. The cancellation 

performance of the MSP method is about -20dB in all the SNR conditions. 

The cancellation performance of the PSP method degrades as the multipath 

delay increases. But when the multipath delay is larger than 4 samples (1 

chip), the PSP cancellation performance stays at about -6 dB.  
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5.3.5 Scenario 5: one band-limited GPS signal 

In this simulation, there is only one GPS signal (PRN 1) and thermal noise in 

the received data. The received data is filtered by a band pass filter. The 

GPS signal (PRN 1) is intended to be cancelled. Due to the multiple 

dimensional subspace structure, the MSP method should still be able to 

cancel the GPS signal whilst the PSP method will perform worse. 

 

Figure 5.3.13: The frequency spectrum of the band pass filter. 

Figure 5.3.13 shows the spectrum of this band pass filter. It is a 31 tap FIR 

filter with a group delay of 15 samples and it emulates the filter spectrum 

response in the GPS front-end. The pass band frequencies are [0.2 0.8] of 

fs/2, where fs is the 4MHz sampling frequency.  
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Figure 5.3.14: Cross correlation results comparison between the MSP 

cancellation (red) and the PSP cancellation (green) with a band limited GPS 

signal. The data length is 20ms, the GPS (PRN 1) signal has a SNR of -20dB. 

Figure 5.3.14 shows the PSP method only has a cancellation performance of 

-4 dB because it cannot re-construct the shape the signal which is distorted 

by the front-end filter. Due to the multiple dimensional subspace structure, 

the MSP method is able to estimate this linear transfer system, linearly 

reconstruct the signal and cancel the band limited GPS signal. 

5.3.6 Summary of Performance Analysis 

As summarised in table 5.3.1, in the ideal condition with no errors, both the 

MSP and PSP are able to cancel the GPS signal effectively. If there is 

residual Doppler frequency in the GPS signal, the cancellation performances 

of the two algorithms degrade as the residual Doppler frequency increases.  

If the GPS signal has fractional delay error or multipath components, the 
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MSP method is still able to cancel this GPS signal whilst the PSP method 

provides less cancellation or even fails. If the GPS signal is distorted due to a 

band limiting filter, the PSP method fails to cancel the GPS signal whilst the 

MSP method is still able to cancel it. 

Error type  
 

Algorithm 

PSP MSP 

Residual Doppler 
frequency 

No No 

Fractional delay No Yes 

Multipath No Yes 

Band limiting No Yes 

Table 5.3.1: Comparisons of the cancellation capability of PSP and MSP 

methods. 

5.4 Experimental Results 

An experiment was performed using the antenna array of the GNSS 

Environment Monitoring System (GEMS) [44, 45, 83]. The antenna array 

consisted of 7 equally spaced circular monopole antennas with one 

monopole antenna in the centre. Although the GPS signal cancellations were 

performed on all the channels, only the reference channel (channel 1, the 

centre antenna) result is presented in this section. The GEMS original 

sampling rate was 16MHz, but it was down sampled to 4MHz by software 

decimation in this experiment. The data length was 50ms (50 CA code 

periods). The MSP cancellation used 60 taps as it enables the filter response 

to be well modelled without incurring the losses associated with either too 

small or too many taps. 

8 GPS signals were obtained after GPS acquisition. The MSP and PSP 

cancellation performance is summarised in table 5.4.1. MSP method has a 

better cancellation performance than PSP method for all the GPS signals. 

For PRN 16, 18, 19 and 21, MSP method is about 1.3dB better than PSP 
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method on average. For PRN 03, 06, 14 and 22, MSP method is 5.3dB better 

than PSP method on average. For PRN 21, MSP method is 0.96dB better 

than PSP method. For PRN 14, MSP method is 7.03dB better than PSP 

method. 

 
PRN 

 
03 

 
06 

 
14 

 
16 

MSP  -22.38 -22.63 -20.66 -17.54 

PSP  -17.60 -16.23 -13.63 -16.42 

 
PRN 

 
18 

 
19 

 
21 

 
22 

MSP  -19.52 -21.45 -19.91 -20.60 

PSP  -18.21 -20.08 -18.95 -17.11 

Table 5.4.1: MSP and PSP cancellation performance comparison, the unit is 

in dB. 

The cross-correlation results of PRN 14 and PRN 21 are shown in figure 

5.4.1 and 5.4.2. MSP cancellation residues are almost in the noise floor for 

both cases but PSP cancellation has large residue peaks for PRN 14. 
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Figure 5.4.1: Cross correlation results comparison between the MSP 

cancellation (red) and the PSP cancellation (green) for PRN 14. 

 

Figure 5.4.2: Cross correlation results comparison between the MSP 

cancellation (red) and the PSP cancellation (green) for PRN 21. 
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5.5 Conclusion 

In this chapter, a Multiple Subspace Projection (MSP) method is proposed to 

cancel the GPS signals in the received data of a GPS antenna array to 

enable accurate DOA estimation of weak GPS interferences. The simulations 

show this method is capable of subtracting the GPS signals even if the GPS 

signal has unknown amplitude and carrier phase, multipath components, 

fractional delays or is band-limited due to the receiver front end filters. The 

experiment result shows the GPS signals in the real received data are 

effectively cancelled. 
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Chapter 6: Weak GPS Interference DOA 

Estimation 

6.1 Introduction 

This chapter first considers the effect of the number of snapshots used in the 

covariance matrix estimation and the effect of coloured noise on weak 

interference direction of arrival estimation. An experiment and the use of the 

collected data to estimate the direction of arrival (DOA) of a weak 

interference in the GPS L1 band using antenna array calibration, GPS signal 

cancellation and coloured noise whitening techniques are then discussed. 

The remainder of this chapter is structured as follows. The received signal 

models for direction of arrival estimation with and without model errors are 

introduced in Section 6.2. Based on the signal model without errors, a CRLB 

analysis is conducted to investigate the effect of the number of snapshots 

used in covariance matrix estimation on the DOA estimation variance in 

Section 6.3. The effect of coloured noise and its mitigation are discussed in 

Section 6.4. An experiment set up to estimate the DOA of a weak 

interference and the results obtained are presented in Section 6.5, and the 

conclusions are given in Section 6.6. 

6.2 Signal Model of Weak GPS Interference DOA 

Estimation 

In this section, the signal model used for weak interference DOA estimation 

is described. In Section 6.2.1 the signal model of an ideal antenna array in 
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the presence of a single far-field interference is presented. Due to errors in 

the antenna array, when estimating the DOA of weak interference, the real 

signal model is unlikely to be the same as the ideal signal model. So an 

alternative signal model taking into account such errors is proposed in 

Section 6.2.2. 

6.2.1 Ideal Signal Model 

Consider an ideal GPS antenna array of M elements in the presence of a 

single far-field interference in the GPS L1 frequency band. To provide a 

useful bound to estimation accuracy it has been assumed, on this ideal case, 

that there are no GPS signals present or alternatively all GPS signals have 

been removed by the techniques outlined in Chapter 5. The vector form of 

the M sensor outputs 𝑥 at the time t is 

 
𝑥(𝑡) = 𝑣𝑠𝑠(𝑡) + 𝑛(𝑡) 

 
(6.2.1) 

 

where 𝑣𝑠 ≡ 𝑣𝑠(𝜃𝑠 ,  𝜑𝑠)   is the M×1 signal steering vector which is derived 

based on the antenna array geometry, the azimuth angle 𝜃𝑠 and the elevation 

angle  𝜑𝑠  of the interference, 𝑠(𝑡) is the transmitted interference at time t, 

𝑛(𝑡) is the M×1 additive receiver noise which is assumed to be uncorrelated 

Additive White Gaussian Noise (AWGN). 

The covariance matrix 𝐑 of the received signal is 

 
𝐑 = 𝐸{𝑥(𝑡)𝑥𝐻(𝑡)} = 𝐑𝑠 + 𝐑𝑛 = 𝜎𝑠

2𝑣𝑠𝑣𝑠
𝐻 + 𝜎𝑛

2𝐈 

 
(6.2.2) 

 

where 𝐻 is the Hermitian transpose, 𝐑𝑠 is the M×M interference covariance 

matrix, 𝐑𝑛 is the M×M noise covariance matrix, 𝜎𝑠
2 is the interference power, 

𝜎𝑛
2 is the noise power and 𝐈 is the M×M identity matrix. 

The estimated covariance matrix �̂� is 
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�̂� =

1

𝑁
∑𝑥(𝑛)𝑥𝐻(𝑛)

𝑁

𝑛=1

 

 

(6.2.3) 
 

where N is the number of the snapshots.  

In this ideal signal model, three factors are not considered, which need to be 

included when estimating the DOA of a very weak interference in the GPS 

frequency band with a signal to noise ratio lower than -15 dB. 

Factor 1: Antenna array errors 

The true array manifold may be different from the theoretical computed 

steering vector due to the mutual coupling between the antennas, gain/phase 

errors in each channel and the antenna array orientation error. The GPS 

antenna array calibration algorithms to estimate these errors have been 

proposed in Chapter 3 and Chapter 4.  

Factor 2: Other directional signals in the GPS L1 frequency band 

The GPS L1 frequency band is well protected by law. However navigation 

signals themselves are in the L1 frequency band. These navigation signals 

are: GPS L1 C/A code, GPS L1 P(Y) code and Galileo E1 code. These 

signals are very weak. For example, the SNR of the GPS L1 C/A code is -15 

dB to -30 dB.  As discussed in Chapter 5, if the INR of the intended 

interference is stronger than -10 dB, its DOA estimation is not influenced. 

However, if the INR is below -10 dB, the DOA estimation results are affected. 

The Multiple Subspace Projection (MSP) method has been proposed in 

Chapter 5 to cancel the GPS L1 C/A signal. Because the GPS P(Y) code is 

encrypted, it will be very difficult to cancel them. But the SNR of the GPS L1 

P(Y) signal is even weaker than GPS L1 C/A signal. The null to null 

bandwidth of the GPS L1 P(Y) signal is 20.46 MHz which is 10 times larger 

than the GPS L1 C/A signal which has a null to null bandwidth of 2.046MHz 

[2]. The typical power of the GPS L1 P(Y) signal is -163 dBW while the 

typical power of the GPS L1 C/A signal is -160 dBW. So the GPS L1 P(Y) 
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signal is about 10 dB lower than the GPS L1 C/A signal in a 4 MHz 

bandwidth which is the bandwidth used in this chapter. The SNR of the GPS 

L1 P(Y) signal is about -25 dB to -40 dB. This will have no or very limited 

effect on DOA estimation of an interference with an INR of -20 dB. Whilst the 

Galileo navigation system had 15 operational satellites in year 2016, there 

were only 2 operational satellites at the time of the experiment (May 2012), 

so it was not a problem. In the future, spatial filtering methods or MSP based 

subspace cancellation methods can be used to remove Galileo signals.  

Factor 3: Correlated noise 

The receiver noise may not be uncorrelated white Gaussian noise, so its 

covariance matrix may have values at non-diagonal positions (coloured) and 

needs to be whitened. The solution “coloured noise whitening” will be 

discussed in Section 6.4. 

6.2.2 Signal Model with Errors 

The following new signal model is proposed to include the above three 

factors. 

Consider a GPS antenna array of M elements in the presence of single 

interference and N GPS L1 C/A code signals. The vector form of the M 

sensor outputs 𝑥 at time t is 

 
𝑥(𝑡) = 𝐄𝑣𝑠𝑠(𝑡) + 𝐄𝐕𝑖𝑠𝑖(𝑡) + 𝑛(𝑡) 

 
(6.2.4) 

 

where 𝐄 is the M×M matrix describing the uncertainties in the antenna array, 

𝑣𝑠 is the M×1 steering vector derived from the antenna array geometry and 

the DOA of the interference, 𝑠(𝑡) is the transmitted interference at time t, 𝐕𝑖 is 

the M×N matrix whose columns consist of the GPS signal steering vectors 

which are derived from the antenna array geometry and the DOA of the GPS 
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signals, 𝑠𝑖(𝑡) is the N×1 transmitted GPS signals at time t and 𝑛(𝑡) is the 

receiver coloured noise.  

The array error matrix 𝐄 is given by 

 
𝐄 = 𝐂𝚪 

 
(6.2.5) 

 

where 𝐂  is the antenna mutual coupling matrix and 𝚪  is the channel 

gain/phase error matrix. Calibration techniques based on of these matrices 

are discussed in Chapter 3 and 4. 

The covariance matrix 𝐑 of the received signal is 

 
𝐑 = 𝐸{𝑥(𝑡)𝑥𝐻(𝑡)} = 𝐑𝑠 + 𝐑𝑖 + 𝐑𝑛 

 
(6.2.6) 

 

where 𝐑𝑠  is the estimated M×M interference covariance matrix, 𝐑𝑖  is the 

estimated M×M GPS signal covariance matrix and 𝐑𝑛 is the estimated M×M 

coloured noise covariance matrix. 

The estimated covariance matrix �̂� of the received signal is 

 
�̂� =

1

𝑁
∑{𝑥(𝑛)𝑥𝐻(𝑛)}

𝑁

𝑛=1

 

 

(6.2.7) 
 

where N is the number of snapshots used to estimate the covariance matrix. 

6.3 Cramer-Rao Lower Bound (CRLB) Analysis for 

DOA Estimation 

The Cramer-Rao Lower Bond (CRLB) is defined as the negative of the 

second order derivative of the logarithm of the likelihood function at its peak 

[145]. The likelihood function is the probability density function of the data as 

a function of the unknown parameters [91]. The CRLB provides useful 
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engineering limits to the estimation accuracy of the unknown parameters of 

the likelihood function. In this section, the standard expression for the CRLB 

[67, 146] is applied to a circular array with an element in the centre. 

6.3.1 CRLB Derivation for Ideal Signal Model 

Consider a far-field single interference, the likelihood function of the complete 

received data set {𝑥(𝑡), t = 1, 2, … , T} is given by 

 
𝑃[𝑥(1), 𝑥(2), … , 𝑥(𝑇)|𝛹] =∏

1

𝜋𝑀‖𝐑‖

𝑇

𝑡=1

exp (−𝑥𝐻(𝑡)𝐑−1𝑥(𝑡)) 

 

(6.3.1) 
 

where T is the number of snapshots, 𝛹 is the unknown parameter vector of 

the likelihood function, M is the number of antennas, 𝐑 is the covariance 

matrix. 

The unknown parameters 𝛹 of the likelihood function are given by 

 
𝛹 = [𝜃, 𝜑]𝑇 

 
(6.3.2) 

 

where 𝜑  is the azimuth angle and 𝜑  is the elevation angle of the weak 

interference. 

The covariance matrix of the ideal signal model is given by equation 6.2.2 in 

Section 6.2.1 as 

 
𝐑 = 𝜎𝑠

2𝑣𝑠𝑣𝑠
𝐻 + 𝜎𝑛

2𝐈 

 
(6.3.3) 

 

The unconditional CRLB [67, 146] can be shown to be 

 
𝐂𝐑𝐋𝐁(𝚽) = 𝐉−1(𝛹) 

 

(6.3.4) 
 

where the elements of the symmetric Fisher Information Matrix (FIM) are 
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𝐽𝑖𝑗 = 𝐽𝑗𝑖 = 𝑇 𝑡𝑟𝑎𝑐𝑒 {𝐑

−1
𝜕𝐑

𝜕𝛹𝑖
𝐑−1

𝜕𝐑

𝜕𝛹𝑗
} 

 

(6.3.5) 
 

Azimuth angle – azimuth angle terms is 

 
𝐽𝜃,𝜃 = 𝑇 𝑡𝑟𝑎𝑐𝑒 {𝐑−1

𝜕𝐑

𝜕𝜃
𝐑−1

𝜕𝐑

𝜕𝜃
} 

 

(6.3.6) 
 

 
𝐽𝜃,𝜃 = 𝑇𝜎𝑠

4 {𝐑−1(�̇�𝑠𝜃𝑣𝑠
𝐻 + 𝑣𝑠�̇�𝑠𝜃

𝐻)𝐑−1(�̇�𝑠𝜃𝑣𝑠
𝐻 + 𝑣𝑠�̇�𝑠𝜃

𝐻)} 

 

(6.3.7) 
 

where  �̇�𝑠𝜃 = 𝜕𝑣𝑠(𝜃, 𝜑) 𝜕𝜃⁄ . 

Elevation angle – elevation angle term is 

 
𝐽𝜑,𝜑 = 𝑇 𝑡𝑟𝑎𝑐𝑒 {𝐑−1

𝜕𝐑

𝜕𝜑
𝐑−1

𝜕𝐑

𝜕𝜑
} 

 

(6.3.8) 
 

 
𝐽𝜑,𝜑 = 𝑇𝜎𝑠

4 {𝐑−1(�̇�𝑠𝜑𝑣𝑠
𝐻 + 𝑣𝑠�̇�𝑠𝜑

𝐻)𝐑−1(�̇�𝑠𝜑𝑣𝑠
𝐻 + 𝑣𝑠�̇�𝑠𝜑

𝐻)} 

 

(6.3.9) 
 

where  �̇�𝑠𝜑 = 𝜕𝑣𝑠(𝜃, 𝜑) 𝜕𝜑⁄ . 

Azimuth angle – elevation angle term is 

 
𝐽𝜃,𝜑 = 𝑇 𝑡𝑟𝑎𝑐𝑒 {𝐑−1

𝜕𝐑

𝜕𝜃
𝐑−1

𝜕𝐑

𝜕𝜑
} 

 

(6.3.10) 
 

 
𝐽𝜃,𝜑 = 𝑇𝜎𝑠

4 {𝐑−1(�̇�𝑠𝜃𝑣𝑠
𝐻 + 𝑣𝑠�̇�𝑠𝜃

𝐻)𝐑−1(�̇�𝑠𝜑𝑣𝑠
𝐻 + 𝑣𝑠�̇�𝑠𝜑

𝐻)} 

 

(6.3.11) 
 

Finally, the FIM is given by 

 𝐉 = [
𝐽𝜃,𝜃 𝐽𝜑,𝜃
𝐽𝜃,𝜑 𝐽𝜑,𝜑

] (6.3.12) 

6.3.2 The Antenna Array and CRLB Analysis 

The antenna array used for DOA estimation was an 8 element monopole 

antenna array shown in figure 6.3.1. It was a 7 element uniformly spaced 
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circular array with an additional 1 element in the center. The radius of the 

circular array was 10cm.  

 

Figure 6.3.1: The 8 element monopole antenna array. 

The Cramer-Rao Lower Bound (CRLB) of the ideal signal model of this 

antenna array is numerically analysed in this section due to its highly 

complex analytical solutions. Unless specified otherwise, the default 

parameter values used in the CRLB calculations are: target SNR = -20dB, 

azimuth angle = 180⁰, elevation angle = 85⁰, the number of snapshots is 

1×106. For example, when analysing CRLB for azimuth angle variation with 

azimuth angle, SNR = -20dB and elevation angle = 85⁰ are used in the 

calculations; when analysing CRLB for azimuth angle variation with elevation 

angle, SNR = -20dB and azimuth angle = 180⁰ are used in the calculations. 



 

127 
 

 

Figure 6.3.2: CRLB for azimuth angle variation with azimuth angle (upper) 

and elevation angle (lower). 

As shown in figure 6.3.2, this antenna array has a uniform azimuth angle 

estimation standard deviation (STD), but the azimuth angle estimation STD 

for the same azimuth angle increases as the elevation angle decreases. This 

is as expected because the antenna array elements are uniformly distributed 

along the azimuth direction but not along the elevation direction. 
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Figure 6.3.3: CRLB for elevation angle variation with elevation angle (upper) 

and azimuth angle (lower). 

Figure 6.3.3 shows the similar results as above, as the elevation angle 

decreases, the elevation angle estimation STD decreases, but the elevation 

angle estimation for the same elevation angles does not vary with azimuth 

angle. 
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Figure 6.3.4: CRLB for azimuth angle variation with SNR (blue) and CRLB for 

elevation angle variation with SNR (red). 

Figure 6.3.4 shows both azimuth and elevation angle estimation STD 

decreases as the signal SNR increases. However, azimuth angle estimation 

STD is about 10 times lower than elevation estimation STD for the same 

SNR. 
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Figure 6.3.5: CRLB for azimuth angle variation with the number of snapshots 

(blue) and CRLB for elevation angle variation with the number of snapshots 

(red). 

As shown in figure 6.3.5, both azimuth and elevation angle estimation STDs 

decrease as the number of snapshot increases, however the azimuth angle 

estimation STD is still about 10 times lower than elevation estimation 

variance for the same SNR. If the standard deviation of the azimuth DOA 

estimate is required to be lower than 1⁰, the number of snapshots in the 

covariance matrix estimation must be larger than 100,000. In this chapter, the 

number of snapshots is selected to be 1,000,000, which corresponds to a 

azimuth angle standard deviation of 0.248 degrees and a ± 9 m location error 

at a 1 km range as shown in table 6.3.6. For a 4MHz sampling rate, 

1,000,000 samples is equivalent to 0.25 seconds. This time duration is 

effective against short time interferences. 
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Figure 6.3.6: The number of snapshots and the predicted location errors 

based on CRLB. The location error assumes 1 km distance from the array 

and is estimated by 2 STD of azimuth DOA estimation. 

6.4 Coloured Noise Mitigation 

This section discusses the coloured noise whitening method and a potential 

Galileo satellite interference mitigation method. 

Adaptive antenna array techniques such as MUSIC assume the noise within 

the system is uniformly distributed spatially uncorrelated White Gaussian 

Noise with the a noise covariance matrix 𝐑𝑛 = 𝜎𝑛
2𝐈, where 𝜎𝑛

2 is the noise 

power and 𝐈  is the identity matrix. However, due to low level spurious 

oscillations in the front-end electronics, channel coupling and near-field 

interferences, the noise in the system is non-uniformly distributed and its 

covariance matrix is not diagonal. 
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An example of the covariance matrix of the noise-only data in GNSS 

Environmental Monitoring System (GEMS) antenna array is shown in figure 

6.4.1. The (2, 5)th value of the covariance matrix is 0.22 whilst the diagonal 

values are around 0.93. There will thus be a significant noise model error if 

𝐑𝑛 = 𝜎𝑛
2𝐈  is used.  

 

Figure 6.4.1: The covariance matrix of the noise-only data. 

The Minimum Variance Distortionless Response algorithm (MVDR) estimated 

power spectrum of the above noise-only data in figure 6.4.1 is shown in 

figure 6.4.2. The standard deviation of the MVDR estimated power spectrum 

was 0.0098, the average estimated power was 0.1103. This non-uniform 

angular distribution of noise power indicated by the peak around 150 degrees 

azimuth and 90 degrees elevation will behave as strong interference and 

mask weak interferences. 
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Figure 6.4.2: MVDR estimated power spectrum of the noise-only data. 

Various methods for coloured noise whitening or DOA estimation in the 

presence of coloured noise are discussed in [147-159]. This chapter uses the 

coloured noise whitening method introduced in [145].  

This method assumes a previously recorded noise-only calibration data  𝐑𝑐  

has been obtained. Assuming the noise is stationary, then 

 
𝐑𝑐 ≈ 𝐑𝑛 

 
(6.4.1) 

 

The decomposition 

 
𝐑𝑐

−1 = 𝐃𝐻𝐃 

 
(6.4.2) 

 

Is used to project 𝐑𝑛  onto the subspace spanned by D and the following 

equation is obtained 

 
𝐃𝐑𝑛𝐃

𝐻 ≈ 𝐃𝐑𝑐𝐃
𝐻 = 𝐃𝐃−1𝐃𝐻

−1
𝐃𝐻 = 𝐈   

 
(6.4.3) 

 

Azimuth angle (degrees)

E
le

v
a
ti
o
n
 a

n
g
le

 (
d
e
g
re

e
s
)

 

 

50 100 150 200 250 300 350

10

20

30

40

50

60

70

80

90

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14



 

134 
 

So the coloured noise 𝐑𝑛 is whitened.  

The above noise-only data in figure 6.4.1 and figure 6.4.2 was whitened by 

the noise-only data which was captured 40 minutes earlier. Figure 6.4.3 

shows the maximum non-diagonal value was reduced to 0.093 and the 

diagonal values were increased to about 1.0 resulting in a noise model that is 

significantly closer to 𝐑𝑛 = 𝜎𝑛
2𝐈.  

 

Figure 6.4.3: The covariance matrix of the whitened noise. 

The MVDR estimated power spectrum of the whitened noise in figure 6.4.3 is 

shown in figure 6.4.4. The standard deviation of the MVDR estimated power 

spectrum was reduced to 0.0033, and the average power was increased to 

0.1248. The noise power mismatch in spatial domain is reduced.  
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Figure 6.4.4: MVDR estimated power spectrum of the whitened noise. 

6.5 Experimental Results 

Before the experiment, the antenna array was calibrated using the calibration 

algorithm proposed in Chapter 4 to obtain estimates of the antenna array 

orientation and the mutual coupling matrix.  

The received data was processed in 5 steps: 

1. Cancel the GPS signals from the data using MSP method proposed in 

Chapter 5. 

2. Construct the covariance matrix with 1 × 106 samples (250 CA code 

periods). 

3. Whiten the constructed covariance matrix using the noise only data 

as described in Section 6.4. 
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4. Correct the array manifold using the estimated calibration parameters 

by the calibration algorithm in Chapter 4. The estimated mutual 

coupling matrix of the antenna array is shown in figure 6.5.1. 

 

Figure 6.5.1: Estimated mutual coupling matrix using the calibration algorithm 

in Chapter 4. 

5. Estimate the DOA of the interference using MUltiple Signal 

Classification algorithm (MUSIC). 

6.5.1 Hardware Description 

The antenna array hardware consisted of an 8 element antenna array 

followed by an 8 channel down converter followed by an Analogue to Digital 

Converter (ADC) and an FPGA board that buffered the data prior to 

transferring it to the computer. The basic structure is shown in figure 6.5.2. 
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Figure 6.5.2: Antenna array data recording system. 

The final sample rate of the ADC was chosen to be 32 MHz, although the 

ADC chip can actually go to 125 MHz. This gave a usable bandwidth of up to 

16 MHz, although the final band-pass filters were slightly narrower than 16 

MHz to reduce aliasing. The initial band-pass filter was centred at the GPS 

carrier frequency of 1.57542GHz, while the final band-pass filter was centred 

at 56MHz with a bandwidth slightly less than 16MHz, so that the signal would 

alias down to 0-16MHz when sampled at 32MHz. The final sampling rate 

used in the experiment was 4 MHz.  

A picture of the antenna array hardware is shown in figure 6.5.3. The ADC 

and RF boards were custom designed, while the FPGA board was a COTS 

board that plugs onto the ADC board and included an FPGA as well as 64MB 

of RAM to capture continuous blocks of data in real time that could be 

transferred to the computer via USB in a slower time. 
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Figure 6.5.3: Picture of the antenna array data recording system. 

6.5.2 DOA Estimation Results 

Because it is prohibited to transmit signal in the GPS L1 frequency band, it 

was hard to find a proper interference source. In the experiment, the 

interference source was a desktop computer. As shown in figure 6.5.4, this 

desktop computer generated a narrowband interference in GPS L1 frequency 

band during its startup period. The interference to noise ratio was about -

22dB and the distance was about 7 meters from the antenna array, so it was 

not capable of interfering with the GPS signals during the experiment. 

Although it was narrowband interference, the DOA estimation during this 

experiment was using a wideband signal assumption and processed the 

entire signal bandwidth.  
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Figure 6.5.4: The power spectrum of channel 1 received data after GPS 

signal subtraction. The peak value of the spike (narrowband interference) is 

11.4dB, the noise floor is at 1.5dB, the processing gain is 31.9dB, so the 

power of the narrowband interference is 11.4dB - 1.5dB – 31.9dB = -22dB. 

The interference DOA was estimated by the MUSIC algorithm where the two 

eigenvectors corresponding to the largest two eigenvalues were chosen as 

the signal subspace because this gave a less noisy MUSIC spectrum than 

just using a single eigenvalue. The DOA estimation result is shown in figure 

6.5.5. The estimated azimuth angle of the interference was 179.4⁰ compared 

with a true value of 180⁰. The clean MUSIC spectrum suggested a good 

estimation result.  
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Figure 6.5.5: Interference DOA estimation using MUSIC. 

6.6 Conclusion 

In this chapter, the requirement of the number of snapshots of the received 

signal and a method to mitigate the coloured noise has been discussed. The 

CRLB analysis for the ideal signal model shows the number of snapshots 

needs to be larger than 1 × 106 to ensure that a lower bound for the accuracy 

of the azimuth DOA estimation is within 0.5⁰ for an interference with a SNR of 

-22dB. The coloured noise in the system was effectively whitened by using 

the projections of the noise only covariance matrix.  

By applying the GPS signal cancellation, the coloured noise mitigation and 

the array calibration parameters, the experimental result shows the DOA of 

an interference with SNR of -22dB in the GPS L1 band was accurately 

estimated by MUSIC algorithm. 
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Chapter 7: Conclusion 

7.1 Summary 

The work in this thesis developed a GPS antenna array based technique to 

estimate the direction of arrival (DOA) of weak interferences in the GPS 

frequency band. Initially, the main issues which affect DOA estimation 

accuracy were addressed. They are 

1. Errors in the antenna array model. 

2. GPS signals acting as interference sources. 

3. The number of snapshots requirement for DOA estimation. 

4. Coloured noise in the system. 

Two calibration algorithms were developed in Chapter 3 and Chapter 4 to 

calibrate GPS antenna arrays. In Chapter 3, the GPS antenna array is 

calibrated by a modelled eigenstructure based calibration algorithm using 

GPS signals as disjoint calibration sources. This algorithm described antenna 

array errors using their physical models, which reduces the number of 

unknown parameters in the cost function and thus reduces the minimum 

requirement of the number of calibration sources.  The use of GPS signals as 

disjoint sources largely simplifies the computations required to estimate 

directions of arrival of calibration sources and also enables the number of 

calibration sources to be larger than the number of GPS antenna array 

elements. The unknown parameters are estimated by minimising the highly 

sensitive eigenstructure based cost function iteratively. 

The calibration algorithm in Chapter 4 was developed to calibrate GPS 

antenna arrays when the calibration sources (GPS signals) have multipath 

components. The multipath signals from the calibration sources are modelled 
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in the subspace based calibration cost function as well as array orientation 

error and mutual coupling effects. This cost function is minimised by the 

Alternating Projection (AP) method based calibration algorithm which 

iteratively estimates the unknown parameters in the cost function. 

In Chapter 5, it was found that the DOA estimation variance of a weak GPS 

interference increases significantly due to the presence of GPS signals, so 

GPS signals need to be cancelled in the received data to enable an accurate 

weak interference DOA estimation. A Multiple Subspace Projection (MSP) 

algorithm was proposed in this chapter to cancel the GPS signals. This 

algorithm projects the received data onto the orthogonal multi-dimensional 

subspace of the intended GPS signals to cancel them completely even if the 

signals are band-limited, have multipath components, or have fractional 

delays.  

The last two issues, non-coherent integration length and coloured noise 

mitigation, are discussed in Chapter 6. The Cramer-Rao Lower Bound (CRLB) 

was derived and analysed for the antenna array DOA estimation. By using 

the CRLB, the number of snapshots required for weak interference non-

coherent spatial integration was determined. Coloured noise in the system 

was pre-whitened by using noise-only calibration data. Experimental results 

using an eight-element GPS antenna array showed that the DOA of a weak 

GPS interference with a signal to noise ratio (SNR) of -22dB could be 

accurately estimated. 

7.2 Future Work 

In Chapter 3 and Chapter 4, the solution existence condition is derived based 

on the number of unknown parameters and the number of available least 

squares equations obtained from the calibration sources, but each of the 

steps in the iterative process may require a smaller number of calibration 

sources, the question of whether the same or different sources are required 
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for each of the separate steps will be an interesting topic to be resolved. For 

the two proposed antenna array calibration algorithms, it will also be 

interesting to study the importance of the quality of the initialisation values 

and in which conditions their iterative processes will result in a local optimum. 

The MSP GPS signal cancellation algorithm proposed in Chapter 5 does not 

include Doppler errors into the signal model and thus loses its performance 

under this condition. It will be beneficial to study efficient implementations 

under MSP framework to fully cancel GPS signals in the presence of Doppler 

errors. 

The work presented in this thesis was implemented in Matlab as post 

processing functions. In order to achieve on-line weak interference DOA 

estimation, the algorithms especially the MSP GPS cancelation algorithm 

needs to be extended to be implemented for real time applications. The 

algorithms in this work can be used as initialisation functions for tracking 

algorithms such as Kalman filters, particle filters and their extensions. The 

real time application also requires the on-line interference detection to work, 

which requires a robust interference detector.  

The weak interference DOA estimation performance in the real environment 

needs to be analysed by more data. It is also interesting to evaluate the 

estimation variance with interferences whose SNR is lower than -25dB as 

there might be other interfering sources limiting the accuracy. 
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Appendix A. Lemmas for Matrix Manipulation 

The lemmas in this appendix are given in references [57, 114]. 

Lemma 1: For any M × 1 complex vector X and any M × M complex diagonal 

matrix D we have 

 
𝐷 ∙ 𝑋 = 𝑄1(𝑋) ∙ 𝑑 

 
 

where the components of the M × 1 vector d and M × M matrix 𝑄1(𝑋) are 

given by 

 
𝑑𝑖 = 𝐷𝑖𝑖       𝑖 = 1,2, … ,𝑀 

 
 

 
[𝑄1(𝑋)]𝑖𝑗 = 𝑋𝑖 ∙ 𝛿𝑖𝑗     𝑖, 𝑗 = 1,2, … ,𝑀 

 
 

Lemma 2: For any N × 1 complex vector X and any M × M complex 

symmetric circulant matrix A we have 

 
𝐴 ∙ 𝑋 = 𝑄2(𝑋) ∙ 𝑎 

 
 

where the components of the L × 1 vector a are given by 

 
𝑎𝑖 = 𝐴1𝑖,    𝑖 = 1,2, … , 𝐿 

 
 

 where L = M/2 + 1 when M is even and L = M/2 + ½ when M is odd. 

The M × L matrix 𝑄2(𝑋) is the sum of the four M × L following matrices: 

 

[𝑊1]𝑝𝑞 = {
𝑋𝑝+𝑞−1,  𝑝 + 𝑞 ≤ 𝑀 + 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝑊2]𝑝𝑞 = {
𝑋𝑝−𝑞+1, 𝑝 ≥ 𝑞 ≥ 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝑊3]𝑝𝑞 = {
𝑋𝑀+1+𝑝−𝑞 , 𝑝 < 𝑞 ≤ 𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝑊4]𝑝𝑞 = {
𝑋𝑃+𝑞−𝑀−1, 2 ≤ 𝑞 ≤ 𝑙, 𝑝 + 𝑞 ≥ 𝑀 + 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑙 = 𝑀/2 for even M and 𝑙 = (𝑀 + 1)/2 for odd M. 

Lemma 3: For any M × 1 complex vector X and any M × M banded complex 

symmetric Toeplitz matrix A we have 

 
𝐴 ∙ 𝑋 = 𝑄3(𝑋) ∙ 𝑎 

 
 

where the L × 1 vector a is given by 

 
𝑎𝑖 = 𝐴1𝑖,    𝑖 = 1,2, … , 𝐿 

 
 

And L is the highest superdiagonal that is different from zero. The M × L 

matrix 𝑄3(𝑋) is given by the sum of the two M × L following matrices 

 

[𝑊1]𝑝𝑞 = {
𝑋𝑝+𝑞−1,  𝑝 + 𝑞 ≤ 𝑀 + 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[𝑊2]𝑝𝑞 = {
𝑋𝑝−𝑞+1, 𝑝 ≥ 𝑞 ≥ 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

Proof: The proof of the lemmas is based on the special properties of diagonal 

matrices, circulant matrices and Toeplitz matrices. For detailed discussions, 

please refer to references [57, 114].  
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